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Serverless computing enables developers to concentrate 
solely on their applications rather than worry about where 
they’ve been deployed. With the Ray general-purpose 
serverless implementation in Python, programmers and data 
scientists can hide servers, implement stateful applications, 
support direct communication between tasks, and access 
hardware accelerators.

In this book, experienced software architecture practitioners 
Holden Karau and Boris Lublinsky show you how to scale 
existing Python applications and pipelines, allowing you to 
stay in the Python ecosystem while reducing single points 
of failure and manual scheduling. Scaling Python with Ray is 
ideal for software architects and developers eager to explore 
successful case studies and learn more about decision and 
measurement effectiveness.
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beyond what a single computer can handle, this book is for 
you. You’ll explore distributed processing (the pure Python 
implementation of serverless) and learn how to:
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Foreword

In this book, Holden Karau and Boris Lublinksy touch on the biggest trend in com‐
puting today: the growing need for scalable computing. This trend is being driven, in
large part, by the proliferation of machine learning (ML) throughout many industries
and the growing amount of computational resources needed to do ML in practice.

The last decade has seen significant shifts in the nature of computing. In 2012, when
I first began working in ML, much of it was managed on a single laptop or server,
and many practitioners were using Matlab. That year was something of an inflection
point as deep learning made a splash by winning the ImageNet competition by an
astounding margin. That led to a sustained trend over many years in which more and
more computation on more and more data has led to better results. This trend has yet
to show signs of slowing down and, if anything, has accelerated in recent years with
the advent of large language models.

This shift—from small models on small data to large models on large data—has
changed the practice of ML. Software engineering now plays a central role in ML,
and teams and organizations that successfully leverage ML often build large in-house
infrastructure teams to support the distributed systems necessary for scaling ML
applications across hundreds or thousands of machines.

So at the same time that ML is growing in its capabilities and becoming more relevant
for a variety of businesses, it is also becoming increasingly difficult to do because of
the significant infrastructure investment required to do it.

To get to a state where every business can leverage and get value out of ML, we will
have to make it far easier to apply in practice. This will mean eliminating the need for
developers to become experts in distributed systems and infrastructure.

This goal, making scalable computing and scalable ML easy to do, is the purpose
of Ray and the reason that we created Ray in the first place. This is a natural contin‐
uation of a progression in computing. Going back a handful of decades, there was
a time when developers had to program in Assembly Language and other low-level
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machine languages in order to build applications, and so the best developers were the
people who could perform low-level memory optimizations and other manipulations.
That made software development difficult to do and limited the number of people
who could build applications. Today, very few developers think about Assembly. It is
no longer on the critical path for application development, and as a result, far more
people can develop applications and build great products today.

The same thing will happen with infrastructure. Today, building and managing infra‐
structure for scaling Python applications and scaling ML applications is on the critical
path for doing ML and for building scalable applications and products. However,
infrastructure will go the way of Assembly Language. When that happens, it will open
up the door and far more people will build these kinds of applications.

Scaling Python and Ray can serve as an entry point for anyone looking to do ML in
practice or looking to build the next generation of scalable products and applications.
It touches on a wide variety of topics, ranging from scaling a variety of important ML
patterns, from deep learning to hyperparameter tuning to reinforcement learning. It
touches on the best practices for scaling data ingest and preprocessing. It covers the
fundamentals of building scalable applications. Importantly, it touches on how Ray
fits into the broader ML and computing ecosystem.

I hope you enjoy reading this book! It will equip you to understand the biggest
trend in computing and can equip you with the tools to navigate and leverage that
trend as you look to apply ML to your business or build the next great product and
application.

— Robert Nishihara
Cocreator of Ray; cofounder and CEO of Anyscale

San Francisco, November 2022
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Preface

We wrote this book for developers and data scientists looking to build and scale appli‐
cations in Python without becoming systems administrators. We expect this book to
be most beneficial for individuals and teams dealing with the growing complexity and
scale of problems moving from single-threaded solutions to multithreaded, all the
way to distributed computing.

While you can use Ray from Java, this book is in Python, and we assume a general
familiarity with the Python ecosystem. If you are not familiar with Python, excellent
O’Reilly titles include Learning Python by Mark Lutz and Python for Data Analysis by
Wes McKinney.

Serverless is a bit of a buzzword, and despite its name, the serverless model does
involve rather a lot of servers, but the idea is you don’t have to manage them explic‐
itly. For many developers and data scientists, the promise of having things magically
scale without worrying about the servers’ details is quite appealing. On the other
hand, if you enjoy getting into the nitty-gritty of your servers, deployment mecha‐
nisms, and load balancers, this is probably not the book for you—but hopefully, you
will recommend this to your colleagues.

What You Will Learn
In reading this book, you will learn how to use your existing Python skills to enable
programs to scale beyond a single machine. You will learn about techniques for
distributed computing, from remote procedure calls to actors, and all the way to
distributed datasets and machine learning. We wrap up this book with a “real-ish”
example in Appendix A that uses many of these techniques to build a scalable
backend, while integrating with a Python-based web-application and deploying on
Kubernetes.
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A Note on Responsibility
As the saying goes, with great power comes great responsibility. Ray, and tools like
it, enable you to build more complex systems handling more data and users. It’s
important not to get too excited and carried away solving problems because they are
fun, and stop to ask yourself about the impact of your decisions.

You don’t have to search very hard to find stories of well-meaning engineers and data
scientists accidentally building models or tools that caused devastating impacts, such
as breaking the new United States Department of Veteran Affairs payment system,
or hiring algorithms that discriminate on the basis of gender. We ask that you keep
this in mind when using your newfound powers, for one never wants to end up in a
textbook for the wrong reasons.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.
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License
Once published in print and excluding O’Reilly’s distinctive design elements (i.e.,
cover art, design format, “look and feel”) or O’Reilly’s trademarks, service marks,
and trade names, this book is available under a Creative Commons Attribution-
Noncommercial-NoDerivatives 4.0 International Public License. We thank O’Reilly
for allowing us to make this book available under a Creative Commons license. We
hope that you will choose to support this book (and the authors) by purchasing
several copies with your corporate expense account (it makes an excellent gift for
whichever holiday season is coming up next).

Using Code Examples
The Scaling Python Machine Learning GitHub repository contains most of the exam‐
ples for this book. Most examples in this book are in the ray_examples directory.
Examples related to Dask on Ray are found in the dask directory, and those using
Spark on Ray are in the spark directory.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Scaling Python with
Ray by Holden Karau and Boris Lublinsky (O’Reilly). Copyright 2023 Holden Karau
and Boris Lublinsky, 978-1-098-11880-8.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.
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Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/scaling-python-ray.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.
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CHAPTER 1

What Is Ray, and Where Does It Fit?

Ray is primarily a Python tool for fast and simple distributed computing. Ray was
created by the RISELab at the University of California, Berkeley. An earlier iteration
of this lab created the initial software that eventually became Apache Spark. Research‐
ers from the RISELab started the company Anyscale to continue developing and to
offer products and services around Ray.

You can also use Ray from Java. Like many Python applications,
under the hood Ray uses a lot of C++ and some Fortran. Ray
streaming also has some Java components.

The goal of Ray is to solve a wider variety of problems than its predecessors, support‐
ing various scalable programing models that range from actors to machine learning
(ML) to data parallelism. Its remote function and actor models make it a truly
general-purpose development environment instead of big data only.

Ray automatically scales compute resources as needed, allowing you to focus on
your code instead of managing servers. In addition to traditional horizontal scaling
(e.g., adding more machines), Ray can schedule tasks to take advantage of different
machine sizes and accelerators like graphics processing units (GPUs).

Since the introduction of Amazon Web Services (AWS) Lambda, interest in serverless
computing has exploded. In this cloud computing model, the cloud provider allocates
machine resources on demand, taking care of the servers on behalf of its customers.
Ray provides a great foundation for general-purpose serverless platforms by provid‐
ing the following features:

1
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• It hides servers. Ray autoscaling transparently manages servers based on the•
application requirements.

• By supporting actors, Ray implements not only a stateless programming model•
(typical for the majority of serverless implementations) but also a stateful one.

• It allows you to specify resources, including hardware accelerators required for•
the execution of your serverless functions.

• It supports direct communications between your tasks, thus providing support•
for not only simple functions but also complex distributed applications.

Ray provides a wealth of libraries that simplify the creation of applications that
can fully take advantage of Ray’s serverless capabilities. Normally, you would need
different tools for everything, from data processing to workflow management. By
using a single tool for a larger portion of your application, you simplify not only
development but also your operation management.

In this chapter, we’ll look at where Ray fits in the ecosystem and help you decide
whether it’s a good fit for your project.

Why Do You Need Ray?
We often need something like Ray when our problems get too big to handle in a
single process. Depending on how large our problems get, this can mean scaling
from multicore all the way through multicomputer, all of which Ray supports. If you
find yourself wondering how you can handle next month’s growth in users, data, or
complexity, our hope is you will take a look at Ray. Ray exists because scaling software
is hard, and it tends to be the kind of problem that gets harder rather than simpler
with time.

Ray can scale not only to multiple computers but also without you having to directly
manage servers. Computer scientist Leslie Lamport has said, “A distributed system
is one in which the failure of a computer you didn’t even know existed can render
your own computer unusable.” While this kind of failure is still possible, Ray is able to
automatically recover from many types of failures.

Ray runs cleanly on your laptop as well as at scale with the same APIs. This provides
a simple starting option for using Ray that does not require you to go to the cloud
to start experimenting. Once you feel comfortable with the APIs and application
structure, you can simply move your code to the cloud for better scalability without
needing to modify your code. This fills the needs that exist between a distributed
system and a single-threaded application. Ray is able to manage multiple threads and
GPUs with the same abstractions it uses for distributed computing.

2 | Chapter 1: What Is Ray, and Where Does It Fit?
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1 ARM support, including for Raspberry PIs, requires manual building for now.

Where Can You Run Ray?
Ray can be deployed in a variety of environments, ranging from your laptop to the
cloud, to cluster managers like Kubernetes or Yarn, to six Raspberry Pis hidden under
your desk.1 In local mode, getting started can be as simple as a pip install and a call
to ray.init. Much of modern Ray will automatically initialize a context if one is not
present, allowing you to skip even this part.

Ray Cluster
A Ray cluster consists of a head node and a set of worker nodes, as shown in
Figure 1-1.

Figure 1-1. Ray cluster architecture

As you can see, a head node, in addition to supporting all the functionality of the
worker node, has two additional components:

Global control store (GCS)
Contains cluster-wide information including object tables, task tables, function
tables, and event logs. The content of this store is used for the web UI, error
diagnostics, debugging, and profiling tools.

Autoscaler
Launches and terminates worker nodes to ensure that workloads have sufficient
resources to run while minimizing idle resources.

The head node is effectively a master (singleton) that manages a complete cluster (via
the autoscaler). Unfortunately, a head node is also a single point of failure. If you lose
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a head node, you will use the cluster and need to re-create it. Moreover, if you lose a
head node, existing worker nodes can become orphans and will have to be removed
manually.

Each Ray node contains a Raylet, which consists of two main components:

Object store
All of the object stores are connected together, and you can think of this collec‐
tion as somewhat similar to Memcached, a distributed cache.

Scheduler
Each Ray node provides a local scheduler that can communicate with other
nodes, thus creating a unified distributed scheduler for the cluster.

When we are talking about nodes in a Ray cluster, we are not talking about physical
machines but rather about logical nodes based on Docker images. As a result, when
mapping to physical machines, a given physical node can run one or more logical
nodes.

The ray up command, which is included as part of Ray, allows you to create clusters
and will do the following:

• Provision a new instance/machine (if running on the cloud or cluster manager)•
by using the provider’s software development kit (SDK) or access machines (if
running directly on physical machines)

• Execute shell commands to set up Ray with the desired options•
• Run any custom, user-defined setup commands (for example, setting environ‐•

ment variables and installing packages)
• Initialize the Ray cluster•
• Deploy an autoscaler if required•

In addition to ray up, if running on Kubernetes, you can use the Ray Kubernetes
operator. Although ray up and the Kubernetes operator are preferred ways of creat‐
ing Ray clusters, you can manually set up the Ray cluster if you have a set of existing
machines—either physical or virtual machines (VMs).

Depending on the deployment option, the same Ray code will work, with large
variances in speed. This can get more complicated when you need specific libraries or
hardware for code, for example. We’ll look more at running Ray in local mode in the
next chapter, and if you want to scale even more, we cover deploying to the cloud and
resource managers in Appendix B.
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Running Your Code with Ray
Ray is more than just a library you import; it is also a cluster management tool. In
addition to importing the library, you need to connect to a Ray cluster. You have three
options for connecting your code to a Ray cluster:

Calling ray.init with no arguments
This launches an embedded, single-node Ray instance that is immediately avail‐
able to the application.

Using the Ray Client ray.init("ray://<head_node_host>:10001")
By default, each Ray cluster launches with a Ray client server running on the
head node that can receive remote client connections. Note, however, that when
the client is located remotely, some operations run directly from the client may
be slower because of wide area network (WAN) latencies. Ray is not resilient to
network failures between the head node and the client.

Using the Ray command-line API
You can use the ray submit command to execute Python scripts on clusters.
This will copy the designated file onto the head node cluster and execute it with
the given arguments. If you are passing the parameters, your code should use
the Python sys module that provides access to any command-line arguments via
sys.argv. This removes the potential networking point of failure when using the
Ray Client.

Where Does It Fit in the Ecosystem?
Ray sits at a unique intersection of problem spaces.

The first problem that Ray solves is scaling your Python code by managing resources,
whether they are servers, threads, or GPUs. Ray’s core building blocks are a scheduler,
distributed data storage, and an actor system. The powerful scheduler that Ray uses
is general purpose enough to implement simple workflows, in addition to handling
traditional problems of scale. Ray’s actor system gives you a simple way of handling
resilient distributed execution state. Ray is therefore able to act as a reactive system,
whereby its multiple components can react to their surroundings.

In addition to the scalable building blocks, Ray has higher-level libraries such as
Serve, Datasets, Tune, RLlib, Train, and Workflows that exist in the ML problem
space. These are designed to be used by folks with more of a data science background
than necessarily a distributed systems background.

Overall, the Ray ecosystem is presented in Figure 1-2.
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Figure 1-2. The Ray ecosystem

Let’s take a look at some of these problem spaces and see how Ray fits in and
compares with existing tools. The following list, adapted from the Ray team’s “Ray 1.x
Architecture” documentation, compares Ray to several related system categories:

Cluster orchestrators
Cluster orchestrators like Kubernetes, Slurm, and Yarn schedule containers. Ray
can leverage these for allocating cluster nodes.

Parallelization frameworks
Compared to Python parallelization frameworks such as multiprocessing or
Celery, Ray offers a more general, higher-performance API. In addition, Ray’s
distributed objects support data sharing across parallel executors.

Data processing frameworks
Ray’s lower-level APIs are more flexible and better suited for a “distributed glue”
framework than existing data processing frameworks such as Spark, Mars, or
Dask. Although Ray has no inherent understanding of data schemas, relational
tables, or streaming dataflow, it supports running many of these data processing
frameworks—for example, Modin, Dask on Ray, Mars on Ray, and Spark on Ray
(RayDP).
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Actor frameworks
Unlike specialized actor frameworks such as Erlang, Akka, and Orleans, Ray
integrates the actor framework directly into programming languages. In addition,
Ray’s distributed objects support data sharing across actors.

Workflows
When most people talk about workflows, they talk about UI or script-driven
low-code development. While this approach might be useful for nontechnical
users, it frequently brings more pain than value to software engineers. Ray uses
programmatic workflow implementation, similar to Cadence. This implementa‐
tion combines the flexibility of Ray’s dynamic task graphs with strong durability
guarantees. Ray Workflows offers subsecond overhead for task launch and sup‐
ports workflows with hundreds of thousands of steps. It also takes advantage of
the Ray object store to pass distributed datasets between steps.

HPC systems
Unlike Ray, which exposes task and actor APIs, a majority of high-performance
computing (HPC) systems expose lower-level messaging APIs, providing a
greater application flexibility. Additionally, many of the HPC implementations
offer optimized collective communication primitives. Ray provides a collective
communication library that implements many of these functionalities.

Big Data / Scalable DataFrames
Ray offers a few APIs for scalable DataFrames, a cornerstone of the big data ecosys‐
tem. Ray builds on top of the Apache Arrow project to provide a (limited) distributed
DataFrame API called ray.data.Dataset. This is largely intended for the simplest
of transformations and reading from cloud or distributed storage. Beyond that, Ray
also provides support for a more pandas-like experience through Dask on Ray, which
leverages the Dask interface on top of Ray.

We cover scalable DataFrames in Chapter 9.

In addition to the libraries noted previously, you may find refer‐
ences to Mars on Ray or Ray’s (deprecated) built-in pandas sup‐
port. These libraries do not support distributed mode, so they can
limit your scalability. This is a rapidly evolving area and something
to keep your eye on in the future.
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Ray and Spark
It is tempting to compare Ray with Apache Spark, and in some abstract ways, they are
similar. From a user’s point of view, Spark is ideal for data-intensive tasks, and Ray is
better suited to compute-intensive tasks.

Ray has a lower task overhead and support for distributed state, making it especially
appealing for ML tasks. Ray’s lower-level APIs make it a more appealing platform to
build tools on top of.

Spark has more data tools but depends on centralized scheduling and state man‐
agement. This centralization makes implementing reinforcement learning (RL) and
recursive algorithms a challenge. For analytical use cases, especially in existing big
data deployments, Spark may be a better choice.

Ray and Spark are complementary and can be used together. A common pattern is
data processing with Spark and then ML with Ray. In fact, the RayDP library provides
a way to use Spark DataFrames inside Ray.

Machine Learning
Ray has multiple ML libraries, and for the most part, they serve to delegate much
of the fancy parts of ML to existing tools like PyTorch, scikit-learn, and TensorFlow
while using Ray’s distributed computing facilities to scale. Ray Tune implements
hyperparameter tuning, using Ray’s ability to train many local Python-based models
in parallel across a distributed set of machines. Ray Train implements distributed
training with PyTorch or TensorFlow. Ray’s RLlib interface offers reinforcement
learning with core algorithms.

Part of what allows Ray to stand out from pure data-parallel systems for ML is
its actor model, which allows easier tracking of state (including parameters) and
inter-worker communication. You can use this model to implement your own custom
algorithms that are not a part of Ray Core.

We cover ML in more detail in Chapter 10.

Workflow Scheduling
Workflow scheduling is one of these areas which, at first glance, can seem really
simple. A workflow is “just” a graph of work that needs to be done. However, all
programs can be expressed as “just” a graph of work that needs to be done. New in
2.0, Ray has a Workflows library to simplify expressing both traditional business logic
workflows and large-scale (e.g., ML training) workflows.
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Ray is unique in workflow scheduling because it allows tasks to schedule other tasks
without having to call back to a central node. This allows for greater flexibility and
throughput.

If you find Ray’s workflow engine too low-level, you can use Ray to run Apache
Airflow. Airflow is one of the more popular workflow scheduling engines in the big
data space. The Apache Airflow Provider for Ray lets you use your Ray cluster as a
worker pool for Airflow.

We cover workflow scheduling in Chapter 8.

Streaming
Streaming is generally considered to be processing “real-time-ish” data, or data “as-it-
arrives-ish.” Streaming adds another layer of complexity, especially the closer to real
time you try to get, as not all of your data will always arrive in order or on time. Ray
offers standard streaming primitives and can use Kafka as a streaming data source
and sink. Ray uses its actor model APIs to interact with streaming data.

Ray streaming, like many streaming systems bolted on batch systems, has some inter‐
esting quirks. Ray streaming, notably, implements more of its logic in Java, unlike the
rest of Ray. This can make debugging streaming applications more challenging than
other components in Ray.

We cover how to build streaming applications with Ray in Chapter 6.

Interactive
Not all “real-time-ish” applications are necessarily streaming applications. A common
example is interactively exploring a dataset. Similarly, interacting with user input
(e.g., serving models) can be considered an interactive rather than a batch process,
but it is handled separately from the streaming libraries with Ray Serve.

What Ray Is Not
While Ray is a general-purpose distributed system, it’s important to note there are
some things Ray is not (at least, not without your expending substantial effort):

• Structured Query Language (SQL) or an analytics engine•
• A data storage system•
• Suitable for running nuclear reactors•
• Fully language independent•
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Ray can be used to do a bit of all of these, but you’re likely better off using more
specialized tooling. For example, while Ray does have a key/value store, it isn’t
designed to survive the loss of the leader node. This doesn’t mean that if you find
yourself working on a problem that needs a bit of SQL, or some non-Python libraries,
Ray cannot meet your needs—you just may need to bring in additional tools.

Conclusion
Ray has the potential to greatly simplify your development and operational overhead
for medium- to large-scale problems. It achieves this by offering a unified API across
a variety of traditionally separate problems while providing serverless scalability. If
you have problems spanning the domains that Ray serves, or just are tired of the
operational overhead of managing your own clusters, we hope you’ll join us on the
adventure of learning Ray.

In the next chapter, we’ll show you how to get Ray installed in local mode on your
machine. We’ll also look at a few Hello Worlds from some of the ecosystems that Ray
supports (including actors and big data).
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1 As ARM grows in popularity, Ray is more likely to add ARM wheels, so this is hopefully temporary.

CHAPTER 2

Getting Started with Ray (Locally)

As we’ve discussed, Ray is useful for managing resources from a single computer
up to a cluster. It is simpler to get started with a local installation, which leverages
the parallelism of multicore/multi-CPU machines. Even when deploying to a cluster,
you’ll want to have Ray installed locally for development. Once you’ve installed Ray,
we’ll show you how to make and call your first asynchronous parallelized function
and store state in an actor.

If you are in a hurry, you can also use Gitpod on the
book’s GitHub repo to get a web environment with the examples, or
check out Anyscale’s managed Ray.

Installation
Installing Ray, even on a single machine, can range from relatively straightforward
to fairly complicated. Ray publishes wheels to the Python Package Index (PyPI)
following a normal release cadence as well as in nightly releases. These wheels are
currently available for only x86 users, so ARM users will mostly need to build Ray
from source.1

M1 ARM users on macOS can use the x86 packages with Rosetta.
Some performance degradation occurs, but it’s a much simpler
setup. To use the x86s package, install Anaconda for macOS.
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Installing for x86 and M1 ARM
Most users can run pip install -U ray to automatically install Ray from PyPI.
When you go to distribute your computation on multiple machines, it’s often easier
to have been working in a Conda environment so you can match Python versions
with your cluster and know your package dependencies. The commands in Exam‐
ple 2-1 set up a fresh Conda environment with Python and install Ray with minimal
dependencies.

Example 2-1. Installing Ray inside a Conda environment

conda create -n ray python=3.7  mamba -y
conda activate ray
# In a Conda env this won't be auto-installed with Ray, so add them
pip install jinja2 python-dateutil cloudpickle packaging pygments \
    psutil nbconvert ray

Installing (from Source) for ARM
For ARM users or any users with a system architecture that does not have a prebuilt
wheel available, you will need to build Ray from the source. On our ARM Ubuntu
system, we need to install additional packages, as shown in Example 2-2.

Example 2-2. Installing Ray from source

sudo apt-get install -y git tzdata bash libhdf5-dev curl pkg-config wget \
  cmake build-essential zlib1g-dev zlib1g openssh-client gnupg unzip libunwind8 \
  libunwind-dev openjdk-11-jdk git
# Depending on Debian version
sudo apt-get install -y libhdf5-100 || sudo apt-get install -y libhdf5-103
# Install bazelisk to install bazel (needed for Ray's CPP code)
# See https://github.com/bazelbuild/bazelisk/releases
# On Linux ARM
BAZEL=bazelisk-linux-arm64
# On Mac ARM
# BAZEL=bazelisk-darwin-arm64
wget -q https://github.com/bazelbuild/bazelisk/releases/download/v1.10.1/${BAZEL} \
  -O /tmp/bazel
chmod a+x /tmp/bazel
sudo mv /tmp/bazel /usr/bin/bazel
# Install node, needed for the UI
curl -fsSL https://deb.nodesource.com/setup_16.x | sudo bash -
sudo apt-get install -y nodejs

If you are an M1 Mac user who doesn’t want to use Rosetta, you’ll need to install
some dependencies. You can install them with Homebrew and pip, as shown in
Example 2-3.
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Example 2-3. Installing extra dependencies needed on the M1

brew install bazelisk wget python@3.8 npm
# Make sure Homebrew Python is used before system Python
export PATH=$(brew --prefix)/opt/python@3.8/bin/:$PATH
echo "export PATH=$(brew --prefix)/opt/python@3.8/bin/:$PATH" >> ~/.zshrc
echo "export PATH=$(brew --prefix)/opt/python@3.8/bin/:$PATH" >> ~/.bashrc
# Install some libraries vendored incorrectly by Ray for ARM
pip3 install --user psutil cython colorama

You need to build some of the Ray components separately because they are written
in different languages. This does make installation more complicated, but you can
follow the steps in Example 2-4.

Example 2-4. Installing the build tools for Ray’s native build toolchain

git clone https://github.com/ray-project/ray.git
cd ray
# Build the Ray UI
pushd python/ray/new_dashboard/client; npm install && npm ci && npm run build; popd
# Specify a specific bazel version as newer ones sometimes break.
export USE_BAZEL_VERSION=4.2.1
cd python
# Mac ARM USERS ONLY: clean up the vendored files
rm -rf ./thirdparty_files
# Install in edit mode or build a wheel
pip install -e .
# python setup.py bdist_wheel

The slowest part of the build is compiling the C++ code, which can
easily take up to an hour even on modern machines. If you have a
cluster with numerous ARM machines, building a wheel once and
reusing it on your cluster is often worthwhile.

Hello Worlds
Now that you have Ray installed, it’s time to learn about some of the Ray APIs. We’ll
cover these APIs in more detail later, so don’t get too hung up on the details now.

Ray Remote (Task/Futures) Hello World
One of the core building blocks of Ray is that of remote functions, which return
futures. The term remote here indicates remote to our main process, and can be on the
same or a different machine.

Hello Worlds | 13

https://oreil.ly/4KDxL
https://oreil.ly/k97Lt


To understand this better, you can write a function that returns the location where
it is running. Ray distributes work among multiple processes and, when in dis‐
tributed mode, multiple hosts. A local (non-Ray) version of this function is shown in
Example 2-5.

Example 2-5. A local (regular) function

def hi():
    import os
    import socket
    return f"Running on {socket.gethostname()} in pid {os.getpid()}"

You can use the ray.remote decorator to create a remote function. Calling remote
functions is a bit different from calling local ones and is done by calling .remote on
the function. Ray will immediately return a future when you call a remote function
instead of blocking for the result. You can use ray.get to get the values returned in
those futures. To convert Example 2-5 to a remote function, all you need to do is use
the ray.remote decorator, as shown in Example 2-6.

Example 2-6. Turning the previous function into a remote function

@ray.remote
def remote_hi():
    import os
    import socket
    return f"Running on {socket.gethostname()} in pid {os.getpid()}"
future = remote_hi.remote()
ray.get(future)

When you run these two examples, you’ll see that the first is executed in the same
process, and that Ray schedules the second one in another process. When we run
the two examples, we get Running on jupyter-holdenk in pid 33 and Running on
jupyter-holdenk in pid 173, respectively.

Sleepy task
An easy (although artificial) way to understand how remote futures can help is by
making an intentionally slow function (in our case, slow_task) and having Python
compute in regular function calls and Ray remote calls. See Example 2-7.
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Example 2-7. Using Ray to parallelize an intentionally slow function

import timeit

def slow_task(x):
    import time
    time.sleep(2) # Do something sciency/business
    return x

@ray.remote
def remote_task(x):
    return slow_task(x)

things = range(10)

very_slow_result = map(slow_task, things)
slowish_result = map(lambda x: remote_task.remote(x), things)

slow_time = timeit.timeit(lambda: list(very_slow_result), number=1)
fast_time = timeit.timeit(lambda: list(ray.get(list(slowish_result))), number=1)
print(f"In sequence {slow_time}, in parallel {fast_time}")

When you run this code, you’ll see that by using Ray remote functions, your code is
able to execute multiple remote functions at the same time. While you can do this
without Ray by using multiprocessing, Ray handles all of the details for you and can
also eventually scale up to multiple machines.

Nested and chained tasks
Ray is notable in the distributed processing world for allowing nested and chained
tasks. Launching more tasks inside other tasks can make certain kinds of recursive
algorithms easier to implement.

One of the more straightforward examples using nested tasks is a web crawler. In the
web crawler, each page we visit can launch multiple additional visits to the links on
that page, as shown in Example 2-8.

Example 2-8. Web crawler with nested tasks

@ray.remote
def crawl(url, depth=0, maxdepth=1, maxlinks=4):
    links = []
    link_futures = []
    import requests
    from bs4 import BeautifulSoup
    try:
        f = requests.get(url)
        links += [(url, f.text)]
        if (depth > maxdepth):
            return links # base case
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        soup = BeautifulSoup(f.text, 'html.parser')
        c = 0
        for link in soup.find_all('a'):
            try:
                c = c + 1
                link_futures += [crawl.remote(link["href"], depth=(depth+1),
                                   maxdepth=maxdepth)]
                # Don't branch too much; we're still in local mode and the web is big
                if c > maxlinks:
                    break
            except:
                pass
        for r in ray.get(link_futures):
            links += r
        return links
    except requests.exceptions.InvalidSchema:
        return [] # Skip nonweb links
    except requests.exceptions.MissingSchema:
        return [] # Skip nonweb links

ray.get(crawl.remote("http://holdenkarau.com/"))

Many other systems require that all tasks launch on a central coordinator node. Even
those that support launching tasks in a nested fashion still usually depend on a central
scheduler.

Data Hello World
Ray has a somewhat limited dataset API for working with structured data.
Apache Arrow powers Ray’s Datasets API. Arrow is a column-oriented, language-
independent format with some popular operations. Many popular tools support
Arrow, allowing easy transfer between them (such as Spark, Ray, Dask, and
TensorFlow).

Ray only recently added keyed aggregations on datasets with version 1.9. The most
popular distributed data example is a word count, which requires aggregates. Instead
of using these, we can perform embarrassingly parallel tasks, such as map transfor‐
mations, by constructing a dataset of web pages, shown in Example 2-9.

Example 2-9. Constructing a dataset of web pages

# Create a dataset of URL objects. We could also load this from a text file
# with ray.data.read_text()
urls = ray.data.from_items([
    "https://github.com/scalingpythonml/scalingpythonml",
    "https://github.com/ray-project/ray"])

def fetch_page(url):
    import requests
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    f = requests.get(url)
    return f.text

pages = urls.map(fetch_page)
# Look at a page to make sure it worked
pages.take(1)

Ray 1.9 added GroupedDataset for supporting various kinds of aggregations. By
calling groupby with either a column name or a function that returns a key, you get a
GroupedDataset. GroupedDataset has built-in support for count, max, min, and other
common aggregations. You can use GroupedDataset to extend Example 2-9 into a
word-count example, as shown in Example 2-10.

Example 2-10. Converting a dataset of web pages into words

words = pages.flat_map(lambda x: x.split(" ")).map(lambda w: (w, 1))
grouped_words = words.groupby(lambda wc: wc[0])

When you need to go beyond the built-in operations, Ray supports custom aggrega‐
tions, provided you implement its interface. We will cover more on datasets, includ‐
ing aggregate functions, in Chapter 9.

Ray uses blocking evaluation for its Dataset API. When you call a
function on a Ray dataset, it will wait until it completes the result
instead of returning a future. The rest of the Ray Core API uses
futures.

If you want a full-featured DataFrame API, you can convert your Ray dataset into
Dask. Chapter 9 covers how to use Dask for more complex operations. If you
are interested in learning more about Dask, check out Scaling Python with Dask
(O’Reilly), which Holden coauthored with Mika Kimmins.

Actor Hello World
One of the unique parts of Ray is its emphasis on actors. Actors give you tools to
manage the execution state, which is one of the more challenging parts of scaling
systems. Actors send and receive messages, updating their state in response. These
messages can come from other actors, programs, or your main execution thread with
the Ray client.

For every actor, Ray starts a dedicated process. Each actor has a mailbox of messages
waiting to be processed. When you call an actor, Ray adds a message to the corre‐
sponding mailbox, which allows Ray to serialize message processing, thus avoiding
expensive distributed locks. Actors can return values in response to messages, so
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2 Actors are still more expensive than lock-free remote functions, which can be scaled horizontally. For exam‐
ple, lots of workers calling the same actor to update model weights will still be slower than embarrassingly
parallel operations.

when you send a message to an actor, Ray immediately returns a future so you can
fetch the value when the actor is done processing your message.

Actor Uses and History
Actors have a long history before Ray and were introduced in 1973. The actor model
is an excellent solution to concurrency with state and can replace complicated locking
structures. Some other notable implementations of actors are Akka in Scala and
Erlang.

The actor model can be used for everything from real-world systems like email, to
Internet of Things (IoT) applications like tracking temperature, to flight booking. A
common use case for Ray actors is managing state (e.g., weights) while performing
distributed ML without requiring expensive locking.2

The actor model has challenges with multiple events that need to be processed in
order and rolled back as a group. A classic example is banking, where transactions
need to touch multiple accounts and be rolled back as a group.

Ray actors are created and called similarly to remote functions but use Python
classes, which gives the actor a place to store state. You can see this in action by
modifying the classic “Hello World” example to greet you in sequence, as shown in
Example 2-11.

Example 2-11. Actor Hello World

@ray.remote
class HelloWorld(object):
    def __init__(self):
        self.value = 0
    def greet(self):
        self.value += 1
        return f"Hi user #{self.value}"

# Make an instance of the actor
hello_actor = HelloWorld.remote()

# Call the actor
print(ray.get(hello_actor.greet.remote()))
print(ray.get(hello_actor.greet.remote()))
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This example is fairly basic; it lacks any fault tolerance or concurrency within each
actor. We’ll explore those more in Chapter 4.

Conclusion
In this chapter, you installed Ray on your local machine and used many of its core
APIs. For the most part, you can continue to run the examples we’ve picked for this
book in local mode. Naturally, local mode can limit your scale or take longer to run.

In the next chapter, we’ll look at some of the core concepts behind Ray. One of the
concepts (fault tolerance) will be easier to illustrate with a cluster or cloud. So if you
have access to a cloud account or a cluster, now would be an excellent time to jump
over to Appendix B and look at the deployment options.
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CHAPTER 3

Remote Functions

You often need some form of distributed or parallel computing when building
modern applications at scale. Many Python developers’ introduction to parallel com‐
puting is through the multiprocessing module. Multiprocessing is limited in its ability
to handle the requirements of modern applications. These requirements include the
following:

• Running the same code on multiple cores or machines•
• Using tooling to handle machine and processing failures•
• Efficiently handling large parameters•
• Easily passing information between processes•

Unlike multiprocessing, Ray’s remote functions satisfy these requirements. It’s impor‐
tant to note that remote doesn’t necessarily refer to a separate computer, despite its
name; the function could be running on the same machine. What Ray does provide
is mapping function calls to the right process on your behalf. Ray takes over distrib‐
uting calls to that function instead of running in the same process. When calling
remote functions, you are effectively running asynchronously on multiple cores or
different machines, without having to concern yourself with how or where.

Asynchronously is a fancy way of saying running multiple things at
the same time without waiting on each other.
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1 Ray does not “go inside” classes or structures to resolve futures, so if you have a list of lists of futures or a class
containing a future, Ray will not resolve the “inner” future.

In this chapter, you will learn how to create remote functions, wait for their comple‐
tion, and fetch results. Once you have the basics down, you will learn to compose
remote functions together to create more complex operations. Before you go too far,
let’s start with understanding some of what we glossed over in the previous chapter.

Essentials of Ray Remote Functions
In Example 2-7, you learned how to create a basic Ray remote function.

When you call a remote function, it immediately returns an ObjectRef (a future),
which is a reference to a remote object. Ray creates and executes a task in the
background on a separate worker process and writes the result when finished into the
original reference. You can then call ray.get on the ObjectRef to obtain the value.
Note that ray.get is a blocking method waiting for task execution to complete before
returning the result.

Remote Objects in Ray
A remote object is just an object, which may be on another node. ObjectRefs are like
pointers or IDs to objects that you can use to get the value from, or status of, the
remote function. In addition to being created from remote function calls, you can
also create ObjectRefs explicitly by using the ray.put function.

We will explore remote objects and their fault tolerance in “Ray Objects” on page 56.

Some details in Example 2-7 are worth understanding. The example converts the
iterator to a list before passing it to ray.get. You need to do this when calling
ray.get takes in a list of futures or an individual future.1 The function waits until it
has all the objects so it can return the list in order.

As with regular Ray remote functions, it’s important to think
about the amount of work done inside each remote invocation.
For example, using ray.remote to compute factorials recursively
will be slower than doing it locally since the work inside each
function is small even though the overall work can be large. The
exact amount of time depends on how busy your cluster is, but as a
general rule, anything executed in under a few seconds without any
special resources is not worth scheduling remotely.
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Remote Functions Lifecycle
The invoking Ray process (called the owner) of a remote function schedules the
execution of a submitted task and facilitates the resolution of the returned ObjectRef
to its underlying value if needed.

On task submission, the owner waits for all dependencies (i.e., ObjectRef objects that
were passed as an argument to the task) to become available before scheduling. The
dependencies can be local or remote, and the owner considers the dependencies to be
ready as soon as they are available anywhere in the cluster. When the dependencies
are ready, the owner requests resources from the distributed scheduler to execute the
task. Once resources are available, the scheduler grants the request and responds with
the address of a worker that will execute the function.

At this point, the owner sends the task specification over gRPC to the worker. After
executing the task, the worker stores the return values. If the return values are small
(less than 100 KiB by default), the worker returns the values inline directly to the
owner, which copies them to its in-process object store. If the return values are large,
the worker stores the objects in its local shared memory store and replies to the
owner, indicating that the objects are now in distributed memory. This allows the
owner to refer to the objects without having to fetch the objects to its local node.

When a task is submitted with an ObjectRef as its argument, the worker must resolve
its value before it can start executing the task.

Tasks can end in an error. Ray distinguishes between two types of task errors:

Application-level
In this scenario, the worker process is alive, but the task ends in an error (e.g., a
task that throws an IndexError in Python).

System-level
In this scenario, the worker process dies unexpectedly (e.g., a process that seg‐
faults, or if the worker’s local Raylet dies).

Tasks that fail because of application-level errors are never retried. The exception
is caught and stored as the return value of the task. Tasks that fail because of system-
level errors may be automatically retried up to a specified number of attempts. This is
covered in more detail in “Fault Tolerance” on page 53.

In our examples so far, using ray.get has been fine because the futures all had the
same execution time. If the execution times are different, such as when training a
model on different-sized batches of data, and you don’t need all of the results at the
same time, this can be quite wasteful. Instead of directly calling ray.get, you should
use ray.wait, which returns the requested number of futures that have already been
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completed. To see the performance difference, you will need to modify your remote
function to have a variable sleep time, as in Example 3-1.

Example 3-1. Remote function with different execution times

@ray.remote
def remote_task(x):
    time.sleep(x)
    return x

As you recall, the example remote function sleeps based on the input argument.
Since the range is in ascending order, calling the remote function on it will result
in futures that are completed in order. To ensure that the futures won’t complete
in order, you will need to modify the list. One way you can do this is by calling
things.sort(reverse=True) prior to mapping your remote function over things.

To see the difference between using ray.get and ray.wait, you can write a function
that collects the values from your futures with some time delay on each object to
simulate business logic.

The first option, not using ray.wait, is a bit simpler and cleaner to read, as shown in
Example 3-2, but is not recommended for production use.

Example 3-2. ray.get without the wait

# Process in order
def in_order():
    # Make the futures
    futures = list(map(lambda x: remote_task.remote(x), things))
    values = ray.get(futures)
    for v in values:
        print(f" Completed {v}")
        time.sleep(1) # Business logic goes here

The second option is a bit more complex, as shown in Example 3-3. This works by
calling ray.wait to find the next available future and iterating until all the futures
have been completed. ray.wait returns two lists, one of the object references for
completed tasks (of the size requested, which defaults to 1) and another list of the rest
of the object references.

Example 3-3. Using ray.wait

# Process as results become available
def as_available():
    # Make the futures
    futures = list(map(lambda x: remote_task.remote(x), things))
    # While we still have pending futures
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2 Currently, if the list of ObjectRef objects passed in is empty, Ray treats it as a special case, and returns
immediately regardless of the value of num_returns.

3 If you’re working interactively, you can fix this with a SIGINT or the stop button in Jupyter.

    while len(futures) > 0:
        ready_futures, rest_futures = ray.wait(futures)
        print(f"Ready {len(ready_futures)} rest {len(rest_futures)}")
        for id in ready_futures:
            print(f'completed value {id}, result {ray.get(id)}')
            time.sleep(1) # Business logic goes here
        # We just need to wait on the ones that are not yet available
        futures = rest_futures

Running these functions side by side with timeit.time, you can see the difference
in performance. It’s important to note that this performance improvement depends
on how long the nonparallelized business logic (the logic in the loop) takes. If you’re
just summing the results, using ray.get directly could be OK, but if you’re doing
something more complex, you should use ray.wait. When we run this, we see that
ray.wait performs roughly twice as fast. You can try varying the sleep times and see
how it works out.

You may wish to specify one of the few optional parameters to ray.wait:

num_returns

The number of ObjectRef objects for Ray to wait for completion before return‐
ing. You should set num_returns to less than or equal to the length of the input
list of ObjectRef objects; otherwise, the function throws an exception.2 The
default value is 1.

timeout

The maximum amount of time in seconds to wait before returning. This defaults
to −1 (which is treated as infinite).

fetch_local

You can disable fetching of results by setting this to false if you are interested
only in ensuring that the futures are completed.

The timeout parameter is extremely important in both ray.get
and ray.wait. If this parameter is not specified and one of your
remote functions misbehaves (never completes), the ray.get or
ray.wait will never return, and your program will block forever.3
As a result, for any production code, we recommend that you use
the timeout parameter in both to avoid deadlocks.
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Ray’s get and wait functions handle timeouts slightly differently. Ray doesn’t raise an
exception on ray.wait when a timeout occurs; instead, it simply returns fewer ready
futures than num_returns. However, if ray.get encounters a timeout, Ray will raise a
GetTimeoutError. Note that the return of the wait/get function does not mean that
your remote function will be terminated; it will still run in the dedicated process. You
can explicitly terminate your future (see the following tip) if you want to release the
resources.

Since ray.wait can return results in any order, it’s essential to not
depend on the order of the results. If you need to do different
processing with different records (e.g., test a mix of group A and
group B), you should encode this in the result (often with types).

If you have a task that does not finish in a reasonable time (e.g., a straggler), you can
cancel the task by using ray.cancel with the same ObjectRef used to wait/get. You
can modify the previous ray.wait example to add a timeout and cancel any “bad”
tasks, resulting in something like Example 3-4.

Example 3-4. Using ray.wait with a timeout and a cancel

futures = list(map(lambda x: remote_task.remote(x), [1, threading.TIMEOUT_MAX]))
# While we still have pending futures
while len(futures) > 0:
    # In practice, 10 seconds is too short for most cases
    ready_futures, rest_futures = ray.wait(futures, timeout=10, num_returns=1)
    # If we get back anything less than num_returns 
    if len(ready_futures) < 1:
        print(f"Timed out on {rest_futures}")
        # Canceling is a good idea for long-running, unneeded tasks
        ray.cancel(*rest_futures)
        # You should break since you exceeded your timeout
        break
    for id in ready_futures:
        print(f'completed value {id}, result {ray.get(id)}')
        futures = rest_futures

Canceling a task should not be part of your normal program flow.
If you find yourself having to frequently cancel tasks, you should
investigate what’s going on. Any subsequent calls to wait or get
for a canceled task are unspecified and could raise an exception or
return incorrect results.
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Another minor point that we skipped in the previous chapter is that while the
examples so far return only a single value, Ray remote functions can return multiple
values, as with regular Python functions.

Fault tolerance is an important consideration for those running in a distributed
environment. Say the worker executing the task dies unexpectedly (because either the
process crashed or the machine failed). Ray will rerun the task (after a delay) until
either the task succeeds or the maximum number of retries is exceeded. We cover
fault tolerance more in Chapter 5.

Composition of Remote Ray Functions
You can make your remote functions even more powerful by composing them.
The two most common methods of composition with remote functions in Ray are
pipelining and nested parallelism. You can compose your functions with nested
parallelism to express recursive functions. Ray also allows you to express sequential
dependencies without having to block or collect the result in the driver, known as
pipelining.

