

REGULAR	
EXPRESSIONS

Pocket	Primer
	

	

	

LICENSE,	DISCLAIMER	OF	LIABILITY,	AND	LIMITED	WARRANTY

By	 purchasing	 or	 using	 this	 book	 and	 its	 companion	 files	 (the	 “Work”),	 you
agree	 that	 this	 license	 grants	 permission	 to	 use	 the	 contents	 contained	 herein,
including	 the	companion	files,	but	does	not	give	you	 the	right	of	ownership	 to
any	 of	 the	 textual	 content	 in	 the	 book	 /	 files	 or	 ownership	 to	 any	 of	 the
information	or	products	contained	in	 it.	This	license	does	not	permit	uploading
of	the	Work	onto	the	Internet	or	on	a	network	(of	any	kind)	without	the	written
consent	 of	 the	 Publisher.	 Duplication	 or	 dissemination	 of	 any	 text,	 code,
simulations,	 images,	etc.	contained	herein	 is	 limited	 to	and	subject	 to	 licensing
terms	 for	 the	 respective	 products,	 and	 permission	 must	 be	 obtained	 from	 the
Publisher	or	the	owner	of	the	content,	etc.,	in	order	to	reproduce	or	network	any
portion	of	the	textual	material	(in	any	media)	that	is	contained	in	the	Work.

MERCURY	LEARNING	AND	INFORMATION	(“MLI”	or	“the	Publisher”)	and	anyone
involved	 in	 the	 creation,	 writing,	 or	 production	 of	 the	 companion	 files,
accompanying	algorithms,	code,	or	computer	programs	(“the	software”),	and	any
accompanying	Web	site	or	software	of	the	Work,	cannot	and	do	not	warrant	the
performance	or	results	that	might	be	obtained	by	using	the	contents	of	the	Work.
The	author,	developers,	and	the	Publisher	have	used	 their	best	efforts	 to	 insure
the	accuracy	and	functionality	of	the	textual	material	and/or	programs	contained
in	this	package;	we,	however,	make	no	warranty	of	any	kind,	express	or	implied,
regarding	the	performance	of	these	contents	or	programs.	The	Work	is	sold	“as
is”	without	warranty	 (except	 for	defective	materials	used	 in	manufacturing	 the
book	or	due	to	faulty	workmanship).

The	 sole	 remedy	 in	 the	 event	 of	 a	 claim	 of	 any	 kind	 is	 expressly	 limited	 to
replacement	of	the	book	and/or	companion	files,	and	only	at	the	discretion	of	the
Publisher.	 The	 use	 of	 “implied	 warranty”	 and	 certain	 “exclusions”	 vary	 from
state	to	state,	and	might	not	apply	to	the	purchaser	of	this	product.

The	companion	files	are	available	for	downloading	by	writing	to	the	publisher	at
info@merclearning.com.

REGULAR	
EXPRESSIONS

Pocket	Primer

Oswald	Campesato

	

	

MERCURY	LEARNING	AND	INFORMATION	
Dulles,	Virginia	

Boston,	Massachusetts	
New	Delhi

Copyright	©2019	by	MERCURY	LEARNING	AND	INFORMATION	LLC.	All	rights	reserved.

This	publication,	portions	of	it,	or	any	accompanying	software	may	not	be	reproduced	in	any	way,	stored	in
a	retrieval	system	of	any	type,	or	transmitted	by	any	means,	media,	electronic	display	or	mechanical
display,	including,	but	not	limited	to,	photocopy,	recording,	Internet	postings,	or	scanning,	without	prior
permission	in	writing	from	the	publisher.

Publisher:	David	Pallai
MERCURY	LEARNING	AND	INFORMATION

22841	Quicksilver	Drive
Dulles,	VA	20166
info@merclearning.com
www.merclearning.com
800-232-0223

O.	Campesato.	Regular	Expressions	Pocket	Primer.
ISBN:	978-1-68392-227-8

The	publisher	recognizes	and	respects	all	marks	used	by	companies,	manufacturers,	and	developers	as	a
means	to	distinguish	their	products.	All	brand	names	and	product	names	mentioned	in	this	book	are
trademarks	or	service	marks	of	their	respective	companies.	Any	omission	or	misuse	(of	any	kind)	of	service
marks	or	trademarks,	etc.	is	not	an	attempt	to	infringe	on	the	property	of	others.

Library	of	Congress	Control	Number:	2018943739

181920321	Printed	on	acid-free	paper	in	the	United	States	of	America.

Our	titles	are	available	for	adoption,	license,	or	bulk	purchase	by	institutions,	corporations,	etc.	For
additional	information,	please	contact	the	Customer	Service	Dept.	at	
800-232-0223(toll	free).

All	of	our	titles	are	available	in	digital	format	at	authorcloudware.com	and	other	digital	vendors.	The	sole
obligation	of	MERCURY	LEARNING	AND	INFORMATION	to	the	purchaser	is	to	replace	the	book,	based	on
defective	materials	or	faulty	workmanship,	but	not	based	on	the	operation	or	functionality	of	the	product.
Companion	files	are	available	by	writing	to	the	publisher	at	info	@merclearning.com.

mailto:info@merclearning.com
http://www.merclearning.com
mailto://authorcloudware.com
mailto://@merclearning.com

I’d	like	to	dedicate	this	book	to	my	parents	–	
may	this	bring	joy	and	happiness	into	their	lives.

CONTENTS

Preface

Chapter	1:	Introduction	to	Regular	Expressions
What	Are	REs?

Your	First	Character	Class
Specifying	a	Range	of	Letters

Working	with	the	“^”	and	“$”	Metacharacters
Excluding	Matches	with	the	“^”	Metacharacter
Matches	with	the	“$”	Metacharacter

Working	with	“.”,	“*”,	and	“\”	Metacharacters
Checking	for	Whitespaces

Escaping	a	Metacharacter
Examples	of	Mixing	(and	Escaping)	Metacharacters
The	Extended	“?”	Metacharacters	“+”,	“?”,	and	“|”
Mixed-Case	Strings	and	REs
Using	\s	and	\s	in	REs
Using	\W	and	\w	in	REs
Using	\B	and	\b	in	REs
Matching	Date	Strings

Working	with	\d	and	\D	in	REs
Summary	of	Metacharacters	and	Character	Classes
A	Use	Case:	Column	Splitting	in	Perl	(Optional)
Useful	Links
Chapter	Summary

Chapter	2:	Common	Regex	Tasks
Some	Tips	for	“Thinking”	in	REs
REs	and	Phone	Numbers

The	libphonenumber	Library
REs	and	Zip	Codes	(U.S.	and	Canadian)
REs	and	Email	Addresses
Hexadecimal	Color	Sequences
Working	with	Numbers

REs,	Integers,	and	Decimal	Numbers
REs	and	Hexadecimal	Numbers

REs	and	Octal	Numbers
REs	and	Binary	Numbers

Working	with	Scientific	Numbers
REs	and	Scientific	Numbers

REs	and	Comments
REs	and	IP	Addresses
Detecting	FTP	and	HTTP	Links
REs	and	Proper	Names
REs	and	ISBNs
Working	with	Backslashes	and	Linefeed	(Optional)
Working	with	Capture	Groups
Working	with	Back	References
Testing	REs:	Are	They	Always	Correct?
What	about	Performance	Factors?
Chapter	Summary

Chapter	3:	REs	in	Python
What	Are	REs	in	Python?
Metacharacters	in	Python
Character	Sets	in	Python

Working	with	“^”	and	“\”	Metacharacters
Character	Classes	in	Python
Matching	Character	Classes	with	the	re	Module
Using	the	re.match()	Method

Capture	Groups
Options	for	the	re.match()	Method
Matching	Character	Classes	with	the	re.search()	Method
Matching	Character	Classes	with	the	findAll()	Method

Finding	Capitalized	Words	in	a	String
Additional	Matching	Functions	for	REs
Grouping	with	Character	Classes	in	REs
Using	Character	Classes	in	REs

Matching	Strings	with	Multiple	Consecutive	Digits
Reversing	Words	in	Strings

Modifying	Text	Strings	with	the	re	Module
Splitting	Text	Strings	with	the	re.split()	Method
Splitting	Text	Strings	Using	Digits	and	Delimiters
Substituting	Text	Strings	with	the	re.sub()	Method

Matching	the	Beginning	and	the	End	of	Text	Strings
Compilation	Flags
Compound	REs
Counting	Character	Types	in	a	String
REs	and	Grouping
Simple	String	Matches
Additional	Topics	for	REs
Chapter	Summary

Chapter	4:	Working	with	REs	in	R
Metacharacters	and	Character	Classes	in	R
Search	Functions	in	R

Perl	RE	Support	in	R
The	grep	Command	in	R

The	grepl	Command	in	R
The	regexpr	Command	in	R
The	gregexpr	Command	in	R
The	regmatches	Command	in	R
Performing	Multiple	Text	Substitutions	on	a	Vector
Other	Useful	String-Related	Commands	in	R

Working	with	REs	in	R
Specifying	a	Range	of	Letters

Working	with	Arrays	of	Strings
One-Line	REs	with	Metacharacters	in	R

Case	Sensitivity	in	R
Escaping	Metacharacters	in	R	Functions

Examples	of	R	Functions	and	REs
Advanced	String	Functions	in	R

The	stringr	Package	in	R
Chapter	Summary

Chapter	5:	Working	with	REs	in	bash
What	Is	the	sed	Command?

The	sed	Execution	Cycle
Matching	String	Patterns	Using	sed
Substituting	String	Patterns	Using	sed

Replacing	Vowels	from	a	String	or	a	File
Deleting	Multiple	Digits	and	Letters	from	a	String

Search	and	Replace	with	sed
Datasets	with	Multiple	Delimiters
Useful	Switches	in	sed
Working	with	Datasets

Printing	Lines
Character	Classes	and	sed
Removing	Control	Characters

Counting	Words	in	a	Dataset
Back	References	and	Forward	References	in	sed

Working	with	Forward	References
Displaying	Only	“Pure”	Words	in	a	Dataset
The	awk	Command

Built-In	Variables	That	Control	awk
How	Does	the	awk	Command	Work?

Aligning	Text	with	the	printf	Command
Matching	with	Metacharacters	and	Character	Sets
Printing	Lines	Using	Conditional	Logic
Selecting	and	Switching	Any	Two	Columns
Reversing	All	Rows	with	awk
Reversing	the	Lines	in	a	File
Switching	Two	Adjacent	Columns	(1)
Switching	Two	Adjacent	Columns	(2)
Switching	Consecutive	Columns
A	More	Complex	Example
Chapter	Summary

Appendix	A:	REs	in	Perl
Appendix	B:	REs	in	Java

Index

T

PREFACE

WHAT	IS	THE	GOAL?

he	 goal	 of	 this	 book	 is	 to	 introduce	 readers	 to	 regular	 expressions	 in
several	technologies.	While	the	material	is	primarily	for	people	who	have
little	or	no	experience	with	regular	expressions,	there	is	also	some	content

that	may	be	suitable	for	intermediate	users,	or	for	people	who	wish	to	understand
how	to	translate	what	they	know	about	regular	expressions	from	prior	experience
into	any	of	the	languages	discussed	in	this	book.	Hence,	this	is	more	suitable	as
an	 introductory	 “how-to”	 book	 than	 a	 reference	 book.	 Keep	 in	mind	 that	 this
book	will	not	make	you	an	expert	in	creating	regular	expressions.

If	 you	 are	 interested	 in	 applying	 regular	 expressions	 to	 tasks	 that	 involve
some	type	of	data	cleaning,	Data	Cleaning	Pocket	Primer	might	be	a	good	fit	for
you.

IS	THIS	BOOK	IS	FOR	ME	AND	WHAT	WILL	I	LEARN?
This	book	is	intended	for	data	scientists,	data	analysts,	and	other	people	who

want	 to	 understand	 regular	 expressions	 to	 perform	 various	 tasks.	 As	 such,	 no
prior	 knowledge	 of	 regular	 expressions	 is	 required	 (but	 can	 obviously	 be
helpful).

You	will	acquire	an	understanding	of	how	to	create	an	assortment	of	regular
expressions,	such	as	filtering	data	for	strings	containing	uppercase	or	lowercase
letters;	matching	 integers,	 decimals,	 hexadecimal,	 and	 scientific	 numbers;	 and
context-dependent	pattern	matching	expressions.

Some	chapters	contain	use	cases,	such	as	replacing	non-alphabetic	characters
with	a	white	space	(Chapter	1),	how	to	switch	columns	in	a	text	file	(Chapter	5),
and	how	to	reverse	the	order	of	the	fields	of	a	record	in	a	text	file	(Chapter	5).
Moreover,	 the	Appendix	contains	Perl-based	 regular	expressions	 that	are	 taken
from	Chapter	1	(and	portions	of	Chapter	2).

This	book	saves	you	the	 time	required	 to	search	for	relevant	code	samples,
adapting	 them	 to	 your	 specific	 needs,	 which	 is	 a	 potentially	 time-consuming
process.

HOW	WERE	THE	CODE	SAMPLES	CREATED?
The	 code	 samples	 in	 this	 book	 were	 created	 and	 tested	 using	 bash	 on	 a

Macbook	Pro	with	OS	X	10.12.6	(macOS	Sierra).	Regarding	 their	content:	 the
regular	 expressions	 are	 derived	 primarily	 from	 the	 author,	 and	 in	 some	 cases
there	are	code	samples	that	incorporate	short	sections	of	code	from	discussions
in	online	forums.	The	key	point	to	remember	is	that	the	overwhelming	majority
of	 the	 code	 samples	 follow	 the	 “Four	 Cs”:	 they	 must	 be	 Clear,	 Concise,
Complete,	and	Correct	to	the	extent	that	it’s	possible	to	do	so,	given	the	size	of
this	book.

WHAT	YOU	NEED	TO	KNOW	FOR	THIS	BOOK
You	 need	 some	 familiarity	 with	 working	 from	 the	 command	 line	 in	 a

Unixlike	 environment.	 However,	 there	 are	 subjective	 prerequisites,	 such	 as	 a
strong	 desire	 to	 learn	 regular	 expressions,	 along	 with	 the	 motivation	 and
discipline	 to	 read	 and	 understand	 the	 code	 samples.	 In	 any	 case,	 if	 you’re	 not
sure	whether	or	not	you	can	absorb	the	material	in	this	book,	glance	through	the
code	samples	to	get	a	feel	for	the	level	of	complexity.

WHICH	REGULAR	EXPRESSIONS	ARE	EXCLUDED?
Although	there	isn’t	a	specific	list,	this	book	does	not	cover	the	REs	that	are

very	 complex	 and	 contain	 “corner	 cases”	 that	 are	 useful	 for	 expert-level
developers.	The	purpose	of	the	material	in	the	chapters	is	to	illustrate	how	to	use
create	 a	 variety	 of	 regular	 expressions	 for	 handling	 common	 datarelated	 tasks
with	datasets,	after	which	you	can	do	further	reading	to	deepen	your	knowledge.

HOW	DO	I	SET	UP	A	COMMAND	SHELL?
If	you	are	a	Mac	user,	 there	are	three	ways	to	do	so.	The	first	method	is	to

use	Finder	 to	navigate	 to	Applications	>	Utilities	 and	 then	double	click	on	 the
Utilities	application.	Next,	 if	you	already	have	a	command	shell	available,	you
can	launch	a	new	command	shell	by	typing	the	following	command:

open	/Applications/Utilities/Terminal.app

A	 second	 method	 for	 Mac	 users	 is	 to	 open	 a	 new	 command	 shell	 on	 a
Macbook	 from	 a	 command	 shell	 that	 is	 already	 visible	 simply	 by	 clicking
command+n	in	that	command	shell,	and	your	Mac	will	launch	another	command
shell.

If	 you	 are	 a	 PC	 user,	 you	 can	 install	 Cygwin	 (open	 source
https://cygwin.com/)	that	simulates	bash	commands,	or	use	another	toolkit	such

http://cygwin.com/

as	 MKS	 (a	 commercial	 product).	 Please	 read	 the	 online	 documentation	 that
describes	the	download	and	installation	process.

If	 you	 use	 RStudio,	 you	 launch	 a	 command	 shell	 inside	 of	 RStudio	 by
navigating	 to	 Tools	 >	 Command	 Line,	 and	 then	 you	 can	 launch	 bash
commands.	Note	that	custom	aliases	are	not	automatically	set	if	they	are	defined
in	a	file	other	than	the	main	start-up	file	(such	as	.bash_login).

WHY	IS	PERL	IN	AN	APPENDIX	AND	NOT	IN	A	CHAPTER?
Although	Perl	has	fantastic	support	for	regular	expressions	(and	peerless	for

many	years),	Perl	has	become	a	sort	of	“niche”	language.	Since	Perl	appeals	to	a
much	smaller	audience,	it	makes	more	sense	to	include	Perl	regular	expressions
in	an	Appendix	instead	of	a	chapter.

However,	it’s	worth	spending	a	few	minutes	to	skim	through	the	first	portion
of	the	Perl	Appendix:	the	examples	of	regular	expressions	are	modeled	after	the
material	in	Chapter	1	and	the	syntax	is	very	similar.

In	 addition,	 if	 you	 are	 a	 front-end	Web	 developer	 (or	 perhaps	 a	 full-stack
developer),	 you	will	 benefit	 from	 the	Appendix	because	 the	Perl	 examples	 are
more	 similar	 to	 JavaScript	 than	 other	 scripting	 languages.	 Furthermore,	 if	 you
work	 with	 R,	 you	 can	 leverage	 your	 knowledge	 of	 Perl	 regular	 expressions
because	the	Perl	syntax	is	supported	in	R.

WHAT	ARE	THE	“NEXT	STEPS”	AFTER	FINISHING	THIS
BOOK?

The	 answer	 to	 this	 question	 varies	 widely,	 mainly	 because	 the	 answer
depends	 heavily	 on	 your	 objectives.	 The	 best	 answer	 is	 to	 try	 a	 new	 tool	 or
technique	from	the	book	out	on	a	problem	or	task	you	care	about,	professionally
or	personally.	Precisely	what	that	might	be	depends	on	who	you	are,	as	the	needs
of	 a	data	 scientist,	manager,	 student	or	developer	 are	 all	 different.	 In	 addition,
keep	what	you	learned	in	mind	as	you	tackle	new	data	cleaning	or	manipulation
challenges.	Sometimes	knowing	a	technique	is	possible	makes	finding	a	solution
easier,	 even	 if	 you	 have	 to	 re-read	 the	 section	 to	 remember	 exactly	 how	 the
syntax	works.

If	you	have	reached	the	limits	of	what	you	have	learned	here	and	want	to	get
further	 technical	 depth	 about	 regular	 expressions,	 there	 are	 various	 online
resources	 and	 literature	 describing	 how	 to	 create	 complex	 and	 arcane	 regular
expressions.

T

CHAPTER	1

INTRODUCTION	TO	REGULAR	EXPRESSIONS

his	chapter	introduces	you	to	basic	Regular	Expressions,	often	abbreviated
as	REs,	that	will	prepare	you	for	the	material	in	subsequent	chapters.	The
REs	in	this	chapter	are	illustrated	via	the	Unix	grep	utility	that	is	available

on	any	Unix-related	platform,	including	Linux	and	MacBook	(OS	X).	If	you	are
a	complete	neophyte,	you’ll	learn	a	decent	variety	of	REs	by	the	time	you	have
finished	reading	this	chapter.

In	 fact,	 this	 chapter	 does	 not	 require	 you	 to	 understand	 any	 of	 the	 deeper
theory	 that	 underlies	 REs:	 simply	 launch	 the	 grep	 (or	 egrep)	 utility	 from	 the
command	line	to	see	the	result	of	matching	REs	to	various	strings.	In	most	cases,
the	 text	 strings	 are	 placed	 in	 text	 files	 so	 that	 the	 REs	 can	 be	 tested	 against
multiple	strings	simultaneously.

In	 essence,	 this	 chapter	 acts	 as	 “ground	 zero”	 for	 REs,	 starting	 from	 the
simplest	 search	 strings	 (i.e.,	 hard-coded	 strings),	 to	 search	 strings	 that	 contain
REs	 involving	uppercase	 letters,	 lowercase	 letters,	numbers,	 special	characters,
and	various	combinations	of	such	strings.

If	 you	 have	 some	 experience	 working	 with	 REs,	 skim	 through	 the	 code
samples	 in	 this	 chapter	 (you	 might	 find	 something	 new	 to	 you).	 If	 you	 are
impatient,	see	if	you	can	explain	the	purpose	of	the	following	RE:	[^]*?@[^]*?
\.[^]*.	If	you	know	the	answer,	then	you	can	probably	go	directly	to	Chapter	2.

The	 first	 section	 in	 this	 chapter	 (which	 comprises	 most	 of	 the	 chapter)
contains	 code	 snippets	 that	 illustrate	 how	 to	 perform	 very	 simple	 pattern
matching	 with	 lines	 of	 text	 in	 a	 text	 file.	 This	 section	 also	 introduces	 the
metacharacters	^,	$,	.,	\,	and	?,	along	with	code	snippets	that	illustrate	how	to	use
these	metacharacters	in	REs	(and	also	their	nuances).	The	purpose	of	this	section
is	 to	 provide	 a	 myriad	 of	 concrete	 examples	 of	 REs,	 after	 which	 the	 more
abstract	descriptions	of	metacharacters	will	be	more	meaningful	to	you.

The	second	section	in	this	chapter	contains	a	summary	of	metacharacters	and
character	classes,	along	with	code	snippets	 that	 illustrate	how	to	use	 them.	For
example,	you	will	see	how	to	match	alphabetic	characters	(uppercase,	lowercase,
or	a	combination	of	both	types),	pure	digits,	and	REs	with	combinations	of	digits
and	alphabetic	characters.

WHAT	ARE	REs?
An	RE	(Regular	Expression)	is	a	text	string	that	describes	a	pattern	match	or

a	search	pattern	where	 the	 text	string	can	 include	metacharacters.	 In	simplified
terms,	a	metacharacter	is	a	character	that	represents	something	other	than	itself
to	help	match	patterns.	If	you	have	ever	used	“*”	in	a	Find	tool	(ctrl-F	on	your
browser)	to	represent	a	wildcard,	you	have	used	*	as	a	metacharacter.	Here	are
some	examples	of	REs	 (you	will	 see	 them	again	 later	 in	 this	 chapter),	 each	of
which	represents	a	different	search	pattern:	grey
gr[a-z]y
^the
^[the]
[^the]
^[^z]
^t.*gray
^the.*gray.$

A	 pattern	match	 can	 involve	 a	 character,	 a	word,	 a	 group	 of	words,	 or	 an
entire	 sentence.	 Many	 REs	 are	 of	 the	 form	 “find	 the	 lines	 in	 a	 text	 file	 that
contain	the	word	(or	pattern)	___.”

In	order	 to	 illustrate	 the	output	 from	matching	REs	with	 text	 strings,	we’ll
use	the	well-known	Unix	grep	utility	(and	sometimes	the	Unix	egrep	utility)	for
the	code	samples	in	this	chapter.	If	you	work	on	a	PC,	please	read	the	Preface	for
information	about	software	to	download	to	your	PC	so	that	you	can	run	the	grep
and	egrep	commands.	If	you	are	unfamiliar	with	Unix,	then	you	can	learn	about
these	two	commands	from	short	online	tutorials.	However,	we	won’t	discuss	the
various	 options	 that	 grep	 and	 egrep	 support	 because	 we’re	 only	 interested	 in
seeing	the	result	of	invoking	these	command	line	utilities	with	REs.

Listing	1.1	displays	the	contents	of	lines1.txt,	which	contains	several	lines	of
text	that	are	relevant	to	various	REs	in	this	section.

LISTING	1.1:	lines1.txt
the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
that	cat	is	gray	As	you	can	see,	the	word	grey	appears	in	the	first	and	second
lines,	the	word	gray	appears	in	the	first	and	third	lines,	and	all	three	lines	contain
either	grey	or	gray.

Here	are	the	tasks	that	we	want	to	perform	in	this	section	(and	also	the	next
section):

1.	find	the	lines	that	contain	grey
2.	find	the	lines	that	contain	gray
3.	find	the	lines	that	contain	either	grey	or	gray

The	 solutions	 to	 the	 three	 preceding	 tasks	 are	 very	 easy.	 The	 following
command	performs	the	first	task:	grep	grey	lines1.txt

The	output	of	the	preceding	command	is	here:
the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey

The	following	command	performs	the	second	task:

grep	gray	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.
that	cat	is	gray

The	 third	 task	 can	 be	 solved	 using	 the	 metacharacter	 “|”	 (logical	 “or”	 in
egrep	syntax)	and	the	egrep	utility,	as	shown	here:	egrep	"gray|grey"	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey	
that	cat	is	gray	The	third	task	can	also	be	solved	with	a	character	class,	which	is
the	topic	of	the	next	section.

Your	First	Character	Class
The	examples	in	the	previous	section	show	you	how	to	search	for	hardcoded

strings	 in	 a	 text	 file.	 Sometimes	 you	 can	 combine	 two	 (or	 more)	 search
expressions	into	one	by	using	a	character	class.	Specifically,	suppose	you	want
to	search	for	either	gray	or	grey	 in	a	 text	 file,	which	means	matching	with	 the
vowel	a	or	the	vowel	e.	Square	brackets	provide	this	functionality:	the	term	[ae]
means	“use	either	a	or	e”	(and	later	you’ll	see	other	variations,	such	as	a	range	of
letters	or	numbers).

The	 following	 command	 performs	 the	 third	 task	 listed	 in	 the	 previous
section:	grep	gr[ae]y	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
that	cat	is	gray	The	term	gr[ae]y	is	an	RE,	and	it’s	a	compact	way	of	representing
the	two	strings	gray	and	the	string	grey.	The	order	of	the	letters	in	the	square
brackets	is	irrelevant,	which	means	that	the	third	task	can	also	be	solved	with
this	command:	grep	gr[ea]y	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
that	cat	is	gray	Specifying	a	Range	of	Letters

We	 can	 “expand”	 the	 RE	 in	 the	 preceding	 code	 snippet	 to	 include	 all	 the
lowercase	 letters	of	 the	alphabet:	 [a-z].	We	can	find	all	 the	 lines	 that	contain	a
string	of	 the	 form	gr[a-z]y,	which	matches	any	string	 that	meets	 the	 following
conditions:
1.	start	with	the	letters	gr
2.	followed	by	any	single	letter	a,	b,	c,	…,	z	3.	end	with	the	letter	y

Just	to	confirm,	launch	the	following	command:

grep	gr[a-z]y	lines1.txt

The	output	of	the	preceding	command	is	here:

the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
that	cat	is	gray	The	matching	lines	contain	either	grey	and	gray,	and	if	the	text
file	included	a	line	with	the	string	grzy,	then	such	a	line	would	appear	in	the
previous	output.

We	can	also	specify	a	single	 letter	 inside	the	square	brackets.	For	example,
the	term	[a]	is	an	RE	that	matches	the	letter	a.	Now	launch	this	command	from
the	command	line:	grep	[a]	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.
that	cat	is	gray

If	we	 specify	 a	 vowel	 that	 does	 not	 appear	 in	 any	word	 in	 lines1.txt,	 then

there	is	no	output.	An	example	is	here:	grep	[u]	lines1.txt
We	can	specify	different	ranges	of	letters.	For	example,	suppose	we	want	to

find	 the	 lines	 that	 contain	 words	 with	 any	 of	 the	 vowels	 e,	 o,	 or	 u.	 This
expression	will	do	the	job:	grep	"[eou]"	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey

Once	again,	the	order	of	the	letters	in	the	square	brackets	is	irrelevant,	which
means	 that	 the	 following	 commands	 have	 the	 same	 output:	 grep	 "[eou]"
lines1.txt
grep	"[oeu]"	lines1.txt
grep	 "[oue]"	 lines1.txt	 One	 other	 point	 regarding	 the	 preceding	 RE	 should	 be
mentioned	before	we	complete	this	section.	Suppose	that	the	file	abc.txt	consists
of	four	lines	that	contain	the	words	day,	dog,	den,	and	dupe.	Then	the	following
RE	will	not	match	lines	with	words	that	contain	the	vowels	a	or	i:	grep	"[eou]"
abc.txt

The	output	is	here:

dog
den
dupe

WORKING	WITH	THE	“^”	AND	“$”	METACHARACTERS
The	 special	 character	 ^	 is	 called	 a	metacharacter	 (discussed	 in	more	 detail

later),	 and	 it’s	 used	 for	matching	 a	 pattern	 that	 starts	 from	 the	 beginning	 of	 a
line.	For	example,	 the	RE	^the	matches	any	 lines	 that	start	with	 the	string	 the:
grep	"^the"	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.

On	the	other	hand,	the	RE	^[the]	matches	any	lines	that	start	with	one	of	the
letters	t,	h,	or	e,	as	shown	here:	grep	"^[the]"	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray
this	dog	is	grey

that	cat	is	gray	Excluding	Matches	with	the	“^”	Metacharacter

The	metacharacter	^	has	two	different	interpretations,	based	on	whether	it’s
specified	 inside	 or	 before	 a	 pair	 of	 square	 brackets.	 If	 it’s	 inside	 the	 square
brackets,	 it	 means	 do	 not	 use	 any	 of	 the	 letters	 that	 appear	 inside	 the	 square
brackets,	and	if	it’s	outside	the	brackets	(as	you	saw	in	the	previous	section),	it
means	“a	matching	 line	must	start	with	 the	RE	 that	 immediately	 follows	 the	^
character.”

For	example,	the	following	RE	matches	any	lines	that	start	with	the	letter	t:
grep	"^[t]"	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
that	cat	is	gray	By	contrast,	the	following	expression	matches	any	lines	that	do
not	start	with	the	letter	t	(and	in	this	case,	there	are	no	matching	lines):	grep
"^[^t]"	lines1.txt

Here	are	additional	examples	of	using	“^”	with	character	classes:
1.	^[a-z]	matches	any	lowercase	letter	at	the	beginning	of	a	line	of	text	2.	^[^a-z]

matches	any	line	of	text	that	does	not	start	with	a	lowercase	letter
Based	 on	 what	 you	 have	 learned	 thus	 far,	 you	 know	 the	 meaning	 of	 the

following	REs:
1.	([a-z]|[A-Z]):	either	a	lowercase	letter	or	an	uppercase	letter	2.	(^[a-z][a-z]):

an	initial	lowercase	letter	followed	by	another	lowercase	letter	3.	(^[^a-z][A-
Z]):	anything	other	than	a	lowercase	letter	followed	by	an	uppercase	letter
Later	 in	 this	book	you	will	 learn	how	to	match	more	complex	expressions,

such	as	zip	codes	 for	different	countries,	 email	addresses,	phone	numbers,	and
ISBNs.

Matches	with	the	“$”	Metacharacter	The	metacharacter	$	enables
you	to	match	letters	or	words	that	appear	at	the	end	of	a	text
string	or	a	line	of	text.	For	example,	the	following	expression
matches	any	lines	in	the	file	lines1.txt	that	end	with	the	word
gray:	grep	"gray$"	lines1.txt

The	output	is	here:

that	cat	is	gray

Notice	 that	 the	 first	 line	 in	 the	 file	 lines1.txt	 is	excluded,	because	although
gray	is	in	the	line,	the	line	ends	with	a	period	instead	of	gray.

WORKING	WITH	“.”,	“*”,	AND	“\”	METACHARACTERS
The	metacharacter	 “.”	matches	 any	 single	 character	 (except	 a	 linefeed).	At

the	 other	 extreme	 is	 the	 metacharacter	 “*”	 that	 matches	 zero	 or	 more
occurrences	of	any	character.	In	addition,	this	*	is	often	called	a	wildcard,	and	it
behaves	the	same	way	in	most	regular	expression	syntax	as	it	does	in	common
Find/Replace	tools.	The	metacharacter	“*”	is	useful	when	you	want	to	match	the
intervening	letters	between	a	start	character	(or	word)	and	an	end	character	(or
word).

For	 example,	 if	 you	 want	 to	 match	 the	 lines	 that	 start	 with	 the	 letter	 t,
followed	by	any	 letters,	and	 then	 followed	by	an	occurrence	of	 the	word	gray,
use	this	expression:	grep	"^t.*gray"	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray
that	cat	is	gray

Notice	how	 the	metacharacters	 “.*”	 enable	 you	 to	 “match”	 the	 intervening
characters	between	the	initial	t	and	the	occurrence	of	the	word	gray	somewhere
else	in	a	line.	In	this	example,	gray	appears	at	the	end	of	both	matching	lines,	but
a	 line	 containing	 the	 word	 gray	 somewhere	 “in	 the	 middle”	 would	 also	 have
matched	the	RE.

If	you	want	 to	match	 the	 lines	 that	 start	with	 the	word	 the,	 followed	by	an
occurrence	of	the	word	gray,	use	this	RE:	grep	"^the.*gray"	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.

You	can	match	the	final	“.”	character	by	using	the	“escape”	metacharacter	“
\”.	 This	 tells	 the	 expression	 that	 it	 should	 treat	 something	 that	 is	 normally	 a
metacharacter	as	an	actual	period,	and	to	match	it	as	if	it	was	a	normal	character,
such	as	“a”	or	“x”.	That	means	the	following	RE	says	“find	lines	that	starts	with
“t”	and	end	in	“grey.”	The	escape	character	is	covered	in	more	detail	later	in	this
chapter.

The	following	RE	also	match	the	final	“.”	character:

grep	"^t.*gray.$"	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.

The	following	RE	also	matches	the	final	“.”	character,	because	a	period	is	a
legitimate	match,	but	it	would	also	match	a	line	that	ends	in	“grayx”	or	“gray!”

grep	"^t.*gray.$"	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.

However,	the	following	RE	does	not	match	the	final	“.”	character,	but	it	will
match	a	line	that	ends	in	“gray,”	because	“.”	as	a	metacharacter	matches	the	final
“y”:	grep	"^t.*gra.$"	lines1.txt

The	output	is	here:

that	cat	is	gray

Finally,	 the	 following	 expression	 only	 matches	 the	 first	 line,	 because	 you
need	 one	 and	 only	 one	 additional	 character	 after	 “grey”	 to	 match:	 grep
"^the.*gray.$"	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.

Checking	for	Whitespaces
Listing	1.2	displays	the	contents	of	spaces.txt,	which	contains	several	lines	of

text	consisting	mainly	of	whitespaces.

LISTING	1.2:	spaces.txt

x
y
z w
a

Match	 lines	 that	 contain	 a	 whitespace	 with	 this	 expression:	 grep	 "	 "
spaces.txt

The	output	is	here:

x
y
z w

Match	lines	that	start	with	a	whitespace	with	this	expression:

grep	"^	"	spaces.txt

The	output	(of	two	lines)	is	here:

x

Match	lines	that	end	with	a	whitespace	with	this	expression:

grep	"	$"	spaces.txt

The	output	consisting	of	two	lines	(the	second	line	is	blank)	is	here:

y

Match	 lines	 that	 contain	 only	 whitespaces	 with	 this	 expression,	 which
literally	means	“match	lines	that	begin	with	whitespace,	and	end	in	one	or	more
instances	 of	 whitespace.”	 The	 “+”	 metacharacter	 means	 “match	 one	 or	 more
instances	of	the	prior	element”:	egrep	"^[][]+$"	spaces.txt

The	output	consists	of	one	blank	line.
Note	 that	 the	 following	REs	will	not	match	 just	 the	 lines	 that	 contain	only

whitespaces:	egrep	"[][]+.*$"	spaces.txt
egrep	"^[][].*$"	spaces.txt
egrep	"[][].*$"	spaces.txt
egrep	"^[]*"	spaces.txt
egrep	"^[].*$"	spaces.txt	Test	your	understanding	of	 the	metacharacters	 in	 this
section	 by	 figuring	 out	 why	 the	 preceding	 REs	 also	 match	 lines	 that	 contain
characters	other	than	whitespaces.

Match	empty	lines	with	this	very	simple	expression:

grep	"^$"	spaces.txt

The	 output	 is	 a	 blank	 line,	 which	 you	 will	 see	 on	 the	 screen.	 Note	 that
matching	 an	 empty	 line	 is	 different	 from	 matching	 a	 line	 containing	 only
whitespaces.

ESCAPING	A	METACHARACTER
If	you	need	to	treat	a	metacharacter	as	a	literal	character,	use	the	backslash	“

\”	character	to	“escape”	its	interpretation	as	a	metacharacter.	As	we	saw	earlier,
the	term	“	\.”	escapes	the	“.”	and	matches	a	“.”	that	appears	inside	a	line.

Listing	1.3	displays	the	contents	of	lines2.txt,	which	contains	several	lines	of
text	and	an	embedded	“.”	character.

LISTING	1.3:	lines2.txt	the	dog	is	grey.	the	cat	is	gray.
this	dog	is	called	doc.
that	cat	is	called	.doc	Recall	that	if	you	want	to	match	the	lines	that
start	with	the	letter	t	and	also	end	with	the	word	gray,	use	this
expression:	grep	"^t.*gray\.$"	lines2.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.

If	you	want	to	match	the	lines	that	contain	a	“.”,	use	this	expression:	grep	"\."
lines2.txt

The	output	is	here:

the	dog	is	grey.	the	cat	is	gray.
this	dog	is	called	doc.
that	cat	is	called	.doc	If	you	want	to	match	the	lines	that	match	.doc,	use	this
expression:	grep	"\.doc"	lines2.txt

The	output	is	here:

that	cat	is	called	.doc

The	following	expression	matches	the	lines	that	end	with	.doc:	grep	"\.doc$"
lines2.txt

The	output	is	here:

that	cat	is	called	.doc

EXAMPLES	OF	MIXING	(AND	ESCAPING)
METACHARACTERS

Listing	1.4	displays	the	contents	of	lines3.txt,	which	is	used	in	code	snippets
in	this	section.

LISTING	1.4:	lines3.txt
grey.
.gray
dog
cdoggy	cat
catty
catfish
small	catfish	If	you	want	to	match	the	lines	that	contain	dog,	use	this	expression:
grep	"dog"	lines3.txt

The	output	is	here:

dog
doggy

If	 you	 want	 to	 match	 the	 lines	 that	 start	 with	 the	 word	 dog,	 use	 this
expression:	grep	"^dog"	lines3.txt

The	output	is	here:

dog
doggy

If	 you	 want	 to	 match	 the	 lines	 that	 end	 with	 the	 word	 dog,	 use	 this
expression:	grep	"dog$"	lines3.txt

The	output	is	here:

dog

If	you	want	to	match	the	lines	that	start	and	also	end	with	the	word	dog,	use
this	expression:	grep	"^dog$"	lines3.txt

The	output	is	here:

dog

If	 you	 want	 to	 match	 the	 lines	 that	 start	 with	 a	 blank	 space,	 use	 this
expression:	grep	"^	"	lines3.txt

The	output	is	here:

catfish

If	you	want	to	match	the	lines	that	start	with	a	period,	use	this	expression:

grep	"^\."	lines3.txt

The	output	is	here:

.gray

If	 you	 want	 to	 match	 the	 lines	 with	 any	 occurrence	 of	 a	 period,	 use	 this
expression:	grep	"\."	lines3.txt

The	output	is	here:

grey.
.gray

By	 contrast,	 the	 following	 expression	 matches	 all	 lines	 because	 the	 “.”
metacharacter	has	not	been	escaped	(so	you	are	now	telling	it	to	match	lines	that
begin	with	any	character	at	 all.	Only	an	empty	 line	would	 fail	 to	match):	grep
"^."	lines3.txt

The	output	is	here:

grey.
.gray
dog
doggy
cat
catty
catfish
small	catfish	The	following	expression	matches	lines	that	start	with	a	space,
followed	by	any	characters,	and	then	followed	by	the	string	cat:	egrep	"[].*cat"
lines3.txt

The	output	is	here:

catfish
small	catfish

The	following	expression	matches	lines	that	contain	the	letter	r	or	the	letter
e:	grep	"[re]"	lines3.txt

The	output	is	here:

grey.
.gray

The	following	expression	matches	lines	that	contain	the	letter	g,	followed	by
either	the	letter	r	or	the	letter	e:	grep	"g[re]"	lines3.txt

The	output	is	here:

grey.

The	following	three	REs	match	the	word	.grey:

grep	"^[.g][re]"	lines3.txt
grep	"^[\.g][re]"	lines3.txt
grep	"^[^.][re]"	lines3.txt	Note	that	the	third	RE	in	the	preceding	list	matches
other	words	(e.g.,	are,	bre,	cre,	and	so	forth)	that	are	not	contained	in	lines3.txt,
and	it’s	just	happenstance	that	the	RE	matches	the	string	.grey.

This	RE	matches	the	word	.gray:

grep	"^.[g][re]"	lines3.txt

THE	EXTENDED	“?”	METACHARACTERS	“+”,	“?”,	AND	“|”
This	 section	 only	 provides	 a	 brief	 description	 of	 some	 extended

metacharacters;	 however,	 you	will	 see	 examples	 (in	 various	 contents)	 of	 these
metacharacters	throughout	this	chapter.

Here	 is	 the	 difference	 between	 egrep	 and	 grep:	 the	 former	 uses	 the
“extended”	standard,	and	grep	uses	the	“basic”	standard	for	regular	expressions.
In	the	“extended”	standard,	three	additional	metacharacters	are	allowed,	two	of
which	we	touched	on	in	previous	sections.

•	“?”	means	“match	exactly	zero	or	one	instance	of	the	previous	element”
•	“+”	means	“match	one	or	more	instances	of	the	previous	element”
•	“|”is	used	as	a	“logical	or”	in	an	extended	regular	expression

Note	 that	 in	many	modern	operating	systems	or	environments,	one	or	more
of	 the	 previous	 extended	 elements	 can	 be	 accessed	 by	 using	 “grep	 -e”	 (for
“extended”)	 if	 egrep	 is	 not	 available.	 Most	 other	 languages	 that	 use	 regular
expressions	 will	 have	 these	 metacharacters	 available	 in	 some	 form,	 the
“extended”	 syntax	 being	 more	 common	 than	 the	 basic	 in	 most	 modern
languages.	Some	examples	containing	metacharacters	are	shown	as	follows:	The
expression	 a?	matches	 the	 string	 a	 and	 also	 the	 string	 a	 followed	 by	 a	 single
character,	such	as	a1,	a2,	…,	aa,	ab,	ac,	and	so	forth.	However,	abc	and	a12	do
not	match	the	expression	a?.

The	expression	a+	matches	the	string	a	followed	by	one	or	more	characters,
such	as	a1,	a2,	…,	aa,	ab,	ac,	abc,	a12,	and	so	forth.

The	expression	a*	matches	the	string	a	followed	by	zero	or	more	characters,
such	as	a,	a1,	a2,	…,	aa,	ab,	ac,	and	so	forth.

The	 pipe	 “|”	 metacharacter	 (which	 has	 a	 different	 context	 from	 the	 pipe
symbol	in	the	command	line:	REs	have	their	own	syntax,	which	does	not	match
that	of	the	operating	system	a	lot	of	the	time)	provides	a	choice	of	options.	For
example,	the	expression	a|b	means	a	or	b,	and	the	expression	a|b|c	means	a	or	b
or	c.

The	“$”	metacharacter	refers	 to	 the	end	of	a	 line	of	 text,	and	in	REs	inside
the	vi	editor,	the	“$”	metacharacter	refers	to	the	last	line	in	a	file.

The	“^”	metacharacter	refers	to	the	beginning	of	a	string	or	a	line	of	text.	For
example:	*a$	matches	"Mary	Anna"	but	not	"Anna	Mary"
^A*	matches	"Anna	Mary"	but	not	"Mary	Anna"

In	the	case	of	REs,	the	“^”	metacharacter	can	also	mean	“does	not	match”:
the	context	determines	which	interpretation	to	use	for	the	“10”	metacharacter.

This	 chapter	 contains	 multiple	 sections	 with	 examples	 of	 these
metacharacters,	as	well	as	“^”,	“$”,	“*”,	and	“	\”	metacharacters.

MIXED-CASE	STRINGS	AND	REs	This	section	contains
examples	of	REs	that	match	mixed-case	strings	(typically	user
names	or	text	that	has	proper	sentences).	Listing	1.5	displays	the
contents	of	lines5.txt,	which	is	used	in	code	snippets	in	this	section.

LISTING	1.5:	lines5.txt

John	Smith	is	grey.	the	cat	is	gray.
He	is	John	Smith.	the	cat	is	gray.
He	is	John	smith.	the	cat	is	gray.
He	is	john	smith.	the	cat	is	gray.
that	cat	is	called	.doc	The	following	RE	matches	lines	that	contain	mixed-case
strings,	but	not	lines	that	fail	to	have	mixed-case	strings.	Recall	that	[A-Z]	is	the
character	class	that	matches	any	capital	letter,	and	[a-z]	is	the	character	class	that
matches	any	lowercase	letter:	egrep	"[A-Z][a-z]+"	lines5.txt

The	output	is	here:

John	Smith	is	grey.	the	cat	is	gray.
He	is	John	Smith.	the	cat	is	gray.

The	 following	 RE	matches	 mixed-case	 strings	 that	 end	 with	 a	 period	 “.”:
egrep	"[A-Z][a-z]+\."	lines5.txt

The	output	is	here:

He	is	John	Smith.	the	cat	is	gray.

The	 following	RE	matches	mixed-case	 strings	 that	 start	with	 an	 uppercase
letter:

egrep	"^[A-Z][a-z]+"	lines5.txt

The	output	is	here:

John	Smith	is	grey.	the	cat	is	gray.
He	is	John	Smith.	the	cat	is	gray.
He	is	John	smith.	the	cat	is	gray.
He	is	john	smith.	the	cat	is	gray.

