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Preface

The Python programming language reconciles many apparent contradictions: ele‐
gant yet pragmatic, simple yet powerful, it’s very high-level yet doesn’t get in your
way when you need to fiddle with bits and bytes, and it’s suitable for novice
programmers and great for experts, too.

This book is intended for programmers with some previous exposure to Python, as
well as experienced programmers coming to Python for the first time from other
languages. It provides a quick reference to Python itself, the most commonly used
parts of its vast standard library, and a few of the most popular and useful third-
party modules and packages. The Python ecosystem has grown so much in richness,
scope, and complexity that a single volume can no longer reasonably hope to be
encyclopedic. Still, the book covers a wide range of application areas, including web
and network programming, XML handling, database interactions, and high-speed
numeric computing. It also explores Python’s cross-platform capabilities and the
basics of extending Python and embedding it in other applications.

How To Use This Book
While you can read this volume linearly from the beginning, we also aim for it to be
a useful reference for the working programmer. You may choose to use the index to
locate items of interest, or to read specific chapters for coverage of their particular
topics. However you use it, we sincerely hope you enjoy reading what represents the
fruit of the best part of a year’s work for the team.

The book has five parts, as follows.

ix



Part I, Getting Started with Python
Chapter 1, “Introduction to Python”

Covers the general characteristics of the Python language, its implementations,
where to get help and information, how to participate in the Python commu‐
nity, and how to obtain and install Python on your computer(s) or run it in
your browser.

Chapter 2, “The Python Interpreter”
Covers the Python interpreter program, its command-line options, and how
to use it to run Python programs and in interactive sessions. The chapter
mentions text editors for editing Python programs and auxiliary programs
for checking your Python sources, along with some full-fledged integrated
development environments, including IDLE, which comes free with standard
Python. The chapter also covers running Python programs from the command
line.

Part II, Core Python Language and Built-ins
Chapter 3, “The Python Language”

Covers Python syntax, built-in data types, expressions, statements, control flow,
and how to write and call functions.

Chapter 4, “Object-Oriented Python”
Covers object-oriented programming in Python.

Chapter 5, “Type Annotations”
Covers how to add type information to your Python code, to gain type hinting
and autocomplete help from modern code editors and support static type
checking from type checkers and linters.

Chapter 6, “Exceptions”
Covers how to use exceptions for errors and special situations, logging, and
how to write code to automatically clean up when exceptions occur.

Chapter 7, “Modules and Packages”
Covers how Python lets you group code into modules and packages, how to
define and import modules, and how to install third-party Python packages.
This chapter also covers working with virtual environments to isolate project
dependencies.

Chapter 8, “Core Built-ins and Standard Library Modules”
Covers built-in data types and functions, and some of the most fundamental
modules in the Python standard library (roughly speaking, the set of modules
supplying functionality that, in some other languages, is built into the language
itself).

Chapter 9, “Strings and Things”
Covers Python’s facilities for processing strings, including Unicode strings,
bytestrings, and string literals.
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1 The separate chapter on asynchronous programming in the third edition has been dropped in
this edition, deferring to more thorough coverage of this growing topic in references found in
Chapter 15.

Chapter 10, “Regular Expressions”
Covers Python’s support for regular expressions.

Part III, Python Library and Extension Modules
Chapter 11, “File and Text Operations”

Covers dealing with files and text with many modules from Python’s standard
library and platform-specific extensions for rich text I/O. This chapter also
covers issues regarding internationalization and localization.

Chapter 12, “Persistence and Databases”
Covers Python’s serialization and persistence mechanisms and its interfaces to
DBM databases and relational (SQL-based) databases, particularly the handy
SQLite that comes with Python’s standard library.

Chapter 13, “Time Operations”
Covers dealing with times and dates in Python, with the standard library and
third-party extensions.

Chapter 14, “Customizing Execution”
Covers ways to achieve advanced execution control in Python, including exe‐
cution of dynamically generated code and control of garbage collection. This
chapter also covers some Python internal types, and the specific issue of regis‐
tering “cleanup” functions to execute at program termination time.

Chapter 15, “Concurrency: Threads and Processes”
Covers Python’s functionality for concurrent execution, both via multiple
threads running within one process and via multiple processes running on
a single machine.1 This chapter also covers how to access the process’s environ‐
ment, and how to access files via memory-mapping mechanisms.

Chapter 16, “Numeric Processing”
Covers Python’s features for numeric computations, both in standard library
modules and in third-party extension packages; in particular, how to use deci‐
mal numbers or fractions instead of the default binary floating-point numbers.
This chapter also covers how to get and use pseudorandom and truly random
numbers, and how to speedily process whole arrays (and matrices) of numbers.

Chapter 17, “Testing, Debugging, and Optimizing”
Covers Python tools and approaches that help you make sure that your pro‐
grams are correct (i.e., that they do what they’re meant to do), find and fix
errors in your programs, and check and enhance your programs’ performance.
This chapter also covers the concept of warnings and the Python library mod‐
ule that deals with them.
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Part IV, Network and Web Programming
Chapter 18, “Networking Basics”

Covers the basics of networking with Python.

Chapter 19, “Client-Side Network Protocol Modules”
Covers modules in Python’s standard library to write network client programs,
particularly for dealing with various network protocols from the client side,
sending and receiving emails, and handling URLs.

Chapter 20, “Serving HTTP”
Covers how to serve HTTP for web applications in Python, using popular
third-party lightweight Python frameworks leveraging Python’s WSGI standard
interface to web servers.

Chapter 21, “Email, MIME, and Other Network Encodings”
Covers how to process email messages and other network-structured and enco‐
ded documents in Python.

Chapter 22, “Structured Text: HTML”
Covers popular third-party Python extension modules to process, modify, and
generate HTML documents.

Chapter 23, “Structured Text: XML”
Covers Python library modules and popular extensions to process, modify, and
generate XML documents.

Part V, Extending, Distributing, and Version Upgrade and Migration
Chapters 24 and 25 are included in summary form in the print edition of this book.
You will find the full content of these chapters in the supporting online repository,
described in “How to Contact Us” on page xv.

Chapter 24, “Packaging Programs and Extensions”
Covers tools and modules to package and share Python modules and applica‐
tions.

Chapter 25, “Extending and Embedding Classic Python”
Covers how to code Python extension modules using Python’s C API, Cython,
and other tools.

Chapter 26, “v3.7 to v3.n Migration”
Covers topics and best practices for planning and deploying version upgrades
for Python users ranging from individuals to library maintainers to enterprise-
wide deployment and support staff.

Appendix, “New Features and Changes in Python 3.7 Through 3.11”
Provides a detailed list of features and changes in Python language syntax and
the standard library, by version.
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2 For example, to accommodate the widespread changes in Python 3.9 and 3.10 in type annota‐
tions, most of Chapter 5 uses Python 3.10 as the base version for features and examples.

Conventions Used in This Book
The following conventions are used throughout this book.

Reference Conventions
In the function/method reference entries, when feasible, each optional parameter is
shown with a default value using the Python syntax name=value. Built-in functions
need not accept named parameters, so parameter names may not be significant.
Some optional parameters are best explained in terms of their presence or absence,
rather than through default values. In such cases, we indicate that a parameter
is optional by enclosing it in brackets ([]). When more than one argument is
optional, brackets can be nested.

Version Conventions
This book covers changes and features in Python versions 3.7 through 3.11.

Python 3.7 serves as the base version for all tables and code examples, unless
otherwise noted.2 You will see these notations to indicate changes or features added
and removed across the range of covered versions:

• 3.x+  marks a feature introduced in version 3.x, not available in prior versions.•
• -3.x  marks a feature removed in version 3.x, available only in prior versions.•

Typographic Conventions
Please note that, for display reasons, our code snippets and samples may sometimes
depart from PEP 8. We do not recommend taking such liberties in your code.
Instead, use a utility like black to adopt a canonical layout style.

The following typographical conventions are used in this book:

Italic
Used for file and directory names, program names, URLs, and to introduce
new terms.

Constant width

Used for command-line output and code examples, as well as for code elements
that appear in the text, including methods, functions, classes, and modules.

Constant width italic

Used to show text to be replaced with user-supplied values in code examples
and commands.
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Constant width bold

Used for commands to be typed at a system command line and to indicate code
output in Python interpreter session examples. Also used for Python keywords.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You do
not need to contact us for permission unless you’re reproducing a significant por‐
tion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Python in a Nutshell, 4th ed.,
by Alex Martelli, Anna Martelli Ravenscroft, Steve Holden, and Paul McGuire.
Copyright 2023, 978-1-098-11355-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

xiv | Preface

mailto:permissions@oreilly.com


O’Reilly Online Learning

For more than 40 years, O’Reilly Media has pro‐
vided technology and business training, knowl‐
edge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

The book has its own GitHub repository, where we list errata, examples, and any
additional information. The repository also contains the full content of Chapters 24
and 25, for which there was insufficient space in the printed volume. You will find it
at https://github.com/pynutshell/pynut4.

We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mistakes!).
Please let the publisher know about any errors you find, as well as your suggestions
for future editions.

O’Reilly has a web page for this book, where they list errata, examples, and any addi‐
tional information. You can access this page at https://oreil.ly/python-nutshell-4e.

To comment or ask technical questions about this book, send email to
pynut4@gmail.com.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://www.youtube.com/oreillymedia.
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3 Nor would it have so many footnotes!
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1 For Android, see https://wiki.python.org/moin/Android, and for iPhone and iPad, see Python for
iOS and iPadOS.

1
Introduction to Python

Python is a well-established general-purpose programming language, first released
by its creator, Guido van Rossum, in 1991. This stable and mature language is
high-level, dynamic, object-oriented, and cross-platform—all very attractive char‐
acteristics. Python runs on macOS, most current Unix variants including Linux,
Windows, and, with some tweaks, mobile platforms.1

Python offers high productivity for all phases of the software life cycle: analysis,
design, prototyping, coding, testing, debugging, tuning, documentation, and, of
course, maintenance. The language’s popularity has seen steadily increasing growth
for many years, becoming the TIOBE index leader in October 2021. Today, familiar‐
ity with Python is a plus for every programmer: it has snuck into most niches, with
useful roles to play in any software solution.

Python provides a unique mix of elegance, simplicity, practicality, and sheer power.
You’ll quickly become productive with Python, thanks to its consistency and regu‐
larity, its rich standard library, and the many third-party packages and tools that are
readily available for it. Python is easy to learn, so it is quite suitable if you are new to
programming, yet is also powerful enough for the most sophisticated expert.

The Python Language
The Python language, while not minimalist, is spare, for good pragmatic reasons.
Once a language offers one good way to express a design, adding other ways has,
at best, modest benefits; the cost of language complexity, though, grows more than
linearly with the number of features. A complicated language is harder to learn and

1
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master (and to implement efficiently and without bugs) than a simpler one. Com‐
plications and quirks in a language hamper productivity in software development,
particularly in large projects, where many developers cooperate and, often, maintain
code originally written by others.

Python is fairly simple, but not simplistic. It adheres to the idea that, if a language
behaves a certain way in some contexts, it should ideally work similarly in all
contexts. Python follows the principle that a language should not have “convenient”
shortcuts, special cases, ad hoc exceptions, overly subtle distinctions, or mysterious
and tricky under-the-covers optimizations. A good language, like any other well-
designed artifact, must balance general principles with taste, common sense, and a
lot of practicality.

Python is a general-purpose programming language: its traits are useful in almost
any area of software development. There is no area where Python cannot be part
of a solution. “Part” is important here; while many developers find that Python fills
all of their needs, it does not have to stand alone. Python programs can cooperate
with a variety of other software components, making it the right language for gluing
together components in other languages. A design goal of the language is, and has
long been, to “play well with others.”

Python is a very high-level language (VHLL). This means that it uses a higher
level of abstraction, conceptually further away from the underlying machine, than
classic compiled languages such as C, C++, and Rust, traditionally called “high-level
languages.” Python is simpler, faster to process (both for humans and for tools),
and more regular than classic high-level languages. This affords high programmer
productivity, making Python a strong development tool. Good compilers for classic
compiled languages can generate binary code that runs faster than Python. In most
cases, however, the performance of Python-coded applications is sufficient. When it
isn’t, apply the optimization techniques covered in “Optimization” on page 541 to
improve your program’s performance while keeping the benefit of high productivity.

In terms of language level, Python is comparable to other powerful VHLLs like
JavaScript, Ruby, and Perl. The advantages of simplicity and regularity, however,
remain on Python’s side.

Python is an object-oriented programming language, but it lets you program in
both object-oriented and procedural styles, with a touch of functional programming
too, mixing and matching as your application requires. Python’s object-oriented
features are conceptually similar to those of C++ but simpler to use.

The Python Standard Library and Extension Modules
There is more to Python programming than just the language: the standard library
and other extension modules are almost as important for Python use as the lan‐
guage itself. The Python standard library supplies many well-designed, solid Python
modules for convenient reuse. It includes modules for such tasks as representing
data, processing text, interacting with the operating system and filesystem, and web
programming, and works on all platforms supported by Python.
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Extension modules, from the standard library or elsewhere, let Python code access
functionality supplied by the underlying operating system or other software compo‐
nents, such as graphical user interfaces (GUIs), databases, and networks. Extensions
also afford great speed in computationally intensive tasks such as XML parsing and
numeric array computations. Extension modules that are not coded in Python,
however, do not necessarily enjoy the same cross-platform portability as pure
Python code.

You can write extension modules in lower-level languages to optimize performance
for small, computationally intensive parts that you originally prototyped in Python.
You can also use tools such as Cython, ctypes, and CFFI to wrap existing C/C++
libraries into Python extension modules, as covered in “Extending Python Without
Python’s C API” in Chapter 25 (available online). You can also embed Python in
applications coded in other languages, exposing application functionality to Python
via app-specific Python extension modules.

This book documents many modules, from the standard library and other sources,
for client- and server-side network programming, databases, processing text and
binary files, and interacting with operating systems.

Python Implementations
At the time of this writing, Python has two full production-quality implementations
(CPython and PyPy) and several newer, high-performance ones in somewhat earlier
stages of development, such as Nuitka, RustPython, GraalVM Python, and Pyston,
which we do not cover further. In “Other Developments, Implementations, and
Distributions” on page 5 we also mention some other, even earlier-stage imple‐
mentations.

This book primarily addresses CPython, the most widely used implementation,
which we often call just “Python” for simplicity. However, the distinction between a
language and its implementations is important!

CPython
Classic Python—also known as CPython, often just called Python—is the most
up-to-date, solid, and complete production-quality implementation of Python. It is
the “reference implementation” of the language. CPython is a bytecode compiler,
interpreter, and set of built-in and optional modules, all coded in standard C.
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2 Python versions from 3.11 use “C11 without optional features” and specify that “the public API
should be compatible with C++.”

CPython can be used on any platform where the C compiler complies with the
ISO/IEC 9899:1990 standard2 (i.e., all modern, popular platforms). In “Installation”
on page 14, we explain how to download and install CPython. All of this book,
except a few sections explicitly marked otherwise, applies to CPython. As of this
writing, CPython’s current version, just released, is 3.11.

PyPy
PyPy is a fast and flexible implementation of Python, coded in a subset of Python
itself, able to target several lower-level languages and virtual machines using
advanced techniques such as type inferencing. PyPy’s greatest strength is its ability
to generate native machine code “just in time” as it runs your Python program; it
has substantial advantages in execution speed. PyPy currently implements 3.8 (with
3.9 in beta).

Choosing Between CPython, PyPy, and Other Implementations
If your platform, as most are, is able to run CPython, PyPy, and several of the other
Python implementations we mention, how do you choose among them? First of
all, don’t choose prematurely: download and install them all. They coexist without
problems, and they’re all free (some of them also offer commercial versions with
added value such as tech support, but the respective free versions are fine, too).
Having them all on your development machine costs only some download time and
a little disk space, and lets you compare them directly. That said, here are a few
general tips.

If you need a custom version of Python, or high performance for long-running pro‐
grams, consider PyPy (or, if you’re OK with versions that are not quite production-
ready yet, one of the others we mention).

To work mostly in a traditional environment, CPython is an excellent fit. If you
don’t have a strong alternative preference, start with the standard CPython refer‐
ence implementation, which is most widely supported by third-party add-ons and
extensions and offers the most up-to-date version.

In other words, to experiment, learn, and try things out, use CPython. To develop
and deploy, your best choice depends on the extension modules you want to use
and how you want to distribute your programs. CPython, by definition, supports
all Python extensions; however, PyPy supports most extensions, and it can often
be faster for long-running programs thanks to just-in-time compilation to machine
code—to check on that, benchmark your CPython code against PyPy (and, to be
sure, other implementations as well).
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CPython is most mature: it has been around longer, while PyPy (and the others) are
newer and less proven in the field. The development of CPython versions proceeds
ahead of that of other implementations.

PyPy, CPython, and other implementations we mention are all good, faithful imple‐
mentations of Python, reasonably close to each other in terms of usability and
performance. It is wise to become familiar with the strengths and weaknesses of
each, and then choose optimally for each development task.

Other Developments, Implementations, and Distributions
Python has become so popular that several groups and individuals have taken an
interest in its development and have provided features and implementations outside
the core development team’s focus.

Nowadays, most Unix-based systems include Python—typically version 3.x for
some value of x—as the “system Python.” To get Python on Windows or macOS,
you usually download and run an installer (see also “macOS” on page 16.) If you
are serious about software development in Python, the first thing you should do
is leave your system-installed Python alone! Quite apart from anything else, Python
is increasingly used by some parts of the operating system itself, so tweaking the
Python installation could lead to trouble.

Thus, even if your system comes with a “system Python,” consider installing one
or more Python implementations to freely use for your development convenience,
safe in the knowledge that nothing you do will affect the operating system. We also
strongly recommend the use of virtual environments (see “Python Environments”
on page 237) to isolate projects from each other, letting them have what might
otherwise be conflicting dependencies (e.g., if two of your projects require different
versions of the same third-party module). Alternatively, it is possible to locally
install multiple Pythons side by side.

Python’s popularity has led to the creation of many active communities, and the
language’s ecosystem is very active. The following sections outline some of the more
interesting developments: note that our failure to include a project here reflects
limitations of space and time, rather than implying any disapproval!

Jython and IronPython
Jython, supporting Python on top of a JVM, and IronPython, supporting Python on
top of .NET, are open source projects that, while offering production-level quality
for the Python versions they support, appear to be “stalled” at the time of this
writing, since the latest versions they support are substantially behind CPython’s.
Any “stalled” open source project could, potentially, come back to life again: all
it takes is one or more enthusiastic, committed developers to devote themselves
to “reviving” it. As an alternative to Jython for the JVM, you might also consider
GraalVM Python, mentioned earlier.
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3 Which can be in many programming languages, not just Python.

Numba
Numba is an open source just-in-time (JIT) compiler that translates a subset of
Python and NumPy. Given its strong focus on numeric processing, we mention it
again in Chapter 16.

Pyjion
Pyjion is an open source project, originally started by Microsoft, with the key goal
of adding an API to CPython to manage JIT compilers. Secondary goals include
offering a JIT compiler for Microsoft’s open source CLR environment (which is
part of .NET) and a framework to develop JIT compilers. Pyjion does not replace
CPython; rather, it is a module that you import from CPython (it currently requires
3.10) that lets you translate CPython’s bytecode, “just in time,” into machine code
for several different environments. Integration of Pyjion with CPython is enabled
by PEP 523; however, since building Pyjion requires several tools in addition to a C
compiler (which is all it takes to build CPython), the Python Software Foundation
(PSF) will likely never bundle Pyjion into the CPython releases it distributes.

IPython
IPython enhances CPython’s interactive interpreter to make it more powerful and
convenient. It allows abbreviated function call syntax, and extensible functionality
known as magics introduced by the percent (%) character. It also provides shell
escapes, allowing a Python variable to receive the result of a shell command. You
can use a question mark to query an object’s documentation (or two question marks
for extended documentation); all the standard features of the Python interactive
interpreter are also available.

IPython has made particular strides in the scientific and data-focused world, and
has slowly morphed (through the development of IPython Notebook, now refac‐
tored and renamed Jupyter Notebook, discussed in “Jupyter” on page 31) into
an interactive programming environment that, among snippets of code,3 also lets
you embed commentary in literate programming style (including mathematical
notation) and show the output of executing code, optionally with advanced graphics
produced by such subsystems as matplotlib and bokeh. An example of matplotlib
graphics embedded in a Jupyter Notebook is shown in the bottom half of Figure 1-1.
Jupyter/IPython is one of Python’s prominent success stories.
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Figure 1-1. An example Jupyter Notebook with embedded matplotlib graph

MicroPython
The continued trend in miniaturization has brought Python well within the range
of the hobbyist. Single-board computers like the Raspberry Pi and Beagle boards let
you run Python in a full Linux environment. Below this level, there is a class of devi‐
ces known as microcontrollers—programmable chips with configurable hardware—
that extend the scope of hobby and professional projects, for example by making
analog and digital sensing easy, enabling such applications as light and temperature
measurements with little additional hardware.

Both hobbyists and professional engineers are making increasing use of these
devices, which appear (and sometimes disappear) all the time. Thanks to the Micro‐
Python project, the rich functionality of many such devices (micro:bit, Arduino,
pyboard, LEGOⓇ MINDSTORMSⓇ EV3, HiFive, etc.) can now be programmed
in (limited dialects of) Python. Of note at the time of writing is the introduction
of the Raspberry Pi Pico. Given the success of the Raspberry Pi in the education
world, and Pico’s ability to run MicroPython, it seems that Python is consolidating
its position as the programming language with the broadest range of applications.
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4 In fact, conda’s capabilities extend to other languages, and Python is simply another dependency.

5 250+ automatically installed with Anaconda, 7,500+ explicitly installable with conda install.

MicroPython is a Python 3.4 implementation (“with selected features from later
versions,” to quote its docs) producing bytecode or executable machine code (many
users will be happily unaware of the latter fact). It fully implements Python 3.4’s
syntax, but lacks most of the standard library. Special hardware driver modules let
you control various parts of built-in hardware; access to Python’s socket library lets
devices interact with network services. External devices and timer events can trigger
code. Thanks to MicroPython, the Python language can fully play in the Internet of
Things.

A device typically offers interpreter access through a USB serial port, or through
a browser using the WebREPL protocol (we aren’t aware of any fully working
ssh implementations yet, though, so, take care to firewall these devices properly:
they should not be directly accessible across the internet without proper, strong precau‐
tions!). You can program the device’s power-on bootstrap sequence in Python by
creating a boot.py file in the device’s memory, and this file can execute arbitrary
MicroPython code of any complexity.

Anaconda and Miniconda
One of the most successful Python distributions4 in recent years is Anaconda. This
open source package comes with a vast number5 of preconfigured and tested exten‐
sion modules in addition to the standard library. In many cases, you might find
that it contains all the necessary dependencies for your work. If your dependencies
aren’t supported, you can also install modules with pip. On Unix-based systems, it
installs very simply in a single directory: to activate it, just add the Anaconda bin
subdirectory at the front of your shell PATH.

Anaconda is based on a packaging technology called conda. A sister implementa‐
tion, Miniconda, gives access to the same extensions but does not come with them
preloaded; it instead downloads them as required, making it a better choice for
creating tailored environments. conda does not use the standard virtual environ‐
ments, but contains equivalent facilities to allow separation of the dependencies for
multiple projects.

pyenv: Simple support for multiple versions
The basic purpose of pyenv is to make it easy to access as many different versions
of Python as you need. It does so by installing so-called shim scripts for each
executable, which dynamically compute the version required by looking at various
sources of information in the following order:
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1. The PYENV_VERSION environment variable (if set).1.
2. The .pyenv_version file in the current directory (if present)—you can set this2.

with the pyenv local command.
3. The first .pyenv_version file found when climbing the directory tree (if one is3.

found).

4. The version file in the pyenv installation root directory—you can set this with4.
the pyenv global command.

pyenv installs its Python interpreters underneath its home directory (normally
~/.pyenv), and, once available, a specific interpreter can be installed as the default
Python in any project directory. Alternatively (e.g., when testing code under multi‐
ple versions), you can use scripting to change the interpreter dynamically as the
script proceeds.

The pyenv install –list command shows an impressive list of over 500 sup‐
ported distributions, including PyPy, Miniconda, MicroPython, and several others,
plus every official CPython implementation from 2.1.3 to (at the time of writing)
3.11.0rc1.

Transcrypt: Convert your Python to JavaScript
Many attempts have been made to make Python into a browser-based language,
but JavaScript’s hold has been tenacious. The Transcrypt system is a pip-installable
Python package to convert Python code (currently, up to version 3.9) into browser-
executable JavaScript. You have full access to the browser’s DOM, allowing your
code to dynamically manipulate window content and use JavaScript libraries.

Although it creates minified code, Transcrypt provides full sourcemaps that allow
you to debug with reference to the Python source rather than the generated Java‐
Script. You can write browser event handlers in Python, mixing it freely with HTML
and JavaScript. Python may never replace JavaScript as the embedded browser
language, but Transcrypt means you might no longer need to worry about that.

Another very active project that lets you script your web pages with Python (up
to 3.10) is Brython, and there are others yet: Skulpt, not quite up to Python 3 yet
but moving in that direction; PyPy.js, ditto; Pyodide, currently supporting Python
3.10 and many scientific extensions, and centered on Wasm; and, most recently,
Anaconda’s PyScript, built on top of Pyodide. We describe several of these projects
in more detail in “Running Python in the Browser” on page 30.

Licensing and Price Issues
CPython is covered by the Python Software Foundation License Version 2, which is
GNU Public License (GPL) compatible but lets you use Python for any proprietary,
free, or other open source software development, similar to BSD/Apache/MIT licen‐
ses. Licenses for PyPy and other implementations are similarly liberal. Anything you
download from the main Python and PyPy sites won’t cost you a penny. Further,
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6 A popular business model is freemium: releasing both a free version and a commercial “pre‐
mium” version with tech support and, perhaps, extra features.

these licenses do not constrain what licensing and pricing conditions you can use
for software you develop using the tools, libraries, and documentation they cover.

