The Absolute
Beginner’s
Guide to Python
Programming

A Step-by-Step Guide with Examples
and Lab Exercises

Kevin Wilson

The Absolute
Beginner’s Guide to
Python Programming

Kevin Wilson

Apress’

The Absolute Beginner’s Guide to Python Programming: A Step-by-Step
Guide with Examples and Lab Exercises

Kevin Wilson
London, UK

ISBN-13 (pbk): 978-1-4842-8715-6 ISBN-13 (electronic): 978-1-4842-8716-3
https://doi.org/10.1007/978-1-4842-8716-3

Copyright © 2022 by Kevin Wilson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham

Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar
Cover image by Shutterstock

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-8716-3

Table of Contents

About the AUthOrccscemmssmnmssnsmmsssnmmsssssssssssssssnsssssnsssssnnssssnnssssnnsns xi
About the Technical REVIEWETsscesssssmssssansssssnsssssnsssssnsssssasssssnnss xiii
Introduction.........ccccnnmmmmsmmmmnn e ——————————_ Xv
Chapter 1: Introduction to Computer Programming........ccussesssssasssssanss 1
WRAL IS PYIRON ...t e 2
(6T 1T TS =T o 4

RS 11 T) RO 4
InStall on WINAOWScccceiiiiririirce s 4
Install 0n MACOS..........o s 9
INSEAIL ON LINUX . s 11
11T 111 T o O 13
Chapter 2: The BaSiCS....cccrvrurmmmrrmsssnnsmsssssnssssssssssssssssssssssssssnsssssssnnnnes 15
Language ClasSifiCation............ccvoeeereerrnenerenesese e 15
LOW-LEVE! LANQUAGEcceereeereecrererermeesseesesesessesesesesessesessesesessesessssessnnes 15
High-Level LANQUAGE.ccoverereereecreresessese e sese e se s sesse e s sessnnes 16
Python Language SYNTaX........ccccovrerernnernsmsrssssmsesesessessssssessssesesssssssssessssesessesenns 18
RESEIVEA WOKAS.......cceeerereresesesese e sessese e ses s e s sessssessssensnnes 18

1012 LT RS 20
INAENTALIONcovreerecr s 20
0] 0] =T RS 20
INPUL . ————— 21

iii

TABLE OF CONTENTS

0 1] 21
ESCAPE CharaClerS.....ccccverrererserieresssseressesssssssessessesssssssessessssessessesassassessesaes 21
WHEING @ Program ... s 22
LD EXBICISEScucerueerreereeeresesesse e e ssesesse e sse e se s s e ses e s 29
SUMMANY....ceeieerreserre s e e e s e e e e e e 30
Chapter 3: Working with Datacccccmmmmmmmmmmmmssssssssmmmmmmmsssssssssns 31
VaADIESecveeeerreeris e s 31
LOCal Vari@bIEScccvecerrierircsi e 31
GIODAI Vari@DIESccveerreeeresere s 32
BaSiC DAta TYPES ..ceuervereereriererrerersersessessssessessessesessessessessssessessessssessessessessssessessens 32
1Y T[] £ SRS 32
Floating Point NUMDEISccvcrierenrrrrere e snes 33

R3] R 33
LISTS ettt ———————— 33
TWO0-DImensSional LiStScccovinmnnnssssssssss s ssssssssesens 35
SIS o ————————————————— 37
TUPIES e s 37
DICHIONANIEScucererriciiri e s 38
Program INPUL ..o s e e s 39
Program OQUEPUL........coeree et e 40
Casting Data TYPES.......ccereerererererererere s 41
Arithmetic OPErators.........ccccvriininin s s 42
Operator PrECEUBNCE.ccvveriererir e s e 42
Performing ArthMELiCcoveevrererese s 43
Comparison OPEratorscccueceresernesrnese s 43
B00Iean OPEratorsccccvvererererieriere s ses e s se s e s e saesae e ssesnens 44

iv

TABLE OF CONTENTS

BitWiSe OPEIaAtOrSccecervererrererserseressssessesesssssssessessessssessessessssessessessessssensessens 45
LD EXBICISEScueerueerreereeererese e se s s s s e 45
SUMIMANY.....eieeieeeree e se e se s e re e e e e 46
Chapter 4: Flow Control...........ccccunnnmmmmmmmmmmmsmmsssssssssssssessssssssssssssssnns 49
LT [0 1T eSO 49
SEIBCLIONeveerece e ———————— 52
Ifers BISB ettt 52
Bl e —————————— 55
Eration (LOOPS) ...cecerrereererrerersesersersessessssessessessessssessessessssessessessssessessessessssensessens 61
0] g 0o OSSN 61
LT T8 0o o S 65
Break and CONtINUE...........covrrieninesrsnsssssse s s sas 68
LD EXBICISEScueereeerreereeererese e se e s 69
SUMIMANY....eieeereere e e e e e e e re e nee e 69
Chapter 5: Handling Filescccccnnnmmmemmmmmmmnmmmsssssssssmsmmsssssssssssssnsens A
File TYPES v rrs s s 71
LD L PSR 71
3T RS 72
Text File Operations..........coucvverenenenssesrsesesese s s sssssnens 73
OPEN FlES...ciieciieieese e s 73
WHIte 10 @ File ...eveecreeereecce e 75
Read from @ Filecccerecerriesirese e 78
Binary File OPerations........cccoevrvrierenissenseness s sesesse s sessessessssessessessssessessessens 79
00 T=T 0 LR 79
WIItE 10 @ File ..ot 80
Read @ File.......ccoerririciiirirssee s 81

TABLE OF CONTENTS

Random Filg ACCESS........coovvrrireriere s 83
LD EXBICISEScueerueerreereeeresese e s 84
SUMMANY.....eieiireere e e e se e e s re e e e e 85
Chapter 6: Using FUNCHIONS......ccccusemmmmmssssnmnmssssssnnmsssssssnsssssssnssssssnnnnss 87
Declaring FUNCLIONSccoveeviereresersse s s 87

R T10] L OSSOSO 90

3 T= T 1] 0] T 90
LA EXEICISES ...vcuceceererrsrssssessssssssse e s e s 92
1] 4= 7 93
Chapter 7: Using Modules.........cseumssemmssnsssansssassssassssnsssassssassssssssansssans 95
IMPOrting MOAUIESccvrerere e 96
Creating Your OWN MOQUIES........coueecrereereererereree e 100
LD EXBICISES ...vvueerreerreesessesessesesssesessesesssssssssessssssessesssesssssssssessssssssssssnsssessenes 101
SUMMANY....ceiiiernerirese e r e e nr e 102
Chapter 8: Exception Handlingccccusssemmmmssssssnnmssssssnssssssssssssssnnns 103
TYPES Of EXCEPLIONeereereecrecercere et se e sr s enes 103
Catching EXCEPLIONS......cccvvererrererrerersesesseressessssesessesassssessessessssessesaesssssssensees 105
Raising Your OWn EXCEPLiONS......cccccvreverercrncrire et 107
SUMIMANY....eeeerercreree s s e se s e e e re e e e e 108
Chapter 9: Object-Oriented Programmingccccummsssnsnnsssssnssnsssssnns 109
PrinCiples 0f Q0P ... s s 109
ENCAPSUIALIONceveeecrreer e 109
10T 7= T S 110
POIYMOIPRISIM......coveeecrreer s 110
L1 £ Ui 10 o SRS 110

TABLE OF CONTENTS

ClassSes and ODJECTS......ccvrererrererreriersersrsersessessesessessessessssessessessssessessessssessessenes 110
Class INNEFLANCEccceeeeererereerereres e ens 113
POlyMOrphiC ClaSSeS.......covererenerreererere s 116
Method OVErridingcccvvrererenernsesesesere s srenes 117
LD EXBICISES ...viuerrreerrnerrssesessese s ses e s ss s sn e srs s s sn s ssans 119
SUMMAIY . eeitiirierere e s s e s s r e e s s sae st e e e e e aesa e e s e s aesae e e e naenaees 120
Chapter 10: Building an Interface........cccuseemmmmssssnnnmsssssnnnssssssssssssssnns 121
Creating @ WINUOWccveerereereniereressssesessessssssessessessssessessesssssssessesssssssensessens 121
Adding WIdgetS ..o s 124
MIBIUS ... e e e 124
THE CANVAScvveeceereris e se s sas s s nnens 126
IMAQES ..o e e e 129
BULLONS ... 130
MESSAJE BOXESvevveercrieriesinere et s e s sre s s sn e nnens 131
TEXE FIEI ...ttt s 132

I {0 T 133
ChECKDOX.......coveeeeeceererer s 135
LADEIS ... s 137
Label Frame........occeeeeeeeeree s 138
INTErface DESIGN......coceeecrerereree e 139
SUMMANY....ceiieeresesesese e se e e s e se e nensenenns 144
Chapter 11: Developing @ GAME.......ccccrssssennnmsssssnssssssssnssssssssnsnssssnnns 145
INStalling PYGaME.......ccvceiiriririerine s s 145
0pening @ WINAOWcccveerernrerserieresesserse e sse s s s s ssssessessesessessesseees 147
Adding an IMAQE ..o 148
THE GAME LOOP ...eeiveerirecrere et se e se s s s e se s e ae e sessesesnsnens 149
The EVENTLOOP ...ccveerircrirc st sre s 151

vii

TABLE OF CONTENTS

L] 1 01O 155
BasiC ANIMALIONccoveererceree e 156
SUMIMANY....eeeerercreree e re e e e e e s re e e e e 164
Chapter 12: Python Web Developmentcoonemmmmmmnnnnnssssssssssnnnnns 167
WED SEIVEIS....covicereeerercsesese s se s sre e sensssnsnnanns 167
Install the WED SEIVEr ... 169
Set Up PYthon SUPPOM ..o s e sessesnens 169
o T U1 o T oo R 171
Python Web Frameworks ... sss s sse s 175
SUMIMANY....eeeerercreree s s e se s e e e re e e e e 181
Appendix A: Quick Referenceccccusssmssmssssssssssssssssnsssssssnsssssssnnssssss 183
DAt TYPLS...vecerererrrreerree s s s 183
NUMEKIC OPEIALOrS.....coviererererree e 183
Comparison OPEratorsccccvvverreriererersersese s s sse s s s sss e s srs e s e sseees 184
B00Iean OPEratorscvcvrererreserrereressssesessessssessessessessssessesaesessessesaesssssssesseses 184
StriNG OPEIALOrS.......ccve v e enens 184
LiSt OPErators.......cccvevicininern e s 184
Dictionary OPEratorscucvrenerrssesessesmsssesrssesesese e ses e sesse s e sessssessssessenes 185
SriNG METNOUS.coviiree e 185
LiSt METNOMScccveriiriicriri s 185
Dictionary Methods.........cccvvininininsr e 185
FUNCLIONS ... 186
FIIBS e 186
L] 0 o 11T 0 SR 186
Multi-CoNditional..........cccvriireriserne e s 186
LT 0o o O 187

viii

TABLE OF CONTENTS

0 g 0T oSS 187
0010 o 11 0] O 187
MOUAUIES ... 187
BUIIt=IN FUNCLIONS......ccirierereserce s 187
DECIAre @ ClaSSccccerreerrrenirierinse s s 188
CRld CIASScovrerrincrciririssssese s 188
[=T (=T 00) =T S 188
Call Object Method.........c.cccorerrecccrr e 188
AccesS ODJect AHIDULESccoreeerecrereere e 188
EXCEPLONS....cv it s 188
INA@X..ueeeiiienssisnnsssnnsssssnsssssnssssanssssan s ssssnnsnssnnnnssnnnnssnnsnssnnsnssnnnnssnnnnnsns 189

ix

About the Author

With over 20 years’ experience in the computer industry, Kevin Wilson
has made a career out of technology and showing others how to use it.
After earning a master’s degree in computer science, software engineering,
and multimedia systems, Kevin has held various positions in the IT
industry including graphic and web design, digital film and photography,
programming and software engineering, developing and managing
corporate networks, building computer systems, and IT support. He
currently teaches computer science at college and works as an IT trainer in
England while researching for his Ph.D.

About the Technical Reviewer

Joos Korstanje is a data scientist, with over
five years of industry experience in developing
machine-learning tools. He has a double M.Sc.
in applied data science and environmental
science and has extensive experience working
with geodata use cases. He currently works at
Disneyland Paris, where he develops machine
learning for a variety of tools. His project
experience includes forecasting, recommender

engines, optimization, machine learning on
GPS tracking data, and more. Joos is also an active blogger on Medium and
has worked on multiple book publications.

xiii

Introduction

The aim of this book is to provide a first course in the use of Python to
develop programs.

It provides a foundation for those who wish to write computer
programs based on sound programming principles, and because the book
is intended to be a primer, it allows the beginner to become comfortable
with basic programming tasks.

As itis a first course, no previous experience of computer
programming is assumed.

Throughout the book, we’ll explore the Python programming language
with worked examples and lab exercises for you to complete yourself.

For this purpose, we've included all the source code for this book in the
following repository: github.com/apress/absolute-beginners-guide-python

CHAPTER 1

Introduction to
Computer
Programming

What is a computer program? A computer is a device that processes
instructions to achieve a task. This set of instructions is called a computer
program.

A computer program usually takes some data such as a string or a
number and performs calculations to produce results. We usually refer to
the data as the program’s input and the results as the program'’s output.

To write computer programs, we use a computer programming
language. There are many different languages such as BASIC, C, C++,
and Python. In this guide, we are going to concentrate on the Python
programming language.

Every computer program manipulates data to produce a result, so
most languages allow the programmer to choose names for each item of
data. These items are called variables or constants. A variable, as the name
suggests, is an item that can contain different values as the program is
executed. A constant stays the same.

© Kevin Wilson 2022 1
K. Wilson, The Absolute Beginner’s Guide to Python Programming,
https://doi.org/10.1007/978-1-4842-8716-3_1

https://doi.org/10.1007/978-1-4842-8716-3_1

CHAPTER 1 INTRODUCTION TO COMPUTER PROGRAMMING

For example, if we wrote a program to calculate the volume of a sphere,
we could have variables for the radius and one for the result. We can also
have a constant for the value of Pi as it never changes.

In larger programs, we often need to make decisions based on user
input, a calculated result, or condition. In this case, we use an if statement.
This is called selection.

Some blocks of code might also need to be repeated; in this case, we
use aloop. This is called repetition.

The Python programming language has specific facilities to enable
us to implement the concepts outlined earlier. Many of these will be
introduced throughout this book.

What Is Python

Python is a high-level language developed by Guido van Rossum in the
late 1980s and is used in web development, scientific applications, gaming,
Al, and is well suited to education for teaching computer programming.

Python is designed to be an easily readable language. Therefore, it uses
an uncluttered formatting style and often uses English keywords where
other languages use a symbol.

Python is an interpreted programming language, meaning Python
programs are written in a text editor and then put through a Python
interpreter to be executed.

Python is used in the field of artificial intelligence and can be found
in many day-to-day applications. Streaming services such as Spotify use
Python for data analysis, particularly users’ listening habits in order to
offer suggestions on which artist to follow, other music a particular user
might be interested in, and so on. Python is also used within Netflix’s
machine-learning algorithms for recommending relevant content to users,

monitoring browsing habits, and marketing.

CHAPTER 1 INTRODUCTION TO COMPUTER PROGRAMMING

In the world of games development, Python is used as a companion
language, meaning Python scripts are used to add customizations to the
core gaming engine, script Al behaviors, or server side elements. The
performance of Python isn’t fast enough for coding graphics-intensive,
higher-end games; however, you can create simple games with Python
using the pygame module.

Python is used in web development and allows a web developer to
develop dynamic web apps very quickly.

Python is a multi-platform language and is available for Windows,
MacOS§, Linux, and the Raspberry Pi.

To start coding, you'll need a computer - either Windows, MacOS,

or Linux - and an integrated development environment (IDE) with the
Python interpreter.

CHAPTER 1 INTRODUCTION TO COMPUTER PROGRAMMING

Getting Started

In this section, we’ll take a look at how to install the Python interpreter
and development environment. You can install Python on Windows, Mac,
or Linux.

Setting Up

Before we start writing programs, we need to set up our development
environment. We'll take a look at installing Python on Windows, Mac,
and Linux.

Install on Windows

In our lab, we're using Windows workstations, so we’ll need to install the
Python integrated development environment for Windows.
Open your web browser and navigate to the following website:

www . python.org/downloads/windows

From the Downloads page, select the “executable installer” of the latest
stable release.

https://www.python.org/downloads/windows

CHAPTER 1

Python Releases for Windows

« Latest Python 3 Release - Python 3.7.3
= Latest Python 2 Release - Python 2.7.16

Stable Releases

« Python 3.7.3 - March 25, 2019
Note that Python 3.7.3 cannot be used on Windows XP or earlier.

Download Windows help file
Download Windows x85-64 embeddable zip file
Download Windows x86-64 executable installer.

Download Windows x86-64 web-based installer

Download Windows x86 embeddable zip file

Download Windows x86 executable installer

Download Windows x86 web-based Installer
Python 3.4.10 - March 18, 2019
« Mo files for this release.

Python 3.5.7 - March 18, 2019
Note that Python 3.5.7 cannot be used on Windows XP or earlier.

« No files for this release.
« Python 2.7.16 - March 4, 2019
» Download Windows debug information files
= Downioad Windows debug information files for 64-bit binaries
= Download Windows help file
« Downiload Windows x86-64 MSI installer

INTRODUCTION TO COMPUTER PROGRAMMING

Pre-releases

» Python 3.8.0a4 - May 6, 2019

Download Windows help file
Download Windows x86-64 embeddable zip file

Download Windows x86-64 executabie installer

Download Windows x86-64 web-based installer

Download Windows x86 embeddabie zip file

Download Windows x86 executable installer

Download Windows x86 web-based installer

» Python 3.8.0a3 - March 25, 2019

Download Windows help file
Download Windows x86-64 embeddable zip file

Download Windows x86-64 executable installer

Download Windows x86-64 web-based installer

Download Windows x86 embeddabile zip file

Download Windows x86 executable installer

Download Windows x86 web-based installer

» Pythen 3.7.3rcl - March 12, 2019

« Download Windows help file
= Download Windows x86-64 embeddable zip file
= Download Windows x86-64 executable installer

Click “run” when prompted by your browser. Or click “python-x.x.x-

amd64.exe” if you're using Chrome.

CHAPTER 1 INTRODUCTION TO COMPUTER PROGRAMMING

Python Releases for Windows

= Latest Python 3 Release - Python 3.7.3

= Latest Python 2 Release - Python 2.7.16

Stable Releases Pre-releases
» Python 3.7.5 - March 25, 2019 = Python 3.8.0a4 - May 6, 2019
Note that Python 3.7.3 cannot be used on Windows XP or « Download Windows help file
earlier. = Download Windows x86-64 embeddable zip file

= Download Windows x86-64 executable installer

Download Windows help file
» Download Windows x86-64 web-based installer

Downtoad Windows x85-64 embeddabile zip file o
= Download Windows x86 embeddable zip file
= Download Windows x86-64 executable installer o .
» Download Windows x86 executable installer
Windows x86-64 web-based installer

» Download Windows x86 web-based installer
= Python 3.8.0a3 - March 25, 2019
=_Downiload Windows heio file

= Dow Windows x86 embeddabile zip file

indows x86 executable installer

% python-373-amdedexe ~ Showall X

Once the installer starts, make sure “Add Python 3.x to PATH” is
selected, and then click “Customize installation” to run through the steps
to complete the installation.

©» Python 3.8.1 (64-bit) Setup - X

Install Python 3.8.1 (64-bit)

Select Install Mow to install Python with default settings, or choose
Customize to enable or disable features.

—> Install Now
Ci\Users\kevwilAppData\Local\Programs\Python\Python38

Includes IDLE, pip and documentation
Creates shortcuts and file associations

= Customize installation
Choose location and features

pgthon

Install launcher for all users (recommended)

WIﬂdOWS »EAdd Python 3.8 to PATH Gancel

Make sure you select all the tick boxes for all the optional features.

CHAPTER 1 INTRODUCTION TO COMPUTER PROGRAMMING

5 Python 3.8.1 (64-bit) Setup o X

Optional Features
Documentation
Installs the Python documentation file.
Mpip
Installs pip. which can download and install other Python packages.
[tcl/tk and IDLE
Installs tkinter and the IDLE development environment.
Python test suite
Installs the standard library test suite.
~ py launcher [~ for all users (requires elevation)

Use Programs and Features to remove the ‘py’ launcher,

python

for

WIﬂdOWS Back | Next || Cancel

Click “Next”
Make sure “Install for all users” is selected at the top of the dialog box.
Click “Install” to begin.

@ Python 3.8.1 (64-bit) Setup - X

Advanced Options
»B Install for all users
[Associate files with Python (requires the py launcher)
[Create shorteuts for installed applications
[Add Python to environment variables
(/] Precompile standard library
[Download debugging symbols
[Download debug binaries (requires VS 2015 or later)

Customize install location

l C\Program Files\Python38 ‘ Browse
python D
for
WIﬂdOWS l Back | I_anstall || Ccancel

CHAPTER 1 INTRODUCTION TO COMPUTER PROGRAMMING

Click “Disable path length limit” to make sure Python runs smoothly
on Windows and allow long filenames.

 Python 3.7.3 (64-bit) Setup - X

Setup was successful

Special thanks to Mark Hammond, without whose years of
freely shared Windows expertise, Python for Windows would
still be Python for DOS.

New to Python? Start with the online tutorial and
documentation.

See what's new in this release.