The	following	RE	matches	strings	that	start	with	an	uppercase	letter	followed
by	a	space	and	another	lowercase	string,	and	end	in	a	period	“.”:	egrep	"[A-Z][a-
z]+	[a-z]+\."	lines5.txt

The	output	is	here:

He	is	John	smith.	the	cat	is	gray.

The	following	RE	matches	strings	that	start	with	an	uppercase	or	lowercase

J,	followed	by	the	letters	ohn:	grep	"[Jj]ohn"	lines5.txt
The	output	is	here:

John	Smith	is	grey.	the	cat	is	gray.
He	is	John	Smith.	the	cat	is	gray.
He	is	John	smith.	the	cat	is	gray.
He	is	john	smith.	the	cat	is	gray.

Another	 RE	 that	 uses	 the	 “|”	 metacharacter	 to	 match	 strings	 that	 contain
either	John	or	john	is	here:	egrep	"(John|john)"	lines5.txt

The	output	is	here:

John	Smith	is	grey.	the	cat	is	gray.
He	is	John	Smith.	the	cat	is	gray.
He	is	John	smith.	the	cat	is	gray.
He	is	john	smith.	the	cat	is	gray.

The	 following	 RE	 matches	 strings	 that	 do	 not	 start	 with	 an	 uppercase	 or
lowercase	J,	followed	by	the	letters	ohn:	grep	"[^Jj]ohn"	lines5.txt

There	is	no	output	for	the	preceding	RE	because	there	are	no	matching	lines.

Using	\s	and	\s	in	REs
For	 your	 convenience,	 here	 are	 the	 contents	 of	 lines3.txt	 (displayed	 in

Listing	1.4)	that	are	used	for	the	REs	in	this	section:	grey.
.gray
dog
doggy	cat
catty
catfish
small	 catfish	NOTE:	The	 examples	 in	 this	 section	 require	 egrep	 because	 grep
does	not	support	+	on	all	operating	systems.

The	expression	 \s	matches	a	single	whitespace.	For	example,	 the	 following
expression	matches	 lines	 that	 start	with	one	or	more	whitespaces,	 followed	by
the	string	cat:	egrep	"\s+cat"	lines3.txt

The	output	is	here:

catfish

The	 following	 expression	 matches	 lines	 that	 start	 with	 one	 or	 more

whitespaces	then	any	number	of	characters,	and	are	then	followed	by	the	string
cat:	egrep	"\s+.*cat"	lines3.txt

The	output	is	here:

catfish
small	catfish

Use	\S	when	you	want	to	match	non-whitespace	characters.	For	example,	the
following	 expression	matches	 lines	 that	 do	 not	 start	 with	 a	 whitespace:	 egrep
"^\S+"	lines3.txt

The	output	is	here:

grey.
.gray
dog
doggy
cat
catty	USING	\W	And	\w	in	REs	The	expression	\w	matches	a	single	word,
where	a	“word”	consists	only	of	letters,	digits,	or	underscores.	To	match,	a
“word”	must	either	start	the	line	or	be	preceded	by	a	non-word	character,	such	as
whitespace	or	a	period.	The	following	expression	matches	lines	that	start	with	a
word:	grep	"^\w"	lines3.txt

The	output	is	here:

grey.
dog
doggy
cat
catty	The	expression	\W	matches	a	non-word.	The	following	expression	matches
lines	that	do	not	start	with	a	word:	grep	"^\W"	lines3.txt

The	output	is	here:

.gray
catfish
small	catfish

The	 following	 expression	 matches	 lines	 that	 do	 not	 start	 with	 a	 word,
followed	by	the	string	cat:	egrep	"^\Wcat"	lines3.txt

The	output	is	here:

catfish

Using	\b	and	\b	in	REs	The	simplest	scenario	for	\b	involves	an
exact	match	of	a	string	without	matching	longer	strings	that
contain	the	given	string.	For	example,	use	\b	in	a	RE	if	you	need
to	match	the	string	see	but	not	the	strings	seen,	foreseen,	or
Pharisee.	Notice	that	the	string	see	occurs	in	the	beginning,
middle,	and	end,	respectively,	of	the	preceding	three	strings.

As	another	example,	 the	following	RE	matches	lines	that	contain	the	string
that	starts	and	ends	with	cat:	grep	"\bcat\b"	lines3.txt

The	output	is	here:

cat

The	 following	 expression	matches	 lines	 that	 do	 not	 start	with	 a	word,	 and
contain	the	string	cat	somewhere	in	the	line:	egrep	"^\W.*\bcat"	lines3.txt

The	output	is	here:

catfish
small	catfish

You	 can	 use	 \b	 as	 a	 boundary	marker	 to	match	 email	 addresses	 that	 occur
somewhere	 in	 a	 text	 string:	 grep	 "\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]
{2,4}\b"	lines6.txt

MATCHING	DATE	STRINGS
Listing	1.6	displays	the	contents	of	lines6.txt,	which	is	used	in	code	snippets

in	this	section.	As	you	can	see,	some	of	the	lines	contain	valid	dates	and	others
contain	invalid	date	formats.	Recall	that	[0-9]	is	the	character	class	that	matches
any	integer.

LISTING	1.6:	lines6.txt
05/12/18
05/12/2018
05912918

05.12.18
05.12.2018
0591292018

The	following	expression	matches	 lines	 that	start	with	 two	digits	 (followed
by	anything):	grep	"^[0-9][0-9]."	lines6.txt

The	output	is	here:

05/12/18
05/12/2018
05912918
05.12.18
05.12.2018
0591292018

The	following	expression	matches	 lines	 that	start	with	 two	digits	 (followed
by	a	forward	slash):	grep	"^[0-9][0-9]/"	lines6.txt

The	output	is	here:

05/12/18
05/12/2018

The	following	expression	matches	 lines	 that	start	with	 two	digits	 (followed
by	a	forward	slash	or	period):	grep	"^[0-9][0-9][\/.]"	lines6.txt

The	output	is	here:

05/12/18
05/12/2018
05.12.18
05.12.2018

The	 following	 expression	 matches	 lines	 that	 end	 with	 a	 forward	 slash	 or
period,	followed	by	two	digits:	grep	"[\/.][0-9][0-9]$"	lines6.txt

The	output	is	here:

05/12/18
05/12/2018
05.12.18
05.12.2018

By	contrast,	 the	 following	 expression	matches	 lines	 that	contain	 a	 forward
slash	or	period,	followed	by	two	digits:	grep	"[\/.][0-9][0-9]"	lines6.txt

The	output	is	here:

05/12/18
05.12.18

The	following	expression	matches	lines	that	contain	four	consecutive	digits:

grep	"[0-9][0-9][0-9][0-9]"	lines6.txt

The	output	is	here:

05/12/2018
05912918
05.12.2018
0591292018

The	following	expression	matches	lines	that	end	with	four	consecutive	digits
that	 are	 preceded	 by	 a	 forward	 slash	 or	 period:	 grep	 "[\/.][0-9][0-9][0-9][0-9]"
lines6.txt

The	output	is	here:

05/12/2018
05.12.2018

Remove	the	“.”	in	the	preceding	RE	to	obtain	the	following	expression	that
matches	the	pattern	mm/dd/yyyy:	grep	"[\/][0-9][0-9][0-9][0-9]"	lines6.txt

The	output	is	here:

05/12/2018

Keep	in	mind	that	it’s	common	for	people	to	start	a	date	with	a	one-character
month	(for	example,	5	instead	of	05,	which	requires	matching	one	digit	instead
of	two	digits).	A	single	RE	for	this	scenario	probably	requires	the	“or”	operator	|
to	handle	both	possibilities	for	the	first	nine	months	of	the	year.

Working	with	\d	and	\D	in	REs
There	is	a	simpler	way	to	match	a	digit:	use	the	\d	character	class	 (d	 is	 for

digit).	The	following	RE	matches	lines	that	contain	three	consecutive	digits:	grep
"\d\d\d"	lines6.txt

The	output	is	here:

05/12/2018
05912918
05.12.2018
0591292018

There	 is	also	a	simpler	way	 to	match	multiple	consecutive	digits	via	 the	 \d
character	class.	The	following	expression	uses	egrep	to	match	lines	that	contain
three	consecutive	digits:	egrep	"\d{3}"	lines6.txt

05/12/2018
05912918
05.12.2018
0591292018

Here	are	some	REs	that	use	egrep	in	order	to	match	some	common	patterns:
[0-9][0-9]	matches	a	consecutive	pair	of	digits
[0-9[0-9][0-9]	matches	three	consecutive	digits
\d{3}	also	matches	three	consecutive	digits	The	following	expression	uses	egrep
to	match	lines	that	contain	any	pair	of	digits	followed	by	a	non-digit	character:
egrep	"\d{2}\D"	lines6.txt

05/12/18
05/12/2018
05.12.18
05.12.2018

The	following	expression	uses	egrep	to	match	lines	that	contain	three	pairs	of
digits	 that	 are	 separated	by	a	nondigit	 character:	 egrep	 "\d{2}\D\d{2}\D\d{2}"
lines6.txt

05/12/18
05/12/2018
05.12.18
05.12.2018

The	following	expression	uses	egrep	to	match	lines	that	contain	three	pairs	of

digits	 that	 are	 separated	 by	 a	 non-digit	 character,	 and	 also	 exclude	 four-digit
sequences:	egrep	"\d{2}\D\d{2}\D\d{2}$"	lines6.txt

05/12/18

05.12.18

The	following	RE	matches	 the	pattern	mm/dd/yyyy,	which	is	similar	 to	 the
example	 in	 the	 previous	 section,	 except	 that	 now	 we	 are	 using	 a	 “cleaner”
syntax:	egrep	"\d{2}/\d{2}/\d{4}$"	lines6.txt

The	output	is	here:

05/12/2018

The	following	RE	matches	US	social	security	numbers	(SSNs)	consisting	of
three	digits	followed	by	a	hyphen,	two	digits	followed	by	a	hyphen,	and	ending
with	three	digits:	egrep	"^\d{3}-\d{2}-\d{4}"	lines6.txt

The	output	is	here	(the	following	string	is	not	a	real	SSN):

123-45-6789

Now	that	you’ve	seen	some	working	examples	of	REs,	let’s	summarize	our
understanding	of	metacharacters.

SUMMARY	OF	METACHARACTERS	AND	CHARACTER
CLASSES

Metacharacters	can	be	thought	of	as	a	complex	set	of	wildcards.	An	RE	is	a
“search	pattern”	which	 is	 a	 combination	of	normal	 text	 and	metacharacters.	 In
concept	it	is	much	like	a	“find”	tool	(press	ctrl-f	on	your	search	engine),	but	bash
(and	Unix	in	general)	allows	for	much	more	complex	pattern	matching	because
of	 its	 rich	metacharacter	 set.	 There	 are	 entire	 books	 devoted	 to	 REs,	 but	 this
section	contains	enough	 information	 to	get	started,	as	well	as	 the	key	concepts
needed	for	data	manipulation	and	cleansing.

The	following	metacharacters	are	useful	with	REs:
The	?	metacharacter	refers	to	0	or	1	occurrences	of	something
The	+	metacharacter	refers	to	1	or	more	occurrences	of	something
The	*	metacharacter	refers	to	0	more	occurrences	of	something
The	^	metacharacter	matches	the	beginning	of	a	line	(or	excludes	characters)

The	$	metacharacter	matches	the	end	of	a	line
The	|	metacharacter	is	an	“OR”	operator	that	allows	for	alternatives
The	 \	 metacharacter	 “escapes”	 metacharacters	 and	 treats	 them	 as	 normal
characters

Note	 that	 “something”	 in	 the	 preceding	 descriptions	 can	 refer	 to	 a	 digit,
letter,	word,	or	more	complex	combinations.	Some	examples	are	shown	earlier	in
this	chapter.

Character	 classes	 enable	 you	 to	 express	 a	 range	 of	 digits,	 letters,	 or	 a
combination	of	both.	For	example,	the	character	class	[0-9]	matches	any	single
digit;	 [a-z]	 matches	 any	 lowercase	 letter;	 and	 [A-Z]	 matches	 any	 uppercase
letter.	You	can	also	specify	subranges	of	digits	or	letters,	such	as	[3-7],	[g-p],	and
[F-X],	 as	well	 as	other	 combinations:	 [0-9][0-9]	matches	 a	 consecutive	pair	of
digits
[0-9[0-9][0-9]	matches	three	consecutive	digits
\d{3}	also	matches	three	consecutive	digits

A	USE	CASE:	COLUMN	SPLITTING	IN	PERL	(OPTIONAL)
This	 section	 is	 marked	 optional	 because	 it’s	 more	 complex	 than	 the	 other

examples	in	this	chapter,	and	also	because	the	solution	involves	Perl.	If	you	have
some	 knowledge	 of	 Perl,	 then	 you	 will	 probably	 be	 comfortable	 with	 this
example.	 If	 you	 are	 new	 to	 Perl,	 you	 might	 benefit	 from	 reading	 at	 least	 a
portion	of	the	Perl	Appendix	before	delving	into	the	code	sample	in	this	section.

This	 example	 illustrates	 how	 to	 use	 a	 basic	 RE	 to	 solve	 a	 common
datarelated	 task.	Until	now	we’ve	 focused	on	 the	“Find”	applications,	but	REs
are	 just	as	useful	 in	Find/Replace	scenarios.	For	our	first	example	of	 this	 type,
we	will	show	how	it	works	in	Perl.	In	later	chapters	we’ll	show	how	to	do	this
exact	use	case	in	other	languages	and	environments.	If	you	are	interested	in	more
Perl	examples,	the	appendix	contains	many,	including	both	Perl	versions	of	this
chapter’s	 examples	 as	well	 as	 some	of	 the	more	 advanced	 concepts	 from	 later
chapters.

Listing	 1.7	 displays	 the	 contents	 of	 alphanums.txt,	 which	 consists	 of	 two
comma-separated	 fields	 in	 each	 row.	Question:	 how	would	you	 split	 each	 row
into	three	fields	consisting	of	numbers	and	alphabetic	characters?

LISTING	1.7:	alphanums.txt
"AAA_1234_4",1XY
"BBB_5678_3",2YX

"CCC_9012_2",3YZ
"DDD_3456_1",4WX

One	 Perl-based	 solution	 for	 replacing	 everything	 except	 letters	 and	 digits
with	blank	spaces	is	shown	here:	perl	-pln	-e	's/[^a-zA-Z0-9]/	/g'	alphanums.txt

The	result	of	the	preceding	code	snippet	is	here:

AAA	1234	4	1XY
BBB	5678	3	2YX
CCC	9012	2	3YZ
DDD	3456	1	4WX

A	Perl-based	 solution	 for	 replacing	 non-digits	 with	 blank	 spaces	 is	 shown
here:

perl	-pln	-e	's/[^0-9]/	/g'	alphanums.txt

The	result	of	the	preceding	code	snippet	is	here:

1234	4	1
5678	3	2
9012	2	3
3456	1	4

Notice	that	every	line	 in	 the	preceding	output	starts	with	five	blank	spaces,
because	 the	 original	 lines	 start	 with	 five	 non-digits.	 Read	 the	 Appendix	 that
contains	an	assortment	of	Perl-based	REs,	many	of	which	are	counterparts	to	the
code	snippets	in	this	chapter.

The	key	point	 of	 this	 section	 is	 that	 you	 can	 apply	your	 knowledge	of	 the
REs	 to	 solve	 a	 variety	 of	 tasks	 in	multiple	 programming	 languages,	 but	 there
may	 be	 (usually	 small)	 language-specific	 syntax	 differences	 in	 both	 the
command	and	in	how	the	output	is	presented.

USEFUL	LINKS
Although	 this	 chapter	 (and	 the	 next	 one	 as	 well)	 uses	 the	 grep	 and	 egrep

commands	 for	 testing	 REs,	 there	 are	 also	 websites	 that	 enable	 you	 to	 test
whether	or	not	a	text	string	matches	an	RE.	For	example,	the	following	website
provides	an	interface	for	testing	REs:	https://regex101.com/

Navigate	to	the	preceding	website,	enter	an	RE	in	the	“Regular	Expression”

https://regex101.com/

field,	 and	 then	 specify	 a	 text	 string	 in	 the	 “Test	 String”	 field.	 The	 right	 panel
displays	 whether	 or	 not	 a	 full	 or	 partial	 match	 succeeded,	 along	 with	 a
description	of	the	details	of	the	RE.

A	search	for	“regular	expressions	in	<language>”	will	always	turn	up	useful
syntax	links,	beyond	what	is	covered	in	this	text.

CHAPTER	SUMMARY
This	 chapter	 started	 with	 an	 introduction	 to	 some	 basic	 REs,	 followed	 by

examples	that	illustrate	how	to	match	(or	how	to	not	match)	characters	or	words
by	combining	the	most	commonly	used	character	classes	and	metacharacters.	A
Perl	 use	 case	 showed	 how	 a	 regular	 expression	 could	 be	 embedded	 in	 a
programming	 command	 to	 accomplish	 a	 common	 text	 manipulation	 problem.
Finally,	 you	 saw	 a	 summary	 of	 metacharacters,	 followed	 by	 a	 summary	 of
character	classes,	which	consolidated	the	information	of	the	entire	chapter.

T

CHAPTER	2

COMMON	REGEX	TASKS

his	chapter	extends	the	material	in	Chapter	1,	with	examples	of	interesting
and	more	 sophisticated	 REs	 that	match	 ISBNs,	 email	 addresses,	 and	 so
forth.	The	REs	in	this	chapter	also	use	the	grep	(or	egrep)	command,	just

as	we	did	in	Chapter	1.
The	 first	 (short	 yet	 relevant)	 section	 of	 this	 chapter	 contains	 tips	 for

“thinking	in	REs”,	specifically	designed	to	help	you	solve	new	tasks	 involving
REs.	Although	this	section	will	not	make	you	an	expert	 in	REs,	you	will	 learn
useful	guidelines	for	creating	REs	to	solve	a	variety	of	tasks.

The	 second	 section	 in	 this	 chapter	 contains	 REs	 that	 match	 dates,	 phone
numbers,	 and	 zip	 codes.	 You	 will	 also	 see	 REs	 that	 match	 various	 types	 of
numbers,	such	as	integers,	decimals,	hexadecimals,	octals,	and	binary	numbers.
In	addition,	you	will	learn	how	to	create	REs	for	scientific	numbers.

The	third	section	contains	REs	that	match	IP	addresses	and	simple	comment
strings	(in	source	code),	as	well	as	REs	for	matching	proper	names	and	ISBNs.
The	final	section	discusses	capture	groups	and	back	references,	which	are	useful
for	more	complex	pattern	matches.

SOME	TIPS	FOR	“THINKING”	IN	REs
This	 section	 provides	 a	 simple	 methodology	 for	 creating	 the	 REs	 in	 this

chapter	as	well	as	REs	for	your	own	projects.	After	you	have	crafted	an	RE	for	a
task,	then	you	can	focus	on	simplifying	that	RE.	However,	there	is	often	a	trade-
off:	 compact	 REs	 that	 are	 also	 complex	 and	 sophisticated	 tend	 to	 be	 more
difficult	for	other	people	to	understand	(and	hence	more	difficult	to	debug	and	to
enhance),	whereas	lengthier	REs	that	are	based	on	a	combination	of	simpler	REs
can	 be	 simpler	 to	 manage	 in	 applications.	 When	 in	 doubt,	 include	 a	 well-
structured	comment	block	that	concisely	explains	the	purpose	of	the	RE.

Another	 point	 to	 consider:	 favor	 the	 use	 of	 well-tested	 RE	 libraries	 over

writing	 custom	 REs.	 This	 provides	 several	 advantages:	 bugs	 in	 REs	 are	 less
likely	to	occur	(especially	in	more	mature	libraries),	a	broader	user	community
can	share	information	about	the	libraries,	and	functionality	that	is	added	in	future
releases	will	benefit	everyone.

Regardless	 of	 the	 strategy	 that	 you	 adopt,	 keep	 in	mind	 that	 it’s	 easier	 to
understand	REs	written	by	other	people	if	you	have	extensive	experience	writing
REs	(which	might	seem	contradictory,	but	it’s	actually	true).

Here	 is	 the	key	 idea	for	creating	REs:	use	a	“divide	and	conquer”	strategy,
which	 involves	 a	bottom-up	 (instead	of	 top-down)	 approach.	 In	general	 terms,
suppose	that	your	task	can	be	described	in	terms	of	three	patterns	P1,	P2,	and	P3.
If	 you	 can	 find	 REs	 RE1,	 RE2,	 and	 RE3	 that	 correspond	 to	 P1,	 P2,	 and	 P3,
respectively,	then	a	candidate	solution	to	the	original	task	looks	like	this:	egrep
"^(RE1|RE2|RE3)$"	input.txt

As	a	simple	 illustration,	suppose	you	need	an	RE	for	positive	and	negative
integers,	 which	 consists	 of	 one	 pattern	 for	 positive	 numbers	 (P1)	 and	 another
pattern	for	the	(optional)	positive	sign	or	negative	sign	(P2).

The	following	RE	matches	positive	integers	(P1).	As	you	recall	from	Chapter
1,	 the	 regular	 expression	 argument	 to	 egrep	 means	 literally	 “begins	 with	 and
ends	with	one	or	more	digits”:	egrep	"^\d+$"	numbers.txt

Since	the	RE	that	matches	an	optional	positive	sign	or	a	negative	sign	is	[-
|+]?	(again	from	Chapter	1,	it	literally	means	zero	or	one	“+”	or	“-”	character),
let’s	 combine	 this	RE	with	 the	RE	 for	P1,	 as	 shown	here:	 egrep	 "^[-|+]?\d+$"
numbers.txt

Someone	looking	at	this	later	should	be	able	to	parse	out	“begins	with	either
a	+,	a	–,	or	neither,	and	the	rest	of	the	characters	on	the	line	must	be	one	or	more
digits”	by	working	from	left	to	right.

Although	 the	 preceding	 example	 is	 simple,	 you	 can	 use	 the	 same	 type	 of
analysis	to	solve	more	complex	problems,	along	with	the	following	points:
1.	The	RE	that	you	produce	is	not	necessarily	perfectly	efficient	in	terms	of	time

to	execute	or	computer	resources	used.
2.	You	might	be	able	to	extract	additional	common	sub-patterns.
3.	Extracting	sub-patterns	can	create	REs	that	are	difficult	to	understand.
4.	Difficult	REs	can	be	more	error-prone	and	more	difficult	to	debug.
5.	The	initial	solution	can	be	straightforward	(quick	to	create).
6.	Refining	an	RE	can	consume	a	great	deal	of	time.

For	example,	consider	the	RE	for	ISBNs,	which	we	will	develop	later	in	this
chapter.	 It	consists	of	 the	concatenation	of	four	REs.	The	solution	presented	 in
this	chapter	 is	 lengthy,	yet	 it	 requires	about	five	minutes	 to	create	a	solution	 if
you	adopt	the	divide-and-conquer	strategy.	While	this	solution	is	not	necessarily

optimal	 (and	perhaps	merely	one	of	several	possible	solutions),	 the	 final	RE	is
easily	 decomposed	 into	 its	 four	 components	 and	 therefore	 more	 likely	 to	 be
understood	by	another	person	(or	even	yourself	six	months	later	when	looking	at
the	code).

As	 another	 example,	 suppose	 we	 want	 to	 construct	 an	 RE	 that	 matches
positive	integers	whose	digit	count	is	a	prime	number	between	three	and	eleven
inclusive.	 In	other	words,	 the	numbers	we	are	 looking	 for	contain	 three	digits,
five	 digits,	 seven	 digits,	 or	 eleven	 digits.	 The	 straightforward	 solution	 is	 as
follows:	egrep	"^(d\{3}|d\{5}|d{7}\d{11})$"	input.txt

The	 solution	 for	 the	 preceding	 (albeit	 contrived)	 task	 is	 a	 straightforward
concatenation	of	four	disjoint	REs	with	an	“or”	operator	connecting	 them.	Our
first	example	 just	combined	 the	 two	REs,	and	when	you	do	 that	 the	“and”	 (all
conditions	apply	to	match)	is	assumed.	More	difficult	tasks	are	of	the	form	“it’s
an	E1	or	E2	but	not	an	E3”,	where	E3	partially	overlaps	with	either	E1	or	E2	(or
both).

REs	AND	PHONE	NUMBERS
This	 section	 contains	 REs	 that	match	 simple	 phone	 numbers,	 followed	 by

some	more	complex	REs	that	handle	phone	extensions.	You	will	also	learn	about
some	 of	 the	 features	 of	 a	 Google	 library	 (written	 in	 multiple	 programming
languages)	 that	 supports	 international	 phone	 numbers.	 This	 section	 is
surprisingly	long	(phone	numbers	are	simple,	n’est-ce	pas?)	and	contains	some
nice	 REs	 that	 will	 help	 you	 hone	 your	 ability	 to	 differentiate	 between	 phone
formats	that	have	very	slight	differences.

As	you	might	already	know,	different	countries	have	special	cases	 for	 their
phone	numbers.	 In	 the	USA,	 (408)	974–3218	 is	 a	 valid	U.S.	 number,	whereas
(999)	974–3218	is	invalid.	Meanwhile,	the	numbers	0404	999	999	and	(02)	9999
9999	are	valid	numbers	in	Australia,	but	the	sequence	(09)	9999	9999	is	invalid.
In	the	United	States,	any	number	beginning	with	a	555	prefix	at	the	local	 level
(e.g.,	 [405]	 555-3212)	 is	 fake,	 used	 only	 for	 movies	 or	 similar	 public	 art,	 to
avoid	a	random	person	being	bothered	by	fans	dialing	the	number.

Listing	 2.1	 displays	 the	 contents	 of	 phonenumbers.txt,	 which	 contains
various	patterns	for	phone	numbers.

LISTING	2.1:	phonenumbers.txt
1-234-567-8901
1-234-567-8901	x1234
1-234-567-8901	ext1234

1	(234)	567-8901
1.234.567.8901
1/234/567/8901
12345678901

The	following	RE	matches	U.S.	phone	numbers	of	the	form	ddd	ddd	dddd:
egrep	"^\d{3}	\d{3}	\d{4}"	phonenumbers.txt

The	output	is	here:

650	123	4567

The	following	RE	matches	U.S.	phone	numbers	of	the	form	ddd	ddd-dddd:
egrep	"^\d{3}	\d{3}-\d{4}"	phonenumbers.txt

The	output	is	here:

650	123-4567

The	following	RE	matches	U.S.	phone	numbers	of	the	form	(ddd)	ddd-dddd:
egrep	"^\(\d{3}\)	\d{3}\d{4}"	phonenumbers.txt

The	output	is	here:

(650)	123-4567

The	following	RE	matches	U.S.	phone	numbers	of	the	form	1-ddd	ddd-dddd:
egrep	"^1-\d{3}	\d{3}-\d{4}"	phonenumbers.txt

The	output	is	here:

1-(650)	123-4567

The	 following	 RE	 checks	 for	 numbers	 that	 have	 an	 optional	 dash	 “-”
between	 the	 three	 groups	 of	 digits:	 egrep	 "^\d{3}-?\d{3}-?\d{4}"
phonenumbers.txt

The	output	is	here:

9405306123

The	 following	RE	 checks	 for	 numbers	 that	 have	 an	 optional	 dash	 “-”	 or	 a
blank	 between	 the	 three	 groups	 of	 digits:	 egrep	 "^\d{3}[-]?\d{3}[-]?\d{4}"
phonenumbers.txt

The	output	is	here:

9405306123
650	123-4567
650	123	4567

Compare	the	preceding	pair	of	similar	REs	to	make	sure	that	you	understand
how	(and	why)	they	produce	a	different	set	of	matching	phone	numbers.

The	following	RE	matches	numbers	with	seven	digits	and	also	numbers	with
ten	 digits,	 with	 extensions	 allowed	 (and	 delimiters	 are	 spaces,	 dashes,	 or
periods):	^(?:(?:\+?1\s*(?:[.-]\s*)?)?(?:\(\s*([2-9]1[02-9]|[2-9][02-8]1|
[2-9][02-8][02-9])\s*\)|([2-9]1[02-9]|[2-9][02-8]1|[2-9][02-8][02-9]))\s*(?:[.-
]\s*)?)?([2-9]1[02-9]|[2-9][02-9]1|[2-9][02-9]{2})\s*(?:[.-]\s*)?([0-9]{4})(?:\s*
(?:#|x\.?|ext\.?|extension)\s*(\d+))?$

On	the	other	hand,	an	RE	that	does	not	match	extensions	is	here:

^(?:(?:\+?1\s*(?:[.-]\s*)?)?(?:(\s*([2-9]1[02-9]|[2-9][02-8]1|
[2-9][02-8][02-9])\s*)|([2-9]1[02-9]|[2-9][02-8]1|[2-9][02-8][02-9]))\s*(?:[.-
]\s*)?)?([2-9]1[02-9]|[2-9][02-9]1|[2-9][02-9]{2})\s*(?:[.-]\s*)?([0-9]{4})$

Imagine	 yourself	 having	 to	maintain	 or	 debug	 either	 of	 the	 two	 preceding
REs	(good	luck!).	What	is	more	common	in	real	code	is	to	check	each	possibility
until	you	match	a	valid	pattern,	raising	an	error	if	it	matches	none	of	them.	This
not	only	allows	code	that	is	simpler	to	understand,	but	also	easier	maintenance	if
the	rules	or	laws	change.	It	is	easier	to	comment	out	or	add	a	new	block	of	code
than	to	tamper	with	a	 long	regular	expression,	and	it’s	far	 less	 likely	to	lead	to
unexpected	subtle	errors	on	a	change.

The	libphonenumber	Library
The	need	 to	 really	validate	phone	numbers	without	having	 to	know	all	 the

arcane	 rules	 across	 the	 world	 and	 maintain	 complex	 code	 has	 led	 to	 shared
resources.	 One	 alternative	 to	 creating	 your	 own	 REs	 for	 matching	 phone
numbers	 is	 the	 Google	 library	 (in	 Java,	 C++	 and	 JavaScript)	 for	 parsing,
formatting,	 and	 validating	 international	 phone	 numbers,	 found	 at
https://github.com/googlei18n/libphonenumber.

For	example,	 the	preceding	recognizes	 that	 the	sequence	15555555555	 is	a
possible	 number	 but	 not	 a	 valid	 number.	 This	 library	 provides	many	 features,
including	the	following:

https://github.com/googlei18n/libphonenumber

•	validation	for	phone	numbers	in	every	country
•	detection	of	phone	types	(fixed-line,	mobile,	toll-free,	and	so	forth)
•	APIs	to	provide	valid	phone	numbers	(per	country/region)
•	full	validation	of	phone	numbers
•	formats	numbers	on	the	fly	as	users	enter	digits
•	geographical	information	for	phone	numbers

There	are	phone-related	libraries	for	other	languages	that	rely	on	the	Google
i18n	phone	number	dataset:
PHP:	https://github.com/giggsey/libphonenumber-for-php
Python:	https://github.com/daviddrysdale/python-phonenumbers
Ruby:	 https://github.com/sstephenson/global_phone	 C#:
https://github.com/erezak/libphonenumber-csharp

Objective-C:	https://github.com/iziz/libPhoneNumber-iOS
The	 following	website	provides	a	PHP	script	 that	validates	phone	numbers

based	 on	 a	 list	 of	 acceptable	 formats:	 http://www.bitrepository.com/how-to-
validate-a-telephone-number.html.

REs	AND	ZIP	CODES	(U.S.	AND	CANADIAN)
Listing	2.2	displays	the	contents	of	lines1.txt,	which	is	used	in	code	snippets

in	this	section.

LISTING	2.2:	lines1.txt
94053
94053-06123
9405306123
V6K8Z3
36K8Z3
123-45-6789
650	123-4567	
650	123	4567	
(650)	123	4567	
1-650	123-4567
jsmith@acme.com	The	following	RE	matches	strings	that	contain	five	digits
(which	is	a	common	U.S.	zip	code	pattern):	egrep	"\d{5}"	lines1.txt

The	output	is	here:

94053

http://www.bitrepository.com/how-to-validate-a-telephone-number.html

94053-06123
9405306123

However,	the	third	string	in	the	preceding	output	is	an	invalid	U.S.	zip	code.
Let’s	 see	 how	 to	match	 either	 of	 the	 first	 two	 zip	 codes	 and	 exclude	 the	 third
(invalid)	zip	code.

The	following	expression	matches	U.S.	zip	codes	consisting	of	five	digits:

egrep	"^\d{5}$"	lines1.txt

The	output	is	here:

94053

The	 following	 expression	matches	U.S.	 zip	 codes	 consisting	 of	 five	 digits
followed	by	a	hyphen,	and	then	followed	by	another	five	digits:	egrep	"^\d{5}-
\d{5}$"	lines1.txt

The	output	is	here:

94053-06123

Recall	 from	 earlier	 examples	 that	 the	 “or”	 operator	 lets	 you	 combine	 both
expressions	to	properly	sort	out	both	valid	U.S.	zip	code	options:	egrep	"^\d{5}	|
\d{5}-\d{5}$"	lines1.txt

94053
94053-06123

You	can	also	define	REs	that	match	zip	codes	that	end	in	a	fixed	pattern.	For
example,	the	following	RE	matches	U.S.	zip	codes	that	end	with	43	or	58:	egrep
"^\d{3}(43|58)$"	lines1.txt

The	preceding	RE	matches	the	zip	code	94043	as	well	as	the	94058	zip	code.
On	 the	 other	 hand,	 the	 following	 RE	 matches	 zip	 codes	 that	 start	 with	 three
digits	and	end	in	either	53	or	23:	egrep	"^[0-9]{3}(53|23)"	lines1.txt

The	output	is	here:

94053
94053-06123
9405306123

Valid	Canadian	postal	codes	are	significantly	different	from	U.S.	zip	codes:
they	have	the	form	A1A	1A1,	where	A	is	a	capital	letter	and	1	is	a	digit	(with	a
space	between	the	two	triplets).	The	following	RE	matches	Canadian	zip	codes:
egrep	"^[A-Z][0-9][A-Z]	[0-9][A-Z][0-9]"	lines1.txt

The	output	is	here:

V6K	8Z3

Most	 applications	 that	 handle	 truly	 international	 addresses	 do	 not	 try	 to
validate	postal	codes,	 instead	providing	a	 free-form	field	outside	of	 the	United
States	and	sometimes	a	few	other	countries.	There	is	no	shared	resource	similar
to	the	Google	i18n	phone	number	dataset.

REs	AND	EMAIL	ADDRESSES
Matching	email	addresses	is	a	complex	task.	This	section	provides	REs	that

match	common	email	addresses	that	have	the	following	pattern:
1.	an	initial	string	having	at	least	four	characters	and	at	most	twelve	characters

(which	can	be	any	combination	of	lowercase	letters,	uppercase	letters,	or
digits),	then	2.	followed	by	the	“@”	symbol,	then

3.	a	string	having	at	least	four	characters	and	at	most	twelve	characters	(which
can	be	any	combination	of	lowercase	letters,	uppercase	letters,	or	digits),	then
4.	followed	by	the	string	“.com”
Here	 is	 the	RE	that	has	 the	structure	described	 in	 the	preceding	 list	 (which

also	requires	egrep	instead	of	grep)	that	matches	an	email	address:	egrep	"^[A-
Za-z0-9]{4,12}\@[A-Za-z0-9]{4,8}\.com$"	lines1.txt

The	output	of	the	preceding	RE	is	here:

jsmith@acme.com

There	are	a	few	points	to	keep	in	mind	regarding	the	preceding	RE.	First,	it
only	matches	 email	 addresses	with	 the	 suffix	 “.com”.	Second,	 longer	 (yet	 still
valid)	 email	 addresses	 are	 excluded,	 such	 as	 the	 one	 shown	 here:
myverylongemailaddress@acme.com

Consequently,	you	need	to	make	decisions	about	 the	allowable	set	of	email
addresses	that	you	want	to	match	with	your	RE.

The	following	RE	that	has	 the	structure	described	in	 the	preceding	list	also
allows	a	dot	“.”	as	in	the	initial	portion	of	the	email	address:	egrep	"^[A-Za-z0-
9]{4,12}\.[A-Za-z0-9]{4,12}\@[A-Za-z0-9]{4,8}\.com$"	lines1.txt

The	output	is	here:

john.smith@acme.com

The	section	shown	in	bold	in	the	preceding	RE	shows	you	how	to	match	the
dot	 “.”	 character,	 followed	 by	 an	 alphanumeric	 string	 that	 has	 at	 least	 four
characters	and	at	most	twelve	characters.

There	are	other	combinations	of	characters	 that	 form	valid	email	addresses
that	have	not	been	discussed	in	this	section.	For	example,	consider	the	following
email	addresses:	dave.edward.smith@gmail.com
dave-777-smith@artist.net
Dave-777-Smith@artist.net	The	REs	 that	match	 the	 preceding	 email	 addresses
are	an	exercise	for	you.

Most	applications	manage	the	complexity	by	only	focusing	on	the	following
patterns:

•	It	must	have	one	and	only	one	@	in	the	string.
•	It	must	have	at	least	one	character	before	the	@.
•	It	must	have	a	period	after	the	@,	and	at	least	one	character	between	the	@	and
the	period.

•	It	must	have	at	least	one	character	after	the	period.

According	 to	 the	 preceding	 list	 of	 rules,	 the	 patterns	 brad@flick@com,
@flick.com.,	and	@flick.com	are	detected	as	invalid	email	addresses.	However,
a@b.c	 and	 -@	 .1	would	 then	 pass	most	 validations	 and	 be	 assumed	 to	 be	 an
email	address.

As	 you	 can	 see,	 there	 are	many	 “corner	 cases”	 to	 check	 to	 validate	 email
addresses,	and	while	 it’s	an	 interesting	exercise,	 it’s	probably	better	 to	perform
an	Internet	search	to	find	add-ons	that	have	been	tested	and	documented.

HEXADECIMAL	COLOR	SEQUENCES
Hexadecimal	colors	start	with	the	#	symbol,	followed	by	any	combination	of

the	digits	0	through	9,	the	letters	a	through	f,	and	the	letters	A	through	F.
Listing	 2.3	 displays	 the	 contents	 of	 hexcolors.txt,	 which	 is	 used	 in	 code

snippets	in	this	section.

LISTING	2.3:	hexcolors.txt
#abd

#a1b2d3
#A1B2D4
#A3b5D7
#acbedf
#AcBeDf
#ABD
#fad
#f00
#F00
#FF0000
#ABCDEF
#123456

The	following	RE	matches	hexadecimal	colors	with	six	lowercase	letters:

egrep	'^#[a-f]{6}$'	hexcolors.txt

The	output	is	here:

#acbedf

The	 following	 RE	 matches	 some	 three-character	 hexadecimal	 colors	 and
sixcharacter	 hexadecimal	 numbers	 (but	 only	 lowercase	 letters):	 egrep	 '^#([a-f]
{3}){1,2}$'	hexcolors.txt

The	output	is	here:

#abd
#acbedf
#fad

The	following	RE	matches	some	three-character	hexadecimal	colors	or	six-
character	hexadecimal	numbers	containing	lowercase	letters	or	uppercase	letters
(or	both):	egrep	'^#([a-fA-F]{3}){1,2}$'	hexcolors.txt

The	output	is	here:

#abd
#acbedf
#AcBeDf
#ABD
#fad

#ABCDEF

The	 following	RE	matches	 six-character	 hexadecimal	 numbers	 that	 consist
of	the	pattern	lowercase	letter	plus	digit,	repeated	three	times:	egrep	'^#(([a-f]\d)
{3}){1,2}$'	hexcolors.txt

The	output	is	here:

#a1b2d3

Strangely,	 the	 following	 RE	 does	 not	 match	 six-character	 hexadecimal
numbers	that	consist	of	the	pattern	any	letter	plus	digit,	repeated	three	times	(a
bug	in	egrep?):	egrep	'^#(([a-fA-F]\d){3}){1,2}$'	hexcolors.txt

Fortunately,	 the	 following	 RE	 matches	 everything	 in	 hexcolors.txt	 after
replacing	 \d	 with	 the	 range	 [0-9]:	 egrep	 '^#(([a-fA-F0-9]){3}){1,2}$'
hexcolors.txt

The	output	is	here:

#abd
#a1b2d3
#A1B2D4
#A3b5D7
#acbedf
#AcBeDf
#ABD
#fad
#f00
#F00
#FF0000
#ABCDEF
#123456

We	were	fortunate	to	define	a	single	RE	that	is	simple,	compact,	and	easy	to
understand	that	captures	all	the	combinations	of	hexadecimal	values	contained	in
hexcolors.txt.

WORKING	WITH	NUMBERS
This	 section	 contains	 examples	 of	 REs	 that	 match	 integers,	 floating	 point

numbers,	 hexadecimal	 numbers,	 octal	 numbers,	 and	 binary	 numbers.	 The
subsequent	 section	 discusses	 REs	 for	 scientific	 numbers,	 which	 are	 a

“generalization”	of	decimal	numbers:	they	are	more	complex,	and	so	they	merit
their	own	section.

Listing	 2.4	 displays	 the	 contents	 of	 numbers.txt,	 which	 is	 used	 in	 code
snippets	in	this	section.

LISTING	2.4:	numbers.txt
#integers	
1234
-123

#floating	point	numbers
1234.432
-123.528
0.458

#hexadecimal	numbers
12345
FA4389
0xFA4389
0X4A3E5C

#octal	numbers
1234
03434

#binary	numbers
010101
110101
0b010101

REs,	Integers,	and	Decimal	Numbers
The	following	RE	matches	positive	integers	and	negative	integers:

egrep	"^[-|+]?\d+$"	numbers.txt

The	output	is	here:

1234
-123

1234
1234.432	why?
0.458	why?
010101
110101
0b010101	why?
1234
03434

The	following	RE	matches	positive	integers,	negative	integers,	and	decimal
numbers:	egrep	"^[-|+]?\d+([\.]?\d*)$"	numbers.txt

The	output	is	here:

1234
-123
1234.432
-123.528
0.458
010101
110101
1234
03434

The	following	RE	matches	only	decimal	numbers:

egrep	"^[-|+]?\d+([\.]\d*)$"	numbers.txt

The	output	is	here:

1234.432
-123.528
0.458

REs	and	Hexadecimal	Numbers
Hexadecimal	numbers	can	contain	the	digits	0	through	9	and	also	the	letters

A	through	F,	and	they	can	also	start	with	0x	or	0X	(both	of	which	are	optional).
The	following	RE	matches	hexadecimal	numbers	(and	other	patterns	as	well)

without	a	0x	or	0X	prefix:	egrep	'^[a-fA-F0-9]+$'	numbers.txt
The	output	is	here:

1234
12345
FA4389
1234
03434
010101
110101
0b010101

The	last	string	in	the	preceding	output	matches	the	initial	pattern	(because	of
the	lowercase	“b”).	Remove	the	a-f	section	of	 the	preceding	RE	if	you	want	to
exclude	strings	that	contain	lowercase	letters.

Notice	 that	 numbers	 that	 are	 integers,	 octal	 numbers,	 and	 binary	 numbers
also	appear	in	the	preceding	list	(because	they	are	valid	hexadecimal	numbers).

The	following	RE	matches	hexadecimal	numbers	that	start	with	either	0x	or
0X:	egrep	'^(0x|0X)[a-fA-F0-9]+$'	numbers.txt

The	output	is	here:

1234
12345
FA4389
0xFA4389
0X4A3E5C
1234
03434
010101
110101
0b010101

Once	again,	notice	that	numbers	that	are	integers,	octal	numbers,	and	binary
numbers	 also	 appear	 in	 the	preceding	 list	 (because	 they	 are	valid	hexadecimal
numbers).

You	can	also	match	“couplets”	of	hexadecimal	numbers	that	are	separated	by
a	blank	space.	For	example,	the	following	RE	matches	the	string	A3	B6	3F	62:
(the	Bash	echo	command	“echoes”	the	string	in	quotes):	echo	"A3	B6	3F	62"	 |
egrep	"^([0-9A-F]{2})+"

REs	and	Octal	Numbers

Octal	numbers	can	start	with	an	optional	digit	0.	The	following	RE	matches
octal	numbers	without	a	0	prefix:	egrep	"^[1-7][0-7]+$"	numbers.txt

The	output	is	here:

1234
110101
1234

Notice	 that	 there	 are	 two	 occurrences	 of	 the	 number	 1234:	 the	 first	 one
appears	as	an	integer	(and	it’s	a	valid	octal	number)	and	the	second	one	appears
in	the	section	with	octal	numbers.	Moreover,	the	number	110101	from	the	binary
section	is	also	a	valid	octal	number.

The	following	RE	matches	octal	numbers	with	a	0	prefix:

egrep	"^0?[1-7]+$"	numbers.txt

The	output	is	here:

1234
1234
03434

Once	 again,	 there	 are	 two	 occurrences	 of	 the	 number	 1234:	 the	 first	 one
appears	as	an	integer	(and	it’s	a	valid	octal	number)	and	the	second	one	appears
in	the	section	with	octal	numbers.

REs	and	Binary	Numbers
The	following	RE	matches	binary	numbers	without	a	0b	prefix:

egrep	"^[0-1]+$"	numbers.txt

The	output	is	here:

010101
110101

The	following	RE	matches	binary	numbers	with	or	without	a	0b	prefix:

egrep	"(^[0-1]+|0b[0-1]+)$"	numbers.txt

The	output	is	here:

010101
110101
0b010101

WORKING	WITH	SCIENTIFIC	NUMBERS
This	section	contains	examples	of	REs	that	match	scientific	numbers.	Listing

2.5	displays	 the	contents	of	numbers2.txt	 that	will	 be	used	 in	 code	 snippets	 in
this	section.