However, not everything Python-related is free from licensing costs or hassles.
Many third-party Python sources, tools, and extension modules that you can freely
download have liberal licenses, similar to that of Python itself. Others are covered
by the GPL or Lesser GPL (LGPL), constraining the licensing conditions you can
place on derived works. Some commercially developed modules and tools may
require you to pay a fee, either unconditionally or if you use them for profit.6

There is no substitute for careful examination of licensing conditions and prices.
Before you invest time and energy into any software tool or component, check that
you can live with its license. Often, especially in a corporate environment, such
legal matters may involve consulting lawyers. Modules and tools covered in this
book, unless we explicitly say otherwise, can be taken to be, at the time of this
writing, freely downloadable, open source, and covered by a liberal license akin to
Python’s. However, we claim no legal expertise, and licenses can change over time,
so double-checking is always prudent.

Python Development and Versions
Python is developed, maintained, and released by a team of core developers led by
Guido van Rossum, Python’s inventor, architect, and now “ex” Benevolent Dictator
for Life (BDFL). This title meant that Guido had the final say on what became part
of the Python language and standard library. Once Guido decided to retire as BDFL,
his decision-making role was taken over by a small “Steering Council,” elected for
yearly terms by PSF members.

Python’s intellectual property is vested in the PSF, a nonprofit corporation devoted
to promoting Python, described in “Python Software Foundation” on page 13.
Many PSF Fellows and members have commit privileges to Python’s reference
source repositories, as documented in the “Python Developer’s Guide”, and most
Python committers are members or Fellows of the PSF.

Proposed changes to Python are detailed in public docs called Python Enhancement
Proposals (PEPs). PEPs are debated by Python developers and the wider Python
community, and finally approved or rejected by the Steering Council. (The Steering
Council may take debates and preliminary votes into account but are not bound
by them.) Hundreds of people contribute to Python development through PEPs,
discussion, bug reports, and patches to Python sources, libraries, and docs.

The Python core team releases minor versions of Python (3.x for growing values of
x), also known as “feature releases,” currently at a pace of once a year.
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Each minor release (as opposed to bug-fix microreleases) adds features that make
Python more powerful, but also takes care to maintain backward compatibility.
Python 3.0, which was allowed to break backward compatibility in order to remove
redundant “legacy” features and simplify the language, was first released in Decem‐
ber 2008. Python 3.11 (the most recent stable version at the time of publication) was
first released in October 2022.

Each minor release 3.x is first made available in alpha releases, tagged as 3.xa0,
3.xa1, and so on. After the alphas comes at least one beta release, 3.xb1, and after
the betas, at least one release candidate, 3.xrc1. By the time the final release of
3.x (3.x.0) comes out, it is solid, reliable, and tested on all major platforms. Any
Python programmer can help ensure this by downloading alphas, betas, and release
candidates, trying them out, and filing bug reports for any problems that emerge.

Once a minor release is out, part of the attention of the core team switches to the
next minor release. However, a minor release normally gets successive point releases
(i.e., 3.x.1, 3.x.2, and so on), one every two months, that add no functionality
but can fix errors, address security issues, port Python to new platforms, enhance
documentation, and add tools and (100% backward compatible!) optimizations.

Python’s backward compatibility is fairly good within major releases. You can find
code and documentation online for all old releases of Python, and the Appendix
contains a summary list of changes in each of the releases covered in this book.

Python Resources
The richest Python resource is the web: start at Python’s home page, which is full of
links to explore.

Documentation
Both CPython and PyPy come with good documentation. You can read CPython’s
manuals online (we often refer to these as “the online docs”), and various down‐
loadable formats suitable for offline viewing, searching, and printing are also avail‐
able. The Python documentation page contains additional pointers to a large variety
of other documents. There is also a documentation page for PyPy, and you can find
online FAQs for both Python and PyPy.

Python documentation for nonprogrammers
Most Python documentation (including this book) assumes some software develop‐
ment knowledge. However, Python is quite suitable for first-time programmers, so
there are exceptions to this rule. Good introductory, free online texts for nonprog‐
rammers include:

• Josh Cogliati’s “Non-Programmers Tutorial for Python 3” (currently centered•
on Python 3.9)

• Alan Gauld’s “Learning to Program” (currently centered on Python 3.6)•
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• Allen Downey’s Think Python, 2nd edition (centered on an unspecified version•
of Python 3.x)

An excellent resource for learning Python (for nonprogrammers, and for less expe‐
rienced programmers too) is the “Beginners’ Guide to Python” wiki, which includes
a wealth of links and advice. It’s community curated, so it will stay up-to-date as
available books, courses, tools, and so on keep evolving and improving.

Extension modules and Python sources
A good starting point to explore Python extension binaries and sources is the
Python Package Index (still fondly known to a few of us old-timers as “The Cheese
Shop,” but generally referred to now as PyPI), which at the time of this writing offers
more than 400,000 packages, each with descriptions and pointers.

The standard Python source distribution contains excellent Python source code in
the standard library and in the Tools directory, as well as C source for the many
built-in extension modules. Even if you have no interest in building Python from
source, we suggest you download and unpack the Python source distribution (e.g.,
the latest stable release of Python 3.11) for the sole purpose of studying it; or, if
you so choose, peruse the current bleeding-edge version of Python’s standard library
online.

Many Python modules and tools covered in this book also have dedicated sites. We
include references to such sites in the appropriate chapters.

Books
Although the web is a rich source of information, books still have their place (if you
didn’t agree with us on this, we wouldn’t have written this book, and you wouldn’t
be reading it). Books about Python are numerous. Here are a few we recommend
(some cover older Python 3 versions, rather than current ones):

• If you know some programming but are just starting to learn Python, and you•
like graphical approaches to instruction, Head First Python, 2nd edition, by
Paul Barry (O’Reilly) may serve you well. Like all the books in the Head First
series, it uses graphics and humor to teach its subject.

• Dive Into Python 3, by Mark Pilgrim (Apress), teaches by example in a fast-•
paced and thorough way that is quite suitable for people who are already expert
programmers in other languages.

• Beginning Python: From Novice to Professional, by Magnus Lie Hetland (Apr‐•
ess), teaches both via thorough explanations and by fully developing complete
programs in various application areas.

• Fluent Python, by Luciano Ramalho (O’Reilly), is an excellent book for more•
experienced developers who want to use more Pythonic idioms and features.

12 | Chapter 1: Introduction to Python

https://oreil.ly/kg6Yd
https://oreil.ly/Yf5cK
https://oreil.ly/PGIim
https://oreil.ly/rqYZ9
https://oreil.ly/zDQ1Z
https://learning.oreilly.com/library/view/head-first-python/9781491919521/
https://diveintopython3.net
https://oreil.ly/YtWRs
https://www.oreilly.com/library/view/fluent-python/9781491946237/


7 The Python Software Foundation runs significant infrastructure to support the Python ecosys‐
tem. Donations to the PSF are always welcome.

Community
One of the greatest strengths of Python is its robust, friendly, welcoming commu‐
nity. Python programmers and contributors meet at conferences, “hackathons”
(often known as sprints in the Python community), and local user groups; actively
discuss shared interests; and help each other on mailing lists and social media. For a
complete list of ways to connect, visit https://www.python.org/community.

Python Software Foundation
Besides holding the intellectual property rights for the Python programming lan‐
guage, the PSF promotes the Python community. It sponsors user groups, conferen‐
ces, and sprints, and provides grants for development, outreach, and education,
among other activities. The PSF has dozens of Fellows (nominated for their con‐
tributions to Python, including all of the Python core team, as well as three of
the authors of this book); hundreds of members who contribute time, work, and
money (including many who’ve earned Community Service Awards); and dozens of
corporate sponsors. Anyone who uses and supports Python can become a member
of the PSF.7 Check out the membership page for information on the various mem‐
bership levels, and on how to become a member of the PSF. If you’re interested in
contributing to Python itself, see the “Python Developer’s Guide”.

Workgroups
Workgroups are committees established by the PSF to do specific, important
projects for Python. Here are some examples of active workgroups at the time
of writing:

• The Python Packaging Authority (PyPA) improves and maintains the Python•
packaging ecosystem and publishes the “Python Packaging User Guide”.

• The Python Education workgroup promotes education and learning with•
Python.

• The Diversity and Inclusion workgroup supports and facilitates the growth of a•
diverse and international community of Python programmers.

Python conferences
There are lots of Python conferences worldwide. General Python conferences
include international and regional ones, such as PyCon and EuroPython, and other
more local ones such as PyOhio and PyCon Italia. Topical conferences include
SciPy and PyData. Conferences are often followed by coding sprints, where Python
contributors get together for several days of coding focused on particular open
source projects and abundant camaraderie. You can find a listing of conferences on
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8 We need to mobilize to get more penguins interested in our language!

the Community Conferences and Workshops page. More than 17,000 videos of talks
about Python, from more than 450 conferences, are available at the PyVideo site.

User groups and organizations
The Python community has local user groups on every continent except Antarc‐
tica8—more than 1,600 of them, according to the list on the LocalUserGroups
wiki. There are Python meetups around the world. PyLadies is an international
mentorship group, with local chapters, to promote women in Python; anyone with
an interest in Python is welcome. NumFOCUS, a nonprofit charity promoting
open practices in research, data, and scientific computing, sponsors the PyData
conference and other projects.

Mailing lists
The Community Mailing Lists page has links to several Python-related mailing lists
(and some Usenet groups, for those of us old enough to remember Usenet!). Alter‐
natively, search Mailman to find active mailing lists covering a wide variety of inter‐
ests. Python-related official announcements are posted to the python-announce
list. To ask for help with specific problems, write to help@python.org. For help
learning or teaching Python, write to tutor@python.org, or, better yet, join the list.
For a useful weekly roundup of Python-related news and articles, subscribe to
Python Weekly. You can also follow Python Weekly at @python_discussions@masto‐
don.social.

Social media
For an RSS feed of Python-related blogs, see Planet Python. If you’re interested
in tracking language developments, check out discuss.python.org—it sends useful
summaries if you don’t visit regularly. On Twitter, follow @ThePSF. Libera.Chat
on IRC hosts several Python-related channels: the main one is #python. LinkedIn
has many Python groups, including Python Web Developers. On Slack, join the
PySlackers community. On Discord, check out Python Discord. Technical questions
and answers about Python programming can also be found and followed on Stack
Overflow under a variety of tags, including [python]. Python is currently the most
active programming language on Stack Overflow, and many useful answers with
illuminating discussions can be found there. If you like podcasts, check out Python
podcasts, such as Python Bytes.

Installation
You can install the classic (CPython) and PyPy versions of Python on most plat‐
forms. With a suitable development system (C for CPython; PyPy, coded in Python
itself, only needs CPython installed first), you can install Python versions from
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the respective source code distributions. On popular platforms, you also have the
recommended alternative of installing prebuilt binary distributions.

Installing Python if It Comes Preinstalled
If your platform comes with a preinstalled version of Python,
you’re still best advised to install a separate up-to-date version
for your own code development. When you do, do not remove
or overwrite your platform’s original version: rather, install
the new version alongside the first one. This way, you won’t
disturb any other software that is part of your platform: such
software might rely on the specific Python version that came
with the platform itself.

Installing CPython from a binary distribution is faster, saves you substantial work
on some platforms, and is the only possibility if you have no suitable C compiler.
Installing from source code gives you more control and flexibility, and is a must if
you can’t find a suitable prebuilt binary distribution for your platform. Even if you
install from binaries, it’s best to also download the source distribution, since it can
include examples, demos, and tools that are usually missing from prebuilt binaries.
We’ll look at how to do both next.

Installing Python from Binaries
If your platform is popular and current, you’ll easily find prebuilt, packaged
binary versions of Python ready for installation. Binary packages are typically self-
installing, either directly as executable programs or via appropriate system tools,
such as the Red Hat Package Manager (RPM) on some versions of Linux, and the
Microsoft Installer (MSI) on Windows. After downloading a package, install it by
running the program and choosing installation parameters, such as the directory
where Python is to be installed. In Windows, select the option labeled “Add Python
3.10 to PATH” to have the installer add the install location into the PATH in order
to easily use Python at a command prompt (see “The python Program” on page
21).

You can get the “official” binaries from the Downloads page on the Python website:
click the button labeled “Download Python 3.11.x” to download the most recent
binary suitable for your browser’s platform.

Many third parties supply free binary Python installers for other platforms. Instal‐
lers exist for Linux distributions, whether your distribution is RPM-based (Red Hat,
Fedora, Mandriva, SUSE, etc.) or Debian-based (including Ubuntu, probably the
most popular Linux distribution at the time of this writing). The Other Platforms
page provides links to binary distributions for now somewhat exotic platforms such
as AIX, OS/2, RISC OS, IBM AS/400, Solaris, HP-UX, and so forth (often not the
latest Python versions, given the now “quaint” nature of such platforms), as well as
one for the very current iOS platform, the operating system of the popular iPhone
and iPad devices.
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9 Or, in modern Windows versions, the vastly preferable Windows Terminal.

Anaconda, mentioned earlier in this chapter, is a binary distribution including
Python, plus the conda package manager, plus hundreds of third-party extensions,
particularly for science, math, engineering, and data analysis. It’s available for Linux,
Windows, and macOS. Miniconda, also mentioned earlier in this chapter, is the
same package but without all of those extensions; you can selectively install subsets
of them with conda.

macOS
The popular third-party macOS open source package man‐
ager Homebrew offers, among many other open source
packages, excellent versions of Python. conda, mentioned in
“Anaconda and Miniconda” on page 8, also works well in
macOS.

Installing Python from Source Code
To install CPython from source code, you need a platform with an ISO-compliant C
compiler and tools such as make. On Windows, the normal way to build Python is
with Visual Studio (ideally VS 2022, currently available to developers for free).

To download the Python source code, visit the Python Source Releases page (on the
Python website, hover over Downloads in the menu bar and select “Source code”)
and choose your version.

The file under the link labeled “Gzipped source tarball” has a .tgz file extension; this
is equivalent to .tar.gz (i.e., a tar archive of files, compressed by the popular gzip
compressor). Alternatively, you can use the link labeled “XZ compressed source
tarball” to get a version with an extension of .tar.xz instead of .tgz, compressed with
the even more powerful xz compressor, if you have all the needed tools to deal with
XZ compression.

Microsoft Windows
On Windows, installing Python from source code can be a chore unless you are
familiar with Visual Studio and used to working in the text-oriented window known
as the command prompt9—most Windows users prefer to simply download the
prebuilt Python from the Microsoft Store.

If the following instructions give you any trouble, stick with installing Python from
binaries, as described in the previous section. It’s best to do a separate installation
from binaries anyway, even if you also install from source. If you notice anything
strange while using the version you installed from source, double-check with the
installation from binaries. If the strangeness goes away, it must be due to some quirk
in your installation from source, so you know you must double-check the details of
how you chose to build the latter.
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10 Most problems with source installations concern the absence of various supporting libraries,
which may cause some features to be missing from the built interpreter. The “Python Developers’
Guide” explains how to handle dependencies on various platforms. build-python-from-source.com
is a helpful site that shows you all the commands necessary to download, build, and install
a specific version of Python, plus most of the needed supporting libraries on several Linux
platforms.

In the following sections, for clarity, we assume you have made a new folder called
%USERPROFILE%\py (e.g., c:\users\tim\py), which you can do, for example, by
typing the mkdir command in any command window. Download the source .tgz
file—for example, Python-3.11.0.tgz—to that folder. Of course, you can name and
place the folder as it best suits you: our name choice is just for expository purposes.

Uncompressing and unpacking the Python source code
You can uncompress and unpack a .tgz or .tar.xz file with, for example, the
free program 7-Zip. Download the appropriate version from the Download
page, install it, and run it on the .tgz file (e.g., c:\users\alex\py\Python-3.11.0.tgz)
that you downloaded from the Python website. Assuming you downloaded this
file into your %USERPROFILE%\py folder (or moved it there from %USERPRO‐
FILE%\downloads, if necessary), you will now have a folder called %USERPRO‐
FILE%\py\Python-3.11.0 or similar, depending on the version you downloaded.
This is the root of a tree that contains the entire standard Python distribution in
source form.

Building the Python source code
Open the readme.txt file located in the PCBuild subdirectory of this root folder with
any text editor, and follow the detailed instructions found there.

Unix-Like Platforms
On Unix-like platforms, installing Python from source code is generally simple.10

In the following sections, for clarity, we assume you have created a new directory
named ~/py and downloaded the source .tgz file—for example, Python-3.11.0.tgz—
to that directory. Of course, you can name and place the directory as it best suits
you: our name choice is just for expository purposes.

Uncompressing and unpacking the Python source code
You can uncompress and unpack a .tgz or .tar.xz file with the popular GNU version
of tar. Just type the following at a shell prompt:

$ cd ~/py && tar xzf Python-3.11.0.tgz

You now have a directory called ~/py/Python-3.11.0 or similar, depending on the
version you downloaded. This is the root of a tree that contains the entire standard
Python distribution in source form.
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Configuring, building, and testing
You’ll find detailed notes in the README file inside this directory, under the
heading “Build instructions,” and we recommend you study those notes. In the
simplest case, however, all you need may be to give the following commands at a
shell prompt:

$ cd ~/py/Python-3.11/0
$ ./configure
    [configure writes much information, snipped here]
$ make
    [make takes quite a while and emits much information, snipped here]

If you run make without first running ./configure, make implicitly runs ./config
ure. When make finishes, check that the Python you have just built works as
expected:

$ make test
    [takes quite a while, emits much information, snipped here]

Usually, make test confirms that your build is working, but also informs you that
some tests have been skipped because optional modules were missing.

Some of the modules are platform-specific (e.g., some may work only on machines
running SGI’s ancient IRIX operating system); you don’t need to worry about them.
However, other modules may be skipped because they depend on other open source
packages that are currently not installed on your machine. For example, on Unix,
the module _tkinter—needed to run the Tkinter GUI package and the IDLE
integrated development environment, which come with Python—can be built only
if ./configure can find an installation of Tcl/Tk 8.0 or later on your machine. See
the README file for more details and specific caveats about different Unix and
Unix-like platforms.

Building from source code lets you tweak your configuration in several ways. For
example, you can build Python in a special way that helps you debug memory leaks
when you develop C-coded Python extensions, covered in “Building and Installing
C-Coded Python Extensions” in Chapter 25. ./configure --help is a good source
of information about the configuration options you can use.

Installing after the build
By default, ./configure prepares Python for installation in /usr/local/bin and /usr/
local/lib. You can change these settings by running ./configure with the option
--prefix before running make. For example, if you want a private installation of
Python in the subdirectory py311 of your home directory, run:

$ cd ~/py/Python-3.11.0
$ ./configure --prefix=~/py311
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11 Or make altinstall, if you want to avoid creating links to the Python executable and manual
pages.

and continue with make as in the previous section. Once you’re done building and
testing Python, to perform the actual installation of all files, run the following
command:11

$ make install

The user running make install must have write permissions on the target direc‐
tories. Depending on your choice of target directories, and the permissions on
those directories, you may need to su to root, bin, or some other user when you
run make install. The common idiom for this purpose is sudo make install:
if sudo prompts for a password, enter your current user’s password, not root’s. An
alternative, and recommended, approach is to install into a virtual environment, as
covered in “Python Environments” on page 237.
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1 This may involve using quotes if the pathname contains spaces—again, this depends on your
operating system.

2
The Python Interpreter

To develop software systems in Python, you usually write text files that contain
Python source code. You can do this using any text editor, including those we list
in “Python Development Environments” on page 27. Then you process the source
files with the Python compiler and interpreter. You can do this directly, within an
integrated development environment (IDE), or via another program that embeds
Python. The Python interpreter also lets you execute Python code interactively, as
do IDEs.

The python Program
The Python interpreter program is run as python (it’s named python.exe on Win‐
dows). The program includes both the interpreter itself and the Python compiler,
which is implicitly invoked as needed on imported modules. Depending on your
system, the program may have to be in a directory listed in your PATH environment
variable. Alternatively, as with any other program, you can provide its complete
pathname at a command (shell) prompt or in the shell script (or shortcut target,
etc.) that runs it.1

On Windows, press the Windows key and start typing python. “Python 3.x” (the
command-line version) appears, along with other choices, such as “IDLE” (the
Python GUI).
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Environment Variables
Besides PATH, other environment variables affect the python program. Some of these
have the same effects as options passed to python on the command line, as we show
in the next section, but several environment variables provide settings not available
via command-line options. The following list introduces some frequently used ones;
for complete details, see the online docs:

PYTHONHOME

The Python installation directory. A lib subdirectory, containing the Python
standard library, must be under this directory. On Unix-like systems, standard
library modules should be in lib/python-3.x for Python 3.x, where x is the
minor Python version. If PYTHONHOME is not set, Python makes an informed
guess about the installation directory.

PYTHONPATH

A list of directories, separated by colons on Unix-like systems and by semico‐
lons on Windows, from which Python can import modules. This list extends
the initial value for Python’s sys.path variable. We cover modules, importing,
and sys.path in Chapter 7.

PYTHONSTARTUP

The name of a Python source file to run each time an interactive interpreter
session starts. No such file runs if you don’t set this variable, or set it to the path
of a file that is not found. The PYTHONSTARTUP file does not run when you run a
Python script; it runs only when you start an interactive session.

How to set and examine environment variables depends on your operating system.
In Unix, use shell commands, often within startup shell scripts. On Windows, press
the Windows key and start typing environment var, and a couple of shortcuts
appear: one for user environment variables, the other for system ones. On a Mac,
you can work just as on other Unix-like systems, but you have more options,
including a MacPython-specific IDE. For more information about Python on the
Mac, see “Using Python on a Mac” in the online docs.

Command-Line Syntax and Options
The Python interpreter’s command-line syntax can be summarized as follows:

[path]python {options} [-c command | -m module | file | -] {args}

Brackets ([]) enclose what’s optional, braces ({}) enclose items of which zero or
more may be present, and bars (|) mean a choice among alternatives. Python uses a
slash (/) for filepaths, as in Unix.

Running a Python script at a command line can be as simple as:

$ python hello.py
Hello World
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You can also explicitly provide the path to the script:

$ python ./hello/hello.py
 Hello World

The filename of the script can be an absolute or relative filepath, and need not have
any specific extension (although it is conventional to use a .py extension).

options are case-sensitive short strings, starting with a hyphen, that ask python
for nondefault behavior. python accepts only options that start with a hyphen (-).
The most frequently used options are listed in Table 2-1. Each option’s description
gives the environment variable (if any) that, when set, requests that behavior. Many
options have longer versions, starting with two hyphens, as shown by python -h.
For full details, see the online docs.

Table 2-1. Frequently used python command-line options

Option Meaning (and corresponding environment variable, if any)

-B Don’t save bytecode files to disk (PYTHONDONTWRITEBYTECODE)

-c Gives Python statements within the command line

-E Ignores all environment variables

-h Shows the full list of options, then terminates

-i Runs an interactive session after the file or command runs (PYTHONINSPECT)

-m Specifies a Python module to run as the main script

-O Optimizes bytecode (PYTHONOPTIMIZE)—note that this is an uppercase letter O, not the digit 0

-OO Like -O, but also removes docstrings from the bytecode

-S Omits the implicit import site on startup (covered in “Per-Site Customization” on page 429)

-t, -tt Issues warnings about inconsistent tab usage (-tt issues errors, rather than just warnings, for the
same issues)

-u Uses unbuffered binary files for standard output and standard error (PYTHONUNBUFFERED)

-v Verbosely traces module import and cleanup actions (PYTHONVERBOSE)

-V Prints the Python version number, then terminates

-W arg Adds an entry to the warnings filter (see “The warnings Module” on page 538)

-x Excludes (skips) the first line of the script’s source

Use -i when you want to get an interactive session immediately after running some
script, with top-level variables still intact and available for inspection. You do not
need -i for normal interactive sessions, though it does no harm.
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2 This may affect code that parses docstrings for meaningful purposes; we suggest you avoid
writing such code.

-O and -OO yield small savings of time and space in bytecode generated for modules
you import, turning assert statements into no-operations, as covered in “The
assert Statement” on page 219. -OO also discards documentation strings.2

After the options, if any, tell Python which script to run by adding the filepath to
that script. Instead of a filepath, you can use -c command to execute a Python code
string command. A command normally contains spaces, so you’ll need to add quotes
around it to satisfy your operating system’s shell or command-line processor. Some
shells (e.g., bash) let you enter multiple lines as a single argument, so that command
can be a series of Python statements. Other shells (e.g., Windows shells) limit you
to a single line; command can then be one or more simple statements separated by
semicolons (;), as we discuss in “Statements” on page 39.

Another way to specify which Python script to run is with -m module. This option
tells Python to load and run a module named module (or the __main__.py member
of a package or ZIP file named module) from some directory that is part of Python’s
sys.path; this is useful with several modules from Python’s standard library. For
example, as covered in “The timeit module” on page 552, -m timeit is often the
best way to perform micro-benchmarking of Python statements.

A hyphen (-), or the lack of any token in this position, tells the interpreter to
read the program source from standard input—normally, an interactive session.
You need a hyphen only if further arguments follow. args are arbitrary strings; the
Python you run can access these strings as items of the list sys.argv.

For example, enter the following at a command prompt to have Python show the
current date and time:

$ python -c "import time; print(time.asctime())"

You can start the command with just python (you do not have to specify the
full path to Python) if the directory of the Python executable is in your PATH
environment variable. (If you have multiple versions of Python installed, you can
specify the version with, for example, python3 or python3.10, as appropriate; then,
the version used if you just say python is the one you installed most recently.)