You can build a pipelined function by using ObjectRef objects from an earlier
ray.remote as parameters for a new remote function call. Ray will automatically
fetch the ObjectRef objects and pass the underlying objects to your function. This
approach allows for easy coordination between the function invocations. Addition‐
ally, such an approach minimizes data transfer; the result will be sent directly to the
node where execution of the second remote function is executed. A simple example
of such a sequential calculation is presented in Example 3-5.

Example 3-5. Ray pipelining/sequential remote execution with task dependency

@ray.remote
def generate_number(s: int, limit: int, sl: float) -> int :
   random.seed(s)
   time.sleep(sl)
   return random.randint(0, limit)

@ray.remote
def sum_values(v1: int, v2: int, v3: int) -> int :
   return v1+v2+v3

# Get result
print(ray.get(sum_values.remote(generate_number.remote(1, 10, .1),
       generate_number.remote(5, 20, .2), generate_number.remote(7, 15, .3))))

This code defines two remote functions and then starts three instances of the first
one. ObjectRef objects for all three instances are then used as input for the second
function. In this case, Ray will wait for all three instances to complete before starting
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4 You can then train multiple models in parallel and train each of the models using data parallel gradient
computations, resulting in nested parallelism.

to execute sum_values. You can use this approach not only for passing data but
also for expressing basic workflow style dependencies. There is no restriction on the
number of ObjectRef objects you can pass, and you can also pass “normal” Python
objects at the same time.

You cannot use Python structures (for example, lists, dictionaries, or classes) contain‐
ing ObjectRef instead of using ObjectRef directly. Ray waits for and resolves only
ObjectRef objects that are passed directly to a function. If you attempt to pass a
structure, you will have to do your own ray.wait and ray.get inside the function.
Example 3-6 is a variation of Example 3-5 that does not work.

Example 3-6. Broken sequential remote function execution with task dependency

@ray.remote
def generate_number(s: int, limit: int, sl: float) -> int :
   random.seed(s)
   time.sleep(sl)
   return random.randint(0, limit)

@ray.remote
def sum_values(values: []) -> int :
   return sum(values)

# Get result
print(ray.get(sum_values.remote([generate_number.remote(1, 10, .1),
       generate_number.remote(5, 20, .2), generate_number.remote(7, 15, .3)])))

Example 3-6 has been modified from Example 3-5 to take a list of ObjectRef
objects as parameters instead of ObjectRef objects themselves. Ray does not “look
inside” any structure being passed in. Therefore, the function will be invoked imme‐
diately, and since types won’t match, the function will fail with an error TypeError:
unsupported operand type(s) for +: 'int' and 'ray._raylet.ObjectRef'.
You could fix this error by using ray.wait and ray.get, but this would still launch
the function too early, resulting in unnecessary blocking.

In another composition approach, nested parallelism, your remote function launches
additional remote functions. This can be useful in many cases, including imple‐
menting recursive algorithms and combining hyperparameter tuning with parallel
model training.4 Let’s take a look at two ways to implement nested parallelism
(Example 3-7).

28 | Chapter 3: Remote Functions

https://oreil.ly/UdVmt


Example 3-7. Implementing nested parallelism

@ray.remote
def generate_number(s: int, limit: int) -> int :
   random.seed(s)
   time.sleep(.1)
   return randint(0, limit)

@ray.remote
def remote_objrefs():
   results = []
   for n in range(4):
       results.append(generate_number.remote(n, 4*n))
   return results

@ray.remote
def remote_values():
   results = []
   for n in range(4):
       results.append(generate_number.remote(n, 4*n))
   return ray.get(results)

print(ray.get(remote_values.remote()))
futures = ray.get(remote_objrefs.remote())
while len(futures) > 0:
    ready_futures, rest_futures = ray.wait(futures, timeout=600, num_returns=1)
    # If we get back anything less than num_returns, there was a timeout
    if len(ready_futures) < 1:
        ray.cancel(*rest_futures)
        break
    for id in ready_futures:
        print(f'completed result {ray.get(id)}')
        futures = rest_futures

This code defines three remote functions:

generate_numbers

A simple function that generates random numbers

remote_objrefs

Invokes several remote functions and returns resulting ObjectRef objects

remote_values

Invokes several remote functions, waits for their completion, and returns the
resulting values
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5 As an exercise, you can remove sleep from the function in Example 2-7 and you will see that execution
of remote functions on Ray takes several times longer than regular function invocation. Overhead is not
constant, but rather depends on your network, size of the invocation parameters, etc. For example, if you have
only small bits of data to transfer, the overhead will be lower than if you are transferring, say, the entire text of
Wikipedia as a parameter.

As you can see from this example, nested parallelism allows for two approaches.
In the first case (remote_objrefs), you return all the ObjectRef objects to the
invoker of the aggregating function. The invoking code is responsible for waiting
for all the remote functions’ completion and processing the results. In the second
case (remote_values), the aggregating function waits for all the remote functions’
executions to complete and returns the actual execution results.

Returning all of the ObjectRef objects allows for more flexibility with nonsequential
consumption, as described back in ray.await, but it is not suitable for many recur‐
sive algorithms. With many recursive algorithms (e.g., quicksort, factorial, etc.) we
have many levels of a combination step that need to be performed, requiring that the
results be combined at each level of recursion.

Ray Remote Best Practices
When you are using remote functions, keep in mind that you don’t want to make
them too small. If the tasks are very small, using Ray can take longer than if you used
Python without Ray. The reason for this is that every task invocation has a nontriv‐
ial overhead—for example, scheduling, data passing, inter-process communication
(IPC), and updating the system state. To get a real advantage from parallel execution,
you need to make sure that this overhead is negligible compared to the execution
time of the function itself.5

As described in this chapter, one of the most powerful features of Ray remote is
the ability to parallelize functions’ execution. Once you call the remote functions,
the handle to the remote object (future) is returned immediately, and the invoker
can continue execution either locally or with additional remote functions. If, at this
point, you call ray.get, your code will block, waiting for a remote function to
complete, and as a result, you will have no parallelism. To ensure parallelization of
your code, you should invoke ray.get only at the point when you absolutely need
the data to continue the main thread of execution. Moreover, as we’ve described, it is
recommended to use ray.wait instead of ray.get directly. Additionally, if the result
of one remote function is required for the execution of another remote function(s),
consider using pipelining (described previously) to leverage Ray’s task coordination.

When you submit your parameters to remote functions, Ray does not submit them
directly to the remote function, but rather copies the parameters into object storage
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and then passes ObjectRef as a parameter. As a result, if you send the same parame‐
ter to multiple remote functions, you are paying a (performance) penalty for storing
the same data to the object storage several times. The larger the size of the data, the
larger the penalty. To avoid this, if you need to pass the same data to multiple remote
functions, a better option is to first put the shared data in object storage and use the
resulting ObjectRef as a parameter to the function. We illustrate how to do this in
“Ray Objects” on page 56.

As we will show in Chapter 5, remote function invocation is done by the Raylet
component. If you invoke a lot of remote functions from a single client, all these
invocations are done by a single Raylet. Therefore, it takes a certain amount of time
for a given Raylet to process these requests, which can cause a delay in starting all
the functions. A better approach, as described in the “Ray Design Patterns” documen‐
tation, is to use an invocation tree—a nested function invocation as described in the
previous section. Basically, a client creates several remote functions, each of which, in
turn, creates more remote functions, and so on. In this approach, the invocations are
spread across multiple Raylets, allowing scheduling to happen faster.

Every time you define a remote function by using the @ray.remote decorator, Ray
exports these definitions to all Ray workers, which takes time (especially if you have a
lot of nodes). To reduce the number of function exports, a good practice is to define
as many of the remote tasks on the top level outside the loops and local functions
using them.

Bringing It Together with an Example
ML models composed of other models (e.g., ensemble models) are well suited to
evaluation with Ray. Example 3-8 shows what it looks like to use Ray’s function
composition for a hypothetical spam model for web links.

Example 3-8. Ensemble model

import random

@ray.remote
def fetch(url: str) -> Tuple[str, str]:
    import urllib.request
    with urllib.request.urlopen(url) as response:
       return (url, response.read())

@ray.remote
def has_spam(site_text: Tuple[str, str]) -> bool:
    # Open the list of spammers or download it
    spammers_url = (
        "https://raw.githubusercontent.com/matomo-org/" + 
        "referrer-spam-list/master/spammers.txt"
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    )
    import urllib.request
    with urllib.request.urlopen(spammers_url) as response:
            spammers = response.readlines()
            for spammer in spammers:
                if spammer in site_text[1]:
                    return True
    return False
            
    
@ray.remote
def fake_spam1(us: Tuple[str, str]) -> bool:
    # You should do something fancy here with TF or even just NLTK
    time.sleep(10)
    if random.randrange(10) == 1:
        return True
    else:
        return False
    
@ray.remote
def fake_spam2(us: Tuple[str, str]) -> bool:
    # You should do something fancy here with TF or even just NLTK
    time.sleep(5)
    if random.randrange(10) > 4:
        return True
    else:
        return False
    
@ray.remote
def combine_is_spam(us: Tuple[str, str], model1: bool, model2: bool, model3: bool) -> 
Tuple[str, str, bool]:
    # Questionable fake ensemble
    score = model1 * 0.2 + model2 * 0.4 + model3 * 0.4
    if score > 0.2:
        return True
    else:
        return False

By using Ray instead of taking the summation of the time to evaluate all the models,
you instead need to wait for only the slowest model, and all other models that
finish faster are “free.” For example, if the models take equal lengths of time to run,
evaluating these models serially, without Ray, would take almost three times as long.
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Conclusion
In this chapter, you learned about a fundamental Ray feature—remote functions’
invocation and their use in creating parallel asynchronous execution of Python across
multiple cores and machines. You also learned multiple approaches for waiting for
remote functions to complete execution and how to use ray.wait to prevent dead‐
locks in your code.

Finally, you learned about remote function composition and how to use it for rudi‐
mentary execution control (mini workflows). You also learned to implement nested
parallelism, enabling you to invoke several functions in parallel, with each of these
functions in turn invoking more parallel functions. In the next chapter, you will learn
how to manage state in Ray by using actors.
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CHAPTER 4

Remote Actors

In the previous chapter, you learned about Ray remote functions, which are useful for
the parallel execution of stateless functions. But what if you need to maintain a state
between invocations? Examples of such situations span from a simple counter to a
neural network during training to a simulator environment.

One option for maintaining state in these situations is to return the state along with
the result and pass it to the next call. Although technically this will work, this is not
the best solution, because of the large amount of data that has to be passed around
(especially as the size of the state starts to grow). Ray uses actors, which we will cover
in this chapter, to manage state.

Much like Ray’s remote functions, all Ray actors are remote actors,
even when running on the same machine.

In a nutshell, an actor is a computer process with an address (handle). This means
that an actor can also store things in memory, private to the actor process. Before
delving into the details of implementing and scaling Ray actors, let’s take a look
at the concepts behind them. Actors come from the actor model design pattern.
Understanding the actor model is key to effectively managing state and concurrency.

Understanding the Actor Model
The actor model was introduced by Carl Hewitt in 1973 to deal with concurrent
computation. The heart of this conceptual model is an actor, a universal primitive of
concurrent computation with its state.
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An actor has a simple job:

• Store data•
• Receive messages from other actors•
• Pass messages to other actors•
• Create additional child actors•

The data that an actor stores is private to the actor and isn’t visible from outside;
it can be accessed and modified only by the actor itself. Changing the actor’s state
requires sending messages to the actor that will modify the state. (Compare this to
using method calls in object-oriented programming.)

To ensure an actor’s state consistency, actors process one request at a time. All actor
method invocations are globally serialized for a given actor. To improve throughput,
people often create a pool of actors (assuming they can shard or replicate the actor’s
state).

The actor model is a good fit for many distributed system scenarios. Here are some
typical use cases where the actor model can be advantageous:

• You need to deal with a large distributed state that is hard to synchronize•
between invocations.

• You want to work with single-threaded objects that do not require significant•
interaction from external components.

In both situations, you would implement the standalone parts of the work inside an
actor. You can put each piece of independent state inside its own actor, and then any
changes to the state come in through the actor. Most actor system implementations
avoid concurrency issues by using only single-threaded actors.

Now that you know the general principles of the actor model, let’s take a closer look at
Ray’s remote actors.

Creating a Basic Ray Remote Actor
Ray implements remote actors as stateful workers. When you create a new remote
actor, Ray creates a new worker and schedules the actor’s methods on that worker.

A common example of an actor is a bank account. Let’s take a look at how to
implement an account by using Ray remote actors. Creating a Ray remote actor is as
simple as decorating a Python class with the @ray.remote decorator (Example 4-1).
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Example 4-1. Implementing a Ray remote actor

@ray.remote
class Account:
    def __init__(self, balance: float, minimal_balance: float):
        self.minimal = minimal_balance
        if balance < minimal_balance:
            raise Exception("Starting balance is less than minimal balance")
        self.balance = balance

    def balance(self) -> float:
        return self.balance

    def deposit(self, amount: float) -> float:
        if amount < 0:
            raise Exception("Cannot deposit negative amount")
        self.balance = self.balance + amount
        return self.balance

    def withdraw(self, amount: float) -> float:
        if amount < 0:
            raise Exception("Cannot withdraw negative amount")
        balance = self.balance - amount
        if balance < self.minimal:
            raise Exception("Withdrawal is not supported by current balance")
        self.balance = balance
        return balance

Throwing Exceptions in Ray Code
In both Ray remote functions and actors, you can throw exceptions. This will cause a
function/method throwing an exception to return immediately.

In the case of remote actors, after the exception is thrown, the actor will continue
running normally. You can use normal Python exception processing to deal with
exceptions in the method invoker code (see the following explanation).

The Account actor class itself is fairly simple and has four methods:

The constructor
Creates an account based on the starting and minimum balance. It also makes
sure that the current balance is larger than the minimal one and throws an
exception otherwise.

balance

Returns the current balance of the account. Because an actor’s state is private to
the actor, access to it is available only through the actor’s method.
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deposit

Deposits an amount to the account and returns a new balance.

withdraw

Withdraws an amount from the account and returns a new balance. It also
ensures that the remaining balance is greater than the predefined minimum
balance and throws an exception otherwise.

Now that you have defined the class, you need to use .remote to create an instance of
this actor (Example 4-2).

Example 4-2. Creating an instance of your Ray remote actor

account_actor = Account.remote(balance = 100.,minimal_balance=20.)

Actor Lifecycle
Actor lifetimes and metadata (e.g., IP address and port) are managed by GCS service,
which is currently a single point of failure. We cover the GCS in more detail in the
next chapter.

Each client of the actor may cache this metadata and use it to send tasks to the actor
directly over gRPC without querying the GCS. When an actor is created in Python,
the creating worker first synchronously registers the actor with the GCS. This ensures
correctness in case the creating worker fails before the actor can be created. Once
the GCS responds, the remainder of the actor creation process is asynchronous. The
creating worker process queues locally a special task known as the actor creation
task. This is similar to a normal nonactor task, except that its specified resources are
acquired for the lifetime of the actor process. The creator asynchronously resolves
the dependencies for the actor creation task and then sends it to the GCS service
to be scheduled. Meanwhile, the Python call to create the actor immediately returns
an actor handle that can be used even if the actor creation task has not yet been
scheduled.

An actor’s method execution is similar to a remote task invocation: it is submitted
directly to the actor process via gRPC, will not run until all ObjectRef dependencies
have been resolved, and returns futures. Note that no resource allocation is required
for an actor’s method invocation (it is performed during the actor’s creation), which
makes them faster than remote function invocation.

Here, account_actor represents an actor handle. These handles play an important
role in the actor’s lifecycle. Actor processes are terminated automatically when the
initial actor handle goes out of scope in Python (note that in this case, the actor’s state
is lost).
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You can create multiple distinct actors from the same class. Each
will have its own independent state.

As with an ObjectRef, you can pass an actor handle as a parameter to another actor
or Ray remote function or Python code.

Note that Example 4-1 uses the @ray.remote annotation to define an ordinary
Python class as a Ray remote actor. Alternatively, instead of using an annotation,
you can use Example 4-3 to convert a Python class into a remote actor.

Example 4-3. Creating an instance of a Ray remote actor without the decorator

Account = ray.remote(Account)
account_actor = Account.remote(balance = 100.,minimal_balance=20.)

Once you have a remote actor in place, you can invoke it by using Example 4-4.

Example 4-4. Invoking a remote actor

print(f"Current balance {ray.get(account_actor.balance.remote())}")
print(f"New balance {ray.get(account_actor.withdraw.remote(40.))}")
print(f"New balance {ray.get(account_actor.deposit.remote(30.))}")

It’s important to handle exceptions, which in the example can occur
in both the the deposit and withdrawal method’s code. To handle
the exceptions, you should augment Example 4-4 with try/except
clauses:

try:
  result = ray.get(account_actor.withdraw.remote(-40.))
except Exception as e:
  print(f"Oops! \{e} occurred.")

This ensures that the code will intercept all the exceptions thrown
by the actor’s code and implement all the necessary actions.

You can also create named actors by using Example 4-5.

Example 4-5. Creating a named actor

account_actor = Account.options(name='Account')\
    .remote(balance = 100.,minimal_balance=20.)
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1 Python exceptions are not considered system errors and will not trigger restarts. Instead, the exception will be
saved as the result of the call, and the actor will continue to run as normal.

Once the actor has a name, you can use it to obtain the actor’s handle from any place
in the code:

ray.get_actor('Account')

As defined previously, the default actor’s lifecycle is linked to the actor’s handle being
in scope.

An actor’s lifetime can be decoupled from its handle being in scope, allowing an
actor to persist even after the driver process exits. You can create a detached actor by
specifying the lifetime parameter as detached (Example 4-6).

Example 4-6. Making a detached actor

account_actor = Account.options(name='Account', lifetime='detached')\
    .remote(balance = 100.,minimal_balance=20.)

In theory, you can make an actor detached without specifying its name, but since
ray.get_actor operates by name, detached actors make the most sense with a name.
You should name your detached actors so you can access them, even after the actor’s
handle is out of scope. The detached actor itself can own any other tasks and objects.

In addition, you can manually delete actors from inside an actor, using
ray.actor.exit_actor, or by using an actor’s handle ray.kill(account_actor).
This can be useful if you know that you do not need specific actors anymore and want
to reclaim the resources.

As shown here, creating a basic Ray actor and managing its lifecycle is fairly easy,
but what happens if the Ray node on which the actor is running goes down for
some reason?1 The @ray.remote annotation allows you to specify two parameters that
control behavior in this case:

max_restarts

Specify the maximum number of times that the actor should be restarted when it
dies unexpectedly. The minimum valid value is 0 (default), which indicates that
the actor doesn’t need to be restarted. A value of -1 indicates that an actor should
be restarted indefinitely.

max_task_retries

Specifies the number of times to retry an actor’s task if the task fails because of
a system error. If set to -1, the system will retry the failed task until the task
succeeds, or the actor has reached its max_restarts limit. If set to n > 0, the

40 | Chapter 4: Remote Actors

https://oreil.ly/Dpskz
https://oreil.ly/VAHBm


2 In this implementation, we are using filesystem persistence, but you can use the same approach with other
types of persistence, such as S3 or databases.

system will retry the failed task up to n times, after which the task will throw a
RayActorError exception upon ray.get.

As further explained in the next chapter and in the Ray fault-tolerance documenta‐
tion, when an actor is restarted, Ray will re-create its state by rerunning its construc‐
tor. Therefore, if a state was changed during the actor’s execution, it will be lost. To
preserve such a state, an actor has to implement its custom persistence.

In our example case, the actor’s state is lost on failure since we haven’t used actor
persistence. This might be OK for some use cases but is not acceptable for others—
see also the Ray documentation on design patterns. In the next section, you will learn
how to programmatically implement custom actor persistence.

Implementing the Actor’s Persistence
In this implementation, the state is saved as a whole, which works well enough if the
size of the state is relatively small and the state changes are relatively rare. Also, to
keep our example simple, we use local disk persistence. In reality, for a distributed
Ray case, you should consider using Network File System (NFS), Amazon Simple
Storage Service (S3), or a database to enable access to the actor’s data from any node
in the Ray cluster.

A persistent Account actor is presented in Example 4-7.2

Actor’s Persistence with Event Sourcing
Because the actor model defines an actor’s interactions through messages, another
common approach to actor’s persistence used in many commercial implementations
is event sourcing: persisting a state as a sequence of state-changing events. This
approach is especially important when the size of the state is large and events are
relatively small because it significantly decreases the amount of data saved for every
actor’s invocation and consequently improves actors’ performance. This implementa‐
tion can be arbitrarily complex and include various optimization techniques such as
snapshotting.
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Example 4-7. Defining a persistent actor, using filesystem persistence

@ray.remote
class Account:
    def __init__(self, balance: float, minimal_balance: float, account_key: str,
        basedir: str = '.'):
        self.basedir = basedir
        self.key = account_key
        if not self.restorestate():
            if balance < minimal_balance:
                raise Exception("Starting balance is less than minimal balance")
            self.balance = balance
            self.minimal = minimal_balance
            self.storestate()

    def balance(self) -> float:
        return self.balance

    def deposit(self, amount: float) -> float:
        if amount < 0:
            raise Exception("Cannot deposit negative amount")
        self.balance = self.balance + amount
        self.storestate()
        return self.balance

    def withdraw(self, amount: float) -> float:
        if amount < 0:
            raise Exception("Cannot withdraw negative amount")
        balance = self.balance - amount
        if balance < self.minimal:
            raise Exception("Withdrawal is not supported by current balance")
        self.balance = balance
        self.storestate()
        return balance

    def restorestate(self) -> bool:
        if exists(self.basedir + '/' + self.key):
            with open(self.basedir + '/' + self.key, "rb") as f:
                bytes = f.read()
            state = ray.cloudpickle.loads(bytes)
            self.balance = state['balance']
            self.minimal = state['minimal']
            return True
        else:
            return False

    def storestate(self):
        bytes = ray.cloudpickle.dumps(
            {'balance' : self.balance, 'minimal' : self.minimal})
        with open(self.basedir + '/' + self.key, "wb") as f:
            f.write(bytes)
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If we compare this implementation with the original in Example 4-1, we will notice
several important changes:

• Here the constructor has two additional parameters: account_key and basedir.•
The account key is a unique identifier for the account that is also used as the
name of the persistence file. The basedir parameter indicates a base directory
used for storing persistence files. When the constructor is invoked, we first
check whether a persistent state for this account is saved, and if there is one, we
ignore the passed-in balance and minimum balance and restore them from the
persistence state.

• Two additional methods are added to the class: store_state and restore_state.•
The store_states is a method that stores an actor state into a file. State infor‐
mation is represented as a dictionary with keys as names of the state elements
and values as the state elements, values. We are using Ray’s implementation of
cloud pickling to convert this dictionary to the byte string and then write this
byte string to the file, defined by the account key and base directory. (Chapter 5
provides a detailed discussion of cloud pickling.) The restore_states method
restores the state from a file defined by an account key and base directory. The
method reads a binary string from the file and uses Ray’s implementation of
cloud pickling to convert it to the dictionary. Then it uses the content of the
dictionary to populate the state.

• Finally, both deposit and withdraw methods, which are changing the state, use•
the store_state method to update persistence.

The implementation shown in Example 4-7 works fine, but our account actor imple‐
mentation now contains too much persistence-specific code and is tightly coupled
to file persistence. A better solution is to separate persistence-specific code into a
separate class.

We start by creating an abstract class defining methods that have to be implemented
by any persistence class (Example 4-8).

Example 4-8. Defining a base persistence class

class BasePersitence:
    def exists(self, key:str) -> bool:
        pass
    def save(self, key: str, data: dict):
        pass
    def restore(self, key:str) -> dict:
        pass

Implementing the Actor’s Persistence | 43

https://oreil.ly/sI7Me


This class defines all the methods that have to be implemented by a concrete persis‐
tence implementation. With this in place, a file persistence class implementing base
persistence can be defined as shown in Example 4-9.

Example 4-9. Defining a file persistence class

class FilePersistence(BasePersitence):
    def __init__(self, basedir: str = '.'):
        self.basedir = basedir

    def exists(self, key:str) -> bool:
        return exists(self.basedir + '/' + key)

    def save(self, key: str, data: dict):
        bytes = ray.cloudpickle.dumps(data)
        with open(self.basedir + '/' + key, "wb") as f:
            f.write(bytes)

    def restore(self, key:str) -> dict:
        if not self.exists(key):
            return None
        else:
            with open(self.basedir + '/' + key, "rb") as f:
                bytes = f.read()
            return ray.cloudpickle.loads(bytes)

This implementation factors out most of the persistence-specific code from our
original implementation in Example 4-7. Now it is possible to simplify and generalize
an account implementation; see Example 4-10.

Example 4-10. Implementing a persistent actor with pluggable persistence

@ray.remote
class Account:
    def __init__(self, balance: float, minimal_balance: float, account_key: str,
                 persistence: BasePersitence):
        self.persistence = persistence
        self.key = account_key
        if not self.restorestate():
            if balance < minimal_balance:
                raise Exception("Starting balance is less than minimal balance")
            self.balance = balance
            self.minimal = minimal_balance
            self.storestate()

    def balance(self) -> float:
        return self.balance

    def deposit(self, amount: float) -> float:
        if amount < 0:
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            raise Exception("Cannot deposit negative amount")
        self.balance = self.balance + amount
        self.storestate()
        return self.balance

    def withdraw(self, amount: float) -> float:
        if amount < 0:
            raise Exception("Cannot withdraw negative amount")
        balance = self.balance - amount
        if balance < self.minimal:
            raise Exception("Withdrawal is not supported by current balance")
        self.balance = balance
        self.storestate()
        return balance

    def restorestate(self) -> bool:
        state = self.persistence.restore(self.key)
        if state != None:
            self.balance = state['balance']
            self.minimal = state['minimal']
            return True
        else:
            return False

    def storestate(self):
        self.persistence.save(self.key,
                    {'balance' : self.balance, 'minimal' : self.minimal})

Only the code changes from our original persistent actor implementation (Exam‐
ple 4-7) are shown here. Note that the constructor is now taking the Base
Persistence class, which allows for easily changing the persistence implementation
without changing the actor’s code. Additionally, the restore_state and savestate
methods are generalized to move all the persistence-specific code to the persistence
class.

This implementation is flexible enough to support different persistence implemen‐
tations, but if a persistence implementation requires permanent connections to a
persistence source (for example, a database connection), it can become unscalable by
simultaneously maintaining too many connections. In this case, we can implement
persistence as an additional actor. But this requires scaling of this actor. Let’s take a
look at the options that Ray provides for scaling actors.

Scaling Ray Remote Actors
The original actor model described earlier in this chapter typically assumes that
actors are lightweight (e.g., contain a single piece of state) and do not require scaling
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3 A coarse-grained actor is a single actor that may contain multiple pieces of state. In contrast, in a fine-grained
approach, each piece of state would be represented as a separate actor. This is similar to the concept of
coarse-grained locking.

or parallelization. In Ray and similar systems (including Akka), actors are often used
for coarser-grained implementations and can require scaling.3

As with Ray remote functions, you can scale actors both horizontally (across pro‐
cesses/machines) with pools, or vertically (with more resources). “Resources / Vertical
Scaling” on page 62 covers how to request more resources, but for now, let’s focus on
horizontal scaling.

You can add more processes for horizontal scaling with Ray’s actor pool, provided
by the ray.util module. This class is similar to a multiprocessing pool and lets you
schedule your tasks over a fixed pool of actors.

The actor pool effectively uses a fixed set of actors as a single entity and manages
which actor in the pool gets the next request. Note that actors in the pool are still
individual actors and their state is not merged. So this scaling option works only
when an actor’s state is created in the constructor and does not change during the
actor’s execution.

Let’s take a look at how to use an actor’s pool to improve the scalability of our account
class by adding an actor’s pool in Example 4-11.

Example 4-11. Using an actor’s pool for implementing persistence

pool = ActorPool([
    FilePersistence.remote(), FilePersistence.remote(), FilePersistence.remote()])

@ray.remote
class Account:
    def __init__(self, balance: float, minimal_balance: float,
            account_key: str, persistence: ActorPool):
        self.persistence = persistence
        self.key = account_key
        if not self.restorestate():
            if balance < minimal_balance:
                raise Exception("Starting balance is less than minimal balance")
            self.balance = balance
            self.minimal = minimal_balance
            self.storestate()

    def balance(self) -> float:
        return self.balance

    def deposit(self, amount: float) -> float:
        if amount < 0:
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            raise Exception("Cannot deposit negative amount")
        self.balance = self.balance + amount
        self.storestate()
        return self.balance

    def withdraw(self, amount: float) -> float:
        if amount < 0:
            raise Exception("Cannot withdraw negative amount")
        balance = self.balance - amount
        if balance < self.minimal:
            raise Exception("Withdrawal is not supported by current balance")
        self.balance = balance
        self.storestate()
        return balance

    def restorestate(self) -> bool:
        while(self.persistence.has_next()):
            self.persistence.get_next()
        self.persistence.submit(lambda a, v: a.restore.remote(v), self.key)
        state = self.persistence.get_next()
        if state != None:
            print(f'Restoring state {state}')
            self.balance = state['balance']
            self.minimal = state['minimal']
            return True
        else:
            return False

    def storestate(self):
        self.persistence.submit(
            lambda a, v: a.save.remote(v),
            (self.key,
             {'balance' : self.balance, 'minimal' : self.minimal}))

account_actor = Account.options(name='Account').remote(
    balance=100.,minimal_balance=20.,
    account_key='1234567', persistence=pool)

Only the code changes from our original implementation are shown here. The code
starts by creating a pool of three identical file persistence actors, and then this pool is
passed to an account implementation.

The syntax of a pool-based execution is a lambda function that takes two parameters:
an actor reference and a value to be submitted to the function. The limitation here
is that the value is a single object. One of the solutions for functions with multiple
parameters is to use a tuple that can contain an arbitrary number of components. The
function itself is defined as a remote function on the required actor’s method.
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An execution on the pool is asynchronous (it routes requests to one of the remote
actors internally). This allows faster execution of the store_state method, which
does not need the results from data storage. Here implementation is not waiting for
the result’s state storage to complete; it just starts the execution. The restore_state
method, on another hand, needs the result of pool invocation to proceed. A pool
implementation internally manages the process of waiting for execution results to
become ready and exposes this functionality through the get_next function (note
that this is a blocking call). The pool’s implementation manages a queue of execution
results (in the same order as the requests). Whenever we need to get a result from the
pool, we therefore must first clear out the pool results queue to ensure that we get the
right result.

In addition to the multiprocessing-based scaling provided by the actor’s pool, Ray
supports scaling of the actor’s execution through concurrency. Ray offers two types of
concurrency within an actor: threading and async execution.

When using concurrency inside actors, keep in mind that Python’s global interpreter
lock (GIL) will allow only one thread of Python code running at once. Pure Python
will not provide true parallelism. On another hand, if you invoke NumPy, Cython,
TensorFlow, or PyTorch code, these libraries will release the GIL when calling into
C/C++ functions. By overlapping the time waiting for I/O or working in native
libraries, both threading and async actor execution can achieve some parallelism.

The asyncio library can be thought of as cooperative multitasking: your code or
library needs to explicitly signal that it is waiting on a result, and Python can go
ahead and execute another task by explicitly switching execution context. asyncio
works by having a single process running through an event loop and changing which
task it is executing when a task yields/awaits. asyncio tends to have lower overhead
than multithreaded execution and can be a little easier to reason about. Ray actors,
but not remote functions, integrate with asyncio, allowing you to write asynchronous
actor methods.

You should use threaded execution when your code spends a lot of time blocking but
not yielding control by calling await. Threads are managed by the operating system
deciding when to run which thread. Using threaded execution can involve fewer code
changes, as you do not need to explicitly indicate where your code is yielding. This
can also make threaded execution more difficult to reason about.

You need to be careful and selectively use locks when accessing or modifying objects
with both threads and asyncio. In both approaches, your objects share the same
memory. By using locks, you ensure that only one thread or task can access the
specific memory. Locks have some overhead (which increases as more processes or
threads are waiting on a lock). As a result, an actor’s concurrency is mostly applicable
for use cases when a state is populated in a constructor and never changes.
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To create an actor that uses asyncio, you need to define at least one async method.
In this case, Ray will create an asyncio event loop for executing the actor’s methods.
Submitting tasks to these actors is the same from the caller’s perspective as submitting
tasks to a regular actor. The only difference is that when the task is run on the actor,
it is posted to an asyncio event loop running in a background thread or thread pool
instead of running directly on the main thread. (Note that using blocking ray.get or
ray.wait calls inside an async actor method is not allowed, because they will block
the execution of the event loop.)

Example 4-12 presents an example of a simple async actor.

Example 4-12. Creating a simple async actor

@ray.remote
class AsyncActor:
    async def computation(self, num):
        print(f'Actor waiting for {num} sec')
        for x in range(num):
            await asyncio.sleep(1)
            print(f'Actor slept for {x+1} sec')
        return num

Because the method computation is defined as async, Ray will create an async actor.
Note that unlike ordinary async methods, which require await to invoke them, using
Ray async actors does not require any special invocation semantics. Additionally, Ray
allows you to specify the max concurrency for the async actor’s execution during the
actor’s creation:

actor = AsyncActor.options(max_concurrency=5).remote()

To create a threaded actor, you need to specify max_concurrency during actor cre‐
ation (Example 4-13).

Example 4-13. Creating a simple threaded actor

@ray.remote
class ThreadedActor:
  def computation(self, num):
    print(f'Actor waiting for \{num} sec')
    for x in range(num):
      sleep(1)
      print(f'Actor slept for \{x+1} sec')
    return num

actor = ThreadedActor.options(max_concurrency=3).remote()
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Because both async and threaded actors are use max_concurrency,
the type of actor created might be a little confusing. The thing
to remember is that if max_concurrency is used, the actor can be
either async or threaded. If at least one of the actor’s methods is
async, the actor is async; otherwise, it is a threaded one.

So, which scaling approach should we use for our implementation? “Multiprocessing
vs. Threading vs. AsyncIO in Python” by Lei Mao provides a good summary of
features for various approaches (Table 4-1).

Table 4-1. Comparing scaling approaches for actors

Scaling approach Feature Usage criteria
Actor pool Multiple processes, high CPU utilization CPU bound

Async actor Single process, single thread, cooperative multitasking, tasks
cooperatively decide on switching

Slow I/O bound

Threaded actor Single process, multiple threads, preemptive multitasking, OS
decides on task switching

Fast I/O bound and nonasync libraries
you do not control

Ray Remote Actors Best Practices
Because Ray remote actors are effectively remote functions, all the Ray remote best
practices described in the previous chapter are applicable. In addition, Ray has some
actor-specific best practices.

As mentioned before, Ray offers support for actors’ fault tolerance. Specifically
for actors, you can specify max_restarts to automatically enable restarting for
Ray actors. When your actor or the node hosting that actor crashes, the actor
will be automatically reconstructed. However, this doesn’t provide ways for you to
restore application-level states in your actor. Consider actor persistence approaches,
described in this chapter to ensure restoration of execution-level states as well.

If your applications have global variables that you have to change, do not change
them in remote functions. Instead, use actors to encapsulate them and access them
through the actor’s methods. This is because remote functions are running in differ‐
ent processes and do not share the same address space. As a result, these changes are
not reflected across Ray driver and remote functions.

One of the common application use cases is the execution of the same remote
function many times for different datasets. Using the remote functions directly can
cause delays because of the creation of new processes for function. This approach can
also overwhelm the Ray cluster with a large number of processes. A more controlled
option is to use the actor’s pool. In this case, a pool provides a controlled set of
workers that are readily available (with no process creation delay) for execution. As
the pool is maintaining its requests queue, the programming model for this option
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is identical to starting independent remote functions but provides a better-controlled
execution environment.

Conclusion
In this chapter, you learned how to use Ray remote actors to implement stateful
execution in Ray. You learned about the actor model and how to implement Ray
remote actors. Note that Ray internally heavily relies on using actors—for example,
for multinode synchronization, streaming (see Chapter 6), and microservices imple‐
mentation (see Chapter 7). It is also widely used for ML implementations; see, for
example, use of actors for implementing a parameter server.

You also learned how to improve an actor’s reliability by implementing an actor’s
persistence and saw a simple example of persistence implementation.

Finally, you learned about the options that Ray provides for scaling actors, their
implementation, and trade-offs.

In the next chapter, we will discuss additional Ray design details.
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1 Some distributed systems can survive failure of head nodes; systems such as Apache ZooKeeper and algo‐
rithms like Paxos or Raft use multiple computers to monitor and restart jobs with a voting system. If you
need to handle head node failure, you can write your own recovery logic, but this is complicated to do right.
Instead, a system like Spark, which has integrated job restarts, may be a better option.

CHAPTER 5

Ray Design Details

Now that you’ve created and worked with remote functions and actors, it’s time to
learn what’s happening behind the scenes. In this chapter, you will learn about impor‐
tant distributed system concepts, like fault tolerance, Ray’s resource management,
and ways to speed up your remote functions and actors. Many of these details are
most important when using Ray in a distributed fashion, but even local users benefit.
Having a solid grasp of the way Ray works will help you decide how and when to
use it.

Fault Tolerance
Fault tolerance refers to how a system will handle failures of everything from user
code to the framework itself or the machines it runs on. Ray has a different fault tol‐
erance mechanism tailored for each system. Like many systems, Ray cannot recover
from the head node failing.1

Some nonrecoverable errors exist in Ray, which you cannot (at
present) configure away. If the head node, GCS, or connection
between your application and the head node fails, your application
will fail and cannot be recovered by Ray. If you require fault tol‐
erance for these situations, you will have to roll your own high
availability, likely using ZooKeeper or similar lower-level tools.
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2 Pub/sub systems allow processes to subscribe to updates by categories.

Overall, Ray’s architecture (see Figure 5-1) consists of an application layer and a
system layer, both of which can handle failures.

Figure 5-1. Overall Ray architecture

The system layer consists of three major components: a GCS, a distributed scheduler,
and a distributed object store. Except for the GCS, all components are horizontally
scalable and fault-tolerant.

At the heart of Ray’s architecture is the GCS that maintains the entire control state
of the system. Internally, the GCS is a key/value store with pub/sub functionality.2 At
present, the GCS is a single point of failure and runs on the head node.

Using GCS, which centrally maintains Ray’s state, significantly simplifies overall
architecture by enabling the rest of the system layer components to be stateless.
This design is fundamental for fault tolerance (i.e., on failure, components simply
restart and read the lineage from the GCS) and makes it easy to scale the distributed
object store and scheduler independently, as all components share the needed state
via the GCS.
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Since remote functions do not contain any persistent state, recovering from their
failure is relatively simple. Ray will try again until it succeeds or reaches a maximum
number of retries. As seen in the previous chapter, you can control the number of
retries through the max_retries parameter in the @ray.remote annotation. To try
out and better understand Ray’s fault tolerance, write a flaky remote function that
fails a certain percentage of the time, as shown in Example 5-1.

Example 5-1. Auto retry remote function

@ray.remote
def flaky_remote_fun(x):
    import random
    import sys
    if random.randint(0, 2) == 1:
        sys.exit(0)
    return x

r = flaky_remote_fun.remote(1)

If your flaky function fails, you will see WARNING worker.py:1215 -- A worker
died or was killed while executing a task by an unexpected system error.

output to stderr. You’ll still get back the correct value when you execute ray.get,
demonstrating Ray’s fault tolerance.

Alternatively, to see fault tolerance in action, if you’re running a
distributed Ray cluster, you can find the node running your remote
function by returning the hostname and then shut down the node
while running a request.

Remote actors are a complicated case for fault tolerance as they contain state within
them. This is why in Chapter 4 you explored options for persisting and recovering
that state. Actors can experience failure at any stage: setup, message processing, or
between messages.

Unlike for remote functions, if an actor fails while processing a message, Ray does
not automatically retry it. This is true even if you have set max_restarts. Ray will
restart your actor for processing the next message. On error, you will get back a
RayActorError exception.

Ray actors are lazily initialized, so failure during the init stage is the
same as failing on the first message.
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When an actor fails between messages, Ray automatically attempts to recover the
actor the next time it is called, up to max_retries times. If you’ve written your state
recovery code well, failures between messages are generally invisible besides slightly
slower processing times. If you don’t have state recovery, each restart will reset the
actor to the initial values.

If your application fails, nearly all of the resources your application was using will
eventually be garbage collected. The one exception is detached resources, such as
detached actors or detached placement groups. Ray will restart these as configured
beyond the life of your current program, provided the cluster does not fail. This can
prevent your cluster from scaling down, as Ray will not release the resources.

Ray does not automatically attempt to re-create lost objects after they are first stored.
You can configure Ray to try to re-create lost objects when accessed. In the next
section, you’ll learn more about Ray objects and how to configure that resiliency.

Ray Objects
Ray objects can contain anything serializable (covered in the next section), including
references to other Ray objects, called ObjectRefs. An ObjectRef is essentially a
unique ID that refers to a remote object and is conceptually similar to futures. Ray
objects are created automatically for task results, and large parameters of actors and
remote functions. You can manually create objects by calling ray.put, which will
return an immediately ready ObjectRef—for example, o = ray.put(1).

In general, small objects are initially stored in their owner’s in-
process store, while Ray stores large objects on the worker that
generates them. This allows Ray to balance each object’s memory
footprint and resolution time.

The owner of an object is the worker that created the initial ObjectRef, by submitting
the creating task or calling ray.put. The owner manages the lifetime of the object
through reference counting.

Reference counting makes it especially important when defining
objects to set them to None when you are done with them or make
sure they go out of scope. Ray’s reference counting is susceptible to
circular references, where objects refer to each other. Printing the
objects stored in the cluster by running ray memory --group-by
STACK_TRACE can be a good way to find objects Ray cannot garbage
collect.
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Ray objects are immutable; they cannot be modified. It’s important to note that if you
change an object you’ve read from Ray (e.g., with ray.get) or stored in Ray (e.g.,
with ray.put), that change won’t be reflected in the object store. See Example 5-2.

Example 5-2. Immutable Ray objects

remote_array = ray.put([1])
v = ray.get(remote_array)
v.append(2)
print(v)
print(ray.get(remote_array))

When you run this code, you can see that while you can mutate a value, the change
won’t propagate to the object store.

If a parameter or return value is large and used more than once, or medium-sized
and used frequently, storing it explicitly as an object can be worthwhile. You can
then use the ObjectRef in place of the regular parameter, and Ray will automatically
translate the ObjectRef into a Python type for you, as shown in Example 5-3.

Example 5-3. Using ray.put

import numpy as np
@ray.remote
def sup(x):
    import random
    import sys
    return len(x)

p = ray.put(np.array(range(0, 1000)))
ray.get([sup.remote(p), sup.remote(p), sup.remote(p)])

When another node needs an object, it asks the owner who has any copies of the
object and then fetches and creates a local copy of that object. Therefore, many
copies of the same object can exist in object stores on different nodes. Ray does not
proactively replicate objects, so it is also possible that Ray may have only one copy of
an object.

By default, Ray will raise an ObjectLostError when you attempt to get a lost object.
You can enable recomputing by providing enable_object_reconstruction=True to
ray.init or adding --enable-object-reconstruction to ray start. This recom‐
putation, which uses information in the GCS, will happen only when the object is
needed (reconstruction is lazy on resolution).

We can lose an object in two ways. Since the owner is responsible for reference
counting, if the owner is lost, the object is lost, regardless of whether other copies of
the object exist. If no copies of an object remain (e.g., all the nodes storing it die), Ray
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3 This process uses the same algorithm as Python.
4 This has the same cycle problem as Python.

also loses the object. (This case is distinct because the object may be stored only on
nodes different from the owner.)

Ray will follow the max_retries limit discussed previously during
reconstruction.

Ray’s object store uses reference-counting garbage collection to clean up objects that
your program doesn’t need anymore.3 The object store keeps track of both direct and
indirect references.4

Even with garbage collection, an object store can fill up with objects. When an object
store fills up, Ray will first execute garbage collection, removing objects with no
references. If memory pressure remains, the object store will attempt to spill to disk.
Spilling to disk copies objects from memory to disk and is called spilling since it
happens when memory usage overflows.

Earlier versions of Ray had the capability to evict objects per actor
by setting an object_store_memory limit.

You might want to fine-tune the object store settings. Depending on your use case,
you may need more or less memory for the object store. You configure the object
store through the _system_config settings. Two important configuration options
include the minimum aggregate size to spill to disk, min_spilling_size, and total
memory allocated to the object store, object_store_memory_mb. You can set these
when calling ray.init, as shown in Example 5-4.

