

Thermal Physics Tutorial
with Python Simulations

This book provides an accessible introduction to thermal physics with computa-
tional approaches that complement the traditional mathematical treatments of
classical thermodynamics and statistical mechanics. It guides readers through
visualizations and simulations in the Python programming language, helping
them to develop their own technical computing skills (including numerical and
symbolic calculations, optimizations, recursive operations, and visualizations).
Python is a highly readable and practical programming language, making this
book appropriate for students without extensive programming experience.

This book may serve as a thermal physics textbook for a semester-long under-
graduate thermal physics course or may be used as a tutorial on scientific com-
puting with focused examples from thermal physics. This book will also appeal
to engineering students studying intermediate-level thermodynamics as well as
computer science students looking to understand how to apply their computer
programming skills to science.

Series in Computational Physics

Series Editors: Steven A. Gottlieb and Rubin H. Landau

Parallel Science and Engineering Applications: The Charm++
Approach
Laxmikant V. Kale, Abhinav Bhatele

Introduction to Numerical Programming:A Practical Guide for
Scientists and Engineers Using Python and C/C++
Titus A. Beu

Computational Problems for Physics: With Guided Solutions
Using Python
Rubin H. Landau, Manual José Páez

Introduction to Python for Science and Engineering
David J. Pine

Thermal Physics Tutorial with Python Solutions
Minjoon Kouh and Taejoon Kouh

For more information about this series, please visit: https://www.crcpress.com/
Series-in-Computational-Physics/book-series/CRCSERCOMPHY

https://www.routledge.com/Series-in-Computational-Physics/book-series/CRCSERCOMPHY
https://www.routledge.com/Series-in-Computational-Physics/book-series/CRCSERCOMPHY

Thermal Physics Tutorial
with Python Simulations

Minjoon Kouh and Taejoon Kouh

First edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2023 Minjoon Kouh and Taejoon Kouh

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com
or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.
co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

ISBN: 978-1-032-25756-3 (hbk)
ISBN: 978-1-032-26343-4 (pbk)
ISBN: 978-1-003-28784-1 (ebk)

DOI: 10.1201/9781003287841

Typeset in SFRM font
by KnowledgeWorks Global Ltd.

Publisher’s note: This book has been prepared from camera-ready copy provided by the authors.

https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003287841

To our parents, Yong Woo and Byung Ok Kouh

http://taylorandfrancis.com

Contents

Preface xi

Chapter 1 � Calculating π 1

1.1 ESTIMATING π WITH A POLYGON 3
1.2 ESTIMATING π WITH RANDOM DOTS 6

Section I Classical Thermodynamics

Chapter 2 � Kinetic Theory of Gas 13

2.1 GETTING STARTED 14
2.2 DERIVATION OF THE IDEAL GAS LAW 21
2.3 SAMPLE CALCULATION 22
2.4 FURTHER EXPLORATIONS 23
2.5 TEMPERATURE 26

Chapter 3 � Velocity Distribution 29

3.1 PARTICLE COLLISION 29
3.2 ONE-DIMENSIONAL EXAMPLE 30
3.3 MULTIPLE SOLUTIONS 33
3.4 FINDING SOLUTIONS WITH CODE 35
3.5 DISTRIBUTION OF ENERGY 43
3.6 DISTRIBUTION OF ENERGY AFTER MANY, MANY

COLLISION EVENTS 45

vii

viii � Contents

3.7 DISTRIBUTION OF SPEED AFTER MANY, MANY
COLLISION EVENTS 51

3.8 NOTE ON A MORE AMBITIOUS CODING PROJECT 55

Chapter 4 � Thermal Processes 57

4.1 STATE AND PROCESS 57
4.2 PLOTTING AND NUMERICAL INTEGRATION 58
4.3 PV DIAGRAM 59
4.4 ADIABATIC PROCESS 60
4.5 PROOF OF PVγ = CONSTANT FOR AN ADIABAT OF

IDEAL GAS 61
4.6 CARNOT CYCLE 64

Section II Statistical Mechanics

Chapter 5 � Premise of Statistical Mechanics 73

5.1 ANALOGY: WEALTH DISTRIBUTION 73
5.2 MATHEMATICAL NOTATIONS 76
5.3 LISTING PERMUTATIONS 77
5.4 VISUALIZATION 78
5.5 COUNTING EXERCISE 81
5.6 CODE FOR ENUMERATING ALL POSSIBILITIES

(VERSION 1) 83
5.7 CODE FOR ENUMERATING ALL POSSIBILITIES

(VERSION 2) 86
5.8 BOLTZMANN DISTRIBUTION 89
5.9 MATH: LAGRANGE MULTIPLIER METHOD 90
5.10 MATH: STIRLING’S APPROXIMATION 90
5.11 BACK TO THE BOLTZMANN DISTRIBUTION 93

Contents � ix

Chapter 6 � Revisiting Ideal Gas 97

6.1 A LITTLE BIT OF QUANTUM MECHANICS 97
6.2 DEGENERACY 99
6.3 PARTITION FUNCTION 105
6.4 AVERAGE ENERGY OF AN IDEAL GAS 109
6.5 VISUALIZING ENERGY LEVELS WITH

DEGENERACY 110

Chapter 7 � Revisiting Thermal Processes 113

7.1 REVIEW 113
7.2 THERMAL PROCESSES 116
7.3 CHECK 122

Chapter 8 � Entropy, Temperature, Energy, and Other
Potentials 123

8.1 ENTROPY 123
8.2 LAWS OF THERMODYNAMICS 125
8.3 TEMPERATURE AS A RATIO OF CHANGES IN

ENERGY AND ENTROPY 125
8.4 IDENTIFYING β = 1/kBT 127
8.5 MATH: VOLUME OF A SPHERE 129
8.6 ENTROPY OF IDEAL GAS 133
8.7 ENTROPY OF IDEAL GAS, AGAIN 134
8.8 MOTIVATION FOR OTHER METRICS OF A

THERMODYNAMIC SYSTEM 137
8.9 FOUR THERMODYNAMIC POTENTIALS: U,H,F,G 140
8.10 THERMODYNAMIC RELATIONS 144

x � Contents

Section III Examples

Chapter 9 � Two-State System 149

9.1 DYNAMIC CASE 158
9.2 EQUILIBRIUM POTENTIAL 160
9.3 ACTION POTENTIAL 165
9.4 DIODE 166

Chapter 10 � Specific Heat 169

10.1 DEFINITION OF SPECIFIC HEAT 169
10.2 TWO-STATE SYSTEM 170
10.3 SIMPLE HARMONIC OSCILLATOR (SHO) 172
10.4 TEMPERATURE DEPENDENCE OF ENERGY AND

SPECIFIC HEAT 175
10.5 EINSTEIN MODEL OF SOLID 176

Chapter 11 � Random and Guided Walks 183

11.1 ONE-DIMENSIONAL RANDOM WALK 183
11.2 TWO-DIMENSIONAL RANDOM WALK 188
11.3 A TANGENT 191
11.4 GUIDED RANDOM WALKS 195

Appendix 205
APPENDIX A: GETTING STARTED WITH PYTHON 205
APPENDIX B: PYTHON PROGRAMMING BASICS 205
APPENDIX C: PLOTS 209
APPENDIX D: COLORS 212
APPENDIX E: ANIMATION 217

Epilogue 221

Index 223

Preface

“Doing” physics is an integrative and multi-modal activity where one
thinks about natural phenomena with many different intellectual tools
and approaches. Mathematics is one of the most powerful and essen-
tial tools of a physicist, or may even be considered as the language of
physics. However, in recent years, computational methods have risen to
complement and supplement the traditional, mathematical approaches
to physics. As the new generation of physicists is expected to be well
versed in modern computational tools, this tutorial was written with the
goal of introducing a few elementary skills in data visualization, mod-
eling, and simulation with a popular (as of the 2020s) programming
language, Python, within the context of classical thermodynamics and
statistical physics.

This book provides step-by-step instructions for each of the program-
ming examples, and prior experience with Python is not necessary. If
you are just venturing into the world of Python, the official homepage of
the Python language (www.python.org) is a great place to visit. There
are other resources on Python, many of which are free and easily ac-
cessible online. There are different ways to set up your own computing
environment, so that you can follow the codes in this book. For exam-
ple, you may download and install the Anaconda distribution, which
contains an interactive Jupyter Notebook environment as well as key
Python modules. You may also use a cloud-based Python environment
like Google Colab. See Appendix for more information.

Several popular topics from classical thermodynamics are covered in
Chapters 2, 3, and 4. The premise of modern statistical mechanics is
introduced in Chapters 5 and 6. Chapters 7 and 8 discuss the connec-
tion between classical thermodynamics and statistical mechanics in the
context of an ideal gas. The next chapters introduce other examples
of a thermal system (two-state system, simple harmonic oscillator, and

xi

https://www.python.org

xii � Preface

Einstein solid). The final chapter is about random and guided walks, a
topic that is independent of earlier chapters and provides a glimpse of
other areas of thermal physics.

ABOUT THE AUTHORS

T. Kouh earned his B.A. in physics from Boston University and Sc.M.
and Ph.D. degrees in physics from Brown University. After his study in
Providence, RI, he returned to Boston, MA, and worked as a postdoc-
toral research associate in the Department of Aerospace and Mechan-
ical Engineering at Boston University. He is a full faculty member in
the Department of Nano and Electronic Physics at Kookmin University
in Seoul, Korea, teaching and supervising undergraduate and graduate
students. His current research involves the dynamics of nanoelectrome-
chanical systems and the development of fast and reliable transduction
methods and innovative applications based on tiny motion.

M. Kouh holds Ph.D. and B.S. degrees in physics from MIT and M.A.
from UC Berkeley. He completed a postdoctoral research fellowship
at the Salk Institute for Biological Studies in La Jolla, CA. His re-
search includes computational modeling of the primate visual cortex,
information-theoretic analysis of neural responses, machine learning,
and pedagogical innovations in undergraduate science education. He
taught more than 30 distinct types of courses at Drew University (Madi-
son, NJ), including two study-abroad programs. His professional experi-
ences include a role as a program scientist for a philanthropic initiative,
a data scientist at a healthcare AI startup, and an IT consultant at a
software company.

ACKNOWLEDGEMENT

T. Kouh would like to thank the faculty members in the Department of
Nano and Electronic Physics at Kookmin University for their support,
along with his current and former students from the lab. Stimulating
and engaging discussions with his students on various topics in physics
have started him to mull over intriguing and entertaining ways of an-
swering the questions, which has been valuable to completing this book.
He is also grateful to his mentors, Prof. J. Valles from Brown University
and Prof. K. Ekinci from Boston University, for guiding him through

Preface � xiii

his academic career and showing him the fun of doing physics. Last but
not least, his biggest and deepest thanks go to his dearest Sarah.

M. Kouh would like to thank his colleagues from the Drew University
Physics Department, R. Fenstermacher, J. Supplee, D. McGee, R. Mu-
rawski, and B. Larson, as well as his students. They helped him to
think deeply about physics from the first principles and from different
perspectives. He is indebted to his academic mentors, T. Poggio and
T. Sharpee, who have shown the power and broad applicability of com-
putational approaches, especially when they are thoughtfully combined
with mathematical and experimental approaches. His family is a con-
stant source of his inspiration and energy. Thank you, Yumi, Chris, and
Cailyn!

http://taylorandfrancis.com

C H A P T E R 1

Calculating π

This chapter introduces a few key programming terms and concepts,
while we do a warm-up exercise of numerically estimating π. This im-
portant irrational number, which begins with 3.141592 · · ·, appears in
many mathematical contexts and can be estimated in different ways.
For example, with clever geometry, one could approximate a circle as
a fine polygon and calculate the ratio of the circumference and the di-
ameter of a circle, since circumference over the diameter of a circle is
2πr
2r = π. Alternatively, one could use an infinite series that converges to
π.†

Perhaps one of the easiest ways to obtain the value of π is to use the
fact that cosπ = −1, which means cos−1(−1) = arccos(−1) = π. The
following lines of code print out the value of the inverse cosine func-
tion, which is equal to π. The import command in Python expands
the functionality of the calling script by “importing” or giving access to
other modules or libraries. Here, the import math command imports
the mathematical library, math, which contains many predefined math-
ematical functions and formulas, such as arccosine acos().

Code Block 1.1

import math
print(math.acos(-1))

3.141592653589793

†See “The Discovery That Transformed Pi,” by Veritasium, at
www.youtube.com/watch?v=gMlf1ELvRzc about these approaches.

1

https://www.youtube.com

2 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Let us introduce other programming syntax and useful numerical tools.
The next block of code imports two other modules we will rely on
throughout this book. The first line (import numpy) allows us to
efficiently work with vectors, matrices, or multidimensional arrays.
numpy, or NumPy, stands for Numerical Python. The phrase as np
allows us to use the imported numpy module with a short-to-type
and easy-to-remember name, np. Similarly, the second line (import
matplotlib.pyplot as plt) allows us to easily make plots and data
visualizations in our code. Most of the code examples in this book will
almost always start with these two import statements.

Code Block 1.2

import numpy as np
import matplotlib.pyplot as plt

Let’s start with a few straightforward plots. Try to decipher what each
line of code is doing. You can run the code without or with a particular
line by adding or removing # at the beginning of the line.

The command plt.plot((-1,1),(1,1),color=’black’,
linewidth=5) draws a black horizontal line that connects two
points at (-1,1) and (1,1) – top side of the square – and the rest
of the sides are similarly added in the subsequent commands with
plt.plot(). plt.xlim() and plt.ylim() which help to set the limits
of x- and y-axes. plt.axis() controls the axis properties of a plot
based on the argument within the command. For example, by using
equal with plt.axis(), we can generate a plot with an equal scale
along x- and y- axes, and the argument off will hide the axes. Finally,
plt.savefig() and plt.show() allow us to save and display the
resulting plot.

Code Block 1.3
Make a square with a side of 2.
plt.plot((-1,1),(1,1),color='black',linewidth=5)
plt.plot((1,1),(1,-1),color='gray',linewidth=10)
plt.plot((1,-1),(-1,-1),color='black',linewidth=5,linestyle='dashed')
plt.plot((-1,-1),(-1,1),color='gray',linewidth=5,linestyle='dotted')
plt.xlim((-2,2))
plt.ylim((-2,2))
plt.axis('equal')
plt.axis('off')
plt.savefig('fig_ch1_box.eps')
plt.show()

Calculating π � 3

1.1 ESTIMATING π WITH A POLYGON

To make a plot of an approximate circle, let’s create an array of angle
θ values between 0 and 2π radians in small steps of ∆θ. Then, the
coordinates of a unit circle (with radius = 1) are given by: (x, y) =
(cosθ, sinθ). We can connect these successive points with short lines
that collectively approximate a circle.

Code Block 1.4

pi = 3.141592
delta_theta = 0.4
theta = np.arange(0,2*pi+delta_theta,delta_theta)
x = np.cos(theta)
y = np.sin(theta)

N = len(theta)
print("Number of data points = %d"%N)
for i in range(N-1):

plt.plot((x[i],x[i+1]),(y[i],y[i+1]),color='black')

Connect the last point to the first point.
plt.plot((x[-1],x[0]),(y[-1],y[0]),color='black')

Figure 1.1

4 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Put a box around the polygon.
plt.plot((-1,1),(1,1),color='gray')
plt.plot((1,1),(1,-1),color='gray')
plt.plot((1,-1),(-1,-1),color='gray')
plt.plot((-1,-1),(-1,1),color='gray')
plt.xlim((-2,2))
plt.ylim((-2,2))
plt.axis('equal')
plt.axis('off')
plt.savefig('fig_ch1_draw_circle.eps')
plt.show()

Number of data points = 17

Let’s go over a few key lines in the above code. The equal sign = assigns
a value on the right to a variable on the left. Hence, pi = 3.141592
means that the variable named pi is assigned to a value of 3.141592.
Similarly, the variable delta_theta is assigned to a value of 0.4 (ra-
dian), which can be made smaller to create a even finer polygon.

There is a lot going on with theta = np.arange(0,
2*pi+delta_theta,delta_theta). Here, we are creating an ar-
ray or a vector of numbers and assigning it to a variable named theta.
This array is created with the numpy module imported earlier. Since
we have imported numpy with a nickname np, we can access a very

Figure 1.2

Calculating π � 5

useful function arange() within the numpy module as np.arange().
arange() creates an array of numbers specified by three numbers
within the parentheses. The first number gives the starting point
(inclusive) of the range, the second number gives the ending point
(exclusive), and the third number gives the spacing between successive
numbers. For example, np.arange(0,1,0.2) produces an array with
numbers 0, 0.2, 0.4, 0.6, and 0.8. A similar function range() is also
used quite often, and it does not require the numpy module, so range()
can be called without adding np. in front of it. It returns a sequence
of numbers starting from zero with an increment of 1 by default.
range(5) returns 0, 1, 2, 3, and 4.

The next two lines x = np.cos(theta) and y = np.sin(theta) per-
form the mathematical operation of calculating cosθ and sinθ on an ar-
ray of angle values, theta, using the cos() and sin() functions within
the numpy module. Hence, the resulting variables, x and y, are also an
array of numbers.

len() returns the length of an array, so N = len(theta) assigns the
number of elements in the theta array to a variable N. This is useful,
because in the next few lines, we will be plotting a line between two suc-
cessive points in the polygon. for i in range(N-1): is called a for-
loop, which iterates or loops over the same operation within its indented
block while the variable i goes from 0 (inclusive) to N-1 (exclusive). We
access each element of the array x and y, using i as an index. For ex-
ample, x[i] refers to the i-th element of array x. x[i+1] refers to the
next element. Therefore, plt.plot((x[i],x[i+1]),(y[i],y[i+1]))
draws a line between the i-th and i+1-th elements.

The first element of an array is indexed with zero, not one. The second
element is indexed with one, and so forth. The last element of array x
is then accessed as x[N-1] (not x[N]), and it can also be referred to as
x[-1], which is useful if the length of the array is not known. The second
to the last element is x[-2]. plt.plot((x[-1],x[0]),(y[-1],y[0]))
puts a line between the last and the first coordinates.

Now, we have a polygon that approximates a circle. We can estimate
the value of π by calculating the total distance around the polygon,
which should approach the circumference of a circle, or 2πr.

6 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Code Block 1.5

Calculate the perimeter of a polygon,
by adding up the distance between two successive points.
d = 0 # Start with zero.
for i in range(N-1):

Keep adding the distance between the next two points.
d = d + np.sqrt((x[i]-x[i+1])**2 + (y[i]-y[i+1])**2)

Finish up by adding the distance between the first and last point.
d = d + np.sqrt((x[-1]-x[0])**2 + (y[-1]-y[0])**2)

pi_estimate = d/2 # because d = 2*pi*r with r=1 for a unit circle
print('Our estimate of pi (with a polygon of %d sides)'%N)
print(pi_estimate)

Our estimate of pi (with a polygon of 17 sides)
3.237083436148559

In the above block of code, we calculated the Euclidean distance be-
tween two successive points,

√
(xi − xi+1)2 + (yi − yi+1)2, and then kept

track of the total using the variable d inside a for-loop. In order to ob-
tain an even better estimate, try decreasing the value of delta_theta
and re-running the code blocks from the top.

1.2 ESTIMATING π WITH RANDOM DOTS

Here is another approach for estimating π, using the fact that the area of
a circle is πr2. Let’s consider a square with a side of 2 and an inscribed
circle with a radius r of 1. The square would have an area of 4, and
the area of the circle would be π. The ratio of the areas of the circle
and the square would be π/4. To estimate the ratio of these areas, we
will generate a large number of random dots within the square, as if
we are sprinkling salt or pepper uniformly over a plate. The position
of these dots will be generated from a uniform distribution. Then, we
could compare the number of dots inside the inscribed circle and the
square.∗

∗We might imagine doing this simulation in real life by throwing many darts
and comparing the number of darts that landed inside of a circle. The precision
of estimation will increase with the number of darts, but who would do something
like that? See “Calculating Pi with Darts” on the Physics Girl YouTube Channel
(www.youtube.com/watch?v=M34TO71SKGk).

https://www.youtube.com

Calculating π � 7

Code Block 1.6

Generate random numbers between 0 and 1 with np.random.rand().
Stretch their range by multplying by 2 and subtracting by 1,
so that all dots fit within the square with a side of 2.

N = 5000 # number of points.
x = np.random.rand(N)*2-1
y = np.random.rand(N)*2-1

plt.scatter(x,y,s=5,color='black')
plt.xlim((-2,2))
plt.ylim((-2,2))
plt.axis('equal')
plt.axis('off')
plt.savefig('fig_ch1_random_num.eps')
plt.show()

In the above code block, a large number (N = 5000) of random values
between 0 and 1 are generated by np.random.rand() function. The
range of these values is easily manipulated by multiplying them by two
and then subtracting them by 1, so we can create an array of values
between −1 and 1.

Figure 1.3

8 � Thermal Physics Tutorials with Python Simulations (TPTPS)

In the following code block, the distance of each point from the origin
is calculated by dist = np.sqrt(x**2+y**2), so that dist is also an
array. The next line in the code, is_inside = dist < 1, compares
the distance with a constant 1. If distance is indeed less than 1, the
comparison < 1 is true (or a boolean value of 1), and the point lies
within a circle. If distance is not less than 1, the comparison < 1 is false
(or a boolean value of 0). Therefore, the variable is_inside is an array
of boolean values (true/false or 1/0) that indicate whether each point
lies inside a circle or not. Finally, by summing the values of this array
with np.sum(is_inside), we can calculate the number of points inside
the unit circle.

We also note a clever way of selectively indexing an array. x[dist<1]
returns a subset of array x which meets the condition where dist<1. In
other words, it returns the x coordinates of the points that lie within the
circle. Hence, plt.scatter(x[dist<1],y[dist<1],color='black')
makes a scatter plot of the points in the circle with a black marker.

Sometimes it is convenient to package several lines of code into a func-
tion that accepts input arguments and returns an output. In the follow-
ing code block, we created a custom function estimate_pi(), which
takes an optional input argument N with a default value of 500. This
function calculates an estimate of π using N random points.

Code Block 1.7

Calculate the distance of each point from the origin.
If the distance is less than 1, the point is inside of the circle.
dist = np.sqrt(x**2+y**2)
is_inside = dist < 1
N_inside = np.sum(is_inside)

Estimate pi based on the ratio of number of dots.
pi_estimate = 4*N_inside/N
print('Our estimate of pi (with %d random dots)'%N)
print(pi_estimate)

plt.scatter(x[dist<1],y[dist<1],s=5,c='black')
plt.scatter(x[dist>1],y[dist>1],s=5,c='#CCCCCC')
plt.xlim((-2,2))
plt.ylim((-2,2))
plt.axis('equal')
plt.axis('off')
plt.savefig('fig_ch1_pi_circle_square.eps')
plt.show()

Calculating π � 9

Our estimate of pi (with 5000 random dots)
3.1256

Code Block 1.8

Let's define a function that estimates pi for different N.
def estimate_pi (N=500):

xy = np.random.rand(N,2)*2-1
dist = np.sqrt(np.sum(xy**2,axis=1))
pi_estimate = 4*np.sum(dist<1)/N
return pi_estimate

We will use our custom function, estimate_pi() to investigate how
good our estiamte of π is for a different number of points N. We will try
N of 100, 500, 1000, 5000, and 10000. Because we are choosing N random
values at each run, we will make an estimate of π 30 times (N_trial)
for each N.

The last code block illustrates how to work with a two-dimensional ar-
ray. The array result stores the result of each simulation. It is initial-
ized as an array of zeros with 30 (N_trial) rows and 5 (len(N_range))
columns. Its content is updated with the command result[trial,i]
= pi_estimate inside of the nested for-loops which independently in-
crement the indices, trial and i. This code also uses enumerate(), a
built-in Python function, which loops through the elements of an array
with a corresponding index value. The final plot shows, as expected,

Figure 1.4

10 � Thermal Physics Tutorials with Python Simulations (TPTPS)

that the estimates are more consistent, or the spread of the estimates
is smaller, with higher N.

Code Block 1.9

N_range = [100,500,1000,5000,10000]
N_trial = 30
result = np.zeros((N_trial,len(N_range)))
for i, N in enumerate(N_range):

for trial in range(N_trial):
pi_estimate = estimate_pi(N)
result[trial,i] = pi_estimate

plt.scatter(i+np.zeros(N_trial)+1,result[:,i],color='gray')
Overlay a box plot (also known as a whisker plot).
plt.boxplot(result)
plt.xticks(ticks=np.arange(len(N_range))+1,labels=N_range)
plt.xlabel('N')
plt.ylabel('Estimate of π')
plt.savefig('fig_ch1_boxplot.eps')
plt.show()

Figure 1.5

I
Classical Thermodynamics

http://taylorandfrancis.com

C H A P T E R 2

Kinetic Theory of Gas

The idea that gas is composed of many tiny moving particles is obvious
to us now, but it took many centuries of scientific inquiries for this
idea to be accepted as a verified theory. We call this idea the “kinetic
theory of gas.” It was a significant breakthrough in physics, bridging
two different domains of knowledge: classical mechanics, which usually
deals with the force, momentum, and kinetic energy of an individual
particle, and thermodynamics, which deals with the pressure, volume,
and temperature of a gas.

Critical insights from the kinetic theory of gas are the mechanical in-
terpretation of temperature and the derivation of the ideal gas law,
PV = nRT, where P is pressure, V is volume, T is temperature, and nR
is related to the quantity of the gas. More specifically, n is the number
of moles of gas, and 1 mole is equivalent to 6.02 × 1023 particles (this
quantity is known as Avogadro’s number NA). The proportionality con-
stant R is known as a universal gas constant. Sometimes, the ideal gas
law is also written as PV = NkT, where N is the number of particles
and k is known as the Boltzmann constant. Therefore, n = N/NA and
NA = R/k.

As we will show in this chapter, the pressure of an ideal gas is a macro-
scopic manifestation of numerous microscopic collisions of gas parti-
cles with the containing walls. The gas temperature is directly related
to the average kinetic energy of the constituent particles. As an anal-
ogy, consider the economy of a market, which consists of many individ-
ual transactions of people buying and selling products. These financial

13

14 � Thermal Physics Tutorials with Python Simulations (TPTPS)

transactions collectively determine the macroscopic condition of a mar-
ket, which an economist might even describe as being “hot” or “cold.”

2.1 GETTING STARTED

Let’s consider a simple one-dimensional, up-or-down motion, where a
particle starts at the initial position of y0 = 0.5 with a constant velocity
of v = −0.1. The negative velocity indicates that the particle is moving
downward. The position of the particle with a constant velocity at dif-
ferent times can be described as y(t) = v · t + y0, assuming no external
force. In the following code, this expression is coded as y = v*t + y0,
and it is the most important line.

When the particle hits a rigid wall at the position of y = 0 at the time
of t = 5, it bounces off without any loss in energy. This process can be
expressed mathematically by taking an absolute value of the particle’s
position, |y(t)|, since the position of this particle confined by the wall
at y = 0 cannot be negative. The particle would now have a positive
velocity of 0.1. As a result, the plot of y versus t has a V-shape.

Code Block 2.1

import numpy as np
import matplotlib.pyplot as plt

Calculate position at different times.
t = np.arange(0,10,0.1)
v = -0.1 # constant velocity
y0 = 0.5 # initial position
y = v*t + y0
y = np.abs(y) # Take an absolute value.

plt.plot(t,y,color='black')
plt.xlabel('Time')
plt.ylabel('Position')
plt.savefig('fig_ch2_y_vs_t.eps')
plt.show()

Kinetic Theory of Gas � 15

Now let’s put this code into a more versatile and reusable format, a
function that can be called with different parameters. Such a function
is implemented below. We will update the position of a particle with a
small increment dt, so that y(t + dt) = y(t) + v · dt. In other words, after
short time later, the particle has moved from the old position y(t) to a
new position y(t + dt) by a displacement of v · dt.

In the following code, we use a for-loop structure to update the po-
sition of a particle over time from tmin to tmax in a small increment
of dt. The update starts from the initial position y0. The incremental
update is accomplished by current_y = y[i] + current_v*dt. Note
that, by using time_range[1:] in this for-loop calculation, we are
just considering the elements in the time_range array excluding the
first element (tmin), since the update is only needed for the subsequent
times.

When a particle runs into a wall, the particle bounces off without a
change in its speed or without loss of its kinetic energy. Only the sign
of its velocity flips. In the code, this process is implemented with a
statement, current_v = -current_v. The first if-statement handles
the collision event with the bottom wall located at ymin, and the second
if-statement is for the collision with the top wall at ymax.

Figure 2.1

16 � Thermal Physics Tutorials with Python Simulations (TPTPS)

When the particle bounces off of a wall at the origin (y = 0), simply
taking the absolute value of the position prohibits negative position
values and disallows the particle from punching through the wall. How-
ever, if we were to simulate a collision with a wall placed somewhere
other than the origin, the particle’s position would need to be updated
more carefully. When the particle has just hit the bottom wall with
a negative velocity (current_v < 0), the calculation of current_y
= y[i] + current_v*dt would yield a value that is less than ymin.
Therefore, the current position of the particle needs to be corrected
by current_y = ymin + (ymin-current_y). This command correctly
calculates the position of the bounced particle to be above the bot-
tom wall by the distance of (ymin-current_y). When the particle hits
the top wall at ymax, a similar calculation of current_y = ymax -
(current_y-ymax) correctly puts the bounced particle below the top
wall. We also keep track of the number of bounces by incrementing
Nbounce by one within each if-statement.

Code Block 2.2

def calculate_position (y0,v,ymin=0,ymax=1,
dt=0.01,tmin=0,tmax=10,plot=False):

ymin and ymax are the boundaries of motion (walls).
current_v = v
time_range = np.arange(tmin,tmax,dt)
y = np.zeros(len(time_range))
y[0] = y0

Nbounce = 0
for i, t in enumerate(time_range[1:]):

current_y = y[i] + current_v*dt # Update position.
if current_y <= ymin:

if the particle hits the bottom wall.
current_v = -current_v # velocity changes the sign.
current_y = ymin + (ymin - current_y)
Nbounce = Nbounce+1

if current_y >= ymax:
if the particle hits the top wall.
current_v = -current_v # velocity changes the sign.
current_y = ymax - (current_y - ymax)
Nbounce = Nbounce+1

y[i+1] = current_y
if (plot):

plt.plot(time_range,y,color='black')
plt.xlabel('Time')
plt.ylabel('Position')

Kinetic Theory of Gas � 17

plt.savefig('fig_ch2_bounce.eps')
plt.show()

return y, time_range, Nbounce

Retrieve the returning values of y and Nbounce.
The underscore symbol, _, ignores the returned value.
y, _, Nbounce = calculate_position(0.5,0.2,dt=0.1,tmax=30,

plot=True)
print("Number of collisions with the wall: ", Nbounce)

Number of collisions with the wall: 6

We can build on the above set of codes to simulate the motion of mul-
tiple particles. In the following code block, there is a for-loop that
accounts for N particles with random velocities and initial positions.
np.random.randn(N) generates N random numbers taken from a nor-
mal distribution with a mean of 0 and standard deviation of 1. Hence,
multiplying it by 0.5 creates random numbers with a smaller variation.
(There is a caveat. The velocities of gas particles are not normally dis-
tributed but follow the Maxwell-Boltzmann distribution. However, the
main ideas discussed in this chapter hold up regardless of the distribu-
tion type. We will revisit this topic in a later chapter.)

A series of timestamps between the minimum and maximum time in
steps of dt can be created with t = np.arange(tmin,tmax,dt). The

Figure 2.2

18 � Thermal Physics Tutorials with Python Simulations (TPTPS)

positions of N particles across this range of time are stored in a matrix
named pos, which has the dimension of N × T, where T is the number
of timestamps, len(t).

Code Block 2.3

Multiple particles.
N = 30
tmin = 0
tmax = 10
dt = 0.1
t = np.arange(tmin,tmax,dt)
pos = np.zeros((N,len(t))) # initialize the matrix.
Nbounce = np.zeros(N)

v = np.random.randn(N)*0.5
y0 = np.random.rand(N)
for i in range(N):

pos[i,:] references the i-th row of the array, pos.
That is the position of i-th particle at all timestamps.
pos[i,:], _, Nbounce[i] = calculate_position(y0[i],v[i],dt=dt,

tmin=tmin,tmax=tmax)

plt.hist(v,color='black')
plt.xlabel('Velocity (m/sec)')
plt.ylabel('Number of Particles')
plt.title("Initial velocities (randomly chosen).")
plt.savefig('fig_ch2_v0_distrib.eps')
plt.show()

for i in range(N):
plt.plot(t,pos[i,:],color='gray')

plt.xlabel('Time (sec)')
plt.ylabel('Position (m)')
plt.ylim((-0.1,1.1))
plt.title('Position of N particles versus time')
plt.savefig('fig_ch2_Nbounces.eps')
plt.show()

print("Do faster particles hit the walls more often? Yes.")
plt.scatter(np.abs(v),Nbounce,color='gray')
plt.xlabel('Speed (m/sec) = |v|')
plt.ylabel('Number of Bounces')
plt.savefig('fig_ch2_bounce_vs_speed.eps')
plt.show()

Kinetic Theory of Gas � 19

Although the numbers we are using for the above simulations are not
particularly tied to any units, we will assume that they have the stan-
dard units of meters for position, seconds for time, and m/sec for

Figure 2.3

Figure 2.4

20 � Thermal Physics Tutorials with Python Simulations (TPTPS)

velocity. We will label each axis with appropriate units as a way of
illustrating good graphing practice.

The last graph from the above N-particle simulation shows a linear
trend between the number of bounces and speed. This relationship
comes from the simple fact that a faster particle would move between
the two walls more rapidly and hence bounce off these walls more of-
ten. We can calculate how long it would take for a particle to make a
roundtrip:

∆t =
2L
|v|
,

where L is the distance between the walls (or ymax-ymin) and v is the
velocity of a particle. The particle travels the distance of 2L before
hitting the same wall. The frequency of bounce is 1/∆t, and hence, the
number of bounces is linearly proportional to |v|, as Figure 2.5 shows.

Do faster particles hit the walls more often? Yes.

Figure 2.5

Kinetic Theory of Gas � 21

2.2 DERIVATION OF THE IDEAL GAS LAW

Now let’s visualize a superhero whose mighty body can deflect a volley
of bullets fired from a machine gun by a villain. As they strike and
bounce off of our superhero, these bullets would exert force on the body.
The microscopic collisions of individual gas particles on the containing
walls similarly exert force, macroscopically manifested as pressure. In
the following, we will develop this idea mathematically and derive the
ideal gas law.

When a particle bounces off the wall, its direction changes and its ve-
locity goes from −v to v (or from v to −v). This change in velocity,
∆v = v − (−v) = 2v, comes from the force acting on the particle by
the wall. The particle, in turn, exerts a force with the same magnitude
and opposite direction on the wall, according to Newton’s Third Law
of Motion.

According to Newton’s Second Law of Motion, this force F is equal to
the mass of the particle m times its acceleration (the rate of change in
its velocity) a, so F = ma. Acceleration of an object is the rate of change
of velocity, or ∆v

∆t , and we had also discussed that ∆t = 2L/|v|. Therefore,

Fsingle particle = m
∆v
∆t

= m
2v|v|
2L

.

The magnitude of the force is |Fsingle particle| = mv2/L.

Since there are many particles with different velocities that would col-
lide with the wall, we should consider the average force delivered by
N different particles. Let’s use a notation of a pair of angled brackets,
< · > to denote an average quantity. Then, for an average total force on
the wall due to N particles:

< F >= N
m < v2 >

L
.

By dividing this average force by the cross-sectional area A of the wall,
we can find pressure P = F/A. We also note V = LA, where V is the
volume of the container, so

P =
< F >

A
= N

m < v2 >
LA

= Nm
< v2 >

V
.

22 � Thermal Physics Tutorials with Python Simulations (TPTPS)

We can rewrite the above expression as:

PV = Nm < v2 > .

Our discussion so far has been for one-dimensional motion, so v is really
vx, a horizontal component of the total, three-dimensional velocity ~v.
Since |~v|2 = v2

x + v2
y + v2

z and since x-dimension is not any more special
than y- or z-dimension, the average of horizontal velocity squared < v2 >
which we have been discussing so far is equal to one-third of the average
total velocity squared 1

3 < |~v|
2 >.

Our expression is then

PV =
1
3

Nm < |~v|2 >= N
2
3
< Kinetic Energy >,

where we made an identification that the kinetic energy of a particle is
given by 1

2 mv2.

By comparing this relationship with the ideal gas law PV = NkT, we
arrive at a conclusion that

< Kinetic Energy >=
3
2

kT,

and

√
< |~v|2 > = vrms =

√
3kT
m
.

In other words, temperature T is a measure of the average kinetic energy
of N gas particles, whose root-mean-square (rms) speed is

√
3kT/m. This

is the main result of the Kinetic Theory of Gas.

2.3 SAMPLE CALCULATION

Consider 1 mole of nitrogen gas N2, which is the most abundant type of
gas molecule in the air. Each N2 has the mass of 4.68× 10−26 kg. What
is the average root-mean-square speed at a temperature of 300 K (ap-
proximately room temperature)? The value of the Boltzmann constant
k is 1.38 × 10−23 kg m2 / sec2 K.

Kinetic Theory of Gas � 23

Answer: 515 m/sec. There will be other particles moving faster and
slower than this speed.