LISTING	2.5:	numbers2.txt
0.123
z	=	0xFFFF00;
+13
423.2e32
-7.20e+19
-.4E-8
-27.6603
+0005
125.e12

REs	and	Scientific	Numbers
Matching	all	scientific	numbers	(and	nothing	else)	is	rather	complex,	and	this

section	contains	some	REs	that	partially	succeed	in	this	task.
Option	 #1:	 the	 following	 RE	 matches	 some	 scientific	 numbers	 and	 other

numbers	as	well:

egrep	'^[+-]?\d*(([,.]\d{3})+)?([,.]\d+)?([eE][+-]?\d+)?$'	numbers.txt

The	output	is	here:

1234
-123

1234.432
-123.528
0.458

12345

1234
03434

010101
110101

However,	the	preceding	RE	provides	a	better	match	with	numbers2.txt:	egrep
'^[+-]?\d*(([,.]\d{3})+)?([,.]\d+)?([eE][+-]?\d+)?$'	 numbers2.txt	 The	 output	 is
here:

0.123
+13
423.2e32
-7.20e+19
-.4E-8
-27.6603
+0005

For	 your	 convenience,	 Listing	 2.6	 displays	 the	 contents	 of	 scientific.sh,
which	 contains	 an	 assortment	 of	REs	 that	 check	 for	 scientific	 numbers,	 tested
against	the	files	numbers.txt	and	numbers2.txt.

LISTING	2.6:	scientific.sh

echo	"***	Option	#1:"
echo	"--------------"
egrep	'^[+-]?\d*(([,.]\d{3})+)?([,.]\d+)?([eE][+-]?\d+)?$'	numbers2.txt
echo	"***	Option	#2:"
echo	"--------------"
egrep	'^[+-]?\d*(([,.]\d{3})+)?([,.]\d+)?([eE][+-]?\d+)?$'	numbers.txt
echo	"***	Option	#3:"
echo	"--------------"
egrep	'[-]?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?'	numbers2.txt
echo	"***	Option	#4:"
echo	"--------------"
egrep	'[-]?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?'	numbers.txt
echo	"***	Option	#5:"

echo	"--------------"
egrep	'[-]?(?:0|[1-9]\d*)(?:\.\d*)?(?:[eE][+\-]?\d+)?'	numbers2.txt
echo	"***	Option	#6:"
echo	"--------------"
egrep	'[-]?(?:0|[1-9]\d*)(?:\.\d*)?(?:[eE][+\-]?\d+)?'	numbers.txt
echo	"***	Option	#7:"
echo	"--------------"
egrep	'[-]?(?:0|[1-9]\d*)(?:\.\d*)?(?:[eE][+\-]?\d+)?'	numbers2.txt
echo	"***	Option	#8:"
echo	"--------------"
egrep	'[+\-]?(?:0|[1-9]\d*)(?:\.\d*)?(?:[eE][+\-]?\d+)?'	numbers2.txt	Launch	the
code	in	Listing	2.6	with	this	command:

./scientific.sh	>	scientific.out

Listing	2.7	displays	the	contents	of	scientific.out,	which	shows	the	result	of
launching	the	shell	script	in	Listing	2.6.

LISTING	2.7:	scientific.out
***	Option	#1:

0.123	
+13
423.2e32
-7.20e+19
-.4E-8
-27.6603
+0005	
***	Option	#2:

1234
-123

1234.432
-123.528
0.458

12345

1234
03434

010101
110101

***	Option	#3:

0.123
z	=	0xFFFF00;
+13
423.2e32
-7.20e+19
-.4E-8
-27.6603
+0005
125.e12
***	Option	#4:

1234
-123
1234.432
-123.528
0.458
12345
FA4389
0xFA4389
0X4A3E5C
1234
03434
010101
110101
0b010101
***	Option	#5:

0.123
z	=	0xFFFF00;
+13
423.2e32

-7.20e+19
-.4E-8
-27.6603
+0005
125.e12
***	Option	#6:

1234
-123
1234.432
-123.528
0.458
12345
FA4389
0xFA4389
0X4A3E5C
1234
03434
010101
110101
0b010101
***	Option	#7:

0.123
z	=	0xFFFF00;
+13
423.2e32
-7.20e+19
-.4E-8
-27.6603
+0005
125.e12
***	Option	#8:

0.123
z	=	0xFFFF00;
+13
423.2e32
-7.20e+19

-.4E-8
-27.6603
+0005
125.e12

As	you	can	 see,	 the	REs	 in	Listing	2.7	have	varying	degrees	of	 success	 in
terms	 of	matching	 scientific	 numbers.	 In	 general,	 they	 err	 by	matching	 “false
positives”	 (numbers	 that	 are	not	 valid	 scientific	numbers)	 instead	of	 excluding
“false	negatives”	(numbers	that	are	valid	scientific	numbers).

Most	 real-world	 applications	 and	 programming	 languages	 use	 various
numeric	variable	“types”	to	deal	with	calculations,	and	when	forced	to	translate
a	number	which	is	stored	as	text	in	scientific	notation,	they	require	you	to	either
use	 a	 predefined	 format	 or	 instruct	 the	 command	which	 format	 is	 being	 used.
This	means	most	of	the	complexity	of	the	matching	problem	is	limited	to	some
kind	of	reasonable	subset	that	can	be	matched	with	a	simpler	regular	expression.
Unless	you	are	trying	to	do	something	like	scan	documents	and	pull	out	numbers
from	 free-form	 text	 without	 knowing	 ahead	 of	 time	what	 format	 the	 numbers
used,	you	should	not	normally	encounter	this	level	of	complexity.

As	with	 any	problem	of	 this	 type,	 it	 is	 often	 easier	 to	 run	 several	 “match”
expressions	and	then	filter	out	duplicates	and	false	positives	with	other	program
logic	than	to	try	to	match	every	possibility	with	a	single	regular	expression.

REs	AND	COMMENTS
This	 section	contains	 examples	of	REs	 that	match	 IP	addresses	 and	 simple

comment	strings	(in	source	code).	Listing	2.8	displays	the	contents	of	lines2.txt
that	will	be	used	in	code	snippets	in	this	section.

LISTING	2.8:	lines2.txt
192.168.3.99
192.168.123.065
//	this	is	a	comment
v	=	7;	//	this	is	also	a	comment
/*	the	third	comment	*/
x	=	7;	/*	the	fourth	comment	*/
y	=	\uFFEA;
z	=	0xFFFF00;	The	following	RE	matches	lines	that	start	with	//:

grep	"^//"	lines2.txt

The	output	is	here:

//	this	is	a	comment

The	following	RE	matches	lines	that	contain	an	occurrence	of	 //	(anywhere
in	the	string):	grep	"//"	lines2.txt

The	output	is	here:

//	this	is	a	comment
v	=	7;	//	this	is	also	a	comment

The	following	RE	matches	lines	that	start	with	/*:

grep	"^\/*"	lines2.txt

The	output	is	here:

/*	the	third	comment	*/

The	following	RE	matches	lines	that	contain	an	occurrence	of	/*	(anywhere
in	the	string):

grep	"\/*"	lines2.txt

The	output	is	here:

/*	the	third	comment	*/
x	=	7;	/*	the	fourth	comment	*/

REs	AND	IP	ADDRESSES
This	section	contains	examples	of	REs	that	match	IP	addresses,	based	on	the

strings	contained	in	Listing	2.8	in	the	previous	section.
The	following	RE	matches	arbitrary	valid	IP	addresses:

egrep	"^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}"	lines2.txt

The	output	is	here:

192.168.3.99
192.168.123.065

The	following	RE	matches	valid	IP	addresses	that	contain	three	digits	in	all
four	components:	egrep	"^\d{3}\.\d{3}\.\d{3}\.\d{3}"	lines2.txt

The	output	is	here:

192.168.123.065

DETECTING	FTP	AND	HTTP	LINKS
Listing	2.9	displays	the	contents	of	 lines11.txt,	which	contains	examples	of

URLs.

LISTING	2.9:	urls.txt
ftp://www.acme.com
http://www.bdnf.com
https://www.ceog.com
a	line	with	https://www.ceog.com	embedded	in	it	The	following	snippet	matches
the	lines	that	contain	the	string	http	or	https:	grep	"http"	urls.txt

The	output	is	here:

ftp://www.acme.com
http://www.bdnf.com
https://www.ceog.com
a	line	with	https://www.ceog.com	embedded	in	it	The	following	snippet	matches
the	lines	that	contain	the	string	http	or	https:	egrep	"https?"	urls.txt

The	output	is	here:

http://www.bdnf.com
https://www.ceog.com
a	line	with	https://www.ceog.com	embedded	in	it	The	following	snippet	matches
the	lines	that	contain	the	string	ftp,	http,	or	https:	egrep	"ftp|http|https"	urls.txt

The	output	is	here:

ftp://www.acme.com
http://www.bdnf.com
https://www.ceog.com
a	line	with	https://www.ceog.com	embedded	in	it	The	following	snippet	matches
the	lines	that	contain	the	string	http	embedded	in	the	line	of	text:	egrep	"^([a-

z]+)https?://[a-z\.]*"	urls.txt

The	output	is	here:

a	line	with	https://www.ceog.com	embedded	in	it

REs	AND	PROPER	NAMES
Listing	2.10	displays	the	contents	of	ProperNames.txt,	which	contains	a	list

of	proper	names	along	with	various	titles.

LISTING	2.10:	ProperNames.txt	Mr.	Smith
Mr	Smith
Mr.	J
Mr	J
Mrs	Smith
Mrs.	Smith
Mrs.	S
Mrs	S
Ms	Smith
Ms.	Smith
Ms	S
Ms.	S
Mr.	John	Smith
Mr.	John	Edward	David	Smith	Let’s	consider	the	following	REs	that
match	male	names	having	only	a	last	name	(we’ll	handle	the	proper
names	with	a	first	name	and	multiple	middle	names	later	in	this
section):	^Mr\.?\s[A-Z][a-z]+$
^Mr\.?\s[A-Z]$

Now	let’s	consider	the	following	REs	that	match	female	names.

^Ms\.?\s[A-Z][a-z]+$
^Ms\.?\s[A-Z]$

^Mrs\.?\s[A-Z][a-z]+$
^Mrs\.?\s[A-Z]$

Finally,	 let’s	consider	 the	 following	REs	 that	match	male	names	as	well	as
female	names,	and	let’s	see	how	they	differ:	^M([rs]|(rs))\.?\s[A-Z]([a-z]+)?$
^Mr\.?\s[A-Z]\w*$
^M(r|s|rs)\.?\s[A-Z]\w*$

Now	we	can	match	proper	names	that	contain	a	first	name	with	the	following
RE:

^M([rs]|(rs))\.?\s[A-Z]([a-z]+\s+[A-Za-z]*)$

The	following	RE	matches	one	or	more	optional	middle	names:

^M([rs]|(rs))\.?\s[A-Z]([a-z]+(\s*[A-Za-z])+)$

This	 section	 illustrates	 the	 technique	 discussed	 at	 the	 beginning	 of	 this
chapter:	start	with	REs	that	match	simple	proper	names	for	males	and	females,
and	then	combine	them	to	into	a	single	RE.	As	a	result,	the	last	step	(i.e.,	a	first
name	 and	multiple	middle	 names)	was	 a	much	 simpler	 task.	 Incidentally,	 this
type	of	task	is	a	“confidence	builder”	when	you	can	quickly	create	REs	for	tasks
of	moderate	complexity.

There	 are	 additional	 cases	 to	 consider	 for	proper	names.	For	 example,	you
might	need	to	match	suffixes	such	as	Jr.,	Sr.,	or	Esq.	In	addition,	you	might	need
to	 consider	 prefixes	 such	 as	 Sir,	 Count,	 Lord,	 Dr,	 Dr.,	 Prof,	 and	 Professor
(among	others).	Thus,	REs	that	match	proper	names	can	involve	many	nuances,
and	it’s	a	good	idea	to	determine	(to	the	extent	that	it’s	possible	to	do	so)	which
prefixes	and	suffices	 that	you	need	 to	match	before	you	embark	on	 the	 task	of
creating	the	appropriate	REs.

The	next	section	contains	REs	for	matching	ISBNs	(that	are	more	complex
than	 the	 REs	 in	 this	 section)	 and	 also	 illustrates	 the	 same	 divide-and-conquer
technique.

REs	AND	ISBNS
The	REs	in	 this	section	 involve	multiple	simpler	REs	that	are	concatenated

using	 the	pipe	“|”	 symbol,	which	 indicates	an	“OR”	operation	 (as	described	 in
the	first	section	of	this	chapter).

As	a	simplified	example,	suppose	we	want	to	construct	an	RE	that	matches
the	following	strings:	a123
ab123
abc123

abcd123
The	solution	is	easy	to	construct	when	you	describe	the	strings	in	an	English

sentence:	 the	 strings	 start	with	 either	 an	 a	OR	 an	 ab	OR	 an	 abc	OR	 an	 abcd,
AND	all	of	 them	have	 the	number	123	as	 the	 rightmost	portion.	Using	 the	“|”
symbol	we	can	construct	the	RE	like	this:	^(a|ab|abc|abcd)123$

Now	 let’s	 consider	 valid	 ISBNs,	 which	 can	 start	 with	 the	 optional	 string
ISBN,	 and	 also	 contain	 either	 ten-digit	 sequences	 or	 thirteen-digit	 sequences.
Listing	2.11	displays	the	contents	of	ISBN.txt,	which	contains	examples	of	valid
ISBN	numbers.

LISTING	2.11:	ISBN.txt
ISBN	978-0-596-52068-7
ISBN-13:	978-0-596-52068-7
ISBN-10	0-596-52068-9
978	0	596	52068	7
9780596520687
0-596-52068-9

Notice	that	the	first	line	in	Listing	2.11	contains	the	string	ISBN	followed	by
a	 blank	 space,	 and	 the	 next	 two	 lines	 contain	 the	 string	 ISBN	 followed	 by	 a
hyphen,	and	then	two	more	digits,	and	then	either	a	colon	“:”	or	a	blank	space.
Those	two	lines	end	with	a	hyphenated	thirteen-digit	number	and	a	hyphenated
ten-digit	number,	respectively.

The	 fourth	 line	 in	Listing	2.11	 contains	 a	 thirteen-digit	 number	with	white
spaces;	 the	fifth	line	contains	a	“pure”	thirteen-digit	number;	and	the	sixth	line
contains	a	hyphenated	ten-digit	number.

Now	 let’s	 see	 how	 to	 match	 the	 numeric	 portion	 of	 the	 ISBNs	 in	 Listing
2.11.	The	following	RE	matches	the	digits	in	the	first	and	the	second	line:	\d{3}-
\d-\d{3}-\d{5}-\d

The	following	RE	matches	the	digits	in	the	third	line	as	well	as	the	sixth	line:

\d-\d{3}-\d{5}-\d

The	following	RE	matches	the	digits	in	the	fourth	line:

\d{3}	\d	\d{3}	\d{5}	\d

The	following	RE	matches	the	digits	in	the	fifth	line:

\d{13}

Now	 let’s	 create	REs	 for	 the	 text	prefix	 (when	present)	 and	 combine	 them
with	 the	earlier	 list	of	REs	 to	match	all	of	 the	 lines	 in	Listing	2.11.	The	 result
involves	 four	 REs,	 as	 shown	 in	 the	 following:	 1.	 the	 RE	 (^([A-Z]{4}[-]?)?
\d{3}-\d-\d{3}-\d{5}-\d)	matches:

ISBN	978-0-596-52068-7
ISBN-13:	978-0-596-52068-7
ISBN-10	0-596-52068-9

2.	the	RE	(\d{3}	\d	\d{3}	\d{5}	\d)	matches:

978-0-596-52068-7
978	0	596	52068	7

3.	the	RE	(\d{13})	matches:

9780596520687

4.	the	RE	(\d-\d{3}-\d{5}-\d)	matches:

0-596-52068-9

Now	 we	 can	 combine	 the	 preceding	 four	 REs	 to	 create	 a	 single	 RE	 that
matches	every	valid	ISBN	in	the	text	file	ISBN.txt:	egrep	"^((([A-Z]{4}-\d{2}:
\d{3}-\d-)|([A-Z]{4}-\d{2}	 \d-))?\d{3}-\d{5}-\d)|(^([A-Z]{4}[-]?)?	 \d{3}-\d-
\d{3}-\d{5}-\d)|(\d{3}	\d	\d{3}	\d{5}	\d)|(\d{13})|(\d-\d{3}-\d{5}-\d)"	ISBN.txt
If	you	decide	to	use	the	preceding	RE	in	a	bash	script,	include	a	comment	block
to	explain	how	it	has	been	constructed,	which	will	help	other	people	understand
your	code	(and	they	will	appreciate	your	efforts).

WORKING	WITH	BACKSLASHES	AND	LINEFEED
(OPTIONAL)

This	section	is	intended	for	readers	with	an	intermediate	level	of	knowledge
regarding	REs.	 If	you	are	a	beginner,	you	can	skip	 this	section	with	no	 loss	of
continuity.

Listing	2.12	displays	the	contents	of	linefeeds.txt,	which	contains	examples
of	 the	 character	 sequences	 \n	 and	 \r	 in	 lines	 of	 text.	 Keep	 in	 mind	 that	 these

character	sequences	involve	two	characters,	and	hence	they	are	not	the	same	as	a
linefeed	or	 a	 carriage	 return,	which	are	 single	 characters	 ^J	 (hexadecimal	0xA
for	a	linefeed)	and	^M	(hexadecimal	0xD	for	a	carriage	return).	If	you	see	either
of	these	characters	in	a	text	file,	it	means	that	the	file	was	saved	using	a	DOS-
based	 format.	 Incidentally,	 the	 ^M	 character	will	 also	 appear	 in	 text	 files	 that
were	created	from	Excel	spreadsheets.

One	other	detail:	the	combination	of	a	carriage	return	followed	by	a	linefeed
is	 the	end-of-line	marker	 for	 text	 files	 in	DOS-like	operating	systems,	whereas
text	files	in	Unix-based	systems	only	require	a	linefeed.

LISTING	2.12:	linefeeds.txt
\nthe	dog	is	grey/n	and	the	cat\n	is	gray.
/nthis	dog	\ris	grey\n	
that	cat	is	gray/n
/r/nthat	cat	is	gray/n	Listing	2.13	displays	the	contents	of	the	bash	script
linefeeds.sh,	which	contains	various	REs	that	match	some	of	the	lines	in
linefeeds.txt.

LISTING	2.13:	linefeeds.sh
echo	'line	1:	egrep	\/n.*'
egrep	"\/n.*"	linefeeds.txt
echo	""
echo	'line	2:	egrep	^\/n.*'
egrep	"^\/n.*"	linefeeds.txt
echo	""
echo	'line	3:	egrep	.*\/n.*'
egrep	".*\/n.*"	linefeeds.txt
echo	""
echo	'line	4:	egrep	.*\/n.$'
egrep	".*\/n$"	linefeeds.txt
echo	""
echo	'line	5:	egrep	^\/r.*'
egrep	"^\/r.*"	linefeeds.txt
echo	""
echo	'line	6:	egrep	\\r'	#[nothing]
egrep	"\\r"	linefeeds.txt
echo	""
echo	'line	7:	egrep	.*\\n.*'

egrep	".*\\n.*"	linefeeds.txt	#[nothing]
echo	""
echo	'line	8:	egrep	\\n'
egrep	"\\n"	linefeeds.txt	#[nothing]

Listing	 2.14	 displays	 the	 contents	 of	 the	 output	 file	 linefeeds.out,	 which
contains	the	output	from	launching	the	bash	script	linefeeds.sh.

LISTING	2.14:	linefeeds.out
echo	'line	1:	egrep	\/n.*'
line	1:	egrep	\/n.*
\nthe	dog	is	grey/n	and	the	cat\n	is	gray.
/nthis	dog	\ris	grey\n
that	cat	is	gray/n
/r/nthat	cat	is	gray/n	line	2:	egrep	^\/n.*
/nthis	dog	\ris	grey\n

line	3:	egrep	.*\/n.*
\nthe	dog	is	grey/n	and	the	cat\n	is	gray.
/nthis	dog	\ris	grey\n
that	cat	is	gray/n
/r/nthat	cat	is	gray/n	line	4:	egrep	.*\/n.$
that	cat	is	gray/n
/r/nthat	cat	is	gray/n	line	5:	egrep	^\/r.*
/r/nthat	cat	is	gray/n

line	6:	egrep	\\r

line	7:	egrep	.*\\n.*

line	8:	egrep	\\n

As	you	can	see,	 the	 first	 five	REs	match	some	of	 the	 lines	 in	 linefeeds.txt,
whereas	 the	 last	 three	REs	do	not	match	anything	(contrary	 to	what	you	might
have	expected).

WORKING	WITH	CAPTURE	GROUPS
REs	 support	 the	notion	of	 “capturing”	 a	group	of	 characters,	which	occurs

whenever	you	parenthesize	 a	 subexpression	 in	 an	RE.	Although	 it	 hasn’t	 been
explicitly	 mentioned,	 you	 have	 already	 worked	 with	 several	 REs	 that	 contain
capture	groups.

For	example,	the	following	RE	does	not	contain	a	capture	group:

^[A-Z]-\d{3}

However,	the	following	RE	contains	a	capture	group	that	consists	of	one	or
more	consecutive	capital	letters:	^([A-Z]+)-\d{3}

Note	that	the	capture	group	consists	of	one	or	more	capital	letters	that	appear
at	the	beginning	of	a	line	because	of	the	^	metacharacter.	You	can	reference	this
capture	 group	 as	 \1.	 You	 can	 define	 nine	 capture	 groups,	 designated	 as	 \1
through	\9.	Here	is	another	example:	^([A-Z]+)-(\d{3})-\d{4}

In	the	preceding	code	snippet,	the	first	capture	group,	\1,	refers	to	^
([A-Z]+)	and	consists	of	one	or	more	capital	letters	that	appear	at	the	beginning
of	a	 line.	The	second	capture	group,	 \2,	 refers	 to	-(\d{3})	and	consists	of	 three
consecutive	digits	 that	appear	after	 the	first	capture	group	(and	also	a	hyphen).
More	information	about	capture	groups	is	available	here:
http://www.rexegg.com/regex-capture.html
http://www.rexegg.com/regex-lookarounds.html

WORKING	WITH	BACK	REFERENCES
A	back	reference	in	REs	means	that	an	RE	references	a	group	that	has	been

previously	 captured.	 Let’s	 look	 at	 some	 examples.	 Listing	 2.15	 displays	 the
contents	of	duplicates.txt	that	are	referenced	by	the	REs	in	this	section.

LISTING	2.15:	duplicates.txt
this	this	appears	twice
THIS	THIS	APPEARS	TWICE	AGAIN
this	has	no	duplicates
we're	going	back	back	to	cali	Now	consider	the	following	RE	that	uses	a	back
reference	in	order	to	detect	duplicate	(consecutive)	words	(with	uppercase
letters):	\b([A-Z]+)\s+\1\b

The	preceding	RE	uses	\b	to	ensure	word	boundaries,	followed	by	
[A-Z]+	that	matches	alphabetic	characters.	In	order	to	reference	the	occurrence
of	 those	 alphabetic	 characters,	 simply	 enclose	 that	 subexpression	 in	 a	 pair	 of
round	parentheses,	like	this:	([A-Z]+)

Finally,	 use	 the	 term	 \1	 later	 in	 the	 RE	 in	 order	 to	 back	 reference	 that
matched	pattern.

If	you	are	unfamiliar	with	back	references,	they	might	require	some	practice
to	 become	 comfortable	with	 them	 and	 to	 see	when	 they	 can	 be	 advantageous.
For	 example,	 the	 following	 pair	 of	 REs	 match	 the	 same	 patterns:	 "\b([A-
Z]+)\s+\1\b"
"\b([A-Z]+)\s+([A-Z]+)\b"

Even	though	both	of	the	preceding	REs	produce	the	same	result,	it’s	arguably
easier	to	read	the	first	RE	containing	a	back	reference	than	the	second	RE.

Just	to	be	sure,	now	let’s	test	the	preceding	RE	with	the	egrep	utility	to	see	if
it	finds	duplicate	(uppercase)	words	in	the	text	file	duplicates.txt:	egrep	"\b([A-
Z]+)\s+\1\b"	duplicates.txt

The	output	is	here:

THIS	THIS	APPEARS	TWICE	AGAIN

Now	let’s	test	the	following	RE	that	searches	for	duplicate	words	containing
lowercase	 letters	 as	 well	 as	 uppercase	 letters:	 egrep	 "\b([A-Za-z]+)\s+\1\b"
duplicates.txt

The	output	is	here,	which	confirms	that	the	preceding	RE	is	correct:

this	this	appears	twice
THIS	THIS	APPEARS	TWICE	AGAIN
we're	going	back	back	to	cali	TESTING	REs:	ARE	THEY	ALWAYS
CORRECT?

The	concepts	in	this	section	are	applicable	to	other	programming	languages.
The	key	point	to	remember:	if	slightly	different	REs	generate	the	same	output,	is
this	due	to	the	contents	of	the	dataset?	Phrased	in	a	slightly	different	way:	how
do	 you	 know	 that	 your	 dataset	 contains	 a	 sufficient	 variety	 of	 text	 strings	 to
ensure	that	differences	in	the	output	of	slightly	different	REs	is	not	due	to	your
specific	dataset?

This	 is	an	 important	question,	and	 the	 following	scenario	 is	 from	an	actual
application.	 Consider	 a	 production	 application	 that	 has	 worked	 correctly	 for
months	 with	 user-based	 input.	 Suddenly	 the	 application	 fails	 and,	 after	 much
effort,	 you	 discover	 that	 an	 RE	 in	 the	 application	 does	 not	 handle	 a	 rarely
encountered	character	sequence.

Unfortunately,	each	“rare”	occurrence	resulted	in	a	false	alarm	involving	the
local	fire	department,	which	cost	USD	$10,000	each	time	that	a	fire	truck	arrived

at	the	premises.	After	multiple	false	alarms,	the	problem	was	traced	to	an	invalid
RE	in	a	Web	application.

Listing	 2.16	 displays	 the	 contents	 of	 the	 shell	 script	 similar-res.sh	 that
contains	a	collection	of	REs,	and	Listing	2.17	displays	 the	contents	of	 similar-
res.out	 that	 displays	 the	 result	 of	 launching	 the	 shell	 script.	 Note	 that	 the	 file
lines3.txt	is	the	same	as	the	file	lines1.txt	in	Chapter	1.

LISTING	2.16:	similar-res.sh	echo	"line1:"
egrep	'\bg\w+'	lines3.txt
echo	"line2:"
egrep	'g\w+\b'	lines3.txt
echo	"line3:"
egrep	'g\w+\b	'	lines3.txt
echo	"line4:"
egrep	'g\w+\b	'	lines3.txt
echo	"line5:"
egrep	'	g\w+\b'	lines3.txt
echo	"line6:"
egrep	'[^g]g\w+\b'	lines3.txt
echo	"line7:"
egrep	'[]g\w+\b'	lines3.txt
echo	"line8:"
egrep	'[]g\S+\b'	lines3.txt
echo	"line9:"
egrep	'[^]g\w*\b'	lines3.txt
echo	"line10:"
egrep	'\bg\w+'	lines3.txt
echo	"line11:"
egrep	'g\w+\b	'	lines3.txt
echo	"line12:"
egrep	'g\w+\b	'	lines3.txt
echo	"line13:"
egrep	'	g\w+\b'	lines3.txt
echo	"line14:"

egrep	'[]g\w+\b'	lines3.txt
echo	"line15:"
egrep	'	g\w+\b'	lines3.txt
echo	"line16:"
egrep	'[^g]g\w+\b'	lines3.txt
#[empty	output]
echo	"line17:"
egrep	'[^]g\w*\b'	lines3.txt	LISTING	2.17:	similar-res.txt
echo	"line1:"
line1:
the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
that	cat	is	gray
line2:
the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
that	cat	is	gray
line3:
the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
line4:
the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
line5:
the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
that	cat	is	gray
line6:
line7:
the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
that	cat	is	gray
line8:
the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
that	cat	is	gray
line9:

the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
line10:
the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
that	cat	is	gray
line11:
the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
line12:
the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
line13:
the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
that	cat	is	gray
line14:
the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
that	cat	is	gray
line15:
the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
that	cat	is	gray
line16:
line17:
the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey	The	meaning	of	every	RE	in	Listing	2.17	has	been	discussed	in
Chapter	1	and	the	initial	portion	of	Chapter	2.

Read	 each	 one	 carefully	 to	 determine	 the	 output,	 and	 compare	 your
prediction	with	the	actual	output.

The	code	snippets	are	grouped	in	blocks,	and	in	each	block	the	code	snippets
look	 very	 similar,	 but	 they	 have	 subtle	 differences	 that	 require	 a	 solid
understanding	of	metacharacters	in	REs.

While	 it’s	 virtually	 impossible	 to	 check	 all	 possible	 combinations	 of
characters	in	a	text	string,	you	need	to	be	vigilant	and	test	your	REs	on	a	large
variety	of	patterns	to	minimize	the	likelihood	of	matching	(or	not	matching)	an
“outlier”	RE.

WHAT	ABOUT	PERFORMANCE	FACTORS?
The	following	list	contains	guidelines	for	improving	the	performance	of	REs:

avoid	greedy	quantifiers
minimize	backtracking
more	specific	is	better
use	the	anchors	^	and	$
non-capturing	groups	are	preferable

However,	 keep	 in	mind	 that	 readability	 is	 a	 very	 important	 factor,	 because
that	will	affect	the	time	spent	on	debugging	and	enhancing	REs.	If	you	need	to
balance	 performance	 versus	 readability,	 then	 favor	 greater	 readability	 (which
includes	good	documentation)	over	better	performance,	but	without	 taking	 this
rule	to	an	extreme.

Furthermore,	keep	 in	mind	 that	most	of	 the	RE	 syntax	was	developed	at	 a
time	 when	 computing	 power	 and	 resources	 were	 scarce,	 where	 the	 largest
mainframe	 was	 significantly	 less	 powerful	 than	 a	 modern	 smartphone.	 Most
commands	 such	 as	 grep	 which	 use	 REs	 start	 out	 pretty	 efficient,	 because	 the
underlying	 utilities	 that	 use	 them	were	 developed	 when	 resources	 were	much
more	scarce	than	they	are	today.

Normally	 you	will	 not	 have	 to	 worry	 about	 the	 performance	 of	 your	 REs
unless	 you	 are	 working	 on	 extremely	 large	 datasets	 or	 processing	 extremely
large	volumes	of	 transactions	 in	a	short	period	of	 time.	In	most	situations,	you
are	more	likely	to	cause	a	problem	by	having	a	confusing	or	fragile	RE	than	you
are	by	choosing	a	less	efficient	match	solution.

CHAPTER	SUMMARY
In	 this	 chapter	you	 learned	 some	 tips	 for	 “thinking	 in	REs”,	which	will	be

helpful	 when	 you	 are	 faced	 with	 new	 tasks	 involving	 REs.	 Next	 you	 saw	 a
variety	of	real-world	RE	applications	 that	seem	simple	but	 turn	out	 to	be	more
complex	 when	 applied	 to	 the	 real	 world,	 such	 as	 with	 phone	 numbers	 and
scientific	notation.

Finally,	you	were	exposed	to	important	concepts	about	testing	REs	and	some
basic	rules	on	RE	performance.

T

CHAPTER	3

REs	IN	PYTHON

his	 chapter	 introduces	 you	 to	 REs	 in	 Python,	 with	 a	 mixture	 of	 code
blocks	and	complete	code	samples	that	cover	many	of	the	topics	that	are
discussed	 in	 Chapter	 1.	 Since	 the	 details	 about	 metacharacters	 and

character	 classes	 in	 Python	 are	 virtually	 identical	 to	 the	 information	 that	 you
learned	in	Chapter	1,	you	can	probably	read	this	chapter	quickly	(even	if	you	are
only	 interested	 in	 a	 cursory	view	of	Python	 and	REs).	 If	 you	 are	 interested	 in
learning	more	about	Python,	perhaps	after	you	become	comfortable	with	Python
syntax,	 a	 Python	 Pocket	 Primer	 is	 available	 here:
https://www.amazon.com/dp/B00KGF0PJA.

The	first	part	of	 this	chapter	shows	you	how	to	define	REs	with	digits	and
letters	(uppercase	as	well	as	lowercase),	and	also	how	to	use	character	classes	in
REs.	You	will	also	learn	about	character	sets	and	character	classes.

The	second	portion	discusses	the	Python	re	module,	which	contains	several
useful	 methods,	 such	 as	 the	 re.match()	 method	 for	 matching	 groups	 of
characters,	 the	 re.search()	method	 to	perform	searches	 in	character	 strings,	and
the	findAll()	method.	You	will	also	learn	how	to	use	character	classes	(and	how
to	group	them)	in	REs.

The	 final	 portion	 of	 this	 chapter	 contains	 an	 assortment	 of	 code	 samples,
such	 as	modifying	 text	 strings,	 splitting	 text	 strings	with	 the	 re.split()	method,
and	substituting	text	strings	with	the	re.sub()	method.

There	 are	 several	 points	 to	 keep	 in	mind	 before	 you	 read	 this	 chapter	 and
after	 you	 have	 installed	 Python	 on	 your	 machine.	 First,	 you	 need	 basic
proficiency	 in	 Python	 to	 be	 comfortable	 with	 the	 code	 samples.	 If	 necessary,
read	 some	 rudimentary	 online	 Python	 tutorials	 in	 preparation	 for	 this	 chapter.
Second,	 the	 code	 samples	were	written	 for	 Python	 2.7,	 and	 some	 fairly	minor
changes	 to	 the	code	 samples	are	necessary	 in	order	 to	convert	 them	 to	Python
3.x.	 A	 good	 starting	 point	 is	 the	 Python	 3	 documentation	 for	 REs:
https://docs.python.org/3/howto/regex.html.

http://www.amazon.com/dp/B00KGF0PJA

Third,	 this	 chapter	 contains	a	mixture	of	 complete	Python	code	 samples	 in
“py”	files	and	code	snippets	(or	blocks)	 in	the	Python	REPL.	Hence,	you	need
some	familiarity	with	the	REPL	(accessible	simply	by	typing	the	word	python	on
the	 command	 line)	 and	 how	 to	 launch	 Python	 scripts	 (which	 is	 also
straightforward).	 Note	 that	 whenever	 you	 see	 the	 character	 sequence	 >>>	 it
means	 that	 the	 code	 snippets	 have	 been	 entered	 manually	 inside	 the	 Python
REPL.

If	 you’re	 not	 sure	 about	 your	 level	 of	 preparation,	 skim	 through	 the	 code
samples	in	this	chapter	to	determine	which	Python	features	you	need	to	learn.

WHAT	ARE	REs	IN	PYTHON?
As	you	know	from	Chapter	2,	you	can	define	REs	to	match	characters,	digits,

telephone	 numbers,	 zip	 codes,	 or	 email	 addresses.	 The	 re	 module	 (added	 in
Python	 1.5)	 provides	 Perl-style	 RE	 patterns	 (Perl	 REs	 are	 discussed	 in	 an
Appendix).	Note	that	earlier	versions	of	Python	provided	the	regex	module	that
was	removed	in	Python	2.5.	The	re	module	provides	an	assortment	of	methods
(discussed	 later	 in	 this	 chapter)	 for	 searching	 text	 strings	 or	 replacing	 text
strings,	which	 is	 similar	 to	 the	basic	 search	and/or	 replace	 functionality	 that	 is
available	 in	word	processors	 (but	usually	without	RE	 support).	The	 re	module
also	provides	methods	for	splitting	text	strings	based	on	REs.

Before	delving	 into	 the	methods	 in	 the	 re	module,	 let’s	quickly	 review	 the
various	metacharacters	and	character	classes	for	Python.

METACHARACTERS	IN	PYTHON
Python	supports	a	set	of	metacharacters,	most	of	which	are	the	same	as	the

metacharacters	in	other	scripting	languages	such	as	Perl,	as	well	as	programming
languages	 such	 as	 JavaScript	 and	 Java.	The	 complete	 list	 of	metacharacters	 in
Python	is	here:

.	^	$	*	+	?	{	}	[]	\	|	()

The	meaning	of	the	preceding	metacharacters	is	here:

?	(matches	0	or	1):	the	expression	ca?t	matches	ct	or	cat	but	not	caat
*	(matches	0	or	more):	the	expression	ca*t	matches	ct	or	cat	or	caat
+	(matches	1	or	more):	the	expression	a+	matches	cat	or	caat	but	not	ct
^	(beginning	of	line):	the	expression	^[a]	matches	the	string	abc	(but	not	bc)
$	(end	of	line):	[c]$	matches	the	string	abc	(but	not	cab)

.	(a	single	dot):	matches	any	single	character	(except	a	newline)

Sometimes	 you	 need	 to	 match	 the	 metacharacters	 themselves	 rather	 than
their	 representation,	 which	 can	 be	 done	 in	 two	 ways.	 The	 first	 way	 involves
“escaping”	their	symbolic	meaning	with	the	backslash	(“	\”)	character.	Thus,	the
sequences	\?,	*,	\+,	\^,	\$,	and	\.	 represent	 the	 literal	characters	 instead	of	 their
symbolic	 meaning.	 You	 can	 also	 “escape”	 the	 backslash	 character	 with	 the
sequence	“\\”.	 If	 you	 have	 two	 consecutive	 backslash	 characters,	 you	 need	 an
additional	backslash	for	each	of	them,	which	means	that	“\\\\”	 is	 the	“escaped”
sequence	for	“\\”.

The	second	way	is	to	list	the	metacharacters	inside	a	pair	of	square	brackets.
For	 example,	 [+?]	 treats	 the	 two	 characters	 “+”	 and	 “?”	 as	 literal	 characters
instead	of	metacharacters.	The	second	approach	is	obviously	more	compact	and
less	 prone	 to	 error	 (it’s	 easy	 to	 forget	 a	 backslash	 in	 a	 long	 sequence	 of
metacharacters).	As	 you	might	 surmise,	 the	methods	 in	 the	 re	module	 support
metacharacters.

NOTE	The	“^”	character	that	is	to	the	left	(and	outside)	of	a	sequence	in	square
brackets	(such	as	^[A-Z])	“anchors”	the	RE	to	the	beginning	of	a	line,
whereas	the	“^”	character	that	is	the	first	character	inside	a	pair	of
square	brackets	negates	the	RE	(such	as	[^A-Z])	inside	the	square
brackets.

The	interpretation	of	the	“^”	character	in	an	RE	depends	on	its	location	in	an
RE,	as	shown	here:

“^[a-z]”	means	any	string	that	starts	with	any	lowercase	letter
“[^a-z]”	means	any	string	that	does	not	contain	any	lowercase	letters
“^[^a-z]”	means	any	string	that	starts	with	anything	except	a	lowercase	letter
“^[a-z]$”	means	a	single	lowercase	letter

“^[^a-z]$”	means	a	single	character	(including	digits)	that	is	not	a	lowercase
letter

As	a	quick	preview	of	the	re	module	that	is	discussed	later	in	this	chapter,	the
re.sub()	 method	 enables	 you	 to	 remove	 characters	 (including	 metacharacters)
from	 a	 text	 string.	 For	 example,	 the	 following	 code	 snippet	 removes	 all
occurrences	of	a	 forward	slash	 (“/	”)	and	 the	plus	sign	 (“+”)	 from	the	variable
str:

>>>	import	re	
>>>	str	=	"this	string	has	a	/	and	+	in	it"	
>>>	str2	=	re.sub("[/]+","",str)	
>>>	print	'original:',str	
original:	this	string	has	a	/	and	+	in	it	
>>>	print	'replaced:',str2	
replaced:	this	string	has	a	and	+	in	it

We	can	easily	remove	occurrences	of	other	metacharacters	in	a	text	string	by
listing	 them	 inside	 the	 square	 brackets,	 just	 as	we	 have	 done	 in	 the	 preceding
code	snippet.	Listing	3.1	displays	the	contents	of	RemoveMetaChars1.py,	which
illustrates	how	to	remove	other	metacharacters	from	a	line	of	text.

LISTING	3.1:	RemoveMetaChars1.py

import	re

text1	=	"meta	characters	?	and	/	and	+	and	."	
text2	=	re.sub("[/\.*?=+]+","",text1)

print	'text1:',text1	
print	'text2:',text2

The	RE	in	Listing	3.1	might	seem	daunting	if	you	are	new	to	REs,	but	let’s
demystify	its	contents	by	examining	the	entire	expression	and	then	the	meaning
of	each	character.	First	of	all,	the	term	[/\.*?=+]	matches	a	forward	slash	(“/	”),	a
dot	(“.”),	a	question	mark	(“?”),	an	equals	sign	(“=”),	or	a	plus	sign	(“+”).	Notice
that	the	dot	“.”	is	preceded	by	a	backslash	character	“	\”.	Doing	so	“escapes”	the
meaning	 of	 the	 “.”	 metacharacter	 (which	 matches	 any	 single	 non-whitespace
character)	and	treats	it	as	a	literal	character.

Thus	 the	 term	 [/\.*?=+]+	 means	 “one	 or	 more	 occurrences	 of	 any	 of	 the
metacharacters—treated	as	literal	characters—inside	the	square	brackets”.

Consequently,	the	expression	re.sub("[/\.*?=+]+","",text1)	means	“search	the
text	 string	 text1	 and	 replace	 any	 of	 the	 metacharacters	 (treated	 as	 literal
characters)	found	with	an	empty	string	("")”.

The	output	from	Listing	3.1	is	here:

text1:	meta	characters	?	and	/	and	+	and	.
text2:	meta	characters	and	and	and

Later	 in	 this	 chapter	 you	will	 learn	 about	 other	 functions	 in	 the	 re	module
that	enable	you	to	modify	and	split	text	strings.

CHARACTER	SETS	IN	PYTHON
A	single	 digit	 in	 base	 10	 is	 a	 number	 between	0	 and	9	 inclusive,	which	 is

represented	by	the	sequence	[0-9].	Similarly,	a	lowercase	letter	can	be	any	letter
between	a	and	z,	which	is	represented	by	the	sequence	[a-z].	An	uppercase	letter
can	be	any	letter	between	A	and	Z,	which	is	represented	by	the	sequence	[A-Z].

The	following	code	snippets	illustrate	how	to	specify	sequences	of	digits	and
sequences	of	character	strings	using	a	short-hand	notation	that	is	much	simpler
than	specifying	every	matching	digit:

[0-9]	matches	a	single	digit
[0-9][0-9]	matches	two	consecutive	digits

[0-9]{3}	matches	three	consecutive	digits
[0-9]{2,4}	matches	two,	three,	or	four	consecutive	digits
[0-9]{5,}	matches	five	or	more	consecutive	digits
^[0-9]+$	matches	a	string	consisting	solely	of	digits

You	can	define	similar	patterns	using	uppercase	or	lowercase	letters	in	a	way
that	 is	much	 simpler	 than	 explicitly	 specifying	 every	 lowercase	 letter	 or	 every
uppercase	letter:

[A-Z][a-z]	matches	a	single	uppercase	letter	that	is	followed	by	one	lowercase
letter	
[a-zA-Z]	matches	any	upper-	or	lowercase	letter

Working	with	“^”	and	“\”	Metacharacters
The	 purpose	 of	 the	 “^”	 character	 depends	 on	 its	 context	 in	 an	 RE.	 For

example,	the	following	expression	matches	a	text	string	that	starts	with	a	digit:

^[0-9].

However,	 the	 following	expression	matches	a	 text	 string	 that	does	not	start
with	 a	 digit	 because	 of	 the	 “^”	 metacharacter	 that	 is	 at	 the	 beginning	 of	 the
expression	in	square	brackets	as	well	as	the	“^”	metacharacter	that	is	to	the	left
(and	outside)	the	expression	in	square	brackets	(which	you	learned	in	a	previous
note):

^[^0-9]

Thus,	 the	 “^”	 character	 inside	 a	 pair	 of	 matching	 square	 brackets	 (“[]”)
negates	 the	 expression	 immediately	 to	 its	 right	 that	 is	 also	 located	 inside	 the
square	brackets.

The	backslash	(“	\”)	allows	you	to	“escape”	the	meaning	of	a	metacharacter.
Consequently,	 a	 dot	 “.”	 matches	 a	 single	 character	 (except	 for	 whitespace
characters),	whereas	the	sequence	“	\.”	matches	the	dot	“.”	character.

Other	examples	involving	the	backslash	metacharacter	are	here:

\.H.*	matches	the	string	.Hello
H.*	matches	the	string	Hello
H.*\.	matches	the	string	Hello.
.ell.	matches	the	string	Hello

.*	matches	the	string	Hello
\..*	matches	the	string	.Hello

CHARACTER	CLASSES	IN	PYTHON
Character	 classes	 are	 convenient	 expressions	 that	 are	 shorter	 and	 simpler

than	 their	 “bare”	 counterparts	 that	 you	 saw	 in	 the	 previous	 section.	 Some
convenient	character	sequences	that	express	patterns	of	digits	and	letters	are	as
follows:

\d	matches	a	single	digit
\w	matches	a	single	character	(digit	or	letter)
\s	matches	a	single	whitespace	(space,	newline,	return,	or	tab)
\b	matches	a	boundary	between	a	word	and	a	non-word
\n,	\r,	\t	represent	a	newline,	a	return,	and	a	tab,	respectively
\	“escapes”	any	character

Based	on	the	preceding	definitions,	\d+	matches	one	or	more	digits	and	\w+
matches	 one	 or	more	 characters,	 both	 of	which	 are	more	 compact	 expressions
than	using	character	sets.	In	addition,	we	can	reformulate	the	expressions	in	the
previous	section:

\d	is	the	same	as	[0-9]	and	\D	is	the	same	as	[^0-9]
\s	 is	 the	 same	 as	 [\t\n\r\f\v]	 and	 it	 matches	 any	 non-whitespace	 character,
whereas	\S	is	the	opposite	(it	matches	[^	\t\n\r\f\v])

\w	 is	 the	 same	 as	 [a-zA-Z0-9_]	 and	 it	 matches	 any	 alphanumeric	 character,
whereas	\W	is	the	opposite	(it	matches	[^a-zA-Z0-9_])

Additional	examples	are	here:

\d{2}	is	the	same	as	[0-9][0-9]
\d{3}	is	the	same	as	[0-9]{3}
\d{2,4}	is	the	same	as	[0-9]{2,4}
\d{5,}	is	the	same	as	[0-9]{5,}
^\d+$	is	the	same	as	^[0-9]+$

The	curly	braces	 (“{}”)	are	called	quantifiers,	and	 they	specify	 the	number
(or	range)	of	characters	in	the	expressions	that	precede	them.