If you have a mixture of fast and slow disks—for example, solid-state drive (SSD),
hard disk drive (HDD), and network—you should consider using the faster stor‐
age for spilled objects. Unlike the rest of the storage configs, you configure the
spilled object storage location with a nested JavaScript Object Notation (JSON) blob.
Like the rest of the object store settings, object_spilling_config is stored under
_system_config. This is a bit counterintuitive, but if your machine had fast tempo‐
rary storage at /tmp/fast, you would configure Ray to use it as in Example 5-4.
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Example 5-4. Ray object store configuration

    ray.init(num_cpus=20,
         _system_config={
            "min_spilling_size": 1024 * 1024,  # Spill at least 1 MB
            "object_store_memory_mb": 500,
            "object_spilling_config": json.dumps(
                {"type": "filesystem", "params": {"directory_path": "/tmp/fast"}},
                )
             })

Frameworks like Ray use serialization to pass both data and functions among work‐
ers. Before Ray can transfer an object into the object store, it must serialize the object.

Serialization/Pickling
Ray, and systems like it, depend on serialization to be able to store and move data
(and functions) among processes. (These processes can be on the same or different
nodes.) Not all objects are serializable, and as a result, cannot move among workers.
In addition to the object store and IPC, fault tolerance depends on serialization, so
the same restrictions apply.

There are many kinds of serialization, from multilanguage data-only tools like JSON
and Arrow to Python’s internal pickle. Serializing with pickle is called pickling. Pick‐
ling can handle a wider range of types than JSON, but can be used only between
Python processes. Pickling does not work for all objects—in most cases, there is no
good way to serialize (like a network connection), and in other cases, this is because
no one has had the time to implement one.

In addition to communicating among processes, Ray also has a shared in-memory
object store. This object store allows multiple processes on the same computer to
share objects.

Ray uses a few serialization techniques, depending on the use case. With some
exceptions, Ray’s Python libraries generally use a fork of cloudpickle, an improved
pickle. For datasets, Ray tries to use Arrow and will fall back to cloudpickle when
Arrow does not work. Ray’s Java libraries use a variety of serializers, including Fast
Serialization and MessagePack. Internally, Ray uses Google Protocol Buffers between
workers. As a Ray Python developer, you will benefit the most from an in-depth
understanding of the cloudpickle and Arrow serialization tools.

cloudpickle
The cloudpickle tool serializes the functions, actors, and most of the data in Ray.
Most nondistributed Python code doesn’t depend on serializing functions. However,
cluster computing often does require serializing functions. The cloudpickle project is
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designed for cluster computing and can serialize and deserialize more functions than
Python’s built-in pickle.

If you are uncertain why some data is not serializable, you can
either try looking at the stack traces or use the Ray function
ray.util.inspect_serializability.

When pickling classes, cloudpickle still uses the same extension mechanisms (get
newargs, getstate, setstate, etc.) as pickling. You can write a custom serializer if
you have a class with nonserializable components, such as a database connection.
While this won’t allow you to serialize things like database connections, you can
instead serialize the information required to create a similar object. Example 5-5 takes
this approach by serializing a class containing a thread pool.

Example 5-5. Custom serializer

import ray.cloudpickle as pickle
from multiprocessing import Pool
pickle

class BadClass:
    def __init__(self, threadCount, friends):
        self.friends = friends
        self.p = Pool(threadCount) # not serializable

i = BadClass(5, ["boo", "boris"])
# This will fail with a "NotImplementedError: pool objects cannot be passed between 
# processes or pickled"
# pickle.dumps(i)

class LessBadClass:
    def __init__(self, threadCount, friends):
        self.friends = friends
        self.p = Pool(threadCount)
    def __getstate__(self):
        state_dict = self.__dict__.copy()
        # We can't move the threads but we can move the info to make a pool 
        # of the same size
        state_dict["p"] = len(self.p._pool)
        return state_dict
    def __setsate__(self):
        self.__dict__.update(state)
        self.p = Pool(self.p)
k = LessBadClass(5, ["boo", "boris"])
pickle.loads(pickle.dumps(k))
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Alternatively, Ray allows you to register serializers for classes. This approach allows
you to change the serialization of classes that are not your own, as shown in
Example 5-6.

Example 5-6. Custom serializer, external class

def custom_serializer(bad):
    return {"threads": len(bad.p._pool), "friends": bad.friends}

def custom_deserializer(params):
    return BadClass(params["threads"], params["friends"])

# Register serializer and deserializer the BadClass:
ray.util.register_serializer(
  BadClass, serializer=custom_serializer, deserializer=custom_deserializer)
ray.get(ray.put(i))

Otherwise, you would need to subclass and extend the classes, which can make your
code difficult to read when working with external libraries.

cloudpickle requires that the version of Python loading and the
version of Python reading are exactly the same. This requirement
carries forward and means that all of Ray’s workers must have the
same Python version.

Apache Arrow
As mentioned before, Ray uses Apache Arrow to serialize datasets when possible. Ray
DataFrames can have types that are not supported by Arrow. Under the hood, Ray
performs schema inference or translation when loading data into datasets. If Arrow
cannot represent a type, Ray serializes the dataset by using lists via cloudpickle.

Arrow works with many data processing and ML tools, including pandas, PySpark,
TensorFlow, and Dask. Arrow is a columnar format with a strongly typed schema. It
is generally more space-efficient than pickling, and it can be used not only between
different versions of Python but also between programming languages—for example,
Rust, C, Java, Python, and Compute Unified Device Architecture (CUDA).

Not all tools using Arrow support all the same data types. For
example, Arrow supports nested columns, which pandas does not.
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gRPC
gRPC is a modern, open source, high-performance Remote Procedure Call frame‐
work that can run in any environment. While you won’t interact directly with gRPC
in the same way you do with cloudpickle and Arrow, gRPC forms the foundation
of communication inside Ray. gRPC uses Protocol Buffers for serialization, which
is incredibly fast for small objects. Larger objects are serialized with Arrow or cloud‐
pickle and put in Ray’s object store. Like Arrow, gRPC, and Protocol Buffers have
native implementations in all of the languages used in Ray.

Resources / Vertical Scaling
By default, Ray assumes that all functions and actors have the same resource require‐
ments (e.g., one CPU). For actors or functions with different resource requirements,
you can specify the resources needed. The scheduler will attempt to find a node that
has these resources available, and if there are none, the autoscaler, covered next, will
attempt to allocate a node that meets those requirements.

The ray.remote decorator takes num_cpus, num_gpus, and memory as parameters to
indicate the amount of resources an actor or remote function will consume. The
defaults are one CPU and zero GPUs.

When no CPU requirements are specified, the resource allocation
behavior is different for remote functions and actors. For remote
functions, one CPU is required for both allocation and running.
Alternatively, for actors, if no CPU resources are specified, Ray
uses one CPU for scheduling and zero CPUs for running. This
means the actor cannot get scheduled on a zero-CPU node, but
an infinite number can run on any nonzero-CPU node. On the
other hand, if resources are specified explicitly, they are required
for both scheduling and running. We recommend always explicitly
specifying CPU resource requirements and not relying on defaults.

To override the default resource value, specify required resources in the @ray.remote
annotation. For example, using the annotation @ray.remote(num_cpus=4,

num_gpus=2) will request four CPUs and two GPUs for function execution.

Most resource requests in Ray are soft, which means that Ray does
not enforce or guarantee the limits, but does its best to try to meet
them.
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5 Specifying a memory requirement does not impose any limits on memory usage. The requirements are used
for admission control during scheduling only (similar to the way CPU scheduling works in Ray). It is up to
the task itself to not use more memory than it requested.

If you know the amount of memory a task or actor requires, you can specify it in
the resource requirements of its ray.remote annotation to enable memory-aware
scheduling.5 For example, @ray.remote(memory=500 * 1024 * 1024) will request
500 MiB of memory for this task.

Ray Memory Usage
Ray memory usage is split into two main groups: memory used by Ray itself (Ray
system memory) and memory used by applications (Ray application memory). Ray’s
system memory currently comprises the following:

Redis
Memory used for storing the list of nodes and actors present in the cluster. The
amount of memory used for these purposes is typically quite small.

Raylet
Memory used by the C++ Raylet process running on each node. This cannot be
controlled but is typically quite small.

Ray application memory comprises the following:

Worker heap
Memory used by the users’ application, best measured as the resident set size
(RSS) of your application minus its shared memory usage (SHR) in commands
such as top.

Object store memory
Memory used when your application creates objects in the object store via
ray.put and when returning values from remote functions. Objects are evicted
when they fall out of scope. An object store server is running on each node.
Objects will be spilled to disk if the object store fills up.

Object store shared memory
Memory used when your application reads objects via ray.get.

To help you to debug some memory issues, Ray provides a ray memory command that
can be invoked from the command line from the machine where the Ray node is
running (at the time of this writing, there is no corresponding API). This command
allows you to get a dump of all of the ObjectRef references that are currently held
by the driver, actors, and tasks in the cluster. This allows you to track down any
ObjectRef references in scope that may be causing an ObjectStoreFullError.
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Ray can also keep track of and assign custom resources by using the same mechanism
as memory and CPU resources. When the worker process is starting, it needs to
know all of the resources that are present. For manually launched workers, you
specify the custom resources with a --resources argument. For example, on a mixed
architecture cluster, you might want to add --resources=\{"x86": "1"} to the
x86 nodes and --resources\{"arm64":"1"} to the ARM nodes. See Appendix B to
configure resources with your deployment mechanism.

These resources don’t need to be limited to hardware. If you have
certain libraries or datasets available on only some nodes because
of licensing, you can use the same technique.

So far we’ve focused on horizontal scaling, but you can also use Ray to get more
resources for each process. Scaling by using machines with more resources is known
as vertical scaling. You can request different amounts of memory, CPU cores, or even
GPUs from Ray for your tasks and actors. The default Ray configuration supports
only machines of the same size, but as covered in Appendix B, you can create
multiple node types. If you create node or container types of different sizes, these can
be used for vertical scaling.

Autoscaler
One of the important components of Ray is the autoscaler, which is responsible for
managing workers. More specifically, the autoscaler is responsible for the following
three functions:

Launching new workers (based on demand)
Includes uploading user-defined files or directories and running init/setup/start
commands on the started worker

Terminating worker nodes
Occurs if the node is idle, the node is failing to start up / initialize, or the node
configuration changed

Restarting workers
Occurs if the Raylet running a worker crashes or the worker’s setup / startup / file
mount changes
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The autoscaler creates new nodes in response to the following events:

Cluster creation with the min-nodes configuration
In this case, the autoscaler creates the required number of nodes.

Resource demands
For remote functions with resource requirements, the autoscaler checks whether
a cluster can satisfy additional resource requirements and, if not, creates one or
more new worker nodes.

Placement groups
Similar to resource demand, for new placement groups, the autoscaler checks
whether the cluster has enough resources and, if not, creates new worker node(s).

An SDK request_resources function call
This is similar to the cluster creation request, but these resources are never
released for the life of the cluster.

Ray’s autoscaler works with different node/computer types, which can map to
different physical instance types (e.g., different AWS node types) or accelerators
(e.g., GPUs).

For more information on the autoscaler, refer to the video “A Glimpse into the Ray
Autoscaler” by Ameer Haj Ali. For more information on creating worker nodes for
different platforms, refer to Ray’s cloud VM documentation.

Placement Groups: Organizing Your Tasks and Actors
Ray applications use placement groups to organize tasks as well as preallocate
resources. Organizing tasks is sometimes important for reusing resources and
increased data locality.

Ray uses node-based data storage, so running multiple functions
with large data exchanges on the same node leads to data locality
and thus can often improve overall execution performance.
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6 Systems before Ray, like Apache Spark and Hadoop, take advantage of data locality.

Data locality can reduce the amount of data to be transferred, and is based on the
idea that it’s often faster to serialize a function than your data.6 On the flip side, data
locality can also be used to minimize impact of hardware failure by ensuring that
work is spread across many computers. Preallocating resources can speed up your
work by allowing the autoscaler to request multiple machines before they are needed.

When you start a remote function or actor, Ray may need to start an additional node
to meet the resource needs, which delays the function/actor creation. If you try to
create several large functions/actors in a series, Ray creates the workers sequentially,
which slows down your job even more. You can force parallel allocation with Ray’s
placement groups, which often reduces resources’ waiting time.

Ray creates placement groups atomically, so if you have a mini‐
mum number of resources required before your task can run, you
can also use placement groups for this effect. Note, though, that
placement groups can experience partial restarts.

You can use placement groups for a few purposes:

• Preallocating resources•
• Gang scheduling, to ensure that all tasks and actors will be scheduled and start at•

the same time
• Organizing your tasks and actors inside your cluster to support either of the•

following strategies:

Maximizing data locality
Ensuring the placement of all your tasks and actors close to your data to
avoid object-transfer overhead

Load balancing
Improving application availability by placing your actors or tasks into differ‐
ent physical machines as much as possible

Placement groups consist of the desired resources for each worker as well as the
placement strategy.

Since a placement group can span multiple workers, you must specify the desired
resources (or resource bundle) for each worker. Each group of resources for a worker
is known as a resource bundle and must be able to fit inside a single machine.
Otherwise, the autoscaler will be unable to create the node types, and the placement
group will never be scheduled.
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Placement groups are collections of resource bundles, where a resource bundle is a
collection of resources (CPU, GPU, etc.). You define the resource bundles with the
same arguments. Each resource bundle must fit on a single machine.

You control the way Ray schedules your resource group by setting placement strate‐
gies. Your placement strategy can either try to reduce the number of nodes (improv‐
ing locality) or spread the work out more (improving reliability and load balancing).
You have a few variations on these core strategies to choose from:

STRICT_PACK

All bundles must be placed into a single node on the cluster.

PACK

All provided bundles are packed onto a single node on a best effort basis. If
strict packing is not feasible, bundles can be placed onto other nodes. This is the
default placement group strategy.

STRICT_SPREAD

Each bundle must be scheduled in a separate node.

SPREAD

Each bundle will be spread onto separate nodes on a best effort basis. If strict
spreading is not feasible, some bundles can be collocated on nodes.

Multiple remote functions or actors can be in the same resource
bundle. Any functions or actors using the same bundle will always
be on the same node.

The lifecycle of placement groups has the following stages:

Creation
The placement group creation request is sent to the GCS, which calculates how
to distribute the bundles and sends resource reservation requests to all the nodes.
Ray guarantees that placement groups are placed atomically.

Allocation
Placement groups are pending creation. If existing Ray nodes can satisfy resource
requirements for a given strategy, placement groups are allocated and success is
returned. Otherwise, the result depends on whether Ray is able to add nodes.
If the autoscaler is not present or the node limit is reached, placement group
allocation fails and the error is returned. Otherwise, the autoscaler scales the
cluster to ensure that pending groups can be allocated.
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7 Ray’s head node is a single point of failure, so if it fails, the whole cluster will fail, as mentioned in “Fault
Tolerance” on page 53.

Node’s failure
When worker nodes that contain some bundles of a placement group die, all the
bundles will be rescheduled on different nodes by GCS.7 The placement group
creation atomicity applies only to initial placement creation. Once a placement
group is created, it can become partial because of node failures.

Cleanup
Ray automatically removes placement groups when the job that created the
placement group is finished. If you’d like to keep the placement group alive
regardless of the job that created it, you should specify lifetime="detached"
during placement group creation. You can also explicitly free a placement group
at any time by calling remove_placement_group.

To make a placement group, you will need a few extra imports, shown in Exam‐
ple 5-7. If you are working with Ray in local mode, seeing the effect of placement
groups is harder because there is only one node. You can still create CPU-only
bundles together into a placement group. Once you’ve created the placement group,
you can use options to run a function or actor in a specific bundle, as shown in
Example 5-8.

Example 5-7. Placement group imports

from ray.util.placement_group import (
    placement_group,
    placement_group_table,
    remove_placement_group
)

Example 5-8. CPU-only placement group

# Create a placement group.
cpu_bundle = {"CPU": 3}
mini_cpu_bundle = {"CPU": 1}
pg = placement_group([cpu_bundle, mini_cpu_bundle])
ray.get(pg.ready())
print(placement_group_table(pg))
print(ray.available_resources())
# Run remote_fun in cpu_bundle
handle = remote_fun.options(placement_group=pg, 
placement_group_bundle_index=0).remote(1)

If you are running Ray on a cluster, you can create a more complex resource group.
If you have some GPU nodes in your cluster, you can create more complex placement

68 | Chapter 5: Ray Design Details

https://oreil.ly/ytqOu
https://oreil.ly/ytqOu


groups. When we run Example 5-9 on our test cluster, the autoscaler allocates a node
with a GPU. Once you’re finished with your placement group, you can delete it with
remove_placement_group(pg).

Example 5-9. Mixed CPU and GPU placement group

# Create a placement group.
cpu_bundle = {"CPU": 1}
gpu_bundle = {"GPU": 1}
pg = placement_group([cpu_bundle, gpu_bundle])
ray.get(pg.ready())
print(placement_group_table(pg))
print(ray.available_resources())

Ray Scheduler
Ray uses a bottom-up distributed scheduler, which consists of a global scheduler and
per node local schedulers. On task creation, the task is always first submitted to the
node’s local scheduler, which encourages task locality. If the local node is overloaded
(its local task queue exceeds a predefined threshold) or it cannot satisfy the task’s
requirements (for example, lacks GPU), the local scheduler calls the global scheduler
to take over.

The global scheduler first identifies the set of nodes that have enough resources to sat‐
isfy the task’s requirements and then selects the one that provides the lowest estimated
waiting time. This is the sum of the estimated time the task will be queued at that
node (task queue size times average task execution), and the estimated transfer time
of the task’s remote inputs (total size of remote inputs divided by average bandwidth).

Each worker sends a periodic heartbeat with resource availability and queue depth
to the global scheduler. The global scheduler also has access to the location of the
task’s inputs and their sizes from the GCS when deciding where to schedule. Once the
global scheduler picks the node, it calls the node’s local scheduler, which schedules
the task.

Additional improvements to this basic algorithm are described in “Investigating
Scheduling and Object Management in Ray” by Mihir Kulkarni and Alejandro Newell
and include the following:

• Parallel retrieval of task arguments•
• Preemptive local object handling—if the object is used locally it is available even•

before it is available in the GCS
• Taking into account node resource imbalances for the global scheduler•
• Dependency-aware task scheduling•
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You can assign placement group names. You can achieve this by specifying a parame‐
ter name="desired_name" at the point of placement group creation. This allows you
to retrieve and use the placement group from any job in the Ray cluster by name
rather than passing a placement group handle.

Namespaces
A namespace is a logical grouping of jobs and actors that provides limited isolation.
By default, each Ray program runs in its own anonymous namespace. The anony‐
mous namespace cannot be accessed from another Ray program. To share actors
among your Ray applications, you’ll need to put both of your programs in the
same namespace. When constructing your Ray context with ray.init, just add the
namespace named parameter—for example, ray.init(namespace="timbit").

Namespaces are not intended to provide security isolation.

You can get the current namespace by calling ray.get_runtime_context().name
space.

Managing Dependencies with Runtime Environments
One of the big draws of Python is the amazing ecosystem of tools available. Ray sup‐
ports managing dependencies with both Conda and Virtualenv. Ray dynamically cre‐
ates these virtual environments inside your larger container as needed and launches
workers using the matching environment.

The fastest way to add a few packages to your runtime context is by specifying a list
of needed packages from PyPI. Looking at the web-crawler example from Chapter 2,
where you used the Beautiful Soup library, you can ensure that this package is
available in a distributed environment by creating an execution context with it, as
shown in Example 5-10.

Example 5-10. pip package list

runtime_env = {"pip": ["bs4"]}

This works well for a few dependencies, but if you have a requirements.txt file like
Holden’s print-the-world project, you can also just point this to your local require‐
ments.txt, as shown in Example 5-11.
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Example 5-11. pip package requirements file

runtime_env = {"pip": "requirements.txt"}

If you have an even more complex setup using Conda, you can
make a runtime context by passing the path to your Conda envi‐
ronment file or package list with conda= instead of pip=.

Once you’ve created a runtime context, you can specify it either globally when
creating your Ray client, as in Example 5-12, or inside the ray.remote decorator, as
in Example 5-13.

Example 5-12. Using a runtime environment for an entire program

    ray.init(num_cpus=20, runtime_env=runtime_env)

Example 5-13. Using a runtime environment for a specific function

@ray.remote(runtime_env=runtime_env)
def sup(x):
    from bs4 import BeautifulSoup

Not all dependencies are well suited to the dynamically created exe‐
cution context. Anything involving large native code compilation
without a preexisting wheel takes too long (e.g., TensorFlow on
ARM).

Adding certain packages to a runtime execution context can result in a slower start
and scale-up. Think of, for example, how long it takes to install TensorFlow without
a wheel. If Ray had to do that each time it started another worker, this would be
much slower. You can solve this by creating Conda environments in your cluster or
container. We discuss how to do this in Appendix B.

Deploying Ray Applications with the Ray Job API
In addition to connecting your job to an existing cluster with ray.init, Ray offers
a job API. The job API provides a lightweight mechanism to submit jobs without
having to worry about library mismatches and avoids the issue of flaky networks
between the remote cluster and the head node. The three main methods of the job
API that you will use do the following:
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• Submit a new job to the cluster, returning a job ID•
• Get a job’s status based on the execution ID, which returns the status of the•

submitted job
• Obtain the execution logs based on a job for an execution ID•

Why Another API?
Although you can theoretically attach your program to the existing Ray cluster by
using the Ray Client, it often does not always work, especially when Ray is deployed
on a Kubernetes cluster. The issue here is that the Ray node’s gRPC interface is
using insecure gRPC, which is not supported by the majority of Kubernetes Ingress
implementations. To overcome this issue, Ray has introduced a new Ray job SDK,
using HTTP instead of gRPC.

A job request consists of the following:

• A directory containing a collection of files and configurations that defines an•
application

• An entrypoint for the execution•
• A runtime environment consisting of any needed files, Python libraries, and•

environment variables

Example 5-14 shows you how to run your code on a Ray cluster with the job API.
This is the Ray code that we want to submit to the cluster.

Example 5-14. Job submission

class ParseKwargs(argparse.Action):
   def __call__(self, parser, namespace, values, option_string=None):
       setattr(namespace, self.dest, dict())
       for value in values:
           key, value = value.split('=')
           getattr(namespace, self.dest)[key] = value

parser = argparse.ArgumentParser()
parser.add_argument('-k', '--kwargs', nargs='*', action=ParseKwargs)
args = parser.parse_args()

numberOfIterations = int(args.kwargs["iterations"])
print(f"Requested number of iterations is: {numberOfIterations}")

print(f'Environment variable MY_VARIABLE has a value " +
f"of {os.getenv("MY_VARIABLE")}')

72 | Chapter 5: Ray Design Details

https://oreil.ly/yPZi9
https://oreil.ly/C5tmz
https://oreil.ly/C5tmz
https://oreil.ly/AzBbX
https://oreil.ly/qptxx


ray.init()

@ray.remote
class Counter:
   def __init__(self):
       self.counter = 0

   def inc(self):
       self.counter += 1

   def get_counter(self):
       return self.counter

counter = Counter.remote()

for _ in range(numberOfIterations):
   ray.get(counter.inc.remote())
   print(ray.get(counter.get_counter.remote()))

print("Requests", requests.__version__)
print("Qiskit", qiskit.__version__)

In addition to the Ray code itself, this example shows several other things:

• Getting variables that can be used during job submission•
• Accessing environment variables that can be set during job submission•
• Getting versions of libraries that are installed during job submission•

With this in place, you can now submit your job to the Ray cluster as follows:

client = JobSubmissionClient("<your Ray URL>")

job_id = client.submit_job(
   # Entrypoint shell command to execute
   entrypoint="python script_with_parameters.py --kwargs iterations=7",
   # Working dir
   runtime_env={
       "working_dir": ".",
       "pip": ["requests==2.26.0", "qiskit==0.34.2"],
       "env_vars": {"MY_VARIABLE": "foo"}
   }
)

print(f"Submitted job with ID : {job_id}")

while True:
   status = client.get_job_status(job_id)
   print(f"status: {status}")
   if status in {JobStatus.SUCCEEDED, JobStatus.STOPPED, JobStatus.FAILED}:
       break
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   time.sleep(5)

logs = client.get_job_logs(job_id)
print(f"logs: {logs}")

Conclusion
In this chapter, you’ve gained a deeper understanding of the way Ray works. Your
knowledge of serialization will help you understand which work to distribute and
which to keep in the same process. You now know your options and how to choose
the right scaling technique. You have a few techniques for managing Python depen‐
dencies, even conflicting ones, on your Ray cluster. You are well set up to learn about
the higher-level building blocks covered in the next part of the book.
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CHAPTER 6

Implementing Streaming Applications

So far in the book, we have been using Ray to implement serverless batch applica‐
tions. In this case, data is collected, or provided from the user, and then used for
calculations. Another important group of use cases are the situations requiring you to
process data in real time. We use the overloaded term real time to mean processing
the data as it arrives within some latency constraints. This type of data processing is
called streaming.

Streaming Applications
In this chapter, we describe a fairly simple streaming implementation. We do not
cover windowing or streaming SQL, as neither is currently implemented in Ray. If
you need windowing or streaming SQL, you can integrate Ray with an additional
streaming engine—for example, Apache Flink using Kafka.

In this book, we define streaming as taking action on a series of data close to the time
that the data is created.

Some common streaming use cases include the following:

Log analysis
A way of gaining insights into the state of your hardware and software. It is
typically implemented as a distributed processing of streams of logs as they are
being produced.

Fraud detection
The monitoring of financial transactions and watching for anomalies that signal
fraud in real time and stopping fraudulent transactions.
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Cybersecurity
The monitoring of interactions with the system to detect anomalies, allowing the
identification of security issues in real time to isolate threats.

Streaming logistics
The monitoring of cars, trucks, fleets, and shipments in real time, to optimize
routing.

IoT data processing
An example is collecting data about an engine to gain insights that can detect a
faulty situation before becoming a major problem.

Recommendation engines
Used to understand user interests based on online behavior for serving ads,
recommending products and services, etc.

When it comes to implementing streaming applications in Ray, you currently have
two main options:

• Ray’s ecosystem provides a lot of underlying components, described in the•
previous chapters, that can be used for custom implementations of streaming
applications.

• External libraries and tools can be used with Ray to implement streaming.•

Ray is not built as a streaming system. It is an ecosystem that enables companies to
build streaming systems on these lower-level primitives. You can find several stories
of users from big and small companies building streaming applications on top of Ray.

With that being said, building a small streaming application on Ray will give you a
perfect example of how to think about Ray application and how to use Ray effectively,
and will allow you to understand the basics of streaming applications and how
Ray’s capabilities can be leveraged for its implementation. Even if you decide to use
external libraries, this material will help you make better decisions on whether and
how to use these libraries.

One of the most popular approaches for implementing streaming applications is
using Apache Kafka to connect data producers with consumers implementing data
processing. Before delving into Ray’s streaming implementation, let’s start with a
quick introduction to Kafka.

Apache Kafka
Here we describe only features of Kafka that are relevant for our discussion. For
in-depth information, refer to the Kafka documentation.
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1 Other examples of distributed log implementation are Apache BookKeeper, Apache Pulsar, and Pravega.

Getting Started with Kafka
If you want to experiment with Kafka, you can run it locally or on the cloud. For
a local Kafka installation, refer to its “Quickstart” instructions. Additionally, for a
Mac installation, you can use Homebrew, following the “Install Kafka” GitHub gist.
Alternatively, you can use Kafka on the cloud—for example, leveraging the Confluent
platform or any other Kafka installation provided by your favorite cloud provider.
Finally, if you are working on Kubernetes, Strimzi can be a good choice for Kafka
installation.

Basic Kafka Concepts
Although many people consider Kafka to be a type of messaging system—similar to,
for example, RabbitMQ—it is a very different thing. Kafka is a distributed log that
stores records sequentially (see Figure 6-1).1

Figure 6-1. Distributed log

Kafka records are key/value pairs. (Both the key and value are optional, and an
empty value can be used to tombstone an existing value.) Both keys and values are
represented in Kafka as byte arrays and are opaque to Kafka itself. Producers always
write to the end of the log, while consumers can choose the position (offset) where
they want to read from.

The main differences between log-oriented systems like Kafka and messaging systems
like RabbitMQ are as follows:
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2 Although we tend to think about infinite logs, in reality a Kafka log is limited to the amount of disk space
available to the corresponding Kafka server. Kafka introduces log retention and cleanup policies, which
prevent logs from growing indefinitely and consequently crashing Kafka servers. As a result, when we are
talking about log replay in a production system, we are talking about replay within a retention window.

• Messages in queue systems are ephemeral; they are kept in the system only•
until they are delivered. Messages in log-based systems, on the other hand, are
persistent. As a result, you can replay messages in a log-based system, which is
impossible in traditional messaging.2

• While traditional message brokers manage consumers and their offsets, in log•
systems consumers are responsible for managing their offsets. This allows a
log-based system to support significantly more consumers.

Similar to messaging systems, Kafka organizes data into topics. Unlike messaging sys‐
tems, topics in Kafka are purely logical constructs, composed of multiple partitions
(Figure 6-2).

Figure 6-2. Anatomy of a topic

Data in a partition is sequential and can be replicated across multiple brokers. Par‐
titioning is a vital scalability mechanism, allowing individual consumers to read
dedicated partitions in parallel and allowing Kafka to store the partitions separately.

When writing to topics, Kafka supports two main partitioning mechanisms during
the write operation: if a key is not defined, it uses round-robin partitioning, dis‐
tributing the topic’s messages equally across partitions; if the key is defined, the
partition to write to is determined by the key. By default, Kafka uses key hashing
for partioning. You can also implement custom partitioning mechanisms with Kafka.
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3 Refer to “Capacity Planning Your Kafka Cluster” by Jason Bell for more details. Kafka is also available as a
serverless product from vendors such as Confluent Cloud.

Message ordering happens only within a partition, so any messages to be processed in
order must be in the same partition.

You deploy Kafka in the form of a cluster composed of multiple (1 to n) brokers
(servers) to maintain load balancing.3 Depending on the configured replication fac‐
tor, each partition can exist on one or more brokers, and this can improve Kafka’s
throughput. Kafka clients can connect to any broker, and the broker routes the
requests transparently to one of the correct brokers.

To understand how applications scale with Kafka, you need to understand how
Kafka’s consumer groups work (Figure 6-3).

Figure 6-3. Kafka consumer group

You can assign consumers that read from the same set of topics to a consumer group.
Kafka then gives each consumer in the group a subset of the partitions.

For example, if you have a topic with 10 partitions and a single consumer in a group,
this consumer will read all of the topics’ partitions. With the same topic, if you
instead have 5 consumers in the group, each consumer will read two partitions from
the topic. If you have 11 consumers, 10 of them will each read a single partition, and
the 11th one will not read any data.

As you can see, the two main factors in how much you can scale your Kafka reading
is the number of partitions and the number of consumers in your consumer group.
Adding more consumers to a consumer group is easier than adding new partitions, so
overprovisioning the number of partitions is a best practice.
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Kafka APIs
As defined in the Kafka documentation, Kafka has five core API groups:

Producer API
Allows applications to send streams of data to topics in the Kafka cluster

Consumer API
Allows applications to read streams of data from topics in the Kafka cluster

AdminClient API
Allows managing and inspecting topics, brokers, and other Kafka objects

Streams API
Allows transforming streams of data from input topics to output topics

Connect API
Allows implementing connectors that continually pull from a source system or
application into Kafka or push from Kafka into a sink system or application

These APIs are implemented in multiple languages, including Java, C/C++, Go,
C#, and Python. We will be using Kafka’s Python APIs for integration with Ray,
implementing the first three APIs groups, which is sufficient for our purposes. For a
simple example of using Python Kafka APIs, see this book’s GitHub repo.

Kafka Message Format
Kafka messages are byte arrays, so we need to serialize our messages (called marshal‐
ing in Kafka) using, for example, Apache Avro, Google Protocol Buffers, JSON, or
Python pickling. The Python Kafka GitHub repository provides a handful of exam‐
ples of using encoding with Kafka. To simplify code examples, use JSON throughout,
but make sure that you pick up an appropriate marshaling for your implementation.
When deciding on the format, you need to consider its performance (remember we
marshal/unmarshal every message), size (smaller messages are written/read faster),
message extensibility (implementation behavior when a message is changed by, for
example, adding or removing a field), and language interoperability. Simon Aubury
presents a good overview of marshaling methods.

Unlike other messaging systems, Kafka does not guarantee nonduplicate messages.
Instead, each Kafka consumer is responsible for ensuring that messages are processed
only once.

80 | Chapter 6: Implementing Streaming Applications

https://oreil.ly/1Edbr
https://oreil.ly/gPVs8
https://oreil.ly/c7g3l
https://oreil.ly/0VJ3D
https://oreil.ly/UxEdi
https://oreil.ly/mu3Ud
https://oreil.ly/U6nCq
https://oreil.ly/eTzXL
https://oreil.ly/Q11qg
https://oreil.ly/Q11qg
https://oreil.ly/aEN91


4 For another example of the same approach, see “Serverless Kafka Stream Processing with Ray” by Javier
Redondo.

If you are interested in learning more, the Confluent “Kafka
Python Client” documentation has more information on commit
options and their implications on delivery guarantees. By default,
the Python client uses automatic commit, which is what we use in
our examples. For real-life implementation, consider delivery guar‐
antees (exactly once, at least once, etc.) that you need to provide
and use an appropriate commit approach.

Using Kafka with Ray
Now that you know about Kafka and its basic APIs, let’s take a look at options
for integrating Kafka with Ray. We will implement both the Kafka consumer and
producer as Ray actors.4 You can benefit from using Ray actors with Kafka for these
reasons:

• Kafka consumers run in an infinite loop, waiting for new records to arrive, and•
need to keep track of messages consumed. Being a stateful service, the Ray actor
provides an ideal paradigm for implementing a Kafka consumer.

• By putting your Kafka producer in an actor, you can write records to any Kafka•
topic asynchronously without having to create separate producers.

A simple implementation of a Kafka producer actor looks like Example 6-1.

Example 6-1. Kafka producer actor

@ray.remote
class KafkaProducer:
   def __init__(self, broker: str = 'localhost:9092'):
       from confluent_kafka import Producer
       conf = {'bootstrap.servers': broker}
       self.producer = Producer(**conf)

   def produce(self, data: dict, key: str = None, topic: str = 'test'):

       def delivery_callback(err, msg):
           if err:
               print('Message failed delivery: ', err)
           else:
               print(f"Message delivered to topic {msg.topic()} " +
               f"partition {msg.partition()} offset {msg.offset()}')

       binary_key = None
       if key is not None:
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           binary_key = key.encode('UTF8')
       self.producer.produce(topic=topic, value=json.dumps(data).encode('UTF8'),
       key=binary_key, callback=delivery_callback)
       self.producer.poll(0)

   def destroy(self):
       self.producer.flush(30)

The actor implementation in this example includes the following methods:

The constructor
This method initializes the Kafka producer based on the location of the Kafka
cluster.

produce

This is the method you will call to send data. It takes data to write to Kafka
(as a Python dictionary), an optional key (as a string), and the Kafka topic to
write to. Here we chose to use a dictionary for the data as it is a fairly generic
way to represent data and can be easily marshaled/unmarshaled to JSON. For
debugging, we added an internal delivery_callback method that prints out
when a message is written or an error has occurred.

destroy

Ray calls this method before exiting the application. Our destroy method waits
for up to 30 seconds for any outstanding messages to be delivered and for
delivery report callbacks to be triggered.

Example 6-2 shows a simple implementation of a Kafka consumer actor.

Example 6-2. Kafka consumer actor

@ray.remote
class KafkaConsumer:
   def __init__(self, callback, group: str = 'ray', broker: str = 'localhost:9092',
       topic: str = 'test', restart: str = 'latest'):
       from confluent_kafka import Consumer
       from uuid import uuid4
       # Configuration
       consumer_conf = {'bootstrap.servers': broker,   # Bootstrap server
                'group.id': group,                      # Group ID
                'session.timeout.ms': 6000,      # Session tmout
                'auto.offset.reset': restart}         # Restart

       # Create Consumer instance
       self.consumer = Consumer(consumer_conf)
       self.topic = topic
       self.id = str(uuid4())
       self.callback = callback
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5 Allowed values for reset are earliest, which automatically resets the offset to the beginning of the log, and
latest, which automatically resets the offset to the latest offset processed by the consumer group.

   def start(self):
       self.run = True
       def print_assignment(consumer, partitions):
           print(f'Consumer {self.id}')
           print(f'Assignment: {partitions}')

       # Subscribe to topics
       self.consumer.subscribe([self.topic], on_assign = print_assignment)
       while self.run:
           msg = self.consumer.poll(timeout=1.0)
           if msg is None:
               continue
           if msg.error():
               print(f"Consumer error: {msg.error()}")
           else:
               # Proper message
               self.callback(self.id, msg)
   def stop(self):
       self.run = False

   def destroy(self):
       self.consumer.close()

The consumer actor in this example has the following methods:

The constructor
Initializes the Kafka consumer. Here we have more parameters compared to a
producer. In addition to the broker location, you need to specify the following:

• Topic name•
• Consumer group name (for parallel runs)•
• Restart, which configures how the client behaves when starting with no offset•

or if the current offset does not exist anymore on the server5

• Callback, which is a pointer to the customer’s function that is used to process•
a message

start

Runs an infinite loop polling for records. In our example, new records are
just printed. For debugging, we also print the consumer’s assignment (which
partitions it is consuming).

stop

Updates the class property that stops the infinite loop.

Using Kafka with Ray | 83



destroy

Called by Ray before exiting the application to terminate the consumers.

In addition to these two actors, we also need to set up the Kafka topics. While Kafka
auto-creates new topics as they are used, the default parameters for the number of
partitions and replication factor may not match your needs. We create the topic with
our preferred settings in Example 6-3.

Example 6-3. Topics setup function

def setup_topics(broker: str = 'localhost:9092', topics: [] = ['test'],
                partitions: int = 10, replication: int = 1):
   # Re-create topic
   # Wait for operation completion method
   def wait_for_operation_completion(futures: dict, success: str, failure: str):
       for topic, f in futures.items():
           try:
               f.result()  # The result itself is None
               print(f"Topic {topic} {success}")
           except Exception as e:
               print(f"{failure} {topic} error {e}")

   admin = AdminClient({'bootstrap.servers': broker})

   # Delete topics
   fs = admin.delete_topics(topics)

   # Wait for each operation to finish.
   wait_for_operation_completion(fs, " is deleted", "Failed to delete topic ")

   # Wait to make sure topic is deleted
   sleep(3)
   # Call create_topics to asynchronously create topics.
   new_topics = [NewTopic(topic, num_partitions=partitions,
                          replication_factor=replication) for topic in topics]
   fs = admin.create_topics(new_topics)

   # Wait for each operation to finish.
   wait_for_operation_completion(fs, " is created", "Failed to create topic ")

Because the topics may already exist, the code first deletes them. Once the deletion is
completed, the code waits a short time to make sure that deletion took place on the
cluster and then re-creates topics with the target number of partitions and replication
factor.

With these three components in place, you can now create a Ray application to
publish and read from Kafka. You can run this application either locally or on a
cluster. The Ray application itself looks like Example 6-4.
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Example 6-4. Bringing it all together

# Simple callback function to print topics
def print_message(consumer_id: str, msg):
    print(f"Consumer {consumer_id} new message: topic={msg.topic()}  "
          f"partition= {msg.partition()}  offset={msg.offset()} "
          f"key={msg.key().decode('UTF8')}")
    print(json.loads(msg.value().decode('UTF8')))
# Set up topics
setup_topics()
# Set up random number generator
seed(1)
# Start Ray
ray.init()
# Start consumers and producers
n_consumers = 1     # Number of consumers
consumers = [KafkaConsumer.remote(print_message) for _ in range(n_consumers)]
producer = KafkaProducer.remote()
refs = [c.start.remote() for c in consumers]
# Publish messages
user_name = 'john'
user_favorite_color = 'blue'
# Loop forever publishing messages to Kafka
try:
   while True:
       user = {
           'name': user_name,
           'favorite_color': user_favorite_color,
           'favorite_number': randint(0, 1000)
       }
       producer.produce.remote(user, str(randint(0, 100)))
       sleep(1)

# End gracefully
except KeyboardInterrupt:
   for c in consumers:
       c.stop.remote()
finally:
   for c in consumers:
       c.destroy.remote()
   producer.destroy.remote()
   ray.kill(producer)

This code does the following:

1. Defines a simple callback function for the Kafka consumer that just prints the1.
message.

2. Initializes Ray.2.
3. Creates required topics.3.
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4. Starts both producer and consumers (the code allows us to specify the number of4.
consumers we want to use).

5. Calls the start method on all created consumers.5.
6. Once all consumers are created, the producer starts sending Kafka requests every6.

second.

Additionally, the code implements graceful termination, ensuring that all resources
are cleaned up, once the job is interrupted.

Once the code runs, it produces the output shown in Example 6-5.

Example 6-5. Execution results for a single consumer

Topic  test  is deleted
Topic  test  is created
2021-08-23 17:00:57,951 INFO services.py:1264 -- View the Ray dashboard at http://...
(pid=19981) Consumer  04c698a5-db3a-4da9-86df-cd7d6fb7dc6d
(pid=19981) Assignment: [TopicPartition{topic=test,partition=0,offset=-1001,error=...
…………………………………………………………………………………………..
(pid=19981) Consumer  ... new message: topic= test  partition= 8  offset= 0  key= 57
(pid=19981) {'name': 'john', 'favorite_color': 'blue', 'favorite_number': 779}
(pid=19981) Consumer  ... new message: topic= test  partition= 2  offset= 0  key= 63
(pid=19981) {'name': 'john', 'favorite_color': 'blue', 'favorite_number': 120}
(pid=19981) Consumer  ... new message: topic= test  partition= 8  offset= 1  key= 83
(pid=19981) {'name': 'john', 'favorite_color': 'blue', 'favorite_number': 483}
(pid=19977) Message delivered to topic  test  partition  8  offset 0
(pid=19977) Message delivered to topic  test  partition  2  offset 0
(pid=19977) Message delivered to topic  test  partition  8  offset 1
(pid=19981) Consumer  ... new message: topic= test  partition= 8  offset= 2  key= 100
(pid=19981) {'name': 'john', 'favorite_color': 'blue', 'favorite_number': 388}
(pid=19981) Consumer  ... new message: topic= test  partition= 5  offset= 0  key= 12
(pid=19981) {'name': 'john', 'favorite_color': 'blue', 'favorite_number': 214}
(pid=19977) Message delivered to topic  test  partition  8  offset 2
(pid=19981) Consumer  ... new message: topic= test  partition= 1  offset= 0  key= 3
(pid=19981) {'name': 'john', 'favorite_color': 'blue', 'favorite_number': 499}
(pid=19977) Message delivered to topic  test  partition  5  offset 0
(pid=19981) Consumer  ... new message: topic= test  partition= 6  offset= 0  key= 49
(pid=19981) {'name': 'john', 'favorite_color': 'blue', 'favorite_number': 914}
(pid=19977) Message delivered to topic  test  partition  1  offset 0
(pid=19977) Message delivered to topic  test  partition  6  offset 0
(pid=19981) Consumer  ... new message: topic= test  partition= 8  offset= 3  key= 77
…………………………...

As you can see from the results, the execution does the following:

1. Deletes and re-creates the topic test.1.
2. Creates a consumer listening to all the partitions of a topic (we are running a2.

single consumer here).
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3. Processes messages. Note here that the producer’s messages are delivered to3.
different partitions but are always received and processed by a single consumer.

Scaling Our Implementation
Now that everything is working, let’s see how to scale our implementation. As dis‐
cussed earlier in this chapter, the basic approach to scale an application that reads
from Kafka is to increase the number of Kafka consumers (assuming that the topic
has enough partitions). Luckily, the code (Example 6-4) already supports this, so we
can easily increase the number of consumers by setting n_consumer=5. Once this
update is done, rerunning the code will produce the output in Example 6-6.

