

by Guy Hart-Davis and
Ted Hart-Davis

Python®

Teach Yourself VISUALLY™ Python®
Copyright © 2022 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada and the United Kingdom.

978-1-119-86025-9

978-1-119-86026-6 (ebk.)

978-1-119-86027-3 (ebk.)

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning, or otherwise, except
as permitted under Section 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per‐
copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive,
Danvers, MA 01923, (978) 750‐8400, fax (978) 750‐4470, or on the
web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748‐6011, fax
(201) 748‐6008, or online at www.wiley.com/go/permission.

Trademarks: Wiley, the Wiley logo, Visual, the Visual logo, Teach
Yourself VISUALLY, Read Less ‐ Learn More and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affiliates. Python is a registered trademark of Python Software
Foundation. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc. is not associated with any product or
vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and
author have used their best efforts in preparing this book, they make no
representations or warranties with respect to the accuracy or complete-
ness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No
warranty may be created or extended by sales representatives or written
sales materials. The advice and strategies contained herein may not
be suitable for your situation. You should consult with a professional
where appropriate. Neither the publisher nor author shall be liable for
any loss of profit or any other commercial damages, including but not
limited to special, incidental, consequential, or other damages. Further,
readers should be aware that websites listed in this work may have
changed or disappeared between when this work was written and when
it is read. Neither the publisher nor authors shall be liable for any loss
of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for tech-
nical support, please contact our Customer Care Department within the
United States at (800) 762‐2974, outside the United States at (317)
572‐3993 or fax (317) 572‐4002.

If you believe you’ve found a mistake in this book, please bring it to
our attention by emailing our reader support team at wileysupport@
wiley.com with the subject line “Possible Book Errata Submission.”

Wiley also publishes its books in a variety of electronic formats.
Some content that appears in print may not be available in electronic
formats. For more information about Wiley products, visit our web site
at www.wiley.com.

Library of Congress Control Number: 2022937470

Cover images: © Misha Shutkevych/Getty Images; Screenshot Courtesy
of Guy Hart-Davis and Ted Hart-Davis

Cover design: Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
mailto:wileysupport@wiley.com
mailto:wileysupport@wiley.com
http://www.wiley.com

Authors’ Acknowledgments
Our thanks go to the many people who turned this manuscript into the
highly graphical book you are holding. In particular, we thank Devon Lewis
for asking us to write the book; Lynn Northrup for keeping us on track;
Kim Wimpsett for skillfully editing the text; Doug Holland for reviewing the
book for technical accuracy and contributing helpful suggestions; Straive
for laying out the book; and Debbye Butler for proofreading the pages.

About the Authors
Guy Hart‐Davis is the author of more than 175 computer books, includ-
ing Teach Yourself VISUALLY MacBook Pro and MacBook Air; Teach Yourself
VISUALLY iPhone 12, 12 Pro, and 12 Pro Max; Teach Yourself VISUALLY iPad;
Teach Yourself VISUALLY Google Workspace; Teach Yourself VISUALLY Chrome-
book; and Teach Yourself VISUALLY Word 2019.

Ted Hart‐Davis is the coauthor of Samsung Galaxy Note 10 Photography
and is a programmer, photographer, and folk musician. He is a maintainer
and administrator of the historic Minecraft server MinecraftOnline.com and
studies cybersecurity and forensics at Edinburgh Napier University.

https://minecraftonline.com/

How to Use This Book
Who This Book Is For
This book is for the reader who has never used this
particular technology or software application. It is
also for readers who want to expand their knowledge.

The Conventions in This Book
1 Steps

This book uses a step‐by‐step format to guide you
easily through each task. Numbered steps are
actions you must do; bulleted steps clarify a point,
step, or optional feature; and indented steps give
you the result.

2 Notes
Notes give additional information — special
conditions that may occur during an operation, a
situation that you want to avoid, or a cross‐reference
to a related area of the book.

3 Icons and Buttons
Icons and buttons show you exactly what you need to
click to perform a step.

4 Tips
Tips offer additional information, including warnings
and shortcuts.

5 Bold
Bold type shows command names, options, and text
or numbers you must type.

6 Italics
Italic type introduces and defines a new term.

1

2

3
4

5

6

Table of Contents

Understanding What Python Is and Does 4

Choose the Right Version of Python 6

Install Python on Windows .. 8

Install Python on the Mac 12

Install Python on Linux If Necessary 14

Learn About Development Tools for Python 16

Download and Install Visual Studio Code 20

Get Started with Visual Studio Code and
Apply a Theme ... 22

Install Visual Studio Code Extensions for Python 24

Configure Visual Studio Code for Working
with Python .. 26

 Chapter 1 Getting Ready to Work with Python

Understanding the main() Function 30

Create and Save a New Script in Visual Studio Code 32

Write and Run Code in Visual Studio Code 34

Execute Python Commands in a Terminal Window 38

Run a Python Script in a Terminal Window 39

Understanding Comments in Python 40

Add Comments to Your Code 42

Grasp Importing Modules and Objects 44

Import Modules and Use Their Methods 48

 Chapter 2 Writing and Running Your First Python Code

Understanding Variables and Their Usage 52

Understanding Python’s Data Types 54

Work with Integers .. 58

Work with Floating‐Point Values 60

Work with Boolean Values 62

Work with Tuples ... 64

Work with Sets .. 66

Start Working with Strings 68

Start Working with Lists .. 70

Start Working with Dictionaries 72

Convert Data from One Type to Another 74

 Chapter 3 Getting Started with Variables

Understanding Working with Files and Directories 78

Load the os Module and List Files and Directories 80

Navigate Among Directories 82

Create and Delete Directories 84

Rename, Move, and Copy Files and Directories 88

Get Information About the User and System 92

Split a File Path into Its Components 94

Understanding Python’s open() Function 96

Understanding Python’s Ways of Closing Files 97

Open a File If It Exists; If Not, Create It 98

Check an Open File’s Status and Close It100

Write Data to a File ...102

Open a File for Both Reading and Writing104

Append Data to a File ..106

Read a Text File ..108

 Chapter 4 Working with Files and Directories

Table of Contents

Meet the Arithmetic Operators112

Work with the Arithmetic Operators114

Meet the Assignment Operators116

Work with the Assignment Operators........................117

Meet the Comparison Operators118

Work with the Comparison Operators119

Meet the Logical Operators120

Work with the Logical Operators121

Meet the Identity Operators122

Work with the Identity Operators123

Meet the Membership Operators124

Work with the Membership Operators125

Meet the Bitwise Operators126

Work with the Bitwise Operators127

 Chapter 5 Working with Python’s Operators

Learn the Essentials of if Statements130

Understanding the if Statement132

Create an if Statement ...133

Understanding the if... else Statement134

Create an if... else Statement135

Understanding the if... elif Statement136

Create an if... elif Statement137

Understanding the if... elif... else
Statement ..138

Create an if... elif... else Statement139

Understanding Nested if Statements140

Create Nested if Statements141

 Chapter 6 Making Decisions with if Statements

Evaluate if
condition
x > 10

Execute if block
print("x is greater

than 10.")

Execute �rst elif block
print("x is less

than 5.")

Code execution continues

Evaluate
second elif

condition
x==5

Execute second elif block
print("x equals 5.")

Execute else block
print("x is more than
5 but less than 11.")

If x > 10:
 print("x is greater than 10.")
elif x < 5:
 print("x is less than 5.")
elif x == 5:
 print("x equals 5.")
else:
 print("x is more than 5 but less than 11.")

True

True

True

False

False

False

Evaluate �rst
elif condition

x<5

Understanding Python’s Loops144

Understanding How for Loops Work146

Create for Loops ...148

Understanding How while Loops Work150

Create while Loops ...152

Understanding break Statements in Loops..............154

Using a break Statement to Exit a Loop Early155

Understanding continue Statements in Loops156

Using a continue Statement in a Loop157

Understanding else Statements in Loops158

Using an else Statement in a Loop159

Understanding Loop Nesting160

Nest Loops to Create Complex Repetition161

 Chapter 7 Repeating Actions with Loops

Understanding Functions and Their Syntax164

Understanding Function Parameters and Returns166

Using Python’s Built‐In Functions168

Create a Function with Parameters and a Return172

Create a Function with a Parameter But No Return173

Create a Function with No Parameters But a Return174

Create a Function with No Parameters
and No Return ..176

Create a Function That Returns Multiple Values177

Create a Function with Optional Parameters178

 Chapter 8 Working with Functions

Assign the next item
from the collection

to the variable

Evaluate
the break
statement

Execute the
statements

Is there
another item

in the
collection?

Yes No

Code execution continues

for item in collection:
 break statement
 statements

True

False

Table of Contents

Learn the Essentials of Strings182

Create Single‐Line Strings184

Create Multiline Strings ...186

Meet Python’s String Methods188

Return Information About a String190

Transform and Clean Up a String192

Return Part of a String via Slicing194

Concatenate and Repeat Strings196

Search for One String Inside Another String198

Check and Change String Capitalization200

Meet Python’s Tools for Building Strings204

Build Strings with the Interpolation Operator............210

Build Strings with the .format Method212

Build Strings with f‐Strings214

Build Strings with Template Strings216

 Chapter 9 Working with Text

Understanding the Various Types of Errors220

Identify Common Python Errors222

Meet the try... except Block224

Cause Errors and Trap Exceptions226

Raise an Exception Manually228

Add an else Block or a finally Block229

Create Nested try... except Blocks230

Create Custom Exceptions232

 Chapter 10 Handling Errors

Understanding Lists and Their Use236

Create a List...238

Meet Python’s List Methods239

Add Items to a List ...240

Remove Items from a List242

Locate Items and Access Data in a List244

Sort the Items in a List ..246

Understanding Dictionaries and Their Use248

Create a Dictionary and Return Values250

Meet Python’s Dictionary Methods251

Create a Dictionary from an Existing Iterable252

Add Key/Value Pairs to a Dictionary254

Remove Key/Value Pairs from a Dictionary256

Return Keys and Values from a Dictionary258

 Chapter 11 Working with Lists and Dictionaries

Understanding Classes and Instances262

Create a Class and Instantiate Instances264

Understanding Class and Instance Attributes266

Set Class and Instance Attributes268

Grasp Class, Instance, and Static Methods270

Create an Instance Method274

Create a Class Method ..275

Create a Static Method ..276

Review the Class’s Code ...277

Index ... 278

 Chapter 12 Working with Classes

CHAPTER 1

Getting Ready
to Work with
Python
In this chapter, you learn what Python is and get ready to work with it.
You choose the version of Python that suits your needs and then install
that version if your computer does not already have it. You also install and
configure your main tool for working with Python, a powerful code editor/
integrated development environment called Visual Studio Code.

Understanding What Python Is and Does 4

Choose the Right Version of Python 6

Install Python on Windows 8

Install Python on the Mac 12

Install Python on Linux If Necessary 14

Learn About Development Tools for Python 16

Download and Install Visual Studio Code 20

Get Started with Visual Studio Code and Apply a Theme . . . 22

Install Visual Studio Code Extensions for Python. 24

Configure Visual Studio Code for Working with Python . . . 26

4

Understanding What Python Is and Does

Python is a programming language that is used both widely and for many different purposes.
Python enables you to write applications that work on many different computing platforms,

including Microsoft Windows, Apple’s macOS, and Linux. Python is especially useful for automating
routine tasks, thus enabling yourself and your colleagues to get more work done in less time.

A Dutch programmer named Guido van Rossum began work on Python in the late 1980s, eventually
releasing the first version as Python 0.9.0 in 1991. Since 2001, Python has been run by a U.S.‐based
nonprofit organization called the Python Software Foundation.

Understanding What Python Is
A programming language is a type of computer language that is used to implement algorithms, which are
instructions for performing particular actions — in other words, to make the computer do what the
programmer wants it to do.

Python is a general‐purpose programming language rather than a domain‐specific programming language.
As you might guess, a general‐purpose programming language is a programming language designed for
general programming use rather than for use in a specific area of computing. By contrast, a domain‐specific
programming language is a programming language designed for use in a specific area of computing. For
example, Wolfram Mathematica is a programming language designed for symbolic mathematics; it is not
designed for, and is not suitable for, general programming use, so it is domain specific.

Understanding Cross‐Platform Programming
Python enables you to write applications that work on many different computing platforms. A computing
platform means the hardware and operating system that together constitute a functional computer.

This book covers three widely used computing platforms:

• PC hardware running Microsoft’s Windows operating system. This book uses Windows 10 and
Windows 11 for examples.

• Apple Macintosh hardware running Apple’s macOS operating system. This book uses macOS version
12, also known as macOS Monterey, for examples.

• PC hardware running the Linux operating system. Linux comes in many different versions, called
distributions. This book uses the popular Ubuntu distribution for Linux examples.

Python fully supports the Windows, Mac, and Linux platforms, but it also supports many other platforms.
These platforms range from those for personal devices, such as Apple’s iOS operating system and iPhones,
all the way up to “big‐iron” platforms for minicomputers and mainframes, such as IBM’s AIX and HP’s
HP‐UX. Python versions for some platforms come from third‐party vendors.

5

CHAPTER

1Getting Ready to Work with Python

Understanding Who Uses Python
Many different types of programmers use Python. Here are two examples:

• Web developers use Python to create web services that provide custom information in response to
requests they receive. For example, when you visit a web forum, Python may be generating some or all
parts of the page that the server sends to your browser.

• Scientists, mathematicians, and engineers across many fields use Python to perform data analysis,
because Python provides powerful and convenient tools for processing and applying complex equations
to statistical data.

Know Where You Can Get Python
You can download Python for free from
the Python Software Foundation’s
website, www.python.org. However, you
may not need to download Python,
because it may already be installed on
your computer.

Windows typically does not include
Python; see the section “Install Python
on Windows,” later in this chapter, for
instructions on installing Python.

macOS includes Python 2. See the
section “Install Python on the Mac,”
later in this chapter, for instructions on
seeing which version a Mac contains and
updating Python if necessary.

Many Linux distributions include one or more versions of Python. As of this writing, more distributions
include Python 2 than include Python 3, but some distributions include both versions; see the following
section, “Choose the Right Version of Python.” See the section “Install Python on Linux If Necessary,” later
in this chapter, for instructions on checking the version and updating if necessary.

To find versions of Python for iOS or iPadOS, open the App Store app on the iPhone or iPad and search for
python. Pythonista is a popular app, but there are plenty of other choices. Similarly, to find versions of
Python for Android, open the Play Store app on your Android device and search for python.

http://www.python.org

6

As of this writing, two major versions of Python are in use: Python 2 and Python 3. Before you
download and install Python on your computer, you should determine which version of Python

will be best for your needs. This will most likely be Python 3, because Python 2 is out of date and
the Python Software Foundation no longer supports it.

This section explains what you need to know about Python 2 and Python 3. It also explains the two
types of Python builds that are available — stable builds and development builds — and advises you
which build type to get.

Choose the Right Version of Python

Understanding Python 2 and Python 3
Two major versions of Python are currently in wide use: Python 2, released in 2000, and Python 3, released
in 2008.

Each version uses a sequence‐based numbering scheme for intermediate releases. For example, “Python
2.7.1” means Python 2, the seventh minor version, and the first update to that minor version. Similarly,
“Python 3.10.0” means Python 3, the tenth minor version, and the initial release of that minor version.

The Python Software Foundation officially discontinued, or “sunset,” Python 2 on January 1, 2020.
Sunsetting means that the Python Software Foundation will not develop Python 2 any further, even if
researchers discover serious security issues in it. Because Python 2 has been sunset, the Python Software
Foundation recommends that all users upgrade to Python 3 as soon as possible. The final version of Python
2 was 2.7.18.

With most software, such as business productivity apps or multimedia apps, upgrading to a newer version is
a straightforward and painless procedure: You upgrade to the new version, and everything still works, even
if the user interface has changed and the new version of the app provides extra features.

Python 3 offers compelling new features that Python 2 does not have; even better, Python 3 typically runs
faster than Python 2. However, Python 3 is not fully compatible with Python 2, and some Python 2 code
may not run successfully in Python 3. This is why many companies and organizations still have not upgraded
from Python 2 to Python 3. The more Python 2 code a company or organization has built up, the more time,
effort, and expense it will take to upgrade to Python 3.

Which Version of Python Do You Need?
You almost certainly need Python 3 unless your workplace uses Python 2 and is not migrating to Python 3.
For example, your employer may have developed substantial amounts of Python 2 code that is not fully
compatible with Python 3 and may therefore be sticking with Python 2.

7

CHAPTER

1Getting Ready to Work with Python

What Are the Two Build Types of Python?
Python.org makes available two types of builds of Python, stable builds and development builds:

Stable build. A stable build is a build that has been fully tested and approved for distribution.

Development build. A development build is an experimental build used for testing and compatibility.
Development testers provide feedback on changes and new features before they are finalized and added to
stable builds.

You may also see Python builds described as “release candidates.” A release candidate is a near‐final
development build made available — usually to a wide audience — for final testing. A release candidate is
stable in theory but not always so in practice.

Which Build Type Should You Get?
You will almost always want to get a stable build of Python rather than a development build. Normally, you
will want to get the latest stable build of Python so that you have access to the latest features. However, if
your company, organization, or school is using an older stable build of Python, it will likely want you to use
that build for compatibility.

When Will Python 4 Be Released?
The Python Software Foundation has not announced a release date for Python 4. In fact, Guido van Rossum
has cast doubt on whether there will ever be Python 4, given how difficult and protracted the move from
Python 2 to Python 3 turned out to be. Instead, the Python Software Foundation is continuing to develop
Python 3.

As of this writing, the current stable version of Python is 3.10.4. Future versions of Python 3 are likely to
use numbering such as 3.11.x, 3.12.x, and so on.

If you are planning to start developing code from scratch, you should definitely choose Python 3 rather
than Python 2.

You can install both Python 2 and Python 3 alongside each other and use each version when you need it.

macOS and many Linux distributions include Python 2 because they require Python 2 to run some software
packages included with the operating system or distribution. Because of this requirement, you should not
uninstall Python 2, even if you do not need it. Instead, simply leave Python 2 alone, install Python 3, and
use Python 3 for development.

Windows does not need Python 2, so normally, you should install Python 2 on Windows only if you need it.

8

Download and Install Python on
Windows
1 Open a browser window and go to the

Python Software Foundation website,
www.python.org.

2 Hold the pointer over Downloads.

 A A pop‐up window appears.

 B The web page selects the Windows tab,
because it detects your computer is
running Windows.

3 Click the Python button under the
Download for Windows heading.

This button shows the Python version,
such as Python 3.10.0 in the example.

The browser downloads the file.

Install Python on Windows

Windows has no version of Python installed by default, so you will need to install Python unless
you have already installed it or an administrator has installed it for you.

You can install Python either by using the Microsoft Store app or by downloading and running the
Python installer from the Python Software Foundation. Microsoft recommends using the Microsoft
Store app, but we recommend downloading the Python installer, because this enables you to make
the latest version of Python available to the Visual Studio Code editor app, which you will meet later
in this chapter.

Install Python on Windows

4 Open the downloaded file from the
browser. For example, in Chrome, click
Actions (changes to) to open the
pop‐up menu, and then click Open to
open the file.

Note: In Microsoft Edge, click Downloads ()
to display the Downloads panel, locate the
Python file you downloaded, and then click
Open file beneath its name.

http://www.python.org

9

CHAPTER

1Getting Ready to Work with Python

The Python Setup Wizard opens and
displays the Install Python screen.

5 Select Install launcher for all users ()
to install the Python launcher for all users
of this computer. This is usually helpful.

Note: If an earlier version of Python is
installed on the PC, the Upgrade Now button
appears. See the subsection “Upgrade Python
on Windows,” later in this section.

6 Select Add Python to PATH () to add
the location of the Python executable file
to your Windows PATH statement. Doing
so enables Windows to find Python and is
usually helpful.

 C You can click Install Now to install
Python and all its components for
yourself, not for other users.

7 Click Customize installation.

The Optional Features screen appears.

8 Deselect the check box for any feature
you do not want to install. For example,
deselect tcl/tk and IDLE () if you do
not want to install the IDLE development
environment.

9 Click Next.

TIP
Which apps does the Python installation include?
The Python installation installs an app called Python — for example, Python 3.10 — and an app called
IDLE, an integrated development environment for Python. The IDLE app’s name includes the version of
Python, such as IDLE (Python 3.10).

You can use the IDLE integrated development environment to create and test Python code, but we
recommend you use Visual Studio Code instead, because it provides more features and is widely used. See
the section “Download and Install Visual Studio Code,” later in this chapter, for information on getting
Visual Studio Code.

10

Download and Install Python
on Windows (continued)

The Advanced Options screen
appears.

Note: By default, the Python Setup
Wizard installs Python and the
components you choose only for you,
not for all users of your computer.

 D The default install location is
within the AppData folder in your
user account. This location is
available only to you.

10 Click Install for all users
(changes to).

 E The install location changes to a
Python folder within your
computer’s Program Files folder.
This location is available to all
users.

 F You can click Browse and select a
different install location if
necessary. Normally, the default
location works well.

11 Click Install.

Install Python on Windows (continued)

When installing Python, you can choose to install the Python launcher component for just
yourself or for all users. Separately, you can choose to install the main Python app and other

components either for just yourself or for all users of your computer. You can also add the Python
program location to your Windows PATH, which enables Windows to find Python without you having
to specify the path explicitly.

After installing Python, you can update it to the latest version by downloading the latest installer
from the Python Software Foundation website, running the installer, and clicking Upgrade.

Install Python on Windows (continued)

11

CHAPTER

1Getting Ready to Work with Python

Note: If the User Account Control dialog box
opens, prompting you to decide whether to
allow the Python Setup Wizard to make
changes to your computer, click Yes.

The Python Setup Wizard installs the
components you chose.

The Setup Was Successful screen appears.

12 If you want to disable the path length
limit, click Disable path length limit, and
then click Yes in the User Account Control
dialog box that appears.

13 Click Close.

The Python Setup Wizard closes.

Upgrade Python on Windows
1 Follow steps 1 to 4 in the previous

subsection to download the Windows
installer for the latest version of Python
from the Python Software Foundation
website, www.python.org, and open the
installer file.

The Python Setup Wizard screen appears.

2 Click Upgrade Now to upgrade Python but
retain all your settings.

 G If you want to change your settings, click Customize installation, and then make your choices on the
Options screen and the Advanced Options screen.

TIP
What is the path length limit, and should I disable it?
The Windows path is a text variable that tells Windows where to find important items. For example,
PATH=C:\Windows;C:\Program Files tells Windows where to find the Windows folder and the Program
Files folder. Selecting Add Python to PATH () adds Python’s folder to the path, so Windows can find
Python without you having to specify the folder.

The PATH variable has a length limit of 260 characters for backward compatibility with older versions of
Windows. However, this limit may cause errors when compiling and running Python code that uses long
paths. Normally, you should click Disable path length limit on the Setup Was Successful screen to disable
the path length limit.

https://www.python.org/

12

Check Which Version of Python Is
Installed on Your Mac
1 Click Launchpad ().

Launchpad opens.

2 Start typing terminal.

Launchpad narrows the selection to the
apps that include what you have typed.

3 Click Terminal ().

A Terminal window opens.

Install Python on the Mac

Whether it has an Intel CPU or an Apple Silicon CPU, your Mac almost certainly has a version of
Python installed — but it is most likely to have only Python 2. If so, you will want to install

Python 3, probably the latest stable version of it.

In this section, you use the Terminal app in macOS to check whether Python is installed and, if so,
which version. Then, if needed, you can download and install a newer version of Python.

Install Python on the Mac

4 Type python3 and press .

Note: If Terminal displays the version of
Python, as shown in the final screen of this
section, go to step 8. Python 3 is already
installed on your Mac.

 A A dialog box opens, prompting you to
install the command‐line developer
tools.

5 Click Install.

The Downloading Software dialog box
opens, showing a progress readout.

13

CHAPTER

1Getting Ready to Work with Python

The dialog box closes.

The Terminal window becomes
active again.

7 Type python3 and press .

 B The version of Python appears.

8 Type quit() or press + .

The Python app quits.

9 Press + .

The Terminal app quits, and the
Terminal window closes.

When the installation completes, a
The Software Was Installed dialog box
opens.

6 Click Done.

TIP
How can I update the version of Python on my Mac?
The easiest way to update the version of Python on your Mac is to download the latest Python installer file
for macOS from the Python Software Foundation website, www.python.org; run the installer; and click
Upgrade Now.

On a Mac that you administer yourself, another option is to install the Homebrew package manager, which
you can download for free from the Homebrew website, https://brew.sh. After installing Homebrew, you can
quickly update Python by opening the Terminal app and running the appropriate command.

https://www.python.org/
https://brew.sh

14

Verify That Python Is Installed on Linux
1 Open a Terminal window. For example, on

Ubuntu:

 A Click Show Applications ().

The Activities screen appears.

 B Type terminal.

Matching search results appear.

 C Click Terminal (or similar).

Install Python on Linux If Necessary

Many Linux distributions include a version of Python, so you may not need to install Python on
Linux. In this section, you check whether Python is already installed on your Linux box and

install it if it is not. If Python is already installed but is out of date, you update it to the latest
version available for your Linux distribution.

This section uses Ubuntu Linux as the example and provides brief notes on other widely used Linux
distributions. You need to have the permission to run commands as superuser — as the root user —
using the sudo command.

Install Python on Linux If Necessary

A Terminal window opens.

2 Type python3 and press .

 D If Terminal displays details of the Python
version, such as Python 3.9.5, Python is
installed.

 E You can quit Python by typing quit() and
pressing . Alternatively, press + .

Note: If you see a message saying that Python was
not found, you need to install Python. In the
Terminal window, type sudo apt install python3
and press . If Terminal prompts you for your
password, type it and press . Linux then
downloads and installs Python.

15

CHAPTER

1Getting Ready to Work with Python

Note: If Terminal displays information about
the amount of additional disk space that will
be used and prompts you to decide whether
to continue, type y and press .

Linux downloads and installs the
updates.

 G When the upgrade finishes, the prompt
reappears.

You can then type python3 and press
 to see the Python version that

has been installed.

Update Python on Linux
1 Open a Terminal window. For example,

on Ubuntu, click Show Applications
(), type terminal, and then click
Terminal ().

2 Type the sudo apt update
command and press .

Linux prompts you for your password.

3 Type your password and press .

Linux downloads the latest list of
software packages available.

 F Terminal displays information about
available upgrades.

4 Type the sudo apt upgrade
command and press .

TIP
How do I install Python on other Linux distributions?
Generally, you would install Python from your distribution’s application repository.

Here are the commands for other popular distributions:

• Fedora: sudo dnf install python3

• Arch: sudo pacman ‐S python3

• SUSE: sudo rpm install python3

• Other Debian‐based distributions: sudo apt install python3

16

Python code consists of plain text with structured layout, so you can create the code in any app
that can output plain text. For example, you can create Python code in the Notepad text editor

on Windows or in the TextEdit text editor on macOS.

But unless you like doing things the hard way, you will be better off using an app that is designed
for creating code and that provides features to help you create code that is both correct and
correctly formatted. This app can be either a code editor or an integrated development environment,
IDE for short.

Learn About Development Tools for Python

What Is a Code Editor?
A code editor is an app that
is designed and built to
make the writing of
programming code easier,
faster, and more efficient.
While you can write code
using any text editor or word
processor, these apps do not
provide the programming‐
specific features that a
code editor gives you.

A code editor typically
includes features such as
the following:

• Syntax evaluation and
highlighting. As you
program, the editor de-
termines the code’s different elements and highlights them in different colors and font styles (A) to help
you identify them visually.

• Automatic completion of code. When you start typing a keyword or another known element, the code
editor displays suggestions for completing it. By accepting these suggestions, you can work faster.

• Multifile interface. Whereas most word processors keep each document in a separate window, many
code editors use a tabbed interface (B) that enables you to open multiple files in the same window and
switch quickly from one file to another by clicking the appropriate tab. Many text editors likewise use a
tabbed interface.

• Line numbers. The code editor automatically displays line numbers (C) so that you can easily navigate
through your code.

17

CHAPTER

1Getting Ready to Work with Python

What Is an Integrated
Development
Environment?
An integrated development
environment, or IDE, is an
application designed for
developing code. The
development environment is
integrated because you can
both write the code in the
environment and run the
code to make sure it works
correctly.

An IDE typically provides
similar features to those in
a code editor, such as syntax
evaluation and highlighting,
automatic code completion,
and the ability to switch easily among multiple files. To these features the IDE adds tools for testing and
debugging your code.

For example, the figure shows the PyCharm IDE. In the upper‐left corner is the Project pane (D), which
enables you to navigate among the files in your current project; gives you access to external libraries,
repositories containing code you can add; and provides a scratch window for quick work and notes, and
consoles for running code outside the IDE. In the upper‐right corner is the Code pane (E), where you write
your code. And across the bottom is the Run window (F), in which the output from your running code
appears.

Should I Use a Code Editor, an IDE, or Both?
Which coding tools you use for Python is very much a personal preference. That said, you will almost
certainly want to use an IDE for debugging your Python code. The question then becomes whether you want
to use a code editor as well as an IDE.

You may want to use both a code editor and an IDE for different aspects of your work developing code in
Python. Experiment with different tools to discover which tool or combination of tools works best for you.

18

When it comes to development tools for Python, there are a lot of choices. Many Python‐capable
code editors and IDEs are available, offering various combinations of features likely to appeal

to different developers. Most of these code editors and IDEs work for multiple — or many —
programming languages, but you can find IDEs built to work only with Python.

This section introduces you to some of the code editors and IDEs you may want to explore, including
Visual Studio Code, the coding tool we recommend you use for working with Python.

Learn About Development Tools for Python (continued)

Which IDEs Can I Use for Creating
Python Code?
You can use a bewildering variety of IDEs for creating
Python code. Some IDEs are designed for use only with
Python, whereas other IDEs are designed for use with
various programming languages. Some IDEs are much
fuller featured than others and provide more help as you
work. Extra help may be welcome while you are starting
to use Python but may become annoying as you gain more
experience.

Here are three examples of IDEs for Python:

• IDLE. IDLE is a minimalist IDE that is included in the
Python packages you can download from the Python
Software Foundation website, www.python.org. IDLE,
shown in the figure, uses multiple separate windows
for the Editor (G), the Shell (H), and features such as
Debug Control (I) rather than displaying multiple panes
inside a single window.

• PyCharm. PyCharm (www.jetbrains.com/pycharm) is a
full‐featured IDE that comes in two editions. Normally,
you would want the Community Edition, which is free
and works only with Python. The other edition, Profes-
sional, is a paid version that has a free trial and works
with HTML, JavaScript, and SQL, as well as Python.

• Thonny. Thonny (https://thonny.org) is a lightweight
IDE designed to help beginners come to grips with
Python coding. Thonny offers three modes for different levels of experience: Simple Mode for beginners,
Regular Mode for those who need greater control, and Expert Mode for advanced users. The accompany-
ing figure shows Regular Mode.

http://www.python.org
http://www.jetbrains.com/pycharm
https://thonny.org

19

CHAPTER

1Getting Ready to Work with Python

Which Code Editor or IDE Does This Book Recommend for Python?
This book recommends that you use Visual Studio Code as your main coding tool for working with Python, at
least while using this book. Visual Studio Code is free, provides powerful coding features, and is widely used
for various programming languages from C + + and C# to PHP and PowerShell.

While Visual Studio Code is generally described as a code editor, it also provides full‐scale debugging
features, so it is effectively also an IDE.

The following section, “Download and Install Visual Studio Code,” shows you how to get the app on your
Windows PC, Mac, or Linux box. Subsequent sections show you how to set Visual Studio Code’s look by
applying a theme, install Python‐related extensions to provide extra functionality, and configure some
essential settings.

Which Code Editors Can I Use for
Python?
You have a wide choice of code editors
suitable for programming Python. Here
are three examples of code editors well
worth your consideration:

• Sublime Text. Sublime Text, shown
in the “What Is a Code Editor?” sub-
section earlier in this section, is a
powerful text editor with a minimal-
ist interface that provides as much
space as possible for displaying your
code files. Sublime Text supports
more than 40 other programming
languages as well as Python. You
can download an evaluation version
of the app from the Sublime Text website, www.sublimetext.com; the app then costs $99 for a 3‐year
subscription.

• Atom. Atom, shown on this page, is a highly customizable code editor that makes working with multiple
files easy. As of this writing, Atom seems to place greater demands on the computer running it than the
other code editors listed here; as a result, Atom tends to run more slowly. Atom is free to download from
the Atom website, https://atom.io.

• Visual Studio Code. Visual Studio Code is a powerful code editor developed by Microsoft. It is separate
from Microsoft’s Visual Studio IDE and runs on Windows, macOS, and Linux. See the following section for
more information.

http://www.sublimetext.com
https://atom.io

20

1 Open your web browser and go to https://
code.visualstudio.com.

The home page of the Visual Studio Code
website appears.

2 Click the Download link for your computer’s
operating system.

 A The Download button shows the operating
system your computer is using.

 B To download Visual Studio Code for another
operating system, click the drop‐down arrow
(), and then click Download () in the
Stable column for the operating system.

The Documentation for Visual Studio Code
screen appears, and the download starts.

3 Launch the Setup Wizard. For example, in the
Chrome browser, click (changes to),
and then click Open on the pop‐up menu.

The Setup Wizard’s License Agreement screen
appears.

4 Read the license agreement.

5 If you want to continue, click I accept the
agreement (changes to).

6 Click Next.

7 Click Next on the Select Destination Location screen.

8 Click Next on the Select Start Menu Folder screen.

Download and Install Visual Studio Code

In this section, you download and install the Visual Studio Code app. Visual Studio Code is the
code editor and IDE we recommend you use for creating Python code. Visual Studio Code runs

on Windows, macOS, and Linux; this section shows Windows and provides notes and tips on the
differences in macOS and Linux.

On Windows, you can add an Open with Code command to the context menus for files and for
directories. This command enables you to easily open a file or a folder in Visual Studio Code from File
Explorer, which is usually helpful.

Download and Install Visual Studio Code

https://code.visualstudio.com
https://code.visualstudio.com

21

CHAPTER

1Getting Ready to Work with Python

The Select Additional Tasks screen appears.

9 Select Create a desktop icon () if you want a Visual
Studio Code icon on your desktop.

10 Select Add “Open with Code” action to Windows
Explorer file context menu (), as needed.

11 Select Add “Open with Code” action to Windows
Explorer directory context menu (), as needed.

12 Select Register Code as an editor for supported file
types () to associate Visual Studio Code with the file
types it supports.

13 Select Add to PATH () to add Visual Studio Code to your
Windows path. This helps Windows locate Visual Studio Code.

14 Click Next.

The Ready to Install screen appears.

15 Verify that the summary shows the choices you intended to
make.

 C If you need to make changes, click Back until you reach the
appropriate screen.

16 Click Install.

The Setup Wizard installs Visual Studio Code.

The Completing the Visual Studio Code Setup Wizard screen
appears.

Note: If you want to use Visual Studio Code immediately, select
Launch Visual Studio Code () on the Completing the Visual
Studio Code Setup Wizard screen.

TIPS
How do I install Visual Studio Code on macOS?
Download the latest Mac Universal Stable Build from
https://code.visualstudio.com. Double‐click the
downloaded zip file to extract its contents, the Visual
Studio Code app. Drag this app to the Applications
folder. You can then delete the downloaded zip file.

How do I install Visual Studio Code on Linux?
Go to https://code.visualstudio.com and download
the appropriate installer package for your
distribution — for example, the Debian installer
package or the Red Hat Package Manager installer
package. Open the file and follow the prompts.

17 Click Finish.

The Setup Wizard closes.

Visual Studio Code opens.

You can now configure Visual Studio
Code, as explained in the section
“Configure Visual Studio Code for Working
with Python,” later in this chapter.

https://code.visualstudio.com
https://code.visualstudio.com

22

Launch Visual Studio Code
1 Launch Visual Studio Code in one of

the standard ways for your computer’s
operating system.

For example, on Windows, click Start
() to open the Start menu, and then
click Visual Studio Code ().

 A The Get Started with Visual Studio Code
screen appears.

The list on the left contains headings for
several initial configuration steps.

2 Click Choose the look you want.

 B Controls under the heading section appear.

 C A preview appears.

3 Click Browse Color Themes.

The Theme drop‐down list opens.

 D The highlight shows the current theme.

 E The Light Themes section at the top
contains themes based on light colors.

 F The Dark Themes section contains themes
based on dark colors.

4 Press or to move the highlight to
the theme you want to preview.

Get Started with Visual Studio Code and Apply a Theme

The first time you run Visual Studio Code, the app displays the Get Started with Visual Studio
Code screen, which walks you through some initial configuration steps. You can return to the Get

Started with Visual Studio Code screen later if you like; alternatively, you can use the app’s other
means of accessing its settings to configure the app to work the way you prefer.

The first change you will likely want to make is to the theme, which controls the overall look of
Visual Studio Code. The app includes various dark themes and various light themes; third‐party
themes are also available.

Get Started with Visual Studio Code and
Apply a Theme

23

CHAPTER

1Getting Ready to Work with Python

The Get Started screen appears
fully again.

6 Click the next heading whose
settings you want to explore.

 G The settings for the heading
appear, and you can work with
them.

 H When you finish working through
the list, you can click Mark Done
() to tell Visual Studio Code you
finish using this list.

Visual Studio Code displays a
preview of the theme.

5 Click the theme you want to apply.

Note: You can also press to
apply the currently selected theme.

TIPS
How do I go back to the Getting Started
screen?
Click Help to open the Help menu, and then
click Getting Started. On the screen that
appears, click Get Started with Visual Studio
Code in the Getting Started list on the right.

Why does Visual Studio Code have so many dark
themes?
Dark‐hued themes tend to be easier on the eye, especially
when you are coding for a long time in a dimly lit room.
By contrast, this book uses a light‐hued theme to increase
readability on both the printed page and the screen.

24

1 Launch Visual Studio Code in one of the
ways your computer’s operating system
offers.

For example, on macOS, click Launchpad
() to display the Launchpad screen,
and then click Visual Studio Code ().

Visual Studio Code opens.

2 Click Extensions ().

The Extensions screen appears.

 A You can click Search Extensions in
Marketplace and type a search term to
search by name.

However, the Python extension often
appears toward the top of the Popular list,
which is sorted by number of downloads,
so you may not need to search.

3 Click Python.

The information screen for the Python
extension appears.

 B You can read detailed information about
the extension.

4 Click Install.

Visual Studio Code downloads the Python
extension and installs it.

Install Visual Studio Code Extensions for Python

Visual Studio Code comes with powerful built‐in features, but it also enables you to add further
functionality by installing extensions. An extension is an add‐on unit of code that you can install

or uninstall separately. Many extensions are available from third‐party developers, providing a wide
range of supplementary functionality for Visual Studio Code.

For working with Python, you should install the Python extension, as explained in this section. The
Python extension includes the Pylance server language extension and the Jupiter Notebook Renderers
extension, so you effectively install three extensions in a single move.

Install Visual Studio Code Extensions for Python

25

CHAPTER

1Getting Ready to Work with Python

The Installed list expands.

 E You can see all the extensions you
have installed.

 F You can click Settings () to
configure settings for an
extension.

6 Click Close ().

The pane showing information
about the Python extension
closes.

7 Click Extensions ().

The Extensions pane closes.

 C You can click Disable if you need to
disable the extension temporarily
without uninstalling it.

 D You can click Uninstall if you decide
you want to uninstall the extension.

5 Click Installed.

TIP
What other extensions can I use for Python in Visual Studio Code?
A wide range of Visual Studio Code extensions is available for working with Python; you can get a list by
entering python in the Search Extensions in Marketplace box in the Extensions pane in Visual Studio Code.
In particular, you may want to try the Python Indent extension, which automatically controls indentation
on new lines of code, and the Python Snippets extension, which can save you typing by providing built‐in
code snippets. Look also at the Kite AutoComplete AI Code extension, which provides automatic completion
for both Python and other major programming languages.

26

1 Launch Visual Studio Code.

For example, on Windows, click Start () to
open the Start menu, and then click Visual
Studio Code ().

2 Click File.

The File menu opens.

3 Click or highlight Preferences.

The Preferences submenu opens.

4 Click Settings.

Note: On Windows and Linux, you can press +
to display the Settings screen. On macOS, press

 + . Alternatively, click Manage () in the
lower‐left corner, and then click Settings on the
menu that opens.

The Settings screen appears.

 A The Commonly Used settings category appears at
first.

Note: If the Commonly Used category does not
appear, click Commonly Used.

5 Click Files: Auto Save (), and then click the Auto
Save option you want. See the first tip for advice.

6 Click Editor: Font Size and type the font size
you want to use in the editor.

 B You can click Editor: Font Family and type the font family you want to use in the editor.

7 Click Text Editor.

Configure Visual Studio Code for Working with Python

Visual Studio Code is highly customizable, so you should spend a few minutes configuring the
code editor suitably for your work in Python. This section shows you how to access Visual Studio

Code’s configuration preferences and explains the preferences you are most likely to benefit from
setting. These preferences include the “Files: Auto Save” setting, which controls whether Visual
Studio Code automatically saves unsaved changes as you work; the font size and font family in which
Visual Studio Code displays your code; and whether Visual Studio Code automatically inserts a closing
bracket to match each opening bracket you type.

Configure Visual Studio Code for
Working with Python

27

CHAPTER

1Getting Ready to Work with Python

The Text Editor settings category appears.

8 Click Auto Closing Brackets (), and then click
always, languageDefined, beforeWhitespace,
or never, as needed.

Note: Auto Closing Brackets controls whether Visual
Studio Code automatically enters a closing bracket
when you type an opening bracket. Auto Closing
Delete controls whether Visual Studio Code
automatically deletes adjacent closing quotes or
brackets during deletion.

9 Click Auto Closing Delete (), and then click
always, auto, or never, as needed.

10 Click Features.

The Features settings category appears.

11 Click Auto Reveal (), and then click true,
false, or focusNoScroll, as needed.

12 Select Confirm Delete () to make the explorer
confirm your file deletions.

13 Select Confirm Drag And Drop () to make the
explorer confirm your file drag‐and‐drop actions.

14 When you finish configuring settings, click
Close ().

The Settings tab closes.

TIPS
What are the Files: Auto Save options?
Click off to disable automatic saving. Click onFocusChange to
save changes when you move the focus from the file that contains
changes. Click onWindowChange to save changes when you
activate another app. Click afterDelay to have Visual Studio Code
automatically save changes after a delay. The default delay is 1000
microseconds — 1 second. To change the delay, click Text Editor
and change the value in the File: Auto Save Delay box.

How do I update Visual Studio Code?
By default, Visual Studio Code
automatically checks for updates and
notifies you when one is available. If
Visual Studio Code displays the Restart
Visual Studio Code to Apply the Latest
Update dialog box, click Update Now to
start the update.

CHAPTER 2

Writing and
Running Your
First Python Code
In this chapter, you start writing code in Python using the Visual Studio
Code editor and the terminal window. You learn about Python’s main()
function and create a simple function. You also learn how to run code
either in Visual Studio Code or in a terminal window, add comments to
your code, and import and use Python modules and objects.

Understanding the main() Function 30

Create and Save a New Script in Visual Studio Code 32

Write and Run Code in Visual Studio Code 34

Execute Python Commands in a Terminal Window 38

Run a Python Script in a Terminal Window. 39

Understanding Comments in Python. 40

Add Comments to Your Code 42

Grasp Importing Modules and Objects 44

Import Modules and Use Their Methods 48

30

Understanding the main() Function

You can create a Python script that simply uses commands and does not define any functions; you
do this extensively later in this book. But many Python scripts include a function called main()

that contains the main set of actions the script performs. In this section, you learn the purpose of
the main() function and when and how to create one.

You also learn about the two ways to run code using the Python interpreter. How you run a script
affects how Python sets the built‐in __name__ parameter, which you can use to control whether the
main() function runs.

What Is the main() Function?
As its name suggests, the main() function typically forms the core part of a Python script. You would
normally use the main() function in conjunction with an if statement that checks the value of the
__name__ parameter. Doing so enables your script to determine whether it was launched from the command
line or whether it was imported into the interpreter or into another script or module.

Here is pseudocode showing a main() function and its if statement, with italics indicating a placeholder:

def main():
 statements

if __name__ == "__main__":
 main()

Here is how this works:

• def. This keyword starts the definition of the function.

• main():. This is the name of the function, followed by a colon to end the line. This line is called the
function header.

• statements. This is where you place statements that specify the actions the main()function is to take.
The statements are indented by four spaces to indicate that they belong to the function’s block of code.

• if. This keyword begins the condition, which compares the value of the __name__ parameter to the
string "__main__". Two equal signs, ==, denote equality. The double quotes, ", mark the beginning and
end of a literal string of text. The colon ends the line.

• main(). This statement tells Python to execute the main() function if the condition evaluates to True.
This statement is indented by four spaces to show it belongs to the if statement’s block of code.

31

CHAPTER

2Writing and Running Your First Python Code

When Should You Create a main() Function?
Create a main() function in any script that you want to have execute in a different way when it is run from
the command line than when it has been imported into the interactive interpreter or into another script or
module.

Understanding the Two Ways to Run Python Code
You can run a Python script either by launching it from the command line or by importing it into the
interactive interpreter or another Python file.

Launch a Script via the Command Line
The first way to launch a script is by using the command line. You start by opening a terminal window, such
as a Command Prompt window on Windows or a window in the Terminal app on macOS or Linux. You then
navigate to the appropriate folder, type the Python app’s name and the script’s name, and press .

For example, to run the script called my_script.py from the current folder, you might use this command
on Windows:

python myscript.py

Or you could use this command on macOS or Linux:

python3 my_script.py

When you launch a script from the command line, Python sets the script’s __name__ parameter to
__main__.

Import a Script into the Interactive Interpreter or into Another Script or Module
To import a script, you use the import keyword followed by the script’s name without its extension. For
example, if the script’s name is acme_calcs.py, you can import it using the following statement:

import acme_calcs

When you import a script into the interactive interpreter, into another script, or into another module,
Python sets the script’s __name__ parameter to the script’s name without the extension. Continuing the
previous example of importing, Python sets the __name__ parameter to acme_calcs.