MATCHING	CHARACTER	CLASSES	WITH	THE	RE

MODULE
The	re	module	provides	 the	 following	methods	 for	matching	and	searching

one	or	more	occurrences	of	an	RE	in	a	text	string:

match():	Determine	if	the	RE	matches	at	the	beginning	of	the	string.
search():	Scan	through	a	string,	looking	for	any	location	where	the	RE	matches.
findall():	Find	all	substrings	where	the	RE	matches	and	return	them	as	a	list.
finditer():	 Find	 all	 substrings	 where	 the	 RE	 matches	 and	 return	 them	 as	 an
iterator.

NOTE	The	match()	function	only	matches	patterns	at	the	start	of	a	string.

The	two	methods	match()	and	search()	are	discussed	in	this	chapter,	and	you
can	 read	 online	 documentation	 regarding	 the	 Python	 findall()	 and	 finditer()
methods.	 The	 next	 section	 shows	 you	 how	 to	 use	 the	match()	 function	 in	 the
Python	re	module.

USING	THE	RE.MATCH()	METHOD
The	re.match()	method	attempts	 to	match	RE	patterns	 in	a	 text	string	(with

optional	flags),	and	it	has	the	following	syntax:

re.match(pattern,	string,	flags=0)

The	 pattern	 parameter	 is	 the	 RE	 that	 you	 want	 to	 match	 in	 the	 string
parameter.	 The	 flags	 parameter	 allows	 you	 to	 specify	multiple	 flags	 using	 the
bitwise	OR	operator	that	is	represented	by	the	pipe	“|”	symbol.

NOTE	The	re.match()	method	only	matches	patterns	from	the	start	of	a	text
string,	which	is	different	from	the	re.search()	method	discussed	later	in
this	chapter.	In	addition,	re.match(RE)	is	similar	to	re.search(^RE),
except	that	the	^	metacharacter	applies	to	each	line,	where	re.match()
starts	only	with	the	start	of	the	block	of	text.

The	 re.match()	 method	 returns	 a	 match	 object	 on	 success	 and	 None	 on
failure.	Use	 the	 group(num)	 or	 groups()	 function	 of	 the	match	 object	 to	 get	 a
matched	expression.

group(num=0):	This	method	returns	the	entire	match	(or	specific	subgroup	num).

groups():	This	method	returns	all	matching	subgroups	in	a	tuple	(empty	if	there
weren’t	any).

The	following	code	block	illustrates	how	to	use	the	group()	function	in	REs:

>>>	import	re	
>>>	p	=	re.compile('(a(b)c)de')	
>>>	m	=	p.match('abcde')	
>>>	m.group(0)
'abcde'	
>>>	m.group(1)	
'abc'	
>>>	m.group(2)	
'b'

Notice	that	the	higher	numbers	inside	the	group()	method	match	more	deeply
nested	expressions	that	are	specified	in	the	initial	RE.

Listing	3.2	displays	the	contents	of	MatchGroup1.py,	which	illustrates	how
to	 use	 the	 group()	 function	 to	 match	 an	 alphanumeric	 text	 string	 and	 an
alphabetic	string.

LISTING	3.2:	MatchGroup1.py

import	re

line1	=	'abcd123'	
line2	=	'abcdefg'	
mixed	=	re.compile(r"^[a-z0-9]{5,7}$")	
line3	=	mixed.match(line1)	
line4	=	mixed.match(line2)

print	'line1:',line1	
print	'line2:',line2	
print	'line3:',line3.group(0)	
print	'line4:',line4	
print	'line5:',line4.group(0)

line6	=	'a1b2c3d4e5f6g7'	
mixed2	=	re.compile(r"^([a-z]+[0-9]+){5,7}$")	
line7	=	mixed2.match(line6)

print	'line6:',line6	
print	'line7:',line7.group(0)	
print	'line8:',line7.group(1)

line9	=	'abc123fgh4567'	
mixed3	=	re.compile(r"^([a-z]*[0-9]*){5,7}$")	
line10	=	mixed3.match(line9)	
print	'line9:',line9	
print	'line10:',line10.group(0)

The	output	from	Listing	3.2	is	here:

line1:	abcd123	
line2:	abcdefg	
line3:	<_sre.SRE_Match	object	at	0x100485440>	
line4:	<_sre.SRE_Match	object	at	0x1004854a8>	
line5:	abcdefg	
line6:	a1b2c3d4e5f6g7	
line7:	a1b2c3d4e5f6g7	
line8:	g7	
line9:	abc123fgh4567	
line10:	abc123fgh4567

Notice	 that	 line3	 and	 line7	 involve	 two	 similar	 but	 different	 REs.	 The
variable	 mixed	 specifies	 a	 sequence	 of	 lowercase	 letters	 followed	 by	 digits,
where	the	length	of	the	text	string	is	also	between	5	and	7.	The	string	'abcd123'
satisfies	all	of	these	conditions.

On	 the	 other	 hand,	 mixed2	 specifies	 a	 pattern	 consisting	 of	 one	 or	 more
pairs,	where	each	pair	contains	one	or	more	lowercase	letters	followed	by	one	or
more	digits,	where	the	length	of	the	matching	pairs	is	also	between	5	and	7.	In
this	case,	the	string	'abcd123'	as	well	as	the	string	'a1b2c3d4e5f6g7'	both	satisfy
these	criteria.

The	third	RE	mixed3	specifies	a	pair	such	that	each	pair	consists	of	zero	or
more	occurrences	of	 lowercase	 letters	and	zero	or	more	occurrences	of	a	digit,
and	also	that	the	number	of	such	pairs	is	between	5	and	7.	As	you	can	see	from
the	output,	the	RE	in	mixed3	matches	lowercase	letters	and	digits	in	any	order.

In	 the	 preceding	 example,	 the	 RE	 specified	 a	 range	 for	 the	 length	 of	 the
string,	which	involves	a	lower	limit	of	5	and	an	upper	limit	of	7.	However,	you
can	also	specify	a	lower	limit	without	an	upper	limit	(or	an	upper	limit	without	a
lower	limit).

The	following	RE	mixed4	specifies	 lowercase	 letters,	and	 requires	a	match
of	five,	six,	or	seven	such	characters:

mixed4	=	re.compile(r"^[a-z]{5,7}$")	
line11	=	mixed4.match(line1)	
print	'line11:',line11

Since	line1	only	contains	four	lowercase	letters,	there	is	no	match,	and	in	this
case	the	output	is	None,	as	shown	here:

line11:	None

Listing	3.3	displays	the	contents	of	MatchGroup2.py,	which	illustrates	how
to	use	an	RE	and	the	group()	function	to	match	an	alphanumeric	text	string	and
an	alphabetic	string.

LISTING	3.3:	MatchGroup2.py

import	re

alphas	=	re.compile(r"^[abcde]{5,}")	
line1	=	alphas.match("abcde").group(0)	
line2	=	alphas.match("edcba").group(0)	
line3	=	alphas.match("acbedf").group(0)	
line4	=	alphas.match("abcdefghi").group(0)	
line5	=	alphas.match("abcdefghi	abcdef")

print	'line1:',line1	
print	'line2:',line2	
print	'line3:',line3	
print	'line4:',line4	
print	'line5:',line5

Listing	3.3	 initializes	 the	variable	 alphas	 as	 an	RE	 that	matches	 any	 string
that	 starts	 with	 one	 of	 the	 letters	 a	 through	 e	 and	 consists	 of	 at	 least	 five
characters.	 The	 next	 portion	 of	 Listing	 3.3	 initializes	 the	 four	 variables	 line1,
line2,	line3,	and	line4	by	means	of	the	alphas	RE	that	is	applied	to	various	text
strings.	These	four	variables	are	set	to	the	first	matching	group	by	means	of	the
expression	group(0).

The	output	from	Listing	3.3	is	here:

line1:	abcde	
line2:	edcba	
line3:	acbed	
line4:	abcdel
ine5:	<_sreSemoveMetaChars.RE_Match	object	at	0x1004854a8>

Unlike	the	first	four	output	lines,	the	output	from	line5	fails	the	match	simply
because	.group(0)	was	not	specified	in	the	definition	of	line5.

Listing	3.4	displays	the	contents	of	MatchGroup3.py,	which	illustrates	how
to	use	an	RE	with	the	group()	function	to	match	words	in	a	text	string.

LISTING	3.4:	MatchGroup3.py

import	re

line	=	"Giraffes	are	taller	than	elephants";

matchObj	=	re.match(r'(.*)	are(\.*)',	line,	re.M|re.I)

if	matchObj:	
print	"matchObj.group()	:	",	matchObj.group()	
print	"matchObj.group(1)	:	",	matchObj.group(1)	
print	"matchObj.group(2)	:	",	matchObj.group(2)	
else:	
print	"matchObj	does	not	match	line:",	line

The	code	in	Listing	3.4	produces	the	following	output:

matchObj.group()	:	Giraffes	are	
matchObj.group(1)	:	Giraffes	
matchObj.group(2)	:

Listing	3.4	contains	a	pair	of	delimiters	separated	by	a	pipe	(“|”)	symbol.	The
first	delimiter	is	re.M	for	“multi-line”	(this	example	contains	only	a	single	line	of
text),	 and	 the	 second	 delimiter	 re.I	 means	 “ignore	 case”	 during	 the	 pattern
matching	operation.

Capture	Groups
You	 have	 already	 seen	 examples	 of	 capture	 groups,	 such	 as

matchObj.group(1)	and	matchObj.group(2),	in	the	preceding	section.	The	groups
contain	the	matched	values,	and	the	integer	in	the	parentheses	specifies	different
capture	groups.

Specifically,	 match.group(0)	 returns	 the	 fully	 matched	 string,	 whereas
match.group(1),	 match.group(2),	 and	 so	 forth	 will	 return	 the	 capture	 groups,
from	left	 to	 right,	 in	 the	 input	string.	 In	addition,	match.group()	 is	 the	same	as
match.group(0).

Capture	groups	are	powerful	and	can	become	quite	complex,	in	part	because
a	matching	group	can	be	a	substring	of	an	enclosing	matching	group,	similar	to
the	way	that	“back	references”	work	with	the	sed	utility	(discussed	in	Chapter	5).
If	 you	 want	 to	 learn	 more	 about	 capture	 groups,	 perform	 an	 Internet	 search
where	you	can	find	some	examples	of	highly	complex	capture	groups.

OPTIONS	FOR	THE	RE.MATCH()	METHOD
The	match()	method	supports	various	optional	modifiers	that	affect	the	type

of	matching	 that	will	be	performed.	As	you	 saw	 in	 the	previous	example,	you
can	also	specify	multiple	modifiers	separated	by	the	OR	(“|”)	symbol.	Additional
modifiers	that	are	available	for	RE	are	shown	here:

re.I	performs	case-insensitive	matches	(see	previous	section)
re.L	interprets	words	according	to	the	current	locale
re.M	makes	$	match	the	end	of	a	line	and	makes	^	match	the	start	of	any	line
re.S	makes	a	period	(“.”)	match	any	character	(including	a	newline)
re.U	interprets	letters	according	to	the	Unicode	character	set

Experiment	with	 these	modifiers	by	writing	Python	code	 that	uses	 them	 in
conjunction	with	different	text	strings.

MATCHING	CHARACTER	CLASSES	WITH	THE
RE.SEARCH()	METHOD

As	you	saw	earlier	in	this	chapter,	the	re.match()	method	only	matches	from
the	beginning	of	a	string,	whereas	the	re.search()	method	can	successfully	match
a	substring	anywhere	in	a	text	string.

The	re.search()	method	takes	two	arguments,	an	RE	pattern	and	a	string,	and
then	searches	for	 the	specified	pattern	in	the	given	string.	The	search()	method
returns	 a	 match	 object	 (if	 the	 search	 was	 successful)	 or	 None.	 As	 a	 simple
example,	 the	 following	 searches	 for	 the	 pattern	 tasty	 followed	 by	 a	 five-letter
word:

import	re

str	=	'I	want	a	tasty	pizza'
match	=	re.search(r'tasty	\w\w\w\w\w',	str)

if	match:	
##	'found	tasty	pizza'	
print	'found',	match.group()	
else:	
print	'Nothing	tasty	here'

The	output	of	the	preceding	code	block	is	here:

found	tasty	pizza

The	 following	 code	 block	 further	 illustrates	 the	 difference	 between	 the
match()	method	and	the	search()	methods:

>>>	import	re	
>>>	print	re.search('this',	'this	is	the	one').span()	
(0,	4)	
>>>	
>>>	print	re.search('the',	'this	is	the	one').span()	
(8,	11)	
>>>	print	re.match('this',	'this	is	the	one').span()	
(0,	4)	
>>>	print	re.match('the',	'this	is	the	one').span()	
Traceback	(most	recent	call	last):	
File	"<stdin>",	line	1,	in	<module>	
AttributeError:	'NoneType'	object	has	no	attribute	'span'

MATCHING	CHARACTER	CLASSES	WITH	THE	FINDALL()
METHOD

Listing	 3.5	 displays	 the	 contents	 of	 the	 Python	 script	 RegEx1.py,	 which
illustrates	how	to	define	simple	character	classes	that	match	various	text	strings.

LISTING	3.5:	RegEx1.py

import	re

str1	=	"123456"	
matches1	=	re.findall("(\d+)",	str1)	
print	'matches1:',matches1

str1	=	"123456"
matches1	=	re.findall("(\d\d\d)",	str1)	
print	'matches1:',matches1

str1	=	"123456"	
matches1	=	re.findall("(\d\d)",	str1)	
print	'matches1:',matches1

print	
str2	=	"1a2b3c456"	
matches2	=	re.findall("(\d)",	str2)	
print	'matches2:',matches2

print	
str2	=	"1a2b3c456"	
matches2	=	re.findall("\d",	str2)	
print	'matches2:',matches2

print	
str3	=	"1a2b3c456"	
matches3	=	re.findall("(\w)",	str3)	
print	'matches3:',matches3

Listing	3.5	contains	simple	REs	(which	you	have	seen	already)	for	matching
digits	in	the	variables	str1	and	str2.	The	final	code	block	of	Listing	3.5	matches
every	 character	 in	 the	 string	 str3,	 effectively	 “splitting”	 str3	 into	 a	 list	 where
each	element	consists	of	one	character.

The	output	from	Listing	3.5	is	here	(notice	the	blank	lines	after	the	first	three
output	lines):

matches1:	['123456']	
matches1:	['123',	'456']	
matches1:	['12',	'34',	'56']

matches2:	['1',	'2',	'3',	'4',	'5',	'6']

matches2:	['1',	'2',	'3',	'4',	'5',	'6']

matches3:	['1',	'a',	'2',	'b',	'3',	'c',	'4',	'5',	'6']

Finding	Capitalized	Words	in	a	String
Listing	 3.6	 displays	 the	 contents	 of	 the	 Python	 script	 FindCapitalized.py,

which	illustrates	how	to	define	simple	character	classes	that	match	various	text
strings.

LISTING	3.6:	FindCapitalized.py

import	re

str	=	"This	Sentence	contains	Capitalized	words"	
caps	=	re.findall(r'[A-Z][\w\.-]+',	str)

print	'str:	',str	
print	'caps:',caps

Listing	3.6	initializes	the	string	variable	str	and	the	RE	caps	that	matches	any
word	 that	 starts	 with	 a	 capital	 letter,	 because	 the	 first	 portion	 of	 caps	 is	 the
pattern	[A-Z]	that	matches	any	capital	letter	between	A	and	Z	inclusive.

The	output	of	Listing	3.6	is	here:

str:	This	Sentence	contains	Capitalized	words	
caps:	['This',	'Sentence',	'Capitalized']

ADDITIONAL	MATCHING	FUNCTIONS	FOR	REs
After	invoking	any	of	the	methods	match(),	search(),	findAll(),	or	finditer(),

you	can	invoke	additional	methods	on	the	“matching	object”.	An	example	of	this
functionality	using	the	match()	method	is	here:

import	re

p1	=	re.compile('[a-z]+')	
m1	=	p1.match("hello")

In	 the	preceding	 code	block,	 the	p1	object	 represents	 the	 compiled	RE	 for
one	or	more	lowercase	letters,	and	the	“matching	object”	m1	object	supports	the
following	methods:

group()	return	the	string	matched	by	the	RE	
start()	return	the	starting	position	of	the	match	
end()	return	the	ending	position	of	the	match	
span()	return	a	tuple	containing	the	(start,	end)	positions	of	the	match

As	a	further	illustration,	Listing	3.7	displays	the	contents	of	the	Python	script
SearchFunction1.py,	which	 illustrates	 how	 to	 use	 the	 search()	method	 and	 the
group()	method.

LISTING	3.7:	SearchFunction1.py

import	re

line	=	"Giraffes	are	taller	than	elephants";	
searchObj	=	re.search(r'(.*)	are(\.*)',	line,	re.M|re.I)
matchObj	=	re.match(r'(.*)	are(\.*)',	line,	re.M|re.I)

if	searchObj:
print	"searchObj.group()	:	",	searchObj.group()
print	"searchObj.group(1)	:	",	searchObj.group(1)
print	"searchObj.group(2)	:	",	searchObj.group(2)
else:
print	"searchObj	does	not	match	line:",	line

if	matchObj:
print	"matchObj.group()	:	",	matchObj.group()
print	"matchObj.group(1):	",	matchObj.group(1)
print	"matchObj.group(2):	",	matchObj.group(2)
else:
print	"matchObj	does	not	match	line:",	line

Listing	 3.7	 contains	 the	 variable	 line	 that	 represents	 a	 text	 string,	 and	 the
variable	 searchObj	 is	 an	 RE	 involving	 the	 search()	 method	 and	 pair	 of	 pipe-
delimited	modifiers	(discussed	in	more	detail	in	the	next	section).	If	searchObj	is
not	null,	 the	 if/else	conditional	code	 in	Listing	3.7	displays	 the	contents	of	 the
three	 groups	 resulting	 from	 the	 successful	 match	 with	 the	 contents	 of	 the
variable	line.

The	 same	 logic	 applies	 to	 matchObj,	 which	 is	 based	 on	 the	 re.match()
function	 instead	 of	 the	 re.search()	 function	 (recall	 the	 distinction	 that	 was
explained	earlier	in	the	chapter).

The	output	from	Listing	3.7	is	here:

searchObj.group()	:	Giraffes	are
searchObj.group(1)	:	Giraffes
searchObj.group(2)	:	
matchObj.group()	:	Giraffes	are
matchObj.group(1):	Giraffes
matchObj.group(2):

GROUPING	with	Character	Classes	in	REs

In	addition	to	the	character	classes	that	you	have	seen	earlier	in	this	chapter,
you	 can	 specify	 subexpressions	 of	 character	 classes.	 Listing	 3.8	 displays	 the
contents	of	Grouping1.py,	which	illustrates	how	to	use	the	search()	method.

LISTING	3.8:	Grouping1.py

import	re

p1	=	re.compile('(ab)*')
print	'match1:',p1.match('ababababab').group()
print	'span1:	',p1.match('ababababab').span()

p2	=	re.compile('(a)b')
m2	=	p2.match('ab')
print	'match2:',m2.group(0)
print	'match3:',m2.group(1)

Since	the	explanation	is	quite	lengthy,	let’s	look	at	the	output	and	then	delve
into	the	explanation.	The	output	from	Listing	3.8	is	here:

match1:	ababababab
span1:	(0,	10)
match2:	ab
match3:	a

Listing	 3.8	 starts	 by	 defining	 the	 RE	 p1	 that	 matches	 zero	 or	 more
occurrences	of	the	string	ab.	The	first	print	statement	displays	the	result	of	using
the	match()	 function	of	p1	 (followed	by	 the	group()	 function)	 against	 a	 string,
and	 the	 result	 is	 a	 string.	This	 illustrates	 the	 use	 of	 “method	 chaining”,	which
eliminates	 the	 need	 for	 an	 intermediate	 object	 (as	 shown	 in	 the	 second	 code
block).	 The	 second	 print	 statement	 displays	 the	 result	 of	 using	 the	 match()
function	of	p1,	followed	by	applying	the	span()	function,	against	a	string.	In	this
case	the	result	is	a	numeric	range	(see	output	below).

The	 second	part	of	Listing	3.8	defines	 the	RE	p2	 that	matches	 an	optional
letter	a	followed	by	the	letter	b.	The	variable	m2	invokes	the	match	method	on
p2	using	the	string	ab.	The	third	print	statement	displays	 the	result	of	 invoking
group(0)	on	m2,	and	 the	fourth	print	 statement	displays	 the	 result	of	 involving
group(1)	 on	m2.	Both	 results	 are	 substrings	 of	 the	 input	 string	 ab.	 Recall	 that
group(0)	 returns	 the	 highest	 level	match	 that	 occurred,	 and	 group(1)	 returns	 a
more	“specific”	match	that	occurred,	such	as	one	that	involves	the	parentheses	in
the	 definition	 of	 p2.	 The	 higher	 the	 value	 of	 the	 integer	 in	 the	 expression
group(n),	the	more	specific	the	match.

USING	CHARACTER	CLASSES	IN	REs
This	 section	 contains	 some	 examples	 that	 illustrate	 how	 to	 use	 character

classes	to	match	various	strings	and	also	how	to	use	delimiters	in	order	to	split	a
text	string.	For	example,	one	common	date	string	involves	a	date	format	of	the
form	MM/DD/YY.	Another	common	scenario	involves	records	with	a	delimiter
that	separates	multiple	fields.	Usually	such	records	contain	one	delimiter,	but	as
you	 will	 see,	 Python	 makes	 it	 very	 easy	 to	 split	 records	 using	 multiple
delimiters.

Matching	Strings	with	Multiple	Consecutive	Digits
Listing	 3.9	 displays	 the	 contents	 of	 the	 Python	 script	 MatchPatterns1.py,

which	illustrates	how	to	define	simple	REs	in	order	to	split	the	contents	of	a	text
string	based	on	the	occurrence	of	one	or	more	consecutive	digits.

Although	 the	 REs	 \d+/\d+/\d+	 and	 \d\d/\d\d/\d\d\d\d	 both	 match	 the	 string
08/13/2014,	the	first	RE	matches	more	patterns	than	the	second	RE	which	is	an
“exact	match”	with	respect	to	the	number	of	matching	digits	that	are	allowed.

LISTING	3.9:	MatchPatterns1.py

import	re

date1	=	'02/28/2013'
date2	=	'February	28,	2013'

#	Simple	matching:	\d+	means	match	one	or	more	digits
if	re.match(r'\d+/\d+/\d+',	date1):
print('date1	matches	this	pattern')
else:
print('date1	does	not	match	this	pattern')

if	re.match(r'\d+/\d+/\d+',	date2):
print('date2	matches	this	pattern')
else:
print('date2	does	not	match	this	pattern')

The	output	from	launching	Listing	3.9	is	here:

date1	matches	this	pattern
date2	does	not	match	this	pattern

Reversing	Words	in	Strings
Listing	 3.10	 displays	 the	 contents	 of	 the	 Python	 script	 ReverseWords1.py,

which	illustrates	how	to	reverse	a	pair	of	words	in	a	string.

LISTING	3.10:	ReverseWords1.py

import	re

str1	=	'one	two'
match	=	re.search('([\w.-]+)	([\w.-]+)',	str1)

str2	=	match.group(2)	+	'	'	+	match.group(1)
print	'str1:',str1
print	'str2:',str2

The	output	from	Listing	3.10	is	here:

str1:	one	two
str2:	two	one

Now	that	you	understand	how	to	define	REs	for	digits	and	letters,	let’s	look
at	some	more	sophisticated	REs.	For	example,	the	following	expression	matches
a	string	that	is	any	combination	of	digits,	uppercase	letters,	or	lowercase	letters
(i.e.,	no	special	characters):

^[a-zA-Z0-9]$

Here	is	the	same	expression	rewritten	using	character	classes:

^[\w\W\d]$

MODIFYING	TEXT	STRINGS	WITH	THE	RE	MODULE
The	Python	re	module	contains	several	methods	for	modifying	strings.	The

split()	method	uses	an	RE	to	“split”	a	string	into	a	list.	The	sub()	method	finds
all	 substrings	where	 the	 RE	matches,	 and	 then	 replaces	 them	with	 a	 different
string.	 The	 subn()	 method	 performs	 the	 same	 functionality	 as	 sub(),	 and	 also
returns	 the	 new	 string	 and	 the	 number	 of	 replacements.	 The	 following
subsections	 contain	 examples	 that	 illustrate	 how	 to	 use	 the	 functions	 split(),
sub(),	and	subn()	in	REs.

The	subn()	method	returns	a	count	of	the	number	of	matches	of	an	RE	in	a
given	string,	an	example	of	which	is	here:

import	re

pizzare	=	re.compile(r'pizza',	re.IGNORECASE)
comment	=	'hot	pizza	or	cold	pizza:	both	good'
ignoreme,	count	=	pizzare.subn('',	comment)	
print	'Found',	count,	'occurrences	of	"pizza"'

The	variable	count	is	populated	with	the	number	of	occurrences	of	the	string
pizza	in	the	string	comment.	Launch	the	preceding	code	block	and	you	will	see
the	following	output:

Found	2	occurrences	of	"pizza"

SPLITTING	TEXT	STRINGS	WITH	THE	RE.SPLIT()
METHOD

Listing	 3.11	 displays	 the	 contents	 of	 the	 Python	 script	 RegEx2.py,	 which
illustrates	how	to	define	simple	REs	in	order	to	split	the	contents	of	a	text	string.

LISTING	3.11:	RegEx2.py

import	re

line1	=	"abc	def"
result1	=	re.split(r'[\s]',	line1)
print	'result1:',result1

line2	=	"abc1,abc2:abc3;abc4"
result2	=	re.split(r'[,:;]',	line2)
print	'result2:',result2

line3	=	"abc1,abc2:abc3;abc4	123	456"
result3	=	re.split(r'[,:;\s]',	line3)	
print	'result3:',result3

Listing	 3.11	 contains	 three	 blocks	 of	 code,	 each	 of	 which	 uses	 the	 split()
method	in	the	re	module	in	order	to	tokenize	three	different	strings.	The	first	RE
specifies	a	whitespace,	the	second	RE	specifies	three	punctuation	characters,	and
the	third	RE	specifies	the	combination	of	the	first	two	REs.

The	output	from	launching	RegEx2.py	is	here:

result1:	['abc',	'def']
result2:	['abc1',	'abc2',	'abc3',	'abc4']
result3:	['abc1',	'abc2',	'abc3',	'abc4',	'123',	'456']

SPLITTING	TEXT	STRINGS	USING	DIGITS	AND
DELIMITERS

Listing	 3.12	 displays	 the	 contents	 of	 SplitCharClass1.py,	 which	 illustrates
how	 to	 use	 REs	 consisting	 of	 a	 character	 class,	 the	 “.”	 character,	 and	 a
whitespace	to	split	the	contents	of	two	text	strings.

LISTING	3.12:	SplitCharClass1.py

import	re

line1	=	'1.	Section	one	2.	Section	two	3.	Section	three'
line2	=	'11.	Section	eleven	12.	Section	twelve	13.	Section	thirteen'

print	re.split(r'\d+\.	',	line1)	
print	re.split(r'\d+\.	',	line2)

Listing	 3.12	 contains	 two	 text	 strings	 that	 can	 be	 split	 using	 the	 same	RE
'\d+\.	'.	Note	that	if	you	use	the	expression	'\d\.	'	only	the	first	text	string	will	split
correctly.

The	result	of	launching	Listing	3.12	is	here:

['',	'Section	one	',	'Section	two	',	'Section	three']
['',	'Section	eleven	',	'Section	twelve	',	'Section	thirteen']

SUBSTITUTING	TEXT	STRINGS	WITH	THE	RE.SUB()
METHOD

Earlier	 in	 this	 chapter	 you	 saw	 a	 preview	 of	 using	 the	 sub()	 method	 to
remove	 all	 the	 metacharacters	 in	 a	 text	 string.	 The	 following	 code	 block
illustrates	how	to	use	the	re.sub()	method	to	substitute	alphabetic	characters	in	a
text	string.

>>>	import	re
>>>	p	=	re.compile('(one|two|three)')
>>>	p.sub('some',	'one	book	two	books	three	books')
'some	book	some	books	some	books'
>>>	
>>>	p.sub('some',	'one	book	two	books	three	books',	count=1)	
'some	book	two	books	three	books'

The	following	code	block	uses	 the	re.sub()	method	 in	order	 to	 insert	a	 line
feed	after	each	alphabetic	character	in	a	text	string:

>>>	line	=	'abcde'
>>>	line2	=	re.sub('',	'\n',	line)
>>>	print	'line2:',	line2
line2:	
a

b
c
d
e

Now	consider	 the	 following	example	 that	 illustrates	how	 to	use	 the	Python
subn()	function	with	a	text	string:

line	=	'abcde'
linere	=	re.compile(r'',	re.IGNORECASE)
line3	=	linere.subn('',	line)
print	'line3:',line3

The	output	from	launching	the	preceding	Python	code	block	is	here:

line3:	('abcde',	6)

MATCHING	THE	BEGINNING	AND	THE	END	OF	TEXT
STRINGS

Listing	 3.13	 displays	 the	 contents	 of	 the	 Python	 script	 RegEx3.py,	 which
illustrates	how	to	find	substrings	using	the	startswith()	 function	and	endswith()
function.

LISTING	3.13:	RegEx3.py

import	re

line2	=	"abc1,Abc2:def3;Def4"
result2	=	re.split(r'[,:;]',	line2)

for	w	in	result2:
if(w.startswith('Abc')):
print	'Word	starts	with	Abc:',w
elif(w.endswith('4')):
print	'Word	ends	with	4:',w
else:
print	'Word:',w

Listing	3.13	starts	by	initializing	the	string	line2	(with	punctuation	characters
as	 word	 delimiters)	 and	 the	 RE	 result2	 that	 uses	 the	 split()	 function	 with	 a
comma,	colon,	and	semicolon	as	“split	delimiters”	in	order	to	tokenize	the	string
variable	line2.

The	output	after	launching	Listing	3.13	is	here:

Word:	abc1
Word	starts	with	Abc:	Abc2
Word:	def3
Word	ends	with	4:	Def4

Listing	 3.14	 displays	 the	 contents	 of	 the	 Python	 script	 MatchLines1.py,
which	illustrates	how	to	find	substrings	using	character	classes.

LISTING	3.14:	MatchLines1.py

import	re

line1	=	"abcdef"
line2	=	"123,abc1,abc2,abc3"
line3	=	"abc1,abc2,123,456f"

if	re.match("^[A-Za-z]*$",	line1):
print	'line1	contains	only	letters:',line1

#	better	than	the	preceding	snippet:
if	line1[:-1].isalpha():
print	'line1	contains	only	letters:',line1

if	re.match("^[\w]*$",	line1):
print	'line1	contains	only	letters:',line1

if	re.match(r"^[^\W\d_]+$",	line1,	re.LOCALE):
print	'line1	contains	only	letters:',line1
print

if	re.match("^[0-9][0-9][0-9]",	line2):
print	'line2	starts	with	3	digits:',line2

if	re.match("^\d\d\d",	line2):
print	'line2	starts	with	3	digits:',line2
print

#	does	not	work:	fixme
if	re.match("[0-9][0-9][0-9][a-z]$",	line3):
print	'line3	ends	with	3	digits	and	1	char:',line3

#	does	not	work:	fixme
if	re.match("[a-z]$",	line3):	
print	'line3	ends	with	1	char:',line3

Listing	3.14	starts	by	initializing	three	string	variables	line1,	line2,	and	line3.
The	first	RE	contains	an	expression	that	matches	any	line	containing	uppercase
or	lowercase	letters	(or	both):

if	re.match("^[A-Za-z]*$",	line1):

The	following	snippet	also	tests	for	the	same	thing:

line1[:-1].isalpha()

The	 preceding	 snippet	 starts	 from	 the	 rightmost	 position	 of	 the	 string	 and
checks	if	each	character	is	alphabetic.

The	 next	 snippet	 checks	 if	 line1	 can	 be	 tokenized	 into	 words	 (a	 word
contains	only	alphabetic	characters):

if	re.match("^[\w]*$",	line1):

The	next	portion	of	Listing	3.14	checks	if	a	string	contains	three	consecutive
digits:

if	re.match("^[0-9][0-9][0-9]",	line2):
print	'line2	starts	with	3	digits:',line2

if	re.match("^\d\d\d",	line2):

The	first	snippet	uses	the	pattern	[0-9]	to	match	a	digit,	whereas	the	second
snippet	uses	the	expression	\d	to	match	a	digit.

The	output	from	Listing	3.14	is	here:

line1	contains	only	letters:	abcdef
line1	contains	only	letters:	abcdef
line1	contains	only	letters:	abcdef
line1	contains	only	letters:	abcdef

line2	starts	with	3	digits:	123,abc1,abc2,abc3
line2	starts	with	3	digits:	123,abc1,abc2,abc3

COMPILATION	FLAGS
Compilation	flags	modify	the	manner	in	which	REs	work.	Flags	are	available

in	 the	RE	module	 as	 a	 long	 name	 (such	 as	 IGNORECASE)	 and	 a	 short,	 one-
letter	 form	 (such	 as	 I).	 The	 short	 form	 is	 the	 same	 as	 the	 flags	 in	 pattern
modifiers	 in	Perl.	You	can	 specify	multiple	 flags	by	using	 the	 “|”	 symbol.	For
example,	re.I	|	re.M	sets	both	the	I	and	M	flags.

You	can	check	 the	online	Python	documentation	regarding	all	 the	available
compilation	flags	in	Python.

COMPOUND	REs
Listing	3.15	displays	the	contents	of	MatchMixedCase1.py,	which	illustrates

how	 to	 use	 the	 pipe	 (“|”)	 symbol	 to	 specify	 two	 REs	 in	 the	 same	 match()
function.

LISTING	3.15:	MatchMixedCase1.py

import	re

line1	=	"This	is	a	line"
line2	=	"That	is	a	line"

if	re.match("^[Tt]his",	line1):
print	'line1	starts	with	This	or	this:'
print	line1
else:
print	'no	match'

if	re.match("^This|That",	line2):
print	'line2	starts	with	This	or	That:'
print	line2
else:
print	'no	match'

Listing	3.15	starts	with	two	string	variables	line1	and	line2,	followed	by	an
if/else	 conditional	 code	 block	 that	 checks	 if	 line1	 starts	 with	 the	 RE	 [Tt]his,
which	matches	the	string	This	as	well	as	the	string	this.

The	second	conditional	code	block	checks	if	line2	starts	with	the	string	This
or	 the	string	That.	Notice	 the	“^”	metacharacter,	which	 in	 this	 context	 anchors
the	RE	to	the	beginning	of	the	string.	The	output	from	Listing	3.15	is	here:

line1	starts	with	This	or	this:
This	is	a	line
line2	starts	with	This	or	That:
That	is	a	line

COUNTING	CHARACTER	TYPES	IN	A	STRING
You	can	use	an	RE	to	check	whether	a	character	is	a	digit,	a	letter,	or	some

other	 type	 of	 character.	 Listing	 3.16	 displays	 the	 contents	 of
CountDigitsAndChars.py,	which	performs	this	task.

LISTING	3.16:	CountDigitsAndChars.py

import	re

charCount	=	0
digitCount	=	0
otherCount	=	0

line1	=	"A	line	with	numbers:	12	345"

for	ch	in	line1:
if(re.match(r'\d',	ch)):
digitCount	=	digitCount	+	1
elif(re.match(r'\w',	ch)):
charCount	=	charCount	+	1
else:
otherCount	=	otherCount	+	1

print	'charcount:',charCount
print	'digitcount:',digitCount	
print	'othercount:',otherCount

Listing	3.16	 initializes	 three	numeric	counter-related	variables,	 followed	by
the	string	variable	 line1.	The	next	part	of	Listing	3.16	contains	a	 for	 loop	 that
processes	each	character	in	the	string	line1.	The	body	of	the	for	loop	contains	a
conditional	 code	 block	 that	 checks	 whether	 the	 current	 character	 is	 a	 digit,	 a
letter,	or	some	other	non-alphanumeric	character.	Each	time	there	is	a	successful
match,	the	corresponding	“counter”	variable	is	incremented.

The	output	from	Listing	3.16	is	here:

charcount:	16
digitcount:	5
othercount:	6

REs	AND	GROUPING
You	 can	 also	 “group”	 subexpressions	 and	 even	 refer	 to	 them	 symbolically

initializes	three	numeric	counter.For	example,	the	following	expression	matches
zero	or	one	occurrences	of	three	consecutive	letters	or	digits:

^([a-zA-Z0-9]{3,3})?

The	 following	 expression	 matches	 a	 telephone	 number	 (such	 as	 650-555-
1212)	in	the	United	States:

^\d{3,3}[-]\d{3,3}[-]\d{4,4}

The	 following	 expression	 matches	 a	 zip	 code	 (such	 as	 67827	 or	 94343-
04005)	in	the	United	States:

^\d{5,5}([-]\d{5,5})?

The	following	code	block	partially	matches	an	email	address:

str	=	'john.doe@google.com'	
match	=	re.search(r'\w+@\w+',	str)
if	match:	
print	match.group()	##	'doe@google'

Exercise:	use	the	preceding	code	block	as	a	starting	point	in	order	to	define
an	RE	for	email	addresses.

As	you	saw	in	Chapter	2,	most	email	checks	are	fairly	simple	in	production
code:	 at	 least	 one	 character,	 followed	 by	 an	 @	 symbol,	 at	 least	 one	 more
character,	followed	by	a	period,	and	at	least	one	character	after	the	period.	Such
checks	are	obviously	minimalistic,	and	they	cannot	prove	that	the	email	address
is	real.

SIMPLE	STRING	MATCHES
Listing	 3.17	 displays	 the	 contents	 of	 the	 Python	 script	 RegEx4.py,	 which

illustrates	how	to	define	REs	that	match	various	text	strings.

LISTING	3.17:	RegEx4.py

import	re

searchString	=	"Testing	pattern	matches"

expr1	=	re.compile(r"Test")
expr2	=	re.compile(r"^Test")
expr3	=	re.compile(r"Test$")
expr4	=	re.compile(r"\b\w*es\b")
expr5	=	re.compile(r"t[aeiou]",	re.I)

if	expr1.search(searchString):
print	'"Test"	was	found.'

if	expr2.match(searchString):
print	'"Test"	was	found	at	the	beginning	of	the	line.'

if	expr3.match(searchString):
print	'"Test"	was	found	at	the	end	of	the	line.'

result	=	expr4.findall(searchString)

if	result:
print	'There	are	%d	words(s)	ending	in	"es":'	%	\
(len(result)),

for	item	in	result:
print	"	"	+	item,

print

result	=	expr5.findall(searchString)
if	result:
print	'The	letter	t,	followed	by	a	vowel,	occurs	%d	times:'	%	\
(len(result)),

for	item	in	result:
print	"	"+item,

print

Listing	3.17	starts	with	the	variable	searchString	that	specifies	a	text	string,
followed	by	the	REs	expr1,	expr2,	expr3.	The	RE	expr1	matches	the	string	Test
that	occurs	anywhere	in	searchString,	whereas	expr2	matches	Test	if	it	occurs	at
the	beginning	of	searchString,	and	expr3	matches	Test	if	it	occurs	at	the	end	of
searchString.	The	RE	expr	matches	words	that	end	in	the	letters	es,	and	the	RE
expr5	matches	the	letter	t	followed	by	a	vowel.

The	output	from	Listing	3.17	is	here:

"Test"	was	found.
"Test"	was	found	at	the	beginning	of	the	line.
There	are	1	words(s)	ending	in	"es":	matches	
The	letter	t,	followed	by	a	vowel,	occurs	3	times:	Te	ti	te

Keep	 in	 mind	 that	 re.match()	 checks	 for	 a	 match	 at	 the	 beginning	 of	 the
string,	whereas	re.search()	checks	for	a	match	that	occurs	anywhere	in	the	string.
The	 code	 samples	 contain	 a	 mixture	 of	 both	 methods	 to	 show	 you	 how	 the
results	differ	(and	also	to	avoid	favoring	one	method	over	the	other	method).

ADDITIONAL	TOPICS	FOR	REs
In	 addition	 to	 the	 Python-based	 search/replace	 functionality	 that	 you	 have

seen	 in	 this	 chapter,	 you	 can	 also	 perform	 a	 greedy	 search	 and	 substitution.
Perform	an	Internet	search	to	learn	what	these	features	are	and	how	to	use	them
in	Python	code.

CHAPTER	SUMMARY
This	 chapter	 showed	 you	 how	 to	 create	 various	 types	 of	 REs.	 First	 you

learned	how	to	define	primitive	REs	using	sequences	of	digits,	lowercase	letters,
and	uppercase	letters.	Next	you	learned	how	to	use	character	classes,	which	are
more	 convenient	 and	 simpler	 expressions	 that	 can	 perform	 the	 same
functionality.	 You	 also	 learned	 how	 to	 use	 the	 Python	 re	 library	 in	 order	 to
compile	REs	and	then	use	them	to	see	if	they	match	substrings	of	text	strings.

T

CHAPTER	4

WORKING	WITH	REs	IN	R

his	chapter	introduces	you	to	REs	in	R,	which	are	used	from	a	statistical
viewpoint	 to	 solve	 tasks	 for	 data	 scientists.	 Keep	 in	 mind	 that	 basic
familiarity	with	standard	data	types	in	R	is	required	for	this	chapter,	such

as	 creating	 string	 vectors,	 vectors	 of	 sentences,	 and	 data	 frames.	 This	 chapter
shows	 you	 how	 to	 use	REs	 in	 some	R-specific	 commands,	 thereby	 enhancing
your	 knowledge	 of	 R.	 When	 you	 have	 finished	 this	 chapter,	 you	 will	 have
enough	knowledge	to	convert	the	code	samples	in	the	first	two	chapters	to	their
R	counterparts.

The	 first	 section	 of	 this	 chapter	 contains	 a	 summary	 of	 rules	 for
metacharacters	 in	 R,	 an	 overview	 of	 search	 functions	 in	 R,	 as	 well	 an
explanation	of	grep-related	commands	 in	R.	The	second	section	of	 this	chapter
contains	basic	examples	of	REs	in	R,	which	are	similar	to	approximately	25%	of
Chapter	1.	The	final	section	of	this	chapter	contains	a	collection	of	one-line	REs
in	R	that	use	some	of	the	R	commands	that	are	discussed	in	the	second	section.

One	 recommendation:	 download	 and	 install	RStudio	 for	 your	platform	and
use	RStudio	 to	 test	 the	REs	 in	 this	 chapter.	RStudio	 is	 an	 extremely	 powerful
code	 development	 environment,	 and	 a	 must-learn	 tool	 if	 you	 plan	 to	 work
extensively	in	R.

METACHARACTERS	AND	CHARACTER	CLASSES	IN	R
In	 most	 cases,	 metacharacters	 in	 R	 have	 the	 same	meaning	 as	 they	 do	 in

bash,	Python,	or	Perl,	but	there	are	situations	where	metacharacters	in	R	behave
differently.	For	instance,	metacharacters	are	escaped	via	a	double	backslash	“	\\”
in	order	to	match	them	as	regular	characters.	On	the	other	hand,	metacharacters
are	 treated	 as	normal	 characters	when	 they	 are	 included	 in	 character	 classes	 if
they	also	appear	with	the	characters],	^,	-,	or	\.

Here	 are	 the	 rules	 that	 specify	 how	 to	 match	 metacharacters	 as	 regular

characters	when	they	are	included	in	a	character	class:

Matching	a	“‚”	inside	a	character	class:	place	it	in	first	position
Matching	a	“-”	inside	a	character	class:	place	it	in	either	first	or	last	position
Matching	a	“^”	inside	a	character	class:	place	it	anywhere	(except	first	position)
Matching	any	other	 character	or	metacharacter	 (excluding	 \)	 inside	a	 character
class:	place	it	anywhere.

The	 \	 character	 is	 still	 a	metacharacter	 inside	 a	 character	 class;	 however,	 a
double	backslash	“	\\”	will	match	a	\	character.

This	section	is	a	bit	 terse,	some	examples	of	precise	syntax	would	help.	At
least	one	to	give	the	general	idea	of	what	you	are	talking	about	to	those	who	are
new	 to	 the	 character	 class	 and	 metacharacter	 terms.	 It	 reinforces	 the	 earlier
chapters.	I	recommend	showing	a	“normal”	and	“r	specific”	syntax	on	one	of	the
above	cases	to	illustrate	the	point,	then	list	the	other	specifics	as	you’ve	done	in
the	last	couple	paragraphs.