Example 6-6. Execution results for five consumers

Topic  test  is deleted
Topic  test  is created
2021-08-23 17:15:12,353 INFO services.py:1264 -- View the Ray dashboard at http://...
(pid=20100) Message delivered to topic  test  partition  8  offset 0
(pid=20100) Message delivered to topic  test  partition  2  offset 0
(pid=20103) Consumer  9e2773d4-f006-4d4d-aac3-fe75ed27f44b
(pid=20103) Assignment: [TopicPartition{topic=test,partition=0,offset=-1001,error=...
(pid=20107) Consumer  bdedddd9-db16-4c24-a7ef-338e91b4e100
(pid=20107) Assignment: [TopicPartition{topic=test,partition=4,offset=-1001,error=...
(pid=20101) Consumer  d76b7fad-0b98-4e03-92e3-510aac2fcb11
(pid=20101) Assignment: [TopicPartition{topic=test,partition=6,offset=-1001,error=...
(pid=20106) Consumer  e3d181af-d095-4b7f-b3d6-830299c207a8
……………………………………………………………………………………..
(pid=20100) Message delivered to topic  test  partition  8  offset 1
(pid=20104) Consumer ... new message: topic= test  partition= 8  offset= 2  key= 100
(pid=20104) {'name': 'john', 'favorite_color': 'blue', 'favorite_number': 388}
(pid=20100) Message delivered to topic  test  partition  8  offset 2
(pid=20107) Consumer ... new message: topic= test  partition= 5  offset= 0  key= 12
(pid=20107) {'name': 'john', 'favorite_color': 'blue', 'favorite_number': 214}
(pid=20100) Message delivered to topic  test  partition  5  offset 0
(pid=20103) Consumer ... new message: topic= test  partition= 1  offset= 0  key= 3
(pid=20103) {'name': 'john', 'favorite_color': 'blue', 'favorite_number': 499}
(pid=20100) Message delivered to topic  test  partition  1  offset 0
(pid=20101) Consumer ... new message: topic= test  partition= 6  offset= 0  key= 49
(pid=20101) {'name': 'john', 'favorite_color': 'blue', 'favorite_number': 914}
(pid=20100) Message delivered to topic  test  partition  6  offset 0
(pid=20104) Consumer ... new message: topic= test  partition= 8  offset= 3  key= 77
(pid=20104) {'name': 'john', 'favorite_color': 'blue', 'favorite_number': 443}
(pid=20100) Message delivered to topic  test  partition  8  offset 3
(pid=20103) Consumer ... new message: topic= test  partition= 1  offset= 1  key= 98
(pid=20103) {'name': 'john', 'favorite_color': 'blue', 'favorite_number': 780}
……………………………………………………….

Here, unlike Example 6-5, each of the five Kafka consumers starts listening on
2 partitions (remember, our topic uses 10 partitions). You can also see that as
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6 This example is described further in “How to Serve Machine Learning Models with Dynamically Controlled
Streams”, a blog post by Boris.

messages are delivered on different partitions, they are being processed by different
consumer instances. So we can scale our Kafka applications manually, but what about
autoscaling?

Unlike native Kubernetes autoscalers—for example, KEDA, which scales consumers
based on the queue depth—Ray uses a different approach. Instead of bringing up
and down Kafka consumers, Ray uses a fixed number of consumers and spreads
them across nodes (adding nodes if required). This gives better performance for each
consumer but still runs into issues when there are not enough partitions.

Now that you know how to integrate Ray with Kafka, let’s discuss how to use this
technique for building streaming applications.

Building Stream-Processing Applications with Ray
There are two important classes of stream processing:

Stateless stream processing
Each event is handled completely independently from any previous events or
mutable shared state. Given an event, the stream processor will treat it exactly the
same way every time, no matter what data arrived beforehand or the state of the
execution.

Stateful stream processing
A state is shared among events and can influence the way current events are
processed. The state, in this case, can be a result of previous events or produced
by an external system, controlling stream processing.

Stateless stream processing implementations are typically simple and straightforward.
They require an extension of the start method of the Kafka consumer (Example 6-2)
to implement any required transformation of the incoming messages. The result of
these transformations can be sent either to different Kafka topics or to any other
part of the code. “Serverless Kafka Stream Processing with Ray” by Javier Redondo
describes an example stateless streaming application.

Implementing stateful stream processing is typically more involved. Let’s take a
look at options for implementing stateful stream processing based on dynamically
controlled streams.

Our sample implementation uses a heater controller example with the following
characteristics:6
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7 As described in Chapter 4, Ray’s actors are not persistent. Therefore, in the case of node failures, the actor
state will be lost. We can implement persistence here as described in Chapter 4 to overcome this.

• A message producer provides a constant stream of temperature measurements•
from the sensor.

• The thermostat settings are defined as the desired temperature Td and ∆t.•
• The thermostat settings can arrive at any point.•
• When the temperature falls below Td – ∆t, an implementation sends a signal to•

the heater to start.
• When the temperature goes above Td + ∆t, a signal is sent to the heater to stop.•
• A very simple heater model is used here, where temperature increases by 1 degree•

every N (configurable) minutes when the heater is on, and decreases by 1 degree
every M (configurable) minutes when it is off.

The following are simplifications that we made to the original example:

• Instead of using Protobuf marshaling, we are using JSON marshaling (the same•
as in the previous examples), which allows us to marshal/unmarshal Python
dictionary messages generically.

• To simplify our implementation, instead of using two queues as in the original•
sample, we are using a single queue containing both control and sensor messages,
discriminating between the two as we receive them. Although it works in our
toy example, it might not be a good solution in a real-life implementation with a
large volume of messages, because it can slow down sensor message processing.

With these simplifications in place, we will now demonstrate two approaches to
implement stateful stream processing with Ray: a key-based approach and a key-
independent one.

Key-Based Approach
Many stateful streaming applications rely on Kafka message keys. Remember that
Kafka partitioning uses a key hash to determine which partition a message is written
to. This means that Kafka guarantees that all messages with the same key are always
picked up by the same consumer. In this case, it is possible to implement stateful
stream processing locally on the Kafka consumer that receives them. Because the
consumer is implemented as a Ray actor, Ray keeps track of the data inside the actor.7

For this implementation, we created a small heater simulator program that you can
find in the accompanying GitHub project that publishes and gets data based on the
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8 Note the use of threading to ensure that the Kafka consumer is running forever without interference with
measurement computations. Again, this is a simplification we made for our toy example; in real implementa‐
tions, every request to the temperature controller should contain a replyTo topic, thus ensuring that any
replies will get to the correct instance of the heater.

heater ID.8 With this in place, you can implement the temperature controller as in
Example 6-7.

Example 6-7. Implementation of temperature controller

from enum import Enum
class Action(Enum):
    NONE = -1
    OFF = 0
    ON = 1

class BaseTemperatureController:
    def __init__(self, id: str):
        self.current_setting = None
        self.previous_command = -1
        self.id = id

    # Process new message
    def process_new_message(self, message: dict):
        if 'measurement' in message:    # Measurement request
            self.process_sensor_data(message)
        else:                           # Temp set request
            self.set_temperature(message)

    # Set new temperature
    def set_temperature(self, setting: dict):
        desired = setting['temperature']
        updelta = setting['up_delta']
        downdelta = setting['down_delta']
        print(f'Controller {self.id} new temperature setting {desired} up '
              f'delta {updelta} down delta {downdelta}')
        self.current_setting = desired
        self.up_delta = updelta
        self.down_delta = down_delta

    # Process new measurements
    def process_sensor_data(self, sensor: dict) ->bool:
        # Desired temperature is set, otherwise ignore
        if self.current_setting is not None:           
            # Calculate desired action
            measurement = sensor['measurement']
            action = Action.NONE
            if measurement > (self.current_setting + self.up_delta):
                action = Action.ON
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            if measurement < (self.current_setting - self.down_delta):
                action = Action.OFF
            # New action
            if action != Action.NONE and self.previous_command != action:  
                self.previous_command = action
                # Publish new action to kafka
                return True
            else:
                return False
        else:
            return False

The implementation is a Python class with the following methods:

The constructor, taking a Kafka producer actor (Example 6-1)
Used by this class to write control data to Kafka and an ID of this temperature
controller (which is the same as heater device ID).

process_new_message

Receives messages and, depending on their content, calls either set_temperature
or process_sensordata.

set_temperature

Processes a new set temperature method from the thermostat. This message con‐
tains the new desired temperature along with additional heater-specific parame‐
ters (temperature intervals where controls are ignored).

process_sensordata

Handles the temperature control. If the desired temperature is set, this method
compares the current temperature with the desired one and calculates the desired
control (heater on/off). To avoid resending the same control over and over again,
this method additionally compares the calculated control value with the current
(cached) and submits a new control value only if it has changed.

Because Kafka calculates partitions based on the key hash, the same partition
can serve many keys. To manage multiple keys per partition, we introduced a
TemperatureControllerManager class whose purpose is to manage individual tem‐
perature controllers (Example 6-8).

Example 6-8. Implementation of temperature controller manager

class TemperatureControllerManager:
   def __init__(self, producer: KafkaProducer):
       self.controllers = {}
       self.producer = producer

   def process_controller_message(self, key: str,  request: dict):
       if not key in self.controllers:   # Create a new controller
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           print(f'Creating a new controller {controller_id}')
           controller = TemperatureController(producer=self.producer, id=key)
           self.controllers[key] = controller
       self.controllers[key].process_new_message(request)

This implementation is based on a dictionary keeping track of temperature control‐
lers based on their IDs. The class provides two methods:

The constructor, taking a Kafka producer actor (Example 6-1)
Creates a new empty dictionary of the individual temperature controllers.

The process_controller_message function
Takes every new message received by the local Kafka consumer and, based on
a key, decides whether a required temperature controller exists. If not, a new
temperature controller is created and stores a reference to it. After it finds or
creates the controller, it then passes the message to it for processing.

To link this implementation to the Kafka consumer, we do need to modify the Kafka
consumer (Example 6-2) a little bit (Example 6-9).

Example 6-9. Integrating the Kafka consumer with the temperature controller manager

@ray.remote
class KafkaConsumer:
   def __init__(self, producer: KafkaProducer, group: str = 'ray',
broker: str = 'localhost:9092', topic: str = 'sensor', restart: str = 'earliest'):
       from confluent_kafka import Consumer
       import logging
       # Configuration
       consumer_conf = {'bootstrap.servers': broker,   # Bootstrap server
                'group.id': group,                      # Group ID
                'session.timeout.ms': 6000,            # Session tmout
                'auto.offset.reset': restart}          # Restart

       # Create Consumer instance
       self.consumer = Consumer(consumer_conf)
       self.topic = topic
       self.callback = TemperatureControllerManager(producer).
process_controller_message

   def start(self):
       self.run = True
       def print_assignment(consumer, partitions):
       print(f'Assignment: {partitions}')

       # Subscribe to topics
       self.consumer.subscribe([self.topic], on_assign = print_assignment)
       while self.run:
       msg = self.consumer.poll(timeout=1.0)
       if msg is None:
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                 continue
       If msg.error():
                  print(f'Consumer error: {msg.error()}')
                continue
       else:
                # Proper message
                print(f"New message: topic={msg.topic()} " +
                f"partition= {msg.partition()} offset={msg.offset()}")
                key = None
                if msg.key() != None:
                    key = msg.key().decode("UTF8")
                print(f'key={key}')
                value = json.loads(msg.value().decode("UTF8"))
                print(f'value = {value}')
                self.callback(key, value)

   def stop(self):
       self.run = False

   def destroy(self):
       self.consumer.close()

A couple of notable differences exist between this and the original implementations:

• The constructor takes an additional parameter—the Kafka producer—which is•
used internally to create a temperature controller manager as part of the actor’s
initialization.

• For every incoming message, in addition to printing it out, we are invoking the•
temperature controller manager to process it.

With these changes in place, you can implement the main program, similar to
(Example 6-4), and start an execution. The partial execution result (in Example 6-10)
shows the output of processing.

Example 6-10. Controller execution results

(pid=29041) New message: topic= sensor  partition= 9  offset= 18
(pid=29041) key  1234  value  {'measurement': 45.0}
(pid=29041) New message: topic= sensor  partition= 9  offset= 19
(pid=29041) key  1234  value  {'measurement': 45.2}
(pid=29041) New message: topic= sensor  partition= 9  offset= 20
(pid=29041) key  1234  value  {'measurement': 45.3}
(pid=29041) New message: topic= sensor  partition= 9  offset= 21
(pid=29041) key  1234  value  {'measurement': 45.5}
(pid=29041) New message: topic= sensor  partition= 9  offset= 22
(pid=29041) key  1234  value  {'measurement': 45.7}
(pid=29041) New message: topic= sensor  partition= 9  offset= 23
(pid=29041) key  1234  value  {'measurement': 45.9}
(pid=29041) New message: topic= sensor  partition= 9  offset= 24
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(pid=29041) key  1234  value  {'measurement': 46.0}
(pid=29041) New message: topic= sensor  partition= 9  offset= 25
(pid=29041) key  1234  value  {'measurement': 46.2}
(pid=29040) Message delivered to topic  heatercontrol  partition  9  offset 0
(pid=29041) New message: topic= sensor  partition= 9  offset= 26
(pid=29041) key  1234  value  {'measurement': 46.1}
(pid=29041) New message: topic= sensor  partition= 9  offset= 27
(pid=29041) key  1234  value  {'measurement': 46.0}
(pid=29041) New message: topic= sensor  partition= 9  offset= 28
(pid=29041) key  1234  value  {'measurement': 46.0}
(pid=29041) New message: topic= sensor  partition= 9  offset= 29
(pid=29041) key  1234  value  {'measurement': 45.9}
(pid=29041) New message: topic= sensor  partition= 9  offset= 30
(pid=29041) key  1234  value  {'measurement': 45.7}

This listing shows the behavior of the controller when the temperature is around the
desired value (45 degrees). As expected, the temperature keeps growing until it gets
above 46 degrees (to avoid constant switching on and off of the controller, no actions
are performed when the difference between desired and actual temperature is less
than 1 degree). When the measurement is 46.2, the new message is sent to the heater
to switch off and the temperature starts to decrease. Also looking at this listing, we
can see that the requests are always delivered to the same partition (they have the
same key).

A key-based approach is a good option for many real-world implementations. The
advantage of this approach is that all of the data processing is done locally, inside the
same Kafka consumer actor.

Two potential pitfalls exist with such implementations:

• As the number of keys grows, it is necessary to ensure that the keys are evenly•
distributed across Kafka topic partitions. Ensuring this key distribution can
sometimes require additional key design procedures, but the default hashing is
often sufficient.

• Execution locality can become a problem when executions are CPU and memory•
expensive. Because all the executions are part of the Kafka consumer actor, its
scaling can become insufficient for keeping up with high-volume traffic.

Some of these drawbacks can be rectified in a key-independent approach.
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Key-Independent Approach
The difference in this approach compared to the previous one is that both the tem‐
perature controller (Example 6-8) and temperature controller manager (Example 6-9)
are converted from Python objects to Ray actors. By doing this, both become individ‐
ually addressable and can be located anywhere. Such an approach loses execution
locality (which can lead to a slight execution time increase), but can improve overall
scalability of the solution (each actor can run on a separate node). If necessary,
you can improve scalability even further by leveraging an actor’s pool (described in
Chapter 4) and thus allowing Ray to split execution to even more nodes.

Going Beyond Kafka
In this chapter, you learned how to use Ray’s native capabilities to implement stream‐
ing by directly integrating Ray with Kafka. But what if you need to use a different
messaging infrastracture? If your favorite communication backbone provides Python
APIs, you can integrate it with Ray, similar to the Kafka integration described
previously.

Another option, as mentioned at the beginning of this chapter, is to use an external
library—for example, project Rayvens, which internally leverages Apache Camel (a
generic integration framework) to make it possible to use a wide range of messaging
backbones. You can find a description of the supported messaging backbones and
an example of their usage in “Accessing Hundreds of Event Sources and Sinks with
Rayvens” by Gheorghe-Teodor Bercea and Olivier Tardieu.

Similar to the Kafka integration we’ve described, under the hood, Rayvens is imple‐
mented as a set of Ray actors. The Rayvens base class Stream is a stateless, serializable,
wrapper around the Stream Ray actor class, which is responsible for keeping track of
the current Rayvens state (see Chapter 4 for using actors to manage global variables),
including currently defined sources and sinks and their connectivity. The Stream
class hides the remote nature of a Stream actor and implements wrappers that inter‐
nally implement all communications with the underlying remote actor. If you want
more control (in terms of execution timing), you can invoke methods directly on the
Stream actor. The Stream actor will be reclaimed when the original stream handle
goes out of scope.
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As Rayvens is based on Camel, it requires a setting of Camel to make it work. Ravens
supports two main options of Camel usage:

Local mode
The Camel source or sink runs in the same execution context as the Stream
actor that is attached to using the Camel client: same container, same virtual or
physical machine.

Operator mode
The Camel source or sink runs inside a Kubernetes cluster relying on the Camel
operator to manage dedicated Camel pods.

Conclusion
In this chapter, you learned one option to use Ray for implementing streaming. You
first learned the basics of Kafka—the most popular streaming application backbone
used today—and ways to integrate it with Ray. You then learned how to scale Kafka-
based applications with Ray. We have also outlined implementation approaches for
both stateless and stateful streaming applications with Ray that you can use as a
foundation for your custom implementations.

Finally, we briefly discussed alternatives to using Kafka as a transport. Rayvens, a
general-purpose integration framework based on Apache Camel, can be used for
integration of a wide variety of streaming backbones. You can use this discussion to
decide how to implement your specific transports.

In the next chapter, we will introduce Ray’s microservices framework and how to use
it for model serving.
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CHAPTER 7

Implementing Microservices

Initially, Ray was created as a framework for implementing reinforcement learning
but gradually morphed into a full-fledged serverless platform. Similarly, initially
introduced as a better way to serve ML models, Ray Serve has recently evolved into a
full-fledged microservices framework. In this chapter, you will learn how to use Ray
Serve for implementing a general-purpose microservice framework and how to use
this framework for model serving.

Complete code of all examples used in this chapter can be found in the
folder /ray_examples/serving in the book’s GitHub repo.

Understanding Microservice Architecture in Ray
Ray microservice architecture (Ray Serve) is implemented on top of Ray by leverag‐
ing Ray actors. Three kinds of actors are created to make up a Serve instance:

Controller
A global actor unique to each Serve instance that manages the control plane.
It is responsible for creating, updating, and destroying other actors. All of the
Serve API calls (e.g., creating or getting a deployment) use the controller for their
execution.

Router
There is one router per node. Each router is a Uvicorn HTTP server that
accepts incoming requests, forwards them to replicas, and responds after they
are completed.

Worker replica
Worker replicas execute the user-defined code in response to a request. Each
replica processes individual requests from the routers.
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User-defined code is implemented using a Ray deployment, an extension of a Ray
actor with additional features. We will start by examining the deployment itself.

Deployment
The central concept in Ray Serve is the deployment, defining business logic that
will handle incoming requests and the way this logic is exposed over HTTP or in
Python. Let’s start with a simple deployment implementing a temperature controller
(Example 7-1).

Example 7-1. Temperature controller deployment

@serve.deployment
class Converter:
    def __call__(self, request):
        if request.query_params["type"] == 'CF' :
            return {"Fahrenheit temperature":
                        9.0/5.0 * float(request.query_params["temp"]) + 32.0}
        elif request.query_params["type"] == 'FC' :
            return {"Celsius temperature":
                        (float(request.query_params["temp"]) - 32.0) * 5.0/9.0 }
        else:
            return {"Unknown conversion code" : request.query_params["type"]}

Converter.deploy()

The implementation is decorated by an @serve.deployment annotation, telling Ray
that this is a deployment. This deployment implements a single method, call, which
has a special meaning in deployment: it is invoked via HTTP. It is a class method
taking a starlette request, which provides a convenient interface for the incoming
HTTP request. In the case of the temperature controller, the request contains two
parameters: the temperature and the conversion type.

Once the deployment is defined, you need to deploy it using Converter.deploy,
similar to .remote when deploying an actor. You can then immediately access it via
an HTTP interface (Example 7-2).

Example 7-2. Accessing converter over HTTP

print(requests.get("http://127.0.0.1:8000/Converter?temp=100.0&type=CF").text)
print(requests.get("http://127.0.0.1:8000/Converter?temp=100.0&type=FC").text)
print(requests.get("http://127.0.0.1:8000/Converter?temp=100.0&type=CC").text)
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Note here that we are using URL parameters (query strings) to specify parameters.
Also, because the services are exposed externally via HTTP, the requester can run
anywhere, including in code that is running outside Ray.

Example 7-3 shows the results of this invocation.

Example 7-3. Results of HTTP invocations of deployment

{
  "Fahrenheit temperature": 212.0
}
{
  "Celsius temperature": 37.77777777777778
}
{
  "Unknown conversion code": "CC"
}

In addition to being able to invoke a deployment over HTTP, you can invoke it
directly using Python. To do this, you need to get a handle to the deployment and
then use it for invocation, as shown in Example 7-4.

Example 7-4. Invoking a deployment via a handle

from starlette.requests import Request
handle = serve.get_deployment('Converter').get_handle()

print(ray.get(handle.remote(Request(
{"type": "http", "query_string": b"temp=100.0&type=CF"}))))
print(ray.get(handle.remote(Request(
{"type": "http", "query_string": b"temp=100.0&type=FC"}))))
print(ray.get(handle.remote(Request(
{"type": "http", "query_string": b"temp=100.0&type=CC"}))))

Note that in this code, we are manually creating starlette requests by specifying the
request type and a query string.

Once executed, this code returns the same results as in Example 7-3. This example
uses the same call method for both HTTP and Python requests. Although this
works, the best practice is to implement additional methods for Python invocation to
avoid the usage of Request objects in the Python invocation. In our example, we can
extend our initial deployment in Example 7-1 with additional methods for Python
invocations in Example 7-5.
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Example 7-5. Implementing additional methods for Python invocation

@serve.deployment
class Converter:
    def __call__(self, request):
        if request.query_params["type"] == 'CF' :
            return {"Fahrenheit temperature":
                        9.0/5.0 * float(request.query_params["temp"]) + 32.0}
        elif request.query_params["type"] == 'FC' :
            return {"Celsius temperature":
                        (float(request.query_params["temp"]) - 32.0) * 5.0/9.0 }
        else:
            return {"Unknown conversion code" : request.query_params["type"]}
    def celcius_fahrenheit(self, temp):
        return 9.0/5.0 * temp + 32.0

    def fahrenheit_celcius(self, temp):
        return (temp - 32.0) * 5.0/9.0

Converter.deploy()
# list current deploymente
print(serve.list_deployments())

With these additional methods in place, Python invocations can be significantly
simplified (Example 7-6).

Example 7-6. Using additional methods for handle-based invocation

print(ray.get(handle.celcius_fahrenheit.remote(100.0)))
print(ray.get(handle.fahrenheit_celcius.remote(100.0)))

Unlike Example 7-4, which uses the default call method, these invocation methods
are explicitly specified (instead of putting the request type in the request itself, the
request type here is implicit—it’s a method name).

Ray offers synchronous and asynchronous handles. A sync flag, Deployment.get
_handle(…, sync=True|False), can be used to specify a handle type:

• The default handle is synchronous. In this case, calling handle.remote returns a•
Ray ObjectRef.

• To create an asynchronous handle, set sync=False. As its name indicates, async•
handle invocation is asynchronous, and you will have to use await to get a
Ray ObjectRef. To use await, you have to run deployment.get_handle and
handle.remote in the Python asyncio event loop.

We will demonstrate the use of async handles later in this chapter.
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Finally, deployments can be updated by simply modifying the code or configuration
options and calling deploy again. In addition to HTTP and direct Python invocation,
described here, you can use the Python APIs to invoke deployment with Kafka (see
Chapter 6 for the Kafka integration approach).

Now that you know the basics of deployment, let’s take a look at additional capabili‐
ties available for deployments.

Additional Deployment Capabilities
Additional deployment capabilities are provided in three ways:

• Adding parameters to annotations•
• Using FastAPI HTTP deployments•
• Using deployment composition•

Of course, you can combine all three to achieve your goals. Let’s take a close look at
the options provided by each approach.

Adding parameters to annotations

The @serve.deployment annotation can take several parameters. The most widely
used is the number of replicas and resource requirements.

Improving scalability with resource replicas

By default, deployment.deploy creates a single instance of a deployment. By specify‐
ing the number of replicas in @serve.deployment, you can scale out a deployment
to many processes. When the requests are sent to such a replicated deployment,
Ray uses round-robin scheduling to invoke individual replicas. You can modify
Example 7-1 to add multiple replicas and IDs for individual instances (Example 7-7).

Example 7-7. Scaled deployment

@serve.deployment(num_replicas=3)
class Converter:
    def __init__(self):
        from uuid import uuid4
        self.id = str(uuid4())
    def __call__(self, request):
        if request.query_params["type"] == 'CF' :
            return {"Deployment": self.id, "Fahrenheit temperature":
                9.0/5.0 * float(request.query_params["temp"]) + 32.0}
        elif request.query_params["type"] == 'FC' :
            return {"Deployment": self.id, "Celsius temperature":
                (float(request.query_params["temp"]) - 32.0) * 5.0/9.0 }
        else:
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            return {"Deployment": self.id, "Unknown conversion code":
                request.query_params["type"]}
    def celcius_fahrenheit(self, temp):
        return 9.0/5.0 * temp + 32.0

    def fahrenheit_celcius(self, temp):
        return (temp - 32.0) * 5.0/9.0

Converter.deploy()
# list current deployments
print(serve.list_deployments())

Now the usage of either HTTP or handle-based invocation produces the result in
Example 7-8.

Example 7-8. Invoking scaled deployment

{'Deployment': '1d...0d', 'Fahrenheit temperature': 212.0}
{'Deployment': '4d...b9', 'Celsius temperature': 37.8}
{'Deployment': '00...aa', 'Unknown conversion code': 'CC'}

Looking at this result, you can see that every request is processed by a different
deployment instance (a different ID).

This is manual scaling of deployment. What about autoscaling? Similar to the
autoscaling of Kafka listeners (discussed in Chapter 6), Ray’s approach to autoscaling
is different from the one taken by Kubernetes natively—see, for example, Knative.
Instead of creating a new instance, Ray’s autoscaling approach is to create more Ray
nodes and redistribute deployments appropriately.

If your deployments begin to exceed about three thousand requests per second, you
should also scale the HTTP ingress to Ray. By default, the ingress HTTP server is
started on only the head node, but you can also start an HTTP server on every node
by using serve.start(http_options=\{"location": "EveryNode"}). If you scale
the number of HTTP ingresses, you will also need to deploy a load balancer, available
from your cloud provider or installed locally.

Resource requirements for deployments

You can request specific resource requirements in @serve.deployment. For example,
two CPUs and one GPU would be indicated as follows:

@serve.deployment(ray_actor_options={"num_cpus": 2, "num_gpus": 1})
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Another useful parameter of @serve.deployment is route_prefix. As you can see
from Example 7-2, the default prefix is the name of the Python class used in this
deployment. Using route_prefix, for example, allows you to explicitly specify a
prefix used by HTTP requests:

@serve.deployment(route_prefix="/converter")

For descriptions of additional configuration parameters, refer to the “Ray Core API”
documentation.

Implementing request routing with FastAPI
Although the initial example of a temperature converter deployment in Example 7-1
works fine, it is not convenient to use. You need to specify the transformation type
with every request. A better approach is to have two separate endpoints (URLs)
for the API—one for Celsius-to-Fahrenheit transformation and one for Fahrenheit-
to-Celsius transformation. You can achieve this by leveraging Serve integration with
FastAPI. With this, you can rewrite Example 7-1 as shown in Example 7-9.

Example 7-9. Implementing multiple HTTP APIs in a deployment

@serve.deployment(route_prefix="/converter")
@serve.ingress(app)
class Converter:
    @app.get("/cf")
    def celcius_fahrenheit(self, temp):
        return {"Fahrenheit temperature": 9.0/5.0 * float(temp) + 32.0}

    @app.get("/fc")
    def fahrenheit_celcius(self, temp):
        return {"Celsius temperature": (float(temp) - 32.0) * 5.0/9.0}

Note that here, we have introduced two HTTP-accessible APIs with two different
URLs (effectively converting the second query string parameter to a set of URLs)—
one per conversion type. (We also leverage the route_prefix parameter described
previously.) This can simplify HTTP access; compare Example 7-10 to the original in
Example 7-2.

Example 7-10. Invoking deployment with multiple HTTP endpoints

print(requests.get("http://127.0.0.1:8000/converter/cf?temp=100.0&").text)
print(requests.get("http://127.0.0.1:8000/converter/fc?temp=100.0").text)
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Additional features provided through FastAPI implementation include variable
routes, automatic type validation, dependency injection (e.g., for database connec‐
tions), security support, and more. Refer to the FastAPI documentation on how to
use these features.

Deployment Composition
Deployments can be built as a composition of other deployments. This allows for
building powerful deployment pipelines.

Let’s take a look at the specific example: canary deployment. In this deployment
strategy, you deploy a new version of your code or model in a limited fashion to see
how it behaves. You can easily build this type of deployment by using deployment
composition. We will start by defining and deploying two simple deployments in
Example 7-11.

Example 7-11. Two basic deployments

@serve.deployment
def version_one(data):
    return {"result": "version1"}

version_one.deploy()

@serve.deployment
def version_two(data):
    return {"result": "version2"}

version_two.deploy()

These deployments take any data and return a string: "result": "version1" for
deployment 1 and "result": “version2" for deployment 2. You can combine these
two deployments by implementing a canary deployment (Example 7-12).

Example 7-12. Canary deployment

@serve.deployment(route_prefix="/versioned")
class Canary:
    def __init__(self, canary_percent):
        from random import random
        self.version_one = version_one.get_handle()
        self.version_two = version_two.get_handle()
        self.canary_percent = canary_percent
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    # This method can be called concurrently!
    async def __call__(self, request):
        data = await request.body()
        if(random() < self.canary_percent):
            return await self.version_one.remote(data=data)
        else:
            return await self.version_two.remote(data=data)

This deployment illustrates several points. First, it demonstrates a constructor with
parameters, which is useful for deployment, allowing a single definition to be
deployed with different parameters. Second, we define the call function as async,
to process queries concurrently. The implementation of the call function is sim‐
ple: generate a new random number and, depending on its value and a value of
canary_percent, you will invoke either the version 1 or version 2 deployment.

Once the Canary class is deployed (by using Canary.deploy(.3), you can invoke
it using HTTP. The result of invoking canary deployment 10 times is shown in
Example 7-13.

Example 7-13. Results of the canary deployment invocation

{'result': 'version2'}
{'result': 'version2'}
{'result': 'version1'}
{'result': 'version2'}
{'result': 'version1'}
{'result': 'version2'}
{'result': 'version2'}
{'result': 'version1'}
{'result': 'version2'}
{'result': 'version2'}

As you can see here, the canary model works fairly well and does exactly what you
need. Now that you know how to build and use Ray-based microservices, let’s see
how you can use them for model serving.

Using Ray Serve for Model Serving
In a nutshell, serving a model is no different from invoking any other microservice
(we will talk about specific model-serving requirements later in this chapter). As
long as you can get an ML-generated model in some shape or form compatible with
Ray’s runtime—e.g., in pickle format, straight Python code, or binary format along
with a Python library for its processing—you can use this model to process inference
requests. Let’s start with a simple example of model serving.
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Simple Model Service Example
One popular model-learning application is predicting the quality of red wine, based
on the Kaggle Red Wine Quality dataset. Numerous blog posts use this dataset
to build ML implementations of wine quality—for example, see articles by Mayur
Badole and Dexter Nguyen. For our example, we have built several classification
models for the Red Wine Quality dataset, based on Terence Shin’s “Predicting Wine
Quality with Several Classification Techniques”; the actual code can be found in the
book’s GitHub repo. The code uses several techniques for building a classification
model of the red wine quality, including the following:

• Decision trees•
• Random forest•
• AdaBoost•
• Gradient boost•
• XGBoost•

All implementations leverage the scikit-learn Python library, which allows you to
generate a model and export it using pickle. When validating the models, we saw
the best results from the random forest, gradient boost, and XGBoost classifications,
so we saved only these models locally—generated models are available in the book’s
GitHub repo. With the models in place, you can use a simple deployment that allows
serving the red wine quality model using random forest classification (Example 7-14).

Example 7-14. Implementing model serving using random forest classification

@serve.deployment(route_prefix="/randomforest")
class RandomForestModel:
    def __init__(self, path):
        with open(path, "rb") as f:
            self.model = pickle.load(f)
    async def __call__(self, request):
        payload = await request.json()
        return self.serve(payload)

    def serve(self, request):
        input_vector = [
            request["fixed acidity"],
            request["volatile acidity"],
            request["citric acid"],
            request["residual sugar"],
            request["chlorides"],
            request["free sulfur dioxide"],
            request["total sulfur dioxide"],
            request["density"],
            request["pH"],
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            request["sulphates"],
            request["alcohol"],
        ]
        prediction = self.model.predict([input_vector])[0]
        return {"result": str(prediction)}

This deployment has three methods:

The constructor
Loads a model and stores it locally. We are using model location as a parameter
so we can redeploy this deployment when a model changes.

call

Invoked by HTTP requests, this method retrieves the features (as a dictionary)
and invokes the serve method for the actual processing. By defining it as async,
it can process multiple requests simultaneously.

serve

Can be used to invoke deployment via a handle. It converts the incoming dictio‐
nary into a vector and calls the underlying model for inference.

Once the implementation is deployed, it can be used for model serving. If invoked
via HTTP, it takes a JSON string as a payload; for direct invocation, the request is
in the form of a dictionary. Implementations for XGBoost and gradient boost look
pretty much the same, with the exception that a generated model in these cases takes
a two-dimensional array instead of a vector, so you need to do this transformation
before invoking the model.

Additionally, you can take a look at Ray’s documentation for serving other types of
models, including TensorFlow and PyTorch.

Now that you know how to build a simple model-serving implementation, the ques‐
tion is whether Ray-based microservices are a good platform for model serving.

Considerations for Model-Serving Implementations
When it comes to model serving, a few specific requirements are important. A good
definition of requirements specific to model serving can be found in Kubeflow for
Machine Learning by Trevor Grant et al. (O’Reilly). These requirements are as follows:

1. The implementation has to be flexible. It should allow for your training to be1.
implementation agnostic (i.e., TensorFlow versus PyTorch, versus scikit-learn).
For an inference service invocation, it should not matter if the underlying model
was trained using PyTorch, scikit-learn, or TensorFlow: the service interface
should be shared so that the user’s API remains consistent.

Using Ray Serve for Model Serving | 107

https://oreil.ly/Kc2oH
https://oreil.ly/UbrD7
https://oreil.ly/qouwp
https://oreil.ly/qouwp
https://oreil.ly/sikPG
https://oreil.ly/sikPG


2. It is sometimes advantageous to be able to batch requests in a variety of settings2.
in order to realize better throughput. The implementation should make it simple
to support batching of model-serving requests.

3. The implementation should provide the ability to leverage hardware optimizers3.
that match the needs of the algorithm. Sometimes in the evaluation phase, you
would benefit from hardware optimizers like GPUs to infer the models.

4. The implementation should be able to seamlessly include additional components4.
of an inference graph. An inference graph could comprise feature transformers,
predictors, explainers, and drift detectors.

5. Implementation should allow scaling of serving instances, both explicitly and5.
using autoscalers, regardless of the underlying hardware.

6. It should be possible to expose model-serving functionality via different proto‐6.
cols including HTTP and Kafka.

7. ML models traditionally do not extrapolate well outside the training data distri‐7.
bution. As a result, if data drift occurs, the model performance can deteriorate,
and it should be retrained and redeployed. Implementation should support an
easy redeployment of models.

8. Flexible deployment strategy implementations (including canary deployment,8.
blue-green deployments, and A/B testing) are required to ensure that new ver‐
sions of models will not behave worse than the existing ones.

Let’s see how these requirements are satisfied by Ray’s microservice framework:

1. Ray’s deployment cleanly separates deployment APIs from model APIs. Thus,1.
Ray “standardizes” deployment APIs and provides support for converting incom‐
ing data to the format required for the model. See Example 7-14.

2. Ray’s deployment makes it easy to implement request batching. Refer to the Ray2.
“Batching Tutorial” guide for details on how to implement and deploy a Ray
Serve deployment that accepts batches, configure the batch size, and query the
model in Python.

3. As described earlier in this chapter, deployments support configurations that3.
allow specifying hardware resources (CPU/GPU) required for its execution.

4. Deployment composition, described earlier in this chapter, allows for easy cre‐4.
ation of the model-serving graphs, mixing and matching plain Python code
and existing deployments. We will present an additional example of deployment
compositions later in this chapter.

5. As described earlier in this chapter, deployments support setting the number of5.
replicas, thus easily scaling deployments. Coupled with Ray’s autoscaling and the
ability to define the number of HTTP servers, the microservice framework allows
for very efficient scaling of model serving.
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6. As we’ve described, deployments can be exposed via HTTP or straight Python.6.
The latter option allows for integration with any required transport.

7. As described earlier in this chapter, a simple redeployment of deployment allows7.
you to update models without restarting the Ray cluster and interrupting applica‐
tions that are leveraging model serving.

8. As shown in Example 7-12, using deployment composition allows for easy imple‐8.
mentation of any deployment strategy.

As we have shown here, the Ray microservice framework is a solid foundation for
model serving that satisfies all of the main requirements for model serving.

The last thing that you are going to learn in this chapter is the implementation of
one of the advanced model-serving techniques—speculative model serving—using
the Ray microservices framework.

Speculative Model Serving Using the Ray Microservice Framework
Speculative model serving is an application of speculative execution. In this optimiza‐
tion technique, a computer system performs a task that may not be needed. The work
is done before knowing whether it is actually required. This allows getting results up
front, so if they are actually needed, they will be available with no delay. Speculative
execution is important in model serving because it provides the following features for
machine-serving applications:

Guaranteed execution time
Assuming that you have several models, with the fastest providing a fixed execu‐
tion time, it is possible to provide a model-serving implementation with a fixed
upper limit on execution time, as long as that time is larger than the execution
time of the simplest model.

Consensus-based model serving
Assuming that you have several models, you can implement model serving in
such a way that prediction is the one returned by the majority of the models.

Quality-based model serving
Assuming that you have a metric allowing you to evaluate the quality of model-
serving results, this approach allows you to pick the result with the best quality.

Here you will learn how to implement consensus-based model serving using Ray’s
microservice framework.

You learned earlier in this chapter how to implement quality scoring of red wine
using three models: random forest, gradient boost, and XGBoost. Now let’s try to
produce an implementation that returns a result on which at least two models agree.
The basic implementation is shown in Example 7-15.
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1 You can also implement different policies for waiting for the model’s execution. You could, for example, use
at least one model’s result via asyncio.wait(tasks). return_when=asyncio.FIRST_COMPLETED) or just wait
for a given time interval by using asyncio.wait(tasks, interval).

Example 7-15. Consensus-based model serving

@serve.deployment(route_prefix="/speculative")
class Speculative:
    def __init__(self):
        self.rfhandle = RandomForestModel.get_handle(sync=False)
        self.xgboosthandle = XGBoostModel.get_handle(sync=False)
        self.grboosthandle = GRBoostModel.get_handle(sync=False)
    async def __call__(self, request):
        payload = await request.json()
        f1, f2, f3 = await asyncio.gather(self.rfhandle.serve.remote(payload),
                self.xgboosthandle.serve.remote(payload), 
                self.grboosthandle.serve.remote(payload))

        rfresurlt = ray.get(f1)['result']
        xgresurlt = ray.get(f2)['result']
        grresult = ray.get(f3)['result']
        ones = []
        zeros = []
        if rfresurlt == "1":
            ones.append("Random forest")
        else:
            zeros.append("Random forest")
        if xgresurlt == "1":
            ones.append("XGBoost")
        else:
            zeros.append("XGBoost")
        if grresult == "1":
            ones.append("Gradient boost")
        else:
            zeros.append("Gradient boost")
        if len(ones) >= 2:
            return {"result": "1", "methods": ones}
        else:
            return {"result": "0", "methods": zeros}

The constructor of this deployment creates handles for all of your deployments
implementing individual models. Note that here we are creating async handles that
allow parallel execution of each deployment.

The call method gets the payload and starts executing all three models in parallel
and then waits for all to complete—see “Waiting in asyncio” by Hynek Schlawack
for information on using asyncio for the execution of many coroutines and running
them concurrently. Once you have all the results, you implement the consensus
calculations and return the result (along with methods that voted for it).1
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Conclusion
In this chapter, you learned Ray’s implementation of the microservice framework
and how this framework can be used by model serving. We started by describing a
basic microservices deployment and extensions allowing for better control, scale, and
extending of the deployment’s execution. We then showed an example of how this
framework can be used to implement model serving, analyzed typical model-serving
requirements, and showed how they can be satisfied by Ray. Finally, you learned
how to implement an advanced model-serving example—consensus-based model
serving—allowing you to improve the quality of individual model-serving methods.
The article “Building Highly Available and Scalable Online Applications on Ray at
Ant Group” by Tengwei Cai et al. shows how to bring together the basic building
blocks described here into more complex implementations.

In the next chapter, you will learn about workflow implementation in Ray and how to
use workflows to automate your application execution.
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CHAPTER 8

Ray Workflows

With contributions from Carlos Andrade Costa

Real-life and modern applications in a wide range of domains are often a combina‐
tion of multiple interdependent steps. For example, in AI/ML workflows, training
workloads require multiple steps for data cleaning, balancing, and augmentation,
while model serving often includes many subtasks and integration with long-running
business processes. Different steps in the workflows can depend on multiple
upstreams and sometimes require different scaling tools.

Computer libraries for workflow management date back over 25 years, with new
tools focused on AI/ML emerging. Workflow specifications range from graphical user
interfaces to custom formats, YAML Ain’t Markup Language (YAML) and Extensi‐
ble Markup Language (XML), and libraries in full-fledged programming languages.
Specifying workflows in code allows you to use general programming tools, like
source control for versioning and collaboration.

In this chapter, you will learn the basics of Ray’s Workflows implementation and
some simple examples of its usage.

What Is Ray Workflows?
Ray Workflows extends Ray Core by adding workflow primitives, providing support
for programmatic workflow execution with a shared interface with tasks and actors.
This allows you to use Ray’s core primitives as part of your workflow’s steps. Ray
Workflows is targeted at supporting both traditional ML and data workflows (e.g.,
data preprocessing and training) and long-running business workflows, including
model-serving integration. It leverages Ray tasks for execution to provide scalability
and reliability. Ray’s workflow primitives greatly reduce the burden of embedding
workflow logic into application steps.
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1 The approach was originally introduced by Cadence workflow. Cadence consists of a programming frame‐
work (or client library) that provides what its documentation calls a “fault-oblivious” stateful programming
model, allowing developers to create workflows the same way they are writing normal code.

How Is It Different from Other Solutions?
Unlike other popular workflow frameworks—e.g., Apache Airflow, Kubeflow Pipe‐
lines, and others—which focus on tool integration and deployment orchestration,
Ray Workflows focuses on lower-level workflow primitives enabling programmatic
workflows.1 This programmatic approach can be considered a lower level compared
to other implementations; this low-level approach allows for unique workflow man‐
agement features.

Ray Workflows focuses on embedding core workflow primitives
into Ray Core to enable rich programmatic workflows, as opposed
to supporting tools integration and deployment orchestration.

Ray Workflows Features
In this section, we will walk through the main features of Ray Workflows, review the
core primitives, and see how they are used in simple examples.

What Are the Main Features?
The main features provided by Ray Workflows include the following:

Durability
By adding virtual actors (see “Virtual Actors” on page 118), Ray Workflows adds
durability guarantees to steps executed with Ray’s dynamic task graph.

Dependency management
Ray Workflows leverages Ray’s runtime environment feature to snapshot the code
dependencies of a workflow. This enables management of workflows and virtual
actors as code is upgraded over time.

Low-latency and scale
By leveraging Ray’s zero-copy overhead with Plasma (a shared memory store),
Ray Workflows provides subsecond overhead when launching tasks. Ray’s scala‐
bility extends to workflows, allowing you to create workflows with thousands of
steps.
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Ray Workflows provides durable execution of workflow steps using
any of Ray’s distributed libraries, with low-latency and dynamic
dependency management.

Workflow Primitives
Ray Workflows provides core primitives to build workflows with steps and a virtual
actor. The following list summarizes the core primitives and basic concepts in Ray
Workflows:

Steps
Annotated functions with the @workflow.step decorator. Steps are executed
once when finished successfully, and retried on failure. Steps can be used as
arguments for other step futures. To ensure recoverability, steps don’t support the
ray.get and ray.wait calls.

Objects
Data objects stored in the Ray object store, with references to these objects being
passed into and returned from steps. When initially returned from a step, objects
are checkpointed and can be shared with other Workflows steps through the Ray
object store.

Workflows
Execution graph created with @Workflow.run and Workflow.run_async. The
workflow execution, after starting, is logged to storage for durability and can be
resumed upon failure on any Ray cluster with access to the storage.

Workflows can also be dynamic, generating new steps in subworkflows at run‐
time. Workflows support dynamic looping, nesting, and recursion. You can even
dynamically add new steps to your workflow directed acyclic graph (DAG) by
returning more workflow steps from a workflow step.