As a hypothetical situation, if all N2 particles were moving at this speed
and if they were striking a wall of area 100 cm2 in a head-on collision
(i.e., one-dimensional motion) for 0.5 sec, what would be the pressure
exerted on the wall by these particles?

Answer: These particles would all experience the change of velocity of
2 × 515 m/sec and the acceleration of a = ∆v/∆t = 2060 m/sec2. Each
particle would exert a force of ma, and since there are NA molecules,
the pressure would be equal to 5.80 × 103 Pa.

2.4 FURTHER EXPLORATIONS

The following block of code compares the average < x > and root-mean-
square xrms =

√

< x2 >. If x is a collection of N numbers (x1, x2, ..., xN),

< x >=
x1 + x2 + ... + xN

N
,

and

xrms =

√
x2

1 + x2
2 + ... + x2

N

N
.

Code Block 2.4

How to calculate <x> and x_rms with numpy array.
import numpy as np

x = np.array([0,1,2,3,4])

You can try 5 random numbers with the following line.
#x = np.random.randn(5)

N = len(x)
print("Number of items = %d"%N)
print("x = ",np.array2string(x, precision=3, sign=' '))
print("x^2 = ",np.array2string(x**2, precision=3, sign=' '))
print("<x> = %4.3f"%(np.sum(x)/N))
print("<x^2> = %4.3f"%(np.sum(x**2)/N))
print("x_rms = %4.3f"%(np.sqrt(np.sum(x**2)/N)))

24 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Number of items = 5
x = [0 1 2 3 4]
x^2 = [0 1 4 9 16]
<x> = 2.000
<x^2> = 6.000
x_rms = 2.449

Let’s calculate the force exerted on the wall in two ways, using our
mechanical interpretation of elastic collisions. One way to calculate the
force is to add up the momentum changes, m∆v, due to multiple colli-
sions by multiple particles on the wall and then to divide the sum by
the time ∆t. Another way is to use one of the results derived earlier,
< F >= N m<v2>

L . We can directly calculate < v2 > from a list of particle
velocities at a fixed time.

In other words, the first method requires observing and measuring the
collision events at one place (i.e., the wall) for an extended period. On
the other hand, the second method requires collecting the velocity values
of all gas particles everywhere at one point in time (i.e., a snapshot of
velocity distribution). Both methods yield consistent values.

The following code block calculates the force acting on a wall by N par-
ticles with random velocity distribution. F1 is based on the momentum
change, and F2 is based on the average value of the velocity squared. To
compare these two different calculations, the percent difference between
F1 and F2 is also calculated.
Code Block 2.5

N = 100 # number of particles

ymin = 0
ymax = 2

tmin = 0
tmax = 10
dt = 0.1

t = np.arange(tmin,tmax,dt)
Nbounce = np.zeros(N)

y0 = np.random.rand(N)
v = np.random.randn(N)*2
v = np.sort(v)
for i in range(N):

_, _, Nbounce[i] = calculate_position(y0[i],v[i],dt=dt,
ymin=ymin,ymax=ymax,

Kinetic Theory of Gas � 25

tmin=tmin,tmax=tmax)

m = 1 # mass of a particle
L = ymax-ymin
delta_t = tmax - tmin
delta_v = 2*np.abs(v)
v_rms = np.sqrt(np.sum(v**2)/N)

F1 = m*np.sum(Nbounce * delta_v / delta_t)*0.5
Factor of 0.5, since Nbounce counts the collision with two walls.
print("Force = m(delta v/delta t) = %4.3f"%F1)

F2 = N*m*v_rms**2/L
print("Force = Nm<v^2>/L = %4.3f"%F2)
Calculate percent difference as (A-B) / average(A,B) * 100.
print("Percent Difference = %3.2f"%(100*(F2-F1)*2/(F1+F2)))

misc. info.
print('\n==\n')
print('misc. info:')
print('speed range: min = %4.3f, max = %4.3f'

%((np.min(np.abs(v)),np.max(np.abs(v)))))
print('number of particles with 0 bounce = %d'%(np.sum(Nbounce==0)))
print('number of particles with 1 bounce = %d'%(np.sum(Nbounce==1)))

Force = m(delta v/delta t) = 184.189
Force = Nm<v^2>/L = 185.549
Percent Difference = 0.74

==

misc. info:
speed range: min = 0.007, max = 6.223
number of particles with 0 bounce = 4
number of particles with 1 bounce = 14

It is worthwhile to investigate why the percent difference between two
force calculations is not zero. One potential reason is the resolution of
the numerical simulation. For example, if dt is too big, the temporal
resolution of our simulation is too coarse. A fast particle might move
between the walls too quickly during a single timestep (that is, v · dt >
L), and we would not be able to track the particle’s position precisely
enough and might miscount the collision event. We can decrease dt for
more temporal resolution, which will make the simulation longer.

26 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Another reason for the mismatch is the discrete nature of a collision.
The force is exerted on the wall at the instance of a collision, but the
force is zero while the particle moves through the empty space between
the walls. During the simulation, some slow particles may not even
strike a wall once. Then, these particles would not contribute to the
value of force calculated with the number of collisions. At the same
time, their slow velocities would still contribute to the value of force
calculated with vrms. For other slow particles, if they bounced off from
a wall once at the beginning of the simulation but still are very far
away from the other wall, they would collide with a wall only once.
Their contribution to an average force value would be more than what it
would be if the simulation ran for a long time (with a significant value of
tmax). Such a tradeoff (accuracy versus temporal or spatial resolution)
is an important and commonly encountered design consideration for
many types of numerical simulations.

2.5 TEMPERATURE

Our derivation of the ideal gas law has revealed that the temperature
is directly proportional to the average kinetic energy of gas particles,
which is directly proportional to v2

rms.

In the following block of code, we make a comparison between T and
v2
rms. For T, we will refer to the ideal gas law, PV = NkT, so that

kT = PV/N. The quantity P will be calculated by measuring the force
due to individual collisions of N gas particles in the simulation, as we
have done above. Then, PV = (F/A)(AL) = FL, where A is the area of
the wall and L is the distance between the two walls.

The root-mean-square velocity, vrms, can simply be calculated by
np.sqrt(np.sum(v**2)/N), since in this simulation, each particle
maintains its speed. The particles only collide with the walls, so their
velocities will always be either v or −v. In the next chapter, we will
consider what happens when particles collide.

We will simulate different temperature values by generating random
velocities with different magnitudes, which is accomplished by v =
np.random.randn(N)*T, so that high T increases v_rms. In other words,
higher temperature results in particles traveling faster with more col-
lision events, which in turn would be manifested as increased pressure
on the wall.

Kinetic Theory of Gas � 27

The following simulation verifies that the kinetic theory of gas “works”
over different situations. The simulation parameter T scales the range of
velocities by v = np.random.randn(N)*T, so high T increases v_rms.
As the resulting plot demonstrates, PV/N is indeed equal to m < v2 >
or mv2

rms. The data points lie along a diagonal line. The factor of 3
in the derivation of an ideal gas is not here because our simulation is
one-dimensional.
Code Block 2.6

def run_with_different_T (T=1,N=100,m=1):
ymin = 0
ymax = 2
L = ymax-ymin # distance between the walls.

tmin=0
tmax=10
dt = 0.1

t = np.arange(tmin,tmax,dt)
Nbounce = np.zeros(N)
v = np.random.randn(N)*T # T scales the v_rms.
y0 = np.random.rand(N)
v = np.sort(v)
for i in range(N):

_, _, Nbounce[i] = calculate_position(y0[i],v[i],dt=dt,
ymin=ymin,ymax=ymax,
tmin=tmin,tmax=tmax)

delta_t = tmax - tmin
delta_v = 2*np.abs(v)
v_rms = np.sqrt(np.sum(v**2)/N)
F = m*np.sum(Nbounce * delta_v / delta_t)*0.5
PV = F*L
return PV, v_rms

T_range = np.arange(0.1,5,0.2) # Range of temperatures to consider.
N = 100 # number of particles.
m = 1 # mass of each particle.

perc_diff = np.zeros(len(T_range))
maxval = 0 # keep track of max value for scaling the plot.
for i,T in enumerate(T_range):

PV, v_rms = run_with_different_T(T=T,N=N,m=m)
plt.scatter(m*v_rms**2,PV/N,color='black')
Calculate percent difference as (A-B)/average(A,B)*100.
perc_diff[i] = (m*v_rms**2 - PV/N)*2/(m*v_rms**2+PV/N)*100
if maxval < PV/N:

maxval = PV/N

28 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Draw a diagonal line.
plt.plot([0,maxval*1.1],[0,maxval*1.1],color='black',linewidth=1)
plt.xlabel('m*v_rms^2')
plt.ylabel('PV/N')
plt.axis('square')
plt.savefig('fig_ch2_KineticTheorySummary.eps')
plt.show()

print("Mean Percent Difference = %3.2f"%np.mean(perc_diff))

Mean Percent Difference = 1.49

In conclusion, the kinetic theory of gas successfully explains how macro-
scopic properties of an ideal gas (P and T) arise out of microscopic
events. Gas pressure comes from numerous elastic collisions between
the container and the gas molecules. The temperature of a gas is a
manifestation of the average kinetic energy of gas particles.

Figure 2.6

C H A P T E R 3

Velocity Distribution

3.1 PARTICLE COLLISION

A movement of a particle can be described by its velocity, ~v, which is
a vector quantity with magnitude (how fast it is moving) and direction
(where it is heading). The velocity ~v and mass m of a particle determine
the particle’s momentum (~p = m~v) and kinetic energy (mv2/2). Note
v without an arrow at the top means the magnitude of a vector, |~v|.
When two particles run into each other during an elastic collision, their
momentum and kinetic energy may change, but their combined total
momentum and kinetic energy are conserved.

m1~v1, before + m2~v2, before = m1~v1, after + m2~v2, after

1
2

m1v2
1, before +

1
2

m2v2
2, before =

1
2

m1v2
1, after +

1
2

m2v2
2, after

Since ~v has x, y, and z components, vx, vy, and vz, the above equations
can be written out this way, too.

m1v1x, before + m2v2x, before = m1v1x, after + m2v2x, after

m1v1y, before + m2v2y, before = m1v1y, after + m2v2y, after

m1v1z, before + m2v2z, before = m1v1z, after + m2v2z, after

29

30 � Thermal Physics Tutorials with Python Simulations (TPTPS)

1
2

m1(v2
1x, before + v2

1y, before + v2
1z, before)

+
1
2

m2(v2
2x, before + v2

2y, before + v2
2z, before)

=
1
2

m1(v2
1x, after + v2

1y, after + v2
1z, after)

+
1
2

m2(v2
2x, after + v2

2y, after + v2
2z, after)

There are a lot of possible solutions that simultaneously satisfy the
above set of equations because there are 12 variables (three spatial di-
mensions and two particles for before and after conditions) that are
constrained by only four relationships (three for momentum conserva-
tion and one for energy conservation).

3.2 ONE-DIMENSIONAL EXAMPLE

Let’s consider a head-on (one-dimensional) collision of two particles.
Since we assume no movements along other dimensions (that is, vy =
vz = 0 for before and after the collision), we can combine just two equa-
tions that describe the conservation of momentum and kinetic energy.
After a few lines of algebra, we can solve for the post-collision velocities
along the x dimension.

v1x, after =
m1 −m2

m1 + m2
v1x, before +

2m2

m1 + m2
v2x, before

v2x, after =
2m1

m1 + m2
v1x, before +

m2 −m1

m1 + m2
v2x, before

The above result is symmetric. When we swap the indices 1 and 2, the
resulting expressions remain mathematically identical, as they should
be since there is nothing special about which particle is called 1 or 2.

Another fun consideration is to swap “before” and “after” distinctions,
and then solve for the post-collision velocities. After a few lines of al-
gebra, we again obtain mathematically identical expressions, as they
should be since particle collisions are symmetric under time-reversal.
That means that the time-reversed process of a particle collision is pos-
sible. If two particles with velocities of v1x, after and v2x, after collided

Velocity Distribution � 31

with each other, their post-collision velocities would be v1x, before and
v2x, before. Note it is not a typo that I am calling the post-collision
velocities with “before” labels, as we are considering a time-reversed
collision event. If we recorded a movie of microscopic particle collisions
and played it backward in time, it would look as physically plausible as
the original movie, as the conservation laws of momentum and kinetic
energy would hold. (Another way to think about the time reversal is to
replace t with −t in an equation of motion and to notice that this extra
negative sign does not change the equation.)

The profound question is, then, why is there an arrow or directionality
of time that we experience macroscopically. For example, a concentrated
blob of gas particles would diffuse across the space, as a scent from a
perfume bottle would spread across a room, not the other way. This
question will be addressed in later chapters as we further develop a
statistical description of various physical phenomena.

As an interesting case of a two-particle collision event, let’s consider
m2 >> m1 and v2x, before = 0. Then, we would have a reasonable result
of v1x, after = −v1x, before and v2x, after = 0. In other words, m1 would
bounce off of a more massive particle, m2. Another interesting case is
m1 = m2 and v2x, before = 0. We obtain v1x, after = 0 and v2x, after =
v1x, before. In other words, the first particle comes to a stop, and the
second particle is kicked out with the same speed as the first particle
after the collision. We sometimes see this type of collision on a billiard
table when a white cue ball hits a ball at rest, gives all its momentum
to that ball, and comes to an immediate stop. The last example is
m1 = m2 and v1x, before = −v2x, before, where two particles move toward
each other with the same momentum. This collision sends each particle
in the opposite direction with the same speed.

The following code draws cartoons of these three examples programmat-
ically. The calculation of post-collision velocities is implemented in the
function headon_collision(). The plotting routine is packaged in the
function plot_pre_post_collision(), which splits a figure window
into two subplots. The left subplot draws the pre-collision condition,
and the right subplot shows the post-collision condition. Each particle
is placed with a scatter() command, and its velocity is drawn with
an arrow() command. A for-loop is used to issue the same commands
for constructing each subplot.

32 � Thermal Physics Tutorials with Python Simulations (TPTPS)

The following code also illustrates the use of the assert command,
which can be used to check test cases and potentially catch program-
ming errors.

Code Block 3.1

import matplotlib.pyplot as plt

def headon_collision (u1,u2,m1,m2):
u1 and u2: pre-collision velocities
v1 and v2: post-collision velocities
v1 = ((m1-m2)*u1 + 2*m2*u2)/(m1+m2)
v2 = (2*m1*u1 + (m2-m1)*u2)/(m1+m2)
return v1, v2

def plot_pre_post_collision(velocity1,velocity2,m1,m2):
x1, x2 = (-1,1) # Location on m1 and m2.
y = 1 # Arbitrary location along y.
marker_size = 100
scale = 0.5 # the length scale of the velocity arrow.
title_str = ('Before','After')
c1 = 'black'
c2 = 'gray'
fig,ax = plt.subplots(1,2,figsize=(8,1))
for i in range(2):

ax[i].scatter(x1,y,s=marker_size,color=c1)
ax[i].scatter(x2,y,s=marker_size,color=c2)
Draw an arrow if the velocity is not too small.
if abs(velocity1[i])>0.01:

ax[i].arrow(x1,y,velocity1[i]*scale,0,color=c1,
head_width=0.1)

if abs(velocity2[i])>0.01:
ax[i].arrow(x2,y,velocity2[i]*scale,0,color=c2,

head_width=0.1)
ax[i].set_xlim((-2,2))
ax[i].set_ylim((0.8,1.2))
ax[i].set_title(title_str[i])
ax[i].axis('off')

plt.tight_layout()

print('Case 1: m2 is much more massive than m1 and is at rest.')
m1, m2 = (1, 2000) # Like an electron and a proton.
u1, u2 = (1, 0)
v1, v2 = headon_collision(u1,u2,m1,m2)
plot_pre_post_collision((u1,v1),(u2,v2),m1,m2)
plt.savefig('fig_ch3_collision_case1.eps')

print('Case 2: m1 = m2, and m2 is initially at rest.')

Velocity Distribution � 33

m1, m2 = (1, 1)
u1, u2 = (1, 0)
v1, v2 = headon_collision(u1,u2,m1,m2)
plot_pre_post_collision((u1,v1),(u2,v2),m1,m2)
plt.savefig('fig_ch3_collision_case2.eps')
assert v1==0
assert v2==u1

print('Case 3: m1 = m2, and they move toward each other.')
m1, m2 = (1, 1)
u1, u2 = (1, -1)
v1, v2 = headon_collision(u1,u2,m1,m2)
plot_pre_post_collision((u1,v1),(u2,v2),m1,m2)
plt.savefig('fig_ch3_collision_case3.eps')
assert v1==-u1
assert v2==-u2

3.3 MULTIPLE SOLUTIONS

Unlike the simple, one-dimensional example with a single solution, a
complete three-dimensional collision has more than one solution. Con-
sider two identical particles with the same mass m = 1. Without loss of
generality, we may assume that the first particle is moving along the x
direction with a velocity of 1, and the second particle is at rest.

Case 1: m2 is much more massive than m1 and is at rest.

Case 2: m1 = m2, and m2 is initially at rest.

Case 3: m1 = m2, and they move toward each other.

Figure 3.1

34 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Let’s use the following notation to keep track of various velocity com-
ponents:

(~v1, ~v2)before = (v1x, v1y, v1z, v2x, v2y, v2z)before = (1, 0, 0, 0, 0, 0).

Now consider the following set of velocities:

(v1x, v1y, v1z, v2x, v2y, v2z)after = (0.9, 0.3, 0.0, 0.1,−0.3, 0.0).

We can verify that momentum along each of the three dimensions is
conserved, because

v1x, after + v2x, after = 0.9 + 0.1 = 1,
v1y, after + v2y, after = 0.3 − 0.3 = 0,
v1z, after + v2z, after = 0.

Furthermore, the total kinetic energy after the collision is

1
2

m(v2
1x + v2

1y + v2
1z + v2

2x + v2
2y + v2

2z)

=
1
2

(0.92 + 0.32 + 0.12 + 0.32)

=
1
2

(0.81 + 0.09 + 0.01 + 0.09)

=
1
2

(1.02),

which is the same as the initial kinetic energy of 1
2 (1.02).

There are other sets of numbers that satisfy the same con-
straints: (0.8, 0.4, 0.0, 0.2,−0.4, 0.0), (0.5, 0.5, 0.0, 0.5,−0.5, 0.0),
(0.5, 0.0,−0.5, 0.5, 0.0, 0.5), and others.

We have demonstrated that there are multiple solutions. Here we will
further show that the total kinetic energy of the system can be shared
between the two particles in various proportions.

As before, we will use a set of six numbers to denote the velocity com-
ponents of two particles, (v1x, v1y, v1z, v2x, v2y, v2z), and assume that the
pre-collision velocity is (1, 0, 0, 0, 0, 0). The following is a list of post-
collision velocities and the ratio of kinetic energies, E1 : E2, which is
equal to 1

2 m(v2
1x + v2

1y + v2
1z) : 1

2 m(v2
2x + v2

2y + v2
2z).

Velocity Distribution � 35

(v1x, v1y, v1z, v2x, v2y, v2z) after collision E1 : E2
(+1.0, +0.0, +0.0, +0.0, +0.0, +0.0) 1.0:0.0
(+0.9, +0.3, +0.0, +0.1, -0.3, +0.0) 0.9:0.1
(+0.8, +0.4, +0.0, +0.2, -0.4, +0.0) 0.8:0.2
(+0.5, +0.5, +0.0, +0.5, -0.5, +0.0) 0.5:0.5
(+0.5, +0.3, +0.4, +0.5, -0.3, -0.4) 0.5:0.5
(+0.2, +0.4, +0.0, +0.8, -0.4, +0.0) 0.2:0.8
(+0.1, +0.3, +0.0, +0.9, -0.3, +0.0) 0.1:0.9
(+0.0, +0.0, +0.0, +1.0, +0.0, +0.0) 0.0:0.1
(+0.1, +0.3, +0.0, +0.9, -0.3, +0.0) 0.1:0.9
(+0.0, +0.0, +0.0, +1.0, +0.0, +0.0) 0.0:0.1

The above outcomes are possible post-collision velocities, as they satisfy
both momentum and energy conservation principles. Different solutions
have different values for x, y, and z velocity components, indicating that
these particles are moving toward or away from each other at different
angles. These solutions also show that depending on how these two
particles approach and recoil at different angles, the total momentum
and energy may be split up in many different ways after the collision.
The first particle may end up with most of the energy, and it is also
possible for the second particle to leave with more energy.

3.4 FINDING SOLUTIONS WITH CODE

Over the following several blocks of code, we will systematically and ex-
haustively search for possible velocities. Even though brute-force search
may not be the most mathematically sophisticated or elegant, it can be
relied on when an analytical method is not readily available.

We will develop a few versions of the search code so that the subsequent
version will be faster than the previous ones. The main idea will be
the same. We will use six for-loops to go through possible values of
(v1x, v1y, v1z, v2x, v2y, v2z)after, and check whether they jointly satisfy the
principles of momentum and energy conservation. The improvements of
different code versions will come from reducing the search space. As an
analogy, suppose you are trying to find a key you lost in the house, and
you can optimize your search by only visiting the places you’ve been to

36 � Thermal Physics Tutorials with Python Simulations (TPTPS)

recently. That is, don’t look for your key in the bathroom if you haven’t
been there.

There are two main variables in the following code: v_before and
v_after, each of which contains six numbers, and they are put into in-
dividual variables to make the code more readable. For example, v1x_b
corresponds to v1x, before and v2z_a corresponds to v2z, after. Each of
these six numbers in v_before and v_after can be accessed using an
index value between 0 and 5 (0, 1, 2, 3, 4, 5). Multiple values can be
accessed with the : symbol. For example, v_before[:3] returns the
first three values from the full list: v_before[0], v_before[1], and
v_before[2], starting with index 0 and ending before index 3. These
three values are v1x_b, v1y_b, and v1z_b. Similarly, v_before[3:]
returns the remaining three values, starting with index 3, which are
assigned to v2x_b, v2y_b, and v2z_b.

We can check momentum conservation by asking if the difference be-
tween the sum of pre-collision velocities and the sum of post-collision
velocities is zero. However, numerical values do not have infinite preci-
sion. For example, we know numbers like

√
2, π, and 1/3 are infinitely

long in their decimal representations, such as 1.414..., 3.141592..., and
0.333..., but a typical numerical computation deals with a fixed num-
ber of decimal points, possibly producing small but non-zero round-off
errors. (Note that there are methods that deal with infinite-precision
or arbitrary-precision arithmetic, which we are not using.) Therefore,
in our implementation, we will check whether the absolute value of the
difference is smaller than a relatively tiny number tol, rather than
comparing the difference to zero.

The following code block illustrates this idea: if (num1-num2)==0:
checks whether num1 and num2 are numerically identical, and if
abs(num1-num2)<tol: checks whether these two values are close
enough up to a tolerance threshold value tol.

Velocity Distribution � 37

Code Block 3.2

Illustration of comparing two numbers,
while considering limited numerical precision.

num1 = 1.0/3.0
num2 = 0.333333333
tol = 0.0001

print('Compare two numbers')
print('num1 = ',num1)
print('num2 = ',num2)

if (num1-num2)==0:
print('num1 is equal to num2.')

else:
if abs(num1-num2)<tol:

print('num1 is practically equal to num2.')
else:

print('num1 is not equal to num2.')

Compare two numbers
num1 = 0.3333333333333333
num2 = 0.333333333
num1 is practically equal to num2.

In the following function is_conserved(), if np.abs(
(v1x_b+v2x_b) - (v1x_a+v2x_a)) < tol: checks whether the
momentum along x-direction is conserved within a numerical tolerance
threshold. Note that we are assuming the mass of all particles is the
same, so we can just compare the velocities, instead of the product of
mass and velocity. Similarly, if np.abs(e_b - e_a) < tol: checks
energy conservation. If all four conditions (3 momentum conservations
and 1 energy conservation) are passed, v_after is a solution, so
the is_conserved() function returns True, and if any one of the
conservation checks fails, the function returns False.

Code Block 3.3

import numpy as np

def is_conserved(v_before,v_after,tol=0.0001):
v1x_b, v1y_b, v1z_b = v_before[:3]
v2x_b, v2y_b, v2z_b = v_before[3:]
v1x_a, v1y_a, v1z_a = v_after[:3]
v2x_a, v2y_a, v2z_a = v_after[3:]

38 � Thermal Physics Tutorials with Python Simulations (TPTPS)

defining kinetic energy
e_b = v1x_b**2+v1y_b**2+v1z_b**2+v2x_b**2+v2y_b**2+v2z_b**2
e_a = v1x_a**2+v1y_a**2+v1z_a**2+v2x_a**2+v2y_a**2+v2z_a**2
if np.abs((v1x_b+v2x_b) - (v1x_a+v2x_a)) < tol:

if np.abs((v1y_b+v2y_b) - (v1y_a+v2y_a))< tol:
if np.abs((v1z_b+v2z_b) - (v1z_a+v2z_a)) < tol:

if np.abs(e_b - e_a) < tol:
return True

return False

A few simple test cases.
v_before = np.array([1,0,0,0,0,0])
assert is_conserved(v_before,np.array([0,0,0,1,0,0]))==True
assert is_conserved(v_before,np.array([0,0,0,1.1,0,0]))==False
assert is_conserved(v_before,np.array([0.5,0.5,0,0.5,-0.5,0]))==True
assert is_conserved(v_before,np.array([0.5,0.5,0,0.5,0.5,0]))==False

The following block has a function generate_solutions_very_slow(),
which takes v_before as an input and considers a range of possible
values between -maxval and maxval for six different velocity values
with six nested for-loops. These six values are packaged into the
v_after variable and passed to the is_conserved() function, which
checks whether the momentum and energy are conserved. If v_after
passes the checks, it is appended onto a list named solutions, and
then the next set of numbers is considered.

The range of values to be considered is created by
np.arange(-maxval,maxval+dv,dv). The maximum value maxval
is given by the square root of the sum of squares of all pre-
collision velocities: np.sqrt(np.sum(np.array(v_before)**2))
or

√
|~v1, before|2 + |~v2, before|2, because if any of the post-collision velocity

was bigger than this value, the energy conservation principle would not
hold. For example, suppose v_before was (1, 0, 0, 0, 0, 0) and hence,
maxval was equal to 1. Then if any one of v_after was greater than
1 (let’s say, (1.1, 0, 0, 0, 0, 0)), the post-collision kinetic energy would be
greater than the pre-collision kinetic energy. Therefore, the solution
would be found only between -maxval and maxval.

Another important parameter in this function is dv which dictates how
thoroughly we will look for a solution within the range. For example,
suppose maxval = 1 and dv = 0.5. Then, for each velocity component,
we would try five different values: -1, -0.5, 0, 0.5, and 1. For dv = 0.1,
we would try 21 values: -1, -0.9, -0.8, . . . , 0.8, 0.9, and 1. For dv = 0.01,
there are 201 values. The number of values to consider is proportional

Velocity Distribution � 39

to 1/dv. Because there are six nested for-loops, the total number of
possible combinations for v_after goes up exponentially like (1/dv)6.

This exponential behavior makes generate_solutions_very_slow()
very slow and inefficient. For maxval = 1 and dv = 0.5, this function
will process more than 15625 (=56) cases. For dv = 0.1, the number of
cases would be more than 85 million, and for dv = 0.01, the number
would increase to more than 6.5× 1013. In fact, do not use this function
unless you can leave your computer running for many, many hours.

Code Block 3.4

def generate_solutions_very_slow (v_before,dv=0.1):
maxval = np.sqrt(np.sum(np.array(v_before)**2))
num = 0
solutions = list()
for v1x in np.arange(-maxval,maxval+dv,dv):

for v1y in np.arange(-maxval,maxval+dv,dv):
for v1z in np.arange(-maxval,maxval+dv,dv):

for v2x in np.arange(-maxval,maxval+dv,dv):
for v2y in np.arange(-maxval,maxval+dv,dv):

for v2z in np.arange(-maxval,maxval+dv,dv):
v_after = [v1x,v1y,v1z,v2x,v2y,v2z]
keep track of number of trials.
num = num+1
if is_conserved(v_before,v_after):

solutions.append(v_after)
return solutions, num

You can make dv smaller,
but the code will take a really long time.
dv = 0.5
solutions, num = generate_solutions_very_slow([1,0,0,0,0,0],dv=dv)
print("Number of solutions tried = ", num, ' with dv = ', dv)
assert num==(5**6)

Number of solutions tried = 15625 with dv = 0.5

The following function generate_solutions() has a similar structure
of the six nested for-loops (to consider possible sets of post-collision
velocities) and one if statement (to check conservation). The difference
with the previous implementation is that it narrows down the search
space further, so that the code runs significantly faster. Because the
total energy needs to be conserved, the inner for-loops consider the
range of velocity values that the remaining energy can accommodate.
As an analogy, suppose we have a set of siblings, and they are given
a total of $100. The oldest sibling (A) takes a portion of it (say, $40)

40 � Thermal Physics Tutorials with Python Simulations (TPTPS)

and gives the rest to the next oldest one (B), who takes a portion from
the remaining fund and passes the rest to the next one (C). We know
that A+B+C=$100, so B cannot have more than $60 because $40 was
already taken by A.

A helper function my_range() generates a reduced range for each
nested loop. In the first for-loop for v1x, we consider the full range
between -maxval and maxval, but in the second loop for v1y, we
consider a smaller range since v1x reduced the range of possible
values for v1y. The next loop for v1z considers an even smaller
range since both v1x and v1y took up a portion of energy, and a
smaller amount of energy is left for v1z. Therefore, the input argu-
ment for my_range() starts with [0,0,0,0,0,0] and incrementally
adds the contributions from the previous loops: [v1x,0,0,0,0,0],
[v1x,v1y,0,0,0,0], [v1x,v1y,v1z,0,0,0], etc.

The reduced range is given by
np.arange(-new_maxval,new_maxval+dv,dv), where new_maxval is
the remaining amount of energy. That is the square root of
maxval**2-np.sum(np.array(trial)**2), where trial is the set of
velocity values that are being considered in the previous, outer for-
loops. In the above sibling analogy, this trial would be a record of
how much money was already taken by the older siblings.

There are a few lines of code that may need some clarification.
The tmp_maxval is a temporary variable for the square root of
maxval**2-np.sum(np.array(trial)**2), which, due to rare unfor-
tunate numerical round-off errors, may be slightly less than 0, so
my_sqrt() function returns zero in such a case.

Why might we encounter such a case? That is because the code was
written so that any trial solutions we consider would come from a range
of np.arange(-maxval,maxval+dv,dv), a set of evenly-spaced num-
bers. If the newly returned tmp_maxval happens to be a number not
contained in this discrete set, we pick the closest number using the
np.argmin() function to determine new_maxval, thereby introducing
a small numerical imprecision.

Compared to generate_solutions_very_slow(), this new function
generate_solutions() is a significant improvement. For maxval = 1
and dv = 0.1, the slow code considers more than 85 million possibil-
ities, while this one considers 5,827,203 possibilities, which is a speed-
up of more than ten-fold. A geometric insight of this optimization is

Velocity Distribution � 41

this. The slow code searches for a solution within the full volume of a
(six-dimensional) cube, while the new code searches on a surface of a
(six-dimensional) sphere.

Code Block 3.5

def my_range(maxval,trial,dv):

def my_sqrt (v):
return np.sqrt(np.max([v,0]))

def_range = np.arange(0,maxval+dv,dv) # Default range
tmp_maxval = my_sqrt(maxval**2-np.sum(np.array(trial)**2))
new_maxval = def_range[np.argmin(np.abs(def_range-tmp_maxval))]
return np.arange(-new_maxval,new_maxval+dv,dv)

def generate_solutions (v_before,dv=0.1):
maxval = np.sqrt(np.sum(np.array(v_before)**2))
num = 0
solutions = list()
trial = [0,0,0,0,0,0]
for v1x in my_range(maxval,trial,dv):

trial = [v1x,0,0,0,0,0]
for v1y in my_range(maxval,trial,dv):

trial = [v1x,v1y,0,0,0,0]
for v1z in my_range(maxval,trial,dv):

trial = [v1x,v1y,v1z,0,0,0]
for v2x in my_range(maxval,trial,dv):

trial = [v1x,v1y,v1z,v2x,0,0]
for v2y in my_range(maxval,trial,dv):

trial = [v1x,v1y,v1z,v2x,v2y,0]
for v2z in my_range(maxval,trial,dv):

trial = [v1x,v1y,v1z,v2x,v2y,v2z]
v_after = np.array(trial)
num = num+1
if is_conserved(v_before,v_after):

solutions.append(v_after)
return solutions, num

dv = 0.5
solutions, num = generate_solutions([1,0,0,0,0,0],dv=dv)
print("Number of solutions tried = ", num, ' with dv = ', dv)

Number of solutions tried = 545 with dv = 0.5

42 � Thermal Physics Tutorials with Python Simulations (TPTPS)

The use of generate_solutions() is illustrated here. A helper func-
tion, print_solutions_neatly(), takes the solutions list and prints
them out with a fixed-width format. The datetime module is used to
keep track of the runtime.

Code Block 3.6

from datetime import datetime

def print_solutions_neatly (solutions):
for sol in np.array(solutions):

print(np.array2string(sol, precision=2, suppress_small=True,
floatmode='fixed', sign=' '))

return

Pre-collision velocities.
v_before = [1,0,0,0,0,0] # [v1x,v1y,v1z,v2x,v2y,v2z]

Set the resolution of search.
Recommended dv = 0.1.
dv = 0.1
Calculation takes significantly longer (hours) with small dv.
#dv = 0.05

print("\nTrying out generate_solutions() function.")
print("Started at ====> ", datetime.now().strftime("%H:%M:%S"))
solutions, num = generate_solutions (v_before,dv=dv)
print("Finished at ===> ", datetime.now().strftime("%H:%M:%S"))
print_solutions_neatly(solutions)
print("Number of solutions tried = ", num, ' with dv = ', dv)

Trying out generate_solutions() function.
Started at ====> 10:25:45
Finished at ===> 10:26:34
[-0.00 -0.00 -0.00 1.00 -0.00 -0.00]
[0.10 -0.30 -0.00 0.90 0.30 -0.00]
[0.10 -0.00 -0.30 0.90 0.00 0.30]
[0.10 -0.00 0.30 0.90 0.00 -0.30]
[0.10 0.30 -0.00 0.90 -0.30 -0.00]
[0.20 -0.40 -0.00 0.80 0.40 -0.00]
[0.20 -0.00 -0.40 0.80 -0.00 0.40]
[0.20 -0.00 0.40 0.80 -0.00 -0.40]
[0.20 0.40 -0.00 0.80 -0.40 -0.00]
[0.50 -0.50 -0.00 0.50 0.50 -0.00]
[0.50 -0.40 -0.30 0.50 0.40 0.30]
[0.50 -0.40 0.30 0.50 0.40 -0.30]
[0.50 -0.30 -0.40 0.50 0.30 0.40]
[0.50 -0.30 0.40 0.50 0.30 -0.40]

Velocity Distribution � 43

[0.50 -0.00 -0.50 0.50 -0.00 0.50]
[0.50 -0.00 0.50 0.50 -0.00 -0.50]
[0.50 0.30 -0.40 0.50 -0.30 0.40]
[0.50 0.30 0.40 0.50 -0.30 -0.40]
[0.50 0.40 -0.30 0.50 -0.40 0.30]
[0.50 0.40 0.30 0.50 -0.40 -0.30]
[0.50 0.50 -0.00 0.50 -0.50 -0.00]
[0.80 -0.40 -0.00 0.20 0.40 -0.00]
[0.80 -0.00 -0.40 0.20 -0.00 0.40]
[0.80 -0.00 0.40 0.20 -0.00 -0.40]
[0.80 0.40 -0.00 0.20 -0.40 -0.00]
[0.90 -0.30 0.00 0.10 0.30 -0.00]
[0.90 -0.00 -0.30 0.10 0.00 0.30]
[0.90 -0.00 0.30 0.10 0.00 -0.30]
[0.90 0.30 0.00 0.10 -0.30 -0.00]
[1.00 -0.00 -0.00 -0.00 -0.00 -0.00]
Number of solutions tried = 5827203 with dv = 0.1

Code Block 3.7

Slower function.
Uncomment, if you want to try this out.
v_before = [1,0,0,0,0,0] # [v1x,v1y,v1z,v2x,v2y,v2z]
dv = 0.1
#print("\nTrying out generate_solutions_very_slow() function.")
#print("Started at ====> ", datetime.now().strftime("%H:%M:%S"))
#solutions, num = generate_solutions_very_slow (v_before,dv=dv)
#print("Finished at ===> ", datetime.now().strftime("%H:%M:%S"))
#print_solutions_neatly(solutions)
#print("Number of solutions tried = ", num, ' with dv = ', dv)

3.5 DISTRIBUTION OF ENERGY

The above calculation shows many possible solutions to a two-particle
collision problem. The post-collision velocities may take on various val-
ues; hence, the two particles can split the total energy in many different
ways after the collision. If a shopper goes into a store with some amount
of cash, the shopper may spend different amounts of money on other
days. The total cash in the possession of the shopper and the store
should be equal to the starting amount of the shopper, but this entire
amount may be split in many different ways.