32

1 Open Visual Studio Code if it is not already
running.

For example, on Windows, click Start (),
and then click Visual Studio Code ().
On macOS, click Launchpad (), and
then click Visual Studio Code ().

Note: If Visual Studio Code is already running
or does not start a new script by default, start
a new script manually by pressing +
on Windows or Linux or + on the Mac.

The Select a Language to Get Started
prompt appears.

2 Click Select a language to get started.

 A The Select Language Mode pop‐up menu
opens.

3 Type p.

The P section of the pop‐up menu
appears.

4 Click Python (python).

 B Visual Studio Code sets the language
to Python.

5 Click File.

The File menu opens.

6 Click Save.

Note: On Windows and Linux, you can press
 + to give the Save command.

On macOS, press + .

Create and Save a New Script in Visual Studio Code

In this section, you run the Visual Studio Code app, create a new script, and specify that you want to
use the Python language for the script. You then save the script under a name of your choice in a

suitable location, creating a new folder if necessary. Saving the script file gets you ready for creating
code in it, which you do in the following section, “Write and Run Code in Visual Studio Code.”

Create and Save a New Script in Visual Studio Code

33

CHAPTER

2Writing and Running Your First Python Code

The folder opens.

11 Type the filename for the script.

12 Verify that Python is selected in the
Save As Type drop‐down list.

13 Click Save.

The Save As dialog closes.

Visual Studio Code saves the script.

You can now enter the code for the
script. See the next section, “Write
and Run Code in Visual Studio
Code,” for an introductory example.

The Save As dialog box opens.

7 Navigate to the folder in which
you want to store your script.

8 If you need to create a new
folder for your Python code,
click New folder. If not, go to
step 11.

 C The app creates a new folder.

9 Type the name for the new folder,
and then press .

10 Double‐click the new folder.

TIP
Should I use the Auto Save feature in Visual Studio Code?
You decide. You can toggle Auto Save on or off by clicking File to open the File menu and then clicking
Auto Save to display or remove the check mark next to it. To configure Auto Save, click File, click or
highlight Preferences, and then click Settings to display the Settings screen. In the left pane, click
Commonly Used to display the Commonly Used list. Click Files: Auto Save () and then click afterDelay
to save after a short delay, onFocusChange to save after you move the focus in the code window, or
onWindowChange to save after you activate another window.

34

Write Code in Visual Studio Code
1 Open Visual Studio Code, and then open the new script

file you created and saved in the previous section.

2 On line 1, type the following statement, which uses
the def keyword to create a function named main().
Press .

def main():

 A Visual Studio Code automatically indents the next line,
making it part of the code block for the main()
function.

3 Type the following partial statement:

print(

 B Visual Studio Code automatically enters the closing
parenthesis,), for you to the right of the insertion
point.

 C A ScreenTip containing help for the print() function
appears.

4 Type ".

Visual Studio Code enters the closing quotes for you,
again to the right of the insertion point.

 D Visual Studio Code highlights the parentheses to
indicate that they are a matching pair.

5 Inside the quotes, type the following string of text,
carrying the closing quotes along to the right:

The main function is running.

Write and Run Code in Visual Studio Code

After creating a new script file in Visual Studio Code, as explained in the previous section, “Create
and Save a New Script in Visual Studio Code,” you can write code in the script and then run it. In

this section, you create a short script that demonstrates how the script’s __name__ property varies
depending on how you run the script. The script uses the print() function to display output and
includes an if... else statement, a decision‐making tool you will meet in detail in Chapter 6,
“Making Decisions with if Statements.”

Write and Run Code in Visual Studio Code

6 Press to move the insertion point past the
closing quotes, and then press . The
complete line of code looks like this:

print("The main function is
running.")

35

CHAPTER

2Writing and Running Your First Python Code

Visual Studio Code retains the indent
on the next line.

7 Type the following partial statement,
which uses the print() function
to display information about the
__name__ parameter, moving the
closing parenthesis along to the right.

print("The __name__ parameter
is: " + __na

Note: When you type the closing quotes,
", Visual Studio Code moves the insertion
point to the right of the " character that
your typing has been carrying along. You
can also press to move the insertion
point past the " character.

 E When you type __na, Python displays
an AutoComplete list of matching
items.

8 Click __name__.

Visual Studio Code enters the __
name__ item, so the statement looks
like this:

print("The __name__ parameter
is: " + __name__)

9 Type) to move the insertion point
past the closing parenthesis, and then
press .

10 Press to delete the indent,
ending the main() function’s block,
and then press again.

TIP
How else can I navigate the AutoComplete list?
Instead of clicking the item you want to insert in your code, you can press or to move the highlight
to the item and then press or to enter it. You can also “type down” to highlight the name —
simply continue typing the remaining characters of the name until Visual Studio Code highlights the name.

36

Visual Studio Code creates a blank line.

11 Type the following if statement, which
compares the value of __name__ to the
string __main__, and then press :

if __name__ == "__main__":

 F Python indents the next line, making it part
of the if block.

12 Type the following statement, which runs the
main() function, and then press :

main()

Write and Run Code in Visual Studio Code (continued)

Normally, the if __name__ == "__main__" statement does not have an else statement,
as the if statement is all that is needed to control whether the main() function runs. In

this example, however, you add an else statement to demonstrate how the value of __name__
changes when you run the script by importing it. The else statement runs when __name__ is not
__main__; it displays a message including the value of __name__.

If you have turned off Visual Studio Code’s Auto Save feature, save your work manually whenever you
have made changes you would rather not have to make again.

Write and Run Code in Visual Studio Code (continued)

13 Press to delete the indent, and
then type the else keyword and a colon.
Press .

else:

Visual Studio Code indents the next line,
making it part of the else block.

14 Type the following print() statement, and
then press :

print("The main function is not
running.")

15 Type the following statement, which is the
same as that in line 3:

print("The __name__ parameter is:
" + __name__)

37

CHAPTER

2Writing and Running Your First Python Code

Run Your Script in Visual
Studio Code
1 Click Run Python File in

Terminal ().

The Terminal pane appears in the
lower part of the Visual Studio
Code window.

 G The script’s path and name
appear here.

 H The script’s output appears,
indicating that the main()
function is running and that the
value of the __name__ parameter
is __main__.

2 Click Kill Terminal ().

Visual Studio Code kills the
Terminal.

Visual Studio Code closes the
Terminal pane.

TIP
How can I save time when creating repetitive code in Visual Studio Code?
You can use the Copy and Paste commands. For example, instead of typing a line of code again, select a
previous instance, and then give a Copy command, such as clicking Edit and then Copy; click in line 8, and
then give a Paste command, such as clicking Edit and then Paste. If you prefer, you can use the standard
keyboard shortcuts: Press + for Copy, + for Paste, or + for Cut. On the Mac,
press + , + , and + , respectively.

38

1 Open a terminal window.

For example, on Windows, click Start (), type com, and
then click Command Prompt ().

2 Type python and press .

Note: On macOS and Linux, type python3 and press .

The interactive interpreter launches.

 A The Python prompt, >>>, appears.

3 Type the following statement, which creates a variable
named u and assigns to it the result of the input()
function prompting you to type your name. Press .

u = input("Type your name: ")

Python displays the prompt:

Type your name:

4 Type whatever you like, and then press .

Python accepts your input.

5 Type the following statement, which uses the print()
function to display a short message including what you
typed. Press .

print("You are " + u)

Python displays the message, such as this:

You are Ann

6 Type the following statement, which gives the quit()
command, and then press .

quit()

The Python interpreter quits.

Execute Python Commands in a Terminal Window

The Python interactive interpreter enables you to execute commands in a terminal window. You
open a standard terminal window, such as a Command Prompt window on Windows or a Terminal

app window on macOS or Linux; and then launch the interactive interpreter using the python
command on Windows or the python3 command on macOS or Linux. You can then type Python
commands and get an immediate response.

Working in the interactive interpreter is great for learning, and you will use this approach extensively
in this book. This section provides an introduction to the interactive interpreter.

Execute Python Commands in a Terminal Window

The terminal window’s standard prompt
appears again.

Note: Use the quit() command when you want
to quit Python. For concision, terminal window
tasks from here on do not show this command.

39

CHAPTER

2Run a Python Script in a Terminal Window

Run a Python Script in a Terminal Window

After creating a Python script, you can execute it by running it in a terminal window. In this section,
you open a terminal window and run the script you created earlier in this chapter, which shows you

whether the main() function is running and what the value of the __name__ parameter is.

You then launch Python and import the script. By doing so, you can see the different way in which
Python handles the main() function for a script you import.

1 Open a terminal window.

For example, on macOS, click Launchpad (), and then click
Terminal ().

2 Change the directory to the one in which you saved the
script. The following macOS example uses the cd command
to change to the ~/Dropbox/TYV_Python/Code directory,
starting from the user’s home directory, which is represented
by ~.

cd Dropbox/TYV_Python/Code

3 On Windows, type python; on macOS or Linux, type python3.

4 On the same line, type a space, and then type the name of
the script. For example, on macOS, the following command
runs the script Script_1.py:

python3 Script_1.py

 A The script’s output appears, indicating that the main()
function is running.

5 Type python on Windows, or python3 on macOS or Linux,
and then press . For example, on macOS, type this:

python3

Python launches.

 B The Python prompt appears.

6 Type the following statement, which uses the import
statement to import the script as a module:

import Script_1

 C The script’s output appears, indicating that the main()
function is not running and giving the value of the __name__
parameter as Script_1.

7 Type the quit() command, and then
press .

quit()

Python quits.

40

Like most programming languages, Python enables you to add comments to your code. A comment
is text that appears in a script but that is marked as not to be executed. You can add comments

to your code at any point. For example, as you develop a script, you might use comments to describe
the tasks the code needs to perform and possible approaches for them. After finishing the script’s
commands, you might rework the comments so that they explain what the script does. Such comments
will help others understand and maintain the code.

Formally, Python supports only single‐line comments, but you can also use multiline strings to create
informal multiline comments.

Understanding Comments in Python

Create Formal Comments Using the # Character
Python uses the # character to mark the start of a single‐line comment. You can place the # character at
the start of the line to make the entire line into a comment, as in the following example:

display the value of y
print(y)

Alternatively, you can place the # character after some code, as in the following example. This method
works better for short comments and for comments you intend to remove once you get the code working.

t = "Placeholder 1" # replace this placeholder text

You cannot use the continuation character, \, to continue a single‐line comment to the next line. Instead,
type # at the beginning of the next line if you need to continue the comment, as in the following example:

prompt the user for the company name
compare the company name to an approved list

Using Multiline Strings to Create Informal Comments
Another way to create a multiline comment in a script is to create a multiline string but not assign it to a
variable. To create a multiline string, you place three double quotes at the beginning and at the end, or
three single quotes at the beginning and at the end. The following example uses three double quotes:

"""
Run an external check with the chem_verify() method
to confirm the formula is correct.
Log the formula in the standard file.
"""

This method of creating informal comments works but has no real advantage over using the # character on
each line. You should know about this method not because you should use it in your own code but because
you may encounter it in other people’s code.

41

CHAPTER

2Writing and Running Your First Python Code

Using Comments to Prevent Code from Executing
Apart from adding textual commentary to your code, comments have a secondary use: You can use the
character to prevent a specific line of code from executing. This is called commenting out the code —
turning a statement into a comment prevents the code from running without you having to remove it from
the script, but you can restore the code by removing the comment character.

For example, the # character comments out the first of the following statements:

u = input("Type your name: ")
u = "Bob" # default name for testing
print("You are " + u + ".")

Enter Comments in a Terminal Window
You can enter comments when working interactively in a terminal window. Doing so is sometimes useful,
such as when you are working in multiple terminal windows and want to make sure you do not lose your
train of thought. Generally, though, comments are more widely useful when you are creating a script.

Enter Comments in a Code Editor
or an IDE
When you are working in a code editor or
an IDE, you can create a comment
manually by typing the # character before
the comment text. But most code editors
and IDEs also provide commands for
commenting out text and uncommenting
it again.

For example, in Visual Studio Code, you
can toggle commenting on or off for the
current line or selected lines by pressing

 + on Windows or Linux or
 + on the Mac. From the menu bar,

you can click Edit and then click Toggle
Line Comment.

Visual Studio Code’s Edit menu also offers the Toggle Block Comment, which places three double quotes
before and after the selected text, making it into an informal comment. You can give this command from
the keyboard by pressing + + on Windows or Linux or + + on the Mac.

42

1 Open Visual Studio Code, create a new script,
and save it under a name of your choice.

2 Type the following statement, which creates a
comment, and then press :

prompt the user for their name

 A Visual Studio Code displays the comment text in
green to make it easy to see in your scripts.

3 Type the following statement, which creates a
variable named u and assigns to it the result of
the input() function, prompting the user for
their name. Press .

u = input("Type your name: ")

Add Comments to Your Code

Adding comments to your code can help you develop functional code more quickly and can help
others understand, maintain, and extend your code. While writing code, add comments freely

describing the code’s tasks and your current approach. Revise the comments as you progress and
change your code. Once the code is working, clean up the comments, removing any development‐
related comments and adding any further explanation that is needed or might be helpful.

You can also use the comment character, #, to comment out lines of code to prevent them from
running without removing them from the script.

Add Comments to Your Code

4 Type the following comment, and then
press :

display the name entered

5 Type the following statement, which uses the
print() function to display a message that
includes the contents of u. Press .

print("You are " + u + ".")

6 Click Run Python File in Terminal ().

The Terminal pane opens.

7 Click in the Terminal pane.

8 Type a name, and then press .

 B Python displays the message.

43

CHAPTER

2Writing and Running Your First Python Code

4 Still on the same line, type a comment so the
line reads like this:

u = "Ivy" # default name for testing

5 Click Run Python File in Terminal ().

 D The message appears, showing the default name.

6 Click in line 2 and press + .

 E Visual Studio Code uncomments line 2.

Note: On the Mac, press + .

7 Click in line 3 and press + .

Visual Studio Code comments out line 3.

Comment Out a Statement and
Uncomment It Again
1 Click at the beginning of line 2, and then type

and a space so the line reads like this:

u = input("Type your name: ")

 C Visual Studio Code displays the line in green,
because it is now a comment.

2 Click at the end of line 2, and then
press .

Visual Studio Code creates a new line.

3 Type the following statement, which creates a
variable named u and assigns the value Ivy to it.

u = "Ivy"

TIPS
Why does Visual Studio Code automatically enter # at the start of a
new line after a comment?
Visual Studio Code automatically enters the # character when you press

 with the insertion point inside a comment, breaking it to the next
line. If this happens when the insertion point is apparently at the end of a
comment line, chances are that there is a space to the right of the insertion
point that is causing Visual Studio Code to continue the comment.

What happens if I use two #
characters at the start of a
comment?
The first # character tells Python
the rest of the line is a comment,
so the second # character
becomes part of the comment.

44

When you load Python using the python or python3 command, depending on the operating
system, Python loads its core modules, which provide essential functionality. When you need

further functionality, you can import one or more additional modules, files containing Python code.
For example, when you need to work with directories, such as creating or deleting them, you can
import the os module, which contains methods for interacting with the operating system.

You can either import an entire module by using an import statement or import an individual object
from a package by using a from... import statement.

Grasp Importing Modules and Objects

Understanding What Modules Are and Why Python Uses Them
In Python, a module is a stand‐alone file that contains code. Python breaks down code into modules so as
to have multiple smaller files rather than one gargantuan file. These smaller files have various advantages,
such as helping the organization of code by functionality, streamlining the updating of code, and making
code run better on less‐powerful systems by avoiding loading items that are not needed.

The main disadvantage of having code in separate modules is that your code must load any modules it
needs. But as you will see, loading the modules is quick and easy.

Import a Module
To import a module, use the import keyword and specify the module name. For example, the following
statement imports Python’s os module, which provides operating system–related commands:

import os

Similarly, if you have created a custom module named acme_calculations.py, you can import it by
using the following command:

import acme_calculations

Note that you omit the .py file extension from the custom module’s filename in the import statement.

When you import a module of your own like this, navigate to the directory that contains the module first,
and then launch Python from there. Alternatively, you can import the module from a subdirectory of the
directory from which you launched Python. For example, if the acme_calculations module is stored in
the final subdirectory, specify the subdirectory like this:

from final import acme_calculations

45

CHAPTER

2Writing and Running Your First Python Code

Access the Contents of an Imported Module
When you import a module like this, you specify the module’s name to access its contents. For example, the
os module’s contents include the path module, which provides methods for working with file‐system path
names. After importing the os module, you access the path module like this:

os.path

Similarly, if you have imported the acme_calculations module, and it contains a method named
ave_product, you access it through the module like this:

acme_calculations.ave_product()

Import an Object from a Module
Instead of importing an entire module, you can import a single object from a module. You might do this if
that object is the only part of the module you will need and you want to be able to refer directly to the
object rather than having to refer to it via the module. Counterintuitively, importing only an object does
not reduce resource usage, as Python imports the whole module into its mapping table; the difference is in
how you refer to the object.

To import an object from a module, begin the statement with the from keyword; then supply the module
name, then the import keyword, and finally the object name. For example, the following statement imports
the path module from the os module:

from os import path

After importing a single object like this, you refer to it by its unqualified name, such as path in this case,
rather than via its parent module, such as os.path. Here is an example:

print(path)

If the object you import contains other objects or methods, you can access those objects or methods by
using the name of the imported object followed by a period and the name of the item you want to use.
For example, the path object contains many methods, including os.path.basename(), which returns the
base name of the specified path. After importing the path object, you can access the basename() method
via the path object like this:

path.basename()

You can also import a nested object on its own. For example, the following statement imports basename()
from os.path:

from os.path import basename

46

The standard way of importing a module or an object adds it to Python’s mapping table, but
Python also enables you to import a module or object under an alias of your choice. Using an

alias can make your code more compact and easier to read.

Because you have not imported the module, you cannot refer to the object via the module. So if you
have imported only the path object from the os module, you cannot use os.path to refer to it; you
must use the unqualified path instead.

Grasp Importing Modules and Objects (continued)

Import a Module or Object Under an Alias
When you import a module or an object from a module, you can create an alias for the object. For example,
the following statement imports the module acme_quants_derivatives and assigns the alias aqd:

import acme_quants_derivatives as aqd

You can then use the alias to refer to the module or object. For example, the following statement uses the
aqd alias to refer to the ohlc() method in the acme_quants_derivatives module, assigning it to the
variable n:

n = aqd.ohlc()

Similarly, you can use the from syntax to import an object from a module under an alias. The following
example imports the version method from the platform module under the alias pv:

from platform import version as os_version

Likewise, you can then use the alias in your code. For example, the following statement uses the print()
function to display the value of the method aliased as os_version:

print(os_version())

This statement returns information such as the following on a Mac:

Darwin Kernel Version 20.6.0: Mon Aug 30 06:12:21 PDT 2021;
root:xnu-7195.141.6~3/RELEASE_X86_64

Using an alias can be useful when you import multiple modules or objects that have the same name or
names similar enough to be confusing. Using a shorter alias can also tighten and streamline your code.

47

CHAPTER

2Writing and Running Your First Python Code

List the Methods and Variables in a Module or Object
After importing a module or object, you can use Python’s dir() function to list the methods and variables
it contains. For example, if you have imported acme_quants_derivatives and assigned the alias aqd,
you can list the contents of aqd like this:

dir(aqd)

Python returns a list of the contents, such as the following:

['__builtins__', '__cached__', '__doc__', '__file__', '__init__', '__loader__',
'__name__', '__package__', '__spec__', 'export_weekly_stats', 'five_minute_
chart', 'import_daily_stats', 'ohlc', 'statbank', 'two_minute_chart']

The items whose names start and end with two underscores are built‐in Python methods. These are called
dunder methods after the double underscore characters that precede and follow their names.

The items whose names do not use the double underscores, such as import_daily_stats and ohlc, are
the methods and variables in the module or object.

You access the methods and variables through the alias of the imported object. For example, the following
statement creates a variable named my_two_minute_chart and assigns to it the result of the two_
minute_chart() method, which it accesses via the aqd alias:

my_two_minute_chart = aqd.two_minute_chart()

Reload a Module
Normally, you do not need to reload a module, because the Python interpreter does not unload modules.
This means the only reason to reload a module is if it has changed since you first loaded it. While possible,
such change in a loaded module is relatively rare.

To reload a module, first use the import command to import the importlib package:

import importlib

You can then use the reload() method of importlib to reload the module. For example, the following
statement reloads the module named cust1:

importlib.reload(cust1)

48

1 Open a terminal window and launch Python.

For example, on Ubuntu, click Show Applications (),
type term, and then click Terminal ().

 A The Python prompt appears.

2 Type the following statement, which uses the import
command to import the os module. Press .

import os

3 Type the following statement, which uses the getcwd()
method of the os module to return the current working
directory. Press .

os.getcwd()

 B Python returns the directory, such as '/Users/guy'.

Note: See Chapter 4, “Working with Files and Folders,” for more
information about the os module.

4 Type the following statement, which uses the import
command with the as keyword to import the sys module
under the alias rt. Press .

import sys as rt

5 Type the following statement, which uses the print()
function to display the result of returning the version
property of the object aliases as rt. Press .

print(rt.version)

 C Python displays the version information, as in the following
example, with the headline number at the beginning:

3.10.0 (v3.10.0:b494f5935c, Oct 4 2021,
14:59:20) [Clang 12.0.5 (clang-1205.0.22.11)]

Import Modules and Use Their Methods

In this section, you import two Python modules and use the methods they contain. The modules
you import are called os and sys, two of Python’s utility modules. The os module lets you work

with the computer’s operating system, while the sys module enables you to manipulate the Python
runtime environment. You also import objects from platform, another utility module.

To use commands in an imported library, you specify the library’s name followed by the command’s
name. For example, to use the getcwd() method in the os module, you use os.getcwd().

Import Modules and Use Their Methods

49

CHAPTER

2Writing and Running Your First Python Code

8 Type the following statement, which uses the
from keyword with the import command and the
as keyword to import the processor() method
from the platform module under the alias cpu.
Press .

from platform import processor as cpu

9 Type the following statement, which uses the
print() function to display the result of the
cpu() method. Press .

print(cpu())

 E Python returns the processor type, such as i386
for an Intel processor or amdk6 for an AMD
processor.

6 Type the following statement, which uses the
from keyword with the import command to
import the system() method from the platform
module. Press .

from platform import system

7 Type the following statement, which uses the
print() function to display the result of the
system() method. Press .

print(system())

 D Python displays a term indicating the operating
system: Windows for Windows, Darwin for
macOS, or Linux for Linux.

TIP
How do I unimport a module or an object?
You do not normally need to unimport a module or an object. Once you have imported a module or an
object, Python retains access to it until you quit Python.

CHAPTER 3

Getting Started
with Variables
In this chapter, you learn to work with variables, named areas of memory
that you can use to store data as your apps run. You explore the different
data types Python uses and learn how to use each data type effectively.
Along the way, you create variables by assigning data to them, retrieve data
from variables, change the contents of variables, and determine the data
type of the values assigned to variables.

Understanding Variables and Their Usage 52

Understanding Python’s Data Types 54

Work with Integers. 58

Work with Floating‐Point Values 60

Work with Boolean Values 62

Work with Tuples. . 64

Work with Sets. . 66

Start Working with Strings 68

Start Working with Lists 70

Start Working with Dictionaries. 72

Convert Data from One Type to Another 74

52

Understanding Variables and Their Usage

In this section, you learn the essentials of variables, which are named areas of memory that you
can create for storing data while your Python code runs.

Python supports various different data types, such as integers for whole‐number values, Booleans
for True/False values, and strings for words or other sequences of text characters. After creating
a variable, you can assign any type of data to it that Python uses. See the following section,
“Understanding Python’s Data Types,” for details on Python’s data types.

What Is a Variable?
A variable is an area of
memory in which you can
store data. When you
create a variable, you
give it a name that
enables you to access it
to retrieve or change its
contents. When your
code runs, Python
allocates a space in memory for each variable.

For example, you might create a variable called name to store an employee’s name (A). The name would
normally be a string of text characters, such as Anna Connor or Bill Ramirez, so the value would
receive the str data type, which Python uses for strings. Similarly, you might create a variable called age
to store the employee’s age in years as a whole number (B). That value would be an integer, so Python
would assign the value the int data type that it uses for integers. Or you might create a variable called
isOnProbation to store the employee’s probation status (C). This variable would store the value True or
the value False, and Python would assign the value the bool data type that it uses for Boolean values.

A Variable Does Not Have a Data Type, But Its Value Does
In Python, variables themselves do not have data types, so you do not specify the data type when you
create a variable. Instead, the value assigned to the variable has a type. So instead of, say, creating a
variable and giving it the int data type, which is for integers, you would create a variable and assign data
of the int data type to it.

This treatment of variables is called dynamic typing and is different from various other programming
languages that enable — or require — you to give each variable a specific data type, a practice called static
typing. For example, Microsoft’s Visual Basic programming language encourages you to declare each variable
explicitly and assign a data type. For instance, Dim intAge As Integer “dimensions” — creates — a
variable called intAge that has the Integer data type and will accept only integer data. Such explicit
declarations prevent you from putting the wrong type of data in a variable — trying to do so causes an
error — and from overwriting the variable unintentionally by using the same name later in your code.

53

CHAPTER

3Getting Started with Variables

Creating a Variable and Assigning
Data to It
In Python, you create a variable and
assign data to it in a single statement.
For example, consider the following line:

price = 125

This line (A) declares a variable called
price and initializes it by assigning the value 125 to it. This value is an integer, a number with no decimal
component, so Python gives it the int data type.

You can then change the value if needed, as in the following line:

price = 250

This line (B) assigns the value 250 to the price variable.

You can also assign data of a different data type to the price variable. For example, the following line (C)
assigns a string value:

price = "moderate"

Because the price variable does not have a static data type, it accepts the string value without comment.

However, some IDEs display a warning when your code contains this kind of change, because it could
represent an error, as a programmer would not normally change the data type contained in a variable.

Seeing What Data and Data Type a Variable Contains
To see what data a variable contains, you can use the
print command to display the contents to the console. For
example, the following line (A) displays the contents of the
price variable:

print(price)

The print command works fine for values that are text or
can easily be interpreted as text, but trying to print a
variable containing binary data — for example, an image —
will usually cause problems.

To see what data type the value assigned to a variable has, you can use the type command with the variable’s
name. For example, the following line (B) displays the data type of the value assigned to the price variable:

type(price)

This command returns the value’s class, such as <class 'int'> for the int data type or <class 'str'>
for the str data type.

54

Python includes various built‐in data types designed for handling different types of data
efficiently. For example, Python’s bool data type is designed for storing Boolean data, data that

can be either True or False but no other possible value. Similarly, Python’s str data type is designed
for storing strings of text.

Python’s built‐in data types mostly fall into six categories: numerics for numbers; sequences for data
such as lists; mappings for dictionaries, where one item maps to another; classes for creating custom
objects; instances for the objects created with those classes; and exceptions for handling errors.

Understanding Python’s Data Types

Understanding How Python Builds on the C Programming Language
The Python programming language is primarily implemented using C, a long‐standing and robust
programming language that is still widely used across many industries. C is called a low‐level programming
language, which means that it can interface directly with hardware features, lending itself to software and
operating‐system development. C is relatively easy to understand but extremely hard to master.

Python is a high‐level programming language and includes many built‐in features that C does not natively
support, giving you an easier way to harness some of the power of C to develop solutions rather than using
C directly. Python’s extensive feature set and capability to run well on many platforms contributes to its
great versatility.

Because Python is built on C, Python’s data types are constructed using combinations of C’s data types. For
example, Python includes a data type called set that enables you to store multiple pieces of information in
a single variable — a capability that C itself does not directly provide. Furthermore, some of Python’s more
complex data types are constructed using simpler Python data types.

Understanding the Numeric Data Types
Python provides three main numeric types for handling different kinds of numeric data:

• int. This data type is used for storing integer numbers — numbers that do not have a decimal compo-
nent. For example, 0, 3, 42, and 4817 are all integers. The following section, “Work with Integers,” pro-
vides examples of working with the int data type in Python. Technically, the bool data type for storing
Boolean values is a subtype of int.

• float. This data type is used for storing floating‐point numbers, those that have a decimal component.
For example, 9876.54321 is a floating‐point number. The section “Work with Floating‐Point Values,” later
in this chapter, gives you examples of working with the float data type in Python.

55

CHAPTER

3Getting Started with Variables

Understanding the Numeric Data Types (continued)
• complex. This data type is used for storing complex numbers — numbers that consist of a real

component and an imaginary component. Complex numbers have mostly specialized uses beyond the
scope of this book.

Understanding the Sequence Data Types
In Python, a sequence is a set of data that is ordered — in other words, it has a specific order. Some
sequence data types are immutable, or unchangeable, whereas others are mutable, or changeable.

The following list explains the main data types in the sequence category:

• list. This data type contains a sequence of similar items — for example, a list of integers might con-
tain 1, 2, and 3, or a list of strings might contain dog, cat, and snake. Lists are mutable, so you can
change their contents, their order, or both. See the section “Start Working with Lists,” later in this
chapter, for more about this data type.

• tuple. This data type is used to store an ordered sequence of values. The values do not need to be
unique, so a tuple can contain multiple instances of the same value. A tuple is immutable, so you cannot
change its contents or its order once you have created it. See the section “Work with Tuples,” later in
this chapter, for more about this data type.

• range. This data type is used to contain an immutable sequence of integer values — for example, from
1 to 10. Ranges are often used to control the number of iterations in for loops.

• str. This data type is used for storing strings of text. Python considers a string to be an immutable —
unchangeable — sequence of characters. The section “Start Working with Strings,” later in this chapter,
gets you started with the str data type, while Chapter 9, “Working with Text,” shows you the most use-
ful moves with strings.

56

In addition to the sequence data types — list, tuple, range, and str — discussed so far in
this section, Python provides a set data type for storing sets of data. A set is not a sequence

because it does not have a specific order.

Python also provides a single mapping data type, dict, which is used for creating dictionaries. A
dictionary in Python is not a dictionary in the everyday sense, although there are some similarities
between the two: A key in the dictionary maps to a particular value, enabling you to look up that value.

Understanding Python’s Data Types (continued)

Understanding the Set Data Type
In Python, the set data type enables you to store multiple values in a single variable. The set data type
has the following characteristics:

• It contains elements. The elements, also called members, are the discrete objects that make up the set.
• Each element is unique. A set cannot have duplicate elements. By contrast, a list or a tuple can have

duplicate elements.
• It is unordered. The elements in a set have no specific order. This means you cannot refer to an element

in a set by its index or position.
• It is immutable. Once you have created a set, you cannot change its existing items, but you can add

further items to the set if you need to.

The section “Work with Sets,” later in this chapter, gives you an example of creating and manipulating a set.

Understanding the Mapping Data Type
Python’s mapping category contains a single data type, dict, which is used for dictionaries. A dictionary
consists of key/value pairs, with the key in each pair giving you access to set, retrieve, or modify the
associated collection of information in the value.

A dictionary is unordered; you access the data by supplying the appropriate key rather than an index value.
A dictionary is mutable, so you can change its contents after creating it.

The section “Start Working with Dictionaries,” later in this chapter, introduces working with dictionaries.
Chapter 11, “Working with Lists and Dictionaries,” goes into dictionaries in depth.

57

CHAPTER

3Getting Started with Variables

Understanding Python’s Classes
In Python, a class is a kind of template you use for creating a new object of a particular type. You can
create a class object to organize the functions and other code in a particular project.

That sounds nebulous, but if you work with office productivity software, you are likely used to a similar
paradigm. For example, if you need to create many memos of the same type in Microsoft Word, you may
create a custom memo template containing the layout and formatting for the memo, and perhaps some VBA
code for automation. That memo template is analogous to a Python class.

Chapter 12, “Working with Classes,” explains how classes work, tells you what classes are useful for, and
shows you how to create a class and put it to use.

Understanding the Instance Data Type
In Python, an instance is an individual object created from a particular class. For example, say you create a
class that contains the functions needed to run a particular data‐aggregation and assessment task. When
you want to work on that data, you create an instance of the class — or, to use the formal term, you
instantiate the class.

Continuing the previous example, when you need to produce a memo, you create a new document based on
your memo template rather than using the memo template itself. The document is analogous to an instance
of the template class.

Chapter 12, “Working with Classes,” covers how to create and use instances of your custom classes.

Understanding the Exception Data Type
In Python, an exception is an object representing an error that occurred during code. Chapter 10, “Handling
Errors,” shows you how to work with Python’s built‐in exceptions to handle errors when they occur. This
chapter also explains how to create custom exceptions.

58

Create the Script
1 In Visual Studio Code, create a new script,

and then save it.

For example, press + , click Select
a Language, and then click Python. Press

 + , specify the filename and location,
and then click Save.

2 Type the following statement, which uses the
input() command to prompt the user to
enter an integer and assigns the result to
a variable named strN1:

strN1 = input("Enter an
integer: ")

Work with Integers

Python provides the int data type for storing integer values. An integer is a whole number, one with
no fractional component. For example, 1, 7, and 49 are integers, whereas 1½ and 7.25 are not.

In this section, you use the input() command twice to prompt the user to enter two integers. Each
input() command returns a string that you convert to an integer by using the int() command.
You then use the addition operator, + , to add the numbers; use the str() command to create a
string from the result; and use the print()command to display that string.

Work with Integers

3 Press , and then type the following
statement, which prompts the user to
enter another integer and assigns it to a
variable named strN2:

strN2 = input("Enter another
integer: ")

4 Press , and then type the following
statement, which uses the int() command
to convert strN1 to an integer and assigns
it to a variable named intN1:

intN1 = int(strN1)

5 Press , and then repeat step 4, but
this time convert strN2 to an integer and
assign it to intN2:

intN2 = int(strN2)

59

CHAPTER

3Getting Started with Variables

6 Press , and then type the following
statement, which adds intN1 and intN2,
assigning the result to a variable named
intTotal:

intTotal = intN1 + intN2

7 Press , and then type the following
statement, which uses the str() command
to convert intTotal to a string:

strTotal = str(intTotal)

8 Press , and then type the following
statement, which uses the strings to
display the calculation and its result:

print(strN1 + " + " + strN2 +
"=" + strTotal)

Run the Script
1 Click Run Python File in Terminal ().

 A The Terminal pane opens.

 B The Terminal pane displays the details
of the code it is running.

The first prompt appears.

2 Type a value and press .

The second prompt appears.

3 Type another value and press .

 C The calculation and its result appear.

TIP
What does the + operator do in Python?
With numerical values, Python uses the + operator for addition. For example, 1 + 2 adds 1 and 2,
returning 3. See Chapter 5, “Working with Python’s Operators,” for more information about Python’s
mathematical operators and other operators.

With strings, Python uses the + operator for concatenation, which means joining the strings together. For
example, "after" + "noon" joins after and noon, returning afternoon. When concatenating strings, you
will often need to add spaces or punctuation between them.

60

1 In Visual Studio Code, create a new script, and
then save it.

For example, press + , click Select
a Language, and then click Python. Press

 + , specify the filename and location,
and then click Save.

2 Type the following statement, which prompts
the user to enter the Fahrenheit temperature,
assigning the result to the variable degF:

degF = input("Enter the Fahrenheit
temperature: ")

3 Press and type the following statement,
which assigns the input() command’s string and
explanatory text to a variable named result:

result = degF + "degrees
Fahrenheit is "

Work with Floating‐Point Values

A floating‐point value is a value that includes both an integer part and a decimal part, such as
6.155 or 0.1. In Python, floating‐point values are often called floats.

A floating‐point number’s value is represented in binary using two components, a mantissa and an
exponent. The mantissa stores the binary value for the number, whereas the exponent specifies the
position of the decimal point in the mantissa. This means that, while a float is an efficient means of
storing a number that includes a decimal point, its accuracy can vary.

Work with Floating-Point Values

4 Press and type the following statement,
which converts the input() command’s string
to a float data type:

degF = float(degF)

5 Press and type the following statement,
which subtracts 32 from the float value in
degF and assigns the result to the variable
named degC.

degC = degF - 32

6 Press and type the following statement,
which multiplies the value in degC by 5:

degC = degC * 5

61

CHAPTER

3Getting Started with Variables

7 Press and type the following statement,
which divides the value in degC by 9:

degC = degC / 9

8 Press and type the following
statement, which rounds the degC value
down to one decimal place:

degC = round(degC,1)

9 Type the following statement, which derives
a string from the degC value and adds that
string and further explanatory text to the
existing string in the result variable:

result = result + str(degC) + "
degrees Celsius."

10 Press and type the following
statement, which uses the print()
command to display the contents of the
result variable:

print(result)

11 Click Run Python File in Terminal ().

 A The Terminal pane opens.

 B The Terminal pane displays the details of
the code it is running.

The first prompt appears.

The input() prompt appears.

12 Type a Fahrenheit temperature and press .

 C The result appears.

TIP
Can you write the calculation using fewer lines?
Yes — you can write the calculation in a single line, and doing so is more efficient. This example shows the
calculation steps on separate lines for ease of reading.

A more condensed version of this calculation is degC = (degF ‐ 32) * 5 / 9.

While condensing code is generally helpful, make sure your code is readable to anyone who will need to
work on it. If in doubt whether your code is readable, document it by adding comments.

62

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates
a variable named number1 and assigns the
value 10 to it, and then press :

number1 = 10

3 Type a similar statement to create a variable
named number2 and assign the value 10 to
it too, again pressing to complete the
command:

number2 = 10

Work with Boolean Values

A Boolean value has only two possible states: True and False. The keywords True and False
must use an initial capital followed by lowercase letters; other casing causes errors.

Boolean values are useful for checking status and making decisions in code. You can use the bool()
function to determine whether a particular value is True or False. For example, if a particular value
is True, the code takes certain actions; otherwise — since that value must be False — the code
takes other specific actions. You can use the logical operators and, or, and not to create complex
Boolean expressions.

Work with Boolean Values

4 Type the following statement and press
 to display the result of testing

whether number1 equals number2:

print(number1==number2)

Note: Python uses == to compare equality. It
uses = for assigning values, as in step 3.

 B Python returns True, the Boolean result for
the comparison.

5 Type the following statement and press
 to display the result of testing

whether number2 is greater than number1:

print(number2>number1)

 C Python returns False, the Boolean result
for the comparison.

63

CHAPTER

3Getting Started with Variables

6 Type the following statement and press to
create a variable named are_numbers_equal and
assign to it the result of testing whether number1
equals number2:

are_numbers_equal = number1==number2

7 Type the following statement and press to
display the type of the are_numbers_equal
variable:

type(are_numbers_equal)

 D The type appears.

8 Type the following statement and press to
display the value of the are_numbers_equal
variable:

print(are_numbers_equal)

 E The value appears.

9 Type the following statement and press to
toggle the value of the are_numbers_equal
variable:

are_numbers_equal = not are_numbers_
equal

10 Type the following statement and press to
display the value of the are_numbers_equal
variable:

print(are_numbers_equal)

 F The value appears.

11 Type the following statement and press to
compare the are_numbers_equal variable to
False; to quit Python if they match; and, if not,
to display the value of are_numbers_equal:

quit() if are_numbers_equal == False
else print(are_numbers_equal)

Python quits.

 G The terminal’s standard prompt appears.

TIP
Which values evaluate to the Boolean False?
Python returns a Boolean False value for the following values:

• The value False or the value None

• The number zero, 0

• An empty string, empty list, empty tuple, or empty dictionary

Python returns a Boolean True value for all other values. True has a numeric value of 1.

64

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates
a variable named offices and assigns to it
a tuple of five cities, and press :

offices = ("Atlanta","Bridgeport",\
"Chicago","Chicago","Denver")

Note: You can create an empty tuple by placing
a pair of parentheses with no contents after
the tuple’s name — for example,
myEmptyTuple = ().

Work with Tuples

Python provides several data types that are sequences, including tuples, lists, strings, and sets. A
tuple is a variable that stores an ordered sequence of values. Unlike a list, whose contents and

order you can change, a tuple is immutable, so you cannot change its contents or its order. Unlike a
set, a tuple can contain multiple instances of the same value. Tuples are useful for grouping related
information that you want to be able to use as a single item.

In this section, you use a terminal window to create and manipulate tuples.

Work with Tuples

3 Type the following statement,
which displays the tuple’s
contents, and press :

print(offices)

Note: When creating a tuple that
contains only a single item, you
must use a trailing comma, a
comma placed after the item. For
example, mySingleTuple =
(1,) creates a tuple containing
only the value 1.

 B The tuple’s contents appear.

65

CHAPTER

3Getting Started with Variables

4 Type the following statement, which displays
the first item in the tuple, and press :

print(offices[0])

 C The first item appears.

5 Type the following statement, which uses
the len() function to return the number
of items in the tuple, and press :

print(len(offices))

 D The number of items, 5, appears.

6 Type the following statement, which
displays the number of instances of the
item "Chicago" in the tuple, and then
press :

TIPS
Can I add items to or remove items
from a tuple?
Technically, no, because the tuple is
immutable. However, you can achieve the
same effect by converting the tuple to a
list, adding or removing the items, and
then converting the list back to a tuple.

Why would I create an empty tuple?
You might create an empty tuple to indicate that no data
was available for a particular item or category. For example,
if you were creating one tuple for each of 20 categories,
having empty tuples where no data was available might be
helpful. Otherwise, if you were creating only a single tuple,
creating it with no data would be largely useless.

print(offices.count("Chicago"))

 E The number of instances of "Chicago", 2,
appears.

7 Type the following statement, which uses
the del command to delete the tuple,
and then press :

del offices

8 To verify that the tuple is gone, type the
following print command, and then press

:

print(offices)

 F Python returns an error because the tuple no
longer exists.

66

1 In Visual Studio Code, create a new script,
and then save it.

For example, press + , click Select a
Language, and then click Python. Press

 + , specify the filename and location,
and then click Save.

2 Type the following statement to create a variable
named mySet and assign an empty set to it:

mySet = set()

Work with Sets

Python’s set data type enables you to store multiple values in a single variable. A set is a
collection of objects, usually called elements or members. Each element must be unique in the

set, without duplicates, unlike in a tuple, which can have duplicates. Also unlike a tuple, a set is
unordered — that is, it has no specific order. A set is immutable: After creating a set, you cannot
change its existing items, but you can add further items as needed. In this example, you use a set to
remove duplicate values from a tuple.

Work with Sets

3 Press , and then type the following
statement to create a variable named myTuple
and assign to it various numbers, including
duplicates:

myTuple = (1,1,1,1,1,2,2,2,2,3,\
 3,3,3,4,4,4,4,5,5,5,6,6,7)

4 Press , and then type the following
statement, which uses the update method to add
the unique values from myTuple to mySet:

mySet.update(myTuple)

5 Press , and then type the following
statement, which displays the text myTuple:,
a space, and a string containing the contents of
myTuple:

print("myTuple: " + str(myTuple))

67

CHAPTER

3Getting Started with Variables

6 Press , and then type the following
statement, which displays a blank line in
the output:

print()

7 Press , and then type the following
statement, which displays the text
mySet:, a space, and a string containing
the contents of mySet:

print("mySet: " + str(mySet))

Note: The print() statements for myTuple
and mySet use the str() function to cast
the contents of myTuple and mySet to
strings because the first item printed is a
string. Using print("mySet: " +
mySet) causes an error from trying to
concatenate a string and a set.

8 Click Run Python File in Terminal ().

Visual Studio Code runs the script.

 A The contents of myTuple appear.

 B The contents of mySet appear.

You can see that mySet contains only the
unique elements from myTuple — all the
duplicates are gone.

TIP
How do I create a set with contents?
You can create a set with contents in either of two ways. First, put the set’s items inside braces, separated
by commas — for example, fruitSet = {"apricot","berry","cucumber"}. Second, use the set()
function, as in the main text, to create a set from a list or a tuple. For example, if you have a list called
testMarks that contains duplicate values, you could create a variable named uniqueMarks and assign to
it a set of the unique values from testMarks by using the command uniqueMarks =
set(testMarks).

68

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates a
variable named str1 and assigns text to it, and
then press :

str1 = "Industry"

3 Type the following statement, and then press
, to display str1:

print(str1)

 B The string appears.

Start Working with Strings

To store and manipulate text in your scripts, you use strings. In Python, a string is an immutable
sequence of characters, so once you have assigned a string to a value, you cannot change it. A

string value has the str data type, and you can use the str() function to convert various other
data types to strings.

Chapter 9, “Working with Text,” shows you how to take widely useful actions with strings. This section
provides an introduction to strings. In it, you create and manipulate strings using a terminal window.

Start Working with Strings

4 Type the following statement, and then press
, to create a second string:

str2 = "Assessment"

5 Type the following statement, and then press
, to display str2:

print(str2)

 C The string appears.

6 Type the following statement, which uses the +
operator to concatenate, or join, str1 and str2,
adding a space between them and assigning the
result to str1. Again, press .

str1 = str1 + " " + str2

7 Type the following statement, and then press
, to display str1:

print(str1)

 D The string appears.

69

CHAPTER

3Getting Started with Variables

11 Type the following statement, and
then press , to display the
string in strWord1:

print(strWord1)

 F The string appears.

8 Type the following statement, which
uses the find method to locate
the position of the space in str1,
assigning the result to a variable
called intSplit. Press .

intSplit = str1.find(" ")

9 Type the following statement, and
then press , to display the value
of intSplit:

print(intSplit)

 E The value appears.

10 Type the following statement, and
then press , to create a variable
named strWord1 and assign to it
the leftmost characters in str1, up
to the space:

strWord1 = str1[0:intSplit]

TIP
Do I use single quotes or double quotes around a string?
In Python, you can use either single quotes or double quotes to delimit a string. For example, you could
assign text to the variable named myString by using either myString = 'sample text' or myString =
"sample text". Use single quotes if the string contains double quotes, such as myString = 'Text
with "double" quotes'; use double quotes if the string contains single quotes, such as myString =
"Text with 'single' quotes". Otherwise, use whichever you prefer.