@ Disable path length limit
Changes your machine configuration to allow programs, including Python, to
bypass the 260 character "MAX_PATH" limitation.

python

for

windows | Close

Click “Close” to finish the installation.
You'll find the Python integrated development environment (IDLE)
and the Python interpreter in the Python folder on your start menu.

B Type here to search

CHAPTER 1 INTRODUCTION TO COMPUTER PROGRAMMING

To write our programs, we’ll use IDLE Python. This is Python's

integrated development environment.

FeineDiive Documentystaster. py (3.7.5) - a =
+ Windew Hilp

Leck Cobd Le2 Cobl

Here, you can write your code in the editor and then execute and
debug your code. You'll also notice the code editor provides syntax
highlighting, meaning keywords and text are highlighted in different

colors, making code easier to read.

Install on MacOS

To install Python 3 with the official installer, open your web browser and

navigate to the following website:
www . python.org/downloads/macos

Click Download Python.

https://www.python.org/downloads/macos

CHAPTER 1 INTRODUCTION TO COMPUTER PROGRAMMING

About Downloads Documentation Community ce News

Download the latest version for macOS

Download Python 3.10.5

You'll find the package in your Downloads folder. Double-click on the

package to begin the installation.

10

Downloads
python-3.10.5- Pyt P

Downloads

Pictures

iCloud Drivs

) Documents

=) Desktop

Run through the installation wizard. Click “Continue.”

CHAPTER 1 INTRODUCTION TO COMPUTER PROGRAMMING

#® Install Python

Welcome to the Python Installer

This package will install Python 3.10.5 for macOS 10.9 or later.
Introduction

Python for macOS consists of the Python programming language

interpreter and its batteries-included standard library to allow easy

access to macOS features. It also includes the Python integrated

development environment, IDLE. You can also use the included pip to

download and install third-party packages from the Fython |

I

At the end of this install, click on Install Cert cates to install a
set of current SSL root certificates.

Continue

Once the installation is complete, you'll find Python in the
Applications folder in Finder or on the launchpad.

Install on Linux

If you are running a Linux distribution such as Ubuntu or have a Raspberry
Pi, you can install Python using the terminal. You'll find the terminal app
in your applications. You can also press Control+Alt+T on your keyboard.

user@www: ~

11

CHAPTER 1 INTRODUCTION TO COMPUTER PROGRAMMING

At the terminal command prompt, type the following commands. Press
Enter after each line.

sudo apt update
sudo apt upgrade

Type the following command to install Python:
sudo apt install python3 -y

Once the Python is installed, we need to install IDLE, the development
environment. To do this, type the following command at the prompt:

sudo apt-get install idle3 -y

Once installed, you'll find IDLE in your applications.

Or you can type the following command at the prompt:

idle

12

CHAPTER 1 INTRODUCTION TO COMPUTER PROGRAMMING

Arrange your windows so you can see your code window and the shell.

I1DLE Shell 3.10.4

File Edit Format Run Options Window Help Elle Edit Shefl Debug QOoticns Window Help
Python 3.16.4 (main, Apr 2 2822, €9:@4:19) [GCC 11|
2.0) on 1

.2.8] on Lin
Type “help®, "copyright®, "credits® or “license)
for more information.

Summary

o Pythonis a high-level language whose code is executed
by an interpreter to produce output.

o Python is a multi-platform language and is available for
Windows, MacOS, Linux, and the Raspberry Pi.

o To write our programs, we use IDLE Python. This is
Python’s integrated development environment.

13

CHAPTER 2

The Basics

Python programs are written in a text editor, such as Notepad, PyCharm, or
the code editor in Python’s integrated development environment (IDLE),
and saved with a .py file extension.

You then use the Python interpreter to execute the code saved in
the file.

Let’s start at the beginning.

Language Classification

There are different levels of programming language: low-level languages
and high-level languages.

Low-Level Language

A low-level language is a programming language whose functions often
refer directly to the processor’s instructions and is commonly written in
machine code or assembly language. Assembly language is known as a
second-generation programming language, machine code being the first
generation.

Let’s take a look at a simple program. Here, we have a little adder
program written in assembly language for our processor, and might look
something like this:

© Kevin Wilson 2022 15
K. Wilson, The Absolute Beginner’s Guide to Python Programming,
https://doi.org/10.1007/978-1-4842-8716-3_2

https://doi.org/10.1007/978-1-4842-8716-3_2

CHAPTER 2 THE BASICS

LDA 12H
ADD 07H
STA 09H
STP

Code is written in assembly language and then assembled into
machine code using an assembler before it is executed.

11000011 00001100
11000101 00000111

11000110 00001001
04000

Figure 2-1. Code assembled into machine code by assembler

Each assembly language instruction corresponds to a sequence of
binary numbers in machine code. The numbers, characters, addresses,
and other data are converted into their machine code equivalents.

So, LDA could be represented by the binary code 11000011; the
number 12, is 00001100 in binary.

The assembled machine code is then executed by the processor.

High-Level Language

Python is an example of a high-level language. Rather than dealing directly
with processor registers and memory addresses, high-level languages deal
with variables, human-readable statements, loops, and functions.
High-level language code is either compiled into a machine code
executable program or interpreted. Languages such as C or C++ are
often compiled, meaning the code is written and then converted into an
executable file. This makes them ideal for software development to write
applications such as Microsoft Word that run on a computer.

16

CHAPTER 2 THE BASICS

Compiler

Figure 2-2. Code compiled into machine code by compiler

Python is an interpreted language, meaning the code you write
is translated into machine code directly, making it well suited to web
development.

Here, you can see the interpreter executes the code line by line while
accessing any data required by the program and then displays the output
directly onto the screen.

Program
Output

i -

Code 7

Interpreter |

Figure 2-3. Code interpreted by interpreter for execution

When you attempt to run your program, the interpreter will convert
and execute your code, but will only do this if it doesn’t contain any errors.

17

CHAPTER 2 THE BASICS

If there are syntax errors, an error in the Python grammar, the
interpreter will stop and highlight the error.

A test.py cers\kevwi\OneDrive] - A, |DLE Shell 3,10.2
File Edit Format Run Options Window Help File Edit Shell Debug Options Window Help
Numl = 2 a Python 3.10.2 (tags/v3.10.2:a58ebcc, Jan 17 2022, 1 &
num2 '- 3 4:12:15) [MSC v.1929% 64 bit (AMDE4)] on win32
sum = Huml + Num2 Type "help”, "copyright”, "credics"™ or "license()"
print (sum) for more information.

2 SyntaxError x

° invalid syntax

(o)

¢ Ln:d Col: 11] Ln:3 CokO

If your program runs, there could still be errors. These could be logical

errors and can produce unexpected results and are sometimes called
bugs in the program. This could be a divide by 0 error which can cause the
program to crash.

The process of eliminating these errors is called debugging.

Python Language Syntax

The syntax defines how a program is written and interpreted and forms the
basis of writing code.

Reserved Words

These are words reserved by the programming language that define the
syntax and structure. Here are some of the most common ones:

18

CHAPTER 2 THE BASICS

and A logical operator commonly used in if statements

as Creates an alias

assert For testing conditions and used in debugging

break Breaks out of a loop

class Creates a class

continue Continues to the next iteration of a loop

def Defines a function

del Deletes an object

elif Used in conditional statements, same as else if

else Used in conditional statements

except Defines code to run when error occurs (an exception)

false Boolean value, result of comparison operations

finally Il.lsed with e?cceptions, a block of code that will be executed no matter if there
is an exception or not

for Creates a for loop

from Used to import only a specified section from a module.

global Declares a global variable

if Create a conditional statement

import Imports a module

in Used to check if a value is present in a sequence

is Used to test if two variables refer to the same object

lambda Used to create small anonymous functions

None Represents a null value

nonlocal Used to work with variables inside nested functions,

not A logical operator

or A logical operator

pass Does nothing, used as a placeholder

raise Used to raise an exception.

return To exit a function and return a value

true Boolean value, result of comparison operations

try To make a try...except statement

while Creates a while loop

with Used to simplify exception handling

yield Used to end a function, returns a generator

For example, the word “while” indicates a while loop. The word “if”

defines an “if statement.” You can’t use a reserved word as a variable name

or function name.

19

CHAPTER 2 THE BASICS

Identifiers

An identifier is a name given to a class, function, or a variable. Identifiers
can be a combination of uppercase or lowercase letters, numbers, or

an underscore (_). Try to keep the identifiers meaningful, so that they
describe what they’re used for.

printData, firstVariable, count, userCount

Indentation

Most other programming languages such as C and C++ use braces { } to
define a block of code. Python uses indentation. Use the tab key.

C++ Python
if test condition { if test condition:
execute this block if true; execute this block if true
} else { else:
otherwise execute this block; otherwise execute this block
{
Comments

A comment is an explanation or annotation in the source code of a
computer program for the purpose of making the source code easier for
other programmers to understand. Comments are intended to be human
readable for the programmer’s benefit and are ignored by the Python
interpreter during execution.

Comments are very important while writing a program. You should
clearly document all your code using comments, so other developers
working on a project can better understand what your code is doing.

20

CHAPTER 2 THE BASICS
Use the hash character (#) to write single-line comments:

Prompt user for two numbers
a = input ('Enter first number: ')
b = input ('Enter second number: ')

If you need to write a block describing the functionality, then use a
triple quote before and after the comment block.
For example:

mmn

Prompt user for two numbers
one after the other using a text input
a = input ('Enter first number: ')

mnn

b = input ('Enter second number: ')

Input

You can obtain input from the user using the input() function. This
function prompts the user to type in some data.

number = input ('Enter a number: ')

Output

You can display information on the screen with the print() function.
You can print the contents of a variable or enclose a string within the
parameters of the print() function. For example:

print (number)

Escape Characters

An escape character tells the interpreter to perform a specific operation
such as a line break or tab or a reserved character such as a quote mark or
apostrophe.

21

CHAPTER 2 THE BASICS

Escape characters start with the a backslash (\) and are used to format

a string. Table 2-1 lists escape characters and their function.

Table 2-1. Escape characters

Escape Character Function

\n Line break

\t Tab (horizontal indentation)
\ New line in a multiline string
\\ Backslash

\ Apostrophe or single quote
\” Double quote

For example, you could use the tab escape and break line character to

format some text:
print("John \t 45 \nJoanne \t 15")
The output to this line would look something like this:

John 45
Joanne 15

Writing a Program

To write a program, open IDLE Python from the start menu. Select the File

menu and then click “New File.”

22

CHAPTER 2 THE BASICS

[& Python 3.7.3 Shell -
File Edit Shell Debug Options Window Help

Open... Cul+0

OpenModule.. Alt+M "credits™ or "license ()" for more information.
Recent Files »

Module Browser Alt+C

Path Browser

Save Ctrl+S

Save As... Ctrl+Shift+S

Save Copy As... Alt+Shift+S
Print Window Cul-P

Close Alt+F4
Exit Cul-Q

o x

Mew File Ctrl+N ‘Féedlz, Har 25 2019, 22:22:05) [M5C v.1916 &4 bit (AMDE

Ln:3 Cok4d

A new blank window will appear. This is the code editor. Here, you can

write all your Python code.

23

CHAPTER 2 THE BASICS

| untitied - o ®
File fdit Format Run Options Window Help
22122105) [M5C v.1%16 64 bit (AMDE |

or "license{)" for mors informatiom.

Arrange your windows as shown here, with the Python Shell on
the left-hand side (or right if you prefer) - this is where you'll see the
results of your programs. Put the code editor window next to the Python
Shell window.

For our first program, we’re going to write something that adds two
numbers together and then displays the result.

First, we need two variables to store the numbers. We'll use “a” and “b.”
We'll assign the number 5 to each variable.

a=>5
b =5

Next, we need a piece of code that will add the two numbers together
and store the result. In this case, the values assigned to the variables “a”
and “b” will be added together and stored in the variable “result.”

result =a + b
Next, we'll need a function to print the result on the screen:

print (result)

24

CHAPTER 2 THE BASICS

Let’s put it all together in a program.

[& sterter.py - C:\Users\kevwi\OneDrive\Documentsi\st... — o x

File Edt Format Run Options Window Help
a=35
b =3

result = a + b

print (result)

To run the program, press F5, or go to the “Run” menu in your code

editor and click “Run Module.”

25

CHAPTER 2 THE BASICS

& "untitled*

File Edit
a=25
b=25

Format

result = a + b

print (resulc}[_

You can see in the following image the output of the program, in this

case “10”

26

Window Help
Run Module F5

Run... Customized Shift+F5
Check Module Alt+X
Python Shell

Run Options

CHAPTER 2 THE BASICS

[& seonterpy - COserskevwi OneDrive\ Documentilat.,. — O X
File Edt Format Run Option: Window Help

Lrcé Cokd Lecé Cok 14

This particular program isn’t very useful. It would be much better if we
could allow the user to enter the numbers they want to add together. To do
this, we'll need to add a function that will prompt the user for a value.

We'll use the input function. We can replace the variables “a” and “b”
from the previous program with the input function.

input ('Enter first number: ')
input ('Enter second number: ')

a
b

Now, because the input function reads the values entered as text
(called a string), we need to convert these to numbers. So we need to
modify the code that adds the two numbers together. We can use the int
function - this converts the text to an integer which is a fancy name for a

whole number.
result = int(a) + int(b)

Let’s put it all together in a program.

27

CHAPTER 2 THE BASICS

RESTART: CriUsers'kevwi
Enter first mumber: &
Enter second number: §
0

2016, 22:22:08) (MSC v.1914 64 bait (AMDE

= "license()” for meIe information.

starter.py

Ln:8 Cokd

[& starterpy - C\Users\ kewwit OneDrive\ Decumentsis
File Edt Fomnat Fun Options Window Help

zesult =

inzia) + inzib)

print (result)

a *

Ln:6 Cok 14

You can see in the following image the output of the program. The

program prompted the user for two numbers, added them together, and

then displayed the result underneath.

RESTART: CriUsers'kevwi
Enter first mumber: &
Enter second number: §
0

2016, 22:22:08) (MSC v.1914 64 bait (AMDE

= "license()” for meIe information.

starter.py

Ln:8 Cokd

[& starterpy - C\Users\ kewwit OneDrive\ Decumentsis
File Edt Fomnat Fun Options Window Help

zesult = la) » inz(b)

print (result)

a *

Ln:6 Cok 14

28

CHAPTER 2 THE BASICS

Lab Exercises

What is the output produced by the following code fragment?

2
num2 = 3
print (numl + num2)

numi

What is the output produced by the following code fragment?

numl = 2
num2 = 3
print ("num 1 + num 2 =

, huml + num2)

Find the errors in the following program:

Numi = 2

num2 := 3

Sum = numl + num2;
printf(sum)

Which of the following identifiers are valid and which are
invalid? Why?

Num1
time-of-day
tax_rate

X5

int

7th_Rec
yield

How do you write comments in your code? Explain with an example.

Why should you include comments?

29

CHAPTER 2 THE BASICS

Summary

30

Python programs are written in a text editor, such as
Notepad, PyCharm, or the code editor in Python’s
development environment (IDLE), and saved with a .py
file extension.

Python is an example of a high-level language.

Python is an interpreted language, meaning the code
you write is translated into machine code directly,
making it well suited to web development.

An identifier is a name given to a class, function, or a

variable.

Python uses indentation to mark a block of code. Use
the tab key to indent.

A comment is an explanation or annotation in the
source code of a computer program for the purpose of
making the source code easier for other programmers
to understand.

You can obtain input from the user using the input()
function.

You can display information on the screen with the
print() function.

CHAPTER 3

Working with Data

You can store and manipulate all different types of data: a number, a string,
list, and so on. With Python, you don't need to declare all your variables
before you use them.

Variables

Avariable is a labeled location in memory that is used to store values
within a computer program. There are two types of variables: local
and global.

Local Variables

Variables defined within a function are called local variables, as they are
local to that particular function. These variables can only be seen by the
function in which they are defined. These variables have local scope.
Figure 3-1 shows an example of local variables.

firsthum secondnum total

Figure 3-1. An example of local variables

© Kevin Wilson 2022 31
K. Wilson, The Absolute Beginner’s Guide to Python Programming,
https://doi.org/10.1007/978-1-4842-8716-3_3

https://doi.org/10.1007/978-1-4842-8716-3_3

CHAPTER 3 WORKING WITH DATA

Global Variables

Global variables are defined in the main body of the program outside any
particular functions. These variables can be seen by any function and are
said to have global scope.

Here in the example below, “a” and “b” are global variables, while

” u

“firstnum,” “secondnum,” and “sum” are local variables.

a = int(2)
b = int(3)

def addsum(firstnum, secondnum):
sum = firstnum + secondnum
return sum

” u

You would not be able to access the variables “firstnum,” “secondnum,”’
and “sum” from outside the “addnum” function.

Basic Data Types

A variable can store various types of data, called a data type. Let’s
introduce some of the basic types we'll be looking at.

Integers

An integer is a whole number and can be positive or negative. Integers can
usually be of unlimited length.

score = 45

32

CHAPTER 3 WORKING WITH DATA

Floating Point Numbers

A floating point number, sometimes called a real number, is a number that
has a decimal point:

temperature = 44.7

Strings

In Python code, a string must be enclosed in quotes “..” or *...:

name = "John Myers"

Lists

Alist is an ordered sequence of data items usually of the same type, each
identified by an index (shown in the circles). This is known as a one-
dimensional list.

OBread aMilk OCoffee eCereal

Lists are known as arrays in other programming languages, and you
can create one like this - list elements are enclosed in square brackets [|:

shoppinglist = ['bread', 'milk', 'coffee', 'cereal']

To reference an item in a list, put the reference in square brackets:
print (shoppinglList[1])

You can assign another value to an item in the list (e.g., change cereal):

shoppinglList[3] = "chocolate"

33

CHAPTER 3 WORKING WITH DATA

You would end up with something like this:

o Bread o Milk o(:offee OChocolate

Let's look at a program. Open the file list1.py. Here, we've created a list
and initialized it with some data.

| tist1.py - /frockstore/dat Chapter 03/lis... —) X |8 Python 3.6.1 Shell - o X
File Edit Format Run Options Window Help File Edit Shell Debug Optiens Window
shoppinglist = ['Bread' , 'Milk' , 'Coffes' , 'Careal'] ~ W Help
Python 3.8.1 (tags/v3.8.1:1b293bE,
#print original list Dec 18 2019, 23:11:4€) [MSC v.1816
princ('First Ite ', shoppinglisc[0]) 64 bit (AMDE4)] on win32
print('Second I ', shoppinglist(l]) Type "help", "copyright", "credits
princ('Third I shoppinglisct(2)) " or "license ()" for more informat
print('Fourcth Item :' , shoppingLisc(3]) ion.
B3
fupdate fourch item in listc ======== RESTART: //rockstore/data
shoppinglist[3] = 'Pizza' /Resources/Pychon/Chaprer 03/liscl
R P -
#print updated list FE:.![’. Item : Bread
princ ('\nUpdated list...') Second Item : Milk
i Izem :' , shoppinglist(0]) Third Item : Coffee
Item :' , shoppingliscil]) Fourth Item : Cereal
Item :' , shoppinglisc(2)])
t Item :' , shoppinglist(3]) Updated list...
First Item : Bread
Firsc Icvem : Milk
First Item : Coffee
Firsct Item : Pizza
3> |

We can output data from the list using a print statement and a
reference to the item in the shopping list:

print (shoppinglList[3])
We can also update an item in the list using the reference:

shoppinglist[3] = 'pizza’

34

CHAPTER 3 WORKING WITH DATA

Two-Dimensional Lists

Two-dimensional lists are visualized as a grid similar to a table with
rows and columns. Each column in the grid is numbered starting with
0. Similarly, each row is numbered starting with 0. Each cell in the grid
is identified by an index - the row index followed by the column index
(shown in the circles).

0 1 2 3
0 4
1 19
2 3
3 5

You could declare the earlier list as

scoreSheet = [
[21, 8, 17, 4 1,
[2, 16, 9, 19],
[8, 21, 14, 3],
[3, 18, 15, 5]

35

CHAPTER 3 WORKING WITH DATA

To reference an item in a two-dimensional list, put both the references
in square brackets (first the row index, then the column index):

print (scoreSheet[1][2]) #circled above

You can change items in the list, put both the references in square
brackets (first the row index, then the column index), and then assign

the value:
scoreSheet [0][3] = 21

Let’s take a look at a program. Open the file list2d.py. Here, we've
declared our shoreSheet list and initialized it with some data.