Virtual actors
Virtual actors are like regular Ray actors, which can hold member states. The
main difference is that virtual actors are backed by durable storage instead
of only in-process memory, which does not survive cluster restarts or worker
failures.

Virtual actors manage long-running business workflows. They save their state
into external storage for durability. They also support the launch of sub‐
workflows from method calls and receive externally triggered events.

You can use virtual actors to add state to an otherwise stateless workflow.
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Events
Workflows can be triggered by timers and external events through pluggable
event listeners. Events can also be used as an argument for a step, making the step
execution wait until the event is received.

Working with Basic Workflow Concepts
Workflows are built out of various primitives, and you’ll start with learning how to
use steps and objects.

Workflows, Steps, and Objects
Example 8-1 shows a simple Hello World workflow example, demonstrating how the
step, object, and workflow primitives work in a simple case.

Example 8-1. Hello World workflow

import ray
from ray import workflow
from typing import List

# Creating an arbitrary Ray remote function
@ray.remote
def hello():
    return "hello"

# Defining a workflow step that puts an object into the object store
@workflow.step
def words() -> List[ray.ObjectRef]:
    return [hello.remote(), ray.put("world")]

# Defining a step that receives an object
@workflow.step
def concat(words: List[ray.ObjectRef]) -> str:
    return " ".join([ray.get(w) for w in words])

# Creating workflow
workflow.init("tmp/workflow_data")
output: "Workflow[int]" = concat.step(words.step())

# Running workflow
assert output.run(workflow_id="workflow_1") == "hello world"
assert workflow.get_status("workflow_1") == workflow.WorkflowStatus.SUCCESSFUL
assert workflow.get_output("workflow_1") == "hello world"
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Similar to Ray tasks and actors (described in Chapters 3 and 4), you can explicitly
assign computing resources (e.g., CPU core, GPUs) to a step with the same argu‐
ments as in core Ray: num_cpus, num_gpus, and resources. See Example 8-2.

Example 8-2. Adding resources to steps

from ray import workflow
@workflow.step(num_gpus=1)
def train_model() -> Model:
    pass  # This step is assigned a GPU by Ray.

train_model.step().run()

Dynamic Workflows
In addition to the workflows with the predefined DAG, Ray allows you to create
steps programmatically based on the current state of workflow execution: dynamic
workflows. You can use this type of workflow, for example, to implement recursion
and more complex execution flows. A simple recursion can be illustrated with a
recursive factorial program. Example 8-3 shows how you can use recursion within a
workflow (note that this is for illustration only and that other implementations with
better performance exist without the need of Ray Workflows).

Example 8-3. Dynamically creating workflow steps

from ray import workflow

@workflow.step
def factorial(n: int) -> int:
    if n == 1:
        return 1
    else:
        return mult.step(n, factorial.step(n - 1))

@workflow.step
def mult(a: int, b: int) -> int:
    return a * b

# Calculate the factorial of 5 by creating a recursion of 5 steps
factorial_workflow = factorial.step(5).run()
assert factorial_workflow.run() == 120
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Virtual Actors
Virtual actors are Ray actors (see Chapter 4) backed by durable storage instead of
memory; they are created with the decorator @virtual_actor. Example 8-4 shows
how to use a persistent virtual actor to implement a counter.

Example 8-4. Virtual actors

from ray import workflow

@workflow.virtual_actor
class counter:
    def __init__(self):
        self.count = 0

    def incr(self):
        self.count += 1
        return self.count

workflow.init(storage="/tmp/workflows")

workflow1 = counter.get_or_create("counter_workflw")
assert c1.incr.run() == 1
assert c1.incr.run() == 2

Because a virtual actor retrieves and stores its state before and after
every step of execution, its state either has to be JSON serializable
(in the form of state dictionary) or getstate and setstate meth‐
ods should be provided that convert the actor’s state to and from a
JSON serializable dictionary.

Workflows in Real Life
Let’s take a look at the common steps for creating and managing a reference use case
implementation with Ray Workflows.

Building Workflows
As seen before, you start with implementing individual workflow steps and declaring
them with the @workflow.step annotation. Similarly to a Ray task, steps can receive
one or more inputs, where each input can be a specific value or a future—the result
of executing one or more previous workflow steps. The return type of workflow
is Workflow[T] and is a future with the value available after the execution of the
workflow is completed. Example 8-5 illustrates this process. In this case, the steps
get_value1 and get_value2 return futures that are passed to the sum step function.
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Example 8-5. Implementing workflow steps

from ray import workflow

@workflow.step
def sum(x: int, y: int, z: int) -> int:
    return x + y + z

@workflow.step
def get_value1() -> int:
    return 100

@workflow.step
def get_value2(x: int) -> int:
    return 10*x

sum_workflow = sum.step(get_val1.step(), get_val2.step(10), 100)

assert sum_workflow.run("sum_example") == 300

To simplify accessing step execution results and passing data between steps,
Ray Workflows allows you to explicitly name the steps. You can, for example,
retrieve the results of step execution by calling workflow.get_output(workflow_id,
name="step_name"), which will return an ObjectRef[T]. If you do not explicitly
name the step, Ray will automatically generate one in the format of <WORKFLOW_ID>
.<MODULE_NAME>.<FUNC_NAME>.

Note that you can call ray.get on the returned reference, which will block
until the workflow is completed. For example, ray.get(workflow.get_output("sum
_example")) == 100.

Steps can be named in two ways:

• Using .options(name="step_name")•
• Using the decorator @workflows.step(name=”step_name”)•

Managing Workflows
Each workflow in Ray Workflows has a unique workflow_id. You can explicitly set
a workflow ID during workflow startup, using .run(workflow_id="workflow_id").
The same option is also applicable to .run_async. If no ID is provided when call‐
ing .run and run_async, a random ID is generated.

Once created, workflows can be in the following states:

Running
Currently running in the cluster.
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Failed
Failed with an application error. It may be resumed from the failed step.

Resumable
Workflow that failed with a system error and can be resumed from the failed step.

Canceled
Workflow has been canceled. It cannot be resumed, and results are unavailable.

Successful
Workflow completed successfully.

Table 8-1 shows a summary of the management APIs and how you can use them to
manage workflows both individually or in bulk.

Table 8-1. Workflow management APIs

Single workflow Action Bulk workflow Action

.get_status(
workflow_id=<>)

Get status of workflows
(running, resumable, failed,
canceled, successful)

.list_all(
<workflow_state1, 
workflow_state2, …>)

List all workflows in
the states listed

.resume(
workflow_id=<>)

Resume a workflow .resume_all Resume all resumable
workflows

.cancel(
workflow_id=<>)

Cancel a workflow

.delete(
workflow_id=<>)

Delete a workflow

Ray Workflows stores workflow information in your configured storage location.
You configure the location either when creating the workflow with the decorator
workflow.init(storage=<path>), or by setting the environment variable RAY_WORK
FLOW_STORAGE.

You can use either regular/local storage or distributed storage using an S3-compatible
API:

Local filesystem
Either single node, for testing purposes only, or through a shared filesystem (e.g.,
NFS mount) across the nodes in the cluster. Location is passed as an absolute
path.

S3 backend
Enable workflow data to be written to an S3-based backend for use in
production.

If you do not specify a path, Workflows will use the default location: /tmp/ray/work
flow_data.
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If no storage data location is specified, workflow data is saved
locally and works for only a single-node Ray cluster.

Ray’s Workflows dependencies are actively under development. Once available, this
feature will allow Ray to log the full runtime environment to storage, at the workflow
submission time. By tracking this information, Ray can ensure that the workflow can
run on a different cluster.

Building a Dynamic Workflow
As mentioned before, you can create workflows dynamically by creating steps based
on the current state of a given step. When such a step is created, it is inserted into
the original workflow DAG. Example 8-6 shows how to use a dynamic workflow to
calculate the Fibonacci sequence.

Example 8-6. Dynamic workflow

from ray import workflow

@workflow.step
def add(a: int, b: int) -> int:
    return a + b

@workflow.step
def fib(n: int) -> int:
    if n <= 1:
        return n
    return add.step(fib.step(n - 1), fib.step(n - 2))

assert fib.step(10).run() == 55

Building Workflows with Conditional Steps
Workflows with conditional steps are central to many use cases. Example 8-7 shows a
simplified scenario of a workflow implementing a trip booking.

Example 8-7. Trip-booking example

from ray import workflow

@workflow.step
def book_flight(...) -> Flight: ...

@workflow.step
def book_hotel(...) -> Hotel: ...
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@workflow.step
def finalize_or_cancel(
    flights: List[Flight],
    hotels: List[Hotel]) -> Receipt: ...

@workflow.step
def book_trip(origin: str, dest: str, dates) ->
        "Workflow[Receipt]":
    # Note that the workflow engine will not begin executing
    # child workflows until the parent step returns.
    # This avoids step overlap and ensures recoverability.
    f1: Workflow = book_flight.step(origin, dest, dates[0])
    f2: Workflow = book_flight.step(dest, origin, dates[1])
    hotel: Workflow = book_hotel.step(dest, dates)
    return finalize_or_cancel.step([f1, f2], [hotel])

fut = book_trip.step("OAK", "SAN", ["6/12", "7/5"])
fut.run()  # Returns Receipt(...)

Handling Exceptions
You can choose to have Ray handle exceptions in one of two ways:

• Automatic retry, until a maximum number of retries is reached•
• Catching and handling the exception•

You configure this in either the step decorator or via .options. You specify the
settings for the two techniques, respectively, as follows:

max_retries

The step is retried upon failure until max_retries is reached. The max_retries
default is 3.

catch_exceptions

When True, this option will convert the return value of the function to a
Tuple[Optional[T], Optional[Exception]].

You can also pass these to the workflow.step decorator.

Example 8-8 illustrates exception handling with these options.

Example 8-8. Exception handling

from ray import workflow
@workflow.step
def random_failure() -> str:
    if random.random() > 0.95:
        raise RuntimeError("Found failure")
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    return "OK"

# Run 5 times before giving up
s1 = faulty_function.options(max_retries=5).step()
s1.run()

@workflow.step
def handle_errors(result: Tuple[str, Exception]):
    # Setting the exception field to NONE on success
    err = result[1]
    if err:
        return "There was an error: {}".format(err)
    else:
        return "OK"

# `handle_errors` receives a tuple of (result, exception).
s2 = faulty_function.options(catch_exceptions=True).step()
handle_errors.step(s2).run()

Handling Durability Guarantees
Ray Workflows ensures that once a step succeeds, it will never be reexecuted.
To enforce this guarantee, Ray Workflows logs the step result to durable storage,
ensuring that results from previous successful steps will not change when used in
subsequent steps.

Ray’s workflows go beyond the durability of retrying within a cluster or single appli‐
cation. Workflows implements a failure model based on two statuses:

Cluster failure
If the cluster fails, any workflow running on the cluster is set to RESUMABLE state.
Workflows in RESUMABLE state can be resumed on a different cluster. This can be
done with ray.workflow.resume.all, which will resume all resumable workflow
jobs.

Driver failure
The workflow will transition to the failed state, and once the issue is resolved, it
can be resumed from the failed step.

Workflow resumability is a beta API at the moment of writing and
may change before becoming stable.

You can use durability guarantees to create idempotent workflows that include steps
that have side effects. This is needed because a step can fail before its output is
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logged. Example 8-9 shows how to use a durability guarantee to make a workflow
idempotent.

Example 8-9. Idempotent workflow

from ray import workflow

@workflow.step
def generate_id() -> str:
   # Generate a unique idempotency token.
   return uuid.uuid4().hex

@workflow.step
def book_flight_idempotent(request_id: str) -> FlightTicket:
   if service.has_ticket(request_id):
       # Retrieve the previously created ticket.
       return service.get_ticket(request_id)
   return service.book_flight(request_id)

# SAFE: book_flight is written to be idempotent
request_id = generate_id.step()
book_flight_idempotent.step(request_id).run()

Extending Dynamic Workflows with Virtual Actors
Virtual actors, described previously, also allow subworkflows to be called from each
of their methods.

When you create a virtual actor, Ray stores its initial state and class definition in
durable storage. As a workflow name is used in the actor’s definition, Ray stores it
in durable storage. When the actor’s method creates new steps, they are dynamically
appended to the workflow and executed. In this case, both the step definition and
its result are stored in the actor’s state. To retrieve the actor, you can use the decora‐
tor .get_actor(workflow_id="workflow_id").

You can also define workflows as read-only. Because they don’t require logging,
they incur less overhead. Additionally, because they don’t imply conflict issues with
mutating methods in the actor, Ray can execute them concurrently.

Example 8-10 shows how virtual actors can be used to manage state in a workflow.

Example 8-10. Workflow management with virtual actors

from ray import workflow
import ray

@workflow.virtual_actor
class Counter:
    def __init__(self, init_val):
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        self._val = init_val

    def incr(self, val=1):
        self._val += val
        print(self._val)

    @workflow.virtual_actor.readonly
    def value(self):
        return self._val

workflow.init()

# Initialize a Counter actor with id="my_counter".
counter = Counter.get_or_create("my_counter", 0)

# Similar to workflow steps, actor methods support:
# - `run()`, which will return the value
# - `run_async()`, which will return a ObjectRef
counter.incr.run(10)
assert counter.value.run() == 10

# Nonblocking execution.
counter.incr.run_async(10)
counter.incr.run(10)
assert 30 == ray.get(counter.value.run_async())

Virtual actors can also create subworkflows that involve other methods in the vir‐
tual actor or steps defined outside the actor class to be invoked. This means that
a workflow can be launched inside a method or passed to another method. See
Example 8-11.

Example 8-11. Using subworkflows

from ray import workflow
import ray

@workflow.step
def double(s):
    return 2 * s

@workflow.virtual_actor
class Actor:
    def __init__(self):
        self.val = 1

    def double(self, update):
        step = double.step(self.val)
        if not update:
            # Inside the method, a workflow can be launched
            return step
        else:
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            # Workflow can also be passed to another method
            return self.update.step(step)

    def update(self, v):
        self.val = v
        return self.val

handler = Actor.get_or_create("actor")
assert handler.double.run(False) == 2
assert handler.double.run(False) == 2
assert handler.double.run(True) == 2
assert handler.double.run(True) == 4

Virtual actors can also be used for sharing data among multiple workflows (even run‐
ning on different Ray clusters). For example, virtual actors may be used to store fitted
parameters in an ML model such as a Python scikit-learn pipeline. Example 8-12
illustrates a simple two-stage pipeline consisting of a standard scalar followed by a
decision tree classifier. Each stage is implemented as a workflow step, directly invok‐
ing an instance of a virtual actor defined in the class estimator_virtual_actor. Its
member estimator uses the getstate and setstate methods to convert its state to
and from the JSON serializable dictionary. The pipeline is trained when the third
input parameter of the input tuple is specified as 'fit', and the pipeline is used for
prediction when that parameter is specified as 'predict'.

To train a pipeline, the workflow execution submits training_tuple to the standard
scalar, whose output is then piped through the classification model to train:

training_tuple = (X_train, y_train, 'fit')
classification.step(scaling.step(training_tuple, 'standardscalar'),
                    'decisiontree').run('training_pipeline')

To use the trained pipeline for prediction, the workflow execution submits
predict_tuple to the same chain of steps, although its 'predict' parameter invokes
the predict function in the virtual actor. The prediction result is returned as another
tuple with labels found in pred_y:

predict_tuple = (X_test, y_test, 'predict')
(X, pred_y, mode) = classification.step(scaling.step(predict_tuple,
  'standardscalar'),'decisiontree').run('prediction_pipeline')

The power of the workflow virtual actor is to make the trained model available to
another Ray cluster. Furthermore, the ML workflow backed by a virtual actor can
incrementally update its state, such as recalculated time-series features. This makes
it easier to implement stateful time-series analysis, including forecasting, prediction,
and anomaly detection.
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Example 8-12. Machine learning workflow

import ray
from ray import workflow

import pandas as pd
import numpy as np
from sklearn import base
from sklearn.base import BaseEstimator
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split

ray.init(address='auto')
workflow.init()

@ray.workflow.virtual_actor
class estimator_virtual_actor():
    def __init__(self, estimator: BaseEstimator):
        if estimator is not None:
            self.estimator = estimator

    def fit(self, inputtuple):
        (X, y, mode)= inputtuple
        if base.is_classifier(self.estimator) or base.is_regressor(self.estimator):
            self.estimator.fit(X, y)
            return X, y, mode
        else:
            X = self.estimator.fit_transform(X)
            return X, y, mode

    @workflow.virtual_actor.readonly
    def predict(self, inputtuple):
        (X, y, mode) = inputtuple
        if base.is_classifier(self.estimator) or base.is_regressor(self.estimator):
            pred_y = self.estimator.predict(X)
            return X, pred_y, mode
        else:
            X = self.estimator.transform(X)
            return X, y, mode

    def run_workflow_step(self, inputtuple):
        (X, y, mode) = inputtuple
        if mode == 'fit':
            return self.fit(inputtuple)
        elif mode == 'predict':
            return self.predict(inputtuple)

    def __getstate__(self):
        return self.estimator

    def __setstate__(self, estimator):
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        self.estimator = estimator

## Prepare the data
X = pd.DataFrame(np.random.randint(0,100,size=(10000, 4)), columns=list('ABCD'))
y = pd.DataFrame(np.random.randint(0,2,size=(10000, 1)), columns=['Label'])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

@workflow.step
def scaling(inputtuple, name):
    va = estimator_virtual_actor.get_or_create(name, StandardScaler())
    outputtuple = va.run_workflow_step.run_async(inputtuple)
    return outputtuple

@workflow.step
def classification(inputtuple, name):
    va = estimator_virtual_actor.get_or_create(name,
                                               DecisionTreeClassifier(max_depth=3))
    outputtuple = va.run_workflow_step.run_async(inputtuple)
    return outputtuple

training_tuple = (X_train, y_train, 'fit')
classification.step(scaling.step(training_tuple, 'standardscalar'), 'decisiontree').
                    run('training_pipeline')

predict_tuple = (X_test, y_test, 'predict')
(X, pred_y, mode) = classification.step(scaling.step(predict_tuple,
  'standardscalar'),'decisiontree').run('prediction_pipeline')
assert pred_y.shape[0] == 2000

Long-running workflows require special attention when used as subworkflows,
since subworkflows block future actor calls when running. To properly handle
long-running workflows, it is recommended to use the Workflows API to monitor
execution and to run separate workflows with deterministic names. This approach
prevents a duplicate workflow from being launched in the case of a failure.

Subworkflows block future actor method calls. It is not recom‐
mended to run a long running workflow as a subworkflow of a
virtual actor.

Example 8-13 shows how to run a long-running workflow without blocking.

Example 8-13. Nonblocking workflow

from ray import workflow
import ray
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@workflow.virtual_actor
class ShoppingCart:
    ...
    # Check status via ``self.shipment_workflow_id`` for avoid blocking
    def do_checkout():
        # Deterministically generate a workflow ID for idempotency.
        self.shipment_workflow_id = "ship_{}".format(self.order_id)
        # Run shipping workflow as a separate async workflow.
        ship_items.step(self.items).run_async(
            workflow_id=self.shipment_workflow_id)

Integrating Workflows with Other Ray Primitives
Ray workflows can be used with Ray’s core primitives. Here we will describe some
common scenarios where the Workflows API is integrated with a common Ray
program. There are two main scenarios when integrating workflows with tasks and
actors:

• Running a workflow from within a Ray task or actor•
• Using a Ray task or actor within a workflow step•

Another common case is passing object references between steps in a workflow. Ray
object references can be passed as arguments and returned from any workflow step,
as shown in Example 8-14.

Example 8-14. Using object references

from ray import workflow

@ray.remote
def do_add(a, b):
    return a + b

@workflow.step
def add(a, b):
    return do_add.remote(a, b)

add.step(ray.put(10), ray.put(20)).run() == 30

To ensure recoverability, Ray Workflows logs the contents to persistent storage.
Thankfully, when passed to multiple steps, Ray will not checkpoint the object more
than once.

Ray actor handlers cannot be passed between steps.
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Another consideration when integrating actors and tasks with Workflows is handling
nested arguments. As described before, workflow outputs are fully resolved when
passed to a step, as a form to guarantee that all the ancestors of a step are executed
before the current step is executed. Example 8-15 illustrates this behavior.

Example 8-15. Using output arguments

import ray
from ray import workflow
from typing import List

@workflow.step
def add(values: List[int]) -> int:
    return sum(values)

@workflow.step
def get_val() -> int:
    return 10

ret = add.step([get_val.step() for _ in range(3)])
assert ret.run() == 30

Triggering Workflows (Connecting to Events)
Workflows has a pluggable event system, allowing external events to trigger work‐
flows. This framework provides an efficient built-in wait mechanism and guarantee
of exactly-once event delivery semantics. This implies that the user doesn’t need to
implement a trigger mechanism based on a running workflow step to react to an
event. As with the rest of workflows, for fault-tolerance, events are checkpointed
upon occurrence.

Workflow events can be seen as a type of workflow step that completes only when the
event occurs. The decorator .wait_for_event is used to create an event step.

Example 8-16 shows a workflow step that finishes after 90 seconds and triggers the
execution for an outer workflow.

Example 8-16. Using events

from ray import workflow
import time

# Create an event that finishes after 60 seconds.
event1_step = workflow.wait_for_event(
    workflow.event_listener.TimerListener, time.time() + 60)

# Create another event that finishes after 30 seconds.
event2_step = workflow.wait_for_event(
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    workflow.event_listener.TimerListener, time.time() + 30)

@workflow.step
def gather(*args):
    return args;

# Gather will run after 60 seconds, when both event1 and event2 are done.
gather.step(event1_step, event2_step).run()

Events also support customer listeners by subclassing the EventListener interface, as
shown in Example 8-17.

Example 8-17. Custom event listeners

from ray import workflow
class EventListener:
    def __init__(self):
        """Optional constructor. Only the constructor with no arguments will be
          called."""
        pass

    async def poll_for_event(self, *args, **kwargs) -> Event:
        """Should return only when the event is received."""
        raise NotImplementedError

    async def event_checkpointed(self, event: Event) -> None:
        """Optional. Called after an event has been checkpointed and a transaction
          can be safely committed."""
        pass

Working with Workflow Metadata
One of the important requirements for workflow execution is observability. Typically,
you want not only to see the workflow execution results but also to get the informa‐
tion about the internal states (e.g., paths that execution took, their performance,
and values of variables). Ray’s workflow metadata provides support for some of the
standard and user-defined metadata options. Standard metadata is split between
workflow-level metadata:

status

Workflow states, which can be one of RUNNING, FAILED, RESUMABLE, CANCELED, or
SUCCESSFUL

user_metadata

A Python dictionary of custom metadata by the user via workflow.run

stats

Workflow running stats, including workflow start time and end time
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And step-level metadata:

name

Name of the step, either provided by the user via step.options or generated by
the system

step_options

Options of the step, either provided by the user via step.options or the system
default

user_metadata

A Python dictionary of custom metadata by the user via step.options

stats

The step’s running stats, including step start time and end time

Ray Workflows provides a simple API to obtain standard metadata:

workflow.get_metadata(workflow_id)

You can also get metadata about the workflow and a step:

workflow.get_metadata(workflow_id, name=<step name>)

Both versions of the API return a dictionary containing all the metadata for either the
workflow itself or an individual step.

In addition to the standard metadata, you can add custom ones, capturing parame‐
ters of interest either in the workflow or specific step:

• Workflow-level metadata can be added via .run(metadata=metadata).•
• Step-level metadata can be added via .options(metadata=metadata) or in the•

decorator @workflow.step(metadata=metadata).

Finally, you can expose metadata from the virtual actors execution and also retrieve
workflow/steps metadata to control execution.

The metrics that you add to Ray metrics are exposed as Prome‐
theus metrics, just like Ray’s built-in metrics.

Be aware that get_metadata returns an immediate result at invocation time, which
means that not all fields might be available in the result.
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Conclusion
In this chapter, you learned how Ray Workflows adds workflow primitives to Ray,
allowing you to create dynamic pipelines with rich workflow management support.
Ray Workflows allows you to create common pipelines involving multiple steps,
like data preprocessing, training, and long-running business workflows. With Ray,
the possibility of a programmatic workflow execution engine became feasible with
a shared interface with Ray tasks and actors. This capability can greatly reduce the
burden of orchestrating workflows and embedding workflow logic into application
steps.

This said, be aware that Ray remote functions (see Chapter 3) provide basic execution
sequencing and fork/merge capabilities based on an argument’s availability. As a
result, for some simple use cases, using Ray Workflows might seem like overkill, but
if you need execution reliability, restartability, programmatic control, and metadata
management (which you typically do), Ray Workflows is a preferred implementation
approach.
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CHAPTER 9

Advanced Data with Ray

Despite, or perhaps because of, data ecosystems’ rapid advances, you will likely end
up needing to use multiple tools as part of your data pipeline. Ray Datasets allows
data sharing among tools in the data and ML ecosystems. This allows you to switch
tools without having to copy or move data. Ray Datasets supports Spark, Modin,
Dask, and Mars and can also be used with ML tools like TensorFlow. You can also use
Arrow with Ray to allow more tools to work on top of Datasets, such as R or even
MATLAB. Ray Datasets act as a common format for all steps of your ML pipeline,
simplifying legacy pipelines.

It all boils down to this: you can use the same dataset in multiple tools without
worrying about the details. Internally, many of these tools have their own formats,
but Ray and Arrow manage the translations transparently.

In addition to simplifying your use of different tools, Ray also has a growing collec‐
tion of built-in operations for Datasets. These built-in operations are being actively
developed and are not intended to be as full-featured as those of the data tools built
on top of Ray.

As covered in “Ray Objects” on page 56, Ray Datasets’ default
behavior may be different than you expect. You can enable
object recovery by setting enable_object_reconstruction=True
in ray.init to make Ray Datasets more resilient.

Ray Datasets continues to be an area of active development, including large feature
additions between minor releases, and more functionality likely will be added by
the time you are reading this chapter. Regardless, the fundamental principles of
partitioning and multitool interoperability will remain the same.

135



Creating and Saving Ray Datasets
As you saw in Example 2-9, you can create datasets from local collections by calling
ray.data.from_items. However, local collections naturally limit the scope of data
that you can handle, so Ray supports many other options.

Apache Arrow
Apache Arrow defines a language-independent columnar memory format for flat and
hierarchical data. The key components of Arrow include the following:

• Rich datatype sets covering both SQL and JSON types, such as int, BigInt,•
decimal, varchar, map, struct, and array

• Columnar in-memory representations allowing you to support an arbitrarily•
complex record structure built on top of the defined data types

• Support for data structures including picklists (which are like enums), hash•
tables, and queues

• Use of shared memory, TCP/IP, and remote direct memory access (RDMA) for•
interprocess data exchange

• Data libraries used for reading and writing columnar data in multiple languages,•
including Java, C++, Python, Ruby, Rust, Go, and JavaScript

• Algorithms for various operations including bitmap selection, hashing, filtering,•
bucketing, sorting, and matching

• Increased efficiency of memory use through columnar in-memory compression•
• Memory persistence tools for short-term persistence through nonvolatile mem‐•

ory, SSD, or HDD

Ray uses Arrow to load external data into Datasets, which support multiple file for‐
mats and filesystems. The formats, at present, are CSV, JSON, Parquet, NumPy, text,
and raw binary. The functions for loading data follow the read_[format] pattern and
are in the ray.data module, as shown in Example 9-1.

Example 9-1. Loading local data

    ds = ray.data.read_csv(
        "2021",
        partition_filter=None # Since the file doesn't end in .csv
    )                   

When loading, you can specify a target parallelism, but Ray may be limited by
the number of files being loaded. Picking a good value for your target parallelism is
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complicated and depends on numerous factors. You want to ensure that your data
can fit easily in memory and take advantage of all of the machines in your cluster,
while also not picking a number so high that the overhead of launching individual
tasks exceeds the benefits. Generally, parallelism resulting in splits between hundreds
of megabytes to tens of gigabytes is often considered a sweet spot.

If you wish to customize the way Arrow loads your data, you can
pass additional arguments, like compression or buffer_size, to
Arrow through the arrow_open_stream_args parameter.

Arrow has built-in native (fast) support for S3, HDFS, and regular filesystems. Ray
automatically selects the correct built-in filesystem driver based on the path.

When loading from a local filesystem, it is up to you to ensure
that the file is available on all of the workers when running in
distributed mode.

Arrow, and by extension Ray, also uses fsspec, which supports a wider array of
filesystems, including HTTPS (when aiohttp is installed). Unlike with the “built-in”
filesystems, you need to manually specify the filesystem, as shown in Example 9-2.

Example 9-2. Loading data over HTTPS

fs = fsspec.filesystem('https')
ds = ray.data.read_csv(
    "https://https://gender-pay-gap.service.gov.uk/viewing/download-data/2021",
    filesystem=fs,
    partition_filter=None # Since the file doesn't end in .csv
    )

At present, the protocol is incorrectly stripped off, so you need
to put it in twice. For example, when loading data from an
HTTPS website, you would load from https://https://[someurl
here].com.

Ray has the ability to write in all the formats it can read from. The writing func‐
tions, like the reading functions, follow a pattern of write_[format]. A few minor
differences exist between the read path and the write path. Instead of taking in a
parallelism parameter, the write path always writes with the parallelism of the input
dataset:

Creating and Saving Ray Datasets | 137

https://oreil.ly/Tz32F
https://oreil.ly/HP05n


word_count.write_csv("s3://ray-demo/wc")

If Ray does not have I/O support for your desired format or filesystem, you should
check to see whether any of the other tools that Ray supports does. Then, as covered
in the next section, you can convert your dataset from/to the desired tool.

Using Ray Datasets with Different Tools
Ray has built-in tooling to share data among the various data tools running on Ray.
Most of these tools have their own internal representations of the data, but Ray
handles converting the data as needed. Before you first use a dataset with Spark or
Dask, you need to run a bit of setup code so that they delegate their execution to Ray,
as shown in Examples 9-3 and 9-4.

Example 9-3. Setting up Dask on Ray

from ray.util.dask import enable_dask_on_ray, disable_dask_on_ray
enable_dask_on_ray() # Routes all Dask calls through the Ray scheduler

Example 9-4. Setting up Dask on Spark

import raydp
spark = raydp.init_spark(
  app_name = "sleepy",
  num_executors = 2,
  executor_cores = 1,
  executor_memory = "2GB"
)

As with functions for reading and loading datasets, transfer-to-Ray functions are
defined on the ray.data module and follow the from_[x] pattern, where [x] is
the tool name. Similar to writing data, we convert datasets to a tool with a to_[x]
function defined on the dataset, where [x] is the tool name. Example 9-5 shows how
to use this pattern to convert a Ray dataset into a Dask DataFrame.

Datasets do not use Ray’s runtime environments for dependencies,
so you must have your desired tools installed in your worker
image; see Appendix B. This is more involved for Spark, as it
requires the Java Virtual Machine (JVM) and other non-Python
components.

Example 9-5. Ray dataset in Dask

dask_df = ds.to_dask()
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1 This is like a Ford dealer recommending a Ford, so take this advice with a grain of salt.

You are not limited to the tools that are built into Ray. If you have a new tool that
supports Arrow, and you are using Arrow-supported types, to_arrow_refs gives
you a zero-copy Arrow representation of your dataset. You can then use this list of
Ray Arrow objects to pass into your tool, whether for model training or any other
purpose. You will learn more about this in “Using Built-in Ray Dataset Operations”
on page 155.

Many tools and languages can be connected with Arrow and Ray, including:

• Apache Spark•
• Dask•
• Apache Parquet•
• Modin•
• pandas•
• TensorFlow•
• R•
• JSON•
• MATLAB•

Dask and Spark both have non-DataFrame collections—bags,
arrays, and resilient distributed datasets (RDDs)—that cannot be
converted with these APIs.

Using Tools on Ray Datasets
This section assumes you have a good understanding of the data-wrangling tools
you’re going to use with Ray—either pandas or Spark. Pandas is ideal for users
scaling Python analytics, and Spark is well suited for users connecting to big data
tools. If you’re not familiar with the pandas APIs, you should check out Python
for Data Analysis by Wes McKinney (O’Reilly). New Spark users should check out
Learning Spark by Jules Damji et al. (O’Reilly). If you want to go super deep, Holden
recommends High Performance Spark by Holden and Rachel Warren (O’Reilly).1
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Partitioning
Partitioning gives you the ability to control the number of tasks used to process your
data. If you have billions of rows, using a single task to process it can take forever. On
the other hand, using one task for each row would require more time for scheduling
the tasks than the work itself. As a result, proper data partitioning is one of the
fundamental requirements for its efficient processing.

Using Ray Datasets allows you to efficiently split your data into partitions or chunks
so that you can parallelize computation while keeping the overhead of scheduling
a task at an acceptable level. As the number of partitions increases, the maximum
parallelism increases but so does the scheduling and communication overhead.

pandas-like DataFrames with Dask
Dask on Ray is an excellent choice for data preparation for ML, or scaling existing
pandas code. Many initial Dask developers also worked on pandas, leading to a
comparatively solid distributed pandas interface.

Portions of this section are based on the DataFrame chapter in
Scaling Python with Dask.

Dask
Dask is a parallel computing library that scales the existing Python ecosystem. You
can think of Dask at a high and a low level:

High-level collections
Dask provides high-level Array, Bag, and DataFrame collections that mimic
NumPy, lists, and pandas but can operate in parallel on datasets that don’t fit
into memory. Dask’s high-level collections are alternatives to NumPy and pandas
for large datasets.

Low-level schedulers
Dask provides dynamic task schedulers that execute task graphs in parallel. These
execution engines power the high-level collections but can also power custom,
user-defined workloads.

Here we focus on Dask’s high-level DataFrame collection as Ray has its own tech‐
niques for low-level scheduling.
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2 Operations in native code can avoid this problem in Dask by using multithreading, but the details are beyond
the scope of this book.

Dask on Ray benefits from using Ray’s per node/container shared memory storage
for data. This is especially important when doing operations like broadcast joins; in
Dask the same data will need to be stored in each worker process.2 However, in Ray, it
needs to be stored only once per node or container.

Unlike Ray, Dask is generally lazy, meaning it does not evaluate
data until forced. This can make debugging a challenge as errors
may appear several lines removed from their root cause.

Most of the distributed components of Dask’s DataFrames use the three core building
blocks map_partitions, reduction, and rolling. You mostly won’t need to call these
functions directly; instead, you will use higher-level APIs, but understanding them
and how they work is important to understanding how Dask works. shuffle is a
critical building block of distributed DataFrames for reorganizing your data. Unlike
the other building blocks, you may use it directly more frequently as Dask is unable
to abstract away partitioning.

Indexing
Indexing into a DataFrame is one of the powerful features of pandas, but comes with
some restrictions when moving into a distributed system like Dask. Since Dask does
not, by default, track the size of each partition, positional indexing by row is not
supported. You can use positional indexing into columns, as well as label indexing for
columns or rows.

Indexing is frequently used to filter data to have only the components you need. We
did this for San Francisco COVID-19 data by looking at just the case rates for people
of all vaccine statuses, as shown in Example 9-6.

Example 9-6. Dask DataFrame indexing

mini_sf_covid_df = sf_covid_df[ sf_covid_df['vaccination_status'] == 
  'All'][['specimen_collection_date', 'new_cases']]

If you truly need positional indexing by row, you can implement your own by
computing the size of each partition and using this to select the desired partition
subsets. This is very inefficient, so Dask avoids implementing directly so you make an
intentional choice before doing this.
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Shuffles
As mentioned in the previous chapter, shuffles are expensive. The primary causes
of the expensive nature of shuffles are the comparative slowness of network speed
(relative to to reading data from memory) and serialization overhead. These costs
scale as the amount of data being shuffled increases, so Dask has techniques to
reduce the amount of data being shuffled. These techniques depend on certain data
properties or on the operation being performed.

While understanding shuffles is important for performance, feel
free to skip this section if your code is working well enough.

Rolling windows and map_overlap
One situation that can trigger the need for a shuffle is a rolling window, where at the
edges of a partition your function needs some records from its neighbors. A Dask
DataFrame has a special map_overlap function in which you can specify a look-after
window (also called a look-ahead window) and a look-before window (also called a
look-back window) of rows to transfer (either an integer or a time delta). The simplest
example taking advantage of this is a rolling average, shown in Example 9-7.

Example 9-7. Dask DataFrame rolling average

def process_overlapped(df):
     df.rolling('5D').mean()
rolling_avg = partitioned_df.map_overlap(process_overlapped, pd.Timedelta('5D'), 0)

Using map_overlap allows Dask to transfer only the data needed. For this implemen‐
tation to work correctly, your minimum partition size needs to be larger than your
largest window.

Dask’s rolling windows will not cross multiple partitions. If your
DataFrame is partitioned in such a way that the look-after or
look-back is greater than the length of the neighbor’s partition, the
results will either fail or be incorrect. Dask validates this for time‐
delta look-afters, but no such checks are performed for look-backs
or integer look-afters.

Aggregations
Aggregations are another special case that can reduce the amount of data that needs
to be transferred over the network. Aggregations are functions that combine records.
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If you are coming from a map/reduce or Spark background, reduceByKey is the
classic aggregation. Aggregations can either be by key or global across an entire
DataFrame.

To aggregate by key, you first need to call groupby with the column(s) rep‐
resenting the key, or the keying function to aggregate on. For example, call‐
ing df.groupby("PostCode") groups your DataFrame by postal code, or calling
df.groupby(["PostCode", "SicCodes"]) uses a combination of columns for group‐
ing. Function-wise, many of the same pandas aggregates are available, but the perfor‐
mance of aggregates in Dask are very different than with local pandas DataFrames.

If you’re aggregating by partition key, Dask can compute the aggre‐
gation without needing a shuffle.

The first way to speed up your aggregations is to reduce the columns that you are
aggregating on, since the fastest data to process is no data. Finally, when possible,
doing multiple aggregations at the same time reduces the number of times the same
data needs to be shuffled. Therefore, you need to compute the average and the max,
you should compute both at the same time, as shown in Example 9-8.

Example 9-8. Computing a Dask DataFrame max and mean together

dask.compute(
    raw_grouped[["new_cases"]].max(),
    raw_grouped[["new_cases"]].mean())

For distributed systems like Dask, if an aggregation can be partially evaluated and
then merged, you can potentially combine some records pre-shuffle. Not all partial
aggregations are created equal. What matters with partial aggregations is the amount
of data reduced when merging values with the same key, as compared to the storage
space used by the original multiple values.

The most efficient aggregations take a sublinear amount of space regardless of the
number of records. Some of these can take constant space such as sum, count,
first, minimum, maximum, mean, and standard deviation. More complicated tasks,
like quantiles and distinct counts, also have sublinear approximation options. These
approximation options can be great, as exact answers can require linear growth in
storage.
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Some aggregation functions are not sublinear in growth, but “tend to” or “might” not
grow too quickly. Counting the distinct values is in this group, but if all your values
are unique, there is no space-saving.

To take advantage of efficient aggregations, you need to use a built-in aggregation
from Dask, or write your own using Dask’s aggregation class. Whenever you can, use
a built-in. Built-ins not only require less effort but also are often faster. Not all of the
pandas aggregates are directly supported in Dask, so sometimes your only choice is to
write your own aggregate.

If you choose to write your own aggregate, you have three functions to define:
chunk for handling each group-partition/chunk, agg to combine the results of chunk
between partitions, and (optionally) finalize to take the result of agg and produce a
final value.

The fastest way to understand how to use partial aggregation is by looking at an
example that uses all three functions. Using weighted average in Example 9-9 can help
you think of what is needed for each function. The first function needs to compute
the weighted values and the weights. The agg function combines these by summing
each side part of the tuple. Finally, the finalize function divides the total by the
weights.

Example 9-9. Dask custom aggregate

# Write a custom weighted mean, we get either a DataFrameGroupBy with
# multiple columns or SeriesGroupBy for each chunk
def process_chunk(chunk):
    def weighted_func(df):
        return (df["EmployerSize"] * df["DiffMeanHourlyPercent"]).sum()
    return (chunk.apply(weighted_func), chunk.sum()["EmployerSize"])
        
def agg(total, weights):
    return (total.sum(), weights.sum())

def finalize(total, weights):
    return total / weights
    
weighted_mean = dd.Aggregation(
    name='weighted_mean',
    chunk=process_chunk,
    agg=agg,
    finalize=finalize)

aggregated = df_diff_with_emp_size.groupby("PostCode")
    ["EmployerSize", "DiffMeanHourlyPercent"].agg(weighted_mean)

In some cases, like a pure summation, you don’t need to do any post-processing on
agg’s output, so you can skip the finalize function.
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3 Alternate algorithms for exact quantiles depend on more shuffles to reduce the space overhead.

Not all aggregations must be by key; you can also compute aggregations across all
rows. Dask’s custom aggregation interface, however, is only exposed with by-key
operations.

Dask’s built-in full DataFrame aggregations use a lower-level interface called
apply_contact_apply, for partial aggregations. Rather than learn two different APIs
for partial aggregations, we prefer to do a static groupby by providing a constant
grouping function. This way, we have to know only one interface for aggregations.
You can use this to find the aggregate COVID-19 numbers across the DataFrame, as
shown in Example 9-10.

Example 9-10. Aggregating the entire DataFrame

raw_grouped = sf_covid_df.groupby(lambda x: 0)

If built-in aggregations exist, they will likely be better than anything we may be able
to write. Sometimes a partial aggregation is partially implemented, as in the case of
Dask’s HyperLogLog: it is implemented only for full DataFrames. You can often trans‐
late simple aggregations by using apply_contact_apply or aca by copying the chunk
function, using the combine parameter for agg, and using the aggregate parameter
for finalize. This is shown via porting Dask’s HyperLogLog implementation in
Example 9-11.

Example 9-11. Wrapping Dask’s HyperLogLog in dd.Aggregation

# Wrap Dask's hyperloglog in dd.Aggregation

from dask.dataframe import hyperloglog

approx_unique = dd.Aggregation(
    name='aprox_unique',
    chunk=hyperloglog.compute_hll_array,
    agg=hyperloglog.reduce_state,
    finalize=hyperloglog.estimate_count)

aggregated = df_diff_with_emp_size.groupby("PostCode")
    ["EmployerSize", "DiffMeanHourlyPercent"].agg(weighted_mean)

Slow/inefficient aggregations (or those likely to cause an out-of-memory exception)
use storage proportional to the records being aggregated. Examples from this slow
group include making a list and naively computing exact quantiles.3 With these
slow aggregates, using Dask’s aggregation class has no benefit over the apply API,
which you may wish to use for simplicity. For example, if you just wanted a list
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of employer IDs by postal code, rather than having to write three functions, you
could use a one-liner like df.groupby("PostCode")["EmployerId"].apply(lambda
g: list(g)). Dask implements the apply function as a full shuffle, which is covered
in the next section.

Dask is unable to apply partial aggregations when you use the
apply function.

Full shuffles and partitioning
Sorting is inherently expensive in distributed systems because it most often requires
a full shuffle. Full shuffles are sometimes an unavoidable part of working in Dask.
Counterintuitively, while full shuffles are themselves slow, you can use them to
speed up future operations that are all happening on the same grouping key(s). As
mentioned in the aggregation section, one of the ways a full shuffle is triggered is by
using the apply method when partitioning is not aligned.

Partitioning
You will most commonly use full shuffles to repartition your data. It’s important
to have the right partitioning when dealing with aggregations, rolling windows, or
look-ups/indexing. As discussed in “Rolling windows and map_overlap” on page
142, Dask cannot do more than one partition’s worth of look-ahead or look-behind,
so having the right partitioning is required to get correct results. For most other
operations, having incorrect partitioning will slow down your job.

Dask has three primary methods for controlling the partitioning of a DataFrame:
set_index, repartition, and shuffle. You use set_index when the partitioning
is being changed to a new key/index. repartition keeps the same key/index
but changes the splits. repartition and set_index take similar parameters, with
repartition not taking an index key name. shuffle is a bit different since it does
not produce a “known” partitioning scheme that operations like groupby can take
advantage of.

The first step of getting the right partitioning for your DataFrame is to decide
whether you want an index. Indexes are useful for pretty much any by-key type
of operation, including filtering data, grouping, and, of course, indexing. One such
by-key operation would be a groupby; the column being grouped on could be a
good candidate for the key. If you use a rolling window over a column, that column
must be the key, which makes choosing the key relatively easy. Once you’ve decided
on an index, you can call set_index with the column name of the index (e.g.,
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4 Key-skew can make this impossible for a known partitioner.

set_index("PostCode")). This will, under most circumstances, result in a shuffle, so
it’s a good time to size your partitions.

If you’re unsure of the current key used for partitioning, you can
check the index property to see the partitioning key.