70

1 In Visual Studio Code, create a new script, and then
save it.

For example, press + , click Select a Language,
and then click Python. Press + , specify the
filename and location, and then click Save.

2 Type the following statement, which creates a
variable called names and then assigns a list
of four names to it:

names = ["Anna", "Bill", "Carly",
"Dennis"]

3 Type the following statement, which displays
the first item in the list:

print(names[0])

4 Click Run Python File in Terminal ().

The Terminal pane opens.

 A The first list item appears. See the tip for
information about the numbering.

5 Click Kill Terminal ().

Start Working with Lists

A list is a variable that enables you to store multiple items of the same type or of different types.
The list contains an index that enables you to set or retrieve the individual items. Technically, a

list is a mutable sequence, so you can change the order of its items, add and remove items, sort the
items, and so on.

Chapter 11, “Working with Lists and Dictionaries,” shows you how to work with lists. This section
gives you a preview in which you create a list, add items to it, and return items from it.

Start Working with Lists

Visual Studio Code closes the Terminal pane.

6 Select the print(names[0]) statement and type
the following statement over it, using the append
method to add an item to the names list:

names.append("Frank")

7 Press and type the following statement,
which displays the fifth item in the list:

print(names[4])

8 Click Run Python File in Terminal ().

The Terminal pane opens.

 B The fifth list item appears.

9 Click Kill Terminal ().

71

CHAPTER

3Getting Started with Variables

Visual Studio Code closes the Terminal pane.

10 Click at the end of line 2 and press
 to start a new line, moving the

print(names[4]) line down from line
3 to line 4.

11 On the empty line 3, type the following
statement, which uses the insert method
to insert an item at position 4 in the list:

names.insert(4, "Emily")

12 Click at the end of line 4 and press
to start a new line.

13 Type the following statement, which uses
the remove method to remove the name
Bill from the list:

names.remove("Bill")

14 Finally, press and type another
print(names[4]) statement:

print(names[4])

15 Click Run Python File in Terminal ().

The Terminal pane opens.

 C The first print statement displays the fifth
name, Emily.

 D The second print statement displays the
fifth name after removing the Bill item,
Frank.

TIP
Why is the first list item numbered 0?
Starting to count at 0 rather than 1 is a convention of computing; the technical name is zero‐based
numbering. So names[0] is the first item in the names list, names[1] is the second item, and so on.

72

1 In Visual Studio Code, create a new script, and then save it.

For example, press + , click Select a Language,
and then click Python. Press + , specify the filename
and location, and then click Save.

2 Type the following statement, which declares a
dictionary named dishes:

dishes = {}

3 Press and type the following statements, which
add the category called Starters and assign three
items and their prices to it:

dishes["Starters"] = {
 "Garlic Bread" : "$3.00",
 "Spring Rolls" : "$4.50",
 "Soup of the Day" : "$2.50"
}

4 Press and type the following statements, which
add the category called Main Courses and assign
three items and their prices to it:

dishes["Main Courses"] = {
 "Pizza" : "$7.50",
 "Lasagne" : "$10.00",
 "Bolognese" : "$5.50"
}

5 Press and type the following statements, which add
the Desserts category, again with three priced items:

dishes["Desserts"] = {
 "Mousse" : "$4.00",
 "Lemon Sorbet" : "$3.50",
 "Ice Cream" : "$2.75"
}

Start Working with Dictionaries

In Python, a dictionary is a kind of super‐list that allows you to assign collections of information to
names called keys. You use a key to set, modify, or retrieve the associated collection of information.

Chapter 11, “Working with Lists and Dictionaries,” shows you how to work with dictionaries. This
section gives you an introduction to dictionaries. Here, you create a dictionary that contains
information about the dishes offered by a restaurant. The dishes fall into three categories: Starters,
Main Courses, and Desserts. You then display the category of dishes you want to see.

Start Working with Dictionaries

73

CHAPTER

3Getting Started with Variables

6 Press and type the following
statement, which displays the word
Starters and a colon:

print("Starters:")

7 Press and type the following
statements, which use a for loop to list
each dish in the Starters category:

for item in dishes["Starters"]:
 print(" " + item + ":",
dishes["Starters"][item])

Note: A for loop is a loop that repeats once
for each item in a collection — in this case,
once for each item in the Starters collection
in the dishes dictionary. Chapter 7,
“Repeating Actions with Loops,” explains for
loops in detail.

TIP
How do I change the code to display another collection?
In lines 17–19, replace Starters with Main Courses or Desserts, as appropriate. Here is an example:

print("Desserts")

for item in dishes["Desserts"]

 print " " + item + ":", dishes["Desserts"][item]

Run the Script
1 Click Run Python File in Terminal ().

The Terminal pane opens.

 A The list of starters appears.

74

In your Python programming, you will often need to convert data from one data type to another
so that you can use it the way you want. Python converts some data automatically and provides

functions for converting data manually. For example, you can use the str() function to convert
data to a string, use the int() function to convert numeric data to an integer, or use the float()
function to convert numeric data to a float, as you have seen so far in this chapter.

This section summarizes the data‐conversion functions Python provides and shows examples of using
them.

Convert Data from One Type to Another

Understanding Implicit Conversion and Explicit Conversion
Python performs two types of data conversion: implicit conversion and explicit conversion.

Implicit conversion occurs when Python automatically converts an existing value to a different data type to
avoid losing data. For example, if you create a variable named intTest and assign the integer value 1,
Python gives the value the int data type. But if you add a float, such as 3.19, to intTest, Python
changes the value’s data type to float so as not to lose the data that could not be stored in the int data
type.

Explicit conversion occurs when you use a data‐conversion function to convert data to a different type, as
explained in this section. Explicit data conversion is also called type casting or simply casting. For example,
you might cast an integer to a float.

Understanding What Kinds of Data You Can Convert
Python’s data‐conversion functions are effective and easy to use, but they work only with suitable data. For
example, if the variable strQuantity contains the string data "20" — including the double quotes, which
delimit the string — you can use int(strQuantity) to convert the string "20" to the integer 20. But if
strQuantity contains "Twenty", using int(strQuantity) returns an error.

Meet Python’s Functions for Converting Data
Table 3‐1 summarizes the functions that Python provides for converting data from one data type to another.
You will notice that each function shares the name of the data type to which it converts data. For example,
the bool() function converts data to the bool data type, the int() function converts data to the int
data type, and the tuple() function converts data to the tuple data type.

75

CHAPTER

3Getting Started with Variables

Examples of Using Python’s Data‐Conversion Functions
Here are brief examples of using Python’s data‐conversion functions:

• chr(76) returns L, the ASCII character represented by 76; ord("L") returns 76, the ASCII character
number.

• bool(1>2) returns False, because 1 is not greater than 2.
• complex(4,7) returns the complex number 4 + 7j.
• dict_Subjects = {1: "History", 2: "Geography", 3: "Math"} returns a dictionary with

three subjects identified by integer keys.
• float(1 + 1.111) returns a float containing 2.111, rounded.
• hex(64000) returns 0xfa00, the hexadecimal value for 64000.
• int(47.2536) returns the integer 47.
• list(("death","sickness","taxes")) returns a list containing those three cheerless nouns.
• oct(64) returns 0o100, the octal value for 64.
• set(myTuple) returns a set containing the unique values from the myTuple collection.
• str(45 + 99) returns a string containing 144.
• tuple(("shoes", "boots", "waders", "sandals")) returns a tuple containing ill‐assorted

footwear.

Table 3-1 Python’s Functions for Converting Data
Function Converts To
bool() Any data type A Boolean value, True or False
chr() An integer The corresponding ASCII character
complex() A real number and an imaginary number A complex number
dict() Key/value pairs A dictionary
float() Any data type A float
hex() An integer A hexadecimal string
int() Any data type An integer
list() A sequence, collection, or iterator object A list
oct() An integer An octal string
ord() A character The corresponding ASCII or Unicode code value
set() A sequence, collection, or iterator object A set
str() Any data type A string

tuple() A sequence, collection, or iterator object A tuple

CHAPTER 4

Working with
Files and
Directories
In this chapter, you learn to use Python to work with files and directories.
You start by learning the essentials and then move on to navigating between
directories and working with them. You learn how to return information
about the user and system and how to split a file path into its components.
And you gain expertise in opening and closing text files, writing data to
them, and reading their contents.

Understanding Working with Files and Directories 78

Load the os Module and List Files and Directories 80

Navigate Among Directories 82

Create and Delete Directories 84

Rename, Move, and Copy Files and Directories 88

Get Information About the User and System. 92

Split a File Path into Its Components 94

Understanding Python’s open() Function. 96

Understanding Python’s Ways of Closing Files 97

Open a File If It Exists; If Not, Create It. 98

Check an Open File’s Status and Close It. 100

Write Data to a File 102

Open a File for Both Reading and Writing 104

Append Data to a File 106

Read a Text File . 108

78

Understanding Working with Files and Directories

This section gives you an overview of how you work with files and directories in Python. To
make sure you are clear on the essentials, we first cover what files and directories are and what

directory paths and file paths consist of. We then introduce you to three key modules you will need
to load at different points during this chapter, briefly discuss the basic structure of a file, and give
you an executive overview of the process of working with text files.

Understanding What Files and Directories Are
A file is a named storage unit on a computer. For example, you might create a text file named cats.txt
that contains textual information about different types of cats. The file has a base name, cats, and a file
extension, .txt. The file extension typically identifies the type of file; .txt normally indicates a text‐only
file, as in this example.

A directory, also called a folder, is a special type of file that acts as a container for other files. Python
commands refer to “directory” rather than “folder,” and this discussion follows suit. If a directory contains
other directories, that directory is a parent directory, and the directories it contains are subdirectories or
child directories.

Most computer operating systems provide each user account with a “home” directory that is kept separate
from each other user account’s directories, such as a C:\Users\Al directory on Windows or a /Users/Ann
directory on macOS. A user’s home directory typically contains various subdirectories, such as a Desktop
subdirectory and a Pictures subdirectory.

Understanding Directory Paths and File Paths
A directory path or folder path gives the location of a directory. For example, if you are the user Ann and
your home directory on macOS contains a subdirectory called Text, the directory path is /Users/Ann/
Text.

A file path consists of the directory path to a file plus the filename and file extension. For example, if you
are still Ann and you store the file cats.txt in the Text subdirectory in your home directory, the file path
is /Users/Ann/Text/cats.txt.

79

CHAPTER

4Working with Files and Directories

Understanding Three Key Modules for Working with Files and Directories
For working with files and directories, you will typically need to import one or more of the following Python
modules:

• os. The Operating System module, os, includes commands for working with individual files and direc-
tories. For example, later in this chapter, you use os to create and delete individual directories and to
return, slice, and dice file paths.

• glob. The Global module, glob, includes commands for searching for file paths that match the pattern
you specify. For example, in this chapter, you import glob so that you can search using wildcards.

• shutil. The Shell Utility module, shutil, includes commands for taking broad‐based actions with files
and directories. For example, later in this chapter, you use shutil to create multiple directories in a
single operation — and to remove a whole directory tree, likewise in a single operation.

To import these modules, you use the import command:

import os
import glob
import shutil

Understanding a File’s Basic Structure
A file typically consists of three sections:

• Header section. This section contains metadata about the file, such as the filename and the file type.
• Data section. This section contains the file’s actual contents, such as text for a text file or image data

for a picture.
• End‐of‐file marker. The end‐of‐file marker, or EOF marker, is a special character that denotes the end of

the file.

Understanding the Essentials of Working with Files
To access a file via Python, you open the file by using the open() function. Opening the file does not open
it in the conventional sense, as you do not see the file’s contents, if there are any; instead, opening the file
returns a file object that enables you to manipulate the file.

Once the file is open, you can read its contents; write new data to the file, either preserving or overwriting
its existing contents; or append new data to the file while preserving its existing contents.

When you finish working with a file, you use Python’s close() command to close the file.

80

Load the os Module
1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which imports the os
module, and then press .

import os

Python loads the os module.

The Python prompt appears, but there is no other
acknowledgment that Python has loaded the module.

Load the os Module and List Files and Directories

In this section, you load the os module, which provides methods for working with the file system.
You use the getcwd() method of the os module to return the current working directory. You

then use the listdir() method of the os module to return a list of the files and directories in a
specified directory.

You also import the glob module and use its glob() method to return a list of files and directories
using wildcards. This way enables you to return a targeted list of files and directories.

Load the os Module and List Files and Directories

List Files and Directories
1 Type the following statement, which creates a variable

named current and assigns to it the result of using
the getcwd() method of the os module. Press .

current = os.getcwd()

2 Type the following statement, which uses the
print() command to display the contents of
current, and then press :

print(current)

Python returns the directory, such as 'C:\Users\
Guy' on Windows or '/Users/guy' on macOS.

3 Type the following statement, which creates a variable
named ff and assigns to it the result of using the
listdir() method of the os module to list the files
in current. Press .

ff = os.listdir(current)

81

CHAPTER

4Working with Files and Directories

6 Type the following statement, which imports the glob
module, and then press .

import glob

7 Type the following statement, which creates the variable fg
and assigns to it the result of using the glob() method in
the glob module to search for files and directories whose
names begin with D.

fg = glob.glob("D*")

8 Type the following print() statement to display the
contents of fg. Press .

print(fg)

Python displays the list of items beginning with D, such as
['Desktop', 'Documents', 'Downloads'].

4 Type the following statement, which uses the sort() method
to sort the contents of ff in ascending order. Press .

ff.sort()

5 Type the following statement, which uses the print()
function to display the contents of ff, and then press :

print(ff)

Python displays a list of the directory’s contents. The following
example shows an abbreviated version of the list from a
Windows PC.

['AppData', 'Application Data',
'Contacts', 'Cookies', 'Desktop',
'Documents', 'Downloads', 'Favorites',
...
'ntuser.dat.LOG1', 'ntuser.dat.LOG2',
'ntuser.ini']

TIPS
How can I determine which operating
system Python is running on?
First, type the import sys command,
and then press , to import the sys
module. Next, type sys.platform, and
then press , to display the value for
the platform: win32 for Windows,
darwin for macOS, and linux for Linux.

How can I tell which version of Python is running
my code?
The sys module can tell you the version of Python. Type
import sys, and then press , to import the sys module.
Next, type sys.version_info, and then press . Python
returns information such as sys.version_info(major=3,
minor=10, micro=4, releaselevel='final',
serial=0), which represent Python 3.10.4.

82

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which imports the
os module, and then press .

import os

3 Type the following statement, which creates a
variable named thisdir and assigns to it the
result of using the getcwd() method of the os
module. Press .

thisdir = os.getcwd()

Navigate Among Directories

Python’s os module provides the tools you need to navigate among the directories in the
computer’s file system. You can use the expanduser() method of the path object in the os

module to return the path to the user’s home directory and then use the chdir() method of the
os module to switch to that directory. You can use the isfile() method of the os module to
determine whether a particular directory is present; if it is, you can navigate to the directory and
then navigate back up from it.

Navigate Among Directories

4 Type the following statement, which uses the
print() function to display the contents of
thisdir. Press .

print(thisdir)

Python displays the current directory.

5 Type the following statement, which creates a
variable named homedir and assigns to it the
result of using the expanduser() method of
the path object in the os module. Press .

homedir = os.path.expanduser("~")

Note: The expanduser() method here takes the
argument ~, which represents the current user’s home
directory.

6 Type the following statement, which uses the
chdir() method of the os module to change
directory to homedir. Press .

os.chdir(homedir)

83

CHAPTER

4Working with Files and Directories

9 Type the following statement, which uses the
dirname() method of the path object in the os
module to return the parent directory of the current
working directory, and the chdir() method of the os
module to switch to it. Press .

os.chdir(os.path.dirname(os.getcwd()))

10 Type the following statement to change to the original
directory, and then press :

os.chdir(thisdir)

11 Press five times to repeat the os.getcwd()
statement, and then press .

os.getcwd()

Python displays the directory from which you started.

7 Type the following statement, which uses the getcwd()
method of the os module, and then press :

os.getcwd()

Python displays the current working directory, such as
'C:\\Users\\Ted' on Windows or '/Users/guy'
on macOS. See the tip for an explanation of the use of \\.

8 Type the following two‐line if statement, which uses the
isdir()method of the path object in the os module
to determine whether the Pictures directory exists
in the current directory and changes directory to it if it
does. Press at the end of each line, and then press

 again to end the statement.

if os.path.isdir("Pictures"):
 os.chdir("Pictures")

Note: Indent the second line of the if statement by four
spaces.

TIP
Why does Python show \\ instead of \ in Windows paths?
Python uses the backslash, \, as an escape character, a character that modifies the following character
rather than being executed as itself. Here, \\ represents a single “real” backslash in the path. So the path
that Python shows as C:\\Users\\Ted is really C:\Users\Ted. You might think of \\ as an escaped
escape character.

84

Create Directories
1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which imports the os module,
and then press .

import os

3 Type the following statement, which creates a variable
named thisdir and assigns to it the result of using the
getcwd() method of the os module. Press .

thisdir = os.getcwd()

4 Type the following statement, which uses the print()
function to display the contents of thisdir.
Press .

print(thisdir)

Python displays the current directory.

5 Type the following two‐line if statement, which uses the
isdir() method of the path object in the os module to
check whether the TYV_Python directory exists and then
uses the mkdir() method of the os module to create it if
it does not. Press at the end of each line, and press

 once more to end the if statement.

if not os.path.isdir("TYV_Python"):
 os.mkdir("TYV_Python")

Note: Indent the second line of the if statement by
four spaces.

Create and Delete Directories

In your code, you will likely need to create directories in which to store files. You may also need to
delete directories that you no longer require.

Python’s os module includes the mkdir() function for creating a single directory. The os module
also provides the makedirs() method, which enables you to create multiple directories at once.
For example, if you give the command os.makedirs("/home/sam/Pictures/2022/Dec") from
the /home/sam directory, which already contains the Pictures directory, Python creates the 2022
subdirectory and the Dec subdirectory.

Create and Delete Directories

6 Type the following statement, which
uses the chdir() method of the
os module to change to the TYV_
Python directory. Press .

os.chdir("TYV_Python")

85

CHAPTER

4Working with Files and Directories

9 Verify visually that the list of files and
directories does not contain a file or directory
called Examples.

10 Type the following statement, which uses the
mkdir() method of the os module to create a
directory named Examples. Press .

os.mkdir("Examples")

Python creates the Examples directory but
gives no confirmation that it has done so.

7 Type the following statement, which uses the
getcwd() method of the os module to return
the current working directory, and then press

:

os.getcwd()

Python displays the directory path, such as '/
home/sam/TYV_Python'.

8 Type the following statement, which uses the
listdir() method of the os module to display
a list of the files and directories in the current
working directory. Press .

os.listdir()

Python displays a list of files and directories
in brackets. If the directory is empty, as it will
be if you just created it, Python displays [],
indicating an empty list.

TIP
What happens if I try to create a directory that already exists?
Python throws a FileExistsError error, such as FileExistsError: [Errno 17] File exists:
'Temp'. You can write code to handle the error, but usually, it is better to use os.path.isdir() to
check whether a directory exists before trying to create it.

86

11 Type the following statement, which uses the
makedirs() method of the os module to create a
directory and its subdirectories, and then press .

os.makedirs("Files/Final")

Python creates the directories but gives no confirmation.

12 Type the following statement, which uses the
listdir() method of the os module to display the
directory’s contents, and then press .

os.listdir()

Python returns the list of files and directories, such as
['Examples', 'Files'].

13 Type the following statement, which uses the chdir()
method of the os module to change to the Files directory.
Press .

os.chdir("Files")

Create and Delete Directories (continued)

Python’s os module includes the rmdir() method for removing a single file or directory. When
you need to remove multiple files or directories, you can use the rmdir() method in a loop.

Sometimes you may need to remove an entire directory tree — a directory and all its
subdirectories — in a single move. To remove a directory tree, you can import the Shell Utility
module, shutil, and then use its rmtree() method.

Create and Delete Directories (continued)

14 Press twice to repeat the os.listdir() command,
and then press :

os.listdir()

Python displays the list of contents of the Files
directory: ['Final'].

15 Type the following statement to change to the Final
directory, again pressing .

os.chdir("Final")

16 Press twice to repeat the os.listdir() command,
and then press :

os.listdir()

Python displays the list of contents of the Files
directory: [] — in other words, nothing.

Note: Use os.chdir("..") to move
up one directory. Add /.. for each
additional directory level — for example,
use os.chdir("../../..") to move
up three levels.

87

CHAPTER

4Working with Files and Directories

17 Type the following statement, which uses the chdir() method with
the argument ../.. to move up two directories. Press .

os.chdir("../..")

18 Type the os.getcwd() command again, and then press ,
to display the current directory:

os.getcwd()

Python displays the directory path.

19 Type the following statement, which displays the contents of the
current directory, and then press :

os.listdir()

Python displays the contents of the TYV_Python directory,
['Examples', 'Files'].

20 Type the following statement, which uses the rmdir() method to
remove the Examples directory. Press .

os.rmdir("Examples")

21 Type the following statement, which imports the shutil module,
and then press :

import shutil

22 Type the following statement, which uses the rmtree() method
of shutil to remove the Files directory tree. Press .

shutil.rmtree("Files")

23 Press four times to repeat the os.listdir() command, and
then press :

os.listdir()

Python displays the directory’s contents: [] — in other words,
nothing.

TIP
Why do I need to use shutil.rmtree() to delete a directory tree?
Python’s os.rmdir() method enables you to delete a directory only if it is empty. If the directory has
contents, Python returns the error OSError: [Errno 66] Directory not empty. To delete the
directory using os.rmdir(), you must first remove all its contents. By contrast, the shutil.rmtree()
method can delete the directory and all its contents. The deletion is immediate and permanent, so use
rmtree() with great care.

88

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which imports the
os module, and then press .

import os

3 Type the following statement, which creates the
variable tdir and assigns to it the path to the
user’s home directory plus temp1. Press .

tdir = os.path.expanduser("~") + "/
temp1"

Note: See the following section, “Get Information
About the User and System,” for information about
the expanduser() method.

Rename, Move, and Copy Files and Directories

Python’s os module and shutil module provide the commands you need to copy, move, and
rename files and directories. The rename() method of the os module enables you not only

to change the name of a file or directory, but also move it to different location by specifying the
appropriate directory. The remove() method of the os module lets you delete a file, whereas the
rmdir() method lets you delete a directory that has no contents.

Rename, Move, and Copy Files and Directories

4 Type the following two‐line if statement, which
uses the isdir() method of the path object
in the os module to check whether the tdir
directory exists and then uses the mkdir()
method of the os module to create it if it does
not. Press at the end of each line, and
press once more to end the if statement.

if not os.path.isdir(tdir):
 os.mkdir(tdir)

Note: Indent the second line of the if statement by
four spaces.

5 Type the following statement, which uses the
chdir() method of the os module to change to
the tdir directory. Press .

os.chdir(tdir)

89

CHAPTER

4Working with Files and Directories

9 Type the following statement, which uses the os.
listdir() method to list the directory’s contents,
and then press :

os.listdir()

Python displays the list, such as ['myfile.txt'].

10 Type the following statement, which imports the
shutil module, and then press :

import shutil

11 Type the following statement, which uses the
copy() method of the shutil module to copy
myfile.txt to a file named copy.txt in the
same directory. Press .

shutil.copy("myfile.txt", "copy.txt")

Python returns 'copy.txt', indicating that
shutil has copied the file.

6 Type the following statement, which uses the
getcwd() method of the os module to return the
current directory, and then press .

os.getcwd()

Python returns the path, such as '/Users/guy/
temp1'.

7 Type the following statement, which creates the
variable f1 and assigns to it a text file created in the
current directory using the open() function. Press

.

f1 = open("myfile.txt", "w")

8 Type the following statement, which uses the close()
method to close the f1 file object. Press .

f1.close()

TIP
What is the difference between shutil.copy() and shutil.copyfile()?
The shutil.copy() method is the standard means of copying a file. It copies the source file to the specified
destination and preserves the file’s metadata in the copy. The shutil.copyfile() method likewise copies
the source file to the destination directory, but does not preserve the file’s metadata in the copy.

90

12 Press three times to repeat the os.listdir() command,
and then press :

os.listdir()

Python displays the list, such as ['copy.txt',
'myfile.txt'].

13 Type the following statement, which uses the rename()
method of the os module to rename the copy.txt file to
spare.txt. Press .

os.rename("copy.txt", "spare.txt")

14 Type the following statement, which uses the remove() method
of the os module to remove spare.txt, and then press .

os.remove("spare.txt")

15 Type the following statement, which uses the mkdir()
method of the os module to create a subdirectory called
today in the temp1 directory. Press .

os.mkdir("today")

16 Press four times to repeat the os.listdir() command,
and then press :

os.listdir()

Python returns ['today', 'myfile.txt'].

17 Type the following statement, which uses the copy() method
of the shutil module to copy myfile.txt to the today
directory, and then press :

shutil.copy("myfile.txt", "today")

Python returns 'today/myfile.txt', indicating that
shutil has copied the file.

Copy, Move, and Rename Files and Directories (continued)

There is some overlap between the file‐ and directory‐management capabilities of the os module
and those of the shutil module, but generally speaking, the shutil module’s commands are

wider ranging than those of the os module.

The copy() method of the shutil module lets you create a copy of a file, whereas the copytree()
method of shutil enables you to copy a directory and all its contents. Similarly, the move() method
of the shutil module enables you to move an entire directory tree from one directory to another.

Rename, Move, and Copy Files and Directories
(continued)

91

CHAPTER

4Working with Files and Directories

18 Type the following statement, which uses os.
listdir() to list the contents of the today
directory. Press .

os.listdir("today")

Python returns ['myfile.txt'].

19 Type the following statement, which uses the
copytree() method of the shutil module to
copy the today directory and its contents to a
directory named backup. Press .

shutil.copytree("today", "backup")

Python returns 'backup', indicating that
shutil has created the directory.

20 Press twice to reenter the os.listdir()
statement, but change the directory to
"backup" before you press :

os.listdir("backup")

Python returns ['myfile.txt'], enabling you
to see that the copied directory’s contents are
present.

TIP
How do I move a directory and all its contents?
To move a directory tree, import the shutil module and use its move() method. For example, to move the
directory tree files to the directory archive/files, first type import shutil and press , and
then type shutil.move("files", "archive/files") and press . If the directory does not
exist, the move() method creates it automatically.

92

Your code may need to return information about the user running or system running a script. For
example, you might want to determine where a user’s home directory is so that your code can use

it, return the working directory, or learn the computer’s operating system.

You use different tools to access different types of information. For example, the os module gives
access to the user’s home directory, while the sys module lets you determine the operating system.
Environment variables offer detailed information about the user and the computing environment on
Linux and macOS but provide little information on Windows.

The following subsections explain how to return the user’s name from the getpass module, return
the user’s home directory from the os module, return the computer’s operating system via the sys
module, and use environment variables to access a wider range of information on Linux and macOS.

Get Information About the User and System

Return the User’s Username
To return the user’s username, first import the getpass module, and then use the getuser() method:

import getpass
username = getpass.getuser()
print(username)

Return the User’s Home Directory
To return the user’s home directory, first import the os module, and then use the expanduser() method
of the path object in the os module, with the argument ~, as in the second of the following statements.
The third statement uses the chdir() method to change directory to the homedir directory.

import os
homedir = os.path.expanduser("~")
os.chdir(homedir)

Determine the Computer’s Operating System
To determine the computer’s operating system, first import the sys module:

import sys

You can then return the platform attribute to get the operating system — for example:

print(sys.platform)

The value win32 indicates Windows, darwin indicates macOS, and either linux or linux2 indicates
Linux.

93

CHAPTER

4Working with Files and Directories

Return Information Using Environment Variables
Python’s environment variables enable you to return a wide range of information about the user and the
environment on Linux and macOS, but not on Windows.

Table 4‐1 explains the most widely useful environment variables.

To access the environment variables, you import the os module and then use the environ object. Here are
quick examples of returning information from environment variables:

• Import the os module:
import os

• Return the username:
os.environ.get("USER")

• Return the user’s home directory and change directory to it on macOS or Linux:
homedir = os.environ.get("HOME")
os.chdir(homedir)

• Return the language encoding:
os.environ.get("LANG")

• Return the present working directory:
os.environ.get("PWD")

• Return the current shell:
os.environ.get("SHELL")

Table 4-1: Python’s Environment Variables
Variable Name Returns the Example
USER User’s username jo

LOGNAME User’s login name jo

HOME User’s home directory on macOS or Linux /Users/jo

LANG Current language encoding en_US.UTF‐8

OLDPWD Old working directory /Users/jo

PWD Current working directory /Users/jo/samples

SHELL The shell, the command language interpreter /bin/zsh on macOS
/bin/bash on Linux,

94

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which imports the
os module, and then press :

import os

3 Type the following statement, which creates a
variable named fp and assigns to it a file path in
macOS format. Press .

fp = "/Users/Ted/Python/Division1.txt"

4 Type the following statement, which creates the
variables d and f and uses the split() method
of the path object in the os module to assign
to them the directory path and the full filename,
respectively, from fp. Press .

d, f = os.path.split(fp)

5 Type the following statement, which uses the
print() function to display the contents of d,
and then press :

print(d)

Python displays /Users/Ted/Python.

6 Type the following statement to display the
contents of f, and then press :

print(f)

Python displays Division1.txt.

Split a File Path into Its Components

Python’s os module enables you to split a file path into its components. By using the split()
method of the path object in the os module, you can split the path and the filename. And

by using the splitext() method of the path object, you can split the base filename from the
extension. For example, starting from the file path Users/Ted/Python/Division1.txt, you
can return the path, /Users/Ted/Python; the base filename, Division1; and the file extension,
.txt. Using the components, you can then build a different file path — for example, creating the
name for an output file for a script.

Split a File Path into Its Components

95

CHAPTER

4Working with Files and Directories

7 Type the following statement, which creates the
variables fn and x and assigns to them the results
of using the splitext() method of the path
object in the os module to split the filename and
extension in f. Press .

fn, x = os.path.splitext(f)

8 Type the following statement to display the
contents of fn, and then press :

print(fn)

Python displays Division1.

9 Type the following statement to display the
contents of x, and then press :

print(x)

Python displays .txt.

10 Type the following statement, which creates a
variable named output and assigns to it a string
formed from d, f, /, and the extension .rtf.
Press .

output = d + "/" + fn + ".rtf"

11 Type the following statement to display the
contents of output, and then press :

print(output)

Python displays /Users/Ted/Python/
Division1.rtf.

TIP
What other methods does the os.path object provide?
Here are four highly useful methods. The basename() method returns the filename and extension from a
file path — for example, typing os.path.basename("/Users/jill/a.png") and pressing
returns 'a.png'. The dirname() method returns the directory path — for example, os.path.
dirname("/Users/jill/a.png") returns '/Users/jill'. The isabs() method returns True if the
specified path is absolute, beginning with / on UNIX‐based file systems and \ on Windows after a drive
letter and colon, such as C:\. The normcase() method returns paths unchanged on macOS and Linux but
on Windows converts paths to lowercase and changes forward slashes to escaped backslashes; for example,
os.path.normcase("/Users/Jo/Pictures") returns '\\users\\jo\\pictures' on Windows.

96

Python’s open() function enables you to open a file if it exists and to create the file if it does
not exist. The open() function has various modes that you specify by including the appropriate

argument when you call the function. For example, you can use open() with the w parameter to
open a file in Write Mode, which enables you to make changes to the file. Or you can use open()
with the a parameter to open the file in Append Mode, which lets you append data at the end of the
file’s existing contents.

Understanding Python’s open() Function

The open() function enables you to open a file in one of six main modes:

• Write Mode. You use Write Mode to write text to the file. Write Mode deletes the current contents of the
file and inserts the text at the beginning of the file. Subsequent writes occur at the end of the file unless
you specify a different position using the seek() method.

• Read Mode. You use Read Mode to read the contents of a file. In Read Mode, you cannot make changes
to the file’s contents.

• Append Mode. You use Append Mode to append text to a file without deleting its existing contents. By
default, Python inserts the new text at the end of the file unless you specify a different position.

• Write and Read Mode. You use Write and Read Mode to open a file, deleting any existing contents, so
you can write to the file and then read its contents.

• Read and Write Mode. You use Read and Write Mode when you need to open a file both for reading text
from it and for writing text to it.

• Append and Read Mode. You use Append and Read Mode when you want to append data to a file and be
able to read the file’s contents.

Table 4‐2 explains the modes of the open() function.

Table 4-2: Modes of Python’s open() Function
Mode Explanation
w Create the file if it does not exist; delete its contents if it does exist. Open the file in Write Mode

with the pointer at the beginning.
r Open the file in Read Mode with the pointer at the beginning. If the file does not exist, an error

occurs.
a Create the file if it does not exist. Open the file in Append Mode with the pointer at the end.
x Create the specified file and then open it with the pointer at the beginning. If the file already

exists, an error occurs.
w + Create the file if it does not exist; delete its contents if it does exist. Open the file in Write and

Read Mode with the pointer at the beginning.
r + Open the file in Read and Write Mode with the pointer at the beginning. If the file does not

exist, an error occurs.

a + Create the file if it does not exist.
Open the file in Append and Read Mode with the pointer at the end.

97

CHAPTER

4Understanding Python’s Ways of Closing Files

Close a File Manually Using the close() Method
To close a file explicitly, use the close() method at the appropriate point in your code. For example, the
first of the following statements creates the variable f6 and uses the open() function to assign to it the
file new.txt, creating the file if it does not exist. The second statement closes the f6 file object.

f6 = open("new.txt", "w + ")
f6.close()

Python does not raise an error if you call the close() method on a file object that you or Python have
already closed. The file object must exist, but it does not have to be open. This flexibility means that you
can safely use the close() method to ensure that a file has been closed, even if it turns out to have been
closed earlier.

Let Python Close a File Implicitly
Instead of closing a file explicitly using the close() method, you can let Python close the file for you.
Python closes a file automatically if you assign the file object currently assigned to the open file to a
different file, as in the following example for macOS or Linux:

open h.txt and assign it to the variable f
f = open("/Users/fi/h.txt", "w")
write text to f
f.write("Unblock the writer!")
open j.txt and assign it to the variable f
f = open("/Users/fi/j.txt", "r")
Python closes h.txt to free up f

Python also closes a file automatically if you use the open() function to reopen the file using a different
mode. You do not need to close the file explicitly.

After opening or creating a file using the open() function and either reading the file’s contents
or changing them, your scripts will likely need to close that file. You can either close the file

explicitly by using the close() method of the file object or have Python close the file automatically
for you. Python can close a file automatically either at the end of a script or when it runs a command
that implicitly requires the file to be closed. Generally, it is better to close files explicitly, but you
should understand how both approaches work.

The first subsection tells you how to close a file manually using the close() method of the file
object that references the file. The second subsection explains how you can let Python close files
implicitly in your code.

98

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which imports the
os module, and then press .

import os

3 Use the os.chdir() method to change to
a directory in which you can create a sample
file. For example, type the following statement,
and then press , to change to your home
directory:

os.chdir(os.path.expanduser("~"))

Open a File If It Exists; If Not, Create It

Python’s open() function enables you to open a file in Write Mode, Write and Read Mode,
Append Mode, or Append and Read Mode if the file exists, and create the file if it does not exist.

Automatically creating a file is especially useful because you need neither write code to check that
the file exists before you try to open it nor handle an error if the file does not exist.

Open a File If It Exists; If Not, Create It

4 Type the following statement, which uses the
getcwd() method of the os module, to display
the current directory, confirming you have
navigated to where you intended. Press .

os.getcwd()

Python returns the directory, such as 'C:\\
Users\\AJ' on Windows.

Note: In Windows paths, Python’s escaped backslash,
\\, represents a single “real” backslash, \.

5 Type the following statement, which uses the
open() function with no mode specified to try
to open the file offices.txt in the current
directory and assign it to the variable olist, and
then press .

olist = open("offices.txt")

99

CHAPTER

4Working with Files and Directories

 B Python returns a FileNotFoundError, because
the file does not exist.

6 Press once to repeat the command, but
edit the end to add the appropriate argument
before you press . In this case, use the w
argument.

olist = open("offices.txt", "w")

Note: Use the w argument for Write Mode, the w +
argument for Write and Read Mode, the a argument
for Append Mode, and the a + argument for Append
and Read Mode.

Python creates the file but gives no indication it
has done so.

The file is now open in Write Mode.

7 Type the following statement, which uses the
write() method to write text to the file, and
then press :

olist.write("Anchorage, Boston")

8 Type the following statement, which uses the
close() method to close the file, and then press

:

olist.close()

TIP
Why does the open() function sometimes fail even though I specify the w argument?
The open()function with the w argument, the w + argument, the a argument, or the a + argument fails if
you do not have Write permission for the directory in which Python is trying to create the file.

100

After opening a file using the open() function, you can use the resulting file object to
manipulate the file. The following sections show you how to read a file’s data, replace a file’s

existing data, and append new data to the existing data.

In this section, you check the properties of a file object to determine information about it. You use
the name property to return the filename and then use the closed property to determine whether
the file object is open or has been closed. You then use the close() method to close the file.

Check an Open File’s Status and Close It

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which imports the
os module, and then press :

import os

3 Use the os.chdir() method to change to
a directory in which you can create a sample
file. For example, type the following statement,
and then press , to change to your home
directory:

os.chdir(os.path.expanduser(“~”))

4 Type the following statement, which uses the
open() function with the w+ mode specified
to open the existing file new.txt, or create it
if it does not exist, in the current directory and
assign it to the variable f1. Press .

f1 = open(“new.txt”, “w+”)

5 Type the following statement, which returns the
name property of f1. Press .

f1.name

 B Python displays ‘new.txt’.

Check an Open File’s Status and Close It

101

CHAPTER

4Working with Files and Directories

8 Press twice to repeat the second-to-last
statement, and then press :

f1.closed

 D Python returns True.

9 Press twice to repeat the now second-to-last
statement, and then press :

f1.close()

Even though the file was already closed,
no error occurs.

6 Type the following statement, which returns
the closed property of f1. Press .

f1.closed

 C Python returns False.

7 Type the following statement, which uses the
close() method to close f1, and then
press :

f1.close()

Python closes the file without confirmation or
comment.

TIP
How can I check which mode an open file is using?
Return the mode property of the file object that represents the file. For example, use f1.mode to return
the mode property of the file object represented by f1. The property returns the same string as you use to
specify the mode with the open() function — for example, w+, r, or a+.

102

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which imports the os
module, and then press .

import os

3 Use the os.chdir() method to change to a
directory in which you can create a file. For example,
type the following statement, and then press ,
to change to your home directory:

os.chdir(os.path.expanduser("~"))

4 Type the following statement, which creates a variable
named w1 and assigns to it the file waters.txt,
which it opens in Write Mode. Press .

w1 = open("waters.txt", "w")

Write Data to a File

To write data to a text file, you open that file in Write Mode by using the open() function with
the w argument. To write data and subsequently read it, you use the open() function with the

w + argument to open the file in Write and Read Mode.

Both modes create the specified file if it does not exist; if it does exist, both modes “truncate” the
file, deleting all its contents. Both modes position the pointer at the start of the file, so text you
add using the write() method lands there.

Write Data to a File

Note: If the file exists, Python “truncates” it, deleting its
contents; if not, Python creates it. Either way, the file is
empty once opened.

5 Type the following statement, which uses the write()
method to write text to the w1 file object. Press .

w1.write("beck, billabong, bight")

6 Type the following statement, which uses the open()
function with the r argument to reopen the text file in
Read Mode, reassigning it to w1. Press .

w1 = open("waters.txt", "r")

Note: Python automatically closes the file before
reopening it.

103

CHAPTER

4Working with Files and Directories

7 Type the following statement, which uses the
print() function to display the output from using
the read()method on w1. Press .

print(w1.read())

Python displays beck, billabong, bight.

8 Type the following statement, which uses the
open() function with the w + argument to
reopen the text file in Write and Read Mode, again
assigning it to w1. Press .

w1 = open("waters.txt", "w + ")

Note: Again, Python automatically closes the file before
reopening it. Python truncates the file, deleting its contents.

9 Type the following statement, which writes two
fresh waters to the file, and then press .

w1.write("kill, tarn")

10 Type the following statement, which reads the file
from the pointer position. Press .

w1.read()

Python displays '', an empty string, because the
pointer is at the end of the file.

11 Type the following statement, which uses the
seek() method to move the pointer to the file’s
beginning, and then press :

w1.seek(0, os.SEEK_SET)

12 Press twice to repeat the w1.read()
statement, and then press :

w1.read()

Python displays 'kill, tarn', the contents
you wrote.

TIP
How can I see whether a file is open?
Check the closed property of the appropriate file object. For example, if your code has created a file
object named w1, as in the main example, w1.closed returns False if the file object is open and True if
it has been closed.

104

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which imports the
os module, and then press .

import os

3 Use the os.chdir() method to change to a
directory in which you can create a file. For
example, type the following statement, and then
press , to change to your home directory:

os.chdir(os.path.expanduser("~"))

4 Type the following statement, which creates a
variable named rwf and assigns to it the file
metals.txt, which it opens or creates in Write
Mode. Press .

rwf = open("metals.txt", "w")

Open a File for Both Reading and Writing

To open a file for both reading and writing, use the open() function with the r + argument.
Because the file is open for writing as well as reading, you will need to be careful to avoid

overwriting the existing contents of the file. For example, you can use the seek() method to move
the pointer to the end of the file before writing new data to the file using the write() method.
After writing, you can move the pointer back to the beginning of the file to read all its contents
using the read() method.

Open a File for Both Reading and Writing

5 Type the following statement, which uses the
write() method to write text to the rwf file
object, and then press .

rwf.write("Calcium\nGallium\n")

Python returns 16, the character position at the
end of the file.

6 Type the following statement, which opens the
same file in Read/Write Mode and assigns it to
rwf again. Press .

rwf = open("metals.txt", "r + ")

Note: Opening the file with the r + argument causes
Python to close the file and then reopen it.

105

CHAPTER

4Working with Files and Directories

TIP
How can I tell whether a file is readable or writable?
Use the readable() method of the file object to determine whether a file is readable — for example,
myfile.readable() returns True if the file is readable and False if it is not readable. Similarly, you
can use the writable() method to determine whether a file is writable via the write() method and the
seekable() method to determine whether Python can use the seek() method to change the pointer
position within the file.

Python returns 0, the character position at the start
of the file.

10 Type the following statement, which uses the
print() function to display the result of reading
the file’s contents. Press .

print(rwf.read())

Python displays this:

Calcium
Gallium
Cesium

11 Type the following statement, which uses the close()
method to close rwf, and then press :

rwf.close()

7 Type the following statement, which uses the
seek() method to move the pointer to the end
of the file, and then press :

rwf.seek(0, os.SEEK_END)

Python returns 16, the character position at the
end of the file.

8 Type the following statement, which uses the
write() method to add text to the file, and
then press :

rwf.write("Cesium")

Python returns 6, the number of characters added.

9 Type the following statement, which uses the
seek() method to move the pointer to the start
of the file, and then press :

rwf.seek(0, os.SEEK_SET)

106

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which imports
the os module, and then press .

import os

3 Use the os.chdir() method to change to a
directory in which you can create a file. For
example, type the following statement, and then
press , to change to your home directory:

os.chdir(os.path.expanduser("~"))

4 Type the following statement, which creates
a variable named s and assigns to it the file
staples.txt, which it opens or creates in
Append Mode. Press .

s = open("staples.txt", "a")

Append Data to a File

Python provides two modes for appending data to the existing contents of a file without affecting
the existing contents. Append Mode, which you invoke by using the a argument with the open()

function, lets you add text after the file’s existing contents. Append and Read Mode, which you invoke
by using the a + argument, likewise lets you append text but also lets you read the existing contents.

Both Append Mode and Append and Read Mode automatically create the specified file if it does not
exist. Both modes prevent you from modifying the file’s existing contents.

Append Data to a File

5 Type the following statement, which uses the
write() method to append some text to the
s file object. Press .

s.write("Staple Foods\n\nCoffee\nEggs")

Python returns 25, the number of characters added.

6 Type the following statement, which uses the
close() method to close the s file object
explicitly, and then press :

s.close()

107

CHAPTER

4Working with Files and Directories

7 Type the following statement, which opens
the same file in Append and Read Mode, again
assigning it to the variable s. Press .

s = open("staples.txt", "a + ")

8 Type the following statement, which uses the
write() method to append text to the end of
the file. Press .

s.write("\nBread\nButter")

9 Type the following statement, which uses the
seek() method to move the pointer to the start
of the file. Press .

s.seek(0, os.SEEK_SET)

10 Type the following statement, which uses the
print() function to display the result of using
the read() method to read the file’s contents.
Press .

print(s.read())

Python displays the file’s text:

Staple Foods

Coffee
Eggs
Bread
Butter

11 Type the following statement, which uses the
close() method to close the file, and then press

.

s.close()

TIP
What happens if I move the pointer and then append text?
Python appends the text after the end of the existing text. In Append and Read Mode, moving the pointer
to the start of the file enables you to read the file’s contents, but Python puts any text you append at the
end of the file.

108

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which imports the os
module, and then press .

import os

3 Use the os.chdir() method to change to a directory
in which you can create a file. For example, type the
following statement, and then press , to change to
your home directory:

os.chdir(os.path.expanduser("~"))

4 Type the following statement, which creates a variable
named xr and assigns to it the file waters.txt, which it
opens or creates in Write Mode. Press .

xr = open("waters.txt", "w")

5 Type the following statement, which uses the write()
method to add text to xr, and then press :

xr.write("sound, swamp, wadi")

6 Type the following statement, which reopens the same file
in Read Mode. Press .

xr = open("waters.txt", "r")

Note: Python automatically closes the text file before
reopening it.

7 Type the following statement, which uses the print()
function to display the result of using the read()
method to read the contents of xr. Press .

print(xr.read())

Read a Text File

Python’s open() function enables you to open a text file in Read Mode by using the r + argument
or in Read and Write Mode by using the r + argument. Usually, the choice between Read Mode

and Read and Write Mode is straightforward: Use Read Mode when you need only to read the file’s
contents, but use Read and Write Mode when you also need to change the contents.