@& tistzd.py - //rockstore/da rces/Python/Chapt) X [& Python 38.1Shell — o x
File Edit Format Run Optiens Window Help File Edit Shell Debug Options
scoreSheet = | + | Window Help
[21, & 17, 4 1, Python 3.8.1 (tags/v3.8.1:1b2%
[2, lg 9 1%], 3bé, Dec 18 201%, 23:11:48) [M
(& 21, 14, 3 1, SC v.1916 €4 bit (AMDE4)) on w
[3, 18, 15, 5] in32
] Type "help®, "copyright", "cre
dits" or "license()" for more
#Fprint original listc informacion.
print('Item :' , scoraSheet([l]([2]) p5
| | R RESTART: //rockstore/
#change item [1]([2] in grid To 21 data/Resources/Fython/Chapter
scoreSheet[1] [2] = 21 03/1ist2d.py =======
Item : 9
Fprint original list Item : 21
print{ "Item :' , scoreSheec([l][2]) ‘,>;,|

We can add an item to a particular location in the list:
scoreSheet [1][2] = 21
We can also output data stored at a particular location:

print (scoreSheet[1][2])

36

CHAPTER 3 WORKING WITH DATA

Sets

A setis an unordered collection of unique items enclosed in curly braces
{}. Sets can contain different types.
You can create a set like this:

setName = {1, 6, 2, 9}

Two things to note about sets. Firstly, you can’t index individual
elements in the set as it is an unordered data type. Secondly, you can’t
change individual values in the set like you can with lists. However, you
can add or remove items. Use the .add()method, and type the data to add,
in the parentheses.

setName.add('item to add")

Let’s take a look at a program. Open the file sets.py. Here, we've created
a set with some animal names. We can output the data in the set.

| sets.py - //rockstore/data/Resources/Py o [Python 3.8.1 Shell - o x
File Edit Fermat Run Options Window Help File Edit Shell Debug Options Window Help
animal = { 'Lion' , 'Cheetah' , 'Elephant' } | Pycthon 3.8.1 (tags/v3.8.1:1b293bé, Dec 12 2019 -
, 23:11:46) [MSC v.19%16 €4 bit (AMDEL)] on win
print("\nSet:', animal) 32
Type "help"”, "copyright®, "credics™ or "licens
animal.add('Mouse') e()" for more information.
E358
print('\nSet:', animal) ========= RESTART: //rockstore/data/Resources/

Pycthon/Chapter 03/secs.py ========
Set: {'Lion', 'Elsphant', 'Cheetah'}

Set: {'Mouse', 'Lion', 'Elephant', 'Cheetah'}
-

We can also add an item to the set using the .add() method.

Tuples

A tuple is similar to a list and is a sequence of items each identified by an
index. As with lists, the index starts with 0 not 1.

37

CHAPTER 3 WORKING WITH DATA

In contrast to lists, items in a tuple can’t be changed once assigned,
and tuples can contain different types of data.
To create a tuple, enclose the items inside parentheses ():

userDetails = (1, 'John', '123 May Road')

Use a tuple when you want to store a data of a different type, such a
sign in details for your website.

Let’s take a look at a program. Open the file tuple.py. Here, we've
created a tuple with some colors.

[tuple.py - /irockstore/data/Resources/Python/Chapter 03/tupl... u] = [& Python 381 Shell - o X
File Edit Format Run Options w Help File Edit Shell Debug Options Window Help
Paletce = ("Red' , "Orange' , '"Yellow' , 'Green' , 'Blus') ~ M Python 3.8.1 (vags/v3.5.1:1b29%3bé, Dec 18 2 -

018, 23:11:48) [MSC v.1916 €4 bit (AMDE4)]
print (‘Colour is: ', Palette([2]) on Wwin32

Type "help", "copyright", "credits" or "lic
princ ('‘n¥our palecte: ', Palette) ense ()™ for more informaciocn.

e

==mmmm== RESTART: //rockstore/daca/Resource

a/Pychon/Chapter 03/tuple.py ===m=mmw

Colour is: Yellow

Your palette: ('Red', '"Orange', 'Yellow',
"Green', 'Blue')
> |

We can output the data in the tuple using a print statement:

print (Palette[2])

Dictionaries

A dictionary is an unordered collection of items, each identified by a key.
To create a dictionary, enclose the items inside braces { }. Identify each

item with a key using a colon.

dictionary = { 1: 'Dave’,
2: 'Jo’
3: 'Jane'

38

CHAPTER 3 WORKING WITH DATA

To read a value, put the key in square brackets:
print (dictionary[1])

To change or add a value, put the key in square brackets. For example,

change “jo” to “mike.
dictionary[2] = 'Mike’

Let’s take a look at a program. Open the file dictionary.py. Here, we've
created a dictionary with some user data.

[jt dictionary.py - //rockstore/data/R — X l;yl?ylhon 3.8.1 Shell - o X
File Edit Format Run Options Window Help File Edit Shell Debug Options Window
userDacta = { 'ID' : 1234 , ~ || Help
‘Surname' : ‘Davies' , Python 3.8.1 (tags/v3.8.1:1b293b
'E e’ : 'Sarah' } §, Dec 18 2019, 23:11:46) [MSC v

L1916 64 bitv (AMDE4)] on win32
Type "help", "copyright", "credi

print('Reference:' , userDacta['ID']) ts"™ or "license()" for more info
print|("Reference:' , userData('Surname']) rmation.
>
userData['Surname'] = 'Daniels’ ====== RESTART: //rockstore/data
/Resources/Pycthon/Chapter 03/dic
print('\nReference:' , userDacta['ID’']) tionary.py mmmmm
print("Reference:' , userData('Surname']) Reference: 1234

Reference: Davies

Reference: 1234
Reference: Daniels
>>> |

We can reference the data using the key, for example, “ID”:

print (userData['ID'])

Program Input

One of the main reasons for writing a program is so you can run it multiple

times with various different data.

39

CHAPTER 3 WORKING WITH DATA

Instead of hard coding the input data into a variable as we’'ve done
previously, it would be better to prompt the user for the input or retrieve it
from a file (see later).

Instead of writing

a=17
we can use the input() function to prompt the user for a number:
a = input ('Enter a number: ')

It’s a good idea to separate your data from the actual program.

a = input (‘Enter

a number: ’)
Input Data

J

Figure 3-2. Input data into a program

Program OQutput

Any result calculated by the program needs to be displayed to the user in
a meaningful way. We can either output the data to the screen using the
print() function, or we can write the data to a file (see later).

40

CHAPTER 3 WORKING WITH DATA

|:> Output Data

Figure 3-3. Data output from program

print (a)

Casting Data Types

Variables can contain various types of data such as text (called a string), a
whole number (called an integer), or a floating point number (numbers
with decimal points).

With Python, you don’t have to declare all your variables before you
use them. However, you might need to convert variables to different types.
This is known as type casting.

Python has two types of type conversion: implicit and explicit.

With implicit type conversion, Python automatically converts one data
type to another.

With explicit type conversion, the programmer converts the data
type to the required data type using a specific function. You can use the
following functions to cast your data types:

int() converts data to an integer

long() converts data to a long integer

float() converts data to a floating point number

str() converts data to a string

For example, we use the input() function to prompt the user for
some data:

a = input ('Enter first number: ')

41

CHAPTER 3 WORKING WITH DATA

This example would prompt the user for some data and then store the
data in the “a” variable as a string.

This might sound ok, but what if we wanted to perform some
arithmetic on the data? We can't do that if the data is stored as a string.
We’d have to type cast the data in the variable as an integer or a float.

int(a)
or

float(a)

Arithmetic Operators

Within the Python language, there are some arithmetic operators you
can use.

Operator Description

W Power, indices
/ Divide

. Multiply

+ Add

- Subtract

Operator Precedence

BIDMAS (sometimes called BODMAS) is an acronym commonly used to
remember mathematical operator precedence - that is, the order in which
you evaluate each operator:

1. Brackets ()
2. Indices (sqrt, power, squared?, cubed?, etc.) **

3. Divide/

42

CHAPTER 3 WORKING WITH DATA

4. Multiply *
5. Add+

6. Subtract -

Performing Arithmetic

If you wanted to add 20% sales tax to a price of £12.95, you could do
something like this:

total = 12.95 + 12.95 * 20 / 100

According to the precedence list given earlier, you would first evaluate
the “divide” operator:

20 / 100 = 0.2
Next is multiply:

12.95 * 0.2 = 2.59
Finally addition:

12.95 + 2.59 = 15.54

Comparison Operators

These are used to compare values and are commonly used in conditional
statements or constructing loops.

43

CHAPTER 3 WORKING WITH DATA

Operator Description

== Equal to
I= Not equal to
Greater that
Less that
>= Greater than or equal to
<= Less than or equal to

For example, comparing two values in an “if” statement, you could
write something like this:

if a > 10:
print ("You've gone over 10...")

Boolean Operators

Also known as logical operators and are commonly used in conditional

statements (if...) or constructing loops (while... for...).

Operator Description

and Returns true if both the operands are true
or Returns true if either of the operands is true
not Returns true if operand is false

For example, you could join two comparisons in an “if” statement
using “and,” like this:

if a »>= 0 and a <= 10:

print ("Your number is between 0 and 10")
else

print ("Out of range - must be between 0 & 10")
Using the 'and' operator would mean both conditions
(a >= 0) and
(a <= 10) must be true.

44

CHAPTER 3 WORKING WITH DATA

Bitwise Operators

Bitwise operators are used to compare binary numbers:

Operator Name Description

& AND Sets each bit to 1 if both bits are 1

| OR Sets each bit to 1 if one of two bitsis 1

a XOR Sets each bit to 1 if only one of two bitsis 1
~ NOT Inverts all the bits

<< Left shift Shift bits to the left

>> Right shift Shift bits to the right

You can apply the bitwise operators:

a >> 2 #shift bits of 'a' left by 2 units
a << 2 #shift bits of 'a' right by 2 units
a & b #perform AND operation on bits

Lab Exercises

Write a program that accepts a length in inches and prints the length in
centimeters (1 inch = 2.54cm).

Write a program that accepts your forename, surname, and year of
birth and adds them to an array.

Write a program that converts temperatures from Celsius to
Fahrenheit:

F=Cx9/5+ 32
Write a program that calculates the volume of a sphere:

V = 4/3 =13

45

CHAPTER 3 WORKING WITH DATA

Write a program to calculate and display an employee’s gross and net
pay. In this scenario, tax is deducted from the gross pay at a rate of 20% to
give the net pay.

Write a program that stores a shopping list of ten items. Print the whole
list to the screen, and then print items 2 and 8.

Extend the previous program, to insert an item into the list.

What is a Boolean operator? Write a program to demonstrate.

What is a comparison operator? Write a program to demonstrate.

What is data type casting? Why do we need it? Write a program to

demonstrate.

Summary

e Avariable is alabeled location in memory that is used
to store values within a computer program

e Variables defined within a function are called local
variables, as they are local to that particular function.

e Global variables are defined in the main body of the
program outside any particular functions.

e Aninteger is a whole number and can be positive or

negative. Integers can usually be of unlimited length.

¢ Afloating point number, sometimes called a real
number, is a number that has a decimal point.

o Astring must be enclosed in quotes.

o Alistis an ordered sequence of data items usually of
the same type, each identified by an index.

e Asetisan unordered collection of unique items
enclosed in curly braces.

46

CHAPTER 3 WORKING WITH DATA

A tuple is similar to a list and is a sequence of items
each identified by an index. Items in a tuple can’t be
changed once assigned and tuples can contain different
types of data.

A dictionary is an unordered collection of items, each
identified by a key.

We can use the input() function to prompt the user for
a number.

Converting variables to different types is known as type
casting.

47

CHAPTER 4

Flow Control

Flow control is controlling the order in which statements or function calls

of a program are executed.

There are three control structures: sequence, selection, and iteration.

Python has various control structures such as while loops, for loops,
and if statements, which are used to determine which section of code is
executed according to certain conditions.

Sequence

A computer program is a set of step-by-step instructions that are carried
out in sequence to achieve a task or solve a problem. The sequence can
contain any number of instructions, but no instruction can be skipped in
the sequence. Figure 4-1 illustrates this.

© Kevin Wilson 2022
K. Wilson, The Absolute Beginner’s Guide to Python Programming,
https://doi.org/10.1007/978-1-4842-8716-3_4

49

https://doi.org/10.1007/978-1-4842-8716-3_4

CHAPTER 4 FLOW CONTROL

Execute first line of code

Execute second line of
code

Execute third line of code

Figure 4-1. A computer program’s step-by-step sequence

The interpreter will follow and execute each line of code in sequence
until the end of the program.

Let’s have a look at a program. Open adder.py. This program has four
statements.

50

CHAPTER 4 FLOW CONTROL

[@ adderpy - \wrockstore\data\Resources\P... 0 P [# Pythen 3.8.1 Shell -] X
File Edit Format Run Options v Help File Edit Shell Debug Options Window Help
a = input ("En — Python 3.8.1 (tags/v3.8.1:1b2%3b&, Dec 18 2019, 22:39:2 -
B = input (" " B 4) [M5C w.191€ 32 bit (Intel)] on win3d2
result = in ' Type "help”, "copyright”, "credits”™ or "license()" for
print (zesult) more informacion.
>
----------- RESTART: \\rock \datal “Eyth
on\adder . py =emssssssssss

Enter first number: 12
Enter second number: 2

. |

L4 Col: 14 Ln:& Cokd

Once you execute the program, the instructions are carried out in

sequence.
Let’s try another example. Open inchestocm.py.

51

CHAPTER4 FLOW CONTROL

&

File Edit Format Run Options

centimeter = int (input("En
inches = centimeter * 0.383701
print [centimeter, “cm is", inches,

"inches")

Lzl Cokd

& Pythen 3.2.1 Shall - 0 %
File Edit Shell Debug Options Window Help

“l Bython 3.8.1 (tags/v3.5.1:1b293bé, Dec 18 2018, 22:3

$:24) [MS5C v.181é 32 bic (Incel)] on win3dz2
Type "help", "copyright", "credics™ or "license()" f
more information.

= RESTART: \\rocksctcre\data\Rescurces\Fycth
cnlinchestocm.py s=sssssssss

Enter length in centimeters:30

cm is 11.81103 inches

Y

Ln:7 Cokd

Selection

In most computer programs, there are certain points where a decision
must be made. This decision is based on a condition, and that condition

can be either true or false.

if... else

If statements are used if a decision is to be made. If the condition is true,
then the if statement will execute the first block of code; if the condition is
false, the if statement will execute the “else” block of code if included.

52

CHAPTER 4 FLOW CONTROL

If
statement
condition

Execute first block Execute ‘else’ block
of code of code

Figure 4-2. An if... else statement

So, for example:

if num >= 0: #condition

print("Positive or Zero") #first block
else:

print("Negative number") #else block

Let’s have a look at a program. Open selection.py. Here, we can see a
very simple if statement to determine whether a test score is a pass or fail.
The pass mark is 70, so we need an if statement to return a pass message if
the value entered is greater than 70. Remember that we also need to cast
the variable “mark” as an integer (int).

If you enter a value greater than 70, the Python interpreter will execute
the first block of the “if statement.”

53

CHAPTER4 FLOW CONTROL

[@ selection.py - \irockstere\d O * | & Python 3.8.1 Shell - O hd
File Edit Format Run Optiens Window Help File Edit Shell Debug Options Window Help
Python 3.8.1 (tags/v3.8.1:1b293b6, Dec 18 2019, 22 ~
mark = int(inpuc("Enter your score")) :39:24) ([MSC v.1916 32 bic (Intel)) on win32
Type "help", "copyright®, "credits" or "license()"
for more information.
lse o>
princ("You've failed, try again.") snssssssssss RESTART: \\x ehvdatal rces\P
ython\selection.py
Enter your score 7%
You've passed!
>35> |
Ln:2 Col37 Ln:7 Cold

If you enter a value below 70, the Python interpreter will execute the

“else block” of the “if statement.”

54

CHAPTER 4

FLOW CONTROL

ction.py - Virockstore\data\Resoure [m]

L&__:.

File Edit Format Run Options Window Help
mark = int (input ("Enter your score")})
1f mark > 70:

princ("You've passed!"™)

print ("You've failed, try again.") «

Ln: 2 Cok 37

|# Python 3.8.1 Shell
File
Python 3.8.1
:38:24) [MSC v.1%16 32 bit (Intel)] on win32

Edit Shell Debug Optiens Windew Help

Type "help", "copyright”, "credits" or "lice
for more information.
S5

ssssssssssss RESTART: \\rockstore\data‘\Resources\P

ythen\selection.py
Enter your score 33
You've failed, try again.
>33 |

(cags/v3.8.1:1b293b6, Dec 1§ 201%, 22

o ®

nse ()"

L7 Col:d

elif

Use the elif statement if multiple decisions are to be made. Each decision
(or condition) will have a set of instructions to be executed.

55

CHAPTER 4 FLOW CONTROL

If
statement
condition

First elif
statement
condition

Execute first block
of code
Second elif
statement
condition

Execute second

block of code

Execute third block
of code

Execute ‘else’ block
of code

Figure 4-3. An elif statement

So, for example:

if condition: #1f condition
[statements] #first block of code

elif condition: #first elif statement
[statements] #second block of code

elif condition: #second elif statement
[statements] #third block of code

56

CHAPTER 4

else:
[statements] #else block of code

Let’s have a look at a program. Open multiselection.py.

FLOW CONTROL

- [u] - [& Python 3.8.1 Shel

File Edit Shell Debug Options Window Help

5
[mute
File Edit Format Run Options Window Help

an.py - ecks at SOUF...

- a X

mark = int(input("Enter student gradse: "))
[MSC v.191& 32 bit (Intel)] on wind2

e infozmation.
princ('Grade 3') e

Python 3.2.1 (tags/v3.8.1:1b293b6, Dec 18 2018, 22:38:24)

Type "help", "copyright®, "credics" or "license()" for mor

ESTART: \\
selection.py ===
Enter studenc grade: 77
zade A

3>

Enter student grade: 55
Grade C

EE

Enter student grade: 44
Grade D

>

Enter student grade: 32
Fail

D

1if mark >= 501 AdatalR
print('Grade C'")
1if mark = 40:

print ('Grade D*)

print ("Fail')

Ln: 12 Cel: 0

\Python\multi

Ln:23 Col:4

If we analyze the elif statement, we can see how it works. For the first

condition, any number entered above 70 will execute the first block.

57

CHAPTER4 FLOW CONTROL

T o

print ('Grade A')

I ... g 5= co-

print ('Grade B')

I .- o = so:

print ('Grade C')

I |- e 5= so:
print ('Grade D')
g

Any number between 60 and 69, the interpreter will execute the

r
7

62 < B EH b b b P e b] o P bt e e R e e =1 Pl P i

=3

print('Fail')

1]

|t e b b EA R b o= B B e B Pl Pt

second block.

58

CHAPTER 4 FLOW CONTROL

if mark >= 70:

print ('Grade A'")

print ('Grade B')

=1if mark >= 50:

print ('Grade C')

] b o E bt b b R) < i i W] E G e =1 P B

elif mark >= 40:

print ('Grade D')

1]

else:

| HEEEE EEEEE S EEEEE

print('Fail')

Similarly for the other conditions, 50-59 and 40-49.

59

CHAPTER 4

FLOW CONTROL

r
7

b < B b b W P B e b Pl o e et PRl e =1 B] B

| e b b EA e b o= B B e B P Pt

if mark >= 70:
print ('Grade A'")

elif mark >= 60:
print ('Grade B')

=1if mark >= 50:
print ('Grade C')

elif mark >= 40:
print ('Grade D')

else:

print('Fail')

-

If any condition is not met by the above “elif” statements, the

interpreter will execute the “else” block at the end.

60

CHAPTER 4

FLOW CONTROL

if mark >= 70:
print('Grade A')

elif mark >= €0:
print ('Grade B')

=1if mark >= 50:
print ('Grade C')

R A < B b b W P B e e e P e e e R e =1 Bl B i e L S

elif mark >= 40:
print ('Grade D')

| bt b b B AR e - B B

Iteration (Loops)

Aloop is a set of statements that are repeated until a specific condition is

For Loop

number of times.

m
I

print('Fail')

-

met. We will look at two types of loops: the for loop and the while loop.

A for loop executes a set of statements for each item in a sequence such
as a list or string or a range. It allows a code block to be repeated a specific

61

CHAPTER4 FLOW CONTROL

For each
item in
sequence

Execute block of code in
loop

Figure 4-4. A for loop

This particular loop will print out each name in the list on a new line:

list = ['john', 'lucy', 'kate', 'mike']
for val in list:
print (val) #block of code in loop

Let’s have a look at a program. Open forloop.py. The for loop contains
aloop condition. In this example, the loop will execute for each item in the
fruitlist [sequence].

62

CHAPTER 4 FLOW CONTROL

reckstard\d u] *® | Pythen 28,1 Sheat -] x
4 Run O File Edit Shell Debug Optiens Window Help
fruiclist = ['Banana' , "Cherzry' , 'Lemon' , "Strawberzy', "Feach'] ! Pythen 3.8.1 (tags/v3.8.1:1b293bé, Dec
18 2015, 22:39:24) [MSC v.1%1é 32 bic (
for item in fruitlisc: Intel)] on wind2
princ(icem , end = "'n') Type "help”, “copyright®, “credits® or
"license()™ for more information.
55
----------- RESTART: \\rockstore\data
\Resources\Python\forleop.py ==========
Banana
Ozange
Cherry
Lemon
Strawberry
Pesch
o3 |
L4 Cokd L 11 Cokd

The “item” variable in the “for loop” statement is a pointer or counter

to the current value or item in the sequence.

~ B

fruiclisct = ['Banana' , 'Crange' , 'Cherry' , 'Lemon' , 'Strawberry', 'Peach']
item
For each of these “items,” the interpreter will execute everything inside
the loop, in this example the “print” statement:
print (item, end="\n")

The interpreter will test the condition in the for loop again, and if it is
true, the interpreter will execute everything inside the loop again. In each
iteration of the loop, the counter moves to the next value or item.

~ B

fruiclisc = ['Banana' , 'Orange' , 'Cherry' , 'Lemon' , 'Sctrawberry', 'Peach']

item

63

CHAPTER4 FLOW CONTROL

At the end of the sequence, the loop condition becomes false, so the

loop terminates.

Let’s look at another example. Open forloop2.py.

[rorle) Re - o
File Edit Fermat Run Options Window Help
for counter in range(l,10):
print (counter , end = '\n')
Ln:3 Cok0

& Python 3.8.1 Shell
File Edit Shell Debug Options Windew Help

o x

Python 3.8.1 (tags/v3.2.1:1b283bé, Dec 13 2018, 22:38:2

4) [MSC v.1916 32 bit (Intel)] on win32
Type "help"”, "copyright",
more informacion.