The Windows py Launcher
On Windows, Python provides the py launcher to install and run multiple Python
versions on a machine. At the bottom of the installer, you’ll find an option to install
the launcher for all users (it’s checked by default). When you have multiple versions,
you can select a specific version using py followed by a version option instead of the
plain python command. Common py command options are listed in Table 2-2 (use
py -h to see all the options).
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Table 2-2. Frequently used py command-line options

Option Meaning

-2 Run the latest installed Python 2 version.

-3 Run the latest installed Python 3 version.

-3.x or
-3.x-nn

Run a specific Python 3 version. When referenced as just -3.10, uses the 64-bit version, or
the 32-bit version if no 64-bit version is available. -3.10-32 or -3.10-64 picks a specific
build when both are installed.

-0 or --list List all installed Python versions, including an indication of whether a build is 32- or 64-bit,
such as 3.10-64.

-h List all py command options, followed by standard Python help.

If no version option is given, py runs the latest installed Python.

For example, to show the local time using the installed Python 3.9 64-bit version,
you can run this command:

C:\> py -3.9 -c "import time; print(time.asctime())"

(Typically, there is no need to give a path to py, since installing Python adds py to
the system PATH.)

The PyPy Interpreter
PyPy, written in Python, implements its own compiler to generate LLVM intermedi‐
ate code to run on an LLVM backend. The PyPy project offers some improvements
over standard CPython, most notably in the areas of performance and multithread‐
ing. (At this writing, PyPy is up-to-date with Python 3.9.)

pypy may be run similarly to python:

[path]pypy {options} [-c command | file | - ] {args}

See the PyPy home page for installation instructions and complete up-to-date
information.

Interactive Sessions
When you run python without a script argument, Python starts an interactive
session and prompts you to enter Python statements or expressions. Interactive
sessions are useful to explore, to check things out, and to use Python as a powerful,
extensible interactive calculator. (Jupyter Notebook, discussed briefly at the end of
this chapter, is like a “Python on steroids” specifically for interactive session usage.)
This mode is often referred to as a REPL, or read–evaluate–print loop, since that’s
pretty much what the interpreter then does.
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When you enter a complete statement, Python executes it. When you enter a com‐
plete expression, Python evaluates it. If the expression has a result, Python outputs
a string representing the result and also assigns the result to the variable named _
(a single underscore) so that you can immediately use that result in another expres‐
sion. The prompt string is >>> when Python expects a statement or expression,
and ... when a statement or expression has been started but not completed. In
particular, Python prompts with ... when you have opened a parenthesis, bracket,
or brace on a previous line and haven’t closed it yet.

While working in the interactive Python environment, you can use the built-in
help() function to drop into a help utility that offers useful information about
Python’s keywords and operators, installed modules, and general topics. When
paging through a long help description, press q to return to the help> prompt. To
exit the utility and return to the Python >>> prompt, type quit. You can also get
help on specific objects at the Python prompt without entering the help utility by
typing help(obj), where obj is the program object you want more help with.

There are several ways you can end an interactive session. The most common are:

• Enter the end-of-file keystroke for your OS (Ctrl-Z on Windows, Ctrl-D on•
Unix-like systems).

• Execute either of the built-in functions quit or exit, using the form quit()•
or exit(). (Omitting the trailing () will display a message like “Use quit() or
Ctrl-D (i.e., EOF) to exit,” but will still leave you in the interpreter.)

• Execute the statement raise SystemExit, or call sys.exit() (we cover System•
Exit and raise in Chapter 6, and the sys module in Chapter 8).

Use the Python Interactive Interpreter to Experiment
Trying out Python statements in the interactive interpreter is
a quick way to experiment with Python and immediately see
the results. For example, here is a simple use of the built-in
enumerate function:

>>> print(list(enumerate("abc")))

[(0, 'a'), (1, 'b'), (2, 'c')]

The interactive interpreter is a good introductory platform to
learn core Python syntax and features. (Experienced Python
developers often open a Python interpreter to quickly check
out an infrequently used command or function.)

Line-editing and history facilities depend in part on how Python was built: if
the readline module was included, all features of the GNU readline library are
available. Windows has a simple but usable history facility for interactive text mode
programs like python.
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In addition to the built-in Python interactive environment, and those offered as
part of richer development environments covered in the next section, you can
freely download other powerful interactive environments. The most popular one is
IPython, covered in “IPython” on page 6, which offers a dazzling wealth of features.
A simpler, lighter weight, but still quite handy alternative read-line interpreter is
bpython.

Python Development Environments
The Python interpreter’s built-in interactive mode is the simplest development
environment for Python. It is primitive, but it’s lightweight, has a small footprint,
and starts fast. Together with a good text editor (as discussed in “Free Text Editors
with Python Support” on page 28) and line-editing and history facilities, the
interactive interpreter (or, alternatively, the much more powerful IPython/Jupyter
command-line interpreter) is a usable development environment. However, there
are several other development environments you can use.

IDLE
Python’s Integrated Development and Learning Environment (IDLE) comes with
standard Python distributions on most platforms. IDLE is a cross-platform, 100%
pure Python application based on the Tkinter GUI. It offers a Python shell similar
to the interactive Python interpreter, but richer. It also includes a text editor opti‐
mized to edit Python source code, an integrated interactive debugger, and several
specialized browsers/viewers.

For more functionality in IDLE, install IdleX, a substantial collection of free third-
party extensions.

To install and use IDLE on macOS, follow the specific instructions on the Python
website.

Other Python IDEs
IDLE is mature, stable, easy, fairly rich, and extensible. There are, however, many
other IDEs: cross-platform or platform specific, free or commercial (including
commercial IDEs with free offerings, especially if you’re developing open source
software), standalone or add-ons to other IDEs.

Some of these IDEs sport features such as static analysis, GUI builders, debuggers,
and so on. Python’s IDE wiki page lists over 30, and points to many other URLs with
reviews and comparisons. If you’re an IDE collector, happy hunting!

We can’t do justice to even a tiny subset of all the available IDEs. The free third-
party plug-in PyDev for the popular cross-platform, cross-language modular IDE
Eclipse has excellent Python support. Steve is a longtime user of Wing by Archaeop‐
teryx, the most venerable Python-specific IDE. Paul’s IDE of choice, and perhaps
the single most popular third-party Python IDE today, is PyCharm by JetBrains.
Thonny is a popular beginner’s IDE, lightweight but full featured and easily installed
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3 A great place to start is Learning GNU Emacs, 3rd edition (O’Reilly).
4 Not only as “an editor,” but also as Alex’s favorite “as close to an IDE as Alex will go” tool!

5 pylint also includes the useful pyreverse utility to autogenerate UML class and package dia‐
grams directly from your Python code.

on the Raspberry Pi (or just about any other popular platform). And not to be over‐
looked is Microsoft’s Visual Studio Code, an excellent, very popular cross-platform
IDE with support (via plug-ins) for a number of languages, including Python. If you
use Visual Studio, check out PTVS, an open source plug-in that’s particularly good
at allowing mixed-language debugging in Python and C as and when needed.

Free Text Editors with Python Support
You can edit Python source code with any text editor, even simple ones such as
Notepad on Windows or ed on Linux. Many powerful free editors support Python
with extra features such as syntax-based colorization and automatic indentation.
Cross-platform editors let you work in uniform ways on different platforms. Good
text editors also let you run, from within the editor, tools of your choice on the
source code you’re editing. An up-to-date list of editors for Python can be found on
the PythonEditors wiki, which lists dozens of them.

The very best for sheer editing power may be classic Emacs (see the Python wiki
page for Python-specific add-ons). Emacs is not easy to learn, nor is it lightweight.3
Alex’s personal favorite4 is another classic: Vim, Bram Moolenaar’s improved ver‐
sion of the traditional Unix editor vi. It’s arguably not quite as powerful as Emacs,
but still well worth considering—it’s fast, lightweight, Python programmable, and
runs everywhere in both text mode and GUI versions. For excellent Vim coverage,
see Learning the vi and Vim Editors, 8th edition, by Arnold Robbins and Elbert
Hannah (O’Reilly); see the Python wiki page for Python-specific tips and add-ons.
Steve and Anna use Vim too, and where it’s available, Steve also uses the commercial
editor Sublime Text, with good syntax coloring and enough integration to run your
programs from inside the editor. For quick editing and executing of short Python
scripts (and as a fast and lightweight general text editor, even for multimegabyte text
files), SciTE is Paul’s go-to editor.

Tools for Checking Python Programs
The Python compiler checks program syntax sufficiently to be able to run the
program, or to report a syntax error. If you want more thorough checks of your
Python code, you can download and install one or more third-party tools for the
purpose. pyflakes is a very quick, lightweight checker: it’s not thorough, but it
doesn’t import the modules it’s checking, which makes using it fast and safe. At
the other end of the spectrum, pylint is very powerful and highly configurable; it’s
not lightweight, but repays that by being able to check many style details in highly
customizable ways based on editable configuration files.5 flake8 bundles pyflakes
with other formatters and custom plug-ins, and can handle large codebases by
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spreading work across multiple processes. black and its variant blue are intention‐
ally less configurable; this makes them popular with widely dispersed project teams
and open source projects in order to enforce a common Python style. To make
sure you don’t forget to run them, you can incorporate one or more of these
checkers/formatters into your workflow using the pre-commit package.

For more thorough checking of Python code for proper type usages, use tools like
mypy; see Chapter 5 for more on this topic.

Running Python Programs
Whatever tools you use to produce your Python application, you can see your
application as a set of Python source files, which are normal text files that typically
have the extension .py. A script is a file that you can run directly. A module is a
file that you can import (as covered in Chapter 7) to provide some functionality to
other files or interactive sessions. A Python file can be both a module (providing
functionality when imported) and a script (OK to run directly). A useful and wide‐
spread convention is that Python files that are primarily intended to be imported as
modules, when run directly, should execute some self-test operations, as covered in
“Testing” on page 514.

The Python interpreter automatically compiles Python source files as needed.
Python saves the compiled bytecode in a subdirectory called __pycache__ within
the directory with the module’s source, with a version-specific extension annotated
to denote the optimization level.

To avoid saving compiled bytecode to disk, you can run Python with the option -B,
which can be handy when you import modules from a read-only disk. Also, Python
does not save the compiled bytecode form of a script when you run the script
directly; instead, Python recompiles the script each time you run it. Python saves
bytecode files only for modules you import. It automatically rebuilds each module’s
bytecode file whenever necessary—for example, when you edit the module’s source.
Eventually, for deployment, you may package Python modules using tools covered
in Chapter 24 (available online).
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6 Or online: Paul, for example, maintains a list of online Python interpreters.

You can run Python code with the Python interpreter or an IDE.6 Normally, you
start execution by running a top-level script. To run a script, give its path as an
argument to python, as covered in “The python Program” on page 21. Depending
on your operating system, you can invoke python directly from a shell script
or command file. On Unix-like systems, you can make a Python script directly
executable by setting the file’s permission bits x and r, and beginning the script with
a shebang line, a line such as:

#!/usr/bin/env python

or some other line starting with #! followed by a path to the python interpreter
program, in which case you can optionally add a single word of options—for
example:

#!/usr/bin/python -OB

On Windows, you can use the same style #! line, in accordance with PEP 397,
to specify a particular version of Python, so your scripts can be cross-platform
between Unix-like and Windows systems. You can also run Python scripts with the
usual Windows mechanisms, such as double-clicking their icons. When you run
a Python script by double-clicking the script’s icon, Windows automatically closes
the text-mode console associated with the script as soon as the script terminates.
If you want the console to linger (to allow the user to read the script’s output on
the screen), ensure the script doesn’t terminate too soon. For example, use, as the
script’s last statement:

input('Press Enter to terminate')

This is not necessary when you run the script from a command prompt.

On Windows, you can also use the extension .pyw and interpreter program
pythonw.exe instead of .py and python.exe. The w variants run Python without
a text-mode console, and thus without standard input and output. This is good
for scripts that rely on GUIs or run invisibly in the background. Use them only
when a program is fully debugged, to keep standard output and error available for
information, warnings, and error messages during development.

Applications coded in other languages may embed Python, controlling the execu‐
tion of Python for their own purposes. We examine this briefly in “Embedding
Python” in Chapter 25 (available online).

Running Python in the Browser
There are also options for running Python code within a browser session, executed
in either the browser process or some separate server-based component. PyScript
exemplifies the former approach, and Jupyter the latter.
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7 A great example of the synergy open source gets by projects “standing on the shoulders of giants”
as an ordinary, everyday thing!

PyScript
A recent development in the Python-in-a-browser endeavor is the release of
PyScript by Anaconda. PyScript is built on top of Pyodide,7 which uses WebAssem‐
bly to bring up a full Python engine in the browser. PyScript introduces custom
HTML tags so that you can write Python code without having to know or use Java‐
Script. Using these tags, you can create a static HTML file containing Python code
that will run in a remote browser, with no additional installed software required.

A simple PyScript “Hello, World!” HTML file might look like this:

<html>
<head>
    <link rel='stylesheet' 
 href='https://pyscript.net/releases/2022.06.1/pyscript.css' />
    <script defer 
 src='https://pyscript.net/releases/2022.06.1/pyscript.js'></script>
</head>
<body>
<py-script>
import time
print('Hello, World!')
print(f'The current local time is {time.asctime()}')
print(f'The current UTC time is {time.asctime(time.gmtime())}')
</py-script>
</body>
</html>

You can save this code snippet as a static HTML file and successfully run it in a
client browser, even if Python isn’t installed on your computer.

Changes Are Coming to PyScript
PyScript is still in early development at the time of publica‐
tion, so the specific tags and APIs shown here are likely to
change as the package undergoes further development.

For more complete and up-to-date information, see the PyScript website.

Jupyter
The extensions to the interactive interpreter in IPython (covered in “IPython”
on page 6) were further extended by the Jupyter project, best known for the
Jupyter Notebook, which offers Python developers a “literate programming” tool.
A notebook server, typically accessed via a website, saves and loads each notebook,
creating a Python kernel process to execute its Python commands interactively.
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Notebooks are a rich environment. Each one is a sequence of cells whose contents
may either be code or rich text formatted with the Markdown language extended
with LaTeX, allowing complex mathematics to be included. Code cells can produce
rich outputs too, including most popular image formats as well as scripted HTML.
Special integrations adapt the matplotlib library to the web, and there are an
increasing number of mechanisms for interaction with notebook code.

Further integrations allow notebooks to appear in other ways. For example, with the
right extension, you can easily format a Jupyter notebook as a reveal.js slideshow
for presentations in which the code cells can be interactively executed. Jupyter Book
allows you to collect notebooks together as chapters and publish the collection as a
book. GitHub allows browsing (but not executing) of uploaded notebooks (a special
renderer provides correct formatting of the notebook).

There are many examples of Jupyter notebooks available on the internet. For a
good demonstration of its features, take a look at the Executable Books website;
notebooks underpin its publishing format.
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3
The Python Language

This chapter is a guide to the Python language. To learn Python from scratch, we
suggest you start with the appropriate links from the online docs and the resources
mentioned in “Python documentation for nonprogrammers” on page 11. If you
already know at least one other programming language well, and just want to learn
specifics about Python, this chapter is for you. However, we’re not trying to teach
Python: we cover a lot of ground at a pretty fast pace. We focus on the rules, and
only secondarily point out best practices and style; as your Python style guide, use
PEP 8 (optionally augmented by extra guidelines such as those of “The Hitchhiker’s
Guide to Python”, CKAN, and Google).

Lexical Structure
The lexical structure of a programming language is the set of basic rules that
govern how you write programs in that language. It is the lowest-level syntax of
the language, specifying such things as what variable names look like and how to
denote comments. Each Python source file, like any other text file, is a sequence
of characters. You can also usefully consider it a sequence of lines, tokens, or
statements. These different lexical views complement each other. Python is very
particular about program layout, especially lines and indentation: pay attention to
this information if you are coming to Python from another language.

Lines and Indentation
A Python program is a sequence of logical lines, each made up of one or more
physical lines. Each physical line may end with a comment. A hash sign (#) that
is not inside a string literal starts a comment. All characters after the #, up to but
excluding the line end, are the comment: Python ignores them. A line containing
only whitespace, possibly with a comment, is a blank line: Python ignores it. In an
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interactive interpreter session, you must enter an empty physical line (without any
whitespace or comment) to terminate a multiline statement.

In Python, the end of a physical line marks the end of most statements. Unlike in
other languages, you don’t normally terminate Python statements with a delimiter,
such as a semicolon (;). When a statement is too long to fit on a physical line,
you can join two adjacent physical lines into a logical line by ensuring that the
first physical line does not contain a comment and ends with a backslash (\). More
elegantly, Python also automatically joins adjacent physical lines into one logical
line if an open parenthesis ((), bracket ([), or brace ({) has not yet been closed:
take advantage of this mechanism to produce more readable code than you’d get
with backslashes at line ends. Triple-quoted string literals can also span physical
lines. Physical lines after the first one in a logical line are known as continuation
lines. Indentation rules apply to the first physical line of each logical line, not to
continuation lines.

Python uses indentation to express the block structure of a program. Python does
not use braces, or other begin/end delimiters, around blocks of statements; inden‐
tation is the only way to denote blocks. Each logical line in a Python program is
indented by the whitespace on its left. A block is a contiguous sequence of logical
lines, all indented by the same amount; a logical line with less indentation ends
the block. All statements in a block must have the same indentation, as must all
clauses in a compound statement. The first statement in a source file must have no
indentation (i.e., must not begin with any whitespace). Statements that you type at
the interactive interpreter primary prompt, >>> (covered in “Interactive Sessions”
on page 25), must also have no indentation.

Python treats each tab as if it was up to 8 spaces, so that the next character after the
tab falls into logical column 9, 17, 25, and so on. Standard Python style is to use four
spaces (never tabs) per indentation level.

If you must use tabs, Python does not allow mixing tabs and spaces for indentation.

Use Spaces, Not Tabs
Configure your favorite editor to expand a Tab keypress to
four spaces, so that all Python source code you write contains
just spaces, not tabs. This way, all tools, including Python
itself, are consistent in handling indentation in your Python
source files. Optimal Python style is to indent blocks by
exactly four spaces; use no tab characters.

Character Sets
A Python source file can use any Unicode character, encoded by default as UTF-8.
(Characters with codes between 0 and 127, the 7-bit ASCII characters, encode in
UTF-8 into the respective single bytes, so an ASCII text file is a fine Python source
file, too.)
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You may choose to tell Python that a certain source file is written in a different
encoding. In this case, Python uses that encoding to read the file. To let Python
know that a source file is written with a nonstandard encoding, start your source file
with a comment whose form must be, for example:

# coding: iso-8859-1

After coding:, write the name of an ASCII-compatible codec from the codecs
module, such as utf-8 or iso-8859-1. Note that this coding directive comment (also
known as an encoding declaration) is taken as such only if it is at the start of a source
file (possibly after the “shebang line” covered in “Running Python Programs” on
page 29). Best practice is to use utf-8 for all of your text files, including Python
source files.

Tokens
Python breaks each logical line into a sequence of elementary lexical components
known as tokens. Each token corresponds to a substring of the logical line. The
normal token types are identifiers, keywords, operators, delimiters, and literals, which
we cover in the following sections. You may freely use whitespace between tokens to
separate them. Some whitespace separation is necessary between logically adjacent
identifiers or keywords; otherwise, Python would parse them as a single longer
identifier. For example, ifx is a single identifier; to write the keyword if followed
by the identifier x, you need to insert some whitespace (typically only one space
character, i.e., if x).

Identifiers
An identifier is a name used to specify a variable, function, class, module, or other
object. An identifier starts with a letter (that is, any character that Unicode classifies
as a letter) or an underscore (_), followed by zero or more letters, underscores,
digits, or other characters that Unicode classifies as letters, digits, or combining
marks (as defined in Unicode Standard Annex #31).

For example, in the Unicode Latin-1 character range, the valid leading characters
for an identifier are:

ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz
ªµºÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõöøùúûüýþÿ

After the leading character, the valid identifier body characters are just the same,
plus the digits and · (Unicode MIDDLE DOT) character:

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz
ªµ·ºÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõöøùúûüýþÿ

Case is significant: lowercase and uppercase letters are distinct. Punctuation charac‐
ters such as @, $, and ! are not allowed in identifiers.
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1 Identifiers referring to constants are all uppercase, by convention.

Beware of Using Unicode Characters That Are Homoglyphs
Some Unicode characters look very similar to, if not indis‐
tinguishable from, other characters. Such character pairs are
called homoglyphs. For instance, compare the capital letter A
and the capital Greek letter alpha (Α). These are actually two
different letters that just look very similar (or identical) in
most fonts. In Python, they define two different variables:

>>> A = 100
>>> # this variable is GREEK CAPITAL LETTER ALPHA:
>>> Α = 200  
>>> print(A, Α)

100 200

If you want to make your Python code widely usable, we
recommend a policy that all identifiers, comments, and doc‐
umentation are written in English, avoiding, in particular,
non-English homoglyph characters. For more information,
see PEP 3131.

Unicode normalization strategies add further complexities (Python uses NFKC
normalization when parsing identifiers containing Unicode characters). See Jukka
K. Korpela’s Unicode Explained (O’Reilly) and other technical information provided
on the Unicode website and in the books that site references for more information.

Avoid Normalizable Unicode Characters in Identifiers
Python may create unintended aliases between variables when
names contain certain Unicode characters, by internally con‐
verting the name as shown in the Python script to one using
normalized characters. For example, the letters ª and º nor‐
malize to the ASCII lowercase letters a and o, so variables
using these letters could clash with other variables:

>>> a, o = 100, 101
>>> ª, º = 200, 201
>>> print(a, o, ª, º)

200 201 200 201  # expected "100 101 200 201"

It is best to avoid using normalizable Unicode characters in
your Python identifiers.

Normal Python style is to start class names with an uppercase letter, and most1

other identifiers with a lowercase letter. Starting an identifier with a single leading
underscore indicates by convention that the identifier is meant to be private. Start‐
ing an identifier with two leading underscores indicates a strongly private identifier;
if the identifier also ends with two trailing underscores, however, this means that
it’s a language-defined special name. Identifiers composed of multiple words should
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be all lowercase with underscores between words, as in login_password. This is
sometimes referred to as snake case.

The Single Underscore (_) in the Interactive Interpreter
The identifier _ (a single underscore) is special in interactive
interpreter sessions: the interpreter binds _ to the result of the
last expression statement it has evaluated interactively, if any.

Keywords
Python has 35 keywords, or identifiers that it reserves for special syntactic uses.
Like identifiers, keywords are case-sensitive. You cannot use keywords as regular
identifiers (thus, they’re sometimes known as “reserved words”). Some keywords
begin simple statements or clauses of compound statements, while other keywords
are operators. We cover all the keywords in detail in this book, either in this chapter
or in Chapters 4, 6, and 7. The keywords in Python are:

and break elif from is pass with

as class else global lambda raise yield

assert continue except if nonlocal return False

async def finally import not try None

await del for in or while True

You can list them by importing the keyword module and printing keyword.kwlist.

3.9+  In addition, Python 3.9 introduced the concept of soft keywords, which are
keywords that are context sensitive. That is, they are language keywords for some
specific syntax constructs, but outside of those constructs they may be used as
variable or function names, so they are not reserved words. No soft keywords were
defined in Python 3.9, but Python 3.10 introduced the following soft keywords:

_ case match

You can list them from the keyword module by printing keyword.softkwlist.

Operators
Python uses nonalphanumeric characters and character combinations as operators.
Python recognizes the following operators, which are covered in detail in “Expres‐
sions and Operators” on page 57:

+  -  *  /  %   **  //  <<  >>  &   @

|  ^  ~  <  <=  >   >=  !=  ==  @=  :=
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2 Control characters include nonprinting characters such as \t (tab) and \n (newline), both of
which count as whitespace, and others such as \a (alarm, aka “beep”) and \b (backspace), which
are not whitespace.

You can use @ as an operator (in matrix multiplication, covered in Chapter 16),
although (pedantically speaking!) the character is actually a delimiter.

Delimiters
Python uses the following characters and combinations as delimiters in various
statements, expressions, and list, dictionary, and set literals and comprehensions,
among other purposes:

(    )    [    ]    {    }

,    :    .    =    ;    @

+=   -=   *=   /=   //=  %=

&=   |=   ^=   >>=  <<=  **=

The period (.) can also appear in floating-point literals (e.g., 2.3) and imaginary
literals (e.g., 2.3j). The last two rows are the augmented assignment operators,
which are delimiters but also perform operations. We discuss the syntax for the
various delimiters when we introduce the objects or statements using them.

The following characters have special meanings as part of other tokens:

'  "  #  \

' and " surround string literals. # outside of a string starts a comment, which ends
at the end of the current line. \ at the end of a physical line joins the following
physical line with it into one logical line; \ is also an escape character in strings. The
characters $ and ?, and all control characters2 except whitespace, can never be part
of the text of a Python program, except in comments or string literals.

Literals
A literal is the direct denotation in a program of a data value (a number, string, or
container). The following are number and string literals in Python:

42                     # Integer literal
3.14                   # Floating-point literal
1.0j                   # Imaginary literal
'hello'                # String literal
"world"                # Another string literal
"""Good
night"""               # Triple-quoted string literal, spanning 2 lines
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3 “Container displays,” per the online docs (e.g., list_display), but specifically ones with literal
items.

Combining number and string literals with the appropriate delimiters, you can
directly build many container types with those literals as values:

[42, 3.14, 'hello']     # List
[]                      # Empty list
100, 200, 300           # Tuple
(100, 200, 300)         # Tuple
()                      # Empty tuple
{'x':42, 'y':3.14}      # Dictionary
{}                      # Empty dictionary
{1, 2, 4, 8, 'string'}  # Set
# There is no literal form to denote an empty set; use set() instead

We cover the syntax for such container literals3 in detail in “Data Types” on page
40, when we discuss the various data types Python supports. We refer to these
expressions as literals throughout this book, as they describe literal (i.e., not requir‐
ing additional evaluation) values in the source code.