Both modes place the pointer at the start of the file, ready to read from there on. Both modes return
a FileNotFoundError if the specified file does not exist.

Read a Text File

109

CHAPTER

4Working with Files and Directories

12 Press twice to repeat the print() statement, and
then press :

print(xr.read())

 B Python returns a blank paragraph, because the Write
operation has moved the pointer to the end of the file.

13 Type the following statement, which uses the seek()
method to move the pointer to the start of the file.
Press .

xr.seek(0, os.SEEK_SET)

14 Press twice to repeat the print() command, and
then press :

print(xr.read())

Python displays sound, swamp, wadi, lagoon,
the file’s entire contents.

Python displays sound, swamp, wadi.

8 Type the following statement, which uses the close()
method to close xr explicitly. Press .

xr.close()

9 Type the following statement, which opens the file in
Read and Write Mode, again assigning it to xr. Press

.

xr = open("waters.txt", "r + ")

10 Press three times to repeat the print() statement,
and then press :

print(xr.read())

Python displays sound, swamp, wadi again.

11 Type the following statement, which writes another term
to the file, and then press :

xr.write(", lagoon")

TIP
What happens if I move the pointer to the start of the file and then write text?
If you explicitly move the pointer to the start of the file, the text you write overwrites any text that is in
the way. If the text you write is shorter than the existing text, some of the existing text remains.

CHAPTER 5

Working
with Python’s
Operators
Python provides a wide range of operators for performing operations on
values and variables. You use arithmetic operators to perform mathematics,
assignment operators to assign data to variables, comparison operators to
make comparisons, and logical operators to link conditional statements.
You use identity operators to test whether objects are identical,
membership operators to determine whether an object includes a particular
value, and bitwise operators to compare and manipulate binary numbers.

Meet the Arithmetic Operators 112

Work with the Arithmetic Operators. 114

Meet the Assignment Operators 116

Work with the Assignment Operators 117

Meet the Comparison Operators 118

Work with the Comparison Operators 119

Meet the Logical Operators 120

Work with the Logical Operators 121

Meet the Identity Operators 122

Work with the Identity Operators 123

Meet the Membership Operators 124

Work with the Membership Operators 125

Meet the Bitwise Operators 126

Work with the Bitwise Operators 127

112

Meet the Arithmetic Operators

When you need to perform arithmetical operations in Python, such as addition or division, you
can use standard arithmetic operators, adapted slightly for the computer keyboard. For example,

while the keyboard includes the + key for addition, it has no ÷ key for division, so you use for
division instead.

Python performs operations following the standard order used in mathematics. This order is
sometimes summarized by the acronym PEMDAS: Parentheses, Exponentiation, Multiplication,
Division, Addition, and Subtraction. You can change the order of operations by putting particular
operations in parentheses, thus promoting them to earlier positions in the order of operations.

Table 5‐1 explains the arithmetic operators you can use in Python. Most of these are instantly
recognizable, with the possible exception of these two:

• Integer division. Also called floor division, this operation returns only the integer component of
the result. For example, with regular division, 10 divided by 4 returns 2.5. With integer division,
10 divided by 4 returns 2, discarding the decimal component and returning the integer.

• Modulus. This operation returns the remainder — the number left over — from a division opera-
tion. For example, 5 modulus 4 returns 1, because 1 is the remainder after dividing 5 by 4. Simi-
larly, 9 modulus 4 also returns 1, and 399 modulus 200 returns 199.

Table 5-1: Python’s Arithmetic Operators
Operation Operator Example Returns
Addition + 1 + 1 2

Subtraction – 2 ‐ 1 1

Multiplication * 3 * 3 9

Exponentiation ** 2**8 256

Division / 3 / 3 1.0

Integer Division // 9 // 4 2

Modulus % 10 % 3 1

113

CHAPTER

5Working with Python’s Operators

Understanding the Order of Operations
Python implements mathematical operations in the standard order given by the acronym PEMDAS:

1. Parentheses
2. Exponentiation
3. Multiplication and Division
4. Addition and Subtraction

When two operations at the same level occur, Python evaluates them reading from left to right.

So take for example the following calculation:

4 ** 3 - 5 * 8 + 4 / (1 + 1)

This calculation returns 26. Python evaluates it as follows:

• Parentheses: (1 + 1) gives 2, so the calculation becomes
4 ** 3 – 5 * 8 + 4 / 2

• Exponentiation: 4 ** 3 gives 64. The calculation becomes
64 – 5 * 8 + 4 / 2

• Multiplication: 5 * 8 gives 40. The calculation becomes
64 – 40 + 4 / 2

• Division: 4 / 2 gives 2. The calculation becomes
64 – 40 + 2

• Addition and subtraction: 64 ‐ 40 occurs first, giving 24. Then 24 + 2 gives 26.

Changing the Order of Operations
You can change the order of operations in a calculation by placing one or more parts of the calculation in
parentheses. For example, say you want to add 5 and 5, giving 10, and then multiply that by 10. This gives
100, but if you use the following calculation, you get 55 instead because of the standard order of operations:

5 + 5 * 10

To change the order of operations, you put the addition component inside parentheses, making Python
evaluate it first:

(5 + 5) * 10

You can nest parentheses within parentheses, as needed. Python performs the most deeply nested
calculation first — for example:

(5 + ((2 * 3) - 1)) * 10

Here, Python multiplies 2 by 3, subtracts 1 from the resulting 6, adds the resulting 5 to the first 5, and
multiplies the resulting 10 by 10, giving 100 again.

114

Launch Python and Perform Arithmetic
Calculations
1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following addition calculation using
the + operator, and then press .

5 + 4

Python displays the result, 9.

3 Type the following subtraction calculation,
and then press .

4 – 7

Python displays the result, –3.

4 Type the following multiplication calculation,
and then press .

6.33 * 9.2

Python displays the result, 58.236.

5 Type the following exponentiation calculation,
and then press .

2 ** 8

Python displays the result, 256.

6 Type the following division calculation,
and then press .

77 / 11

Python displays the result, 7.0.

Work with the Arithmetic Operators

In the previous section, “Meet the Arithmetic Operators,” you learned what arithmetic operators
Python provides and what they do. In this section, you put the arithmetic operators to work

performing calculations.

To work through these examples and those later in this chapter, open a terminal window on your
computer. For example, on Windows, click Search (), type cmd, and then click Command Prompt
() or press . On macOS, click Launchpad (), and then click Terminal (). On Ubuntu, click
Show Applications (), and then click Terminal ().

Work with the Arithmetic Operators

7 Type the following integer division calculation,
and then press .

90 // 11

Python displays the result, 8.

115

CHAPTER

5Working with Python’s Operators

Note: Integer division returns only the integer
component of the result of the division
calculation, discarding the remainder.

8 Type the following modulus calculation, and
then press .

90 % 11

Python displays the result, 2.

Note: The modulus gives the amount left over
following a division operation. In this case, 11
times 8 produces 88, so the modulus gives 2.

Using Parentheses to Change the Order
of Precedence
1 In the terminal window, type the following

calculation, and then press .

5 + 4 * 8 / 2 + 1

Python displays the result, 22.0.

2 Type the calculation again, this time
adding parentheses around 5 + 4,
and then press .

(5 + 4) * 8 / 2 + 1

Python display the result of the adjusted
calculation, 37.0.

3 Type the calculation a third time, this
time adding parentheses around 2 + 1,
and then press .

(5 + 4) * 8 / (2 + 1)

Python displays the new result, 24.0.

TIP
Why does division return a floating‐point number with .0 rather than an integer?
Using the division operator, /, always produces a floating‐point number, even if the calculation results in
an integer with a .0 decimal component.

If necessary, you can use the int() function to convert a floating‐point number to an integer.

116

As you have seen earlier in this book, Python uses the equal sign, =, to assign a value to a
variable. For example, you can use the statement userLevel = "Professional" to create a

variable called userLevel and assign the string value Professional to it.

Python includes a dozen other assignment operators. These operators are for assigning a value to a variable
by manipulating its existing value. For example, the + = assignment operator adds to a variable’s existing
value: myInt + = 7 has the same effect as myInt = myInt + 7 but is quicker and easier to enter.

Table 5‐2 explains the assignment operators, showing a brief example of each and giving the
equivalent full command.

The first of the assignment operators, =, needs no introduction, as you have already used it
extensively to assign values to variables. Beyond this, you will recognize the arithmetic‐plus‐
assignment operators from the earlier section, “Meet the Arithmetic Operators.” For example, the
 + operator performs addition, and the + = operator performs addition and assignment.

The five assignment operators that include bitwise operations — &=, |=, ^=, >>=, and <<= —
evaluate and manipulate the bit values in binary numbers and then perform assignment. See the
section “Meet the Bitwise Operators,” later in this chapter, to learn the details of bitwise operations.

Meet the Assignment Operators

Table 5-2: Python’s Assignment Operators
Operation Operator Example Equivalent
Assignment Operator
Assignment only = str1 = "Manager" Not applicable

Arithmetic and Assignment Operators
Addition and assignment + = x + = 1 x = x + 1

Subtraction and assignment ‐= x ‐= 2 x = x ‐ 2

Multiplication and assignment *= x *= 3 x = x * 3

Division and assignment /= x /= 4 x = x / 4

Percentage and assignment %= x %= 6 x = x % 6

Floor division and assignment //= x //= 7 x = x // 7

Exponentiation and assignment **= x **= 8 x = x ** 8

Bitwise and Assignment Operators
In‐place AND and assignment &= a &= b a = a & b

In‐place OR and assignment |= a |= b a = a | b

In‐place XOR and assignment ^= a ^= b a = a ^ b

Bitwise right shift and assignment >>= x >>= 2 x = x >> 2

Bitwise left shift and assignment <<= x <<= 3 x = x << 3

117

CHAPTER

5

1 Open a terminal window and launch
Python.

 A The Python prompt appears.

2 Type the following statement, which
creates the variable myNum and
assigns the value 2 to it, and then
press .

myNum = 2

3 Type the following statement, which
gets the value in myNum, adds 1, and
then reassigns the resulting value to
myNum.

myNum + = 1

4 Type the following statement, and
then press , to display the value
of myNum.

print(myNum)

Python displays the value of myNum, 3.

Work with the Assignment Operators

In the previous section, “Meet the Assignment Operators,” you learned about the assignment
operators Python provides and what they do. In this section, you use two of the arithmetic‐and‐

assignment operators to manipulate the existing values of variables and then reassign the result
back to the same variables. See the section “Meet the Bitwise Operators,” later in this chapter, for
examples of working with Python’s bitwise operators.

Work with the Assignment Operators

5 Type the following statement, which
uses the exponentiation and assignment
operator, and then press .

myNum **= 3

6 Type the following statement, and then
press , to display the value of
myNum again.

print(myNum)

Python displays the value of myNum, 27.

118

When you need to compare values in your code, you use Python’s comparison operators. The
comparison operators enable you to determine whether two values are equal or not equal;

whether one value is greater than or less than another value; and whether one value is greater than
or equal to, or less than or equal to, another value.

Table 5‐3 explains the comparison operators. Chances are that you will be familiar with most of these
from math class.

The exception is the equal‐to operator, ==, which uses two equal signs because Python uses a single
equal sign, =, as the assignment operator for assigning value to variables. This operator checks
whether the two values are mathematically equal but not whether they are the same item. If you
need to check whether two items are the same, use the is operator for the comparison; see the
section “Meet the Identity Operators,” later in this chapter.

Each comparison operator returns the Boolean value True if the comparison is true and the Boolean
value False if the comparison is not true.

Meet the Comparison Operators

Table 5-3: Python’s Comparison Operators
Comparison Operator Example Returns
Equal to == 1 == 1 True

Not equal to != 7 != 7 False

Greater than > 5 > 3 True

Less than < 5 < 3 False

Greater than or equal to >= 7 >= 7 True

Less than or equal to <= 7 <= 6 False

Examples of Using Comparison Operators
Here are examples of using comparison operators with two variables: a = 1 and b = 2:

a == b returns False.

a != b returns True.

a > b returns False.

a < b returns True.

a >= b returns False.

a <= b returns True.

119

CHAPTER

5

1 Open a terminal window and launch
Python.

 A The Python prompt appears.

2 Type the following statement, which uses
the == operator, and then press .

4 == 2 * 2

Python returns True, because the result
of multiplying 2 by 2 is 4.

3 Type the following statement, which uses
the != operator, and then press .

2/3 != 4/6

Python returns False, because the two
operands have the same value.

Work with the Comparison Operators

In the previous section, “Meet the Comparison Operators,” you learned about the comparison
operators Python provides and how they work. In this section, you try the comparison operators.

You start with integer values that make it easy to verify that you are getting the results you expect,
move on to comparing strings, and then compare a binary value with a decimal value.

Work with the Comparison Operators

4 Type the following statement, which uses the >
operator, and then press .

"expenses" > "expense"

Python returns True, because the string
expenses evaluates to greater than the string
expense.

5 Type the following statement, which uses the
>= operator, and then press .

0b100000 >= 32

Python returns True, because the binary value
100000 is equal to the decimal value 32.

120

Python provides three logical operators that enable you to make logical comparisons in your code.
The and operator returns True if both the operands evaluate as True. The or operator returns

True if one or both operands evaluate as True. The not operator reverses the Boolean value of the
operand, changing the value True to False and the value False to True.

Table 5‐4 lists Python’s logical operators.

Meet the Logical Operators

Table 5-4: Python’s Logical Operators
Comparison Operator Explanation
AND and Returns True if each statement tested is True; otherwise returns False.

OR or Returns True if one or more of the statements tested is True; returns False if none
of the statements is True.

NOT not Returns False if the statement tested is True; returns True if the statement
tested is False.

Understanding How the Logical
Operators Work
The first figure shows how the and operator
works. If the first statement is False, the and
operator returns False without evaluating the
second statement; but if the first statement is
True, the and operator evaluates the second
statement, returning True if it is True and
False if it is False.

The second figure shows how the or operator
works. If the first statement is True, the or
operator returns True without evaluating the
second statement; but if the first statement is
False, the or operator evaluates the second
statement, returning True if it is True and
False if it is False.

121

CHAPTER

5

1 Open a terminal window and launch
Python.

 A The Python prompt appears.

2 Type the following statement, which
uses the and operator, and then
press .

True and True

Python returns True, because both statements
are True.

3 Type the following and statement, and then
press .

True and False

Python returns False, because only one
statement is True.

4 Type the following or statement, and
then press .

True or True

Python returns True, because at least one
statement is True.

5 Type the following or statement,
and then press .

True or False

Again, Python returns True,
because one statement is True.

Work with the Logical Operators

In the previous section, “Meet the Logical Operators,” you learned about the logical operators
Python provides — and, or, and not — and the operations they perform. In this section, you

practice using these operators with straightforward examples.

To work through these examples, open a terminal window on your computer. As you work, remember
that Python requires initial capitalization on the terms True and False. Any other capitalization,
from TRUE to true, produces a NameError error saying that the name is not defined. Similarly, you
must use lowercase for and, or, and not.

Work with the Logical Operators

6 Type the following not statement, and then
press .

not True

Python returns False.

122

Python provides two identity operators that you can use to compare the identity of objects.
Comparing identity means checking that the two objects are actually the same object, in the

same memory location. This is different from checking that the objects are equal, which means they
have the same value. Two objects can be equal without being the same object.

You use the is operator to check that objects have the same identity, and you use the is not
operator to check that objects have different identities.

Table 5‐5 explains the identity operators.

Meet the Identity Operators

Table 5-5: Python’s Identity Operators
Identity Operator Example Returns
The first operand is the same object as
the second operand.

is item1 is
item2

True if the objects are the same object,
False if they are different objects

The first operand is not the same object
as the second operand.

is not item1 is
not item2

True if the objects are not the same object,
False if they are the same object

Understanding the Identity Operators
Python stores each distinct object at a separate memory location. The is operator and the is not operator
use the memory locations to determine whether two objects are the same object or different objects.

For example, the first of the following statements creates the variable item1 and assigns the value 7 to it.
The second statement creates the variable item2 and assigns to it the value contained in item1. This
assignment makes the two objects the same. The third statement uses the is operator to compare item1
and item2. Because the objects are the same, this statement returns True.

item1 = 7
item2 = item1
item1 is item2

Another way to determine whether two objects are the same is to see whether they have the same memory
location. You can use the id() function to display the memory location at which an object is stored.

123

CHAPTER

5

5 Type the following statement, which uses the
id() function to return the memory location of
item1, and then press .

id(item1)

Python displays the memory location, such as
1743901755952.

6 Type the following statement, which returns the
memory location of item2, and then press .

id(item2)

Python displays the memory location.

You can see it matches the location for item1.

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates
the variable item1 and assigns it the value 7,
and then press .

item1 = 7

3 Type the following statement, which creates
the variable item2 and assigns it the value
of item1, and then press .

item2 = item1

4 Type the following statement, which uses the
is operator to compare the objects, and then
press .

item1 is item2

Python returns True, because the objects are
the same.

Work with the Identity Operators

In the previous section, “Meet the Identity Operators,” you learned about Python’s two identity
operators, is and is not, and what checking identity entails. In this section, you try using

these operators. You also use the id() function to return the memory location of two objects,
another way of determining whether the objects are the same.

Work with the Identity Operators

124

Python’s membership operators give you a way to test whether a value appears in a particular
sequence or iterable object. For example, if you have a list of machine parts, you can use the

membership operators to determine whether the list includes a particular part number.

The in operator returns True if the sequence is included in the object and returns False if it
is not. The not in operator works the other way around, returning True if the sequence is not
included in the object and returning False if it is.

Table 5‐6 explains Python’s two membership operators.

Meet the Membership Operators

Table 5-6: Python’s Membership Operators
Membership Operator Example Returns
The item is included in the selection. in "dog" in ["cat", "dog"] True

The item is not included in the selection. not in "cat" not in ["cat", "dog"] False

Understanding the Membership Operators
You can use the membership operators with any of Python’s sequence objects or iterable objects: dictionary,
list, set, string, and tuple.

For example, the first statement in the following code creates a list named partNumbers and assigns three
alphanumeric strings to it. The second statement tests whether the string A104 appears in the list.

partNumbers = ["A104", "A105", "A106"]
"A104" in partNumbers

This example returns True.

Similarly, the following statement tests whether the string Boxing appears in a classic pangram string:

"Boxing" in "The five boxing wizards jump quickly."

This example returns False, because Boxing has an initial capital, whereas boxing does not.

125

CHAPTER

5

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates
the variable myList and assigns to it a short
list of integers, and then press .

myList = [1, 3, 5, 7, 11]

3 Type the following statement, which creates
the variable myPrime and assigns the value 7
to it, and then press .

myPrime = 7

4 Type the following statement, which tests
whether myPrime is in myList, and then
press .

myPrime in myList

Python returns True.

Work with the Membership Operators

In the previous section, “Meet the Membership Operators,” you learned about Python’s two
membership operators, in and not in. In this section, you explore some quick examples using

these operators to check whether a specific value is present in a list and whether a substring is
included in a string.

Work with the Membership Operators

5 Type the following statement, which tests whether
8 is in myList, and then press .

8 in myList

Python returns False.

6 Type the following statement, which creates the
variable myString and assigns a string, and then
press .

myString = "North, South, West"

7 Type the following statement, which tests
whether East appears in myString, and then
press .

"East" in myString

Python returns False.

126

Python includes six bitwise operators for performing Boolean logic on individual bits. The first
three bitwise operators — AND, OR, and XOR — are for making comparisons between bits. The

fourth bitwise operator, NOT, inverts the value of each bit. The last two bitwise operators enable you
to shift the bits in the binary number either to the left, by adding zeros to the end of the number
and discarding the equivalent number of bits from the start; or to the right, by adding copies of the
leftmost bit to the start and discarding the equivalent number of bits from the end.

Table 5‐7 explains Python’s bitwise operators.

Meet the Bitwise Operators

Table 5-7: Python’s Bitwise Operators
Operation Operator Explanation Example Returns
Bitwise
AND

& Returns 1 if each bit has the value 1; otherwise,
returns 0.

1 & 1
0 & 1

1
0

Bitwise
OR

| Returns 1 if either or both bits have the value 1; otherwise,
returns 0.

1 | 1
1 | 0
0 | 0

1
1
0

Bitwise
XOR

^ Returns 1 if only one bit has the value 1; otherwise, returns
0.

0 ^ 1
1 ^ 1

1
0

Bitwise
NOT

~ Inverts the value of each bit. ~ 1 & 1
~ 0 & 0
~ 1 & 0 ^ 1

0
1
1

Zero‐fill
left shift

<< Shifts the binary digits left, adding zeros to the right end and
discarding the equivalent number of bits from the left end.

1 << 16 65536

Signed
right shift

>> Shifts the binary digits right, adding copies of the leftmost
bit at the left end and discarding the equivalent number of
bits from the right end.

65536 >> 8 256

Understanding the Bitwise Operators
Python’s bitwise operators enable you to use Boolean logic
on individual bits and to perform bit‐shifting, moving the
digits in a binary number to the left or right.

Table 5‐8 shows the output of the bitwise AND, OR, and
XOR operators. The difference between the bitwise OR
operator and the bitwise XOR operator is that XOR
performs an exclusive OR operation, so it returns 1 only if
its two inputs differ from each other. By contrast, the
bitwise OR returns 1 if each input evaluates to 1 as well as if only one input evaluates to 1.

Earlier in this chapter, you met three assignment operators that include bitwise operations: ^=, >>=, and
<<=. These operators work in the same way as the bitwise‐only &, >>, and << operators, except that they
also reassign the resulting value to the operand.

Table 5-8: Python’s Bitwise Operators
Input 1 Input 2 Bitwise

AND
Bitwise
OR

Bitwise
XOR

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

127

CHAPTER

5

5 Type the following statement, which uses the
bitwise NOT operator, and then press .

~1

Python returns ‐2, the result of inverting the bit.

6 Type the following statement, which uses the
zero‐fill left shift operator, and then press :

1 << 8

Python returns 256, which is binary
100000000 — 1 shifted left by 8 places, which
are then filled with zeros.

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which uses the
bitwise AND operator, and then press .

1 & 1

Python returns 1, because each bit has the value 1.

3 Type the following statement, which uses the
bitwise OR operator, and then press .

1 | 1

Python returns 1, the result of the nonexclusive OR
comparison.

4 Type the following statement, which uses the
bitwise XOR operator, and then press .

1 ^ 1

Python returns 0, the result of the exclusive OR
comparison.

Work with the Bitwise Operators

In the previous section, “Meet the Bitwise Operators,” you learned about Python’s six bitwise
operators. In this section, you use these operators to manipulate individual bits. You start by

performing bitwise AND, OR, and XOR operations; you then use the bitwise NOT operator to invert bit
values; and you finally use the zero‐fill left shift operator and the signed right shift operator to shift
binary digits to the left and to the right.

Work with the Bitwise Operators

7 Type the following statement, which uses the
signed right shift operator, and then press :

256 >> 8

Python returns 1, the result of shifting binary
100000000 right by eight places, placing a
copy of the leftmost bit at the left end.

CHAPTER 6

Making
Decisions with
if Statements
Python includes all the tools you need to make decisions easily and
effectively in your code. In this chapter, you meet Python’s if statements,
if... else statements, and if... elif statements and put them to work
in your code. You also learn how to nest if statements to make complex
decisions in your scripts.

Learn the Essentials of if Statements 130

Understanding the if Statement 132

Create an if Statement 133

Understanding the if... else Statement 134

Create an if... else Statement. 135

Understanding the if... elif Statement 136

Create an if... elif Statement. 137

Understanding the if... elif... else Statement . . 138

Create an if... elif... else Statement. 139

Understanding Nested if Statements 140

Create Nested if Statements 141

130

Learn the Essentials of if Statements

To make decisions in your code, you use Python’s various types of if statements. When an if
statement’s condition evaluates to True, Python runs the code that follows the statement. An

if... else statement runs the if code when the condition is True and the else code when it
is False. An if... elif statement can evaluate not only the if condition but also one or more
elif conditions, as needed; you can add an else statement that runs code when both if and all
elif conditions evaluate to False. You can nest if statements to make complex decisions.

Essential Features of if
Statements
The three main forms of if statement are
plain if, if... else, and if...
elif. The if statement looks like this,
with italics indicating placeholders:

if expression1:
 code block 1

The if... else statement looks like
this and is illustrated nearby:

if expression1:
 code block 1
else:
 code block 2

The if... elif statement looks like
this:

if expression1:
 code block 1
elif expression2:
 code block 3

131

CHAPTER

6Making Decisions with if Statements

The following list explains the components of these if statements:

• The if keyword introduces the if statement.

• expression1 and expression2 are expressions that evaluate to a Boolean True value or a Boolean
False value. For example, if x = 10: evaluates to True if x equals 10 but evaluates to False if x
evaluates to anything other than 10.

• A colon (:) follows expression1 or expression2. This colon is required; Python throws a
SyntaxError: expected ':' error if you omit the colon.

• Similarly, a colon (:) follows the else statement. This colon is required.

• code block 1 is an indented block containing one or more statements that Python executes after the
if condition evaluates to True.

• code block 2 is an indented block containing one or more statements that Python executes after the
if condition evaluates to False.

• code block 3 is an indented block containing one or more statements that Python executes after the
elif statement evaluates to True.

Each code block must be indented; if not, Python returns an IndentationError error, such as
expected an indented block after 'if' statement. Visual Studio Code and other editors can
automatically apply the required indentation for you.

The end of the indentation marks the end of the code block attached to the if statement. Execution
resumes at the next line that does not have the indentation.

You may want to leave a blank line after the end of an if block to make your code easier to read, but
there is no need to do so.

132

When your code needs to make a straightforward decision between taking an action and not
taking an action, you can use an if statement. For example, your code might check the value of

a variable to see whether it is 100 or more. If the value is indeed 100 or more, the code would take
action by running the if code block; if the value is less than 100, the code would take no action.

Understanding the if Statement

How the if Statement Works
An if statement begins with the if keyword followed by the expression to be evaluated for the condition.
The statement ends with a colon. If the expression evaluates to True, the statements in the code block run.

if expression:
 code block

For example, the following if statement checks
whether the value of the variable x is greater than
10. If so, the print() statement runs. The
illustration represents the flow of execution.

if x > 10:
 print("x is greater than 10.")

When an if statement’s code block contains only
a single statement, you can place that statement
on the same line of code as the if statement. For
example, the following if statement’s code block
has only a single statement:

if ampm < 12:
 print("Good morning!")

Instead, you can place the code block on the same
line:

if ampm < 12: print("Good morning!")

133

CHAPTER

6

1 In Visual Studio Code, create a new script, and
then save it.

2 Type the following statement, which creates a
variable named x and assigns to it the string
resulting from prompting the user to enter a
number between 1 and 20. Press .

x = input("Enter a number between
1 and 20 (inclusive): ")

3 Type the following statement, which converts the
string x to an integer and assigns the result back
to x. Press .

x = int(x)

4 Type the following if statement, which tests
whether x is greater than 10. Press .

if x > 10:

 A Visual Studio Code automatically indents the next
line for you to enter the code block.

5 Type the following statement, which uses the
print() function to display a message, and then
press .

print("x is greater than 10.")

6 Click Run Python File in Terminal ().

The Terminal pane appears.

7 Type a number greater than 10 and press .

 B Python displays the message x is greater
than 10.

8 Click Run Python File in Terminal () again, but this time type a number less than 11, and then press
. This time, the condition evaluates to False, so the code block does not run, and Python does not

display the message.

Create an if Statement

A straightforward if statement enables you to test a condition and take action if that condition
evaluates to True. For example, your code may need to evaluate input provided by the user and

take action if the input is of a certain type. If the condition evaluates to False, the code takes no
action. Execution continues at the line of code after the end of the if statement.

Create an if Statement

134

When your code needs to decide between two paths of action, use an if... else statement.
The if line contains an expression that evaluates to a Boolean True or a Boolean False.

If the expression evaluates to True, Python runs the statements in the code block that follows
the if line. After this code block comes the else line, followed by the code block containing the
statements for Python to run if the expression evaluates to False.

Understanding the if... else Statement

How the if...else Statement
Works
An if... else statement begins with
the if keyword followed by the
expression to be evaluated for the
condition. The statement ends with a
colon. If the expression evaluates to
True, the statements in the if code
block run. If the statement evaluates to
False, execution moves to the else
line, and the statements in the else
code block run.

if expression:
 code block 1
else:
 code block 2

Continuing the previous example, the
following if statement checks whether
the value of the variable x is greater
than 10. If so, the if code block runs,
and the print() statement displays a
message that x is greater than 10; if not, the else statement’s code block runs, making its print()
statement display a message that x is 10 or less. The nearby illustration shows the flow of execution.

if x > 10:
 print("x is greater than 10.")
else:
 print("x is 10 or less.")

135

CHAPTER

6

1 In Visual Studio Code, create a new script, and
then save it.

2 Type the following statement, and then press
. This statement creates a variable named x,

prompts the user to enter a number, converts the
input string to an integer, and assigns it to x.

x = int(input("Enter a number between
1 and 20 (inclusive): "))

3 Type the if condition, the colon, and the
print() statement, as before. Press .

if x > 10:
 print("x is greater than 10.")

4 Press to remove the indent, type the
else statement and its colon, and then press

.

else:

 A Visual Studio Code applies an indent after the
else: line.

5 Type the following print() statement, and
then press .

 print("x is 10 or less.")

6 Click Run Python File in Terminal ().

The Terminal pane appears.

7 Type a number less than 11, and then press .

 B Python displays the message from the else
block.

8 Click Run Python File in Terminal () again. This time, type a number 11 or greater, and then press .

Python displays the message from the if block.

Create an if.... else Statement

An if... else statement enables you to test a condition and take one of two courses of action
depending on the result. If the condition evaluates to True, Python runs the statements in the

code block that follows the if line; if the condition evaluates to False, Python runs the statements
in the code block that follows the else line.

Create an if... else Statement

136

When your code needs to evaluate two or more conditions, use an if... elif statement.
After the if line (which as usual contains an expression that evaluates to a Boolean True or

a Boolean False) and the if code block, the if... elif statement has one or more elif lines,
each of which contains another expression to evaluate. After the if expression evaluates to False,
Python evaluates the first elif expression, running its code block if it evaluates to True or moving
along to the next elif line if it evaluates to False.

Understanding the if... elif Statement

How the if... elif
Statement Works
The if... elif statement
consists of an if line with an
expression to evaluate, ending in
a colon; a code block to execute
if the expression evaluates to
True; an elif line, likewise with
an expression and ending in a
colon; and a code block to
evaluate if the elif expression
evaluates to True. Here is a
pseudocode representation:

if expression1:
 code block 1
elif expression2:
 code block 2

Here is an example, also
illustrated nearby:

if x > 10:
 print("x is greater
than 10.")
elif x < 5:
 print("x is less
than 5.")

You can add as many elif statements as you need to test more than two conditions. You can also add an
else statement after the last elif statement, making an if... elif... else statement. See the
section “Understanding the if... elif... else Statement,” later in this chapter, for an example.

137

CHAPTER

6

1 In Visual Studio Code, create a new script, and
then save it.

2 Copy and paste — or simply retype — the first
three lines from the if... else example you
created in the previous section:

x = int(input("Enter a number between
1 and 20 (inclusive): "))
if x > 10:
 print("x is greater than 10.")

3 Press to create a new line, press
 to delete the indent, and type the

following elif line. Press again.

elif x < 5:

 A Visual Studio Code automatically indents the next
line following the elif line and its colon.

4 Type the following statement, which uses the
print() function to display a message about
the value of x, and then press .

print("x is less than 5.")

5 Click Run Python File in Terminal ().

The Terminal pane appears.

6 Type a number less than 5 and press .

 B Python displays the message x is less than 5.

Create an if... elif Statement

An if... elif... statement enables you to test multiple conditions, taking different actions
depending on which condition evaluates to True and taking no action if each condition

evaluates to False. As usual, the if line is followed by its code block; similarly, each elif line is
followed by its code block.

You can use multiple elif lines to test more conditions. You must arrange the elif lines in the
appropriate order for testing, because once a condition evaluates to True, Python executes the
following code block and does not test any further conditions.

Create an if... elif Statement

138

An if... elif... else statement combines the features of the if... elif statement and
the if... else statement. First, you specify the if condition and the code to run if it evaluates

to True; second, you specify one or more elif conditions, each with the code to run if it is True;
and third, you specify the code to run if both the if statement and each elif statement evaluates to
False. You can include as many elif lines as required for all the conditions you need to test.

Understanding the if... elif... else
Statement

How the if... elif...
else Statement Works
The if... elif... else
statement consists of an if line
with an expression to evaluate,
ending in a colon; a code block
to execute if the expression
evaluates to True; one or
more elif lines, each with
an expression, ending in a colon,
and followed by a code block to
evaluate if that elif expression
evaluates to True; the else line,
also ending in a colon; and the
code block to execute in the
else case. Here is a pseudocode
representation:

if expression1:
 code block 1
elif expression2:
 code block 2
[other elif statements]
else:
 code block 3

Here is an example, which is illustrated nearby, that uses two elif lines:

if x > 10:
 print("x is greater than 10.")
elif x < 5:
 print("x is less than 5.")
elif x == 5:
 print("x equals 5.")
else:
 print("x is more than 5 but less than 11.")

139

CHAPTER

6

1 In Visual Studio Code, create a new script, and then save it.

2 Copy and paste — or retype, if you prefer — the first
five lines from the if... else example you created
in the previous section:

x = int(input("Enter a number between
1 and 20 (inclusive): "))
if x > 10:
 print("x is greater than 10.")
elif x < 5:
 print("x is less than 5.")

3 Press to create a new line, press to
remove the indent, and then type the following elif
line. Press again.

elif x == 5:

4 Type the following print() statement, and then
press .

print("x equals 5.")

5 Press to remove the indent, type the
following else line, and then press .

else:

6 Type the following statement, which uses the
print() function to display a message. Press .

print("x is more than 5 but less than 11.")

7 Click Run Python File in Terminal ().

The Terminal pane appears.

8 Type a number — this example uses 5 — and press .

 A Python displays the appropriate message.

Create an if... elif... else Statement

An if... elif... else statement enables you to test multiple conditions, taking appropriate
action if any condition evaluates to True and taking other action if all the conditions evaluate

to False. The statement begins with an if line and expression, followed by a code block. Similarly,
each elif line contains an expression and is followed by its code block. Finally, the else line
appears, without an expression but followed by its code block.

You can include multiple elif lines to test multiple conditions.

Create an if... elif... else Statement

140

When your code needs to make complex decisions, you can nest one or more if statements
inside another if statement. You can use any type of if statement — a straightforward if

statement, an if... else statement, an if... elif statement, or an if... elif... else
statement — as either the outer if statement or the nested if statement, as needed. You may
sometimes need to nest further if statements within your nested if statements.

Understanding Nested if Statements

How Nested if Statements Work
To create a nested if statement, you create the outer if statement of your preferred type and enter the
nested if statements in the appropriate code block. Here is a pseudocode representation that shows an
if... elif statement nested in an if... elif... else statement:

if expression1:
 if expression2:
 code block 1
 if expression3:
 code block 2
elif expression4:
 code block 3
else:
 code block 4

Here is a straightforward example of nested if statements. The outer statement is if... elif...
elif... else, and the if block contains two nested if statements.

if n.isalnum():
 if n.isalpha():
 r = "alphabetical"
 if n.isnumeric():
 r = "numeric"
elif n.isspace():
 r = "space-based"
elif n.isascii():
 r = "ASCII text"
else:
 r = "a mystery"

This example demonstrates using several string methods on the string stored in the variable n, which we
assume has been created already. The isalnum() method returns True if the string contains alphanumeric
characters. The isalpha() method returns True if the string contains alphabetical characters, while the
isnumeric() method returns True if the string contains numbers. The isspace() method returns True if
the string consists of spaces. The isascii() method returns True if the string contains ASCII characters.

141

CHAPTER

6

1 In Visual Studio Code, create a new script, and then save it.

Note: Press at the end of each line.

2 Type the following statement, which uses the input() method to
prompt the user for input:

n = input("Type something: ")

3 Type the outer if statement, which uses the isalnum() function.

if n.isalnum():

4 Type the two nested if statements, which use the isalpha()
method and the isnumeric() method, respectively, and assign
appropriate text to the variable r.

if n.isalpha():
 r = "alphabetical"
if n.isnumeric():
 r = "numeric"

5 Type the first elif statement, which uses the isspace() method.

elif n.isspace():
 r = "space-based"

6 Type the second elif statement, which uses the isascii() method.

elif n.isascii():
 r = "ASCII text"

7 Type the else statement and its text:

else:
 r = "a mystery"

8 Type the following print() statement to display the
information about n:

print(n + " is " + r + ".")

Create Nested if Statements

Nested if statements enable you to make complex decisions in your code. You begin the outer if
statement with an if line that contains the if keyword, an expression that evaluates to True

or False, and a colon. Within the if code block, an elif code block, or the else code block,
you nest if statements, as needed. When Python evaluates that if condition or elif condition as
true, or when it reaches the else line, Python evaluates the nested if statements and continues
executing code accordingly.

Create Nested if Statements

9 Click Run Python File in Terminal ().

The Terminal pane appears.

10 Type your choice of input, and then
press .

 A Python displays the appropriate message.

CHAPTER 7

Repeating
Actions with
Loops
In this chapter, you start using Python’s loops to repeat actions as needed in
your scripts. You learn to create both for loops and while loops, use loop
control statements, and nest loops within each other to implement complex
repetition.

Understanding Python’s Loops 144

Understanding How for Loops Work 146

Create for Loops 148

Understanding How while Loops Work 150

Create while Loops 152

Understanding break Statements in Loops 154

Using a break Statement to Exit a Loop Early. 155

Understanding continue Statements in Loops 156

Using a continue Statement in a Loop 157

Understanding else Statements in Loops. 158

Using an else Statement in a Loop. 159

Understanding Loop Nesting 160

Nest Loops to Create Complex Repetition 161

144

Understanding Python’s Loops

When you need to repeat actions in your code, you can use Python’s loop structures. A for loop
lets you iterate — repeat — actions either once for each object in a collection, such as once for

each letter in a string of text, or a specific number of times, such as 10 times. A while loop enables
you to repeat actions as long as a condition remains True — for example, while a value is above
a specified cutoff. When you need more complex repetition, you can nest either type of loop or a
mixture of the two types.

Using for Loops for Definite Iteration
A for loop enables you to repeat actions for a
predetermined number of times. This type of
repetition is sometimes called definite iteration.
You can either specify the exact numerical range
through which the loop should iterate, such as
starting at 1 and ending at 101, or specify that
the code should loop once for each element in a
collection. For example, your code might create
a separate file for each person’s name in a list of
names.

Looping through a numerical range is preferable
when you know in advance exactly how many
repetitions you need. Looping through a
collection of items is helpful when you need to
repeat an action for each item in a specific
collection, but you do not know how many items
that collection will contain.

Using while Loops for Indefinite Iteration
A while loop enables you to repeat actions as long as a condition remains True. This type of repetition is
sometimes called indefinite iteration.

145

CHAPTER

7Repeating Actions with Loops

For example, say you want your code to read through a file
one line at a time, from start to end. To do this using definite
iteration, you could determine how many lines the file contains
and then go through line by line, identifying each line by its index
number. But indefinite iteration using a while loop is typically
faster and more efficient. In the while loop, the code starts at
the beginning of the file, checking that there is at least one line
left to read. While there is at least one more line, the loop repeats.

You can also view a while loop as continuing until the condition
becomes False.

Nesting Loops to Create Complex Repetition
Nesting enables you to run one or more loops inside another
loop. For example, while you are reading each line in a file, you
may want to perform a task on each word within that line. You
can do this by nesting a for loop that works with each word on
a line within a while loop that works on each line in the file.

Interrupting and Continuing Loops
When your code is executing within a loop, you may find that you have achieved the result you want and
that continuing the loop may waste time or do something counterproductive. In such situations, you can
use a break statement to interrupt the loop and immediately continue with the code that follows it.

Conversely, conditions may arise in your code that require skipping the rest of the current iteration of the
loop but then continue the loop at the next iteration rather than breaking out of the loop. You can achieve
this by using the continue statement.

146

In Python, a for loop enables you to perform definite iteration, repeating an action or a set of
actions for a specific number of times. The number of repetitions is controlled by the iterable

collection you use for the loop. This collection can be a list, a tuple, a set, a dictionary, or even a
string of text; you can also iterate through a collection of open files or a collection of custom objects
you have created. For example, a for loop that works with a five‐item list will iterate five times.

Understanding How for Loops Work

Understanding the Structure of a for Loop
The structure of a for loop is to use a variable to iterate through an iterable item. The iterable item is
usually a collection, such as a list, a tuple, or a set.

A for loop starts with the for keyword, as in the following pseudocode and diagram, where the italics
represent placeholders. The in keyword precedes the iterable’s name, which a colon follows. After the colon,
the loop’s statements are indented by four spaces. When the indentation ends, the loop ends.

for variable in iterable:
 statements

On the first iteration through the loop, Python
allocates to variable the first item in iterable
and runs statements. On each subsequent
iteration, Python allocates the next item in
iterable to variable and runs statements.
The loop ends after Python has run statements for
the last item.

Using a for Loop with a List
The following statements show a for loop that works through a list:

cities = ["Atlanta", "Boston", "Chicago", "Denver"]
for city in cities:
 print(city)

147

CHAPTER

7Repeating Actions with Loops

The first statement creates the variable cities and assigns to it a list of four cities, Atlanta, Boston,
Chicago, and Denver. The second statement contains the for statement, which creates the variable city
and specifies cities as the iterable. The third statement simply uses the print() function to display the
value of the variable city.

When you run this code, Python iterates through
the loop four times, once for each city, and displays
the following:

Atlanta
Boston
Chicago
Denver

You can create similar loops for other collections,
including sets, tuples, dictionaries, and strings.

Using the range() Function to Create a Numeric for Loop
When you need to loop through a sequence of nonsequential numbers, you can put them in a set and loop
through the set. For example, the following for loop works through the numbers 4, 7, and 11 in a set:

for num in (4, 7, 11):
 print(num)

This approach works fine, and you can use it for sequential numbers as well if you want — for example, for
num in (1, 2, 3). But when you have many sequential numbers, using Python’s range() function is a
better solution.

In the following example, the first line creates the variable r1 and uses the range() function to assign to
it a range of 20 items. The second line creates the variable num and uses it in a for loop that iterates
through r1. The third line, indented four spaces as usual, simply prints the current value of num.

r1 = range(20)
for num in r1:
 print(num)

This example outputs 20 numbers, starting with 0 and ending with 19.

0
1
...
19

148

Create a for Loop That Uses a List
1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates a variable named
cities and assigns to it a list of four cities. Press .

cities = ["Atlanta", "Boston", "Chicago",
"Denver"]

3 Type the following two‐line for statement, which uses the
variable city to iterate through the items in the cities
list. Press at the end of each of these two lines.

for city in cities:
 print(city)

4 Press on the third line to end the for loop.

Python runs the loop and displays the following:

Atlanta
Boston
Chicago
Denver

Create a for Loop That Iterates Through a String
1 Type the following statement, which creates the variable st

and assigns a string of text to it. Press .

st = "duty"

2 Type the following two‐line for statement, which uses the variable s to iterate through the letters in the
st string. Press at the end of each of these two lines.

for s in st:
 print(s)

3 Press on the third line to end the for loop.

Create for Loops

Python’s for loops enable you to iterate quickly and easily through various kinds of collection
objects. In this section, you create for loops that iterate through three widely used types of

collections: a list, a string, and a dictionary.

Before we begin, here is one thing to keep in mind: Because Python uses indentation to denote control
structures, you must indent each subordinate statement under the for statement by four spaces.

Create for Loops

149

CHAPTER

7Repeating Actions with Loops

Python runs the loop and displays the following:

d
u
t
y

Create a for Loop That Iterates Through a
Dictionary
1 Type the following statement, which creates the

variable d1 and assigns a short dictionary to it. Press
 at the end of each line.

d1 = {
 "country": "USA",
 "state": "Alaska",
 "city": "Anchorage"
 }

2 Type the following two‐line for statement, which
uses the variable a to iterate through the keys in the
d1 dictionary, retrieving the value for each key and
displaying it together with the key. Press at the
end of each of these two lines.

for a in d1:
 print(a + ": " + d1[a])

3 Press on the third line to end the for loop.

Python runs the loop and displays the following:

country: USA
state: Alaska
city: Anchorage

TIP
Is there a way to end a for loop early?
Yes — you can use a break statement to stop executing a loop when a particular condition is met. See the
sections “Understanding break Statements in Loops” and “Using a break Statement to Exit a Loop Early,”
both later in this chapter, for more information.

150

In Python, a while loop enables you to perform indefinite iteration, repeating a block of code as long
as a condition remains True. Python evaluates the condition before performing the action or actions,

so if the condition initially evaluates to False, the loop never performs the actions, and execution
continues with the next statement after the loop. By contrast, if the condition evaluates to True, and
continues to do so, the while statement can create an infinite loop, a loop that never ends.

Understanding How while Loops Work

Understanding the Structure of a while
Loop
A while loop starts with the while keyword,
which is followed by the condition to be
evaluated. The while statement ends with a
colon, after which each of the loop’s statements
is indented by four spaces, as is standard for
Python’s control structures. When the indentation
ends, the loop ends. The following pseudocode
and nearby diagram illustrate a while loop:

while condition:
 statements

When execution reaches the while statement,
Python evaluates the expression. If the result is
True, Python executes the loop’s statements; it
then returns to the while statement and evaluates
it again. If the result is False, execution continues
with the first statement after the loop.