5>

"credits™ or "license ()" for

============ RESTART: //rockscore/data/Resources/Pychon

/forloopl.py ===sssss=s==
1

VOO0 0 b W R

>3 |

Ln: 14 Col:4

When you run through the program, you can see what it’s doing.

64

CHAPTER 4 FLOW CONTROL

Is counter
inrange
(1-10)?

Print (counter, end = \n’) End loop

While Loop

A while loop executes a set of statements while a certain condition is true.
It allows the set of statements in the code block to be repeated an unknown
number of times and will continue to repeat while the condition is true.

65

CHAPTER4 FLOW CONTROL

Condition

Execute block of code in
loop

Figure 4-5. A while loop

This particular loop will keep prompting the user for a string until the
user enters the word “fire”:

userInput =
while userInput != 'fire':
userInput = input ('Enter passcode: ')

Let’s have a look at a program. Open whileloop.py. The while loop
contains a loop condition.

66

(%

File Edit Format Run Options Window Help

CHAPTER 4 FLOW CONTROL

temperature = 0

temperature 26:
print ("C Nt temperature is:
Temperature = temperature + 1

., temperature, “C")

Ln:4 Col: 51

[&» - O *
File Edit Shell Debug Options Window Help
Python 3.8.1 (tags/v3.8.1:1b293b6, Dec 18 ~
2019, 22:39:24) [MSC v.1916 32 bit (Intel)
] on win3z
Type "help”, "copyright®, "credits" or "li
cense ()" for more information.
>
==mm======== RESTART: \\rockstore\data\Res
curces\Python\whileloop.py ==ssssssses
Current Tempeérature is: 0 C
Current temperature is c
Current temperacure is: 2 C
Current temperature is: 3 C
Current tempeérature is: 4 C
Current temperature is: 5 C
Current temperature is: € C
Current temperature is: 7 C
Curzent temperature is g cC
Currenc temperacure is: & C
Current temperature is: 10 C
Cuzrent tempezature is: 11 C
Current temperature is: 12 C
Current temperacure is: 13 C
Current temperature is 14 C
Current temperature is: 15 C
Current cemperature is 16 C
Current temperature is: 17 C
Current Teémpérature is 12 C
Current Temperature is: 10 C
Current temperature is: 20 C
Current temperature is: 21 C
Cuzrent tempezature is: 22 C
Current temperature is: 23 C
Current temperacure is: 24 C
Current temperature is 25 C
Current température is 26 C
EES
Ln:32 Cokd

When you run through the program, you can see what it’s doing:

67

CHAPTER4 FLOW CONTROL

Print (temp)
temp=temp +1

End loop

Break and Continue

The break statement breaks out of a loop. In this example, the loop breaks
when the counter is equal to 5.

while (counter < 10):
if counter ==
break
counter = counter + 1

The continue statement jumps back to the top of the loop without
executing the rest of the code after the continue keyword. In this example,
the loop restarts when “number” is even.

myList = [1, 2, 3, 4, 5, 6, 7, 8]
for number in mylist:
if number % 2 == 0: #if number even
continue
print(number)

68

CHAPTER 4 FLOW CONTROL

Lab Exercises

Take a look at the following exercises and use what you've learned to solve

the problems.

1.

Write a program to print the numbers 1-10 to
the screen.

Write a program to print a list of names to
the screen.

Write a program to calculate and print the squares
of the numbers from 1 to 10. Use tabs to display
them in a table.

Write a program that accepts a number from the
user until a negative number is entered.

Write a program that accepts an integer and prints
the specified range it belongs to:

Range 1: 0 to 10

Range 2: 11 to 20
Range 3: 21 to 30
Range 4: 31 to 40

Summary

Flow control is controlling the order in which
statements or function calls of a program are executed.

Sequence is the set of step-by-step instructions carried
out in order to achieve a task or solve a problem.

69

CHAPTER 4

70

FLOW CONTROL

Selection is the point at which a decision is to be made.
For this, we use IF statements.

Iteration is where we need to repeat several lines of
code multiple times. For this, we use WHILE and
FOR loops.

Use FOR loop if you know how many times you're going
to execute the loop, such as processing a range or list.

If you need to repeat code until a condition is to be met,
use a WHILE loop.

The break statement breaks out of a loop.

CHAPTER 5

Handling Files

Since the computer’s memory (RAM) is volatile, it loses any stored
data when the power is turned off. So any data that needs to be stored
permanently must be saved in a file.

A file is a named location on a disk drive that is used to store data. Each
file is identified by its filename.

Python contains inbuilt functions for reading data from files, as well as
creating and writing to files.

In this chapter, we’ll take a look at how to open files, how to read from
a file, and how to write to a file.

We'll take a look at the difference between text files and binary files, as
well as random access.

File Types

There are two types of files: text files and binary files. By default, Python
reads and writes data in a text file.

Text File

A text file stores sequences of characters: plain text files, HTML files, and
program source code.

© Kevin Wilson 2022 71
K. Wilson, The Absolute Beginner’s Guide to Python Programming,
https://doi.org/10.1007/978-1-4842-8716-3_5

https://doi.org/10.1007/978-1-4842-8716-3_5

CHAPTER 5 HANDLING FILES

Use these file modes when opening a file in text mode:

u_n

e “r” opens a file for reading, error if the file does
not exist.

u_n

e “@” opens a file for appending, creates the file if it does
not exist.

«u. ”

e “w” opens a file for writing, creates the file if it does
not exist.

e “r+” opens a file for both reading and writing.

Binary

A binary file is stored in the same format as the computer’s memory
(RAM): any images such as jpeg, audio, or program executable files.
Use these file modes when opening a file in binary mode:

e “rb” opens a file for binary reading, error if the file does
not exist.

o ‘“ab” opens a file for binary appending, creates the file if
it does not exist.

o “wb” opens a file for writing, creates the file if it does
not exist.

e “rb+” opens a file for both reading and writing.

72

CHAPTER 5 HANDLING FILES

Text File Operations

By default, Python opens files as text files. Text files contain readable

characters as shown in the following example:
| data.txt - Notepad - o X
File Edit Format View Help
Jack jack@test.com
Pete pete@test.com

Jill jill@site.com
Mike mike@web.con'l

Ln4, C 100% Windows (CRLF) UTF-8

Figure 5-1. Example of a text file

Open Files
To open a file, use the open() method:
file = open('filename.txt', 'file mode")

When you open a file, put the filename and the file mode in the
parameters of the open() method.

73

CHAPTER 5 HANDLING FILES

file =

open (‘data.txt’, ‘rt+’)

File
Mode

File stored

data.txt on disk
drive

Figure 5-2. How a file is accessed in Python

The file mode tells the Python interpreter what you intend to do with
the file, that is, read, write, or append:

w._.n

e “r” opens a file for reading, error if the file does
not exist.

u,_n

o “@d” opens a file for appending, creates the file if it does
not exist.

o “w” opens a file for writing, creates the file if it does
not exist.

e “r+” opens a file for both reading and writing.

74

CHAPTER 5 HANDLING FILES

This depends on the purpose of your program. It’s good practice to
open your file, perform your operations, and then close the file.

Write to a File

To write data to a file, use the .write() method:
file.write("Data to write to the file...")

When opening a file for writing, use either of the following:

u_n

e “@” opens a file for appending, creates the file if it does
not exist. Adds new data to the end of file.

«u. ”

e “w” opens a file for writing, creates the file if it does not
exist. Overwrites any existing data in file.

Let’s take a look at a program. Open file.py.

75

CHAPTER 5 HANDLING FILES

Lé file.py - \\rockstore\data\Resources\Python\file.py (3.8.. — O X

File Edit Format Run Options Window Help

#get some information
username = input('Ente
useremail = input('Ent

r your name: ')
er your email: ')

sopen file for writin
file = open('data.txt' , 'w')

Fwrite the data to the file data.txt
file.write (username)

file.write (' ') #add space between
file.write (useremail)

#close the file
file.close()

Here, we get some information from the user (a username and an

email address):

username = input('Enter your name: ')
useremail = input('Enter your email: ')

Next, we open a file called “data.txt” for writing and assign it to an
object called “file”

file = open('data.txt', 'w")

76

CHAPTER5 HANDLING FILES

data.txt

We then write the username and email address to the file using the file

object’s .write method.

essurces\Python\file.py (3.8..] x

N . .
L fitepy - Virackstore\dat
File Edit Format Run Options Window Help
format.
('E

ut (

#ger some in
username = 1
ugezremail =

A

#open file for writing
file = cpen(‘data.txt' , ‘W')

rh‘:.\:e the data to the file daca.txt
file.write (username)

e I I’”’ffmmm,,,m

#close the file
file.close()

Ln: 16 Col: 15

~ | Bychon 3.8.1 (vags/v3.8.1:1b293b6, Dec 18 201% -~

ﬂWWWHMq.._

| Python 3.8.1 Shel o x
File Edit Shell Debug Options Windew Help
s 22:30:29) [M3C v.1916& 32 bit
32

Type "help®, "copyright",
¢()" for more information.
3>

(Intel]] on win

"oredits® or "licens

RESTART: \\rockstore\data\Resou
zces\Python\file.py
Enter your name: John

Enter your email: john@ele.com
e

) datatxt - Motepad
File Edit Format View Help
I:lohn john@ele.com

<

Ln1,C 100% Windows (CRLF) UTF-8

Ln:7 Col4

Now remember, the ‘w’ file mode opens a file for writing. This also

means any new data will overwrite any data already stored in the file.

After we've completed our file operations, we close the file:

file.close()

77

CHAPTER 5 HANDLING FILES

Read from a File
To read data from a file, use the .read() method to read the whole file:
fileContent = fileName.read()
Use the .readline() method to read a line at a time:
nextLine = fileName.readline()

When opening a file for writing, use either of the following:

e “r” opens a file for reading, error if the file does

not exist.
e “r+” opens a file for both reading and writing.

Let’s take a look at a program. Open fileread.py.

. .
[Python 3.8.1 Shel

File Edit Shell Debug Options Window Help

Python 3.8.1 (tags/v3.8.1:1b293b6, Dec 18 201%, 22 ~
:39:24) [MSC v.1916 32 bit (Intel)] on win32

Type "help”, "copyright”, "credits" or "license()"

File Edit Format Run Options Window Help
#open file for reading
file = gpen ('data.txt' , 'r')

dataInFile = file.read(for more information.
e
print (dacaInFile) T T — RESTART: //rockstore/data/Resources/P
’,’, ython/fileread.py =ssssssssses
#close the file /’, Jack jack@tesc.com
file.close() ”, Pete pete@test.com
’,’, Jill jill@site.com
ke mike@web.com

,,I,l,, 7| data.txt - Motepad - o
,,, File Edit Format View Help

Jack jack@gtest.com|
Pete pete@test.com|

Jill jill@site.com|
Mike mike@web.con

I Lnd € 100% Windows (CRLF) UTF-&

78

CHAPTER 5 HANDLING FILES

Here, we open a file called “data.txt” and assign it to an object
called “file”

Next, we read the data using the “file” object’s . read method and
finally close the file.

Binary File Operations

Most digital data is stored in binary files as they are much smaller and
faster than text files.

Binary files are not readable by humans as shown in the following
example.

) data.dat - Notepad - O X

File Edit Format View Help

IHDR v t CA&Da IDATxeAXUZ-Ezoa%z,
EUIU To"V:0y“a | O UR /UI*5”38 " IA=23ER ¢ :
r\.Z+»ZICs Wyi:r-3}0062uzi6|nlAq})0n Tuark
202 ' UEmOCY. 9¢y0{2 ' V- /2R3l 01x>§nidt « gl
H% alleH{=0qIa7&a3l¢ >C°"IL-E.&xf3Qu>SIM™t
1$10E€EVCCIETE > MxIgtAl00M 84" DF cOH’ DRe3iPID
°2. 9y~ (E";Lz/00a " M ~3+i10°’
Ao kS™: /MR _yA11a¥€¥aaz08uCIi T g 10°0
Imit-%vU] " T[UvuXAVE» | I05Maé« } 4y =usiIASghint
20,0" y02N...21pa3 o0t~ ,=!*»-3Q0IG

< >
Ln1,Col1 100% Windows (CRLF) UTF-8

Figure 5-3. Example of a binary file

Open Files

To open a file, use the open() method:

file = open('filename.dat', 'file mode')

79

CHAPTER 5 HANDLING FILES

When you open a file, put the filename and the file mode in the
parameters of the open()method.

The file mode tells the Python interpreter what you intend to do with
the file, that is, read, write, or append:

e “rb” opens a file for reading, error if the file does
not exist.

« ‘“ab” opens a file for appending, creates the file if it does
not exist.

e “wb” opens a file for writing, creates the file if it does

not exist.
e “rb+” opens a file for both reading and writing.

This depends on the purpose of your program.
It’s good practice to open your file, perform your operations, and then
close the file.

Write to a File

The .write() method writes data in text format, and if you try to write data
in binary mode using this method, you'll get an error message when you
run your program.

To write your data in binary format, first we need to convert it to a
sequence of bytes. We can do this with the pickle module using a process
called pickling. Pickling is the process where data objects such as integers,
strings, lists, and dictionaries are converted into a byte stream.

To write to a file, use the pickle.dump() method:

pickle.dump (data-to-be-written, file-to-write-to)

Let’s take a look at a program. Open filewritebin.py. First, we need to
include the pickle module. You can do this by using an import command.

80

CHAPTER5 HANDLING FILES

- o P [# Python 3.2.1 Shell - o X

File Edit Shell Debug Options Windew Help

~ M Python 3.8.1 (tags/v3.8.1:1b2%3b&, De ~
c 18 2019, 22:39:24) [MSC v.1916 32 b

L& filewritebin.py - V\rocks

File Edit Format Run

file = open("daca.dac", "wb") iz (Incel)] on win32
Type "help", "copyright", "credits" o
Text = "This is text to be written to the file...!" r "license()" for more information.

22>
msssssss== RESTART: \\rockstore\data\
Resources\Python\filewritebin.py ====

pickle.dump (text, file

>>> |

file.close()

Ln:8 Cok0 Lm:5 Cok4

Next, we open a file in the usual way, except we set the file mode to
binary write (wb).

Now, to write the data to the file, we pickle the “text” object using the
pickle.dump() method and finally close the file.

Read a File

Remember when we wrote our data to our binary file, we used a process
called pickling. Well, to read the data from the file, we use a similar
process.

To read a file, use the pickle.read() method:

pickle.read (file-to-read-from)

Let’s take a look at a program. Open filereadbin.py. First, we need to
include the pickle module. You can do this using an import command.

81

CHAPTER 5 HANDLING FILES

L% filereadbin.py - \\rockstore\data\Res... = 0o e

File Edit Format Run Options Window Help

import pickle ~
file = open("data.dat", "rb")

data = pickle.locad(file)

print (daca)

file.close()

When your run the program, the data is read and assigned to the “data”
variable.

[& Python 3.8.1 Shell - & X

File Edit Shell Debug Options Window Help

Pychon 3.8.1 (tagsa/v3.8.1:1b293b6&, Dec 18 201%,
22:39:24) [MSC v.1916 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license(
)" for more information.

>>>

=sssss===== RESTART: \\rockstore\data\Resources\
Python\filereadbin.py ==s==s=z===

This is text t©o be written to the file...!

>>>

Ln:& Cokd

82

CHAPTER 5 HANDLING FILES

Random File Access

When a file is opened, the Python interpreter allocates a pointer within the

file. This pointer determines the position in the file from where reading or

writing will take place. The pointer can be moved to any location in the file.
To move the file pointer, use the . seek() method:

file.seek(position-in-file, whence)

The first parameter (position-in-file) determines how many bytes to
move. A positive value will move the pointer forward; a negative value will
move the pointer backward. The position in the file is called an offset. In a
file, each position could contain one byte or one character. Remember, the
numbering system starts with 0.

Using our text file as an example file.seek(5) would move the file
pointer to the sixth byte:

012345
—)
Jack [Jlack@test.com

Pete peteltest.com
Jill jill@site.com

Mike mike@web.com

The second parameter (whence) determines where in the file to start
from and accepts one of the three values:

0 - Sets the start point to the beginning of the file (the default)

1 - Sets the start point to the current position

2 - Sets the start point to the end of the file

To find the current position of the file pointer in the file, use the
.tell() method:

file.tell()

83

CHAPTER 5 HANDLING FILES

Let’s take a look at a program. Here, we're going to start reading the

first line of the data.txt file starting from the sixth byte or character.

File Edit Format Run Options V

[& Python 3.8.1 Shell - 0

File Edit Shell Debug Options Window Help

#open file for reading
file = gpen ('data.txt' , 'r')

file.seek (5)

fmove pointer te the 6th character in the ::.Le]

datalnFile = file.readline()

print (datalnFile)

#close the file
file.close()

#read line in file starting from r;l:,!_" racter

{/

Ln:d4 Col 34

Python 3.8.1 (tags/v3.8.1:1b293b6, Dec 18 2019
, 22:39:24) [MSC v.1516 32 bit (Intel)] on win
32

Type "help”, "copyright”, "credits" or "licens
€()" for more information.

o>

----------- RESTART: \\rockstore\data\Rescurc
es\Fychon\fileseek.py =======mmm==
jack@test.com

i,
(/

i, 1) data.tet - Notepad - o
Edit Format View Help
MEY W ack@test. col

Peteste@test.com
Jill Jill@site.com
Mike mike@web.com

Ln1, Col1 100% = Windows (CRLF) UTF-3

Ln: 7 Cul.'at.

Lab Exercises

Take a look at the following exercises and use what you've learned to solve

the problems.

1. Write a program that gets a string from the user and

then writes it to a file along with the user’s name.

2. Modify the program from exercise 1 so that it

appends the data to the file rather than overwriting.

3. Write a program to write a list of names to a file.

84

CHAPTER 5 HANDLING FILES

4. Write a program to read a file line by line and store it
in a list.

5. What is the difference between a text file and a
binary file?

Summary

o Afileis anamed location on a disk drive that is used to
store data. Each file is identified by its filename.

e There are two types of files: text files and binary files. By
default, Python reads and writes data in a text file.

o Atextfile stores sequences of characters.

e Abinary file is stored in the same format as the
computer’s memory (RAM).

e Use the open() method to open a file.
o To write data to a file, use the .write() method.

e Toread data from a file, use the .read() method to read
the whole file.

o To write to a binary file, first we need to convert it to a
sequence of bytes. This is called pickling.

85

CHAPTER 6

Using Functions

Functions help break a program into smaller pieces. This avoids repetition
of code, making larger programs more efficient and easier to maintain.

A function is a block of code that is only executed when called within a
program.

You can pass data to the function. This data is known as a parameter or
argument.

Arguments or parameters are specified inside parentheses after the
function name, for example:

functionName(parameters)

A function can return data as a result.

Declaring Functions

You can declare a new function using the def keyword followed by the
function name:

def functionName(parameters):
code to be executed in function

If the function takes parameters, you can include these in parenthesis
next to the function name.

© Kevin Wilson 2022 87
K. Wilson, The Absolute Beginner’s Guide to Python Programming,
https://doi.org/10.1007/978-1-4842-8716-3_6

https://doi.org/10.1007/978-1-4842-8716-3_6

CHAPTER6 USING FUNCTIONS

So, for example, if we wrote a function to add two numbers together,
we could write something like this:

def addNum(num_1, num 2):
return num_1 + num 2

This function takes two numbers as parameters, adds them together,
and returns the result.

°||» addNum function

°|I ’ num 1 + num 2

You can call the function like this:

result = addNum(6, 5)

For smaller programs, you can declare your functions in the same file -
usually at the top, but as programs become larger and more complex, you
should declare your functions in a separate file and then include the file in
your main script. This allows you to modularize and reuse code - it is good
programming practice for larger projects.

We can declare our addNum function in our myfunctions.py file and
include it in our functionsmain.py file. To include functions in another
script, use the import keyword:

import myfunctions

Let’s have a look at a program. Open functions.py. Here, at the top of
the script, we've defined a simple function to add two numbers together.

88

CHAPTER6 USING FUNCTIONS

3 2 7 i
L@ functions.py - //rockstore/dat... — El X

File Edit Format Run Options Window Help

def addNum(numl, num2): “ Function
return numl + num2 : -

result = addNum(4, 4)
print (resulct)

At the bottom of the script, we call our function addNum and pass two
values (4, 4). We use the “return” keyword to return the result.

L% functions.py - //rockstore/dat... — (W) X

File Edit Format Run Opti Window Help

def addNum{némJ., n'gm2}.

return n

result =
print (result)

The result from the function is then assigned to the variable “result.”
Finally, we print the contents of the variable “result” to the screen, so we

can see what is happening.

89

CHAPTER6 USING FUNCTIONS

Scope

The part of a program where a variable is accessible is called its scope.
In this section, we're going to take a look at the local scope and the
global scope.

If a variable is only available from inside the region it is created, for
example, a variable created inside a function, it belongs to the local scope
of that function and can only be used inside that function. This is called
local scope.

A variable created in the main body of the Python code is a global
variable and belongs to the global scope. Global variables are available
from within any scope, global and local.

Recursion

A recursive function is a function that can call itself. This enables the
function to repeat itself several times.

Recursive programs can also be written using iteration, so why bother
with recursion? Recursive programs allow programmers to write efficient
code using a minimal amount of code.

Recursion works well for algorithms such as traversing a binary tree or
a sort algorithm and generating fractals. However, if performance is vital, it
is better to use iteration, as recursion can be a lot slower.