Statements
You can look at a Python source file as a sequence of simple and compound
statements.

Simple statements
A simple statement is one that contains no other statements. A simple statement lies
entirely within a logical line. As in many other languages, you may place more than
one simple statement on a single logical line, with a semicolon (;) as the separator.
However, using one statement per line is the usual and recommended Python style,
and it makes programs more readable.

Any expression can stand on its own as a simple statement (we discuss expressions
in “Expressions and Operators” on page 57). When you’re working interactively,
the interpreter shows the result of an expression statement you enter at the prompt
(>>>) and binds the result to a global variable named _ (underscore). Apart from
interactive sessions, expression statements are useful only to call functions (and
other callables) that have side effects (e.g., perform output, change arguments or
global variables, or raise exceptions).

An assignment is a simple statement that assigns values to variables, as we discuss
in “Assignment Statements” on page 53. An assignment in Python using the =
operator is a statement and can never be part of an expression. To perform an
assignment as part of an expression, you must use the := (known as the “walrus”)
operator. You’ll see some examples of using := in “Assignment Expressions” on page
59.
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Compound statements
A compound statement contains one or more other statements and controls their
execution. A compound statement has one or more clauses, aligned at the same
indentation. Each clause has a header starting with a keyword and ending with
a colon (:), followed by a body, which is a sequence of one or more statements.
Normally, these statements, also known as a block, are on separate logical lines after
the header line, indented four spaces rightward. The block lexically ends when the
indentation returns to that of the clause header (or further left from there, to the
indentation of some enclosing compound statement). Alternatively, the body can be
a single simple statement following the : on the same logical line as the header. The
body may also consist of several simple statements on the same line with semicolons
between them, but, as we’ve already mentioned, this is not good Python style.

Data Types
The operation of a Python program hinges on the data it handles. Data values in
Python are known as objects; each object, aka value, has a type. An object’s type
determines which operations the object supports (in other words, which operations
you can perform on the value). The type also determines the object’s attributes and
items (if any) and whether the object can be altered. An object that can be altered is
known as a mutable object, while one that cannot be altered is an immutable object.
We cover object attributes and items in “Object attributes and items” on page 53.

The built-in type(obj) function accepts any object as its argument and returns the
type object that is the type of obj. The built-in function isinstance(obj, type)
returns True when object obj has type type (or any subclass thereof); otherwise,
it returns False. The type argument of isinstance may also be a tuple of types
( 3.10+  or multiple types joined with the | operator), in which case it returns True
if the type of obj matches any of the given types, or any subclasses of those types.

Python has built-in types for fundamental data types such as numbers, strings,
tuples, lists, dictionaries, and sets, as covered in the following sections. You can also
create user-defined types, known as classes, as discussed in “Classes and Instances”
on page 115.

Numbers
The built-in numeric types in Python include integers, floating-point numbers, and
complex numbers. The standard library also offers decimal floating-point numbers,
covered in “The decimal Module” on page 500, and fractions, covered in “The
fractions Module” on page 498. All numbers in Python are immutable objects;
therefore, when you perform an operation on a number object, you produce a
new number object. We cover operations on numbers, also known as arithmetic
operations, in “Numeric Operations” on page 60.

Numeric literals do not include a sign: a leading + or -, if present, is a separate
operator, as discussed in “Arithmetic Operations” on page 61.
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Integer numbers
Integer literals can be decimal, binary, octal, or hexadecimal. A decimal literal
is a sequence of digits in which the first digit is nonzero. A binary literal is 0b
followed by a sequence of binary digits (0 or 1). An octal literal is 0o followed by a
sequence of octal digits (0 to 7). A hexadecimal literal is 0x followed by a sequence
of hexadecimal digits (0 to 9 and A to F, in either upper- or lowercase). For example:

1, 23, 3493                    # Decimal integer literals
0b010101, 0b110010, 0B01       # Binary integer literals
0o1, 0o27, 0o6645, 0O777       # Octal integer literals
0x1, 0x17, 0xDA5, 0xda5, 0Xff  # Hexadecimal integer literals

Integers can represent values in the range ±2**sys.maxsize, or roughly ±102.8e18.

Table 3-1 lists the methods supported by an int object i.

Table 3-1. int methods

as_integer_

ratio

i.as_integer_ratio()

3.8+  Returns a tuple of two ints, whose exact ratio is the original integer value.
(Since i is always int, the tuple is always (i, 1); compare with float.as_inte
ger_ratio.)

bit_count i.bit_count()

3.10+  Returns the number of ones in the binary representation of abs(i).

bit_length i.bit_length()

Returns the minimum number of bits needed to represent i. Equivalent to the length
of the binary representation of abs(i), after removing 'b' and all leading zeros.
(0).bit_length() returns 0.

from_bytes int.from_bytes(bytes_value, byteorder, *, signed=False)
Returns an int from the bytes in bytes_value following the same argument usage as
in to_bytes. (Note that from_bytes is a class method of int.)

to_bytes i.to_bytes(length, byteorder, *, signed=False)
Returns a bytes value length bytes in size representing the binary value of i.
byteorder must be the str value 'big' or 'little', indicating whether the return
value should be big-endian (most significant byte first) or little-endian (least significant
byte first). For example, (258).to_bytes(2, 'big') returns b'\x01\x02',
and (258).to_bytes(2, 'little') returns b'\x02\x01'. When i < 0 and
signed is True, to_bytes returns the bytes of i represented in two’s complement.
When i < 0 and signed is False, to_bytes raises OverflowError.

Floating-point numbers
A floating-point literal is a sequence of decimal digits that includes a decimal point
(.), an exponent suffix (e or E, optionally followed by + or -, followed by one or
more digits), or both. The leading character of a floating-point literal cannot be e or
E; it may be any digit or a period (.) followed by a digit. For example:

0., 0.0, .0, 1., 1.0, 1e0, 1.e0, 1.0E0  # Floating-point literals
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A Python floating-point value corresponds to a C double and shares its limits of
range and precision: typically 53 bits—about 15 digits—of precision on modern
platforms. (For the exact range and precision of floating-point values on the plat‐
form where the code is running, and many other details, see the online documenta‐
tion on sys.float_info.)

Table 3-2 lists the methods supported by a float object f.

Table 3-2. float methods

as_integer_

ratio
f.as_integer_ratio()

Returns a tuple of two ints, a numerator and a denominator, whose
exact ratio is the original float value, f. For example:

>>> f=2.5
>>> f.as_integer_ratio()
(5, 2)

from_hex float.from_hex(s)

Returns a float value from the hexadecimal str value s. s can be of the form returned
by f.hex(), or simply a string of hexadecimal digits. When the latter is the case,
from_hex returns float(int(s, 16)).

hex f.hex()

Returns a hexadecimal representation of f, with leading 0x and trailing p and exponent.
For example, (99.0).hex() returns '0x1.8c00000000000p+6'.

is_integer f.is_integer()

Returns a bool value indicating if f is an integer value. Equivalent to int(f) == f.

Complex numbers
A complex number is made up of two floating-point values, one each for the real
and imaginary parts. You can access the parts of a complex object z as read-only
attributes z.real and z.imag. You can specify an imaginary literal as any floating-
point or integer decimal literal followed by a j or J:

0j, 0.j, 0.0j, .0j, 1j, 1.j, 1.0j, 1e0j, 1.e0j, 1.0e0j

The j at the end of the literal indicates the square root of -1, as commonly used
in electrical engineering (some other disciplines use i for this purpose, but Python
uses j). There are no other complex literals. To denote any constant complex
number, add or subtract a floating-point (or integer) literal and an imaginary one.
For example, to denote the complex number that equals 1, use expressions like 1+0j
or 1.0+0.0j. Python performs the addition at compile time, so there’s no need to
worry about overhead.
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A complex object c supports a single method:

conjugate c.conjugate()

Returns a new complex number complex(c.real, -c.imag) (i.e., the return value
has c’s imag attribute with a sign change).

See “The math and cmath Modules” on page 488 for several other functions that use
floats and complex numbers.

Underscores in numeric literals
To aid with visual assessment of the magnitude of a number, numeric literals can
include single underscore (_) characters between digits or after any base specifier.
It’s not only decimal numeric constants that can benefit from this notational free‐
dom, however, as these examples show:

>>> 100_000.000_0001, 0x_FF_FF, 0o7_777, 0b_1010_1010

(100000.0000001, 65535, 4095, 170)

There is no enforcement of location of the underscores (except that two may not
occur consecutively), so 123_456 and 12_34_56 both represent the same int value
as 123456.

Sequences
A sequence is an ordered container of items, indexed by integers. Python has
built-in sequence types known as strings (bytes or str), tuples, and lists. Library
and extension modules provide other sequence types, and you can write others
yourself (as discussed in “Sequences” on page 43”). You can manipulate sequences
in a variety of ways, as discussed in “Sequence Operations” on page 62.

Iterables
A Python concept that captures in abstract the iteration behavior of sequences is
that of iterables, covered in “The for Statement” on page 84. All sequences are
iterable: whenever we say you can use an iterable, you can use a sequence (for
example, a list).

Also, when we say that you can use an iterable we usually mean a bounded iterable:
an iterable that eventually stops yielding items. In general, sequences are bounded.
Iterables can be unbounded, but if you try to use an unbounded iterable without
special precautions, you could produce a program that never terminates, or one that
exhausts all available memory.
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4 There’s also a bytearray object, covered shortly, which is a bytes-like “string” that is mutable.

Strings
Python has two built-in string types, str and bytes.4 A str object is a sequence of
characters used to store and represent text-based information. A bytes object stores
and represents arbitrary sequences of binary bytes. Strings of both types in Python
are immutable: when you perform an operation on strings, you always produce a
new string object of the same type, rather than mutating an existing string. String
objects provide many methods, as discussed in detail in “Methods of String Objects”
on page 281.

A string literal can be quoted or triple-quoted. A quoted string is a sequence of zero
or more characters within matching quotes, single (') or double ("). For example:

'This is a literal string'
"This is another string"

The two different kinds of quotes function identically; having both lets you include
one kind of quote inside of a string specified with the other kind, with no need to
escape quote characters with the backslash character (\):

'I\'m a Python fanatic'     # You can escape a quote
"I'm a Python fanatic"      # This way may be more readable

Many (but far from all) style guides that pronounce on the subject suggest that
you use single quotes when the choice is otherwise indifferent. The popular code
formatter black prefers double quotes; this choice is controversial enough to have
been the main inspiration for a “fork,” blue, whose main difference from black is to
prefer single quotes instead, as most of this book’s authors do.

To have a string literal span multiple physical lines, you can use a \ as the last
character of a line to indicate that the next line is a continuation:

'A not very long string \
that spans two lines'       # Comment not allowed on previous line

You can also embed a newline in the string to make it contain two lines rather than
just one:

'A not very long string\n\
that prints on two lines'   # Comment not allowed on previous line

A better approach, however, is to use a triple-quoted string, enclosed by matching
triplets of quote characters (''', or better, as mandated by PEP 8, """). In a
triple-quoted string literal, line breaks in the literal remain as newline characters in
the resulting string object:

"""An even bigger
string that spans
three lines"""              # Comments not allowed on previous lines
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You can start a triple-quoted literal with an escaped newline, to avoid having the
first line of the literal string’s content at a different indentation level from the rest.
For example:

the_text = """\
First line
Second line
"""      # The same as "First line\nSecond line\n" but more readable

The only character that cannot be part of a triple-quoted string literal is an
unescaped backslash, while a single-quoted string literal cannot contain unescaped
backslashes, nor line ends, nor the quote character that encloses it. The backslash
character starts an escape sequence, which lets you introduce any character in
either kind of string literal. See Table 3-3 for a list of all of Python’s string escape
sequences.

Table 3-3. String escape sequences

Sequence Meaning ASCII / ISO code

\<newline> Ignore end of line None

\\ Backslash 0x5c

\' Single quote 0x27

\" Double quote 0x22

\a Bell 0x07

\b Backspace 0x08

\f Form feed 0x0c

\n Newline 0x0a

\r Carriage return 0x0d

\t Tab 0x09

\v Vertical tab 0x0b

\ DDD Octal value DDD As given

\x XX Hexadecimal value XX As given

\N{name} Unicode character As given

\ o Any other character o: a two-character string 0x5c + as given

A variant of a string literal is a raw string literal. The syntax is the same as for
quoted or triple-quoted string literals, except that an r or R immediately precedes
the leading quote. In raw string literals, escape sequences are not interpreted as
in Table 3-3, but are literally copied into the string, including backslashes and
newline characters. Raw string literal syntax is handy for strings that include many
backslashes, especially regular expression patterns (see “Pattern String Syntax” on
page 306) and Windows absolute filenames (which use backslashes as directory
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separators). A raw string literal cannot end with an odd number of backslashes: the
last one would be taken as escaping the terminating quote.

Raw and Triple-Quoted String Literals Are Not Different
Types
Raw and triple-quoted string literals are not types different
from other strings; they are just alternative syntaxes for literals
of the usual two string types, bytes and str.

In str literals, you can use \u followed by four hex digits, or \U followed by eight
hex digits, to denote Unicode characters; you can also include the escape sequences
listed in Table 3-3. str literals can also include Unicode characters using the escape
sequence \N{name}, where name is a standard Unicode name. For example, \N{Copy
right Sign} indicates a Unicode copyright sign character (©).

Formatted string literals (commonly called f-strings) let you inject formatted expres‐
sions into your string “literals,” which are therefore no longer constant, but rather
are subject to evaluation at execution time. The formatting process is described in
“String Formatting” on page 287. From a purely syntactic point of view, these new
literals can be regarded as just another kind of string literal.

Multiple string literals of any kind—quoted, triple-quoted, raw, bytes, formatted—
can be adjacent, with optional whitespace in between (as long as you do not mix
strings containing text and bytes). The compiler concatenates such adjacent string
literals into a single string object. Writing a long string literal in this way lets you
present it readably across multiple physical lines and gives you an opportunity to
insert comments about parts of the string. For example:

marypop = ('supercali'       # '(' begins logical line,
           'fragilistic'     # indentation is ignored
           'expialidocious') # until closing ')'

The string assigned to marypop is a single word of 34 characters.

bytes objects
A bytes object is an ordered sequence of ints from 0 to 255. bytes objects are
usually encountered when reading data from or writing data to a binary source (e.g,
a file, a socket, or a network resource).

A bytes object can be initialized from a list of ints or from a string of characters. A
bytes literal has the same syntax as a str literal, prefixed with 'b':

b'abc'
bytes([97, 98, 99])           # Same as the previous line
rb'\ = solidus'               # A raw bytes literal, containing a '\'

To convert a bytes object to a str, use the bytes.decode method. To convert a
str object to a bytes object, use the str.encode method, as described in detail in
Chapter 9.
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5 This syntax is sometimes called a “tuple display.”

bytearray objects
A bytearray is a mutable ordered sequence of ints from 0 to 255; like a bytes
object, you can construct it from a sequence of ints or characters. In fact, apart
from mutability, it is just like a bytes object. As they are mutable, bytearray
objects support methods and operators that modify elements within the array of
byte values:

ba = bytearray([97, 98, 99])  # Like bytes, can take a sequence of ints
ba[1] = 97                    # Unlike bytes, contents can be modified
print(ba.decode())            # Prints 'aac'

Chapter 9 has additional material on creating and working with bytearray objects.

Tuples
A tuple is an immutable ordered sequence of items. The items of a tuple are
arbitrary objects and may be of different types. You can use mutable objects (such as
lists) as tuple items, but best practice is generally to avoid doing so.

To denote a tuple, use a series of expressions (the items of the tuple) separated by
commas (,);5 if every item is a literal, the whole construct is a tuple literal. You
may optionally place a redundant comma after the last item. You can group tuple
items within parentheses, but the parentheses are necessary only where the commas
would otherwise have another meaning (e.g., in function calls), or to denote empty
or nested tuples. A tuple with exactly two items is also known as a pair. To create a
tuple of one item, add a comma to the end of the expression. To denote an empty
tuple, use an empty pair of parentheses. Here are some tuple literals, the second of
which uses optional parentheses:

100, 200, 300        # Tuple with three items
(3.14,)              # Tuple with one item, needs trailing comma
()                   # Empty tuple (parentheses NOT optional)

You can also call the built-in type tuple to create a tuple. For example:

tuple('wow')

This builds a tuple equal to that denoted by the tuple literal:

('w', 'o', 'w')

tuple() without arguments creates and returns an empty tuple, like (). When x is
iterable, tuple(x) returns a tuple whose items are the same as those in x.

Lists
A list is a mutable ordered sequence of items. The items of a list are arbitrary objects
and may be of different types. To denote a list, use a series of expressions (the items
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6 This syntax is sometimes called a “list display.”
7 This syntax is sometimes called a “set display.”

of the list) separated by commas (,), within brackets ([]);6 if every item is a literal,
the whole construct is a list literal. You may optionally place a redundant comma
after the last item. To denote an empty list, use an empty pair of brackets. Here are
some examples of list literals:

[42, 3.14, 'hello']  # List with three items
[100]                # List with one item
[]                   # Empty list

You can also call the built-in type list to create a list. For example:

list('wow')

This builds a list equal to that denoted by the list literal:

['w', 'o', 'w']

list() without arguments creates and returns an empty list, like []. When x is
iterable, list(x) returns a list whose items are the same as those in x.

You can also build lists with list comprehensions, covered in “List comprehensions”
on page 88.

Sets
Python has two built-in set types, set and frozenset, to represent arbitrarily
ordered collections of unique items. Items in a set may be of different types, but
they must all be hashable (see hash in Table 8-2). Instances of type set are mutable,
and thus not hashable; instances of type frozenset are immutable and hashable.
You can’t have a set whose items are sets, but you can have a set (or frozenset) whose
items are frozensets. Sets and frozensets are not ordered.

To create a set, you can call the built-in type set with no argument (this means an
empty set) or one argument that is iterable (this means a set whose items are those
of the iterable). You can similarly build a frozenset by calling frozenset.

Alternatively, to denote a (nonfrozen, nonempty) set, use a series of expressions
(the items of the set) separated by commas (,) within braces ({});7 if every item is
a literal, the whole assembly is a set literal. You may optionally place a redundant
comma after the last item. Here are some example sets (two literals, one not):

{42, 3.14, 'hello'}  # Literal for a set with three items
{100}                # Literal for a set with one item
set()                # Empty set - no literal for empty set
                     # {} is an empty dict!

You can also build nonfrozen sets with set comprehensions, as discussed in “Set
comprehensions” on page 90.
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8 Each specific mapping type may put some constraints on the type of keys it accepts: in particular,
dictionaries only accept hashable keys.

9 This syntax is sometimes called a “dictionary display.”

Note that two sets or frozensets (or a set and a frozenset) may compare as equal, but
since they are unordered, iterating over them can return their contents in differing
order.

Dictionaries
A mapping is an arbitrary collection of objects indexed by nearly8 arbitrary values
called keys. Mappings are mutable and, like sets but unlike sequences, are not
(necessarily) ordered.

Python provides a single built-in mapping type: the dictionary type dict. Library
and extension modules provide other mapping types, and you can write others
yourself (as discussed in “Mappings” on page 148). Keys in a dictionary may be
of different types, but they must be hashable (see hash in Table 8-2). Values in a
dictionary are arbitrary objects and may be of any type. An item in a dictionary is a
key/value pair. You can think of a dictionary as an associative array (known in some
other languages as a “map,” “hash table,” or “hash”).

To denote a dictionary, you can use a series of colon-separated pairs of expressions
(the pairs are the items of the dictionary) separated by commas (,) within braces
({});9 if every expression is a literal, the whole construct is a dictionary literal.
You may optionally place a redundant comma after the last item. Each item in a
dictionary is written as key:value, where key is an expression giving the item’s key
and value is an expression giving the item’s value. If a key’s value appears more than
once in a dictionary expression, only an arbitrary one of the items with that key is
kept in the resulting dictionary object—dictionaries do not support duplicate keys.
For example:

{1:2, 3:4, 1:5}  # The value of this dictionary is {1:5, 3:4}

To denote an empty dictionary, use an empty pair of braces.

Here are some dictionary literals:

{'x':42, 'y':3.14, 'z':7}    # Dictionary with three items, str keys
{1:2, 3:4}                   # Dictionary with two items, int keys
{1:'za', 'br':23}            # Dictionary with different key types
{}                           # Empty dictionary

You can also call the built-in type dict to create a dictionary in a way that, while less
concise, can sometimes be more readable. For example, the dicts in the preceding
snippet can also be written as:

dict(x=42, y=3.14, z=7)      # Dictionary with three items, str keys
dict([(1, 2), (3, 4)])       # Dictionary with two items, int keys
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dict([(1,'za'), ('br',23)])  # Dictionary with different key types
dict()                       # Empty dictionary

dict() without arguments creates and returns an empty dictionary, like {}. When
the argument x to dict is a mapping, dict returns a new dictionary object with
the same keys and values as x. When x is iterable, the items in x must be pairs,
and dict(x) returns a dictionary whose items (key/value pairs) are the same as the
items in x. If a key value appears more than once in x, only the last item from x with
that key value is kept in the resulting dictionary.

When you call dict in addition to or instead of the positional argument x, you
may pass named arguments, each with the syntax name=value, where name is an
identifier to use as an item’s key and value is an expression giving the item’s
value. When you call dict and pass both a positional argument and one or more
named arguments, if a key appears both in the positional argument and as a named
argument, Python associates to that key the named argument’s value (i.e., the named
argument “wins”).

You can unpack a dict’s contents into another dict using the ** operator.

d1 = {'a':1, 'x': 0}
d2 = {'c': 2, 'x': 5}
d3 = {**d1, **d2}  # result is {'a':1, 'x': 5, 'c': 2}

3.9+  As of Python 3.9, this same operation can be performed using the | operator.

d4 = d1 | d2  # same result as d3

You can also create a dictionary by calling dict.fromkeys. The first argument is
an iterable whose items become the keys of the dictionary; the second argument is
the value that corresponds to each and every key (all keys initially map to the same
value). If you omit the second argument, it defaults to None. For example:

dict.fromkeys('hello', 2)    # Same as {'h':2, 'e':2, 'l':2, 'o':2}
dict.fromkeys([1, 2, 3])     # Same as {1:None, 2:None, 3:None}

You can also build a dict using a dictionary comprehension, as discussed in “Dic‐
tionary comprehensions” on page 90.

When comparing two dicts for equality, they will evaluate as equal if they have the
same keys and corresponding values, even if the keys are not in the same order.

None
The built-in None denotes a null object. None has no methods or other attributes.
You can use None as a placeholder when you need a reference but you don’t care
what object you refer to, or when you need to indicate that no object is there.
Functions return None as their result unless they have specific return statements
coded to return other values. None is hashable and can be used as a dict key.
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10 See “Shape, indexing, and slicing” on page 507.
11 Strictly speaking, almost any: NumPy arrays, covered in Chapter 16, are an exception.

Ellipsis (...)
The Ellipsis, written as three periods with no intervening spaces, ..., is a special
object in Python used in numerical applications,10 or as an alternative to None when
None is a valid entry. For instance, to initialize a dict that may take None as a
legitimate value, you can initialize it with ... as an indicator of “no value supplied,
not even None.” Ellipsis is hashable and so can be used as a dict key:

tally = dict.fromkeys(['A', 'B', None, ...], 0)

Callables
In Python, callable types are those whose instances support the function call opera‐
tion (see “Calling Functions” on page 101). Functions are callable. Python provides
numerous built-in functions (see “Built-in Functions” on page 251) and supports
user-defined functions (see “Defining Functions: The def Statement” on page 94).
Generators are also callable (see “Generators” on page 109).

Types are callable too, as we saw for the dict, list, set, and tuple built-in types.
(See “Built-in Types” on page 247 for a complete list of built-in types.) As we
discuss in “Python Classes” on page 115, class objects (user-defined types) are also
callable. Calling a type usually creates and returns a new instance of that type.

Other callables include methods, which are functions bound as class attributes, and
instances of classes that supply a special method named __call__.

Boolean Values
Any11 data value in Python can be used as a truth value: true or false. Any nonzero
number or nonempty container (e.g., string, tuple, list, set, or dictionary) is true.
Zero (0, of any numeric type), None, and empty containers are false. You may see the
terms “truthy” and “falsy” used to indicate values that evaluate as either true or false.

Beware Using a Float as a Truth Value
Be careful about using a floating-point number as a truth
value: that’s like comparing the number for exact equality
with zero, and floating-point numbers should almost never be
compared for exact equality.

The built-in type bool is a subclass of int. The only two values of type bool are
True and False, which have string representations of 'True' and 'False', but also
numerical values of 1 and 0, respectively. Several built-in functions return bool
results, as do comparison operators.
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12 With exactly the same exception of NumPy arrays.

You can call bool(x) with any12 x as the argument. The result is True when x is true
and False when x is false. Good Python style is not to use such calls when they are
redundant, as they most often are: always write if x:, never any of if bool(x):, if
x is True:, if x == True:, or if bool(x) == True:. However, you can use bool(x)
to count the number of true items in a sequence. For example:

def count_trues(seq):
    return sum(bool(x) for x in seq)

In this example, the bool call ensures each item of seq is counted as 0 (if false) or 1
(if true), so count_trues is more general than sum(seq) would be.

When we say “expression is true” we mean that bool(expression) would return
True. As we mentioned, this is also known as “expression being truthy” (the other
possibility is that “expression is falsy”).

Variables and Other References
A Python program accesses data values through references. A reference is a “name”
that refers to a value (object). References take the form of variables, attributes, and
items. In Python, a variable or other reference has no intrinsic type. The object to
which a reference is bound at a given time always has a type, but a given reference
may be bound to objects of various types in the course of the program’s execution.