An Example: A while Loop Using a Numeric Condition
The following statements show a while loop that uses a straightforward numeric condition. The first line
declares the variable a and assigns it the integer value 100. The second line starts the while loop, which
runs while a is greater than 50. The third line uses the print() function to display the value of a, after
which the fourth line decreases the value of a by 20.

a = 100
while a > 50:
 print(a)
 a = a - 20

When you run this code, Python evaluates the while condition four times. The first three times, a equals
100, 80, and 60, respectively, so the condition evaluates to True, and Python prints those values and
performs the subtraction. The fourth time, a equals 40, so the condition evaluates to False, and Python
does not execute the loop’s statements.

151

CHAPTER

7Repeating Actions with Loops

Understanding and Avoiding Infinite Loops
If the condition for a while loop initially evaluates to False, the loop’s statements do not run, and
execution continues at the first statement after the loop’s end. But if the condition initially evaluates to
True, and continues to do so, the loop will iterate without ending, in what is called an infinite loop.

For example, the following while loop causes an infinite loop:

one = 1
while one == 1:
 print("one: 1")

If you run this code in a terminal window, Python displays one: 1 on each line until you stop it by
pressing + . This key combination gives a
stop command, which Python registers as a
KeyboardInterrupt event, so you see something
like this:

one: 1
one: 1
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
KeyboardInterrupt
>>>

To avoid creating infinite loops, you can use one or
more break statements in your while loops. See the
sections “Understanding break Statements in Loops”
and “Using a break Statement to Exit a Loop Early,”
both later in this chapter, for information on adding
break statements.

152

Create a Straightforward while Loop
1 Open Visual Studio Code and create a Python

script.

2 Type the following statement, which creates the
variable a and assigns to it the value 100. Press

.

a = 100

3 Type the following three‐line while loop, which
runs while a is greater than 50, with each
iteration using the print() function to display
the value of a and then subtracting 20 from a.
Press at the end of each line.

while a > 50:
 print(a)
 a = a - 20

4 Click Run Python File in Terminal () to run the
loop code.

 A Python displays the following:

100
80
60

Create while Loops

A while loop enables you to repeat actions as long as a condition evaluates to True. In your
scripts, while loops can be great for giving your code the flexibility to adapt to the conditions

under which it is running.

In this section, you create two straightforward while loops that complete without problems. You
also create an infinite while loop, which you then interrupt by using a key combination.

Create while Loops

153

CHAPTER

7Repeating Actions with Loops

Create an Infinite while Loop and
Interrupt It
1 In Visual Studio Code, create another Python

script.

For example, press + , click Select a
language, and then click Python in the pop‐up
menu. Save the script under a name of your
choice.

2 Type the following statement, which creates a
variable named myBoolean and assigns the
value True to it. Press .

myBoolean = True

3 Type the following two‐line while loop, which
runs while myBoolean evaluates to True
and uses the print() command to display
Continuing.... Press at the end
of each line.

while myBoolean == True:
 print("Continuing...")

4 Click Run Python File in Terminal () to
run the loop code.

 B The script gets stuck in an infinite loop,
outputting Continuing... once per iteration.

5 Click in the Terminal pane.

Visual Studio Code moves the focus to the
Terminal pane.

6 Press + .

 C Visual Studio Code registers a keyboard
interrupt, stops the code, and displays the
KeyboardInterrupt message.

TIP
Can I use the + keypress in a terminal window?
Yes, you can press + to interrupt code in a terminal window, such as a Command Prompt window
on Windows or a Terminal window on macOS or Linux.

154

In either a for loop or a while loop, Python enables you to include a break statement to exit
the loop before it would otherwise end. You usually use a break statement with an if condition

so as to exit the loop only if the condition is met. In while loops, break statements can be
especially useful for avoiding infinite loops.

To use a break statement, you construct your for loop or while loop as usual but include a break
statement at the appropriate place, usually with a condition.

The following pseudocode and nearby drawing illustrate the use of a break statement in a for loop:

for item in collection:
 if expression:
 break
 statements

The following example creates a variable named s,
prompts the user to enter some text including a
z, and assigns that text to s. It creates a variable
named i to use as a counter. The loop uses the
variable a to iterate through the user’s string input
one character at a time. If the character is not z,
the print() function displays the character, and
the code increments the counter variable. If the
character is z, the code displays a message giving
the character position at which z was found, and
the break statement ends the loop.

s = input("Enter some text including a z: ")
i = 0
for a in s:
 if a == "z":
 print("z found at character " +
str(i))
 break
 print(a)
 i = i + 1

Understanding break Statements in Loops

155

CHAPTER

7
A break statement enables your code to exit either a for loop or a while loop before the loop’s

collection or condition causes it to terminate.

In this section, you create a while loop that prompts the user to guess a number between 0 and 10.
The while loop simply specifies True as its condition; True cannot become False, so the loop is
infinite and keeps running until the break statement is triggered.

1 Open Visual Studio Code and create a Python
script.

2 Type the following statement, which creates the
variable answer and assigns to it the value 7.
Press .

answer = 7

3 Type the following statement, which creates the
variable prompt and assigns text to it, and then
press .

prompt = "Guess between 0 and 10: "

4 Type the following while loop, which creates
the variable guess, assigns to it an integer
derived from the user’s input, and compares
guess to answer. If the two match, the loop
displays Correct! and then ends.

while True:
 guess = int(input(prompt))
 if guess == answer:
 print("Correct!")
 break

5 Click Run Python File in Terminal () to run the
script.

The prompt appears.

6 Type a number other than 7.

The prompt reappears.

7 Type 7.

 A The Correct! message appears.

The break statement stops the loop.

Using a break Statement to
Exit a Loop Early

Using a break Statement to Exit a Loop Early

156

As well as providing the break statement that enables your code to exit a loop early, Python
provides the continue statement, which lets your code skip the remainder of the statements

in the current iteration of the loop and proceed to the next iteration. Using a continue statement
allows you to skip taking actions with particular items in a for loop’s collection or specific values in
a while loop without terminating the loop early.

To use a continue statement, you construct your
for loop or while loop in the normal way but
include a condition followed by the continue
keyword at the appropriate point in the code.

The following pseudocode and nearby drawing
illustrate a while loop that includes a continue
statement. After Python evaluates the while
condition to True, it evaluates the second
condition, which precedes the continue
statement. If this second condition evaluates to
True, Python skips the rest of the loop, returning
to the while condition and evaluating it for the
next iteration. If the second condition evaluates
to False, Python executes the loop’s statements
before returning to the while condition.

while condition:
 if condition2:
 continue
 statements

A for loop that includes a continue statement
works in a similar way, except that the loop’s
iteration is controlled by its collection rather than
by a while condition.

Understanding continue Statements in Loops

157

CHAPTER

7Using a continue Statement in a Loop

A continue statement enables you to create a loop that skips a particular value without exiting
the loop. You can add multiple continue statements to a loop if necessary.

In this section, you create a for loop that iterates through a list of names, using a continue
statement to skip those that consist entirely of uppercase letters, and displaying the remaining
names.

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates
the variable names and assigns to it a list
of first names. Press .

names = ["AJ", "Bo", "CC", "CJ",
"Di", "Ed", "El", "Fi"]

3 Type the following four‐line for loop, which
uses the variable n to iterate through the
names list. The second line uses the
isupper() method to check whether the
current contents of n are all uppercase; if so,
the continue statement in the third line runs.
If not, the print() function in the fourth line
displays the name. Press at the end
of each line.

for n in names:
 if n.isupper():
 continue
 print(n)

Note: Indent the second line by four spaces, the third
line by eight spaces, and the fourth line by four spaces.

4 Press to end the loop.

The loop runs.

 B Python displays the names that are not all uppercase:

Bo
Di
Ed
El
Fi

Using a continue Statement in a Loop

158

Python enables you to add an else statement to either a for loop or a while loop. Much like
the else statement in an if structure, the else statement in a loop runs when the main part

of the loop does not. In a for loop, the else statement runs when there are no more items in the
collection through which the loop iterates. In a while loop, the else statement runs when the
while condition evaluates to False rather than True.

To use an else statement, you
construct your for loop or while
loop in the normal way. Where the
loop would normally end, you add the
else keyword followed by a colon.
After that, indented by four spaces,
you add the statements you want
to run when the else condition is
triggered.

The following pseudocode and nearby
drawing illustrate the use of an else
statement in a for loop:

for item in collection:
 statements
else:
 statements2

A while loop that includes a
continue statement works in a
similar way:

while condition:
 statements
else:
 statements2

Understanding else Statements in Loops

159

CHAPTER

7Using an else Statement in a Loop

An else statement enables you to add functionality to a loop by running code when the loop has
ceased iterating. You can add an else statement to either a for loop or a while loop. This

capability is somewhat unusual for programming language, but you may sometimes find it useful.

If the main part of the loop includes a break statement and execution hits that break statement,
the loop’s else statements do not run.

1 Open Visual Studio Code and create a new script.

2 Type the following statement, which creates the
variable names and assigns to it a list of first
names. Press .

names = ["AJ", "CC", "CJ", "TJ"]

3 Type the following statement, which creates
the variable i and assigns to it the value 0.
Press .

i = 0

4 Type the following for loop, which uses the
variable n to iterate through the names list.
If the value of n is all uppercase, the continue
statement skips the rest of the loop; if not, the
print() function displays the name, and the
value of i is increased by 1.

for n in names:
 if n.isupper():
 continue
 print(n)
 i + = 1

5 Type the else statement, followed by an if
statement that compares i to 0 and displays a
message if it matches.

else:
 if i == 0:
 print("No mixed-case names")

6 Click Run Python File in Terminal ().

 A The No mixed‐case names message appears,
because each name was all uppercase.

Using an else Statement in a Loop

160

When you need to perform more complex repetition than either of Python’s types of loops allows,
you can nest loops within loops. Nesting works with both types of loops: You can nest one for

loop inside another for loop or nest one while loop inside another while loop. You can nest a
for loop inside a while loop, or vice versa.

Python enables you to nest loops and other blocks, such as with blocks and try blocks, up to a
maximum of 20 layers deep. Usually, it is most practical to nest only a few levels deep.

To nest loops, you construct the
outer look in the usual way, but
then you place another loop inside
it. The following code snippet
and nearby drawing illustrate one
for loop nested inside another
for loop, which assumes that the
variables firsts and lasts have
already been created:

for f in firsts:
 for l in lasts:
 print(f + " " + l)

Python begins by executing the
outer loop. If that loop is a for
loop, as in this example, Python
determines whether an item in
the collection is available. If so,
Python assigns the next available
item to the loop’s variable and
moves on to the nested loop;
if not, Python ends the outer
loop, leaving the nested loop
untouched.

Understanding Loop Nesting

161

CHAPTER

7Nest Loops to Create Complex Repetition

Nesting loops enables you to create complex repetition in your scripts. You can nest either for
loops or while loops, as needed — or nest both if your code so demands. You can also include

break statements, continue statements, and else statements in your nested loops.

In this section, you use two straightforward for loops, one nested inside the other. The code is
straightforward, but it enables you to see clearly how the nesting works.

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates
the variable firsts and assigns to it a list of
three first names. Press .

firsts = ["Ali", "Bee", "Cat"]

3 Type the following statement, which creates
the variable lasts and assigns to it a list of
three last names. Press .

lasts = ["Clark", "Hill", "Perez"]

4 Type the following three‐line for structure,
which implements both for loops. The outer
loop uses the variable f to iterate through
firsts; the inner loop uses the variable l
to iterate through lasts. The third line uses the
print() function to display the name produced by
the current combination of f and l. Press
at the end of each line.

for f in firsts:
 for l in lasts:
 print(f + " " + l)

5 Press to run the loop.

Python displays the output, abbreviated here:

Ali Clark
Ali Hill
Ali Perez
Bee Clark
...
Cat Perez

Nest Loops to Create Complex Repetition

CHAPTER 8

Working with
Functions
As in other programming languages, a function in Python is a stand‐alone
section of code that performs a particular task. In this chapter, you learn
how functions work, put Python’s built‐in functions to use, and create
custom functions of your own.

Understanding Functions and Their Syntax. 164

Understanding Function Parameters and Returns. 166

Using Python’s Built‐In Functions. 168

Create a Function with Parameters and a Return 172

Create a Function with a Parameter But No Return 173

Create a Function with No Parameters But a Return . . . 174

Create a Function with No Parameters and No Return . . 176

Create a Function That Returns Multiple Values 177

Create a Function with Optional Parameters 178

164

Understanding Functions and Their Syntax

A function is a stand‐alone section of code that performs a particular task. For example, as you
have seen earlier in this book, the input() function prompts the user to input text, while the

print() function displays information on‐screen. Python includes around 70 built‐in functions that
you can use immediately, and you can access other prebuilt functions by importing the modules that
contain them. You can also create your own custom functions to perform operations that Python’s
existing functions do not cover.

Understanding the Syntax of a
Function
In Python, a function’s syntax looks like
the following pseudocode and the
nearby drawing:

def function_name(parameters):
 """function_description"""
 statements
 return [expression]

The following list explains the components of a function’s syntax:

• def. This keyword, short for definition, begins the function header.
• function_name. Each function must have a name that is unique in its context so that your code can

refer to the function unambiguously.
• parameters. Parameters are named items used to pass values to a function. The values passed are

called arguments. Parameters are optional: Some functions have parameters, whereas other functions
have none.

• : (colon). The colon denotes the end of the function header. After the colon, the function’s contents are
indented, usually by four spaces, to indicate that they are subordinate to the function header.

• function_description. This description is a comment describing what the function does. The de-
scription is optional but is usually helpful. It is sometimes called the documentation string or docstring.

• statements. The statements specify the actions that the function performs.
• return [expression]. The return statement ends the function and returns the function’s result to

the code that called the function. If the return statement specifies an expression, Python returns that
expression. If the return specifies no expression, Python returns None, a special value. The return
statement is optional, so some functions do not have it. Python returns None if there is no return
statement.

165

CHAPTER

8Working with Functions

Looking at an Example of a Function’s Syntax
The following code shows a custom function. The nearby drawing breaks down the function’s components.

def odd_even(n):
 """Function to return 'Odd' or 'Even' for a
specified 'n' input."""
 if int(n)%2 == 0:
 odd_or_even = "Even"
 else:
 odd_or_even = "Odd"
 return odd_or_even

The function begins with the def keyword, after which comes the function’s name, odd_even; its
parameter, n, in parentheses; and the colon that ends the function header.

The second and third lines contain the function’s description in a comment delimited by three double
quotes. After those lines is an if... else statement that creates the function’s output, either Even or
Odd, which is stored in the variable odd_or_even. In the final line, the return statement returns the
value in odd_or_even.

Once your code has defined this function, you can call the function by entering its name and the argument
for the required parameter, n. For example, the following statement creates the variable x1 and assigns to it
the function’s output for the number the user types when prompted:

x1 = odd_even(input("Enter a number: "))

The function returns Even for an even number and Odd for an odd number.

166

Most functions use one or more parameters, named items that receive arguments containing the
values the user wants the function to manipulate. Parameters can be either required or optional,

and a function may use both required parameters and optional parameters. However, some functions
use no parameters at all.

Similarly, most functions return one or more values to the code that called them. However, some
functions return no values.

Understanding Function Parameters and Returns

Understanding the Four Types of Functions
The combination of parameters‐or‐no‐parameters and values‐
or‐no‐values gives four types of functions in Python:

• Functions with both parameters and return values
• Functions with parameters but no return values
• Function with no parameters but with return values
• Functions with no parameters and no return values

The following subsections explore these different types,
giving brief examples.

Functions with Both Parameters and Return Values
Many functions both use parameters to accept input and return one or
more values after running.

For example, the built‐in abs() function returns the absolute value of a
number, the non‐negative value of a number even if it has a minus sign.
The abs() function has one parameter, to which you provide an
argument containing the number for which to return the absolute value.
For example, abs(‐2) returns 2, and abs(‐99*2/50 + 5) returns 1.04.

Functions with Parameters But No Return Values
Some functions use one or more parameters to accept input but return no values. Instead, such functions
typically perform an action.

167

CHAPTER

8Working with Functions

For example, Python’s built‐in print() function displays text on‐screen rather than returning a value. This
function uses one parameter, the string or other item you want to display. For example, print("The
quick brown fox, etc.") displays the text The quick brown fox, etc. provided as the argument
for its parameter.

Functions with No Parameters But with Return Values
Some functions use no parameters but do return one or more values. For example, the built‐in globals()
function returns the dictionary for the current module namespace, the virtual area in which the module is
operating. Here is an example of running the globals() function:

>>> globals()
{'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__':
<class '_frozen_importlib.BuiltinImporter'>, '__spec__': None, '__annotations__':
{}, '__builtins__': <module 'builtins' (built-in)>}
>>>

Functions with No Parameters and No Return Values
Some functions — relatively few — use no parameters and return no values. Such a function may either
generate or gather its own data automatically or prompt the user to enter data. Rather than returning one
or more values to the calling code, the function may display output — for example, by using the print()
function.

None of Python’s built‐in functions falls into this category. Here is an example of a custom function that
uses no parameters and returns no values:

def day_of_week():
 from datetime import datetime
 thisday = datetime.today().strftime("%A")
 print(thisday)

This day_of_week() function imports the datetime object from the datetime module. The second line
creates a variable called thisday and assigns to it a formatted string returned using the today() method
of the datetime object. The third line uses the print() function to display the day, such as Wednesday.

168

Python includes around 70 built‐in functions that you can use immediately without needing to
load extra modules. These functions perform a variety of widely useful tasks. Some functions help

you create and debug your code. For example, the compile() function compiles a source file into a
code object, the exec() function executes a code object, and the breakpoint() function switches
to the Python debugger at the specified point in a script. Other functions, such as setattr() and
delattr(), enable you to manipulate the attributes of objects.

Table 8‐1 explains Python’s built‐in functions.

Using Python’s Built-In Functions

Table 8-1: Python’s Built‐In Functions
Function Name What It Returns or Does
abs() Returns the absolute value of the specified number.
aiter() Returns an asynchronous iterator for an asynchronous iterable.
all() Returns True if all elements of the specified iterable are True.
anext() Returns the next item from the specified asynchronous iterator.
any() Returns True if any element of the specified iterable is True.
ascii() Returns a string containing a printable reproduction of the object with non‐ASCII

characters escaped using \x, \u, and \U escape codes.
bin() Returns a binary string for the value the specified integer, prefixed with 0b.
bool() Returns the Boolean value — True or False — of the specified item.
breakpoint() Switches to the Python debugger.
bytearray() Returns a bytearray object containing a new array of bytes.
bytes() Returns a new bytes object.
callable() Returns True if the object appears callable.
chr() Returns the string for the character representing the specified Unicode code point.
classmethod() Returns a class method from the specified method.
compile() Returns a code object compiled from the specified source file.
complex() Returns a complex number from the specified real value and imaginary value.
delattr() Returns the specified object with the specified attribute deleted.
dict() Returns a new dictionary.
dir() Returns the list of names in the current local scope or in the specified scope.
divmod() Returns the quotient and remainder of the two specified numbers divided using integer division.
enumerate() Returns an enumerate object from the specified iterable.
eval() Returns the evaluated expression from the specified expression and arguments.
exec() Executes the specified Python code object.
filter() Returns an iterator constructed from the specified function and iterable.
float() Returns a floating‐point number from the specified number or string.

format() Returns a formatted representation of the specified value.

169

CHAPTER

8Working with Functions

Table 8-1: Python’s Built‐In Functions (continued)
Function Name What It Returns or Does
frozenset() Returns a new frozenset object.

getattr() Returns the value of the specified attribute of the given object.

globals() Returns the dictionary for the current module namespace.

hasattr() Returns True if the specified object includes the specified attribute.

hash() Returns the integer hash value of the object, if the object has one.

help() Calls Python’s built‐in help system.

hex() Returns the hexadecimal string, prefixed with 0x, for the specified integer.

id() Returns the specified object’s identity, a unique integer.

input() Prompts the user for input.

int() Returns an integer from the specified number or string.

isinstance() Returns True if the specified object is an instance of the specified class.

issubclass() Returns True if the specified object is a subclass of the specified class.

iter() Returns an iterator object for the specified object.

len() Returns the length of the specified object. The length is the number of items the object
contains — for example, the number of characters in a string.

list() Returns a list, tuple, or range.

locals() Returns the updated dictionary for the current local symbol table.

map() Returns an iterator showing the specified function applied to every item in the specified
iterable.

max() Returns the largest item in the specified iterable or group.

memoryview() Returns a memory view object for the specified object.

min() Returns the smallest item in the specified iterable or group.

next() Returns the next item from the specified iterator.

object() Returns a new object of the object class, the base for all other classes.

oct() Returns an octal string, prefixed with 0o, for the specified integer.

open() Opens the specified file and returns a file object representing it.

170

Python’s built‐in functions include functions for converting values to particular data types. For example,
the int() function returns an integer, the str() function returns a string, the list() function

returns a list, and the tuple() function returns a tuple. Similarly, the bin(), oct(), and hex()
functions return strings containing binary, octal, and hexadecimal representations of the value supplied.

Other functions that are widely useful include three you have used already in this book. The
input() function prompts the user for input, the open() function opens a file and returns a file
object representing it, and the print() function displays output.

Using Python’s Built-In Functions (continued)

Using the input() Function
The input() function enables you to prompt the
user for input. Python receives the input as a string,
but you can cast it to a different data type if needed,
as in the following example:

>>> n1 = input("Type a number
between 1 and 20: ")
Type a number between 1 and 20: 17
>>> n1
'17'
>>> n1 = int(n1)
>>> n1
17

The following sections provide brief examples of putting some of the most widely used of Python’s
built‐in functions to use.

Table 8-1: Python’s Built‐In Functions (continued)
Function Name What It Returns or Does
ord() Returns an integer representing the Unicode code point for the specified string.
pow() Returns the specified base number raised to the specified power, optionally using a modulo.
print() Prints the specified objects to the text stream file.
property() Returns the specified property.
range() Returns a range object.
repr() Returns a string containing a printable representation of the specified object.
reversed() Returns a reverse iterator for the specified object.
round() Returns the specified number rounded to the specified precision.
set() Returns a new set object.
setattr() Returns the specified object with the specified attribute set.
slice() Returns a slice object for the given set of indices.
sorted() Returns a sorted list from the specified iterable.
staticmethod() Returns a static method from the specified method.
str() Returns a string from the specified object.
sum() Returns the total of items in the specified iterable.
super() Returns a proxy object for delegating method calls to a parent or sibling class.
tuple() Returns a tuple from the specified iterable.
type() Returns either the type of the specified object or a new type object.
vars() Returns the __dict__ attribute for the specified object.

zip() Returns tuples from the specified iterables.

171

CHAPTER

8Working with Functions

Using the sorted() Function
The sorted() function lets you sort an iterable into either ascending order or descending order. The
following example creates a variable named locs, assigns five place names to it, and then sorts them
alphabetically.

>>> locs = ["Cobb", "Berg", "Eden", "Alba", "Dyer"]
>>> sorted(locs)
['Alba', 'Berg', 'Cobb', 'Dyer', 'Eden']

To sort backward, use sorted() with reverse=True:

>>> sorted(locs, reverse=True)
['Eden', 'Dyer', 'Cobb', 'Berg', 'Alba']

Returning Binary, Octal, or Hexadecimal Strings
The bin() function returns a string consisting of the prefix 0b and the binary value of the specified
integer. Similarly, the oct() function returns a string consisting of the prefix 0o and the octal value, and
the hex() function returns a string consisting of the prefix 0x and the hexadecimal value.

For example, bin(100) returns the string 0b1100100, oct(100) returns the string 0o144, and
hex(100) returns the string 0x64.

Converting Binary, Octal, or Hexadecimal Strings to Decimal Values
The int() function enables you to convert a binary, octal, or hexadecimal string to a decimal value. For
example, int(0b1100100) returns 100.

To convert a binary, octal, or hexadecimal number that is not in string format to a decimal value, use the
int() function, specifying the value as a string and providing the second argument 2 for binary, 8 for
octal, or 16 for hexadecimal. For example, int("1100100", 2) returns 100 from the binary number
1100100.

Using the print() Function to Display Information
The print() function enables you to print objects to the text stream file, giving you an easy way to
display information to the user. For example, print("New file created") displays the text New file
created.

172

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following function header, and then
press :

def calculate_tip(bill, percent):

Note: After the function header, indent each line of
the function by four spaces to indicate that the line is
part of the function.

3 Type the following statement, which divides the
percent value by 100, assigning it back to
percent. Press .

percent = percent / 100

Create a Function with Parameters and a Return

In this section, you create a function that uses parameters and returns a value. The function,
calculate_tip, calculates the amount of a service gratuity. The function uses two required

parameters: The bill parameter accepts the amount of the bill, and the percent parameter accepts
the tip percentage. The function divides percent by 100 so that the user can enter the percentage
as a round number, such as 15, rather than as the number that actually produces that percentage,
such as 0.15. The function returns a single value, tip, which contains the amount of the tip.

Create a Function with Parameters and a Return

4 Type the following statement, which declares the
variable tip and assigns to it the product of bill
and percent. Press .

tip = bill * percent

5 Type the following statement, which returns tip to
the calling code. Press once, and then press

 again to end the function.

return tip

6 Type the following statement, which uses the
print() function to display the result of
calculating a 15% tip on a $50 bill. Press .

print(calculate_tip(50,15))

Python returns 7.5, indicating a $7.50 tip.

173

CHAPTER

8

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following function header, which declares the
function name and a parameter called liters, and then
press .

def convert_liters_to_pints(liters):

3 Type the following statement, which creates the variable
pints and assigns to it the result of multiplying the liters
argument by 2.11338, the appropriate factor. Press .

pints = 2.11338 * liters

4 Type the following statement, which uses the round()
function to round pints down to one decimal place, and
then press :

pints = round(pints, 1)

Create a Function with a Parameter But No Return

In this section, you create a function that uses a parameter but that returns no values to the code that
calls it. Instead of returning values, the function uses the print() function to display information to

the user. The function is called convert_liters_to_pints() and converts liters to U.S. pints.

To create a function that returns no value explicitly, you can include the return statement but not
specify a return value. Alternatively, you can omit the return statement. Both approaches have the
same effect: The function returns no value explicitly, but implicitly it returns the value None.

Create a Function with a Parameter
But No Return

5 Type the following statement, which creates a variable
named msg and assigns to it a string derived from liters
plus literal text. Press .

msg = str(liters) + " liters is "

6 Type the following statement, which completes the msg
string by adding a string derived from pints plus literal
text. Press .

msg = msg + str(pints) + " pints."

7 Type the following statement, which uses the print()
function to display msg. Press twice.

print(msg)

8 Type the following statement, which
calls the function and supplies the
liters value:

convert_liters_to_pints(3.75)

 B Python displays the result:

3.75 liters is 7.9 pints.

174

1 Open Visual Studio Code and create a new Python
script.

2 Type the following function header, and then
press .

def generate_name():

3 Type the following four lines of function
description:

This function returns a character
name
by taking a first name from one
list,
a middle initial from another list,
and a last name from a third list.

Create a Function with Parameters But No Return

In this section, you create a function that uses no parameters but that does return a value to
the code that calls it. The function is called generate_name() and returns a name created by

combining a random first name, a random middle initial, and a random last name.

For space reasons, the lists of names and the list of initials shown here are unrealistically short. Feel
free to extend them with as many names as you wish.

Create a Function with No Parameters But a Return

4 Type the following statement, which creates a
variable named first and assigns to it a list of
first names. Press .

first = ["Al", "Bo", "Cy", "Dot",
"Ed", "Em"]

5 Type the following statement, which creates a
variable named middle and assigns to it a list of
initials. Press .

middle = ["A.", "B.", "C.", "D.",
"E.", "F."]

6 Type the following statement, which creates a
variable named last and assigns to it a list of
last names. Press .

last = ["Adams", "Bain", "Col",
"Dunn", "Ely"]

175

CHAPTER

8Working with Functions

7 Type the following statement, which imports the
choice item from the random module, and then
press .

from random import choice

8 Type the following statement, which creates the
variable cname and assigns to it a random item
chosen from the first list. Press .

cname = choice(first)

9 Type the following statement, which adds to cname
a space and a random item chosen from the middle
list. Press .

cname = cname + " " + choice(middle)

10 Type the following statement, which adds to cname
another space and a random item chosen from the
last list. Press .

cname = cname + " " + choice(last)

11 Type the following statement to return cname, and
then press twice to end the function.

return cname

12 Press to remove the indentation, and then
type the following for loop, which uses range(0,9)
with the print() function to output ten names.

for i in range(0,9):
 print(generate_name())

13 Click Run Python File in Terminal ().

Visual Studio Code displays the Terminal pane.

 A The sample names appear.

TIP
What other way can I get a random letter?
You can import the string module and then use one of its tools for returning letters. As in the main text,
type from random import choice and press to import the choice item from the random
module. Next, type import string and press to import the string module. You can then use
choice(string.ascii_lowercase) to return a random lowercase letter, use choice(string.
ascii_uppercase) to return a random uppercase letter, or use choice(string.ascii_letters) to
return a random letter of one case or the other.

176

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following function header, which specifies no
parameter, and then press .

def show_username():

3 Type the following two‐line function definition, pressing
 at the end of each line:

"""This sample function uses no parameter

and returns no value."""

4 Type the following statement, which imports the
getuser() method from the getpass module, and then
press :

from getpass import getuser

Create a Function with No Parameters and No Return

A function with no parameters and no return is relatively unusual because it lacks flexibility in
both input and output. Without parameters to receive values from arguments passed by the

calling code, the function either must contain any values it needs or must derive them from other
sources. Without a return value, the function needs to rely on other means of communication, such
as using the print() function to display text.

In this section, you create a parameter‐free and return‐free function named show_username() that
uses the print() function to display the username under which the user is currently logged in.

Create a Function with No Parameters
and No Return

5 Type the following statement, which creates
the variable you and assigns a string of text to
it. Press .

you = "You are logged in as "

6 Type the following statement, which completes
the you string by adding the username,
returned by the getuser() method, and a period.
Press .

you = you + getuser() + "."

7 Type the following statement, which uses the print()
function to display the you string. Press twice.

print(you)

8 Type the function’s name, and then
press .

 B The function runs and displays the
message including the username.

177

CHAPTER

8

5 Type the following statement, which creates the
variable inches and assigns to it the result of
multiplying miles by 63,360. Press .

inches = miles * 63360

6 Type the following return statement, which
returns yards, feet, and inches. Press .

return yards, feet, inches

7 Type the following statement, which uses the
print() function to display the result of
calling the function with the argument 2,
and then press .

print(convert_miles_yards_feet_
inches(2))

 B Python displays the resulting tuple:

(3520, 10560, 126720)

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following function header, which
declares the function with one parameter, miles.
Press .

def convert_miles_yards_feet_
inches(miles):

3 Type the following statement, which creates the
variable yards and assigns to it the result of
multiplying miles by 1760. Press .

yards = miles * 1760

4 Type the following statement, which creates the
variable feet and assigns to it the result of
multiplying miles by 5280. Press .

feet = miles * 5280

Create a Function That Returns Multiple Values

Many functions return just a single value, but Python enables you to create functions that return
multiple values. In this section, you create a function that uses one required parameter and that

returns three values. The function is called convert_miles_yards_feet_inches(); it uses a
parameter called miles, and it returns the equivalent numbers of yards, feet, and inches.

Create a Function That Returns Multiple Values

178

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following function header, which
declares the function parlay with five
parameters, odds1 through odds5, making
the last three parameters optional by
assigning the value None to them.
Press .

def parlay(odds1, odds2, odds3 =
None, odds4 = None, odds5 = None):

3 Type the function description, and then
press .

"""Calculate the odds for a parlay
that contains two, three, four, or
five bets"""

Create a Function with Optional Parameters

Including optional parameters in a custom function enables you to make your code more flexible.
In this section, you create a custom function that calculates the odds for a parlay bet, a

cumulative bet on multiple outcomes. The function lets the user calculate the odds for a parlay
involving two, three, four, or five bets using decimal odds. The function uses required parameters
for the first two bets, because a parlay must have at least two bets. The function uses optional
parameters for the remaining three bets, thus allowing the user to include these bets or omit them.

Create a Function with Optional Parameters

4 Type the following statement, which declares
the variable p and assigns to it the result of
multiplying odds1 and odds2. Press .

p = odds1 * odds2

5 Type the following if statement, which checks
whether odds3 has the value None and, if not,
multiplies p by odds3. Press at the end of
each line.

if odds3 != None:
 p = p * odds3

179

CHAPTER

8Working with Functions

6 Type two similar if statements for odds4 and
odds5, again pressing at the end of each
line:

if odds4 != None:
 p = p * odds4
if odds5 != None:
 p = p * odds5

7 Type the following return statement, which
causes the function to return the value of p to the
calling code, and then press .

return p

8 Press again to end the function.

The Python prompt appears again.

9 Type the following statement, which uses the
print() function to display the result of calling
the parlay() function and supplying four bets at
low odds. Press .

print(parlay(1.72, 2, 3.6, 1.72))

Python displays the accumulated odds for the
fourfold bet.

10 Press to reenter the previous statement, but
this time edit the end to include a fifth argument.
Press .

print(parlay(1.72, 2, 3.6, 1.72, 4))

Python displays the accumulated odds for the
fivefold bet — 85.20192 for the example.

TIP
What data types can I use for default values?
You can use most data types, including None, as in this example; an integer, such as 0 or 1; a Boolean,
such as True; or a string. However, in general, it is best to avoid mutable data types because although
they work correctly the first time you call the function, subsequent calls to the function will return the
value the last call assigned to the data type. For example, if you use an empty list as a default value, the
first call returns an empty list, as expected, but the next call returns a list containing the values you
assigned to the list.

CHAPTER 9

Working
with Text
In this chapter, you learn how to use Python to work with text, which Python
handles as strings of characters. You start by learning the essentials of
strings and then perform essential moves with strings, such as returning part
of a string; concatenating multiple strings into a single string; searching for
specific values; and building strings using the interpolation operator, using
the .format method, using f‐strings, and using template strings.

Learn the Essentials of Strings 182

Create Single‐Line Strings 184

Create Multiline Strings 186

Meet Python’s String Methods. 188

Return Information About a String 190

Transform and Clean Up a String 192

Return Part of a String via Slicing. 194

Concatenate and Repeat Strings. 196

Search for One String Inside Another String 198

Check and Change String Capitalization 200

Meet Python’s Tools for Building Strings 204

Build Strings with the Interpolation Operator 210

Build Strings with the .format Method 212

Build Strings with f‐Strings 214

Build Strings with Template Strings 216

182

Learn the Essentials of Strings

In this section, you learn the essentials of strings: with what strings are in Python, how you create
single‐line strings and multiline strings, and the tools that Python provides for working with

strings. You also learn a little about character codes and character sets, the symbols that computers
use to represent text — and emoji — on the screen.

Understanding What a String Is
A string is an ordered sequence of characters, such as abcd or The quick brown fox. You can create a
string by assigning text within quotes to a variable. For example, the following statement creates a variable
named animal1 and assigns The quick brown fox to it:

animal1 = "The quick brown fox"

Because the characters have a specific order, each string is immutable, which means you cannot change it.
However, you can take the string, manipulate it, and then assign the manipulated string either to the same
variable again or to another variable.

A string can contain anywhere from zero characters up to as many characters as your computer’s memory
can handle. Most strings fall between these two extremes.

Understanding How You Create Strings
When creating a string, you delimit its contents with quotes. To delimit any particular string, you can use
either a single quote at the beginning and the end or double quotes at the beginning and the end. You
cannot mix single and double quotes to delimit a single string — for example, you cannot start a string
with a single quote and then end it with double quotes.

The following example creates a variable named str1 and assigns a string to it using single quotes:

str1 = 'New York'

Similarly, the following example creates a variable named str2 and assigns a string to it using double quotes:

str2 = "Grand Canyon Junction"

Using single quotes enables you to include double quotes as part of the string. Here is an example:

str3 = 'Ann said, "I want to go to New York."'

Likewise, using double quotes enables you to include single quotes inside the string. Here is an example:

str4 = "Bill replied, 'We should stay here.'"

To create a multiline string, you can use either triple single quotes or triple double quotes to mark the start
and end of the string. Creating a multiline string enables you to control where the line breaks occur in the
output. Here is an example:

str5 = """Conference Room C

This meeting room is for senior management only."""

In a multiline string, you can also control the layout of text by including tab characters and new‐line characters.

183

CHAPTER

9Working with Text

Understanding Python’s Tools for Manipulating Strings
Python provides a wide variety of methods for manipulating strings. Each string method returns a new value,
so it does not change the original string. However, you can assign a changed string back to the variable
that contained it, which gives a similar effect to having changed the original string.

The section “Meet Python’s String Methods,” later in this chapter, gives you an overview of the string
methods that Python offers. Subsequent sections of the chapter show you how to put many of the string
methods to work.

Understanding Character Codes and Character Sets
A character set is a list of symbols used to display text and emoji on a computer. Different character sets
may have different characters for the same character codes, the numbers that identify particular characters
within a character set.

For example, the widely used American Standard Code for Information Interchange — ASCII for short —
contains 255 characters, including uppercase and lowercase Roman letters, such as ABC and abc; Arabic
numerals, such as 123; punctuation marks, such as ? and !; and control characters such as Delete, Escape,
and space. The Unicode character set, which greatly extends ASCII, has many more than 100,000 characters
that include the characters used in more than 100 languages, not to mention thousands of emoji.

When using Python 3, you will normally use the Unicode character set, which Python 3 is designed to
support fully. However, earlier versions of Python 2 may use ASCII rather than Unicode.

Unicode supports different formats for encoding its characters. These formats are called Unicode
Transformation Formats, abbreviated to UTF. The most widely used Unicode Transformation Format is UTF‐8,
which uses 8‐bit character units to encode the characters. UTF‐8 uses up to four character units to encode a
character. Eight bits is one byte, so UTF‐8 uses up to four bytes of space to encode a given character.

This book assumes you are working with UTF‐8.

184

1 In Visual Studio Code, create a new script, and then
save it.

2 Type the following partial statement, which creates a
variable named str1, and then press :

str1 = "

 A Visual Studio Code’s Auto Closing Quotes feature
automatically inserts the closing double quotes for
you. Normally, this is helpful.

3 For this example, press to delete the second
pair of double quotes, and then type Anna looked
surprised., including the period.

Visual Studio Code places a wavy red underline
beneath the string text to indicate there is a problem.

4 Move the pointer over the underlined string.

 B The pop‐up balloon shows the error that the Pylance
extension has identified: String literal is unterminated.

5 Type the missing double quotes to close the string,
and then press .

Visual Studio Code removes the wavy red underline.

6 Type the following statement, which creates a variable
named str2 and assigns to it a string that contains
quotes, and then press :

str2 = 'Anna said "Who?" to Bill.'

Create Single‐Line Strings

To store text, Python enables you to create either single‐line strings or multiline strings.
Single‐line strings are good for general use in code, whereas multiline strings can be useful for

presenting text laid out with line breaks and indentation. This section shows you how to create
single‐line strings; the next section, “Create Multiline Strings,” covers multiline strings.

To delimit a single‐line string, you use either paired single quotes or paired double quotes. If
needed, the string text can include quotes of the opposite kind — for instance, a string delimited
with double quotes can include single quotes for quotation or apostrophes.

Create Single-Line Strings

185

CHAPTER

9Working with Text

Visual Studio Code starts a new line.

7 Type print(str.

 C Visual Studio Code displays the Auto
Complete list, showing the available items
starting with the letters str, st, and s, in
that order.

8 Click the item you want to enter — in this
case, str1.

Note: You can also select an item from the
Auto Complete list by “typing down” to it —
typing further characters until you identify it
unambiguously — or by pressing or . Once
you have selected the item, press to enter it.

Visual Studio Code enters that item in the
code, including the closing parenthesis
required to complete the function
statement.

9 Press to create a new line, type the
following statement to display str2, and
then press again:

print(str2)

10 Click Run Python File in Terminal ().

Visual Studio Code displays the Terminal
pane.

Visual Studio Code runs your code.

 D The two strings appear in the Terminal pane.

TIPS
Is there another way of including
quotes inside a string?
Yes. You can “escape” the quotes, telling
Python to treat them specially. To escape
a quote character, you put a backslash
before it. For example, in str1 = 'Ann
is Bill\'s cousin', the \' escapes
the apostrophe.

How do I include a backslash in a string?
You can either escape the backslash by preceding it with another
backslash — for example, path = "C:\\Windows\\Temp"
stores the string C:\Windows\Temp — or create a raw string by
preceding the string with R or r, such as path = R"C:\
Windows\Temp". Escaping works for other special characters —
such as \b for Backspace and \f for form feed — as well, but it
causes an error with any nonspecial character.

186

Create a Multiline String Using Triple Quotes
1 In Visual Studio Code, create a new script, and then

save it.

2 In the Editor pane, type the following partial statement,
which creates a variable named strMulti and starts
assigning a string to it:

strMulti = """To:

Note: You can use either triple single quotes or triple double
quotes for any multiline string, but you cannot mix and match
single quotes and double quotes for the same string.

 A As you enter each double‐quote character, Visual Studio
Code automatically enters a matching one to the right of
the insertion point, closing the string for you.

3 Press .

The insertion point and the three closing double‐quote
characters move to a new line.

4 Type the contents of the string, using spaces for indentation
and pressing to create new lines, as needed. Here is
an example:

strMulti = """To:
 Indefinite Distributors
 555 Industry Blvd.
 Anytown, IN 46555"""

5 Press .

The insertion point moves to after the three closing double‐
quote characters.

Note: You can also press to move the insertion point to
the end of the line.

Create Multiline Strings

When you need to include line breaks and spacing in a string, you can create a multiline string in
either of two ways. The first way is to place either triple single quotes or triple double quotes

at the beginning and end of the string; between the delimiting quotes, you lay out the string on as
many lines as you want using carriage returns, spaces, and tabs, as needed. The second way to create
a multiline string is to enter it on a single line of code but include new‐line characters or carriage‐
return characters within the string.

Create Multiline Strings

6 Type the following print() statement to
display strMulti, and then press :

print(strMulti)

7 Click Run Python File in Terminal ().

 B The multiline string appears in the
Terminal pane.

187

CHAPTER

9Working with Text

Create a Multiline String Using Carriage‐
Return and New‐Line Characters
1 In Visual Studio Code, create a new script, and

then save it.

2 In the Editor pane, type the following statement,
which creates a variable named Multi2 and
assigns to it a string that includes tab characters
and new‐line characters. Press .

Multi2 = "\t\tIntroduction\n\
nMaking a strong first impression
has never been more important."

3 Type the following statement, which adds
further text to Multi2, and then press :

Multi2 = Multi2 + "\n\n\tHere is a
handy technique you can use to add
impact to your first impression."

Note: If Visual Studio Code does not wrap long
lines of code, click View on the menu bar, and then
click Word Wrap, placing a check mark next to it.

4 Type the following print() statement to
display Multi2, and then press :

print(Multi2)

5 Click Run Python File in Terminal ().

 C The multiline string appears in the Terminal
pane with the tab characters replaced by tabs
and the new‐line characters replaced by new
lines.

TIP
What is the difference between a carriage‐return character and a new‐line character?
In a string, the carriage‐return character, \r, makes the following text start at the beginning of the line,
but it does not move down to the next line. By contrast, the new‐line character, \n, moves down to the
next line and makes the text start at the beginning of the line.

Usually, you will want to use \n to start the text on a new line. Using \r on its own causes any subsequent
text to overwrite part of the existing text, which is not what you normally want.

188

Methods for Checking and Changing Case
Table 9‐1 lists Python’s methods for checking and changing the case of strings.

Table 9-1: Methods for Checking and Changing Case
Method What It Returns
capitalize() The string with an initial capital applied
casefold() The string in lowercase letters
islower() True if all characters in the string are lowercase
istitle() True if the string is lowercase with initial caps
isupper() True if all characters in the string are uppercase
lower() The string in lowercase letters
swapcase() The string with its original casing reversed
title() The string in title case — with the first letter of each word capitalized
upper() The string in uppercase letters

Python includes nearly four dozen methods for working with strings. This section gives you
an overview of these methods, dividing them into five categories: methods for checking and

changing the case of text, such as islower() and lower(); methods for returning information
about strings, such as isalpha() and startswith(); methods for finding and replacing in
strings, including find() and replace(); methods for laying out string data, such as center()
and format(); and methods for transforming string data, from encode() to zfill().

Later in this chapter, you put the most useful of these methods into action.

Meet Python’s String Methods

Methods for Returning Information About Strings
Table 9‐2 lists Python’s methods for returning information about strings.

Table 9-2: Methods for Returning Information About Strings
Method What It Returns
count() The count of occurrences of the string in another string
endswith() True if the string ends with the specified string
isalnum() True if all characters in the string are alphanumeric
isalpha() True if all characters in the string are alphabetical
isascii() True if all characters in the string are ASCII characters
isdecimal() True if all characters in the string are decimals
isdigit() True if all characters in the string are digits
isidentifier() True if the string is a valid identifier
isnumeric() True if all characters in the string are numeric
isprintable() True if all characters in the string are printable
isspace() True if all characters in the string are whitespaces
startswith() True if the string starts with the specified string

189

CHAPTER

9Working with Text

Methods for Finding Within Strings
Table 9‐3 lists Python’s methods for performing find operations in strings.

Table 9-3: Methods for Finding and Replacing in Strings
Method What It Returns
find() The position of the specified value in the string
index() The position of the specified value in the string
rfind() The position of the specified value in the string, searching from the end
rindex() The position of the specified value in the string, starting from the end

Methods for Transforming String Data
Table 9‐5 lists Python’s methods for transforming string data.

Table 9-5: Methods for Transforming String Data
Method What It Returns
encode() The string encoded in the specified way
expandtabs() Sets the tab size to the specified number of white spaces (default 8)
join() A string containing an iterable’s elements joined together
lstrip() The string with leading spaces removed
maketrans() A translation table
partition() A three‐element tuple containing the text before the specified string (searching from the

beginning), the specified string, and the text after the specified string
replace() A string with the specified search value replaced with the specified replacement value
rpartition() A three‐element tuple containing the text before the specified string (searching from the end),

the specified string, and the text after the specified string
rsplit() Splits the string at the specified separator, and returns a list
rstrip() The string with trailing spaces removed
split() A list consisting of strings split at the specified value
splitlines() A list containing strings created by splitting the specified string at the line breaks
strip() The string with leading and trailing spaces removed
translate() A translated string
zfill() The string filled with zeros at the beginning to bring it to the specified length

Methods for Laying Out String Data
Table 9‐4 lists Python’s methods for laying out string data.