Open the file recursionl.py. Here, we have a recursive function that
calculates the factorial of a number. Remember, to calculate the factorial,
you multiply all the numbers from 1 to the given number.

def factorial(n):
if n <= 1:
return 1

90

CHAPTER6 USING FUNCTIONS

else:
a = n * factorial(n-1)
return a

factorial(4)

When we call the factorial function and pass a positive integer, it will
recursively call itself by decreasing the number by one each time.

For example, if we entered 4, the program will call factorial(3),
factorial(2), and factorial(1).

Each time the factorial function is called, it pushes another entry onto
the call stack.

The recursion ends when the number reduces to 1. This is called the

base condition.
When the functions return, each call is popped off the stack and

evaluated.
A factpy - C OneDi he = (=] x
File Edit Format Run Options Window Help n 1 a
£ factorial(nm):
1
a = n * factorial(n-1) s
- factorial (4)

zn &

a =4 * factorial (3)
a = 3 * factorial (2)
a = 2 * factorial (1)

print ("\nFactorial of 4 is", facrorial(4))

Call Stack

Lm:5 Cok28

Figure 6-1. An example of a recursive program during execution

91

CHAPTER6 USING FUNCTIONS

Here’s another example, a recursive function to print out the Fibonacci
numbers.

L& ion.py - \\rockstore\data\R ve — O X & Python 3.2 Shel - o
File Edit Format Run Options Window Help File Edit Shell Debug Options Window Help
def fibonacci(n): 1 Pychon 3.8.1 (tags/v3.8.1:1b293b6, Dec 18 ~
ifn <= 1 2019, 23:11:48) [M5C v.1916 64 bit (AMDE4)
return (n)] on win32
Type "help", "copyright", "credits™ or "li
n fibonacci (n-1) + fibonacci(n-2) cense ()" for more information.

"""""""" RESTART: \\rocksctore\datca\Res

i=0 urces\Fycthon\recursion,py ======s=== ——

for i in range(20):
print (fibonacci(i))

2584 e

Ln:12 Cok 0 Ln:25 Cok4

Lab Exercises

1. Write a program that accepts a number from the
user and uses a function to square the number and
then return the result. Print the result to the screen.

2. Write a function that returns the larger of two
numbers. Test the function and print the results to
the screen.

3. Whatis the difference between a local and a global

variable?
4. What makes a function recursive?

5. Write a program that prints first ten positive

numbers using a recursive function.

92

CHAPTER6 USING FUNCTIONS

Summary

Functions help break a program into smaller pieces.
You can declare a new function using the def keyword.

Parameters or arguments are data passed to the
function.

The part of a program where a variable is accessible is
called its scope. We have taken a look at the local scope
and the global scope.

Local scope variables are only accessible to the
function in which they’re defined.

Global scope variables are available anywhere.

A recursive function is a function that can call itself.

93

CHAPTER 7

Using Modules

When developing more complex Python applications, as the program
grows in size, it's a good idea to split it up into several files for easier
maintenance and reusability of the code. To do this, we use modules.

Computation
functions

Main
Program
Code

User interface
functions

Figure 7-1. An example of how a large program can be broken down
into modules

© Kevin Wilson 2022 95
K. Wilson, The Absolute Beginner’s Guide to Python Programming,
https://doi.org/10.1007/978-1-4842-8716-3_7

https://doi.org/10.1007/978-1-4842-8716-3_7

CHAPTER 7 USING MODULES

Modules are simply files with the .py extension, containing code that
can be imported into another program.

In doing this, we can build up a code library that contains a set of
functions that you want to include when developing larger applications.

In this section, we'll take a look at how to create modules and include
them in our Python programs.

Importing Modules

Python has a whole library of modules you can import into your programs.

Here are some common built-in modules you can use:
math - Mathematical functions
turtle - Turtle graphics
tkinter - GUI interface toolkit

pygame - Toolkit for creating games and other
multimedia applications.

To import the modules into your code, use the import keyword. In this
example, 'm going to use the import keyword to import the turtle graphics
module into a Python program. To do this, we enter the following line at
the top of the program:

import turtle

This statement imports all the turtle graphics functions into the
program.

96

CHAPTER 7 USING MODULES

forward()

import turtle

Figure 7-2. How to import a module into a program

Turtle graphics operate much like a drawing board, in which you can
execute various commands to move a turtle around. We can use functions
like forward() and right(). The turtle will travel along the path that you
define using these functions, leaving a pen mark behind it.

When we import a module, we are making it available in our program
as a separate namespace. In other words, each module has its own
private namespace which usually has the same name as the module. This
namespace holds all the names of functions and variables declared in that
module. This means that we have to refer to the function in a particular
module using the dot notation.

moduleName. functionName()
For example:
turtle.forward(100)

turtle is the name of the module we imported earlier, and forward()
is a function defined within the module.

97

CHAPTER 7 USING MODULES

Let’s put this into a program. In the following, we have our import
statement to import all the turtle graphics modules. Below that, we have a
statement that moves the turtle forward and one to finish the program.

A turtlel.py - C\Users\annaw\OneDrive\Docu... — o X |

File Edit Format Run Options Window Help
mport turtle

turtle. forward (100)

turtle.done ()

Ln:5 Col: [)‘

Notice that we use the dot notation to access the functions in the
turtle module:

moduleName. functionName()

We want to access the forward function, so we specify the module
name it’s in (turtle), followed by a dot, and then the name of the function
we want (forward). So we get

turtle.forward(100)

This will move the turtle 100 pixels forward.
Here, we can see the output to the program: the turtle has moved 100
pixels to the right.

98

f Python Turtle Graphics

CHAPTER 7 USING MODULES

We can complete the program to draw a square.

turtle.
turtle.
turtle.
turtle.
turtle.
turtle.
turtle.

turtle.

t turtle

forward(100)
right (90)
forward{100)
right (90)
forward(100)
right (90)
forward(100)

done ()

a

-

Ln: 11 Cok 0,

Python Turtle Graphics

99

CHAPTER 7 USING MODULES

Try out some of the other turtle commands.

turtle.forward(distance) | Move the turtle forward by the specified distance]

turtle.backward(distance) Move the turtle backward by distance,

i;urﬂe.humeﬂ | Move turtle to the orlg'ln —coordinates (0,0)

turtle.penup() Pullthe pen up

turtle.pendown() _ Pullthe pen down 1
turtle.pencolor(colorstring) Set pencolor to colorstring, such as "red”, "yellow" etc.
turtle.circle{radius) |Draw a circle with given radius.

turtle.shape{"turtle”) Sets the turtle shape to turtle.

turtle.undof) |lUndo (repeatedly) the last turtle action(s)

turtle.clear() Erases all drawings that currently appear in the graphics window.

Creating Your Own Modules

You can declare and store your functions in a separate file and import

them into your main program.

All function definitions can be stored in a file, for example,

myfunctions.py.

L& myfunctions.py - \\rockstore\data...

]

X

Run

File Edit Format Options

Window Help

jief addNum(numl, num2):
rn numl + num2

retu

The main program could be called functionmain.py. At the top of the
main program script, you'll need to import your functions stored in the
other file (myfunctions.py). Strip off the file extension (.py).

L% functionsmain.py - \\rockstore\dat... — O

File Edit

#

Format Run Options Window Help

mport myfunctions

100

CHAPTER 7 USING MODULES

This is called a module. Any functions declared will be included in the
main program. You can include these functions in any program you need
to. This makes maintenance easier.

U foncionmangy Wodsiortin- = B Ky SN mtonctions oy - \vockstoreidta
File Edit Fermat Run Optigns i} m““ - File Edit Format Run Options Window Help
impore :nyruncnonsa“i ief addNum(numl, num2):

setuzn puml & onumd
result =|myfunccions.addNum(4, 4)
print (ze¥WIST

Ln:1 Col: 0

Now, to call any functions from that module, you need to specify the
module name followed by the function name.

| & functionsmain.py - \\rockstore\dat... =~ — O X
File Edit Format Run Options Window Help

import myfunctions

resulc = mxfunctions.hddNum(é, 4)

print (result)

Lab Exercises

1. Write a function that accepts a number from the
user and uses a function to square the number and
then return the result.

2. Save this file as a module.

3. Import the module you just created into a new
program.

4. (Call the function in the module.

101

CHAPTER 7 USING MODULES

5.

Create a new program and import the turtle
graphics module.

Experiment with drawing different shapes using
some of the turtle graphics methods.

Use the turtle commands to draw some shapes.

Summary

102

Modules are simply files with the .py extension,
containing code that can be imported into another

program.
You can import modules using the import keyword.

When we import a module, we are making it available
in our program as a separate namespace. This means
that we have to refer to the function in a particular
module using the dot notation.

CHAPTER 8

Exception Handling

An exception is an error that occurs during execution of a program,
sometimes called a runtime error. This could be a “file not found” error if
you are trying to load a file that doesn’t exist, or a “type error” if you type
text into a field when the program is expecting a number.

Exceptions are useful for handling errors encountered with file
handling, network access, and data input.

These errors can be handled gracefully using Python’s exception
handling procedures.

Types of Exception

Here’s a list of built-in exceptions according to the Python documentation.

Table 8-1. Built in Python Exceptions

Exception Cause

AssertionError Raised when assert statement fails

AttributeError Raised when attribute assignment or reference fails
EOFError Raised when the input() function hits end-of-file condition

FileNotFoundError Raised when a file or directory is requested but doesn’t exist.
Corresponds to errno ENOENT

FloatingPointError Raised when a floating point operation fails

(continued)

© Kevin Wilson 2022 103
K. Wilson, The Absolute Beginner’s Guide to Python Programming,
https://doi.org/10.1007/978-1-4842-8716-3_8

https://doi.org/10.1007/978-1-4842-8716-3_8

CHAPTER 8 EXCEPTION HANDLING

Table 8-1. (continued)

Exception Cause

GeneratorExit Raised when a generator's close() method is called

ImportError Raised when the imported module is not found

IndexError Raised when index of a sequence is out of range

KeyError Raised when a key is not found in a dictionary

Keyboardinterrupt Raised when the user hits interrupt key (Ctrl+C or delete)

MemoryError Raised when an operation runs out of memory

NameError Raised when a variable is not found in local or global scope

NotimplementedError Raised by abstract methods

OSError Raised when system operation causes system-related error

OverflowError Raised when result of an arithmetic operation is too large to
be represented

ReferenceError Raised when a weak reference proxy is used to access a
garbage collected referent

RuntimeError Raised when an error does not fall under any other category

Stoplteration Raised by next() function to indicate that there is no further
item to be returned by iterator

SyntaxError Raised by parser when syntax error is encountered

IndentationError Raised when there is incorrect indentation

TabError Raised when indentation consists of inconsistent tabs and
spaces

SystemError Raised when interpreter detects internal error

SystemExit Raised by sys.exit() function

104

(continued)

CHAPTER 8 EXCEPTION HANDLING

Table 8-1. (continued)

Exception Cause

TypeError Raised when a function or operation is applied to an object
of incorrect type

UnboundLocalError ~ Raised when a reference is made to a local variable in a
function or method, but no value has been bound to that
variable

UnicodeError Raised when a Unicode-related encoding or decoding error
occurs

UnicodeEncodeError Raised when a Unicode-related error occurs during encoding

UnicodeDecodeError Raised when a Unicode-related error occurs during decoding

UnicodeTranslateError Raised when a Unicode-related error occurs during
translating

ValueError Raised when a function gets argument of correct type but
improper value

ZeroDivisionError Raised when second operand of division or modulo operation

is zero

Whenever an exception occurs, the interpreter halts the execution of

the program and raises an exception error as shown in the table.

You can catch these exceptions using the try and except keywords

and provide code to handle the error.

Catching Exceptions

If we run the following code, the Python interpreter will raise a

FileNotFoundError exception because there is no file called “file.txt” This

will cause the program to crash.

105

CHAPTER 8 EXCEPTION HANDLING

[exception.py - \\rockstore\... — m| X [& Python 3.8.1 Shell - O X
Eile Edit Format Run QOptions Window Help File Edit Shell Debug Options Window Help
file = open("file.txt", "r"} ~ | Python 3.8.1 (tags/v3.8.1:1b293b6, D ~

B %
data = file.read() ,4',,, ec 18 2019, 23:11:4€) [MSC w.l9le 64
print (data) %, bit (AMDE&4)) on win32
file.close() @,’ Type "help", "copyright", "credics"
@/,, or "license ()" for more information.
4}4 S
”/,, ============ RESTART: \\rockstore\da
7 X
ta\Resources\Pychon\exception.py ===

raceback (most recent call last):

File "\\rockstore\data\Resources\P
ython\exception.py", line 1, in <mod
ule>

file = open("file.txc", "r")

FileNotFoundErrox: [Errno 2] No such
file or directory: 'file.txt'
2>

Ln:4 Col: 0 Ln:9 Col:4

You can catch exceptions using the try and except keywords. Just
put your code in the “try” block and your error handling code for each
exception in the “exception” block as shown here:

try:
Code to execute as normal
except [exception (see table above)]:
Code to deal with exception

The try block contains the code to execute. The except block contains
the code to handle the error.

Let’s take a look at the program again. We can take our code and place
itin the “try” block. Then add an “except” block to deal with the error. If we
look at the error message in the shell, we see this is a FileNotFoundError.
We can add this after the “except” keyword.

106

CHAPTER 8 EXCEPTION HANDLING

Now, when we run the program, we get a simple message rather than

an ugly error.

[# exception.py - \\roch dat -] X [Python 3.8.1 She D

File Edit Fgrmat Run QOptions Window Help File Edit Shell Debug Options Window Help

file = open("file.txt", "r") 23:11:46) [MSC v.191¢ 64 bit (AMDE4)] on win32
daca = file.read() Type "help”, "copyright®, "credits" or "license
print (daca) ()" for more information.
file.close() >3
* t (FileNotFoundErrorj): [=========a=e RESTART: ‘\\rockstore\data\Resource
print ("File not found") s\ Python\axceptipon.py wessssssmss
| File not fou:‘.d&

e

Use the finally block to perform any clean up. The finally
statement runs regardless of whether the try statement produces an
exception or not.

try:
file = open("file.txt", "r") data = file.read()
except FileNotFoundError: print("File not found")
finally: f.close()

Raising Your Own Exceptions

Use the raise keyword to force a specified exception to occur followed
by the type of error using the table in Table 8-1 at the beginning of this
chapter.

if number < O:
raise ValueError ("Negative numbers only.")

Here in the file raise.py, we've raised a ValueError exception.

Pychon 3.8.1 (cags/v3.8.1:1b2%3bé, Dec 18 201%, -~

107

CHAPTER 8 EXCEPTION HANDLING

[rsive.py - Wroc

File Edit Format R

Help

nomber = inpuc("Enter a positive number:

Ln:d Col: 18

| Python 3.8.1 Shell - o »
File Edit Shell Debug Options Window Help

FPychon 3.8.1 (vags/v3.£.1:1b293bé, Dec 18 2019, 23:11:48)
[MSC w.1%16 €4 bit (AMDE4)] on win32

Type "help”, "copyright®, "credits® or "license()* for mor
e information.

EES

RESTART:

\data\R Python\Chapte

\raise

Egative num
hers are now allowed

E |

Lrc 10 Col:4

Summary

e An exception is an error that occurs during execution of

a program, sometimes called a runtime error.

e You can catch exceptions using the try and except

keywords.

108

CHAPTER 9

Object-Oriented
Programming

Python is an object-oriented programming language. This means that the
program design is based around objects, rather than functions and logic.

Each object is created using a blueprint known as a class. Each class
has attributes to contain the data an object needs to work with.

Each class also contains functions, called methods that perform
operations on objects.

An object is an instance of a class. So, you could have a class called
“car” and use it to define an object called “merc”

You'll need the source files in the directory Chapter08.

Principles of O0P

The four principles of OOP are encapsulation, inheritance, polymorphism,
and abstraction.

Encapsulation

With encapsulation, you restrict access to methods and attributes within a
certain class. This prevents accidental modification of data and unwanted
changes to other objects.

© Kevin Wilson 2022 109
K. Wilson, The Absolute Beginner’s Guide to Python Programming,
https://doi.org/10.1007/978-1-4842-8716-3_9

https://doi.org/10.1007/978-1-4842-8716-3_9

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

Inheritance

A class can inherit all the methods and attributes from another class. If a
class called “person” had the attributes name, age, and dob, we could use
this class to define two other child classes called “student” and “staff” Both

inherit the methods and attributes from the “person” class.

Polymorphism

Polymorphism allows us to define methods in the child class with the same
name as defined in the parent class. This is known as method overriding.
Polymorphism also allows us to define methods that can take

many forms.

Abstraction

Abstraction is the process of reducing objects to their essence so that only
the necessary elements are represented. In other words, you remove all
irrelevant information about an object in order to reduce its complexity.

Classes and Objects

You can define a class using the class keyword:

class <class-name> :
<class attributes and methods>

Here, we have created a class called Person:

class Person :

110

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

All classes have a function called init () which is automatically
executed when the class is initiated. Use the init () function to initialize
attributes.

def init (self, name, dob, email):
self.name = name
self.dob = dob
self.email = email

The self keyword represents the current instance of the class (i.e., the
object created from the class). By using the self keyword, you can access
the attributes of the object itself.

When you declare a method, you pass the current instance of the
class (i.e., the object itself), along with any other parameters required, to
the method:

def getAge(self):
currentDate = date.today()
age = currentDate.year - self.dob.year
return age

When you need to use any attribute, you use self followed by the
attribute name:

self.attribute-name
So, for example:
self.email

Let’s take a look at a program. Open the file class.py. Here, we've
defined our “Person” class.

111

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

[& class.py - \\rockstore\data\Resources\Python\Chapter 08\class.py (3.8.1) — O X

File Edit Format Run Options Window Help
from datetime import date e

class Person :

§define initialisations

def init_ (self, name, dob, email):
self.name = name
self.dob = dob
self.email = email

#define class methods

def getAge (self):
currentDate = date.today()
age = currentDate.year - self.dob.year
return age

To create an object from the class, call the class Person(...) and pass
any data using parenthesis (). Assign the new object to a variable, for
example, person.

#create an object

person = Person (
"Sophie", #name
dacte (1999, 4, 2), #DOB (year, month, day)
"Sophie@mymail.com", #email

To use the object, use the dot notation:
classname.method()
or
classname.attribute

So in our example, to use the attributes we use the dot notation, with
the object name followed by the attribute name as we can see here:

print (person.name)
print (person.email)

112

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

Similarly, if we want to use the methods of an object, we use the
dot notation, with the object name followed by the method name as we
can see here:

print (pexrson.getAge())

Class Inheritance

We mentioned earlier that inheritance means a class can inherit all the
methods and attributes from another class.

As we can see in Figure 9-1, we have a parent or super class called
Person and two child (or sub) classes called Student and Staff.

lass Person @

#define initialisacions
def _ inic__ (self, name, dob, email):
self.name = name
self.dob = dob
self.email = email

#derine class methods
def getAge (self):

currenchace = dace.coday()
age = currentDate.year - self.dok.year
IELUIN age

Less Seudent(Persend: 1 Seaff(Pezscm):

def _smie_ (3612, neme. dob. email., course. yess): lef _init__ (self, name, dob, email, salary):

$inheziz che methods and properties from pazent class #inhezit the methods and poperties from parent class
super()._init__ (name, dob, amail) Pupex().__inic__(moma, dob, mail)

#2dd any new actribumes for ehild cless #add any new attritutes for child class
321f.course = course aelf salazy = salazy
self.year = year

#add any methods for child class
def gerCradiess(self):
zezuzn self.yenzr + §

Figure 9-1. How a class inherits properties from its parent

113

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

The child classes inherit all the attributes and methods of the parent
classes. Child classes can include any additional attributes and methods
that are not accessible from other classes.

To create a child class, declare the class as normal, except include the
parent class in parenthesis after the class name. So

class child-class(parent-class):

If you want to inherit all the methods and properties from the parent,
use super():

super(). init (name, dob, email)

Open the file inherit.py. Here, we've created a class called person.
We've also created two child classes called student and staff.

114

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

|.# inherit.py - \\rockstore\data\Resources\Python\Chapter 08\inherit.py (3.8.1) - m] X
File Edit Format Run Options Window Help

class Person :

f§define initialisations

def _ init__ (self, name, dob, email):
self.name = name
self.dob = dob

self.email = email

#define class methods
def gethAge (self):
currentDate = date.today()
age = currentDate.year - self.dob.year
return age

class Student (Person):

£

def _ init__ (self, name, dob, email, course, year):
#inherit the methods and properties from parent class
super().__init__{name, dob, email)

#add any new attributes for child class
self.course = course
self.year = year

fadd any methods for child class
def getGradYear (self):
recurn self.year + 4

s Staff (Person):
ef _ init__ (self, name, dob, email, salary):

#inherit the methods and properties from parent class
super()._ inict__ (name, dob, email)

fadd any new attributes for child class
self.salary = salary

We can create a lecturer object from the class Staff.

fcreate an object
lecturer = Staff (
"John", #name
date (1977, 4, 2), $DOB (year, month, day)
"John@mymail.com", #email
44000

115

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

To reference our attributes, we use the dot notation.

print ("\nStaff Member: ", lecturer.name)
print ("Salary: ", "£", lecturer.salary)

Polymorphic Classes

In this example, we're going to create two classes. To be polymorphic,

each of these classes needs to have an interface in common. So we define
methods for each class that have the same name. In this case, we can
define a method that calculates the area in each class (triangle, square, and
circle as we can see in Figure 9-2).

Circle

def getArea(self):

Triangle

i=f getArea(self): isf getAres (self):
:zn gelf.width ¢ self.height / 2 retuvrn self.width * sell.helight

arn 3.14 % self.radius ** 2

Figure 9-2. An example of how classes can contain the same method

Open the file polyclass.py. Here, we've defined a class for triangle,
square, and circle. Notice each class has a method called getArea().