Once you’ve chosen your key, the next question is how to size your partitions.
The advice in “Partitioning” on page 140 generally applies here: shoot for enough
partitions to keep each machine busy, but keep in mind the general sweet spot of 100
MB to 1 GB. Dask generally computes pretty even splits if you give it a target number
of partitions.4 Thankfully, set_index will also take npartitions. To repartition the
data by postal code, with 10 partitions, you would add set_index("PostCode",
npartitions=10); otherwise, Dask will default to the number of input partitions.

If you plan to use rolling windows, you will likely need to ensure that you have
the right size (in terms of key range) covered in each partition. To do this as
part of set_index, you would need to compute your own divisions to ensure that
each partition has the right range of records present. Divisions are specified as
a list starting from the minimal value of the first partition up to the maximum
value of the last partition. Each value in between is a “cut” point for between
the pandas DataFrames that make up the Dask DataFrame. To make a DataFrame
with [0, 100) [100, 200), (300, 500], you would write df.set_index("Num
Employees", divisions=[0, 100, 200, 300, 500]). Similarly for the date range,
to support a rolling window of up to seven days, from the start of the pandemic to
this writing, is shown in Example 9-12.

Example 9-12. Dask DataFrame rolling window with set_index

divisions = pd.date_range(
    start="2021-01-01", end=datetime.today(), freq='7D').tolist()
partitioned_df_as_part_of_set_index = mini_sf_covid_df.set_index(
    'specimen_collection_date', divisions=divisions)

Dask, including for rolling time windows, assumes that your parti‐
tion index is monotonically increasing—strictly increasing with no
repeated values (e.g., 1, 4, 7 is monotically increasing, but 1, 4, 4, 7
is not).
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So far, you’ve had to specify the number of partitions, or the specific divisions, but
you might be wondering if Dask can just figure this out itself. Thankfully, Dask’s
repartition function has the ability to pick divisions from a target size. However,
doing this is a nontrivial cost as Dask must evaluate the DataFrame as well as the
repartition itself. Example 9-13 shows how to have Dask calculate the divisions from
a desired partition size in bytes.

Example 9-13. Dask DataFrame automatic partitioning

reparted = indexed.repartition(partition_size="20kb")

Dask’s set_index has a similar partition_size parameter, but as
of the writing, it does not work.

As you’ve seen at the start of this chapter when writing DataFrames, each partition is
given its own file, but sometimes this can result in files that are too big or too small.
Some tools can accept only one file as input, so you need to repartition everything
into a single partition. Other times, the data storage system is optimized for certain
file sizes, like the Hadoop Distributed File System (HDFS) default block size of 128
MB. The good news is you can use repartition or set_index to get your desired
output structure.

Embarrassingly Parallel Operations
Dask’s map_partitions function applies a function to each of the partitions underly‐
ing pandas DataFrames, and the result is also a pandas DataFrame. Functions imple‐
mented with map_partitions are embarrassingly parallel since they don’t require any
inter-worker transfer of data. In embarrassingly parallel problems, the overhead of
distributed computing and communication is low.

map_partitions implements map, and many row-wise operations. If you want to use
a row-wise operation that you find missing, you can implement it yourself, as shown
in Example 9-14.

Example 9-14. Dask DataFrame fillna

def fillna(df):
    return df.fillna(value={"PostCode": "UNKNOWN"}).fillna(value=0)
    
new_df = df.map_partitions(fillna)
# Since there could be an NA in the index clear the partition/division information
new_df.clear_divisions()
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You aren’t limited to calling pandas built-ins as in this example. Provided that your
function takes and returns a DataFrame, you can do pretty much anything you want
inside map_partitions.

The full pandas API is too long to cover in this chapter, but if a function can operate
on a row-by-row basis without any knowledge of the rows before or after, it may
already be implemented in Dask DataFrames using map_partitions. If not, you can
also implement it yourself using the pattern from Example 9-14.

When using map_partitions on a DataFrame, you can change anything about each
row, including the key that it is partitioned on. If you are changing the values in
the partition key, you must either clear the partitioning information on the resulting
DataFrame with clear_divisions or specify the correct indexing with set_index,
which you’ll learn more about in the next section.

Incorrect partitioning information can result in incorrect results,
not just exceptions, as Dask may miss relevant data.

Working with Multiple DataFrames
pandas and Dask have four common functions for combining DataFrames. At the
root is the concat function, which allows joining DataFrames on any axis. Con‐
catenating DataFrames is generally slower in Dask since it involves inter-worker
communication. The other three functions are join, merge, and append, which all
implement special cases for common situations on top of concat, and have slightly
different performance considerations. Having good divisions/partitioning, in terms of
key selection and number of partitions, makes a huge difference when working on
multiple DataFrames.

Dask’s join and merge functions take most of the standard pandas arguments along
with an extra, optional, one. npartitions specifies a target number of output par‐
titions, but is used for only hash-based joins (which you’ll learn about in “Multi-
DataFrame internals” on page 150). Both join and merge automatically repartition
your input DataFrames if needed. This is great, as you might not know the partition‐
ing, but since repartitioning can be slow, explicitly using the lower-level concat
function when you don’t expect any partitioning changes to be needed can help catch
performance problems early. Dask’s join takes only more than two DataFrames at a
time when doing a left or outer join type.
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Dask has special logic to speed up multi-DataFrame joins, so in
most cases, rather than do a.join(b).join(c).join(d).join(e),
you will benefit from doing a.join([b, c, d, e]). However, if
you are performing a left join with a small dataset, the first syntax
may be more efficient.

When you combine (via concat) DataFrames by row (similar to a SQL UNION) the
performance depends on whether divisions of the DataFrames being combined are
well ordered. We call the divisions of a series of DataFrames well ordered if all the
divisions are known, and the highest division of the previous DataFrame is below
that of the lowest division of the next. If any input has an unknown division, Dask
will produce an output without known partitioning. With all known partitions, Dask
treats row-based concatenations as a metadata-only change and will not perform
any shuffle. This requires that no overlap between the divisions exists. In addition,
an extra interleave_partitions parameter will change the join type for row-based
combinations to one without the input partitioning restriction and will result in a
known partitioner.

Dask’s column-based concat (similar to a SQL JOIN) also has restrictions around
the divisions/partitions of the DataFrames it is combining. Dask’s version of concat
supports only inner or full outer joins, not left or right. Column-based joins require
that all inputs have known partitioners and also result in a DataFrame with known
partitioning. Having a known partitioner can be useful for subsequent joins.

Don’t use Dask’s concat when operating by row on a DataFrame
with unknown divisions, as it will likely return incorrect results.
Dask assumes indices are aligned no indices are present.

Multi-DataFrame internals

Dask uses four techniques—hash, broadcast, partitioned, and stack_partitions—to
combine DataFrames, and each results in very different performance. Dask chooses
the technique based on the indexes, divisions, and requested join type (e.g., outer/
left/inner). The three column-based join techniques are hash joins, broadcast, and
partitioned joins. When doing row-based combinations (e.g., append), Dask has a
special technique called stack_partitions that is extra fast. It’s important that you
understand the performance of each of these techniques and the conditions that will
cause Dask to pick which approach.

Hash joins are the default that Dask uses when no other join technique is suit‐
able. Hash joins shuffle the data for all the input DataFrames to partition on the
target key. Hash joins use the hash values of keys, which results in a DataFrame that
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is not in any particular order. As such, the result of hash joins do not have any known
divisions.

Broadcast joins are ideal for joining large DataFrames with small DataFrames. In
a broadcast join, Dask takes the smaller DataFrame and distributes it to all of the
workers. This means that the smaller DataFrame must be able to fit in memory. To
tell Dask that a DataFrame is a good candidate for broadcasting, you make sure it is
all stored in one partition—for example, call repartition(npartitions=1).

Partitioned joins happen when combining DataFrames along an index where the
partitions are known for all the DataFrames. Since the input partitions are known,
Dask is able to align the partitions between the DataFrames, involving less data
transfer as each output partition has a smaller than full set of inputs.

Since partition and broadcast joins are faster, doing some work to help Dask can be
worthwhile. For example, concatenating several DataFrames with known and aligned
partitions, and one DataFrame which is unaligned, will result in an expensive hash
join. Instead, try to either set the index and partition on the remaining DataFrame, or
join the less expensive DataFrames first and then perform the expensive join after.

Using stack_partitions is different from all of the other options since it doesn’t
involve any movement of data. Instead, the resulting DataFrame partitions list
is a union of the upstream partitions from the input DataFrames. Dask uses
stack_partitions for most row-based combinations except when all of the input
DataFrame divisions are known and they are not well ordered and you ask
Dask to interleave_partitions. The stack_partitions function is able to pro‐
vide only known partitioning in its output when the input divisions are known
and well ordered. If all the divisions are known but not well ordered, and you
set interleave_partitions, Dask will use a partitioned join instead. While this
approach is comparatively inexpensive, it is not free and can result in an excessively
large number of partitions requiring you to repartition anyway.

Missing functionality

Not all multi-DataFrame operations are implemented; compare is one such operation,
which leads into the next section about the limitations of Dask DataFrames.

What Does Not Work
Dask’s DataFrame implements most, but not all, of the pandas DataFrame API. Some
of the pandas API is not implemented in Dask because of the development time
involved. Other parts are not used in order to avoid exposing an API that would be
unexpectedly slow.
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Sometimes the API is just missing small parts, as both pandas and Dask are under
active development. An example is the split function. In local pandas, instead of
doing split().explode, you could have called split(expand=true). Some of these
can be excellent places to get involved and contribute to the Dask project if you are
interested.

Some libraries do not parallelize as well as others. In these cases, a common approach
is to try to filter or aggregate the data down enough that it can be represented
locally and then apply the local libraries to the data. For example, with graphing, it’s
common to pre-aggregate the counts or take a random sample and graph the result.

While much of the pandas DataFrame API will work out of the box, before you swap
in Dask DataFrame, it’s important to make sure you have good test coverage to catch
the situations where it does not.

What’s Slower
Usually, using Dask DataFrames will improve performance, but not always. Generally,
smaller datasets will perform better in local pandas. As discussed, anything involving
shuffles is generally slower in a distributed system than in a local one. Iterative
algorithms can also produce large graphs of operations, which are slow to evaluate in
Dask compared to traditional greedy evaluation.

Some problems are generally unsuitable for data-parallel computing. For example,
writing out to a data store with a single lock that has more parallel writers will
increase the lock contention and may make it slower than if a single thread was doing
the writing. In these situations, you can sometimes repartition your data or write
individual partitions to avoid lock contention.

Handling Recursive Algorithms
Dask’s lazy evaluation, powered by its lineage graph, is normally beneficial, allowing
it to combine steps automatically. However, when the graph gets too large, Dask can
struggle to manage it, which often shows up as a slow driver process or notebook,
and sometimes an out-of-memory exception. Thankfully, you can work around this
by writing out your DataFrame and reading it back in. Generally, Parquet is the
best format for doing this as it is space-efficient and self-describing, so no schema
inference is required.
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What Other Functions Are Different
For performance reasons, various parts of Dask DataFrames behave a little differently
from local DataFrames:

reset_index

The index will start back over at zero on each partition.

kurtosis

Does not filter out not-a-number (NaN) values and uses SciPy defaults.

concat

Instead of coercing category types, each category type is expanded to the union
of all of the categories it is concatenated with.

sort_values

Dask supports only single-column sorts.

Joins
When joining more than two DataFrames at the same time, the join type must be
either outer or left.

If you are interested in going deeper with Dask, several Dask-
focused books are in active development. Much of the material in
this chapter is based on Scaling Python with Dask.

pandas-like DataFrames with Modin
Modin, like Dask DataFrames, is designed to largely be a plug-in replacement for
pandas DataFrames. Modin DataFrames follow the same general performance as
Dask DataFrames, with a few caveats. Modin offers less control over internals, which
can limit performance for some applications. Since Modin and Dask DataFrames are
sufficiently similar, we won’t cover it here except to say it’s another option if Dask
doesn’t meet your needs.

Modin is a new library designed to accelerate pandas by auto‐
matically distributing the computation across all of the system’s
available CPU cores. Modin claims to be able to get nearly linear
speedup to the number of CPU cores on your system for pandas
DataFrames of any size.
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Since Modin on Ray is so similar to Dask DataFrames, we’ve decided to skip repeat‐
ing the examples from Dask on Ray as they would not change substantially.

When you look at Dask and Modin’s documentation side by side,
you may get the impression that Dask is earlier in its development
cycle. In our opinion, this is not the case; rather, the Dask docu‐
mentation takes a more conservative approach to marking features
as ready.

Big Data with Spark
If you’re working with an existing big data infrastructure (such as Apache Hive,
Iceberg, or HBase), Spark is an excellent choice. Spark has optimizations like filter
push-down, which can dramatically improve performance. Spark has a more tradi‐
tional, big data DataFrame interface.

Spark’s strong suit is in the data ecosystem of which it is a part. As a Java-based
tool, with a Python API, Spark plugs into much of the traditional big data ecosystem.
Spark supports the widest array of formats and filesystems, making it an excellent
choice for the initial stages of many pipelines.

While Spark continues to add more pandas-like functionality, its DataFrames started
from more of a SQL-inspired design. You have several options to learn about Spark,
including some O’Reilly books: Learning Spark by Jules Damji, High Performance
Spark by Holden and Rachel Warren, and Spark: The Definitive Guide by Bill Cham‐
bers and Matei Zaharia.

Unlike Ray, Spark is generally lazy, meaning it does not evaluate
data until forced. This can make debugging a challenge as errors
may appear several lines removed from their root cause.

Working with Local Tools
Some tools are not well suited to distributed operation. Thankfully, provided your
dataset is filtered down small enough, you can convert it into a variety of local
in-process formats. If the entire dataset can fit in memory, to_pandas and to_arrow
are the simplest ways to convert a dataset to a local object. For larger objects, where
each partition may fit in memory but the entire dataset may not, iter_batches will
give you a generator/iterator to consume one partition at a time. The iter_batches
function takes a batch_format parameter to switch between pandas or pyarrow. If
possible, pyarrow is generally more efficient than pandas.
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Using Built-in Ray Dataset Operations
In addition to allowing you to move data among various tools, Ray also has some
built-in operations. Ray Datasets does not attempt to match any particular existing
API, but rather expose basic building blocks you can use when the existing libraries
do not meet your needs.

Ray Datasets has support for basic data operations. Ray Datasets does not aim to
expose a pandas-like API; rather, it focuses on providing basic primitives to build
on top of. The Dataset API is functionally inspired, along with partition-oriented
functions. Ray also recently added groupBys and aggregates.

The core building block of most of the dataset operations is map_batches. By default,
map_batches executes the function you provide across the blocks or batches that
make up a dataset and uses the results to make a new dataset. The map_batches
function is used to implement filter, flat_map, and map. You can see the flexi‐
bility of map_batches by looking at the word-count example rewritten to directly
use map_batches as well as drop any word that shows up only once, as shown in
Example 9-15.

Example 9-15. Ray word count with map_batches

def tokenize_batch(batch):
    nested_tokens = map(lambda s: s.split(" "), batch)
    # Flatten the result
    nr = []
    for r in nested_tokens:
        nr.extend(r)
    return nr

def pair_batch(batch):
    return list(map(lambda w: (w, 1), batch))

def filter_for_interesting(batch):
    return list(filter(lambda wc: wc[1] > 1, batch))

words = pages.map_batches(tokenize_batch).map_batches(pair_batch)
# The one part we can't rewrite with map_batches since it involves a shuffle
grouped_words = words.groupby(lambda wc: wc[0]) 
interesting_words = groupd_words.map_batches(filter_for_interesting)

The map_batches function takes parameters to customize its behavior. For stateful
operations, you can change the compute strategy to actors from its default tasks.
The previous example uses the default format, which is Ray’s internal format, but you
can also convert the data to pandas or pyarrow. You can see this in Example 9-16 in
which Ray converts the data to pandas for us.
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Example 9-16. Using Ray map_batches with pandas to update a column

# Kind of hacky string munging to get a median-ish to weight our values.
def update_empsize_to_median(df):
    def to_median(value):
        if " to " in value:
            f , t = value.replace(",", "").split(" to ")
            return (int(f) + int(t)) / 2.0
        elif "Less than" in value:
            return 100
        else:
            return 10000
    df["EmployerSize"] = df["EmployerSize"].apply(to_median)
    return df

ds_with_median = ds.map_batches(update_empsize_to_median, batch_format="pandas")

The result you return must be a list, pandas, or pyarrow, and it
does not need to match the same type that you take in.

Ray Datasets does not have a built-in way to specify additional libraries to be
installed. You can use map_batches along with a task to accomplish this, as shown in
Example 9-17, which installs extra libraries to parse the HTML.

Example 9-17. Using Ray map_batches with extra libraries

def extract_text_for_batch(sites):
    text_futures = map(lambda s: extract_text.remote(s), sites)
    result = ray.get(list(text_futures))
    # ray.get returns None on an empty input, but map_batches requires lists
    if result is None:
        return []
    return result

def tokenize_batch(texts):
    token_futures = map(lambda s: tokenize.remote(s), texts)
    result = ray.get(list(token_futures))
    if result is None:
        return []
    # Flatten the result
    nr = []
    for r in result:
        nr.extend(r)
    return nr
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# Exercise for the reader: generalize the preceding patterns - 
# note the flatten magic difference

urls = ray.data.from_items(["http://www.holdenkarau.com", "http://www.google.com"])

pages = urls.map(fetch)

page_text = pages.map_batches(extract_text_for_batch)
words = page_text.map_batches(tokenize_batch)
word_count = words.groupby(lambda x: x).count()
word_count.show()

For operations needing shuffles, Ray has GroupedDataset, which behaves a bit differ‐
ently. Unlike the rest of the Datasets API, groupby is lazily evaluated in Ray. The
groupby function takes a column name or function, where records with the same
value will be aggregated together. Once you have the GroupedDataset, you can then
pass in multiple aggregates to the aggregate function. Ray’s AggregateFn class is
conceptually similar to Dask’s Aggregation class except it operates by row. Since it
operates by row, you need to provide an init function for when a new key value
is found. Instead of chunk for each new chunk, you provide accumulate to add
each new element. You still provide a method of combining the aggregators, called
merge instead of agg, and both have the same optional finalize. To understand the
differences, we rewrote the Dask weighted average example to Ray in Example 9-18.

Example 9-18. Ray weighted average aggregation

def init_func(key):
    # First elem is weighted total, second is weights
    return [0, 0]

def accumulate_func(accumulated, row):
    return [
        accumulated[0] + 
        (float(row["EmployerSize"]) * float(row["DiffMeanHourlyPercent"])),
        accumulated[1] + row["DiffMeanHourlyPercent"]]
        
def combine_aggs(agg1, agg2):
    return (agg1[0] + agg2[0], agg1[1] + agg2[1])

def finalize(agg):
    if agg[1] != 0:
        return agg[0] / agg[1]
    else:
        return 0
    
weighted_mean = ray.data.aggregate.AggregateFn(
    name='weighted_mean',
    init=init_func,
    merge=combine_aggs,
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    accumulate_row=accumulate_func, # Used to be accumulate
    # There is a higher performance option called accumulate_block for vectorized op
    finalize=finalize)
aggregated = ds_with_median.groupby("PostCode").aggregate(weighted_mean)

Full dataset aggregation is implemented using None since all
records then have the same key.

Ray’s parallelism control does not have the same flexibility as indexes in Dask or
partitioning in Spark. You can control the target number of partitions—but not the
way the data is spread out.

Ray does not currently take advantage of the concept of known
partitioning to minimize shuffles.

Implementing Ray Datasets
Ray datasets are built using the tools you have been working with in the previous
chapters. Ray splits each dataset into many smaller components. These smaller com‐
ponents are called both blocks and partitions inside the Ray code. Each partition
contains an Arrow dataset representing a slice of the entire Ray dataset. Since Arrow
does not support all of the types from Ray, if you have unsupported types, each
partition also contains a list of the unsupported types.

The data inside each dataset is stored in the standard Ray object store. Each partition
is stored as a separate object, since Ray is not able to split up individual objects.
This also means that you can use the underlying Ray objects as parameters to Ray
remote functions and actors. The dataset contains references to these objects as well
as schema information.

Since the dataset contains the schema information, loading a data‐
set blocks on the first partition so that the schema information can
be determined. The remainder of the partitions are eagerly loaded,
but in a nonblocking fashion like the rest of Ray’s operations.

In keeping with the rest of Ray, datasets are immutable. When you want to do an
operation on a dataset, you apply a transformation, like filter, join, or map, and Ray
returns a new dataset with the result.
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Ray datasets can use either tasks (aka remote functions) or actors for processing
transformations. Some libraries built on top of Ray datasets, like Modin, depend on
using actor processing so they can implement certain ML tasks involving state.

Conclusion
Ray’s transparent handling of moving data among tools makes it an excellent choice
for building end-to-end ML pipelines when compared with traditional techniques
where the communication barrier between tools is much higher. Two separate frame‐
works, Modin and Dask, both offer a pandas-like experience on top of Ray Datasets,
making it easy to scale existing data science workflows. Spark on Ray (known as
RayDP) provides an easy integration path for those working in organizations with
existing big-data tools.

In this chapter, you learned to effectively process data with Ray to power your ML
and other needs. In the next chapter, you will learn to use Ray to power ML.
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CHAPTER 10

How Ray Powers Machine Learning

You now have a solid grasp of everything in Ray needed to get your data ready to
train ML models. In this chapter, you will learn how to use the popular Ray libraries
scikit-learn, XGBoost, and PyTorch. This chapter is not intended to introduce these
libraries, so if you aren’t familiar with any of them, you should pick one (and we
suggest scikit-learn) to read up on first. Even for those familiar with these libraries,
refreshing your memory by consulting your favorite tools’ documentation will be
beneficial. This chapter is about how Ray is used to power ML, rather than a tutorial
on ML.

If you are interested in going deeper into ML with Ray, Learning
Ray by Max Pumperla et al. (O’Reilly) is a full-length book focused
on ML with Ray that can expand your ML skillset.

Ray has two built-in libraries for ML. You will learn how to use Ray’s reinforcement
learning library, RLlib, with TensorFlow and use generic hyperparameter tuning via
Tune, which can be used with any ML library.

Using scikit-learn with Ray
scikit-learn is one of the most widely used tools in the ML community, offering
dozens of easy-to-use ML algorithms. It was initially developed by David Cournapeau
as a Google Summer of Code project in 2007. It provides a wide range of supervised
and unsupervised learning algorithms via a consistent interface.
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The scikit-learn ML algorithms include the following:

Clustering
For grouping unlabeled data such as k-means

Supervised models
Including generalized linear models, discriminant analysis, naive Bayes, lazy
methods, neural networks, support vector machines, and decision trees

Ensemble methods
For combining the predictions of multiple supervised models

scikit-learn also contains important tooling to support ML:

Cross-validation
For estimating the performance of supervised models on unseen data

Datasets
For test datasets and for generating datasets with specific properties for investi‐
gating model behavior

Dimensionality reduction
For reducing the number of attributes in data for summarization, visualization,
and feature selection such as principal component analysis

Feature extraction
For defining attributes in image and text data

Feature selection
For identifying meaningful attributes from which to create supervised models

Parameter tuning
For getting the most out of supervised models

Manifold learning
For summarizing and depicting complex multidimensional data

Although you can use most of the scikit-learn APIs directly with Ray for tuning the
model’s hyperparameters, things get a bit more involved when you want to parallelize
execution.

If we take the basic code used for the creation of the model in Chapter 7, and try to
optimize parameters for the decision tree, our code will look like Example 10-1.

Example 10-1. Using scikit-learn to build our wine-quality model

# Get data
df = pd.read_csv("winequality-red.csv", delimiter=";")
print(f"Rows, columns: {str(df.shape)}")
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1 In this example, we are using GridSearchCV, which implements an exhaustive search. Although this works for
this simple example, scikit-learn currently provides a new library, Tune-sklearn, that provides more powerful
tune algorithms providing a significant tuning speedup. This said, the same Joblib backend works for these
algorithms the same way.

print(df.head)
print(df.isna().sum())

# Create Classification version of target variable
df['goodquality'] = [1 if x >= 6 else 0 for x in df['quality']]
X = df.drop(['quality','goodquality'], axis = 1)
y = df['goodquality']
print(df['goodquality'].value_counts())

# Normalize feature variables
X_features = X
X = StandardScaler().fit_transform(X)
# Splitting the data
X_train, X_test, y_train, y_test = \
    train_test_split(X, y, test_size=.25, random_state=0)

param_model = {'max_depth':range(10, 20),
                'max_features': range(3,11)}

start = time.time()
model = GridSearchCV(DecisionTreeClassifier(random_state=1),
                     param_grid=param_model,
                     scoring='accuracy',
                     n_jobs=-1)

model = model.fit(X_train, y_train)
print(f"executed in {time.time() - start}, "
      f"nodes {model.best_estimator_.tree_.node_count}, "
      f"max_depth {model.best_estimator_.tree_.max_depth}")

y_pred = model.predict(X_test)
print(classification_report(y_test, y_pred))

Note that here, in GridSearchCV, we are using the parameter n_jobs=-1, which
instructs the implementation to run model evaluation in parallel using all available
processors.1 Running model evaluation in parallel, even on a single machine, can
result in an order-of-magnitude performance improvement.

Unfortunately, this does not work out of the box with Ray clusters. GridSearchCV
uses Joblib for parallel execution (as do many other scikit-learn algorithms). Joblib
does not work with Ray out of the box.
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Ray implements a backend for Joblib with a Ray actors pool (see Chapter 4) instead
of local processes. This allows you to simply change the Joblib backend to switch
scikit-learn from using local processes to Ray.

Concretely, to make Example 10-1 run using Ray, you need to register the Ray
backend for Joblib and use it for the GridSearchCV execution, as in Example 10-2.

Example 10-2. Using a Ray Joblib backend with scikit-learn to build the wine-quality
model

# Get data
df = pd.read_csv("winequality-red.csv", delimiter=";")
print(f"Rows, columns: {str(df.shape)}")
print(df.head)
print(df.isna().sum())

# Create Classification version of target variable
df['goodquality'] = [1 if x >= 6 else 0 for x in df['quality']]
X = df.drop(['quality','goodquality'], axis = 1)
y = df['goodquality']
print(df['goodquality'].value_counts())

# Normalize feature variables
X_features = X
X = StandardScaler().fit_transform(X)
# Splitting the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.25, 
                                                    random_state=0)

param_model = {'max_depth':range(10, 20),
               'max_features': range(3,11)}

start = time.time()

mode = GridSearchCV(DecisionTreeClassifier(random_state=1),
                     param_grid=param_model,
                     scoring='accuracy',
                     n_jobs=-1)

register_ray()
with joblib.parallel_backend('ray'):
    model = mode.fit(X_train, y_train)

model = model.fit(X_train, y_train)
print(f"executed in {time.time() - start}, "
      f"nodes {model.best_estimator_.tree_.node_count}, "
      f"max_depth {model.best_estimator_.tree_.max_depth}")

y_pred = model.predict(X_test)
print(classification_report(y_test, y_pred))
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Using the Ray Joblib Backend for scikit-learn
This code works, but if we compare the execution time for the default and Ray
backends, you can see that using the Ray backend is slower in our example (during
testing, we saw 8.2 seconds with Joblib and 25.1 seconds with Ray). To understand
this difference, you need to return to Chapter 3, which explains the overhead incur‐
red when using Ray’s remote functions.

This result basically reemphasizes that Ray remote execution is advantageous only
when remote execution takes enough time to offset such an overhead, which is not
the case for this toy example. The advantage of Ray’s implementation starts to grow as
the sizes of the model, data, and cluster grow.

Using Boosting Algorithms with Ray
Boosting algorithms are well suited to parallel computing as they train multiple
models. You can train each submodel independently and then train another model on
how to combine the results. These are the two most popular boosting libraries today:

XGBoost
An optimized distributed gradient boosting library designed to be highly effi‐
cient, flexible, and portable. It implements ML algorithms under the gradient
boosting framework. XGBoost provides a parallel tree boosting—also known
as gradient boosting decision tree (GBDT) and gradient boosting machines
(GBM)—that solves many data science problems quickly and accurately. The
same code runs on many distributed environments—including Hadoop, Sun
Grid Engine (SGE), and Message Passing Interface (MPI)—and can solve prob‐
lems beyond billions of examples.

LightGBM
A fast, distributed, high-performance gradient boosting framework based on a
decision tree algorithm, used for ranking, classification, and many other ML
tasks.

We will compare how Ray parallelizes training with XGBoost and LightGBM, but
comparing the details of the libraries is beyond the scope of this book. If you’re
interested in the difference between the libraries, a good comparison is found in
“XGBoost vs. LighGBM: How Are They Different” by Sumit Saha.
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Using XGBoost
Continuing with our wine-quality example, we build a model using XGBoost, and the
code to do so is presented in Example 10-3.

Example 10-3. Using XGBoost to build our wine-quality model

# Get data
df = pd.read_csv("winequality-red.csv", delimiter=";")
print(f"Rows, columns: {str(df.shape)}")
print(df.head)
print(df.isna().sum())

# Create Classification version of target variable
df['goodquality'] = [1 if x >= 6 else 0 for x in df['quality']]
X = df.drop(['quality','goodquality'], axis = 1)
y = df['goodquality']
print(df['goodquality'].value_counts())

# Normalize feature variables
X_features = X
X = StandardScaler().fit_transform(X)
# Splitting the data
X_train, X_test, y_train, y_test = \
    train_test_split(X, y, test_size=.25, random_state=0)

start = time.time()
model = xgb.XGBClassifier(random_state=1)
model.fit(X_train, y_train)
print(f"executed XGBoost in {time.time() - start}")
y_pred = model.predict(X_test)
print(classification_report(y_test, y_pred))

One of the reasons XGBoost is so performant is that it uses OpenMP to create tree
branches independently, which does not directly support Ray. Ray integrates with
XGBoost by providing an xgboost-ray library that replaces OpenMP with Ray actor
pools. You can use this library either with XGBoost or scikit-learn APIs. In the latter
case, the library provides a drop-in replacement for the following estimators:

• RayXGBClassifier•
• RayXGRegressor•
• RayXGBRFClassifier•
• RayXGBRFRegressor•
• RayXGBRanker•
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It also provides RayParams, which allows you to explicitly define the execution
parameters for Ray. Using this library, we can modify Example 10-3 to make it work
with Ray as shown in Example 10-4.

Example 10-4. Using the XGBoost Ray library to build our wine-quality model

start = time.time()
model = RayXGBClassifier(
    n_jobs=10,  # In XGBoost-Ray, n_jobs sets the number of actors
    random_state=1
)

model.fit(X=X_train, y=y_train, ray_params=RayParams(num_actors=3))
print(f"executed XGBoost in {time.time() - start}")

Here we used RayParams to specify the size of Ray’s actor pool used for paralleli‐
zation. Alternatively, you can use the n_jobs parameter in RayXGBClassifier to
achieve the same.

Using LightGBM
Building our wine-quality model using LightGBM is presented in Example 10-5.

Example 10-5. Using LightGBM to build our wine-quality model

# Get data
df = pd.read_csv("winequality-red.csv", delimiter=";")
print(f"Rows, columns: {str(df.shape)}")
print(df.head)
print(df.isna().sum())

# Create Classification version of target variable
df['goodquality'] = [1 if x >= 6 else 0 for x in df['quality']]
X = df.drop(['quality','goodquality'], axis = 1)
y = df['goodquality']
print(df['goodquality'].value_counts())

# Normalize feature variables
X_features = X
X = StandardScaler().fit_transform(X)
# Splitting the data
X_train, X_test, y_train, y_test = \
    train_test_split(X, y, test_size=.25, random_state=0)

train_data = lgb.Dataset(X_train,label=y_train)
param = {'num_leaves':150, 'objective':'binary','learning_rate':.05,'max_bin':200}
param['metric'] = ['auc', 'binary_logloss']

start = time.time()
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model = lgb.train(param,train_data,100)
print(f"executed LightGBM in {time.time() - start}")
y_pred = model.predict(X_test)

# Converting probabilities into 0 or 1

for i in range(len(y_pred)):
    if y_pred[i] >= .5:       # Setting threshold to .5
        y_pred[i] = 1
    else:
        y_pred[i] = 0
print(classification_report(y_test, y_pred))

Similar to XGBoost, LightGBM uses OpenMP for parallelization. As a result, Ray
offers the Distributed LightGBM on Ray library, which implements parallelization
using Ray’s actor pool. Similar to the xgboost-ray library, this library supports both
native and scikit-learn APIs. In the latter case, the library implements the following
estimators:

• RayLGBMClassifier•
• RayLGBMRegressor•

As with XGBoost, RayParams is provided, allowing you to define execution parame‐
ters for Ray. Using this library, we can modify Example 10-5 to make it work with Ray
as in Example 10-6.

Example 10-6. Using the LightGBM Ray library to build our wine-quality model

model = RayLGBMClassifier(
    random_state=42)

start = time.time()
model.fit(X=X_train, y=y_train, ray_params=RayParams(num_actors=3))
print(f"executed LightGBM in {time.time() - start}")

Here we used RayParams to specify the size of Ray’s actor pool used for paralleli‐
zation. Alternatively, you can use the n_jobs parameter in RayLGBMClassifier to
achieve the same.
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2 In our testing, for XGBoost execution time was 0.15 versus 14.4 seconds, and for LightGBM it was 0.24 versus
12.4 seconds.

Using the Ray Boosting Libraries
This code works, but if we compare the execution time using OpenMP and the Ray
actor pool, we will see that using OpenMP for our toy example is much faster.2 As
with scikit-learn, this is due to the overhead of remoting and changes as data and
model sizes grow.

Using PyTorch with Ray
Another very popular machine learning framework is PyTorch, an open source
Python library for deep learning developed and maintained by Facebook. PyTorch is
simple and flexible, making it a favorite for many academics and researchers in the
development of new deep learning models and applications.

Many extensions for specific applications (such as text, computer vision, and audio
data) have been implemented for PyTorch. A lot of pretrained models also exist
that you can use directly. If you are not familiar with PyTorch, take a look at Jason
Brownlee’s PyTorch tutorial for an introduction to its structure, capabilities, and
usage for solving various problems.

We will continue with our wine-quality problem and show how to use PyTorch to
build a multilayer perceptron (MLP) model for predicting wine quality. To do this,
you need to start from creating a custom PyTorch Dataset class that can be extended
and customized to load your dataset. For our wine-quality example, the custom
dataset class is shown in Example 10-7.

Example 10-7. PyTorch dataset class for loading wine-quality data

# dataset
class WineQualityDataset(Dataset):
    # load the dataset
    def __init__(self, path):
        # load the csv file as a dataframe
        df = pd.read_csv(path, delimiter=";")
        print(f"Rows, columns: {str(df.shape)}")
        print(df.head)
        # create Classification version of target variable
        df['goodquality'] = [1 if x >= 6 else 0 for x in df['quality']]
        df = df.drop(['quality'], axis = 1)
        print(df['goodquality'].value_counts())
        # store the inputs and outputs
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        self.X = StandardScaler().fit_transform(df.values[:, :-1])
        self.y = df.values[:, -1]
        # ensure input data is floats
        self.X = self.X.astype('float32')
        self.y = self.y.astype('float32')
        self.y = self.y.reshape((len(self.y), 1))

    # number of rows in the dataset
    def __len__(self):
        return len(self.X)

    # get a row at an index
    def __getitem__(self, idx):
        return [self.X[idx], self.y[idx]]

    # get indexes for train and test rows
    def get_splits(self, n_test=0.33):
        # determine sizes
        test_size = round(n_test * len(self.X))
        train_size = len(self.X) - test_size
        # calculate the split
        return random_split(self, [train_size, test_size])

Note that here, in addition to the minimum requirements, we have implemented
get_splits, a method that splits an original dataset into two: one for training and
one for testing.

Once you have defined your data class, you can use PyTorch to make a model. To
define a model in PyTorch, you extend the base PyTorch Module class. The model
class for our purposes is presented in Example 10-8.

Example 10-8. PyTorch model class for wine quality

# model definition
class WineQualityModel(Module):
    # define model elements
    def __init__(self, n_inputs):
        super(WineQualityModel, self).__init__()
        # input to first hidden layer
        self.hidden1 = Linear(n_inputs, 10)
        kaiming_uniform_(self.hidden1.weight, nonlinearity='relu')
        self.act1 = ReLU()
        # second hidden layer
        self.hidden2 = Linear(10, 8)
        kaiming_uniform_(self.hidden2.weight, nonlinearity='relu')
        self.act2 = ReLU()
        # third hidden layer and output
        self.hidden3 = Linear(8, 1)
        xavier_uniform_(self.hidden3.weight)
        self.act3 = Sigmoid()
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    # forward-propagate input
    def forward(self, X):
        # input to first hidden layer
        X = self.hidden1(X)
        X = self.act1(X)
        # second hidden layer
        X = self.hidden2(X)
        X = self.act2(X)
        # third hidden layer and output
        X = self.hidden3(X)
        X = self.act3(X)
        return X

This class constructor builds the model by defining its layers and their connectivity.
The forward method defines how to forward-propagate input through the model.
With these two classes in place, the overall code looks like Example 10-9.

Example 10-9. PyTorch implementation of wine-quality model building

# ensure reproducibility
torch.manual_seed(42)
# load the dataset
dataset = WineQualityDataset("winequality-red.csv")

# calculate split
train, test = dataset.get_splits()
# prepare data loaders
train_dl = DataLoader(train, batch_size=32, shuffle=True)
test_dl = DataLoader(test, batch_size=32, shuffle=False)

# train the model
model = WineQualityModel(11)
# define the optimization
criterion = BCELoss()
optimizer = SGD(model.parameters(), lr=0.01, momentum=0.9)
start = time.time()
# enumerate epochs
for epoch in range(500):
    # enumerate mini batches
    for i, (inputs, targets) in enumerate(train_dl):
        # clear the gradients
        optimizer.zero_grad()
        # compute the model output
        yhat = model(inputs)
        # calculate loss
        loss = criterion(yhat, targets)
        # credit assignment
        loss.backward()
        # update model weights
        optimizer.step()
print(f"Build model in {time.time() - start}")
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print(model)
# evaluate a model
predictions, actuals = list(), list()
for i, (inputs, targets) in enumerate(test_dl):
    # evaluate the model on the test set
    yhat = model(inputs)
    # retrieve numpy array
    yhat = yhat.detach().numpy()
    actual = targets.numpy()
    actual = actual.reshape((len(actual), 1))
    # round to class values
    yhat = yhat.round()
    # store
    predictions.append(yhat)
    actuals.append(actual)
predictions, actuals = vstack(predictions), vstack(actuals)
# calculate accuracy
acc = accuracy_score(actuals, predictions)
print("Model accuracy", acc)

Example 10-9 works, but Ray is integrated with Lightning (formerly called PyTorch
Lightning), not PyTorch. Lightning structures your PyTorch code so it can abstract
the details of training. This makes AI research scalable and fast to iterate on.

To convert Example 10-9 to Lightning, we first need to modify Example 10-8. In
Lightning, it needs to be derived from lightning_module, not module, which means
that we need to add two methods to our model (Example 10-10).

Example 10-10. Lightning model’s additional functions for wine quality

    # training step
    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self(x)
        loss = self.bce(y_hat, y)
        return loss
    # optimizer
    def configure_optimizers(self):
        return Adam(self.parameters(), lr=0.02)

Here the training_step method defines a single step, while configure_optimized
defines which optimizer to use. When you compare this to Example 10-8, you will
notice that some of that example’s code is moved into these two methods (here
instead of the BCELoss optimizer, we are using the Adam optimizer). With this updated
model class, the model training looks like Example 10-11.
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Example 10-11. Lightning implementation of wine-quality model building

# train
trainer = Trainer(max_steps=1000)
trainer.fit(model, train_dl)

Note that unlike Example 10-9, where training is implemented programmatically,
Lightning introduces a trainer class, which internally implements a trainer loop. This
approach allows all required optimization to be in the training loop.

Both PyTorch and Lightning are using Joblib to distribute training through the
built-in ddp_cpu backend or, more generally, Horovod. As with other libraries, to
allow distributed Lightning on Ray, Ray has a library Distributed PyTorch Lightning
Training that adds new Lightning plug-ins for distributed training using Ray. These
plug-ins allow you to quickly and easily parallelize training while still getting all the
benefits of Lightning and using your desired training protocol, either ddp_cpu or
Horovod.

Once you add the plug-ins to your Lightning trainer, you can configure them to
parallelize training to all the cores in your laptop, or across a massive multinode,
multi-GPU cluster with no additional code changes. This library also comes with
integration with Ray Tune so you can perform distributed hyperparameter tuning
experiments.

The RayPlugin class provides Distributed Data Parallel (DDP) training on a Ray
cluster. PyTorch DDP is used as the distributed training protocol by PyTorch, and
Ray is used in this case to launch and manage the training worker processes. The base
code using this plug-in is shown in Example 10-12.

Example 10-12. Enabling the Lightning implementation of our wine-quality model
building to run on Ray

# train
plugin = RayPlugin(num_workers=6)
trainer = Trainer(max_steps=1000, plugins=[plugin])
trainer.fit(model, train_dl)
print(f"Build model in {time.time() - start}")
print(model)
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The two additional plug-ins included in the library are as follows:

HorovodRayPlugin
Integrates with Horovod as the distributed training protocol.

RayShardedPlugin
Integrates with FairScale to provide sharded DDP training on a Ray cluster. With
sharded training, you can leverage the scalability of data-parallel training while
drastically reducing memory usage when training large models.

Using the Distributed PyTorch Lightning Training
This code works, but if we compare the execution time using all three implemen‐
tations, we will see that using PyTorch for our toy example takes 16.6 seconds,
Lightning takes 8.2 seconds, and distributed Lightning with Ray takes 25.2 seconds.
Similar to the previous two cases—scikit-learn and boosting algorithms—this is due
to the overhead of remoting.

Reinforcement Learning with Ray
Ray was initially created as a platform for reinforcement learning (RL), which is one
of the hottest research topics in the field of modern artificial intelligence, and its
popularity is only growing. RL is a type of machine learning technique that enables
an agent to learn in an interactive environment by trial and error using feedback from
its own actions and experiences; see Figure 10-1.

Figure 10-1. Types of machine learning

Both supervised and reinforcement learning create a mapping between input and
output. But whereas supervised learning uses a set of known inputs and output for
training, reinforcement learning uses rewards and punishments as signals for positive
and negative behavior. Both unsupervised and reinforcement learning leverage
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experiment data, but they have different goals. While in unsupervised learning we are
finding similarities and differences between data points, in reinforcement learning we
are trying to find a suitable action model that would maximize the total cumulative
reward and improve the model.

The key components of an RL implementation are as follows and are depicted in
Figure 10-2:

Environment
Physical world in which the agent operates

State
Current state of the agent

Reward
Feedback to the agent from the environment

Policy
Method to map the agent’s state to the actions

Value
Future reward that an agent would receive by taking an action in a particular
state

Figure 10-2. Reinforcement model implementation

RL is a huge topic, and its details are beyond the scope of this book (we are just
trying to explain how to start using the library with a simple example), but if you are
interested in learning more about it, “Reinforcement Learning 101” by Shweta Bhatt
is an excellent starting point.

Ray’s RLlib is a library for RL, which allows for production-level, highly distributed
RL workloads while providing unified and simple APIs for a large variety of applica‐
tions for different industries. It supports both model-free and model-based reinforce‐
ment learning.
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As shown in Figure 10-3, RLlib is built on top of Ray and offers off-the-shelf, highly
distributed algorithms, policies, loss functions, and default models.

Figure 10-3. RLlib components

A policy encapsulates the core numerical components of RL algorithms. It includes
a policy model that determines actions based on environment changes and a loss
function defining the result of the action based on the post-processed environment.
Depending on the environment, RL can have a single agent and property, a single
policy for multiple agents, or multiple policies, each controlling one or more agents.
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Everything agents interact with is called an environment. The environment is the
outside world and comprises everything outside the agent.

Environment Types
There are different types of environments:

Deterministic
The outcome is known based on the current state.

Stochastic
The outcome is uncertain based on the current state.

Fully observable
An agent can determine the state of the system at all times.

Partially observable
An agent cannot determine the state of the system at all times.

Discrete
Only a finite state of actions is available for moving from one state to another.

Continuous
An infinite state of actions is available for moving from one state to another.

Episodic and nonepisodic
In an episodic environment, an agent’s current action will not affect a future
action, whereas in a nonepisodic environment, an agent’s current action will
affect future action.

Single and multiagent
A single-agent environment has only a single agent, and a multiagent environ‐
ment has multiple agents.

Given an environment and policy, policy evaluation is done by the worker. RLlib
provides a RolloutWorker class that is used in most RLlib algorithms.