Variables
In Python, there are no “declarations.” The existence of a variable begins with a
statement that binds the variable (in other words, sets a name to hold a reference
to some object). You can also unbind a variable, resetting the name so it no longer
holds a reference. Assignment statements are the usual way to bind variables and
other references. The del statement unbinds a variable reference, although doing so
is rare.

Binding a reference that was already bound is also known as rebinding it. Whenever
we mention binding, we implicitly include rebinding (except where we explicitly
exclude it). Rebinding or unbinding a reference has no effect on the object to which
the reference was bound, except that an object goes away when nothing refers to it.
The cleanup of objects with no references is known as garbage collection.

You can name a variable with any identifier except the 30-plus that are reserved as
Python’s keywords (see “Keywords” on page 37). A variable can be global or local.
A global variable is an attribute of a module object (see Chapter 7). A local variable
lives in a function’s local namespace (see “Namespaces” on page 105).
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Object attributes and items
The main distinction between the attributes and items of an object is in the syntax
you use to access them. To denote an attribute of an object, use a reference to the
object, followed by a period (.), followed by an identifier known as the attribute
name. For example, x.y refers to one of the attributes of the object bound to name
x; specifically, that attribute whose name is 'y'.

To denote an item of an object, use a reference to the object, followed by an
expression within brackets []. The expression in brackets is known as the item’s
index or key, and the object is known as the item’s container. For example, x[y]
refers to the item at the key or index bound to name y, within the container object
bound to name x.

Attributes that are callable are also known as methods. Python draws no strong
distinctions between callable and noncallable attributes, as some other languages do.
All general rules about attributes also apply to callable attributes (methods).

Accessing nonexistent references
A common programming error is to access a reference that does not exist. For
example, a variable may be unbound, or an attribute name or item index may
not be valid for the object to which you apply it. The Python compiler, when it
analyzes and compiles source code, diagnoses only syntax errors. Compilation does
not diagnose semantic errors, such as trying to access an unbound attribute, item,
or variable. Python diagnoses semantic errors only when the errant code executes—
that is, at runtime. When an operation is a Python semantic error, attempting it
raises an exception (see Chapter 6). Accessing a nonexistent variable, attribute, or
item—just like any other semantic error—raises an exception.

Assignment Statements
Assignment statements can be plain or augmented. Plain assignment to a variable
(e.g., name = value) is how you create a new variable or rebind an existing variable
to a new value. Plain assignment to an object attribute (e.g., x.attr = value) is a
request to object x to create or rebind the attribute named 'attr'. Plain assignment
to an item in a container (e.g., x[k] = value) is a request to container x to create or
rebind the item with index or key k.

Augmented assignment (e.g., name += value) cannot, per se, create new references.
Augmented assignment can rebind a variable, ask an object to rebind one of its
existing attributes or items, or request the target object to modify itself. When you
make any kind of request to an object, it is up to the object to decide whether and
how to honor the request, and whether to raise an exception.

Plain assignment
A plain assignment statement in the simplest form has the syntax:
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target = expression

The target is known as the lefthand side (LHS), and the expression is the righthand
side (RHS). When the assignment executes, Python evaluates the RHS expression,
then binds the expression’s value to the LHS target. The binding never depends on
the type of the value. In particular, Python draws no strong distinction between
callable and noncallable objects, as some other languages do, so you can bind
functions, methods, types, and other callables to variables, just as you can numbers,
strings, lists, and so on. This is part of functions and other callables being first-class
objects.

Details of the binding do depend on the kind of target. The target in an assignment
may be an identifier, an attribute reference, an indexing, or a slicing, where:

An identifier
Is a variable name. Assigning to an identifier binds the variable with this name.

An attribute reference
Has the syntax obj.name. obj is an arbitrary expression, and name is an iden‐
tifier, known as an attribute name of the object. Assigning to an attribute
reference asks the object obj to bind its attribute named 'name'.

An indexing
Has the syntax obj[expr]. obj and expr are arbitrary expressions. Assigning
to an indexing asks the container obj to bind its item indicated by the value of
expr, also known as the index or key of the item in the container (an indexing
is an index applied to a container).

A slicing
Has the syntax obj[start:stop] or obj[start:stop:stride]. obj, start,
stop, and stride are arbitrary expressions. start, stop, and stride are all
optional (i.e., obj[:stop:] and obj[:stop] are also syntactically correct slic‐
ings, each being equivalent to obj[None:stop:None]). Assigning to a slicing
asks the container obj to bind or unbind some of its items. Assigning to
a slicing such as obj[start:stop:stride] is equivalent to assigning to the
indexing obj[slice(start, stop, stride)]. See Python’s built-in type slice
in (Table 8-1), whose instances represent slices (a slicing is a slice applied to a
container).

We’ll get back to indexing and slicing targets when we discuss operations on lists in
“Modifying a list” on page 66, and on dictionaries in “Indexing a Dictionary” on
page 71.

When the target of the assignment is an identifier, the assignment statement speci‐
fies the binding of a variable. This is never disallowed: when you request it, it takes
place. In all other cases, the assignment statement denotes a request to an object to
bind one or more of its attributes or items. An object may refuse to create or rebind
some (or all) attributes or items, raising an exception if you attempt a disallowed
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creation or rebinding (see also __setattr__ in Table 4-1 and __setitem__ in
“Container methods” on page 149).

A plain assignment can use multiple targets and equals signs (=). For example:

a = b = c = 0

binds variables a, b, and c to the same value, 0. Each time the statement executes,
the RHS expression evaluates just once, no matter how many targets are in the
statement. Each target, left to right, is bound to the one object returned by the
expression, just as if several simple assignments executed one after the other.

The target in a plain assignment can list two or more references separated by
commas, optionally enclosed in parentheses or brackets. For example:

a, b, c = x

This statement requires x to be an iterable with exactly three items, and binds a
to the first item, b to the second, and c to the third. This kind of assignment is
known as an unpacking assignment. The RHS expression must be an iterable with
exactly as many items as there are references in the target; otherwise, Python raises
an exception. Python binds each reference in the target to the corresponding item
in the RHS. You can use an unpacking assignment, for example, to swap references:

a, b = b, a

This assignment statement rebinds name a to what name b was bound to, and
vice versa. Exactly one of the multiple targets of an unpacking assignment may be
preceded by *. That starred target, if present, is bound to a list of all items, if any,
that were not assigned to other targets. For example, when x is a list, this:

first, *middle, last = x

is the same as (but more concise, clearer, more general, and faster than) this:

first, middle, last = x[0], x[1:-1], x[-1]

Each of these forms requires x to have at least two items. This feature is known as
extended unpacking.

Augmented assignment
An augmented assignment (sometimes called an in-place assignment) differs from a
plain assignment in that, instead of an equals sign (=) between the target and the
expression, it uses an augmented operator, which is a binary operator followed by
=. The augmented operators are +=, -=, *=, /=, //=, %=, **=, |=, >>=, <<=, &=, ^=,
and @=. An augmented assignment can have only one target on the LHS; augmented
assignment does not support multiple targets.

In an augmented assignment, like in a plain one, Python first evaluates the RHS
expression. Then, when the LHS refers to an object that has a special method
for the appropriate in-place version of the operator, Python calls the method with
the RHS value as its argument (it is up to the method to modify the LHS object
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appropriately and return the modified object; “Special Methods” on page 141 covers
special methods). When the LHS object has no applicable in-place special method,
Python uses the corresponding binary operator on the LHS and RHS objects, then
rebinds the target to the result. For example, x += y is like x = x.__iadd_(y) when x
has the special method __iadd__ for “in-place addition”; otherwise, x += y is like x =
x + y.

Augmented assignment never creates its target reference; the target must already be
bound when augmented assignment executes. Augmented assignment can rebind
the target reference to a new object, or modify the same object to which the target
reference was already bound. Plain assignment, in contrast, can create or rebind the
LHS target reference, but it never modifies the object, if any, to which the target
reference was previously bound. The distinction between objects and references to
objects is crucial here. For example, x = x + y never modifies the object to which
x was originally bound, if any. Rather, it rebinds x to refer to a new object. x += y,
in contrast, modifies the object to which the name x is bound, when that object has
the special method __iadd__; otherwise, x += y rebinds x to a new object, just like
x = x + y.

del Statements
Despite its name, a del statement unbinds references—it does not, per se, delete
objects. Object deletion may automatically follow, by garbage collection, when no
more references to an object exist.

A del statement consists of the keyword del, followed by one or more target refer‐
ences separated by commas (,). Each target can be a variable, attribute reference,
indexing, or slicing, just like for assignment statements, and must be bound at the
time del executes. When a del target is an identifier, the del statement means to
unbind the variable. If the identifier was bound, unbinding it is never disallowed;
when requested, it takes place.

In all other cases, the del statement specifies a request to an object to unbind
one or more of its attributes or items. An object may refuse to unbind some (or
all) attributes or items, raising an exception if you attempt a disallowed unbinding
(see also __delattr__ in “General-Purpose Special Methods” on page 142 and
__delitem__ in “Container methods” on page 149). Unbinding a slicing normally
has the same effect as assigning an empty sequence to that slicing, but it is up to the
container object to implement this equivalence.

Containers are also allowed to have del cause side effects. For example, assuming
del C[2] succeeds, when C is a dictionary, this makes future references to C[2]
invalid (raising KeyError) until and unless you assign to C[2] again; but when C is
a list, del C[2] implies that every following item of C “shifts left by one”—so, if C
is long enough, future references to C[2] are still valid, but denote a different item
than they did before the del (generally, what you’d have used C[3] to refer to, before
the del statement).
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Expressions and Operators
An expression is a “phrase” of code, which Python evaluates to produce a value.
The simplest expressions are literals and identifiers. You build other expressions
by joining subexpressions with the operators and/or delimiters listed in Table 3-4.
This table lists operators in decreasing order of precedence, higher precedence
before lower. Operators listed together have the same precedence. The third column
lists the associativity of the operator: L (left-to-right), R (right-to-left), or NA
(nonassociative).

Table 3-4. Operator precedence in expressions

Operator Description Associativity

{ key : expr, ... } Dictionary creation NA

{ expr, ... } Set creation NA

[ expr, ... ] List creation NA

( expr, ... ) Tuple creation (parentheses recommended, but not always
required; at least one comma required), or just parentheses

NA

f ( expr, ... ) Function call L

x [ index: index: step ] Slicing L

x [ index ] Indexing L

x . attr Attribute reference L

x ** y Exponentiation (x to the yth power) R

~ x, + x, - x Bitwise NOT, unary plus and minus NA

x * y, x @ y, x / y,
x // y, x % y

Multiplication, matrix multiplication, division, floor division,
remainder

L

x + y, x - y Addition, subtraction L

x << y, x >> y Left-shift, right-shift L

x & y Bitwise AND L

x ^ y Bitwise XOR L

x | y Bitwise OR L

x < y, x <= y, x > y,
x >= y, x != y, x == y

Comparisons (less than, less than or equal, greater than,
greater than or equal, inequality, equality)

NA

x is y, x is not y Identity tests NA

x in y, x not in y Membership tests NA

not x Boolean NOT NA

x and y Boolean AND L

x or y Boolean OR L

x if expr else y Conditional expression (or ternary operator) NA
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13 Sometimes referred to as the ternary operator, as it is so called in C (Python’s original implemen‐
tation language).

Operator Description Associativity

lambda arg, ...: expr Anonymous simple function NA

( ident := expr ) Assignment expression (parentheses recommended, but not
always required)

NA

In this table, expr, key, f, index, x, and y mean any expression, while attr, arg, and
ident mean any identifier. The notation , ... means commas join zero or more
repetitions; in such cases, a trailing comma is optional and innocuous.

Comparison Chaining
You can chain comparisons, implying a logical and. For example:

a < b <= c < d

where a, b, c, and d are arbitrary expressions, has (in the absence of evaluation side
effects) the same value as:

a < b and b <= c and c < d

The chained form is more readable, and evaluates each subexpression at most once.

Short-Circuiting Operators
The and and or operators short-circuit their operands’ evaluation: the righthand
operand evaluates only when its value is needed to get the truth value of the entire
and or or operation.

In other words, x and y first evaluates x. When x is false, the result is x; otherwise,
the result is y. Similarly, x or y first evaluates x. When x is true, the result is x;
otherwise, the result is y.

and and or don’t force their results to be True or False, but rather return one or
the other of their operands. This lets you use these operators more generally, not
just in Boolean contexts. and and or, because of their short-circuiting semantics,
differ from other operators, which fully evaluate all operands before performing the
operation. and and or let the left operand act as a guard for the right operand.

The conditional operator
Another short-circuiting operator is the conditional13 operator if/else:

when_true if condition else when_false

Each of when_true, when_false, and condition is an arbitrary expression. condi
tion evaluates first. When condition is true, the result is when_true; otherwise, the
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result is when_false. Only one of the subexpressions when_true and when_false
evaluates, depending on the truth value of condition.

The order of the subexpressions in this conditional operator may be a bit confusing.
The recommended style is to always place parentheses around the whole expression.

Assignment Expressions
3.8+  You can combine evaluation of an expression and the assignment of its result

using the := operator. There are several common cases where this is useful.

:= in an if/elif statement
Code that assigns a value and then checks it can be collapsed using :=:

re_match = re.match(r'Name: (\S)', input_string)
if re_match:
    print(re_match.groups(1))

# collapsed version using :=
if (re_match := re.match(r'Name: (\S)', input_string)):
    print(re_match.groups(1))

This is especially helpful when writing a sequence of if/elif blocks (you’ll find a
more extended example in Chapter 10).

:= in a while statement
Use := to simplify code that uses a variable as its while condition. Consider
this code that works with a sequence of values returned by some function
get_next_value, which returns None when there are no more values to process:

current_value = get_next_value()
while current_value is not None:
    if not filter_condition(current_value):
        continue   # BUG! Current_value is not advanced to next
    # ... do some work with current_value ...
    current_value = get_next_value()

This code has a couple of problems. First, there is the duplicated call to
get_next_value, which carries extra maintenance costs when get_next_value
changes. But more seriously, there is a bug when an early exiting filter is added: the
continue statement jumps directly back to the while statement without advancing
to the next value, creating an infinite loop.

When we use := to incorporate the assignment into the while statement itself, we
fix the duplication problem, and calling continue does not cause an infinite loop:

while (current_value := get_next_value()) is not None:
    if not filter_condition(current_value):
        continue   # no bug, current_value advances in while statement
    # ... do some work with current_value ...
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:= in a list comprehension filter
A list comprehension that converts an input item but must filter out some items
based on their converted values can use := to do the conversion only once. In
this example, a function to convert strs to ints returns None for invalid values.
Without :=, the list comprehension must call safe_int twice for valid values, once
to check for None and then again to add the actual int value to the list:

def safe_int(s):
    try:
        return int(s)
    except Exception:
        return None

input_strings = ['1','2','a','11']

valid_int_strings = [safe_int(s) for s in input_strings 
                     if safe_int(s) is not None]

If we use an assignment expression in the condition part of the list comprehension,
safe_int only gets called once for each value in input_strings:

valid_int_strings = [int_s for s in input_strings
                     if (int_s := safe_int(s)) is not None]

You can find more examples in the original PEP for this feature, PEP 572.

Numeric Operations
Python offers the usual numeric operations, as we’ve just seen in Table 3-4. Num‐
bers are immutable objects: when you perform operations on number objects, you
always produce new objects and never modify existing ones. You can access the
parts of a complex object z as read-only attributes z.real and z.imag. Trying to
rebind these attributes raises an exception.

A number’s optional + or - sign, and the + or - that joins a floating-point literal
to an imaginary one to make a complex number, are not part of the literals’
syntax. They are ordinary operators, subject to normal operator precedence rules
(see Table 3-4). For example, -2 ** 2 evaluates to -4: exponentiation has higher
precedence than unary minus, so the whole expression parses as -(2 ** 2), not as
(-2) ** 2. (Again, parentheses are recommended, to avoid confusing a reader of
the code.)

Numeric Conversions
You can perform arithmetic operations and comparisons between any two numbers
of Python built-in types (integers, floating-point numbers, and complex numbers).
If the operands’ types differ, Python converts the operand with the “narrower” type
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14 This is not, strictly speaking, the “coercion” you observe in other languages; however, among
built-in numeric types, it produces pretty much the same effect.

15 Hence the upper limit of 36 for the radix: 10 numeric digits plus 26 alphabetic characters.

to the “wider” type.14 The built-in numeric types, in order from narrowest to widest,
are int, float, and complex. You can request an explicit conversion by passing
a noncomplex numeric argument to any of these types. int drops its argument’s
fractional part, if any (e.g., int(9.8) is 9). You can also call complex with two
numeric arguments, giving real and imaginary parts. You cannot convert a complex
to another numeric type in this way, because there is no single unambiguous way to
convert a complex number into, for example, a float.

You can also call each built-in numeric type with a string argument with the syntax
of an appropriate numeric literal, with small extensions: the argument string may
have leading and/or trailing whitespace, may start with a sign, and—for complex
numbers—may sum or subtract a real part and an imaginary one. int can also
be called with two arguments: the first one a string to convert, and the second
the radix, an integer between 2 and 36 to use as the base for the conversion (e.g.,
int('101', 2) returns 5, the value of '101' in base 2). For radices larger than
10, the appropriate subset of ASCII letters from the start of the alphabet (in either
lower- or uppercase) are the extra needed “digits.”15

Arithmetic Operations
Arithmetic operations in Python behave in rather obvious ways, with the possible
exception of division and exponentiation.

Division
When the right operand of /, //, or % is 0, Python raises an exception at runtime.
Otherwise, the / operator performs true division, returning the floating-point result
of division of the two operands (or a complex result if either operand is a complex
number). In contrast, the // operator performs floor division, which means it
returns an integer result (converted to the same type as the wider operand) that’s the
largest integer less than or equal to the true division result (ignoring the remainder,
if any); e.g., 5.0 // 2 = 2.0 (not 2). The % operator returns the remainder of the
(floor) division, i.e., the integer such that (x // y) * y + (x % y) == x.

–x // y Is Not the Same as int(–x / y)
Take care not to think of // as a truncating or integer form of
division; this is only the case for operands of the same sign.
When operands are of different signs, the largest integer less
than or equal to the true division result will actually be a more
negative value than the result from true division (for example,
-5 / 2 returns -2.5, so -5 // 2 returns -3, not -2).
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16 The second item of divmod’s result, just like the result of %, is the remainder, not the modulo,
despite the function’s misleading name. The difference matters when the divisor is negative. In
some other languages, such as C# and JavaScript, the result of a % operator is, in fact, the modulo;
in others yet, such as C and C++, it is machine-dependent whether the result is the modulo or the
remainder when either operand is negative. In Python, it’s the remainder.

The built-in divmod function takes two numeric arguments and returns a pair
whose items are the quotient and remainder, so you don’t have to use both // for
the quotient and % for the remainder.16

Exponentiation
The exponentiation (“raise to power”) operation, when a is less than zero and b is a
floating-point value with a nonzero fractional part, returns a complex number. The
built-in pow(a, b) function returns the same result as a ** b. With three arguments,
pow(a, b, c) returns the same result as (a ** b) % c but may sometimes be faster.
Note that, unlike other arithmetic operations, exponentiation evaluates right to left:
in other words, a ** b ** c evaluates as a ** (b ** c).

Comparisons
All objects, including numbers, can be compared for equality (==) and inequality
(!=). Comparisons requiring order (<, <=, >, >=) may be used between any two
numbers unless either operand is complex, in which case they raise exceptions at
runtime. All these operators return Boolean values (True or False). Be careful when
comparing floating-point numbers for equality, however, as discussed in Chapter 16
and the online tutorial on floating-point arithmetic.

Bitwise Operations on Integers
ints can be interpreted as strings of bits and used with the bitwise operations
shown in Table 3-4. Bitwise operators have lower priority than arithmetic operators.
Positive ints are conceptually extended by an unbounded string of bits on the left,
each bit being 0. Negative ints, as they’re held in two’s complement representation,
are conceptually extended by an unbounded string of bits on the left, each bit
being 1.

Sequence Operations
Python supports a variety of operations applicable to all sequences, including
strings, lists, and tuples. Some sequence operations apply to all containers (includ‐
ing sets and dictionaries, which are not sequences); some apply to all iterables
(meaning “any object over which you can loop”—all containers, be they sequences
or not, are iterable, and so are many objects that are not containers, such as files,
covered in “The io Module” on page 322, and generators, covered in “Generators”
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on page 109). In the following we use the terms sequence, container, and iterable
quite precisely, to indicate exactly which operations apply to each category.

Sequences in General
Sequences are ordered containers with items that are accessible by indexing and
slicing.

The built-in len function takes any container as an argument and returns the
number of items in the container.

The built-in min and max functions take one argument, an iterable whose items are
comparable, and return the smallest and largest items, respectively. You can also call
min and max with multiple arguments, in which case they return the smallest and
largest arguments, respectively.

min and max also accept two keyword-only optional arguments: key, a callable to
apply to each item (the comparisons are then performed on the callable’s results
rather than on the items themselves); and default, the value to return when
the iterable is empty (when the iterable is empty and you supply no default argu‐
ment, the function raises ValueError). For example, max('who', 'why', 'what',
key=len) returns 'what'.

The built-in sum function takes one argument, an iterable whose items are numbers,
and returns the sum of the numbers.

Sequence conversions
There is no implicit conversion between different sequence types. You can call
the built-ins tuple and list with a single argument (any iterable) to get a new
instance of the type you’re calling, with the same items, in the same order, as in the
argument.

Concatenation and repetition
You can concatenate sequences of the same type with the + operator. You can
multiply a sequence S by an integer n with the * operator. S*n is the concatenation
of n copies of S. When n <= 0, S * n is an empty sequence of the same type as S.

Membership testing
The x in S operator tests to check whether the object x equals any item in the
sequence (or other kind of container or iterable) S. It returns True when it does and
False when it doesn’t. The x not in S operator is equivalent to not (x in S). For
dictionaries, x in S tests for the presence of x as a key. In the specific case of strings,
x in S may match more than expected; in this case, x in S tests whether x equals any
substring of S, not just any single character.
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Indexing a sequence
To denote the nth item of a sequence S, use indexing: S[n]. Indexing is zero-based:
S’s first item is S[0]. If S has L items, the index n may be 0, 1… up to and including
L-1, but no larger. n may also be –1, –2… down to and including -L, but no smaller.
A negative n (e.g., –1) denotes the same item in S as L+n (e.g., L-1) does. In other
words, S[-1], like S[L-1], is the last element of S, S[-2] is the next-to-last one, and
so on. For example:

x = [10, 20, 30, 40]
x[1]                  # 20
x[-1]                 # 40

Using an index >=L or <-L raises an exception. Assigning to an item with an invalid
index also raises an exception. You can add elements to a list, but to do so you
assign to a slice, not to an item, as we’ll discuss shortly.

Slicing a sequence
To indicate a subsequence of S, you can use slicing, with the syntax S[i:j], where
i and j are integers. S[i:j] is the subsequence of S from the ith item, included,
to the jth item, excluded (in Python, ranges always include the lower bound and
exclude the upper bound). A slice is an empty subsequence when j is less than or
equal to i, or when i is greater than or equal to L, the length of S. You can omit
i when it is equal to 0, so that the slice begins from the start of S. You can omit j
when it is greater than or equal to L, so that the slice extends all the way to the end
of S. You can even omit both indices, to mean a shallow copy of the entire sequence:
S[:]. Either or both indices may be less than zero. Here are some examples:

x = [10, 20, 30, 40]
x[1:3]                   # [20, 30]
x[1:]                    # [20, 30, 40]
x[:2]                    # [10, 20]

A negative index n in slicing indicates the same spot in S as L+n, just like it does in
indexing. An index greater than or equal to L means the end of S, while a negative
index less than or equal to -L means the start of S.
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Slicing can use the extended syntax S[i:j:k]. k is the stride of the slice, meaning
the distance between successive indices. S[i:j] is equivalent to S[i:j:1], S[::2]
is the subsequence of S that includes all items that have an even index in S, and
S[::-1] is a slicing, also whimsically known as “the Martian smiley,” with the same
items as S but in reverse order. With a negative stride, in order to have a nonempty
slice, the second (“stop”) index needs to be smaller than the first (“start”) one—the
reverse of the condition that must hold when the stride is positive. A stride of 0
raises an exception. Here are some examples:

>>> y = list(range(10))  # values from 0-9
>>> y[-5:]               # last five items

[5, 6, 7, 8, 9]

>>> y[::2]               # every other item

[0, 2, 4, 6, 8]

>>> y[10:0:-2]           # every other item, in reverse order

[9, 7, 5, 3, 1]

>>> y[:0:-2]             # every other item, in reverse order (simpler)

[9, 7, 5, 3, 1]

>>> y[::-2]              # every other item, in reverse order (best)

[9, 7, 5, 3, 1]

Strings
String objects (both str and bytes) are immutable: attempting to rebind or delete
an item or slice of a string raises an exception. (Python also has a built-in type that
is mutable but otherwise equivalent to bytes: bytearray (see “bytearray objects”
on page 47). The items of a text string (each of the characters in the string) are
themselves text strings, each of length 1—Python has no special data type for “single
characters” (the items of a bytes or bytearray object are ints). All slices of a
string are strings of the same kind. String objects have many methods, covered in
“Methods of String Objects” on page 281.

Tuples
Tuple objects are immutable: therefore, attempting to rebind or delete an item or
slice of a tuple raises an exception. The items of a tuple are arbitrary objects and
may be of different types; tuple items may be mutable, but we recommend not
mutating them, as doing so can be confusing. The slices of a tuple are also tuples.
Tuples have no normal (nonspecial) methods, except count and index, with the
same meanings as for lists; they do have many of the special methods covered in
“Special Methods” on page 141.
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Lists
List objects are mutable: you may rebind or delete items and slices of a list. Items of
a list are arbitrary objects and may be of different types. Slices of a list are lists.