Table 9-4: Methods for Laying Out String Data
Method What It Returns
center() A centered string
format_map() The string formatted as specified
format() The string formatted as specified
ljust() The left‐justified version of the string
rjust() The right‐justified version of the string

190

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates a
variable named str1 and assigns a string to it,
and then press :

str1 = "Sometimes a string is just a
string."

3 Type the following statement, which uses the
isalnum() method, to check whether the string’s
characters are all alphanumeric, and then press :

str1.isalnum()

Python returns False, because the spaces and
the period are not alphanumeric characters.

Note: You could also try other tests, such as
str1.isalpha(), str1.isdecimal(), or
str1.isnumeric().

4 Type the following statement, which uses the
endswith() method to check the string’s end,
and then press :

str1.endswith(".")

Python returns True because the string ends with
a period.

5 Type the following statement, which uses the
startswith() method to see if str1 starts
with “The”, and then press :

str1.startswith("The")

Return Information About a String

Python includes a wide variety of string methods that enable you to return information about
strings. For example, you can use the isupper() method or the islower() method to

determine whether the string is uppercase or lowercase, respectively; or use the isalpha() method,
the isnumeric() method, or the isalnum() method to check whether the string is numeric,
alphabetic, or alphanumeric — again, respectively. You can use the startswith() method to
check a string’s start, use the endswith() method to check its end, or use the count() method to
return the number of occurrences of another string inside that string.

Return Information About a String

191

CHAPTER

9Working with Text

Python returns False.

6 Type the following statement, which uses the
count() method to return the number of instances
of “string” in str1, and then press :

str1.count("string")

Python returns 2, because str1 contains two
instances of “string”.

7 Type the following statement, which uses the
isprintable() method to determine whether
all the string’s characters are printable, and then
press :

str1.isprintable()

Python returns True, because all the string’s
characters are printable.

Note: Characters such as a line feed or a carriage
return are nonprintable and cause the
isprintable() method to return False.

8 Type the following statement, which checks
whether the string is a valid identifier in Python,
and then press :

str1.isidentifier()

Note: A valid identifier must contain only
alphanumerics — the letters a to z and the
numbers 0 to 9 — and underscores. It cannot
contain spaces. It can start with a letter or an
underscore, but not with a number.

Python returns False, because the string contains
spaces and punctuation.

TIP
How can I return the number of characters in a string?
Use the len() function, which returns the length of the string as a number of characters. For example,
print(len(str1)) makes Python display the number of characters in str1, including spaces.

The len() function works on sequences and collections but returns a TypeError error if you use it on an
object that has no length. For example, if you run len() on an int object, Python returns TypeError:
object of type 'int' has no len().

192

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates a
variable named lm and assigns a string to it,
and then press :

lm = " West Oregon 19411 "

Note: The lm string has three leading spaces,
double spaces between the words, and three
trailing spaces.

3 Type the following statement, which assigns
to lm the string with its leading spaces and
trailing spaces removed, and then press :

lm = lm.strip()

Note: To remove only leading spaces, use the
lstrip() method — for example, lm.lstrip().
To remove only trailing spaces, use the rstrip()
method.

4 Type the following statement, which displays the
contents of lm, and then press :

print(lm)

Python displays the trimmed string:

West Oregon 19411

5 Type the following statement, which uses the
replace() method to replace each instance of
two spaces with a single space and assigns the
results to lm. Press .

lm = lm.replace(" ", " ")

Transform a String

As you saw in the section “Meet Python’s String Methods,” earlier in this chapter, Python provides
a comprehensive suite of methods for manipulating strings. In this section, you use some of

those methods to clean up a string by trimming off leading spaces — extra spaces at the beginning
of the string — and trailing spaces —extra spaces at the end — and replacing double internal
spaces with a single space. You then use the split() method to split the string into a list and the
partition() method to split the string into a three‐element tuple.

Transform and Clean Up a String

193

CHAPTER

9Working with Text

6 Again, use the print() function to display the
contents of lm. Press .

print(lm)

Python displays the string, now with a single space
between words.

West Oregon 19411

7 Type the following statement, which creates a variable
named list1 and assigns to it the list of strings
created by splitting the string in lm at its spaces using
the split() method. Press .

list1 = lm.split(" ")

8 Type the following statement, which uses the print()
method to display list1, and then press :

print(list1)

Python displays the list of three strings:

['West', 'Oregon', '19411']

9 Type the following statement, which creates a
variable named tuple1 and assigns to it the three‐
element tuple resulting from dividing lm using the
partition() method. Press .

tuple1 = lm.partition('Oregon')

10 Type the following print statement to display the
contents of tuple1, and then press :

print(tuple1)

Python displays the three‐element tuple:

('West ', 'Oregon', ' 19411')

Note: The tuple appears in parentheses rather than brackets. Note also that the tuple’s first string includes a
trailing space and the third string includes a leading space.

TIP
How do I pad a string with zeros to make it a specific length?
Use the zfill() method, which fills the beginning of the string with zeros so that it contains the specified
number of characters altogether. For example, if the variable named a5 contains the string 628 but you need
an 8‐digit number, you could use a5.zfill(8) to produce the string 00000628. Note that the zfill()
method is working with strings that appear to contain integer data, not with integers themselves.

194

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates
a variable named txt1 and assigns a string
to it, and then press :

txt1 = "Cantilever production
statistics Q3"

3 Type the following statement, which creates a
variable named first3 and assigns to it the
first three characters of txt1. Press .

first3 = txt1[0:3]

4 Type the following statement, which uses the
print() function to display first3, and
then press :

print(first3)

Python displays Can, the first three characters
in txt1.

5 Type the following statement, which creates a
variable named last2 and assigns to it the last
two characters of txt1. Press .

last2 = txt1[-2:]

Return Part of a String via Slicing

Often, you will want to return part of a string rather than a whole string. For example, you may
want to get the first three characters, the last ten characters, or a specific part in the middle.

Python uses the term slice to mean chopping up a string like this; you can also slice other objects,
such as lists, tuples, and sets. When slicing, you specify the start point and the end point for the
substring you are returning. You can also specify a step argument — for example, to return every
other character or every third character.

Return Part of a String via Slicing

195

CHAPTER

9Working with Text

6 Type the following statement, which uses the
print() function to display last2, and then press

:

print(last2)

Python displays Q3, the last two characters in txt1.

7 Type the following statement, which creates
a variable named middle10 and assigns to it
10 characters from the mid part of txt1.
Press .

middle10 = txt1[22:32]

8 Type the following statement, which uses the
print() function to display middle10, and then
press :

print(middle10)

Python displays statistics, the characters in
positions 22 to 32 in txt1.

9 Type the following statement, which creates a variable
named m10odd and assigns to it every other character
from middle10. Press .

m10odd = middle10[::2]

10 Type the following statement, which uses the print()
function to display m10odd, and then press :

print(m10odd)

Python displays saitc, every other character from
statistics.

TIPS
How do you use colons when slicing a string?
Slicing as shown here takes three arguments — start,
end, and step — separated by colons. For example,
txt1[1:5] returns the second through the fifth characters
of txt1; txt1[1:5:2] uses a step value of 2 and so
returns the second and fourth characters of txt1. You can
omit start to use the object’s start, omit end to use the
object’s end, and omit step to use the default step, 1.

What does a negative number mean in
slicing?
A negative number indicates starting from
the end of the string rather than the
beginning. For example, txt1[‐13:]
returns the portion of txt1 from the
13th character, counting back from the
end of the string.

196

Join Strings Using the Concatenation Operator
1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates a variable
named fname and assigns a string to it, and then
press :

fname = "Anita"

3 Type the following statement, which creates a
variable named mi and assigns a string to it, and
then press :

mi = "C"

4 Type the following statement, which creates a variable
named lname and assigns a string to it, and then
press :

lname = "Hernandez"

5 Type the following statement, which creates a variable
named fullname and assigns to it a concatenated string,
and then press :

fullname = fname + " " + mi + ". " + lname

6 Type the following statement, which displays fullname,
and then press :

print(fullname)

Python returns Anita C. Hernandez, the full name
made up of fname, mi, and lname, with spaces and a
period.

Concatenate and Repeat Strings

Python enables you to join two or more strings together to make a single longer string. Computer
languages call this concatenating strings — literally, “chaining them together.” In Python, you

use the concatenation operator, + , to concatenate strings. You can repeat strings using either the
concatenation operator or the repetition operator, *.

The + operator simply appends the second string to first string, so if you concatenate the string
Anita and the string Hernandez, you get the string AnitaHernandez. When concatenating
strings, you will sometimes need to add spaces or punctuation to produce the string you need.

Concatenate and Repeat Strings

197

CHAPTER

9Working with Text

Repeat a String Using the Concatenation
Operator
1 Type the following statement, which creates a

variable named myText and assigns a string to
it, and then press :

myText = "* Draft *"

Note: The myText string uses spaces to increase
readability.

2 Type the following statement, which uses the
concatenation operator to repeat myText three
times, and then press :

myText + myText + myText

Python returns * Draft ** Draft
** Draft *.

Repeat a String Using the Repetition
Operator
1 Type the following statement, which creates

a variable named sChar and assigns a string
to it, and then press :

sChar = "#"

2 Type the following statement, which uses the
repetition operator to repeat sChar 12 times:

sChar * 12

Python returns '############', which you
might use as a display element, such as a
separator.

TIP
How do I concatenate a string and an integer?
You need to cast the integer to a string; the same goes for any other nonstring data type you want to
concatenate with a string. For example, say you have a variable named int1 that contains an integer and a
variable named str1 that contains a string. You could use str(int1) + str1 to concatenate an integer
version of int1 with str1; trying to concatenate the two without casting the integer to a string, such as
int1 + str1, returns a TypeError.

198

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates a
string called text1, and then press :

text1 = "It's raining cats, dogs,
and more cats."

3 Type the following statement, which uses the
find() method to find the word “cats”, and
then press :

text1.find("cats")

Python returns 13, the character position at
which the first instance of “cats” starts in
the string, counting from the beginning and
including spaces.

4 Type the following statement, which uses the
index() method to locate the word “cats”,
and then press :

text1.index("cats")

Python again returns 13, the character position
at which the first instance of “cats” starts.

Note: See the tip for information on the difference
between the find() method and the index()
method.

5 Type the following statement, which uses the
find() method again but adds two optional
arguments, and then press :

text1.find("cats", 20, len(text1))

Search for One String Inside Another String

Chances are that your code will often need to search for one string inside another string. Python
provides four methods for performing searches within strings. You can use the find() method

to search for one string within another, starting from the left end of the string; and the rfind()
method to search starting from the right end. Similarly, you can use the index() method to return
the position of one string within another string, again starting from the left end; or the rindex()
method to return the position starting from the right end.

Search for One String Inside Another String

199

CHAPTER

9Working with Text

Python again returns 34, the character
position of the instance of “cats” nearest the
end of the string.

7 Type the following statement, which uses the
rindex() method to find the instance of
“cat” nearest the end of the string, and then
press :

text1.rindex("cats")

Python once more returns 34.

Python returns 34, the character position at
which the second instance of “cats” starts.

Note: The find(), index(), rfind(), and
rindex() methods all take three arguments. The
first argument, value, is required and gives the
search value. The second, start, is optional and
gives the start position; the default is 0. The
third, end, is optional and gives the end position;
the default is the string’s end.

6 Type the following statement, which uses the
rfind() method to find the word “cats”,
but this time finding the instance nearest the
right end of the string. Press .

text1.rfind("cats")

TIP
What is the difference between find() and index()?
The find() method and the index() method work almost alike, and you can use whichever you prefer;
similarly, rfind() is almost identical to rindex(). But there is one key difference: Whereas find() and
rfind() return ‐1 if they cannot locate the search string, index() and rindex() return an error —
specifically, ValueError: substring not found. When searching, your code should either handle this
error or use find() instead of index() and rfind() instead of rindex().

200

1 In Visual Studio Code, create a new script, and
then save it.

2 In the Editor pane, type the following statement,
which creates the variable lwords and assigns
to it the list of words that should appear in
lowercase. Press .

lwords = {"a", "an", "and", "as",
"at", "but", "by", "for", "how",
"if", "in", "of", "on", "off", "nor",
"or", "so", "the", "to", "up", "via",
"with", "yet"}

Note: The example list of words is not complete.

Check and Change String Capitalization

Python includes various string methods for determining the capitalization of a string of text and
applying your preferred capitalization. For example, you can use the isupper() method to check

whether the string is all capitals and then use the title() method to apply “title case” — the first
letter of each word capitalized, the remaining letters lowercase.

In formal English grammar, however, title case uses all lowercase for articles, some prepositions,
and some conjunctions that are not the title’s first word or last word. In this section, you create a
function that applies such “real” title case to a string.

Check and Change String Capitalization

3 Press again to leave a line blank, and then type
the following statement, which declares the make_
title() function and specifies that it uses the sT
argument. Press again.

def make_title(sT):

4 Type the following statement, which declares the
variable rlist. This variable will hold the list of
results. Press .

rlist = []

5 Type the following statement, which declares the
variable rs. This variable will hold the string that the
make_title function returns to the code that calls
it. Press .

rs = ""

201

CHAPTER

9Working with Text

6 Type the following statement, which begins a for
loop. The loop uses the split method to divide the
value in the sT variable into words and uses the word
variable to iterate through those words. Press .

for word in sT.split()

7 Type the following statement, which uses an if
statement to check whether the value in word is
both not uppercase and not one of the words in
lwords. Press .

if not word.isupper() and word not in
lwords:

8 Type the following statement, which uses the
title() function to apply title case to the string
in the word variable, assigning the result to the
word variable. Press .

word = word.title()

9 Type the following statement, which uses the
append() method to append the string in the
word variable to the list in rlist. Press .

rlist.append(word)

10 Press again, creating a blank line, and then
type the following statement, which checks whether
the first item in rlist is uppercase and, if not,
uses the title() method to apply title case to it.
Press once more.

if not rlist[0].isupper():
rlist[0] = rlist[0].title()

TIP
Why does the make_title() function check whether the word is all uppercase?
As written, this function assumes that any word in all uppercase is an abbreviation or acronym that should
remain in uppercase. So if not word.isupper() verifies that the word is not uppercase before the
function changes the word’s case.

In a fuller implementation, the function might first check whether the entire string was uppercase and, if
so, prompt the user to choose suitable casing.

202

11 Press to reduce the indent, and then
type the following statement, which checks
whether the last item in rlist is uppercase and,
if not, uses the title() method to apply title
case to it. Press .

if not rlist[-1].isupper():
rlist[-1] = rlist[-1].title()

12 Press again, creating a blank line, and
then press to reduce the indent.

13 Type the following for loop, which creates
the variable rs, iterates through each item in
rlist, and adds to it each item, preceded by a
space. Press .

for word in rlist:
rs + = "" + word

14 Press again, creating a blank line, and
then type the following statement, which uses
the strip() method to remove any leading and
trailing spaces from the string in rs, assigning
the result back to rs. Press .

rs = rs.strip()

15 Type the following statement, which returns the
rs string as the output of the make_title
function. Press .

return rs

16 Press again to create another blank line,
and then type the following statement to declare
the main() function. Press .

def main():

Check and Change String Capitalization (continued)

The code you write in this section contains a function called make_title() that iterates through
the words in a string you enter — for example, a paragraph that will be a heading. The function

ignores words in uppercase, assuming them to have been entered that way deliberately. Uppercase
aside, the function ensures that the first word and the last word in the string each have an initial
capital; it compares each other word to a list of words that need to be lowercase and applies an
initial capital or all lowercase, as appropriate.

Check and Change String Capitalization (continued)

203

CHAPTER

9Working with Text

17 Type the following statement, which creates the
variable sT and assigns to it the string that the
user types. Press .

sT = input("Enter the title: ")

18 Type the following statement, which displays the
result of running the make_title function on
the sT string. Press .

print(make_title(sT))

19 Press again, creating a blank line, and
then type the following if statement to verify
that the main() function is being called from
within the script:

if __name__ == "__main__":
 main()

Run the Script
1 Click Run Python File in Terminal ().

The script starts running.

 A The prompt appears.

2 Type the text to which you want to apply title
case, and then press .

 B Include an uppercase word if you want to verify
the casing of abbreviations and acronyms.

 C Put one of the lowercase words last to verify the
casing.

 D The title‐case string appears.

TIP
What is the difference between the casefold() method and the lower() method?
Python’s lower() method is the method you would normally use to create a lowercase version of a string. The
lower() method effectively converts uppercase letters to their lowercase equivalent — for example, converting
A to a, B to b, and Z to z. However, Python provides the casefold() method as well, which lowercases a
wider range of letters than the lower() method does; this can be helpful for matching strings. For example,
German uses the Eszett character, ß, in place of some instances of double‐s. Because ß is a lowercase character,
the lower() method does not change it; however, the casefold() function changes it to ss.

204

To build the text strings you need, you can use Python’s string‐formatting tools. In this case,
“formatting” means getting the text in the string into the appropriate order and presenting its

characters in the way you want — for example, as a number with a certain number of decimal places.

Python provides four different ways to format strings: string interpolation, the .format method,
f‐strings, and template strings. Each has its own strengths and weaknesses, and you may well find
some more useful than others. You should be familiar with all four ways for when you encounter
them in others’ code.

Meet Python’s Tools for Building Strings

Learn Python’s Four Ways of Formatting Strings
Python offers four means of formatting strings. Each uses a different method of indicating where you want
to substitute your variables.

Formatting Method Example
Interpolation operator sayHi = "Hello, %s!" %"Vanessa"
.format method str1 = "{} uses {}.".format("New York", "EST")
f‐strings str4 = f"1 {unit1}"
Template strings from string import Template

t1 = Template("Destination: $place.")

The following subsections discuss these four methods in more detail. The following four main sections
provide examples of working with each method.

Format Strings with the Interpolation Operator
Interpolation means putting one thing into another thing — in this case, inserting one string or other value
into another string.

Python uses the interpolation operator, %, to indicate a placeholder at which you want to place an
interpolated value. You can insert values of different types by using the codes in the following list.

Value Type Interpolation Code
String %s
Single character %c
Integer %i or %d
Float %f
Exponential %e
Hexadecimal %x
Octal %o

205

CHAPTER

9Working with Text

To insert a single value, you mark the spot in the string with the appropriate interpolation code. The
following example specifies interpolating a string where %s appears:

sayHi = "Hello, %s!"

After the string, you enter the interpolation operator, %, followed by the value. The following example
specifies a name as the string value:

sayHi = "Hello, %s!" %"Vanessa"

This statement produces the string "Hello, Vanessa!".

If you have two or more items to interpolate, you put the values in a tuple after the interpolation operator.
The following example interpolates a string and two integers:

myMsg = "%s, you have %i fingers and %d thumbs." %("Sam", 8, 2)

This statement produces the string "Sam, you have 8 fingers and 2 thumbs." Both %i and %d
specify interpolating an integer, so use whichever you prefer.

String interpolation using the interpolation operator is straightforward for a small number of interpolations
but becomes awkward for larger numbers of interpolations.

206

Python’s f‐strings provide a streamlined method of inserting strings from variables, from a
dictionary, or from a class object. Introduced in Python 3.6, f‐strings make your code easier to

read and run faster than code using the interpolation operator or the .format method, so they are
generally your best option for interpolating strings.

Meet Python’s Tools for Building Strings (continued)

Format Strings with the .format Method
The second method of formatting strings uses the .format method of the string object. The .format
method uses a pair of braces, {}, as a placeholder for each item you want to insert in the string. The
following example uses two placeholders:

str1 = "{} uses {}."

After the string, you enter
the .format method,
followed by a tuple
containing the items you
want to insert. Here is an
example:

str1 = "{} uses
{}.".format
("New York", "EST")

This statement creates the
variable str1 and assigns
to it the string "New York
uses EST.".

In this example, Python
inserts the items
in the order in which they
appear in the .format
tuple. This is easy enough,
but you can also use
zero‐based index numbers or
keywords to insert the items
in a different order. The
following example uses
index numbers:

str2 = "{2}
is GMT {0}{1}
hours.".format(" + ",
5, "EST")

207

CHAPTER

9Working with Text

Format Strings with the .format Method (continued)
This statement creates the variable str2 and assigns to it the string "EST is GMT + 5 hours.". Python
inserts the third item, "EST", at the {2} placeholder; the first item, " + ", at the {0} placeholder; and the
second item, 5, at the {1} placeholder.

Similarly, you can use keywords to insert terms in your preferred order. The following example uses keywords:

s1 = "{w1} {u1} is {w2} {u2}.".format(w1=1, w2=2.2, u1="kg", u2="lb")

This statement creates the variable s1 and assigns to it the string "1 kg is 2.2 lb.". Python inserts
each value at the place specified by its keyword: the value 1 at the w1 keyword, the string "kg" at the u1
keyword, and so on.

Format Strings with f‐Strings
The third method of formatting strings is to use formatted string literals, known as f‐strings for short.

To build an f‐string, you use the f prefix and then create the string, including the placeholders needed for
the items you want to insert. The f prefix can be either lowercase or uppercase, but lowercase is more
common.

208

As you saw earlier in this section, f‐strings are the string‐building tool recommended for general
purposes because of their ease of use and their speed of execution. However, if your Python

code gets the user to input strings, use template strings rather than f‐strings for the input. Template
strings provide greater security, preventing a user from entering a carefully crafted formatted string
that accesses variables within your code and exports data from them.

Meet Python’s Tools for Building Strings (continued)

Format Strings with f‐Strings (continued)
Unlike with the .format method, the placeholders in an f‐string cannot be blank. You can populate the
placeholders with variables, with items from a dictionary, or with items from a class.

The following example creates two variables and then includes them in an f‐string:

unit1 = "qt"
unit2 = "oz"
str4 = f"1 {unit1} equals 32 {unit2}."

This statement creates the variable str4 and assigns to it the f‐string 1 qt equals 32 oz., inserting
the contents of the unit1 and unit2 variables at their placeholders.

In the following example, the first statement creates a dictionary called d1 that contains values named u1,
u2, a1, and a2. The second statement then inserts these values in an f‐string.

d1 = {
 "u1": "gal",
 "u2": "oz",
 "a1": 2,
 "a2": 256
 }
str5 = f'{d1["a1"]} {d1["u1"]} equals {d1["a2"]} {d1["u2"]}.'

209

CHAPTER

9Working with Text

Format Strings with Template Strings
The fourth method of formatting strings is to use template strings. Template strings enable you to define
placeholders and then insert strings in them by using a mapping object.

You would normally use template strings when your code gets the user to enter input. Template strings
provide security features that f‐strings, string interpolation, and the .format method do not, preventing
the possibility that the user might enter a formatted string that accesses variables and exports data.

To use a template string, you first import the Template class from the string library. The following
statement shows an example:

from string import Template

You then create an instance of the Template object containing a string that has the format you want the
input to have. You include one or more $ placeholders in the string to indicate where you want to insert
data. For example, the following statement creates a template called t1:

t1 = Template("Destination: $place.")

You then use the substitute method of the Template object to tell Python which variable you want to
substitute for which placeholder.

t1.substitute(place=input("Enter the destination: "))

This statement makes Python prompt the user for the location, which it then substitutes for the placeholder,
giving a string such as "Destination: Alaska".

This statement contains the variable str5 and assigns to it the f‐string 2 gal equals 256 oz.,
inserting the contents of the a1, u1, a2, and u2 items from the d1 dictionary at their placeholders.

210

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates
a variable named myDay, assigns text and the
string interpolation operator %s to it, and then
provides the string to insert. Press .

myDay = "Today is %s." %"Friday"

3 Type the following statement to display the
contents of myDay, and then press :

myDay

Python displays the string 'Today is
Friday.'

4 Type the following statement, which creates a
variable named dte; assigns a string including
three interpolation codes; and provides a tuple
containing the data to interpolate. Press .

dte = "%i %s %d" %(21, "June", 2022)

5 Type the following statement to display the
contents of dte, and then press :

dte

Python displays the string '21 June 2022'.

Build Strings with the Interpolation Operator

Using the interpolation operator, %, is Python’s oldest method of building strings. Although
Python now offers more efficient methods of building strings, the interpolation operator still

works fine and is still widely used, so you are likely to encounter it in other people’s code even if you
decide not to use it in your own code.

This section provides examples of working with the interpolation operator in a terminal window.
See the subsection “Format Strings with the Interpolation Operator” in the previous section, “Meet
Python’s Tools for Building Strings,” for general information about using the interpolation operator.

Build Strings with the Interpolation Operator

211

CHAPTER

9Working with Text

8 Type the following statement, which prompts the
user to enter their name, and then press :

print("Your initial is " +
input("Enter your name: ")
[0] + ".")

Python displays the Enter your name: prompt.

9 Type a name, and then press .

Python displays a message including the first letter
of the name, such as Your initial is W.

6 Type the following statement, which creates
a variable named calc1, assigns a string
including three interpolation codes; and
provides a tuple containing two integers
and a float. Press .

calc1= = "%i/%i = %f" %(10,4,2.5)

7 Type the following statement to display the
contents of calc1, and then press :

calc1

Python displays the string '10/4 =
2.500000.'

TIPS
What is the difference
between the %d
operator and the %i
operator?
There is no real difference.
Both codes are for signed
integer decimals.

To make my code run faster, should I rewrite my code that uses the
interpolation operator?
This is up to you — but it may not be worth the effort. Although f‐strings
provide better performance than the interpolation operator, the improvement is
unlikely to be significant unless your code builds many strings. That said, you
may want to update the code to use f‐strings in the long run because they
make your code easier to write, read, and maintain.

212

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates the
variable loc1 and assigns to it a string containing
two placeholders. Press .

loc1 = "{} is in {}."

3 Type the following statement, which creates the
variable loc2 and assigns to it the result of using
the .format method to insert two strings in
loc1. Press .

loc2 = loc1.format("Utica", "New York
State")

Build Strings with the .format Method

Introduced in Python 2.6, the .format method for building strings is still widely used, so you
are likely to encounter it in other people’s code even if you do not use it yourself. The .format

method uses a pair of braces, {}, as a placeholder for each item to insert in the string; after the
string, the .format keyword is followed by a tuple containing the items to insert.

See the subsection “Format Strings with the .format Method” in the section “Meet Python’s Tools for
Building Strings,” earlier in this chapter, for general information about the .format method.

Build Strings with the .format Method

Note: Inserting items by order is straightforward for
small numbers of items but can become awkward with
many items. To reuse an item, you must enter it again in
the appropriate position in the tuple.

4 Type the following statement, and then press ,
to display the contents of loc2.

loc2

Python displays the string 'Utica is in
New York State.'.

213

CHAPTER

9Working with Text

5 Type the following statement, which creates the
variable m1 and assigns to it a string containing
four placeholders that use zero‐based index
numbers. Press .

m1 = "{2} {1} equals {0} {3}."

6 Type the following statement, which creates the
variable m2 and assigns to it the result of using
the .format method to insert four items in
m1. Press .

m2 = m1.format("1/16", "hammer", 1,
"foot")

7 Type the following statement, and then press ,
to display the contents of m2.

m2

Python displays the resulting string, '1 hammer
equals 1/16 foot.'.

8 Type the following statement, which creates a
variable named wt, assigns a string that includes
two placeholders using keywords, and then uses
the .format method to provide the keywords.
Press .

wt = "{w1} {u1} equals {w2} {u2}.".
format(w1=1, w2=112, u1="cwt", u2="lb")

9 Type the following statement, and then
press , to display the contents of wt.

wt

Python displays the string '1 cwt equals
112 lb.'.

TIP
Is it better to use keywords than index numbers with the .format method?
Both index numbers and keywords work fine, so use whichever you prefer. You can also mix and match
index numbers and keywords in the same tuple if you so wish — for example, print("Hello, {0} and
{n2}!".format("John", n2="Jane")) displays the string Hello, John and Jane!.

214

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates the
variables o1, o2, and o3 and assigns a city name
to each. Press .

o1, o2, o3 = "Albuquerque",
"Bakersfield", "Cleveland"

3 Type the following statement, which uses the
print() function to display a string containing
the three variables inserted by name. Press .

print(f"We have offices in {o1}, {o2},
and {o3}.")

Python displays the string We have offices in
Albuquerque, Bakersfield, and Cleveland..

4 Type the following statement, which creates a dictionary
named a_dict and assigns values named France,
Germany, Spain, and Finland to it. Press .

a_dict = {
 "France": "Toulouse",
 "Germany": "Siegen",
 "Spain": "Valladolid",
 "Finland": "Rovaniemi"
 }

5 Type the following statement, which uses the print()
function to display an f‐string that includes two items from the dictionary, and then press :

print(f'We have associates in {a_dict["Germany"]} and {a_dict["Finland"]}.')

Build Strings with f‐Strings

Python 3.6 introduced formatted string literals, known as f‐strings for short. An f‐string starts with
the letter f, either uppercase or lowercase, followed by the string’s contents inside either single

quotes or double quotes. Inside the string, you include placeholders to indicate where to insert
items; each placeholder contains the name of the appropriate item. You can provide the items via
variables, from a dictionary, or from a class.

See the subsection “Format Strings with f‐Strings” in the section “Meet Python’s Tools for Building
Strings,” earlier in this chapter, for general information about working with f‐strings.

Build Strings with f-Strings

215

CHAPTER

9Working with Text

Python displays the resulting f‐string, We have
associates in Siegen and Rovaniemi..

Note: Chapter 12, “Working with Classes,” shows you
how to create classes and work with them.

6 Type the following statement, which creates a
class named c1 and gives it properties named
quantity, type, returnable, and status.
Press twice to end the class definition.

class c1:
... quantity = 500
... type = "nonsequential"
... returnable = "approval"
... status = "new"

Note: Be sure to indent the quantity, type,
returnable, and status lines by two spaces
beyond the class line.

7 Type the following statement, which creates a
variable named order1 and assigns to it an f‐
string that incorporates two properties from the
c1 class. Press .

order1 = f'The order is for
{c1.quantity} units in {c1.type}
combinations.'

8 Type the following statement, which uses the
print() function to display the contents of
order1, and then press :

print(order1)

TIP
Can I create an f‐string on multiple lines of code?
Yes, you can create an f‐string on multiple lines. You must start each line with an f, as in the following
example:
dy, dt, mth = "Wednesday", 24, "June"
>>> d = (
... f'Today is {dy}. '
... f'The date is {mth} {dt}.'

This produces the f‐string Today is Wednesday. The date is June 24..

216

Launch Python and Import the Template
Class
1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which imports the
Template class from the string library, and
then press :

from string import Template

Note: The word Template requires the capital T.
Using lowercase template returns an ImportError
error.

The Python prompt appears again, but Python
gives no other response indicating that it has
imported the Template class.

3 Type the following statement, which creates
a variable named temp1 and assigns to it an
instance of the Template class containing the
string in the format you want the input to have.
Press .

temp1 = Template('Location: $where')

4 Type the following statement, which uses the
print() function to display the result of using
the substitute() method to prompt the user to
enter the office location. Press .

print(temp1.substitute(where=input
('Type the office location: '))

Build Strings with Template Strings

If you need to build strings that include text that the user inputs, you can use template strings
rather than f‐strings. A template string is a string that contains one or more placeholders into

which you insert strings by using a mapping object. Template strings are more secure than f‐strings,
because the use of placeholders prevents users from entering a formatted string designed to access
variables within your code and export data from them.

See the subsection “Format Strings with Template Strings” in the section “Meet Python’s Tools for
Building Strings,” earlier in this chapter, for general information about template strings.

Build Strings with Template Strings

217

CHAPTER

9Working with Text

Python displays the prompt:

Type the office location:

5 Type the location, and then press .

Python displays the resulting string, such as Location:
Sacramento.

6 Type the following statement, which creates a variable
named temp2 and assigns to it an instance of the
Template class containing the string in the format you
want the input to have. Press .

temp2 = Template('Status: ${dn}denominational')

Note: See the tip for details about including {} in a template
string.

7 Type the following statement, which creates a variable
named s5 and assigns to it the template string resulting
from using the substitute() method to prompt the user
to enter the denomination type. Press .

s5 = temp2.substitute(dn = input('Type
"non"/"extra"/"intra" to specify the
denomination type: '))

Python displays the prompt:

Type "non"/"extra"/"intra" to specify the denomination type:

8 Type non, extra, or intra, and then press .

9 Type the following statement, which uses the print() function to display s5, and then press :

print(s5)

Python displays the string, such as Status: extradenominational.

TIP
Why do template strings sometimes use {} as well as $?
Template strings use the dollar sign, $, to indicate a placeholder in the string. For example, Template('$item
is wet').substitute(item="Water") uses $ as a placeholder marking where to insert item in the string,
returning Water is wet. But when the placeholder is not demarcated by a space or punctuation character,
a template string needs {} to demarcate it. For example, Template('$xshine is hot').substitute
(x="Sun") returns a KeyError error on xshine, because Python cannot pick out x from xshine. In such
cases, you use {} to demarcate the placeholder — for example, Template('${x}shine is hot').
substitute(x="sun") returns Sunshine is hot.

CHAPTER 10

Handling Errors
In this chapter, you learn how to handle errors in Python. First, we quickly
review the different types of errors that occur in computer code and the
ways you can catch the different types. We then focus on using try...
except blocks to handle errors in your Python code. You learn to cause
errors, trap exceptions, and create custom exceptions.

Understanding the Various Types of Errors. 220

Identify Common Python Errors 222

Meet the try... except Block. 224

Cause Errors and Trap Exceptions 226

Raise an Exception Manually 228

Add an else Block or a finally Block 229

Create Nested try... except Blocks. 230

Create Custom Exceptions 232

220

Understanding the Various Types of Errors

In this section, you learn about the different types of errors that can occur in code, what causes
them, and what you can do to eliminate them.

We start with compile‐time errors, errors that occur when Python is unable to create workable
instructions from the commands in a script. Many compile‐time errors are syntax errors, mistakes
in the structure of the code. We then move on to runtime errors, errors that occur after Python has
compiled a script successfully and has moved on to executing it. Runtime errors include semantic
errors and logical errors.

Compile‐Time Errors
Python is generally considered an interpreted language, which is often understood to mean that it is not a
compiled language. But the difference between interpreted computing languages and compiled computing
languages is not clear cut, and Python does perform compilation.

Before running a script, Python compiles it to a form called byte code, interpreting the commands the script
contains and creating from them instructions that the computer can execute. The instructions need to be
specific to the computer’s operating system, such as Windows or macOS, and to the processor type, such as
Intel or Apple Silicon.

A compile‐time error occurs when the script’s commands are incomplete, incorrect, or otherwise will not
work. A compile‐time error occurs before the script runs, so Python does not run the script. You need to fix
the problem in order to make the script run.

Runtime Errors
After compiling the code in the script, Python tells the computer to run the script. At this point, you may
get a runtime error — an error that occurs while the code is running, as opposed to while the code is being
compiled.

A runtime error may manifest itself as an exception that stops the script from running and causes Python to
display an error message. Alternatively, the script may freeze or crash, it may return an unexpected result,
or it may damage data.

Syntax Errors
A syntax error, also called a syntactical error, is an error where the problem lies in the structure of the code
statements. Syntax errors have various causes, including the following:

• Straightforward typos, such as the wrong character, missing punctuation, or an extra space
• Missing required elements of a statement
• Extra, and incorrect, elements of a statement
• Confusion about variables, such as unintentionally creating the new variable firstname when you mean

to reassign the existing variable firstName

221

CHAPTER

10Handling Errors

Python itself or your code editor may be able to identify a syntax
error for you. For example, the illustration shows Python flagging
the cause of a syntax error in the following statement, which
contains an extra comma after the "Bill" item in the list. The
caret (A) points to the problem, and the SyntaxError statement
(B) briefly explains what is wrong.

a = ["Ann", "Bill",, "Chris"]

Semantic Errors
A semantic error is an error in which your code is syntactically correct but does not execute the way you
intend it to. The word semantic means “related to meaning in language or logic” — in other words, the
meaning of the code is wrong.

For example, if a script gets stuck in an infinite loop because the break statement you included never gets
triggered, you have likely committed a semantic error. Similarly, if a while loop never runs because its
condition cannot be met, that might be a semantic error.

Your code editor or IDE will typically not catch semantic errors. Instead, you will normally discover them
while testing and debugging your scripts.

How you discover semantic errors will vary depending on the error’s effects. Continuing the previous
example, you will notice an infinite loop quickly, because the script will not finish and you will need to
break out of the loop. By contrast, a while loop that never runs may be less obvious.

Logical Errors
A logical error occurs when you, the developer, have told the script to take the wrong action. Even though
the script is syntactically correct and semantically correct, what the script does is incorrect. For example, a
logical error might occur if you make a mistake with operator precedence when performing calculations or if
you use integer division where you should use floating‐point division.

222

Table 10‐1 explains common error types in Python.

Python includes a wide variety of built‐in exceptions for handling types of errors that occur
frequently. For example, a SyntaxError error occurs when Python’s parser encounters syntax it

cannot convert into valid code, such as when you omit a comma or include an extra parenthesis. A
TypeError error occurs when the code specifies the wrong type of object for an operation, such as
trying to add an integer and a string. A ValueError error occurs when the code specifies the correct
type of object but an incorrect value, such as trying to return the square root of a negative number.

Identify Common Python Errors

Table 10-1: Common Errors in Python
Exception Occurs When
AssertionError An assert statement fails. An assert statement is a tool used for debugging

code.

AttributeError An attribute assignment or attribute reference is incorrect.

EOFError The input() function reaches the end‐of‐file condition.

FloatingPointError An error occurs in a floating‐point calculation.

GeneratorExit Code calls the close() method of a generator.

ImportError Importing the specified module fails.

IndexError The index number of a sequence is out of range.

KeyError The specified key is not in the dictionary.

KeyboardInterrupt The user gave a keyboard interrupt by pressing + or .

MemoryError An operation runs out of memory.

ModuleNotFoundError Python cannot find the specified module.

NameError The specified variable is not found.

NotImplementedError An abstract method requires a derived class to override the method; or a
developer uses this error as a placeholder to show a real implementation is still
needed.

OSError An operating system–related error occurs.

OverflowError An arithmetic operation returns an error too large to represent.

ReferenceError A weak reference proxy accesses an attribute of an item that has been garbage
collected.

RuntimeError A runtime error occurs that does not fall into any other category.

223

CHAPTER

10Handling Errors

Exception Occurs When
StopIteration The next() function finds no further items in the iterator to return.

SyntaxError The parser encounters a syntax error.

IndentationError The indentation level of a statement is incorrect — for example, some
indentation is missing.

TabError The indentation consists of a mixture of tabs and spaces instead of only tabs or
only spaces.

SystemError An internal error occurs in the Python interpreter.

SystemExit The sys.exit() method runs.

TypeError An object is of the wrong type for the specified operation.

UnboundLocalError A function or method refers to a local variable that has no value.

UnicodeError Encoding or decoding Unicode characters causes an error.

UnicodeEncodeError Encoding Unicode characters causes an error.

UnicodeDecodeError Decoding Unicode characters causes an error.

UnicodeTranslateError A Unicode‐related error occurs during translation.

ValueError An argument passed to a function or method has the correct type but an
incorrect value.

ZeroDivisionError Division or modulo by zero is attempted.

224

Python uses a type of object called an exception to handle errors. Python includes many built‐in
exceptions, which are all derived from the same base class of exception. For example, using the

wrong name may cause a NameException exception, whereas supplying the wrong kind of value
may cause a ValueException exception.

When an error occurs, Python raises or throws an exception. You can catch or trap an exception so
that you can determine what has gone wrong and do something about it.

Meet the try... except Block

Python’s tool for handling exceptions is the try... except block, which looks like the
following pseudocode. Italics indicate placeholders, and the sections in brackets are optional.

try:
 statements1
[except error:
 statements2]
except:
 statements3
[else:
 statements4]
[finally:
 statements5]

Here is how the try... except block works:

• try:. This keyword starts the try block.
• statements1. This block contains one or more statements that may cause an exception. The try

block is said to wrap these statements.
• except error:. The except keyword starts an except block for the specified error. For example,
except NameError: starts an except block that controls what happens when a NameError error
occurs.

• statements2. This block contains one or more statements to run when the specified error
occurs.

• except:. The except keyword without a specific error starts an except block for any error.
• statements3. This block contains one or more statements to run when any error occurs.
• else:. The else keyword starts a block specifying what to do if no error has occurred.
• statements4. This block contains one or more statements to run if no error has occurred.
• finally:. This keyword starts a block specifying what to do after the rest of the try...
except block has completed, whether an error has occurred or not.

• statements5. This block contains one or more statements to run after execution reaches the final-
ly keyword.

The following subsections contain brief examples of try... except blocks.

225

CHAPTER

10Handling Errors

Trap Any Exception
If you just want to trap any exception that Python
raises, you can use a plain except statement, as in
the following example:

try:
 x = 5/0
except:
 print("An error occurred.")

Trap One or More Particular Exceptions
A generic error message offers little help, so you will
often do better to trap one or more specific exceptions
that are likely to occur, as in the following example:

try:
 x = 5/0
except(NameError):
 print("A name is missing.")
except(ZeroDivisionError):
 print("A divide-by-zero error
occurred.")
except:
 print("An error occurred.")

This example contains three except blocks:

• except(NameError):. This block catches
NameError, the type of error that occurs when
your code specifies an item that does not exist.

• except(ZeroDivisionError):. This block
catches ZeroDivisionError, the error that oc-
curs when your code tries to divide by zero. As the
code stands, the x = 5/0 statement triggers a
ZeroDivisionError error.

• except:. This block catches any other errors.

The unqualified except block must be the last
except statement in the try... except block.
You cannot use except with a specific error after an
unqualified except block. Doing so causes the error
SyntaxError: default 'except:' must be
last.

Add an else Block
Python supports adding an else block to a try...
except block. Here is an example:

try:
 x = 5/0
except:

 print("An error occurred.")
else:
 print("No error occurred.")

An else block can be useful, but many try...
except blocks do not need one.

Add a finally Block
You can include a finally block in your try...
except blocks to specify an action that Python
should always perform, whether or not an exception
has occurred. Here is an example:

try:
 x = 5/0
except:
 print("An error occurred.")
finally:
 print("The try block has finished.")

226

Cause Errors and Create a Generic Exception
Trap
1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates the
variable x and assigns to it the result of 5 divided
by 0. Press .

x = 5/0

An error occurs.

 B Python displays the exception for the error:

ZeroDivisionError: division by zero

3 Type the following statement, which assigns to x
the value of variable y, and then press .

x = y

Cause Errors and Trap Exceptions

In this section, you cause errors in your code deliberately and observe the exceptions that Python
throws as a result. You then handle the exceptions by using try... except blocks. The first

try... except block you create is generic, returning the same error message for every exception it
catches. After that, you create a more sophisticated try... except block that displays specific error
messages for the exceptions you raised earlier, plus a generic error message for any other exception.

Cause Errors and Trap Exceptions

An error occurs, because y does not yet exist.

 C Python displays the exception for the error:

NameError: name 'y' is not defined

4 Type the following try... except block, which
uses a single unspecified exception. Press
at the end of each line, and press again at
the end.

try:
 x = 5/0
except:
 "An error occurred."

 D Python returns 'An error occurred.' because
the try block catches the error.

227

CHAPTER

10Handling Errors

3 Type the same try... except block, but this time include
x = y to produce the NameError exception. Press at
the end of each line.

try:
 x = y
except(ZeroDivisionError):
 "A divide-by-zero error occurred."
except(NameError):
 "A name is missing."
except:
 "An error occurred."

4 Press to end the block.

 F Python returns the message 'A name is missing.',
because the except(NameError) catches the error.

Trap Specific Errors
1 In the same terminal window, type the following try...

except block, which includes specific messages for the
ZeroDivisionError exception and the NameError exception
you raised earlier. Press at the end of each line.

try:
 x = 5/0
except(ZeroDivisionError):
 "A divide-by-zero error occurred."
except(NameError):
 "A name is missing."
except:
 "An error occurred."

2 Press to end the block.

 E Python returns the message 'A divide‐by‐zero error
occurred.', because except(Zero
DivisionError) catches the error.

TIPS
How many except statements can I include in a
try... except block?
You can have pretty much as many except statements as
you need, as long as only the last of them is the except
statement with no arguments. Each of the earlier except
statements must have an argument, such as
except(NameError) or Except(ZeroDivisionError).

Can I use a try block without an
except block?
No. Each try block must be part of a
try... except block that includes at least
one except block. However, you can enter
pass as the sole statement in the except
block to have the block exist but do nothing.

228

Raise an Exception Outside of a try... except
Block
1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which uses the raise
keyword to raise a ValueError error with a custom
message. Press .

raise ValueError("This value is not valid.")

 B Python returns the following:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: This value is not valid.

Raise an Exception Manually

In the previous section, “Cause Errors and Trap Exceptions,” you caused the ZeroDivisionError
and NameError errors deliberately by entering statements guaranteed not to work. This approach

is straightforward for some errors, but you might need to get creative to produce other errors. So
Python offers an alternative: You can raise specific exceptions manually to test your code.

To raise an exception, you use the raise command and specify the type of exception — for
example, raise Exception or raise RuntimeError. You can also specify the text to display to
the user when the exception or error is raised.

Raise an Exception Manually

Raise an Exception Inside of a try... except Block
1 Still in the same terminal window and Python session, type

the following try block, which contains a statement that
raises a TypeError. Press at the end of each line.

try:
 raise TypeError

2 Type the following except block, which catches the
TypeError exception. Press at the end of each line,
and then press again to end the block.

except TypeError:
 print("A TypeError exception has
occurred.")

 C Python displays the resulting message:

A TypeError exception has occurred.