44 � Thermal Physics Tutorials with Python Simulations (TPTPS)

The following code plots the split of the total energy as a histogram. It
calculates the energy ratio as the amount of post-collision kinetic energy
carried away by one particle, divided by the total pre-collision kinetic
energy,

E1, after

E1, before + E2, before
.

The histogram shows that this ratio can be 0 (if all the post-collision
kinetic energy is given to the second particle), 0.5 (if the energy is
shared equally), 1 (if the first particle takes all the kinetic energy after
the collision), or other values.

Code Block 3.8

Draw a histogram of energy ratio.
energy_ratio = np.zeros((len(solutions),2))
for i, sol in enumerate(solutions):

e_before = np.sum(np.array(v_before)**2)
e1_after = np.sum(np.array(sol[:3])**2)
e2_after = np.sum(np.array(sol[3:])**2)
energy_ratio[i,0] = e1_after/e_before
energy_ratio[i,1] = e2_after/e_before

Make a histogram for the first particle with
the values in the first column of energy_ratio array.
plt.hist(energy_ratio[:,0],bins=11)
plt.title('Histogram of energy ratio')
plt.xlabel('E_1 (after) / Total Energy')
plt.ylabel('Number')
plt.xticks((0,0.5,1))
plt.savefig('fig_ch3_energy_ratio_hist.eps')
plt.show()

Velocity Distribution � 45

3.6 DISTRIBUTION OF ENERGY AFTER MANY, MANY COL-
LISION EVENTS

Then, an interesting question is if there is a stable (i.e., equilibrium)
distribution of energy of many particles. In other words, even if only
one particle was moving initially, it will collide with other particles,
and its kinetic energy will start to spread and be shared with others.
Over time, the velocity distribution profile will fluctuate because a fast
particle may get slowed down and a slow particle may gain extra energy
from a random collision with a particle with higher kinetic energy. After
a sufficiently long time, it turns out that this distribution takes on a
stable shape.

In the following simulation, we will generate this distribution by ran-
domly splitting energies, based on the earlier observation that energy
splits in many different ways. As a preliminary step, let’s work on a code
that picks two particles randomly. We will use np.random.randint(),
which picks random integer values within a specified range. For example,
np.random.randint(5,size=(10,2)) will create ten pairs of random
integers between 0 and 5.

Figure 3.2

46 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Code Block 3.9

N = 1000 # Number of particles.
Tmax = 10 # Number of iterations (or number of picks)
random_picks = np.random.randint(N,size=(Tmax,2))
for t in range(Tmax):

pick1 = random_picks[t,0]
pick2 = random_picks[t,1]
print("Random pick %2d = (%3d,%3d)"%(t,pick1,pick2))

Random pick 0 = (909,322)
Random pick 1 = (827,778)
Random pick 2 = (818,165)
Random pick 3 = (145,948)
Random pick 4 = (536,847)
Random pick 5 = (950, 65)
Random pick 6 = (609,213)
Random pick 7 = (123,756)
Random pick 8 = (293,440)
Random pick 9 = (170,308)

We will start the simulation where two particles are chosen randomly,
exchanging their energies while keeping the total energy constant. What
would be the resulting distribution of energy? In this simulation, we
pick two particles i and j using the np.random.randint() function.
If these particles are different (if (i!=j):), split their total energy
(e[i]+e[j]) randomly. This random split is accomplished by picking a
number between 0 and 1 (p = np.random.rand()). This is a simplify-
ing assumption because the histogram of energy split from our earlier
calculation is not uniform. Still, it simplifies our simulation into a single
line of code.
Code Block 3.10

import numpy as np
import matplotlib.pyplot as plt

Simulation of how particles exchange their energy over time.

N = 1000 # number of particles
T = 2000 # number of iterations.

e = np.zeros(N) # Current energy distribution of N particles.
e_all = np.zeros((T,N)) # Energy distribution over time.

Initialize all particles with the same energy.
e0 = 10

Velocity Distribution � 47

e = e + e0

Here is another way to initialize the energy distribution:
Let's give just one particle all energy.
#e = np.zeros(N)
#e[0] = e0*N

for t in range(T):
e_all[t,:] = e

Pick a pair of particles.
i = np.random.randint(N)
j = np.random.randint(N)
if (i!=j):

Exchange energy if two different particles are chosen.
e_total = e[i]+e[j]
p = np.random.rand() # fraction (between 0 and 1)
e[i] = np.round(e_total*p) # Give a portion of energy to i.
e[j] = e_total-e[i] # Give the rest of energy to j.

Code Block 3.11

Show histogram at the beginning and end.
def show_hist (e_all, t):

T,N = e_all.shape
width = 5
maxlim = np.ceil(np.max(e_all)*width)/width
bins = np.arange(0,maxlim,width)
h, b = np.histogram(e_all[t,:], bins=bins)
plt.bar(b[:-1],h/N,width=width,color='black')
plt.ylim((0,1.1))
plt.ylabel('Fraction of Particles')
plt.yticks((0,0.5,1))
plt.xlabel('Energy (a.u.)')
plt.title('Distribution of energy')

print('Distribution at the beginning')
show_hist(e_all,0)
plt.savefig('fig_ch3_energy_dist_initial.eps')
plt.show()

print('Distribution after a long time (equilibrium)')
show_hist(e_all,-1)
plt.savefig('fig_ch3_energy_dist_final.eps')
plt.show()

48 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Distribution at the beginning

Figure 3.3

Distribution after a long time (equilibrium)

Figure 3.4

Velocity Distribution � 49

Code Block 3.12
Show histogram over time.

import numpy as np
import matplotlib.pyplot as plt

T,N = e_all.shape
width = 5
maxlim = np.ceil(np.max(e_all)*width)/width
bins = np.arange(0,maxlim,width)

nrow = 5
ncol = 5
fig, axes = plt.subplots(nrow,ncol,figsize=(8,8),

sharex=True,sharey=True)
step = int(T/(nrow*ncol))
for i in range(nrow):

for j in range(ncol):
ax = axes[i,j]
t = (i*ncol + j)*step
h, b = np.histogram(e_all[t,:], bins=bins)
ax.bar(b[:-1],h/N,width=width,color='black')
ax.set_title("t = %d"%t)
ax.set_yticklabels([])
ax.set_xticklabels([])
ax.set_ylim((0,1.1))

Put axes labels on the last subplot.
ax = axes[i,0]
ax.set_yticks((0,0.5,1))
ax.set_ylabel('Fraction of Particles')
ax.set_xlabel('Energy (a.u.)')
plt.tight_layout()
plt.savefig('fig_ch3_energy_dist_evolution.eps')
plt.show()

50 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Figure 3.5 summarizes the results. After many energy exchanges
through random elastic collisions, the gas particles share and distribute
the total energy in a particular way. The stable distribution of energy
ε, as shown by the histogram, looks like an exponential function, e−βε.
(Note we will use ε to denote a continuous variable for energy.) Accord-
ing to the shape of this distribution, most particles have small energy,
but there are chances for some particles to carry high kinetic energies.

We will write the probability of a particle having kinetic energy between
ε and ε + dε as P(ε)dε. P(ε) is called the probability density function.
The energy distribution can be written as P(ε)dε ∝ e−βεdε, where the
proportionality constant is determined by the normalization condition

Figure 3.5

Velocity Distribution � 51

1 =
∫
∞

0 P(ε)dε. This normalization comes from the fact that the energy
of any particle will certainly be between 0 and ∞.

The exponential behavior of P(ε) can also be inferred by the following
observations. Consider a collision of two particles with pre- and post-
collision energies, (ε1, before, ε2, before) and (ε1, after, ε2, after). The proba-
bility of a collision is proportional to the product of individual proba-
bilities. Furthermore, the inverse collision process, where the pre- and
post-collision energy values are swapped, should also be equally proba-
ble at equilibrium. Hence, we have:

P(ε1, before)P(ε2, before) = P(ε1, after)P(ε2, after),

or

ln P(ε1, before) + ln P(ε2, before) = ln P(ε1, after) + ln P(ε2, after).

We also require energy conservation.

ε1, before + ε2, before = ε1, after + ε2, after.

By the inspection of the last two expressions, we can infer that P(ε) ∝
e−βε. We will come back to this result with more rigorous proof later.

3.7 DISTRIBUTION OF SPEED AFTER MANY, MANY
COLLISION EVENTS

We will assume a bit of mathematical sophistication in the following
analysis. We will use the previous result of exponential energy distribu-
tion and derive the distribution of the speed of gas particles.

Velocity is a vector in three-dimensional space, and its magnitude, |~v|
(or v), is speed. Therefore, a distribution of velocities involves a three-
dimensional probability density, while the energy distribution obtained
above is one-dimensional.

52 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Assuming isotropy (that is, all directions are equal or there is no special
direction), we may consider a thin spherical shell in the velocity phase
space (where the axes are vx, vy, and vz). A spherical shell whose radius

is v =
√

v2
x + v2

y + v2
z and whose thickness is dv will have a differential

volume of 4πv2dv, and the velocities represented within this volume will
have the same energy. Then, the distribution of speed is given by:

P(v)dv ∝ 4πv2e−β
mv2

2 dv.

This result is called the Maxwell-Boltzmann distribution. The exponen-
tial factor of this distribution comes from e−βε of energy distribution,
because the energy and speed are related according to ε = 1

2 mv2. The
factor, 4πv2dv, arises from the spherical geometry. The volume of a
spherical shell with thickness dv is greater for a large v. That means
that the possible range of v is higher for a large v for a given interval
dv. For example, there are more ways of obtaining the speed between
100 and 100 + dv (large v) than between 50 and 50 + dv (smaller v).
More ways correspond to a higher probability.

This idea is illustrated in Figure 3.7, which shows two circular bands
drawn with the same thickness. The area of the circular band with a
larger radius is larger than the one with a smaller radius.

Figure 3.6

Velocity Distribution � 53

Code Block 3.13

import matplotlib.pyplot as plt

circle1 = plt.Circle((0,0), 2.0, alpha=1, color='gray')
circle2 = plt.Circle((0,0), 1.5, alpha=1, color='white')
circle3 = plt.Circle((0,0), 1.0, alpha=1, color='black')
circle4 = plt.Circle((0,0), 0.5, alpha=1, color='white')

fig, ax = plt.subplots()
ax.add_patch(circle1)
ax.add_patch(circle2)
ax.add_patch(circle3)
ax.add_patch(circle4)

plt.axis('equal')
plt.axis('off')
plt.savefig('fig_ch3_more_area.eps')
plt.show()
print('The gray band covers more area than the black band, ')
print('even though they have the same thickness.')

The gray band covers more area than the black band,
even though they have the same thickness.

Figure 3.7

54 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Code Block 3.14

def MB_distribution (v,T=1,dv=0.01):
Define probability distribution function.
Parameter in the exponential distribution
is given by dimensionless temperature T.
p = v**2*np.exp(-v**2/T)
p = p/(np.sum(p)*dv) # normalize.
return p

dv = 0.01
v = np.arange(0,5,dv)
plt.plot(v,MB_distribution(v,T=1,dv=dv),color='k',linestyle='solid')
plt.plot(v,MB_distribution(v,T=2,dv=dv),color='k',linestyle='dotted')
plt.plot(v,MB_distribution(v,T=4,dv=dv),color='k',linestyle='dashed')
legend_txt = ('Cold (or Heavy)','Warm (or Medium)','Hot (or Light)')
plt.legend(legend_txt,framealpha=1)
plt.xlabel('v (a.u.)')
plt.ylabel('P(v)')
plt.yticks((0,0.5,1))
plt.title('Maxwell-Boltzmann Distribution')
plt.savefig('fig_ch3_maxwell_boltzmann_distrib.eps')
plt.show()

Figure 3.8 shows the Maxwell-Boltzmann distribution. The rising and
falling behavior comes from two opposing trends: the disfavoring of large

Figure 3.8

Velocity Distribution � 55

v due to the exponential distribution of energy and the favoring of large
v due to the three-dimensional spherical nature of v.

Furthermore, when the parameter 1/β is large, the distribution shifts
and stretches to the right. This situation corresponds to a higher tem-
perature of the gas or a larger amount of total kinetic energy. The
proportionality constant can also be derived from the normalization
condition of the probability density, 1 =

∫
∞

0 P(v)dv. Because the total
area under the curve should be 1, the distribution curve shrinks verti-
cally as it stretches horizontally.

A similar effect of curve-shifting happens with different species of the
ideal gas with different mass m at the same temperature. According to
the kinetic theory of gas, the average kinetic energy is the same for all
gases with the same temperature. However, lighter gas particles would
move faster than heavier gas with the same amount of kinetic energy.
Thus, a lighter gas such as helium would have a speed distribution that
is shifted and stretched toward larger v, and a heavier gas would be
shifted toward smaller v.

3.8 NOTE ON A MORE AMBITIOUS CODING PROJECT

It is possible to simulate the collision of particles more realistically. Such
a coding project may involve the following steps.

1. N particles are randomly distributed in a volume, V (or a two-
dimensional area, for easier visualization with a scatter plot).
They are initialized with random velocities.

2. At each time step, update the position of each particle with two
important considerations. First, if a particle runs into a wall (i.e.,
the new position goes outside of the boundary of V), assume that
an elastic collision with an immovable wall has occurred and the
particle bounces back into V. Second, if two particles come too
close to each other (i.e., |~r1−~r2| < 2r, where |~r1−~r2| is the distance
between two particles and r is the radius of each particle), as-
sume an elastic collision has occurred and update their positions
and velocities by applying energy and momentum conservation
principles.

3. Run the simulation forward in time, and compile the velocity dis-
tributions, which converge to a Maxwell-Boltzmann distribution.

56 � Thermal Physics Tutorials with Python Simulations (TPTPS)

However, constantly updating the positions of N particles and checking
possible collisions of N(N − 1)/2 pairs of particles are computationally
intensive, so a thoughtful search optimization also needs to be imple-
mented.†

†There are many excellent tutorials and examples of such simulation of particle
dynamics. For a reference, see:

• “Building Collision Simulations” by Reducible:
www.youtube.com/watch?v=eED4bSkYCB8

• A collision simulation can be tweaked to model an epidemic (as done by
3B1B):
www.youtube.com/watch?v=gxAaO2rsdIs

• Python code example: “The Maxwell–Boltzmann distribution in two dimen-
sions” at scipython.com/blog

https://www.youtube.com
https://www.youtube.com
https://scipython.com

C H A P T E R 4

Thermal Processes

4.1 STATE AND PROCESS

An earlier chapter examined a model of ideal gas as a collection of
N particles flying around in random directions and colliding with one
another. This kinetic theory of gas is a satisfyingly intuitive model as
such motions and collisions are familiar to us from a game of billiards,
bowling, or curling. At any given point in time, the state of an ideal
gas can be specified with its current values of P (pressure), V (volume),
and T (temperature). This chapter will consider processes where these
state variables change smoothly. Such changes may come from adding
or subtracting heat energy and applying force (e.g., compression on the
container) on the gas.

Among many possible thermal processes, a few simple ones are par-
ticularly important and amenable to theoretical analysis. An isobaric
process deals with a change in V and T while P stays constant (i.e., by
putting the gas in a flexible container that would expand or contract
easily, so that it would be at equilibrium with a constant external pres-
sure). The prefix “iso” means “equal,” and “bar” is an old unit of pres-
sure. A device that measures pressure is called a “barometer.” Hence
“isobaric” means “of equal pressure.”

An isothermal process refers to any change in V and P while T stays
constant (i.e., by putting the gas in thermal contact with a big reservoir
whose temperature does not change). An isochoric process refers to any
change in T and P while V is constant (i.e., by putting the gas in a rigid
box that does not expand or contract). An adiabatic process refers to a

57

58 � Thermal Physics Tutorials with Python Simulations (TPTPS)

situation where no heat energy is added or removed from the gas (i.e.,
by isolating the gas in a heat-insulating container).

The thermal processes of an ideal gas are often visualized
as curves on a PV-diagram (a graph whose axes are P and
V). The following simulation from PhET is a great resource
for thinking about different thermal processes of an ideal gas:
https://phet.colorado.edu/en/simulation/gas-properties

4.2 PLOTTING AND NUMERICAL INTEGRATION

Before we get to the physics of thermal processes, let’s get acquainted
with a few plotting techniques. Study and play with the following code,
so that you can understand what each line does. An important les-
son is that it is straightforward to overlay different types of graphs (a
line graph and a bar graph in this case) with the matplotlib.pyplot
module.

The resulting graph provides a visual illustration of how the area under
a function, or an integral, can be approximated by the sum of the areas
of many rectangles with small widths. This numerical integration yields
a better approximation with the rectangles of smaller widths, but at
the expense of having to deal with more terms in the calculation and,
hence, a longer runtime.

Code Block 4.1

import numpy as np
import matplotlib.pyplot as plt

dx = 5
x = np.arange(0,100+dx,dx)
y = x**2/100

Other functions you may try.
y = np.log(0.01*x+0.1)+3
y = 2*x + 150

Calculate the area under curve
by adding up the areas of the small rectangles.
A = np.sum(y)*dx
print('area under curve:', A)

plt.plot(x,y,'o-',color='k')

https://phet.colorado.edu

Thermal Processes � 59

plt.bar(x,y,width=dx*0.85,color='gray')
width = how wide each bar is.

plt.ylim([-dx, np.max(y)+dx])
plt.xlim([-dx, np.max(x)+dx])
plt.xlabel('x')
plt.ylabel('y')
plt.savefig('fig_ch4_numerical_integ.eps')
plt.show()

area under curve: 3587.5

4.3 PV DIAGRAM

The study of thermal processes is highly relevant to the engineering of
thermal engines like an internal combustion engine, where the expansion
of gas produces useful work (such as the rotation of the wheels of a car)
at the expense of thermal energy. It is also convenient to imagine gas
trapped inside a piston that can expand in one direction with a fixed
cross-sectional area A. The force exerted by the gas is PA, and if the gas
moves the piston by dx, the volume change is dV = Adx. According to
the definition of mechanical work, the total amount of work performed

Figure 4.1

60 � Thermal Physics Tutorials with Python Simulations (TPTPS)

by the expanding gas can be calculated by

W =

∫
~F · d~x =

∫ xb

xa

(PA)dx =

∫ Vb

Va

PdV.

The pressure and volume of gas can change in many different ways.
One of the simplest ways is an isobaric process where the gas expands
while maintaining its pressure. For example, a piston may be allowed
to push out slowly against the constant atmospheric pressure. This is
analogous to a case where you lift a weight by “fighting against” the
constant gravitational force, mg, over distance h. The amount of work
you did would be mgh. The total amount of work performed by the gas
during an isobaric process, where the volume changes from Va to Vb, is:

Wisobaric =

∫ Vb

Va

PdV = P(Vb − Va).

Another case is an isochoric process, where V does not change even
when P or T are changing. You may want to visualize this situation as
a gas trapped inside a rigid box with immovable walls. Then dV = 0,
so the total work is zero. This is analogous to a situation where you
are trying to lift a weight, but it is so heavy that you cannot move it,
no matter how much force you exert. Despite your assertion of force,
no mechanical work was done because the displacement of the weight
is zero.

Wisochoric =

∫ Va

Va

PdV = 0.

Another case is an isothermal process where the pressure and volume
are inversely proportional, as seen from the ideal gas law in Chapter 2.

Wisothermal =

∫ Vb

Va

PdV =

∫ Vb

Va

NkT
V

dV = NkT ln
Vb

Va
.

4.4 ADIABATIC PROCESS

An adiabatic process is a bit more complicated. During an isothermal
expansion, the gas maintains its temperature, which means that extra
thermal energy is added to the gas at the same rate as the gas does

Thermal Processes � 61

the work, so that the average internal energy of the gas (i.e., its tem-
perature) is maintained. However, during an adiabatic expansion, such
infusion of energy is not allowed by definition. This would be analogous
to a case where you lift a weight without any caloric intake. Over the
long run, you are depleting your internal energy and will not be able to
do as much work. In other words, compared to the isothermal expansion
process over the same range of volume change, an adiabatic expansion
process will produce less work and end up at a lower temperature.

As a consequence, ideal gas that goes through an adiabatic process
between states a and b has an additional constraint, in addition to the
usual PV = NkT:

PVγ = constant, or PaV
γ
a = PbVγ

b ,

where γ = CP/CV is a ratio of specific heat coefficients under constant
pressure and constant volume. It is 5/3 for an ideal monoatomic gas.
The proof of this result is a bit involved, but it touches upon many
interesting insights, so here it is.

4.5 PROOF OF PVγ = CONSTANT FOR AN ADIABAT OF
IDEAL GAS

Let’s start with a very general statement that a thermal system can
be specified with its state variables, T, V, and P. If these variables are
related by an equation of state variables (for example, PV = NkT for
an ideal gas), the system is ultimately specified with only two variables.
Considering the internal energy U(T,V) as a multivariate function of T
and V, we can make the following general statement:

dU =

(
∂U
∂T

)
V

dT +

(
∂U
∂V

)
T

dV.

The expression
(
∂U
∂T

)
V

is a partial derivative of U with respect to T

while keeping V constant. Likewise,
(
∂U
∂V

)
T
is a partial derivative of U

with respect to V under constant T.

Another general statement we can make is that

dU = dQ + dW = dQ − PdV.

62 � Thermal Physics Tutorials with Python Simulations (TPTPS)

The above statement means that the internal energy of a thermal system
would change from the heat transfer (dQ) or the mechanical work done
on the system (dW). The latter is dW = Fdx = −PdV, as shown in
the chapter on the kinetic theory of gas. The negative sign of −PdV
indicates that if the gas is compressed (negative dV), work is done on
the system by the external force, and hence dU should be positive.

How universal are those two statements? Do T and V completely specify
the internal energy of a physical system? Is there any other way (beyond
dQ and dW) to change the internal energy of a physical system? There
could be other relevant state variables and other ways to affect the
internal energy. For example, the internal energy of some material may
be affected by the absorption or emission of a photon. Other material
may change internal energy when it is subject to electrical potential.
However, these are sufficiently rigorous statements within our context
of classical thermodynamics.

Now let’s focus our context even more narrowly by considering ideal gas.
According to the kinetic theory of gas, the internal energy of ideal gas
is the sum of an individual particle’s kinetic energy, which determines
T, so U of ideal gas would not depend on V. Therefore,

(
∂U
∂V

)
T

= 0.
Furthermore, because PV = NkT, PdV + VdP = NkdT, which will be
used shortly.

Now, using the first two expressions about dU, we have:

dQ − PdV =

(
∂U
∂T

)
V

dT +

(
∂U
∂V

)
T

dV.

dQ = PdV +

(
∂U
∂T

)
V

dT.

dQ = (−VdP + NkdT) +

(
∂U
∂T

)
V

dT = −VdP +

[
Nk +

(
∂U
∂T

)
V

]
dT.

It is convenient to define specific heat, CV =
(

dQ
dT

)
V
, which is the amount

of heat energy needed to raise the temperature of a system at constant
volume. Similarly, CP =

(
dQ
dT

)
P
is defined as the specific heat at constant

pressure. Given the above relationships, we see that for an ideal gas,
CV =

(
∂U
∂T

)
V
and CP = CV +Nk. This latter relationship is called Mayer’s

equation and indicates that CP > CV. When the thermal system is
allowed to expand (that is, V is not constant), the added heat energy

Thermal Processes � 63

will not only go into the internal energy of the system but also will be
spent through its mechanical work of pushing against the environment.
Therefore, a system allowed to expand will need more heat energy to
increase its temperature, compared to a different system whose volume
does not change.

Now we have
dQ = CVdT + PdV,

and
dQ = CPdT − VdP.

During an adiabatic process, dQ = 0, so PdV = −CVdT and VdP =
CPdT. By combining these two expressions,

γ ≡
CP

CV
=
−VdP
PdV

.

dP
P

+ γ
dV
V

= 0.

By integrating the above variable-separated expression,

ln P + ln Vγ = ln (PVγ) = constant.

In other words, we have shown that PVγ is constant for ideal gas during
an adiabatic process.

Finally, since the total internal energy of ideal gas is 3
2 NkT according to

the kinetic theory of gas, CV =
(
∂U
∂T

)
V

= 3
2 Nk. Furthermore, according

to the Mayer’s equation, CP = CV + Nk = 5
2 Nk. Therefore, γ = 5

3 , as
claimed above.
Code Block 4.2

Draw P-V curves for different thermal processes.
Va = 5
Pa = 20
NkT = Va*Pa

Vb = 20

dV = 0.1
V = np.arange(Va,Vb,dV)

P_isobaric = np.zeros(len(V))+Pa

64 � Thermal Physics Tutorials with Python Simulations (TPTPS)

P_isotherm = NkT/V
P_adiabat = Pa*(Va/V)**(5/3)

plt.plot(V,P_isobaric,color='black',linestyle='solid')
plt.plot(V,P_isotherm,color='black',linestyle='dotted')
plt.plot(V,P_adiabat,color='black',linestyle='dashed')
plt.legend(('isobaric','isothermal','adiabatic'),framealpha=1.0)
plt.xlim((0,25))
plt.ylim((0,25))
plt.xlabel('V (m3)')
plt.ylabel('P (pascal)')
plt.savefig('fig_ch4_thermal_processes.eps')
plt.show()

4.6 CARNOT CYCLE

A heat engine (or a refrigerator, which is a heat engine running in
reverse) can be devised by combining different thermal processes into a
cycle. The Carnot cycle is a particularly important example, and it is
composed of two sets of alternating isothermal and adiabatic processes.

Figure 4.2

Thermal Processes � 65

Imagine ideal gas enclosed in a cylinder with a movable piston. The
Carnot cycle starts by warming up the gas with a high-temperature
heat source. The added heat increases the gas’s internal energy and the
gas expands at constant temperature (isothermal expansion). Next, the
cylinder with the gas is detached from the heat source, but the gas
continues to expand and perform mechanical work. However, since no
heat energy is added, the gas temperature drops during this process
(adiabatic expansion). During the next portion of the cycle, external
work is done on the gas by pushing the piston into the cylinder and
thereby compressing the gas. At the same time, the gas temperature
is kept at a constant low temperature by bringing the gas-contained
cylinder in contact with a low-temperature heat sink and by allowing
the heat to exit from the gas (isothermal compression). During the final
portion of the cycle, the compression of the gas continues, but the heat
sink is removed, and the gas temperature rises without exchanging heat
with its environment until the gas returns to its initial thermodynamic
state (adiabatic compression). Then, the cycle repeats. The following
code block visualizes the Carnot cycle.

HOT COLD

adiabatic
(b → c)

adiabatic
(d → a)

isothermal
(a → b)

isothermal
(c → d)

Figure 4.3

66 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Code Block 4.3

Draw a PV diagram of Carnot cycle,
going through four different thermal states of a, b, c, and d.

Nk = 1 # for simplicity, let Nk = 1 so that PV = T
gamma = 5/3

dV = 0.1

Starting points defined below.
Pa = 20 # pressure at the initial state a.

Va = 10 # volume at a.
Vb = 20 # volume at b.
Vc = 40 # volume at c.
Vd = 20 # volume at d.

V_ab = np.arange(Va,Vb,dV)
V_bc = np.arange(Vb,Vc,dV)
V_cd = np.arange(Vc,Vd,-dV)
V_da = np.arange(Vd,Va,-dV)

Along isotherm (a->b and c->d): P = T/V
Along adiabat (b->c and d->a): P*V**gamma = constant = k
(Note that P*V**gamma = T*V**(gamma-1) since P = T/V)

T_high = Va*Pa # high T
Pa = T_high/Va
P_ab = T_high/V_ab # isothermal process

Pb = T_high/Vb
kb = T_high*Vb**(gamma-1) # constant along adiabat
P_bc = kb/V_bc**(gamma) # adiabatic process

Pc = kb/Vc**(gamma)
T_low = Vc*Pc # low T
P_cd = T_low/V_cd # isothermal process

Pd = T_low/Vd
kd = T_low*Vd**(gamma-1) # constant along adiabat
P_da = kd/V_da**(gamma) # adiabatic process

plt.plot(V_ab,P_ab,color='gray',linestyle='solid')
plt.plot(V_bc,P_bc,color='black',linestyle='dotted')
plt.plot(V_cd,P_cd,color='gray',linestyle='solid')
plt.plot(V_da,P_da,color='black',linestyle='dotted')
plt.legend(('a->b: isothermal','b->c: adiabatic',

'c->d: isothermal','d->a: adiabatic'),framealpha=1)

Thermal Processes � 67

spacing = 1
plt.text(Va+spacing,Pa,'a')
plt.text(Vb+spacing,Pb,'b')
plt.text(Vc+spacing,Pc,'c')
plt.text(Vd+spacing,Pd,'d')
plt.text((Va+Vb)/2+spacing,Pa-6,'high T')
plt.text((Vc+Vd)/2-spacing,Pd-4,'low T')
plt.xlim((0,50))
plt.ylim((0,30))
plt.xlabel('V (m3)')
plt.ylabel('P (pascal)')
plt.savefig('fig_ch4_carnot.eps')
plt.show()

As discussed above, mechanical work done during a thermal process
can be calculated from W =

∫
PdV, so the total amount of mechanical

work done during a full Carnot cycle is equal to the area enclosed by
the four curves, composed of two isotherms and two adiabats, in the
PV diagram. Because a full cycle brings the gas back to its initial state
with the same internal energy, the expended work must have come from
the heat energy. The work output would be W = Qin + Qout. Here, Qin
is the amount of heat that was added to the gas, and Qout is the heat
that left the gas. Hence, Qin > 0 and Qout < 0.

Figure 4.4

68 � Thermal Physics Tutorials with Python Simulations (TPTPS)

The efficiency of a heat engine or thermal cycle is defined as the ratio
of its output (useful mechanical work) and input (total amount of heat
energy added during its operation).

η =
Output
Input

=
W
Qin

=
Qin + Qout

Qin
= 1 +

Qout

Qin
.

For a Carnot cycle, the addition of heat energy occurs during the
isothermal expansion (a → b) only, and this thermal energy is equal
to the amount of mechanical work performed by the gas as the volume
expands from Va to Vb. These two states are at an equal temperature
Ta = Tb = Thigh.

Qin =

∫ Vb

Va

PdV = NkThigh ln (Vb/Va).

During the isothermal compression (c → d), occurring at a constant
temperature of Tc = Td = Tlow, heat flows out of the gas, and this
thermal energy will be equal to

Qout =

∫ Vd

Vc

PdV = NkTlow ln (Vd/Vc).

Since Vd < Vc, Qout is a negative quantity as expected because the
mechanical work is done on the gas when the gas is compressed.

Unlike the two isothermal processes, there is no heat exchange during
the adiabatic process (b → c and d → a). Because PVγ is a constant
value along an adiabat, we have PbVγ

b = PcV
γ
c , or TbVγ−1

b = TcV
γ−1
c

during b → c. Similarly, PdVγ
d = PaV

γ
a , or TdVγ−1

d = TaV
γ−1
a along the

path d→ a.

Since Ta = Tb = Thigh and Tc = Td = Tlow, we can combine the above
expressions and obtain Vb/Va = Vc/Vd. Then, Qout/Qin = −Tlow/Thigh.
Thus, for a Carnot cycle, the efficiency can be calculated just with two
operating temperatures:

ηCarnot = 1 −
Tlow

Thigh
.

Thermal Processes � 69

The following code calculates the efficiency of a Carnot cycle in two
different ways. The first way is based on the above theoretical formula
involving the ratio of temperatures. In the second way, the amount of
work done during one cycle is calculated by numerical integration (or
the area inside the curve on a PV-diagram), and the amount of added
heat is calculated from the amount of mechanical work during isother-
mal expansion because there is no heat exchange with the environment
during the adiabatic processes.

Code Block 4.4
Calculate the efficiency of a Carnot cycle.

total amount of work from numerical integration.
W_ab = np.sum(P_ab)*dV
W_bc = np.sum(P_bc)*dV
W_cd = -np.sum(P_cd)*dV
W_da = -np.sum(P_da)*dV
W_total = W_ab+W_bc+W_cd+W_da

Q_in is equal to the total mechanical work during a->b, because
b->c and d->a: adiabatic process, so no added heat.
c->d: isothermal compression, so heat goes out, not in.
a->b: isothermal expansion, so internal energy does not change.
The added heat must match the mechanical work by the gas.
Q_in = W_ab

eta_measure = W_total/Q_in
eta_theory = 1 - T_low/T_high

print("Efficiency of an example Carnot Cycle:")
print(" %4.3f (calculated by numerical integration)"%eta_measure)
print(" %4.3f (according to the theory)"%eta_theory)
print("Percent Difference = %3.2f perc with dV = %4.3f"

%((1-eta_measure/eta_theory)*100,dV))
print("Smaller dV would make percent difference smaller.")

Efficiency of an example Carnot Cycle:
0.381 (calculated by numerical integration)
0.370 (according to the theory)

Percent Difference = -2.91 perc with dV = 0.100
Smaller dV would make the percent difference smaller.

The result obtained with numerical calculation is satisfyingly compa-
rable to the theoretical result. Again, more accurate values can be ob-
tained by improving numerical integration with smaller steps dV.

http://taylorandfrancis.com

II
Statistical Mechanics

http://taylorandfrancis.com

C H A P T E R 5

Premise of Statistical
Mechanics

5.1 ANALOGY: WEALTH DISTRIBUTION

Consider three societies with different wealth distributions, as depicted
in the following mock histograms. These hypothetical societies may have
the same average wealth per person (i.e., total wealth divided by the
total population), but have very different economic profiles. In the first
society (a), most of the wealth is concentrated in a small population
who are “super rich” (small rectangle) while most people are below the
average line (large rectangle). In the second society (b), represented
by the rectangles in the middle, an equal fraction of the population
is above, below, and at the average wealth level, as shown by three
equal-sized rectangles. In the third society (c), most people live with an
average income, and only a tiny fraction of the population is above or
below the average level. The lifestyle of an average person will be very
different in these societies.

73

74 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Here is a short code sample for creating bar graphs depicting three
different distributions.
Code Block 5.1

Make vertical and horizontal bar histograms of
hypothetical wealth distribution.

import numpy as np
import matplotlib.pyplot as plt

Example of different distributions.
dist1 = np.array([70,25,5])
dist2 = np.array([100,100,100])/3
dist3 = np.array([10,80,10])
dists = (dist1,dist2,dist3)

titles = ('(a)','(b)','(c)')
xaxis = ('Low','Med','High')
fig, axes = plt.subplots(1,3,sharey=True,figsize=(8,3))
Draw a vertical bar plot.
axes[0].bar(xaxis,dist1,color='black')
axes[1].bar(xaxis,dist2,color='black')
axes[2].bar(xaxis,dist3,color='black')
axes[0].set_ylabel('Percent')
for i in range(3):

axes[i].set_title(titles[i])
axes[i].set_ylim((0,100))
axes[i].set_yticks((0,50,100))
axes[i].set_xlim((-1,3))

plt.tight_layout()
plt.savefig('fig_ch5_distrib_vertical.eps')
plt.show()

xaxis = ('Low','Med','High')
fig, axes = plt.subplots(1,3,sharey=True,figsize=(8,3))
Draw a horizontal bar plot.
for i in range(3):

axes[i].barh(xaxis,dists[i],color='black')
axes[i].set_title(titles[i])
axes[i].set_xlim((0,100))
axes[i].set_xticks((0,50,100))
axes[i].set_ylim((-1,3))
axes[i].set_xlabel('Percent')

axes[0].set_ylabel('Levels')
plt.tight_layout()
plt.savefig('fig_ch5_distrib_horizontal.eps')
plt.show()

Premise of Statistical Mechanics � 75

In addition to the relative population distributions of income levels,
there are other factors. For example, what are the income levels of the
rich and the poor in the population? Is the gap between them large
or small? How many distinct income brackets should be considered? Is
it too simplistic to consider just three (low, medium, and high) levels?
If so, how many levels are appropriate to consider? If you are a policy
maker, the type of economic policies that you will design and implement
will vary greatly, depending on which society you are involved in.

The key point in this analogy is that to have a deep enough understand-
ing of a complex system like societal economics, a single average value
(like the average per-capita income) is insufficient. On the other hand, a
particular person’s wealth is an unnecessarily detailed and impractical
piece of information. A good resolution to perform a meaningful analy-
sis is somewhere in the middle, dealing with the brackets of individual
wealth and the distribution of the population into these brackets.

Similarly, grade distribution of a class (how many students got high,
medium, and low grades on a recent exam) would help a teacher to
prepare the lessons for her next class. A CEO of a company would

Figure 5.1

76 � Thermal Physics Tutorials with Python Simulations (TPTPS)

strategize the operation of her company based on a meaningfully infor-
mative revenue report with enough, but not too many, details.

Some of the deep understandings of a many-particle system in physics
can be drawn with a similar analytical approach, where the knowledge
about the available energy levels and the probabilistic distribution of
particles in these levels leads to an overall statistical understanding.

5.2 MATHEMATICAL NOTATIONS

Here we will introduce some mathematical notations used throughout
the remaining chapters. Just as we discussed different income groups
(low, medium, and high), we may consider discrete energy levels with
energy εi. Probability for a particle to occupy this i-th level can be
denoted as pi. N denotes the total number of particles, and the average
number of particles in the i-th level would be given by ni = Npi.

The following conditions hold:

1 =
∑

i

pi.

N =
∑

i

ni.

U =
∑

i

niεi,

< U >=
∑

i

εipi,

where U is the total energy shared by the particles and < U > is the
average energy. N and U are conserved quantities.