SEARCH	FUNCTIONS	IN	R
R	provides	several	functions	for	string	searches,	such	as	grep(),	gsub(),	and

strsplit(),	 that	 are	 discussed	 later	 in	 this	 chapter.	 R	 interprets	 some	 of	 the
arguments	of	these	functions	(usually	the	first	one)	as	REs.	We’ll	look	at	some	of
these	R	 functions,	which	 enable	 you	 to	 perform	 string	 searches	 (or	matching)
and	modification	tasks.

The	 Unix	 grep	 command	 and	 the	 grep	 command	 in	 R	 have	 a	 superficial
resemblance.	In	general,	Unix	grep	is	used	to	match	an	RE	against	one	or	more
text	strings	in	a	text	file,	and	the	output	(if	any)	displays	the	lines	that	match	the
RE.	Thus,	Unix	grep	has	a	“line-oriented”	philosophy.

On	 the	 other	 hand,	 grep	 in	 the	 R	 environment	 has	 an	 “element-oriented”
philosophy,	where	an	element	refers	to	an	element	of	a	vector	or	a	data	frame.	In
particular,	grep	in	R	can	check	if	an	RE	matches	the	strings	in	a	vector	or	data
frame	and	then	returns	the	matching	strings	if	the	value	argument	equals	TRUE.
By	contrast,	if	the	value	argument	equals	FALSE,	then	the	index	of	strings	that
match	the	RE	(if	any)	are	displayed.

What	happens	if	an	RE	does	not	match	a	string	vector?	Although	you	might
expect	 a	 return	 value	 of	 -1,	 sometimes	 there	 is	 no	 index	 value	 returned	 (i.e.,
when	 the	value	argument	 equals	FALSE),	which	means	 there	 is	no	convenient
way	 to	 determine	 that	 no	match	 occurred.	 If	 you	 need	 a	 list	 of	 which	 strings
matched	 and	which	 did	 not	match,	 use	 the	 grepl	 function,	 which	 is	 discussed

later	in	this	chapter.

Perl	RE	Support	in	R
REs	 in	 R	 are	 usually	 restricted,	 and	 the	 inline	 help	 functionality	 does	 not

provide	extensive	information	about	many	topics.	What	an	individual	command
supports	 depends	 on	 who	 wrote	 it	 and	 what	 they	 chose	 to	 implement,	 which
means	behavior	is	more	variable	than	something	like	Java,	which	was	developed
commercially	by	a	single	development	team.	On	the	plus	side,	R	functions	can
correctly	 interpret	 Perl	 RE	 syntax	 when	 perl=TRUE	 is	 supported	 by	 the
command	 and	 specified	 by	 the	 user.	 For	 your	 convenience,	 the	 Appendix
contains	 examples	 of	 one-line	 Perl	REs.	 In	 addition,	 the	RE	 syntax	 in	 Python
bears	 some	 resemblance	 to	 REs	 in	 R.	 All	 of	 the	 commands	 discussed	 in	 this
chapter	support	perl=TRUE	and	share	common	RE	behavior	if	perl=FALSE.

THE	GREP	COMMAND	IN	R
The	 previous	 section	 gave	 you	 a	 high-level	 description	 of	 the	 modus

operandi	of	the	Unix	grep	command	versus	the	grep	command	in	R.	This	section
provides	 a	 deeper	 explanation	 and	 some	 examples	 that	 illustrate	 how	 to	work
with	grep	in	R.	In	particular,	this	section	briefly	discusses	the	commands	grepl,
regexpr,	and	gregexpr,	which	also	have	grep-like	functionality.

Here’s	 a	 simple	 example	 of	 the	 grep	 command	 in	 R	 (an	 explanation	 is
provided	later):

>x<-c("abc","bcd","cde","def")	
>grep("bc",x)

The	preceding	grep	command	matches	the	RE	bc	in	position	1	and	position	2
of	the	vector	x,	so	the	output	is	as	follows:

[1]	1	2

The	grep	command	in	R	requires	an	RE	and	the	input	vector	as	the	first	and
second	arguments,	 respectively.	 If	you	specify	value=FALSE	or	omit	 the	value
parameter,	then	grep	returns	a	new	vector	with	the	indexes	of	the	elements	in	the
input	 vector	 that	 partially	 or	 fully	matched	 the	RE.	On	 the	 other	 hand,	 if	 you
specify	 value=TRUE,	 then	 grep	 returns	 a	 vector	 with	 copies	 of	 the	 actual
elements	in	the	input	vector	that	partially	or	fully	matched.

For	example,	the	following	grep	command	in	R	matches	the	RE	a+	(one	or

more	occurrences	of	the	letter	a)	with	the	elements	of	a	string	vector:

grep("a+",	c("abc",	"def",	"cba	a",	"aa"),	perl=TRUE,	value=FALSE)

The	output	displays	the	matching	indexes	(because	value=FALSE):

[1]	1	3	4

The	next	version	of	the	preceding	grep	command	specifies	value=TRUE:

grep("a+",	c("abc",	"def",	"cba	a",	"aa"),	perl=TRUE,	value=TRUE)

The	output	displays	the	matching	elements	(because	value=TRUE):

[1]	"abc"	"cba	a"	"aa"

The	grepl	Command	in	R
The	 grep	 command	 returns	 a	 list	 of	 indexes	 (discussed	 in	 the	 previous

section),	 whereas	 the	 grepl	 command	 returns	 a	 list	 of	 Boolean	 values.	 As	 an
illustration,	 here	 is	 the	 grepl	 counterpart	 to	 the	 first	 grep	 command	 in	 the
previous	section:

>	grepl("bc",x)	v
[1]	TRUE	TRUE	FALSE	FALSE

The	grepl	function	takes	the	same	arguments	as	the	grep	function,	except	for
the	value	argument,	which	is	not	supported.	The	grepl	function	returns	a	logical
vector	with	 the	 same	 length	 as	 the	 input	 vector.	 Each	 element	 in	 the	 returned
vector	is	a	Boolean	value	that	indicates	whether	or	not	the	RE	found	a	match	in
the	corresponding	string	element	in	the	input	vector.

As	a	simple	illustration,	the	following	grepl	command	specifies	the	same	RE
and	 vector	 of	 strings	 that	 you	 saw	 in	 the	 previous	 section,	 and	 also	 specifies
perl=TRUE:

grepl("a+",	c("abc",	"def",	"cba	a",	"aa"),	perl=TRUE)

Here	is	the	output:

[1]	TRUE	FALSE	TRUE	TRUE

The	regexpr	Command	in	R
The	 regexpr	 command	 in	 R	 returns	 the	 index	 of	 the	 first	 occurrence	 of	 a

matched	pattern	in	a	string,	as	shown	here:

>z<-"tomatoes"	
>regexpr("o",z)	
[1]	2	
attr(,"match.length")	
[1]	1	
attr(,"useBytes")	
[1]	TRUE

The	letter	o	appears	in	position	2	in	the	string	tomatoes,	which	is	the	output
of	 the	preceding	regexpr()	command.	The	attr	command	displays	 the	 length	of
the	matching	string	and	whether	or	not	useBytes	was	used.	Too	much	in	one	gulp
here.	See	below

The	 regexpr	 function	 in	 R	 also	 takes	 the	 same	 arguments	 as	 the	 grepl
function	in	R.	However,	the	regexpr	function	returns	an	integer	vector	with	the
same	length	as	the	input	vector.	Each	element	in	the	returned	vector	indicates	the
character	 position	 in	 each	 corresponding	 string	 element	 in	 the	 input	 vector	 at
which	the	(first)	RE	match	was	found.	In	 the	preceding	regexpr()	example,	 the
letter	o	appears	in	the	second	position	in	the	string	tomatoes,	so	the	output	is	[1]
2.

A	match	at	the	beginning	of	the	string	is	indicated	with	character	position	1.
If	the	RE	did	not	find	a	match	in	a	string,	its	corresponding	element	in	the	result
vector	is	-1.

In	 addition,	 the	 returned	 vector	 also	 has	 a	 match.length	 attribute.	 This	 is
another	 integer	vector	with	 the	number	of	characters	 in	 the	(first)	RE	match	 in
each	string,	or	-1	for	strings	that	did	not	match	the	RE.

The	gregexpr	Command	in	R
The	gregexpr	 function	 in	R	 is	 similar	 to	 the	 regexpr	 function	 in	R,	 except

that	 it	 finds	 all	matches	 in	 each	 string.	The	gregexpr	 function	 returns	 a	 vector
with	 the	 same	 length	 as	 the	 input	vector.	Each	element	 is	 another	vector,	with
one	element	for	each	match	found	in	the	string	indicating	the	character	position
where	that	match	was	found.	Each	vector	element	in	the	returned	vector	also	has
a	match.length	attribute	with	the	lengths	of	all	matches.	If	no	matches	could	be
found	in	a	particular	string,	the	element	in	the	returned	vector	is	still	a	vector,	but

with	just	one	element	-1.
For	example,	the	following	regexpr	function	matches	the	RE	a+	with	a	string

vector	(with	perl=TRUE):

regexpr("a+",	c("abc",	"def",	"cba	a",	"aa"),	perl=TRUE)

The	output	is	here:

[1]	1	-1	3	1	
attr(,"match.length")	
[1]	1	-1	1	2	
attr(,"useBytes")	
[1]	TRUE

The	 following	 example	 of	 the	 gregexpr	 command	 in	 R	 shows	 how	 the
command	 organizes	 the	 data	 output	 into	 a	 list	 structure	 instead	 of	 a	 regexpr
vector	structure:

gregexpr("a+",	c("abc",	"def",	"cba	a",	"aa"),	perl=TRUE)

The	output	from	the	preceding	code	snippet	is	here:

[[1]]	
[1]	1	
attr(,"match.length")	
[1]	1	
attr(,"useBytes")	
[1]	TRUE

[[2]]	
[1]	-1	
attr(,"match.length")	
[1]	-1	
attr(,"useBytes")	
[1]	TRUE

[[3]]	
[1]	3	5	
attr(,"match.length")	
[1]	1	1	

attr(,"useBytes")	
[1]	TRUE

[[4]]	
[1]	1	
attr(,"match.length")	
[1]	2	
attr(,"useBytes")	
[1]	TRUE

The	regmatches	Command	in	R
The	regmatches	command	in	R	returns	the	actual	substrings	that	are	matched

by	an	RE,	as	shown	here:

>	x	<-	c("abc",	"def",	"cba	a",	"aa")	
>	m	<-	regexpr("a+",	x,	perl=TRUE)	
>	regmatches(x,	m)

The	output	is	here:

[1]	"a"	"a"	"aa"

Another	example	of	the	regmatches	command:

>	m	<-	gregexpr("a+",	x,	perl=TRUE)
>	regmatches(x,	m)

The	output	is	here:

[[1]]	
[1]	"a"	
[[2]]	
character(0)	
[[3]]	
[1]	"a"	"a"	
[[4]]	
[1]	"aa"

The	 first	 argument	 for	 the	 regmatches	 command	 is	 the	 same	 input	 that	 is

supplied	 to	 the	 regexpr	 command	 or	 the	 gregexpr	 command.	 The	 second
argument	 is	 the	 vector	 that	 is	 returned	 by	 the	 regexpr	 command	 or	 the	 list
returned	 by	 the	 gregexpr	 command.	 If	 you	 pass	 the	 vector	 from	 the	 regexpr
command,	 then	 regmatches	 returns	 a	 character	 vector	 with	 all	 the	 strings	 that
were	matched.	Note	that	this	vector	may	be	shorter	than	the	input	vector	if	there
is	no	match	in	some	of	the	elements.

If	you	pass	 the	 list	 from	the	gregexpr	command,	 then	regmatches	returns	 a
vector	with	the	same	number	of	elements	as	the	input	list.	Each	output	list	 is	a
character	vector	with	all	 the	matches	of	the	corresponding	element	in	 the	 input
vector,	or	NULL	if	an	element	had	no	matches.	The	examples	in	the	beginning
of	this	section	illustrate	some	of	the	preceding	points.

Performing	Multiple	Text	Substitutions	on	a	Vector
If	 you	 combine	 gregexpr	 and	 regmatches,	 you	 can	 perform	 complex	 text

substitutions	on	a	 text	vector.	This	example	shows	one	possibility:	 substituting
“a”	in	the	original	vector	with	the	values	from	a	second	list,	where	each	element
is	not	only	different	 text,	but	sometimes	a	different	 type	of	object	 (vector	with
multiple	elements,	single	element	vector,	a	command	that	returns	a	single	value).
For	this	example	the	list	vector	(which	specifies	what	will	be	substituted)	must
have	the	same	number	of	elements	as	the	input	text	vector.

x	<-	c("abc",	"def",	"cba	a",	"aa")	
m	<-	gregexpr("a+",	x,	perl=TRUE)	
regmatches(x,	m)	<-	list(c("one"),	character(0),	c("two",	"three"),	c("four"))	
x

The	result	is	here:

[1]	"onebc"	"def"	"cbtwo	three"	"four"

Notice	that	the	second	and	fourth	element	didn’t	match	and	were	unchanged.
The	 first	 element	 replaced	 the	 “a”	 with	 the	 single	 vector	 value	 “one.”	 In
addition,	the	third	element	concatenated	the	vector	into	a	single	string	(changing
it	to	“two	three”)	and	then	replaced	the	“a”	with	that	string.

Other	Useful	String-Related	Commands	in	R
While	gregexpr	and	regmatches	can	be	combined	for	complex	substitutions,

R	 has	 a	 number	 of	 specific	 commands	 to	 handle	 most	 commonly	 needed

substitutions	and	string	manipulation.
This	 section	 contains	 examples	 of	 the	R	 commands	 sub(),	gsub(),	 substr(),

and	 strsplit(),	 which	 provide	 useful	 functionality	 when	 you	 are	 working	 with
strings.

The	sub()	command	substitutes	the	first	occurrence	of	a	pattern	with	a	given
string.	If	the	input	is	a	vector,	it	performs	the	substitution	on	each	string	within
the	vector.	Here	is	a	simple	example	of	the	sub()	command:

sub("abc",	"xyz",	c("a","xabc","abcabc"))

The	output	is	here:

[1]	"a"	"x"	"xyz"

The	 following	example	uses	 the	 sub()	command	 to	 remove	everything	 in	a
string	except	the	first	instance	of	bc:

x<-c("abc","bcdbc","cde","def")	
sub(".*(bc).*","\\1",grep("bc",x,value=TRUE))

The	grep	removes	elements	that	don’t	match	(the	third	and	fourth	strings),	so
the	 output	 vector	 has	 fewer	 elements	 than	 the	 input	 vector.	 If	 we	 remove
everything	except	 the	first	occurrence	of	bc	 in	 the	 first	 two	strings,	we	get	 the
following	output:

[1]	"bc"	"bc"

Now	 let’s	 look	at	 the	gsub()	 command	 that	 substitutes	 all	 occurrences	of	 a
pattern	with	a	given	string.	By	way	of	comparison,	the	sub()	command	is	similar
to	 find/replace,	whereas	 gsub()	 is	 similar	 to	 find/replace	 all.	 Here	 is	 a	 simple
example	of	the	gsub()	command:

gsub("abc",	"xyz",	c("a","xabc","abcabc"))

The	output	is	here:

[1]	"a"	"xxyz"	"xyzxyz"

The	substr()	command	returns	the	start	and	stop	positions	of	a	substring	in	a
given	string:

>	x<-"abcdefghijk"	
>	substr(x,5,8)	
[1]	"efgh"

The	 strsplit()	 command	 “splits”	 a	 string	 into	 substrings,	 based	 on	 another
string.	The	following	example	splits	a	string	using	a	“/	”	as	a	delimiter:

strsplit("11/03/2013","/")	
[[1]]	
[1]	"11"	"03"	"2013"

Now	that	you	have	seen	examples	of	how	to	use	some	useful	string-related
commands	in	R,	let’s	look	at	how	to	use	REs	in	R.

WORKING	WITH	REs	IN	R
Suppose	 that	 vect1	 is	 a	 character	 vector	 (whose	 contents	 are	 shown	 as

follows)	and	we	want	to	check	whether	or	not	various	words	appear	as	elements
in	vect1:

vect1	=	c("the","dog","is","grey","and","the","cat","is","gray")

As	you	can	see,	the	word	grey	appears	in	the	first	and	second	lines,	the	word
gray	appears	in	the	first	and	third	lines,	and	all	three	lines	contain	either	grey	or
gray.

Here	are	the	tasks	that	we	want	to	perform:

1.	 find	the	lines	that	contain	grey
2.	 find	the	lines	that	contain	gray
3.	 find	the	lines	that	contain	either	grey	or	gray

The	following	command	performs	the	first	task:

grep(pattern	=	"grey",	vect1,	value	=	TRUE)

The	output	is	here:

"grey"

The	 following	 command	 displays	 the	 index	 of	 the	 occurrence	 of	 grey	 in

vect1:

grep(pattern	=	"grey",	vect1,	value	=	FALSE)

The	output	is	here:

4

The	following	pair	of	commands	displays	the	occurrence	of	grey,	gray,	and
groy	in	vect1,	along	with	the	index	values	of	their	positions	in	vect1:

grep(pattern	=	"grey|gray|groy",	vect1,	value	=	TRUE)	
grep(pattern	=	"grey|gray|groy",	vect1,	value	=	FALSE)

The	output	is	here:

[1]	"grey"	"gray"	
[1]	4	9

Notice	 that	 the	 string	groy	 is	 not	 displayed	 in	 the	 preceding	 output,	 nor	 is
there	a	-1	(which	you	might	have	expected)	as	the	index	for	the	non-occurrence
of	the	string	groy.

The	following	pair	of	commands	uses	 the	pattern	[ae]	to	combine	grey	and
gray,	and	then	displays	the	occurrence	of	grey	and	gray	in	vect1,	along	with	the
index	values	of	their	positions	in	vect1:

grep(pattern	=	"gr[ae]y	",	vect1,	value	=	TRUE)	
grep(pattern	=	"gr[ae]y	",	vect1,	value	=	FALSE)

The	output	is	here:

[1]	"grey"	"gray"	
[1]	4	9

Specifying	a	Range	of	Letters
We	 can	 “expand”	 the	 RE	 in	 the	 preceding	 code	 snippet	 to	 include	 all	 the

lowercase	letters	of	the	alphabet,	which	is	represented	by	[a-z].	We	can	find	all
the	 lines	 that	 contain	 a	 string	 that	 is	 of	 the	 form	gr[a-z]y,	which	matches	 any
string	that	meets	the	following	conditions:

1.	 starts	with	the	letters	gr
2.	 is	followed	by	any	single	letter	a,	b,	c,	…,	z
3.	 ends	with	the	letter	y

Just	to	confirm,	launch	the	following	commands:

grep(pattern	=	"gr[a-z]y",	vect1,	value	=	TRUE)	
grep(pattern	=	"gr[a-z]y",	vect1,	value	=	FALSE)

The	output	is	here:

[1]	"grey"	"gray"	
[1]	4	9

The	only	matches	are	grey	and	gray,	but	if	vect1	included	the	“word”	grzy,
then	this	word	would	appear	in	the	previous	output.

We	can	also	specify	a	single	 letter	 inside	the	square	brackets.	For	example,
the	term	[a]	is	an	RE	that	matches	the	letter	a.	Launch	this	command:

grep(pattern	=	"[a]",	vect1,	value	=	TRUE)
grep(pattern	=	"[a]",	vect1,	value	=	FALSE)

The	output	is	here:

[1]	"and"	"cat"	"gray"	
[1]	5	7	9

If	we	specify	a	vowel	that	does	not	appear	in	any	word	in	vect1,	then	we	see
a	message	that	indirectly	hints	at	the	absence	of	that	vowel.	An	example	is	here:

grep(pattern	=	"[u]",	vect1,	value	=	TRUE)
grep(pattern	=	"[u]",	vect1,	value	=	FALSE)

The	output	is	here:

character(0)	
integer(0)

We	can	specify	different	subranges	of	letters.	For	example,	suppose	we	want
to	 find	 the	 words	 that	 contain	 any	 vowel	 except	 for	 the	 vowels	 a	 or	 i.	 This

expression	will	do	the	job:

grep(pattern	=	"[eou]",	vect1,	value	=	TRUE)
grep(pattern	=	"[eou]",	vect1,	value	=	FALSE)

The	output	is	here:

[1]	"the"	"dog"	"grey"	"the"	
[1]	1	2	4	6

Once	again,	the	order	of	the	letters	in	the	square	brackets	is	irrelevant,	which
means	that	the	following	commands	have	the	same	output:

grep(pattern	=	"[eou]",	vect1,	value	=	TRUE)	
grep(pattern	=	"[oeu]",	vect1,	value	=	TRUE)	
grep(pattern	=	"[oue]",	vect1,	value	=	TRUE)

WORKING	WITH	ARRAYS	OF	STRINGS
In	this	section	let’s	define	an	array	of	strings	called	mytext1	whose	contents

are	shown	here:

mytext1	<-	c("the	dog	is	grey	and	the	cat	is	gray.",	"this	dog	is	grey",	"that	cat	is
gray")

Now	 let’s	 apply	 the	 REs	 that	 we	 saw	 early	 in	 this	 chapter	 to	 the	 variable
mytext1.	For	example,	check	for	strings	in	mytext1	with	either	of	these	two	REs:

grep(pattern	=	"grey|gray",	mytext1,	value	=	TRUE)	
grep(pattern	=	"grey|gray",	mytext1,	value	=	FALSE)

The	result	is	here:

[1]	"the	dog	is	grey	and	the	cat	is	gray."	"this	dog	is	grey"	
[3]	"that	cat	is	gray"

Check	for	strings	in	mytext1	with	either	of	these	two	REs:

grep(pattern	=	"gr[ae]y",	mytext1,	value	=	TRUE)	
grep(pattern	=	"gr[ae]y",	mytext1,	value	=	FALSE)

The	result	is	here:

[1]	"the	dog	is	grey	and	the	cat	is	gray."	"this	dog	is	grey"	
[3]	"that	cat	is	gray"

Check	for	strings	in	mytext1	with	the	following	RE:

grep(pattern	=	"gr[a-z]y",	mytext1,	value	=	TRUE)	
grep(pattern	=	"gr[a-z]y",	mytext1,	value	=	FALSE)

The	result	is	here:

[1]	"the	dog	is	grey	and	the	cat	is	gray."	"this	dog	is	grey"	
[3]	"that	cat	is	gray"

Check	for	strings	in	mytext1	with	the	following	RE:

grep(pattern	=	"[eou]",	mytext1,	value	=	TRUE)	
grep(pattern	=	"[eou]",	mytext1,	value	=	FALSE)

The	result	is	here:

[1]	"the	dog	is	grey	and	the	cat	is	gray."	"this	dog	is	grey"	
[3]	"that	cat	is	gray"

The	examples	in	this	section	use	the	grep()	function,	but	you	can	also	use	the
sub()	and	gsub()	functions,	described	earlier	in	this	chapter,	in	conjunction	with
REs.

ONE-LINE	REs	WITH	METACHARACTERS	IN	R
This	 section	 contains	 examples	 of	 using	 the	 grep	 function	 (and	 related

functions)	in	R	in	order	to	find	matching	strings	in	string	vectors.	If	necessary,
read	the	appropriate	sections	in	Chapter	1	to	refresh	your	memory	regarding	the
REs	in	this	section.

Initialize	string	vector	strings:

(strings	<-	c("a",	"ab",	"acb",	"accb",	"acccb",	"accccb"))	
##	[1]	"a"	"ab"	"acb"	"accb"	"acccb"	"accccb"

Match	the	RE	ac*b:

grep("ac*b",	strings,	value	=	TRUE)	
##	[1]	"ab"	"acb"	"accb"	"acccb"	"accccb"

Match	the	RE	ac+b:

grep("ac+b",	strings,	value	=	TRUE)

The	output	is	here:

##	[1]	"acb"	"accb"	"acccb"	"accccb"

Match	the	RE	ac?b:

grep("ac?b",	strings,	value	=	TRUE)

The	output	is	here:

##	[1]	"ab"	"acb"

Match	the	RE	ac{2}b:

grep("ac{2}b",	strings,	value	=	TRUE)

The	output	is	here:

##	[1]	"accb"	
grep("ac{2,}b",	strings,	value	=	TRUE)

The	output	is	here:

##	[1]	"accb"	"acccb"	"accccb"	
grep("ac{2,3}b",	strings,	value	=	TRUE)

The	output	is	here:

##	[1]	"accb"	"acccb"

Assign	a	new	set	of	strings	to	the	vector	strings:

(strings	<-	c("abcd",	"cdab",	"cabd",	"c	abd"))	
##	[1]	"abcd"	"cdab"	"cabd"	"c	abd"

The	output	is	here:

grep("ab",	strings,	value	=	TRUE)

The	output	is	here:

##	[1]	"abcd"	"cdab"	"cabd"	"c	abd"	
grep("^ab",	strings,	value	=	TRUE)

The	output	is	here:

##	[1]	"abcd"	
grep("ab$",	strings,	value	=	TRUE)

The	output	is	here:

##	[1]	"cdab"	
grep("\\bab",	strings,	value	=	TRUE)

The	output	is	here:

##	[1]	"abcd"	"c	abd"

Assign	a	new	set	of	strings	to	the	vector	strings:

(strings	<-	c("^ab",	"ab",	"abc",	"abd",	"abe",	"ab	12"))	
##	[1]	"^ab"	"ab"	"abc"	"abd"	"abe"	"ab	12"	
grep("ab.",	strings,	value	=	TRUE)

The	output	is	here:

##	[1]	"abc"	"abd"	"abe"	"ab	12"	
grep("ab[c-e]",	strings,	value	=	TRUE)

The	output	is	here:

##	[1]	"abc"	"abd"	"abe"	
grep("ab[^c]",	strings,	value	=	TRUE)

The	output	is	here:

##	[1]	"abd"	"abe"	"ab	12"	
grep("^ab",	strings,	value	=	TRUE)

The	output	is	here:

##	[1]	"ab"	"abc"	"abd"	"abe"	"ab	12"	
grep("\\^ab",	strings,	value	=	TRUE)

The	output	is	here:

##	[1]	"^ab"	
grep("abc|abd",	strings,	value	=	TRUE)

The	output	is	here:

##	[1]	"abc"	"abd"	
gsub("(ab)	12",	"\\1	34",	strings)

The	output	is	here:

##	[1]	"^ab"	"ab"	"abc"	"abd"	"abe"	"ab	34"

Assign	a	new	set	of	strings	to	the	vector	strings:

(strings	<-	c("Axbc",	"A.bc"))	
##	[1]	"Axbc"	"A.bc"	
pattern	<-	"A.b"	
grep(pattern,	strings,	value	=	TRUE)

The	output	is	here:

##	[1]	"Axbc"	"A.bc"	
grep(pattern,	strings,	value	=	TRUE,	fixed	=	TRUE)

The	output	is	here:

##	[1]	"A.bc"

Case	Sensitivity	in	R
Pattern	 matching	 is	 case	 sensitive	 in	 R.	 However,	 you	 can	 perform	 case

insensitive	 pattern	 matching	 by	 specifying	 ignore.case=TRUE	 (in	 base	 R
functions)	or	by	“wrapping	them”	with	ignore.case()	for	stringr	functions.

Yet	 another	 way	 to	 specify	 case-insensitive	 pattern	matching	 is	 to	 use	 the
tolower()	and	toupper()	 functions	 to	convert	strings	 to	 lower-	or	uppercase	and
then	perform	pattern-matching	operations.	Consider	the	following	example:

pattern	<-	"a.b"	
grep(pattern,	strings,	value	=	TRUE)

The	result	is	here:

##	character(0)	
grep(pattern,	strings,	value	=	TRUE,	ignore.case	=	TRUE)

The	result	is	here:

##	[1]	"Axbc"	"A.bc"

Now	let’s	look	at	an	example	involving	a	vector	of	sentences:

mytext	<-	c("This	is	the	first	line",	"This	is	second",	"This	line	has	997	also")

This	RE	determines	the	index	of	the	strings	with	“pure”	numbers:

grep("[0-9]",	mytext,	ignore.case=T)

The	result	is	here:

##	[1]	3

This	RE	determines	the	index	of	the	alphanumeric	strings:

grep("[a-zA-Z0-9]",	mytext,	ignore.case=T)

The	result	is	here:

##	[1]	1	2	3

This	RE	determines	the	index	of	the	strings	containing	only	characters:

grep("(a-zA-Z)",	mytext,	ignore.case=T)

The	result	is	here:

##	[1]	1	2

Escaping	Metacharacters	in	R	Functions
In	 the	 first	 part	 of	 this	 chapter	 you	 learned	 that	 you	 can	 match	 a

metacharacter	 as	 a	 “normal”	 character	 if	 you	 precede	 that	 character	 with	 a
double	 backslash.	 In	 addition,	 you	 need	 to	 precede	 a	 backslash	 with	 four
backslashes	in	order	to	treat	it	as	a	regular	character.

As	a	simple	example,	the	following	code	snippet	uses	the	gsub()	command	to
replace	the	metacharacter	$	with	the	metacharacter	*	in	the	string	metastr:

metastr	<-	"this	has	an	asterisk	*	inside"	
>	gsub("*",	"\\?",	metastr)	
[1]	"this	has	an	asterisk	?	inside"

EXAMPLES	OF	R	FUNCTIONS	AND	REs
The	 sapply()	 function	 in	 R	 enables	 you	 to	 apply	 a	 function	 (of	 your

choosing)	to	a	list	or	a	vector,	and	the	result	is	also	a	list	or	a	vector	of	the	same
length.	Hence,	the	following	code	snippet	uses	the	sapply()	function	in	order	to
invoke	 the	 R	 function	 gregexpr()	 to	 display	 the	 starting	 position	 of	 the	 first
match	(or	-1	if	there	is	none)	in	the	string	str	(defined	elsewhere):

sapply(gregexpr("\\S+",	str),	length)

Listing	 4.1	 displays	 the	 contents	 of	 sapplyfunc.R,	which	 illustrates	 how	 to
use	the	sapply()	function	with	other	R	functions.

LISTING	4.1:	sapplyfunc.R
str	<-	c("this	is	a	short	string",	
"two	words",	
"pasta",	
"beer")

sapply(gregexpr("\\S+",	str),	length)	
#[1]	5	2	1	1

sapply(strsplit(str,	"\\s+"),	length)	

#[1]	5	2	1	1

require(stringi)	
str	<-	c(
"this	is	a	string	that	is	slightly	longer",	
"nospacesinthisstring",	
"several	whitespaces",	
"	startswithspaces",	
"endswithgspaces	",	
"	contains	both	leading	and	trailing	",	
"just	one	space	each")

stri_count(str,regex="\\S+")	
#[1]	8	1	2	1	1	5	4

Listing	4.1	initializes	str	as	a	vector	of	strings,	and	then	invokes	the	sapply()
method	 twice.	 The	 first	 invocation	 invokes	 the	 gregexpr()	method	 in	 order	 to
find	the	position	of	the	first	occurrence	of	the	RE	in	each	of	the	four	substrings
of	str,	which	yields	the	values	5,	2,	1,	and	1,	respectively.

The	second	invocation	of	 the	sapply()	method	invokes	the	strsplit()	method
that	 splits	 the	 four	 substrings	of	 str	 into	 substrings	based	on	 the	 specified	RE,
which	produces	the	values	5,	2,	1,	and	1,	respectively.

The	third	portion	of	Listing	4.1	initializes	str	as	a	new	list	of	strings,	and	then
invokes	the	stri_count()	function	in	order	to	count	the	number	of	occurrences	of
non-whitespace	character	strings	in	each	of	the	seven	substrings	of	str,	which	is
8,	1,	2,	1,	1,	5,	and	4,	respectively.

ADVANCED	STRING	FUNCTIONS	IN	R
R	supports	several	more	advanced	string	functions	that	are	somewhat	related

to	 REs,	 such	 as	 splitting	 a	 string,	 getting	 a	 subset	 of	 a	 string,	 pasting	 strings
together,	and	so	forth.	These	R	functions	are	very	useful	for	data	cleaning,	and
here	is	a	short	introduction	with	above	example.

The	strsplit()	 function	 (which	 returns	a	 list)	 splits	 its	 second	argument	 into
words,	where	the	second	argument	split	is	an	RE	used	for	splitting	strings.

The	unlist()	function	converts	a	list	into	a	character	vector,	and	the	function
str_split_fixed()	returns	a	data	frame.

The	paste()	or	paste0()	functions	put	things	together.	The	paste0()	function	is
equivalent	 to	paste()	with	sep	=	"".	We	can	use	 the	collapse	=	"-"	 argument	 to

concatenate	a	character	vector	into	a	string.
Another	useful	 function	 is	substr(),	which	extracts	a	part	of	a	 string	with	a

start	index	and	an	end	index.
An	 Internet	 search	 of	 any	 of	 these	 commands,	 of	 form	 “R	 <command>

example”	 and	 “R	 <command>	 documentation”,	 will	 provide	 both	 official
documentation	and	many	useful	examples	to	show	both	syntax	and	scope	of	the
commands	beyond	the	brief	description	here.

The	stringr	Package	in	R
The	 R	 package	 stringr	 also	 provides	 several	 functions	 for	 RE	 operations.

Specifically,	 the	 stringr	 package	provides	 pattern-matching	 functions	 to	 detect,
locate,	extract,	match,	replace,	and	split	strings.

All	 pattern-matching	 functions	 in	 stringr	 have	 the	 following	 general	 form,
where	 the	 first	 argument	 is	 a	 string	 vector	 to	 be	 processed	 and	 the	 second
argument	is	a	single	RE	to	match:

str_function(string,	pattern)

For	example,	the	detect()	function	checks	whether	or	not	a	pattern	appears	in
a	string.	The	extract()	and	extract_all()	functions	extract	the	first	occurrence	and
all	 occurrences,	 respectively,	 of	 a	 pattern	 in	 a	 string.	 The	 match()	 and
match_all()	 functions	 extract	 the	 first	 matched	 group	 and	 all	 matched	 groups,
respectively,	from	a	string.	Other	functions	in	this	package	include:	locate()	and
locate_all(),	 replace()	 and	 replace_all(),	 split()	 and	 split_fixed().	 As	 with	 the
previous	R	commands,	an	internet	search	for	“R	stringr	package	documentation”
will	provide	more	details	regarding	the	functions	in	this	package.

CHAPTER	SUMMARY
In	 this	 chapter	 you	 got	 a	 summary	 of	 rules	 for	 metacharacters	 in	 R,	 an

overview	of	search	functions	in	R,	as	well	as	quick	explanation	of	grep-related
commands	in	R.	Next,	you	learned	about	basic	REs	used	in	specific	commands
for	matching	and	substitution	in	R,	similar	 to	some	of	 the	REs	that	you	saw	in
Chapter	1.	Then	you	 learned	how	to	use	metacharacters	 in	R,	 illustrated	 in	 the
form	of	one-line	REs,	and	finally	a	brief	overview	of	other	string-manipulation
commands	in	R.

T

CHAPTER	5

WORKING	WITH	REs	IN	BASH

his	 section	 assumes	 a	 bit	 of	 basic	 familiarity	 with	 the	 Unix/Linux
command	 line	and	how	the	commands	accept	 input	and	generate	output.
While	the	examples	use	the	bash	“shell”	environment	for	syntax,	most	of

them	will	also	work	with	other	common	shells	such	as	bourne	and	korn.
This	chapter	shows	you	how	to	use	REs	in	order	to	transform	data	using	the

Unix	sed	utility	 (an	 acronym	 for	 “stream	editor”),	 followed	by	 a	 short	 section
that	contains	examples	of	REs	with	the	Unix	awk	utility.

The	 first	part	of	 this	chapter	contains	basic	examples	of	 the	 sed	command,
such	as	replacing	and	deleting	strings,	numbers,	and	letters.	The	second	part	of
this	chapter	discusses	various	switches	that	are	available	for	 the	sed	command,
along	with	an	example	of	replacing	multiple	delimiters	with	a	single	delimiter	in
a	dataset.

The	 third	part	of	 this	chapter	provides	a	very	brief	 introduction	of	 the	awk
command.	You	will	learn	about	some	built-in	variables	for	awk,	and	also	how	to
manipulate	 string	 variables	 using	 awk.	Note	 that	 some	 of	 these	 string-related
examples	can	also	be	handled	using	other	bash	commands.

The	 final	 section	 contains	 code	 samples	 that	 involve	 metacharacters
(introduced	in	Chapter	1)	and	character	sets	in	awk	commands.	You	will	also	see
how	to	use	conditional	logic	in	awk	commands	in	order	to	determine	whether	or
not	to	print	specific	lines	of	text.

WHAT	IS	THE	SED	COMMAND?
The	 sed	 command	 is	 the	 most	 common	 command	 line	 tool	 used	 in

Unix/Linux	environments	to	do	find/replace-type	functions	using	REs	for	pattern
matching,	 although	 it	 has	 many	 other	 uses.	 As	 such	 it’s	 worth	 a	 bit	 of
explanation	before	diving	into	examples.

The	name	sed	is	an	acronym	for	“stream	editor”,	and	the	utility	derives	many

of	its	commands	from	the	ed	line-editor	(ed	was	the	first	UNIX	text	editor).	The
sed	 command	 is	 a	 “non-interactive”	 stream-oriented	 editor	 that	 can	be	used	 to
automate	editing	via	shell	scripts.	This	ability	to	modify	an	entire	stream	of	data
(which	 can	 be	 the	 contents	 of	multiple	 files,	 in	 a	manner	 similar	 to	 how	grep
behaves)	as	if	you	were	inside	an	editor	is	not	common	in	modern	programming
languages.	 This	 behavior	 allows	 some	 capabilities	 not	 easily	 duplicated
elsewhere,	while	behaving	exactly	 like	any	other	command	 (grep,	cat,	 ls,	 find,
and	so	forth)	in	how	it	can	accept	data,	output	data,	and	pattern	match	with	REs.

Some	of	the	more	common	uses	for	sed	include:	print	matching	lines,	delete
matching	lines,	and	find/replace	matching	strings	or	REs.

The	sed	Execution	Cycle
Whenever	you	invoke	the	sed	command,	an	execution	cycle	refers	to	various

options	that	are	specified	and	executed	until	the	end	of	the	file/input	is	reached.
Specifically,	an	execution	cycle	performs	the	following	steps:

Read	an	entire	line	from	stdin/file.
Remove	any	trailing	newline.
Place	the	line	in	its	pattern	buffer.
Modify	the	pattern	buffer	according	to	the	supplied	commands.
Print	the	pattern	buffer	to	stdout.

MATCHING	STRING	PATTERNS	USING	SED
The	sed	command	requires	you	to	specify	a	string	in	order	to	match	the	lines

in	a	 file.	For	example,	suppose	 that	 the	file	numbers.txt	contains	 the	following
lines:

1	
2	
123	
3	
five	
4

The	following	sed	command	prints	all	the	lines	that	contain	the	string	3:

cat	numbers.txt	|sed	–n	"/3/p"

Another	way	to	produce	the	same	result:

sed	–n	"/3/p"	numbers.txt

In	both	cases	the	output	of	the	preceding	commands	is	as	follows:

123	
3

Keep	in	mind	that	it’s	always	more	efficient	to	just	read	in	the	file	using	the
sed	command	than	to	pipe	it	in	with	a	different	command.	You	can	“feed”	it	data
from	another	command	 if	 that	other	command	adds	value	 (such	as	adding	 line
numbers,	removing	blank	lines,	or	other	similar	helpful	activities).

The	 –n	 option	 suppresses	 all	 output,	 and	 the	 p	 option	 prints	 the	matching
line.	If	you	omit	the	–n	option,	then	every	line	is	printed,	and	the	p	option	causes
the	matching	line	to	be	printed	again.	Hence,	issue	the	following	command:

sed	"/3/p"	numbers.txt

The	 output	 (the	 data	 to	 the	 right	 of	 the	 colon)	 is	 as	 follows.	Note	 that	 the
labels	to	the	left	of	the	colon	show	the	source	of	the	data,	to	illustrate	the	“one
row	at	a	time”	behavior	of	sed.

Basic	stream	output	:1	
Basic	stream	output	:2	
Basic	stream	output	:123	
Pattern	Matched	text:123	
Basic	stream	output	:3	
Pattern	Matched	text:3	
Basic	stream	output	:five	
Basic	stream	output	:4

It	 is	 also	 possible	 to	match	 two	 patterns	 and	 print	 everything	 between	 the
lines	that	match:

sed	–n	"/123/,/five/p"	numbers.txt

The	 output	 of	 the	 preceding	 command	 (all	 lines	 between	 123	 and	 five,
inclusive)	is	here:

123	
3	
five

SUBSTITUTING	STRING	PATTERNS	USING	SED
The	examples	in	this	section	illustrate	how	to	use	sed	to	substitute	new	text

for	an	existing	text	pattern.

x="abc"	
echo	$x	|sed	"s/abc/def/"

The	output	of	the	preceding	code	snippet	is	here:

def

In	the	prior	command	you	have	instructed	sed	to	substitute	("s)	the	first	text
pattern	(/abc)	with	the	second	pattern	(/def)	and	no	further	instructions	(/").

Deleting	 a	 text	 pattern	 is	 simply	 a	 matter	 of	 leaving	 the	 second	 pattern
empty:

echo	"abcdefabc"	|sed	"s/abc//"

The	result	is	here:

defabc

As	 you	 see,	 this	 only	 removes	 the	 first	 occurrence	 of	 the	 pattern.	You	 can
remove	 all	 the	 occurrences	 of	 the	 pattern	 by	 adding	 the	 “global”	 terminal
instruction	(/g"):

echo	"abcdefabc"	|sed	"s/abc//g"

The	result	of	the	preceding	command	is	here:

def

Note	that	we	are	operating	directly	on	the	main	stream	with	this	command,	as
we	are	not	using	the	-n	tag.	You	can	also	suppress	the	main	stream	with	-n	and
print	the	substitution,	achieving	the	same	output	if	you	use	the	terminal	p	(print)
instruction:

echo	"abcdefabc"	|sed	-n	"s/abc//gp"	
def

For	 substitutions	 either	 syntax	will	 do,	 but	 that	 is	 not	 always	 true	 of	 other
commands.

You	 can	 also	 remove	 digits	 instead	 of	 letters	 by	 using	 the	 numeric
metacharacters	as	your	regular	expression	match	pattern	(from	Chapter	1):

ls	svcc1234.txt	|sed	"s/[0-9]//g"	
ls	svcc1234.txt	|sed	–n	"s/[0-9]//gp"

The	result	of	either	of	the	two	preceding	commands	is	here:

svcc.txt

Recall	that	the	file	columns4.txt	contains	the	following	text:

123	ONE	TWO	
456	three	four	
ONE	TWO	THREE	FOUR	
five	123	six	
one	two	three

four	five

The	following	sed	command	is	instructed	to	identify	the	rows	between	1	and
3,	inclusive	("1,3),	and	delete	(d")	them	from	the	output:

cat	columns4.txt	|	sed	"1,3d"

The	output	is	here:

five	123	six	
one	two	three	
four	five

The	following	sed	command	deletes	a	 range	of	 lines,	starting	from	the	 line
that	 matches	 123	 and	 continuing	 through	 the	 file	 until	 reaching	 the	 line	 that
matches	the	string	five	(and	also	deleting	all	the	intermediate	lines).	The	syntax
should	be	familiar	from	the	earlier	matching	example:

sed	"/123/,/five/d"	columns4.txt

The	output	is	here:

one	two	three	
four	five

Replacing	Vowels	from	a	String	or	a	File
The	following	code	snippet	shows	you	how	simple	 it	 is	 to	replace	multiple

vowels	from	a	string	using	the	sed	command:

echo	"hello"	|	sed	"s/[aeio]/u/g"

The	output	from	the	preceding	code	snippet	is	here:

Hullu

Deleting	Multiple	Digits	and	Letters	from	a	String
Suppose	that	we	have	a	variable	x	that	is	defined	as	follows:

x="a123zAB	10x	b	20	c	300	d	40w00"

Recall	that	an	integer	consists	of	one	or	more	digits,	so	it	matches	the	regular
expression	 [0-9]+,	 which	 matches	 one	 or	 more	 digits.	 However,	 you	 need	 to
specify	the	regular	expression	[0-9]*	in	order	to	remove	every	number	from	the
variable	x:

echo	$x	|	sed	"s/[0-9]//g"

The	output	of	the	preceding	command	is	here:

azAB	x	b	c	d	w

The	following	command	removes	all	lowercase	letters	from	the	variable	x:

echo	$x	|	sed	"s/[a-z]*//g"

The	output	of	the	preceding	command	is	here:

123AB	10	20	300	4000

The	 following	 command	 removes	 all	 lowercase	 and	uppercase	 letters	 from
the	variable	x:

echo	$x	|	sed	"s/[a-z][A-Z]*//g"

The	output	of	the	preceding	command	is	here:

123	10	20	300	4000

SEARCH	AND	REPLACE	WITH	SED
The	previous	section	showed	you	how	to	delete	a	range	of	rows	of	a	text	file,

based	 on	 a	 start	 line	 and	 end	 line,	 using	 either	 a	 numeric	 range	 or	 a	 pair	 of

strings.	As	 deleting	 is	 just	 substituting	 an	 empty	 result	 for	what	 you	match,	 it
should	now	be	clear	 that	a	 replace	activity	 involves	populating	 that	part	of	 the
command	 with	 something	 that	 achieves	 your	 desired	 outcome.	 This	 section
contains	 various	 examples	 that	 illustrate	 how	 to	 get	 the	 exact	 substitution	 you
desire.