At a high level, RLlib provides trainer classes that hold a policy for environment
interaction. Through the trainer interface, the policy can be trained, checkpointed,
or an action computed. In multiagent training, the trainer manages the querying
and optimization of multiple policies at once. The trainer classes coordinate the
distributed workflow of running rollouts and optimizing policies. They do this by
leveraging Ray parallel iterators.

Beyond environments defined in Python, Ray supports batch training on offline data‐
sets through input readers. This is an important use case for RL when it’s not possible
to run traditional training and roll out in a physical environment (like a chemical
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plant or assembly line) and a suitable simulator doesn’t exist. In this approach, data
for past activity is used to train a policy.

From single processes to large clusters, all data interchange in RLlib uses sample
batches. Sample batches encode one or more fragments of data. Typically, RLlib
collects batches of size rollout_fragment_length from rollout workers and concate‐
nates one or more of these batches into a batch of size train_batch_size that is the
input to stochastic gradient descent (SGD).

The main features of RLlib are as follows:

• Support for the most popular deep-learning frameworks including PyTorch and•
TensorFlow.

• Implementation of highly distributed learning, RLlib algorithms—PPO or•
IMPALA—allow you to set the num_workers config parameter, such that your
workloads can run on hundreds of CPUs or nodes, thus parallelizing and speed‐
ing up learning.

• Support for multiagent RL allows for training your agents supporting any of the•
following strategies:
— Cooperative with shared or separate policies and/or value functions—
— Adversarial scenarios using self-play and league-based training—
— Independent learning of neutral/coexisting agents—

• Support APIs for an external pluggable simulators environment that comes with•
a pluggable, off-the-shelf client ∕ server setup that allows you to run hundreds
of independent simulators on the “outside” connecting to a central RLlib policy-
server that learns and serves actions.

Additionally, RLlib provides simple APIs to customize all aspects of your training
and experimental workflows. For example, you may code your own environments in
Python by using OpenAI’s Gym or DeepMind’s OpenSpiel, provide custom Tensor‐
Flow/Keras or PyTorch models, and write your own policy and loss definitions or
define custom exploratory behavior.

Simple code for implementing RL training to address the inverted pendulum—
i.e., CartPole—problem (the environment exists in OpenAI’s Gym) is shown in
Example 10-13.
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3 Here we use an existing OpenAI Gym environment, so we can just use its name.

Example 10-13. CartPole reinforcement learning

ray.init()
config = {
    # Environment (RLlib understands OpenAI Gym registered strings).
    'env': 'CartPole-v0',
    # Use 4 environment workers (aka "rollout workers") that parallelly
    # collect samples from their own environment clone(s).
    "num_workers": 4,
    'framework': 'tf2',
    'eager_tracing': True,
    # This is just our model arch, choosing the right one is beyond the scope
    # of this book.
    'model': {
        'fcnet_hiddens': [64, 64],
        'fcnet_activation': 'relu',
    },
    # Set up a separate evaluation worker set for the
    # `trainer.evaluate()` call after training.
    'evaluation_num_workers': 1,
    # Only for evaluation runs, render the env.
    'evaluation_config': {
        "render_env": True,
    },
    'gamma': 0.9,
    'lr': 1e-2,
    'train_batch_size': 256,
}

# Create RLlib Trainer.
trainer = agents.ppo.PPOTrainer(config=config)

# Run it for n training iterations. A training iteration includes
# parallel sample collection by the environment workers as well as
# loss calculation on the collected batch and a model update.
for i in range(5):
    print(f"Iteration {i}, training results {trainer.train()}")

# Evaluate the trained Trainer (and render each timestep to the shell's
# output).
trainer.evaluate()

Example 10-13 starts by creating a configuration for a trainer. The configuration
defines an environment,3 the number of workers (we use four), framework (we use
TensorFlow 2), model, train batch size, and additional execution parameters. This
configuration is used for the creation of the trainer. We then execute several training
iterations and display results. That’s all it takes to implement simple RL.
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You can easily extend this simple example by creating your specific environment or
introducing your own algorithms.

Numerous examples of Ray RLlIB usage are described in “Best Reinforcement Learn‐
ing Talks from Ray Summit 2021” by Michael Galarnyk.

Hyperparameter Tuning with Ray
When creating an ML model, you are often faced with a variety of choices, from
the type of model to feature selection techniques. A natural extension of ML is to
use similar techniques to find the right values (or parameters) for the choices in
building our model. Parameters that define the model architecture are referred to
as hyperparameters, and the process of searching for the ideal model architecture is
referred to as hyperparameter tuning. Unlike the model parameters that specify how
to transform the input data into the desired output, hyperparameters define how to
structure the model.

Popular Hyperparameter Tuning Approaches
The most popular hyperparameter tuning methods are as follows:

Grid search
This is the most basic method. In this case, a model is built for each possible
combination of provided hyperparameter values. Every model is evaluated for
given criteria, and the one producing the best result is selected.

Random search
Unlike grid search, which uses a discrete set of hyperparameter values, random
search leverages a statistical distribution for each hyperparameter from which
values may be randomly sampled. This approach defines the number of iterations
for search. For each iteration, hyperparameter values are picked by sampling-
defined statistical distribution.

Bayesian optimization
In the preceding methods, individual experiments are building models for differ‐
ent parameters’ hyperparameter values. Such experiments are embarrassingly
parallel and can be executed very efficiently. But the disadvantage of such
an approach is that it does not take advantage of information from previous
experiments. Bayesian optimization belongs to a class of sequential model-based
optimization (SMBO) algorithms that use the results of the previous iteration
to improve the sampling method of the next iteration. This approach builds
a probability model of the objective function and uses it to select the most
promising hyperparameters to evaluate.
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As with boosting algorithms, hyperparameter tuning is especially well suited to
parallelization because it involves training and comparing many models. Depending
on the search technique, training these separate models can be an “embarrassingly
parallel” problem, as there is little to no communication needed between them.

Here are some examples of hyperparameters:

• The degree of the polynomial feature that should be used for the linear model•
• The maximum depth allowed for a decision tree•
• The minimum number of samples required at a leaf node in a decision tree•
• The number of neurons for a neural network layer•
• The number of layers for a neural network•
• The learning rate for gradient descent•

Ray Tune is the Ray-based native library for hyperparameter tuning. The main
features of Tune are as follows:

• It provides distributed, asynchronous optimization out of the box leveraging Ray.•
• The same code can be scaled from a single machine to a large, distributed cluster.•
• It offers state-of-the-art algorithms including (but not limited to) ASHA, BOHB,•

and Population-Based Training.
• It integrates with TensorBoard or MLflow to visualize tuning results.•
• It integrates with many optimization libraries such as Ax/Botorch, Hyperopt, and•

Bayesian Optimization and enables their transparently scaling.
• It supports many ML frameworks, including PyTorch, TensorFlow, XGBoost,•

LightGBM, and Keras.

The following are the main components of Tune:

Trainable
A training function, with an objective function. Tune offers two interface APIs
for a trainable: functional and class.

Search space
Valid values for your hyperparameters, and you can specify how these values are
sampled (e.g., from a uniform distribution or a normal distribution). Tune offers
various functions to define search spaces and sampling methods.
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Search algorithm
An algorithm used for the optimization of hyperparameters. Tune has Search
Algorithms that integrate with many popular optimization libraries, such as
Nevergrad and Hyperopt. Tune automatically converts the provided search space
into the search spaces the search algorithms/underlying library expect.

Trial
Execution or run of a logical representation of a single hyperparameter configu‐
ration. Each trial is associated with an instance of a trainable. And a collection of
trials make up an experiment. Tune uses Ray actors as a worker node’s processes
to run multiple trials in parallel.

Experiment analysis
An object, returned by Tune, that has methods that can be used for analyzing
your training. It can be integrated with TensorBoard and MLflow for results
visualization.

To show how to use Tune, let’s optimize our PyTorch implementation of wine-quality
model building (Example 10-8). We will try to optimize two parameters of the
optimizer used to build the model: lr and momentum.

Meaning of the Parameters We Are Optimizing
lr stands for learning rate. Deep learning neural networks are trained using the
SGD algorithm. This algorithm estimates the error gradient for the current state of
the model by using examples from the training dataset, then updates the weights of
the model by using the backpropagation-of-errors algorithm, referred to as simply
backpropagation.

The amount that the weights are updated during training is referred to as the step size,
or the learning rate.

momentum is a hyperparameter of the SGD algorithm. It is an exponentially weighted
average of the prior updates to the weight that can be included when the weights
are updated. This change to SGD is called momentum and adds inertia to the update
procedure, causing many past updates in one direction to continue in that direction
in the future.

First we restructure our code (Example 10-9) to introduce three additional functions
(Example 10-14).
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Example 10-14. Implementing support functions for our PyTorch wine-quality model

# train function
def model_train(model, optimizer, criterion, train_loader):
    # for every mini batch
    for i, (inputs, targets) in enumerate(train_loader):
        # clear the gradients
        optimizer.zero_grad()
        # compute the model output
        yhat = model(inputs)
        # calculate loss
        loss = criterion(yhat, targets)
        # credit assignment
        loss.backward()
        # update model weights
        optimizer.step()

# test model
def model_test(model, test_loader):
    predictions, actuals = list(), list()
    for i, (inputs, targets) in enumerate(test_loader):
        # evaluate the model on the test set
        yhat = model(inputs)
        # retrieve numpy array
        yhat = yhat.detach().numpy()
        actual = targets.numpy()
        actual = actual.reshape((len(actual), 1))
        # round to class values
        yhat = yhat.round()
        # store
        predictions.append(yhat)
        actuals.append(actual)
    predictions, actuals = vstack(predictions), vstack(actuals)
    # calculate accuracy
    return accuracy_score(actuals, predictions)

# train wine quality model
def train_winequality(config):

    # calculate split
    train, test = dataset.get_splits()
    train_dl = DataLoader(train, batch_size=32, shuffle=True)
    test_dl = DataLoader(test, batch_size=32, shuffle=False)

    # model
    model = WineQualityModel(11)
    # define the optimization
    criterion = BCELoss()
    optimizer = SGD(
        model.parameters(), lr=config["lr"], momentum=config["momentum"])
    for i in range(50):
        model_train(model, optimizer, criterion, train_dl)
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        acc = model_test(model, test_dl)

        # send the current training result back to Tune
        tune.report(mean_accuracy=acc)

        if i % 5 == 0:
            # this saves the model to the trial directory
            torch.save(model.state_dict(), "./model.pth")

In this code, we have introduced three supporting functions:

model_train

Encapsulates model training.

model_test

Encapsulates model-quality evaluation.

train_winequality

Implements all steps for model training and reports them to Tune. This allows
Tune to make decisions in the middle of training.

With these three functions in place, integration with Tune is very straightforward
(Example 10-15).

Example 10-15. Integrating model building with Tune

# load the dataset
dataset = WineQualityDataset("winequality-red.csv")

search_space = {
    "lr": tune.sample_from(lambda spec: 10**(-10 * np.random.rand())),
    "momentum": tune.uniform(0.1, 0.9)
}

analysis = tune.run(
    train_winequality,
    num_samples=100,
    scheduler=ASHAScheduler(metric="mean_accuracy", mode="max"),
    config=search_space
)

After loading the dataset, the code defines a search space—a space for possible hyper‐
parameters—and invokes tuning by using the tune.run method. The parameters here
are as follows:

Callable
Defines a training function (train_winequality, in our case).
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num_samples

Indicates the maximum number of runs for Tune.

scheduler

Here we use ASHA, a scalable algorithm for principled early stopping. To make
the optimization process more efficient, the ASHA scheduler terminates trials
that are less promising and allocates more time and resources to more promising
trials.

config

Contains the search space for the algorithm.

Running the preceding code produces the result shown in Example 10-16.

Example 10-16. Tuning the model result

+-------------------------------+------------+-----------------+------------- ...

| Trial name | status | loc | lr | momentum | acc | iter | total time (s) |

|-------------------------------+------------+-----------------+------------- ...

| ...00000 | TERMINATED | ... | 2.84411e-07 | 0.170684 | 0.513258 | 50 | 4.6005 |

| ...00001 | TERMINATED | ... | 4.39914e-10 | 0.562412 | 0.530303 | 1 | 0.0829589 |

| ...00002 | TERMINATED | ... | 5.72621e-06 | 0.734167 | 0.587121 | 16 | 1.2244 |

| ...00003 | TERMINATED | ... | 0.104523 | 0.316632 | 0.729167 | 50 | 3.83347 |

……………………………..

| ...00037 | TERMINATED | ... | 5.87006e-09 | 0.566372 | 0.625 | 4 | 2.41358 |

|| ...00043 | TERMINATED | ... | 0.000225694 | 0.567915 | 0.50947 | 1 | 0.130516 |

| ...00044 | TERMINATED | ... | 2.01545e-07 | 0.525888 | 0.405303 | 1 | 0.208055 |

| ...00045 | TERMINATED | ... | 1.84873e-07 | 0.150054 | 0.583333 | 4 | 2.47224 |

| ...00046 | TERMINATED | ... | 0.136969 | 0.567186 | 0.742424 | 50 | 4.52821 |

| ...00047 | TERMINATED | ... | 1.29718e-07 | 0.659875 | 0.443182 | 1 | 0.0634422 |

| ...00048 | TERMINATED | ... | 0.00295002 | 0.349696 | 0.564394 | 1 | 0.107348 |

| ...00049 | TERMINATED | ... | 0.363802 | 0.290659 | 0.725379 | 4 | 0.227807 |

+-------------------------------+------------+-----------------+------------- ...
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As you can see, although we have defined 50 iterations for the model search, using
ASHA significantly improves performance because it uses significantly fewer runs on
average (in this example, more than 50% used only one iteration).

Conclusion
In this chapter, you learned how Ray constructs are leveraged for scaling execution
of the different ML libraries (scikit-learn, XGBoost, LightGBM, and Lightning) using
the full capabilities of multimachine Ray clusters.

We showed you simple examples of porting your existing ML code to Ray, as well
as some of the internals of how Ray extends ML libraries to scale. We also showed
simple examples of using Ray-specific implementations of RL and hyperparameter
tuning.

We hope that looking at these relatively simple examples will give you a better idea of
how to best use Ray in your day-to-day implementations.
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1 Another one of the top use cases has been cryptocurrency mining, but you don’t need a system like
Ray for that. Cryptomining with GPUs has led to increased demand, with many cards selling above
list price, and NVIDIA has been attempting to discourage cryptocurrency mining with its latest GPUs.

CHAPTER 11

Using GPUs and Accelerators with Ray

While Ray is primarily focused on horizontal scaling, sometimes using special accel‐
erators like GPUs can be cheaper and faster than just throwing more “regular” com‐
pute nodes at a problem. GPUs are well suited to vectorized operations performing
the same operation on chunks of data at a time. ML, and more generally linear
algebra, are some of the top use cases,1 as deep learning is incredibly vectorizable.

Often GPU resources are more expensive than CPU resources, so Ray’s architecture
makes it easy to request GPU resources only when necessary. To take advantage of
GPUs, you need to use specialized libraries, and since these libraries deal with direct
memory access, their results may not always be serializable. In the GPU computing
world, NVIDIA and, to a lesser degree, AMD are the two main options, with different
libraries for integration.

What Are GPUs Good At?
Not every problem is a good fit for GPU acceleration. GPUs are especially good at
performing the same calculation on many data points at the same time. If a problem
is well suited to vectorization, there is a good chance that GPUs may be well suited
to it.
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The following are common problems that benefit from GPU acceleration:

• ML•
• Linear algebra•
• Physics simulations•
• Graphics (no surprise here)•

GPUs are not well suited to branch-heavy nonvectorized workflows, or workflows
for which the cost of copying the data is similar to or higher than the cost of the
computation.

The Building Blocks
Working with GPUs involves additional overhead, similar to the overhead of distrib‐
uting tasks (although a bit faster). This overhead comes from serializing data as well
as communication, although the links between CPU and GPU are generally faster
than network links. Unlike distributed tasks with Ray, GPUs do not have Python
interpreters. Instead of sending Python lambdas, your high-level tools will generally
generate or call native GPU code. CUDA and Radeon Open Compute (ROCm) are
the two de facto low-level libraries for interacting with GPUs, from NVIDIA and
AMD, respectively.

NVIDIA released CUDA first, and it quickly gained traction with many higher-level
libraries and tools, including TensorFlow. AMD’s ROCm has had a slower start and
has not seen the same level of adoption. Some high-level tools, including PyTorch,
have now integrated ROCm support, but many others require using a special forked
ROCm version, like TensorFlow (tensorflow-rocm) or LAPACK (rocSOLVER).

Getting the building blocks right can be surprisingly challenging. For example, in
our experience, getting NVIDIA GPU Docker containers to build with Ray on
Linux4Tegra took several days. ROCm and CUDA libraries have specific versions
that support specific hardware, and similarly, higher-level programs that you may
wish to use likely support only some versions. If you are running on Kubernetes, or a
similar containerized platform, you can benefit from starting with prebuilt containers
like NVIDIA’s CUDA images or AMD’s ROCm images as the base.

Higher-Level Libraries
Unless you have specialized needs, you’ll likely find it easiest to work with higher-
level libraries that generate GPU code for you, like Basic Linear Algebra Subprograms
(BLAS), TensorFlow, or Numba. You should try to install these libraries in the base
container or machine image that you are using, as they often involve a substantial
amount of compile time during installation.
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Some of the libraries, like Numba, perform dynamic rewriting of your Python code.
To have Numba operate on your code, you add a decorator to your function (e.g.,
@numba.jit). Unfortunately, numba.jit and other dynamic rewriting of your func‐
tions are not directly supported in Ray. Instead, if you are using such a library, simply
wrap the call as shown in Example 11-1.

Example 11-1. Simple CUDA example

from numba import cuda, float32

# CUDA kernel
@cuda.jit
def mul_two(io_array):
    pos = cuda.grid(1)
    if pos < io_array.size:
        io_array[pos] *= 2 # do the computation
        
@ray.remote
def remote_mul(input_array):
    # This implicitly transfers the array into the GPU and back, which is not free
    return mul_two(input_array)

Similar to Ray’s distributed functions, these tools will generally take
care of copying data for you, but it’s important to remember it isn’t
free to move data in and out of GPUs. Since these datasets can be
large, most libraries try to do multiple operations on the same data.
If you have an iterative algorithm that reuses the data, using an
actor to hold on to the GPU resource and keep data in the GPU
can reduce this cost.

Regardless of which libraries you choose (or if you decide to write your own GPU
code), you’ll need to make sure Ray schedules your code on nodes with GPUs.

Acquiring and Releasing GPU and Accelerator Resources
You can request GPU resources by adding num_gpus to the ray.remote decorator,
much the same way as memory and CPU. Like other resources in Ray (including
memory), GPUs in Ray are not guaranteed, and Ray does not automatically clean
up resources for you. While Ray does not automatically clean up memory for you,
Python does (to an extent), making GPU leaks more likely than memory leaks.
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Many of the high-level libraries do not release the GPU unless the Python VM exits.
You can force the Python VM to exit after each call, thereby releasing any GPU
resources, by adding max_calls=1 in your ray.remote decorator, as in Example 11-2.

Example 11-2. Requesting and releasing GPU resources

# Request a full GPU, like CPUs we can request fractional
@ray.remote(num_gpus=1)
def do_serious_work():
# Restart entire worker after each call
@ray.remote(num_gpus=1, max_calls=1)
def do_serious_work():

One downside of restarting is that it removes your ability to reuse existing data in the
GPU or accelerator. You can work around this by using long-lived actors in place of
functions, but with the trade-off of locking up the resources in those actors.

Ray’s ML Libraries
You can also configure Ray’s built-in ML libraries to use GPUs. To have Ray Train
launch PyTorch to use GPU resources for training, you need to set use_gpu=True
in your Trainer constructor call, just as you configure the number of workers. Ray
Tune gives you more flexibility for resource requests, and you specify the resources
in tune.run, using the same dictionary as you would in ray.remote. For example,
to use two CPUs and one GPU per trial, you would call tune.run(trainable,
num_samples=10, resources_per_trial=\{"cpu": 2, "gpu": 2}).

Autoscaler with GPUs and Accelerators
Ray’s autoscaler has the ability to understand different types of nodes and chooses
which node type to schedule based on the requested resources. This is especially
important with GPUs, which tend to be more expensive (and in lower supply) than
other resources. On our cluster, since we have only four nodes with GPUs, we
configure the autoscaler as follows:

imagePullSecrets: []
# In practice you _might_ want an official Ray image
# but this is for a bleeding-edge mixed arch cluster,
# which still is not fully supported by Ray's official
# wheels & containers.
image: holdenk/ray-ray:nightly
operatorImage: holdenk/ray-ray:nightly
podTypes:
  rayGPUWorkerType:
    memory: 10Gi
    maxWorkers: 4
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    minWorkers: 1
# Normally you'd ask for a GPU but NV auto labeler is...funky on ARM
    CPU: 1
    rayResources:
      CPU: 1
      GPU: 1
      memory: 1000000000
    nodeSelector:
      node.kubernetes.io/gpu: gpu
  rayWorkerType:
    memory: 10Gi
    maxWorkers: 4
    minWorkers: 1
    CPU: 1
  rayHeadType:
    memory: 3Gi
    CPU: 1

This way, the autoscaler can allocate containers without GPU resources, which allows
Kubernetes to place those pods on CPU-only nodes.

CPU Fallback as a Design Pattern
Most of the high-level libraries that can be accelerated by GPUs also have CPU
fallback. Ray does not have a built-in way of expressing the concept of CPU fallback,
or “GPU if available.” In Ray, if you ask for a resource and the scheduler cannot find
it, and the autoscaler cannot create an instance for it, the function or actor will block
forever. With a bit of creativity, you can build your own CPU-fallback code in Ray.

If you want to use GPU resources when the cluster has them and fall back to CPU,
you’ll need to do a bit of extra work. The simplest way to determine whether a cluster
has usable GPU resources is to ask Ray to run a remote task with a GPU and then set
the resources based on this, as shown in Example 11-3.

Example 11-3. Falling back to a CPU if no GPU exists

# Function that requests a GPU
@ray.remote(num_gpus=1)
def do_i_have_gpus():
    return True

# Give it at most 4 minutes to see if we can get a GPU
# We want to give the autoscaler some time to see if it can spin up
# a GPU node for us.
futures = [do_i_have_gpus.remote()]
ready_futures, rest_futures = ray.wait(futures, timeout=240)

resources = {"num_cpus": 1}
# If we have a ready future, we have a GPU node in our cluster
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if ready_futures:
    resources["num_gpus"] =1

# "splat" the resources
@ray.remote(** resources)
def optional_gpu_task():

Any libraries you use will also need to fall back to CPU-based code. If they don’t do so
automatically (e.g., you have two different functions called depending on CPU versus
GPU, like mul_two_cuda and mul_two_np), you can pass through a Boolean indicating
whether the cluster has GPUs.

This can still result in failures on GPU clusters if GPU resources
are not properly released. Ideally, you should fix the GPU release
issue, but on a multitenant cluster, that may not be an option.
You can also do try/except with acquiring the GPU inside each
function.

Other (Non-GPU) Accelerators
While much of this chapter has focused on GPU accelerators, the same general
techniques apply to other kinds of hardware acceleration. For example, Numba is
able to take advantage of special CPU features, and TensorFlow can take advantage
of Tensor Processing Units (TPUs). In some cases, resources may not require a code
change but instead simply offer faster performance with the same APIs, like machines
with Non-Volatile Memory Express (NVMe) drives. In all of those cases, you can
configure your autoscaler to tag and make these resources available in much the same
way as GPUs.

Conclusion
GPUs are a wonderful tool to accelerate certain types of workflows on Ray. While Ray
itself doesn’t have hooks for accelerating your code with GPUs, it integrates well with
the various libraries that you can use for GPU computation. Many of these libraries
were not created with shared computation in mind, so it’s important to be on the
lookout for accidental resource leaks, especially since GPU resources tend to be more
expensive.
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1 Some common security scanners include Grype, Anchore, and Dagda.

CHAPTER 12

Ray in the Enterprise

Deploying software in enterprise environments often comes with additional require‐
ments, especially regarding security. Enterprise deployments tend to involve multiple
stakeholders and need to provide service to a larger group of scientists/engineers.
While not required, many enterprise clusters tend to have some form of multitenancy
to allow more efficient use of resources (including human resources, such as opera‐
tional staff).

Ray Dependency Security Issues
Unfortunately, Ray’s default requirements file brings in some insecure libraries. Many
enterprise environments have some kind of container scanning or similar system to
detect such issues.1 In some cases, you can simply remove or upgrade the dependency
issues flagged, but when Ray includes the dependencies in its wheel (e.g., the Apache
Log4j issue), limiting yourself to prebuilt wheels has serious drawbacks. If you find
a Java or native library flagged, you will need to rebuild Ray from source with the
version upgraded. Derwen.ai has an example of doing this for Docker in its ray_base
repo.

Interacting with the Existing Tools
Enterprise deployments often involve interaction with existing tools and the data they
produce. Some potential points for integration here are using Ray’s dataset-generic
Arrow interface to interact with other tools. When data is stored “at rest,” Parquet is
the best format for interaction with other tools.
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2 Making this work with the gRPC client is more complicated, as Ray’s workers need to be able to talk to the
head node and Redis server, which breaks when using localhost for binding.

3 One of the authors has friends who work at Tailscale, and other solutions are totally OK too.

Using Ray with CI/CD Tools
When working in large teams, continuous integration and delivery (CI/CD) are
important parts of effective collaboration on projects. The simplest option for using
Ray with CI/CD is to use Ray in local mode and treat it as a normal Python project.
Alternatively, you can submit test jobs by using Ray’s job submission API and verify
the result. This can allow you to test Ray jobs beyond the scale of a single machine.
Regardless of whether you use Ray’s job API or Ray’s local mode, you can use Ray
with any CI/CD tool and virtual environment.

Authentication with Ray
Ray’s default deployment makes it easy for you to get started, and as such, it leaves
out any authentication between the client and server. This lack of authentication
means that anyone who can connect to your Ray server can potentially submit jobs
and execute arbitrary code. Generally, enterprise environments require a higher level
of access control than the default configuration provides.

Ray’s gRPC endpoints, not the job server, can be configured to use Transport Layer
Security (TLS) for mutual authentication between the client and the server. Ray
uses the same TLS communication mechanism between the client and head node as
between the workers.

Ray’s TLS implementation requires that the clients have the private
key. You should consider Ray’s TLS implementation to be akin to
shared secret encryption, but slower.

Another option, which works the job server, is to leave the endpoints insecure but
restrict who can talk to the endpoint.2 This can be done using ingress controllers,
networking rules, or even as an integrated part of a virtual private network (VPN)
like Tailscale’s RBAC rules example for Grafana.3 Thankfully, Ray’s dashboard—and
by extension, the job server endpoint—already binds to localhost/127.0.0.1 and runs
on port 8265. For example, if you have your Ray head node on Kubernetes using
Traefik for ingress, you could expose the job API with basic authentication as shown
here:
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apiVersion: traefik.containo.us/v1alpha1
kind: Middleware
metadata:
  name: basicauth
  namespace: ray-cluster
spec:
  basicAuth:
    secret: basic-auth
-
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: longhorn-ingress
  namespace: longhorn-system
annotations:
  traefik.ingress.kubernetes.io/router.entrypoints: websecure
  traefik.ingress.kubernetes.io/router.tls.certresolver: le
  traefik.ingress.kubernetes.io/router.tls: "true"
  kubernetes.io/ingress.class: traefik
  traefik.ingress.kubernetes.io/router.middlewares: ba-ray-cluster@kubernetescrd
        spec:
          rules:
            - host: "mymagicendpoints.pigscanfly.ca"
              http:
                paths:
                - pathType: Prefix
                  path: "/"
                  backend:
                    service:
                      name: ray-head-svc
                      port:
                        number: 8265

Dependence on restricting endpoint access has the downside that anyone who can
access that computer can submit jobs to your cluster, so it does not work well for
shared compute resources.

Multitenancy on Ray
Out of the box, Ray clusters support multiple running jobs. When all jobs are from
the same user and you are not concerned about isolating jobs, you don’t need to
consider multitenancy implications.

In our opinion, tenant isolation is less developed than other parts of Ray. Ray
achieves per user multitenancy security by binding separate workers to a job,
reducing the chance of accidental information leakage between separate users. As
with Ray’s execution environments, your users can have different Python libraries
installed, but Ray does not isolate system-level libraries (like, for example, CUDA).
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We like to think of tenant isolation in Ray as locks on doors. It’s there to keep honest
people honest and prevent accidental disclosures. However, named resources, such
as named actors, can be called from any other job. This is an intended function
of named actors, but as cloudpickle is used frequently throughout Ray, you should
consider any named actor as having the potential of allowing a malicious actor on the
same cluster to be able to execute arbitrary code in your job.

Named resources break Ray’s tenant isolation.

While Ray does have some support for multitenancy, we instead recommend deploy‐
ing multitenant Kubernetes or Yarn clusters. Multitenancy leads nicely into the next
problem of providing credentials for data sources.

Credentials for Data Sources
Multitenancy complicates credentials for datasources as you cannot fall back on
instance-based roles/profiles. By adding env_vars to your runtime environment, you
can specify credentials across the entirety of your job. Ideally, you should not hard‐
code these credentials in your source code, but instead, fetch them from something
like a Kubernetes secret and propagate the values through:

ray.init(
                runtime_env={
                    "env_vars": {
                        "AWS_ACCESS_KEY_ID": "key",
                        "AWS_SECRET_ACCESS_KEY": "secret",
                    }
                }
            )

You can also use this same technique to assign credentials per function (e.g., if
only one actor should have write permissions) by assigning a runtime environment
with .option. However, in practice, keeping track of the separate credentials can
become a headache.

Permanent Versus Ephemeral Clusters
When deploying Ray, you have to choose between permanent and ephemeral clusters.
With permanent clusters, issues of multitenancy and ensuring that the autoscaler can
scale down (e.g., no hanging resources) are especially important. However, as more
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4 In practice, we recommend supporting only a few versions of Ray, as it is quickly evolving.

enterprises have adopted Kubernetes or other cloud-native technologies, we think
that ephemeral clusters will increase in appeal.

Ephemeral Clusters
Ephemeral clusters have many benefits. Two of the most important are low cost
and not needing multitenant clusters. Ephemeral clusters allow for resources to be
fully released when the computation is finished. You can often avoid multitenancy
issues by provisioning ephemeral clusters, which can reduce the operational burden.
Ephemeral clusters make experimenting with new versions of Ray and new native
libraries comparatively lightweight. This can also serve to prevent the issues that
come with forced migrations, where each team can run its own versions of Ray.4

Ephemeral clusters have some drawbacks you should be aware of when making this
choice. Two of the clearest drawbacks are having to wait for the cluster to start up,
on top of your application start time, and not being able to use cache/persistence on
the cluster. Starting an ephemeral cluster depends on being able to allocate compute
resources, which depending on your environment and budget can take anywhere
from seconds to days (during cloud issues). If your computations depend on a large
amount of state or data, each time your application is started on a new cluster, it starts
by reading back a lot of information, which can be quite slow.

Permanent Clusters
In addition to cost and multitenancy issues, permanent clusters bring additional
drawbacks. Permanent clusters are more likely to accumulate configuration “artifacts”
that can be harder to re-create when it comes time to migrate to a new cluster. These
clusters can become brittle with time as the underlying hardware ages. This is true
even in the cloud, where long-running instances become increasingly likely to expe‐
rience outages. Long-lived resources in permanent clusters may end up containing
information that needs to be purged for regulatory reasons.

Permanent clusters also have important benefits that can be useful. From a develo‐
per’s point of view, one advantage is the ability to have long-lived actors or other
resources. From an operations point of view, permanent clusters do not take the same
spin-up time, so if you find yourself needing to do a new task, you don’t have to
wait for a cluster to become available. Table 12-1 summarizes the differences between
transient and permanent clusters.
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Table 12-1. Transient- and permanent-cluster comparison chart

Transient/ephemeral clusters Permanent clusters
Resource cost Normally lower unless running, unless

workloads could bin-pack or share resources
between users

Higher when resource leaks prevent the
autoscaler from scaling down

Library isolation Flexible (including native) Only venv/Conda env-level isolation

Ability to try new versions
of Ray

Yes, may require code changes for new APIs Higher overhead

Longest actor life Ephemeral (with the cluster) “Permanent” (excluding cluster crashes/
redeploys)

Shared actors No Yes

Time to launch new
application

Potentially long (cloud-dependent) Varies (if the cluster has nearly
instant spare capacity; otherwise, cloud-
dependent)

Data read amortization No (each cluster must read in any shared
datasets)

Possible (if well structured)

The choice between ephemeral and permanent clusters depends on your use cases
and requirements. In some deployments, a mix of ephemeral clusters and permanent
clusters could offer the correct trade-offs.

Monitoring
As the size or number of Ray clusters in your organization grows, monitoring
becomes increasingly important. Ray has built-in metrics reporting through its inter‐
nal dashboard or Prometheus, although Prometheus is disabled by default.

Ray’s internal dashboard is installed when you install ray

[default], but not if you simply install ray.

Ray’s dashboard is excellent when you are working by yourself or debugging a
production issue. If it’s installed, Ray will print an info log message with a link
to the dashboard (e.g., View the Ray dashboard at http://127.0.0.1:8265).
In addition, the ray.init result contains webui_url, which points to the metrics
dashboard. However, Ray’s dashboard does not have the ability to create alerts and
is therefore helpful only when you know something is wrong. Ray’s dashboard UI
is being upgraded in Ray 2; Figure 12-1 shows the old dashboard, and Figure 12-2
shows the new one.
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Figure 12-1. The old (pre-2.0) Ray dashboard

Figure 12-2. The new Ray dashboard

As you can see, the new dashboard did not evolve organically; rather, it was inten‐
tionally designed and contains new information. Both versions of the dashboard
contain information about the executor processes and memory usage. The new
dashboard also has a web UI for looking up objects by ID.
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5 See Ray metrics-1650932823424.json for the configuration.

The dashboard should not be exposed publicly, and the same port
is used for the job API.

Ray metrics can also be exported to Prometheus, and by default, Ray will pick a
random port for this. You can find the port by looking at metrics_export_port
in the result of ray.init, or specify a fixed port when launching Ray’s head node
with --metrics-export-port=. Ray’s integration with Prometheus not only provides
integration with metrics visualization tools, like Grafana (see Figure 12-3), but
importantly adds alerting capabilities when some of the parameters are going outside
predetermined ranges.

Figure 12-3. Sample Grafana dashboard for Ray5

To obtain exported metrics, Prometheus needs to be configured for which hosts or
pods to scrape. For users with a static cluster, this is as simple as providing a host
file, but for dynamic users, you have many options. Kubernetes users can use pod
monitors to configure Prometheus pod scraping. Because a Ray cluster does not have
a unifying label for all nodes, here we are using two pod monitors—one for the head
node and one for workers.

Non-Kubernetes users can use Prometheus file-based discovery to use files that
Ray automatically generates on the head node at /tmp/ray/prom_metrics_service
_discovery.json for this.
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In addition to monitoring Ray itself, you can instrument your code inside Ray. You
can either add your own metrics to Ray’s Prometheus metrics or integrate with
OpenTelemetry. The correct metrics and instrumentation largely depend on what the
rest of your organization uses. Comparing OpenTelemetry and Prometheus is beyond
the scope of this book.

Instrumenting Your Code with Ray Metrics
Ray’s built-in metrics do an excellent job of reporting cluster health, but we often care
about application health. For example, a cluster with low memory usage because all
the jobs are stuck might look good at the cluster level, but what we actually care about
(serving users, training models, etc.) isn’t happening. Thankfully, you can add your
own metrics to Ray to monitor your application usage.

The metrics that you add to Ray metrics are exposed as Prome‐
theus metrics, just like Ray’s built in metrics.

Ray metrics support the counter, gauge, and histogram metrics types inside ray.util
.metrics. These metrics objects are not serializable, as they reference C objects. You
need to explicitly create the metric before you can record any values in it. When
creating a new metric, you can specify a name, description, and tags. A common tag
used is the name of the actor a metric is used inside of, for actor sharding. Since
they are not serializable, you need to either create and use them inside actors, as in
Example 12-1, or use the lazy singleton pattern, as in Example 12-2.

Example 12-1. Using Ray counters inside an actor

# Singleton for reporting a Ray metric

@ray.remote
class MySpecialActor(object):
    def __init__(self, name):
        self.total = 0
        from ray.util.metrics import Counter, Gauge
        self.failed_withdrawls = Counter(
            "failed_withdrawls", description="Number of failed withdrawls.",
            tag_keys=("actor_name",), # Useful if you end up sharding actors
        )
        self.failed_withdrawls.set_default_tags({"actor_name": name})
        self.total_guage = Gauge(
            "money",
            description="How much money we have in total. Goes up and down.",
            tag_keys=("actor_name",), # Useful if you end up sharding actors
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        )
        self.total_guage.set_default_tags({"actor_name": name})
        self.accounts = {}

    def deposit(self, account, amount):
        if account not in self.accounts:
            self.accounts[account] = 0
        self.accounts[account] += amount
        self.total += amount
        self.total_guage.set(self.total)
        
    def withdrawl(self, account, amount):
        if account not in self.accounts:
            self.failed_withdrawls.inc()
            raise Exception("No account")
        if self.accounts[account] < amount:
            self.failed_withdrawls.inc()
            raise Exception("Not enough money")
        self.accounts[account] -= amount
        self.total -= amount
        self.total_guage.set(self.total)

Example 12-2. Using the global singleton hack to use Ray counters with remote functions

# Singleton for reporting a Ray metric

class FailureCounter(object):
    _instance = None

    def __new__(cls):
        if cls._instance is None:
            print('Creating the object')
            cls._instance = super(FailureCounter, cls).__new__(cls)
            from ray.util.metrics import Counter
            cls._instance.counter = Counter(
                "failure",
                description="Number of failures (goes up only).")
        return cls._instance

# This will fail with every zero because divide by zero
@ray.remote
def remote_fun(x):
    try:
        return 10 / x
    except:
        FailureCounter().counter.inc()
        return None
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6 Special thanks to Michael Behrendt for suggesting the implementation approach discussed in this section.
7 This will work only for the cloud installations where Ray nodes are using Ray installation on the VM. Refer to

Appendix B to see how to do this on IBM Cloud and AWS.

OpenTelemetry is available across many languages, including Python. Ray has a
basic open-telemetry implementation, but it is not used as widely as its Prometheus
plug-in.

Wrapping Custom Programs with Ray
One of the powerful features of Python is the ability to launch child processes using
the subprocess module.6 These processes can be any shell command or any applica‐
tion on your system. This capability allows for a lot of interesting options within Ray
implementations. One of the options, which we will show here, is the ability to run
any custom Docker image as part of Ray execution.7 Example 12-3 demonstrates how
this can be done.

Example 12-3. Executing a Docker image inside a Ray remote function

ray.init(address='ray://<your IP>:10001')

@ray.remote(num_cpus=6)
def runDocker(cmd):
   with open("result.txt", "w") as output:
       result = subprocess.run(
           cmd,
           shell=True,  # Pass single string to shell, let it handle.
           stdout=output,
           stderr=output
       )

   print(f"return code {result.returncode}")
   with open("result.txt", "r") as output:
       log = output.read()
   return log

cmd='docker run --rm busybox echo "Hello world"'

result=runDocker.remote(cmd)
print(f"result: {ray.get(result)}")

This code contains a simple remote function that executes an external command and
returns the execution result. The main function passes to it a simple docker run
command and then prints the invocation result.
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This approach allows you to execute any existing Docker image as part of Ray
remote function execution, which in turn allows polyglot Ray implementations or
even executing Python with specific library requirements needing to create a virtual
environment for this remote function run. It also allows for easy inclusion of prebuilt
images in the Ray execution.

Running Docker images is just one of the useful applications of using subprocess
inside Ray. In general, any application installed on the Ray node can be invoked using
this approach.

Conclusion
Although Ray was initially created in a research lab, you can start bringing Ray to the
mainstream enterprise computing infrastructure with the implementation enchance‐
ments described here. Specifically, be sure to do the following:

• Carefully evaluate the security and multitenancy issues that this can create.•
• Be mindful of integration with CI/CD and observability tools.•
• Decide whether you need permanent or ephemeral Ray clusters.•

These considerations will change based on your enterprise environment and specific
use cases for Ray.

At this point in the book, you should have a solid grasp of all of the Ray basics
as well as pointers on where to go next. We certainly hope to see you in the Ray
community and encourage you to check out the community resources, including
Ray’s Slack channel. If you want to see one of the ways you can put the pieces of Ray
together, Appendix A explores how to build a backend for an open source satellite
communication system.
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1 Holden Karau is the managing partner of Pigs Can Fly Labs, and while she really hopes you will buy the
off-the-grid messaging device, she realizes the intersection of people reading programming books and people
needing low-cost open source satellite email messaging is pretty small. Also, in practice, Garmin inReach
Mini2 or Apple are probably better for many consumer use cases.

2 In Akka on Kubernetes, the user is responsible for scheduling the actors on separate containers manually and
restarting actors, whereas Ray can handle this for us.

APPENDIX A

Space Beaver Case Study:
Actors, Kubernetes, and More

The Space Beaver project (from Pigs Can Fly Labs) uses satellite service from Swarm
and Simple Mail Transfer Protocol (SMTP) to provide what is politely called value-
conscious (aka cheap) off-grid messaging.1 The initial draft of Space Beaver’s core
architecture was built using Scala and Akka, but then we switched to using Ray. By
using Ray with Python instead of Akka with Scala, we were able to reuse the object
relational mapping (ORM) from the website and simplify the deployment.

While it is possible to deploy Akka applications on Kubernetes, it is (in Holden’s
opinion) substantially more complicated than accomplishing the same task with
Ray.2 In this appendix, we will walk through the general design of the Space Beaver
backend, the code for the various actors, and show how to deploy it (and similar
applications).

The code for this case study can be found in the Pigs Can Fly Labs
GitHub repo.
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High-Level Design
Space Beaver’s core requirement is to serve as a bridge between email (through
SMTP), SMS (through Twilio), and the Swarm satellite APIs. Most of these involve
some amount of state, such as running an SMTP server, but the outbound mail
messages can be implemented without any state. Figure A-1 shows a rough outline of
the design.

Figure A-1. Actor layout

Implementation
Now that you’ve seen a rough design, it’s time to explore how the patterns you’ve
learned throughout the book are applied to bring this all together.

Outbound Mail Client
The outbound mail client is the one stateless piece of code, since it establishes a
connection for each outbound message. Since it’s stateless, we implemented this as a
regular remote function, which is created for every incoming request. Ray can then
scale up or down as needed, depending on the amount of incoming requests. Being
able to scale the number of instances of the remote function containing the email
client is useful since the client may end up blocking on external hosts.

Scheduling each remote function invocation requires some over‐
head. In our case, the expected message rate is not that high. If
you have a good idea of the desired concurrency, you should con‐
sider using Ray’s multiprocessing.Pool to avoid function creation
overhead.

206 | Appendix A: Space Beaver Case Study: Actors, Kubernetes, and More



However, we want to serialize some settings, like in a settings class, so we wrap the
outbound mail client function with a special method to pass through a self-reference,
despite not being an actor, as shown in Example A-1.

Example A-1. Mail client

class MailClient(object):
    """
    Mail Client
    """

    def __init__(self, settings: Settings):
        self.settings = settings

    def send_message(self, *args, **kwargs):
        """
        Wrap send_msg to include settings.
        """
        return self.send_msg.remote(self, *args, **kwargs)

    @ray.remote(retry_exceptions=True)
    def send_msg(self, msg_from: str, msg_to: str, data: str):
        message = MIMEMultipart("alternative")
        message["From"] = msg_from
        message["To"] = msg_to
        message["Subject"] = f"A satelite msg: f{data[0:20]}"
        part1 = MIMEText(data, "plain")
        # Possible later: HTML
        message.attach(part1)

        with SMTP(self.settings.mail_server, port=self.settings.mail_port) as smtp:
            if self.settings.mail_username is not None:
                smtp.login(self.settings.mail_username,
                           self.settings.mail_password)
            logging.info(f"Sending message {message}")
            r = smtp.sendmail(
                msg=str(message),
                from_addr=msg_from,
                to_addrs=msg_to)
            return r

Another reasonable approach would be to make this stateful and maintain a connec‐
tion across messages.