When the particles are allowed to exchange their energies with each
other freely, they settle into a particular distribution called the Boltz-
mann distribution. That is, at equilibrium, the number of particles in
each energy level takes on a stable mathematical form, as shown here:

ni = αe−εi/kT,

Premise of Statistical Mechanics � 77

where the normalization condition can determine α, N =
∑

i ni. The
meaning of the constants, k and T, will be discussed more later, but for
now, they make εi/kT a unitless quantity. According to this exponential
expression, lower energy levels tend to be occupied by more particles,
and the higher energy levels have fewer particles.

5.3 LISTING PERMUTATIONS

To develop some intuitions about splitting total energy U by N particles,
let’s consider a simple example where three people are splitting five $1
bills. There are several different ways of thinking about all possibilities.
One way is to list the amount of money held by each person. If we want
to distinguish individuals but not the bills, we may adopt a notation,
$(A, B, C) = $ amount of money of 3 individuals, so that A+B+C = $5.
Here are all possible combinations:

(5,0,0),
(4,1,0), (4,0,1),

(3,2,0), (3,1,1), (3,0,2),
(2,3,0), (2,2,1), (2,1,2), (2,0,3),

(1,4,0), (1,3,1), (1,2,2), (1,1,3), (1,0,4),
(0,5,0), (0,4,1), (0,3,2), (0,2,3), (0,1,4), (0,0,5).

Out of the above list of 21 possibilities, let’s count how likely it is for A
to have all five bills. Just 1 out of all 21 possible ways. How about four
bills? 2 possible ways. How about three? 3. How about two? 4. How
about just one? 5. How about no bills? 6. It is more likely for a person
to have a smaller amount of money. Their corresponding probabilities
would be

p($5) = 1/21,
p($4) = 2/21,
p($3) = 3/21,
p($2) = 4/21,
p($1) = 5/21,
p($0) = 6/21.

Another way to think about such a situation, which we will use more
often, is to consider the different possible states of the wealth of each
individual. What makes this different from the previous listing is that
now we are not distinguishing individuals. We can use the notation of

78 � Thermal Physics Tutorials with Python Simulations (TPTPS)

(n0,n1,n2,n3,n4,n5), where ni is the number of people having i-number
of $1 bills. More generally, we would call ni as an occupation number
of the i-th state. When these numbers are added together, it should be
equal to the total number of people: n0 + n1 + n2 + n3 + n4 + n5 = 3.
Also, when we count all the $1 bills distributed among three people,
the total should be exactly $5, equaling the original amount of money.
Then, all possibilities of distributing three indistinguishable individuals
into these states are:

(2,0,0,0,0,1),
(1,1,0,0,1,0),
(1,0,1,1,0,0),
(0,2,0,1,0,0),
(0,1,2,0,0,0).

The first possibility (2,0,0,0,0,1) can be constructed by giving one indi-
vidual all five bills (n5 = 1), which leaves no other option than to place
the other two individuals with no bills (n0 = 2). Similarly, the next pos-
sibility (1,1,0,0,1,0) is constructed by giving one individual four bills
(n4 = 1) and giving the remaining bill to one individual (n1 = 1). The
remaining one does not get any bills (n0 = 1). You can systematically
tabulate all possibilities in this way. This listing method is similar to
the starting example of distributing wealth in a society, and it is again
revealed that a smaller amount of money is more likely. In other words,
the “occupancy” of states with lower values is higher since it creates
more ways of splitting up the fixed total amount.

By the way, we will always assume that the individuals are indistinguish-
able, as the indistinguishability would be valid for the gas molecules
contained in a fixed volume. It is a subtle idea that intrigued many
physicists, which was resolved with the advent of quantum mechanical
interpretation.

5.4 VISUALIZATION

Here is a sample code for generating a visualization of levels (boxes)
and their occupancies (dots). We will draw gray boxes that represent
the energy levels with plt.fill(), where the width and height of each
box are defined as w and h in the code. In order to keep the boxes
separated, a margin value marg is subtracted. In each box, we put the
specified number of dots with plt.scatter(). These dots are scattered

Premise of Statistical Mechanics � 79

randomly, using np.random.uniform(). In the following sample illus-
trations, we place the different number of dots specified in n, showing
different occupations at each level. We call each of these distinct con-
figurations microstates.

Code Block 5.2

Visualize the energy level and occupation numbers.
import numpy as np
import matplotlib.pyplot as plt

def sketch_occupancy (n):
Makes a cartoon of occupancy plot.
Boxes: levels or states (e.g., number of bills)
Dots: occupation numbers (e.g., number of people)

Define the size of boxes
marg = 0.1 # Size of margin
h = 1.0-2*marg
w = 1.0-2*marg
xbox = np.array([marg,marg+w,marg+w,marg])
ybox = np.array([marg,marg,marg+h,marg+h])

N = len(n) # number of levels
for i in range(N):

plt.fill(xbox,ybox+i,color='#CCCCCC')
x = (np.random.uniform(size=n[i])-0.5)*w*0.9+0.5
y = (np.random.uniform(size=n[i])-0.5)*h*0.9+0.5+i
plt.scatter(x,y,marker='.',color='k',s=50,zorder=2.5)

plt.ylim(-0.5,N+0.5)
plt.yticks(ticks=np.arange(N)+0.5,labels=np.arange(N)+1)
plt.xticks([])
#plt.ylabel('Energy Levels')
plt.axis('equal')
plt.title("Occupancy:\n%s"%n)
plt.box(on=False)

Try out different configurations (microstates).

n = [2,0,0,0,0,1]
fig = plt.figure(figsize=(2,8))
sketch_occupancy (n)
plt.savefig('fig_ch5_occupancy_ex1.eps')
plt.show()

n = [1,1,0,0,1,0]
fig = plt.figure(figsize=(2,8))

80 � Thermal Physics Tutorials with Python Simulations (TPTPS)

sketch_occupancy (n)
plt.savefig('fig_ch5_occupancy_ex2.eps')
plt.show()

n = [0,1,2,0,0,0]
fig = plt.figure(figsize=(2,8))
sketch_occupancy (n)
plt.savefig('fig_ch5_occupancy_ex3.eps')
plt.show()

Figure 5.2

Premise of Statistical Mechanics � 81

5.5 COUNTING EXERCISE

Before we develop a computational routine to list all possible combina-
tions, let’s find an upper bound or an overestimate of the number of all
possibilities. For simplicity, we can start by assuming that total wealth
U can only be split into non-negative integers (0, 1, 2, . . .) like splitting
up money with multiple $1 bills. We can denote the states of wealth
or levels as ε0, ε1, ..., εE−1, εE. There are N indistinguishable people, and
they would belong to one of these E + 1 states.

To group them, we could line up all N individuals in a single file and in-
sert E dividers at random positions between them. The first divider will
mark the boundary between ε0 and ε1, and the next divider will mark
the boundary between ε1 and ε2. There are (N+E)! ways of listing N dis-
tinguishable individuals and E distinguishable dividers. The first item
in a single file could be one of the N individuals or E dividers, so there
are N +E possibilities. The next item could be any one of the remaining
(N + E − 1) possibilities. Thus, there are (N + E)(N + E − 1) · · · (3)(2)(1)
possible ways of arranging a total of (N + E) distinguishable individuals
and dividers. However, because of the indistinguishability of the indi-
viduals and dividers, we have to divide out the redundant counts, so
the number of combinations is (N+E)!

N!E! , which is also called “N + E choose
N” or N+ECN or

(N+E
N

)
. This count is certainly an overestimate because

some of these possibilities would not satisfy the constraint that the total
wealth is fixed. The following code block illustrates this idea with a few
examples.

Code Block 5.3

Count possible ways of randomly assigning people into groups.

import matplotlib.pyplot as plt
import numpy as np

N = 10 # individuals
E = 5 # dividers, so there will be E+1 categories
Individuals are represented by zeros.
Dividers are represented by ones.
arrayN = np.zeros(N)
arrayE = np.ones(E)
Initial line up of N individuals, followed by E dividers.
x = np.hstack((arrayN,arrayE)).astype('int')

82 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Nexamples = 4

print("Randomly place %d individuals into %d groups."%(N,E+1))
print(' ')
for i in range(Nexamples):

print('Example %d'%(i+1))
Now randomly shuffle x.
x_permute = np.random.permutation(x)
print(x_permute)
Count the number of zeros between ones.
n = np.zeros(E+1)
j = 0
for k in x_permute:

if k<1: # if not a divider, increment.
n[j] = n[j]+1

else:
print('\tn[%d] = %d'%(j,n[j]))
j = j+1

Take care of the last group.
print('\tn[%d] = %d'%(j,n[j]))
print(' ')

Randomly place ten individuals into six groups.

Example 1
[1 0 0 0 0 0 1 0 0 1 1 1 0 0 0]

n[0] = 0
n[1] = 5
n[2] = 2
n[3] = 0
n[4] = 0
n[5] = 3

Example 2
[0 0 1 0 1 0 0 0 0 0 0 1 1 0 1]

n[0] = 2
n[1] = 1
n[2] = 6
n[3] = 0
n[4] = 1
n[5] = 0

Example 3
[1 1 0 1 0 1 0 0 0 0 0 0 0 1 0]

n[0] = 0
n[1] = 0
n[2] = 1

Premise of Statistical Mechanics � 83

n[3] = 1
n[4] = 7
n[5] = 1

Example 4
[0 1 0 1 1 0 0 1 0 0 1 0 0 0 0]

n[0] = 1
n[1] = 1
n[2] = 0
n[3] = 2
n[4] = 2
n[5] = 4

5.6 CODE FOR ENUMERATING ALL POSSIBILITIES
(VERSION 1)

Now let’s develop code for enumerating all possibilities that satisfy our
constraints. We will implement two different methods.

The first computational method below is a brute-force algorithm. To
systematically go through all possibilities, we consider a (E + 1)-digit
number in base (N + 1). Each one of the (E + 1) digits can take on a
value between 0 and N, and it represents the number of particles in
each energy level. Therefore, collectively, these (E+1) digits correspond
to the occupation numbers, (n0,n1, ...,nE−1,nE).

Let’s consider a simple example. Suppose there are 9 individual particles
(N = 9) that can go into one of three different energy levels: ε0, ε1, and
ε2. The occupation number for each level will be written as a 3-digit
number. A number 216 would denote that there are 2 particles in ε0, 1
in ε1, and 6 in ε2. We could list all possible 3-digit numbers between 000
and 999 in base 10. Many in this listing will include impossible cases,
such as 217 which violates the condition that there are nine individual
particles, so these extraneous cases must be eliminated. Nevertheless,
we have a systematic way of considering all possibilities.

Here is another example. Assume there is only one particle with three
different levels. Then, a 3-digit binary number can be used to specify all
possibilities. The following three configurations would work: 100, 010,
and 001, but not others, such as 110, 101, or 111 which have more than
1 particle in total.

84 � Thermal Physics Tutorials with Python Simulations (TPTPS)

In addition to the constraint of a fixed total number of particles, there
is one more constraint. In the previous example of splitting five $1 bills
among three people, two quantities must remain constant throughout
the distribution of the money: the total number of people and the total
amount of money. This analogy is helpful when dealing with a multi-
particle system with a fixed number of particles (i.e., number of people)
and a fixed amount of total energy (i.e., total wealth). Let’s imagine gas
particles moving in a container at a constant temperature. In addition to
the number of the gas particles, the total amount of energy shared by the
gas particles is fixed if the container is isolated (no heat exchange with
the environment) and rigid (no mechanical work done on the gas). This
total energy may be shared in many ways, as individual gas particles
swap energy through elastic collisions. The energy conservation or the
constraint of the fixed total energy is also true for other isolated physical
systems, such as electrons in a solid, where their occupation of quantum-
mechanically determined discrete energy levels depends on the total
available energy. Therefore, such constraints must be satisfied as we
consider all possible configurations in the brute force algorithm.

Code Block 5.4

Find the possible configurations in a brute-force manner,
satisfying the number and energy constraints.

import math
import numpy as np

def num2base (num, base=10, max_num_digits=0):
if num<=0: return np.array([0],dtype=int)
num_digits = int(np.floor(math.log(num,base))+1)
num_digits = np.max([num_digits,max_num_digits])
n_new = num
n = np.zeros(num_digits,dtype=int)
for i in range(num_digits):

j = num_digits - i - 1
n[i] = np.floor(n_new/base**j)
n_new = n_new - base**j*n[i] # remainder

n = n[::-1] # reversed
check
assert np.sum(n* (base**np.arange(num_digits))) == num
return n

Test the num2base() function with a few examples.
assert all(num2base(9,base=10)==np.array([9]))
assert all(num2base(9,base=3)==np.array([0,0,1]))

Premise of Statistical Mechanics � 85

assert all(num2base(9,base=2)==np.array([1,0,0,1]))
assert all(num2base(9,base=10,max_num_digits=3)==np.array([9,0,0]))

Check the simple case
e.g., splitting 5 bills among 3 people or
3 particles occupying 6 energy levels
N = 3 # total number of people or particles
E = 5 # total amount of money or energy
n = list()
e = np.arange(0,E+1,1) # number of bills or energy levels
for k in range((N+1)**(E+1)):

n_tmp = num2base(k,base=(N+1),max_num_digits=(E+1))
if np.sum(n_tmp)==N: # check total number constraint.

if np.sum(n_tmp*e)==E: # check total energy constraint.
n.append(n_tmp)

n = np.array(n)
print(n)
Note this method will take a really long time
for large N or E.

[[0 1 2 0 0 0]
[0 2 0 1 0 0]
[1 0 1 1 0 0]
[1 1 0 0 1 0]
[2 0 0 0 0 1]]

The above brute force strategy of considering all possibilities and elimi-
nating ones that do not satisfy the constraints is intuitive and straight-
forward. However, one serious drawback is its inefficiency, where the
computational time increases exponentially. For example, if there are
five individual particles with three different levels, we must consider all
possible 3-digit numbers in base 6. Because each digit would take on
a value between 0 and 5 in base 6, the total number of numbers to
be considered is 63 (from 000 to 555), and all these numbers must be
checked to see if they satisfy the constraining conditions. If there are
ten particles and three different levels, we would consider 113 numbers,
etc. Similarly, if we consider five particles with six different levels, there
are 66 possibilities. If there are five particles with 12 different levels,
there are 612 possibilities. In other words, the number of possibilities to
consider and the computational time increase rapidly.

86 � Thermal Physics Tutorials with Python Simulations (TPTPS)

5.7 CODE FOR ENUMERATING ALL POSSIBILITIES
(VERSION 2)

The second computational routine performs the same job of listing all
permutations but uses a powerful technique called recursion. The main
idea is that we create a general function (called perm_recursive()
below) that can be called within itself, but when it is called “recursively,”
it considers a smaller range of possible permutations.

For example, suppose there are nine particles with three levels
(ε0, ε1, ε2). We can assign one particle to one of the three levels and then
consider possible permutations with eight particles in the next recur-
sive call of the same function perm_recursive(). Within this recursive
call for eight particles, the function will again assign one particle to a
particular energy level and make yet another recursive call with seven
particles, and the process continues. In addition to considering fewer
particles in the subsequent function calls, each recursive step considers
a smaller amount of energy because some energy was taken up at the
previous step. Once the function reaches a base case, where no particles
are left to assign to an energy level, the recursive call stops.

Compare the time of running the following and the previous code blocks.
You will notice that this recursive method is much faster while produc-
ing the same answer as the brute force method.

Code Block 5.5

Consider a more powerful method.
import numpy as np

def perm_recursive (e,N,E):
n = d-dim vector
e = d-dim vector
sum(n) = N, sum(e*n) = E
e(0) = 0
call perm with N-1 and with less E.

assert E>=0
assert N>=0
assert all(e>=0)
N = int(N)
E = int(E)

Premise of Statistical Mechanics � 87

dim = len(e) # dimension of vectors (number of energy levels)
if (N==0): # base case.

if E==0: return np.zeros((1,dim)) # Solution found.
else: return np.zeros((0,dim)) # No solution.

n = np.zeros((0,dim))
for i in range(dim):

if (E-e[i])>=0: # enough energy to drill down recursively.
n_next = perm_recursive(e,N-1,E-e[i])
if len(n_next)>0: # Solution(s) was found.

n_next[:,i] = n_next[:,i]+1
n = np.vstack((n,n_next)) # Keep adding solutions

return n

N = 3
E = 5
e = np.arange(0,E+1,1)

n = perm_recursive(e,N,E)

remove duplicate solutions.
n, counts = np.unique(n,axis=0,return_counts=True)

Check the number and energy constraints of all solutions.
assert all(np.sum(n,axis=1)==N)
assert all(np.dot(n,e)==E)

print(np.array(n).astype(int))

[[0 1 2 0 0 0]
[0 2 0 1 0 0]
[1 0 1 1 0 0]
[1 1 0 0 1 0]
[2 0 0 0 0 1]]

The variable n in the above code blocks is a two-dimensional array
whose column corresponds to the number of individual particles in each
level. Hence, the sum of each row is equal to N, satisfying the particle
number conservation constraint. The average along each column gives
the average occupancy of each level. It turns out that no matter what
N and U are, lower energy levels are more likely to be occupied than
the higher levels. This trend arises from the fact that there are many
more ways to share U among N entities when most individuals take
a small portion of U. We had seen this effect in an earlier chapter
when we simulated the kinetic theory of gas. As gas particles divided

88 � Thermal Physics Tutorials with Python Simulations (TPTPS)

up the energy randomly, the equilibrium distribution looked like an
exponential decay. As shown in Figure 5.3, the plot of average occupancy
shows the same trend. We can obtain the same exponential behavior by
considering all possible ways of distributing a fixed amount of energy
among a fixed number of particles, as shown below.

Code Block 5.6

Draw average occupancy graph of the multi-particle system.

N = 10
E = 5
e = np.arange(0,E+1,1)

n = perm_recursive(e,N,E)
n, counts = np.unique(n,axis=0,return_counts=True)

Check the number and energy constraints of all solutions.
assert all(np.sum(n,axis=1)==N)
assert all(np.dot(n,e)==E)

print('All possibilities:')
print(np.array(n).astype(int))

print('Bar graph of average occupancy')
plt.bar(np.arange(0,E+1),np.mean(n,axis=0),color='k')
plt.ylabel('Average Occupancy')
plt.xlabel('E')
plt.savefig('fig_ch5_avg_occupancy.eps')
plt.show()

All possibilities:
[[5 5 0 0 0 0]
[6 3 1 0 0 0]
[7 1 2 0 0 0]
[7 2 0 1 0 0]
[8 0 1 1 0 0]
[8 1 0 0 1 0]
[9 0 0 0 0 1]]

Premise of Statistical Mechanics � 89

Bar graph of average occupancy

5.8 BOLTZMANN DISTRIBUTION

Now let’s show mathematically how such an exponential distribution
arises. We can start with f (ε), which represents the probability of finding
a particle with specific energy ε. Let’s consider two particular particles
from a system of N particles with the total energy of U, and they
would have the probabilities of f (ε1) and f (ε2) for having energies ε1

and ε2, respectively. Assuming these two particles are independent, the
joint probability of this condition would be the product of individual
probabilities, or f (ε1) f (ε2).

Now, let’s consider another system with N − 1 particles and the to-
tal energy of U. Since we usually deal with a system of many particles
(N >> 1), this new system with one less particle would be almost identi-
cal to the original system with N particles and U. Thus, the probability
of a particular particle having energy ε1 + ε2 in the reduced system
would be f (ε1 + ε2). We may also treat the pair of particles in the origi-
nal system with N particles as being a single particle in the new system
with (N − 1) particles. It is therefore expected that f (ε1 + ε2) is equal
to f (ε1) f (ε2). We know that an exponential function, e−βε, satisfies this
relationship, because e−β(ε1+ε2) = e−βε1e−βε2 .

Figure 5.3

90 � Thermal Physics Tutorials with Python Simulations (TPTPS)

We can make a more rigorous justification of the exponential distribu-
tion using calculus, but let’s briefly talk about a useful mathematical
technique more generally.

5.9 MATH: LAGRANGE MULTIPLIER METHOD

We will work with a technique called the Lagrange Multiplier method.
Here is an example: suppose we want to create a fence around an area
using a limited amount of fencing material. If the total length of the
fencing material is L, what is the maximum area A we can enclose?
This problem can be phrased mathematically as the following: What is
the optimal x and y, such that A = xy is maximized, while satisfying
a constraint, 2x + 2y = L? We can say that we are maximizing A(x, y),
subject to φ(x, y) = x + y − L/2 = 0. We can write a Lagrange function
with a Lagrange multiplier, λ:

L(x, y, λ) = A(x, y) + λφ(x, y) = xy + λ(x + y − L/2)

We set the partial derivatives with respect to x and y equal to zero and
solve the resulting equations, including the constraint φ(x, y) = 0.

∂L
∂x

= y + λ = 0

∂L
∂y

= x + λ = 0

x + y − L/2 = 0

With three equations and three unknowns (x, y, λ), the system of equa-
tions is solvable, yielding a solution of x = y = L/4 and the maximum
area of L2/16. That is, making a square enclosure gives the maximum
area.

5.10 MATH: STIRLING’S APPROXIMATION

Another mathematical relationship we will be using is Stirling’s approx-
imation. It provides an approximate value of the factorial of a large

Premise of Statistical Mechanics � 91

number. Stirling’s approximation states that for large n,

ln n! ≈ n ln n − n.

It is straightforward to test the validity of the approximation, as shown
in the following code block.

Code Block 5.7

Test Stirling's approximation.

import numpy as np
import matplotlib.pyplot as plt

n_range = np.arange(5,20)
for n in n_range:

v1 = np.log(np.math.factorial(n))
v2 = n*np.log(n) - n
print("For n =%3d: ln(n!) = %4.1f, nln(n)-n = %4.1f"%(n,v1,v2))
perc_diff = (v1-v2)/v1*100
plt.scatter(n,perc_diff,color='black')

plt.ylabel('Perc. Difference')
plt.xlabel('n')
plt.title("Goodness of Stirling's Approximation")
plt.savefig('fig_ch5_stirling_goodness.eps')
plt.show()
print("Percent Difference = (Actual-Approx)*100/Actual.")
print("The approximation gets better with large n.")

For n = 5: ln(n!) = 4.8, nln(n)-n = 3.0
For n = 6: ln(n!) = 6.6, nln(n)-n = 4.8
For n = 7: ln(n!) = 8.5, nln(n)-n = 6.6
For n = 8: ln(n!) = 10.6, nln(n)-n = 8.6
For n = 9: ln(n!) = 12.8, nln(n)-n = 10.8
For n = 10: ln(n!) = 15.1, nln(n)-n = 13.0
For n = 11: ln(n!) = 17.5, nln(n)-n = 15.4
For n = 12: ln(n!) = 20.0, nln(n)-n = 17.8
For n = 13: ln(n!) = 22.6, nln(n)-n = 20.3
For n = 14: ln(n!) = 25.2, nln(n)-n = 22.9
For n = 15: ln(n!) = 27.9, nln(n)-n = 25.6
For n = 16: ln(n!) = 30.7, nln(n)-n = 28.4
For n = 17: ln(n!) = 33.5, nln(n)-n = 31.2
For n = 18: ln(n!) = 36.4, nln(n)-n = 34.0
For n = 19: ln(n!) = 39.3, nln(n)-n = 36.9

92 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Percent Difference = (Actual-Approx)*100/Actual.
The approximation gets better with large n.

As a way of showing why this approximation works, we first note:

ln n! = ln n + ln (n − 1) + . . . + ln 2 + ln 1 =
∑

i=1,2,··· ,n

ln (i).

The above series is the sum of the areas of n rectangles whose widths
are one and heights are ln (i), where i takes on values from 1 to n. Thus,
the series can be considered an approximation of an integral of a natural
log function from 1 to n, as illustrated by Figure 5.5.

Code Block 5.8

n_max = 22
n = np.arange(1,n_max,1)
n_smooth = np.arange(1,n_max,0.1)
plt.plot(n_smooth,np.log(n_smooth),color='black')
plt.legend(('ln x',),framealpha=1.0)
plt.bar(n,np.log(n),width=0.8,color='gray')
plt.xticks((0,10,20))
plt.savefig('fig_ch5_stirling_approx.eps')
plt.show()

Figure 5.4

Premise of Statistical Mechanics � 93

Therefore,

ln n! ≈
∫ n

1
ln x dx = (x ln x − x)

∣∣∣∣n
1

= n ln n − n + 1.

Also, since n is much larger than 1, −n + 1 ≈ −n, leading to the final
expression of

ln n! ≈ n ln n − n.

5.11 BACK TO THE BOLTZMANN DISTRIBUTION

Now to prove the Boltzmann distribution, we start with a func-
tion ω(n0,n1, . . .), which denotes the number of configurations, or mi-
crostates, of having n0 particles with energy ε0, n1 particles with energy
ε1, etc. Throughout this chapter, we have developed an intuition about
ω. Suppose we have N distinguishable particles and need to choose n0

particles to place into an energy level for ε0; there are
(N

n0

)
= N!

(N−n0)!n0!
possible combinations. Then, we have n1 particles out of the remain-
ing (N − n0) for the ε1 level, giving

(N−n0
n1

)
=

(N−n0)!
(N−n0−n1)!n1! combinations.

The product of these two numbers gives
(N

n0

)(N−n0
n1

)
= N!

n0!n1!(N−n0−n1)! .

Figure 5.5

94 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Continuing on with n2, n3, etc., we have an expression for ω(n0,n1, . . .).

ω(n0,n1, . . .) =
N!

n0!n1! . . .
= N!

∏
i=0,1,...

1
ni!
.

For more generality, let’s assume that each energy level may have degen-
eracy gi. For example, if there is only one way to have energy ε4, then
g4 = 1, but if there are two distinct states for ε4, g4 = 2. As an analogy,
we may picture a high-rise building with multiple floors, corresponding
to energy levels, and there are multiple rooms or sections on each floor,
corresponding to degeneracy. We could also picture different wealth or
income levels, with many different career options with the same income.
A particular orbital for an electron can accommodate an electron with
spin up or down, so there is a two-fold degeneracy.

Imagine that six people (n7=6) are sent to the seventh floor (ε7), where
10 empty office spaces (g7=10) are available. They are allowed to choose
an office at random. The number of all possible ways of distributing six
people into ten possible offices is gni

i = 106. An unfortunate case will
be that of all six people cramming into a single office space. Therefore,
the above expression for ω(n0,n1, . . .) needs to account for the extra
possibilities arising from each level’s degeneracy. The final expression
is:

ω(n0,n1, . . .) = N!
∏

i=0,1,...

gni
i

ni!
.

Note that if the particles are indistinguishable, the overall permutation
factor N! can be divided out. This extra constant factor does not change
our derivations below.

Our goal is then to find a set of n∗0,n
∗

1, . . . that maximize ω, since they
would be the microstate that is most probable and would be manifested
at equilibrium. To find these optimal occupancy values, we use the
Lagrange Multiplier method.

L(n0,n1, . . . ;α, β) = lnω + αφ − βψ,

where α and β are two Lagrange Multipliers, and φ =
∑

i ni and ψ =∑
i niεi, as the total number of particles and total amount of energy are

fixed. We also note that maximizing ω is equivalent to maximizing lnω.

Using the additive property of logs and Stirling’s approximation, we

Premise of Statistical Mechanics � 95

have
lnω = ln N! +

∑
i

(
ni ln gi − ni ln ni + ni

)
,

so

∂ lnω
∂ni

= ln gi − ln ni − 1 + 1 = ln
gi

ni
.

Following the recipe of the Lagrange Multiplier technique, we obtain:

∂L
∂ni

=
∂ lnω
∂ni

+ α
∂φ

∂ni
− β

∂ψ

∂ni
= ln

gi

ni
+ α − βεi = 0.

The above expression leads to

ln
ni

gi
= α − βεi,

or

ni = gieαe−βεi ,

which is the exponential behavior that we have been looking for.

http://taylorandfrancis.com

C H A P T E R 6

Revisiting Ideal Gas

6.1 A LITTLE BIT OF QUANTUM MECHANICS

Quantum mechanics gives a different way to think about the ideal gas.
Individual particles in an ideal gas can be described with a wavefunction
representing the probabilistic nature of their existence. Let’s start with
a one-dimensional example, where the wavefunction ψ(x) satisfies the
time-independent Schrödinger’s equation:

−
~2

2m
d2ψ(x)

dx2 + V(x)ψ(x) = εψ(x).

A particle with mass m contained within a specified volume with en-
ergy ε can be modeled as being subject to a potential V(x) which is
zero inside a specified range (between 0 and L) and infinite outside, so
ψ(x ≤ 0) = 0 and ψ(x ≥ L) = 0. The corresponding wavefunction for
the particle inside satisfies the following differential equation and the
boundary conditions:

−
~2

2m
d2ψ(x)

dx2 = εψ(x),

ψ(0) = ψ(L) = 0.

The solutions can be written as the following:

ψn(x) = A sin(knx),

where kn = nπ
L for n = 1, 2, 3,

97

98 � Thermal Physics Tutorials with Python Simulations (TPTPS)

The normalization condition determines the amplitude A. By plugging
the solution back into Schrödinger’s equation, we can find the energy
of the particle to be

ε(n) =
~2k2

n

2m
=

h2

8mL2 n2,

which reveals the discrete nature of the energy levels, depending on the
quantum number, n. Note ~ = h

2π .

Let’s visualize the first few energy levels. For convenience, we will as-
sume h2

8mL2 = 1 in the code.

Code Block 6.1

Sketch the wavefunctions of a particle
in an infinite well for the first 4 energy levels.

import numpy as np
import matplotlib.pyplot as plt

pi = 3.1415
L = 1
dx = 0.01
x = np.arange(0,L,dx)

for n in range(1,5):
E = n**2
kn = n*pi/L
psi = np.sin(kn*x)
psi = psi/np.sqrt(np.sum(psi**2)) # normalization
but the normalized wavefunction looks too short or tall,
so adjust the height of psi a bit (just for cosmetics).
psi = psi*8

plt.plot((0,L),(E,E),color='gray')
plt.plot(x,psi+E,color='black',linewidth=3)
plt.text(L+0.15,E,"n = %d"%n)

xbox_left = np.array([-0.1*L,0,0,-0.1*L])
ybox_left = np.array([0,0,E*1.1,E*1.1])

xbox_right = np.array([1.1*L,L,L,1.1*L])
ybox_right = np.array([0,0,E*1.1,E*1.1])

plt.fill(xbox_left,ybox_left,color='#CCCCCC')
plt.fill(xbox_right,ybox_right,color='#CCCCCC')

Revisiting Ideal Gas � 99

plt.plot((0,0),(0,E*1.1),color='gray')
plt.plot((L,L),(0,E*1.1),color='gray')
plt.ylim((0,E*1.1))
plt.xlabel('Position')
plt.ylabel('Energy')
plt.axis('off')
plt.savefig('fig_ch6_wavefunc.eps')
plt.show()

6.2 DEGENERACY

The above calculation has shown that a particle in a confined space
(an infinite well) has discrete, quantized energy levels, and only those
energies are allowed. If we expand this model into a three-dimensional
space, we would consider a three-dimensional wavefunction ψ(x, y, z)
confined in a cube of side L.

The total energy now would be specified by three quantum numbers,
(nx,ny,nz) and L = V1/3, so that

ε(n) =
h2

8mL2 (n2
x + n2

y + n2
z) =

h2

8mV2/3
n2.

Figure 6.1

100 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Then, we run into cases where the quantum state of a particle may be
different even when the total energy is the same. For example, three dif-
ferent quantum states are possible for a single value of ε = h2/(8mV2/3):
with nx = 1,ny = nz = 0, or with ny = 1,nx = nz = 0, or with
nz = 1,nx = ny = 0. As an analogy, consider a building with many dif-
ferent rooms on different floors. A person may have a different amount
of gravitational potential energy on different floors, but there are also
different locations on the same floor with the same energy. As briefly in-
troduced in the previous chapter, we call different states with the same
energy “degenerate.” The following code counts the number of degener-
ate cases for different amounts of energy, revealing that the degeneracy
on average increases with the energy in the case of an ideal gas.

Code Block 6.2

Let's count the degenerate cases for different energy levels.

import numpy as np
import matplotlib.pyplot as plt

E = total energy
i, j, k = quantum number nx, ny, nz
g = number of degenerate states

def break_into_sum_square (E,verbose=False):
g = 0
Emax = int(np.sqrt(E))+1
for i in range(1,Emax):

for j in range(1,Emax):
for k in range(1,Emax):

if i**2+j**2+k**2 == E:
g = g+1
if verbose:

print("%d^2 + %d^2 + %d^2 = %d"%(i,j,k,E))
if verbose: print("Degeneracy = %d\n"%g)
return g

break_into_sum_square(3,verbose=True)
break_into_sum_square(99,verbose=True)
break_into_sum_square(101,verbose=True)

assert break_into_sum_square(3)==1
assert break_into_sum_square(9)==3

1^2 + 1^2 + 1^2 = 3
Degeneracy = 1

Revisiting Ideal Gas � 101

1^2 + 7^2 + 7^2 = 99
3^2 + 3^2 + 9^2 = 99
3^2 + 9^2 + 3^2 = 99
5^2 + 5^2 + 7^2 = 99
5^2 + 7^2 + 5^2 = 99
7^2 + 1^2 + 7^2 = 99
7^2 + 5^2 + 5^2 = 99
7^2 + 7^2 + 1^2 = 99
9^2 + 3^2 + 3^2 = 99
Degeneracy = 9

1^2 + 6^2 + 8^2 = 101
1^2 + 8^2 + 6^2 = 101
2^2 + 4^2 + 9^2 = 101
2^2 + 9^2 + 4^2 = 101
4^2 + 2^2 + 9^2 = 101
4^2 + 6^2 + 7^2 = 101
4^2 + 7^2 + 6^2 = 101
4^2 + 9^2 + 2^2 = 101
6^2 + 1^2 + 8^2 = 101
6^2 + 4^2 + 7^2 = 101
6^2 + 7^2 + 4^2 = 101
6^2 + 8^2 + 1^2 = 101
7^2 + 4^2 + 6^2 = 101
7^2 + 6^2 + 4^2 = 101
8^2 + 1^2 + 6^2 = 101
8^2 + 6^2 + 1^2 = 101
9^2 + 2^2 + 4^2 = 101
9^2 + 4^2 + 2^2 = 101
Degeneracy = 18

Code Block 6.3

Now look at over a big range.

E_range = range(1000)
g_range = np.zeros(len(E_range))
for E in E_range:

g_range[E] = break_into_sum_square(E)

plt.scatter(E_range,g_range,color='gray',s=3)
plt.xlabel('E')
plt.ylabel('Degeneracy')
plt.savefig('fig_ch6_degeneracy_scatter.eps')
plt.show()

102 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Figure 6.2

Figure 6.3

Revisiting Ideal Gas � 103

This counting process can be approximated by imagining an eighth of
a sphere. Imagine a sphere in a positive octant that encloses integer
lattice points. You might recall the spherical shell figure in Chapter 3,
but now with three axes replaced by positive integer nx, ny, and nz.
The number of degenerate states with the same energy would equal the
number of lattice points intersected by the sphere with the same radius
n, where n2 = n2

x + n2
y + n2

z .

To make this argument more formal, let’s define N(n) as the number
of integer lattice points enclosed within a sphere with radius n. Then
N(n) will be approximately equal to the volume of the sphere, 4

3πn3. We
can define the density of lattice points as g(n), so the number of lattice
points between n and n + dn would be g(n)dn = N(n + dn)−N(n). Thus,
g(n) =

dN(n)
dn . Next, we make the identification that n2 = n2

x + n2
y + n2

z =

ε 8mV2/3

h2 . With the change of variable (n→ ε),

n =

√
ε

8mV2/3

h2 , so
dn
dε

=
1

2
√
ε

√
8mV2/3

h2 .

This leads to the mathematical expression for the degeneracy at ε as

g(ε) =
dN(n)

dn
dn
dε

=
π
4

(
8mV2/3

h2

)3/2

ε1/2 =
4
√

2πVm3/2

h3 ε1/2.

We take an eighth of an entire sphere because the quantum numbers
are positive integers only.

104 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Figure 6.4 shows that this approximation is quite good.

Code Block 6.4

Compare degeneracy and its moving average
with the continuous approximation.

continuous approximation
g_cont = (3.1415/4)*np.sqrt(E_range)
plt.scatter(E_range,g_range,color='gray',s=4)
plt.plot(E_range,g_cont,color='black',linewidth=3)
plt.xlabel('E')
plt.ylabel('Degeneracy')
legend_txt = ('Directly Counted','Continuous Approximation')
plt.legend(legend_txt,framealpha=1)
plt.savefig('fig_ch6_degeneracy_scatter_cont_approx.eps')
plt.show()

moving average
window = 10
newE = len(E_range)-window
g_avg = np.zeros(newE)
E_avg = np.zeros(newE)

for i in range(newE):
E_avg[i] = np.sum(E_range[i:i+window])/window
g_avg[i] = np.sum(g_range[i:i+window])/window

Note: subtract window/2, because we are averaging around a value.
E_avg = E_avg - window/2

plt.scatter(E_avg,g_avg,color='gray',s=3)
plt.plot(E_range,g_cont,color='black',linewidth=3)
plt.xlabel('E')
plt.ylabel('Degeneracy')
legend_txt = ('Moving Average','Continuous Approximation')
plt.legend(legend_txt,framealpha=1)
plt.savefig('fig_ch6_degeneracy_scatter_cont_approx_moving_avg.eps')
plt.show()

Revisiting Ideal Gas � 105

6.3 PARTITION FUNCTION

In mechanics and electrodynamics, a scalar function, potential, can re-
veal the direction and magnitude of force. Another scalar function, La-
grangian, can be used to derive the equation of motion of an object. In
statistical mechanics, a scalar function known as a partition function,

Figure 6.4

106 � Thermal Physics Tutorials with Python Simulations (TPTPS)

often denoted as Z, serves a similar role. It allows us to conveniently
derive various thermodynamic quantities such as internal energy.