229

CHAPTER

10

1 Open a terminal window and launch
Python.

2 Type the following try block, which
creates the variable n and assigns
51 to it; creates the variable d and
assigns the user’s input divisor, cast
to an integer; and creates the variable
msg and assigns a message to it.

try:

 n = 51

 d = int(input("Enter the
integer divisor: "))

 msg = str(n) + " divided
by " + str(d) + " equals " +
str(n/d)

3 Type the following except block to
handle a potential ZeroDivisionError
exception:

except ZeroDivisionError:

 msg = "You cannot divide
by zero."

4 Type the following finally block, which
displays the contents of msg:

finally:

 print(msg)

5 Press again to end the block.

6 Type an integer at the prompt.

 B The result appears.

You can add an else block to a try... except block to execute statements when no exception
has occurred. You can also add a finally block containing statements that you want to execute

when the try... except block has finished running, whether or not any exception arises. This
section shows a finally block that displays information, but the block can be useful for performing
cleanup operations, such as closing files.

Add an else Block or a finally Block

Add an else Block or a finally Block

230

1 Open Visual Studio Code and create a new Python script.

2 Type the following statement, which creates a variable
called adrFile and assigns to it the file addresses.
csv. Press .

adrFile = "addresses.csv"

3 Type the following statement, which creates a variable named
addresses and assigns to it an empty list. Press .

adrs = []

4 Type the following try block, which uses the open()
function to open addressFile in Read Mode. Press .

try:
 f = open("adrFile", "r")

Create Nested try... except Blocks

Python enables you to nest try... except blocks inside other try... except blocks. Nesting
blocks enables you to perform more complex error handling.

If an exception is raised in the outer try... except block, the outer block handles the exception.
If the inner try... except block raises an exception, the inner block handles the exception; if it
fails to do so — for example, because it has no unqualified except statement — the outer block
takes over responsibility for handling the exception.

Create Nested try... except Blocks

5 At the same level of indentation, type the nested try block,
which uses two for loops to iterate through the lines in f,
split the addresses at the commas, and assign the resulting
fields to the adrs list. Press at the end of each line.

try:
 for line in f.readlines():
 currAdr=[]
 for field in line.strip('\n').
split(','):
 currAdr.append(field)
 adrs.append(currAdr)

6 Indented to the level of the inner try block, type the inner
except block, which uses the print() function to display
an error message. Press at the end of each line.

except:
 print("An error occurred in the inner
try... except block.")

231

CHAPTER

10Handling Errors

9 Press to remove the indent once more,
and then type the following else block, which
closes f and displays the addresses. Press at
the end of each line.

else:
 f.close()
 print(adrs)

10 Click Run Python File in Terminal ().

The Terminal pane appears.

A FileNotFoundError occurs, because
addresses.csv does not exist.

The except FileNotFoundError: block
catches the exception.

 A The error message appears.

11 Create a file named addresses.csv containing
address information in the folder Python is using.
Put each address on one line, with commas
separating the fields.

7 Press twice to remove the indent, and
then type the following except block, which runs
if the FileNotFoundError occurs. Press at
the end of each line.

except FileNotFoundError:
 print(f"The file '{adrFile}' was
not found.")

8 Press to remove the indent again, and
then type the following unqualified except block,
pressing at the end of each line.

except:
 print("An error occurred in the
outer try... except block.")

12 Click Run Python File in Terminal ().

 B The address information appears.

TIP
Can I have multiple levels of nested try... except blocks?
Yes, Python enables you to nest try... except blocks multiple layers deep. But your code is likely to
become confusing, especially to others.

232

1 Open Visual Studio Code and create a new Python
script.

2 Type the following class header, which creates
a class named InvalidTitle based on the
Exception object.

class InvalidTitle(Exception):

3 Type the pass keyword as the only statement for
the class, allowing the code to run without
taking any action. Press twice, creating a
blank line.

pass

4 Press to delete the indent, and then
type the start of a try block. Press .

try:

Create Custom Exceptions

As you have seen earlier in this chapter, Python includes a wide range of built‐in exceptions. But
Python also lets you create your own custom exceptions, which enables you to track exactly what

is going wrong in your code.

To create custom exceptions, you create a class based on Python’s base class of exceptions. You can then
use a raise statement to raise instances of the exception, assigning a custom error message to make
clear the problem to the user. See Chapter 12, “Working with Classes,” for more information on classes.

Create Custom Exceptions

5 Type the following statement, which creates a
variable named title and assigns to it the
result of the input() function prompting
the user to enter the title. Press .

title = input("Type the title: ")

6 Type the following if block, which uses the
isnumeric() method to check whether
title is entirely numeric and, if so, raises an
InvalidTitle instance with a custom error
message. Press at the end of each line.

if title.isnumeric():
 raise InvalidTitle("The title is
entirely numeric.")

233

CHAPTER

10Handling Errors

9 Press twice to remove the indentation, and
then type the following except statement, which casts
an InvalidTitle exception to IT and prints that
object:

except InvalidTitle as IT:
 print(IT)

10 Press once to remove the indent, and then
type the following if block, which displays title
if no exception has been raised:

else:
 print(title)

11 Click Run Python File in Terminal ().

The Terminal pane appears.

7 Press to remove one step of indentation, and
then type the following two elif blocks, which use the
len() function to check the length of title and raise
InvalidTitle instances if it is too short or too long:

elif len(title) < 5:
 raise InvalidTitle("The title is too
short.")
elif len(title) > 50:
 raise InvalidTitle("The title is too
long.")

8 Press once, and then type the following two
elif blocks, which raise InvalidTitle instances for
all uppercase and all lowercase:

elif title.isupper():
 raise InvalidTitle("The title is all
uppercase.")
elif title.islower():
 raise InvalidTitle("The title is all
lowercase.")

12 When prompted, type a title.

 A If the title provokes an exception, the
relevant message appears.

TIP
How should I test the custom exceptions further?
Click Run Python File in Terminal () again, and then type a title designed to raise one of the errors. For
example, type a title that is all numbers, all uppercase, or all lowercase. Alternatively, type a title that has
fewer than 4 characters or more than 50 characters.

CHAPTER 11

Working with
Lists and
Dictionaries
Python provides lists and dictionaries for storing data efficiently in variables.
A list is a collection that can store multiple items of the same type or of
different types and provides access to its items via an index. A dictionary
is similar to a list but more powerful, allowing you to create collections of
information that you access through named elements called keys.

Understanding Lists and Their Use 236

Create a List . 238

Meet Python’s List Methods. 239

Add Items to a List. 240

Remove Items from a List 242

Locate Items and Access Data in a List 244

Sort the Items in a List. 246

Understanding Dictionaries and Their Use 248

Create a Dictionary and Return Values. 250

Meet Python’s Dictionary Methods 251

Create a Dictionary from an Existing Iterable 252

Add Key/Value Pairs to a Dictionary. 254

Remove Key/Value Pairs from a Dictionary 256

Return Keys and Values from a Dictionary 258

236

Understanding Lists and Their Use

In Python, a list is an object that enables you to store multiple items within a single variable. The
items can be of the same type or of different types. The list contains an index that enables you to

set or retrieve the individual items. Technically, a list is a mutable sequence, so you can change the
order of its items, add and remove items, sort the items, and so on.

A List Is Ordered and Indexed
In Python, a list is an ordered and indexed collection:

• Ordered. The items in a list appear in the order you set. You can change the order by adding items,
removing items, or reversing the order.

• Indexed. The list items are indexed using zero‐based numbering, so the first list item is item 0, the sec-
ond item is item 1, and so on. You use the index numbers to access the list items.

List Items Are Mutable
The items in a list are mutable, so you can change a list after creating it. For example, you can add items to
a list, remove items from it, or reverse its order.

Lists Can Contain Duplicate Values
A list can contain duplicate values, as there is no constraint requiring each value to be unique.

You can use the count() method to count the number of items in a list that have a particular value.

Understanding How Lists Compare to Tuples and Sets
Table 11‐1 summarizes the three key attributes of lists, tuples, and sets in Python.

Table 11-1: Attributes of Lists, Tuples, and Sets
Collection Mutable Ordered Duplicates Allowed
List Yes Yes Yes

Set Yes No No

Tuple No Yes Yes

237

CHAPTER

11Working with Lists and Dictionaries

Understanding How Lists Compare to Sets
In Python, both a list and a set can contain various types of data, which gives you great flexibility at the
risk of occasionally running into the wrong data type for your needs. Beyond that, however, lists differ
significantly from sets.

First, a list is ordered, while a set is unordered. Second, a list can contain duplicates, whereas a set cannot
contain duplicates. Third, and more technically, Python sets use hashing to store their values, which makes
lookups in sets fast and efficient but means the order of a set’s items may vary.

Understanding How Lists Compare to Tuples
The key difference between a list and a tuple is that a list is mutable whereas a tuple is immutable. Both
lists and tuples are ordered and can contain duplicate items. Both lists and tuples are sequential, which
enables you to iterate through the items they contain.

Tuples’ immutability means that they are more memory efficient than lists and require less processing time.
When your code contains data that will not need to be changed, you may be able to improve performance by
using tuples rather than lists.

Understanding How Python Lists Compare to Arrays in Other Programming Languages
Python lists are similar to arrays in other programming languages, but lists offer greater flexibility. There are
two main differences between lists and arrays.

First, when you create an array, you specify its data type, such as float; the array can contain only items
that have that data type. By contrast, a list in Python can contain items of different data types, as needed.

Second, when you create an array, you specify the number of items it contains. Python allocates memory to
store each potential item, but you do not need to populate each item immediately, or indeed ever. By
contrast, a list’s size is dynamic, increasing as items are added, but each item must contain data, even if
the data type is None.

238

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates a
variable named list1 and assigns five integers
to it, and then press :

list1 = [1, 2, 3, 4, 5]

3 Type the following statement, which uses the
print() function to display the contents of
list1, and then press :

print(list1)

Python displays [1, 2, 3, 4, 5]. The
brackets indicate that the variable’s contents are
a list.

Create a List

To create a list, you declare a variable; enter the assignment operator, =; and then enter the list
items, separated by commas, within square brackets. For example, the statement list1 = [1,

2, 3] declares a variable named list1 and assigns to it three integers — 1, 2, and 3.

In this section, you create three lists in a terminal window. The first list contains integers, the
second list contains strings, and the third list contains four different data types.

Create a List

4 Type the following statement, which creates a
variable named list2 and assigns two strings
to it, and then press :

list2 = ["Evie", "Frank"]

5 Type the following statement, which creates a
variable named list3 and assigns several kinds
of data to it. Press .

list3 = [11.5, "cats", True, 0]

6 Type the following statement to display the
contents of list2. Press .

print(list2)

Python displays ['Evie', 'Frank'].

7 Type the following statement to display the
contents of list3. Press .

print(list3)

Python displays [11.5, 'cats',
True, 0].

239

CHAPTER

11
Python provides 11 methods for working with lists. Three of these methods — append(),

extend(), and insert() — enable you to add items to the list. Conversely, three other
methods — clear(), pop(), and remove() — enable you to remove one or all methods from the
list. The other five methods enable you to sort the list, return an element by its position in the list,
return the number of items that match specific criteria, and create a copy of the list.

Meet Python’s List Methods

Table 11‐2 explains Python’s methods for working with lists.

The following list provides examples of using these methods. You will use the methods more
extensively during the first half of this chapter.

• Create a list named list4 and a list named list5:
list4 = ["Brian", "Charlene", "Dan"]
list5 = ["Eva", "Finn"]

• Insert an item at the first index position in the list list4:
list4.insert(0, "Abigail")

• Extend the list list4 by adding the elements from list5:
list4.extend(list5)

• Add the item Gloria to the end of the list list4:
list4.append("Gloria")

• Sort the list list4 alphabetically:
list4.sort()

• Remove the second item from the list list4:
list4.pop(1)

• Remove all the items from the list list4:
list4.clear()

Table 11-2: Methods for Working with Lists
Method Use This Method To
append() Add an element to the end of the list.
clear() Remove all the elements from the list.
copy() Create a copy of the list.
count() Count the number of list elements that match the specified value.
extend() Extend the list by adding the elements from another list or other iterable.
index() Return the index number of the first list element that matches the specified value.
insert() Insert an element in the list at the specified index position.
pop() Remove the list element at the specified index position.
remove() Remove the first list element that matches the specified value.
reverse() Reverse the order of the whole list.

sort() Sort the list in ascending order, descending order, or ordered by the function specified.

240

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates
the variable n1 and assigns a list of two
strings to it. Press .

n1 = ["Sam", "George"]

3 Type the following print() statement, and
then press , to display the contents of
n1:

print(n1)

Add Items to a List

Python’s lists are mutable, so you can change a list after creating it. Often, you will want to add
items to the list, as explained here, or remove items from it, as explained in the following section,

“Remove Items from a List.” You can use the append() method to add a single element to the end of
a list, use the insert() method to insert an item at a specific index position in the list, or use the
extend() method to extend the list by adding items from another list or from another iterable element.

Add Items to a List

Python displays ['Sam', 'George'].

4 Type the following statement, which creates
the variable n2 and assigns a list of two
other strings to it. Press .

n2 = ["Antonia", "Brett"]

5 Type the following print() statement, and
then press , to display the contents of
n2:

print(n2)

Python displays ['Antonia',
'Brett'].

6 Type the following statement, which uses
the insert() method to insert a string at
position 1 — second — in n1. Press .

n1.insert(1, "Helen")

241

CHAPTER

11Working with Lists and Dictionaries

10 Type the following statement, which uses the
append() method to add a string to the end
of n1, and then press :

n1.append("Sia")

11 Press twice to enter the print(n1)
statement yet again, and then press .

print(n1)

Python displays ['Sam', 'Helen',
'George', 'Antonia', 'Brett',
'Sia'].

7 Press four times, making Python enter the
print(n1) statement again, and then press

.

print(n1)

Python displays ['Sam', 'Helen',
'George'].

8 Type the following statement, which uses
the extend() method to add n2 to the end
of n1, and then press :

n1.extend(n2)

9 Press twice to enter the print(n1)
statement once more, and then press :

print(n1)

Python displays ['Sam', 'Helen',
'George', 'Antonia', 'Brett'].

TIP
How do I extend a list with items from an iterable other than a list?
Use the extend() method and specify the iterable as the argument. For example, say you type list0 =
[1, 3] and press to create a list, then type tuple0 = (11, 17) and press to create a
tuple. You can use list0.extend(tuple0) to extend list0 with the items from tuple0. Typing
print(list0) returns [1, 3, 11, 17]. Similarly, you can type set0 = {7, 9, 13} and press
to create a set, and then type list0.extend(set0) to add the set to list0. Python adds the tuple’s
items in the order you created them, but the order of the set’s items varies.

242

1 In Visual Studio Code, create a new script, and then save it.

2 Type the following statement, which creates a variable
named dx and assigns to it a list of integers. Press .

dx = [1, 3, 4, 4, 4, 5, 7, 4, 8, 4, 11]

3 Type the following statement, which uses the print()
function to display a string giving the number of instances
of 4 in the list. Press .

print("The list contains " + str(dx.
count(4)) + " instances of 4.")

4 Type the following statement, which uses the index()
method to return the position of the first 4 in the dx list
and the print() function to display a string announcing
its removal. Press .

print("Removing the 4 at index position " +
str(dx.index(4)) + ".")

5 Type the following statement, which uses the pop()
method of the dx list to remove the first 4 by specifying
its index position. Press .

dx.pop(dx.index(4))

6 Type the following statement, which starts a while loop
that runs while the count() method returns more than
one 4 in the dx list. Press .

while dx.count(4) > 1:

7 Copy the step 4 statement and paste it onto the line after
the while line, accepting the indent that Visual Studio
Code automatically applies.

print("The list contains " + str(dx.
count(4)) + " instances of 4.")

Remove Items from a List

Python provides three methods for removing items from a list. When you need to remove a single
item by specifying its index position, use the pop() method. When you need to remove the first

item that matches the value you specify, use the remove() method; you may then need to check for
other instances of the item in the list and remove them too if necessary. When you need to remove
all the items from the list, use the clear() method.

Remove Items from a List

243

CHAPTER

11Working with Lists and Dictionaries

11 Press to remove the indent, ending the
while block, and then type the following statement
to display the contents of dx. Press .

print(dx)

12 Type the following statement, which uses the clear()
method to remove the contents of dx. Press .

dx.clear()

13 Type the following statement to display the contents
of dx — nothing.

print(dx)

14 Click Run Python File in Terminal ().

The Terminal pane appears.

 A The print() statements display the output as the
while loop whittles down the instances of 4 until
only one remains.

8 Type the following statement, which creates a variable
called msg and assigns to it a string announcing the
removal of the 4 at the index position it specifies.
Press .

msg = "Removing the 4 at index position
" + str(dx.index(4)) + "."

9 Type the following statement, which uses the
remove() method to remove the first instance of 4
from dx. Press .

dx.remove(4)

10 Type the following statement, which uses the print()
function to display msg. Press .

print(msg)

TIP
Is there an easy way to deduplicate a list?
Yes. You can deduplicate — remove duplicate values from — a list by creating a set from the list. For example,
you could create a list containing duplicate values by typing myList = [1, 1, 2, 2, 3, 3] and pressing

. You could then type mySet = set(myList) and press to create a set called mySet containing
{1, 2, 3}. If you want to end up with a list rather than a set, convert the set to a list — for example, type
myList = list(mySet) and press to get a list called myList containing [1, 2, 3].

244

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which
creates a variable named scores and
assigns to it a list containing several
integers. Press .

scores = [20, 15, 40, 48, 15, 8]

3 Type the following statement, which
uses the len() function to return the
number of items in the scores list.
Press .

print(len(scores))

Locate Items and Access Data in a List

Often, you will need to determine whether a list contains a particular item and, if it does, where
that item is. Python provides the count() method and the index() method to take care of

this need. You use the count() method to return an integer value giving the number of elements
in the list that match a specified value. If this number is greater than 0, you can use the index()
method to return the index number of the first item in the list that matches your specified value.

Locate Items and Access Data in a List

Python displays 6, the number of items.

4 Type the following statement, which uses the
count() method to determine the number
of instances of 15 in scores, and then
press :

scores.count(15)

Python returns 2, because the scores list
contains two instances of 15.

5 Type the following statement, which uses
the index() method to return the index
position of the first instance of 15 in the list.
Press .

scores.index(15)

245

CHAPTER

11Working with Lists and Dictionaries

7 Type the following statement, which uses the
index() method to return the index position of
the first instance of 36 in the list. Press .

scores.index(36)

 B Python returns an error: ValueError: 36 is
not in list.

Python returns 1, indicating that the first instance
of 15 is at index position 1 in the list — in other
words, it is the second item.

6 Type the following statement, which uses the
count() method to determine the number of
instances of 36 in scores, and then press :

scores.count(36)

Python displays 0, because the scores list
contains no instances of 36.

TIP
How can I determine the number of unique values in a list?
Create a set containing the contents of the list, and then use the len() function to return the number of items
in the set. For example, if you create the scores list as explained in the main text, you can type a statement
such as my_set = set(scores) and press to create a set name my_set containing the unique values
from scores. You can then type print(len(my_set)) to display the number of items in my_set.

246

Sort Using the sort() Method and the
reverse() Method
1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates a
variable named k7 and assigns a list of three
fruits to it. Press .

k7 = ["tomato", "avocado", "okra"]

3 Type the following statement, which sorts the
k7 list into ascending order, and then press

:

k7.sort()

4 Type the following statement, which displays
the contents of k7, and then press :

print(k7)

Python displays ['avocado', 'okra',
'tomato'].

5 Type the following statement, which use the
reverse argument to sort the k7 list in
descending order, and then press :

k7.sort(reverse = True)

6 Press twice to repeat the
print(k7)statement, and then press :

print(k7)

Python displays ['tomato', 'okra',
'avocado'].

Sort the Items in a List

Python provides two methods for sorting the items in a list. The reverse() method simply
reverses the current sort order of the list, so if you have a list named names1 that contains

["Alex", "Blake", "Cody"), names1.reverse() returns ["Cody", "Blake", "Alex"].
The sort() method is more widely useful, enabling you to sort a list in ascending order, in
descending order, or in the order given by a function you specify.

Sort the Items in a List

247

CHAPTER

11Working with Lists and Dictionaries

7 Type the following statement, which uses the
reverse() method to reverse the list’s order, and
then press :

k7.reverse()

8 Press twice to repeat the print(k7)
statement again, and then press .

print(k7)

Python displays ['avocado', 'okra',
'tomato'] again.

Sort Using a Function That Provides
Sort Criteria
1 Type the following function, which implements a

crude sort by the last character of the input. Press
 at the end of each line, and then again to

end the function and create a blank line.

def sort_by_last(n):
 return n[-1]

Note: Indent the second line by four spaces.

2 Type the following statement, which creates a
variable named animals and assigns a list of
three animals to it. Press .

animals = ["cat", "dog", "snake"]

3 Type the following statement, which uses the
sort() method to sort the animals list by the
sort_by_last function. Press .

animals.sort(key=sort_by_last)

4 Type a print() statement to display the
contents of animals, and then press :

print(animals)

Python displays ['snake', 'dog',
'cat'], the terms sorted by their last letters.

TIP
Can the sort() method sort items of different types?
The sort() method can sort different types of numeric items successfully. For example, say you type x15 =
[0, ‐1, False, True, 1.2] and press to create a list named x15, you can then type x15.
sort() to sort the list, even though it contains three types of values: int, bool, and float. Sorting the
list in ascending order returns [‐1, 0, False, True, 1], because Boolean False has the value 0 and
Boolean True has the value 1. However, if you add a string to the list, the sort() method returns a
TypeError error, because Python cannot compare the string with the numeric values.

248

In Python, a dictionary is an object that enables you to store collections of data. The items in the
dictionary consist of key/value pairs, in which a key enables you to access the corresponding value —

similar in concept to a conventional dictionary, in which you look up a term to find its meaning.

Technically, a dictionary is an ordered, mutable sequence, so you can add items, remove specific
items, or simply delete the entire contents of the dictionary.

Understanding Dictionaries and Their Use

Understanding What Python Dictionaries Are
In Python, a dictionary is an ordered, mutable collection that cannot have duplicates:

• Ordered. The items in a dictionary have a specific order, which Python maintains.
• Mutable. A dictionary is mutable, so you can change its contents. For example, you can add items to the

dictionary or remove items from it.
• No duplicates. Each key in the dictionary must be unique so that you can identify each key unambigu-

ously. However, the values assigned to the keys can contain duplicates.

Understanding the Layout of a Python Dictionary
To create a dictionary, you enter its key/value pairs within braces, {}. Usually, you assign the entire
dictionary to a variable so that you can refer to it easily. For example, the following statement creates a
variable named dog0 and assigns to it a dictionary consisting of a single key/value pair, the key being
name and the value being Spot:

dog0 = {"name": "Spot"}

You can create a dictionary on a single line of code, as
in the following example, which shows a single logical
line wrapped to multiple physical lines by the
constraints of the book.

dog1 = {"name": "Minnie", "breed":
"Chihuahua", "weight": 5, "height": 6,
"age": 6}

249

CHAPTER

11Working with Lists and Dictionaries

Normally, however, it is more convenient to break the dictionary over multiple lines of code, using the kind
of layout shown in the following example:

dog2 = {
 "name": "Max",
 "breed": "Newfoundland",
 "weight": 130,
 "height": 30,
 "age": 4
 }

Here, each key — name, breed, and
so on — appears on a separate line
followed by a colon and its value,
making the code easier to read
quickly.

You Access Dictionary Items by Key
To access an item in a dictionary, you specify the item’s key. For example, to access the value for the breed
key in the dog2 dictionary, you specify dog2["breed"].

Dictionaries Are Ordered in Python 3.7 Onward
Python 3.7 changed dictionaries from unordered collections to ordered collections. If you are using Python
3.6 or an earlier version, your code’s dictionaries will be unordered — that is, the items in a dictionary will
be in an order, but that order will not be fixed.

As long as you access your dictionary items by key, it makes little difference whether the dictionary items
are ordered or unordered. But if you access your dictionary items by index position — for example, by
creating a list of the dictionary’s keys and using that to determine a key’s position — you should be aware
of the difference, because in Python 3.6 or earlier the items’ index positions are likely to change.

250

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates
a variable named dog3 and assigns to it a
dictionary containing several canine attributes.
Press at the end of each line.

dog3 = {
 "name": "Belle",
 "breed": "Rottweiler",
 "weight": 125,
 "height": 26,
 "age": 8
 }

3 Type the following statement, which uses the
print() function to display the entire dog3
dictionary. Press .

print(dog3)

Python displays the dictionary’s keys and values
on a single logical line, wrapped here:

{'name': 'Belle', 'breed':
'Rottweiler', 'weight': 125,
'height': 26, 'age': 8}

4 Type the following statement, which uses the
print() function to display the breed key
from the dog3 dictionary. Press .

print(dog3["breed"])

Python displays Rottweiler.

Create a Dictionary and Return Values

When you need to store data in a container that enables you to look up elements of the
data quickly and easily, create a dictionary and assign it to a variable. You enter the entire

dictionary within braces, {}, using a colon to connect each key to its value and a comma to separate
each key/value pair from the next pair.

You can then either display the entire dictionary — for example, to verify its contents and
completeness — or return individual values by specifying their keys.

Create a Dictionary and Return Values

251

CHAPTER

11
Python provides 11 methods for working with dictionaries. Five of these methods — fromkeys(),

get(), items(), keys(), and values() — enable you to retrieve information from a
dictionary. On the other side of the coin, three methods — pop(), popitem(), and clear() —
enable you to remove one or more entries from the dictionary. One method, update(), lets you
insert key/value pairs. One method, setdefault(), does double duty, returning information if it is
there and adding it if it is not. Finally, the copy() method enables you to copy an entire dictionary.

Meet Python’s Dictionary Methods

Table 11‐3 explains Python’s methods for working with dictionaries.

The following list provides quick examples of using these methods. You will use the methods more
extensively during the remainder of this chapter:

• Return the keys from the dog3 dictionary:
>>> dog3.keys
dict_keys(['name', 'breed', 'weight', 'height', 'age'])

• Insert a key/value pair, with the key id_chip, in the dog3 dictionary:
>>> dog3.update({"id_chip": "yes"})

• Return the value of the key coat, if it exists, and assign the given value if the key does not exist. In the
first instance, the key does not exist, so Python creates it and assigns the value provided. In the second
instance, the key exists, so Python returns the current value.
>>> dog3.setdefault("coat", "short")
'short'
>>> dog3.setdefault("coat", "long")
'short'

Table 11-3: Methods for Working with Dictionaries
Method Use This Method To
clear() Remove all the key/value pairs from the dictionary.
copy() Create a copy of the entire dictionary.
fromkeys() Return a dictionary containing the specified keys and their values from this dictionary.
get() Return the value of the specified key.
items() Return a list containing a tuple for each key/value pair in the dictionary.
keys() Return a list of the dictionary’s keys, without their values.
pop() Remove the items whose key you have specified.
popitem() Remove the last key/value pair inserted in the dictionary.
setdefault() Return the value of the specified key, if it exists; if it does not exist, insert the key and

assign it the specified value.
update() Insert the specified key/value pairs in the dictionary.

values() Return a list of all the dictionary’s values.

252

1 Open a terminal window and launch
Python.

 A The Python prompt appears.

2 Type the following statement, which
creates a variable named pet_factor and
assigns to it a list of factors to consider
when choosing a pet. Press .

pet_factor = ["space",
"character", "cost",
"interactivity"]

3 Type the following statement,
which creates a variable named
considerations and assigns to it a
dictionary whose keys are derived by
using the fromkeys() method on the
pet_factor list. Press .

considerations = dict.
fromkeys(pet_factor)

4 Type the following statement, which
uses the print() function to display
the contents of considerations.
Press .

print(considerations)

Python displays {'space': None,
'character': None, 'cost':
None, 'interactivity':
None}.

Note: Each key contains the value None
because the fromkeys() method in
step 3 did not assign a value to the keys.

Create a Dictionary from an Existing Iterable

Python’s fromkeys() method enables you to create a dictionary whose keys come from an existing
iterable, such as a list, a set, or another dictionary. This way of creating a dictionary is convenient

when you have an iterable that contains the data required for the keys in a new dictionary you want to
create. The fromkeys() method lets you either assign the same value to each of the key/value pairs
or not assign a value, leaving the values blank until you populate them otherwise.

Create a Dictionary from an Existing Iterable

253

CHAPTER

11Working with Lists and Dictionaries

5 Type the following statement, which creates a
variable named pet_pros and assigns to it a list
of benefits of having a pet. Press .

pet_pros = ["companionship",
"affection", "exercise", "memory",
"schedule"]

6 Type the following statement, which creates a
variable called cat and assigns to it a dictionary
whose keys are derived by using the fromkeys()
method on the pet_pros list. The statement
assigns a default value of True to each key.
Press .

cat = dict.fromkeys(pet_pros, True)

7 Type the following print() statement to display
the contents of cat, and then press :

print(cat)

Python displays {'companionship': True,
'affection': True, 'exercise':
True, 'memory': True, 'schedule':
True}.

You can now change the values of the keys,
as needed.

TIP
How do I use the copy() method with a dictionary?
Create a variable, and then use the copy() method to assign a copy of the dictionary to it. For example, if
the variable myD contains a dictionary, you can use a statement such as newD = myD.copy() to create a
new variable and copy the dictionary to it. The copy contains copies of the references from the original
dictionary. Changes you make to the copy do not affect the original dictionary.

You can also use the assignment operator to copy a dictionary — for example, newD = myD. This approach
creates a new reference to the original dictionary. Changes you make to the new dictionary, such as clearing
its contents, affect the original dictionary.

254

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates a variable
named dog4 and assigns to it a dictionary containing
a single key/value pair. Press .

dog4 = {"name": "Rex"}

3 Type the following statement, which uses the
update() method to add one key/value pair to
dog4, and then press :

dog4.update({"breed": "Newfoundland"})

4 Type the following print() statement, and then
press :

print(dog4)

Python displays {'name': 'Rex', 'breed':
'Newfoundland'}.

5 Type the following update()statement, which adds
two more key/value pairs, and then press :

dog4.update({"age": 5, "color": "black"})

6 Press twice to enter the print() statement again,
and then press :

print(dog4)

Python displays {'name': 'Rex', 'breed':
'Newfoundland' , 'age': 5, 'color':
'black'}}.

Add a Key/Value Pair to a Dictionary

When you need to add one or more key/value pairs to a dictionary, use the update() method.
You can either add the key/value pairs by providing their information directly or add them from

an iterable object — for example, from another dictionary. The update() method places the new
key/value pairs at the end of the dictionary.

You can also add a key/value pair to a dictionary by using the setdefault() method. If the key/
value pair already exists, this method returns the current value. If the key/value pair does not exist,
this method creates the pair and assigns the value you provide.

Add Key/Value Pairs to a Dictionary

7 Type the following statement, which
creates a variable named stats and
assigns it a dictionary containing two
key/value pairs. Press .

stats = {"height": 28,
"weight": 146}

255

CHAPTER

11Working with Lists and Dictionaries

TIP
What happens if I use the update() method for a key that exists?
If the key already exists, Python updates it with the new value you supplied.

11 Type the following statement, which uses the
setdefault() method to return the value of
the temperament key, if it exists, and to create
the key/value pair if it does not. Press .

dog4.setdefault("temperament",
"amiable")

Python returns 'amiable', which tells you that
the temperament key’s value is amiable.

12 Type the following print() statement, which
displays the temperament key’s value, and then
press :

print(dog4["temperament"])

Python displays amiable.

8 Type the following statement, which uses the
update() method to insert the key/value pairs
from stats into dog4. Press .

dog4.update(stats)

9 Press thrice to enter the print()
statement again, and then press :

print(dog4)

Python displays {'name': 'Rex',
'breed': 'Newfoundland', 'age':
5, 'color': 'black', 'height':
28, 'weight': 146}.

10 Type the following statement, which uses the
setdefault() method to return the value
of the breed key, if it exists, and to create the
key/value pair if it does not. Press .

dog4.setdefault("breed")

Python returns 'Newfoundland', because the
breed key does exist.

256

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement, which creates
a variable named ocelot and assigns to
it a dictionary containing eight key/value
pairs. Press .

ocelot = {
... "Kingdom": "Animalia",
... "Phylum": "Chordata",
... "Class": "Mammalia",
... "Order": "Carnivora",
... "Suborder": "Feliformia",
... "Family": "Felidae",
... "Subfamily": "Felinae",
... "Genus": "Leopardus"
... }

3 Type the following statement, which uses the
popitem() method to remove the last
key/value pair. Press .

ocelot.popitem()

Python displays ('Genus', 'Leopardus')
to indicate that it has removed the Genus key,
whose value was Leopardus.

Note: In Python versions 3.6 and earlier, the
popitem() method removes a random key/value
pair from the dictionary rather than the last pair.

4 Type the following statement, which uses the
popitem() method again but this time assigns the
resulting tuple to a variable named y. Press .

y = ocelot.popitem()

Remove Key/Value Pairs from a Dictionary

Python provides three methods that enable you to remove key/value pairs from a dictionary. First,
you can use the pop() method to remove an item by specifying its key. Second, you can use the

popitem() method to remove the last key/value pair that was added to the dictionary; because
Python places the newest key at the end of the dictionary, this method removes the last key and
its value. Finally, you can use the clear() method to remove all keys and their values from the
dictionary, leaving the dictionary empty.

Remove Key/Value Pairs from a Dictionary

257

CHAPTER

11Working with Lists and Dictionaries

5 Type the following print() statement to
display the contents of y. Press .

print(y)

Python displays ('Subfamily',
'Felinae').

6 Type the following statement, which uses the
pop() method to remove the Class key, and
then press :

ocelot.pop("Class")

Python displays 'Mammalia' to indicate
the value that was assigned to the key it has
removed.

7 Type the following print() statement to
display the contents of the ocelot dictionary
as they now stand. Press .

print(ocelot)

Python displays {'Kingdom': 'Animalia',
'Phylum': 'Chordata', 'Order':
'Carnivora', 'Suborder':
'Feliformia', 'Family': 'Felidae'}.

8 Type the following statement, which uses the
clear() method to remove the dictionary’s
contents, and then press .

ocelot.clear()

9 Press twice to enter the print() statement
again, and then press :

print(ocelot)

Python displays {}, indicating that the dictionary
is empty.

TIP
What happens if I use the pop() method on a key that does not exist?
If the key does not exist, the pop() method causes Python to throw a KeyError error. The error includes
the name of the missing key so you can easily identify the problem.

258

1 Open a terminal window and launch Python.

 A The Python prompt appears.

2 Type the following statement to create a variable
called dog5 and assign to it a dictionary
containing a canine’s key attributes. Press .

dog5 = {
... "name": "Hondje",
... "breed": "Boerboel",
... "height": 24,
... "weight": 70
... }

3 Type the following statement, which uses the
get() method to return the value of the
breed key. Press .

dog5.get("breed")

Python returns 'Boerboel'.

4 Type the following statement, which uses the
keys() method and displays all the keys in the
dog5 dictionary, and then press :

print(dog5.keys())

Python displays dict_keys(['name',
'breed', 'height', 'weight']).

Note: The keys() method returns a list containing
the keys. Similarly, the values() method returns a
list containing the values.

Return Keys and Values from a Dictionary

You can return a value from a dictionary by entering the corresponding key’s name in brackets after
the dictionary’s name — for example, dog1["breed"] returns the value of the breed key in the

dictionary called dog1. Alternatively, you can use the get() method to return the value for a specific key.

You can use the keys() method to return all of a dictionary’s keys, use the values() method to
return all its values, or use the items() method to return both the keys and the values. These three
methods return views that update automatically when the dictionary’s contents change.

Return Keys and Values from a Dictionary

259

CHAPTER

11Working with Lists and Dictionaries

5 Type the following statement, which uses the
values() method and displays all the values in
the dog5 dictionary, and then press :

print(dog5.values())

Python displays dict_values(['Hondje',
'Boerboel', 24, 70]).

6 Type the following statement, which creates a
variable named q and assigns to it the result
of using the items() method on the dog5
dictionary. Press .

q = dog5.items()

Note: The items() method returns a list of tuples,
each containing a key/value pair.

TIP
What does it mean that keys(), values(), and items() return view objects?
Using the keys() method, the values() method, or the items() method returns a view object, an
object that gives you a view of the current data inside the dictionary. For example, say you execute the
statement dog6 = {"name": "Rover"}, creating a dictionary named dog6 with one key/value pair. If
you then execute the statement n = dog6.items(), n contains dict_items([('name',
'Rover')]). But if you then execute the statement dog6["name"] = "Spot", changing the value of
the name key in the dictionary, n now contains dict_items([('name', 'Spot')]), because the view
gives you the current data from the dictionary.

7 Type the following statement, which uses the
print() function to display the contents of q.
Press .

print(q)

Python displays dict_items([('name',
'Hondje'), ('breed', 'Boerboel'),
('height', 24), ('weight', 70)]).

CHAPTER 12

Working with
Classes
In this chapter, you work with Python’s classes, which enable you to create
custom objects in your scripts. You learn to create a class, create objects
based on that class, and work with those objects. Because of the nature of
classes, this chapter is set up as an extended example using Visual Studio
Code rather than terminal windows, and we recommend you work through
the chapter from start to end.

Understanding Classes and Instances 262

Create a Class and Instantiate Instances. 264

Understanding Class and Instance Attributes 266

Set Class and Instance Attributes 268

Grasp Class, Instance, and Static Methods 270

Create an Instance Method 274

Create a Class Method 275

Create a Static Method 276

Review the Class’s Code 277

262

Understanding Classes and Instances

In Python, a class is a template for creating objects of a particular type — a “class” of object,
in computer terms. When you need to create standardized objects of the same type, you can

declare a class for that type of object. You can then create what are called instances of the class —
individual objects based on the class.

In this chapter, you create a class called BranchOffice to use for creating objects that store data
on the individual branch offices of a notional company. After creating the class, you can create a
separate instance for each branch office.

When Should You Create a Class?
Consider creating a class when you need to create consistent objects of a type that Python itself does not
provide.

Classes are especially useful for encapsulation, using a single object both to store data and to provide
functionality for manipulating that data. Creating a class makes encapsulation easy, as you can define
attributes to store the data and construct methods to provide the necessary functionality.

How Do You Create a Class?
You create a class by using a class header statement. The class
header begins with the class keyword. Next, it provides the
name you want to give the class. Like other headers, the class
header ends with a colon, after which the statements that
belong to the class definition are indented by four spaces.

For example, the following class header creates the class called
BranchOffice. The second statement, pass, is a placeholder indicating where code for the class will
appear. As with other Python structures, the code for the class is indented by four spaces beyond the
class header.

class BranchOffice:
 pass

263

CHAPTER

12Working with Classes

How Are Python Class Names Usually Capitalized?

Python convention is to use a capital letter at the start of each word in the class — for example,
BranchOffice. This capitalization style is sometimes called Pascal Case, named after the programming
language Pascal, which in turn was named after the French mathematician and philosopher Blaise Pascal.

How Do You Create an Instance of
a Class?
After creating a class, you can create an
instance of the class, an object based on
the class. Creating an instance is
sometimes referred to as instantiating
the instance.

To create an instance, you create a
variable and assign an object based on
the class. The following statement creates
a variable named a and assigns to it an
instance of the BranchOffice class:

a = BranchOffice()

The illustration shows the relationship
between a class and instances of that
class.

264

Create a Class and Instantiate Instances

1 Open Visual Studio Code and create a new
Python script.

2 Type the following statement, which creates the
BranchOffice class, and then press :

class BranchOffice:

Visual Studio Code automatically indents the
next line.

3 Type the following pass statement, which enables
Python to run the class code without raising an
error. Press twice.

pass

4 Type the following statement, which creates a
variable named a and assigns to it an instance of
the BranchOffice class. Press .

a = BranchOffice()

5 Type the following statement, which creates
a variable named b and assigns to it another
instance of the BranchOffice class.
Press .

b = BranchOffice()

6 Type the following statement, which uses the
type function to retrieve the type of a and
the print() function to display the result.
Press .

print(type(a))

In this section, you create the BranchOffice class, giving it the absolute minimum of code
required for Python to run it without raising errors. You then create two instances of the

BranchOffice class, verify their class type using the type function, and compare the two
instances to prove that they are not the same object.

Because this chapter presents an extended example, we recommend you work in Visual Studio Code
rather than in a terminal window. Using Visual Studio Code enables you to return easily to the code
you have written so far and make changes to it without extensive retyping.

Create a Class and Instantiate Instances

265

CHAPTER

12Working with Classes

The Terminal pane appears.

 A Python displays the object types of a and b. Each
object is of the following type:

<class '__main__.BranchOffice'>

 B Python displays False as the result of the
a == b comparison. This indicates that a and b
are not the same object, even though they are of
the same object type. Similarly, if you have two
quarters in your pocket, they are equal in that
they have the same value, but they are separate
coins, not the same coin.

7 Type the following statement, which uses the
type function to retrieve the type of b and the
print() function to display the result.
Press .

print(type(b))

8 Type the following statement, which uses the
print() statement to display the result of
comparing a and b. Press .

print(a == b)

9 Click Run Python File in Terminal ().

TIP
What does comparing the a object and the b object prove?
Checking whether a == b — in other words, whether a is equal to b — enables you to see that these two
objects created from the same class are not identical. If you compare a to itself — for example,
print(a == a) — Python returns True; likewise if you compare b to itself.

266

Once you have created a class, Python enables you to set two types of attributes related
to it: class attributes and instance attributes. In this section, you learn the difference

between class attributes and instance attributes and how to create both types. You also learn
about the __init__() method of the class object, a special method that runs automatically when
you create a new instance from a class, and the self keyword, which Python uses to refer in code
to an object itself.

Understanding Class and Instance Attributes

Given that a class is a template that defines an object type and that an instance of a class is an object that
uses that class as its template, you can quickly grasp the difference between class attributes and instance
attributes.

• Class attribute. A class attribute applies to the class as a whole, so every instance of the class has the
same information for the attribute. Any changes you make to the attribute apply to the entire class. You
can access a class attribute either through the class itself or through any instance of the class.

• Instance attribute. An instance attribute applies only to a particular instance of a class, not to the class
as a whole. Any changes you make to an instance attribute are confined to that instance. You can access
the attribute only through that instance.

Understanding How You Set Class Attributes
To set a class attribute, you place a statement in the class definition block. After the class header and
indented by four spaces as usual, you create a variable for the attribute and then assign the appropriate
data to it.

For example, the following statements show the BranchOffice class header followed by a statement that
creates the variable company and assigns to it a company name.

class BranchOffice:
 company = "CheeseWheat Associates"

267

CHAPTER

12Working with Classes

Understanding How You Set
Instance Attributes
To set an instance attribute, you
use the __init__() method of
the class object. After the class
header, and indented by four
spaces, place the header for the
__init__() method. The header
consists of the def keyword, the __init__() name, the self parameter, and the name of each instance
attribute you want to set. For example, the following method header provides the names address and
manager:

class BranchOffice:
 def __init__(self, address, manager):

The self parameter refers to the current instance of the class — the instance that is being initialized by
the __init__() method. The word self is the default term for this parameter, and it is usually easiest to
use self. However, you can use a different word instead of self if you prefer. No matter which word you
use, you must supply it as the first parameter of any function you define in the class.

After specifying the names of the instance attributes in the __init__() method header, you can set the
values for these attributes, as in the following example:

class BranchOffice:
 def __init__(self, address, manager):
 self.address = address
 self.manager = manager

268

Set Class and Instance Attributes

1 In Visual Studio Code, open the script you created
earlier.

2 Double‐click the pass statement in line 2 to
select it, and then type over it the following
statement, which creates the variable company
and assigns to it the company name. Press .

company = "CheeseWheat Associates"

Note: When you replace the pass statement, make
sure you maintain the indentation for the company
statement.

3 Type the following statement, which creates the
variable sector and assigns a string to it.
Press .

sector = "food science"

4 Type the following statement, which uses the def
keyword to create the __init__() method for the
class. The statement gives self as the required first
argument and adds five instance attributes: city,
street, state, zip, and manager. Press .

def __init__(self, city, street,
state, zip, manager):

Note: Type two underscores before init and two
after it.

5 Type the following statement, which assigns to
the city attribute of the self object the value
passed by the city argument in the call to
initialize the class. Press .

self.city = city

In this section, you extend the BranchOffice class by setting class attributes and instance
attributes for it. To set the class attributes, you include statements in the class definition block.

To set the instance attributes, you add code for the class’s __init__() method. The method’s name
has two underscores before it and two after it.

The class attributes for the BranchOffice class are company and sector. The instance attributes
for the instances of the BranchOffice class are manager, street, city, state, and zip.

Set Class and Instance Attributes

269

CHAPTER

12Working with Classes

6 Type the following four statements, which
similarly populate the street, state, zip, and
manager attributes of the self object. Press

 at the end of each line.

self.street = street
self.state = state
self.zip = zip
self.manager = manager

7 Click inside the parentheses of the a =
BranchOffice() statement, and then type in
strings for the five instance attributes.

a = BranchOffice("Arcata", "442 Front",
"CA", "95521-1111", "Aurora Smith")

Note: You do not need to provide a value for the
self attribute.

8 Repeat step 7 for the b = BranchOffice()
statement:

b = BranchOffice("Blythe", "6 Lincoln",
"CA", "92225-1234", "Art Kimura")

9 Select the five print() statements, and then
type over them the five following statements,
pressing at the end of each line:

print(a.manager)
print(a.street)
print(a.city)
print(a.state)
print(a.zip)

10 Click Run Python File in Terminal ().

The Terminal pane opens.

 A Python displays the information from the instance
attributes of the a object.

TIPS
Must I assign an initial value to a class
attribute?
Yes, each class attribute must receive an initial
value. But you can assign None as an initial value if
you do not have an actual value to assign.

How do I return a class attribute?
Use the class name, a period, and the attribute
name. For example, print(BranchOffice.
company) displays the company attribute of the
BranchOffice class.