The	following	examples	illustrate	how	to	convert	lowercase	abc	to	uppercase
ABC	in	sed:

echo	"abc"	|sed	"s/abc/ABC/"

The	output	of	the	preceding	command	is	here	(which	only	works	on	one	case
of	abc):

ABC	
echo	"abcdefabc"	|sed	"s/abc/ABC/g"

The	 output	 of	 the	 preceding	 command	 is	 here	 (/g”	means	works	 on	 every
case	of	abc):	
ABCdefABC

The	following	sed	expression	performs	three	consecutive	substitutions,	using
-e	to	string	them	together.	It	changes	exactly	one	(the	first)	a	to	A,	one	b	to	B,
and	one	c	to	C:

echo	"abcde"	|sed	-e	"s/a/A/"	-e	"s/b/B/"	-e	"s/c/C/"

The	output	of	the	preceding	command	is	here:	
ABCde

Obviously	you	can	use	the	following	sed	expression	that	combines	the	three
substitutions	into	one	substitution:

echo	"abcde"	|sed	"s/abc/ABC/"

Nevertheless,	 the	 –e	 switch	 is	 useful	 when	 you	 need	 to	 perform	 more
complex	substitutions	that	cannot	be	combined	into	a	single	substitution.

The	“/”	character	is	not	the	only	delimiter	that	sed	supports,	which	is	useful
when	strings	contain	the	“/”	character.	For	example,	you	can	reverse	the	order	of
/aa/bb/cc/	with	this	command:

echo	"/aa/bb/cc"	|sed	-n	"s#/aa/bb/cc#/cc/bb/aa/#p"

The	output	of	the	preceding	sed	command	is	here:

/cc/bb/aa/

The	 following	 examples	 illustrate	 how	 to	 use	 the	 “w”	 terminal	 command
instruction	to	write	the	sed	output	 to	both	standard	output	and	also	 to	a	named
file	upper1	if	the	match	succeeds:

echo	"abcdefabc"	|sed	"s/abc/ABC/wupper1"	
ABCdefabc

If	 you	 examine	 the	 contents	 of	 the	 text	 file	 upper1	 you	 will	 see	 that	 it
contains	 the	same	string	ABCdefabc	 that	 is	displayed	on	 the	screen.	This	 two-
stream	behavior	that	we	noticed	earlier	with	the	print	(“p”)	terminal	command	is
unusual	but	 sometimes	useful.	 It	 is	more	common	 to	 simply	 send	 the	 standard
output	 to	a	file	using	 the	“>”	syntax,	as	shown	in	 the	following	example	(both
syntaxes	work	for	a	replace	operation),	but	in	that	case	nothing	is	written	to	the
terminal	screen.	The	previous	syntax	allows	both	at	the	same	time:

echo	"abcdefabc"	|	sed	"s/abc/ABC/"	>	upper1	
echo	"abcdefabc"	|	sed	-n	"s/abc/ABC/p"	>	upper1

Listing	5.1	displays	the	contents	of	update2.sh	that	replace	the	occurrence	of
the	 string	 hello	 with	 the	 string	 goodbye	 in	 the	 files	 with	 the	 suffix	 txt	 in	 the
current	directory.

LISTING	5.1:	update2.sh
for	f	in	`ls	*txt`	
do	
newfile="${f}_new"	
cat	$f	|	sed	-n	"s/hello/goodbye/gp"	>	$newfile	
mv	$newfile	$f

done

Listing	5.1	contains	a	for	loop	that	iterates	over	the	list	of	text	files	with	the
txt	 suffix.	 For	 each	 such	 file,	 initialize	 the	 variable	 newfile	 that	 is	 created	 by
appending	the	string	_new	to	the	first	file	(represented	by	the	variable	f).	Next,
replace	 the	 occurrences	 of	 hello	 with	 the	 string	 goodbye	 in	 each	 file	 f,	 and
redirect	 the	 output	 to	 $newfile.	 Finally,	 rename	 $newfile	 to	 $f	 using	 the	 mv
command.

If	 you	 want	 to	 perform	 the	 update	 in	 matching	 files	 in	 all	 subdirectories,
replace	the	“for”	statement	with	the	following:

for	f	in	`find	.	–print	|grep	"txt$"`

DATASETS	WITH	MULTIPLE	DELIMITERS
Listing	 5.2	 displays	 the	 contents	 of	 the	 dataset	 delim1.txt,	 which	 contains

multiple	 delimiters	 “|”,	 “:”,	 and	 “^”.	 Listing	 5.3	 displays	 the	 contents	 of
delimiter1.sh,	which	illustrates	how	to	replace	multiple	delimiters	with	a	single
comma	delimiter	“,”	in	delimiter1.txt.

LISTING	5.2:	delimiter1.txt
1000|Jane:Edwards^Sales	
2000|Tom:Smith^Development	
3000|Dave:Del	Ray^Marketing

LISTING	5.3:	delimiter1.sh
inputfile="delimiter1.txt"	
cat	$inputfile	|	sed	-e	's/:/,/'	-e	's/|/,/'	-e	's/\^/,/'

As	you	can	see,	 the	second	 line	 in	Listing	5.3	 is	simple	yet	very	powerful:
you	can	extend	the	sed	command	with	as	many	delimiters	as	you	require	in	order
to	 create	 a	 dataset	 with	 a	 single	 delimiter	 between	 values.	 The	 output	 from
Listing	5.3	is	shown	here:

1000,Jane,Edwards,Sales	
2000,Tom,Smith,Development	
3000,Dave,Del	Ray,Marketing

Do	keep	in	mind	that	this	kind	of	transformation	can	be	a	bit	unsafe	unless
you	have	checked	that	your	new	delimiter	is	not	already	in	use.	For	that	a	grep
command	is	useful	(you	want	 the	result	 to	be	zero,	as	-c	counts	 the	how	many
times	the	pattern	matches	in	the	input	file):

grep	-c	','	$inputfile	
0

USEFUL	SWITCHES	IN	SED
The	three	command	line	switches	-n,	-e,	and	-i	are	useful	when	you	specify

them	with	the	sed	command.
As	a	review,	specify	-n	when	you	want	to	suppress	the	printing	of	the	basic

stream	output:

sed	-n	's/foo/bar/'

Specify	-n	and	end	with	/p'	when	you	want	to	match	the	result	only:

sed	-n	's/foo/bar/p'

We	briefly	touched	on	using	-e	to	do	multiple	substitutions,	but	it	can	also	be
used	to	combine	other	commands.	This	syntax	lets	us	separate	the	commands	in
the	last	example:

sed	-n	-e	's/foo/bar/'	-e	'p'

A	more	 advanced	 example	 that	 hints	 at	 the	 flexibility	 of	 sed	 involves	 the
insertion	of	a	character	after	a	fixed	number	of	positions.	For	example,	consider
the	following	code	snippet:

echo	"ABCDEFGHIJKLMNOPQRSTUVWXYZ"	|	sed	"s/.\{3\}/&\n/g"

The	output	from	the	preceding	command	is	here:

ABCnDEFnGHInJKLnMNOnPQRnSTUnVWXnYZ

While	the	previous	example	does	not	seem	especially	useful,	consider	a	large
text	 stream	 with	 no	 line	 breaks	 (everything	 on	 one	 line).	 You	 could	 use
something	like	 this	 to	 insert	newline	characters,	or	something	else	 to	break	 the
data	 into	 easier-to-process	 chunks.	 It	 is	 possible	 to	work	 through	 exactly	what
sed	is	doing	by	looking	at	each	element	of	the	command	and	comparing	to	the
output,	even	if	you	don’t	know	the	syntax.	(Tip:	sometimes	you	will	encounter
very	complex	instructions	for	sed	without	any	documentation	in	the	code:	try	not
to	be	that	person	when	coding.)

The	 output	 is	 changing	 after	 every	 three	 characters	 and	 we	 know	 dot	 (.)
matches	any	single	character,	so	 .{3}	must	be	 telling	 it	 to	do	 that	 (with	escape
slashes	\	because	brackets	are	a	special	character	for	sed,	and	it	won’t	interpret	it
properly	if	we	just	leave	it	as	.{3}).	The	“n”	is	clear	enough	in	the	replacement
column,	so	the	“&\”	must	be	somehow	telling	it	to	insert	a	character	instead	of
replacing	it.	The	terminal	g	command	of	course	means	to	repeat.	To	clarify	and
confirm	those	guesses,	take	what	you	could	infer	and	perform	an	Internet	search.

WORKING	WITH	DATASETS
The	sed	utility	is	very	useful	for	manipulating	the	contents	of	text	files.	For

example,	you	can	print	 ranges	of	 lines	or	 subsets	of	 lines	 that	match	a	 regular
expression.	You	can	also	perform	search-and-replace	on	 the	 lines	 in	a	 text	 file.
This	section	contains	examples	that	illustrate	how	to	perform	such	functionality.

Printing	Lines
Listing	 5.4	 displays	 the	 contents	 of	 test4.txt	 (doubled-spaced	 lines)	 that	 is

used	for	several	examples	in	this	section.

LISTING	5.4:	test4.txt

abc

def

abc

abc

The	 following	code	 snippet	prints	 the	 first	 three	 lines	 in	 test4.txt	 (we	 used
this	syntax	before	when	deleting	rows,	and	it	is	equally	useful	for	printing):

cat	test4.txt	|sed	-n	"1,3p"

The	output	of	the	preceding	code	snippet	is	here	(the	second	line	is	blank):

abc

def

The	following	code	snippet	prints	lines	3	through	5	in	test4.txt:

cat	test4.txt	|sed	-n	"3,5p"

The	output	of	the	preceding	code	snippet	is	here:

def

abc

The	following	code	snippet	 takes	advantage	of	 the	basic	output	stream	and
the	 second	 match	 stream	 to	 duplicate	 every	 line	 (including	 blank	 lines)	 in
test4.txt:

cat	test4.txt	|sed	"p"

The	output	of	the	preceding	code	snippet	is	here:

abc	
abc

def	
def

abc	
abc

abc
abc

The	following	code	snippet	prints	the	first	three	lines	and	then	capitalizes	the
string	abc,	duplicating	ABC	in	the	final	output	because	we	did	not	use	-n	and	did
end	with	/p"	in	the	second	sed	command.	Remember	that	/p"	only	prints	the	text
that	 matched	 the	 sed	 command,	 where	 the	 basic	 output	 prints	 the	 whole	 file,
which	is	why	def	does	not	get	duplicated:

cat	test4.txt	|sed	-n	"1,3p"	|sed	"s/abc/ABC/p"

ABC	
ABC

def

Character	Classes	and	sed
You	 can	 also	 use	 REs	 with	 sed.	 As	 a	 reminder,	 here	 are	 the	 contents	 of

columns4.txt:

123	ONE	TWO	
456	three	four	
ONE	TWO	THREE	FOUR	
five	123	six

As	our	first	example	involving	sed	and	character	classes,	the	following	code
snippet	illustrates	how	to	match	lines	that	contain	lowercase	letters:

cat	columns4.txt	|	sed	-n	'/[0-9]/p'

The	output	from	the	preceding	snippet	is	here:

one	two	three	
one	two	
one	two	three	four	
one	
one	three	
one	four

The	 following	 code	 snippet	 illustrates	 how	 to	 match	 lines	 that	 contain
lowercase	letters:

cat	columns4.txt	|	sed	-n	'/[a-z]/p'

The	output	from	the	preceding	snippet	is	here:

123	ONE	TWO	
456	three	four	
five	123	six

The	 following	 code	 snippet	 illustrates	 how	 to	match	 lines	 that	 contain	 the
numbers	4,	5,	or	6:

cat	columns4.txt	|	sed	-n	'/[4-6]/p'

The	output	from	the	preceding	snippet	is	here:

456	three	four

The	following	code	snippet	illustrates	how	to	match	lines	that	start	with	any
two	characters	followed	by	EE:

cat	columns4.txt	|	sed	-n	'/^.\{2\}EE*/p'

The	output	from	the	preceding	snippet	is	here:

ONE	TWO	THREE	FOUR

Removing	Control	Characters
Listing	5.5	displays	 the	 contents	 of	 controlchars.txt	 that	we	 used	 before	 in

Chapter	2.	Control	characters	of	any	kind	can	be	removed	by	sed	 just	 like	any
other	character.

LISTING	5.5:	controlchars.txt
1	carriage	return^M	
2	carriage	return^M	
1	tab	character^I

The	following	command	removes	 the	carriage	return	and	the	 tab	characters
from	the	text	file	ControlChars.txt:

cat	controlChars.txt	|	sed	"s/^M//"	|sed	"s/	//"

You	cannot	see	the	tab	character	in	the	second	sed	command	in	the	preceding
code	snippet;	however,	 if	you	redirect	 the	output	 to	 the	file	nocontrol1.txt,	you
can	see	that	there	are	no	embedded	control	characters	in	this	new	file	by	typing
the	following	command:

cat	–t	nocontrol1.txt

COUNTING	WORDS	IN	A	DATASET
Listing	 5.6	 displays	 the	 contents	 of	WordCountInFile.sh,	 which	 illustrates

how	to	combine	various	bash	commands	in	order	to	count	the	words	(and	their
occurrences)	in	a	file.

LISTING	5.6:	wordcountinfile.sh
#	 The	 file	 is	 fed	 to	 the	 “tr”	 command,	 which	 changes	 uppercase	 to

lowercase
#	sed	removes	commas	and	periods,	then	changes	whitespace	to	newlines
#	uniq	needs	each	word	on	its	own	line	to	count	the	words	properly
#	 Uniq	 converts	 data	 to	 unique	 words	 and	 the	 number	 of	 times	 they

appeared

#	The	final	sort	orders	the	data	by	the	wordcount.

cat	"$1"	|	xargs	-n1	|	tr	A-Z	a-z	|	\	
sed	-e	's/\.//g'	-e	's/\,//g'	-e	's/	/\	/g'	|	\	
sort	|	uniq	-c	|	sort	-nr

The	previous	command	performs	the	following	operations:

*	List	each	word	in	each	line	of	the	file.
*	Shift	characters	to	lowercase.
*	Filter	out	periods	and	commas.
*	Change	the	space	between	words	to	linefeed.
*	Remove	duplicates,	prefix	occurrence	count,	and	sort	numerically.

BACK	REFERENCES	AND	FORWARD	REFERENCES	IN	SED
In	the	chapter	describing	grep	you	learned	about	back	references,	and	similar

functionality	is	available	with	the	sed	command.	The	main	difference	is	that	the
back	references	can	also	be	used	in	the	replacement	section	of	the	command.

The	 following	 sed	 command	 matches	 two	 consecutive	 occurrences	 of	 the
letter	“a”	and	prints	four	of	them:

echo	"aa"	|sed	-n	"s#\([a-z]\)\1#\1\1\1\1#p"

The	output	of	the	preceding	code	snippet	is	here:

aaaa

The	 following	 sed	 command	 replaces	 all	 duplicate	pairs	 of	 letters	with	 the
letters	aa:

echo	"aa/bb/cc"	|sed	-n	"s#\(aa\)/\(bb\)/\(cc\)#\1/\1/\1/#p"

The	 output	 of	 the	 previous	 sed	 command	 is	 here	 (note	 the	 trailing	 “/	 ”
character):

aa/aa/aa/

The	following	command	inserts	a	comma	in	a	four-digit	number:

echo	"1234"	|sed	-n	"s@\([0-9]\)\([0-9]\)\([0-9]\)\
([0-9]\)@\1,\2\3\4@p"

The	 preceding	 sed	 command	 uses	 the	 @	 character	 as	 a	 delimiter.	 The
character	class	[0-9]	matches	one	single	digit.	Since	there	are	four	digits	in	the
input	string	1234,	the	character	class	[0-9]	is	repeated	four	times,	and	the	value
of	 each	digit	 is	 stored	 in	 \1,	 \2,	 \3,	 and	 \4.	The	 output	 from	 the	 preceding	 sed
command	is	here:

1,234

A	more	general	sed	expression	that	can	insert	a	comma	in	five-digit	numbers
is	here:

echo	"12345"	|	sed	's/\([0-9]\{3\}\)$/,\1/g;s/^,//'

The	output	of	the	preceding	command	is	here:

12,345

Working	with	Forward	References
In	 programming	 languages,	 the	 term	 “forward	 reference”	 is	 a	 situation	 in

which	 a	 function	 is	 invoked	 before	 that	 function	 has	 been	 defined.	 This	 brief
section	 addresses	 RE	 forward	 references	 (i.e.,	 REs	 that	 contain	 a	 forward
reference).

A	RE	forward	reference	is	essentially	the	opposite	of	an	RE	back	reference:
you	need	to	look	ahead	(forward)	to	determine	whether	or	not	a	captured	group
appears	later	in	the	string	instead	of	earlier	in	the	string.	Keep	in	mind	that	Perl
supports	RE	 forward	 references,	whereas	 other	 languages	 (such	 as	 JavaScript)
do	not	support	RE	forward	references.

Use	the	symbol	“=”	to	denote	a	forward	reference	in	an	RE.	The	following
syntax	shows	you	how	to	specify	whether	or	not	a	forward	reference	contains	a
string,	as	shown	here:

(?=abc):	followed	by	abc	
(?!abc):	not	followed	by	abc

Perform	an	online	search	to	find	examples	of	RE	forward	references.

DISPLAYING	ONLY	“PURE”	WORDS	IN	A	DATASET
In	 the	previous	 chapter	we	 solved	 this	 task	using	 the	 egrep	 command,	 and

this	section	shows	you	how	to	solve	this	task	using	the	sed	command.
For	 simplicity,	 let’s	 work	 with	 a	 text	 string,	 and	 that	 way	 we	 can	 see	 the

intermediate	 results	 as	 we	 work	 toward	 the	 solution.	 The	 approach	 will	 be
similar	 to	 the	 code	 block	 shown	 earlier	 which	 counted	 unique	 words.	 Let’s
initialize	the	variable	x	as	shown	here:

x="ghi	abc	Ghi	123	#def5	123z"

The	 first	 step	 is	 to	 split	 x	 into	 one	word	 per	 line	 by	 replacing	 space	with
newlines:

echo	$x	|tr	-s	'	'	'\n'

The	output	is	here:

ghi	
abc	
Ghi	
123	
#def5	
123z

The	 second	 step	 is	 to	 invoke	 sed	 with	 the	 regular	 expression	 ^[a-zA-Z]+,

which	matches	any	string	consisting	of	one	or	more	uppercase	and/or	lowercase
letters	(and	nothing	else).	Note	that	the	-E	switch	is	needed	to	parse	this	kind	of
regular	 expression	 in	 sed,	 as	 it	 uses	 some	 of	 the	 newer/modern	 regular
expression	syntax	not	available	when	sed	was	new.

echo	$x	|tr	-s	'	'	'\n'	|sed	-nE	"s/(^[a-zA-Z][a-zA-Z]*$)/\1/p"

The	output	is	here:

ghi	
abc	
Ghi

If	you	also	want	to	sort	the	output	and	print	only	the	unique	words,	pipe	the
result	to	the	sort	and	uniq	commands:

echo	$x	|tr	-s	'	'	'\n'	|sed	-nE	"s/(^[a-zA-Z][a-zA-Z]*$)/\1/p"|sort|uniq

The	output	is	here:

Ghi	
abc	
ghi

If	you	want	to	extract	only	the	integers	in	the	variable	x,	use	this	command:

echo	$x	|tr	-s	'	'	'\n'	|sed	-nE	"s/(^[0-9][0-9]*$)/\1/p"	|sort|uniq

The	output	is	here:

123

If	 you	 want	 to	 extract	 alphanumeric	 words	 from	 the	 variable	 x,	 use	 this
command:

echo	$x	|tr	-s	'	'	'\n'	|sed	-nE	"s/(^[0-9a-zA-Z][0-9a-zA-Z]*$)/\1/p"|sort|uniq

The	output	is	here:

123	
123z	

Ghi	
abc	
ghi

Now	 you	 can	 replace	 echo	 $x	 with	 a	 dataset	 in	 order	 to	 retrieve	 only
alphabetic	strings	from	that	dataset.

This	 concludes	 the	 portion	 of	 the	 chapter	 pertaining	 to	 the	 sed	 command.
The	next	portion	of	 the	chapter	discusses	 the	awk	command,	along	with	many
simple	code	snippets	that	perform	a	variety	of	tasks.

THE	AWK	COMMAND
The	awk	(Aho,	Weinberger,	and	Kernighan)	command	has	a	C-like	syntax,

and	you	can	use	this	utility	to	perform	very	complex	operations	on	numbers	and
text	strings.

Awk	has	nearly	the	flexibility	of	an	entire	programming	language	contained
in	a	command	 that	Unix/Linux	sees	behaving	as	 if	 it	was	any	other	command.
As	such	it	is	the	go-to	command	when	grep	and	sed	aren’t	enough	to	get	the	job
done.

As	a	 side	 comment,	 there	 is	 also	 the	gawk	command	 that	 is	GNU	awk,	as
well	as	the	nawk	command	is	“new”	awk	(neither	command	is	discussed	in	this
book).	One	advantage	of	nawk	is	that	it	allows	you	to	set	externally	the	value	of
an	internal	variable.

Built-In	Variables	That	Control	awk
The	awk	command	provides	variables	that	you	can	change	from	their	default

values	 in	 order	 to	 control	 how	 awk	 performs	 operations.	 Examples	 of	 such
variables	(and	their	default	values)	include:	FS	("	"),	RS	("\n"),	OFS	("	"),	ORS
("\n"),	SUBSEP,	and	IGNORECASE.	The	variables	FS	and	RS	specify	the	field
separator	and	record	separator,	whereas	the	variables	OFS	and	ORS	specify	the
output	field	separator	and	the	output	record	separator,	respectively.

You	can	think	of	the	field	separators	as	the	delimiters/IFS	we	used	in	other
commands	 earlier.	 The	 record	 separators	 behave	 in	 a	 way	 similar	 to	 how	 sed
treats	 individual	 lines—for	 example	 sed	 can	 match	 or	 delete	 a	 range	 of	 lines
instead	of	matching	or	deleting	something	that	matches	a	regular	expression	(and
the	default	awk	record	separator	is	the	newline	character,	so	by	default	awk	and
sed	have	the	similar	ability	to	manipulate	and	reference	lines	in	a	text	file).

As	a	simple	example,	you	can	print	a	blank	line	after	each	line	of	a	file	by

changing	 the	ORS	 from	 the	default	 of	one	newline	 to	 two	newlines,	 as	 shown
here:

cat	columns.txt	|	awk	'BEGIN	{	ORS	="\n\n"	}	;	{	print	$0	}'

Other	built-in	variables	include	FILENAME	(the	name	of	the	file	that	awk	is
currently	reading),	FNR	(the	current	record	number	in	the	current	file),	NF	(the
number	 of	 fields	 in	 the	 current	 input	 record),	 and	 NR	 (the	 number	 of	 input
records	awk	has	processed	since	the	beginning	of	the	program’s	execution).

Consult	the	online	documentation	for	additional	information	regarding	these
(and	other)	arguments	for	the	awk	command.

How	Does	the	awk	Command	Work?
The	awk	command	reads	the	input	files	one	record	at	a	time	(by	default,	one

record	 is	 one	 line).	 If	 a	 record	matches	 a	 pattern,	 then	 an	 action	 is	 performed
(otherwise	no	action	is	performed).	If	 the	search	pattern	is	not	given,	 then	awk
performs	the	given	actions	for	each	record	of	the	input.	The	default	behavior	if
no	action	is	given	is	to	print	all	the	records	that	match	the	given	pattern.	Finally,
empty	 braces	without	 any	 action	 does	 nothing;	 that	 is,	 it	will	 not	 perform	 the
default	 printing	 operation.	 Note	 that	 each	 statement	 in	 actions	 should	 be
delimited	by	a	semicolon.

In	 other	 to	 make	 the	 preceding	 paragraph	 more	 concrete,	 here	 are	 some
simple	 examples	 involving	 text	 strings	 and	 the	 awk	 command	 (the	 results	 are
displayed	 after	 each	 code	 snippet).	 The	 -F	 switch	 sets	 the	 field	 separator	 to
whatever	follows	it,	in	this	case	a	space.	Switches	will	often	provide	a	shortcut
to	an	action	that	normally	needs	a	command	inside	a	‘BEGIN{}	block):

x="a	b	c	d	e"	
echo	$x	|awk	-F"	"	'{print	$1}'	
a	
echo	$x	|awk	-F"	"	'{print	NF}'	
5	
echo	$x	|awk	-F"	"	'{print	$0}'	
a	b	c	d	e	
echo	$x	|awk	-F"	"	'{print	$3,	$1}'	
c	a

Now	let’s	change	the	FS	(record	separator)	to	an	empty	string	to	calculate	the

length	of	a	string,	this	time	using	the	BEGIN{}	syntax:

echo	"abc"	|	awk	'BEGIN	{	FS	=	""	}	;	{	print	NF	}'	
3

The	following	example	illustrates	several	equivalent	ways	to	specify	test.txt
as	the	input	file	for	an	awk	command:

awk	<	test.txt	'{	print	$1	}'	
awk	'{	print	$1	}'	<	test.txt	
awk	'{	print	$1	}'	test.txt

Yet	 another	 way	 is	 shown	 here	 (but	 as	 we’ve	 discussed	 earlier,	 it	 can	 be
inefficient,	so	only	do	it	if	the	cat	command	is	adding	value	in	some	way):

cat	test.txt	|	awk	'{	print	$1	}'

This	simple	example	of	four	ways	to	do	the	same	task	should	illustrate	why
commenting	awk	calls	of	any	complexity	is	almost	always	a	good	idea.	The	next
person	to	look	at	your	code	may	not	know/remember	the	syntax	you	are	using.

ALIGNING	TEXT	WITH	THE	PRINTF	COMMAND
Since	awk	is	a	programming	language	inside	a	single	command,	 it	also	has

its	own	way	of	producing	formatted	output	via	the	printf	command.
Listing	5.7	displays	the	contents	of	columns2.txt	and	Listing	5.8	displays	the

contents	of	the	shell	script	AlignColumns1.sh,	which	show	you	how	to	align	the
columns	in	a	text	file.

LISTING	5.7:	columns2.txt
one	two	
three	four	
one	two	three	four	
five	six	
one	two	three	
four	five

LISTING	5.8:	AlignColumns1.sh
awk	'	

{	
#	left-align	$1	on	a	10-char	column	
#	right-align	$2	on	a	10-char	column	
#	right-align	$3	on	a	10-char	column	
#	right-align	$4	on	a	10-char	column	
printf("%-10s*%10s*%10s*%10s*\n",	$1,	$2,	$3,	$4)	
}

'	columns2.txt

Listing	5.8	contains	a	printf()	statement	 that	displays	 the	first	 four	fields	of
each	row	in	the	file	columns2.txt,	where	each	field	is	10	characters	wide.

The	output	from	launching	the	code	in	Listing	5.8	is	here:

one	*	two*	*	*	
three	*	four*	*	*	
one	*	two*	three*	four*	
five	*	six*	*	*	
one	*	two*	three*	*	
four	*	five*	*	*

Keep	 in	 mind	 that	 printf	 is	 reasonably	 powerful	 and	 as	 such	 has	 its	 own
syntax,	which	is	beyond	the	scope	of	this	chapter.	A	search	online	can	find	the
manual	pages	and	also	discussions	of	“how	to	do	X	with	printf().”

MATCHING	WITH	METACHARACTERS	AND	CHARACTER
SETS

If	we	can	match	a	simple	pattern,	by	now	you	probably	expect	that	you	can
also	 match	 a	 regular	 expression,	 just	 as	 we	 did	 in	 grep	 and	 sed.	 Listing	 5.9
displays	 the	 contents	 of	 Patterns1.sh,	 which	 uses	metacharacters	 to	match	 the
beginning	and	the	end	of	a	line	of	text	in	the	file	columns2.txt.

LISTING	5.9:	Patterns1.sh
awk	'	
/^f/	{	print	$1	}	
/two	$/	{	print	$1	}	
'	columns2.txt

The	output	from	launching	Listing	5.9	is	here:

one	
five	
four

Listing	 5.10	 displays	 the	 contents	 of	 RemoveColumns.txt	 with	 lines	 that
contain	a	different	number	of	columns.

LISTING	5.10:	columns3.txt
123	one	two	
456	three	four	
one	two	three	four	
five	123	six	
one	two	three	
four	five

Listing	 5.11	 displays	 the	 contents	 of	MatchAlpha1.sh,	which	matches	 text
lines	 that	 start	with	 alphabetic	 characters	 as	well	 as	 lines	 that	 contain	numeric
strings	in	the	second	column.

LISTING	5.11:	MatchAlpha1.sh
awk	'	
{	
if($0	~	/^[0-9]/)	{	print	$0	}	
if($0	~	/^[a-z]+	[0-9]/)	{	print	$0	}	
}

'	columns3.txt

The	output	from	Listing	5.11	is	here:

123	one	two	
456	three	four	
five	123	six

PRINTING	LINES	USING	CONDITIONAL	LOGIC
Listing	 5.12	 displays	 the	 contents	 of	 products.txt,	 which	 contains	 three

columns	of	information.

LISTING	5.12:	products.txt
MobilePhone	400	new	
Tablet	300	new	
Tablet	300	used	
MobilePhone	200	used	
MobilePhone	100	used

The	 following	 code	 snippet	 prints	 the	 lines	 of	 text	 in	 products.txt	 whose
second	column	is	greater	than	300:

awk	'$2	>	300'	products.txt

The	output	of	the	preceding	code	snippet	is	here:

MobilePhone	400	new

The	 following	 code	 snippet	 prints	 the	 lines	 of	 text	 in	 products.txt	 whose
product	is	“new”:

awk	'($3	==	"new")'	products.txt

The	output	of	the	preceding	code	snippet	is	here:

MobilePhone	400	new	
Tablet	300	new

The	following	code	snippet	prints	the	first	and	third	columns	of	the	lines	of
text	in	products.txt	whose	cost	equals	300:

awk	'	$2	==	300	{	print	$1,	$3	}'	products.txt

The	output	of	the	preceding	code	snippet	is	here:

Tablet	new	
Tablet	used

The	following	code	snippet	prints	the	first	and	third	columns	of	the	lines	of
text	in	products.txt	that	start	with	the	string	Tablet:

awk	'/^Tablet/	{	print	$1,	$3	}'	products.txt

The	output	of	the	preceding	code	snippet	is	here:

Tablet	new	
Tablet	used

SELECTING	AND	SWITCHING	ANY	TWO	COLUMNS
The	example	in	this	section	shows	you	how	to	switch	any	pairs	of	columns

(and	display	them)	in	the	rows	of	a	text	file.	Listing	5.13	displays	the	contents	of
switchcolumns.sh,	 which	 performs	 this	 task.	 Notice	 that	 the	 code	 does	 not
require	any	REs.

LISTING	5.13:	switchanytwocolumns.sh
awk	'	
{	
if(NF	>=	6)	{
printf("%s,%s\n",	$6,	$3)
}
}

'	manycolumns.txt

As	 you	 can	 see,	 the	 if	 statement	 in	 Listing	 5.13	 processes	 the	 rows	 that
contain	at	 least	 six	columns	and	prints	 the	 sixth	column	and	 the	 third	column.
The	output	from	Listing	5.13	is	here:

four,one	
two,three	
three,three

If	you	want	to	switch	the	first	two	columns	in	manycolumns.txt,	the	code	is
even	simpler:

awk	–F"	"	'{print	$2,	$1}'	<	manycolumns.txt

REVERSING	ALL	ROWS	WITH	AWK
The	example	 in	 this	 section	 shows	you	how	 to	 reverse	 the	order	of	 all	 the

columns	 in	 each	 row	 in	 a	 text	 file.	 Listing	 5.14	 displays	 the	 contents	 of
manycolumns.txt	 and	 Listing	 5.15	 displays	 the	 contents	 of	 reversecolumns.sh,
which	perform	this	task.	Notice	that	the	code	does	not	require	any	REs.

Listing	5.14:	manycolumns.txt
ten	
one	two	three	four	
three	four	one	two	three	four	
one	two	three	four	one	two	three	
five	six	seven	
one	two	three	four	five	
one	two	three	one	two	three	one	two	three

LISTING	5.15:	reverserows.sh
awk	'	
{	
for(i=NF;i>0;i--)	printf	"%s	",$i;print	""	
}

'	manycolumns.txt

Listing	5.15	consists	of	a	one-line	for	a	loop	that	contains	the	logic	required
to	 reverse	 the	 fields	 in	 each	 row	 of	manycolumns.txt.	 In	 fact,	 you	 could	 even
replace	the	contents	of	Listing	5.14	with	the	following	one-liner:

awk	'	{	for(i=NF;i>0;i--)	printf	"%s	",$i;print	""	}	'	manycolumns.txt

The	output	from	Listing	5.15	is	here:

ten	
four	three	two	one	
four	three	two	one	four	three	
three	two	one	four	three	two	one	
seven	six	five	
five	four	three	two	one	
three	two	one	three	two	one	three	two	one

REVERSING	THE	LINES	IN	A	FILE

Listing	 5.16	 displays	 the	 contents	 of	 fliprows.sh,	 which	 illustrates	 how	 to
“flip”	the	rows	in	a	text	file.

LISTING	5.16:	fliprows.sh
awk	'	
{	
lines[i++]=$0	
}	
END	{
for(j=i-1;j>=0;j--)print	lines[j];	
}	
'	manycolumns.txt

Listing	5.16	initializes	the	array	lines	with	all	the	rows	of	the	input	file,	and
the	 BEGIN	 block	 contains	 a	 loop	 that	 prints	 the	 contents	 of	 lines	 in	 reverse
order.	You	 could	 even	 replace	 the	 contents	 of	 Listing	 5.16	with	 the	 following
one-liner:

awk	'{	lines[i++]=$0	}	END	{	for(j=i-1;j>=0;j--)print	lines[j];	}'
manycolumns.txt

The	output	from	Listing	5.16	is	here:

one	two	three	one	two	three	one	two	three	
one	two	three	four	five	
five	six	seven	
one	two	three	four	one	two	three	
three	four	one	two	three	four	
one	two	three	four	
ten

Incidentally,	the	BSD	version	of	the	Unix	tail	command	can	also	reverse	the
order	of	the	rows	in	a	file,	and	it’s	much	simpler	than	the	awk	script:

tail	-r	manycolumns.txt

SWITCHING	TWO	ADJACENT	COLUMNS	(1)
The	example	in	this	section	shows	you	how	to	switch	pairs	of	columns	in	a

text	file.	For	example,	we	can	switch	the	first	two	columns,	and	also	switch	the
third	and	fourth	columns,	after	we	verify	that	they	exist.	Listing	5.17	displays	the
contents	 of	 switchcolumns.sh,	 which	 performs	 this	 task.	 Notice	 that	 the	 code
does	not	require	any	REs.

Listing	5.17:	switchcolumns.sh
awk	'	
if(NF	>=	2)	{	print	$2,	$1	}	
if(NF	>=	4)	{	print	$4,	$3	}	
'	columns2.txt

The	output	from	the	awk	script	in	Listing	5.17	is	here:

two	one	
four	three	
two	one	
four	three	
six	five	
two	one	
five	four

The	first	 row	of	columns2.txt	 is	not	displayed	because	 it	contains	only	one
field,	which	fails	both	if	statements	in	Listing	5.17.	If	you	look	at	the	contents	of
columns2.txt,	the	third	row	contains	four	fields,	but	switchcolumns.sh	splits	that
row	 into	 two	 separate	 rows	 (after	 switching	 the	 columns).	 The	 next	 section
provides	a	solution	for	this	detail.

SWITCHING	TWO	ADJACENT	COLUMNS	(2)
Listing	5.18	displays	the	contents	of	switchcolumns2.sh,	which	prevents	the

row	splitting	by	using	the	printf()	function	in	awk.

LISTING	5.18:	switchcolumns2.sh
awk	'	
{	
if(NF	>=	2)	{	
printf("%s,%s",	$2,	$1)	
if	(NF	>=	4)	{	
printf(",%s,%s",	$4,	$3)	

}	
printf("\n")	
}	
}	
'	columns2.txt

Once	again,	the	first	row	of	columns2.txt	is	not	displayed	because	it	contains
only	one	field,	which	fails	both	if	statements	in	Listing	5.18.	The	output	from	the
awk	script	in	Listing	5.18	is	here:

two,one	
four,three	
two,one,four,three	
six,five	
two,one	
five,four

SWITCHING	CONSECUTIVE	COLUMNS
The	examples	in	the	previous	section	work	correctly	for	rows	containing	two

or	four	columns,	but	they	can	become	difficult	to	generalize	in	rows	that	have	an
arbitrarily	 large	number	of	columns.	However,	 the	awk-based	code	example	 in
this	section	does	enable	you	to	switch	consecutive	columns	in	a	row,	regardless
of	the	number	of	columns	in	that	row.

Listing	 5.19	 displays	 the	 contents	 of	 switchcolumns3.sh,	 which	 switches
each	pair	of	consecutive	columns	in	manycolumns.txt.

LISTING	5.19:	switchcolumns3.sh
awk	'	
{	
line	=	$0	
split(line,	fields,	"	")	
fieldCount	=	length(fields)	
fc2	=	int(fieldCount/2)*2

#	switch	consecutive	columns	
for(idx=1;	idx<=fc2;	idx+=	2)	{	
printf("%s,%s,",	fields[idx+1],	fields[idx])	
}

#	odd	column	count?	
if(fieldCount	%	2	!=	0)	{	
printf("%s",fields[fieldCount])	
}

#	print	linefeed	
printf("\n")	
}

'	manycolumns.txt

Listing	 5.19	 initializes	 the	 variable	 line	 as	 the	 current	 line	 and	 creates	 an
array	 field	 whose	 contents	 are	 the	 columns	 of	 line.	 Next,	 the	 variable	 fc2	 is
calculated	 as	 the	 largest	 even	 number	 that’s	 no	 greater	 than	 the	 length	 of	 the
array	fields.

The	 next	 portion	 of	Listing	 5.19	 contains	 a	 loop	 that	 switches	 consecutive
columns	 of	 the	 current	 line.	Notice	 that	 the	 subsequent	 if	 statement	 prints	 the
rightmost	field	of	the	current	line	if	the	line	has	an	odd	number	of	fields.	The	last
code	snippet	prints	a	linefeed	(otherwise	we	would	have	a	single	line	of	output).

The	output	from	the	awk	script	is	here:

ten	
two,one,four,three,	
four,three,two,one,four,three,	
two,one,four,three,two,one,three	
six,five,seven	
two,one,four,three,five	
two,one,one,three,three,two,two,one,three

There	is	one	more	detail	to	fix:	remove	the	trailing	“,”	that	appears	in	rows
with	an	even	number	of	fields	(can	you	explain	why	that	happens?).	One	way	to
remove	the	trailing	“,”	is	with	the	sed	command:

./switchcolumns3.sh	|	sed	"s/,$//"

As	you	can	see,	 the	solution	 in	Listing	5.19	 is	elegant	 in	 its	simplicity	(are
you	surprised?).	In	fact,	there	are	even	more	simple	solutions	available,	but	the
current	solution	demonstrates	some	of	the	other	things	that	you	can	do	in	an	awk
script.

Although	 there	 are	 few	 situations	 where	 you	 need	 a	 shell	 script	 such	 as

columns3.sh	(possibly	never),	the	point	to	keep	in	mind	is	that	this	task	can	be
performed	in	a	very	simple	manner,	without	the	use	of	any	REs.	If	you	think	that
the	latter	is	easy	to	do,	see	if	you	can	create	a	suitable	regular	expression	(hint:
it’s	very	difficult!).

Another	point	to	keep	in	mind:	the	complexity	of	the	solution	to	a	particular
task	 can	 vary	 among	 languages	 (or	 utilities),	 and	 it’s	 worthwhile	 learning
different	languages—such	as	those	discussed	in	this	book—so	that	you	can	solve
tasks	more	easily.

Finally,	keep	in	mind	that	a	short	and	simple	solution	is	easier	to	debug	and
enhance,	not	only	for	you	but	also	for	the	people	who	inherit	your	code.

A	MORE	COMPLEX	EXAMPLE
The	example	in	this	section	is	admittedly	more	contrived	than	the	other	code

samples,	 but	 it	 serves	 to	 illustrate	 the	 ease	with	which	you	can	 solve	 complex
tasks	with	very	simple	awk	scripts.

The	awk	script	rotaterows.sh	in	this	section	does	the	following:

1.	 if	the	second	field	starts	with	the	string	six:
2.	 print	the	fourth,	third,	and	first	fields	(if	there	are	at	least	4	fields),	else
3.	 print	the	contents	of	the	current	row	as-is
4.	 if	the	second	field	does	not	start	with	six,	reverse	the	field	order

Listing	5.20	displays	the	contents	of	rotaterows.sh,	which	performs	the	steps
in	the	preceding	list.

LISTING	5.20:	rotaterows.sh
awk	'	
{	
if	($2	~	/^six*/)	{	
if(NF>=4)	{	print	$4,	$3,	$1	}	
else	{	print	$0	}
}	
else	{	
for(i=NF;i>0;i--)	printf	"%s	",$i;print	""	
}	
}	
'	manycolumns.txt

Listing	 5.20	 initializes	 the	 variable	 line	 as	 the	 current	 line	 and	 creates	 an
array	field	whose	contents	are	the	columns	of	lines.	Next,	the	if	statement	checks
if	 the	second	 fields	starts	with	 the	string	six,	 in	which	case	 it	 contains	another
code	block	that	contains	additional	conditional	logic.	That	logic	prints	the	fourth,
third,	and	first	columns	if	the	current	row	has	at	least	four	columns,	otherwise	it
prints	the	contents	of	the	current	line.

The	 else	 portion	 of	 the	 code	 in	 Listing	 5.20	 is	 executed	when	 the	 second
column	does	not	 start	with	 the	string	six,	 in	which	case	a	 for	 loop	 is	 executed
that	 reverses	 the	 order	 of	 the	 columns	 in	 the	 current	 row.	 The	 output	 from
launching	the	code	in	Listing	5.20	is	here:

ten	
four	three	two	one	
four	three	two	one	four	three	
three	two	one	four	three	two	one	
five	six	seven	
five	four	three	two	one	
three	two	one	three	two	one	three	two	one

Notice	 that	 Listing	 5.20	 is	 slightly	 shorter	 than	 Listing	 5.19	 from	 the
previous	use	case,	even	though	the	current	task	is	arguably	more	complex.

If	you	still	aren’t	convinced	of	the	power	of	awk	scripts,	suppose	you	need	to
do	the	following:

1.	 for	rows	with	at	least	two	and	at	most	five	columns:
2.	 if	the	second	field	starts	with	f	and	the	fourth	field	starts	with	t:	print	the

fourth,	third,	and	first	columns
3.	 otherwise	reverse	the	order	of	the	columns	in	the	current	row

Listing	 5.21	 displays	 the	 contents	 of	 rotaterows2.sh,	 which	 performs	 the
steps	in	the	preceding	list.

LISTING	5.21:	rotaterows2.sh
awk	'	
{	
if(NF	>=	2	&&	NF	<=	5)	{	
if	(($2	~	/^f*/	&&	($4	~	/^t*/)))	{	
print	$4,	$3,	$1	
}	

}	
else	{	
for(i=NF;i>0;i--)	printf	"%s	",$i;print	""	
}	
}	
'	manycolumns.txt

If	you	have	 read	 the	code	 in	 the	previous	 two	sections,	 the	code	 in	Listing
5.21	ought	to	be	self-explanatory.	Notice	that	Listing	5.21	has	the	same	number
of	 lines	 of	 code	 as	 Listing	 5.20,	 despite	 having	 slightly	 greater	 complexity	 in
terms	of	conditional	logic.

Another	 point	 to	 notice	 is	 that	 Listing	 5.21	 is	 a	 straightforward
implementation	 of	 the	 description	 of	 the	 task:	 if	 you	 read	 the	 code	 aloud,	 it’s
almost	like	English	sentences,	and	the	code	contains	only	two	simple	REs.

CHAPTER	SUMMARY
This	chapter	 introduced	you	to	the	sed	utility,	 illustrating	 the	basic	 tasks	of

data	 transformation:	 allowing	 additions,	 removal,	 and	 mutation	 of	 data	 by
matching	individual	patterns,	or	matching	the	position	of	the	rows	in	a	file,	or	a
combination	of	the	two.

Moreover,	we	showed	 that	sed	not	only	uses	REs	 to	match	data,	 similar	 to
the	grep	command,	but	can	also	use	REs	to	describe	how	to	transform	the	data.

Next	you	 learned	about	 the	 awk	command,	which	 is	 its	own	programming
language	 that	supports	REs.	A	series	of	examples	showed	 the	versatility	of	 the
awk	command,	 and	hopefully	 communicated	 the	 sense	 that	 it	 is	 an	 even	more
flexible	and	powerful	utility	than	we	can	show	in	a	single	chapter.

Now	 that	 you	 have	 finished	 this	 book,	 you	 might	 be	 interested	 in	 “next
steps”	 to	 learn	 more	 about	 REs.	 The	 answer	 to	 this	 question	 varies	 widely,
mainly	because	the	answer	depends	heavily	on	your	objectives.	The	best	answer
is	 to	 try	 techniques	 from	 the	 book	 out	 on	 a	 problem	 or	 task	 you	 care	 about,
professionally	or	personally.	Precisely	what	 that	might	be	depends	on	who	you
are,	 as	 the	 needs	 of	 a	 data	 scientist,	 manager,	 student,	 or	 developer	 are	 all
different.	 In	 addition,	 keep	 what	 you	 learned	 in	 mind	 as	 you	 tackle	 new
challenges.	Sometimes	knowing	a	technique	is	possible	makes	finding	a	solution
easier,	 even	 if	 you	 have	 to	 reread	 the	 section	 to	 remember	 exactly	 how	 the
syntax	 works.	 In	 addition,	 there	 are	 various	 online	 resources	 and	 literature
describing	how	to	create	complex	and	arcane	regular	expressions.