In the previous few chapters, we have worked with the key principle
of statistical mechanics that a thermal system composed of many indi-
vidual constituents produces behaviors that are calculatable and pre-
dictable using both energetic and entropic (i.e., probabilistic) consider-
ations.

According to the Boltzmann distribution, the probability of being in
the quantum state ε is proportional to:

P(ε) =
N(ε)

N
∝ g(ε)e−ε/kBT.

In earlier chapters, we used k for the Boltzmann distribution, but we will
adopt a notation kB to recognize it as the famous Boltzmann constant
and to distinguish it from wavenumber kn = nπ/L.

The proportionality constant in the last expression is defined as 1/Z, a
reciprocal of the partition function. It can be determined by the nor-
malization constraint

∫
∞

0 P(ε)dε = 1 (note ε ≥ 0).

In other words,

Z =

∫
∞

0
g(ε)e−ε/kBTdε.

By putting the above expressions together with the expression for g(ε)
for ideal gas, we have

Z =

∫
∞

0

4
√

2πVm3/2

h3 ε1/2e−ε/kBTdε.

To simplify the integral, we can make a change of variable, ε
kBT → x, so

that the same integral can be written as the following:

Z = α

∫
∞

0
x1/2e−xdx,

Revisiting Ideal Gas � 107

where α = 4
√

2π
(

mkB
h2

)3/2
VT3/2 and x is a unitless integration variable.

We note that everything else other than V and T are just constants.
The integral is finite and equal to

√
π

2 , as will be shown in the following
code blocks.

Therefore, we have the final expression for the partition function of ideal
gas:

Z =

(
2πmkB

h2

)3/2

VT3/2.

Here we will show how to do a symbolic calculation using Python. We
will calculate the integral of x1/2e−x numerically and symbolically. The
module sympy allows us to perform symbolic computation, which gives
an accurate numerical value of 0.886226925452758, while the numeri-
cal calculation with np.sum() approaches this value for small enough
integration step, dx.

Code Block 6.5

Numerical calculation.

import numpy as np
import matplotlib.pyplot as plt

dx = 0.001
x = np.arange(0,10,dx)
y = x**(0.5)*np.exp(-x)
plt.plot(x,y,color='k')
plt.xlabel('x')
plt.savefig('fig_ch6_integral_demo.eps')
plt.show()
Area under the curve
print("Integral = %8.7f"%(np.sum(y)*dx))

Integral = 0.8860699

108 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Code Block 6.6

Symbolic calculation ver. 1

import sympy as sym

x = sym.Symbol('x')
sym.oo is symbolic constant for infinity.
sym.integrate(x**(0.5)*sym.exp(-x), (x,0,sym.oo))

0.886226925452758

Let’s do one more clever change of variable, x→ y2, so that∫
∞

0
x1/2e−xdx =

∫
∞

0
ye−y2

(2ydy) = 2
∫
∞

0
y2e−y2

dy.

When the latter integral is entered into sympy as shown below, we obtain
the analytical solution

√
π

2 .

Code Block 6.7

Symbolic calculation ver. 2

y = sym.Symbol('y')
sym.integrate(2*(y**2)*sym.exp(-y**2), (y,0,sym.oo))

√
π

2

Figure 6.5

Revisiting Ideal Gas � 109

6.4 AVERAGE ENERGY OF AN IDEAL GAS

Let’s consider another mathematical relation: a derivative of the natural
log of the partition function with respect to temperature, ∂ ln Z

∂T , where
T is regarded as a variable of the partition function.

∂ ln Z
∂T

=
∂ ln Z
∂Z

∂Z
∂T

=
1
Z
∂Z
∂T

=
1
Z
∂
∂T

∫
∞

0
g(ε)e−ε/kBTdε

=
1

kBT2

1
Z

∫
∞

0
εg(ε)e−ε/kBTdε.

In the latter expression, we can identify that the integrand divided by
Z is ε times the probability P(ε), so this can be further written as

∂ ln Z
∂T

=
1

kBT2

∫
∞

0
εP(ε)dε.

Because the average energy < U >=
∫
∞

0 εP(ε)dε, we conclude

< U >= kBT2∂ ln Z
∂T

.

In other words, the partition function allows us to calculate the average
energy of a thermal system if its mathematical form is known. We can
take its partial derivative with respect to T. Let’s apply this result in
the case of an ideal gas:

< U > = kBT2∂ ln Z
∂T

= kBT2 ∂
∂T

ln

(2πmkB

h2

)3/2

VT3/2


= kBT2

(3
2

)
∂ ln T
∂T

=
3
2

kBT.

110 � Thermal Physics Tutorials with Python Simulations (TPTPS)

We just reproduced < U >= 3
2 kBT, which is one of the main conclusions

of the kinetic theory of gas. It is a significant and exhilarating result,
as we have derived this relationship using two different approaches.

6.5 VISUALIZING ENERGY LEVELS WITH DEGENERACY

The following code block generates an example plot for visualizing en-
ergy levels with degeneracy. The vertical axis, as before, represents the
energy levels, and the number of boxes along the horizontal axis cor-
responds to the number of degenerate states at each energy level. As
we have discussed above, the higher energy levels tend to have more
degenerate states, as illustrated in Figure 6.6.

Code Block 6.8

def sketch_occupancy_with_degeneracy (n):

Define the size of boxes
marg = 0.1 # Size of margin
h = 1.0-2*marg
w = 1.0-2*marg
xbox = np.array([marg,marg+w,marg+w,marg])
ybox = np.array([marg,marg,marg+h,marg+h])

N = len(n) # Number of energy levels
max_g = 1 # Maximum number of degenerate states
for each_level in n:

max_g = np.max([max_g,len(each_level)])

for i in range(N):
for j in range(len(n[i])):

plt.fill(xbox+j,ybox+i,color="#AAAAAA")
x = (np.random.uniform(size=n[i][j])-0.5)*w*0.9+0.5+j
y = (np.random.uniform(size=n[i][j])-0.5)*h*0.9+0.5+i
plt.scatter(x,y,marker='.',color='k',s=50,zorder=2.5)

plt.yticks([])
plt.xticks([])
plt.ylabel('Energy Levels')
plt.axis('equal')
plt.title("Occupancy:\n%s"%n)
plt.box(on=False)

n = list([[5],[2,1,0],[0,0,1,2,0],[0,1,0,0,0,0,0]])
fig = plt.figure(figsize=(6,4))

Revisiting Ideal Gas � 111

sketch_occupancy_with_degeneracy(n)
plt.arrow(0, 0, 0, len(n)-0.1, head_width=0.05, head_length=0.1)
plt.savefig('fig_ch6_occupancy_with_degeneracy.eps')
plt.show()

Figure 6.6

http://taylorandfrancis.com

C H A P T E R 7

Revisiting Thermal
Processes

7.1 REVIEW

The First Law of Thermodynamics is a statement of the energy conser-
vation principle. Classically, it is often written as

dU = δQ − δW,

where U is the internal energy of a thermal system, such as ideal gas,
and the change in U comes from either heat exchange Q or work done by
the system W. (The symbol δ denotes the fact that Q and W are inexact
differentials, which means that these variables are path-dependent. In
other words, the details of the thermal processes, even when the begin-
ning and end points might be the same, would affect the integrals of Q
and W. For example, an ideal gas may go from a particular beginning
condition, Pi and Vi, to an end condition, P f and V f , following two dif-
ferent processes: (1) an isothermal process or (2) an isochoric followed
by an isobaric process.

113

114 � Thermal Physics Tutorials with Python Simulations (TPTPS)

The total amounts of Q and W involved in these two different processes
would be different, but the total change of internal energy, U f − Ui,
would be identical. In other words, we can change the internal energy
of a thermal system in many different ways, and each way involves
different combinations of Q and W.)

In statistical mechanics, there are Ni particles in the i-th energy level
with energy εi, so that the total energy is given by the sum of the energy
of all particles, U =

∑
i Niεi, which offers a different way to think about

the change in internal energy:

dU =
∑

i

dNiεi +
∑

i

Nidεi.

In other words, any change in U may be due to the change in the
occupancy of the energy levels or the change in the energy levels them-
selves. One might imagine a situation like this. There are N people in
a building, and the total gravitational potential energy of these people
may change when people move between floors (dN) or when an elevator
moves vertically with people inside (dε).

These two expressions about dU give different insights about the energy
of a thermal system. We may describe U as being affected by the heat

state i

state f

Figure 7.1

Revisiting Thermal Processes � 115

Q in/out-flux or work W done on/by the thermal system. Alternatively,
we may view U as being changed from Ni and εi. When uniting these
descriptions, heat influences Ni, while work influences the energy levels
εi. For example, the total internal energy can be increased by either
adding heat or performing work on the system. When heat is added, the
particles in the lower energy levels are promoted to higher levels. When
work is done adiabatically (without any heat exchange), the energy
levels themselves rise, while the occupancy remains unchanged. More
generally, a combination of these two mechanisms dictates the change
of internal energy.

In this section, we will revisit the topic of thermal processes for ideal
gas and examine them with the insights of statistical mechanics that we
have developed in the previous chapters. We will use the results about
the Boltzmann distribution where

Ni

N
=

g(εi)e−εi/kBT

Z
(Occupancy Equation),

where Z is a partition function and g(εi) is the degeneracy.

When we treat ideal gas as N indistinguishable quantum particles en-
closed in a three-dimensional rigid box, we obtain the following results:

εi =
h2

8mV2/3
(n2

x + n2
y + n2

z) (Energy Equation),

where n’s are positive integers.

The degeneracy g(εi) of energy level can be approximated by the fol-
lowing expression:

g(εi) =
4
√

2πVm3/2

h3 ε1/2
i (Degeneracy Equation).

The partition function for an ideal gas is

Z =

(
2πmkB

h2

)3/2

VT3/2 (Partition Function).

116 � Thermal Physics Tutorials with Python Simulations (TPTPS)

7.2 THERMAL PROCESSES

In the following numerical analysis, we will vary T and V. When we
change T, the occupancy of different energy levels will change accord-
ing to the above Occupancy Equation. As T increases, the lower energy
levels are still favored over the higher ones, but the difference in the
number of particles in different energy levels decreases, and the occupa-
tion numbers become more comparable in magnitude. When the gas is
compressed and V decreases, the energy levels εi’s increase according to
the above Energy Equation. The degeneracy of each energy level would
also change according to the above Degeneracy Equation. The following
helper functions implement these equations. For numerical simplicity,
we will assume constants kB, m, and h have a value of 1 throughout all
calculations.

Code Block 7.1

import numpy as np
import matplotlib.pyplot as plt

Constants.
h = 1. # Planck constant
k_b = 1. # Boltzmann constant
m = 1. # mass of particle
pi = 3.141592

def e_n (V,n): # Energy Equation
e = h**2/(8*m)*n**2/(V**(2/3))
return e

def g_n (n): # Degeneracy for given n (in positive octant)
g = (1/8)*4*pi*n**2 # density of lattice points
return g

def g_e (V,e): # Degeneracy Equation
g = np.zeros(len(e))
g = 4*np.sqrt(2)*pi*m**(3/2)*V*e**(1/2)/h**3
return g

def Z (V,T): # Partition Function
Z = V*(2*pi*m*k_b*T/h**2)**(3/2)
return Z

Revisiting Thermal Processes � 117

def P_n (V,T,n): # Occupancy Equation
Probability of occupancy
e = e_n(V,n)
bf = np.exp(-e/k_b/T) # Boltzmann distribution
P = bf*g_n(n)/Z(V,T)
return P

Note that n’s (nx,ny,nz) in the energy equation are positive integers that
specify a quantum state of an individual particle, and n2 = n2

x + n2
y + n2

z .
A good geometric picture is a three-dimensional sphere with radius n
along with integer lattice points, as shown in Chapter 6. For a given T
and V, each particle will occupy one of the states represented by the
lattice points in the positive octant, or an eighth of a sphere. While im-
plementing the helper functions above, we have also defined the degen-
eracy in terms of this quantum number n as g(n) = 4πn2/8. Depending
on your choice of variable (either energy ε or quantum number n), there
are degeneracy functions: g(ε), g_e() or g(n), g_n().

It is an interesting question whether more than one particle can occupy
the same state (c.f., fermions versus bosons), but for our discussion, we
will assume there are much more states than the number of particles
even for large N, so it is highly unlikely that multiple particles will
occupy the same state. This assumption is called the dilute gas limit.

Then, for a given T and V, we can calculate a profile of energy ε(n)
with function e_n(). We can also examine a profile of P(n), function
P_n(), which determines the probability of occupancy according to the
Boltzmann distribution. For each n, ε(n)P(n) represents energy density,
and its integral

∫
∞

0 ε(n)P(n)dn would be equal to the average internal
energy. The function U_n(V,T,n) in the following code block calculates
the total internal energy for given V, T, and n, by numerically summing
the energy density: U = np.sum(P*e)*dn. n denotes the quantum states
(e.g., nx, ny, nz), which are different from the occupancy numbers Ni.
Let’s examine these for a particular value of T and V.

Code Block 7.2

def U_n (V,T,n):
Numerically integrate energy density and get U.
e = e_n(V,n)
dn = n[1]-n[0]
P = P_n(V,T,n)
U = np.sum(P*e)*dn
return U

118 � Thermal Physics Tutorials with Python Simulations (TPTPS)

def plot_results (V_range,T_range,n,plot_filename=''):
N = len(T_range)
U_range = np.zeros(N)

if N>1:
color_range = np.linspace(0.8,0.2,N)

else:
color_range = np.zeros(N)

fig, axes = plt.subplots(1,5,figsize=(8,3))
for j in range(N):

col = (color_range[j],color_range[j],color_range[j])
T = T_range[j]
V = V_range[j]
e = e_n(V,n)
U = U_n(V,T,n)

axes[0].plot(T,V,'o',color=col)
axes[1].plot(n,e,'-',color=col)
axes[2].plot(n,P_n(V,T,n),'-',color=col)
axes[3].plot(n,e*P_n(V,T,n),'-',color=col)
axes[4].plot(T,U,'o',color=col)

axes[0].set_xlabel('T')
axes[0].set_ylabel('V')
axes[0].set_xlim((0.0,2.5))
axes[0].set_ylim((0.0,2.5))
axes[1].set_xlabel('Quantum States (n)')
axes[1].set_ylabel('$\epsilon(n)$')
axes[2].set_xlabel('Quantum States (n)')
axes[2].set_ylabel('$P(n)$')
axes[3].set_xlabel('Quantum States (n)')
axes[3].set_ylabel('$\epsilon(n) P(n)$')
axes[4].plot(np.array([0,2]),3/2*np.array([0,2]),'k-')
axes[4].set_xlabel('T')
axes[4].set_ylabel('U')
axes[4].set_xlim((0,2.1))

plt.tight_layout()
if len(plot_filename)>0:

plt.savefig(plot_filename)
plt.show()

n = np.arange(0,15,0.1)
T_range = [1]
V_range = [1]
plot_results(V_range,T_range,n,plot_filename='fig_ch7_singleTV.eps')

Revisiting Thermal Processes � 119

The above five plots require a close inspection. The point in the first plot
specifies the state of an ideal gas on a V-vs.-T space. The next 3 plots
show ε(n), P(n), and ε(n)P(n) as a function of quantum number n. ε(n)
shows the energy levels. P(n) shows the Boltzmann distribution (i.e.,
higher energy levels are less likely to be populated), while considering
the degeneracy and the size of the state space (i.e., lower quantum
states are less likely to be populated because the number of states is
small for low n), as we already observed from the Maxwell-Boltzmann
distribution describing the speed of gas particles in Chapter 3. ε(n)P(n)
shows the spectrum of energy density, whose integral is equal to the
total internal energy, U. The point in the last plot specifies the state of
ideal gas again, now on a U-vs.-T space. As expected, this point sits on
a straight line of U = 3

2 NkBT.

Now let’s examine the profiles of ε(n) and P(n) for different thermal
processes that cover different ranges of T and V, which are distinguished
by contrasts of points and curves in each plot.

The first process is an isochoric process where V is held constant, as
shown in Figure 7.3. We note that the energy levels, visualized by an
ε(n)-vs.-n graph, does not change. For higher T, the quantum states with
higher n’s are more likely to be occupied, as shown by the rightward-
shifting curves in the middle. As a result, during an isochoric process
of increasing T, the particles move from lower energy levels to higher
levels, resulting in the overall increase of the internal energy. The work
δW in the isochoric process is zero, so the heat δQ injected into the
ideal gas is responsible for the change in U.

The second process, shown in Figure 7.4, is an adiabatic process where
no heat enters or exits (δQ = 0), so that the occupancy of each quantum

Figure 7.2

120 � Thermal Physics Tutorials with Python Simulations (TPTPS)

state does not change, while the energy levels themselves change. There-
fore, the profiles of P(n) are identical for various values of V and T along
the adiabat described by PVγ = constant or TVγ−1 = constant. The in-
crease in internal energy U at higher T comes from the elevation of the
energy levels.

Imagine a population of people scattered within a high-rise building.
The collective gravitational potential energy (like U) may be increased
by people moving to the upper levels. A different situation would be
everyone stays on the same floors, but each floor level rises mysteriously.

The third process we examine is an isothermal process, where T is held
constant. In this case, both ε(n) and P(n) change, but in such a man-
ner that the integral of ε(n)P(n) stays constant. For example, as V
increases, the energy level associated with each quantum state n de-
creases. However, the added heat energy promotes the gas particles in
the lower quantum states with higher states. These two opposite trends
are perfectly matched in the case of the isothermal process, so that the
combined result is such that U remains constant, as shown in Figure
7.5.
Code Block 7.3
Comparing different thermal processes.

Case 1: de = 0 (or dW = 0)
print('V = const (isochoric process)')
print('e(n)-vs-n are the same.')
T_range = np.arange(0.5,2.1,0.25)
V_range = np.ones(len(T_range))
plot_results(V_range,T_range,n,plot_filename='fig_ch7_dVzero.eps')

Case 2: dn = 0 (or dQ = 0)
Change V according to PV**gamma = const = TV**(gamma-1)
print('Q = const (adiabatic process)')
print('P(n)-vs-n are the same.')
T_range = np.arange(0.5,2.1,0.25)
gamma = 5./3.
V_range = 1/T_range**(1/(gamma-1))
plot_results(V_range,T_range,n,plot_filename='fig_ch7_dQzero.eps')

Case 3: dT = 0 (or dU = 0).
print('T = const (isothermal process)')
print('Integrals of e(n)P(n) are the same.')
V_range = np.arange(0.5,2.1,0.25)
T_range = np.ones(len(V_range))
plot_results(V_range,T_range,n,plot_filename='fig_ch7_dTzero.eps')

Revisiting Thermal Processes � 121

V = const (isochoric process)
e(n)-vs-n are the same.

Figure 7.3

Q = const (adiabatic process)
P(n)-vs-n are the same.

Figure 7.4

T = const (isothermal process)
Integrals of e(n)P(n) are the same.

Figure 7.5

122 � Thermal Physics Tutorials with Python Simulations (TPTPS)

The above plotting exercise illustrates that a thermal process can be
analyzed in terms of the occupancies and the energy levels of quantum
states. Such analysis complements the classical viewpoints involving
mechanical work that changes V and the heat flux during a thermal
process.

7.3 CHECK

The following block of codes provides a couple of sanity checks of the
earlier numerical routines. First, the function P_n creates P(n), so that∫
∞

0 P(n)dn = 1, regardless of what T and V are. Second, the function U_n
approximates

∫
∞

0 ε(n)P(n)dn, which should be equal to 3
2 NkBT. Given

our numerical simplification of setting kB = 1 and N = 1, U_n should
return a value close to 1.5 for T = 1 and 3.0 for T = 2.
Code Block 7.4

T = 1
V = 1
print('Normalization Check: Following values should be close to 1.0')
dn = 0.0001
n = np.arange(0,100,dn)
print("%.16f (for V=%f, T=%f) "%(dn*np.sum(P_n(V,2*T,n)),V, 2*T))
print("%.16f (for V=%f, T=%f) "%(dn*np.sum(P_n(V,2*T,n)),V, T))
print("%.16f (for V=%f, T=%f) "%(dn*np.sum(P_n(V,2*T,n)),2*V, T))
print("%.16f (for V=%f, T=%f) "%(dn*np.sum(P_n(V,2*T,n)),2*V, 2*T))
print('')
print('Total Energy Check: U = (3/2)*NkT')
print("U = %f (for V=%f, T=%f)"%(U_n (V,T,n),V,T))
print("U = %f (for V=%f, T=%f)"%(U_n (2*V,T,n),2*V, T))
print("U = %f (for V=%f, T=%f)"%(U_n (V,2*T,n),V, 2*T))
print("U = %f (for V=%f, T=%f)"%(U_n (2*V,2*T,n),2*V, 2*T))

Normalization Check: Following values should be close to 1.0
1.0000001040220627 (for V=1.000000, T=2.000000)
1.0000001040220627 (for V=1.000000, T=1.000000)
1.0000001040220627 (for V=2.000000, T=1.000000)
1.0000001040220627 (for V=2.000000, T=2.000000)

Total Energy Check: U = (3/2)*NkT
U = 1.500000 (for V=1.000000, T=1.000000)
U = 1.500000 (for V=2.000000, T=1.000000)
U = 3.000000 (for V=1.000000, T=2.000000)
U = 3.000000 (for V=2.000000, T=2.000000)

C H A P T E R 8

Entropy, Temperature,
Energy, and Other
Potentials

8.1 ENTROPY

In statistical mechanics, entropy S is defined as follows:

S = kB lnω.

It is proportional to the number of microstates ω, where the proportion-
ality constant is the Boltzmann constant kB. Entropy is one of the most
fundamental concepts in thermal physics, and it helps us to understand
how a thermodynamic state evolves over time. In a simple mechanical
system like a ball placed on a landscape with hills and valleys, we can
predict the ball’s trajectory based on the analysis of its initial velocity
and the shape of the landscape at its current position (i.e., the gradi-
ent). If there is a steep slope down the west side of a ball at rest, it will
start rolling down in that direction, lowering its gravitational potential
energy and gaining kinetic energy.

Similarly, we can predict how an isolated thermal system with fixed
internal energy would evolve based on the analysis of its entropy be-
cause the system will move toward a state with higher entropy. In other

123

124 � Thermal Physics Tutorials with Python Simulations (TPTPS)

words, the system tends toward a state with more possible configura-
tions because a high-entropy state is more probable.

Let’s revisit our old example of splitting up $5 among three individu-
als. We listed all possible permutations and showed that it is least likely
for one person to have all the money because there is only one way to
arrange such a situation. However, there are more ways to broadly dis-
tribute the five $1 bills among all people. We observed similar behavior
when we simulated elastic collisions of gas molecules. Even if we started
the simulation with one particle having all the energy (which is an un-
likely situation), the total kinetic energy eventually gets shared among
all particles (not uniformly but in an exponential form) because such
a distribution is more likely. In an earlier chapter, we proved that the
Boltzmann distribution maximizes the number of microstates and hence
a thermal system will take on this state at equilibrium. Note that the
system will continue to fluctuate dynamically about the final distribu-
tion, as the constituent particles will continue to exchange energy via
existing interaction mechanisms.

Some people loosely describe entropy as a measure of “disorder,” which
is a reasonable but limited analogy. We might consider a system highly
ordered when there are few ways of arranging its constituents. For ex-
ample, a collection of coins is highly ordered and has low entropy if they
are laid flat with all their heads facing upward. There is only one way
to arrange the coins heads up. If half of the coins are facing up and the
other half are facing down, as long as we do not care which particular
coins are facing up, there are many more possible configurations, and
the coin system is considered to have high entropy. The collection of
the coins would look more disordered. A similar analogy can be applied
to a collection of books in a library. The system has low entropy when
the books are neatly ordered according to their assigned call numbers.
There are many more ways of putting books on the shelves of a library
if we disregard the call number system. Unless there is an active process
or an agent to organize the library, the system will tend toward a high
entropy state. Nevertheless, simply calling the entropy “disorder” does
not fully capture the ideas of microstates and probability.

Entropy, Temperature, Energy, and Other Potentials � 125

8.2 LAWS OF THERMODYNAMICS

There are four fundamental laws of thermodynamics.

The zeroth law states that heat flows from a hot body to a cold body
when they are in thermal contact. Eventually, they will reach thermal
equilibrium at the same temperature T.

The first law of thermodynamics states that the total energy is con-
served so that it does not magically increase or decrease. Any change in
the internal energy of a thermal system must be accounted for from its
heat exchanges with the environment or from its mechanical work. This
idea is often expressed as dU = δQ + δW, as we have seen in Chapter 4.

The second law of thermodynamics states that the entropy of an isolated
thermal system never decreases. As we have discussed previously, it is
a consequence of a higher-entropy state being more probable.

The third law of thermodynamics also deals with entropy and states that
entropy approaches a constant value at the limit of zero temperature.
For example, imagine an ideal gas approaching an absolute temperature
of zero. Ignoring quantum mechanics momentarily, we would expect all
gas particles are frozen still and occupy a single lowest energy level
(ω = 1). Its entropy will be a constant value of zero as S = kB ln(1) = 0,
which is the smallest possible value for a thermal system. As an analogy,
imagine a company experiencing a severe economic downturn, which
must sell off all of its assets and all employees must share a single office
in the basement of a building. The entropy of the company will be zero.

Now let’s discuss how these three quantities, T, U, and S, are related.

8.3 TEMPERATURE AS A RATIO OF CHANGES IN ENERGY
AND ENTROPY

Consider two systems in thermal contact, sharing a fixed total energy
U. What would the number of microstates be for the joint system? Let
ω1(U1) denote the number of microstates of the first system with energy
U1, and let ω2(U2) denote the same for the second system. Then, the
number of microstates with U1 and U2 is ω1(U1) ω2(U2). Because the
energy of the first system U1 can vary between 0 and U, while U2 goes

126 � Thermal Physics Tutorials with Python Simulations (TPTPS)

between U and 0, the total number of microstates is the sum of all
possibilities:

ω(U) =
∑
U1

ω1(U1) ω2(U2),

where U1 + U2 = U.

At thermal equilibrium, these two systems will have the same temper-
ature, T1 = T2 = T, as a consequence of the zeroth law of thermo-
dynamics. At thermal equilibrium, the most probable state, which is
the state with the highest entropy or maximum ω(U), would have been
reached, according to the second law of thermodynamics. The differen-
tial of ω(U) would be zero for infinitesimal energy exchange between
the two systems. Mathematically,

dω =

(
∂ω1

∂U1

)
ω2dU1 + ω1

(
∂ω2

∂U2

)
dU2 = 0.

By dividing the above expression by ω1ω2 and using dU1 + dU2 = 0,
which is a consequence of the first law of thermodynamics, we obtain(

∂ lnω1

∂U1

)
=

(
∂ lnω2

∂U2

)
.

According to Boltzmann’s definition of entropy, S = kB lnω, the above
relationship can be written as:(

∂S1

∂U1

)
=

(
∂S2

∂U2

)
.

In other words, at thermal equilibrium, these two systems have the same
temperature and the same value of ∂S

∂U . Hence, T is intimately related
to the ratio of changes in entropy and internal energy, while other state
variables like V are fixed. Let’s make the following definition for T:

T =

(
∂U
∂S

)
V
.

Entropy, Temperature, Energy, and Other Potentials � 127

If we further allow the change in another state variable V, the change
in internal energy dU can be split into two terms, where the first term
captures the change due to dS and the second term is due to dV:

dU =

(
∂U
∂S

)
V

dS +

(
∂U
∂V

)
S

dV = TdS − PdV,

where the latter term is recognized as a contribution from mechanical
work. This is another useful expression of the first law of thermody-
namics. This formulation leads to yet another identification that

δQreversible = TdS.

The qualification of a “reversible” process in the above expression is a
rather subtle point. It is related to the reason why we are using a symbol
δ instead of the standard differential symbol d for Q and W. While the
change in U only depends on the beginning and ending points of a
thermal process, Q and W depend on the exact trajectory of a thermal
process. This topic is beyond the scope of this book, and we would like
to encourage readers to look further into it in other thermal physics
books.

8.4 IDENTIFYING β = 1/kBT

Continuing with the definition of entropy and the Boltzmann distribu-
tion, we will determine the Lagrange multiplier β as the inverse of kBT.
We have obtained the following results in Chapter 5:

ni = gieαe−βεi (Boltzmann distribution)

and

ω(n0,n1, . . .) = N!
∏

i=0,1,...

gni
i

ni!
(Number of microstates).

128 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Now let’s apply Boltzmann’s definition of entropy and simplify the re-
sulting expression with Stirling’s approximation and some algebra.

S = kB lnω

= kB ln N! + kB

∑
i

(
ln gni

i − ln ni!
)

= kB ln N! + kB

∑
i

(
ni ln gi − ni ln ni + ni

)
= kB ln N! + kB

∑
i

(−ni)
(
ln

ni

gi
− 1

)
= kB ln N! + kB

∑
i

(−ni)
(
ln (eαe−βεi) − 1

)
= kB ln N! + kB

∑
i

(−ni)
(
α − βεi − 1

)
= kB ln N! − kB(α − 1)

∑
i

ni + kBβ
∑

i

niεi

= kB (ln N! − (α − 1)N) + kBβU
= So + kBβU,

where we lumped the three terms that do not depend on the energy as
So.

When we take a partial derivative of entropy with respect to the energy,
we arrive at a conclusion that kBβ = ∂S

∂U . Furthermore, as we have defined
T as a ratio of the change in internal energy and entropy, while other
state variables, such as volume V and number of particles N, are held
constant (T = ∂U

∂S), we arrive at:

β =
1

kBT
.

A later chapter on the two-state system discusses in detail how T influ-
ences the distribution of particles between two energy levels.

Entropy, Temperature, Energy, and Other Potentials � 129

8.5 MATH: VOLUME OF A SPHERE

Let’s take a quick digression and talk about a sphere in a d-dimension
space with radius r. The volume of this hypersphere is given by:

Vd(r) =
πd/2rd

Γ
(

d
2 + 1

) .
A special function, known as a Gamma function, has the following prop-
erties:

Γ

(
d
2

+ 1
)

=

k(k − 1) · · · (2)(1) if d = 2k
(k − 1

2)(k − 3
2) · · · (1

2)
√
π if d = 2k − 1

where k is a positive integer.

The Gamma function has a more general definition, Γ(z) =
∫
∞

0 tz−1e−tdt,
where its value is defined for all complex numbers, except for non-
positive integers. The factorial behavior of the Gamma function can
be proven by performing integration by parts repeatedly. An extensive
discussion of the Gamma function is beyond the scope of this book, so
we will verify the above volume formula for a few values of d and refer
the readers to other books on special functions. †

The following code block uses the sympy module to define the Gamma
function, gamma. You can verify, for example, that the Gamma function
evaluated at d=6 is Γ(6/2 + 1) = 3! = 6, and at d=8, Γ(8/2 + 1) =
4! = 24, as expected. The code block applies this result to the spherical
volume formula with r = 1 and obtains the volume of a unit circle in
various dimensions. In particular, in three-dimensions (d=3), the volume
formula correctly returns 4.189 since the volume of a sphere is 4

3πr3
≈

4.189r3. A two-dimensional sphere is a circle, so for d=2, the volume
formula correctly returns the value of 3.142 since the area of a circle is
πr2. A one-dimensional sphere is a line of length 2 that stretches between
−1 and 1, so the volume formula for d=1 returns 2, as expected.

†Brian Hayes wrote an interesting article about hypersphere titled, “An Adven-
ture in the Nth Dimension,” in American Scientist magazine.
(www.americanscientist.org/article/an-adventure-in-the-nth-dimension)

https://www.americanscientist.org

130 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Code Block 8.1

Obtain a symbolic expression for the Gamma function.
import sympy as sym
t = sym.Symbol('t')
z = sym.Symbol('z', positive=True)
gamma = sym.integrate(t**(z-1)*sym.exp(-t), (t,0,sym.oo))

dim_range = range(1,10,1)

print("Evaluate the Gamma function for a few sample values.")
for d in dim_range:

Substituting z with d/2+1.
gamma_value = gamma.subs(z,d/2+1)
print("d = %d, gamma(%2.1f) = %4.3f"%(d,d/2+1,gamma_value))

print("")
print("Evaluate the volume of a unit sphere in various dimensions.")
for d in dim_range:

gamma_value = gamma.subs(z,d/2+1)
vol_value = (3.1419**(d/2))/gamma_value
print("d = %d, spherical volume = %4.3f"%(d,vol_value))

Evaluate the Gamma function for a few sample values.
d = 1, gamma(1.5) = 0.886
d = 2, gamma(2.0) = 1.000
d = 3, gamma(2.5) = 1.329
d = 4, gamma(3.0) = 2.000
d = 5, gamma(3.5) = 3.323
d = 6, gamma(4.0) = 6.000
d = 7, gamma(4.5) = 11.632
d = 8, gamma(5.0) = 24.000
d = 9, gamma(5.5) = 52.343

Evaluate the volume of a unit sphere in various dimensions.
d = 1, spherical volume = 2.000
d = 2, spherical volume = 3.142
d = 3, spherical volume = 4.189
d = 4, spherical volume = 4.936
d = 5, spherical volume = 5.265
d = 6, spherical volume = 5.169
d = 7, spherical volume = 4.726
d = 8, spherical volume = 4.060
d = 9, spherical volume = 3.300

We can further explore the topic of the volume of a hypersphere in
a manner similar to calculating π in Chapter 1. In the following code
block, we generate a large number (N_total) of random points between
−1 and 1 along each dimension with np.random.random() function.

Entropy, Temperature, Energy, and Other Potentials � 131

The d-dimensional coordinates are stored in variable coord, which is
an array with N_total rows and d columns. We will count the number
of points whose position is within 1 from the origin, np.sum(dist<1),
since these are the points within the unit sphere. The ratio of the num-
ber of the points inside of the unit sphere and the total number of points
would approximate the ratio of volumes between a unit hypersphere and
a hypercube with a side of 2 in a d-dimensional space.

ratio =
Ninside sphere

Ntotal
≈

Vsphere

Vcube with side 2
=

Vsphere

2d
.

Hence, we can obtain a reasonable approximation for a spherical volume
by multiplying the number ratio by 2d. The following code block and
the resulting figure demonstrate this approach. There are a few interest-
ing trends to note. As the dimensionality increases, the variation of the
estimate increases or the precision decreases, since it would take expo-
nentially more points to sample a higher dimension as densely. Hence,
exploring a higher dimension becomes rapidly challenging and eventu-
ally impossible with a fixed resource. It is sometimes referred to as a
“curse of dimensionality.” Another interesting trend is that the volume
of a unit sphere becomes vanishingly tiny as d increases, which is due
to the fact that the corner regions of a hypercube, where a hypersphere
cannot reach, grow very rapidly with the increasing dimensionality.

Code Block 8.2

Estimate the volume of a hypersphere.

import numpy as np
import matplotlib.pyplot as plt

N_trials = 10
N_total = 50000

volumes = np.zeros((N_trials,len(dim_range)))
for d in dim_range:

for i in range(N_trials): # Multiple trials
coord = np.random.random(size=(N_total,d))
coord = coord*2 - 1 # Numbers are between -1 and 1.
dist = np.sqrt(np.sum(coord**2,axis=1))
ratio = np.sum(dist<1) / N_total
volumes[i,d-1] = ratio*(2**d)

plt.boxplot(volumes)
plt.xlabel('Dimension')

132 � Thermal Physics Tutorials with Python Simulations (TPTPS)

plt.ylabel('Volume of Unit Sphere')
plt.ylim((0,7))
plt.xlim((0,10))
plt.xticks(dim_range)

dim_range_smooth = np.arange(0.5,9.5,0.1)
vol_value_smooth = np.zeros(len(dim_range_smooth))

for i,d in enumerate(dim_range_smooth):
gamma_value = gamma.subs(z,d/2+1)
vol_value = (np.pi**(d/2))/gamma_value
vol_value_smooth[i] = vol_value

plt.plot(dim_range_smooth,vol_value_smooth,color='gray')
plt.savefig('fig_ch8_sphere_volume_dimension.eps')
plt.show()

In this section, we did not derive the volume formula for a hypersphere
and only demonstrated its plausibility. A rigorous proof and more dis-
cussions can be found in other books. In the following section, we will
consider the volume of a hypersphere as a way of calculating the num-
ber of microstates. We will use d = 3N and r = n. Since N is a large
number, it does not particularly matter whether 3N is even or odd, so
Γ
(

3N
2 + 1

)
will be written as 3N

2 !.