116

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

[& polyclass.py - \\rockstore\data\Resources\Python\Chapter 08\polyclass.py (3... ~ — O x
File Edit Format Run Options Window Help

|:;-e.ss Polygon: A
def _ init__ (self, width, height):
self.widch = widch
self.height = height

class Triangle (Polygon):

def getArea(self):
recurn self.width * self.height / 2

class Square (Polygon):
def gethArea(self):
recturn self.widch * self.height

class Circle:
def _ init_ (self, radius):
self.radius = radius

def getArea(self):

recurn 3.14 * self.radius ** 2

This means we can call the .getArea() method for each object

created.

print (triangle.getlArea())

print (cirxc.getArea())

Method Overriding

With method overriding, you can define a method with the same name
in the child class as in the parent class. The method in the child class
overrides the method in its parent class.

117

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

Method in child class
overrides method in parent

def getSides(self):
class

return O

def getgethArea(self):
return 0

Triangle

=5 lriangie(Folygon) : class Square (Polygon):
lef getSides(self): det gecSides(self)
recurn 3 FOTUER

ief gecArea(sslf, bass, height): def gechrea(self, leagth, widch):
area = base * height / 2 area = length * widch
etuzn Area IeTUIn area

Figure 9-3. How a method in a child class can override the method
defined in the parent class

Have a look at methodoverride.py. Here, we've defined the classes
discussed earlier. The methods in the child classes have the same name as
in the parent class. Each method is redefined and specific to the class. Let’s
see what happens when we create our objects and call the methods.

118

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

Create triangle object
tri = Triangle()

Call getArea method for triangle
print (tri.getArea(22, 22))

Create pentagon object
pent = Pentagon|()

Call getArea method for pentagon
print (pent.getArea(22))

Giveitatry.

Lab Exercises

1. Declare a new class called Vehicle without any
attributes and methods.

2. Add some attributes to the Vehicle class such as

Name
Speed
Mileage

3. Add a method to the Vehicle class to return the
vehicle name.

4. Create a child class called Car that will inherit all the
variables and methods of the Vehicle class.

5. Create a child class called Taxi.

6. Add a method to the Taxi class to collect the fair.

119

CHAPTER9 OBJECT-ORIENTED PROGRAMMING

Summary

120

Python is an object-oriented programming language.
A class is a blueprint for an object.

Each class has attributes to contain the data an object
needs to work with.

Each class contains functions, called methods that
perform operations on objects.

Encapsulation restrict access to methods and attributes
within a certain class.

A class can inherit all the methods and attributes
from another class. Child classes inherit methods and
attributes from the parent.

Polymorphism allows us to define methods in the child
class with the same name as defined in the parent class.

Abstraction is the process of reducing objects to
their essence so that only the necessary elements are
represented.

You can define a class using the class keyword.

To use methods defined in an object, use the dot
notation.

Method overriding allows you to define a method with
the same name in the child class as in the parent class.

CHAPTER 10

Building an Interface

Modern computer applications are built with graphical user interfaces
in mind. The user interacts with the application using windows, icons,
menus, and a mouse pointer rather than console-based I/0.

To create a graphical user interface using Python, you'll need to use
Tkinter (Tk interface). This module is bundled with standard distributions
of Python for all platforms.

Creating a Window

The first thing you need to do is import the Tkinter module into your
program. To do this, use

from tkinter import *

To create a window, use the Tk() method:
window = Tk()

Add a title:
window.title('Window Title')

Set the initial size and position of the window. Use the
.geometry() method.

window.geometry("800x600+50+20")

© Kevin Wilson 2022 121
K. Wilson, The Absolute Beginner’s Guide to Python Programming,
https://doi.org/10.1007/978-1-4842-8716-3_10

https://doi.org/10.1007/978-1-4842-8716-3_10

CHAPTER 10 BUILDING AN INTERFACE

The first two numbers, in this case “800x600,” set the window size.
Set this to the desired window size in pixels. This could be 1280x720,
1920x1080, and so on.

The second two numbers, in this case “50+20,” set the initial position of
the window on the screen using x and y coordinates.

Let’s take a look at a program. Open window.py. Here, we've created
awindow. You can do this using the Tk() function and assign it to a

window object.

122

CHAPTER 10 BUILDING AN INTERFACE

I_-h window.py - \\rockstore\dats\ Resources\Python\Chapter (8\window.py (Lé *Python 3.8.1 Shell® 0
File Edit Format Run Options Window Help File Edit Shell Debug Options Window
m tkinter import * Help
Python 3.8.1 (tags/v3.8.1:1b293b€, -
Foreate window Dec 18 2015, 23:11:4€) [MSC v.191&
window = Tk() 64 bit (AMDE4)) on win32
_ Type "help”, "copyright", "credits
fadd title to titlebar of window " or "license()" for more informat
window.ticle('Window Title') ion.
>33
#window size (widcth x height + position-x-coord + posicion-y-coozxd) = RESTART: \\rockstore\data\Resour
window.geomecry ("E40x480+500+20") ces\Python\Chapter 08\window.py
window.mainlosp ()
Window Title - o b4
— .
Ln: 1 Cnl:l}l Ln:5 Cok0

We've sized the window, so that is 640 pixels wide by 480 pixels high.

We've also positioned the window 500 pixels across from the top left by 20

pixels down. You can do this using the .geometry() method. This is the

initial size and position of the window on screen.
We've also added a window title. You can do this using the . title()

method. This helps to identify your app.

Finally, to make the window appear, we need to enter the Tkinter event
loop. You can do this with the .mainloop() method:

window.mainloop()

This is an infinite loop used to run the application and is called an

event loop. The .mainloop() method waits for an event such as a keypress

123

CHAPTER 10 BUILDING AN INTERFACE

or mouse click events from the window system and dispatches them to the
application widgets (frames, buttons, menus, etc.).

Adding Widgets

Widgets are standard items for building a graphical user interface using
Tkinter.

Menus

Let’s add a menu. You can create a menu bar using the Menu() function.
Assign it to an object (e.g., menubar) and attach it to your main window.

H ftk - 0o X

flemenu Flle —

 menu
e [comnand.

124

CHAPTER 10 BUILDING AN INTERFACE

Now you need to create the individual menus (such as “file,” “edit,”
etc.) on the menubar.

filemenu = Menu(menubar-to-add-to, menu-style)
Add the menus to the menubar:
menubar.add cascade(menu-label, menu-to-add-to)

For each menu you create (e.g., filemenu), you need to create each

” u ” u

menu command (such as “new,” “save,” “exit,” etc.):
filemenu.add command(command-label, function)

Finally, add the menubar you've created to the main window:
window.config(menu-to-add)

Let’s take a look at a program. Open the file menu.py. Here, we've
written the program as described eatrlier.

125

CHAPTER 10 BUILDING AN INTERFACE

m]

L-ﬁ' menu.py - \wrockstore\data\Resources\Pytho..

File Edit Format Run Options Window Help

(3 “python 3.8.1 Sheir - O

File Edit Shell Debug Options Window Help

from tkinter impozrt *

fcreate window
window = Tk()

nenubar
= Menu (window)

#create
menubar

Foreate menu
filemenu = Menu(menubar, tearoff=0)
menubar.add cascade (label="File", menu=filemenu)

fcreate menu commands
filemenu.add command (label="lew")

Python 3.8.1 (tags/v3.5.1:1b2%3bé, Dec 1
8 2018, 23:11:46) [MSC v.1916 64 bit (AM
DE4)] on win32

Type "help", "copyrighct", "credics"™ or "
license ()" for more information.

b

mmmmmmm=s RESTART: \\rockstore\data\Reso
urces\Python\Chapter 08\menu.py ========

Fadd menu to window
window.config (menu=menubar)

§

File

Newl

window.mainloop ()

Ln:1 Cok 0

Ln:5 Col:0

The Canvas

The canvas is used to draw and create graphics and layouts. This is where

you place your graphics, text, buttons, and other widgets to create your

interface.
To create a canvas, use

myCanvas =
height=300, width=300)

Tkinter.Canvas (parent-window, bg="sky blue",

Use parent-window to attach the canvas to your window. Use height

and width to size your canvas.

126

CHAPTER 10 BUILDING AN INTERFACE

Use bg to set the background color. Open colorchart.py and run the
program. This will create the color chart shown here.

Mamed colour chart

snow
ghast white sy blue
gainsbon
el white
e lace light Blue.
liran
antique whise
papays whip
isncred aimand |
s
prachptl |
navajo white
Ieman hiffen

mint aeam
szure
alice Elus
lavander
Ivandas Slush

misly rose

1333313333311183333333338

Select the name of the color from the chart to use in the bg parameter.

Let’s draw a shape on the canvas:

rect = myCanvas.create rectangle
(100, 100, 25, 50, fill="yellow")

The first two numbers are the x and y coordinates on the canvas. The
second two numbers are the length and width.

127

CHAPTER 10 BUILDING AN INTERFACE

You can also draw a polygon.

tri = myCanvas.create polygon
(100,150, 57,225, 143,225, fill="green”)

NN

1 2

In this example, we're creating a triangle. A triangle has three sides, so
we need to draw three lines. The first two numbers indicate the start point
of the first line; the second two numbers indicate the end point of the first
line, and so on. Let’s take a look.

128

CHAPTER 10 BUILDING AN INTERFACE

0 100 200

(100,150)

(57,255) 2 (143,255)

Try drawing a pentagon. A pentagon has five sides, so you need to
draw five lines:

pent = myCanvas.create polygon
(100,150, 52,185, 71,240, 129,240, 148,185,
fill="1ime green")

Images

You can add images to your canvas. Have a look at images.py. To load the
image, use the PhotoImage() function.

129

CHAPTER 10 BUILDING AN INTERFACE

§ Window Title - =] FS

fereas &
window = Tk()

#add citle to ©
window,.title(

ue", height=3100, width=300)

#load image
img = Photolmage (file=~rocket.png*)

#resize To a éch of the
img = Photolzage.subsssp.

fpaste image on canvas at co-ords [w=20, y=E0)
myCanvas.create_image (20,60, anchoz=iW, imagemizmg)

18 2018, 23:11:46) (MS ~

or "license ()" for more i

8/image.py =

memmmmes RESTART: //rockstore/data/Rescurces/Pychon/Chapter 0
L 20 Cokd6 Le:7 Cok

To paste the image on your canvas, use the .create_image() method.

Buttons

You can add command buttons to your canvas. To do this, use the
Button() function.
Have a look at buttons.py:

myButton = Button(window, text="label", command)

Use window to specify the name of the window the button is to go on.

Use command to specify the function you want to call to handle what the
button does. You can call existing functions or define your own functions
to do this.

Use the . pack method to add the button to your window:

myButton.pack()

130

CHAPTER 10 BUILDING AN INTERFACE

Message Boxes

You can add message boxes to your programs. To do this, you will need to
import the message box functions from the Tkinter module. You can do
this using the import command:

from tkinter import messagebox

You can create different types of message boxes: an info box, a warning
box, an error box, and a box that asks for a yes/no response.

ey P) =~
Lo | _ x| _ x| o | ne
messagebox.showinfol) messagebox.showerrar() messagebox. showwarning() messagebox askquestion()

messagebox.showinfo('Message Title', 'Message')

If you're asking the user for a yes/no response, you'll need to
process this:

response = messagebox.askquestion

('Message Box' , 'Question...')
if response == 'yes'

executed if user clicks 'yes'
else :

executed if user clicks 'no'

Let’s have a look at messagebox.py.

131

CHAPTER 10 BUILDING AN INTERFACE

o
&
F

%

MesageBex

et dialegl) ¢

£ zesponse == ‘yas'

messagebox . showinfo(‘Message Box', 'Proceed

messagebox . showwarning (‘Message Box', ‘Canceling...’

' 0 D0 you want to proceed?

ick Me", commandwdialog)

myBuzton.pack()

window.mainloop ()

Text Field

Use the Entry() function to create your text field:
userInput = Entry(window)

Use the .pack() method to add the field to your window:
userInput.pack()

To get the data from the text field, use the .get() method:
userInput.get()

Let’s add these to the program. Have a look at textfield.py. Here, we've
added a text field to the canvas under the command button.

132

CHAPTER 10 BUILDING AN INTERFACE

#oreate window
window = Tk()

#add cicle To t
window.citle(

ar of windew

1

#window size (wid
window, geceatIy (€40

00+20")

foreate a cexc field
userInput = Entry(window)

#create a button
myButton = Button (window,
#add button to window
myBucton. pack (padx=20, pady=20)

#add vext field to window
userInput.pack()

window.mainloop ()

[B testieidy
File Edit Format Run Options Window Help
from ckinver import
om tkinter import messagebox
£ dialog()
messagebox.showinfo(‘Message Box'

cexg="Click He",

» userInput.gex())

command=dialeg)

* height + positisn-x-ccord + positicn-y-coord)
0+509

Ln:33 Cok0

e —
ccorie IMNES| ¢ vresose-.
Test
B #ytrer
File Edit Shell Debug Options Window Help

Python 3.8.1 (tags/v3.8.1:1b293bé, Dec 18 201%, 23:11
$46) [MSC w.191€ 64 bat (AHDE4)] on win32

Type "help”, "copyright®, "credits” or "license()}" fo
r more information.

------ RESTART: //rockstore/data/Rescurces/Python/Cha
prer 08/textfield.py ======

LS Cokl

We've also added code in the dialog() function to get the data from

the text field and display it in a message box.
The dialog() function is called when the “Click Me” button is

clicked.

Run the program and see what it does.

Listbox

Use the Listbox() function to create your listbox:

list = Listbox(window)

Use the . insert() method to add items to the listbox:

list.insert(1, 'Item

One")

133

CHAPTER 10 BUILDING AN INTERFACE

Use the .pack() method to add the listbox to your window. Use the
padx and pady parameters to add some padding to space out your listbox
in the window.

list.pack(padx=20, pady=20)

Use the . curselection() method to get the index of the item selected
by the user. Remember, the first item’s index is 0.

selectedItem = list.curselection()
Use the .get () method to return the item:
list.get (selectedItem)

Let’s take a look at a program. Open listbox.py.

File Edit Format Run Options Window Help
om tkinter € item One
from tkinter import messagebox Item Two
item Four

def dislog() :
messagebox.showinfo('Message Box' , list.get(list.curselection()))

#create window
window = Tk()

fadd title to ti
window.titlel[W

Click Me.

#window size (Wi
windoWw. geomesry

#create a Llist box 0 Mem Thiee

ins, .
t.inserz(l, '

§ MessageBox

[*Pythen 281 Sheir - O
File Edit Shell Debug Options Window Help
Fython 3.8.1 (vags/v3.8.1:1b293bE, De -
¢ 1% 2019, 23:11:4€) [MSC v.1916 64 b

$create a button
myBucton = Butcon(window, texc="Click Me", command=dialog)

#add listbox to window ic (AMDE4)] eon win3Z
list.pack(padx=20, pady=20) Type "help®, “"copyright®, "credita" o

r "license()" for more informatien.

P
#add button to window RESTART: // daca/Res
myButton.pack (padx=20) curces/Pychon/Chapter 08/listbox.py =
window.mainlocp ()

Lm:1 Cok21 Ln:5 Cok0

134

CHAPTER 10 BUILDING AN INTERFACE

Checkbox

Use the Checkbutton()function to create each of your checkboxes:

box1 = Checkbutton(window, text="Red",
variable=box1Checked, onvalue=1)

You'll need to create a variable for each checkbox to assign its
“onvalue” if the user clicks the checkbox:

box1Checked = IntVar()

The variables you created will either be 1 or 0. Onvalue is set to 1, so
the variable will be set to 1 when the user clicks the checkbox. Use the
.get() method to get the value.

if boxiChecked.get() == 1:
messagebox.showinfo('Msg' , "Red")

Use the .pack() method to add each of your checkboxes to
your window:

box1.pack()

Let’s take a look at a program. Open checkbox.py.

135

CHAPTER 10 BUILDING AN INTERFACE

T}

o

W e e ' ' " DAb e/ 02 fchoeks
Lg checkbox.py - //rockstore/data/Resources/Python/Chapter 08/checkbox.py

File Edit Format Run QOptions Window Help

messagebox

def dialog() :
if boxlChecked.get () == 1:
messagebox.showinfo('Message Box' , "Red")
1L box2Checked.get() == 1l:
messagebox.showinfo('Message Box' , "Green")
if box3Checked.get () == 1l:
messagebox.showinfo('Message Box' , "Blue")

§create window
window = Tk()

#add cticle to titlebar of window
window.title('Window Title')

$window size (widcth x height + position-x-c¢ord + position-y-cooxd)
window.geomerry ("640x480+5004+20")

Fcreate variable to assign ‘onvalue' if checked
boxlChecked = InzVax()
box2Checked = IntVarx()
box3Checked = IntVarx()

§create checkboxes

boxl = Checkbutton (window, text="Red"”, variable=boxlChecked, onvalue=l)
box2 = Checkbutton (window, text="Green", variables=box2Checked, onvalue=l)
box3 = Checkbuctton (window, text="Blue", variable=box3Checked, onvalue=l)

#add checkboxes to window
boxl.pack()
box2.pack()
box3.pack()

When you run the program, you can select any of the checkboxes.
When you click the button, the function reads which checkbox is selected
and returns the value.

136

CHAPTER 10 BUILDING AN INTERFACE

[~ Red
V¥ Green
[~ Blue

Click Mel

[& *Python 3.8.1 Shell® - O X
File Edit Shell Debug Options Window Help

Python 3.8.1 (tags/v3.8.1:1b293bé, Dec
18 2019, 23:11:46) [MSC v.1916 64 bit (
AMDE4)] on win32

Type "help"”, "copyright”, "credits" or
"license ()" for more information.

55

======= RESTART: //rockstore/data/Resou
rces/Python/Chapter 08/checkbox.py ====

Labels

You can create labels to label text fields and other items on your interface.
To do this, use Label():

textLabel = Label(window, text="Enter Name:")
Use pack() to add the label to your window:
textLabel.pack()

137

CHAPTER 10 BUILDING AN INTERFACE

Label Frame

The LabelFrame is used to group related widgets, such as checkboxes,
radio buttons, or text fields.

First, you need to create your label frame group. You can do this with
LabelFrame() as follows:

groupl = LabelFrame(window, text="label", padx=5, pady=5)

Use the first parameter window to attach the group to your main
window. Next, you need to add your widgets to your group. You can do this
in the usual way, except you need to specify in the widget functions which
widget to attach to. So to add our text label, specify the widget to attach to
using the first parameter (our labelframe defined earlier is called groupl,
so use group1 underlined in the following).

textLabel = Label(groupl, text="Name: ")
Add your widgets to your window in the usual way:
textLabel.pack(side=LEFT)

Let’s take a look at a program. Open labelframe.py.

138

CHAPTER 10 BUILDING AN INTERFACE

o b § Window Title - o x

it Format Run Options Window Help

[Contact Details

from tkinter imporct * p
Mame: |

#add title to titlebar of window
windew.title('Window

#window size (width x height + position-x-coord + position-y-coozd)
window.geomecry ("640x480+500+20")

#create labelframe group
groupl = LabelFrame (window, Text="Contact Decails™, padx=5, pady=35)

#create widgets and add to group
texctlabel = Label (groupl, text="Name: ")
name = Entry(groupl)

#add widgets co your window
groupl.pack (padx=10, pady=10)
textlabel.pack ($ide<LEFT)
name.pack (side=RIGHT)

WinAdow.mainloop ()

Lr: 19 Col: 0

Here, we've created a text label and a text field inside the labelframe
group (groupl).

Interface Design

Now that we know how to create a window, menus, and add different types
of widgets, we'll take a look at how to lay them out in the window to create
a usable interface.

You can do this using the grid layout manager. Let’s take a look at an
example. Open the file gridlayout.py.

Use the .grid() method to place the widgets in the window according
to the grid layout. Use row and column parameters to specify which cell
in the grid to place the widget. Use the padx and pady parameters to add
some spacing around your widgets in the grid.

139

CHAPTER 10 BUILDING AN INTERFACE

(3 grid Py - \wrock Sagal B \ Dtk hapter OB\gridlayoutpy (3. — o %
File Edit Format Run Options Window Help
rom tkinter import *

#oreates window
window = Tk(}

#add title to titlebar of window
window.title('Window Ti)]

#window size (widch x height + position-x-coord + position-y-coord)
window,geometry ("250x100+500+20)|

ficreace a label h

texctlabel = Label (window, cext="Enter Name:") ' Windew Title 0

#add label to gzid Enter Na

texctlabel.grid(row = 1, column = 1, padx = 10, pady=10) B Row 1
\ J

[iczeate a text field] GKI Row 2
userInput = Entry(window)

fadd ctextc field to grid Colymn 1 umn 2
huserInput.grid(zow = 1, column = 2, pade = 10, pady=10)
\ J

r y
Fcreate a button
pryButton = Button (window, Cext="OH", command=exit)

window.mainloop ()

Ln: 10 Cok33

Here, we've placed a text label in row 1, column 1. There is a text field
in row 1, column 2. We've placed a command button in row 2, column 2.
When you run the program, you'll see the result as shown here:

Enter Name:

o]

Let’s design a simple interface for a unit converter app. To design this

interface, we’ll divide the window up into three rows and five columns.