At	 this	 point	 there	 is	 one	 more	 thing	 to	 say:	 congratulations!	 You	 have

completed	 a	 fast-paced	 yet	 dense	 book,	 and	 if	 you	 are	 an	 RE	 neophyte,	 the
material	 will	 probably	 keep	 you	 busy	 for	 many	 hours.	 The	 examples	 in	 the
chapters	 provide	 a	 solid	 foundation,	 and	 the	 Appendices	 contain	 additional
examples	of	REs	in	Perl,	Java,	and	Scala.	The	combined	effect	demonstrates	that
the	 universe	 of	 possibilities	 is	 larger	 than	 the	 examples	 in	 this	 book,	 and
ultimately	they	will	spark	ideas	in	you.	Good	luck!

T

APPENDIX	A

REs	IN	PERL

his	Appendix	 contains	 an	 assortment	 of	REs	 in	Perl,	with	 code	 snippets
from	earlier	chapters	that	have	been	converted	to	Perl	syntax.	Please	keep
in	 mind	 that	 you	 will	 learn	 only	 rudimentary	 Perl	 functionality	 that

pertains	 to	 REs,	 and	 that	 Perl	 has	 powerful	 features	 that	 are	 not	 discussed
because	they	are	beyond	the	scope	of	this	Appendix.

The	first	section	of	this	chapter	is	similar	to	the	examples	in	Chapter	1,	but
without	 fully	 replicating	 the	same	details.	Although	 the	REs	 in	 this	section	are
often	 the	 same	 as	 their	 counterparts	 in	 Chapter	 1,	 there	 are	 some	 syntactic
differences	when	you	 invoke	Perl	 “one-liners”	 from	 the	 command	 line,	 versus
doing	so	with	the	grep	command.

The	second	section	 in	 this	chapter	contains	a	description	of	metacharacters
and	character	classes,	along	with	code	snippets	 that	 illustrate	how	to	use	them.
For	 example,	 you	 will	 see	 how	 to	 match	 alphabetic	 characters	 (uppercase,
lowercase,	or	a	combination	of	both	types),	pure	digits,	and	regular	expressions
with	combinations	of	digits	and	alphabetic	characters.

The	 third	 section	 contains	 REs	 that	 match	 dates,	 phone	 numbers,	 and	 zip
codes.	This	section	also	contains	REs	that	match	various	types	of	numbers,	such
as	 integers,	 decimals,	 hexadecimals,	 octals,	 and	binary	numbers.	You	will	 also
learn	how	to	work	with	scientific	numbers	and	REs.

The	final	section	contains	REs	that	match	IP	addresses	and	simple	comment
strings	(in	source	code),	as	well	as	REs	for	matching	ISBNs.

SIMPLE	EXAMPLES	OF	REs
Recall	that	Chapter	1	uses	the	Unix	grep	utility	and	the	Unix	egrep	utility	to

illustrate	 various	REs,	whereas	 this	Appendix	 uses	 the	Perl	 executable.	 If	 you
work	 on	 a	 PC,	 please	 read	 the	 Preface	 for	 information	 about	 software	 to
download	to	your	PC	so	that	you	can	run	Perl	commands.

Listing	A.1	displays	the	contents	of	lines1.txt,	which	contains	several	lines	of
text	that	match	various	REs	in	this	section.

LISTING	A.1:	lines1.txt
the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
that	cat	is	gray	As	you	can	see,	the	word	grey	appears	in	the	first	and	second
lines,	the	word	gray	appears	in	the	first	and	third	lines,	and	all	three	lines	contain
either	grey	or	gray.

Here	are	the	tasks	that	we	want	to	perform:

1.	Find	the	lines	that	contain	grey.
2.	Find	the	lines	that	contain	gray.
3.	Find	the	lines	that	contain	either	grey	or	gray.

The	following	command	performs	the	first	task:

perl	-wln	-e	'print	if	/gray/'	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey

The	preceding	Perl	command	contains	command-line	options	that	specify	the
following:

-w	:	Use	warnings.
-l	 :	 Remove	 (“chomp”	 in	 Perl	 parlance)	 the	 newline	 character	 from	 each	 line

before	processing	and	place	it	back	during	printing.
-n	:	Create	an	implicit	while(<>)	{	...	}	loop	to	perform	an	action	on	each	line.
-e	:	Direct	the	Perl	interpreter	to	execute	the	code	that	follows	it.
Finally,	print	the	entire	line	if	the	line	contains	the	word	gray.

The	following	command	performs	the	second	task:

perl	-wln	-e	'print	if	/grey/'	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.
that	cat	is	gray

Your	First	Character	Class
The	examples	in	the	previous	section	show	you	how	to	search	for	hard-coded

strings	in	a	text	file.	You	can	combine	two	search	expressions	into	one	by	using	a
character	class.	Specifically,	suppose	you	want	to	search	for	either	gray	or	grey
in	 a	 text	 file,	which	means	matching	with	 the	vowel	 a	 or	 the	vowel	 e.	Square
brackets	provide	this	functionality:	the	term	[ae]	means	“use	either	a	or	e”	(and
later	you’ll	see	other	variations,	such	as	a	range	of	letters	or	numbers).

The	 following	 command	 performs	 the	 third	 task	 listed	 in	 the	 previous
section:

perl	-wln	-e	'print	if	/gr[ae]y/'	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
that	cat	is	gray	The	term	gr[ae]y	is	a	compact	way	of	representing	the	two	strings
gray	and	grey.	The	order	of	the	letters	in	the	square	brackets	is	irrelevant,	which
means	that	the	third	task	can	also	be	solved	with	this	command:	perl	-wln	-e
'print	if	/gr[ae]y/'	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
that	cat	is	gray	Specifying	a	Range	of	Letters

We	 can	 “expand”	 the	 RE	 in	 the	 preceding	 code	 snippet	 to	 include	 all	 the
lowercase	letters	of	the	alphabet,	which	is	represented	by	[a-z].	We	can	find	all
the	 lines	 that	 contain	 a	 string	 that	 is	 of	 the	 form	gr[a-z]y,	which	matches	 any
string	that	meets	the	following	conditions:
1.	start	with	the	letters	gr
2.	followed	by	any	single	letter	a,	b,	c,	…,	z
3.	end	with	the	letter	y

Just	to	confirm,	launch	the	following	command:

perl	-wln	-e	'print	if	/gr[az]y/'	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
that	cat	is	gray	The	only	matches	are	grey	and	gray,	but	if	the	text	file	included	a
line	with	the	string	grzy,	then	this	line	would	appear	in	the	previous	output.

We	can	also	specify	a	single	 letter	 inside	the	square	brackets.	For	example,
the	term	[a]	is	an	RE	that	matches	the	letter	a.	Launch	this	command:	perl	-wln	-
e	'print	if	/[a]/'	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.
that	cat	is	gray

If	we	 specify	 a	 vowel	 that	 does	 not	 appear	 in	 any	word	 in	 lines1.txt,	 then
there	is	no	output.	An	example	is	here:	perl	-wln	-e	'print	if	/[u]/'	lines1.txt

We	can	specify	different	ranges	of	letters.	For	example,	suppose	we	want	to
find	 the	 lines	 that	 contain	words	with	 any	vowel	 except	 for	 the	vowels	 a	or	 i.
This	expression	will	do	the	job:	perl	-wln	-e	'print	if	/[eou]/'	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey

Once	again,	the	order	of	the	letters	in	the	square	brackets	is	irrelevant,	which
means	that	the	following	commands	have	the	same	output:	perl	-wln	-e	'print	if
/[eou]/'	lines1.txt
perl	-wln	-e	'print	if	/[oeu]/'	lines1.txt
perl	 -wln	 -e	 'print	 if	 /[oue]/'	 lines1.txt	 Working	 with	 the	 “^”	 and	 “$”
Metacharacters

The	“^”	metacharacter	matches	a	pattern	that	starts	from	the	beginning	of	a
line.	For	example,	the	RE	“^the”	matches	any	lines	that	start	with	the	string	the,
as	shown	here:	perl	-wln	-e	'print	if	/^the/'	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.

On	the	other	hand,	the	RE	“^[the]”	matches	any	lines	that	start	with	either	a
t,	or	an	h,	or	an	e,	as	shown	here:	perl	-wln	-e	'print	if	/^[the]/'	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
that	cat	is	gray	Excluding	Matches	with	the	“^”	Metacharacter	The	interpretation
of	the	“^”	metacharacter	is	based	on	whether	it’s	specified	inside	or	outside	(and
precedes)	a	pair	of	square	brackets.	If	it’s	inside	the	brackets,	it	means	“do	not
use	these	letters”,	and	if	it	precedes	the	brackets	(as	you	saw	in	the	previous
section),	it	means	“starting	from	the	leftmost	position	of	a	string,	match	the
pattern	that	follows	the	^	character”.

For	example,	the	following	RE	matches	any	lines	that	start	with	the	letter	t:
perl	-wln	-e	'print	if	/^[t]/'	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
that	cat	is	gray	By	contrast,	the	following	RE	matches	any	lines	that	do	not	start
with	the	letter	t,	and	in	this	case,	there	are	no	matching	lines:	perl	-wln	-e	'print	if
/^[^t]/'	lines1.txt

Since	every	line	starts	with	the	letter	t,	you	can	specify	any	other	letter	in	the
preceding	code	snippet	and	 the	 result	matches	all	 the	 lines	 in	 the	 text	 file.	For
example,	 the	 following	 RE	 matches	 all	 lines:	 perl	 -wln	 -e	 'print	 if	 /^[^z]/'
lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
that	cat	is	gray	Matches	with	the	“$”	Metacharacter

The	“$”	metacharacter	enables	you	to	match	 letters	or	words	 that	appear	at
the	end	of	a	line.	For	example,	the	following	expression	matches	any	lines	that
end	with	the	word	gray:	perl	-wln	-e	'print	if	/gray$/'	lines1.txt

The	output	is	here:

that	cat	is	gray

Notice	 that	 the	 first	 line	 is	 excluded:	 the	 next	 section	 explains	 why	 this
happened,	and	also	the	type	of	RE	that	will	match	the	first	line.

WORKING	WITH	“.”,	“*”,	AND	“\”	METACHARACTERS
The	 “.”	metacharacter	matches	 any	 single	 character	 (except	 a	 linefeed).	At

the	 other	 extreme	 is	 the	 “*”	 metacharacter	 that	 matches	 zero	 or	 more
occurrences	of	any	character.	The	“*”	metacharacter	is	useful	when	you	want	to
match	 the	 intervening	 letters	 between	 a	 start	 character	 (or	 word)	 and	 an	 end
character	(or	word).

For	 example,	 if	 you	 want	 to	 match	 the	 lines	 that	 start	 with	 the	 letter	 t,
followed	by	 an	 occurrence	 of	 the	word	 gray,	 use	 this	 expression:	 perl	 -wln	 -e
'print	if	/^t.*gray/'	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.
that	cat	is	gray

Notice	 how	 the	 “*”	metacharacter	 enables	 you	 to	 “ignore”	 the	 intervening
characters	between	the	initial	t	and	the	occurrence	of	the	word	gray	somewhere
else	in	a	line.

If	you	want	 to	match	 the	 lines	 that	 start	with	 the	word	 the,	 followed	by	an
occurrence	 of	 the	 word	 gray,	 use	 this	 expression:	 perl	 -wln	 -e	 'print	 if
/^the.*gray/'	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.

You	can	match	the	final	“.”	character	with	the	following	expression:

perl	-wln	-e	'print	if	/^t.*gray.$/'	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.

The	following	expression	only	matches	one	line:

perl	-wln	-e	'print	if	/^the.*gray.$/'	lines1.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.

Yet	another	variation	of	the	preceding	code	snippet	is	here:

perl	-wln	-e	'print	if	/^t.*gra.$/'	lines1.txt

The	output	is	here:

that	cat	is	gray

Checking	for	Whitespaces
Listing	A.2	displays	the	contents	of	spaces.txt,	which	contains	several	 lines

of	text	consisting	many	of	whitespaces.

LISTING	A.2:	spaces.txt

x
y
z w
a

Match	all	lines	that	contain	a	whitespace	with	this	expression:

perl	-wln	-e	'print	if	/	/'	lines1.txt

The	output	is	here:

x
y
z w

Match	all	lines	that	start	with	a	whitespace	with	this	expression:

perl	-wln	-e	'print	if	/^	/'	lines1.txt

The	output	(of	two	lines)	is	here:

x

Match	all	lines	that	end	with	a	whitespace	with	this	expression:

perl	-wln	-e	'print	if	/	$/'	lines1.txt

The	output	(of	two	lines)	is	here:

y

Match	lines	that	contain	only	whitespaces	with	this	expression:

perl	-wln	-e	'print	if	/^[][]+$/'	lines1.txt

The	output	consists	of	one	blank	line.
Note	 that	 the	 following	REs	will	not	match	 just	 the	 lines	 that	 contain	only

whitespaces:	perl	-wln	-e	'print	if	/[][]+.*$/'	spaces.txt
perl	-wln	-e	'print	if	/^[][].$/'	spaces.txt
perl	-wln	-e	'print	if	/[][].*$/'	spaces.txt
perl	-wln	-e	'print	if	/^[]*'	spaces.txt
perl	 -wln	 -e	 'print	 if	 /^[].*$/'	 spaces.txt	 Test	 your	 understanding	 of	 the
metacharacters	in	this	section	by	determining	why	the	preceding	REs	also	match
lines	that	contain	characters	other	than	whitespaces.

Match	empty	lines	with	this	very	simple	expression:

perl	-wln	-e	'print	if	/^$/'	spaces.txt

The	 output	 is	 a	 blank	 line,	 which	 you	 will	 see	 on	 the	 screen.	 Note	 that
matching	 an	 empty	 line	 is	 different	 from	 matching	 a	 line	 containing	 only
whitespaces.

ESCAPING	A	METACHARACTER
Use	 the	 backslash	 “	 \”	 character	 to	 “escape”	 the	 interpretation	 of

metacharacters.	 For	 example,	 the	 term	 “	 \.”	 escapes	 the	 “.”	 and	matches	 a	 “.”
character	that	appears	inside	a	line.

Listing	A.3	displays	the	contents	of	lines2.txt,	which	contains	several	lines	of
text	and	an	embedded	“.”	character.

LISTING	A.3:	lines2.txt

the	dog	is	grey.	the	cat	is	gray.
this	dog	is	called	doc.
that	cat	is	called	.doc	If	you	want	to	match	the	lines	that	start	with	the	letter	t	and
also	end	with	the	word	gray,	use	this	expression:	perl	-wln	-e	'print	if
/^t.*gray\.$/'	lines2.txt

The	output	is	here:

the	dog	is	grey	and	the	cat	is	gray.

If	you	want	to	match	the	lines	that	contain	a	“.”,	use	this	expression:

perl	-wln	-e	'print	if	/\.$/'	lines2.txt

The	output	is	here:

the	dog	is	grey.	the	cat	is	gray.
this	dog	is	called	doc.
that	cat	is	called	.doc	If	you	want	to	match	the	lines	that	match	.doc,	use	this
expression:	perl	-wln	-e	'print	if	/\.doc/'	lines2.txt

The	output	is	here:

that	cat	is	called	.doc

The	following	expression	matches	the	lines	that	end	with	.doc:	perl	-wln	-e
'print	if	/\.doc$/'	lines2.txt

The	output	is	here:

that	cat	is	called	.doc

MIXING	(AND	ESCAPING)	METACHARACTERS
Listing	A.4	 displays	 the	 contents	 of	 lines3.txt,	 which	 is	 used	 in	 some	 RE

code	snippets	in	this	section.

LISTING	A.4:	lines3.txt
grey.
.gray
dog

doggy

cat
catty
catfish
small	catfish	If	you	want	to	match	the	lines	that	contain	dog,	use	this	expression:
perl	-wln	-e	'print	if	/dog/'	lines3.txt

The	output	is	here:

dog
doggy

If	 you	 want	 to	 match	 the	 lines	 that	 start	 with	 the	 word	 dog,	 use	 this
expression:	perl	-wln	-e	'print	if	/^dog/'	lines3.txt

The	output	is	here:

dog
doggy

If	 you	 want	 to	 match	 the	 lines	 that	 end	 with	 the	 word	 dog,	 use	 this
expression:	perl	-wln	-e	'print	if	/dog$/'	lines3.txt

The	output	is	here:

dog

If	you	want	to	match	the	lines	that	start	and	also	end	with	the	word	dog,	use
this	expression:	perl	-wln	-e	'print	if	/^dog$/'	lines3.txt

The	output	is	here:

dog

If	 you	 want	 to	 match	 the	 lines	 that	 start	 with	 a	 blank	 space,	 use	 this
expression:

perl	-wln	-e	'print	if	/^	/'	lines3.txt

The	output	is	here:

catfish

If	you	want	to	match	the	lines	that	start	with	a	period,	use	this	expression:

perl	-wln	-e	'print	if	/^\./'	lines3.txt

The	output	is	here:

.gray

If	 you	 want	 to	 match	 the	 lines	 with	 any	 occurrence	 of	 a	 period,	 use	 this
expression:

perl	-wln	-e	'print	if	/\./'	lines3.txt

The	output	is	here:

grey.
.gray

By	 contrast,	 the	 following	 expression	 matches	 all	 lines	 because	 the	 “.”
metacharacter	has	not	been	escaped:	perl	-wln	-e	'print	if	/^./'	lines3.txt

The	output	is	here:

grey.	
.gray	
dog
doggy
cat
catty
catfish
small	catfish	The	following	expression	matches	lines	that	contain	the	string	that
ends	with	cat:	perl	-wln	-e	'print	if	/cat\b/'	lines3.txt

The	output	is	here:

cat

The	following	expression	matches	lines	that	start	with	a	space,	followed	by
any	characters,	and	then	followed	by	the	string	cat:	perl	-wln	-e	'print	if	/[].*cat/'
lines3.txt

The	output	is	here:

catfish
small	catfish

The	following	expression	matches	lines	that	contain	the	letter	r	or	the	letter
e:	perl	-wln	-e	'print	if	/[re]/'	lines3.txt

The	output	is	here:

grey.
.gray

The	following	expression	matches	lines	that	contain	the	letter	g,	followed	by
either	the	letter	r	or	the	letter	e:	perl	-wln	-e	'print	if	/g[re]/'	lines3.txt

The	output	is	here:

grey.

The	following	three	REs	match	the	word	grey:

perl	-wln	-e	'print	if	/^[.g][re]/'	lines3.txt
perl	-wln	-e	'print	if	/^[\.g][re]/'	lines3.txt
perl	-wln	-e	'print	if	/^[^.][re]/'	lines3.txt	This	RE	matches	the	word	.gray:

perl	-wln	-e	'print	if	/^.[g][re]/'	lines3.txt

THE	“?”	METACHARACTER
Listing	A.5	 displays	 the	 contents	 of	 lines4.txt,	 which	 is	 used	 in	 some	 RE

code	snippets	in	this	section.

LISTING	A.5:	lines4.txt
yes?
yes123?	or	no?
maybe?
maybe...?	perhaps?
either/or?	or	yes?

The	 following	 expression	 matches	 lines	 that	 contain	 a	 period	 before	 a
question	mark	“?”:	perl	-wln	-e	'print	if	/\.[?]/'	lines4.txt

The	output	is	here:

maybe...?	perhaps?

The	following	expression	matches	lines	that	contain	the	word	or:	perl	-wln	-e
'print	if	/or/'	lines4.txt

The	output	is	here:

yes123?	or	no?
either/or?	or	yes?

The	following	expression	matches	lines	that	match	the	sequence	of	the	word
or,	followed	by	a	?,	followed	by	a	blank	space,	and	then	another	occurrence	of
or:	perl	-wln	-e	'print	if	/or?	or/'	lines4.txt

The	output	is	here:

either/or?	or	yes?

The	following	expression	matches	lines	that	contain	three	consecutive	dot	“.”
characters:	perl	-wln	-e	'print	if	/\.\.\./'	lines4.txt

The	output	is	here:

maybe...?	perhaps?

The	following	expression	matches	all	lines:

perl	-wln	-e	'print	if	/.../'	lines4.txt

The	output	is	here:

yes?
yes123?	or	no?
maybe?
maybe...?	perhaps?
either/or?	or	yes?

The	following	expression	matches	lines	that	start	with	the	word	yes,	and	are
optionally	 followed	 by	 the	 number	 123:	 perl	 -wln	 -e	 'print	 if	 /^yes([123])?/'
lines4.txt

The	output	is	here:

yes?

yes123?	or	no?

The	“|”	Metacharacter
The	following	expression	matches	lines	that	start	with	maybe	or	with	either:

perl	-wln	-e	'print	if	/(maybe|either)/'	lines4.txt
The	output	is	here:

maybe?
maybe...?	perhaps?
either/or?	or	yes?

DATES	AND	METACHARACTERS
Listing	A.6	displays	 the	contents	of	 lines5.txt,	which	 is	used	 in	 some	code

snippets.	As	you	can	see,	some	of	the	lines	contain	valid	dates	and	others	contain
invalid	date	formats.

LISTING	A.6:	lines5.txt
05/12/18
05/12/2018
05912918
05.12.18
05.12.2018
0591292018

The	following	expression	matches	 lines	 that	start	with	 two	digits	 (followed
by	anything):	perl	-wln	-e	'print	if	/^[0-9][0-9]\//'	lines5.txt

The	output	is	here:

05/12/18
05/12/2018
05912918
05.12.18
05.12.2018
0591292018

The	following	expression	matches	 lines	 that	start	with	 two	digits	 (followed
by	a	forward	slash):	perl	-wln	-e	'print	if	/^[0-9][0-9]/'	lines5.txt

The	output	is	here:

05/12/18
05/12/2018

The	following	expression	matches	 lines	 that	start	with	 two	digits	 (followed
by	a	forward	slash	or	period):	perl	-wln	-e	'print	if	/^[0-9][0-9][/	.]/'	lines5.txt

The	output	is	here:

05/12/18
05/12/2018
05.12.18
05.12.2018

The	 following	 expression	 matches	 lines	 that	 end	 with	 a	 forward	 slash	 or
period,	preceded	by	two	digits:	perl	-wln	-e	'print	if	/[/	.][0-9][0-9]$/'	lines5.txt

The	output	is	here:

05/12/18
05/12/2018
05.12.18
05.12.2018

By	contrast,	 the	 following	 expression	matches	 lines	 that	contain	 a	 forward
slash	 or	 period,	 followed	 by	 two	 digits:	 perl	 -wln	 -e	 'print	 if	 /[/	 .][0-9][0-9]/'
lines5.txt

The	output	is	here:

05/12/18
05.12.18

The	following	expression	matches	lines	that	contain	four	consecutive	digits:

perl	-wln	-e	'print	if	/[0-9][0-9][0-9]/'	lines5.txt

The	output	is	here:

05/12/2018
05912918
05.12.2018

0591292018

The	 following	expressions	both	match	 lines	 that	 end	with	 four	consecutive
digits	that	are	preceded	by	a	forward	slash	or	period:	perl	-wln	-e	'print	if	/[\/.][0-
9][0-9][0-9]/'	lines5.txt
perl	-wln	-e	'print	if	/[\/.][0-9][0-9][0-9]$/'	lines5.txt	The	output	is	here:

05/12/18
05/12/2018
05.12.18
05.12.2018

Working	with	\d	and	\D	Metaclasses
A	simpler	(cleaner?)	way	to	match	a	digit	involves	the	\d	character	class	(d	is

for	digit).	The	following	expression	matches	lines	that	contain	three	consecutive
digits:	perl	-wln	-e	'print	if	/\d\d\d/'	lines5.txt

The	output	is	here:

05/12/2018
05912918
05.12.2018
0591292018

There	 is	also	a	simpler	way	 to	match	multiple	consecutive	digits	via	 the	 \d
character	 class.	 The	 following	 expression	 matches	 lines	 that	 contain	 three
consecutive	digits:	perl	-wln	-e	'print	if	/\d{3}/'	lines5.txt
05/12/2018
05912918
05.12.2018
0591292018

The	following	expression	matches	lines	that	contain	a	pair	of	digits	followed
by	a	non-digit	character:	perl	-wln	-e	'print	if	/\d{2}\D/'	lines5.txt
05/12/18
05/12/2018
05.12.18
05.12.2018

The	following	expression	matches	lines	that	contain	three	pairs	of	digits	that
are	 separated	 by	 a	 non-digit	 character:	 perl	 -wln	 -e	 'print	 if

/\d{2}\D\d{2}\D\d{2}/'	lines5.txt
05/12/18
05/12/2018
05.12.18
05.12.2018

The	following	expression	matches	lines	that	contain	three	pairs	of	digits	that
are	 separated	 by	 a	 non-digit	 character,	 and	 also	 excludes	 four-digit	 sequences:
perl	-wln	-e	'print	if	/\d{2}\D\d{2}\D\d{2}$/'	lines5.txt
05/12/18
05.12.18

REs	AND	ZIP	CODES	(U.S.	AND	CANADIAN)
Listing	A.7	displays	 the	contents	of	 lines6.txt,	which	 is	used	 in	 some	code

snippets.

LISTING	A.7:	lines6.txt
94053
94053-06123
9405306123
V6K	8Z3
36K8Z3
123-45-6789
jsmith@acme.com
john.smith@acme.com
650	123-4567	
650	123	4567	
(650)	123	4567
1-650	123-4567

The	 following	 RE	 matches	 strings	 that	 contain	 five	 digits,	 which	 is	 a
common	U.S.	zip	code	pattern:	perl	-wln	-e	'print	if	/\d{5}/'	lines6.txt

The	output	is	here:

94053
94053-06123s
9405306123

The	following	expression	matches	U.S.	zip	codes	consisting	of	five	digits:

perl	-wln	-e	'print	if	/^\d{5}$/'	lines6.txt

The	output	is	here:

94053

The	 following	 expression	matches	U.S.	 zip	 codes	 consisting	 of	 five	 digits
followed	 by	 a	 hyphen,	 and	 then	 followed	 by	 another	 five	 digits:	 perl	 -wln	 -e
'print	if	/^\d{5}-\d{5}$/'	lines6.txt

The	output	is	here:

94053-06123

Valid	Canadian	postal	codes	are	of	the	form	A1A	1A1,	where	A	is	a	capital
letter	and	1	is	a	digit	(with	a	space	between	the	two	triplets).	The	following	RE
matches	 Canadian	 zip	 codes:	 egrep	 "^[A-Z][0-9][A-Z]	 [0-9][A-Z][0-9]"
lines6.txt

The	output	is	here:

V6K	8Z3

The	following	RE	matches	U.S.	social	security	numbers	(SSNs)	consisting	of
three	digits	followed	by	a	hyphen,	two	digits	followed	by	a	hyphen,	and	ending
with	three	digits:	perl	-wln	-e	'print	if	/^\d{3}-\d{2}-\d{4}/'	lines6.txt

The	output	is	here:

123-45-6789

REs	AND	EMAIL	ADDRESSES
Matching	email	addresses	is	a	complex	task.	This	section	provides	REs	that

match	common	(but	not	all)	email	addresses	that	have	the	following	pattern:
1.	an	initial	string	having	at	least	four	characters	and	at	most	twelve	characters

(which	can	be	any	combination	of	lowercase	letters,	uppercase	letters,	or
digits),	then	2.	followed	by	the	“@”	symbol,	then

3.	a	string	having	at	least	four	characters	and	at	most	twelve	characters	(which
can	be	any	combination	of	lowercase	letters,	uppercase	letters,	or	digits),	then
4.	followed	by	the	string	“.com”
Here	 is	 the	 RE	 that	 has	 the	 structure	 described	 in	 the	 preceding	 list	 that

matches	an	email	address:	perl	-wln	-e	'print	if	/^[A-Za-z0-9]{4,12}\@[A-Za-z0-

9]{4,8}\.com$/'	lines6.txt
The	output	is	here:

jsmith@acme.com

There	are	some	limitations	regarding	the	preceding	RE.	First,	it	only	matches
email	 addresses	 with	 the	 suffix	 .com.	 Second,	 longer	 (yet	 still	 valid)	 email
addresses	 are	 excluded,	 such	 as	 the	 one	 shown	 here:
myverylongemailaddress@acme.com

Third,	it	excludes	special	characters	(such	as	_,	%,	and	so	forth)	as	part	of	the
email	address.

Consequently,	you	need	to	make	decisions	about	 the	allowable	set	of	email
addresses	that	you	want	to	match	with	your	RE.

The	following	RE	has	the	structure	described	in	the	preceding	list,	and	also
allows	a	dot	“.”	as	in	the	initial	portion	of	the	email	address:	perl	-wln	-e	'print	if
/^[A-Za-z0-9]{4,12}\.[A-Za-z0-9]{4,12}\@[A-Za-z0-9]{4,8}\.com$/'	 lines6.txt
The	output	is	here:

john.smith@acme.com

The	section	shown	in	bold	in	the	preceding	RE	shows	you	how	to	match	the
dot	 “.”	 character,	 followed	 by	 an	 alphanumeric	 string	 that	 has	 at	 least	 four
characters	and	at	most	twelve	characters.

REs	AND	U.S.	PHONE	NUMBERS
The	following	RE	matches	U.S.	phone	numbers	of	the	form	ddd	ddd	dddd:

perl	-wln	-e	'print	if	/^\d{3}	\d{3}	\d{4}/'	lines6.txt
The	output	is	here:

650	123	4567

The	following	RE	matches	U.S.	phone	numbers	of	the	form	ddd	ddd-dddd:
perl	-wln	-e	'print	if	/^\d{3}	\d{3}-\d{4}/'	lines6.txt

The	output	is	here:

650	123-4567

The	following	RE	matches	U.S.	phone	numbers	of	the	form	(ddd)	ddd-dddd:

perl	-wln	-e	'print	if	/^\(\d{3}\)	\d{3}-\d{4}/'	lines6.txt
The	output	is	here:

(650)	123-4567

The	following	RE	matches	U.S.	phone	numbers	of	the	form	1-ddd	ddd-dddd:
perl	-wln	-e	'print	if	/^1-\d{3}	\d{3}-\d{4}/'	lines6.txt

The	output	is	here:

1-(650)	123-4567

WORKING	WITH	NUMBERS
This	 section	 contains	 examples	 of	 REs	 that	 match	 integers,	 floating	 point

numbers,	 hexadecimal	 numbers,	 octal	 numbers,	 and	 binary	 numbers.	 The
subsequent	 section	 discusses	 REs	 for	 scientific	 numbers,	 which	 are	 a
“generalization”	of	decimal	numbers:	they	are	more	complex,	and	so	they	merit
their	own	section.

Listing	A.8	displays	the	contents	of	numbers.txt,	which	is	used	in	some	RE
code	snippets	in	this	section.

LISTING	A.8:	numbers.txt
#integers	
1234
-123

#floating	point	numbers
1234.432
-123.528
0.458

#hexadecimal	numbers
12345
FA4389
0xFA4389
0X4A3E5C

#octal	numbers
1234

03434

#binary	numbers
010101
110101
0b010101

REs,	Integers,	and	Decimal	Numbers
The	following	RE	matches	positive	integers	and	negative	integers:

perl	-wln	-e	'print	if	/^[-|+]?\d+$/'	numbers.txt

The	output	is	here:

1234
-123
12345
1234
03434
010101
110101

The	following	RE	matches	positive	integers,	negative	integers,	and	decimal
numbers:

perl	-wln	-e	'print	if	/^[-|+]?\d+([\.]?\d*)$/'	numbers.txt

The	output	is	here:

1234
-123
1234.432
-123.528
0.458
12345
1234
03434
010101
110101

The	following	RE	matches	only	decimal	numbers:

perl	-wln	-e	'print	if	/^[-|+]?\d+([\.]\d*)$/'	numbers.txt

The	output	is	here:

1234.432
-123.528
0.458

REs	and	Hexadecimal	Numbers
Hexadecimal	numbers	can	contain	the	digits	0	through	9	and	also	the	letters

A	through	F,	and	can	also	start	with	0x	or	0X	(both	of	which	are	optional).	The
following	RE	matches	hexadecimal	numbers	(and	other	patterns	as	well)	without
a	0x	or	0X	prefix:	perl	-wln	-e	'print	if	/^[a-fA-F0-9]+$/'	numbers.txt

The	output	is	here:

1234
12345
FA4389
1234
03434
010101
110101
0b010101

Notice	 that	 integers,	 octal	numbers,	 and	binary	numbers	 also	 appear	 in	 the
preceding	list	(because	they	are	valid	hexadecimal	numbers).

The	following	RE	matches	hexadecimal	numbers	that	start	with	either	0x	or
0X:	perl	-wln	-e	'print	if	/^(0x|0X)[a-fA-F0-9]+$/'	numbers.txt

The	output	is	here:

0xFA4389
0X4A3E5C

REs	AND	OCTAL	NUMBERS
The	following	RE	matches	octal	numbers	without	a	0	prefix:

perl	-wln	-e	'print	if	/^[1-7][0-7]+$/'	numbers.txt

The	output	is	here:

1234
110101
1234
110101

Notice	 that	 there	 are	 two	 occurrences	 of	 the	 number	 1234:	 the	 first	 one
appears	as	an	integer	(and	it’s	a	valid	octal	number)	and	the	second	one	appears
in	the	section	with	octal	numbers.	Moreover,	the	number	110101	from	the	binary
section	is	also	a	valid	octal	number.

The	following	RE	matches	octal	numbers	with	a	0	prefix:	perl	-wln	-e	'print
if	/^0?[1-7]+$/'	numbers.txt

The	output	is	here:

1234
12345
1234
03434

Once	 again,	 there	 are	 two	 occurrences	 of	 the	 number	 1234:	 the	 first	 one
appears	as	an	integer	(and	it’s	a	valid	octal	number)	and	the	second	one	appears
in	the	section	with	octal	numbers.

REs	and	Binary	Numbers
The	following	RE	matches	binary	numbers	without	a	0b	prefix:

perl	-wln	-e	'print	if	/^[0-1]+$/'	numbers.txt

The	output	is	here:

010101
110101

The	following	RE	matches	binary	numbers	with	or	without	a	0b	prefix:

perl	-wln	-e	'print	if	/(^[0-1]+|0b[0-1]+)$/'	numbers.txt

The	output	is	here:

010101
110101
0b010101

REs	AND	SCIENTIFIC	NUMBERS
This	 section	 contains	 examples	 of	 REs	 that	 match	 scientific	 numbers	 and

hexadecimal	numbers.
Listing	A.9	displays	the	contents	of	lines7.txt	and	Listing	A.10	displays	the

contents	of	lines8.txt,	which	are	used	in	some	code	snippets.

LISTING	A.9:	lines7.txt
192.168.3.99
192.168.123.065
//	this	is	a	comment
v	=	7;	//	this	is	also	a	comment
/*	the	third	comment	*/
x	=	7;	/*	the	fourth	comment	*/
y	=	\uFFEA;
MyPaSsW0rd
mypasss0rd	LISTING	A.10:	lines8.txt	0.123
z	=	0xFFFF00;
+13
423.2e32
-7.20e+19
-.4E-8
-27.6603
+0005
125.e12

Matching	all	scientific	numbers	(and	nothing	else)	is	rather	complex,	and	this
section	contains	some	REs	that	partially	succeed	in	this	task.	A	useful	exercise
for	you	is	to	determine	why	these	REs	contain	“false	positives”	(i.e.,	strings	that
you	want	to	exclude).

Option	#1:	the	following	RE	matches	scientific	numbers:

perl	-wln	-e	'print	if	/^[+-]?\d*(([,.]\d{3})+)?([,.]\d+)?([eE][+-]?\d+)?$'/

lines8.txt

The	output	is	here:

0.123
+13
423.2e32
-7.20e+19
-.4E-8
-27.6603
+0005

Unfortunately,	 the	 preceding	 RE	 also	matches	 IP	 addresses	 (in	 lines7.txt):
perl	 -wln	 -e	 'print	 if	 /^[+-]?\d*(([,.]\d{3})+)?([,.]\d+)?([eE][+-]?\d+)?$'/
lines7.txt	The	output	is	here:

192.168.123.065

Option	#2:	the	following	RE	matches	scientific	numbers:

perl	-wln	-e	'print	if	/[-]?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?'	lines8.txt

The	output	is	here:

0.123
z	=	0xFFFF00;
+13
423.2e32
-7.20e+19
-.4E-8
-27.6603
+0005
125.e12

For	 your	 convenience,	 Listing	 A.11	 displays	 the	 contents	 of	 scientific.sh,
which	 contains	 an	 assortment	 of	REs	 that	 check	 for	 scientific	 numbers,	 tested
against	the	file	lines8.txt.

LISTING	A.11:	scientific.sh

echo	"***	Option	#1:"
echo	"--------------"
perl	-wln	-e	'print	if	/^[+-]?\d*(([,.]\d{3})+)?([,.]\d+)?([eE]
[+-]?\d+)?$'/	lines8.txt	echo	"***	Option	#2:"
echo	"--------------"
perl	-wln	-e	'print	if	/^[+-]?\d*(([,.]\d{3})+)?([,.]\d+)?([eE]
[+-]?\d+)?$'/	lines8.txt	echo	"***	Option	#3:"
echo	"--------------"
perl	-wln	-e	'print	if	/[-]?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?'/	lines8.txt	echo	"***
Option	#4:"
echo	"--------------"
perl	-wln	-e	'print	if	/[-]?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?'/	lines8.txt	echo	"***
Option	#5:"
echo	"--------------"
perl	-wln	-e	'print	if	/[-]?(?:0|[1-9]\d*)(?:\.\d*)?(?:[eE][+\-]?\d+)?'/	lines8.txt
echo	"***	Option	#6:"
echo	"--------------"
perl	-wln	-e	'print	if	/[-]?(?:0|[1-9]\d*)(?:\.\d*)?(?:[eE][+\-]?\d+)?'/	lines8.txt
echo	"***	Option	#7:"
echo	"--------------"
perl	-wln	-e	'print	if	/[-]?(?:0|[1-9]\d*)(?:\.\d*)?(?:[eE][+\-]?\d+)?'/	lines8.txt
echo	"***	Option	#8:"
echo	"--------------"

perl	-wln	-e	'print	if	/[+\-]?(?:0|[1-9]\d*)(?:\.\d*)?(?:[eE]
[+\-]?\d+)?'/	lines8.txt	Launch	the	code	in	Listing	A.9	with	this	command:

./scientific.sh	>	scientific.out

Listing	A.12	displays	the	contents	of	scientific.out,	which	displays	the	result
of	launching	the	shell	script	scientific.sh	displayed	in	Listing	A.11.

LISTING	A.12:	scientific.out	***	Option	#1:

0.123
+13
423.2e32
-7.20e+19

-.4E-8
-27.6603
+0005
***	Option	#2:

192.168.123.065
***	Option	#3:

0.123
z	=	0xFFFF00;
+13
423.2e32
-7.20e+19
-.4E-8
-27.6603
+0005
125.e12
***	Option	#4:

192.168.3.99
192.168.123.065
v	=	7;	//	this	is	also	a	comment
x	=	7;	/*	the	fourth	comment	*/
***	Option	#5:

0.123
z	=	0xFFFF00;
+13
423.2e32
-7.20e+19
-.4E-8
-27.6603
+0005

125.e12
***	Option	#6:

192.168.3.99
192.168.123.065
v	=	7;	//	this	is	also	a	comment
x	=	7;	/*	the	fourth	comment	*/
***	Option	#7:

0.123
z	=	0xFFFF00;
+13
423.2e32
-7.20e+19
-.4E-8
-27.6603
+0005
125.e12
***	Option	#8:

0.123
z	=	0xFFFF00;
+13
423.2e32
-7.20e+19
-.4E-8
-27.6603
+0005
125.e12

As	you	can	see,	the	REs	in	Listing	A.10	have	varying	degrees	of	success	in
terms	 of	matching	 scientific	 numbers.	 In	 general,	 they	 err	 by	matching	 “false
positives”	 (numbers	 that	 are	not	 valid	 scientific	numbers)	 instead	of	 excluding
“false	negatives”	(numbers	that	are	valid	scientific	numbers).

DETECTING	URL	PATTERNS
Listing	A.13	 displays	 the	 contents	 of	 urls.txt,	 which	 contains	 examples	 of

ftp,	http,	and	https	URLs.

LISTING	A.13:	urls.txt
ftp://www.acme.com
http://www.bdnf.com
https://www.ceog.com
a	line	with	https://www.ceog.com	embedded	in	it	The	following	snippet	matches
the	lines	that	contain	the	strings	http	or	https:	perl	-wln	-e	'print	if	/http/'	urls.txt

The	output	is	here:

ftp://www.acme.com
http://www.bdnf.com
https://www.ceog.com
a	line	with	https://www.ceog.com	embedded	in	it	The	following	snippet	matches
the	lines	that	contain	the	strings	http	or	https:	perl	-wln	-e	'print	if	/http?/'	urls.txt

The	output	is	here:

http://www.bdnf.com
https://www.ceog.com
a	line	with	https://www.ceog.com	embedded	in	it	The	following	snippet	matches
the	lines	that	contain	the	strings	ftp,	http,	or	https:	ftp://www.acme.com
http://www.bdnf.com
https://www.ceog.com
a	line	with	https://www.ceog.com	embedded	in	it	The	following	snippet	matches
the	lines	that	contain	the	string	http	embedded	in	the	line	of	text:	perl	-wln	-e
'print	if	/^([a-z]+)https?://[a-z\.]*/'	urls.txt

The	output	is	here:

a	line	with	https://www.ceog.com	embedded	in	it

One	interesting	point:	the	equivalent	RE	with	the	egrep	command	is	here	(the
initial	whitespace	is	specified	in	a	different	location):	egrep	"^([a-z]+)https?://[a-
z\.]*"	urls.txt

The	preceding	code	snippet	specifies	a	whitespace	and	any	lowercase	letter
in	 this	 expression:	 [a-z].	 However,	 the	 corresponding	 section	 in	 the	 Perl
expression	must	include	the	whitespace	after	the	range	of	lowercase	letters:	[a-z
].	 If	you	do	not	make	 this	slight	modification,	you	will	see	 the	following	error
message:	Unquoted	string	"a"	may	clash	with	future	reserved	word	at	-e	line	1.
syntax	error	at	-e	line	1,	near	"a-z"

REs	AND	ISBNS
Valid	IBSNs	can	start	with	the	optional	string	ISBN,	and	also	contain	either

ten-digit	 sequences	 or	 thirteen-digit	 sequences.	 Listing	 A.13	 displays	 the
contents	of	ISBN.txt,	which	contains	examples	of	valid	ISBN	numbers.

LISTING	A.14:	ISBN.txt
ISBN	978-0-596-52068-7	
ISBN-13:	978-0-596-52068-7	
ISBN-10	0-596-52068-9	
978	0	596	52068	7	
9780596520687	
0-596-52068-9

Notice	that	the	first	line	in	Listing	A.14	contains	the	string	ISBN	followed	by
a	 blank	 space,	 and	 the	 next	 two	 lines	 contain	 the	 string	 ISBN,	 followed	 by	 a
hyphen,	and	then	two	more	digits,	and	then	either	a	colon	“:”	or	a	blank	space.
Those	two	lines	end	with	a	hyphenated	thirteen-digit	number	and	a	hyphenated
ten-digit	number,	respectively.

The	fourth	 line	 in	Listing	A.14	contains	a	 thirteen-digit	number	with	white
spaces;	 the	fifth	line	contains	a	“pure”	thirteen-digit	number;	and	the	sixth	line
contains	a	hyphenated	ten-digit	number.

Now	 let’s	 see	 how	 to	 match	 the	 numeric	 portion	 of	 the	 ISBNs	 in	 Listing
A.14.	 The	 following	 RE	 matches	 the	 digits	 in	 the	 first	 and	 the	 second	 lines:
\d{3}-\d-\d{3}-\d{5}-\d

The	following	RE	matches	the	digits	in	the	third	line	as	well	as	the	sixth	line:

\d-\d{3}-\d{5}-\d

The	following	RE	matches	the	digits	in	the	fourth	line:

\d{3}	\d	\d{3}	\d{5}	\d

The	following	RE	matches	the	digits	in	the	fifth	line:

\d{13}

Now	 let’s	 create	REs	 for	 the	 text	prefix	 (when	present)	 and	 combine	 them
with	 the	 earlier	 list	 of	 REs	 to	 match	 entire	 lines	 in	 Listing	 A.14.	 The	 result
involves	four	REs,	as	shown	in	the	following	examples:	1.	the	RE	(^([A-Z]{4}[-
]?)?	\d{3}-\d-\d{3}-\d{5}-\d)	matches:

ISBN	978-0-596-52068-7
ISBN-13:	978-0-596-52068-7
ISBN-10	0-596-52068-9

2.	the	RE	(\d{3}	\d	\d{3}	\d{5}	\d)	matches:

978-0-596-52068-7	
978	0	596	52068	7

3.	the	RE	(\d{13})	matches:

9780596520687

4.	the	RE	(\d-\d{3}-\d{5}-\d)	matches:

0-596-52068-9

Now	we	can	combine	the	preceding	four	REs	to	create	a	single	(and	lengthy)
RE	that	matches	every	valid	ISBN	in	the	text	file	ISBN.txt:	perl	-wln	-e	'print	if
/^((([A-Z]{4}-\d{2}:	 \d{3}-\d-)|([A-Z]{4}-\d{2}	 \d-))?\d{3}-\d{5}-\d)|(^([A-Z]
{4}[-]?)?	\d{3}-\d-\d{3}-\d{5}-\d)|(\d{3}	\d	\d{3}	\d{5}	\d)|(\d{13})|(\d-\d{3}-
\d{5}-\d)/'	 ISBN.txt	 If	 you	 decide	 to	 use	 the	 preceding	 RE	 in	 a	 bash	 script,
please	include	a	comment	block	that	explains	how	you	derived	the	RE	and	any
other	assumptions	that	you	made	for	the	task	at	hand.