Figure 8.1

Entropy, Temperature, Energy, and Other Potentials � 133

8.6 ENTROPY OF IDEAL GAS

In Chapter 6, we developed a strategy for counting the number of all
possible states for a particle in a box. In this chapter, we will extend
this strategy to derive an expression for the entropy of an ideal gas:
N gas particles in a box of volume V. We need 3N quantum numbers
since each particle would need one quantum number for each dimension.
For example, particle 1 gets three quantum numbers, (n1x, n1y, n1z),
particle 2 gets (n2x, n2y, n2z), and so on, until the last particle gets
(nNx, nNy, nNz). Each quantum number is a positive integer. The set
of all quantum numbers determines the energy U as U = h2

8mV2/3 n2 with
n2 =

∑N
i=1 (n2

ix + n2
iy + n2

iz).

Unlike the earlier case of a three-dimensional sphere for a single particle,
we now have to deal with a 3N-dimensional sphere, which is impossible
to imagine or draw on paper. Nevertheless, the total number of available
states can be approximated by a portion of a sphere’s volume in a 3N-
dimensional space with a radius n. As you recall, when we worked with a
single particle, we took an eighth of a three-dimensional sphere because
the quantum numbers are positive. Likewise, for 3N-dimensions, we
multiply (1

2)3N to the volume of a sphere, V3N(n). With a formula for a
spherical volume in a higher dimension discussed in the previous section,
the total number of available states Ω(n) within n becomes:

Ω(n) =
(1
2

)3N

V3N(n) =
(1
2

)3N π3N/2n3N(
3N
2 !

) .

Then, the number of microstates between n and n + dn, which corre-
sponds to the number of lattice points embedded within a spherical
shell of thickness dn, not within the full spherical volume, is:

ω(n)dn = Ω(n + dn) −Ω(n).

Switching to a variable U instead of n, we have:

ω(U) =
dΩ(n)

dn
dn
dU

=
(1
N!

) (1
2

)3N+1 3Nπ3N/2(
3N
2 !

) (
8mV2/3

h2

)3N/2

U3N/2−1.

134 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Note we are dealing with indistinguishable particles, so an additional
factor of 1/N! was introduced to avoid overcounting.

We can now take a natural log of ω(U) to find the entropy of an ideal
gas. Upon going through a rather lengthy algebra and approximations
based on large N, the entropy S of the ideal gas is:

S = kB lnω = kBN
{

3
2

ln
(

4πmV2/3U
3N5/3h2

)
+

5
2

}
.

This result is known as the Sackur-Tetrode equation. If we calculate the
rate of entropy change with respect to energy, (∂S

∂U)V, we obtain 3
2

kBN
U ,

which also equals to 1
T . It follows that U = 3

2 NkBT, which is a major
result for an ideal gas that we have encountered a few times already.

8.7 ENTROPY OF IDEAL GAS, AGAIN

Let’s take a different approach to find the entropy of an ideal gas again.
One of the main ideas from Chapter 5 was:

ω(n0,n1, · · ·) =
∏

i=0,1,...

gni
i

ni!
,

where the factor of N! was omitted with an assumption of indistin-
guishability. Now we apply the definition of entropy and use Stirling’s
approximation.

S = kB lnω

= kB

∑
i

(
ni ln gi − ln ni!

)
= kB

∑
i

ni ln gi −
∑

i

ni ln ni +
∑

i

ni

 .

Entropy, Temperature, Energy, and Other Potentials � 135

Let’s work with the second term in the above expression by applying
the Boltzmann distribution result, ni

N =
gie−εi/kBT

Z .

∑
i

ni ln ni =
∑

i

ni ln
(
N

gie−εi/kBT

Z

)
=

∑
i

ni

(
ln N + ln gi + ln e−εi/kBT

− ln Z
)

=
∑

i

ni

(
ln N + ln gi −

(
εi

kBT

)
− ln Z

)
= N ln N +

∑
i

ni ln gi −
U

kBT
−N ln Z,

where we used
∑

i ni = N and
∑

i niεi = U in the last step.

When we substitute the last expression back into the second term of
the entropy, we obtain the following result:

S = kB

∑
i

ni ln gi −

N ln N +
∑

i

ni ln gi −
U

kBT
−N ln Z

 + N


= kBN

(
ln

Z
N

+
U

NkBT
+ 1

)
.

This expression of S, thus far, is quite general and would apply to any
thermal system at equilibrium. For an ideal gas specifically, we know
U = 3

2 NkBT and have found an expression for the partition function of
an ideal gas in Chapter 6:

Z =

(
4πmV2/3U

3Nh2

)3/2

.

Thus, our final expression of entropy of an ideal gas is:

S = kBN
{

3
2

ln
(

4πmV2/3U
3N5/3h2

)
+

5
2

}
.

It is identical to the entropy expression obtained by counting the mi-
crostates via the hypersphere’s volume.

With this expression of S, let us plot the entropy of a monoatomic
argon gas, an example of an ideal gas confined within a rigid box. In

136 � Thermal Physics Tutorials with Python Simulations (TPTPS)

the following code block, we used the exact values of the fundamental
constants to calculate the entropy of argon (Ar) gas while varying the
temperature.

Code Block 8.3

Entropy of argon gas as a function of temperature.

import numpy as np
import matplotlib.pyplot as plt

m = 6.6*10**-26 # mass of Ar atom in [kg]
h = 6.63*10**-34 # Planck constant in [J sec]
pi = 3.14
N = 6.0*10**23 # Number of Ar particles (= Avogadro's number)
V = 10**-3 # Volume of container in [m^3]
dt = 0.0001 # Temperature step
T = np.arange(dt,300,dt) # Temperature in [K]
k = 1.38*10**-23 # Boltzmann constant in [J/K]
U =(3/2)*N*k*T # Energy in [J]

Entropy in a unit of [J/K]
S = (3/2)*np.log((4*pi*m*(V**(2/3))*U)/(3*(N**(5/3))*(h**2)))+(5/2)
S = k*N*S
plt.plot(T,S,color='k')
plt.xlabel('T (K)')
plt.ylabel('S (J/K)')
plt.savefig('fig_ch8_entropy_Ar.eps')
plt.show()

Figure 8.2

Entropy, Temperature, Energy, and Other Potentials � 137

In the above S-vs.-T plot, we can see that the entropy diverges to −∞
as T goes to zero, which seems consistent with the above expression
for S, where S ∝ ln U ∝ ln T. However, this contradicts the third law
of thermodynamics, which states that the entropy must approach a
constant value at an absolute zero temperature.

This contradiction arises because our treatment of ideal gas has relied
on a continuous approximation. Each discrete state of a gas particle
was conceptualized as an integer lattice point within a phase space of
quantum numbers. However, the total number of these quantum states
was approximated by the continuous volume of a sphere in the phase
space. As T approaches zero, the gas particles occupy the lowest energy
state. The number of states available to the ideal gas decreases with
decreasing T, but this number does not become zero. Imagine a sphere
and the integral lattice points it encloses. As the volume of the sphere
decreases, the number of enclosed lattice points decreases. However,
even in the limit of zero volume, the number of enclosed lattice points
is still one since an infinitesimal sphere would still include a point at the
origin. Therefore, the continuous value of volume can not approximate
the discrete number of lattice points well in this extreme limit.

8.8 MOTIVATION FOR OTHER METRICS OF A
THERMODYNAMIC SYSTEM

Thus far in this book, we have worked extensively with internal energy
U as an essential metric of a thermodynamic system. However, other
related metrics become more useful under different conditions.

As a motivation, let’s consider a simplistic example of measuring the
value of a hypothetical company that sells a single product. The rev-
enue of the company is calculated by NpVp, where Np is the number of
products sold and Vp is the price of the product. As a very crude model,
the total value of the company may be given by Ucompany = NpVp + Uo,
where Uo accounts for other quantities, such as its operating expenses
and real estate values. The CEO of the company may be interested in
the change in the company’s value, ∆Ucompany. If the company sells more
products, the growth of the company can be calculated by (∆Np)Vp. On
the other hand, if the same number of products are sold at a higher unit
price, the quantity of interest is Np(∆Vp).

138 � Thermal Physics Tutorials with Python Simulations (TPTPS)

We can make this example more interesting by adding the term NeVe,
where Ne is the number of employees and Ve is the wage of each em-
ployee. Then, Hcompany = Ucompany −NeVe, where Hcompany is another
function for describing the value of a company and it would be more
useful than Ucompany if there have been any changes in the number of
employees or their pay rate. Even with this simple example, there are
potentially interesting interactions among the variables. For example,
Np and Vp may be inversely related since a customer may buy fewer
products if they are too expensive, and Vp and Ve may be positively
correlated since a high-value product may require high-wage employees
to manufacture.

What about other factors? Can we develop a single “master” function
that includes all possible factors and accounts for the raw value of a
company in any situation? Maybe yes, theoretically, but no, practically.
What would be interesting to a CEO is a small number of dynamic
factors rather than other static factors that do not change over time.
Therefore, the CEO and her team would work with different variables
and various metrics that may be useful under different conditions.

Likewise, there are different economic indices, such as Gross Domes-
tic Product (GDP) or Gross National Product (GNP). One economist
might use GDP, the value of the finished domestic goods and services
produced within a nation’s borders, to measure a country’s economic
value. Another economist might use GNP, the value of all finished goods
and services owned by a country’s citizens, whether or not those goods
are produced in that country. In finance, the indices like the S&P500,
the Dow Jones Industrial Average, and the NASDAQ Composite in the
US offer different ways of tracking and measuring the performance of
a stock market or an economic sector. The choice of which stocks are
included (and which ones are excluded) is an essential consideration for
these indices. In thermal physics, too, we work with various metrics, or
thermodynamic potentials with appropriate variables, to analyze differ-
ent thermal systems or processes, as we will see below.

In our previous example with Ucompany, we discussed a pair of vari-
ables, (Np,Vp), which are intimately related. Another pair of variables,
(Ne,Ve), are closely related and always go together, too. For describing
a thermal system, we will also deal with pairs of state variables, and
each pair is known as a conjugate variable. Pressure P and volume V

Entropy, Temperature, Energy, and Other Potentials � 139

make up a conjugate pair. Entropy S and temperature T form another
conjugate pair. Another thermodynamic state variable is N, which de-
notes the total number of particles. So far it has been fixed, as we have
only considered a closed thermal system where the number of parti-
cles is always constant. However, in an open thermal system where the
particles may enter or exit the system, N becomes a variable quantity.
A conjugate variable paired with N is called a chemical potential µ,
and it denotes the change in energy accompanied by an addition of one
particle into the thermal system.

As the temperature difference determines the direction of heat flow from
high to low temperature, the chemical potential determines the direc-
tion of the particles’ flow from a region of high chemical potential to
a region of low chemical potential. The drive of chemical reactions or
phase transitions is most naturally described in terms of chemical po-
tential since the number of atoms or molecules belonging to a particular
chemical species or phase changes during such processes.

Another interesting example where the concept of chemical potential is
necessary is the case of Fermi energy. In a solid, electrons occupy energy
levels similar to the particles in a box discussed in Chapter 6. According
to the Pauli exclusion principle, each energy state can only accommo-
date a pair of electrons with opposite spins: up and down. These elec-
tron pairs will fill up the available energy states, starting from the lowest
level. This situation can be imagined as a high-rise building where each
floor can only accommodate two people and where all lower floors must
be occupied before allowing people to move upstairs. Since there is a
finite number of electrons in a solid, there will eventually be a top-level,
up to which all levels are filled, and this is called the Fermi level. The
associated maximum electron energy is called the Fermi energy, and it
determines the electron distribution in a solid and characterizes its elec-
tronic structure. If we would like to add one extra electron to a solid,
the only way is to place it at an energy level just above the Fermi level
since there will not be any available spot below the Fermi level. Hence,
the chemical potential of the new electron must be just above the Fermi
energy. As we add more electrons, the chemical potential in a solid will
correspondingly increase.

140 � Thermal Physics Tutorials with Python Simulations (TPTPS)

8.9 FOUR THERMODYNAMIC POTENTIALS: U,H,F,G

There are four thermodynamic potentials: internal energy U, enthalpy
H, Helmholtz free energy F, and Gibbs free energy G. These are different
metrics for describing a thermal system at any given moment. Let us
start with the now familiar internal energy.

According to the first law of thermodynamics, the definition of internal
energy U is given in a differential form as

dU = TdS − PdV + µdN.

This is the expression we saw before, plus a new term with the chemical
potential and the particle number, hinting that the relevant variables
involved in the change of internal energy are entropy, volume, and par-
ticle number. These are called natural variables and make the internal
energy a function of S, V, and N. The total differential of U(S,V,N) is

dU =

(
∂U
∂S

)
V,N

dS +

(
∂U
∂V

)
S,N

dV +

(
∂U
∂N

)
S,V

dN,

where the subscript symbols next to the right parenthesis indicate the
state variables that are held constant for the partial derivatives.

As we compare these two expressions, we can make the following iden-
tifications, which are not new.

T =

(
∂U
∂S

)
V,N

(definition of temperature)

P = −

(
∂U
∂V

)
S,N

(expression related to mechanical work)

µ =

(
∂U
∂N

)
S,V

(definition of chemical potential)

Enthalpy H is defined as U + PV and its differential is:

dH = dU + (PdV + VdP)
= (TdS − PdV + µdN) + (PdV + VdP)
= TdS + VdP + µdN

Entropy, Temperature, Energy, and Other Potentials � 141

where dU is replaced with the differential expression from above. This
tells us that for enthalpy, S, P, and N are the natural variables. This
mathematical trick of swapping the role of a natural variable between
a conjugate pair is called the Legendre transform. Now let’s take a
total differential of H(S,P,N) with respect to these natural variables and
discover how several thermal variables are related to partial derivatives
of H:

dH =

(
∂H
∂S

)
P,N

dS +

(
∂H
∂P

)
S,N

dP +

(
∂H
∂N

)
S,P

dN.

T =

(
∂H
∂S

)
P,N

V =

(
∂H
∂P

)
S,N

µ =

(
∂H
∂N

)
S,P

Similarly, let’s continue with Helmholtz free energy F, which is defined
as F = U − TS.

dF = dU − (TdS + SdT)
= (TdS − PdV + µdN) − (TdS + SdT)
= −SdT − PdV + µdN.

For F, the natural variables are T, V, and N. Hence,

dF =

(
∂F
∂T

)
V,N

dT +

(
∂F
∂V

)
T,N

dV +

(
∂F
∂N

)
T,V

dN.

S = −

(
∂F
∂T

)
V,N

P = −

(
∂F
∂V

)
T,N

µ =

(
∂F
∂N

)
T,V

142 � Thermal Physics Tutorials with Python Simulations (TPTPS)

The last thermodynamic potential is Gibbs free energy G with a defini-
tion of G = U − TS + PV.

dG = dU − (TdS + SdT) + (PdV + VdP)
= (TdS − PdV + µdN) − (TdS + SdT) + (PdV + VdP)
= −SdT + VdP + µdN.

For G, the natural variables are T, P, and N.

dG =

(
∂G
∂T

)
P,N

dT +

(
∂G
∂P

)
T,N

dP +

(
∂G
∂N

)
T,P

dN.

S = −

(
∂G
∂T

)
P,N

V =

(
∂G
∂P

)
T,N

µ =

(
∂G
∂N

)
T,P

It is an instructive exercise to evaluate some of the above quantities
for ideal gas. Starting with U and S for an ideal gas, we may define
Helmholtz free energy and Gibbs free energy. Then, we can obtain an
expression for pressure and chemical potential by taking an appropriate
partial derivative.

We can verify that P = −
(
∂F
∂V

)
T,N

= NkBT
V , which is just an ideal gas law.

We also obtain:

µ =

(
∂G
∂N

)
T,P

= kBT ln
(

Nh3

V(2πmkBT)3/2

)
.

In the following code block, we demonstrate how Python’s sympy mod-
ule can recreate these results. log refers to a natural logarithm with
base of e. It requires some straightforward algebra to verify that the
above expression of µ is indeed equivalent to the symbolically-computed
expression of mu.

Entropy, Temperature, Energy, and Other Potentials � 143

Code Block 8.4

import sympy as sym

Calculate pressure from symbolic differentiation.

Define symbols
k, T, N, V, h, m, pi = sym.symbols('k_{B} T N V h m \pi')

Internal energy of ideal gas
U = (3/2)*N*k*T
Entropy of ideal gas
S = (3/2)*sym.ln((4*pi*m*(V**(2/3))*U)/(3*(N**(5/3))*(h**2)))+(5/2)
S = k*N*S
Helmhortz Free Energy
F = U-T*S

print('S for ideal gas')
display(S.nsimplify())
print('')

print('P from -(dF/dV) for ideal gas')
P = -sym.diff(F,V)
display(sym.nsimplify(P))
print('')

Redefine P as a sympy symbol (override the previous definition)
P = sym.symbols('P')

Gibbs Free Energy
G = U - T*S + P*V

Calculate chemical potential from symbolic differentiation.
print('mu from (dG/dN) for ideal gas')
mu = sym.diff(G,N)
mu = mu.collect(k).collect(T)
display(sym.nsimplify(mu))

S for ideal gas

NkB


3 log

(
2TV

2
3 πkBm

N
2
3 h2

)
2

+
5
2



144 � Thermal Physics Tutorials with Python Simulations (TPTPS)

P from -(dF/dV) for ideal gas

NTkB

V

mu from (dG/dN) for ideal gas

−

3TkB log
(

2TV
2
3 πkBm

N
2
3 h2

)
2

8.10 THERMODYNAMIC RELATIONS

Let’s take one more step and work with the second-order partial deriva-
tives of the above expressions. We can obtain a few other useful equal-
ities known as Maxwell’s relations, whose derivations are based on the
fact that a mixed second-order partial derivative, successive differenti-
ation of a function with respect to two independent variables, remains
identical regardless of the order of the differentiation. For example, con-
sider a second-order partial differentiation of internal energy, first with
respect to entropy and then with respect to volume: ∂∂V

(
∂U
∂S

)
V,N


S,N

=

(
∂T
∂V

)
S,N

where we used
(
∂U
∂S

)
V,N

= T.

Now let’s make the order of differentiation reversed so that ∂∂S

(
∂U
∂V

)
S,N


V,N

= −

(
∂P
∂S

)
V,N

where we used
(
∂U
∂V

)
S,N

= −P.

Since these two second-order derivatives should be identical, we have(
∂T
∂V

)
S,N

= −

(
∂P
∂S

)
V,N
.

Entropy, Temperature, Energy, and Other Potentials � 145

Similarly, we can calculate the mixed second-order derivatives for each
of H, F, and G and have the followings:(

∂T
∂P

)
S,N

=

(
∂V
∂S

)
P,N(

∂S
∂V

)
T,N

=

(
∂P
∂T

)
V,N

−

(
∂S
∂P

)
T,N

=

(
∂V
∂T

)
P,N

Let’s check Maxwell’s relations by calculating
(
∂S
∂V

)
T,N

and
(
∂P
∂T

)
V,N

for
ideal gas separately.

Code Block 8.5

import sympy as sym
k, T, N, V, h, m, pi = sym.symbols('k_{B} T N V h m \pi')

U, S, and P for ideal gas.
U = (3/2)*N*k*T
S = (3/2)*sym.ln((4*pi*m*(V**(2/3))*U)/(3*(N**(5/3))*(h**2)))+(5/2)
S = k*N*S
P = N*k*T/V

print('dS/dV for fixed T and N')
dS_over_dV = sym.diff(S,V)
display(sym.nsimplify(dS_over_dV))

print('dP/dT for fixed V and N')
dP_over_dT = sym.diff(P,T)
display(sym.nsimplify(dP_over_dT))

print('Note that these two expressions are equal.')

dS/dV for fixed T and N

NkB

V

dP/dT for fixed V and N

NkB

V

Note that these two expressions are equal.

146 � Thermal Physics Tutorials with Python Simulations (TPTPS)

We have shown that
(
∂S
∂V

)
T,N

is identical to
(
∂P
∂T

)
V,N

as an illustration of
one of the Maxwell’s relations. These relations imply that if one knows
the ratio of changes in one pair of variables, one can also find the ra-
tio of changes in the other pair. For example, the rate of change in
entropy with respect to volume at constant temperature and particle
number can be determined by the rate of change in pressure with re-
spect to temperature for fixed volume and gas particle number. The
latter quantity can be experimentally measurable using barometers and
thermometers, while the former quantity involving entropy may not be
directly measurable.

It is interesting to note that many of the thermodynamic relations and
definitions are expressed in terms of a rate of change between two vari-
ables or a partial derivative. We often define a function as a mapping
between an input value x and the corresponding point-wise output f (x).
Our study of calculus shows an alternative way of dealing with a func-
tion. If we know the derivative d f (x)

dx at all points and a single value f (xo)
at some reference point xo, we can determine the point-wise value of a
function by integration: f (x) =

∫ x

xo

(d f (s)
ds

)
ds + f (xo). That is, if we know

f (x), we can of course calculate d f
dx , but what is interesting is that if we

know d f
dx and f (xo), we can also determine f (x).

The derivative or the rate of change can be more interesting and useful
than the value of a function. For example, when we are hiking, what
we tend to notice and find useful is how steep or shallow the local
landscape is, rather than the exact height with reference to the sea level.
In kinematics, the instantaneous velocity v(t), a time rate of change in
position, of a moving object gives more interesting information, such
as its kinetic energy or momentum, than its exact position x(t). Also
knowing v(t) allows us to calculate x(t) by x(t) =

∫ t

0 v(s)ds + x(0). The
change may also be more readily and directly measurable than the raw
values since the former does not require setting a reference value. For
example, in classical mechanics, it is convenient to work with the change
in gravitational potential energy of a falling object as mg∆x, but if you
would like to work with the exact value of gravitational potential energy
at a particular height, an additional definition about a reference point
(x = 0) should be introduced. Thus, the utility of a thermodynamic
potential, like gravitational or electrical potential, lies in its change
during a thermodynamic process between different states, rather than
its point-wise value at a particular state.

III
Examples

http://taylorandfrancis.com

C H A P T E R 9

Two-State System

Imagine a town where there are only two-story apartments. Living on
an upper floor unit is more expensive than living on a lower floor unit.
We could survey the residents and find out where they live. It would not
be surprising to find that the upper units are less occupied because they
are more expensive. The higher the price difference between the upper
and lower units is, the more significant the difference in the occupancies
would be. However, the price difference would matter in the context of
the average wealth of the occupants.

Mathematically, we denote the energy difference between the two states
as ∆ε = ε2 − ε1, which would correspond to the price difference be-
tween the upper and lower units. The temperature multiplied by the
Boltzmann constant, kBT, would be analogous to the average wealth of
the occupants. The occupancy of these two levels is determined by the
Boltzmann distribution, and the ratio of the occupancy is

N2

N1
=

e−ε2/kBT

e−ε1/kBT
= e−

∆ε
kBT .

When ∆ε = 0, there is no difference between the two states, so N1 = N2.
For ∆ε > 0, N2

N1
< 1, or N2 is smaller than N1. The difference between

N2 and N1 is also affected by the value of kBT. It can be interpreted
as a representative energy scale or the average thermal energy of a
thermal system at T. If the energy difference ∆ε is significantly smaller
than kBT (that is, the upper-level units are not that expensive), N2 is
slightly smaller than N1. On the other hand, if ∆ε is appreciably larger
than kBT, N1 will be significantly larger than N2. The following code

149

150 � Thermal Physics Tutorials with Python Simulations (TPTPS)

block illustrates this trend by plotting N2
N1

versus ∆ε
kBT for two different

values of T (low and high). Note N2
N1

will always be less than 1.

Code Block 9.1
Comparing the occupancy between two states.

import matplotlib.pyplot as plt
import numpy as np

kT_hi = 100
kT_lo = 1
e = np.arange(0,5,0.1)
plt.plot(e,np.exp(-e/kT_hi),color='k',linestyle='solid')
plt.plot(e,np.exp(-e/kT_lo),color='k',linestyle='dotted')
plt.legend(('High T','Low T'),framealpha=1)
plt.ylabel('N_2 / N_1')
plt.xlabel('$\Delta \epsilon / k_B T$')
plt.ylim((0,1.1))
plt.yticks(ticks=(0,0.5,1))
plt.savefig('fig_ch9_ratio_vs_epsilon.eps')
plt.show()

Let’s create a function for visualizing the particle distribution,
or occupancy, within a two-state system. This new function,
sketch_distrib_2states(), builds upon the sketch_occupancy()

Figure 9.1

Two-State System � 151

function from Chapter 5. In addition to the familiar boxes and dots
representing the energy levels and the particles, there will be an ad-
ditional bar graph overlaid with the exponential curve representing
the Boltzmann distribution. Since we are mostly concerned with the
energy difference between two states, we will assume that the lower
state has zero energy and the higher state with ∆ε. By doing so, we
can easily define the partition function for the two-state system as
Z = e−0/kBT + e−∆ε/kBT = 1 + e−∆ε/kBT. With this, the probability or
the fraction of particles at each level will be N1

N1+N2
= e−0/kBT

Z = 1
Z and

N2
N1+N2

= e−∆ε/kBT

Z , as we discussed in Chapter 6.

This dual representation allows us to visualize the current state of our
thermal system in several ways. The particle distribution can be inferred
intuitively from the density of dots of each box, with annotated values
of the fraction of total particles on the left. The height of the bars in
the bar graph on the right also shows the fraction of occupancy. The
gray shading of the bars corresponds to the shading of the boxes, where
the lower energy level is coded with a darker shade. Hence, the height
of the darker bar is given by N1

N1+N2
, and the height of the lighter bar is

N2
N1+N2

.

Code Block 9.2

import matplotlib.pyplot as plt
import numpy as np

def sketch_distrib_2states (n,de=1,kT=None,xmax=1.1,figsize=(4,5)):

Makes a cartoon of occupancy plot.
gridspec = {'width_ratios':[1,2*xmax]}
fig, (ax1,ax2) = plt.subplots(1,2,figsize=figsize,

gridspec_kw=gridspec)

The basic logic of the following sketch is the same
as sketch_occupancy() from an ealier chapter,
but it also includes an extra bar graph.

Define the size of boxes
marg = 0.05 # Size of margin
h = 1.0-2*marg
w = 1.0-2*marg
xbox = np.array([marg,marg+w,marg+w,marg])
ybox = np.array([marg,marg,marg+h,marg+h])
colors = ['#999999','#DDDDDD'] # darker, lighter gray

152 � Thermal Physics Tutorials with Python Simulations (TPTPS)

n = np.array(n)

for i in range(2):
ax1.fill(xbox,ybox+i,color=colors[i])
x = (np.random.uniform(size=n[i])-0.5)*w*0.9+0.5
y = (np.random.uniform(size=n[i])-0.5)*h*0.9+0.5+i
ax1.scatter(x,y,marker='.',color='k',s=50,zorder=2.5)
Display the fraction to the left of each box.
ax1.text(-0.35,i+0.2,'%3.2f'%(n[i]/np.sum(n)))

ax1.set_ylim(0,2)
ax1.set_yticks([])
ax1.set_xticks([])
ax1.set_aspect('equal')
ax1.axis('off')

If kT is not specified as an optional input argument,
calculate equilibrium kT given n[0] and n[1].
if kT==None:

kT = -de/np.log(n[1]/n[0])

f = n/np.sum(n) # fraction of occupancy.
e = np.array([0,de])
for i in range(2):

ax2.bar(e[i],f[i],width=0.1,color=colors[i])

Z = 1 + np.exp(-de/kT) # Partition function

de_range = np.arange(0,xmax,0.01) # energy difference
boltzmann_dist = np.exp(-de_range/kT)/Z
ax2.plot(de_range,boltzmann_dist,color='black')
ax2.set_xlabel('ϵ')
ax2.set_xticks(np.arange(0,xmax+0.1,0.5))
ax2.set_xlim((-0.1,xmax+0.1))
ax2.set_ylim((0,1))
ax2.set_yticks((0,0.5,1))
ax2.set_ylabel('Fraction')
ax2.set_aspect('equal')
plt.tight_layout()
return kT

n = [40,10]
de = 0.5
sketch_distrib_2states(n,de=de,figsize=(4,5))
plt.savefig('fig_ch9_sketch_distrib_2states_demo.eps',

bbox_inches='tight')
plt.show()

Two-State System � 153

The bar graph carries additional information. The horizontal separation
between the two bars corresponds to the energy level difference. In the
above example, ∆ε equals 0.5 (de = 0.5).

The exponential curve illustrates what the expected normalized Boltz-
mann distribution curve, e−∆ε/kBT

Z should be. Hence, at thermal equilib-
rium, the top of the two bars should touch the curve, as they do in
Figure 9.2. Because N2

N1
= e−∆ε/kBT, the value of kBT at thermal equilib-

rium can be obtained as −∆ε/ ln (N2
N1

) for given values of N1 and N2,
and this calculation shows up within the above code block as kT =
-de/np.log(n[1]/n[0]).

Using this handy visualization function, let’s create a series of plots
that illustrates how a two-state thermal system behaves over a range
of ∆ε/kBT values. For simplicity, we will fix kBT at a constant value
(kT = 1 in the code). As the energy gap ∆ε increases, we can explore
how relative occupancy changes. As expected, for a given amount of
average thermal energy of kBT, the higher energy gap means that the
distribution of particles will become more heavily skewed toward the
lower energy level. As an analogy, when the price difference between
the upper- and lower-level apartments increases, more people will take
the cheaper, lower-level units. The following plots in Figure 9.3 show
this trend by a higher density of dots and a higher fraction of particles
in the lower energy level, as ∆ε increases or as the separation between
the bars increases.

Figure 9.2

154 � Thermal Physics Tutorials with Python Simulations (TPTPS)

The particle distributions, or the exact values of N1 and N2, were cal-
culated as follows. Let r = N2

N1
= e−∆ε/kBT, as established earlier. Then,

N2 = N1r. Combining it with N2 = N −N1, we have N1 = N/(1 + r) and
N2 = Nr/(1 + r).

Code Block 9.3
Sketch a series of distribution plots for a range of energy gaps.

N_total = 50
kT = 1
de_range = np.array([0.1,0.5,1,2])
for i, de in enumerate(de_range):

r = np.exp(-de/kT)
N1 = np.round(N_total/(1+r))
N2 = np.round(N_total-N1)
n = np.array([N1,N2],dtype='int')
sketch_distrib_2states (n,de=de,kT=kT,xmax=2,figsize=(6,8))
str = '$\Delta \epsilon/kT$ = %2.1f, $\Delta \epsilon$ = %2.1f'
plt.title(str%(de/kT,de))
plt.savefig('fig_ch9_occupancy_fixed_T_%d.eps'%i,

bbox_inches='tight')
plt.show()

Two-State System � 155

Figure 9.3

156 � Thermal Physics Tutorials with Python Simulations (TPTPS)

In the next set of visualizations, let’s vary kBT while keeping ∆ε fixed
(de = 0.5 in the code). As the average thermal energy kBT increases,
the energy gap between the two levels becomes less significant in deter-
mining the relative occupancy. Therefore, at higher values of kBT, the
occupancy of the two levels becomes more comparable, resulting in an
almost equal number of particles at both energy levels.

Code Block 9.4

Sketch a series of distribution plots for different thermal energy.

N_total = 50
de = 0.5
kT_range = np.array([0.25,0.5,1,5])
for i, kT in enumerate(kT_range):

r = np.exp(-de/kT)
N1 = np.round(N_total/(1+r))
N2 = np.round(N_total-N1)
n = np.array([N1,N2],dtype='int')
sketch_distrib_2states (n,de=de,kT=kT,xmax=2,figsize=(6,8))
str = '$\Delta \epsilon/kT$ = %2.1f, kT = %3.2f'
plt.title(str%(de/kT,kT))
plt.savefig('fig_ch9_occupancy_fixed_de_%d.eps'%i,

bbox_inches='tight')
plt.show()

Two-State System � 157

Figure 9.4

158 � Thermal Physics Tutorials with Python Simulations (TPTPS)

9.1 DYNAMIC CASE

Our analysis thus far has dealt with the occupancy of the energy levels
at thermal equilibrium, which is determined by the ratio of ∆ε and kBT.
What would happen when the system is not quite at thermal equilib-
rium? The answer to the question is that the system will move toward
the state described by the Boltzmann distribution since this state has
the most microstates or the highest entropy, and hence it is the most
probable.

The next code block demonstrates a two-state system with a fixed en-
ergy difference, ∆ε (de = 0.5 in the code) and constant kBT. It is ini-
tially at a non-equilibrium state with many more particles in the lower
energy level than expected from the Boltzmann distribution. This de-
viation from the Boltzmann distribution is represented by the fact that
the top of the bars does not coincide with the exponential curve. How-
ever, this system at non-equilibrium moves closer to the steady state
of the Boltzmann distribution, as some particles migrate from lower
to upper energy levels. The extra energy that allows the promotion of
these particles would come from the environment. Particles will ran-
domly move back and forth between the energy levels by releasing or
absorbing energy. Over time, the number of particles in each energy
level will match the values expected from the Boltzmann distribution,
and a steady state will have been reached.

Code Block 9.5
Sketch of transition toward equilibrium state.

N_total = 50
de = 0.5
kT = 1
r_range = np.array([0.1,0.2,0.4,0.6])
for i, r in enumerate(r_range):

N1 = np.round(N_total/(1+r))
N2 = np.round(N_total-N1)
n = np.array([N1,N2],dtype='int')
sketch_distrib_2states (n,de=de,kT=kT,figsize=(4,5))
plt.savefig('fig_ch9_occupancy_dynamic_%d.eps'%i,

bbox_inches='tight')
plt.show()

Two-State System � 159

Figure 9.5

160 � Thermal Physics Tutorials with Python Simulations (TPTPS)

9.2 EQUILIBRIUM POTENTIAL

Let’s consider an even more dynamic situation. The above situation
assumed that the movement of particles between the energy levels did
not affect the energy gap ∆ε, and the system was simply moving toward
the Boltzmann distribution that is static. However, what would happen
if the movement of particles changed the energy gap, too?

As a motivating analogy, we may again consider a two-story building
where the upper units are more expensive than the lower units, but
the price difference is no longer fixed. As more people move into the
upper units, the price gap may increase due to the supply-and-demand
effect. Suppose most people lived in the lower units initially. As some
people start to move into the upper units, the supply of the upper units
decreases, and hence, it is conceivable that their price might increase,
while the price of the lower units drops. As a result, moving to an upper
unit becomes financially more difficult. In such a scenario, would there
be an equilibrium market price?

It is worth noting that there are a few underlying assumptions. For ex-
ample, where would the extra wealth to pay for the upper-level apart-
ments come from? We may assume that an upward move causes a col-
lective drop in the price of the lower-level units. Alternatively, we may
assume that the town is not a completely closed system, and there
could be some fluctuation in the total wealth of the town due to a flow
of money into and out of the town from the outside.

This analogy hints that the population distribution and the gap between
the two levels can be closely related. A similar situation can be created
by a semi-permeable divider or a membrane that can selectively pass
a specific type of ion, such as Na+. Suppose we fill a tank with water,
place this special divider in the middle, and dissolve the salt, NaCl, on
one side of the tank. NaCl will break up into Na+ and Cl− ions. Because
the divider is permeable only to Na+ ions, they would move across the
membrane, mostly in the direction of equalizing the concentration of
Na+ between the two sides of the tank. However, because Cl− cannot
cross the divider, the movement of Na+ ions will result in the differen-
tiation of the net electrical charges across the divider. There will be a
net increase of negative electrical charges on one side of the tank where
NaCl was initially added since Cl− ions will outnumber Na+ ions. The
other side will have a net increase of positive electrical charges due to

Two-State System � 161

the influx and net accumulation of Na+ ions since Cl− ions cannot cross
the divider.

The like charges (e.g., two positive charges) repel each other, and the
opposite charges (e.g., a positive and a negative) attract each other,
according to Coulomb’s well-known law of electromagnetism. Hence,
the net increase of Na+ ions on one side would not continue indefinitely.
At some point, the repulsive electrical force between Na+ ions will be
balanced by the diffusive movement of Na+ ions from the side of higher
concentration. In other words, the voltage difference between the two
sides would eventually be too high for a Na+ ion to overcome despite
the concentration difference.

The voltage difference is the amount of electrical potential energy per
unit charge. Just as a mass at a certain height possesses gravitational
potential energy, an electrical charge on an electrical landscape possesses
electrical energy. An electrical landscape is created by a distribution of
charges in space. Just as a higher-mass object possesses more gravita-
tional energy than a lower-mass object at the same height, an object
with a higher electrical charge has higher electrical potential energy
than a lower-charge object at the same voltage difference.

It takes work (in the physics sense of applying force over distance)
to bring a positive charge toward a crowd of other positive charges
because the repulsive force has to be overcome. Therefore, a positive
charge brought to a region of other positive charges has gained electri-
cal potential energy. In other words, this region of positive charges has a
positive electrical potential compared to the origin of the single charge.
Unfortunately, we are dealing with two terms that are conceptually dif-
ferent but sound confusingly similar: Potential energy versus potential.
Potential is associated with different positions, and potential energy is
gained or lost by an object when it moves between places with different
potentials. Electrical potential difference and voltage difference refer to
the same concept and are measured in the unit called volts, which is
equivalent to joules per coulomb, or a unit of energy divided by a unit
of charge.

Let’s calculate this voltage difference in terms of the ionic concentrations
(or the number of ions) on the two sides of the tank. According to the
Boltzmann distribution, the ratio of the number of ions is:

N2

N1
= e−∆ε/kBT.