140

CHAPTER 10 BUILDING AN INTERFACE

1 2 3 4 5
. '\"1"3" convert: drop down
P ,k\ /.(.-' i .
<1 ..V , text field button
2 i \f'.‘ﬁ._:/ b l
&) label
3 -

Now, we’ll place a logo on the left-hand side and span it across two

columns and down three rows:

img = PhotoImage(file="logo.png")

imglbl = Label(window, image=img)

imglbl.grid(row = 1, column = 1, padx = 10,
pady=10, columnspan=2, rowspan=3)

We'll also place a label in row 1, column 3:

textLabel = Label(window, text="Convert:")
textLabel.grid(row = 1, column = 3,
padx = 10, pady=10)

A drop-down box in row 1, column 4:
conversions.grid(row = 1, column = 4, padx = 10, pady=10)
A text field in row 2, column 4, with a button in row 2, column 5:
userInput.grid(row = 2, column = 4, padx = 10, pady=10)
A label at the bottom in row 3, column 4, to show the result:
textlLabel.grid(row = 3, column = 4, padx = 10, pady=5)
Add a command button to row 2, column 6:
myButton.grid(row = 2, column = 6,

padx = 10, pady=10)

141

CHAPTER 10 BUILDING AN INTERFACE

Let’s take a look at the program. Open the file converter.py. Here, we're
adding the widgets to the grid using the .grid() method.

[# converter.py - \\rockstore\data\R es\Python\Chapter 08\converter.py (3.8.1) - (8] X

Eile Edit Fgrmat Run Options Window Help

#load image and add to imglbl label
img = Photolmage (file="logo.png")
imglbl = Label (window, image=img)

#add image to grid
imglbl.grid(row = 1, column = 1, padx = 10, pady=10, columnspan=2, rowspan=3)

fcreate a label
textLabel = Label (window, text="Convert:")

#add label to grid
textlabel.grid(row = 1, column = 3, padx = 10, pady=10)

Fcreate drop down menu
conversions = Combobox (window, wvalues=[

"Miles to Em"])

#set combobox default selection
conversions.current (0)

#add combo box to grid
conversions.grid({ row = 1, column = 4, padx = 10, pady=10)

#create a text field
userlnput = Entry(window)

#add text field to grid
userInput.grid(row = 2, column = 4, padx = 10, pady=10)

Fadd label for resulc
textlabel = Label (window, text="")

#add result label to grid
textlabel.grid(row = 3, column = 4, padx = 10, pady=5)

#create a button
myButton = Button(window, text="CK", command=convert)

Fadd button to grid
myButton.grid(row = 2, column = &, padx = 10, pady=1l0)

window.mainloop ()
v

Ln: 14 Col: 29

We've used the padx and pady parameters to space out the widgets in
the grid layout.

142

CHAPTER 10 BUILDING AN INTERFACE

That's the interface sorted. As it stands, the program won'’t do anything
if you click the button or enter a number into the text field.

We need to write a function to take care of this and call it when the
button is clicked.

Declare the function in the usual way. We'll call this one convert().

def convert():
1f conversions.current() == 0:
n = float (userInput.gec()) * 0.39
textLabel = Label (window, text=n)
textlabel.grid(row = 3, column = 4, padx
elif conversions.current() == 1:
n = float (userInput.get()) * 2.54
textlabel = Label (window, text=n)
textlabel.grid(row = 3, column = 4, padx = 10, pady=S)
elif conversions.current() == 2:
n = float (userInput.gec()) * 0.62
textlabel = Label (window, text=n)
textlabel.grid(row = 3, column = 4, padx = 10, pady=35)
elif conversions.current() == 3:
n = float (userInput.get()) * 1.60
textlabel = Label (window, text=n)
textLlabel.grid(row = 3, column = 4, padx = 10, pady=3)

10, pady=5)

You'll need to read the selection from the combo box. You can do
this with the . current() method. The first item in the combo box has an
index of 0, the second is 1, and so on. Use an if statement to separate the
calculations for each selection in the combo box.

if conversions.current() ==

Next, you'll need to get the data from the text field. You can do this with
a .get() method on the text field. Remember to cast the data type to a
float, as the data from a text field is a string.

n = float (userInput.get())

Perform the calculation and return the result to the blank text label in
row 3, column 4, of the grid.
Now, when you run the program, you'll get a nicely laid out interface.

143

CHAPTER 10 BUILDING AN INTERFACE

@ Unit Converter - O
Convert: |Cm to Inch v]
[10 | [ok
L}
F | 3.9000000000000004

Summary

In this chapter, you learned the following:

o To create a graphical user interface using Python, you’ll
need to use Tkinter (Tk interface).

o Widgets are standard items for building a graphical
user interface using Tkinter.

e The canvas is used to draw and create graphics and
layouts. This is where you place your graphics, text,
buttons, and other widgets to create your interface.

144

CHAPTER 11

Developing a Game

To start creating your own games using Python, you'll need to use the
pygame module. This module isn’t bundled with standard distributions of
Python, so you'll need to install it before you start.

Pygame is a library of Python modules designed for writing computer
games. Pygame adds functionality to create fully featured games and
multimedia applications using the Python language.

This chapter will cover the basic modules and functions that Pygame
provides. We'll use these functions to create a very simple interactive game

Installing Pygame

To install the module, open a command prompt. Make sure you run this as
an administrator. On the command prompt, type

pip install pygame

Once you press Enter, the install will begin.

© Kevin Wilson 2022 145
K. Wilson, The Absolute Beginner’s Guide to Python Programming,
https://doi.org/10.1007/978-1-4842-8716-3_11

https://doi.org/10.1007/978-1-4842-8716-3_11

CHAPTER 11 DEVELOPING A GAME

istrator: Comn

X

[Microsoft Windows [Version 1€.©.19559.1@e@]
(c) 2020 Microsoft Corporation. All rights reserved.

C: \WINDOWS\system32>pip install pygame

Allow the pip utility to download and install the module.

Bl Administrator: Command Prompt - pip instal game

C

Microsoft Windows [Version 10©.8.19559.1€e@]
(c) 2@82@ Microsoft Corporation. All rights reserved.

C:\WINDOWS\system32>pip install pygame
ICollecting pygame

-cp38-win_amd64.whl (4.8MB
| | 4.8MB 6.8MB/s

Installing collected packages: pygame

Downloading https://files.pythonhosted.org/packages/a8/1e/5da797179
lce@46decc7d6d57a9b1977218103ccfbe99b959b7736aff5f73/pygame-1.9.6-cp3§

Once the process is complete, you can start using pygame.

146

CHAPTER 11 DEVELOPING A GAME

Opening a Window
The first thing you'll need to do is import the pygame module:
import pygame

Initialize pygame using the .init() method:
pygame.init()

Open a window. This sets the window size 640 pixels wide by 480 pixels
high. This could also be 800x600, 1920x1080, and so on.

gamewindow = pygame.display.set mode((640,480))

Set the window’s title. This is the title that appears in the title bar of
the window.

pygame.display.set caption("Game Window")
You should always end your pygame scripts with the .quit() method:

pygame.quit()

Let’s take a look at the program so far.

147

CHAPTER 11 DEVELOPING A GAME

L% *game01.py - \\rockstore\data\Resources\Python\C... — (] x
File Edit Format Run Options Window Help

import pygame

pygame.init ()

Ffcreate game window
gamewindow = pygame.display.set _mode((640, 480))

#set window title
pygame.display.set_caption("Game Window")

pygame.guit ()

If you run this program, the game window will initialize, open, and
then immediately close. This is fine since there is no other code to execute.

Adding an Image

Let’s add an image to the game window. This is going to be our character
in the game. In this case, we're going to use a space rocket. We can add the
image load statement to our program.

sprite = pygame.image.load('rocket.png")

Paste the image (sprite) onto the game window using the .b1it()
method, and assign the initial position on the screen (x, y):

gamewindow.blit(sprite, (x,y))
Update the display to show the image:
pygame.display.update()

Let’s take a look at the program.

148

CHAPTER 11 DEVELOPING A GAME

|.& gameDd.py - \\rockstore\data\Resources\Python\Chapter 0... ~— a X
File Edit Format Run Options Window Help
import pygame

pygame.init ()

gamewindow = pygame.display.set_mode ((640,480))
pygame.display.set_caption("Game Window")

#load image and assign to 'sprite'
sprite = pygame.image.load('rocket.png')

#add image to game window
gamewindow.blit (sprite, (50,55))

#update the game window display
pygame.display.update ()

pygame.quit ()

Ln: 8 Col:0

The Game Loop

Now, let’s get our rocket ship to actually do something. To do this, we need
to create a game loop to draw our sprites, update the screen, and keep the
program running.

We can take the following two statements and add them to our game

loop. For this bit, we’ll use a while loop.

gamewindow.blit(sprite, (x,y))

149

CHAPTER 11 DEVELOPING A GAME

Update the display to show the image:
pygame.display.update()

Put these inside the while loop:

while running == 1:
gamewindow.blit(sprite, (x,y))
pygame.display.update()

We'll also need to initialize some variables - x and y, the initial
position on the screen, and running - to indicate whether the program is

running or not:

running = 1
X = 250
y = 280

Let’s take a look at the program.

#initialize our variables
running = 1

x=250

y=280

while running:
$add image to game window
gamewindow.blit (sprite, (X,V¥))

fupdate the game window display
pygame.display.update ()

pygame.quit ()

150

CHAPTER 11 DEVELOPING A GAME

The Event Loop

In this simple game, we want the rocket ship to move left and right when
the user presses the left and right arrow keys on the keyboard. To do this,
we need something to handle these events.

To do this, we can put a for loop inside our while loop (the game loop).
We're monitoring for each event that occurs. You can use the .get ()
method to read each event.

for event in pygame.event.get():

Now inside the for loop, we need some selection depending on which
key is pressed. We can use an if statement for this.
First, we need to check whether a key has been pressed:

if event.type == pygame.KEYDOWN:

Inside this if statement, we need to identify which key has been
pressed. You can use another if statement.

if event.key == pygame.K LEFT:

We do the same for all other keys we’re going to use. Just add elif
statements to the if statement.
Let’s take a look.

151

CHAPTER 11 DEVELOPING A GAME

while running:

for event in pyvgame.event.get():
if event.type == pygame.KEYDOWN:
if event.key == pygame.K LEFT:
X = X - 10 #shift image left 10 pixels
elif event.key == pygame.K RIGHT:
X = x + 10 #shift image right 10 pixels

gamewindow.blit (sprite, (xX,V¥))
pygame.display.update ()

pygame.quit ()

Lm: 18 Col: 0

Now, when we run the program, you'll see your rocket move left when
you press the left key and right when you press the right key.

152

CHAPTER 11 DEVELOPING A GAME

E; Game Window - X

I

((((((((((((‘ 4

INYY VYV YYYVY

You'll also notice something else. The image repeats on the screen.
To fix this, you need to clear the screen (refresh) each time you move the
object. You can use

gamewindow.fi11((0,0,0))

153

CHAPTER 11 DEVELOPING A GAME

This returns the screen to black at the end of each iteration of the game
loop (while loop).
It is also good practice to include a quit event in your event loop, so the

program terminates gracefully:

if event.type == pygame.QUIT:
running = 0

This will set our running variable to 0, meaning the game loop will
terminate and the program will close. This event will happen when you
click the close icon on the top right of the window.

Let’s take a look at the program so far.

|.# game10.py - //rockstore/data/Resources/Python/Chapter 09/game10.py (3.8.1) - (] X
File Edit Format Run Options Window Help

import pygame
pygame.initc ()

gamewindow = pygame.display.set_mode ((640,480))
pygame.display.set_caption("Gams Window")

sprite = pygame.image.load('rocket.png')

f#initialize our variables
running = 1

x=250

y=280

ile running:

for event in pygame.event.get():
1f event.type == pygame.KEYDOWN:
if event.key == pygame.K LEFT:
X = x - 10 #shifc image left 10 pixels
elif event.key == pygame.¥_RIGHT:
® =% + 10 #shift image right 10 pixels
Lf event.type == pygame.QUIT:
running = 0 #close

gamewindow.blit (sprite, (x,y))
pygame.display.update ()

gamewindow.f£ill ((0,0,0)) Fclear screen

pygame.qgquit ()

154

CHAPTER 11 DEVELOPING A GAME

You'll also notice that the rocket doesn’t move when you hold the key
down. This is because the key-repeat feature is turned off. To turn this on,
add the following line before your game loop:

pygame.key.set repeat(1, 25)

The first parameter is the delay before the key event is repeated. The
second parameter is the interval between repeats.

Shapes

You can add shapes such as circles, ellipses, rectangles, and other
polygons.

To draw a rectangle, use the .rect () method. Specify the surface
or window you want to draw on, the color, and then specify the xand y
position, followed by the width and length of the rectangle.

pygame.draw.rect(gamewindow, colour,
(x, y, width, length), thickness)

To draw an ellipse, use the .ellipse() method. When drawing an
ellipse, you're actually drawing it inside an invisible rectangle. This is why
you specify width and length when drawing your ellipse.

pygame.draw.ellipse(gamewindow, colour,
(x, y, width, length), thickness)

To draw a circle, use the .circle() method. Specify the surface or
window you want to draw on, the color, and then specify the x and y
position, followed by the radius of the circle.

pygame.draw.circle(gamewindow, colour,
(x, y), radius, thickness)

Have a look at shapes.py.

155

CHAPTER 11 DEVELOPING A GAME

pygame .display.update () fopdate screen

Pygame. gaizi)

Basic Animation

To demonstrate basic animation, we're going to move our ufo object on
the screen.

First, we need to load in our image. You can do this using the .1oad()
method as we’ve done before.

ufo = pygame.image.load('ufo.png")

Now, because an image is loaded onto a surface object by default, we
can’t move it or manipulate it. To get around this, we assign the image to a
rectangle. You can do this using the .rect() method.

ufo_rect = ufo.get rect()

We also need to define some speed and direction variables. We can
do this with a list. This is a list containing the [x, y] coordinates on the
screen (speed[0] is x, speed[1]is y).

156

CHAPTER 11 DEVELOPING A GAME
speed = [10, 0]
To move the object, use the .move_ip() method:

ufo_rect.move ip(speed)

Let’s take a look at the program. Have a look at anim02.py.

#set horizontal by wvertical list
speed = [10, 0]

#load ufo image
ufo = pygame.image.load('ufo.png')

#assign image to rectangle so we can manipulate its positiorn
ufo_rect = ufo.get_rect()

fgame loop
while running:

sexecute loop at 25 frames per second
clock.tick(25)

move ufo
ufo_rect.move_ip (speed)

Now, when you run this program, the ufo will fly from left to right

across the screen.

157

CHAPTER 11 DEVELOPING A GAME

é.‘g Game Window b X

g speed[0]
.\-/.

Because we set speed = [10, 0], this means we move our ufo ten
pixels along the x axis each time we execute ufo_rect.move_ ip(speed) in
the game loop.

If we set speed = [0, 10], this means we move our ufo ten pixels
along the y axis each time we execute ufo_rect.move ip(speed) in the
game loop.

Try changing the values in the program anim02.py and see what
happens:

speed = [??, ?7?]

Try larger values.
Let’s take our program a step further. Let’s make the ufo bounce
around the screen.

158

CHAPTER 11 DEVELOPING A GAME

To do this, we need to check whether the left edge, right edge, top edge,
and bottom edge of the ufo_rect go beyond the edges of the screen. We can
use if statements for this.

If the left edge of the ufo goes off left edge, reverse x direction.

¥ Game Window — X

To reverse the direction, all you need to do is change the speed[0] to a

negative number:
if ufo_rect.left < 0: speed[0] = -speed[0]
If the right edge of the ufo goes off right edge, reverse x direction.

£¥ Game Window - X

Again, change the speed[0] to a negative number:

if ufo_rect.right > 640: speed[0] = -speed[0]

Do the same with the top and bottom. Give it a try.

159

CHAPTER 11 DEVELOPING A GAME

Let’s take a look at the program. Open anim03.py. Here, you'll see the
ufo bounce around the screen.

]_é anim03.py - \\rockstore\data\Resources\Python\Chapter 0%\anim03.py (3... — a X

File Edit Format Run Options Window Help

#game loop
while running:

fexecute loop at 30 frames per second
clock.tick (30)

move ufo by given offset (x,v)
ufo_rect.move_ip(speed) Fufo_rect.move ip (%, V)

#bounce the ufo off the 4 edges
$if ufo goes off left edge x reverse direction
if ufo rect.lefr < O:

speed[0] = -speed[0]

#if ufo goes off right edge reverse x direction
1f ufo_rect.right > €40:
speed[0] = -speed[0])

#if ufo goes off top edge reverse y direction
if ufo_xecc .top < 0:
speed[l] = -speed[l]

#if ufo goes off bottom edge reverse y direction
if ufo_rect.bottom > 480:
speed[l] = -speed[l)

When the ufo moves toward the right wall, x (speed[0]) is increasing
and y (speed[1]) is increasing.

160

CHAPTER 11 DEVELOPING A GAME

When the ufo hits the right wall, we change the direction of x
(speed|[0]), but not y (speed[1]).

161

CHAPTER 11 DEVELOPING A GAME

Now x (speed|[0]) is decreasing, but y (speed[1]) is still increasing.

Similarly for the other three sides.
What happens if you change the speed[] variables?

speed = [??, ??]

How would we add another ufo?
How would we add our rocket ship from the previous section?
To animate a character, you need to load your frames into a list:

frames = [pygame.image.load('framel.png'),
pygame.image.load('frame2.png'),
pygame.image.load('frame3.png"')]

Now, inside your main game loop, you can draw the frame using the
.blit() method to draw the frame from the frames list:

162

CHAPTER 11 DEVELOPING A GAME

gamewindow.blit(frames[counter], (x,y))

Select next frame in list, and loop back to first frame at the end of the

list. We can do this with the len() function to return the number of frames

in the list and modulus division.
counter = (counter + 1) % len(frames)

Let’s take a look at the program. Open spriteanim.py.

\\rockstore\data\Resources

ython\Chap

File Edit Format Run Options Window Help

N\spriteamin.py (3.8.1) — O

turn on key repeat
pygame.key.set_repeat(l, 25)

counter=(0
running=1
x=55
y=55

load animation frames into list
rames = [pygame.image.load('framel.png'),
pygame.image.load('frame2.png'),
pygame.image.load('frame3.png')]

fgame loop

while running:
Fexecute loop at 25 frames per second
clock.tick(25)

for event in pygame.event.get():
1f event.type == pygame.QUIT:
running = 0 #close
=lif event.type == pygame,XEYDOWN:
if event.key == pygame.X LEFT:
X = X - 10 #shift image right 10 pixels
2lif event.key == pygame.K_RIGHT:
X = %X + 10 #shift image right 10 pixels

gamewindow.£ill ((0,0,0)) #clear screen

gamewindow.blit (frames[counter], (x,y)) #redraw spricte in new position

counter = (councer + 1) % len(frames) #move To next frame in frames listc

pygame.display.update () #update screen

163

CHAPTER 11 DEVELOPING A GAME

With this particular animation, we have three frames to animate the
flame effect on the rocket.

Q; Game Window — X

Summary

In this chapter, you learned that

e Pygame is a library of Python modules designed for
writing computer games. Pygame adds functionality
to create fully featured games and multimedia
applications using the Python language.

164

CHAPTER 11 DEVELOPING A GAME

The game loop is used to draw our sprites, update the
screen, and keep the program running.

The event loop checks for events such as a keypress.

The refresh rate is how fast the screen is redrawn.

165

CHAPTER 12

Python Web
Development

Python is widely used for developing large-scale web applications that are
not possible to build using .NET and PHP.

Python supports features that are executed with different frameworks
such as Django, Flask, Pyramid, and CherryPy commonly used in sites
such Spotify and Mozilla.

You'll also need the source files in the directory Chapter11.

Web Servers

Most Python web applications are executed on a web server through an
interface called WSGI (web server gateway interface). Other Python scripts
are executed through CGI (common gateway interface).

Here, we've installed the Python interpreter and enabled the WSGI
adapter module for the Apache web server.

© Kevin Wilson 2022 167
K. Wilson, The Absolute Beginner’s Guide to Python Programming,
https://doi.org/10.1007/978-1-4842-8716-3_12

https://doi.org/10.1007/978-1-4842-8716-3_12

CHAPTER 12 PYTHON WEB DEVELOPMENT

Client web browser Server: 192.168.1.3

Figure 12-1. An example of connecting to a web server on
another machine

For this section, you'll need access to a web server with Python support.

There is a free web server available from Aprelium called Abyss Web
Server X1 that you can install on your computer to develop and test
websites:

aprelium.com/downloads/

[| @ Abyss Web Server Console % |+ = o x
€ C A O 127001999 At B @
Abyss Web Server Console
Abyss Web Server Conscle Help
e (A -
8 &Y) o - 7] @®

Server SSL/TLS Certificates Console Server Statistics Server Activity Help and Support About Abyss Web

Configuration Configuration Server

Hosts @ :

Figure 12-2. The Aprelium web server running on a local computer

168

CHAPTER 12 PYTHON WEB DEVELOPMENT

Install the Web Server

1. Open the directory where you have saved the
software package.

2. Double-click the software package icon.

3. Deselect components you do not want to install. Auto
start enables Abyss Web Server auto starting when
a Windows session starts - deselect this. Start Menu
Shortcuts enables adding Abyss Web Server shortcuts
in the Start Menu. Documentation installs help files.

4. Click Next.

5. Choose a directory where you want to install Abyss
Web Server files. From now on, <Abyss Web Server
directory> will refer to this directory.

6. Click Install.

Set Up Python Support

1. Open the Abyss Web Server’s Console. Make sure
the web server is running, then open your web
browser, then enter the following in the address field
at the top: 127.0.0.1:9999.

Type in the admin password you created when you
installed the server.