MISCELLANEOUS	PATTERNS
This	 section	 contains	 examples	 of	REs	 that	match	 simple	 comment	 strings

(in	source	code).	Listing	A.15	displays	the	contents	of	lines7.txt,	which	is	used
in	some	code	snippets.

LISTING	A.15:	lines7.txt
192.168.3.99
192.168.123.065
//	this	is	a	comment
v	=	7;	//	this	is	also	a	comment
/*	the	third	comment	*/
x	=	7;	/*	the	fourth	comment	*/
y	=	\uFFEA;
z	=	0xFFFF00;
MyPaSsW0rd
mypasss0rd	The	following	RE	matches	lines	that	start	with	//:

perl	-wln	-e	'print	if	/^\/\//'	lines7.txt

The	output	is	here:

//	this	is	a	comment

The	following	RE	matches	lines	that	contain	any	occurrence	of	//:	perl	-wln	-
e	'print	if	/\/\/'	lines7.txt

The	output	is	here:

//	this	is	a	comment
v	=	7;	//	this	is	also	a	comment

The	following	RE	matches	lines	that	start	with	/*:

perl	-wln	-e	'print	if	/^\/*/'	lines7.txt

The	output	is	here:

/*	the	third	comment	*/

The	following	RE	matches	lines	that	contain	an	occurrence	of	/*:

perl	-wln	-e	'print	if	/^\/*/'	lines7.txt

The	output	is	here:

/*	the	third	comment	*/

x	=	7;	/*	the	fourth	comment	*/

REs	and	IP	Addresses
This	 section	 contains	 examples	 of	REs	 that	match	 IP	 addresses	 that	 are	 in

Listing	A.15	in	the	previous	section.
The	following	RE	matches	arbitrary	valid	IP	addresses:

perl	-wln	-e	'print	if	/^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}'	lines7.txt

The	output	is	here:

192.168.3.99
192.168.123.065

The	following	RE	matches	valid	IP	addresses	that	contain	three	digits	in	all
four	components:	perl	-wln	-e	'print	if	/^\d{3}\.\d{3}\.\d{3}\.\d{3}'	lines7.txt

The	output	is	here:

192.168.123.065

MIXED-CASE	STRINGS	AND	REs
This	 section	 contains	 examples	 of	 REs	 that	 match	 mixed-case	 strings

(typically	user	names).	Listing	A.15	displays	the	contents	of	lines10.txt,	which	is
used	in	some	code	snippets.

LISTING	A.16:	lines9.txt
John	Smith	is	grey.	the	cat	is	gray.
He	is	John	Smith.	the	cat	is	gray.
He	is	John	smith.	the	cat	is	gray.
He	is	john	smith.	the	cat	is	gray.
that	cat	is	called	.doc	The	following	RE	matches	mixed-case	strings:

perl	-wln	-e	'print	if	/[A-Z][a-z]+'/	lines9.txt

The	output	is	here:

John	Smith	is	grey.	the	cat	is	gray.
He	is	John	Smith.	the	cat	is	gray.

The	following	RE	matches	mixed-case	strings	that	end	with	a	period	“.”:

perl	-wln	-e	'print	if	/[A-Z][a-z]+\.'/	lines9.txt

The	output	is	here:

He	is	John	Smith.	the	cat	is	gray.

The	 following	RE	matches	mixed-case	 strings	 that	 start	with	 an	 uppercase
letter:

perl	-wln	-e	'print	if	/^[A-Z][a-z]+'/	lines9.txt

The	output	is	here:

John	Smith	is	grey.	the	cat	is	gray.
He	is	John	Smith.	the	cat	is	gray.
He	is	John	smith.	the	cat	is	gray.
He	is	john	smith.	the	cat	is	gray.

The	following	RE	matches	strings	that	start	with	an	uppercase	letter	followed
by	a	space,	another	lowercase	string,	and	end	in	a	period	“.”:	perl	-wln	-e	'print	if
/[A-Z][a-z]+	[a-z]+\.'/	lines9.txt

The	output	is	here:

He	is	John	smith.	the	cat	is	gray.

The	following	RE	matches	strings	that	start	with	an	uppercase	or	lowercase
J,	followed	by	the	letters	ohn:	perl	-wln	-e	'print	if	/[Jj]ohn'/	lines9.txt

The	output	is	here:

John	Smith	is	grey.	the	cat	is	gray.
He	is	John	Smith.	the	cat	is	gray.
He	is	John	smith.	the	cat	is	gray.
He	is	john	smith.	the	cat	is	gray.

Another	 RE	 that	 uses	 the	 “|”	 metacharacter	 to	 match	 strings	 that	 contain
either	John	or	john	is	here:	perl	-wln	-e	'print	if	/(John|john)'/	lines9.txt

The	output	is	here:

John	Smith	is	grey.	the	cat	is	gray.
He	is	John	Smith.	the	cat	is	gray.
He	is	John	smith.	the	cat	is	gray.
He	is	john	smith.	the	cat	is	gray.

The	 following	 RE	 matches	 strings	 that	 do	 not	 start	 with	 an	 uppercase	 or
lowercase	 J,	 followed	 by	 the	 letters	 ohn:	 perl	 -wln	 -e	 'print	 if	 /[^Jj]ohn)/'
lines9.txt

There	is	no	output	for	the	preceding	RE	because	there	are	no	matching	lines.

USING	\S	AND	\s	WITH	WHITESPACES
The	 expression	 \s	 matches	 a	 single	 whitespace.	 The	 following	 expression

matches	lines	that	start	with	one	or	more	whitespaces,	followed	by	the	string	cat:
perl	-wln	-e	'print	if	/\s+cat/'	lines3.txt

The	output	is	here:

catfish

The	 following	 expression	 matches	 lines	 that	 start	 with	 one	 or	 more
whitespaces,	any	number	of	characters,	then	followed	by	the	string	cat:	perl	-wln
-e	'print	if	/\s+.*cat'/	lines3.txt

The	output	is	here:

catfish
small	catfish

Use	\S	when	you	want	to	match	non-whitespace	characters.	For	example,	the
following	expression	matches	lines	that	do	not	start	with	a	whitespace:	perl	-wln
-e	'print	if	/^\S+'/	lines3.txt

The	output	is	here:

grey.	
.gray	
dog
doggy
cat
catty	USING	\W	AND	\w	WITH	WORDS

The	expression	\w	matches	a	single	word.	The	following	expression	matches

lines	that	start	with	a	word:	perl	-wln	-e	'print	if	/^\w'/	lines3.txt
The	output	is	here:

grey.	
dog
doggy
cat
catty	The	expression	\W	matches	a	non-word.	The	following	expression	matches
lines	that	do	not	start	with	a	word:	perl	-wln	-e	'print	if	/^\W'/	lines3.txt

The	output	is	here:

.gray	
catfish
small	catfish

The	 following	 expression	 matches	 lines	 that	 do	 not	 start	 with	 a	 word,
followed	by	the	string	cat:	perl	-wln	-e	'print	if	/^\Wcat'/	lines3.txt

The	output	is	here:

catfish

SEARCH	AND	REPLACE	REs	IN	PERL
In	Chapter	 1	 the	 “use	 case”	 section	 contains	 a	 search-and-replace	 example

that	 uses	 a	 Perl-based	 RE.	 For	 your	 convenience,	 Listing	 A.17	 displays	 the
contents	of	alphanums.txt,	which	consists	of	two	comma-separated	fields	in	each
row.

LISTING	A.17:	alphanums.txt

"AAA_1234_4",1XY
"BBB_5678_3",2YX
"CCC_9012_2",3YZ
"DDD_3456_1",4WX

A	Perl-based	RE	for	replacing	everything	except	letters	and	digits	with	blank
spaces	is	shown	here:	perl	-pln	-e	's/[^a-zA-Z0-9]/	/g'	alphanums.txt

The	result	of	the	preceding	code	snippet	is	here:

AAA	1234	4	1XY
BBB	5678	3	2YX
CCC	9012	2	3YZ
DDD	3456	1	4WX

If	 you	 read	 Chapter	 5,	 you	 recognize	 that	 the	 RE	 (shown	 in	 bold)	 in	 the
preceding	code	snippet	bears	an	uncanny	resemblance	to	a	sed-based	RE.

Now	let’s	look	at	a	Perl-based	RE	for	replacing	non-digits	with	blank	spaces,
as	shown	here:	perl	-pln	-e	's/[^0-9]/	/g'	alphanums.txt

The	result	of	the	preceding	code	snippet	is	here:

1234	4	1
5678	3	2
9012	2	3
3456	1	4

As	you	can	 see,	 each	of	 the	 four	output	 lines	 starts	with	 five	blank	 spaces
because	 the	preceding	Perl	snippet	 replaces	a	non-digit	with	a	blank.	Since	 the
lines	 in	 alphanums.txt	 start	with	 a	 quote	 (“),	 followed	 by	 three	 capital	 letters,
then	 another	 quote	 (“),	 those	 five	 characters	 are	 replaced	 by	 blanks.	 Similar
comments	apply	to	the	other	whitespaces	that	appear	in	the	output.

TESTING	REs:	ARE	THEY	ALWAYS	CORRECT?
The	concepts	in	this	section	are	applicable	to	other	programming	languages,

and	 not	 just	 with	 Perl.	 The	 key	 point	 to	 remember:	 if	 slightly	 different	 REs
generate	the	same	output,	is	this	due	to	the	contents	of	the	dataset?	Phrased	in	a
slightly	different	way:	how	do	you	know	that	your	dataset	contains	a	sufficient
variety	of	text	strings	to	ensure	that	differences	in	the	output	of	slightly	different
REs	is	not	due	to	your	specific	dataset?

This	 is	 an	 important	 question.	 Consider	 a	 production	 application	 that	 has
worked	 correctly	 for	 months	 with	 user-based	 input.	 Suddenly	 the	 application
fails,	and	after	much	effort	you	discover	that	an	RE	in	the	application	does	not
handle	a	rarely	encountered	character	sequence.

As	an	example,	the	following	RE	matches	all	the	lines	in	lines1.txt:	perl	-ne
'print	if	/\bg\w+/'	lines1.txt

The	preceding	snippet	produces	this	output:

the	dog	is	grey	and	the	cat	is	gray.

this	dog	is	grey
that	cat	is	gray	Now	consider	the	following	REs	that	match	lines	with	words
ending	with	‘g’:	perl	-ne	'print	if	/g\w+\b/'	lines1.txt
perl	-ne	'print	if	/g\w+\b/	'	lines1.txt
perl	-ne	'print	if	/g\w+\b/	'	lines1.txt
perl	-ne	'print	if	/	g\w+\b/'	lines1.txt
perl	-ne	'print	if	/[^g]g\w+\b/'	lines1.txt
perl	-ne	'print	if	/[]g\w+\b/'	lines1.txt
perl	-ne	'print	if	/[]g\S+\b/'	lines1.txt	The	preceding	snippets	produce	the	same
output:

the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey
that	cat	is	gray	However,	the	following	snippet	produces	a	different	output:

perl	-ne	'print	if	/[^]g\w*\b/'	lines1.txt

The	result	of	the	preceding	code	snippet	is	here:

the	dog	is	grey	and	the	cat	is	gray.
this	dog	is	grey

Next,	 the	 following	 REs	match	 words	 that	 start	 with	 ‘	 g	 ‘:	 perl	 -ne	 'print
"$&\n"	if	/\bg\w+/'	lines1.txt
perl	-ne	'print	"$&\n"	if	/g\w+\b/	'	lines1.txt
perl	-ne	'print	"$&\n"	if	/g\w+\b/	'	lines1.txt
perl	-ne	'print	"$&\n"	if	/	g\w+\b/'	lines1.txt
perl	-ne	'print	"$&\n"	if	/[]g\w+\b/'	lines1.txt
perl	-ne	'print	"$&\n"	if	/	g\w+\b/'	lines1.txt	The	preceding	snippets	all	produce
the	same	output:

grey
grey
gray

However,	the	following	snippets	produce	a	different	output:

perl	-ne	'print	"$&\n"	if	/[^g]g\w+\b/'	lines1.txt

[empty	output]

perl	-ne	'print	"$&\n"	if	/[^]g\w*\b/'	lines1.txt
og
og	The	code	snippets	are	grouped	in	blocks,	and	in	each	block	the	code	snippets
look	very	similar,	but	they	have	subtle	differences	that	require	a	solid
understanding	of	metacharacters	in	REs.

While	 it’s	 virtually	 impossible	 to	 check	 all	 possible	 combinations	 of
characters	in	a	text	string,	you	need	to	be	vigilant	and	test	your	REs	on	a	large
variety	of	patterns	to	minimize	the	likelihood	of	matching	(or	not	matching)	an
“outlier”	RE.

Summary
This	 Appendix	 started	 with	 an	 introduction	 to	 some	 basic	 REs	 in	 Perl,

followed	 by	 examples	 that	 illustrate	 how	 to	 match	 (or	 how	 to	 not	 match)
characters	or	words.	Next	you	learned	about	the	metacharacter	“^”	and	how	its
interpretation	 depends	 on	 its	 location	 in	 an	 RE,	 followed	 by	 the	 “$”
metacharacter	for	matching	strings	at	the	end	of	a	line.

You	then	saw	how	to	use	the	metacharacters	“.”,	“*”,	and	“	\”to	create	REs
that	are	combinations	of	metacharacters,	along	with	“escaping”	the	meaning	of
metacharacters.

Moreover,	you	learned	how	to	create	REs	for	common	strings,	such	as	dates,
U.S.	phone	numbers,	zip	codes	(U.S.	and	Canadian),	and	some	email	addresses.
Then	you	saw	how	to	detect	IP	addresses	and	comments	in	source	code,	as	well
as	create	REs	for	matching	ISBNs.

Although	the	REs	in	this	Appendix	are	not	exhaustive,	they	do	provide	you
with	enough	information	 to	help	you	define	REs	that	are	more	comprehensive.
In	addition,	you	are	now	in	a	good	position	to	convert	the	other	REs	in	Chapter	2
(that	are	not	covered	in	this	Appendix)	into	Perl-based	REs.

T

APPENDIX	B

REs	IN	JAVA

his	short	Appendix	introduces	you	to	REs	in	Java,	with	code	samples	that
illustrate	how	to	work	with	REs	in	Java	programs.	Keep	in	mind	that	the
Java	code	samples	in	this	Appendix	contain	compiled	code,	which	differs

from	the	Perl	Appendix	and	all	the	book	chapters.	However,	even	if	you	are	new
to	 Java,	 the	REs	 in	 the	 code	 samples	have	already	been	discussed	 in	 the	book
chapters,	so	you	can	easily	follow	the	Java	code.	In	any	case,	 this	Appendix	is
optional.

The	 first	 section	 of	 this	Appendix	 contains	 an	 eclectic	mix	 of	 REs	 (all	 of
which	appear	in	Chapter	1	or	Chapter	2)	in	complete	Java	code	samples.	
Although	there	are	fewer	Java	code	samples	in	this	Appendix	(compared	to	the
number	of	REs	in	Chapter	1),	they	contain	a	greater	assortment	of	REs.

The	 second	part	of	 this	Appendix	contains	 some	code	 snippets	with	Scala-
based	REs.	This	section	is	extremely	short,	and	if	you	like	the	Java	section,	then
this	section	will	be	a	very	simple	transition.	If	you	want	more	practice,	feel	free
to	convert	the	code	samples	in	Chapter	1	into	their	Scala-based	counterparts.

Please	keep	in	mind	the	following	points	when	you	read	this	Appendix.	First,
the	 discussions	 of	 metacharacters	 and	 character	 classes	 in	 Chapter	 1	 are	 not
repeated	in	this	Appendix.

Second,	if	you	want	to	launch	the	Java	code	samples	from	the	command	line,
it	means	that	you	might	need	to	perform	an	Internet	search	in	order	to	download
and	 install	 the	 necessary	 software	 for	 your	 platform.	 Alternatively,	 you	 can
simply	read	the	output	that	accompanies	the	code	samples	in	this	chapter	(so	you
won’t	need	to	launch	the	code	yourself).

Third,	 this	 Appendix	 does	 not	 provide	 any	 tutorial-style	 material	 that
explains	how	to	create,	compile,	and	launch	Java	or	Scala	programs.	Fortunately,
the	 code	 samples	 are	 rudimentary,	 and	 they	 do	 not	 require	 any	 knowledge	 of
OOP	(Object	Oriented	Programming)	to	understand	them.	However,	familiarity
with	 functional	 programming	 is	 definitely	 helpful	 if	 you	 decide	 to	 learn	more

about	Scala.
Finally,	this	Appendix	skips	the	details	regarding	the	underlying	classes	and

interfaces	 that	 provide	 support	 for	 REs	 in	 Java.	 If	 you’re	 interested,	 you	 can
perform	an	online	search	to	learn	about	those	details.

WORKING	WITH	STRINGS	AND	JAVA	REs
Listing	 B.1	 displays	 the	 contents	 of	 SimpleStrings.java,	 which	 illustrates

how	to	work	with	strings	and	very	simple	REs	in	Java.

LISTING	B.1:	SimpleStrings.java
public	class	SimpleStrings

{
public	static	void	main(String[]	args)
{

String	line1	=	"hello";
System.out.println("===>	LINE:	"+line1);

//	true
System.out.println("Pattern:	hello");
System.out.println("Match:"+line1.matches("hello"));

//	true
System.out.println("Pattern:	[hH]ello");
System.out.println("Match:"+line1.matches("[hH]ello"));

//	false
System.out.println("Pattern:	he");
System.out.println("Match:"+line1.matches("he"));

//	false
System.out.println("Pattern:	goodbye");
System.out.println("Match:"+line1.matches("goodbye"));

}
}

Listing	B.1	contains	 four	pairs	of	code	snippets	 that	compare	REs	with	 the
string	hello,	and	each	code	snippet	is	preceded	by	a	comment	line	that	indicates

whether	the	result	is	true	or	false.	All	four	pattern	matches	rely	on	the	matches()
method	of	the	Java	String	class.	The	first	result	is	obviously	true,	and	the	second
result—which	 is	 also	 true—shows	 you	 how	 to	 define	 a	 simple	 RE	 with	 a
character	class.

The	third	result	might	surprise	you:	only	a	full	match	yields	a	true	result,	and
since	the	string	he	is	a	proper	substring	of	hello,	 the	result	 is	false.	Finally,	 the
fourth	result	is	clearly	false.

The	output	from	launching	the	code	in	Listing	B.1	is	here:

===>	LINE:	hello
Pattern:	hello
Match:	true
Pattern:	[hH]ello
Match:	true
Pattern:	he
Match:	false
Pattern:	goodbye
Match:	false

WORKING	WITH	NUMBERS	AND	JAVA	REs
Listing	B.2	 displays	 the	 contents	 of	 SimpleNumbers.java,	which	 illustrates

how	to	work	with	strings	and	familiar	REs	in	Java.

LISTING	B.2:	SimpleNumbers.java

public	class	SimpleNumbers
{
public	static	void	main(String[]	args)
{

String	line1	=	"123	456";
System.out.println("===>	LINE:	"+line1);

//	true
System.out.println("Pattern:	^[\\d].*");	
System.out.println("Match:	"+line1.matches("^[\\d].*"));

//	true
System.out.println("Pattern:	^[\\d]+\\s+[\\d]+.*");

System.out.println("Match:	"+

line1.matches("^[\\d]+\\s+[\\d]+.*"));

}
}

Listing	B.2	contains	a	string	that	consists	of	two	integers	that	are	separated
by	a	space.	The	first	RE	matches	a	string	that	starts	with	a	number,	followed	by
zero	 or	more	 arbitrary	 characters.	 The	 second	 RE	matches	 a	 string	 that	 starts
with	 a	 number,	 followed	 by	 one	 or	 more	 spaces,	 which	 is	 then	 followed	 by
another	number,	and	then	zero	or	more	arbitrary	characters.	As	you	can	see,	the
string	line1	matches	both	REs.

The	output	from	launching	the	code	in	Listing	B.1	is	here:

===>	LINE:	123	456
Pattern:	^[\d].*
Match:	true
Pattern:	^[\d]+\s+[\d]+.*
Match:	true

WORKING	WITH	RANGES	AND	JAVA	REs
Listing	 B.3	 displays	 the	 contents	 of	 SimpleRanges.java,	 which	 illustrates

how	to	work	with	the	strings	and	REs	that	you	saw	in	Chapter	1.

LISTING	B.3:	SimpleRanges.java
import	java.util.regex.Matcher;
import	java.util.regex.Pattern;

public	class	SimpleRanges
{
public	static	void	main(String[]	args)

{

//String	line1	=	"hello	world";
String	line1	=	"hello";
System.out.println("===>	LINE:	"+line1);

//	true	

System.out.println("Pattern:	[hH]ello");
System.out.println("Match:	"+line1.matches("[hH]ello"));

//	true	(requires	exact	match)
System.out.println("Pattern:	hello|world");
System.out.println("Match:	"+line1.matches("hello|world"));

}
}

Listing	B.3	contains	two	REs,	where	the	first	RE	specifies	a	character	class.
The	second	RE	contains	a	pipe	“|”	symbol,	which	you	know	is	used	for	an	either-
or	match.	 Based	 on	 your	 knowledge	 of	REs,	 both	 pattern	matches	 are	 clearly
true.

The	output	from	launching	the	code	in	Listing	B.3	is	here:

===>	LINE:	hello
Pattern:	[hH]ello
Match:	true
Pattern:	hello|world
Match:	true

WORKING	WITH	STRINGS	AND	NUMBERS	AND	JAVA	REs
Listing	B.4	 displays	 the	 contents	 of	 StringsNumbers.java,	which	 illustrates

how	to	work	with	strings	and	REs	that	contain	metacharacters.

LISTING	B.4:	StringsNumbers.java
public	class	StringsNumbers
{

public	static	void	main(String[]	args)
{

String	line1	=	"123hello456";
System.out.println("===>	LINE:	"+line1);

//	true	
System.out.println("Pattern:	^[\\d].*");
System.out.println("Match:	"+line1.matches("^[\\d].*"));

//	true	
System.out.println("Pattern:	.*\\d{3}$");
System.out.println("Match:	"+line1.matches(".*\\d{3}$"));

//	true	
System.out.println("Pattern:	^\\d{3}[a-z]+\\d{3}$");
System.out.println("Match:	"+	line1.matches("^\\d{3}[a-z]+\\d{3}$"));

}
}

Listing	 B.4	 contains	 a	 string	 consisting	 of	 three	 digits,	 followed	 by	 five
characters,	and	then	another	three	digits.	The	first	RE	matches	strings	that	start
with	an	 integer.	The	second	RE	matches	strings	 that	end	with	 three	digits.	The
third	RE	matches	 strings	 that	 start	with	 three	 digits,	 followed	 by	 one	 or	more
lowercase	letters,	and	then	end	with	three	digits.	Hence,	the	pattern	match	for	all
three	REs	is	true.

The	output	from	launching	the	code	in	Listing	B.4	is	here:

===>	LINE:	123hello456
Pattern:	^[\d].*
Match:	true
Pattern:	.*\d{3}$
Match:	true
Pattern:	^\d{3}[a-z]+\d{3}$
Match:	true

MIXED-CASE	STRINGS	AND	REs
Listing	B.5	displays	the	contents	of	MixedCase.java,	which	illustrates	how	to

work	with	mixed-case	strings	and	REs	in	Java.

LISTING	B.5:	MixedCase.java
public	class	MixedCase
{
public	static	void	main(String[]	args)
{

String	line1	=	"Hello";
System.out.println("===>	LINE:	"+line1);

//	true
System.out.println("Pattern:	[A-Za-z]+");
System.out.println("Match:	"+line1.matches("[A-Za-z]+"));

//	true
System.out.println("Pattern:	^[A-Za-z]+$");
System.out.println("Match:	"+line1.matches("^[A-Za-z]+$"));

//	true
System.out.println("Pattern:	^[A-Z][a-z]+");
System.out.println("Match:	"+line1.matches("^[A-Z][a-z]+"));

//	true
System.out.println("Pattern:	^[A-Z][a-z]{4,6}");
System.out.println("Match:	"+
line1.matches("^[A-Z][a-z]{4,6}"));

}
}

Listing	 B.5	 contains	 a	 string	 consisting	 of	 lowercase	 letters.	 The	 first	 RE
matches	strings	that	contain	one	or	more	lowercase	or	uppercase	letters,	 in	any
order.	The	second	RE	matches	strings	 that	start	with	one	or	more	lowercase	or
uppercase	letters	(also	in	any	order).	The	third	RE	matches	strings	that	start	with
an	uppercase	letter,	followed	by	a	range	of	lowercase	or	uppercase	letters	(also	in
any	order),	where	the	range	is	between	four	and	six	inclusive.	Hence,	the	pattern
match	for	all	three	REs	is	true.

The	output	from	launching	the	code	in	Listing	B.5	is	here:

===>	LINE:	Hello
Pattern:	[A-Za-z]+
Match:	true
Pattern:	^[A-Za-z]+$
Match:	true
Pattern:	^[A-Z][a-z]+
Match:	true
Pattern:	^[A-Z][a-z]{4,6}
Match:	true

MIXING	(AND	ESCAPING)	METACHARACTERS

Listing	B.6	displays	the	contents	of	EscapeMeta.java,	which	illustrates	how
to	“escape”	and	also	match	metacharacters	in	strings.

LISTING	B.6:	EscapeMeta.java
public	class	EscapeMeta
{
public	static	void	main(String[]	args)
{

String	line1	=	".hello$";
System.out.println("===>	LINE:	"+line1);

//	true
System.out.println("Pattern:	.hello$");
System.out.println("Match:	"+line1.matches(".hello$"));

//	true
System.out.println("Pattern:	\\.hello\\$");
System.out.println("Match:	"+line1.matches("\\.hello\\$"));

//	true
System.out.println("Pattern:	\\.[A-Za-z]+\\$");
System.out.println("Match:	"+line1.matches("\\.[A-Za-z]+\\$"));

}
}

Listing	 B.6	 contains	 a	 string	 that	 starts	 with	 a	 period	 “.”,	 followed	 by
lowercase	letters,	and	ending	with	a	dollar	sign	“$”.	The	first	RE	fails	to	match
the	string	because	the	initial	“.”	and	final	“$”	are	treated	as	metacharacters.	By
contrast,	the	second	RE	successfully	matches	because	the	initial	“.”	and	final	“$”
are	both	“escaped”	via	a	pair	of	consecutive	backslash	“	\”	characters.	The	third
RE	 is	 a	 modified	 version	 of	 the	 second	 RE:	 the	 hard-coded	 string	 hello	 is
replaced	with	the	RE	[A-Za-z]+	,	which	matches	the	initial	string	hello.

The	output	from	launching	the	code	in	Listing	B.6	is	here:

===>	LINE:	.hello$
Pattern:	.hello$
Match:	false
Pattern:	\.hello\$
Match:	true

Pattern:	\.[A-Za-z]+\$
Match:	true

WORKING	WITH	DATE-RELATED	REs	IN	JAVA
The	 title	 of	 this	 section	 explicitly	mentions	 date-related	REs	 because	 Java

provides	extensive	support	for	dates	and	calendars	via	date-related	and	calendar-
related	classes	that	match	many	different	date	formats.	Hence,	you	do	not	need
to	use	REs	in	Java	if	you	need	to	work	with	dates.	In	fact,	those	classes	provide
many	other	date-related	 features	 that	are	unavailable	 in	REs,	and	you	ought	 to
explore	 those	 Java	 classes	 if	 you	 need	 more	 sophisticated	 data-related
functionality.

Keep	 in	mind	 that	 this	 section	 does	 not	 use	 any	 date-related	 Java	 classes:
we’ll	 use	 simple	REs	 to	match	patterns	 of	 strings	 that	 have	 two	different	 date
formats.

Listing	B.7	displays	 the	contents	of	DateStrings.java,	which	 illustrates	how
to	match	some	valid	dates.

LISTING	B.7:	DateStrings.java
public	class	DateStrings
{
public	static	void	main(String[]	args)
{

String	line1	=	"05/12/18";
String	line2	=	"05.12.18";
System.out.println("===>	LINE:	"+line1);

//	true
System.out.println("Pattern:	\\d{2}.\\d{2}.\\d{2}");
System.out.println("Match:	"+
line1.matches("\\d{2}.\\d{2}.\\d{2}"));

System.out.println("===>	LINE:	"+line2);

//	true
System.out.println("Pattern:	\\d{2}.\\d{2}.\\d{2}");
System.out.println("Match:	"+
line2.matches("\\d{2}.\\d{2}.\\d{2}"));

}
}

Listing	B.7	contains	 two	date-related	 strings:	 the	 first	has	 the	MM/DD/YY
format,	 and	 the	 second	has	 the	MM.DD.YY	 format.	However,	we	 can	use	 the
same	RE	 to	match	 both	 date	 formats:	 \\d{2}.\\d{2}.\\d{2}.	 The	 preceding	 RE
contains	 the	 “.”	metacharacter	 that	matches	 the	 “.”	 in	 the	 first	 date	 string	 and
also	the	“/”	in	the	second	date	string.

The	output	from	launching	the	code	in	Listing	B.7	is	here:

===>	LINE:	05/12/18
Pattern:	\d{2}.\d{2}.\d{2}
Match:	true
===>	LINE:	05.12.18
Pattern:	\d{2}.\d{2}.\d{2}
Match:	true

WORKING	WITH	U.S.	ZIP	CODES
Listing	B.8	displays	the	contents	of	USZipCodes.java,	which	illustrates	how

to	match	some	U.S.	zip	codes.

LISTING	B.8:	USZipCodes.java
public	class	DateStrings
{
public	static	void	main(String[]	args)
{

String	line1	=	"94043";
String	line2	=	"94043-04123";
System.out.println("===>	LINE:	"+line1);

//	true
System.out.println("Pattern:	\\d{5}");
System.out.println("Match:	"+line1.matches("\\d{5}"));

System.out.println("===>	LINE:	"+line2);

//	true
System.out.println("Pattern:	\\d{5}(-\\d{5})");
System.out.println("Match:	"+line2.matches("\\d{5}(-\\d{5})"));

}
}

Listing	 B.8	 contains	 two	 REs	 for	 U.S.	 zip	 codes.	 The	 first	 RE	 is	 \\d{5},
which	matches	many	(most?)	U.S.	zip	codes.	The	second	RE	is	\\d{5}	(-\\d{5})),
which	 matches	 U.S.	 zip	 codes	 which	 are	 qualified	 by	 an	 extra	 five-digit
sequence.

The	output	from	launching	the	code	in	Listing	B.8	is	here:

===>	LINE:	94043
Pattern:	\d{5}
Match:	true
===>	LINE:	94043-04123
Pattern:	\d{5}(-\d{5})	
Match:	true

This	 concludes	 the	 Java-related	portion	of	 this	Appendix.	The	next	 section
contains	a	few	examples	of	working	with	REs	in	Scala.

WORKING	WITH	REs	IN	SCALA
Scala	 provides	 the	 Regex	 class	 for	 handling	 REs,	 which	 delegates	 to	 the

java.util.regex	package	of	the	Java	Platform.	An	instance	of	Regex	represents	a
compiled	RE	pattern.	For	performance	reasons,	it’s	better	to	construct	frequently
used	REs	only	(preferably	outside	of	loops).

More	information	is	available	here:
http://www.scala-lang.org/api/current/scala/util/matching/Regex.html
As	a	simple	example,	the	following	RE	in	Scala	matches	an	integer:

val	num	=	raw"(\d+)".r

Even	 if	you	are	unfamiliar	with	Scala,	you	can	see	 that	 the	preceding	code
snippet	initializes	the	variable	num	as	an	RE	that	consists	of	one	or	more	digits
via	the	\d+	expression.

The	 following	 code	 snippet	 illustrates	 how	 to	 create	 an	 RE	 that	 matches
dates	that	consist	of	four	digits,	a	hyphen,	a	pair	of	digits,	a	hyphen,	and	another
pair	of	digits:

val	date	=	raw"(\d{4})-(\d{2})-(\d{2})".r

Since	escape	characters	 are	not	processed	 in	multi-line	 string	 literals,	 three

consecutive	 quotes	 (before	 and	 after)	 avoids	 the	 need	 to	 escape	 the	 backslash
character.	Hence,	\\d	can	also	be	written	as	"""\d""".

Extraction
To	extract	the	capturing	groups	when	an	RE	is	matched,	use	it	as	an	extractor

in	a	pattern	match:
REs	in	Scala	have	access	to	various	methods,	such	as	start()	and	hasNext(),

as	shown	here:

val	r	=	"(ab+c)".r
val	s	=	"xxxabcyyyabbczzz"
r.findAllIn(s).start	//	3
val	mi	=	r.findAllIn(s)
mi.hasNext	//	true	
mi.start	//	3	
mi.next()	//	"abc"	
mi.start	//	3	
mi.hasNext	//	true	
mi.start	//	9	
mi.next()	//	"abbc"

The	method	findAllIn()	finds	non-overlapping	matches,	as	shown	here:

val	num	=	raw"(\d+)".r
val	all	=	num.findAllIn("123").toList	//	creates	List("123")

SUMMARY

This	 Appendix	 started	 with	 an	 introduction	 to	 some	 basic	 REs	 in	 Java,
followed	 by	 examples	 that	 illustrate	 how	 to	 match	 (or	 how	 to	 not	 match)
characters	 or	words.	You	 saw	 examples	 of	 using	metacharacters	 and	 character
classes	 to	 match	 sequences	 of	 numbers	 and	 characters	 (uppercase	 and
lowercase).	Moreover,	you	learned	how	to	create	REs	for	common	strings,	such
as	dates,	U.S.	phone	numbers,	and	U.S.	zip	codes.

Then	you	 learned	how	to	create	REs	 in	Scala,	which	provides	a	“wrapper”
around	a	Java	class	for	matching	REs.

INDEX

“.”	metacharacter,	7–8,	128–129
“?”	metacharacter,	13–14,	134–135
“*”	metacharacter,	7–8,	128–129
“^”	metacharacter,	6,	128
“+”	metacharacter,	13–14
“|”	metacharacter,	13–14,	135–136
“$”	metacharacter,	7,	128
“\”	metacharacters,	7–8,	128–129

A

additional	matching	functions,	67–68
array	of	strings,	90
awk	command,	111–113

built-in	variables,	control,	112
reversing	all	rows,	116–117
working,	112–113

awk	script	rotaterows.sh,	121

B

back	references,	50–51,	108–109
backslashes,	48–49
bash	commands,	97–123

adjacent	columns,	switching,	118,	119
complex	example,	121–122
consecutive	columns,	switching,	119–120
file,	reversing	lines,	117–118
metacharacters	and	character	sets,	114–115
printing	lines,	conditional	logic,	115–116
sed	command,	97–98
selecting	and	switching,	columns,	116

\b	expression,	17–18
\B	expression,	17–18

binary	numbers,	38,	144

C

capitalized	words,	in	string,	67
capture	groups,	49–50,	64
character	classes,	3–4,	21–22

findAll()	method,	66–67
grouping	in	REs,	68–69
in	Python,	59–60
with	re	module,	60
re.search()	method,	65
reversing	words	in	strings,	70
strings,	multiple	consecutive	digits,	69–70

character	sets,	in	Python,	58–59
character	types	counting,	string,	76–77
column	splitting	in	Perl,	22–23
comments,	42–43
common	Regex	tasks,	25–54
compilation	flags,	75
compound	REs,	75–76

D

datasets,	105–108
counting	words	in,	108
printing	lines,	105–106
“pure”	words,	displaying,	110–111

datasets,	multiple	delimiters,	103–104
dates,	\d	and	\D	metaclasses,	137–138
date	strings,	18–20
\d	character	class,	20–21
\D	character	class,	20–21
decimal	numbers,	35–36,	142–143
delimiters,	text	strings	splitting,	72
detect()	function,	96
digits,	text	strings	splitting,	72
“divide	and	conquer”	strategy,	26

E

egrep	utility,	3
email	addresses,	31–33,	140
extraction,	Scala,	166–167

F

file,	reversing	lines,	117–118
findAll()	method,	55

character	classes,	66–67
FTP,	43–44

G

Google	i18n	phone	number	dataset,	29
Google	library,	27,	29
greedy	search,	79
gregexpr	command,	84–85
grep	command,	82
grepl	command,	83
grep	(or	egrep)	utility,	1
“group”	subexpressions,	77
gsub()	commands,	86,	87

H

hard-coded	strings,	1
hexadecimal	color	sequences,	33–34
hexadecimal	numbers,	36–37,	143
http	links,	43–44

I

integers,	35–36,	142–143
Internet	search,	79,	96

IP	addresses,	43,	152
ISBNs,	26,	46–48,	149–150

J

Java	programs,	158–167
date-related	REs,	164–165
mixed-case	strings,	162–163
mixing	and	escaping	metacharacters,	163–164
numbers	and,	160
ranges	and,	160–161
strings	and,	159–160
strings	and	numbers,	161–162
U.S.	zip	codes,	165–166

L

libphonenumber	library,	29–30
linefeed,	48–49

M

metacharacters,	5–6,	21–22
“^,”	6
“$,”	7
“.,”	“*,”	and	“\,”	7–8
“+,”	“?,”	and	“|,”	13–14
“^”	and	“\,”	59
escaping,	10
extended,	13–14
mixing	and	escaping,	examples,	10–13
in	Python,	56–58

miscellaneous	patterns,	151
mixed-case	strings,	14–15,	152–153,	162–163

N

neophyte,	1
numbers,	35–38,	141–144

binary	numbers,	38,	144
hexadecimal	numbers,	36–37,	143
integers	and	decimal	numbers,	35–36,	142–143
octal	numbers,	37–38,	143–144
scientific	numbers,	38–42,	144–148

O

Object	Oriented	Programming,	158
octal	numbers,	37–38,	143–144

P

pattern-matching	functions,	96
performance	factors,	54
Perl-style	RE	patterns,	56,	124–157

character	class,	125–126
dates	and	metacharacters,	136–138
metacharacter,	escaping,	131
“?”	metacharacter,	134–135
“^”	metacharacter,	128
“|”	metacharacter,	135–136
“$”	metacharacter,	128
“.,”	“*”	and	“\”	metacharacters,	128–129
mixing	and	escaping	metacharacters,	132–134
range	of	letters,	126–127
\S	and	\s	with	whitespaces,	154
search	and	replace,	155–156
testing	REs,	156–157
\W	and	\w	with	words,	154–155
whitespaces,	checking,	129–131

phone	numbers,	27–30
libphonenumber	library,	29–30

phonenumbers.txt,	27
printf	command,	aligning	text,	113–114
proper	names,	44–46

Python,	55–79
beginning	and	end	of	text	strings,	73–75
character	classes	in,	59–60
character	sets	in,	58–59
metacharacters	in,	56–58
simple	string	matches,	77–78

Python	re	library,	79
Python	re	module,	modifying	text	

strings,	71

R

R,	in	REs,	80–96
advanced	string	functions,	95–96
array	of	strings,	90
case	sensitivity,	93–94
character	classes,	80–81
element-oriented	philosophy,	81
escaping	metacharacters,	94
examples	of,	94–95
gregexpr	command,	84–85
grep	command,	82
grepl	command,	83
metacharacters,	80–81
multiple	text	substitutions,	vector,	86
one-line	REs	with	metacharacters,	91–93
Perl	RE	support,	81–82
range	of	letters,	88–89
regexpr	command,	83–84
regmatches	command,	85–86
search	functions,	81
string-related	commands,	86–87
stringr	package	in,	96
working	with,	87–88

range	of	letters,	4–5
regexpr	command,	83–84
regmatches	command,	85–86
re.match()	method,	61–64

[A]	options	for,	64–65
re	module,	character	classes,	60
re.search()	method,	character	classes,	65
re.split()	method,	55

splitting	text	strings,	71–72
re.sub()	method,	55

text	strings	substituting,	72–73

S

sapply()	function,	94
Scala	programs,	158,	166–167
scientific	numbers,	38–42,	144–148
sed	command,	97–98

back	references,	108–109
character	classes	and,	106–107
control	characters,	removing,	107–108
datasets,	multiple	delimiters,	103–104
deleting	multiple	digits	and	letters	from	string,	101
execution	cycle,	98
forward	references,	108–110
replacing	vowels	from	string,	101
search	and	replace,	102–103
string	patterns,	matching,	98–99
string	patterns,	substituting,	99–101
switches,	104–105

s	expression,	16
string	grzy,	4
strsplit()	function,	86,	95
sub()	commands,	86
substr()	commands,	86

T

testing	REs,	51–53,	156–157
“Test	String”	field,	23
text	string,	2

U

Unix	grep	command,	1,	2,	81
unlist()	function,	95
url	patterns,	148–149
U.S.	phone	numbers,	28,	141

W

\w	expression,	17
\W	expression,	17
whitespaces,	checking,	8–9

Z

zip	codes	(U.S.	and	Canadian),	30–31,	138–139

	Title
	Copyright
	Contents
	Preface
	Chapter 1: Introduction to Regular Expressions
	What Are REs?
	Your First Character Class
	Specifying a Range of Letters

	Working with the “^” and “$” Metacharacters
	Excluding Matches with the “^” Metacharacter
	Matches with the “$” Metacharacter

	Working with “.”, “*”, and “\” Metacharacters
	Checking for Whitespaces

	Escaping a Metacharacter
	Examples of Mixing (and Escaping) Metacharacters
	The Extended “?” Metacharacters “+”, “?”, and “|”
	Mixed-Case Strings and REs
	Using \s and \s in REs
	Using \W and \w in REs
	Using \B and \b in REs
	Matching Date Strings
	Working with \d and \D in REs

	Summary of Metacharacters and Character Classes
	A Use Case: Column Splitting in Perl (Optional)
	Useful Links
	Chapter Summary

	Chapter 2: Common Regex Tasks
	Some Tips for “Thinking” in REs
	REs and Phone Numbers
	The libphonenumber Library

	REs and Zip Codes (U.S. and Canadian)
	REs and Email Addresses
	Hexadecimal Color Sequences
	Working with Numbers
	REs, Integers, and Decimal Numbers
	REs and Hexadecimal Numbers
	REs and Octal Numbers
	REs and Binary Numbers

	Working with Scientific Numbers
	REs and Scientific Numbers

	REs and Comments
	REs and IP Addresses
	Detecting FTP and HTTP Links
	REs and Proper Names
	REs and ISBNs
	Working with Backslashes and Linefeed (Optional)
	Working with Capture Groups
	Working with Back References
	Testing REs: Are They Always Correct?
	What about Performance Factors?
	Chapter Summary

	Chapter 3: REs in Python
	What Are REs in Python?
	Metacharacters in Python
	Character Sets in Python
	Working with “^” and “\” Metacharacters

	Character Classes in Python
	Matching Character Classes with the re Module
	Using the re.match() Method
	Capture Groups

	Options for the re.match() Method
	Matching Character Classes with the re.search() Method
	Matching Character Classes with the findAll() Method
	Finding Capitalized Words in a String

	Additional Matching Functions for REs
	Grouping with Character Classes in REs
	Using Character Classes in REs
	Matching Strings with Multiple Consecutive Digits
	Reversing Words in Strings

	Modifying Text Strings with the re Module
	Splitting Text Strings with the re.split() Method
	Splitting Text Strings Using Digits and Delimiters
	Substituting Text Strings with the re.sub() Method
	Matching the Beginning and the End of Text Strings
	Compilation Flags
	Compound REs
	Counting Character Types in a String
	REs and Grouping
	Simple String Matches
	Additional Topics for REs
	Chapter Summary

	Chapter 4: Working with REs in R
	Metacharacters and Character Classes in R
	Search Functions in R
	Perl RE Support in R

	The grep Command in R
	The grepl Command in R
	The regexpr Command in R
	The gregexpr Command in R
	The regmatches Command in R
	Performing Multiple Text Substitutions on a Vector
	Other Useful String-Related Commands in R

	Working with REs in R
	Specifying a Range of Letters

	Working with Arrays of Strings
	One-Line REs with Metacharacters in R
	Case Sensitivity in R
	Escaping Metacharacters in R Functions

	Examples of R Functions and REs
	Advanced String Functions in R
	The stringr Package in R

	Chapter Summary

	Chapter 5: Working with REs in bash
	What Is the sed Command?
	The sed Execution Cycle

	Matching String Patterns Using sed
	Substituting String Patterns Using sed
	Replacing Vowels from a String or a File
	Deleting Multiple Digits and Letters from a String

	Search and Replace with sed
	Datasets with Multiple Delimiters
	Useful Switches in sed
	Working with Datasets
	Printing Lines
	Character Classes and sed
	Removing Control Characters

	Counting Words in a Dataset
	Back References and Forward References in sed
	Working with Forward References

	Displaying Only “Pure” Words in a Dataset
	The awk Command
	Built-In Variables That Control awk
	How Does the awk Command Work?

	Aligning Text with the printf Command
	Matching with Metacharacters and Character Sets
	Printing Lines Using Conditional Logic
	Selecting and Switching Any Two Columns
	Reversing All Rows with awk
	Reversing the Lines in a File
	Switching Two Adjacent Columns (1)
	Switching Two Adjacent Columns (2)
	Switching Consecutive Columns
	A More Complex Example
	Chapter Summary

	Appendix A: REs in Perl
	Appendix B: REs in Java
	Index