162 � Thermal Physics Tutorials with Python Simulations (TPTPS)

The energy difference ∆ε for each ion is equal to the product of its elec-
trical charge and the potential difference V across the membrane. Hence,
∆ε = −ZeV, where |Ze| is the amount of electric charge in Coulombs of
each ion. For Na+, Z = 1. Following this, the above expression can be
simplified as

ln
N2

N1
=

ZeV
kBT

or
V =

kBT
Ze

ln
N2

N1
.

This is called the Nernst equation. It captures a delicate balance be-
tween two competing tendencies within this special tank: (1) a diffusive,
entropic movement of ions from a region of higher concentration to a
lower region, and (2) an energetic movement of positive ions from higher
to lower potential.

The following code block simulates this situation with a two-state sys-
tem. We will start with most particles in the lower energy level and a
small energy difference ∆ε. The temperature is fixed to a constant value
(kT = 1 in the code). Let’s make a simple assumption that the energy
gap linearly increases with the migration of each particle from lower to
upper energy level, or ∆ε is proportional to the number of particles in
the upper level:

∆ε =
1
C

N2,

where 1
C is the proportionality constant (C is conceptually similar to an

electrical capacitance which is equal to Q/V).

At each point in time, ∆ε/kBT is determined, and there is an expected
occupancy value, according to the Boltzmann distribution. We can make
another simple assumption that the rate of particle movement across
the energy levels is proportional to the difference between the expected
and actual number of ions at each level. There will be more move-
ments when the two-state system is very far from the equilibrium or the
discrepancy between the expected and actual numbers is large. There
will be fewer movements when the system is almost at equilibrium. In
the code, this idea is implemented by discrepancy = n1_actual -
n1_expected and n[1] = int(n[1] + discrepancy*efficiency),

Two-State System � 163

where the variable efficiency determines how quickly and efficiently
the ions move across the divider, given discrepancy.

Code Block 9.6

Sketch of transition toward an equilibrium state
with varying energy gap.

kT = 1

C = 50 # capacitance or rate of change in energy gap per particle.
efficiency = 0.3 # efficiency of particle movement across membrane.

initial condition.
n = np.array([95,5],dtype='int')

Different initial conditions to try.
#n = np.array([50,50],dtype='int')

N_total = np.sum(n)
for i in range(8):

de = n[1]/C # energy difference
sketch_distrib_2states(n,de=de,kT=kT,figsize=(4,5))
plt.savefig('fig_ch9_dynamic_2states_%d.eps'%i,

bbox_inches='tight')
plt.title('$\Delta \epsilon = %3.2f, kT = %2.1f$'%(de,kT))
plt.show()

Update the occupancy.
r = np.exp(-de/kT)
n1_expected = np.sum(n)/(1+r)
n1_actual = n[0]
discrepancy = n1_actual - n1_expected
n[1] = int(n[1] + discrepancy*efficiency)
n[0] = N_total-n[1]

164 � Thermal Physics Tutorials with Python Simulations (TPTPS)

The above plots in Figure 9.6 show how the two-state system moves dy-
namically toward an equilibrium state over time. Note that the target

Figure 9.6

Two-State System � 165

equilibrium state, shown as an exponential curve, is also changing since
∆ε changes with each movement of ions. There are two competing
drives: entropic (due to the concentration gradient) and energetic (due
to the voltage gradient), and eventually, an equilibrium state is reached,
so that the actual relative occupancy matches the expected value. Also,
we can see that there is an equilibrium value of ∆ε for the given config-
uration of the thermal system (i.e., an equilibrium market price for an
apartment unit is reached).

9.3 ACTION POTENTIAL

Such a selective passage of ions happens at a cellular membrane, which
contains specialized proteins called ion channels. These proteins allow
specific ions, such as Na+ or K+, to flow into or out of the cell body.
What is impressive is that most ion channels are not just passive pores,
but they would open and close under specific conditions. Some ion chan-
nels, known as voltage-gated, open up when the voltage difference across
the cellular membrane crosses some threshold. Other ion channels react
to mechanical pressure on the membrane, to the binding of a precisely-
shaped molecule, or to the absorption of photons. Just as there are
many different doors with specialized locking-unlocking mechanisms,
there are numerous types of ion channels.

Another specialized protein on a cellular membrane is called an ion
pump. It uses the energy, usually in the form of ATP, to actively trans-
port ions against the concentration gradient. For example, a sodium-
potassium pump uses the energy from one ATP molecule to export
three Na+ ions and import two K+ ions, with a net export of a posi-
tive electrical charge per pumping cycle. As a result, there are a higher
concentration of Na+ ions outside and a lower concentration of K+ ions
inside of a cell body, and combined with the influences of other ions, the
resulting electrical potential difference is 70 mV, where the intracellular
potential is lower than the outside of the cell.

Each cell invests its energy to establish a concentration gradient and
voltage difference, so that when the ion channels open up due to a spe-
cific stimulus, the resulting movement of ions causes a rapid fluctuation
of the electric potential difference across the membrane, which is known
as an action potential, and its propagation can be used as a signaling
mechanism. Such a situation may be compared to the work of a skier

166 � Thermal Physics Tutorials with Python Simulations (TPTPS)

who laboriously brings herself to the top of a mountain and then enjoys
a rapid glide down the slope.

9.4 DIODE

A similar mechanism (involving diffusion of electrical charges and de-
velopment of electrical potential) underlies the operation of many elec-
tronic devices. The semiconductor material can be given different prop-
erties through a manufacturing process called doping. In an n-type semi-
conductor, many free electrons serve as charge carriers of electric cur-
rent. In the p-type, the absence of an electron, also known as a hole,
serves as a positive charge carrier. When p-type and n-type semicon-
ductors are put next to each other, the relative abundance of different
charge carriers will drive the diffusion across the boundary between
the two semiconductors. More electrons will migrate toward the p-type
semiconductor, where they will fill the existing holes. The opposite hap-
pens in the n-type semiconductor, where the holes from the p-type semi-
conductor will diffuse into the n-type semiconductor.

The net result of the diffusion is that near the boundary of the two types
of semiconductors, there will be a lack of charge carriers. This special
layer is called the depletion region. Furthermore, near the boundary of
the junction, the p-type side will have an overall negative charge due to
the migrated electrons. Similarly, the n-type side will develop an over-
all positive charge near the boundary. In other words, an equilibrium
potential (so-called built-in voltage, typically, around several hundreds
of mV, depending on the semiconductor materials used) develops across

n-type-

--
-

-
-
-

-

p-type

+
++

+
+

+
+

+

depletion
zone

Na

K

Na

Na

K

+
+

+

+

+

potential
difference potential

difference

 cell diode

Na+

Na+

Na+

K+

K+

K+

Na+

Figure 9.7

Two-State System � 167

the junction. An external voltage may be applied in a forward or reverse
direction and control the flow of electric current. This arrangement of
two semiconductor materials is called a diode or a p-n junction. More
elaborate arrangements of semiconductors are possible and, of course,
underlie modern technological advances in electronics.

http://taylorandfrancis.com

C H A P T E R 10

Specific Heat

10.1 DEFINITION OF SPECIFIC HEAT

Specific heat is an amount of heat energy required to raise the temper-
ature of a given substance, and its formal definition is:

C =

(
dQ
dT

)
.

It is a quantity that can be measured through an experiment. For ex-
ample, one may add a known quantity of heat (by burning a prescribed
amount of fuel or by delivering a known amount of electrical power)
and measure the change in the temperature of a substance in question.

The specific heat may differ depending on the exact process of how
heat is added to the substance. For example, heat may be added while
the volume or the pressure of the substance is held constant, as in our
discussion of the thermal process of an ideal gas in Chapter 4.

The specific heat can be described in a more general way by treating
the added heat energy with the thermodynamic potentials we have in-
troduced earlier. For specific heat CV at constant volume, let’s consider
the following relation:

dU(V,T) =

(
∂U
∂V

)
T

dV +

(
∂U
∂T

)
V

dT.

169

170 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Since dU = dQ − PdV with a fixed number of particles, these two ex-
pressions lead to

CV =

(
dQ
dT

)
V

=

(
∂U
∂T

)
V
.

For specific heat CP at constant pressure, let’s consider enthalpy H(P,T):

dH(P,T) =

(
∂H
∂P

)
T

dP +

(
∂H
∂T

)
P

dT.

Since H = U + PV, the differential form of enthalpy can be also written
as dH = dU + PdV + VdP = dQ + VdP where we used dU = dQ − PdV
again. By comparing two different forms of H, we conclude

CP =

(
dQ
dT

)
P

=

(
∂H
∂T

)
P
.

As a quick check, we can apply these general definitions of CV and
CP to the ideal gas case. The internal energy of ideal gas is given as
U = 3

2 NkBT, and its enthalpy as H = U+PV = 3
2 NkBT+NkBT = 5

2 NkBT.
Hence, CV = 3

2 NkB and CP = 5
2 NkB for ideal gas as expected from

Mayer’s equation.

This chapter will consider different thermal systems and examine their
specific heats. We will start with a simple two-state system and a simple
harmonic oscillator and extend our discussion to a case of a solid by
modeling it as a collection of atoms. We will use the following result
from Chapter 6:

U = NkBT2∂ ln Z
∂T

,

which applies to any thermal system.

10.2 TWO-STATE SYSTEM

For a two-state system with an energy difference of ∆ε, we have deter-
mined that its partition function is

Z = 1 + e−∆ε/kBT.

Specific Heat � 171

Therefore, the internal energy of the two-state system is

U = NkBT2∂ ln Z
∂T

= NkBT2 ∆ε

kBT2 e−∆ε/kBT 1
Z

=
N
Z

∆εe−∆ε/kBT.

Then, CV can be calculated by taking another derivative with respect
to T. For simplicity, we will consider internal energy per particle, U/N
and specific heat per particle, CV/N with ∆ε/kB = 1 in the following
code block.
Code Block 10.1

Calculate internal energy and specific heat of a two-state system.

import sympy as sym
import matplotlib.pyplot as plt
import numpy as np

de = sym.Symbol('\Delta \epsilon')
k = sym.Symbol('k_B')
T = sym.Symbol('T')

Z = 1+sym.exp(-de/(k*T))
u = k*T**2*sym.diff(sym.ln(Z),T)
c = sym.diff(u,T)

print('Internal Energy, U/N')
display(u)
print(' ')
print('Specific Heat, C/N')
display(c)

Calculate numerical values.
T_range = np.arange(0,3,0.01)
u_range = np.zeros(len(T_range))
c_range = np.zeros(len(T_range))
for i in range(len(T_range)):

u_range[i] = u.subs({k:1,de:1,T:T_range[i]}).evalf()
c_range[i] = c.subs({k:1,de:1,T:T_range[i]}).evalf()

plt.plot(T_range,u_range,color='#000000',linestyle='dotted')
plt.plot(T_range,c_range,color='#AAAAAA',linestyle='solid')
plt.legend(('Internal Energy, U/N','Specific Heat, C/N'),

framealpha=1)

172 � Thermal Physics Tutorials with Python Simulations (TPTPS)

plt.xlabel('T')
plt.ylabel('U/N (Joules), C/N (Joules/Kelvin)')
plt.title('$\Delta \epsilon/k_B = 1$')
plt.savefig('fig_ch10_specific_heat_2states.eps')
plt.show()

Internal Energy, U/N

∆εe−
∆ε

TkB

1 + e−
∆ε

TkB

Specific Heat, C/N

∆ε2e−
∆ε

TkB

T2kB

(
1 + e−

∆ε
TkB

) − ∆ε2e−
2∆ε
TkB

T2kB

(
1 + e−

∆ε
TkB

)2

10.3 SIMPLE HARMONIC OSCILLATOR (SHO)

A canonical model of a simple harmonic oscillator (SHO) is a one-
dimensional mechanical system with a lumped mass, like a ball or a
block, attached to one end of a spring. When the mass is pulled or
pushed against the spring, the spring provides the restoring force in the
opposite direction, making the mass oscillate around the equilibrium

Figure 10.1

Specific Heat � 173

position. The total mechanical energy of the simple harmonic oscillator
is the sum of the kinetic energy of the moving mass and the potential
energy stored in the spring. Even though the kinetic and potential en-
ergy at an arbitrary position might be different, the average value of
each will be the same as half of the total energy.

A classical SHO has a continuous value of energy, but a quantum-
mechanical SHO can be treated as a thermal system with an infinite
number of energy levels with an equal energy difference ∆ε between the
adjacent levels. That is, a quantum SHO can take only one of the dis-
crete energy levels, and the successive levels can be described as n∆ε
where n is a non-negative integer (0, 1, 2, . . .). The partition function
for such a system can be written as†:

Z = 1 + e−
∆ε

kBT + e−
2∆ε
kBT + e−

3∆ε
kBT · · · .

This is an infinite geometric series, converging to Z = 1

1−e
−

∆ε
kBT

since

e−
∆ε

kBT < 1. We can obtain U and CV for an SHO by following the same
steps as for the two-level system.

Code Block 10.2

Calculate internal energy and specific heat of SHO.

import sympy as sym
import matplotlib.pyplot as plt
import numpy as np

de = sym.Symbol('\Delta \epsilon')
k = sym.Symbol('k_B')
T = sym.Symbol('T')

Z = 1/(1-sym.exp(-de/(k*T)))
u = k*T**2*sym.diff(sym.ln(Z),T)
c = sym.diff(u,T)

print('Internal Energy of SHO, U')
display(u)
print(' ')
print('Specific Heat of SHO, C')

†The lowest energy level, or the ground state, actually has a non-zero energy
value, which we will consider later in the section about a solid. This ground state
energy only introduces an overall additive constant for U and does not affect CV.

174 � Thermal Physics Tutorials with Python Simulations (TPTPS)

display(c)

Calculate numerical values.
T_range = np.arange(0,2,0.01)
u_range = np.zeros(len(T_range))
c_range = np.zeros(len(T_range))
for i in range(len(T_range)):

u_range[i] = u.subs({k:1,de:1,T:T_range[i]}).evalf()
c_range[i] = c.subs({k:1,de:1,T:T_range[i]}).evalf()

plt.plot(T_range,u_range,color='#000000',linestyle='dotted')
plt.plot(T_range,c_range,color='#AAAAAA',linestyle='solid')
plt.legend(('Internal Energy, U','Specific Heat, C'),framealpha=1)
plt.xlabel('T')
plt.ylabel('U (Joules), C (Joules/Kelvin)')
plt.title('$\Delta \epsilon/k_B = 1$')
plt.savefig('fig_ch10_specific_heat_SHO.eps')
plt.show()

Internal Energy of SHO, U

∆εe−
∆ε

TkB

1 − e−
∆ε

TkB

Specific Heat of SHO, C

∆ε2e−
∆ε

TkB

T2kB

(
1 − e−

∆ε
TkB

) +
∆ε2e−

2∆ε
TkB

T2kB

(
1 − e−

∆ε
TkB

)2

Figure 10.2

Specific Heat � 175

10.4 TEMPERATURE DEPENDENCE OF ENERGY AND
SPECIFIC HEAT

For both thermal systems, most particles occupy the lowest energy level
at a low temperature, so the thermal system has a low internal energy
overall. As the temperature increases, the higher energy levels are in-
creasingly populated. For the two-state system, when kBT >> ∆ε, the
occupancy of the higher energy level becomes comparable to the occu-
pancy of the lower level, so the average internal energy U

N is 1
2 (0 + ∆ε).

(The occupancy of the higher level can not be higher than the lower
level, according to the Boltzmann distribution.) Therefore, the plot of
U/N (dotted line) for the two-state system starts from zero at low T
and approaches 0.5 at a higher temperature. (You can verify this by
extending the range of temperature T_range in the corresponding code
block. While doing so, to keep the computation time reasonable, set the
temperature step larger.) There are infinitely many energy levels for an
SHO system, so the internal energy can continue to increase with higher
temperatures.

Specific heat (solid line) is zero for low temperatures because if kBT is
not big enough to overcome the spacing ∆ε between the energy levels,
only a few particles will be able to jump to the higher energy levels.
For a two-state system, there is an upper limit to the average internal
energy, so the specific heat approaches zero again at a high tempera-
ture because further addition of heat can not make the energy higher
than this upper limit. For an SHO system, as T increases, specific heat
approaches a non-zero value, indicating that the system will continue
to increase its internal energy as more heat energy is added. At high
T, the available thermal energy kBT is much more significant than ∆ε,
and a continuous variable may approximate the discrete energy levels.
Then, the SHO may be compared to an ideal gas whose constituents
can take on continuous values of kinetic energy. In the case of an ideal
gas, we already noted that its average kinetic energy along one spatial
dimension is equal to 1

2 kBT, and hence U = 3
2 NkBT with three spatial

dimensions. Similarly, a one-dimensional SHO will have an average ki-
netic energy of 1

2 kBT, and it will also have an equal amount of average
potential energy 1

2 kBT. Such a result is called the equipartition theorem.
Therefore, at high T, the internal energy of an SHO, the sum of kinetic
and potential energies, is 1

2 kBT+ 1
2 kBT = kBT and the specific heat would

be kB. In our code block, we scaled the constants, so that kB (k in the

176 � Thermal Physics Tutorials with Python Simulations (TPTPS)

code) is equal to 1. Hence, the limiting value of specific heat at high
temperatures approaches 1 in the above plot.

10.5 EINSTEIN MODEL OF SOLID

We can expand on the SHO model and understand a solid’s thermal be-
havior. Let us start with a case of two neighboring neutral atoms with
potential energy as a function of the distance between them. There is
an equilibrium separation where the potential energy is minimum with
a net zero force between them. When two atoms get separated more
than the equilibrium distance, a net attractive force brings the atoms
closer. This attraction, commonly known as the van der Waals force, is
due to the spontaneous formation of an electric dipole in an atom and
the resulting dipole-dipole interaction. Its potential energy varies as the
6th power of the distance. Some other bonding mechanisms in a solid
include: ionic bonds from the electrostatic interaction or covalent bonds
through the sharing of electrons. The repulsive force pushes them apart
when the two atoms get too close. This repulsion originates from the
Pauli exclusion principle that bans the overlap of the electron clouds
at a close range. The potential energy from the repulsive interaction
varies as the 12th power of the distance. This potential energy model is
called Lennard-Jones 6-12 potential. The combination of the attractive
and repulsive interactions around an equilibrium point creates a po-
tential well and is similar to the restoring force of a spring. Therefore,
a three-dimensional solid composed of many atoms can be considered
as a collection of simple harmonic oscillators that vibrate around their
equilibrium positions.

Figure 10.3

Specific Heat � 177

In the Einstein model of solid, each atom is regarded as an independent
SHO with discrete energy levels. As in the one-dimensional SHO, the
energy levels are equally spaced. Each energy level is described by the
following:

ε(n) = h fE
(1
2

+ n
)
,

where h is Planck’s constant and n is a non-negative integer. fE is the
characteristic oscillation frequency of an atom determined by the inter-
actions with the neighboring atoms. It is analogous to the natural fre-
quency of a classical oscillator determined by the ratio between spring
constant and mass. Hence, the energy levels are equally spaced with
∆ε = h fE. A key assumption in the Einstein model is that all atoms
in the same solid oscillate with the same characteristic frequency fE.
Different materials with different atomic constituents would have their
unique frequencies since their atom-to-atom interactions would differ.

The partition function for a single atom in a solid can be obtained by
extending the approach for a one-dimensional SHO. Each atom in a
three-dimensional solid can vibrate in x, y, and z-directions. Therefore,
the complete partition function can be constructed as a product of three
partition functions, each corresponding to a single direction:

Z = Zx × Zy × Zz

=
(
e−

h fE
2kBT + e−

3h fE
2kBT + · · ·

)
×

(
e−

h fE
2kBT + · · ·

)
×

(
e−

h fE
2kBT + · · ·

)
=

 e−
h fE

2kBT

1 − e−
h fE
kBT

 ×
 e−

h fE
2kBT

1 − e−
h fE
kBT

 ×
 e−

h fE
2kBT

1 − e−
h fE
kBT


=

 e−
h fE

2kBT

1 − e−
h fE
kBT


3

where we have used the fact that each series within parentheses is a
converging series. The total internal energy of the solid with N atoms
can be obtained with U = NkBT2 ∂ ln Z

∂T . We will again use the sympy
module in the following code block.

178 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Code Block 10.3

Calculate internal energy and specific heat of Einstein solid.

import sympy as sym
import matplotlib.pyplot as plt
import numpy as np

h = sym.Symbol('h')
f = sym.Symbol('f_E')
k = sym.Symbol('k_B')
T = sym.Symbol('T')
N = sym.Symbol('N')

Z = (sym.exp(-h*f/(2*k*T))/(1-sym.exp(-h*f/(k*T))))**3
u = N*k*T**2*sym.diff(sym.ln(Z),T)
c = sym.diff(u,T)

print('Internal Energy of Einstein solid, U')
display(sym.factor(u))
print(' ')
print('Specific Heat of Einstein solid, C')
display(sym.factor(c))
print(' ')
print('Specific Heat at the high-temperature limit')

display(sym.limit(c,T,sym.oo))

Calculate numerical values.
T_range = np.arange(0.01,2,0.01)
u_range = np.zeros(len(T_range))
c_range = np.zeros(len(T_range))
for i in range(len(T_range)):

u_range[i] = u.subs({k:1,T:T_range[i],N:1,h:1,f:1}).evalf()
c_range[i] = c.subs({k:1,T:T_range[i],N:1,h:1,f:1}).evalf()

plt.plot(T_range,u_range,color='#000000',linestyle='dotted')
plt.plot(T_range,c_range,color='#AAAAAA',linestyle='solid')
plt.legend(('Internal Energy, U','Specific Heat, C'),framealpha=1)
plt.xlabel('T')
plt.ylabel('U/N, C /Nk_B')
plt.title('$h f_E/k_B = 1$')
plt.savefig('fig_ch10_specific_heat_einstein.eps')
plt.show()

Specific Heat � 179

Internal Energy of Einstein solid, U

3N fEh
(
e

fEh
TkB + 1

)
2
(
e

fEh
TkB − 1

)
Specific Heat of Einstein solid, C

3N f 2
Eh2e

fEh
TkB

T2kB

(
e

fEh
TkB − 1

)2

Specific Heat at the high-temperature limit

3NkB

The above result of the symbolic calculation for specific heat can be
written as:

CV, Einstein = 3NkB
x2ex

(ex − 1)2 ,

where x =
h fE
kBT .

The Einstein model of a solid is built upon the idea that each atom
in a solid behaves like a simple harmonic oscillator, so the temperature
dependence of its energy and specific heat can be understood in the same
way as SHO. One difference from the one-dimensional SHO discussion
is that the expression of the energy level includes a constant term,
1
2 h fE. This is the lowest energy, also known as zero-point energy with
n = 0, implying that even at an absolute zero temperature, the system
still has non-zero energy. Therefore, at T = 0, the Einstein soild has
non-zero internal energy. Since each atom in a three-dimensional solid
has three degrees of freedom, the value of total zero-point energy is
3 × 1

2 h fEN. Given our scaling of the constants in the code block (h, k,
and f, corresponding to h, kB, and fE respectively, are all set to 1), U/N
in Figure 10.4 approaches 1.5 at low T. At high temperatures, the N
atoms in this three-dimensional solid collectively have a total energy of
3N times the energy of a one-dimensional SHO, which increases linearly
with T. Therefore, the specific heat of an Einstein solid approaches
3NkB, as shown in the above plot of C/NkB approaching 3. This trend
is known as the Law of Dulong and Petit.

180 � Thermal Physics Tutorials with Python Simulations (TPTPS)

The Einstein solid is a rather crude model since it considers each atom
as an independent oscillator with the same characteristic frequency. Al-
though this simplistic assumption is good enough to capture the overall
trend of CV versus T, careful experimental measurements of CV on bulk
Al, Cu, and Ag show that there is a slight mismatch between the pre-
dictions of the Einstein model and the experimental data, especially
at a lower temperature. Another model of a solid proposed by Debye
provides a better fit to experimental data. The Debye model consid-
ers the collective motion of atoms with multiple frequencies, using the
notion of phonons (similar to photons, but for the collective vibration
responsible for the propagation of heat and sound in a solid). There is a
maximum cut-off frequency known as the Debye frequency fD. Debye’s
approach deals with the complex interactions among the coupled atoms
more rigorously and matches the experimental data more accurately.

A fuller discussion of the Debye model will be left for other solid-state
textbooks, and here we will simply present its result of specific heat:

CV, Debye = 9NkB

(
kBT
h fD

)3 ∫ h fD
kBT

0

x4ex

(ex − 1)2 dx,

where x is a dimensionless integration variable. In the following code
block, we will compare CV’s for the Einstein and Debye models. We

Figure 10.4

Specific Heat � 181

utilized np.sum() function to perform the above integration numerically
from zero up to the maximum Debye frequency fD.

Code Block 10.4

Comparing Einstein solid and Debye solid.

import numpy as np
import matplotlib.pyplot as plt

Constants are set to a value of 1 for simplicity.
h = 1
k = 1
N = 1

T = np.arange(0.01,2,0.01)

Integral necessary for calculating Debye model.
def Debye_integal(T_range,f_D=1,h=1,k=1):

result = np.zeros(len(T_range))
df = 0.01
f_range = np.arange(df,f_D,df)
for i, T in enumerate(T_range):

dx = h*df/(k*T)
x = (h*f_range)/(k*T)
y = (x**4)*np.exp(x)/((np.exp(x)-1)**2) # integrand
y = np.sum(y)*dx # numerical integration over frequencies.
result[i] = y

return result

Debye solid.
f_D = 1
x = (h*f_D)/(k*T)
cD = 9*N*k*(x**(-3))*Debye_integal(T,f_D)

Einstein solid
f_E = 1
x = (h*f_E)/(k*T)
cE = 3*N*k*(x**2)*np.exp(x)/(np.exp(x)-1)**2

plt.plot(T,cD,color='black',linestyle='solid')
plt.plot(T,cE,color='black',linestyle='dotted')
plt.legend(('Debye','Einstein'),framealpha=1)
plt.xlabel('T')
plt.ylabel('C / Nk_B')
plt.title('Debye versus Einstein Models')
plt.savefig('fig_ch10_einstein_vs_debye.eps')
plt.show()

182 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Specific heats of both Debye and Einstein solids at high temperatures
approach the same constant value of 3NkB, as expected from the Du-
long and Petit law. However, the two solid models are not identical and
display different temperature dependencies at low temperatures. The
Debye solid model predicts that the drop of the specific heat is propor-
tional to the cube of temperature, which is famously known as Debye’s
T3 law, and it shows a better agreement with the experimental data.

Figure 10.5

C H A P T E R 11

Random and Guided
Walks

11.1 ONE-DIMENSIONAL RANDOM WALK

During a random walk, a particle takes many random steps in succes-
sion and ends up at a position that may be far away from or close to
its starting position. Such random movements, also known as a Brow-
nian motion, are observed when a particle is immersed in a liquid or a
gas and carries average kinetic energy in the order of kBT, where T is
the ambient temperature. Since no preferential direction is associated
with a thermally-induced motion, the particle exhibits stochastic zig-
zag movements. In nanotechnology, such thermal fluctuations need to
be understood and controlled precisely because they may pose serious
challenges in developing a nano-scale mechanical system or be an ex-
ploitable source of ambient thermal energy. In finance, the rapid up and
down swings in a stock market are explained using a similar framework
as the mathematical model of a Brownian motion.

As a starting point, let’s consider a random one-dimensional movement
of a particle. After each successive time step, the particle moves a fixed

183

184 � Thermal Physics Tutorials with Python Simulations (TPTPS)

distance, d, in either a positive or negative direction. Then, the total
displacement D(N) after N steps can be calculated as

D(N) = d1 + d2 + · · · =

N∑
i=1

di,

where di is either positive or negative d.

If it is equally probable for the particle to take either positive or negative
movements, then the average displacement E(D) will be zero. Therefore,
the variance of D(N) is E(D2) − E(D)2 = E(D2). Both E(·) and < · >,
which was introduced in an earlier chapter, are conventional notations
for an average or a mean.

E(D2) = E


 N∑

i=1

di


2 = E


 N∑

i=1

di


 N∑

j=1

d j




= E

∑
i

d2
i

 + E

2
∑
i, j

did j

 .
Here, d2

i will always be equal to positive d2. The last term E(did j) = 0,
because the movement at each time step is assumed to be independent
and hence the number of times when the product did j is +d2 will be, on
average, matched by the times when it is −d2. Therefore, E(D2) = Nd2.
The key trend is that the variance increases linearly with N.

We simulate one-dimensional random walks of single and multiple par-
ticles in the following code blocks. A total of N steps are stored in an
array each_walk, where each element is either −1 or 1. To cumulatively
add up the displacement after each step, np.cumsum() is used.

Code Block 11.1

1D Random walk for a single particle.

import numpy as np
import matplotlib.pyplot as plt

N = 1000
d = 1

np.random.randint gives either 0 or 1,
so (*2) and (-1) give either -1 or 1.

Random and Guided Walks � 185

each_walk = np.random.randint(2,size=N)*2 - 1

disp = np.cumsum(d*each_walk)

plt.plot(disp,color='#AAAAAA')
plt.ylabel('Displacement')
plt.xlabel('Time Step')
plt.title('Single Random Walk')
plt.savefig('fig_ch11_random_walk_single.eps')
plt.show()

Code Block 11.2

We can simulate 1D random walks for multiple particles.

N_particles = 20
N = 1000
d = 1

np.random.randint gives either 0 or 1,
so (*2) and (-1) give either -1 or 1.
each_walk = np.random.randint(2,size=(N,N_particles))*2 - 1

disp = np.cumsum(d*each_walk,axis=0)
max_disp = np.abs(np.max(disp))

Figure 11.1

186 � Thermal Physics Tutorials with Python Simulations (TPTPS)

plt.plot(disp,color='#AAAAAA')
plt.ylim(np.array([-1,1])*1.5*max_disp)
plt.ylabel('Displacement')
plt.xlabel('Time Step')
plt.title('Multiple Random Walks')
plt.savefig('fig_ch11_random_walks.eps')
plt.show()

step = 25
plt.errorbar(range(0,N,step), np.mean(disp,axis=1)[::step],

np.std(disp,axis=1)[::step], color='black')
plt.ylim(np.array([-1,1])*1.5*max_disp)
plt.xlabel('Time Step')
plt.ylabel('Displacement')
plt.title('Mean and Standard deviation of Random Walks')
plt.savefig('fig_ch11_random_walks_mean_std.eps')
plt.show()

In the following code block, we show that E(D2) = Nd2. By calculating
the variance of multiple random walk trajectories using np.var() and
plotting it against N, we can verify that E(D2)/d2 versus N indeed gives
a linear trend with a slope of 1.

Figure 11.2

Random and Guided Walks � 187

Code Block 11.3

We can numerically confirm the linear trend of the variance.
var(displacement) = N*(d^2), so the following plot should be
close to a diagonal line (with some variations).

We want to simulate many random walks, so
increase N and N_particles.
N_particles = 2000
N = 100000

each_walk = np.random.randint(2,size=(N,N_particles))*2 - 1
disp = np.cumsum(d*each_walk,axis=0)

var_disp = np.var(disp,axis=1)

plt.plot(var_disp/(d**2),color='k')

Draw a straight line for comparison.
plt.plot((0,N),(0,N),color='#AAAAAA')
plt.xlabel('Time Step')
plt.ylabel('Variance')
plt.axis('square')
plt.savefig('fig_ch11_var_time_linear.eps')
plt.show()

Figure 11.3

188 � Thermal Physics Tutorials with Python Simulations (TPTPS)

11.2 TWO-DIMENSIONAL RANDOM WALK

The above simulation of one-dimensional random walks can be easily
extended to two-dimensional walks.
Code Block 11.4

We can simulate 2D random walks for multiple particles.

N_particles = 6
N = 2000
d = 1
np.random.randint gives either 0 or 1,
so (*2) and (-1) give either -1 or 1.
each_walk_x = np.random.randint(2,size=(N,N_particles))*2 - 1
each_walk_y = np.random.randint(2,size=(N,N_particles))*2 - 1
disp_x = np.cumsum(d*each_walk_x,axis=0)
disp_y = np.cumsum(d*each_walk_y,axis=0)

for i in range(N_particles):
x0, y0 = initial position of a particle.
Stagger the locations so that they are easily distinguished.
x0 = i*100
y0 = 100*(-1)**i
plt.plot(disp_x[:,i]+x0,disp_y[:,i]+y0,color='black')

plt.xlabel('Displacement in x')
plt.ylabel('Displacement in y')
plt.axis('equal')
plt.savefig('fig_ch11_random_walks_2dim.eps')
plt.show()

Figure 11.4

Random and Guided Walks � 189

In the above simulation, only horizontal and vertical steps of size
d were allowed, resulting in purely diagonal movements with an
effective step size of

√
d. We can generalize the simulation with

more possible directions, so that each step along x and y can
be given by (∆x,∆y) = (d cosθ, d sinθ), where θ can take on
any value between 0 and 2π. It can be implemented in differ-
ent ways. For example, we could randomly choose a direction
with something like np.random.rand()*2*np.pi. Alternatively, we
could divide the full range of directions evenly with something like
np.linspace(0,2*np.pi,num=num_dir,endpoint=False) and choose
one of those directions randomly. We implemented the latter approach
within a function in the following code block.

Code Block 11.5

We can simulate 2D random walks for multiple particles
along the random directions.

import numpy as np
import matplotlib.pyplot as plt

def random_walk_2D (N=2000,num_dir=10,d=1):
possible_dir = np.linspace(0,2*np.pi,num=num_dir,endpoint=False)
random_int = np.random.randint(num_dir,size=(N))
theta = np.array([possible_dir[i] for i in random_int])
x = np.cumsum(d*np.cos(theta))
y = np.cumsum(d*np.sin(theta))
return x,y

N_particles = 6
for i in range(N_particles):

x,y = random_walk_2D()
x0, y0 = initial position of a particle.
Stagger the locations so that they are easily distinguished.
x0 = i*100
y0 = 100*(-1)**i
plt.plot(x+x0,y+y0,color='black')

plt.xlabel('Displacement in x')
plt.ylabel('Displacement in y')
plt.axis('equal')
plt.savefig('fig_ch11_random_walks_2dim_general.eps')
plt.show()

190 � Thermal Physics Tutorials with Python Simulations (TPTPS)

It is insightful to think about the trajectory of a random-walking par-
ticle as a long chain with free joints. The step size d in the simulation
would be equivalent to the length of each unit of the chain, and the to-
tal number of walks N would be equivalent to the number of units that
make up the chain. Hence, the maximum distance that can be traveled
by a particle or the full length of the chain would be equal to N*d.
A freely jointed chain means that the joint between two neighboring
units of the chain can be at any angle, just as each step of the random
walk can be in any direction. There is no energetic difference between
a straight chain and a winding one.

The above simulations demonstrate that it is highly unlikely that a
freely-jointed chain would be straight, just as a random walk is unlikely
to produce a straight trajectory. Hence, a coiled or squeezed chain that
looks like the above result is more entropically favored, even without
any energetic bias. Such behavior is called entropic elasticity and is
observed in some polymers that exhibit temperature-dependent elastic
forces. One can do a simple experiment by hanging a rubber band, which
is a polymer, vertically with a weight at the lower end. When the rubber
band is heated (for example, with a hair dryer), the rubber band shrinks
and lifts the weight. This shrinking is not necessarily dramatic since the

Figure 11.5

Random and Guided Walks � 191

weight would be lifted only slightly. Nevertheless, this result is a good
illustration of how an entropic effect may be manifested mechanically.
To many people, this result is surprising since thermal expansion is
often more pronounced than shrinkage, as seen here.

More formally, it is possible to analyze this experiment with one of the
thermodynamic potentials, F. As seen in Chapter 8, F = U − TS, and
for a one-dimensional stretching and shrinking, we could use a linear
length of a chain x as a state variable instead of the usual V. Then,

∂F
∂x

=
∂U
∂x
− T

∂S
∂x
.

Since T does not depend on the length of the rubber band, there is no
term with ∂T

∂x . Assuming that the rubber band is a freely jointed chain,
its internal energy U does not depend on its length, so ∂U

∂x = 0. Hence,

f = −
∂F
∂x

= T
∂S
∂x
,

where we are using one of the results from Chapter 8, P = −
(
∂F
∂V

)
T,N

.
Instead of P, we use its linear analog f , which is the tension on the
rubber band. The magnitude of tension increases with increasing T. The
stretching of the rubber band decreases its entropy because a straight
chain is unlikely, so ∂S

∂x < 0. As a result, the overall sign of f becomes
negative, implying that the tension f is restorative like a spring force.
Hence, the shrinking of the rubber band when it gets hotter is explained
as an entropic phenomenon.

11.3 A TANGENT

The above code can be adapted to create an interesting pattern out of
rational and irrational numbers.∗ For example, we can use the successive
digits of a number, such as 3141592. . . of π, as a direction at each step.