2. Inthe Hosts table, click Configure in the row
corresponding to the host to which you want to add
Python support.

3. Select Scripting Parameters.

169

CHAPTER 12 PYTHON WEB DEVELOPMENT

4. Check Enable Scripts Execution.
5. Click Add in the Interpreters table.
6. SetInterface to CGI/ISAPI.

7. Inthe Interpreter field, click Browse..., go to the
directory where you have installed Python, and click
on python.exe.

8. Check Use the associated extensions to
automatically update the Script Paths.

9. Click Add in the Associated Extensions table.
10. Enter py in the Extension field and click OK.
11. Click OK on interpreters screen.

12. Click OK in the Scripting Parameters screen.
13. Select Index Files.
14. Click Add in the Index Files table.

15. Enter index.pj in the File Name field, click OK. Then
click OK in the index files screen.

16. Click Restart to restart the server.

Upload your scripts to your public_html directory on the server; then
on your computer, open a web browser and enter the URL to your script:

http://server-name/script-name.py
For example:
http://titan/script.py

If you're using aprelium personal server on your own computer
you can use

http://localhost/script.py

170

http://www.server-name/script-name.py
http://www.titan/script.py

CHAPTER 12 PYTHON WEB DEVELOPMENT

To start writing your Python scripts, you'll need to tell the web server
where to find the Python interpreter. This is usually

#!/python/python
or on a Linux server
#!/usr/bin/python

This is the first line of your script.

Executing a Script

Let’s take a look at an example. Have a look at script.py. Here, we've written
a script to output a simple HTML page.

[@ script.py - \\titan\wwwAscript.py (3.8.1) - a
File Edit Format Run Options Window Help

#!/python/python

print ('Content-type:text/html\r\n\zr\n')
print ('<!doctype html>')

print ('<html>")

print ('<head>")

print ('<meta charset="utf-g">")
print ('<title>Python</title>"')
print ('</head>')

print ('<body>")

print ('<hl>It works!!')

print ('</body>"')

print ('</html>‘')

This page simply outputs the heading “It works!!.” Upload the script
into your public_html directory on your web server, and then navigate to
the script URL using your web browser on your computer.

171

CHAPTER 12

PYTHON WEB DEVELOPMENT
@ Python X |+ = O X
&« C ® © & hitp//titan/scripty =
It works!!

In our lab URL, this would be

http://titan/script.py

Let’s take a look at a practical example. Here, we're creating a simple

contact form. The user is presented with an HTML form that asks for their
name, email address, and a message.

Contact Us

Name:

Emalt

Message:

| Submit

When the user clicks the “Submit” button, the HTML form calls a
Python script called contactus.py.

172

http://www.titan/script.py

CHAPTER 12 PYTHON WEB DEVELOPMENT

{0 Elluminet Press Publishing

2> C @ U Em

Contact Us

Nomefom |
Baait

M,

x|+ - o x

tps/titan/contactus.h

nunnng-

[contactus py - \titamiwani contactus.gy (38.1) [m]

File Edit Format Run Options Window Help

#!/python/python
£ egi, smtplib

§ Creace form cbject
form = cgi.FieldStorzage()

Get data from form fields

email = form.getvalue ("email")

Hi John

This is my message...

ge = form.getvalue ("massage”

The Python script processes the data passed from the HTML form and

stores it in a form

object.

We can then get the values passed from the HTML form and store

them in this object.

The Python script generates another HTML page using print

statements for the response to the user.

173

CHAPTER 12 PYTHON WEB DEVELOPMENT

174

L& contactus.py - \\titan\www\contactus.py (3.8.1) - O

File Edit Format Run Options Window Help

#!/python/python
import cgi, smtplib

Create form object
form = cgi.FieldStorage()

Get data from form fields

name = form.getvalue ("nams")

email = form.getvalue ("email™)
message = form.getvalue ("message™)

Generate response page

print ('Content-type:text/htmli\r\n\r\n')
print ('<'!doctype html>')

print ('<html>"')

print ('<head>')

print ('<meta charset="utf-8">")

print ('<title>Contact Us</title>')
print ('</head>")

print ('<body>'})

print ('<h2>Contact Us</h2>")

print ('<p>Thanks', name, ' for your message.</p>')
print ('<p>This is what you sent:</p>')
print (message)

print ('</body>")

print ('</html>')

You can see the output in the following browser.

CHAPTER 12 PYTHON WEB DEVELOPMENT

@ Contact Us x |+ = m] X

<—_ > @ Q U 4 http://titan/contactus.py ase =

Contact Us
Thanks John for your message.
This is what you sent:

Hi John This is my message...

Python Web Frameworks

If you are using Python in web development, you'll more than likely be
using a Python web framework rather than the old CGI we looked at in the

previous section.
A Python web framework is a collection of tools, libraries, and

technologies that allow you to build a web application.
One example of a Python web framework is Django (pronounced

uIangon).

175

CHAPTER 12 PYTHON WEB DEVELOPMENT

806 List of pages
([)+ e ¢ | (Q- Google)
EE—
Django administration
Select page to change over deleted idd pogo | +]
0\ Search Filter: off ¥
title vigation publi
& &
catures W =
4
..... & et
M &
M &
) 2]
o ®
M &
g &
o4
]

Another example is Flask. Let’s take a look at how to create a simple
web app using this framework.

The first thing you'll need to do is install the Flask module if you
haven'’t already done so. Use the following command in the admin
command prompt:

pip install Flask
Use this if you're on a Linux-based machine:
sudo pip install Flask

Let’s create an app. First thing we need to do is create our main
program. To do this, we create a new file called app.py. We've included all
these files in the Flask directory in the resource files.

176

CHAPTER 12 PYTHON WEB DEVELOPMENT

L& app.py - \\rockstore\data\Resources\Python\Chapter 11\fl... ~— O X

File Edit Format Run Options Window Help
from flask import Flask

app = Flask(_ name_)

Rapp.route('/")

def index():
return 'This is a Flask Web App'
if _name_ == ' main_ ':
app.run (debug=Trus, host='0.0.0.0")

Ln: 11 Col: 0

Here, we've imported our Flask module.
Modern web apps use a technique called routing. This means instead

of having a URL to a page
localhost/resources.php
we use a route
localhost/resources/

So our first route is the root of our website and is usually the index
page. We use @app.route('/") to determine this.
The “/” means the root of the website:

http://localhost:5000/

def index() is the name you give to the route defined earlier. This one
is called index, because it’s the index (or home page) of the website.

177

CHAPTER 12 PYTHON WEB DEVELOPMENT

host="0.0.0.0"' means the app is accessible from any machine on the
network.

To run and test the app, we need to open it using the development
environment. This is a simple web server that allows you to open the app
in a web browser for testing.

To do this, open your app directory in the command prompt. In this
particular example, the app files are in OneDrive/Documents/Flask.

BE¥ Command Prompt — a X

D:\OneDrive\Documents\flask>

To start the app, type

python app.py

Once you press Enter, the server will start.

Cemmand Prempt - python app.py

D:\OneDrive\Documents\flask>python app.py
* Serving Flask app "app” (lazy loading)
* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.
* Debug mode: on
Restarting with stat
Debugger is active!

Debugger PIN: 129-355-584
Running on http://©.0.0.0:5000/ (Press CTRL+C to quit)

You can open the app in a web browser. On your own workstation, you
can use localhost:5000:

178

CHAPTER 12 PYTHON WEB DEVELOPMENT

| D localhost:5000 x | +

& O [® Iocalhost:SC-DD‘ ,'] Q

This is a Flask Web App

To add another page, add another route.

@app.route('/shop')
def shop():
return 'This is the shop page’

Now in the web browser, you can use
localhost:5000/shop

Now that we have our base app, we can develop web pages for the
app to call. These web pages are called templates and we store these in a
template directory. Here’s a simple HTML page we've created and saved in

the templates directory.

L& index.html - D:\OneDrive\Documents\fl ir — 0 X
File Edit Format Run Options Window Help

<html>

<head>

<meta charset="utf-8">
<tictle>Elluminet Press</title>
</head>

<body>
<hl>Welcome to Elluminet Press Ltd</hl>

<p>Elluminet Press, a member of the Independent Book
Publisher’s Association, is a publisher with more

than 100 books in print, beautifully bound in eichexr
hardback or paperback, as well as in electronic formats,
covering a variety of genres</p>

</body>
</html>

Let’s call our HTML page from our app. We can use the render_
template() function.

179

CHAPTER 12 PYTHON WEB DEVELOPMENT

I..'if app02.py - D\OneDrive\Documents\flask\app02.py (3.8.1) - O p 4

File Edit Format Run Options Window Help

from flask import Flask, render template ~
app = Flask(_ name)
@app.route('/')

def index():
return render template('index.hcml')

if _name == ' main ':
app.run(debug=True, host='0.0.0.0")

When we view the page in a browser, we'll see a rendered version of
the HTML page.

D Elluminet Press ®x + - 4l =

&« O @ localhost:5000 <o @

Welcome to Elluminet Press Ltd

Elluminet Press, a member of the Independent Book Publisher’s
Association, is a publisher with more than 100 books in print, beautifully
bound in either hardback or paperback, as well as in electronic formats,
covering a variety of genres

You can pass variables to your HTML templates. To do this, embed the
variable using {{variable-name}} in your HTML.

Then add the variable as a parameter to the render_template()
function:

render template('index.html', variable-name = "...")

Let’s take a look at an example. Open the file app3.py and index2.html.

180

[EE

File Edé Format Run Options Window Help

flask © Flask, render_templace

app = Flask(_nasme_}
Bapp.soute (/")

smdex() e
" render_template{’ind

name__ == °_main

Tapp.run (debugeTrie, hosTe'd.0.0.0%)

107, price="c

CHAPTER 12

[indexhimi - DAOneDrivéDocuments flasitemplatediing

Fide Edit Format Run Options Window

<tdrTitledstd>
cedrPricecivd>
afnEn
e
<ed> {{eizle)) <7td>
<td> {{price}} <fed>
feer

<ftables

<fbody>
</heal>

o
LT Cokd

Lre12 Cokd
== —

PYTHON WEB DEVELOPMENT

- (] *

Welcome to Elluminet Press Ltd

[Emuesinat Fras x

&« o ©

+

lecalhest:5000

Elluminet Press, o member of the Independent Book Publisher™s
Association, is a publisher with more than 100 books in print, beausifully
bourd in sither bardback or paperback, as well as in electronic formats,
eovering a vanety of genres

Here are some of our best sellers:

Tule Price
Windows 10 £12.99

Here, we've passed the title and price as variables to the HTML

template.

You can add images to your templates using HTML and CSS code. You

can also embed Python code.

Summary

In this chapter, you learned that

o Django, Flask, Pyramid, and CherryPy are common

Python web development frameworks.

e Most Python web applications are executed on a web

server through an interface called WSGI (web server

gateway interface).

181

APPENDIX A

Quick Reference

Some of the most commonly used data types, operators, methods, func-
tions, and loop constructs to help you when writing your programs.

Data Types

int = 45

float = 45.2123

str = "this is a string"

list = [item1, item2, ...]
tuple = (item1i, item2, ...)

dict = { keyl:item1, key2:item2, ...

bool = True / False

Numeric Operators

Division /
Modulus Division %
Multiplication *
Exponent ok
Addition +
Subtraction -
© Kevin Wilson 2022

K. Wilson, The Absolute Beginner’s Guide to Python Programming,

https://doi.org/10.1007/978-1-4842-8716-3

https://doi.org/10.1007/978-1-4842-8716-3

APPENDIXA QUICK REFERENCE

Comparison Operators

Equal to
Not equal to

Greater than >

Greater than or equal to >=

Less than <

Less than or equal to <=
Boolean Operators

not

and

or

String Operators

retrieve char at index string[index]
retrieve char in range string[a:b]
List Operators

define list list = []
assign x to list list[index] = x
retrieve from list list[index]
retrieve last item list[-1]
return items in range list[a:b]

184

APPENDIXA QUICK REFERENCE

Dictionary Operators

define dictionary dict = {}
assign x to key in dict dict[key] = x
retrieve item at key dict[key]

String Methods

convert to uppercase .upper()
convert to lowercase .lower()
return length of x .len(x)
Count times x occurs .count(x)

List Methods

add x to end of list .append(x)
insert x at y .insert(y,x)
pop item at x off list .pop(x)
clear all items .clear()
remove x from list .remove(x)

Dictionary Methods

return value at key .get(key)
remove item .pop(item)
display all values .values()

185

APPENDIXA QUICK REFERENCE

Functions

def function(<parameters>):
<function code>
return <data>

Files

open file open(<file>,<mode>)
read file .read()

read 1 line at a time .readline()

close file .close()

write data to file .write(<data>)

loop through lines

for line in file:

<code>

Conditional

if <condition> :
<code>

else:
<code>

Multi-conditional

if <condition> :
<code>

elif <condition> :
<code>

186

APPENDIXA QUICK REFERENCE

While Loop

while <condition>:
<code>

For Loop

for <variable> in range:
<code>

Loop Control

break current loop break
continue to next iteration continue
Modules

import module
from module import *

Built-In Functions

get input from console input()
print data to console print(x)
convert x to integer int(x)
convert x to float float(x)
convert x to string str(x)
convert x to list list(x)
range a-b increments of c range(a,b,c)

187

APPENDIXA QUICK REFERENCE

Declare a Class

class class-name:
def init (self, <parameters>):

<initialize attributes>
<methods>

Child Class

class child-class(parent-class):

Create Object

object = class-name(<parameters>)

Call Object Method

object.method-name(<parameters>)

Access Object Attributes

object-name.attribute-name

Exceptions

try:

Code to execute as normal except
exception (exception name]:

Code to deal with exception

188

Index

A

Animation
.blit() method, 162
direction, 159, 161
edges, 159
frames, 162
len() function, 163
Joad() method, 156
.move_ip() method, 157
program, 160, 163
rect () method, 156
speed, 156, 158, 162
values, 158
Arithmetic operators, 42
performing, 43
precedence, 42

B

BIDMAS, 42

Binary file, 79
file modes, 72
open() method, 79, 80
pickle.dump() method, 81
pickle.read() method, 81, 82
.write() method, 80, 81

© Kevin Wilson 2022

Bitwise operators, 45
BODMAS, 42
Boolean operators, 44
break statement, 68

C

Classes, 109-111
Class inheritance
child class, 114
definition, 113
dot notation, 116
lecturer object, 115
Person class, 113, 114
super() class, 114
Common gateway interface (CGI),
167,175
Comparison operators, 43-44
Computer programming
install on Linux, 11-13
install on MacOS, 9-11
install on windows, 4, 6-9
languages, 1
Python, 2, 3
variables/constants, 1
continue statement, 68

189

K. Wilson, The Absolute Beginner’s Guide to Python Programming,

https://doi.org/10.1007/978-1-4842-8716-3

https://doi.org/10.1007/978-1-4842-8716-3

INDEX

D

Data type, 32
casting, 41
dictionary, 38, 39
floating point number, 33
integer, 32
lists, 33, 34
sets, 37
strings, 33
tuples, 37, 38

E

elif statement, 55, 57, 60
else statements, 52-54
Exceptions
catching, 105-107
definition, 103
raising, 107, 108
types, 103-105
uses, 103

F

File access
.seek() method, 83
text file, 83
values, 83

Flow control, 49

for loop, 61-65, 151

Functions
declaration, 87-89
definition, 87
recursive, 90-92

190

G

Global variables, 32, 90
Graphical user interface
designing
command button, 141
convert() function, 143
.current() method, 143
.get() method, 143
.grid() method, 142
label, 141
logo, 141
Program, run, 143
text field, 141
window, 140
.geometry() method,
121, 123
.grid() method, 139
parameters, 139
result, 140
Tk() function, 122
Tkinter, 121
widgets (see Widgets)
window
creation, 121
.mainloop()
method, 123
position, 122
size, 122
.title() method, 123

H

High-level language,
2,16-18

,J, K
if statements, 52-55
Input data, 40
Integrated development
environment (IDE), 3
Integrated development
environment (IDLE), 8, 9,
12, 15, 22
Iteration
for loop, 61-64
while loop, 65, 66

L

Language classification
high-level, 16-18
low-level, 15, 16

Lists, 33-34

Local variables, 31, 32

Logical operators, 44

Low-level language, 15-16

M, N
Method overriding, 110, 117-119
Modules, 96
creation, 100, 101
definition, 96
importing, 97
dot notation, 97, 98
forward() function, 97, 98
import keyword, 96
namespace, 97

output, 98
right () function, 97
turtle commands, 100

O

Object-oriented
programming (OOP)

abstraction, 110
encapsulation, 109
inheritance, 110
polymorphism, 110

Objects, 80, 109-113

Output data, 34, 36, 40, 41

P,Q

Polymorphic classes, 116-117
Polymorphism, 109, 110
Pygame
event loop
elif statements, 151
.get() method, 151
if statement, 151
parameters, 155
program, 152, 154
termination, 154
game loop, 149, 150
image, adding, 148
installation, 145, 146
window, opening, 147, 148
Python, 2, 3, 18, 96, 109,
167,175

INDEX

191

INDEX

Python language syntax
code fragment, 29
comments, 20, 21
escape character, 21, 22
identifiers, 20, 29
indentation, 20
input, 21
output, 21
reserved words, 18, 19
write a program, 22-28

Python supports, 167-171

R

Recursive function, 90-92

S

Scope
global, 90
local, 90
script.py
contact form, 172
contactus.py, 172
HTML, 171,173
output, 174
uploading, 171
URL, 172
Selection
elif statements, 55, 57, 60
if/else statements, 52-54
Sequence, 49-52
Sets, 37

192

Second-generation programming

language, 15
Shapes, 155-156
Streaming services, 2
Strings, 33

T, U
Text file
characters, 73
.close() method, 77
file modes, 72
open() method, 73, 74
.read() method, 78, 79
.write () method, 75-77
Two-dimensional lists, 35, 36

\'

Variables, 1, 31
global, 32
local, 31

W XY,Z

Web frameworks

app3.py/index2.html, 180, 181

definition, 175

Django, 175

Flask, 176

render_ template()
function, 179

templates, 179

variable, adding, 180
web app
app.py, 176
defindex(), 177
Flask module, 176
localhost, 178
routing, 177
run/test, 178
Web server gateway interface
(WSGI), 167
Web servers
Abyss Web Server X1, 168
connections, 168

INDEX

installation, 169
while loop, 49, 65-69, 149-151
Widgets

buttons, 130

canvas, 126-129

checkboxes, 135, 136

images, 129, 130

LabelFrame, 138, 139

labels, 137

listbox, 133, 134

menus, 124, 125

message boxes, 131

text field, 132, 133

193

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Introduction to Computer Programming
	What Is Python
	Getting Started
	Setting Up
	Install on Windows
	Install on MacOS
	Install on Linux

	Summary

	Chapter 2: The Basics
	Language Classification
	Low-Level Language
	High-Level Language

	Python Language Syntax
	Reserved Words
	Identifiers
	Indentation
	Comments
	Input
	Output
	Escape Characters

	Writing a Program
	Lab Exercises
	Why should you include comments?

	Chapter 3: Working with Data
	Variables
	Local Variables
	Global Variables

	Basic Data Types
	Integers
	Floating Point Numbers
	Strings
	Lists
	Two-Dimensional Lists
	Sets
	Tuples
	Dictionaries

	Program Input
	Program Output
	Casting Data Types
	Arithmetic Operators
	Operator Precedence
	Performing Arithmetic

	Comparison Operators
	Boolean Operators
	Bitwise Operators
	Lab Exercises
	Summary

	Chapter 4: Flow Control
	Sequence
	Selection
	if... else
	elif

	Iteration (Loops)
	For Loop
	While Loop

	Break and Continue
	Lab Exercises
	Summary

	Chapter 5: Handling Files
	File Types
	Text File
	Binary

	Text File Operations
	Open Files
	Write to a File
	Read from a File

	Binary File Operations
	Open Files
	Write to a File
	Read a File

	Random File Access
	Lab Exercises
	Summary

	Chapter 6: Using Functions
	Declaring Functions
	Scope
	Recursion
	Lab Exercises

	Summary

	Chapter 7: Using Modules
	Importing Modules
	Creating Your Own Modules
	Lab Exercises
	Summary

	Chapter 8: Exception Handling
	Types of Exception
	Catching Exceptions
	Raising Your Own Exceptions
	Summary

	Chapter 9: Object-Oriented Programming
	Principles of OOP
	Encapsulation
	Inheritance
	Polymorphism
	Abstraction

	Classes and Objects
	Class Inheritance
	Polymorphic Classes
	Method Overriding
	Lab Exercises
	Summary

	Chapter 10: Building an Interface
	Creating a Window
	Adding Widgets
	Menus
	The Canvas
	Images
	Buttons
	Message Boxes
	Text Field
	Listbox
	Checkbox
	Labels
	Label Frame

	Interface Design
	Summary

	Chapter 11: Developing a Game
	Installing Pygame
	Opening a Window
	Adding an Image
	The Game Loop
	The Event Loop
	Shapes
	Basic Animation
	Summary

	Chapter 12: Python Web Development
	Web Servers
	Install the Web Server
	Set Up Python Support
	Executing a Script
	Python Web Frameworks
	Summary

	Appendix A: Quick Reference
	Data Types
	Numeric Operators
	Comparison Operators
	Boolean Operators
	String Operators
	List Operators
	Dictionary Operators
	String Methods
	List Methods
	Dictionary Methods
	Functions
	Files
	Conditional
	Multi-conditional
	While Loop
	For Loop
	Loop Control
	Modules
	Built-In Functions
	Declare a Class
	Child Class
	Create Object
	Call Object Method
	Access Object Attributes
	Exceptions

	Index