Modifying a list
You can modify (rebind) a single item in a list by assigning to an indexing. For
instance:

x = [1, 2, 3, 4]
x[1] = 42                # x is now [1, 42, 3, 4]

Another way to modify a list object L is to use a slice of L as the target (LHS) of an
assignment statement. The RHS of the assignment must be an iterable. When the
LHS slice is in extended form (i.e., the slicing specifies a stride other than 1), then
the RHS must have just as many items as the number of items in the LHS slice.
When the LHS slicing does not specify a stride, or explicitly specifies a stride of 1,
the LHS slice and the RHS may each be of any length; assigning to such a slice of a
list can make the list longer or shorter. For example:

x = [10, 20, 30, 40, 50]
# replace items 1 and 2
x[1:3] = [22, 33, 44]    # x is now [10, 22, 33, 44, 40, 50]
# replace items 1-3
x[1:4] = [88, 99]        # x is now [10, 88, 99, 40, 50]

There are some important special cases of assignment to slices:

• Using the empty list [] as the RHS expression removes the target slice from L.•
In other words, L[i:j] = [] has the same effect as del L[i:j] (or the peculiar
statement L[i:j] *= 0).

• Using an empty slice of L as the LHS target inserts the items of the RHS at the•
appropriate spot in L. For example, L[i:i] = ['a', 'b'] inserts 'a' and 'b'
before the item that was at index i in L prior to the assignment.

• Using a slice that covers the entire list object, L[:], as the LHS target totally•
replaces the contents of L.

You can delete an item or a slice from a list with del. For instance:

x = [1, 2, 3, 4, 5]
del x[1]                 # x is now [1, 3, 4, 5]
del x[::2]               # x is now [3, 5]

In-place operations on a list
List objects define in-place versions of the + and * operators, which you can use
via augmented assignment statements. The augmented assignment statement L +=
L1 has the effect of adding the items of the iterable L1 to the end of L, just like
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L.extend(L1). L *= n has the effect of adding n-1 copies of L to the end of L; if n <=
0, L *= n makes L empty, like L[:] = [] or del L[:].

List methods
List objects provide several methods, as shown in Table 3-5. Nonmutating methods
return a result without altering the object to which they apply, while mutating
methods may alter the object to which they apply. Many of a list’s mutating methods
behave like assignments to appropriate slices of the list. In this table, L indicates any
list object, i any valid index in L, s any iterable, and x any object.

Table 3-5. List object methods

Nonmutating  

count L.count(x)

Returns the number of items of L that are equal to x.

index L.index(x)

Returns the index of the first occurrence of an item in L that is equal to x, or raises an
exception if L has no such item.

Mutating  

append L.append(x)

Appends item x to the end of L ; like L[len(L):] = [x].

clear L.clear()

Removes all items from L, leaving L empty.

extend L.extend(s)

Appends all the items of iterable s to the end of L; like L[len(L):] = s or L += s.

insert L.insert(i, x)
Inserts item x in L before the item at index i, moving following items of L (if any)
“rightward” to make space (increases len(L) by one, does not replace any item, does not
raise exceptions; acts just like L[i:i]=[x]).

pop L.pop(i=-1)

Returns the value of the item at index i and removes it from L; when you omit i, removes
and returns the last item; raises an exception when L is empty or i is an invalid index in L.

remove L.remove(x)

Removes from L the first occurrence of an item in L that is equal to x, or raises an exception
when L has no such item.

reverse L.reverse()

Reverses, in place, the items of L.

sort L.sort(key=None, reverse=False)
Sorts, in place, the items of L (in ascending order, by default; in descending order, if the
argument reverse is True). When the argument key is not None, what gets compared
for each item x is key(x), not x itself. For more details, see the following section.

All mutating methods of list objects, except pop, return None.
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17 Timsort has the distinction of being the only sorting algorithm mentioned by the US Supreme
Court, specifically in the case of Oracle v. Google.

Sorting a list
A list’s sort method causes the list to be sorted in place (reordering items to
place them in increasing order) in a way that is guaranteed to be stable (elements
that compare equal are not exchanged). In practice, sort is extremely fast—often
preternaturally fast, as it can exploit any order or reverse order that may be present
in any sublist (the advanced algorithm sort uses, known as timsort17 to honor its
inventor, great Pythonista Tim Peters, is a “non-recursive adaptive stable natural
mergesort/binary insertion sort hybrid”—now there’s a mouthful for you!).

The sort method takes two optional arguments, which may be passed with either
positional or named-argument syntax. The argument key, if not None, must be a
function that can be called with any list item as its only argument. In this case, to
compare any two items x and y, Python compares key(x) and key(y) rather than
x and y (internally, Python implements this in the same way as the decorate–sort–
undecorate idiom presented in “Searching and sorting” on page 556, but it’s much
faster). The argument reverse, if True, causes the result of each comparison to be
reversed; this is not exactly the same thing as reversing L after sorting, because the
sort is stable (elements that compare equal are never exchanged) whether the argu‐
ment reverse is True or False. In other words, Python sorts the list in ascending
order by default, or in descending order if reverse is True:

mylist = ['alpha', 'Beta', 'GAMMA']
mylist.sort()                  # ['Beta', 'GAMMA', 'alpha']
mylist.sort(key=str.lower)     # ['alpha', 'Beta', 'GAMMA']

Python also provides the built-in function sorted (covered in Table 8-2) to produce
a sorted list from any input iterable. sorted, after the first argument (which is the
iterable supplying the items), accepts the same two optional arguments as a list’s
sort method.

The standard library module operator (covered in “The operator Module” on page
493) supplies higher-order functions attrgetter, itemgetter, and methodcaller,
which produce functions particularly suitable for the optional key argument of the
list’s sort method and the built-in function sorted. This optional argument also
exists, with exactly the same meaning, for the built-in functions min and max, as
well as for the functions nsmallest, nlargest, and merge in the standard library
module heapq (covered in “The heapq Module” on page 271) and the class groupby
in the standard library module itertools (covered in “The itertools Module” on
page 275).
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Set Operations
Python provides a variety of operations applicable to sets (both plain and frozen).
Since sets are containers, the built-in len function can take a set as its single
argument and return the number of items in the set. A set is iterable, so you can
pass it to any function or method that takes an iterable argument. In this case,
iteration yields the items of the set in some arbitrary order. For example, for any set
S, min(S) returns the smallest item in S, since min with a single argument iterates
on that argument (the order does not matter, because the implied comparisons are
transitive).

Set Membership
The k in S operator checks whether the object k equals one of the items in the set S.
It returns True when the set contains k, and False when it doesn’t. k not in S is like
not (k in S).

Set Methods
Set objects provide several methods, as shown in Table 3-6. Nonmutating methods
return a result without altering the object to which they apply, and can also be
called on instances of frozenset; mutating methods may alter the object to which
they apply, and can be called only on instances of set. In this table, s denotes any
set object, s1 any iterable with hashable items (often but not necessarily a set or
frozenset), and x any hashable object.

Table 3-6. Set object methods

Nonmutating  

copy s.copy()

Returns a shallow copy of s (a copy whose items are the same objects as s’s, not copies
thereof); like set(s)

difference s.difference(s1)

Returns the set of all items of s that aren’t in s1; can be written as s - s1

intersection s.intersection(s1)

Returns the set of all items of s that are also in s1; can be written as s & s1

isdisjoint s.isdisjoint(s1)

Returns True if the intersection of s and s1 is the empty set (they have no items in
common), and otherwise returns False

issubset s.issubset(s1)

Returns True when all items of s are also in s1, and otherwise returns False; can be
written as s <= s1

issuperset s.issuperset(s1)

Returns True when all items of s1 are also in s, and otherwise returns False (like
s1.issubset(s)); can be written as s >= s1
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symmetric_

difference

s.symmetric_difference(s1)

Returns the set of all items that are in either s or s1, but not both; can be written
s ^ s1

union s.union(s1)

Returns the set of all items that are in s, s1, or both; can be written as s | s1

Mutating  

add s.add(x)

Adds x as an item to s; no effect if x was already an item in s

clear s.clear()

Removes all items from s, leaving s empty

discard s.discard(x)

Removes x as an item of s; no effect when x was not an item of s

pop s.pop()

Removes and returns an arbitrary item of s

remove s.remove(x)

Removes x as an item of s; raises a KeyError exception when x was not an item of s

All mutating methods of set objects, except pop, return None.

The pop method can be used for destructive iteration on a set, consuming little extra
memory. The memory savings make pop usable for a loop on a huge set, when what
you want is to “consume” the set in the course of the loop. Besides saving memory, a
potential advantage of a destructive loop such as this:

while S:
    item = S.pop()
    # ...handle item...

in comparison to a nondestructive loop such as this:

for item in S:
    # ...handle item...

is that in the body of the destructive loop you’re allowed to modify S (adding and/or
removing items), which is not allowed in the nondestructive loop.

Sets also have mutating methods named difference_update, intersec

tion_update, symmetric_difference_update, and update (corresponding to the
nonmutating method union). Each such mutating method performs the same oper‐
ation as the corresponding nonmutating method, but it performs the operation in
place, altering the set on which you call it, and returns None.

The four corresponding nonmutating methods are also accessible with operator
syntax (where S2 is a set or frozenset, respectively, S - S2, S & S2, S ^ S2,
and S | S2) and the mutating methods are accessible with augmented assignment
syntax (respectively, S -= S2, S &= S2, S ^= S2, and S |= S2). In addition, sets and
frozensets also support comparison operators: == (the sets have the same items;
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that is, they’re “equal” sets), != (the reverse of ==), >= (issuperset), <= (issubset),
< (issubset and not equal), and > (issuperset and not equal).

When you use operator or augmented assignment syntax, both operands must be
sets or frozensets; however, when you call named methods, argument S1 can be
any iterable with hashable items, and it works just as if the argument you passed was
set(S1).

Dictionary Operations
Python provides a variety of operations applicable to dictionaries. Since dictionaries
are containers, the built-in len function can take a dictionary as its argument and
return the number of items (key/value pairs) in the dictionary. A dictionary is
iterable, so you can pass it to any function that takes an iterable argument. In this
case, iteration yields only the keys of the dictionary, in insertion order. For example,
for any dictionary D, min(D) returns the smallest key in D (the order of keys in the
iteration doesn’t matter here).

Dictionary Membership
The k in D operator checks whether the object k is a key in the dictionary D.
It returns True if the key is present, and False otherwise. k not in D is like not
(k in D).

Indexing a Dictionary
To denote the value in a dictionary D currently associated with the key k, use an
indexing: D[k]. Indexing with a key that is not present in the dictionary raises an
exception. For example:

d = {'x':42, 'h':3.14, 'z':7}
d['x']                         # 42
d['z']                         # 7
d['a']                         # raises KeyError exception

Plain assignment to a dictionary indexed with a key that is not yet in the dictionary
(e.g., D[newkey]=value) is a valid operation and adds the key and value as a new
item in the dictionary. For instance:

d = {'x':42, 'h':3.14}
d['a'] = 16                    # d is now {'x':42, 'h':3.14, 'a':16}

The del statement, in the form del D[k], removes from the dictionary the item
whose key is k. When k is not a key in dictionary D, del D[k] raises a KeyError
exception.

Dictionary Methods
Dictionary objects provide several methods, as shown in Table 3-7. Nonmutating
methods return a result without altering the object to which they apply, while
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mutating methods may alter the object to which they apply. In this table, d and d1
indicate any dictionary objects, k any hashable object, and x any object.

Table 3-7. Dictionary object methods

Nonmutating  

copy d.copy()

Returns a shallow copy of the dictionary (a copy whose items are the same objects as D’s, not
copies thereof, just like dict(d))

get d.get(k[, x])
Returns d[k] when k is a key in d; otherwise, returns x (or None, when you don’t pass x)

items d.items()

Returns an iterable view object whose items are all current items (key/value pairs) in d

keys d.keys()

Returns an iterable view object whose items are all current keys in d

values d.values()

Returns an iterable view object whose items are all current values in d

Mutating  

clear d.clear()

Removes all items from d, leaving d empty

pop d.pop(k[, x])
Removes and returns d[k] when k is a key in d; otherwise, returns x (or raises a
KeyError exception when you don’t pass x)

popitem d.popitem()

Removes and returns the items from d in last-in, first-out order

setdefault d.setdefault(k, x)
Returns d[k] when k is a key in d; otherwise, sets d[k] equal to x (or None, when you
don’t pass x), then returns d[k]

update d.update(d1)

For each k in mapping d1, sets d[k]equal to d1[k]

The items, keys, and values methods return values known as view objects. If the
underlying dict changes, the retrieved view also changes; Python doesn’t allow you
to alter the set of keys in the underlying dict while using a for loop on any of its
view objects.

Iterating on any of the view objects yields values in insertion order. In particular,
when you call more than one of these methods without any intervening change to
the dict, the order of the results is the same for all of them.

Dictionaries also support the class method fromkeys(seq, value), which returns
a dictionary containing all the keys of the given iterable seq, each identically initial‐
ized with value.
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Never Modify a dict’s Keys While Iterating on It
Don’t ever modify the set of keys in a dict (i.e., add or remove
keys) while iterating over that dict or any of the iterable views
returned by its methods. If you need to avoid such constraints
against mutation during iteration, iterate instead on a list
explicitly built from the dict or view (i.e., on list(D)). Iterating
directly on a dict D is exactly like iterating on D.keys().

The return values of the items and keys methods also implement set nonmutating
methods and behave much like frozensets; the return value of the method values
doesn’t, since, in contrast to the others (and to sets), it may contain duplicates.

The popitem method can be used for destructive iteration on a dictionary. Both
items and popitem return dictionary items as key/value pairs. popitem is usable for
a loop on a huge dictionary, when what you want is to “consume” the dictionary in
the course of the loop.

D.setdefault(k, x) returns the same result as D.get(k, x); but, when k is
not a key in D, setdefault also has the side effect of binding D[k] to the
value x. (In modern Python, setdefault is not often used, since the type col
lections.defaultdict, covered in “defaultdict” on page 267, often offers similar,
faster, clearer functionality.)

The pop method returns the same result as get, but when k is a key in D, pop also
has the side effect of removing D[k] (when x is not specified, and k is not a key
in D, get returns None, but pop raises an exception). d.pop(key, None) is a useful
shortcut for removing a key from a dict without having to first check if the key is
present, much like s.discard(x) (as opposed to s.remove(x)) when s is a set.

3.9+  The update method is accessible with augmented assignment syntax: where
D2 is a dict, D |= D2 is the same as D.update(D2). Operator syntax, D | D2, mutates
neither dictionary: rather, it returns a new dictionary result, such that D3 = D | D2 is
equivalent to D3 = D.copy(); D3.update(D2).

The update method (but not the | and |= operators) can also accept an iterable
of key/value pairs as an alternative argument instead of a mapping, and can
accept named arguments instead of—or in addition to—its positional argument;
the semantics are the same as for passing such arguments when calling the built-in
dict type, as covered in “Dictionaries” on page 49.

Control Flow Statements
A program’s control flow regulates the order in which the program’s code executes.
The control flow of a Python program mostly depends on conditional statements,
loops, and function calls. (This section covers the if and match conditional state‐
ments, and for and while loops; we cover functions in the following section.)
Raising and handling exceptions also affects control flow (via the try and with
statements); we cover exceptions in Chapter 6.
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18 Except, as already noted, a NumPy array with more than one element.

The if Statement
Often, you’ll need to execute some statements only when some condition holds,
or choose statements to execute depending on mutually exclusive conditions. The
compound statement if—comprising if, elif, and else clauses—lets you condi‐
tionally execute blocks of statements. The syntax for the if statement is:

if expression:
    statement(s)
elif expression:
    statement(s)
elif expression:
    statement(s)
...
else:
    statement(s)

The elif and else clauses are optional. Before the introduction of the match
construct, which we’ll look at next, using if, elif, and else was the most common
approach for all conditional processing (although at times a dict with callables as
values might provide a good alternative).

Here’s a typical if statement with all three kinds of clauses:

if x < 0:
    print('x is negative')
elif x % 2:
    print('x is positive and odd')
else:
    print('x is even and nonnegative')

Each clause controls one or more statements (known as a block): place the block’s
statements on separate logical lines after the line containing the clause’s keyword
(known as the header line of the clause), indented four spaces past the header line.
The block terminates when the indentation returns to the level of the clause header,
or further left from there (this is the style mandated by PEP 8).

You can use any Python expression18 as the condition in an if or elif clause. Using
an expression this way is known as using it in a Boolean context. In this context,
any value is taken as being either true or false. As mentioned earlier, any nonzero
number or nonempty container (string, tuple, list, dictionary, set, etc.) evaluates as
true, while zero (0, of any numeric type), None, and empty containers evaluate as
false. To test a value x in a Boolean context, use the following coding style:

if x:

This is the clearest and most Pythonic form.
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19 It is notable that the match statement specifically excludes matching values of type str, bytes,
and bytearray with sequence patterns.

Do not use any of the following:

if x is True:
if x == True:
if bool(x):

There is a crucial difference between saying that an expression returns True (mean‐
ing the expression returns the value 1 with the bool type) and saying that an
expression evaluates as true (meaning the expression returns any result that is true
in a Boolean context). When testing an expression, for example in an if clause,
you only care about what it evaluates as, not what, precisely, it returns. As we
previously mentioned, “evaluates as true” is often expressed informally as “is truthy,”
and “evaluated as false” as “is falsy.”

When the if clause’s condition evaluates as true, the statements within the if
clause execute, then the entire if statement ends. Otherwise, Python evaluates
each elif clause’s condition, in order. The statements within the first elif clause
whose condition evaluates as true, if any, execute, and the entire if statement ends.
Otherwise, when an else clause exists, it executes. In any case, statements following
the entire if construct, at the same level, execute next.

The match Statement
3.10+  The match statement brings structural pattern matching to the Python lan‐

guage. You might think of this as doing for other Python types something similar
to what the re module (see “Regular Expressions and the re Module” on page
305) does for strings: it allows easy testing of the structure and contents of Python
objects.19 Resist the temptation to use match unless there is a need to analyze the
structure of an object.

The overall syntactic structure of the statement is the new (soft) keyword match fol‐
lowed by an expression whose value becomes the matching subject. This is followed
by one or more indented case clauses, each of which controls the execution of the
indented code block it contains:

match expression:
    case pattern [if guard]:
        statement(s)
    # ...

In execution, Python first evaluates the expression, then tests the resulting subject
value against the pattern in each case in turn, in order from first to last, until
one matches: then, the block indented within the matching case clause evaluates. A
pattern can do two things:
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20 Indeed, the syntax notation used in the Python online documentation required, and got, updates
to concisely describe some of Python’s more recent syntax additions.

• Verify that the subject is an object with a particular structure.•
• Bind matched components to names for further use (usually within the associ‐•

ated case clause).
When a pattern matches the subject, the guard allows a final check before selection
of the case for execution. All the pattern’s name bindings have occurred, and you
can use them in the guard. When there is no guard, or when the guard evaluates
as true, the case’s indented code block executes, after which the match statement’s
execution is complete and no further cases are checked.

The match statement, per se, provides no default action. If one is needed, the last
case clause must specify a wildcard pattern—one whose syntax ensures it matches
any subject value. It is a SyntaxError to follow a case clause having such a wildcard
pattern with any further case clauses.

Pattern elements cannot be created in advance, bound to variables, and (for exam‐
ple) reused in multiple places. Pattern syntax is only valid immediately following the
(soft) keyword case, so there is no way to perform such an assignment. For each
execution of a match statement, the interpreter is free to cache pattern expressions
that repeat inside the cases, but the cache starts empty for each new execution.

We’ll first describe the various types of pattern expressions, before discussing guards
and providing some more complex examples.

Pattern Expressions Have Their Own Semantics
The syntax of pattern expressions might seem familiar, but
their interpretation is sometimes quite different from that of
nonpattern expressions, which could mislead readers unaware
of those differences. Specific syntactic forms are used in the
case clause to indicate matching of particular structures. A
complete summary of this syntax would require more than the
simplified notation we use in this book;20 we therefore prefer
to explain this new feature in plain language, with examples.
For more detailed examples, refer to the Python documenta‐
tion.

Building patterns
Patterns are expressions, though with a syntax specific to the case clause, so familiar
grammatical rules apply even though certain features are interpreted differently.
They can be enclosed in parentheses to let elements of a pattern be treated as
a single expression unit. Like other expressions, patterns have a recursive syntax
and can be combined to form more complex patterns. Let’s start with the simplest
patterns first.
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21 Although comparing float or complex numbers for exact equality is often dubious practice.

Literal patterns
Most literal values are valid patterns. Integer, float, complex number, and string
literals (but not formatted string literals) are all permissible,21 and all succeed in
matching subjects of the same type and value:

>>> for subject in (42, 42.0, 42.1, 1+1j, b'abc', 'abc'):
...     print(subject, end=': ')
...     match subject:
...         case 42: print('integer')  # note this matches 42.0, too!
...         case 42.1: print('float')
...         case 1+1j: print('complex')
...         case b'abc': print('bytestring')
...         case 'abc': print('string')

42: integer
42.0: integer
42.1: float
(1+1j): complex
b'abc': bytestring
abc: string

For most matches, the interpreter checks for equality without type checking, which
is why 42.0 matches integer 42. If the distinction is important, consider using class
matching (see “Class patterns” on page 81) rather than literal matching. True,
False, and None being singleton objects, each matches itself.

The wildcard pattern
In pattern syntax, the underscore (_) plays the role of a wildcard expression. As the
simplest wildcard pattern, _ matches any value at all:

>>> for subject in 42, 'string', ('tu', 'ple'), ['list'], object:
...     match subject:
...         case _: print('matched', subject)
...

matched 42
matched string
matched ('tu', 'ple')
matched ['list']
matched <class 'object'>

Capture patterns
The use of unqualified names (names with no dots in them) is so different in
patterns that we feel it necessary to begin this section with a warning.
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22 For this unique use case, it’s common to break the normal style conventions about starting class
names with an uppercase letter and avoiding using semicolons to stash multiple assignments
within one line; however, the authors haven’t yet found a style guide that blesses this peculiar,
rather new usage.

Simple Names Bind to Matched Elements Inside Patterns
Unqualified names—simple identifiers (e.g., color) rather than
attribute references (e.g., name.attr)—do not necessarily have
their usual meaning in pattern expressions. Some names,
rather than being references to values, are instead bound to
elements of the subject value during pattern matching.

Unqualified names, except _, are capture patterns. They’re wildcards, matching
anything, but with a side effect: the name, in the current local namespace, gets
bound to the object matched by the pattern. Bindings created by matching remain
after the statement has executed, allowing the statements in the case clause and
subsequent code to process extracted portions of the subject value.

The following example is similar to the preceding one, except that the name x,
instead of the underscore, matches the subject. The absence of exceptions shows
that the name captures the whole subject in each case:

>>> for subject in 42, 'string', ('tu', 'ple'), ['list'], object:
...     match subject:
...         case x: assert x == subject
...

Value patterns
This section, too, begins with a reminder to readers that simple names can’t be used
to inject their bindings into pattern values to be matched.

Represent Variable Values in Patterns with Qualified Names
Because simple names capture values during pattern match‐
ing, you must use attribute references (qualified names like
name.attr) to express values that may change between differ‐
ent executions of the same match statement.

Though this feature is useful, it means you can’t reference values directly with sim‐
ple names. Therefore, in patterns, values must be represented by qualified names,
which are known as value patterns—they represent values, rather than capturing
them as simple names do. While slightly inconvenient, to use qualified names you
can just set attribute values on an otherwise empty class.22 For example:

>>> class m: v1 = "one"; v2 = 2; v3 = 2.56
...
>>> match ('one', 2, 2.56):
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...     case (m.v1, m.v2, m.v3):  print('matched')

...

matched

It is easy to give yourself access to the current module’s “global” namespace, like this:

>>> import sys
>>> g = sys.modules[__name__]
>>> v1 = "one"; v2 = 2; v3 = 2.56
>>> match ('one', 2, 2.56):
...     case (g.v1, g.v2, g.v3):  print('matched')
...

matched

OR patterns
When P1 and P2 are patterns, the expression P1 | P2 is an OR pattern, matching
anything that matches either P1 or P2, as shown in the following example. Any
number of alternate patterns can be used, and matches are attempted from left to
right:

>>> for subject in range(5):
...     match subject:
...         case 1 | 3: print('odd')
...         case 0 | 2 | 4: print('even')
...

even
odd
even
odd
even

It is a syntax error to follow a wildcard pattern with further alternatives, however,
since they can never be activated. While our initial examples are simple, remember
that the syntax is recursive, so patterns of arbitrary complexity can replace any of
the subpatterns in these examples.

Group patterns
If P1 is a pattern, then (P1) is also a pattern that matches the same values. This addi‐
tion of “grouping” parentheses is useful when patterns become complicated, just as
it is with standard expressions. Like in other expressions, take care to distinguish
between (P1), a simple grouped pattern matching P1, and (P1,), a sequence pattern
(described next) matching a sequence with a single element matching P1.

Sequence patterns
A list or tuple of patterns, optionally with a single starred wildcard (*_) or starred
capture pattern (*name), is a sequence pattern. When the starred pattern is absent,
the pattern matches a fixed-length sequence of values of the same length as the
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pattern. Elements of the sequence are matched one at a time, until all elements have
matched (then matching succeeds) or an element fails to match (then matching
fails).

When the sequence pattern includes a starred pattern, that subpattern matches a
sequence of elements sufficiently long to allow the remaining unstarred patterns to
match the final elements of the sequence. When the starred pattern is of the form
*name, name is bound to the (possibly empty) list of the elements in the middle that
don’t correspond to individual patterns at the beginning or end.