270

A method is a unit of code that performs an action on an object. A method is similar to a function,
but it is bound to a particular object rather than being globally available. Python enables you to

create and use three different types of methods within a class: class methods, instance methods, and
static methods. In this section, you learn how these three types of methods work and how they differ
from each other. You also learn how and when to use each type of method.

Grasp Class, Instance, and Static Methods

A class can contain class methods, instance methods, and static methods. You create any methods needed
when you define the class, including the methods’ code as part of the class definition.

Class Methods
A class method belongs to the class object that declares it. A class method can access only data within the
class itself, not data within any particular instance of the class. A class method can change the data in the
class.

You would create a class method to take action in the class, such as changing the class’s state.

Instance Methods
An instance method belongs to a particular instance created from the class object that declares the method.
An instance method can access data within that instance, but it cannot access data within other instances
created from the same class object. An instance method can also access data within the class itself by using
the self.__class__ attribute.

You would create an instance method to take action within a particular instance of the class, accessing data
from within the class itself if necessary.

Static Methods
A static method is bound to the class that declares it but cannot change the data in the class; it also cannot
access, let alone change, the data in an instance based on the class. A static method is similar to a function
except that it belongs to the class’s namespace and becomes available only when you create the class.

You would create a static method to add functionality that was needed only when the class or an instance
of the class was active and that did not require access to the data of either the class or the instance.

271

CHAPTER

12Working with Classes

Which Type of Method Should You Use in Your Classes?
Generally speaking, instance methods are the most widely useful of the three types of methods bound to
classes, because an instance method can manipulate data either in its own instance or in the class on which
the instance is based. By contrast, a class method can manipulate data only in its own class; and a static
method cannot even access data within its own class, though it can perform other actions freely.

When you create a method inside a class definition, Python makes the method an instance method by
default. You can change the method to a class method or an instance method if necessary.

The following sections show you how to create and call instance methods, class methods, and static
methods.

Create an Instance Method
To create an instance method, you place code inside the class definition. The first line of the instance
method is the method head, which consists of the def keyword, the method name, parentheses containing
the required parameter self and any other parameters, and a colon. For example, the first of the following
statements starts the class definition, the second is a comment, and the third contains the method header
for an instance method called getManagerName:

class BranchOffice():
 # the def __init__ function appears here
 def getManagerName(self):

After the method header, you include the statements for the method, indented by four spaces. Here is an
example:

class BranchOffice():
 # the def __init__ function appears here
 def getManagerName(self):
 mgr = f"{self.city} Office Manager: {self.manager}"
 return mgr

Call an Instance Method
You can call an instance method only from an instance of the class. For example, the first of the following
statements creates a variable named c and assigns to it an instance of our BranchOffice class. The
second statement calls the getManagerName() method and displays the resulting information.

c = BranchOffice("City of Industry", "1810 Elm", "CA", "91748-0019", "Ri Zhang")
print(c.getManagerName())

272

Python provides two different ways of creating class methods and static methods. The first way is
to use the @classmethod decorator for a class method or the @staticmethod decorator for

a static method. The second way is to use the classmethod() method or the staticmethod()
method. Both ways work, and you should know how to use them, because you may encounter them
in code. However, the classmethod() method and staticmethod() method are considered
“un‐Pythonic,” and using the decorators is considered better practice.

Grasp Class, Instance, and Static Methods (continued)

Create a Class Method
To create a class method, you place code inside the class definition, as for an instance method. But before
the method header for the class method, you place the @classmethod decorator. This decorator tells
Python to turn the method into a class method.

For example, the first of the following statements starts the class definition, and the second is a comment,
as before. The third statement supplies the @classmethod decorator. The fourth statement is the method
header for the showClassInfo method. The fifth line is the method’s only statement, setting it to return
a string including self.company, the company attribute of the class object.

class BranchOffice():
 # the def __init__ function appears here
 @classmethod
 def showClassInfo(self):
 return "Company Name: " + self.company

You can also create a class method by using the classmethod() method to return a class method from
an instance method. For example, if you have created an instance method called info() in the
BranchOffice class, you can create a class method of info()like this:

BranchOffice.info = classmethod(BranchOffice.info)

You can then call the info() method through the BranchOffice class like this:

BranchOffice.info()

Call a Class Method
You can call a class method either from the class itself or from an instance of the class.

From the class, use the class name followed by a period and the method name, like this:

print(BranchOffice.showClassInfo())

From an instance of the class, use the instance name followed by a period and the method name. For
example, if you have created an instance called c, you can call the class method like this:

print(c.showClassInfo())

273

CHAPTER

12Working with Classes

Create a Static Method
You create a static method in a similar way to a class method: You place the method’s code inside the class
definition, but you precede it with the @staticmethod decorator, which tells Python to turn the method
into a static method.

For example, the first statement shown in the following code block starts the class definition, the second
contains a comment, and the third provides the @staticmethod decorator. The fourth statement is the
method header for the cm2cf method, which returns the approximate number of cubic feet for the number
of cubic meters specified by the m3 parameter. The fifth line is the method’s only statement, setting it to
return m3 multiplied by 35.3, the number of cubic feet in a cubic meter.

class BranchOffice():
 # the def __init__ function appears here
 @staticmethod
 def cm2cf(m3):
 return m3 * 35.3

As with a class method, you can create a static method by using the staticmethod() method to return a
static method from an instance method. For example, if you have created an instance method called
convert() in the BranchOffice class, you can create a static method of convert() like this:

BranchOffice.convert = staticmethod(BranchOffice.convert)

Call a Static Method
To call a static method, you call it either via the class name and the method name or via the object name
and the method name.

For example, say you have instantiated an object called office1 of the BranchOffice class. The class
includes the static method jp. You can call the static method via the class like this:

BranchOffice.jp()

Or you can call the static method via the object like this:

office1.jp()

274

Create an Instance Method

1 In Visual Studio Code, open the Python script for your class.

2 Click the line after the end of the __init__() method,
press to apply a four‐space indent, and type the following
statement, which declares the getInfo() method and gives
it the required self parameter. Press .

def getInfo(self):

Python automatically indents the next line one step further.

3 Type the following statement, which creates the variable
br and begins assigning to it a group of f‐strings that pull
information from the instance attributes and combine it with
static text. Press at the end of each line.

br = (
 f"{self.city} Office\n\n"

4 Type the following three statements, which add to the group
of f‐strings:

 f"Manager: {self.manager}\n\n"
 f"{self.street}\n"
 f"{self.city}, {self.state} {self.zip}"
)

5 Press to unindent one step, and then type the
following return statement, which returns br:

return br

6 Select the five print() statements, and type the
following print() statement over them:

print(a.getInfo())

7 Click Run Python File in Terminal ().

In this section, you create an instance method called getInfo()in the BranchOffice class. This
instance method pulls information from the instance’s attributes, such as the city attribute and

the manager attribute, so that it can return an f‐string containing information about the branch
office the instance represents.

In an instance method, the first parameter refers to the instance itself. The default term for this
parameter is self; it is generally easiest and clearest to use self, but you can use a different term
instead if you prefer.

Create an Instance Method

The Terminal pane opens.

 A Python displays the branch office information.

275

CHAPTER

12
In this section, you create a class method called showClassInfo() in the BranchOffice class.

This class method returns the class’s company attribute and sector attribute and places them in
an f‐string that it returns to the code that called it.

To create the class method, this section uses the @classmethod decorator rather than the
classmethod() method. The first parameter in the class header refers to the class itself. This
section uses the default term for this parameter, self, but you can use a different term if you like.

Create a Class Method

Create a Class Method

1 In Visual Studio Code, open the Python script for
your class.

2 Click after the sector = "food science" line, and
then press to create a new line.

3 Type the following @classmethod decorator, and then
press :

@classmethod

4 Type the following method header, and then press :

def showClassInfo(self):

Visual Studio Code indents the next line automatically.

5 Type the following two statements, which create
a variable named ci and assign to it the class’s
company attribute and sector attribute plus some
linking text. Press .

ci = self.company + ", a "
ci = ci + self.sector + " trendsetter"

6 Type the following statement, which ends the method
and returns ci. Press .

return ci

7 At the end of the script, edit the print() statement
to the following:

print(BranchOffice.showClassInfo())

8 Click Run Python File in Terminal ().

The Terminal pane opens.

 A The class method displays the class information.

276

Create a Static Method

1 In Visual Studio Code, open the Python script for your class.

2 Click on the blank line following the return br
statement at the end of the getInfo() method, and
then press to indent the line by one step.

3 Type the following @staticmethod decorator, and then
press :

@staticmethod

4 Type the following method header, and then press :

def cm2cf(m3):

Python indents the next line by another step.

5 Type the following return statement, which returns a
string including the m3 value multiplied by 35.3 and
lightly rounded. Press twice.

return str(round(m3 * 35.3, 1)) +
" cubic feet"

6 At the end of the script, change the print()
statement to the following, which prompts the user to
enter the number of cubic meters, converts the resulting
string to a float, passes it to the cm2cf method, and
displays the result.

print(BranchOffice.cm2cf(float(input
("Enter the number of cubic meters: "))))

7 Click Run Python File in Terminal ().

The Terminal pane opens.

8 Type the input number and press .

 A The result appears.

In this section, you create a static method in the BranchOffice class. The method is called
cm2cf() and converts cubic meters to cubic feet. The method takes a single argument, m3, which

gives the number of cubic meters, and returns the corresponding number of cubic feet. Because a
static method accesses neither the class nor any instance of it, it does not use the self parameter.

This section uses the @staticmethod decorator rather than the staticmethod() method to tell
Python to create the static method.

Create a Static Method

277

CHAPTER

12Review the Class’s Code

This section presents the code for the class you have created in this chapter. The class starts
with the class definition (A), followed by statements defining the class attributes company

(B) and sector (C). The @classmethod decorator (D) precedes the showClassInfo() class
method. The __init__() method (E) declares and populates variables for each new instance of the
class. The getInfo() instance method (F) displays information about a particular instance. The @
staticmethod decorator (G) introduces the cm2cf() static method, which converts cubic meters
to cubic feet. The code then instantiates two instances (H) of the class, and the print() statement
(I) displays information.

278

A
a mode, 96
a + mode, 96
abs() function, 166, 168
accessing

contents of imported modules, 45
data in lists, 244–245

adding
comments to code, 42–43
else blocks, 225, 229
finally blocks, 225, 229
items

to lists, 240–241
to tuples, 65

key/value pairs to dictionaries, 254–255
adjusting

order of operations, 113
order of precedence using parentheses, 115
string capitalization, 200–203

aiter() function, 168
algorithms, 4
alias, importing modules/objects under an, 46
all() function, 168
American Standard Code for Information Interchange (ASCII),

183
AND (&) operator, 120, 126
anext() function, 168
any() function, 168
Append and Read Mode, 96, 107
append() method, 239, 240–241
Append Mode, 96
appending data to files, 106–107
applying themes, 22–23
Arch, 15
arithmetic operators, 112–115
arrays, compared to lists, 237
ASCII (American Standard Code for Information Interchange),

183
ascii() function, 168
AssertionError, 222

assigning values to variables, 53
assignment operators, 116–117
Atom, 19
AttributeError, 222
Auto Save feature (Visual Studio Code), 33
auto saving, in Visual Studio Code, 27
AutoComplete list, 35

B
backslash, 83, 185
basename() method, 95
bin() function, 168, 170, 171
binary strings, 171
bitwise operators, 126–127
bool() function, 62–63, 74, 75, 168
Boolean values, 62–63
braces ({}), 206–207, 212–213, 217, 248, 250
break statement, 145, 149, 151, 154, 155
breakpoint() function, 168
build types, 7
built‐in functions, 168–171
byte code, 220
bytearray() function, 168
bytes() function, 168

C
C programming language, 54
callable() function, 168
calling

class methods, 272
instance methods, 271
static methods, 273

capitalization
of classes, 263
of strings, 200–203

capitalize() method, 188
carriage‐return characters, creating multiline strings using,

187
casefold() method, 188, 203
center() method, 188, 189

Index

279

Index

changing
order of operations, 113
order of precedence using parentheses, 115
string capitalization, 200–203

character codes, 183
character sets, 183
chdir() method, 82–83, 92
child directory, 78
chr() function, 75, 168
class attributes

about, 266–267
returning, 269
setting, 268–269

class methods
about, 270
calling, 272
creating, 272, 275

classes and instances
about, 57, 262
class attributes, 266–269
class methods, 270–273
code for classes, 277
creating

class methods, 275
classes, 262, 264–265
instance methods, 274
static methods, 276

instance attributes, 266–267
instance methods, 270–273
instantiating instances,

264–265
setting class and instance attributes,

268–269
static methods, 270–273

classmethod() function, 168, 272, 275
cleaning up strings, 192–193
clear() method, 239, 242–243, 251, 256
close() method, 97, 100–101
closing files manually, 97
cm2cf() method, 276

code editors
about, 16
compared with integrated development environments

(IDEs), 17
entering comments in, 41
examples of, 19
recommended, 19

coding
adding comments to code, 42–43
for classes, 277
commenting out the code, 41
comments, 40–43
creating scripts in Visual Studio Code, 32–33
executing commands in Terminal window, 38
importing modules/objects, 44–49
main() function, 30–31
methods of modules, 48–49
repetitive code, 37
running

code in Visual Studio Code, 34–37
scripts in Terminal window, 39

saving scripts in Visual Studio Code, 32–33
writing code in Visual Studio Code, 34–37

collections, displaying, 73
colon (:), 131, 164
command line, launching scripts via, 31
commenting out the code, 41
comments, 40–43
comparison operators, 118–119
compile() function, 168
compile‐time errors, 220
complex() function, 75, 168
computing platform, 4
concatenating

integers, 197
strings, 196–197

 + operator, 59
configuring Visual Studio Code, 26–27
\ (continuation) character, 40
continue statement, 145, 156–157

280

Index

continuing loops, 145
converting

binary strings to decimal values, 171
data types, 74–75
hexadecimal strings to decimal values, 171
octal strings to decimal values, 171

copy() method, 90, 239, 251, 253
copying files and directories, 88–91
copytree() method, 90
count() method, 188, 190, 239, 244–245
creating

class methods, 272, 275
classes, 262, 264–265
comments using # character, 40
custom exceptions, 232–233
dictionaries

about, 250
from existing iterables, 252–253

directories, 84–87
empty tuples, 65
functions

with no parameters and no returns, 176
with no parameters but returns, 174–175
with optional parameters, 178–179
with parameters and returns, 172
with parameters but no returns, 173
that return multiple values, 177

if statements, 133
if...elif statements, 137
if...elif...else statements, 139
if...else statements, 135
instance methods, 271, 274
instances of classes, 263
lists, 238
for loops, 148–149
multiline strings, 186–187
nested if statements, 141
nested try...except blocks, 230–231
numeric for loops using range() function, 147
scripts

about, 58–59
in Visual Studio Code, 32–33

sets with contents, 67
single‐line strings, 184–185
static methods, 273, 276
strings

about, 182, 204–209
using .format method, 212–213
using f‐strings, 214–215
using interpolation operator, 210–211
using template strings, 216–217

variables, 53
while loops, 152–153

cross‐platform programming, 4

D
data

appending to files, 106–107
writing to files, 102–103

Data section, in files, 79
data types

about, 54–55
converting, 74–75
for default values, 179
exception, 57
instance, 57
mapping, 56
numeric, 54–55
sequence, 55
set, 56

day_of_week() function, 167
%d operator, 211
Debian‐based distributions, 15
decimal values, converting binary, octal, or hexadecimal

strings to, 171
deduplicate, 243
def keyword, 164, 165
default values, data types for, 179
definite iteration, using for loops for, 144
delattr() function, 168
deleting directories, 84–87
development build, 7
development tools, for Python, 16–19
dict data type, 56

281

Index

dict() function, 75, 168
dictionaries

about, 248–249
adding key/value pairs to, 254–255
creating

about, 250
from existing iterables, 252–253
for loops that iterate through, 149

formatting strings with, 209
methods for, 251
removing key/value pairs from, 256–257
returning

keys and values from, 258–259
values, 250

working with, 72–73
dir() function, 47, 168
directories. see files and directories
directories and files

about, 78–79
appending data to files, 106–107
checking file status, 100–101
closing files, 97, 100–101
copying, 88–91
creating

directories, 84–87
files, 98–99

deleting directories, 84–87
file structure, 79
listing, 80–81
loading os module, 80–81
modules for working with, 79
moving, 88–91
navigating directories, 82–83
open() function, 96
opening files

about, 98–99
for reading and writing, 104–105

reading text files, 108–109
renaming, 88–91
splitting file paths, 94–95

system information, 92–93
user information, 92–93
writing data to files, 102–103

directory path, 78
dirname() method, 95
disabling path length limit, 11
displaying

collections, 73
information using print() function, 171

distributions, 4
division (/) operator, 115
divmod() function, 168
domain‐specific programming language, 4
double quotes, 69
downloading

Python on Windows, 8–11
Visual Studio Code, 20–21

duplicate values, 236
dynamic typing, 52

E
elements, 66
else blocks, adding, 225, 229
else statements, in loops,

158–159
encode() method, 188, 189
ending for loops, 149
End‐of‐file marker, in files, 79
endswith() method, 188, 190
engineers, as Python users, 5
entering

comments in code editors, 41
comments in IDEs, 41
comments in Terminal windows, 41

enumerate() function, 168
environment variables, returning

information using, 93
EOFError, 222
= operator, 116
equal to (==) operator, 118

282

Index

error handling
adding

else blocks, 229
finally blocks, 229

causing errors, 226–227
creating

custom exceptions, 232–233
nested try...except blocks, 230–231

error types, 220–221
identifying common errors, 222–223
raising exceptions manually, 228
trapping exceptions, 226–227
try...except block, 224–225

escape character, 83
eval() function, 168
exception data type, 57
exceptions

creating custom, 232–233
raising manually, 228
trapping, 225, 226–227

exec() function, 168
exiting loops early using break statements, 155
expandtabs() method, 189
expanduser() method, 82–83, 92
explicit conversion, 74
extend() method, 239, 240–241
extensions, for Visual Studio Code, 24–25

F
Fedora, 15
file paths, splitting, 94–95
FileExistsError error, 85
files and directories

about, 78–79
appending data to files, 106–107
checking file status, 100–101
closing files, 97, 100–101
copying, 88–91
creating

directories, 84–87
files, 98–99

deleting directories, 84–87
file structure, 79
listing, 80–81
loading os module, 80–81
modules for working with, 79
moving, 88–91
navigating directories, 82–83
open() function, 96
opening files

about, 98–99
for reading and writing,

104–105
reading text files, 108–109
renaming, 88–91
splitting file paths, 94–95
system information, 92–93
user information, 92–93
writing data to files, 102–103

filter() function, 168
finally blocks, adding, 229
find() method, 188, 189, 198–199
float data type, 54
float() function, 75, 168
floating‐point numbers

storing, 54
troubleshooting, 115
working with, 60–61

FloatingPointError, 222
floor division, 112
folder path, 78
folders. see files and directories
for loops

creating, 148–149
ending, 149
how they work, 146–147
using for definite iteration, 144

format() method, 168, 188, 189
.format method

building strings using, 212–213
formatting strings using,

206–207

283

Index

format_map() method, 189
formatting

strings, 204–205
strings using .format method, 206–207
strings using f‐strings, 207–209
strings using template strings, 209

from...import statement, 44
fromkeys() method, 251, 252–253
frozenset() function, 169
f‐strings

about, 204
building strings using, 214–215
formatting strings using, 207–209

function_description, 164
function_name, 164
functions

abs(), 166, 168
aiter(), 168
all(), 168
anext(), 168
any(), 168
ascii(), 168
bin(), 168, 170, 171
bool(), 62–63, 74, 75, 168
breakpoint(), 168
built‐in, 168–171
bytearray(), 168
bytes(), 168
callable(), 168
chr(), 75, 168
classmethod(), 168, 272, 275
compile(), 168
complex(), 75, 168
creating

with no parameters and no return, 176
with no parameters but a return, 174–175
with optional parameters, 178–179
with parameters and returns, 172
with parameters but no returns, 173
that returns multiple values, 177

day_of_week(), 167
delattr(), 168

dict(), 75, 168
dir(), 47, 168
divmod(), 168
enumerate(), 168
eval(), 168
exec(), 168
filter(), 168
float(), 75, 168
frozenset(), 169
getattr(), 169
globals(), 167, 169
hasattr(), 169
hash(), 169
help(), 169
hex(), 75, 169, 170, 171
id(), 122, 123, 169
input(), 58–59, 164, 169, 170
int(), 58–59, 74, 75, 115, 169, 171
isinstance(), 169
issubclass(), 169
iter(), 169
len(), 169, 191
list(), 75, 169, 170
locals(), 169
main(), 30–31
make_title(), 201–202
map(), 169
max(), 169
memoryview(), 169
min(), 169
mkdir(), 84–87
next(), 169
object(), 169
oct(), 75, 169, 170, 171
open(), 79, 96–109, 169, 170
ord(), 75, 170
parameters and returns, 166–167
pow(), 170
print(), 53, 58–59, 150, 154, 164, 167, 170, 171, 277
property(), 170
range(), 147, 170
repr(), 170

284

Index

functions (continued)
reversed(), 170
round(), 170
set(), 67, 75, 170
setattr(), 168, 170
slice(), 170
sorted(), 170, 171
staticmethod(), 170, 276
str(), 68–69, 75, 170
sum(), 170
super(), 170
syntax, 164–165
tuple(), 75, 170
type(), 170
zip(), 170

G
general‐purpose programming language, 4
generating

class methods, 272, 275
classes, 262, 264–265
comments using # character, 40
custom exceptions, 232–233
dictionaries

about, 250
from existing iterables, 252–253

directories, 84–87
empty tuples, 65
functions

with no parameters and no returns, 176
with no parameters but returns, 174–175
with optional parameters, 178–179
with parameters and returns, 172
with parameters but no returns, 173
that return multiple values, 177

if statements, 133
if...elif statements, 137
if...elif...else statements, 139
if...else statements, 135
instance methods, 271, 274

instances of classes, 263
lists, 238
for loops, 148–149
multiline strings, 186–187
nested if statements, 141
nested try...except blocks, 230–231
numeric for loops using range() function, 147
scripts

about, 58–59
in Visual Studio Code, 32–33

sets with contents, 67
single‐line strings, 184–185
static methods, 273, 276
strings

about, 182, 204–209
using .format method, 212–213
using f‐strings, 214–215
using interpolation operator, 210–211
using template strings, 216–217

variables, 53
while loops, 152–153

GeneratorExit, 222
get() method, 251
getattr() function, 169
getcwd() method, 80
getInfo() method, 274, 277
getpass module, 92
Getting Started screen (Visual Studio Code), 23
getuser() method, 92
glob() method, 80
glob (Global) module, 79
globals() function, 167, 169
greater than (>) operator, 118
greater than or equal to (>=) operator, 118

H
hasattr() function, 169
hash() function, 169
Header section, in files, 79
help() function, 169

285

Index

hex() function, 75, 169, 170, 171
hexadecimal strings

converting to decimal values, 171
returning, 171

high‐level programming language, 54
home directory, returning, 92
HOME variable, 93

I
id() function, 122, 123, 169
identity operators, 122–123
IDLE app, 9, 18
if statements

about, 30–31, 130–132
creating, 133
if...elif statement, 136–137
if...elif...else statement, 138–139
if...else statement, 134–135
nested, 140–141

if...elif statement, 130, 136–137
if...elif...else statement, 130, 138–139
if...else statement, 130, 134–135
immutable data, 55
implicit conversion, 74
import statement, 44, 79
import sys command, 81
ImportError, 222
importing

modules, 44–48
objects, 44–48
scripts, 31

in operator, 124
indefinite iteration, using while loops for, 144–145
IndentationError, 223
index() method, 189, 198–199, 239, 244–245
indexed lists, 236
IndexError, 222
infinite loops, 151
infinite while loops, 153
__init__() method, 266–267, 268–269, 277
input() function, 58–59, 164, 169, 170

insert() method, 239
installing

Python
on Linux, 14–15
on Macs, 12–13
on Windows, 8–11

Visual Studio Code
about, 20–21
extensions for, 24–25
on Linux, 21
on macOS, 21

instance attributes
about, 266–267
setting, 268–269

instance data type, 57
instance methods

about, 270
calling, 271
creating, 271, 274

instances. see classes and instances
instantiating instances, 264–265
int data type, 54
int() function, 58–59, 74, 75, 115, 169, 171
integer division, 112
integers

concatenating, 197
storing, 54
working with, 58–59

integrated development environments (IDEs)
about, 9, 17
compared with code editors, 17
entering comments in, 41
examples of, 18
recommended, 19

Interactive Interpreter, importing scripts into, 31
interpolation operator

building strings using, 210–211
formatting strings using, 204–205

interrupting
infinite while loops, 153
loops, 145

286

Index

iOS, 5
iPadOS, 5
is not operator, 122, 123
is operator, 122, 123
isabls() method, 95
isalnum() method, 140, 188, 190
isalpha() method, 140, 188
isascii() method, 140, 188
isdecimal() method, 188
isdigit() method, 188
isfile() method, 82–83
isidentifier() method, 188
isinstance() function, 169
islower() method, 188, 190
isnumeric() method, 140, 188, 190
isprintable() method, 188
isspace() method, 140, 188
issubclass() function, 169
istitle() method, 188
isupper() method, 188, 190, 200–203
items() method, 251, 258–259
iter() function, 169

J
join() method, 189
joining strings using concatenation operator, 196

K
KeyboardInterrupt, 222
KeyError, 222
keys() method, 258–259
key/value pairs

adding to dictionaries, 254–255
removing from dictionaries, 256–257
returning from dictionaries, 258–259

L
LANG variable, 93
launching

scripts via command line, 31
Visual Studio Code, 22–23

leading spaces, 192
len() function, 169, 191
less than (<) operator, 118
less than or equal to (<=) operator, 118
Linux

about, 5
installing

Python, 14–15
Visual Studio Code on, 21

updating Python, 15
versions for, 7

list data type, 55
list() function, 75, 169, 170
listdir() method, 80
lists

about, 236–237
accessing data in, 244–245
adding items to, 240–241
compared to arrays, 237
compared to sets, 237
compared to tuples, 237
creating, 238
creating for loops that use, 148
of files and directories, 80–81
locating items in, 244–245
methods for, 239
of methods/variables in modules/

objects, 47
removing items from, 242–243
sorting items in, 246–247
using for loops with, 146–147
working with, 70–71

ljust() method, 189
loading os (Operating System) module, 80–81
locals() function, 169
logical errors, 221
logical operators, 120–121
LOGNAME variable, 93
loops

for, 146–149
about, 144–145

287

Index

break statements in, 154–155
continue statements in, 156–157
else statements in, 158–159
infinite, 151
nesting, 160–161
while, 150–153

lower() method, 188, 203
low‐level programming language, 54
lstrip() method, 189

M
macOS

about, 5
installing Visual Studio Code on, 21
versions for, 7

Macs
installing Python, 12–13
updating versions on, 13

main() function, 30–31
makedirs() method, 84–87
make_title() function, 201–202
maketrans() method, 189
map() function, 169
mapping data type, 56
mathematicians, as Python users, 5
max() function, 169
members, 66
membership operators, 124–125
MemoryError, 222
memoryview() function, 169
methods

about, 270
append(), 239, 240–241
basename(), 95
capitalize(), 188
casefold(), 188, 203
center(), 188, 189
chdir(), 82–83, 92
for checking/changing case, 188
clear(), 239, 242–243, 251, 256
close(), 97, 100–101
cm2cf(), 276

copy(), 90, 239, 251, 253
copytree(), 90
count(), 188, 190, 239, 244–245
for dictionaries, 251
dictionary, 251
dirname(), 95
encode(), 188, 189
endswith(), 188, 190
expandtabs(), 189
expanduser(), 82–83, 92
extend(), 239, 240–241
find(), 188, 189, 198–199
for finding within strings, 189
format(), 168, 188, 189
.format, 206–207, 212–213
format_map(), 189
fromkeys(), 251, 252–253
get(), 251
getcwd(), 80
getInfo(), 274, 277
getuser(), 92
glob(), 80
index(), 189, 198–199, 239, 244–245
insert(), 239
isabls(), 95
isalnum(), 140, 188, 190
isalpha(), 140, 188
isascii(), 140, 188
isdecimal(), 188
isdigit(), 188
isfile(), 82–83
isidentifier(), 188
islower(), 188, 190
isnumeric(), 140, 188, 190
isprintable(), 188
isspace(), 140, 188
istitle(), 188
isupper(), 188, 190, 200–203
items(), 251, 258–259
join(), 189
keys(), 258–259
for laying out strings, 189

288

Index

methods (continued)
listdir(), 80
listing in modules/objects, 47
for lists, 239
ljust(), 189
lower(), 188, 203
lstrip(), 189
makedirs(), 84–87
maketrans(), 189
of modules, 48–49
move(), 90, 91
partition(), 189, 192
pop(), 239, 242–243, 251, 256
popitem(), 251, 256
read(), 104–105
readable(), 105
reload(), 47
remove(), 88, 239, 242–243
rename(), 88
replace(), 188, 189
for returning information about strings, 188
reverse(), 239, 246–247
rfind(), 189, 198–199
rindex(), 189
rjust(), 189
rmdir(), 86–87, 88
rmtree(), 86
rpartition(), 189
rsplit(), 189
rstrip(), 189
seek(), 104–105
seekable(), 105
setdefault(), 251, 254–255
showClassInfo(), 275
shutil.copy(), 89
shutil.copyfile(), 89
sort(), 239, 246–247
split(), 94–95, 189
splitext(), 94–95
splitlines(), 189
startswith(), 188
string, 188–189

strip(), 189
swapcase(), 188
title(), 188, 200–203
today(), 167
for transforming strings, 189
translate(), 189
update(), 251, 254–255
upper(), 188
values(), 251, 258–259
writable(), 105
write(), 102–103, 104–105
zfill(), 188, 189, 193

min() function, 169
mkdir() function, 84–87
modifying

order of operations, 113
order of precedence using parentheses, 115
string capitalization, 200–203

ModuleNotFoundError, 222
modules

importing
about, 44–48
under an alias, 46
objects from, 45
scripts into, 31

listing methods/variables in, 47
methods of, 48–49
reloading, 47
unimporting, 49
for working with files and directories, 79

modulus, 112
move() method, 90, 91
moving files and directories, 88–91
multiline strings

creating, 186–187
creating informal comments using, 40

mutable dictionary, 248
mutable lists, 236

N
NameError, 222
navigating directories, 82–83

289

Index

nested if statements, 140–141
nested try...except blocks, creating, 230–231
nesting loops, 145, 160–161
new‐line characters, creating multiline strings using, 187
next() function, 169
not equal to (!=) operator, 118
not in operator, 124
NOT (~) operator, 120, 126
NotImplementedError, 222
numeric conditions, while loop using, 150
numeric data types, 54–55

O
object() function, 169
objects

importing
about, 44–48
under an alias, 46
from modules, 45

listing methods/variables in, 47
unimporting, 49

oct() function, 75, 169, 170, 171
octal strings

converting to decimal values, 171
returning, 171

OLDPWD variable, 93
open() function, 79, 96–109, 169, 170
opening

files, 98–99
files for reading and writing,

104–105
operating system

determining, 92
verifying, 81

operations, order of, 113
operators

arithmetic, 112–115
assignment, 116–117
bitwise, 126–127
comparison, 118–119
identity, 122–123

logical, 120–121
membership, 124–125

OR (|) operator, 120, 126
ord() function, 75, 170
order of operations, 113
ordered data, 55
ordered dictionary, 248, 249
ordered lists, 236
os (Operating System) module, 79, 80–81, 88, 90, 93
OSError, 222
OverflowError, 222

P
parameters

about, 164
creating functions

with no returns and no, 176
with no returns but, 173
with optional, 178–179
with returns and, 172
with returns but no, 174–175

function, 166
parent directory, 78
parentheses, changing order of precedence using, 115
Parentheses, Exponentiation, Multiplication, Division,

Addition, and Subtraction (PEMDAS), 112, 113
partition() method, 189, 192
PATH variable, 11
PEMDAS (Parentheses, Exponentiation, Multiplication,

Division, Addition, and Subtraction), 112, 113
 + operator, 116
 + = operator, 116
pop() method, 239, 242–243, 251, 256
popitem() method, 251, 256
pow() function, 170
print() function, 53, 58–59, 150, 154, 164, 167, 170,

171, 277
programming language, 4
property() function, 170
PWD variable, 93
.py file extension, 44

290

Index

PyCharm, 18
Python

about, 4–5
applying themes, 22–23
choosing versions, 6–7
configuring Visual Studio Code, 26–27
development tools for, 16–19
downloading

Visual Studio Code, 20–21
on Windows, 8–11

installing
on Linux, 14–15
on Macs, 12–13
Visual Studio Code, 20–21
Visual Studio Code extensions, 24–25
on Windows, 8–11

launching Visual Studio Code, 22–23
upgrading on Windows, 11

Python Software Foundation (website), 5

Q
quotes

about, 69
creating multiline strings using triple, 186
inside strings, 185

R
r mode, 96
r + mode, 96
range data type, 55
range() function, 147, 170
Read and Write Mode, 96, 108
read() method, 104–105
Read Mode, 96, 108
readable() method, 105
reading

opening files for writing and, 104–105
text files, 108–109

ReferenceError, 222
release candidates, 7
reload() method, 47
reloading modules, 47

remove() method, 88, 239, 242–243
removing

items
from lists, 242–243
from tuples, 65

key/value pairs from dictionaries, 256–257
rename() method, 88
renaming files and directories, 88–91
repeating strings, 196–197
repetition, nesting loops to create complex, 145
repetition operator, 197
repetitive code, 37
replace() method, 188, 189
repr() function, 170
return statement, 164, 165
returning

binary strings, 171
class attributes, 269
hexadecimal strings, 171
home directory, 92
information about strings, 190–191
information using environment variables, 93
keys from dictionaries, 258–259
octal strings, 171
parts of strings via slicing, 194–195
username, 92
values, 250
values from dictionaries, 258–259

returns
about, 164
creating functions

with no parameters and no, 176
with no parameters but, 174–175
with parameters and, 172
with parameters but no, 173

function, 166
reverse() method, 239, 246–247
reversed() function, 170
rfind() method, 189, 198–199
rindex() method, 189
rjust() method, 189
rmdir() method, 86–87, 88

291

Index

rmtree() method, 86
round() function, 170
rpartition() method, 189
rsplit() method, 189
rstrip() method, 189
running

code in Visual Studio Code, 34–37
scripts

about, 58–59
in Terminal window, 39

runtime errors, 220
RuntimeError, 222

S
saving scripts in Visual Studio Code, 32–33
scientists, as Python users, 5
scripts

creating, 58–59
creating in Visual Studio Code, 32–33
importing

about, 31
scripts into other, 31

launching via command line, 31
running

about, 58–59
in Terminal window, 39

saving in Visual Studio Code, 32–33
seek() method, 104–105
seekable() method, 105
self keyword, 266–267
semantic errors, 221
sequence data type, 55
set data type, 56
set() function, 67, 75, 170
setattr() function, 168, 170
setdefault() method, 251, 254–255
sets

compared to lists, 236, 237
working with, 66–67

setting
class attributes, 268–269
instance attributes, 268–269

SHELL variable, 93
showClassInfo() method, 275
shutil (Shell Utility) module, 79, 87, 88, 90, 91
shutil.copy() method, 89
shutil.copyfile() method, 89
signed right shift (>>), 126
single quotes, 69
(single‐line) character, 40, 43
single‐line strings, creating, 184–185
slice() function, 170
slicing, returning parts of strings via,

194–195
sort() method, 239, 246–247
sorted() function, 170, 171
sorting items in lists, 246–247
split() method, 94–95, 189
splitext() method, 94–95
splitlines() method, 189
splitting file paths, 94–95
stable build, 7
startswith() method, 188
statements

about, 164
break, 145, 149, 151, 154, 155
continue, 145, 156–157
else, 158–159
from...import, 44
if...elif, 130, 136–137
if...elif...else, 130, 138–139
if...else, 130, 134–135
import, 44, 79
return, 164, 165

static methods
about, 270
calling, 273
creating, 273, 276

static typing, 52
staticmethod() function, 170, 276
StopIteration, 223
storing

floating‐point numbers, 54
integers, 54

292

Index

str data type, 55
str() function, 68–69, 75, 170
strings

about, 182–183
backslash inside, 185
building

about, 182
for loops that iterate through, 148–149
using .format method, 212–213
using f‐strings, 214–215
using interpolation operator, 210–211
using template strings, 216–217

checking/changing capitalization of, 200–203
cleaning up, 192–193
concatenating, 196–197
formatting

about, 204–205
using .format method, 206–207
using f‐strings, 207–209
using template strings, 209

multiline, 186–187
quotes inside, 185
repeating, 196–197
returning

information about, 190–191
parts of, via slicing, 194–195

searching for strings inside other, 198–199
single‐line, 184–185
strings, 204–209
tools for manipulating, 183
transforming, 192–193
working with, 68–69

strip() method, 189
Sublime Text, 19
sum() function, 170
sunsetting, 6
super() function, 170
SUSE, 15
swapcase() method, 188

syntax errors, 220–221
SyntaxError, 223
sys module, 92
SystemError, 223
SystemExit, 223
systems, getting information about,

92–93

T
TabError, 223
template strings

about, 204
building strings using, 216–217
formatting strings using, 209

Terminal app, 12–13
Terminal window

Ctrl + C in, 153
executing commands in, 38
running scripts in, 39

text
building strings

with .format method, 212–213
with f‐strings, 214–215
with interpolation operator, 210–211
with template strings, 216–217

changing string capitalization, 200–203
checking string capitalization, 200–203
cleaning up strings, 192–193
concatenating strings, 196–197
creating

multiline strings, 186–187
single‐line strings, 184–185

repeating strings, 196–197
returning

information about strings, 190–191
part of strings via slicing, 194–195

searching for strings inside other strings,
198–199

string methods, 188–189
strings, 182–183

293

Index

tools for building strings, 204–209
transforming strings, 192–193

text files, reading, 108–109
themes, applying, 22–23
Thonny, 18
title() method, 188, 200–203
today() method, 167
tools

for building strings, 204–209
for manipulating strings, 183

trailing spaces, 192
transforming strings, 192–193
translate() method, 189
trapping exceptions, 225, 226–227
troubleshooting floating‐point numbers, 115
try...except block, 224–225, 230–231
tuple data type, 55
tuple() function, 75, 170
tuples

compared to lists, 236, 237
empty, 65
working with, 64–65

.txt file extension, 78
type command, 53, 264–265
type() function, 170
TypeError, 223

U
UnboundLocalError, 223
Unicode Transformation Formats (UTF), 183
UnicodeDecodeError, 223
UnicodeEncodeError, 223
UnicodeError, 223
UnicodeTranslateError, 223
unimporting modules/objects, 49
update() method, 251, 254–255
updating

Python on Linux, 15
versions on Macs, 13
Visual Studio Code, 27

upgrading Python on Windows, 11
upper() method, 188
USER variable, 93
username, returning, 92
users, getting information about,

92–93

V
ValueError, 223
values

assigning to variables, 53
returning, 250

values() method, 251, 258–259
van Rossum, Guido, 7
variables

about, 52–53
assigning values to, 53
Boolean values, 62–63
converting data types, 74–75
creating, 53
data types, 54–57, 74–75
dictionaries, 72–73
floating‐point values, 60–61
formatting strings with, 208
integers, 58–59
listing in modules/objects, 47
lists, 70–71
sets, 66–67
strings, 68–69
tuples, 64–65

verifying
file status, 100–101
operating system, 81
string capitalization,

200–203
versions, 81

versions
choosing, 6–7
updating on Macs, 13
verifying, 81

294

Index

Visual Studio Code
about, 19
Auto Save feature, 33
auto saving in, 27
configuring, 26–27
creating scripts in, 32–33
downloading, 20–21
installing

about, 20–21
extensions for, 24–25
on Linux, 21
on macOS, 21

launching, 22–23
running code in, 34–37
saving scripts in, 32–33
updating, 27
writing code in, 34–37

W
w mode, 96
w + mode, 96
web developers, as Python users, 5
websites

Atom, 19
IDLE app, 18
PyCharm, 18
Python Software Foundation, 5
Sublime Text, 19
Thonny, 18
Visual Studio Code, 20

while loops
how they work, 150–151
using for indefinite iteration, 144–145

Windows
about, 5
downloading Python, 8–11
installing Python, 8–11
upgrading Python, 11
versions for, 7

Windows path, 11
Wolfram Mathematics, 4
writable() method, 105
Write and Read Mode, 96
write() method, 102–103, 104–105
Write Mode, 96
writing

code in Visual Studio Code, 34–37
data to files, 102–103
opening files for reading and, 104–105

X
x mode, 96
XOR (^) operator, 126

Z
zero‐based numbering, 71
ZeroDivisionError, 223
zero‐fill left shift (<<), 126
zfill() method, 188, 189, 193
zip() function, 170

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Chapter 1 Getting Ready to Work with Python
	Understanding What Python Is and Does
	Choose the Right Version of Python
	Install Python on Windows
	Install Python on the Mac
	Install Python on Linux If Necessary
	Learn About Development Tools for Python
	Download and Install Visual Studio Code
	Get Started with Visual Studio Code and Apply a Theme
	Install Visual Studio Code Extensions for Python
	Configure Visual Studio Code for Working with Python

	Chapter 2 Writing and Running Your First Python Code
	Understanding the main() Function
	Create and Save a New Script in Visual Studio Code
	Write and Run Code in Visual Studio Code
	Execute Python Commands in a Terminal Window
	Run a Python Script in a Terminal Window
	Understanding Comments in Python
	Add Comments to Your Code
	Grasp Importing Modules and Objects
	Import Modules and Use Their Methods

	Chapter 3 Getting Started with Variables
	Understanding Variables and Their Usage
	Understanding Python’s Data Types
	Work with Integers
	Work with Floating-Point Values
	Work with Boolean Values
	Work with Tuples
	Work with Sets
	Start Working with Strings
	Start Working with Lists
	Start Working with Dictionaries
	Convert Data from One Type to Another

	Chapter 4Working with Files and Directories
	Understanding Working with Files and Directories
	Load the os Module and List Files and Directories
	Navigate Among Directories
	Create and Delete Directories
	Rename, Move, and Copy Files and Directories
	Get Information About the User and System
	Split a File Path into Its Components
	Understanding Python’s open() Function
	Understanding Python’s Ways of Closing Files
	Open a File If It Exists; If Not, Create It
	Check an Open File’s Status and Close It
	Write Data to a File
	Open a File for Both Reading and Writing
	Append Data to a File
	Read a Text File

	Chapter 5 Working with Python’s Operators
	Meet the Arithmetic Operators
	Work with the Arithmetic Operators
	Meet the Assignment Operators
	Work with the Assignment Operators
	Meet the Comparison Operators
	Work with the Comparison Operators
	Meet the Logical Operators
	Work with the Logical Operators
	Meet the Identity Operators
	Work with the Identity Operators
	Meet the Membership Operators
	Work with the Membership Operators
	Meet the Bitwise Operators
	Work with the Bitwise Operators

	Chapter 6 Making Decisions with if Statements
	Learn the Essentials of if Statements
	Understanding the if Statement
	Create an if Statement
	Understanding the if... else Statement
	Create an if... else Statement
	Understanding the if... elif Statement
	Create an if... elif Statement
	Understanding the if... elif... else Statement
	Create an if... elif... else Statement
	Understanding Nested if Statements
	Create Nested if Statements

	Chapter 7 Repeating Actions with Loops
	Understanding Python’s Loops
	Understanding How for Loops Work
	Create for Loops
	Understanding How while Loops Work
	Create while Loops
	Understanding break Statements in Loops
	Using a break Statement to Exit a Loop Early
	Understanding continue Statements in Loops
	Using a continue Statement in a Loop
	Understanding else Statements in Loops
	Using an else Statement in a Loop
	Understanding Loop Nesting
	Nest Loops to Create Complex Repetition

	Chapter 8 Working with Functions
	Understanding Functions and Their Syntax
	Understanding Function Parameters and Returns
	Using Python’s Built-In Functions
	Using Python’s Built-In Functions (continued)
	Create a Function with Parameters and a Return
	Create a Function with a Parameter But No Return
	Create a Function with No Parameters But a Return
	Create a Function with No Parameters and No Return
	Create a Function That Returns Multiple Values
	Create a Function with Optional Parameters

	Chapter 9 Working with Text
	Learn the Essentials of Strings
	Create Single-Line Strings
	Create Multiline Strings
	Meet Python’s String Methods
	Return Information About a String
	Transform and Clean Up a String
	Return Part of a String via Slicing
	Concatenate and Repeat Strings
	Search for One String Inside Another String
	Check and Change String Capitalization
	Meet Python’s Tools for Building Strings
	Build Strings with the Interpolation Operator
	Build Strings with the .format Method
	Build Strings with f-Strings
	Build Strings with Template Strings

	Chapter 10 Handling Errors
	Understanding the Various Types of Errors
	Identify Common Python Errors
	Meet the try... except Block
	Cause Errors and Trap Exceptions
	Raise an Exception Manually
	Add an else Block or a finally Block
	Create Nested try... except Blocks
	Create Custom Exceptions

	Chapter 11 Working with Lists and Dictionaries
	Understanding Lists and Their Use
	Create a List
	Meet Python’s List Methods
	Add Items to a List
	Remove Items from a List
	Locate Items and Access Data in a List
	Sort the Items in a List
	Understanding Dictionaries and Their Use
	Create a Dictionary and Return Values
	Meet Python’s Dictionary Methods
	Create a Dictionary from an Existing Iterable
	Add Key/Value Pairs to a Dictionary
	Remove Key/Value Pairs from a Dictionary
	Return Keys and Values from a Dictionary

	Chapter 12 Working with Classes
	Understanding Classes and Instances
	Create a Class and Instantiate Instances
	Understanding Class and Instance Attributes
	Set Class and Instance Attributes
	Grasp Class, Instance, and Static Methods
	Create an Instance Method
	Create a Class Method
	Create a Static Method
	Review the Class’s Code

	Index
	EULA