∗This fun tangent was inspired by a Numberphile episode, “Plotting pi,” at
www.youtube.com/watch?v=tkC1HHuuk7c.

https://www.youtube.com

192 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Code Block 11.6

Make a visual pattern of a number: pi or 1/7 or e.

import numpy as np
import matplotlib.pyplot as plt
import math
import mpmath as m # Multi-precision math
m.mp.dps = 20000

def guided_walk_2D (guide,d=1):
possible_dir = np.linspace(0,2*np.pi,num=10,endpoint=False)
theta = np.array([possible_dir[i] for i in guide])
The cumsum() makes the next heading angle be
relative to the previous direction.
theta = np.cumsum(theta)
x = np.cumsum(d*np.cos(theta))
y = np.cumsum(d*np.sin(theta))
return x,y

Try different numbers by changing the case.
case = 'pi'
if case == 'pi':

num = (4 * m.atan(1))/10
elif case == '1_over_7':

num = m.power(7,-1)
elif case == 'e':

num = m.exp(1)/10

num_str = m.nstr(num,n=m.mp.dps)[2:] # Ignore "0."

print('Digits of %s'%case)
print(num_str[:60])

Convert individual digits into an array.
num = [int(x) for x in num_str]
x,y = guided_walk_2D(num)

plot() function will work fine, but quiver() will also work.
#plt.plot(x,y,color='black',linewidth=0.25)
plt.quiver(x[:-1],y[:-1],x[1:]-x[:-1],y[1:]-y[:-1],

units='xy',scale=1,color='black')
plt.axis('equal')
plt.axis('square')
plt.axis('off')
plt.savefig('fig_ch11_guided_walk_%s.eps'%(case),

bbox_inches='tight')
plt.show()

Random and Guided Walks � 193

Digits of pi
314159265358979323846264338327950288419716939937510582097494

A fun mathematical musing is, if we let the simulation run infinitely
long, would this plot trace all possible shapes (even a line sketch of a
famous painting like Mona Lisa), since π never repeats. Other fascinat-
ing patterns can be generated with the repeating decimals of e or 1/7
as shown below.

Figure 11.6

194 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Figure 11.7

Figure 11.8

Random and Guided Walks � 195

11.4 GUIDED RANDOM WALKS

We can simulate a target-seeking behavior by letting a particle’s tra-
jectory follow the gradient of the landscape. A gradient is a vector that
quantifies the direction and magnitude of the steepest slope at a point.
Formally, a two-dimensional gradient for a function f (x, y) is given by:

∇ f =
∂ f
∂x

x̂ +
∂ f
∂y

ŷ,

where x̂ and ŷ are unit vectors in x and y directions. If you allow a
particle to follow the gradient ∇ f in small steps, the particle will keep
climbing the landscape defined by f (x, y). If you allow a particle to
move in the opposite direction of the gradient in small steps, it will
climb down the landscape.

This is precisely how a ball rolls downhill, following the negative gra-
dient of gravitational potential energy and going toward a valley. This
is how a positive charge moves along the negative gradient of electrical
potential energy. In mechanics, the force on an object is the negative
gradient of the potential energy. Therefore, the object moves to mini-
mize its potential energy.

The following code block implements the above idea of gradient descent
on a simple, parabolic function that has a global minimum at (xo, yo) =
(2, 3):

f (x, y) = (x − 2)2 + 3(y − 3)2.

Its gradient is:
∇ f (x, y) = 2(x − 2)x̂ + 6(y − 3)ŷ.

Then, we can introduce a position update rule:

x(t + ∆t) = x(t) + ∆x = x(t) − d
(
∂ f
∂x

)
y(t + ∆t) = y(t) + ∆y = y(t) − d

(
∂ f
∂y

)
,

where d is a small step size. The negative sign in ∆x = −d∂ f
∂x and ∆y =

−d∂ f
∂y indicates that the particle is descending, not ascending, along the

function toward its minimum. After each update, the position becomes
closer to the minimum of f (x, y). The caveats are: if d is too large, the

196 � Thermal Physics Tutorials with Python Simulations (TPTPS)

next position may overshoot the minimum, and if d is too small, many
position updates are necessary to reach the minimum.

Code Block 11.7

Simulating the gradient descent.

import numpy as np
import matplotlib.pyplot as plt

def gradient_simple_2D (x,y):
Calculates the gradient of a simple function.
f = (x-x0)**2 + 3*(y-y0)**2
x0 = 2
y0 = 3
df_x = 2*(x-x0)
df_y = 6*(y-y0)

Add noise.
noise_level = 5
df_x = df_x + np.random.randn()*noise_level
df_y = df_y + np.random.randn()*noise_level
return df_x,df_y

N = 200
d = 0.01 # step size.

x = np.zeros(N)
y = np.zeros(N)

starting position
x[0] = -3
y[0] = -3
for i in range(N-1):

dx, dy = gradient_simple_2D(x[i],y[i])
x[i+1] = x[i] - d*dx
y[i+1] = y[i] - d*dy

plt.plot(x,y,color='gray')
plt.plot(x[0],y[0],'ko')
plt.plot(x[-1],y[-1],'k*')
plt.text(x[0]+0.5,y[0],'start')
plt.text(x[-1]+0.5,y[-1],'end')

plt.axis('square')
plt.xlim((-5,5))
plt.ylim((-5,5))
plt.savefig('fig_ch11_guided_walk_simple.eps')
plt.show()

Random and Guided Walks � 197

As shown in Figure 11.9, the particle started from an initial position of
x[0] and y[0]. It ended up near the global minimum of the landscape,
defined by the parabola with the vertex (x0, y0) = (2,3). There are
a few parameters in the above code block that can be experimented
with. For example, d determines how far the particle would travel at
each step. If d is too small, the particle would need more time (higher
N) to reach the target. If d is too large, the particle may not reach its
target position within a given time. The convergence may be improved
by starting with a large step size (for a fast, initial approach) and then
gradually decreasing it around the neighborhood of the target position
(for a more accurate convergence).

We also introduced a small noise by adding
np.random.randn()*noise_level to the gradient, so that a particle
would wander around a bit at each step, and it is another parameter
that can be experimented with. A different function f (x, y) and its
gradient can be tried, too, by modifying gradient_simple_2D()
function.

Figure 11.9

198 � Thermal Physics Tutorials with Python Simulations (TPTPS)

The next code block extends the above by introducing multiple particles
at different starting points. The collective target-seeking behavior is
reminiscent of a population of ants converging on a food source. The
concept of chemical potential µ from Chapter 8, which determines the
movement of particles from one thermal system to another, is related
to this idea.

Code Block 11.8

Simulating the gradient descent for multiple particles.

P = 100 # number of particles
x = np.zeros((P,N))
y = np.zeros((P,N))

starting position (randomly distributed)
x[:,0] = np.random.rand(P)*10-5
y[:,0] = np.random.rand(P)*10-5

Calculate the trajectories.
for i in range(N-1):

dx, dy = gradient_simple_2D(x[:,i],y[:,i])
x[:,i+1] = x[:,i] - d*dx
y[:,i+1] = y[:,i] - d*dy

Display the trajectories of the particles.
for i in range(P):

plt.plot(x[i,:],y[i,:],color='gray',linewidth=0.25)
Show the starting point of each particle.
plt.plot(x[i,0],y[i,0],color='gray',marker='.')

Show the average ending point.
plt.plot(np.mean(x[:,-1]),np.mean(y[:,-1]),'*',color='black')
plt.axis('square')
plt.xlim((-6,6))
plt.ylim((-6,6))
plt.savefig('fig_ch11_guided_walk_simple_multi.eps')
plt.show()

Random and Guided Walks � 199

Next, consider a more complex landscape with two local minima, some-
times called a double well. As a definite example, we will use

f (x, y) = −e−((x−x0)2+(y−y0)2)/4 − 2e−((x−x1)2+(y−y1)2),

where (x0, y0) = (−3, 3) and (x1, y1) = (3, 3). The partial derivatives of
the above function, as appear in gradient_double_2D() are

∂ f
∂x

=
1
2

(x − x0)e−((x−x0)2+(y−y0)2)/4 + 4(x − x1)e−((x−x1)2+(y−y1)2)

∂ f
∂y

=
1
2

(y − y0)e−((x−x0)2+(y−y0)2)/4 + 4(y − y1)e−((x−x1)2+(y−y1)2)

A one-dimensional slice through this two-dimensional function at y = 3
is given in the plot below and shows two local minima at x0 and x1. The
global minimum is located at x1.

Figure 11.10

200 � Thermal Physics Tutorials with Python Simulations (TPTPS)

Code Block 11.9

Simulating the gradient descent for double well.

def double_well_2D(x,y):
x0, y0 = -3, 3
x1, y1 = 3, 3
f0 = -np.exp(-((x-x0)**2+(y-y0)**2)/4)
f1 = -2*np.exp(-((x-x1)**2+(y-y1)**2))
f = f0 + f1

Gradient
df_x = -2*(x-x0)/4*f0 -2*(x-x1)*f1
df_y = -2*(y-y0)/4*f0 -2*(y-y1)*f1

return f, df_x, df_y

N = 100
d = 0.1 # step size
P = 100 # number of particles
x = np.zeros((P,N))
y = np.zeros((P,N))

starting position (randomly distributed)
x[:,0] = np.random.rand(P)*10-5
y[:,0] = np.random.rand(P)*10-5

Calculate the trajectories.
for i in range(N-1):

_, df_x, df_y = double_well_2D(x[:,i],y[:,i])

Here is a slight modification.
We will make the gradient to be a unit vector,
so that each step size is always d.
grad_norm = np.sqrt(df_x**2+df_y**2)
df_x = df_x / grad_norm
df_y = df_y / grad_norm

x[:,i+1] = x[:,i] - d*df_x
y[:,i+1] = y[:,i] - d*df_y

Display the slice of the function, f(x,y)
x_range = np.arange(-5,5,0.01)
f, _, _ = double_well_2D(x_range,3)
plt.plot(x_range,f,color='k')

Display where all particles ended on the slice.
x_range = x[:,-1]

Random and Guided Walks � 201

f, _, _ = double_well_2D(x_range,3)

plt.plot(x_range,f,'ko')
plt.legend(('$f(x,y=3) = -e^{-(x+3)^2/4} -2e^{-(x-3)^2}$',

'End points of trajectories'), framealpha=1.0)
plt.title('1D slice')
plt.xlabel('x')
plt.savefig('fig_ch11_guided_walk_double_slice.eps')
plt.show()

Display the trajectories of the particles.
for i in range(P):

plt.plot(x[i,:],y[i,:],color='gray',linewidth=0.25)
Show the starting point of each particle.
plt.plot(x[i,0],y[i,0],color='gray',marker='.')

plt.axis('square')
plt.xlim((-6,6))
plt.ylim((-6,6))
plt.savefig('fig_ch11_guided_walk_double_multi.eps')
plt.show()

def find_neighbors (x,y,x0,y0,d_threshold):
dist = np.sqrt((x-x0)**2 + (y-y0)**2)
return np.sum(dist<d_threshold)

N0 = find_neighbors (x[:,-1],y[:,-1],-3,3,d*5)
N1 = find_neighbors (x[:,-1],y[:,-1], 3,3,d*5)
print('Number of neighbors near (%2d,%2d) = %d'%(-3,3,N0))
print('Number of neighbors near (%2d,%2d) = %d'%(3,3,N1))

Number of neighbors near (-3, 3) = 71
Number of neighbors near (3, 3) = 29

202 � Thermal Physics Tutorials with Python Simulations (TPTPS)

As illustrated in Figure 11.11 again, we can generate trajectories of mul-
tiple particles, which, as a result of following the negative of a gradient
in small steps, discover local minima. The endpoints of the trajectories
are shown as dots on the top one-dimensional slice plot, and the full
trajectories are displayed on the bottom two-dimensional plot, where
each dot represents a random starting point. In addition to calculating
the trajectories on the landscape defined by f (x, y), this code block also

Figure 11.11

Random and Guided Walks � 203

calculates the number of particles that arrived within the neighborhood
of a specified point at the end of the walks. As expected, most particles
end up near the vicinity of local minima. d_threshold parameter in
the find_neighbors() function defines the range of this vicinity and
determines whether a particle is included in the particle count or not.

This approach of discovering optimal points by guided walks under-
lies many successful optimization algorithms. For example, the back-
propagation algorithm for an artificial neural network minimizes an er-
ror function by performing gradient descent within a high-dimensional
phase space that represents the synaptic weights between neural units.
Such an algorithm is necessary and important when the underlying func-
tion f (·) is not accessible or too complex, yet an estimate of its gradient
∇ f (·) is still available.

There are other interesting issues and challenges. For example, in the
above simulation, more particles ended up near a local minimum at
x = −3, even though the global minimum was not far away at x = 3.
Can we find a global minimum and avoid being trapped in local min-
ima? Can we obtain an accurate estimate of gradient, especially in a
high dimensional space? Can we optimize only within relevant dimen-
sions, without wasting our search efforts in unnecessary space? Can we
build specialized hardware, perhaps taking advantage of quantum me-
chanics, for solving an optimization problem? These are some of the
active research questions explored in such fields as statistics, optimiza-
tion, machine learning, and physics.

http://taylorandfrancis.com

Appendix

APPENDIX A: GETTING STARTED WITH PYTHON

Perhaps the most challenging step in following the codes in this book
may be the first step of getting started with Python. Fortunately, there
are a few user-friendly options at this point of writing.

The first option is a free, cloud-based Python environment like Google
Colaboratory (or Colab) (research.google.com/colaboratory). You
can open, edit, and run Python codes on a Jupyter Notebook en-
vironment using a browser. The second option is to download and
install a distribution of Python that already includes relevant pack-
ages, such as numpy and matplotlib, and other valuable tools, such
as Jupyter Notebook (jupyter.org). We recommend Anaconda Dis-
tribution (www.anaconda.com), which supports different operating sys-
tems (Windows, iOS, and Linux) and makes it easy to configure your
computer.† The third option is to install each module and dependency
separately.

APPENDIX B: PYTHON PROGRAMMING BASICS

Whether it is Python or other programming languages, there are many
standard practices, notations, structures, and techniques. This appendix
goes over a few basic ideas if you are new to programming.

The following code block demonstrates the practice of using variables
to hold values and do calculations.

†There is an interesting interview of Travis Oliphant by Lex Fridman, where they
talk about the history behind the development of numpy, scipy, Anaconda, and other
topics on scientific computing available at www.youtube.com/watch?v=gFEE3w7F0ww.

205

https://www.anaconda.com
https://www.youtube.com
https://research.google
https://jupyter.org

206 � Appendix

Code Block Appendix B.1

x = 5
y = 2
print(x+y)
print(x-y)
print(x*y)
print(x/y)
print(x**y)

7
3
10
2.5
25

Two powerful control structures are the if-conditionals and for-loops,
as demonstrated below. The for-loop allows you to iterate a block of
codes marked by indentation within the loop. The number of iterations
is often specified with a built-in function range(). You can also easily
work with individual elements in an array. If a condition given in the if-
conditional is evaluated to be true, a set of codes marked by indentation
will be executed.
Code Block Appendix B.2

for i in range(5):
print(i**2)
if (i**2 == 9):

print('This was a nice number.')

0
1
4
9
This was a nice number.
16

Another powerful practice in programming is to split up a complex task
or procedure into smaller and more manageable chunks, which are called
functions or modules. For example, you may be tasked to calculate an
average of multiple values repeatedly. Then, it would be desirable to
create a function that takes an arbitrary array of values as an input
argument and returns its average.

Appendix � 207

In addition to being able to write your own functions or modules, it is
also essential to be able to use well-written and widely-adopted modules.
For example, many common and critical computational routines are
already written into the modules like numpy and scipy. By using them,
instead of writing your own, your codes will be more readable and usable
by others and will likely be more robust and less susceptible to errors.

Code Block Appendix B.3

import numpy as np

def calculate_average(x):
avg = 0
for val in x:

avg = avg + val
return avg/len(x)

x = [1,5,3,7,2]

Using a function created above.
print(calculate_average(x))

Using a function from numpy module.
print(np.mean(np.array(x)))

3.6
3.6

Another important aspect of coding is to make mistakes and learn from
them. The following code blocks demonstrate a few common error mes-
sages you might see.

Code Block Appendix B.4

Using numpy module without importing it ahead will
generate an error message like:
"NameError: name 'np' is not defined"

Because we are demonstrating the importance of import,
let's unimport or del numpy.
del numpy

x = np.array([1,2,3])

208 � Appendix

NameError Traceback (most recent call last)
<ipython-input-4-976cd16bfa8a> in <module>

7 # Because we are demonstrating the importance of import,
8 # let's unimport or del numpy.

----> 9 del numpy
10
11 x = np.array([1,2,3])

NameError: name 'numpy' is not defined

Code Block Appendix B.5

Python's indexing convention is to start at zero.
The first element in an array is indexed by 0.
The last element in an array is indexed by -1 or its length-1.
If you try to index after the last element,
you will get an error like:
"IndexError: list index out of range"

x = [10,20,30]
print(x[0])
print(x[1])
print(x[2])
print(x[3])

10
20
30

IndexError Traceback (most recent call last)
<ipython-input-5-1487e342efb9> in <module>

11 print(x[1])
12 print(x[2])

---> 13 print(x[3])

IndexError: list index out of range

The following code block demonstrates how we index elements within
an array. It is possible to refer to a single element or a range of values
with a colon symbol :. Therefore, we can access a slice of an array and
create a subset of elements.

Appendix � 209

Code Block Appendix B.6

import numpy as np

print('Working with a one-dimensional numpy array.')
x = np.array([10,20,30,40,50,60,70,80,90,100])
print(x)
print(x[0]) # first element in the array.
print(x[-1]) # last element
print(x[4:8]) # range of elements
print(x[4:]) # everything starting with the fifth element.

print('')

print('Working with a two-dimensional numpy array.')
y = np.array([[11, 12, 13],[21, 22, 23],[31, 32, 33]])
print(y)
print(y[0][2]) # element located at the first row and third column.
print(y[0,2]) # same element as the above.
print(y[1,:]) # second row.
print(y[:,1]) # second column.

Working with a one-dimensional numpy array.
[10 20 30 40 50 60 70 80 90 100]
10
100
[50 60 70 80]
[50 60 70 80 90 100]

Working with a two-dimensional numpy array.
[[11 12 13]
[21 22 23]
[31 32 33]]
13
13
[21 22 23]
[12 22 32]

APPENDIX C: PLOTS

As demonstrated throughout this book, the matplotlib.pyplot mod-
ule is excellent for making single or multiple plots. Let us briefly sum-
marize some essential steps in creating and managing plots.

210 � Appendix

Code Block Appendix C.1

import numpy as np
import matplotlib.pyplot as plt

t = np.arange(0,2*np.pi,0.01)

plt.plot(t,np.sin(t-0.0),color='black',linestyle='solid')
plt.plot(t,np.sin(t+np.pi/2),color='black',linestyle='dotted')

plt.title('Example of single plot')
plt.legend(('first curve','second curve'),framealpha=1)
plt.ylabel('y')
plt.xlabel('x')
plt.ylim((-1.1))
plt.yticks((-1,-0.5,0,0.5,1))

plt.savefig('fig_appC_single.eps')
plt.show()

If you want to show multiple graphs, you can draw each curve one at
a time within a single plot, as demonstrated in the above code block.
Alternatively, you can prepare a grid of plots using subplots() from
the matplotlib.pyplot module. Let us demonstrate how each subplot
can be modified.

Appendix � 211

Code Block Appendix C.2

import numpy as np
import matplotlib.pyplot as plt

fig, ax = plt.subplots(2,2)

t = np.arange(0,3*np.pi,0.01)

ax[0,0].plot(t,np.sin(t-0.0),color='black',linestyle='solid')
ax[0,1].plot(t,np.sin(t-0.0),color='black',linestyle='dotted')
ax[1,0].plot(t,np.sin(t-0.0),color='gray',linestyle='solid')
ax[1,1].plot(t,np.sin(t-0.0),color='gray',linestyle='dotted')

plt.subplots_adjust(left=0.1,right=0.9,top=0.9,bottom=0.1,
wspace=0.4,hspace=0.4)

fig.suptitle('Example of multiple plots')

ax[0,0].set_xlim((0,2))
ax[0,1].set_xlim((0,4))
ax[1,0].set_xlim((0,6))
ax[1,1].set_xlim((0,8))

ax[0,0].set_xlabel('x between 0 and 2')
ax[0,1].set_xlabel('x between 0 and 4')
ax[1,0].set_xlabel('x between 0 and 6')
ax[1,1].set_xlabel('x between 0 and 8')

You can programmatically refer to different subplots, too.
for i in range(2):

for j in range(2):
ax[i,j].set_ylim((-1.2,1.2))

plt.savefig('fig_appC_subplots.eps')
plt.show()

212 � Appendix

APPENDIX D: COLORS

All the graphs in the main text of this book were presented in grayscale.
However, sprucing up your graphs with colors in Python is straightfor-
ward. In the matplotlib.pyplotmodule, the optional argument color
allows you to specify colors easily by naming colors or their nicknames.
For example, both color='red' and color='r'make plots in red. Over
the next several code blocks, we will create a few color plots that would
best be viewed on a screen rather than in print.

Code Block Appendix D.1

import numpy as np
import matplotlib.pyplot as plt

t = np.arange(0,2*np.pi,0.01)

plt.plot(t,np.sin(t-0.0),color='black')
plt.plot(t,np.sin(t-0.2),color='k') # black
plt.plot(t,np.sin(t-0.4),color='red')
plt.plot(t,np.sin(t-0.6),color='r') # red
plt.plot(t,np.sin(t-0.8),color='green')
plt.plot(t,np.sin(t-1.0),color='g') # green
plt.plot(t,np.sin(t-1.2),color='blue')
plt.plot(t,np.sin(t-1.4),color='b') # blue
plt.savefig('fig_appD_color1.eps')
plt.show()

Appendix � 213

Another way of specifying colors is RGB values, a triplet corresponding
to the intensities of red, green, and blue lights. For example, (1,0,0)
represents red color, and (1,0,1) represents violet color, which is an
equal mix of red and blue color.

Code Block Appendix D.2

plt.plot(t,np.sin(t-0.0),color=(0,0,0)) # black
plt.plot(t,np.sin(t-0.2),color=(1,0,0)) # red
plt.plot(t,np.sin(t-0.4),color=(0,1,0)) # green
plt.plot(t,np.sin(t-0.6),color=(0,0,1)) # blue
plt.plot(t,np.sin(t-0.8),color=(1,1,0)) # red+green = yellow
plt.plot(t,np.sin(t-1.0),color=(0,1,1)) # green+blue = cyan
plt.plot(t,np.sin(t-1.2),color=(1,0,1)) # red+blue = violet
plt.plot(t,np.sin(t-1.4),color=(1,0,0.5)) # reddish violet
plt.plot(t,np.sin(t-1.6),color=(0.5,0,1)) # bluish violet
plt.savefig('fig_appD_color2.eps')
plt.show()

214 � Appendix

Therefore, a spectrum of gray shade can be represented by a triplet
(0,0,0) (black); (0.2,0.2,0.2) (dark gray); (0.8,0.8,0.8) (light
gray); (1,1,1) (white).

Code Block Appendix D.3

plt.plot(t,np.sin(t-0.0),color=(0,0,0)) # black
plt.plot(t,np.sin(t-0.2),color=(0.2,0.2,0.2))
plt.plot(t,np.sin(t-0.4),color=(0.4,0.4,0.4))
plt.plot(t,np.sin(t-0.6),color=(0.6,0.6,0.6))
plt.plot(t,np.sin(t-0.8),color=(0.8,0.8,0.8))
plt.plot(t,np.sin(t-1.0),color=(1,1,1)) # white (not visible)
plt.savefig('fig_appD_color3.eps')
plt.show()

Appendix � 215

Similarly, a spectrum of red shades can be created by smoothly varying
the value of red intensity in the RGB triplet.

Code Block Appendix D.4

plt.plot(t,np.sin(t-0.0),color=(0.0,0,0))
plt.plot(t,np.sin(t-0.2),color=(0.2,0,0))
plt.plot(t,np.sin(t-0.4),color=(0.4,0,0))
plt.plot(t,np.sin(t-0.6),color=(0.6,0,0))
plt.plot(t,np.sin(t-0.8),color=(0.8,0,0))
plt.plot(t,np.sin(t-1.0),color=(1.0,0,0))
plt.savefig('fig_appD_color4.eps')
plt.show()

Each intensity value in the RGB triplet is often represented as an 8-bit
number. Since a binary digit can take on either 0 or 1, a 2-bit number
can represent four (22) different values: 00, 01, 10, and 11. A 3-bit
number can represent eight (23) different values: 000, 001, 010, 011,
100, 101, 110, 111. Likewise, an 8-bit number can cover 256 distinct
values. In our normal decimal system, these values go from 0 to 255.

In a somewhat unfamiliar hexadecimal system, each digit can take on
16 different symbols: 0, 1, . . . , 8, 9, A, B, . . . , E, F. In this hexadecimal
system, a decimal value of 11 is represented as B, and a decimal value of
26 is represented as 1A. An 8-bit number (or eight-digit binary number)
can be written as a two-digit hexadecimal number. For example, an 8-
bit number 00000000, which is equal to 0 in regular decimal notation,
can be written as a hexadecimal number 00. An 8-bit number 10000000,
equivalent to 128 in decimal notation, is 80 in the hexadecimal system.

216 � Appendix

11111111 as a binary number is equal to 255 in decimal and FF in the
hexadecimal system.

A notation of color you may encounter in computer programming is
called hex codes, which uses the hexadecimal notation to represent RGB
triplets. For example, #FF0080 is a concatenation of FF, 00, and 80,
representing 255, 0, and 128 in decimal. Therefore, this hex code is equal
to (255,0,128). If we use a number between 0 and 1 in the normalized
numbering system as in the previous code block, #FF0080 corresponds
to (1,0,0.5). The following code block demonstrates how these different
color codes are used.
Code Block Appendix D.5

both black
plt.plot(t,np.sin(t-0.0),color=(0,0,0))
plt.plot(t,np.sin(t-0.2),color='#000000')

both gray
plt.plot(t,np.sin(t-0.4),color=(0.5,0.5,0.5))
plt.plot(t,np.sin(t-0.6),color='#808080')

both red
plt.plot(t,np.sin(t-0.8),color=(1,0,0))
plt.plot(t,np.sin(t-1.0),color='#FF0000')

plt.savefig('fig_appD_color5.eps')
plt.show()

Appendix � 217

APPENDIX E: ANIMATION

The collision process in Chapter 2 can be nicely visualized with an ani-
mation. As a warm-up, let’s create a sketch of one gas particle inside a
container. We will specify the position of a particle with variables x and
y, and use the scatter command from the matplotlibmodule. We will
use the plot command to draw thick vertical lines representing the wall.
For mathematical simplicity, we will only consider one-dimensional, ver-
tical up-or-down motion. Study the following lines of code. Experiment
with the code, so that you understand what each line does. For example,
can you change the color of the walls? Can you make the wall thicker?
Can you move the position of the particle?

Code Block Appendix E.1
import matplotlib.pyplot as plt

Place the particle.
x, y = (0.4, 0.5) # position of a particle.
plt.scatter(x,y)
plt.text(x+0.05,y-0.05,'Particle at (%2.1f, %2.1f)'%(x,y),

color='red')

Draw the walls, which are located at 0 and 1.
plt.plot((-0.1,1.1),(0,0),color='black',linewidth=5)
plt.plot((-0.1,1.1),(1,1),color='black',linewidth=5)
plt.xlim((-0.1,1.1))
plt.ylim((-0.1,1.1))

plt.axis('off')
plt.savefig('fig_appE_particle_in_box.eps')
plt.show()

218 � Appendix

The following code block makes an animation of a moving particle
between two walls, using a Python module matplotlib.animation.
The animation routine relies on the previously-developed function
calculate_position(), which tracks the position of a particle at dif-
ferent times.

We are also utilizing the plt.subplots() command, which returns the
figure and axis attributes (fig and ax) of a generated plot, so that they
can be manipulated easily. For instance, ax.cla() clears the current
data points from the axis, so that the new set of data points can be
drawn for the next frame in the animation.

Feel free to play around with the code by trying out different parame-
ters. For example, you can change the initial position and velocity of a
particle represented by the variables, x0, y0, v.

Code Block Appendix E.2

Animate the position.
import numpy as np
import matplotlib.animation as animation
from matplotlib import rc
rc('animation', html='jshtml')

def calculate_position (y0,v,ymin=0,ymax=1,dt=0.01,
tmin=0,tmax=10,plot=False):

ymin and ymax are the boundaries of motion (walls).
current_v = v
time_range = np.arange(tmin,tmax,dt)
y = np.zeros(len(time_range))
y[0] = y0

Nbounce = 0
for i, t in enumerate(time_range[1:]):

current_y = y[i] + current_v*dt # Update position.
if current_y <= ymin:

if the particle hits the bottom wall.
current_v = -current_v # velocity changes the sign.
current_y = ymin + (ymin - current_y)
Nbounce = Nbounce+1

if current_y >= ymax:
if the particle hits the top wall.
current_v = -current_v # velocity changes the sign.
current_y = ymax - (current_y - ymax)
Nbounce = Nbounce+1

y[i+1] = current_y
if (plot):

Appendix � 219

plt.plot(time_range,y)
plt.xlabel('Time')
plt.ylabel('Position')
plt.savefig('fig_ch2_bounce.eps')
plt.show()

return y, time_range, Nbounce

fig, ax = plt.subplots()
x0 = 0.3
y0 = 0.5
v = -0.2
position, _, _ = calculate_position(y0,v,dt=0.5,tmax=20)

def animate(i):
ax.cla()
plt.scatter(x0,position[i])
Draw walls
plt.plot((-0.1,1.1),(0,0),color='black')
plt.plot((-0.1,1.1),(1,1),color='black')
plt.xlim((-0.1,1.1))
plt.ylim((-0.1,1.1))
plt.axis('off')

ani = animation.FuncAnimation(fig, animate,
interval=50, frames=len(position),
repeat=False)

ani

The above code block will produce an animation of a single particle
moving up and down. In the following code block, we animate the mo-
tions of N particles that are evenly spaced out.

Code Block Appendix E.3

Animate multiple particles.
Note this code may take some time to complete.

N = 30
tmin = 0
tmax = 10
dt = 0.1
t = np.arange(tmin,tmax,dt)
pos = np.zeros((N,len(t))) # initialize the matrix.
Nbounce = np.zeros(N)

v = np.random.randn(N)*0.5
y0 = np.random.rand(N)
for i in range(N):

220 � Appendix

pos[i,:] references the i-th row of the array, pos.
That is the position of i-th particle at all timestamps.
pos[i,:], _, Nbounce[i] = calculate_position(y0[i],v[i],dt=dt,

tmin=tmin,tmax=tmax)

fig, ax = plt.subplots()

def animate_Nparticles(i):
ax.cla()
N, frames = pos.shape
x = np.linspace(0,1,N)
for j in range(N):

plt.scatter(x[j],pos[j,i],color='gray')
Draw walls
plt.plot((-0.1,1.1),(0,0),color='black')
plt.plot((-0.1,1.1),(1,1),color='black')
plt.xlim((-0.1,1.1))
plt.ylim((-0.1,1.1))
plt.axis('off')

N, frames = pos.shape
ani = animation.FuncAnimation(fig,animate_Nparticles,

interval=50,frames=frames,
repeat=False)

ani

Epilogue

A world-renowned physicist† said about thermal physics that “it is the
only physical theory of universal content concerning which I am con-
vinced that, within the framework of applicability of its basic concepts,
it will never be overthrown.” Indeed, the concepts and frameworks of
thermal physics are being used to study such wide-ranging topics as
black holes, communication, computation, biological phenomena, arti-
ficial intelligence, and the nature of reality (“it from bit”). We enjoyed
writing this book and hope the readers found our presentation of ther-
mal physics enjoyable, too.

†See “Thermodynamics in Einstein’s Thought” by Martin Klein in Science
Vol. 157, No. 3788 (1967).

221

http://taylorandfrancis.com

Index

adiabatic process, 57
average kinetic energy of ideal

gas, 22, 110

Boltzmann distribution, 76
Brownian motion, 183

Carnot cycle, 64
chemical potential, 139
conjugate variable, 138

Debye model of solid, 180
degeneracy, 94, 100
dilute gas limit, 117

Einstein model of a solid, 177
enthalpy, 140
entropic elasticity, 190
entropy, 123
equipartition theorem, 175

fundamental laws of
thermodynamics, 125

Gibbs free energy, 140
gradient descent, 195

Helmholtz free energy, 140

ideal gas law, 13
isobaric process, 57
isochoric process, 57
isothermal process, 57

kinetic theory of gas, 13

Lagrange Multiplier method, 90

Law of Dulong and Petit, 179

Maxwell’s relations, 144
Maxwell-Boltzmann distribution,

52
Mayer’s equation, 62

Nernst equation, 162

partition function, 105
probability density function, 50

random walk, 183

Sackur-Tetrode equation, 134
Schrödinger’s equation, 97
simple harmonic oscillator, 172
specific heat, 62, 169
Stirling’s approximation, 90

temperature, 26, 126
thermodynamic potentials, 138

223

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Dedication
	Contents
	Preface
	CHAPTER 1: Calculating π
	1.1. ESTIMATING π WITH A POLYGON
	1.2. ESTIMATING π WITH RANDOM DOTS

	SECTION I: Classical Thermodynamics	
	CHAPTER 2: Kinetic Theory of Gas
	2.1. GETTING STARTED
	2.2. DERIVATION OF THE IDEAL GAS LAW
	2.3. SAMPLE CALCULATION
	2.4. FURTHER EXPLORATIONS
	2.5. TEMPERATURE

	CHAPTER 3: Velocity Distribution
	3.1. PARTICLE COLLISION
	3.2. ONE-DIMENSIONAL EXAMPLE
	3.3. MULTIPLE SOLUTIONS
	3.4. FINDING SOLUTIONS WITH CODE
	3.5. DISTRIBUTION OF ENERGY
	3.6. DISTRIBUTION OF ENERGY AFTER MANY, MANY COLLISION EVENTS
	3.7. DISTRIBUTION OF SPEED AFTER MANY, MANY COLLISION EVENTS
	3.8. NOTE ON A MORE AMBITIOUS CODING PROJECT

	Chapter 4: Thermal Processes
	4.1. STATE AND PROCESS
	4.2. PLOTTING AND NUMERICAL INTEGRATION
	4.3. PV DIAGRAM
	4.4. ADIABATIC PROCESS
	4.5. PROOF OF PVY = CONSTANT FOR AN ADIABAT OF IDEAL GAS
	4.6. CARNOT CYCLE

	SECTION II: Statistical Mechanics
	Chapter 5: Premise of Statistical Mechanics
	5.1. ANALOGY: WEALTH DISTRIBUTION
	5.2. MATHEMATICAL NOTATIONS
	5.3. LISTING PERMUTATIONS
	5.4. VISUALIZATION
	5.5. COUNTING EXERCISE
	5.6. CODE FOR ENUMERATING ALL POSSIBILITIES (VERSION 1)
	5.7. CODE FOR ENUMERATING ALL POSSIBILITIES (VERSION 2)
	5.8. BOLTZMANN DISTRIBUTION
	5.9. MATH: LAGRANGE MULTIPLIER METHOD
	5.10. MATH: STIRLING'S APPROXIMATION
	5.11. BACK TO THE BOLTZMANN DISTRIBUTION

	Chapter 6: Revisiting Ideal Gas
	6.1. A LITTLE BIT OF QUANTUM MECHANICS
	6.2. DEGENERACY
	6.3. PARTITION FUNCTION
	6.4. AVERAGE ENERGY OF AN IDEAL GAS
	6.5. VISUALIZING ENERGY LEVELS WITH DEGENERACY

	Chapter 7: Revisiting Thermal Processes
	7.1. REVIEW
	7.2. THERMAL PROCESSES
	7.3. CHECK

	Chapter 8: Entropy, Temperature, Energy, and Other Potentials
	8.1. ENTROPY
	8.2. LAWS OF THERMODYNAMICS
	8.3. TEMPERATURE AS A RATIO OF CHANGES IN ENERGY AND ENTROPY
	8.4. IDENTIFYING B = 1/kBT
	8.5. MATH: VOLUME OF A SPHERE
	8.6. ENTROPY OF IDEAL GAS
	8.7. ENTROPY OF IDEAL GAS, AGAIN
	8.8. MOTIVATION FOR OTHER METRICS OF A THERMODYNAMIC SYSTEM
	8.9. FOUR THERMODYNAMIC POTENTIALS: U,H, F,G
	8.10. THERMODYNAMIC RELATIONS

	SECTION III: Examples
	Chapter 9: Two-State System
	9.1. DYNAMIC CASE
	9.2. EQUILIBRIUM POTENTIAL
	9.3. ACTION POTENTIAL
	9.4. DIODE

	Chapter 10: Specific Heat
	10.1. DEFINITION OF SPECIFIC HEAT
	10.2. TWO-STATE SYSTEM
	10.3. SIMPLE HARMONIC OSCILLATOR (SHO)
	10.4. TEMPERATURE DEPENDENCE OF ENERGY AND SPECIFIC HEAT
	10.5. EINSTEIN MODEL OF SOLID

	Chapter 11: Random and Guided Walks
	11.1. ONE-DIMENSIONAL RANDOM WALK
	11.2. TWO-DIMENSIONAL RANDOM WALK
	11.3. A TANGENT
	11.4. GUIDED RANDOM WALKS

	Appendix
	APPENDIX A: GETTING STARTED WITH PYTHON
	APPENDIX B: PYTHON PROGRAMMING BASICS
	APPENDIX C: PLOTS
	APPENDIX D: COLORS
	APPENDIX E: ANIMATION

	Epilogue
	Index