You can match a sequence with patterns that look like tuples or lists—it makes
no difference to the matching process. The next example shows an unnecessarily
complicated way to extract the first, middle, and last elements of a sequence:

>>> for sequence in (["one", "two", "three"], range(2), range(6)):
...     match sequence:
...         case  (first, *vars, last): print(first, vars, last)
...

one ['two'] three
0 [] 1
0 [1, 2, 3, 4] 5

as patterns
You can use so-called as patterns to capture values matched by more complex
patterns, or components of a pattern, that simple capture patterns (see “Capture
patterns” on page 77) cannot.

When P1 is a pattern, then P1 as name is also a pattern; when P1 succeeds, Python
binds the matched value to the name name in the local namespace. The interpreter
tries to ensure that, even with complicated patterns, the same bindings always
take place when a match occurs. Therefore, each of the next two examples raises
SyntaxError, because the constraint cannot be guaranteed:

>>> match subject:
...     case ((0 | 1) as x) | 2: print(x)
...

SyntaxError: alternative patterns bind different names

>>> match subject:
...     case (2 | x): print(x)
...

SyntaxError: alternative patterns bind different names

But this one works:

>>> match 42:
...     case (1 | 2 | 42) as x: print(x)
...

42
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Mapping patterns
Mapping patterns match mapping objects, usually dictionaries, that associate keys
with values. The syntax of mapping patterns uses key: pattern pairs. The keys must
be either literal or value patterns.

The interpreter iterates over the keys in the mapping pattern, processing each as
follows:

• Python looks up the key in the subject mapping; a lookup failure causes an•
immediate match failure.

• Python then matches the extracted value against the pattern associated with the•
key; if the value fails to match the pattern, then the whole match fails.

When all keys (and associated values) in the mapping pattern match, the whole
match succeeds:

>>> match {1: "two", "two": 1}:
...     case {1: v1, "two": v2}: print(v1, v2)
...

two 1

You can also use a mapping pattern together with an as clause:

>>> match {1: "two", "two": 1}:
...     case {1: v1} as v2: print(v1, v2)
...

two {1: 'two', 'two': 1}

The as pattern in the second example binds v2 to the whole subject dictionary, not
just the matched keys.

The final element of the pattern may optionally be a double-starred capture pattern
such as **name. When that is the case, Python binds name to a possibly empty
dictionary whose items are the (key, value) pairs from the subject mapping whose
keys were not present in the pattern:

>>> match {1: 'one', 2: 'two', 3: 'three'}:
...     case {2: middle, **others}: print(middle, others)
...

two {1: 'one', 3: 'three'}

Class patterns
The final and maybe the most versatile kind of pattern is the class pattern, offering
the ability to match instances of particular classes and their attributes.

A class pattern is of the general form:

name_or_attr(patterns)
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23 And its subclasses, for example, collections.defaultdict.

where name_or_attr is a simple or qualified name bound to a class—specifically,
an instance of the built-in type type (or of a subclass thereof, but no super-fancy
metaclasses need apply!)—and patterns is a (possibly empty) comma-separated
list of pattern specifications. When no pattern specifications are present in a class
pattern, the match succeeds whenever the subject is an instance of the given class, so
for example the pattern int() matches any integer.

Like function arguments and parameters, the pattern specifications can be posi‐
tional (like pattern) or named (like name=pattern). If a class pattern has positional
pattern specifications, they must all precede the first named pattern specification.
User-defined classes cannot use positional patterns without setting the class’s
__match_args__ attribute (see “Configuring classes for positional matching” on
page 83).

The built-in types bool, bytearray, bytes, dict,23 float, frozenset, int, list,
set, str, and tuple, as well as any namedtuple and any dataclass, are all config‐
ured to take a single positional pattern, which is matched against the instance value.
For example, the pattern str(x) matches any string and binds its value to x by
matching the string’s value against the capture pattern—as does str() as x.

You may remember a literal pattern example we presented earlier, showing that
literal matching could not discriminate between the integer 42 and the float 42.0
because 42 == 42.0. You can use class matching to overcome that issue:

>>> for subject in 42, 42.0:
...     match subject:
...         case int(x): print('integer', x)
...         case float(x): print('float', x)
...

integer 42
float 42.0

Once the type of the subject value has matched, for each of the named patterns
name=pattern, Python retrieves the attribute name from the instance and matches
its value against pattern. If all named pattern matches succeed, the whole match
succeeds. Python handles positional patterns by converting them to named patterns,
as you’ll see momentarily.

Guards
When a case clause’s pattern succeeds, it is often convenient to determine on the
basis of values extracted from the match whether this case should execute. When
a guard is present, it executes after a successful match. If the guard expression
evaluates as false, Python abandons the current case, despite the match, and moves
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on to consider the next case. This example uses a guard to exclude odd integers by
checking the value bound in the match:

>>> for subject in range(5):
...     match subject:
...         case int(i) if i % 2 == 0: print(i, "is even")
...

0 is even
2 is even
4 is even

Configuring classes for positional matching
When you want your own classes to handle positional patterns in matching, you
have to tell the interpreter which attribute of the instance (not which argument
to __init__) each positional pattern corresponds to. You do this by setting the
class’s __match_args__ attribute to a sequence of names. The interpreter raises
a TypeError exception if you attempt to use more positional patterns than you
defined:

>>> class Color:
...     __match_args__ = ('red', 'green', 'blue')
...     def __init__(self, r, g, b, name='anonymous'):
...         self.name = name
...         self.red, self.green, self.blue = r, g, b
...
>>> color_red = Color(255, 0, 0, 'red')
>>> color_blue = Color(0, 0, 255)
>>> for subject in (42.0, color_red, color_blue):
...     match subject:
...         case float(x):
...             print('float', x)
...         case Color(red, green, blue, name='red'):
...             print(type(subject).__name__, subject.name,
...                   red, green, blue)
...         case Color(red, green, 255) as color:
...             print(type(subject).__name__, color.name,
...                   red, green, color.blue)
...         case _: print(type(subject), subject)
...

float 42.0
Color red 255 0 0
Color anonymous 0 0 255

>>> match color_red:
...     case Color(red, green, blue, name):
...         print("matched")
...
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Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
TypeError: Color() accepts 3 positional sub-patterns (4 given)

The while Statement
The while statement repeats execution of a statement or block of statements for as
long as a conditional expression evaluates as true. Here’s the syntax of the while
statement:

while expression:
    statement(s)

A while statement can also include an else clause and break and continue state‐
ments, all of which we’ll discuss after we look at the for statement.

Here’s a typical while statement:

count = 0
while x > 0:
    x //= 2            # floor division
    count += 1
print('The approximate log2 is', count)

First Python evaluates expression, which is known as the loop condition, in a
Boolean context. When the condition evaluates as false, the while statement ends.
When the loop condition evaluates as true, the statement or block of statements
that make up the loop body executes. Once the loop body finishes executing, Python
evaluates the loop condition again, to check whether another iteration should exe‐
cute. This process continues until the loop condition evaluates as false, at which
point the while statement ends.

The loop body should contain code that eventually makes the loop condition false,
since otherwise the loop never ends (unless the body raises an exception or executes
a break statement). A loop within a function’s body also ends if the loop body
executes a return statement, since in this case the whole function ends.

The for Statement
The for statement repeats execution of a statement or block of statements con‐
trolled by an iterable expression. Here’s the syntax:

for target in iterable:
    statement(s)

The in keyword is part of the syntax of the for statement; its purpose here is
distinct from the in operator, which tests membership.
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Here’s a rather typical for statement:

for letter in 'ciao':
    print(f'give me a {letter}...')

A for statement can also include an else clause and break and continue state‐
ments; we’ll discuss all of these shortly, starting with “The else Clause on Loop
Statements” on page 92. As mentioned previously, iterable may be any iterable
Python expression. In particular, any sequence is iterable. The interpreter implicitly
calls the built-in iter on the iterable, producing an iterator (discussed in the
following subsection), which it then iterates over.

target is normally an identifier naming the control variable of the loop; the for
statement successively rebinds this variable to each item of the iterator, in order.
The statement or statements that make up the loop body execute once for each item
in iterable (unless the loop ends because of an exception or a break or return
statement). Since the loop body may terminate before the iterator is exhausted, this
is one case in which you may use an unbounded iterable—one that, per se, would
never cease yielding items.

You can also use a target with multiple identifiers, as in an unpacking assignment.
In this case, the iterator’s items must themselves be iterables, each with exactly as
many items as there are identifiers in the target. For example, when d is a dictionary,
this is a typical way to loop on the items (key/value pairs) in d:

for key, value in d.items():
    if key and value:         # print only truthy keys and values
        print(key, value)

The items method returns another kind of iterable (a view), whose items are key/
value pairs; so, we use a for loop with two identifiers in the target to unpack each
item into key and value.

Precisely one of the identifiers may be preceded by a star, in which case the starred
identifier is bound to a list of all items not assigned to other targets. Although
components of a target are commonly identifiers, values can be bound to any
acceptable LHS expression, as covered in “Assignment Statements” on page 53—so,
the following is correct, although not the most readable style:

prototype = [1, 'placeholder', 3]
for prototype[1] in 'xyz':
    print(prototype)
# prints [1, 'x', 3], then [1, 'y', 3], then [1, 'z', 3]
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Don’t Alter Mutable Objects While Looping on Them
When an iterator has a mutable underlying iterable, don’t alter
that underlying object during the execution of a for loop on
the iterable. For example, the preceding key/value printing
example cannot alter d. The items method returns a “view”
iterable whose underlying object is d, so the loop body cannot
mutate the set of keys in d (e.g., by executing del d[key]). To
ensure that d is not the underlying object of the iterable, you
may, for example, iterate over list(d.items()) to allow the
loop body to mutate d. Specifically:

• When looping on a list, do not insert, append, or delete•
items (rebinding an item at an existing index is OK).

• When looping on a dictionary, do not add or delete items•
(rebinding the value for an existing key is OK).

• When looping on a set, do not add or delete items (no•
alteration is permitted).

The loop body may rebind the control target variable(s), but the next iteration of
the loop always rebinds them again. If the iterator yields no items, the loop body
does not execute at all. In this case, the for statement does not bind or rebind its
control variable in any way. If the iterator yields at least one item, however, then
when the loop statement ends, the control variable remains bound to the last value
to which the loop statement bound it. The following code is therefore correct only
when someseq is not empty:

for x in someseq:
    process(x)
# potential NameError if someseq is empty
print(f'Last item processed was {x}')

Iterators
An iterator is an object i such that you can call next(i), which returns the next
item of iterator i or, when exhausted, raises a StopIteration exception. Alterna‐
tively, you can call next(i, default), in which case, when iterator i has no more
items, the call returns default.

When you write a class (see “Classes and Instances” on page 115), you can let
instances of the class be iterators by defining a special method __next__ that takes
no argument except self, and returns the next item or raises StopIteration.
Most iterators are built by implicit or explicit calls to the built-in function iter,
covered in Table 8-2. Calling a generator also returns an iterator, as we discuss in
“Generators” on page 109.
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As pointed out previously, the for statement implicitly calls iter on its iterable to
get an iterator. The statement:

for x in c:
    statement(s)

is exactly equivalent to:

_temporary_iterator = iter(c)
while True:
    try:
        x = next(_temporary_iterator)
    except StopIteration:
        break
    statement(s)

where _temporary_iterator is an arbitrary name not used elsewhere in the current
scope.

Thus, when iter(c) returns an iterator i such that next(i) never raises StopItera
tion (an unbounded iterator), the loop for x in c continues indefinitely unless the
loop body includes suitable break or return statements, or raises or propagates
exceptions. iter(c), in turn, calls the special method c.__iter__() to obtain and
return an iterator on c. We’ll talk more about __iter__ in the following subsection
and in “Container methods” on page 149.

Many of the best ways to build and manipulate iterators are found in the standard
library module itertools, covered in “The itertools Module” on page 275.

Iterables versus iterators
Python’s built-in sequences, like all iterables, implement an __iter__ method,
which the interpreter calls to produce an iterator over the iterable. Because each
call to the built-in’s __iter__ method produces a new iterator, it is possible to nest
multiple iterations over the same iterable:

>>> iterable = [1, 2]
>>> for i in iterable:
...     for j in iterable:
...         print(i, j)
...

1 1
1 2
2 1
2 2

Iterators also implement an __iter__ method, but it always returns self, so nesting
iterations over an iterator doesn’t work as you might expect:

>>> iterator = iter([1, 2])
>>> for i in iterator:
...     for j in iterator:
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...         print(i, j)

...

1 2

Here, both the inner and outer loops are iterating over the same iterator. By the time
the inner loop first gets control, the first value from the iterator has already been
consumed. The first iteration of the inner loop then exhausts the iterator, making
both loops end upon attempting the next iteration.

range
Looping over a sequence of integers is a common task, so Python provides the
built-in function range to generate an iterable over integers. The simplest way to
loop n times in Python is:

for i in range(n):
    statement(s)

range(x) generates the consecutive integers from 0 (included) up to x (excluded).
range(x, y) generates a list whose items are consecutive integers from x (included)
up to y (excluded). range(x, y, stride) generates a list of integers from x
(included) up to y (excluded), such that the difference between each two adjacent
items is stride. If stride < 0, range counts down from x to y.

range generates an empty iterator when x >= y and stride >0, or when x <= y and
stride <0. When stride ==0, range raises an exception.

range returns a special-purpose object, intended just for use in iterations like
the for statement shown previously. Note that range returns an iterable, not an
iterator; you can easily obtain such an iterator, should you need one, by calling
iter(range(...)). The special-purpose object returned by range consumes less
memory (for wide ranges, much less memory) than the equivalent list object
would. If you really need a list that’s an arithmetic progression of ints, call
list(range(...)). You will most often find that you don’t, in fact, need such a
complete list to be fully built in memory.

List comprehensions
A common use of a for loop is to inspect each item in an iterable and build a new
list by appending the results of an expression computed on some or all of the items.
The expression form known as a list comprehension or listcomp lets you code this
common idiom concisely and directly. Since a list comprehension is an expression
(rather than a block of statements), you can use it wherever you need an expression
(e.g., as an argument in a function call, in a return statement, or as a subexpression
of some other expression).

A list comprehension has the following syntax:

[ expression for target in iterable lc-clauses ]
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24 Except that the loop variables’ scope is within the comprehension only, different from the way
scoping works in a for statement.

target and iterable in each for clause of a list comprehension have the same
syntax and meaning as those in a regular for statement, and the expression in
each if clause of a list comprehension has the same syntax and meaning as the
expression in a regular if statement. When expression denotes a tuple, you must
enclose it in parentheses.

lc-clauses  is a series of zero or more clauses, each with either this form:

for target in iterable

or this form:

if expression

A list comprehension is equivalent to a for loop that builds the same list by
repeated calls to the resulting list’s append method.24 For example (assigning the list
comprehension result to a variable for clarity), this:

result = [x+1 for x in some_sequence]

is just the same as the for loop:

result = []
for x in some_sequence:
    result.append(x+1)

Don’t Build a List Unless You Need To
If you are just going to loop once over the items, you don’t
need an actual indexable list: use a generator expression
instead (covered in “Generator expressions” on page 111).
This avoids list creation and uses less memory. In particular,
resist the temptation to use a list comprehension as a not
particularly readable “single-line loop,” like this:

[fn(x) for x in seq]

and then ignore the resulting list—just use a normal for loop
instead!

Here’s a list comprehension that uses an if clause:

result = [x+1 for x in some_sequence if x>23]

This list comprehension is the same as a for loop that contains an if statement:

result = []
for x in some_sequence:
    if x>23:
        result.append(x+1)
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Here’s a list comprehension using a nested for clause to flatten a “list of lists” into a
single list of items:

result = [x for sublist in listoflists for x in sublist]

This is the same as a for loop with another for loop nested inside:

result = []
for sublist in listoflists:
    for x in sublist:
        result.append(x)I

As these examples show, the order of for and if in a list comprehension, is the
same as in the equivalent loop, but, in the list comprehension the nesting remains
implicit. If you remember “order for clauses as in a nested loop,” that can help you
get the ordering of the list comprehension’s clauses right.

List Comprehensions and Variable Scope
A list comprehension expression evaluates in its own scope (as
do set and dictionary comprehensions, described in the fol‐
lowing sections, and generator expressions, discussed toward
the end of this chapter). When a target component in the
for statement is a name, the name is defined solely within the
expression scope and is not available outside it.

Set comprehensions
A set comprehension has exactly the same syntax and semantics as a list comprehen‐
sion, except that you enclose it in braces ({}) rather than in brackets ([]). The result
is a set; for example:

s = {n//2 for n in range(10)}
print(sorted(s))  # prints: [0, 1, 2, 3, 4]

A similar list comprehension would have each item repeated twice, but building a
set removes duplicates.

Dictionary comprehensions
A dictionary comprehension has the same syntax as a set comprehension, except that
instead of a single expression before the for clause, you use two expressions with
a colon (:) between them: key:value. The result is a dict, which retains insertion
order. For example:

d = {s: i for (i, s) in enumerate(['zero', 'one', 'two'])}
print(d)          # prints: {'zero': 0, 'one': 1, 'two': 2}

The break Statement
You can use a break statement only within a loop body. When break executes,
the loop terminates without executing any else clause on the loop. When loops are
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25 In that paper, Knuth also first proposed using “devices like indentation, rather than delimiters” to
express program structure—just as Python does!

nested, a break terminates only the innermost nested loop. In practice, a break is
typically within a clause of an if (or, occasionally, match) statement in the loop
body, so that break executes conditionally.

One common use of break is to implement a loop that decides whether it should
keep looping only in the middle of each loop iteration (what Donald Knuth called
the “loop and a half ” structure in his great 1974 paper “Structured Programming
with go to Statements”25). For example:

while True:          # this loop can never terminate "naturally"
    x = get_next()
    y = preprocess(x)
    if not keep_looping(x, y):
        break
    process(x, y)

The continue Statement
Like break, the continue statement can exist only within a loop body. It causes the
current iteration of the loop body to terminate, and execution continues with the
next iteration of the loop. In practice, a continue is usually within a clause of an
if (or, occasionally, a match) statement in the loop body, so that continue executes
conditionally.

Sometimes, a continue statement can take the place of nested if statements within
a loop. For example, here each x has to pass multiple tests before being completely
processed:

for x in some_container:
    if seems_ok(x):
        lowbound, highbound = bounds_to_test()
        if lowbound <= x < highbound:
            pre_process(x)
            if final_check(x):
                do_processing(x)

Nesting increases with the number of conditions. Equivalent code with continue
“flattens” the logic:

for x in some_container:
    if not seems_ok(x):
        continue
    lowbound, highbound = bounds_to_test()
    if x < lowbound or x >= highbound:
        continue
    pre_process(x)
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    if final_check(x):
        do_processing(x)

Flat Is Better Than Nested
Both versions work the same way, so which one you use is a
matter of personal preference and style. One of the principles
of The Zen of Python (which you can see at any time by typ‐
ing import this at an interactive Python interpreter prompt)
is “Flat is better than nested.” The continue statement is just
one way Python helps you move toward the goal of a less-
nested structure in a loop, when you choose to follow this tip.

The else Clause on Loop Statements
while and for statements may optionally have a trailing else clause. The statement
or block under that clause executes when the loop terminates naturally (at the
end of the for iterator, or when the while loop condition becomes false), but not
when the loop terminates prematurely (via break, return, or an exception). When a
loop contains one or more break statements, you’ll often want to check whether it
terminates naturally or prematurely. You can use an else clause on the loop for this
purpose:

for x in some_container:
    if is_ok(x):
        break  # item x is satisfactory, terminate loop
else:
    print('Beware: no satisfactory item was found in container')
    x = None

The pass Statement
The body of a Python compound statement cannot be empty; it must always contain
at least one statement. You can use a pass statement, which performs no action,
as an explicit placeholder when a statement is syntactically required but you have
nothing to do. Here’s an example of using pass in a conditional statement as a part
of some rather convoluted logic to test mutually exclusive conditions:

if condition1(x):
    process1(x)
elif x>23 or (x<5 and condition2(x)):
    pass       # nothing to be done in this case
elif condition3(x):
    process3(x)
else:
    process_default(x)
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Empty def or class Statements: Use a Docstring, Not pass
You can also use a docstring, covered in “Docstrings” on
page 99, as the body of an otherwise empty def or class
statement. When you do this, you do not need to also add a
pass statement (you can do so if you wish, but it’s not optimal
Python style).

The try and raise Statements
Python supports exception handling with the try statement, which includes try,
except, finally, and else clauses. Your code can also explicitly raise an exception
with the raise statement. When code raises an exception, normal control flow of
the program stops and Python looks for a suitable exception handler. We discuss all
of this in detail in “Exception Propagation” on page 204.

The with Statement
A with statement can often be a more readable, useful alternative to the try/
finally statement. We discuss it in detail in “The with Statement and Context
Managers” on page 201. A good grasp of context managers can often help you
structure your code more clearly without compromising efficiency.

Functions
Most statements in a typical Python program are part of some function. Code in
a function body may be faster than at a module’s top level, as covered in “Avoid
exec and from ... import *” on page 556, so there are excellent practical reasons
to put most of your code into functions—and there are no disadvantages: clarity,
readability and code reusability all improve when you avoid having any substantial
chunks of module-level code.

A function is a group of statements that execute upon request. Python provides
many built-in functions and lets programmers define their own functions. A
request to execute a function is known as a function call. When you call a function,
you can pass arguments that specify data upon which the function performs its
computation. In Python, a function always returns a result: either None or a value,
the result of the computation. Functions defined within class statements are also
known as methods. We cover issues specific to methods in “Bound and Unbound
Methods” on page 126; the general coverage of functions in this section, however,
also applies to methods.

Python is somewhat unusual in the flexibility it affords the programmer in defining
and calling functions. This flexibility does mean that some constraints are not
adequately expressed solely by the syntax. In Python, functions are objects (values),
handled just like other objects. Thus, you can pass a function as an argument in a
call to another function, and a function can return another function as the result
of a call. A function, just like any other object, can be bound to a variable, can be
an item in a container, and can be an attribute of an object. Functions can also be
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keys in a dictionary. The fact that functions are ordinary objects in Python is often
expressed by saying that functions are first-class objects.

For example, given a dict keyed by functions, with the values being each function’s
inverse, you could make the dictionary bidirectional by adding the inverse values as
keys, with their corresponding keys as values. Here’s a small example of this idea,
using some functions from the module math (covered in “The math and cmath
Modules” on page 488), that takes a one-way mapping of inverse pairs and then
adds the inverse of each entry to complete the mapping:

def add_inverses(i_dict):
    for f in list(i_dict):  # iterates over keys while mutating i_dict 
        i_dict[i_dict[f]] = f
math_map = {sin:asin, cos:acos, tan:atan, log:exp}
add_inverses(math_map)

Note that in this case the function mutates its argument (whence its need to use a
list call for looping). In Python, the usual convention is for such functions not to
return a value (see “The return Statement” on page 100).

Defining Functions: The def Statement
The def statement is the usual way to create a function. def is a single-clause
compound statement with the following syntax:

def function_name(parameters):
   statement(s)

function_name is an identifier, and the nonempty indented statement(s) are the
function body. When the interpreter encounters a def statement, it compiles the
function body, creating a function object, and binds (or rebinds, if there was an
existing binding) function_name to the compiled function object in the containing
namespace (typically the module namespace, or a class namespace when defining
methods).

parameters is an optional list specifying the identifiers that will be bound to values
that each function call provides. We distinguish between those identifiers, and the
values provided for them in calls, as usual in computer science by referring to the
former as parameters and the latter as arguments.

In the simplest case, a function defines no parameters, meaning the function won’t
accept any arguments when you call it. In this case, the def statement has empty
parentheses after function_name, as must all calls. Otherwise, parameters will be
a list of specifications (see “Parameters” on page 95). The function body does not
execute when the def statement executes; rather, Python compiles it into bytecode,
saves it as the function object’s __code__ attribute, and executes it later on each call
to the function. The function body can contain zero or more occurrences of the
return statement, as we’ll discuss shortly.

Each call to the function supplies argument expressions corresponding to parame‐
ters in the function definition. The interpreter evaluates the argument expressions
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from left to right and creates a new namespace in which it binds the argument
values to the parameter names as local variables of the function call (as we discuss
in “Calling Functions” on page 101). Then Python executes the function body, with
the function call namespace as the local namespace.

Here’s a simple function that returns a value that is twice the value passed to it each
time it’s called:

def twice(x):
    return x*2

The argument can be anything that you can multiply by two, so you could call the
function with a number, string, list, or tuple as an argument. Each call returns a
new value of the same type as the argument: twice('ciao'), for example, returns
'ciaociao'.

The number of parameters of a function, together with the parameters’ names,
the number of mandatory parameters, and the information on whether and where
unmatched arguments should be collected, are a specification known as the func‐
tion’s signature. A signature defines how you can call the function.

Parameters
Parameters (pedantically, formal parameters) name the values passed into a function
call, and may specify default values for them. Each time you call the function, the
call binds each parameter name to the corresponding argument value in a new local
namespace, which Python later destroys on function exit.

Besides letting you name individual arguments, Python also lets you collect argu‐
ment values not matched by individual parameters, and lets you specifically require
that some arguments be positional, or be named.

Positional parameters
A positional parameter is an identifier, name, which names the parameter. You use
these names inside the function body to access the argument values to the call.
Callers can normally provide values for these parameters with either positional or
named arguments (see “Matching arguments to parameters” on page 104).

Named parameters
Named parameters normally take the form name=expression ( 3.8+  or come after
a positional argument collector, often just *, as discussed shortly). They are also
often known (when written in the traditional name=expression form) as default,
optional, and even—confusingly, since they do not involve any Python keywords—
keyword parameters. When it executes a def statement, the interpreter evaluates
each such expression and saves the resulting value, known as the default value
for the parameter, among the attributes of the function object. A function call
thus need not provide an argument value for a named parameter written in the
traditional form: the call uses the default value given as the expression. You may
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provide positional arguments as values for some named parameters ( 3.8+  except
for parameters that are identified as named ones by appearing after a positional
argument collector; see also “Matching arguments to parameters” on page 104).