Shared Actor Patterns and Utilities
The remaining components of our system are stateful, either in the context of
long-lived network connections or database connections. Since the user actor needs
to talk to all the other actors (and vice versa), to simplify discovering the other

Space Beaver Case Study: Actors, Kubernetes, and More | 207

https://oreil.ly/9zM1N


3 An alternate solution is to have the main or launching program call the actors with the references as they are
created.

actors running in the system, we added a LazyNamedActorPool, which combines the
concept of named actors along with actor pools (Example A-2).3

Example A-2. Lazy named actor pool

class LazyNamedPool:
    """
    Lazily constructed pool by name.
    """

    def __init__(self, name, size, min_size=1):
        self._actors = []
        self.name = name
        self.size = size
        self.min_actors = min_size

    def _get_actor(self, idx):
        actor_name = f"{self.name}_{idx}"
        try:
            return [ray.get_actor(actor_name)]
        except Exception as e:
            print(f"Failed to fetch {actor_name}: {e} ({type(e)})")
            return []

    def _get_actors(self):
        """
        Get actors by name, caches result once we have the "full" set.
        """
        if len(self._actors) < self.size:
            return list(flat_map(self._get_actor, range(0, self.size)))

    def get_pool(self):
        new_actors = self._get_actors()
        # Wait for at least min_actors to show up
        c = 0
        while len(new_actors) < self.min_actors and c < 10:
            print(f"Have {new_actors} waiting for {self.min_actors}")
            time.sleep(2)
            new_actors = self._get_actors()
            c = c + 1
        # If we got more actors
        if (len(new_actors) > len(self._actors)):
            self._actors = new_actors
            self._pool = ActorPool(new_actors)
        if len(new_actors) < self.min_actors:
            raise Exception("Could not find enough actors to launch pool.")
        return self._pool
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The other shared pattern we use is graceful shutdown, where we ask the actors to
stop processing new messages. Once the actors stop accepting new messages, the
existing messages in the queue will drain out—either to the satellite network or
SMTP network as needed. Then the actors can be deleted without having to persist
and recover the messages the actor was processing. In the mail server, which we will
look at next, this pattern is implemented as shown in Example A-3.

Example A-3. Stop for upgrade

    async def prepare_for_shutdown(self):
        """
        Prepare for shutdown, so stop remove pod label (if present) 
        then stop accepting connections.
        """
        if self.label is not None:
            try:
                self.update_label(opp="remove")
                await asyncio.sleep(120)
            except Exception:
                pass
        self.server.stop()

Mail Server Actor
The mail server actor is responsible for accepting new inbound messages and passing
them along to the user actor. This is implemented as an aiosmtpd server handler, as
shown in Example A-4.

Example A-4. Mail server message handling

    async def handle_RCPT(self, server, session, envelope, address, rcpt_options):
        """
        Call back for RCPT. This only accepts email for us, no relaying.
        """
        logging.info(f"RCPT to with {address} received.")
        if not address.endswith(f"@{self.domain}"):
            self.emails_rejected.inc()
            return '550 not relaying to that domain'
        # Do we really want to support multiple emails? idk.
        envelope.rcpt_tos.append(address)
        return '250 OK'

    async def handle_DATA(self, server, session, envelope):
        """
        Call back for the message data.
        """
        logging.info(f"Received message {envelope}")
        print('Message for %s' % envelope.rcpt_tos)
        parsed_email = message_from_bytes(envelope.content, policy=policy.SMTPUTF8)
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        text = ""
        if "subject" in parsed_email:
            subject = parsed_email["subject"]
            text = f"{subject}\n"
        body = None
        # You would think "get_body" would give us the body but...maybe not? ugh
        try:
            body = (parsed_email.get_body(preferencelist=('plain', 'html',)).
                    get_content())
        except Exception:
            if parsed_email.is_multipart():
                for part in parsed_email.walk():
                    ctype = part.get_content_type()
                    cdispo = str(part.get('Content-Disposition'))

                    # skip any text/plain (txt) attachments
                    if ctype == 'text/plain' and 'attachment' not in cdispo:
                        body = part.get_payload(decode=True)  # decode
                        break
                    # not multipart - i.e. plain text, no attachments, 
                    # keeping fingers crossed
            else:
                body = parsed_email.get_payload(decode=True)
        text = f"{text}{body}"
        text = text.replace("\r\n", "\n").rstrip("\n")
        self.emails_forwaded.inc()
        for rcpt in envelope.rcpt_tos:
            message = CombinedMessage(
                text=text,
                to=parseaddr(rcpt)[1].split('@')[0],
                msg_from=envelope.mail_from,
                from_device=False,
                protocol=EMAIL_PROTOCOL)
            self.user_pool.get_pool().submit(
                lambda actor, message: actor.handle_message.remote(message),
                message)
        return '250 Message accepted for delivery'

An important part of having a mail server is that external users can make connections
to the server. For HTTP services, like the inference server, you can use Ray Serve
to expose your service. However, the mail server uses SMTP, which cannot currently
be exposed with Ray Serve. So, to allow Kubernetes to route requests to the correct
hosts, the mail actor tags itself as shown in Example A-5.

Example A-5. Mail server Kubernetes labeling

    def update_label(self, opp="add"):
        label = self.label
        patch_json = (
            "[{" +
            f""" "op": "{opp}", "path": "/metadata/labels/{label}", """ + 
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            f""" "value": "present" """ +
            "}]")
        print(f"Preparing to patch with {patch_json}")
        try:
            kube_host = os.getenv("KUBERNETES_SERVICE_HOST")
            kube_port = os.getenv("KUBERNETES_PORT_443_TCP_PORT", "443")
            pod_namespace = os.getenv("POD_NAMESPACE")
            pod_name = os.getenv("POD_NAME")
            url = f"http://{kube_host}:{kube_port}/api/v1/namespace/" + 
                  f"{pod_namespace}/pods/{pod_name}"
            headers = {"Content-Type": "application/json-patch+json"}
            print(f"Patching with url {url}")
            result = requests.post(url, data=patch_json, headers=headers)
            logging.info(f"Got back {result} updating header.")
            print(f"Got patch result {result}")
            if result.status_code != 200:
                raise Exception(f"Got back a bad status code {result.status_code}")
        except Exception as e:
            print(f"Got an error trying to patch with https API {e}")
            patch_cmd = [
                "kubectl",
                "patch",
                "pod",
                "-n",
                pod_namespace,
                pod_name,
                "--type=json",
                f"-p={patch_json}"]
            print("Running cmd:")
            print(" ".join(patch_cmd))
            out = subprocess.check_output(patch_cmd)
            print(f"Got {out} from patching pod.")
        print("Pod patched?")

Satellite Actor
The satellite actor is similar to the mail server actor, except instead of accepting
inbound requests, it gets new messages by polling, and we also send messages
through it. Polling is like driving with a six-year-old in the car who keeps asking, “Are
we there yet?” Except in our case, the question is “Do you have any new messages?”
In Ray, async actors are the best option to implement polling, as the polling loop runs
forever, but you still want to be able to process other messages. Example A-6 shows
the satellite actors’ polling implementation.

Example A-6. Satellite actor polling

    async def run(self):
        print("Prepairing to run.")
        internal_retries = 0
        self.running = True
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        while self.running:
            try:
                self._login()
                while True:
                    await asyncio.sleep(self.delay)
                    await self.check_msgs()
                    internal_retries = 0  # On success reset retry counter.
            except Exception as e:
                print(f"Error {e} while checking messages.")
                logging.error(f"Error {e}, retrying")
                internal_retries = internal_retries + 1
                if (internal_retries > self.max_internal_retries):
                    raise e

This polling loop delegates most of the logic to check_msgs, as shown in
Example A-7.

Example A-7. Satellite check for messages

    async def check_msgs(self):
        print("Checking messages...")
        res = self.session.get(
            self._getMessageURL,
            headers=self.hdrs,
            params={'count': self._page_request_size, 'status': 0})
        messages = res.json()
        for item in messages:
            # Is this a message we are responsible for
            if int(item["messageId"]) % self.poolsize == self.idx:
                try:
                    await self._process_mesage(item)
                except Exception as e:
                    logging.error(f"Error {e} processing {item}")
                self.session.post(
                    self._ackMessageURL.format(item['packetId']),
                    headers=self.hdrs)
        print("Done!")

Another interesting pattern we used in the satellite actor is to expose serializable
results for testing, but keep the data in the more efficient async representation in the
normal flow. This pattern is shown in the way messages are decoded in Example A-8.

Example A-8. Satellite process message

    async def _decode_message(self, item: dict) -> AsyncIterator[CombinedMessage]:
        """
        Decode a message. Note: result is not serializable.
        """
        raw_msg_data = item["data"]
        logging.info(f"msg: {raw_msg_data}")
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        messagedata = MessageDataPB()  # noqa
        bin_data = base64.b64decode(raw_msg_data)
        # Note: this really does no validation, so if it gets a message instead
        # of MessageDataPb it just gives back nothing
        messagedata.ParseFromString(bin_data)
        logging.info(f"Formatted: {text_format.MessageToString(messagedata)}")
        if (len(messagedata.message) < 1):
            logging.warn(f"Received {raw_msg_data} with no messages?")
        for message in messagedata.message:
            yield CombinedMessage(
                text=message.text, to=message.to, protocol=message.protocol,
                msg_from=item["deviceId"], from_device=True
            )

    async def _ser_decode_message(self, item: dict) -> List[CombinedMessage]:
        """
        Decode a message. Serializeable but blocking. Exposed for testing.
        """
        gen = self._decode_message(item)
        # See PEP-0530
        return [i async for i in gen]

    async def _process_message(self, item: dict):
        messages = self._decode_message(item)
        async for message in messages:
            self.user_pool.get_pool().submit(
                lambda actor, msg: actor.handle_message.remote(msg),
                message)

User Actor
While the other actors are all async, allowing parallelism within the actor, the user
actors are synchronous since the ORM does not yet handle async execution. The user
actor code is shown relatively completely in Example A-9, so you can see the shared
patterns (which were used in the other actors but skipped for brevity).

Example A-9. User actor

class UserActorBase():
    """
    Base client class for talking to the swarm.space APIs.
    Note: this actor is not async because Django's ORM is not happy with
    async.
    """

    def __init__(self, settings: Settings, idx: int, poolsize: int):
        print(f"Running on {platform.machine()}")
        self.settings = settings
        self.idx = idx
        self.poolsize = poolsize
        self.satellite_pool = utils.LazyNamedPool("satellite", poolsize)
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        self.outbound_sms = utils.LazyNamedPool("sms", poolsize)
        self.mail_client = MailClient(self.settings)
        self.messages_forwarded = Counter(
            "messages_forwarded",
            description="Messages forwarded",
            tag_keys=("idx",),
        )
        self.messages_forwarded.set_default_tags(
            {"idx": str(idx)})
        self.messages_rejected = Counter(
            "messages_rejected",
            description="Rejected messages",
            tag_keys=("idx",),
        )
        self.messages_rejected.set_default_tags(
            {"idx": str(idx)})
        print(f"Starting user actor {idx}")

    def _fetch_user(self, msg: CombinedMessage) -> User:
        """
        Find the user associated with the message.
        """
        if (msg.from_device):
            device = Device.objects.get(serial_number=msg.msg_from)
            return device.user
        elif (msg.protocol == EMAIL_PROTOCOL):
            username = msg.to
            print(f"Fetching user {msg.to}")
            try:
                return User.objects.get(username=username)
            except Exception as e:
                print(f"Failed to get user: {username}?")
                raise e
        elif (msg.protocol == SMS_PROTOCOL):
            print(f"Looking up user for phone {msg.to}")
            try:
                return User.objects.get(twillion_number=str(msg.to))
            except Exception as e:
                print(f"Failed to get user: {username}?")
                raise e
        else:
            raise Exception(f"Unhandled protocol? - {msg.protocol}")

    def prepare_for_shutdown(self):
        """
        Prepare for shutdown (not needed for sync DB connection)
        """
        pass

    def handle_message(self, input_msg: CombinedMessage):
        """
        Handle messages.
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        """
        print(f"Handling message {input_msg}")
        user = self._fetch_user(input_msg)
        self.messages_forwarded.inc()
        if (input_msg.from_device):
            msg = {
                "data": input_msg.text,
                "msg_from": f"{user.username}@spacebeaver.com",
                "msg_to": input_msg.to
            }
            # Underneath this calls a ray.remote method.
            self.mail_client.send_message(**msg)
        else:
            msg = {
                "protocol": input_msg.protocol,
                "msg_from": input_msg.msg_from,
                "msg_to": user.device.serial_number,
                "data": input_msg.text
            }
            self.satellite_pool.get_pool().submit(
                lambda actor, msg: actor.send_message.remote(**msg),
                msg)

@ray.remote(max_restarts=-1)
class UserActor(UserActorBase):
    """
    Routes messages and checks the user account info.
    """

Django is a popular Python web development framework that
includes many components, including the ORM we are using.

SMS Actor and Serve Implementation
In addition to the actors for satellite and email gateways, Space Beaver also uses Ray
Serve to expose phone-api, as shown in Example A-10.

Example A-10. Using Ray Serve to handle inbound SMS

from messaging.utils import utils
from pydantic import BaseModel, Field
from fastapi import FastAPI, HTTPException, Request
from ray import serve
from messaging.settings.settings import Settings
from messaging.proto.MessageDataPB_pb2 import SMS as SMS_PROTOCOL
from messaging.internal_types import CombinedMessage

Space Beaver Case Study: Actors, Kubernetes, and More | 215

https://oreil.ly/BkdmL


from typing import Optional
from twilio.request_validator import RequestValidator

# 1: Define a FastAPI app and wrap it in a deployment with a route handler.
app = FastAPI()

class InboundMessage(BaseModel):
    x_twilio_signature: str
    message_from: str = Field(None, alias='from')
    to: str
    body: str
    msg_type: Optional[str] = Field(None, alias="type")

@serve.deployment(num_replicas=3, route_prefix="/")
@serve.ingress(app)
class PhoneWeb:
    def __init__(self, settings: Settings, poolsize: int):
        self.settings = settings
        self.poolsize = poolsize
        self.user_pool = utils.LazyNamedPool("user", poolsize)
        self.validator = RequestValidator(settings.TW_AUTH_TOKEN)

    # FastAPI will automatically parse the HTTP request for us.
    @app.get("/sms")
    async def inbound_message(self, request: Request, 
    message: InboundMessage) -> str:
        # Validate the message
        request_valid = self.validator.validate(
            request.url,
            request.form,
            request.headers.get('X-TWILIO-SIGNATURE', ''))
        if request_valid:
            internal_message = CombinedMessage(
                text=message.body, to=message.to, protocol=SMS_PROTOCOL,
                msg_from=message.message_from, from_device=False
            )
            self.user_pool.get_pool().submit(
                lambda actor, msg: actor.handle_message.remote(msg), 
                internal_message)
            return ""
        else:
            raise HTTPException(status_code=403, detail="Validation failed.")

Testing
To facilitate testing, the actor code was broken into a base class and then extended
into an actor class. This allowed for testing the mail server independently from its
deployment on Ray, as shown in Example A-11.
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Example A-11. Standalone mail test

class StandaloneMailServerActorTests(unittest.TestCase):
    port = 7779 + 100 * random.randint(0, 9)

    def setUp(self):
        self.port = self.port + 1
        self.actor = mailserver_actor.MailServerActorBase(
            idx=1, poolsize=1, port=self.port, hostname="0.0.0.0",
            label=None)
        self.actor.user_pool = test_utils.FakeLazyNamedPool("u", 1)
        self.pool = self.actor.user_pool.get_pool()

    def tearDown(self):
        self.actor.server.stop()
        self.server = None

    def test_constructor_makes_server(self):
        self.assertEquals(self.actor.server.hostname, "0.0.0.0")

    def test_extract_body_and_connect(self):
        client = Client("localhost", self.port)
        msg_text = "Hi Boop, this is timbit."
        client.sendmail("c@gull.com", "boop@spacebeaver.com",
                        msg_text)
        self.assertEquals(self.pool.submitted[0][1].text, msg_text)
        self.assertEquals(self.pool.submitted[0][1].protocol, EMAIL_PROTOCOL)
        self.assertEquals(self.pool.submitted[0][1].from_device, False)

While these standalone tests can run with less overhead, it’s a good idea to have some
full-actor tests. You can often speed them up by reusing the Ray context across tests
(although when it goes wrong, the debugging is painful), as in Example A-12.

Example A-12. Full-actor test

@ray.remote
class MailServerActorForTesting(mailserver_actor.MailServerActorBase):
    def __init__(self, idx, poolsize, port, hostname):
        mailserver_actor.MailServerActorBase.__init__(self, idx, poolsize, 
                                                      port, hostname)
        self.user_pool = test_utils.FakeLazyNamedPool("user", 1)

class MailServerActorTestCases(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        ray.init()

    @classmethod
    def tearDownClass(cls):
        ray.shutdown()
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    def test_mail_server_actor_construct(self):
        mailserver_actor.MailServerActor.remote(0, 1, 7587, "localhost")

Deployment
While Ray handles most of the deployment, we need to create a Kubernetes service
to make our SMTP and SMS services reachable. On our test cluster, we do this by
exposing a load balancer service, as shown in Example A-13.

Example A-13. SMTP and SMS services

apiVersion: v1
kind: Service
metadata:
  name: message-backend-svc
  namespace: spacebeaver
spec:
  selector:
    mail_ingress: present
  ports:
    - name: smtp
      protocol: TCP
      port: 25
      targetPort: 7420
  type: LoadBalancer
  loadBalancerIP: 23.177.16.210
  sessionAffinity: None
---
apiVersion: v1
kind: Service
metadata:
  name: phone-api-svc
  namespace: spacebeaver
spec:
  selector:
    ray-cluster-name: spacebeaver
  ports:
    - name: http
      protocol: TCP
      port: 80
      targetPort: 8000
  type: LoadBalancer
  sessionAffinity: None
---
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: spacebeaver-phone-api-ingress
  namespace: spacebeaver
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  annotations:
    cert-manager.io/cluster-issuer: letsencrypt
    cert-manager.io/issue-temporary-certificate: "true"
    acme.cert-manager.io/http01-edit-in-place: "true"
spec:
  ingressClassName: nginx
  tls:
  - hosts:
      - phone-api.spacebeaver.com
    secretName: phone-api-tls-secret
  rules:
    - host: "phone-api.spacebeaver.com"
      http:
        paths:
        - pathType: Prefix
          path: "/"
          backend:
            service:
              name: phone-api-svc
              port:
                number: 80

As shown, the SMTP and SMS services use different node selectors to route the
requests to the correct pods.

Conclusion
The Ray port of the Space Beaver messaging backend substantially reduces deploy‐
ment and packaging complexity while increasing code reuse. Some of this comes
from the broad Python ecosystem (popular frontend tools and backend tools), but
much of the rest comes from Ray’s serverless nature. The equivalent system in Akka
requires user intention around scheduling actors, whereas with Ray, we can leave that
up to the scheduler. Of course, Akka carries many benefits, like the powerful JVM
ecosystem, but hopefully, this case study has shown you some interesting ways you
can use Ray.
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APPENDIX B

Installing and Deploying Ray

The power of Ray is in its support for various deployment models, ranging from a
single-node deployment—allowing you to experiment with Ray locally—to clusters
containing thousands of machines. The same code developed on the local Ray instal‐
lation can run on the entire spectrum of Ray’s installations. In this appendix, we will
show some of the installation options that we evaluated while writing this book.

Installing Ray Locally
The simplest Ray installation is done locally with pip. Use the following command:

pip install -U ray

This command installs all the code required to run local Ray programs or launch
programs on a Ray cluster (see “Using Ray Clusters” on page 222). The command
installs the latest official release. In addition, it is possible to install Ray from daily
releases or a specific commit. It is also possible to install Ray inside the Conda
environment. Finally, you can build Ray from the source by following the instructions
in the Ray documentation.

Using Ray Docker Images
In addition to natively installing on your local machine, Ray provides an option for
running the provided Docker image. The Ray project provides a wealth of Docker
images built for various versions of Python and hardware options. These images can
be used to execute Ray’s code by starting a corresponding Ray image:

docker run --rm --shm-size=<shm-size> -t -i <image name>
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1 In the interest of transparency: Boris currently works at IBM, and Holden used to work at IBM. Holden has
also worked for Google, Microsoft, and Amazon.

2 See the “Boto3 Docs 1.24.95” documentation for information on setting up Boto3 configuration.

Here <shm-size> is the memory that Ray uses internally for its object store. A good
estimate for this value is to use roughly 30% of your available memory; <image name>
is the name of the image used.

Once this command is executed, you will get back a command-line prompt and can
enter any Ray code.

Using Ray Clusters
Although a local Ray installation is extremely useful for experimenting and initial
debugging, the real power of Ray is its ability to run and scale on clusters of
machines.

Ray cluster nodes are logical nodes based on Docker images. Docker images provided
by the Ray project contain all the code required for running logical nodes, but not
necessarily all the code required to run user applications. The issue here is that the
user’s code might need specific Python libraries, which are not part of Ray’s Docker
images.

To overcome this problem, Ray allows the installation of specific libraries to the
nodes as part of the cluster installation, which is great for initial testing but can signif‐
icantly impact the node’s creation performance. As a result, in production installs, it
is typically recommended to use custom images derived from Ray-provided ones and
add required libraries.

Ray provides two main options for installation: installation directly on the hardware
nodes or cloud provider’s VMs and installation on Kubernetes. Here we will discuss
Ray’s installation on cloud providers and Kubernetes. For information on Ray’s instal‐
lation on hardware nodes, refer to the Ray documentation.

The official documentation describes Ray’s installation on several cloud providers,
including AWS, Azure, Google Cloud, Alibaba, and custom clouds. Here we will
discuss installation on AWS (as it is the most popular) and IBM Cloud (as one of the
coauthors works at IBM, which takes a unique approach).1

Installing Ray on AWS
AWS cloud installation leverages the Boto3 AWS SDK for Python and requires
configuring your AWS credentials in the ~/.aws/credentials file.2
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Once the credentials are created and Boto3 is installed, you can use the ray-aws.yaml
file, which was adapted from the Ray GitHub repository, to install Ray on AWS via
the following command:

ray up <your location>/ray-aws.yaml

This command creates the cluster. It also provides a set of useful commands that you
can use:

Monitor autoscaling with
    ray exec ~/Projects/Platform-Infrastructure/middleware\
    /ray/install/ray-aws.yaml\
    'tail -n 100 -f /tmp/ray/session_latest/logs/monitor*'
Connect to a terminal on the cluster head:
    ray attach ~/Projects/Platform-Infrastructure/middleware\
    /ray/install/ray-aws.yaml
Get a remote shell to the cluster manually:
    ssh -o IdentitiesOnly=yes\
    -i /Users/boris/Downloads/id.rsa.ray-boris root@52.118.80.225

Note that the IP addresses that you’ll see will be different from those shown here.
When the cluster is created, it uses a firewall that allows only a Secure Shell (SSH)
connection to the cluster. If you want to access the cluster’s dashboard, you need to
open port 8265, and for gRPC access, use port 10001. To do this, find your node in
the Amazon Elastic Compute Cloud (EC2) dashboard, click the Security tab, choose
the security group, and modify the inbound rules. Figure B-1 shows a new rule
allowing any instance port access from anywhere. For more information on inbound
rule configuration, refer to the AWS documentation.

Figure B-1. Instances view in the AWS console

As requested by your YAML file, you can see only a head, and the worker nodes will
be created to satisfy the execution requirements of submitted jobs. To verify that the
cluster is running correctly, you can use the code in localPython.py on GitHub, which
verifies that it can connect to the cluster and its nodes.
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An alternative approach to using Docker images for installation is installing Ray
directly on a VM. The advantage of this approach is the ability to easily add addi‐
tional software to the VM, which can be useful in real life. An obvious use case
is managing Python libraries. You can do this with Docker-based installation, but
you will then need to build Docker images for each library configuration. In the
VM-based approach, there is no need to create and manage Docker images; just do
appropriate pip installs. Additionally, you can install applications on VMs to leverage
them in the Ray execution (see “Wrapping Custom Programs with Ray” on page 203).

Installing Ray on a VM requires a lot of setup commands, and as
a result, it can take a significant amount of time for the Ray node
to start. A recommended approach is to start the Ray cluster once,
create a new image, and then use this image and remove additional
setup commands.

Installing Ray on IBM Cloud
IBM Cloud installation is based on the Gen2 connector that enables the Ray cluster
to be deployed on IBM’s Gen2 cloud infrastructure. As with Ray on AWS, you’ll start
with creating the cluster specification in a YAML file. You can use Lithopscloud to
do this interactively if you don’t want to manually create the YAML file. You install
Lithopscloud with pip as normal:

pip3 install lithopscloud

To use Lithopscloud, you first need to either create an API key or reuse the existing
one. With your API key, you can run lithopscloud -o cluster.yaml to generate a
cluster.yaml file. Once you start Lithopscloud, follow the questions to generate a file
(you’ll need to use the up and down arrows to make your selections). You can find an
example of the generated file on GitHub.

The limitation of the autogenerated file is that it uses the same image type for
both head and worker nodes, which is not always ideal. You often may want to
provide different types for these nodes. To do this, you can modify the autogenerated
cluster.yaml file as follows:

available_node_types:
 ray_head_default:
   max_workers: 0
   min_workers: 0
   node_config:
     boot_volume_capacity: 100
     image_id: r006-dd164da8-c4d9-46ba-87c4-03c614f0532c
     instance_profile_name: bx2-4x16
     key_id: r006-d6d823da-5c41-4e92-a6b6-6e98dcc90c8e
     resource_group_id: 5f6b028dc4ef41b9b8189bbfb90f2a79
     security_group_id: r006-c8e44f9c-7159-4041-a7ab-cf63cdb0dca7
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     subnet_id: 0737-213b5b33-cee3-41d0-8d25-95aef8e86470
     volume_tier_name: general-purpose
     vpc_id: r006-50485f78-a76f-4401-a742-ce0a748b46f9
   resources:
     CPU: 4
 ray_worker_default:
   max_workers: 10
   min_workers: 0
   node_config:
     boot_volume_capacity: 100
     image_id: r006-dd164da8-c4d9-46ba-87c4-03c614f0532c
     instance_profile_name: bx2-8x32
     key_id: r006-d6d823da-5c41-4e92-a6b6-6e98dcc90c8e
     resource_group_id: 5f6b028dc4ef41b9b8189bbfb90f2a79
     security_group_id: r006-c8e44f9c-7159-4041-a7ab-cf63cdb0dca7
     subnet_id: 0737-213b5b33-cee3-41d0-8d25-95aef8e86470
     volume_tier_name: general-purpose
     vpc_id: r006-50485f78-a76f-4401-a742-ce0a748b46f9
   resources:
     CPU: 8

Here you define two types of nodes: the default head node and default worker node
(you can define multiple worker node types with a max number of workers per time).
Therefore, you can now have a relatively small head node (running all the time) and
much larger worker nodes that will be created just in time.

If you take a look at the generated YAML file, you will notice that
it has a lot of setup commands, and as a result, it can take a signif‐
icant amount of time for the Ray node to start. A recommended
approach is to start the Ray cluster once, create a new image, and
then use this image and remove the setup commands.

Once the YAML file is generated, you can install Gen2-connector to be able to use
it. Run pip3 install gen2-connector. You can then create your cluster by running
ray up cluster.yaml.

Similar to installing Ray on AWS, this installation displays a list of useful commands:

Monitor autoscaling with
    ray exec /Users/boris/Downloads/cluster.yaml \
    'tail -n 100 -f /tmp/ray/session_latest/logs/monitor*'
Connect to a terminal on the cluster head:
    ray attach ~/Downloads/cluster.yaml
Get a remote shell to the cluster manually:
    ssh -o IdentitiesOnly=yes -i ~/Downloads/id.rsa.ray-boris root@52.118.80.225

To be able to access the cluster, be sure to open the required ports following IBM
Cloud documentation (Figure B-2).
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Figure B-2. IBM Cloud console displaying firewall rules

As requested by your YAML file, you can see only a head; the worker nodes will be
created to satisfy the execution requirements of submitted jobs. To verify that the
cluster is running correctly, execute the localPython.py script.

Installing Ray on Kubernetes
When it comes to the actual cluster’s installation on Kubernetes, Ray provides two
basic mechanisms:

Cluster launcher
Similar to installation using VMs, this makes it simple to deploy a Ray cluster on
any cloud. It will provision a new instance or machine using the cloud provider’s
SDK, execute shell commands to set up Ray with the provided options, and
initialize the cluster.

Ray Kubernetes operator
This facilitates deploying Ray on an existing Kubernetes cluster. The operator
defines a custom resource called a RayCluster, which describes the desired state
of the Ray cluster, and a custom controller, the Ray Operator, which processes
RayCluster resources and manages the Ray cluster.
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When you install Ray on a Kubernetes cluster by using both the
cluster launcher and operator, Ray uses Kubernetes capabilities to
create a new Ray node in the form of Kubernetes pod. Although
the Ray autoscaler works the same way, it effectively “steals”
resources from the Kubernetes cluster. Therefore, your Kubernetes
cluster has to either be large enough to support all of Ray’s resource
requirements or provide its own autoscaling mechanism. In addi‐
tion, because Ray’s nodes are in this case implemented as underly‐
ing Kubernetes pods, the Kubernetes resource manager can delete
these pods at any time to obtain additional resources.

Installing Ray on a kind Cluster
To demonstrate both approaches, let’s start by installing and accessing the Ray cluster
on a kind (Kubernetes in Docker) cluster. This popular tool runs local Kubernetes
clusters by using Docker container “nodes” and is often used for local development.
To do this, you need to create a cluster first by running the following command:

kind create cluster

This creates a cluster with a default configuration. To modify the configuration, refer
to the configuration documentation. Once the cluster is up and running, you can use
either ray up or the Kubernetes operator to create a Ray cluster.

Using ray up
To create a Ray cluster by using ray up, you must specify the resource requirements
in a YAML file, such as raycluster.yaml, which was adapted from the Ray Kubernetes
autoscaler defaults in the Ray GitHub repository. This file contains all the informa‐
tion required to create the Ray cluster:

• General information about the cluster name and autoscaling parameters.•
• Information about the cluster provider (Kubernetes, in our case), including•

provider-specific information required for the creation of Ray cluster’s nodes.
• Node-specific information (CPU/memory, etc). This also includes a list of node•

startup commands, including Python libraries required for the installation.

With this file in place, a command to create a cluster looks like this:

ray up <your location>/raycluster.yaml
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3 Theoretically, you can also create an ingress to connect to the Ray cluster. Unfortunately, in the case of the
NGINX ingress controller, it will not work. The issue here is that the Ray client is using unsecure gRPC,
while the NGINX ingress controller supports only secure gRPC calls. When using the Ray cluster on a specific
cloud, check whether an ingress supports unsecure gRPC before exposing Ray’s head service as an ingress.

Once the cluster creation completes, you can see that several pods are running:

> get pods -n ray
NAME                   READY   STATUS    RESTARTS   AGE
ray-ray-head-88978     1/1     Running   0          2m15s
ray-ray-worker-czqlx   1/1     Running   0          23s
ray-ray-worker-lcdmm   1/1     Running   0          23s

As requested by our YAML file, you can see one head and two worker
nodes. To verify that the cluster is running correctly, you can use the following job:

kubectl create -f <your location>/jobexample.yaml -n ray

The execution results in something similar to this:

> kubectl logs ray-test-job-bx4xj-4nfbl -n ray
--2021-09-28 15:18:59--  https://raw.githubusercontent.com/scalingpythonml/...
Resolving raw.githubusercontent.com (raw.githubusercontent.com) ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com) ...
Length: 1750 (1.7K) [text/plain]
Saving to: ‘servicePython.py’

     0K .                                                     100% 9.97M=0s

2021-09-28 15:18:59 (9.97 MB/s) - ‘servicePython.py’ saved [1750/1750]

Connecting to Ray at service ray-ray-head, port 10001
Iteration 0
Counter({('ray-ray-head-88978', 'ray-ray-head-88978'): 30, ...
Iteration 1
……………………………….
Success!

Once your job is up, you can additionally port-forward the ray-ray-head service by
running the following:3

kubectl port-forward -n ray service/ray-ray-head 10001

Then, connect to it from your local machine by using the localPython.py testing script
from the book’s example files. Execution of this code produces the same results as
shown previously.

Additionally, you can port-forward ray service to port 8265 to look at the Ray
dashboard:

kubectl port-forward -n ray service/ray-ray-head 8265
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4 This command deletes pods, and it leaves behind the service created as part of a cluster. You have to manually
delete a service for a complete cleanup.

Once this is done, you can take a look at the Ray dashboard (Figure B-3).

Figure B-3. Ray dashboard

You can uninstall the Ray cluster by using the following command:4

ray down <your location>/raycluster.yaml

Using the Ray Kubernetes Operator
For deployment to the Kubernetes cluster, we can also use the Ray operator, which
is a recommended approach. To simplify usage of the operator, Ray provides a Helm
chart available as part of the Ray GitHub repository. Here, instead of the Helm chart,
we are using several YAML files to deploy Ray to make installation a bit simpler.

Our deployment is split into three files: operatorcrd.yaml, containing all the com‐
mands for CustomResourceDefinition (CRD) creation; operator.yaml, containing all
the commands for operator creation; and rayoperatorcluster.yaml, containing all the
commands for cluster creation. It is assumed in these files that the operator is created
in the namespace ray.

To install the operator itself, we need to execute these two commands:

kubectl apply -f <your location>/operatorcrd.yaml
kubectl apply -f <your location>/operator.yaml
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5 Although documentation mentions a cluster-wide deploy operator, it works only for a namespace where the
operator is deployed.

Once this is done, use the following command to ensure that the operator pod is
running:

> kubectl get pods -n ray
NAME                            READY   STATUS    RESTARTS   AGE
ray-operator-6c9954cddf-cjn9c   1/1     Running   0          110s

Once the operator is up and running, you can start the cluster itself by using the
following command:5

kubectl apply -f <your location>/rayoperatorcluster.yaml -n ray

Here the content of rayoperatorcluster.yaml is similar to the content of raycluster.yaml
but formatted slightly differently. Once the cluster is up and running, you can use the
same validation code as described previously for ray up.

Installing Ray on OpenShift
OpenShift is a type of Kubernetes cluster, so theoretically the Kubernetes operator
can be used to install Ray on an OpenShift cluster. Unfortunately, this installation is a
little bit more involved.

If you have ever used OpenShift, you know that by default all of the pods in
OpenShift run in restrictive mode. This mode denies access to all host features and
requires pods to be run with a unique identifier (UID) and Security-Enhanced Linux
(SELinux) context that are allocated to the namespace.

Unfortunately, this does not quite work for the Ray operator, designed to run as user
1000. To enable this, you need to introduce several changes to the files that you used
for installing on the kind (and any other plain Kubernetes cluster):

• Add the ray-operator-serviceaccount service account, which is used by the•
operator, to anyuid mode. This allows users to run with any nonroot UID:

oc adm policy add-scc-to-user anyuid -z ray-operator-serviceaccount

• Modify operator.yaml to ensure that the operator pod is running as user 1000.•

Additionally, a testing job has to be modified slightly to run as user 1000. This
requires the creation of a ray-node-serviceaccount service account used for run‐
ning a job and adding this service account to anyuid mode, which allows users to run
with any nonroot UID.
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Conclusion
Ray provides a wealth of deployment options. When using Ray to solve a specific
problem, you will need to decide which option is is most suitable for your specific
situation.
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APPENDIX C

Debugging with Ray

Depending on your debugging techniques, moving to distributed systems could
require a new set of techniques. Thankfully, tools like Pdb and PyCharm allow you
to connect remote debuggers, and Ray’s local mode can allow you to use your exist‐
ing debugging tools in many other situations. Some errors happen outside Python,
making them more difficult to debug, like container out-of-memory (OOM) errors,
segmentation faults, and other native errors.

Some components of this appendix are shared with Scaling Python
with Dask, as they are general good advice for debugging all types
of distributed systems.

General Debugging Tips with Ray
You likely have your own standard debugging techniques for working with Python
code, and this appendix is not meant to replace them. Here are some general tech‐
niques that make more sense with Ray:

• Break up failing functions into smaller functions. Since ray.remote schedules on•
the block of a function, smaller functions make it easier to isolate the problem.

• Be careful about any unintended scope capture.•
• Sample data and try to reproduce it locally (local debugging is often easier).•
• Use Mypy for type checking. While we haven’t included types in all our examples,•

liberal type usage can catch tricky errors in production code.
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• When issues appear regardless of parallelization, debug your code in single-•
threaded mode, where it can be easier to understand what’s going on.

Now, with those additional general tips, it’s time to learn more about the tools and
techniques to help your Ray debugging.

Serialization Errors
Serialization plays an important part in Ray, but can also be a source of headaches
as small changes can result in unintended variable capture and serialization failure.
Thankfully, Ray has a util function inspect_serializability in ray.util that you
can use to debug serialization errors. If you intentionally define a function that cap‐
tures nonserializable data, like Example C-1, you can run inspect_serializability
and see how it reports the failure (as in Example C-2).

Example C-1. Bad serialization example

pool = Pool(5)

def special_business(x):
    def inc(y):
        return y + x
    return pool.map(inc, range(0, x))
ray.util.inspect_serializability(special_business)

Example C-2. Bad serialization result

=========================================================================
Checking Serializability of <function special_business at 0x7f78802820d0>
=========================================================================
!!! FAIL serialization: pool objects cannot be passed between processes or pickled
Detected 1 global variables. Checking serializability...
    Serializing 'pool' <multiprocessing.pool.Pool state=RUN pool_size=5>...
    !!! FAIL serialization: pool objects cannot be passed between processes ...
...

In this example, Ray checks the elements for serializability and calls out that the
nonserializable value pool is coming in from the global scope.

Local Debugging with Ray Local
Using Ray in local mode allows you to use the tools you are accustomed to without
having to deal with the complexity of setting up remote debugging. We won’t cover
the variety of local Python debugging tools, so this section exists just to remind you
to try to reproduce the problem in local mode first before you start using the fancy
debugging techniques covered in the rest of this appendix.
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1 Ray has the ray attach command to create an SSH connection to the head node; however, not all head nodes
will have an SSH server. On Ray on Kubernetes, you can get to the head node by running kubectl exec -it
-n [rayns] [podname] – /bin/bash. Each cluster manager is slightly different here, so you may have to
check your cluster manager’s documentation.

Remote Debugging
Remote debugging can be an excellent tool but requires more access to the cluster,
something that may not always be available. Ray’s own special integrated ray debug
tool supports tracing across the entire cluster. Unfortunately, other remote Python
debuggers attach to only one machine at a time, so you can’t simply point your
debugger at an entire cluster.

Remote debugging can result in large performance changes and
security implications. It is important to notify all users before
enabling remote debugging on a cluster.

If you control your own environment, setting up remote debugging is comparatively
straightforward, but in an enterprise deployment, you may find resistance to enabling
this. In those situations, using a local cluster or asking for a development cluster to
debug on are your best options.

For interactive debuggers, you may need to work with your systems
administrator to expose additional ports from your cluster.

Ray’s Integrated Debugger (via Pdb)
Ray has integrated support for debugging with Pdb, allowing you to trace code across
your cluster. You still need to change the launch command (ray start) to include
(ray start --ray-debugger-external) to load the debugger. With Ray’s external
debugger enabled on the workers, Pdb will listen on an additional port (without any
authentication) for debuggers to connect.

Once your cluster is configured and launched, you can start the Ray debugger on the
head node.1 To start the debugger, you just need to run ray debug, and then you can
use all of your favorite Pdb debugging commands.
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Other Tools
For nonintegrated tools, since each call to a remote function can be scheduled on
a different worker, you may find it easier to (temporarily) convert your stateless
function into an actor. This will have real performance considerations, so may not
be suitable for a production environment, but does mean that repeated calls will be
routed to the same machine, making the task of debugging simpler.

PyCharm
PyCharm is a popular Python IDE with an integrated debugger. While it is not
integrated like Pdb, you can still make it work with a few simple changes. The first
step is to add the pydevd-pycharm package to your container/requirements. Then,
in the actor you want to debug, you can enable PyCharm debugging as shown in
Example C-3.

Example C-3. Enabled PyCharm remote debugging

@ray.remote
class Bloop():
    
    def __init__(self, dev_host):
        import pydevd_pycharm
        # Requires ability to connect to dev from prod.
        try:
            pydevd_pycharm.settrace(
                dev_host, port=7779, stdoutToServer=True, stderrToServer=True)
        except ConnectionRefusedError:
            print("Skipping debug")
            pass
    
    def dothing(x):
        return x + 1

Your actor will then create a connection back from the executor to your PyCharm
IDE.

Python profilers
Python profilers can help track down memory leaks, hot code paths, and other
important-to-address non-error states.

Profilers are less problematic than live remote debugging from a security point of
view, as they do not require a direct connection from your machine to the cluster.
Instead, the profiler runs and generates a report, which you can look at offline.
Profiling still introduces performance overhead, so be careful when deciding whether
to enable it.
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To enable Python memory profiling on the executors, you can change the launch
command to have the prefix mprof run -E --include-children, -o memory

_profile.dat --python. You can then collect the memory_profile and plot them
with matplotlib on your machine to see if anything sticks out.

Similarly, you can enable function profiling in your ray execute by replacing ray
start in your launch command with echo "from ray.scripts.scripts import
main; main()" > launch.py; python -m cProfile -o stats launch.py. This is
a bit more complicated than using mprof since the default Ray launch script does
not play nice with the cProfile, so you need to create a different entry point—but
conceptually it is equivalent.

The line_profiler package used for annotation-based profiling
does not work well with Ray, so you must use whole program
profiling.

Ray and Container Exit Codes
Exit codes are numeric codes that are set when a program exits, with any value besides
0 normally indicating failure. These codes (by convention) generally have meaning
but are not 100% consistent. The following are some common exit codes:

0
Success (but often misreported, especially in shell scripts)

1
Generic error

127
Command not found (in a shell script)

130
User terminated (Ctrl-C or kill)

137
Out-of-memory error or kill -9 (force kill, not ignorable)

139
Segmentation fault (often null pointer dereference in native code)

You can print out the exit code of the last command run with echo $?. In a script
running in strict mode (like some Ray launch scripts), you can print out the exit code
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2 The exact details of where to configure this change depends on the cluster manager being used. For
Ray on Kube with the autoscaler, you can change workerStartRayCommands. For Ray on AWS, change
worker_start_ray_commands, etc.

3 This is done either by ssh or kubectl exec.

while still propagating the error with [raycommand] || (error=$?; echo $error;
exit $error).2

Ray Logs
Ray’s logs behave differently from those of many other distributed applications. Since
Ray tends to launch worker processes on the container separate from the initial
container startup,3 the stdout and stderr associated with the container will (most
often) not contain the debugging information you need. Instead, you can access the
worker container logs on the head node by looking for the latest session directory to
which Ray creates a symbolic link at /tmp/ray/session_latest.

Container Errors
Debugging container errors can be especially challenging, as many of the standard
debugging techniques explored so far have challenges. These errors can range from
common occurrences, like OOM errors, to the more esoteric. It can be difficult to
distinguish the cause of the container error or exit as the container exit sometimes
removes the logs.

On Kubernetes, you can sometimes get the logs of a container that has already exited
by adding -p to your log request (e.g., kubectl logs -p). You can also configure
terminationMessagePath to point to a file that contains information regarding ter‐
mination exit. If your Ray worker is exiting, it can make sense to customize the Ray
container launch script to add more logging. Common types of additional logging
include the last few lines from syslog or dmesg (looking for OOMs) to a file location
that you can use to debug later.

The most common kind of container error, native memory leaks, can be challenging
to debug. Tools like Valgrind can sometimes track down native memory leaks. The
details of using tools like Valgrind are beyond the scope of this book, so check out the
Python Valgrind documentation. Another “trick” you might want to try is effectively
bisecting your code; since native memory leaks happen most frequently in library
calls, you can try commenting them out and running tests to see which library call is
the source of the leak.
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Native Errors
Native errors and core dumps can be challenging to debug for the same reasons
as container errors. Since these types of errors often result in the container exiting,
accessing the debugging information can become challenging. A “quick” solution to
this is to add sleep to the Ray launch script (on failure) so that you can connect
to the container (e.g., [raylaunchcommand] || sleep 100000) and use native debug‐
ging tools.

However, accessing the internals of a container can be easier said than done. In many
production environments, you may not be able to get remote access (e.g., kubectly
exec on Kubernetes) for security reasons. If that is the case, you can (sometimes)
add a shutdown script to your container specification that copies the core files to a
location that persists after the container shuts down (e.g., s3, HDFS, or NFS).

Conclusion
You will have a bit more work to get started with your debugging tools in Ray,
and when possible, Ray’s local mode offers a great alternative to remote debugging.
You can take advantage of Ray actors to make remote functions schedule more
predictably, making it easier to know where to attach your debugging tools. Not all
errors are created equal, and some errors, like segmentation faults in native code, are
especially challenging to debug. Good luck finding the bug(s)! We believe in you.
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