Python computes each default value exactly once, when the def statement executes,
not each time you call the resulting function. In particular, this means that Python
binds exactly the same object, the default value, to the named parameter whenever
the caller does not supply a corresponding argument.

Avoid Mutable Default Values
A function can alter a mutable default value, such as a list,
each time you call the function without an argument corre‐
sponding to the respective parameter. This is usually not the
behavior you want; for details, see “Mutable default parameter
values” on page 97.

Positional-only marker
3.8+  A function’s signature may contain a single positional-only marker (/) as a

dummy parameter. The parameters preceding the marker are known as positional-
only parameters, and must be provided as positional arguments, not named argu‐
ments, when calling the function; using named arguments for these parameters
raises a TypeError exception.

The built-in int type, for example, has the following signature:

int(x, /, base=10)

When calling int, you must pass a value for x and you must pass it positionally.
base (used when x is a string to be converted to int) is optional, and you may pass
it either positionally or as a named argument (it’s an error to pass x as a number and
also pass base, but the notation cannot capture that quirk).

Positional argument collector
The positional argument collector can take one of two forms, either *name or 3.8+
just *. In the former case, name is bound at call time to a tuple of unmatched
positional arguments (when all positional arguments are matched, the tuple is
empty). In the latter case (the * is a dummy parameter), a call with unmatched
positional arguments raises a TypeError exception.

When a function’s signature has either kind of positional argument collector, no
call can provide a positional argument for a named parameter coming after the
collector: the collector prohibits (in the * form) or gives a destination for (in the
*name form) positional arguments that do not correspond to parameters coming
before it.

For example, consider this function from the random module:

def sample(population, k, *, counts=None):

96 | Chapter 3: The Python Language



When calling sample, values for population and k are required, and may be passed
positionally or by name. counts is optional; if you do pass it, you must pass it as a
named argument.

Named argument collector
This final, optional parameter specification has the form **name. When the function
is called, name is bound to a dictionary whose items are the (key, value) pairs
of any unmatched named arguments, or an empty dictionary if there are no such
arguments.

Parameter sequence
Generally speaking, positional parameters are followed by named parameters, with
the positional and named argument collectors (if present) last. The positional-only
marker, however, may appear at any position in the list of parameters.

Mutable default parameter values
When a named parameter’s default value is a mutable object, and the function body
alters the parameter, things get tricky. For example:

def f(x, y=[]):
    y.append(x)
    return id(y), y
print(f(23))             # prints: (4302354376, [23])
print(f(42))             # prints: (4302354376, [23, 42])

The second print prints [23, 42] because the first call to f altered the default value
of y, originally an empty list [], by appending 23 to it. The id values (always equal
to each other, although otherwise arbitrary) confirm that both calls return the same
object. If you want y to be a new, empty list object, each time you call f with a single
argument (a far more frequent need!), use the following idiom instead:

def f(x, y=None):
    if y is None:
        y = []
    y.append(x)
    return id(y), y
print(f(23))             # prints: (4302354376, [23])
print(f(42))             # prints: (4302180040, [42])

There may be cases in which you explicitly want a mutable default parameter value
that is preserved across multiple function calls, most often for caching purposes, as
in the following example:

def cached_compute(x, _cache={}):
    if x not in _cache:
        _cache[x] = costly_computation(x)
    return _cache[x]

Functions | 97

The P
ytho

n
Lang

uag
e



Such caching behavior (also known as memoization) is usually best obtained by dec‐
orating the underlying costly_computation function with functools.lru_cache,
covered in Table 8-7 and discussed in detail in Chapter 17.

Argument collector parameters
The presence of argument collectors (the special forms *, *name, or **name) in a
function’s signature allows a function to prohibit (*) or collect positional (*name)
or named (**name) arguments that do not match any parameters (see “Matching
arguments to parameters” on page 104). There is no requirement to use specific
names—you can use any identifier you want in each special form. *args and **kwds
or **kwargs, as well as *a and **k, are popular choices.

The presence of the special form * causes calls with unmatched positional argu‐
ments to raise a TypeError exception.

*args specifies that any extra positional arguments to a call (i.e., positional argu‐
ments not matching positional parameters in the function signature) get collected
into a (possibly empty) tuple, bound in the call’s local namespace to the name args.
Without a positional argument collector, unmatched positional arguments raise a
TypeError exception.

For example, here’s a function that accepts any number of positional arguments and
returns their sum (and demonstrates the use of an identifier other than *args):

def sum_sequence(*numbers):
    return sum(numbers)
print(sum_sequence(23, 42))        # prints: 65

Similarly, **kwds   specifies that any extra named arguments (i.e., those named
arguments not explicitly specified in the signature) get collected into a (possibly
empty) dictionary whose items are the names and values of those arguments, bound
to the name kwds in the function call namespace.

For example, the following function takes a dictionary whose keys are strings and
whose values are numeric, and adds given amounts to certain values:

def inc_dict(d, **values):
    for key, value in values.items():
        if key in d:
            d[key] += value
        else:
            d[key] = value

my_dict = {'one': 1, 'two': 2}

inc_dict(my_dict, one=3, new=42)
print(my_dict)                # prints: {'one': 4, 'two': 2, 'new':42}

Without a named argument collector, unmatched named arguments raise a Type
Error exception.
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Attributes of Function Objects
The def statement sets some attributes of a function object f. The string attribute
f.__name__ is the identifier that def uses as the function’s name. You may rebind
__name__ to any string value, but trying to unbind it raises a TypeError exception.
f.__defaults__, which you may freely rebind or unbind, is the tuple of default
values for named parameters (empty, if the function has no named parameters).

Docstrings
Another function attribute is the documentation string, or docstring. You may use
or rebind a function f’s docstring attribute as f.__doc__. When the first statement
in the function body is a string literal, the compiler binds that string as the func‐
tion’s docstring attribute. A similar rule applies to classes and modules (see “Class
documentation strings” on page 119 and “Module documentation strings” on page
225). Docstrings can span multiple physical lines, so it’s best to specify them in
triple-quoted string literal form. For example:

def sum_sequence(*numbers):
    """Return the sum of multiple numerical arguments.

       The arguments are zero or more numbers.
       The result is their sum.
    """
    return sum(numbers)

Documentation strings should be part of any Python code you write. They play a
role similar to that of comments, but they are even more useful, since they remain
available at runtime (unless you run your program with python -OO, as covered
in “Command-Line Syntax and Options” on page 22). Python’s help function (see
“Interactive Sessions” on page 25), development environments, and other tools
can use the docstrings from function, class, and module objects to remind the
programmer how to use those objects. The doctest module (covered in “The
doctest Module” on page 517) makes it easy to check that sample code present in
docstrings, if any, is accurate and correct, and remains so as the code and docs get
edited and maintained.

To make your docstrings as useful as possible, respect a few simple conventions, as
detailed in PEP 257. The first line of a docstring should be a concise summary of
the function’s purpose, starting with an uppercase letter and ending with a period.
It should not mention the function’s name, unless the name happens to be a natural-
language word that comes naturally as part of a good, concise summary of the
function’s operation. Use imperative rather than descriptive form: e.g., say “Return
xyz…” rather than “Returns xyz…” If the docstring is multiline, the second line
should be empty, and the following lines should form one or more paragraphs, sep‐
arated by empty lines, describing the function’s parameters, preconditions, return
value, and side effects (if any). Further explanations, bibliographical references,
and usage examples—which you should always check with doctest—can optionally
(and often very usefully!) follow toward the end of the docstring.
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Other attributes of function objects
In addition to its predefined attributes, a function object may have other arbitrary
attributes. To create an attribute of a function object, bind a value to the appropriate
attribute reference in an assignment statement after the def statement executes. For
example, a function could count how many times it gets called:

def counter():
    counter.count += 1
    return counter.count
counter.count = 0

Note that this is not common usage. More often, when you want to group together
some state (data) and some behavior (code), you should use the object-oriented
mechanisms covered in Chapter 4. However, the ability to associate arbitrary
attributes with a function can sometimes come in handy.

Function Annotations
Every parameter in a def clause can be annotated with an arbitrary expression—
that is, wherever within the def’s parameter list you can use an identifier, you
can alternatively use the form identifier:expression, and the expression’s value
becomes the annotation for that parameter.

You can also annotate the return value of the function, using the form ->expres
sion between the ) of the def clause and the : that ends the def clause; the
expression’s value becomes the annotation for the name 'return'. For example:

>>> def f(a:'foo', b)->'bar': pass
...
>>> f.__annotations__

{'a': 'foo', 'return': 'bar'}

As shown in this example, the __annotations__ attribute of the function object is a
dict mapping each annotated identifier to the respective annotation.

You can currently, in theory, use annotations for whatever purpose you wish:
Python itself does nothing with them, except construct the __annotations__
attribute. For detailed information about annotations used for type hinting, which is
now normally considered their key use, see Chapter 5.

The return Statement
You can use the return keyword in Python only inside a function body, and you
can optionally follow it with an expression. When return executes, the function
terminates, and the value of the expression is the function’s result. A function
returns None when it terminates by reaching the end of its body, or by executing a
return statement with no expression (or by explicitly executing return None).
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26 “Alas” because they have nothing to do with Python keywords, so the terminology is confusing; if
you use an actual Python keyword to name a named parameter, that raises SyntaxError.

Good Style in return Statements
As a matter of good style, when some return statements in a
function have an expression, then all return statements in the
function should have an expression. return None should only
ever be written explicitly to meet this style requirement. Never
write a return statement without an expression at the end
of a function body. Python does not enforce these stylistic
conventions, but your code is clearer and more readable when
you follow them.

Calling Functions
A function call is an expression with the following syntax:

function_object(arguments)

function_object may be any reference to a function (or other callable) object; most
often, it’s just the function’s name. The parentheses denote the function call opera‐
tion itself. arguments, in the simplest case, is a series of zero or more expressions
separated by commas (,), giving values for the function’s corresponding parameters.
When the function call executes, the parameters are bound to the argument values
in a new namespace, the function body executes, and the value of the function call
expression is whatever the function returns. Objects created inside and returned by
the function are liable to garbage collection unless the caller retains a reference to
them.

Don’t Forget the Trailing () to Call a Function
Just mentioning a function (or other callable object) does not,
per se, call it. To call a function (or other object) without
arguments, you must use () after the function’s name (or other
reference to the callable object).

Positional and named arguments
Arguments can be of two types. Positional arguments are simple expressions; named
(also known, alas, as keyword26) arguments take the form:

identifier=expression

It is a syntax error for named arguments to precede positional ones in a function
call. Zero or more positional arguments may be followed by zero or more named
arguments. Each positional argument supplies the value for the parameter that
corresponds to it by position (order) in the function definition. There is no require‐
ment for positional arguments to match positional parameters, or vice versa—if
there are more positional arguments than positional parameters, the additional
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27 Python developers introduced positional-only arguments when they realized that parameters to
many built-in functions effectively had no valid names as far as the interpreter was concerned.

28 An “optional parameter” being one for which the function’s signature supplies a default value.

arguments are bound by position to named parameters, if any, for all parameters
preceding an argument collector in the signature. For example:

def f(a, b, c=23, d=42, *x):
    print(a, b, c, d, x)
f(1,2,3,4,5,6)  # prints: 1 2 3 4 (5, 6)

Note that it matters where in the function signature the argument collector appears
(see “Matching arguments to parameters” on page 104 for all the gory details):

def f(a, b, *x, c=23, d=42):
    print(a, b, x, c, d)
f(1,2,3,4,5,6)  # prints: 1 2 (3, 4, 5, 6) 23 42

In the absence of any named argument collector (**name) parameter, each argu‐
ment’s name must be one of the parameter names used in the function’s signature.27

The expression supplies the value for the parameter of that name. Many built-in
functions do not accept named arguments: you must call such functions with posi‐
tional arguments only. However, functions coded in Python usually accept named
as well as positional arguments, so you may call them in different ways. Positional
parameters can be matched by named arguments, in the absence of matching
positional arguments.

A function call must supply, via a positional or a named argument, exactly one value
for each mandatory parameter, and zero or one value for each optional parameter.28

For example:

def divide(divisor, dividend=94):
    return dividend // divisor
print(divide(12))                          # prints: 7
print(divide(12, 94))                      # prints: 7
print(divide(dividend=94, divisor=12))     # prints: 7
print(divide(divisor=12))                  # prints: 7

As you can see, the four calls to divide here are equivalent. You can pass named
arguments for readability purposes whenever you think that identifying the role of
each argument and controlling the order of arguments enhances your code’s clarity.

A common use of named arguments is to bind some optional parameters to specific
values, while letting other optional parameters take default values:

def f(middle, begin='init', end='finis'):
    return begin+middle+end
print(f('tini', end=''))                   # prints: inittini

With the named argument end='', the caller specifies a value (the empty string
'') for f’s third parameter, end, and still lets f’s second parameter, begin, use its
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default value, the string 'init'. You may pass the arguments as positional even
when parameters are named; for example, with the preceding function:

print(f('a','c','t'))                      # prints: cat

At the end of the arguments in a function call, you may optionally use either or
both of the special forms *seq and **dct. If both forms are present, the form with
two asterisks must be last. *seq passes the items of iterable seq to the function as
positional arguments (after the normal positional arguments, if any, that the call
gives with the usual syntax). seq may be any iterable. **dct passes the items of
dct to the function as named arguments, where dct must be a mapping whose
keys are all strings. Each item’s key is a parameter name, and the item’s value is the
argument’s value.

You may want to pass an argument of the form *seq or **dct when the parameters
use similar forms, as discussed in “Parameters” on page 95. For example, using the
function sum_sequence defined in that section (and shown again here), you may
want to print the sum of all the values in the dictionary d. This is easy with *seq:

def sum_sequence(*numbers):
    return sum(numbers)

d = {'a': 1, 'b': 100, 'c': 1000}
print(sum_sequence(*d.values()))

(Of course, print(sum(d.values())) would be simpler and more direct.)

A function call may have zero or more occurrences of *seq and/or **dct, as
specified in PEP 448. You may even pass *seq or **dct when calling a function that
does not use the corresponding form in its signature. In that case, you must ensure
that the iterable seq has the right number of items, or that the dictionary dct uses
the right identifier strings as keys; otherwise, the call raises an exception. As noted
in the following section, a positional argument cannot match a “keyword-only”
parameter; only a named argument, explicit or passed via **kwargs, can do that.

“Keyword-only” parameters
Parameters after a positional argument collector (*name or 3.8+  *) in the function’s
signature are known as keyword-only parameters: the corresponding arguments, if
any, must be named arguments. In the absence of any match by name, such a
parameter is bound to its default value, as set at function definition time.

Keyword-only parameters can be either positional or named. However, you must
pass them as named arguments, not as positional ones. It’s more usual and readable
to have simple identifiers, if any, at the start of the keyword-only parameter specifi‐
cations, and identifier=default forms, if any, following them, though this is not a
requirement of the Python language.

Functions requiring keyword-only parameter specifications without collecting “sur‐
plus” positional arguments indicate the start of the keyword-only parameter specifi‐
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cations with a dummy parameter consisting solely of an asterisk (*), to which no
argument corresponds. For example:

def f(a, *, b, c=56):  # b and c are keyword only
    return a, b, c
f(12, b=34)  # Returns (12, 34, 56) c is optional, it has a default
f(12)        # Raises a TypeError exception, since you didn't pass b
# Error message is: missing 1 required keyword-only argument: 'b'

If you also specify the special form **kwds, it must come at the end of the parameter
list (after the keyword-only parameter specifications, if any). For example:

def g(x, *a, b=23, **k):  # b is keyword only
    return x, a, b, k
g(1, 2, 3, c=99)          # Returns (1, (2, 3), 23, {'c': 99})

Matching arguments to parameters
A call must provide an argument for all positional parameters, and may do so for
named parameters that are not keyword only.

The matching proceeds as follows:

1. Arguments of the form *expression are internally replaced by a sequence of1.
positional arguments obtained by iterating over expression.

2. Arguments of the form **expression are internally replaced by a sequence2.
of keyword arguments whose names and values are obtained by iterating over
expression’s items().

3. Say that the function has N positional parameters and the call has M positional3.
arguments:
• When M≤N, bind all the positional arguments to the first M positional•

parameter names; the remaining positional parameters, if any, must be
matched by named arguments.

• When M>N, bind the remaining positional arguments to named parameters•
in the order in which they appear in the signature. This process terminates in
one of three ways:
1. All positional arguments have been bound.1.

2. The next item in the signature is a * argument collector: the interpreter2.
raises a TypeError exception.

3. The next item in the signature is a *name argument collector: the remain‐3.
ing positional arguments are collected in a tuple that is then bound to
name in the function call namespace.

4. The named arguments are then matched, in the order of the arguments’ occur‐4.
rences in the call, by name with the parameters—both positional and named.
Attempts to rebind an already bound parameter name raise a TypeError
exception.
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5. If unmatched named arguments remain at this stage:5.
• When the function signature includes a **name collector, the inter‐•

preter creates a dictionary with key/value pairs (argument's_name, argu
ment's_value), and binds it to name in the function call namespace.

• In the absence of such an argument collector, Python raises a TypeError•
exception.

6. Any remaining unmatched named parameters are bound to their default6.
values.

At this point, the function call namespace is fully populated, and the interpreter
executes the function’s body using that “call namespace” as the local namespace for
the function.

The semantics of argument passing
In traditional terms, all argument passing in Python is by value (although, in
modern terminology, to say that argument passing is by object reference is more
precise and accurate; check out the synonym call by sharing). When you pass a
variable as an argument, Python passes to the function the object (value) to which
the variable currently refers (not “the variable itself ”!), binding this object to the
parameter name in the function call namespace. Thus, a function cannot rebind
the caller’s variables. Passing a mutable object as an argument, however, allows the
function to make changes to that object, because Python passes a reference to the
object itself, not a copy. Rebinding a variable and mutating an object are totally
disjoint concepts. For example:

def f(x, y):
    x = 23
    y.append(42)
a = 77
b = [99]
f(a, b)
print(a, b)             # prints: 77 [99, 42]

print shows that a is still bound to 77. Function f’s rebinding of its parameter x to
23 has no effect on f’s caller, nor, in particular, on the binding of the caller’s variable
that happened to be used to pass 77 as the parameter’s value. However, print also
shows that b is now bound to [99, 42]. b is still bound to the same list object as
before the call, but f has appended 42 to that list object, mutating it. In neither case
has f altered the caller’s bindings, nor can f alter the number 77, since numbers are
immutable. f can alter a list object, though, since list objects are mutable.

Namespaces
A function’s parameters, plus any names that are bound (by assignment or by other
binding statements, such as def) in the function body, make up the function’s local
namespace, also known as its local scope. Each of these variables is known as a local
variable of the function.

Functions | 105

The P
ytho

n
Lang

uag
e

https://oreil.ly/kst2h


Variables that are not local are known as global variables (in the absence of nested
function definitions, which we’ll discuss shortly). Global variables are attributes
of the module object, as covered in “Attributes of module objects” on page 223.
Whenever a function’s local variable has the same name as a global variable, that
name, within the function body, refers to the local variable, not the global one. We
express this by saying that the local variable hides the global variable of the same
name throughout the function body.

The global statement
By default, any variable bound in a function body is local to the function. If a
function needs to bind or rebind some global variables (not best practice!), the first
statement of the function’s body must be:

global identifiers

where identifiers is one or more identifiers separated by commas (,). The identi‐
fiers listed in a global statement refer to the global variables (i.e., attributes of the
module object) that the function needs to bind or rebind. For example, the function
counter that we saw in “Other attributes of function objects” on page 100 could
be implemented using global and a global variable, rather than an attribute of the
function object:

_count = 0
def counter():
    global _count
    _count += 1
    return _count

Without the global statement, the counter function would raise an UnboundLoca
lError exception when called, because _count would then be an uninitialized
(unbound) local variable. While the global statement enables this kind of program‐
ming, this style is inelegant and ill-advised. As we mentioned earlier, when you want
to group together some state and some behavior, the object-oriented mechanisms
covered in Chapter 4 are usually best.

Eschew global
Never use global if the function body just uses a global vari‐
able (including mutating the object bound to that variable,
when the object is mutable). Use a global statement only
if the function body rebinds a global variable (generally by
assigning to the variable’s name). As a matter of style, don’t
use global unless it’s strictly necessary, as its presence causes
readers of your program to assume the statement is there for
some useful purpose. Never use global except as the first
statement in a function body.

106 | Chapter 3: The Python Language



Nested functions and nested scopes
A def statement within a function body defines a nested function, and the function
whose body includes the def is known as an outer function to the nested one. Code
in a nested function’s body may access (but not rebind) local variables of an outer
function, also known as free variables of the nested function.

The simplest way to let a nested function access a value is often not to rely on nested
scopes, but rather to pass that value explicitly as one of the function’s arguments. If
need be, you can bind the argument’s value at nested-function def time: just use the
value as the default for an optional argument. For example:

def percent1(a, b, c):
    def pc(x, total=a+b+c):
        return (x*100.0) / total
    print('Percentages are:', pc(a), pc(b), pc(c))

Here’s the same functionality using nested scopes:

def percent2(a, b, c):
    def pc(x):
        return (x*100.0) / (a+b+c)
    print('Percentages are:', pc(a), pc(b), pc(c))

In this specific case, percent1 has one tiny advantage: the computation of a+b+c
happens only once, while percent2’s inner function pc repeats the computation
three times. However, when the outer function rebinds local variables between calls
to the nested function, repeating the computation can be necessary: be aware of
both approaches, and choose the appropriate one on a case-by-case basis.

A nested function that accesses values from local variables of “outer” (containing)
functions is also known as a closure. The following example shows how to build a
closure:

def make_adder(augend):
    def add(addend):
        return addend+augend
    return add
add5 = make_adder(5)
add9 = make_adder(9)

print(add5(100))   # prints: 105
print(add9(100))   # prints: 109

Closures are sometimes an exception to the general rule that the object-oriented
mechanisms covered in the next chapter are the best way to bundle together data
and code. When you specifically need to construct callable objects, with some
parameters fixed at object construction time, closures can be simpler and more
direct than classes. For example, the result of make_adder(7) is a function that
accepts a single argument and returns 7 plus that argument. An outer function that
returns a closure is a “factory” for members of a family of functions distinguished
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by some parameters, such as the value of the argument augend in the previous
example, which may often help you avoid code duplication.

The nonlocal keyword acts similarly to global, but it refers to a name in the
namespace of some lexically surrounding function. When it occurs in a function
definition nested several levels deep (a rarely needed structure!), the compiler
searches the namespace of the most deeply nested containing function, then the
function containing that one, and so on, until the name is found or there are no
further containing functions, in which case the compiler raises an error (a global
name, if any, does not match).

Here’s a nested functions approach to the “counter” functionality we implemented
in previous sections using a function attribute, then a global variable:

def make_counter():
    count = 0
    def counter():
        nonlocal count
        count += 1
        return count
    return counter

c1 = make_counter()
c2 = make_counter()
print(c1(), c1(), c1())     # prints: 1 2 3
print(c2(), c2())           # prints: 1 2
print(c1(), c2(), c1())     # prints: 4 3 5

A key advantage of this approach versus the previous ones is that these two nested
functions, just like an object-oriented approach would, let you make independent
counters—here c1 and c2. Each closure keeps its own state and doesn’t interfere
with the other one.

lambda Expressions
If a function body is a single return expression statement, you may (very option‐
ally!) choose to replace the function with the special lambda expression form:

lambda parameters: expression

A lambda expression is the anonymous equivalent of a normal function whose body
is a single return statement. The lambda syntax does not use the return keyword.
You can use a lambda expression wherever you could use a reference to a function.
lambda can sometimes be handy when you want to use an extremely simple function
as an argument or return value.

Here’s an example that uses a lambda expression as an argument to the built-in
sorted function (covered in Table 8-2):

a_list = [-2, -1, 0, 1, 2]
sorted(a_list, key=lambda x: x * x)  # returns: [0, -1, 1, -2, 2]
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Alternatively, you can always use a local def statement to give the function object a
name, then use this name as an argument or return value. Here’s the same sorted
example using a local def statement:

a_list = [-2, -1, 0, 1, 2]
def square(value):
    return value * value
sorted(a_list, key=square)           # returns: [0, -1, 1, -2, 2]

While lambda can at times be handy, def is usually better: it’s more general and
helps you make your code more readable, since you can choose a clear name for the
function.

Generators
When the body of a function contains one or more occurrences of the keyword
yield, the function is known as a generator, or more precisely a generator func‐
tion. When you call a generator, the function body does not execute. Instead, the
generator function returns a special iterator object, known as a generator object
(sometimes, quite confusingly, also called just “a generator”), wrapping the function
body, its local variables (including parameters), and the current point of execution
(initially, the start of the function).

When you (implicitly or explicitly) call next on a generator object, the function
body executes from the current point up to the next yield, which takes the form:

yield expression

A bare yield without the expression is also legal, and equivalent to yield None.
When yield executes, the function execution is “frozen,” preserving the current
point of execution and local variables, and the expression following yield becomes
the result of next. When you call next again, execution of the function body
resumes where it left off, again up to the next yield. When the function body ends,
or executes a return statement, the iterator raises a StopIteration exception to
indicate that the iteration is finished. The expression after return, if any, is the
argument to the StopIteration exception.

yield is an expression, not a statement. When you call g.send(value) on a genera‐
tor object g, the value of yield is value; when you call next(g), the value of yield
is None. We’ll talk more about this shortly: it’s an elementary building block for
implementing coroutines in Python.

A generator function is often a handy way to build an iterator. Since the most
common way to use an iterator is to loop on it with a for statement, you typically
call a generator like this (with the call to next being implicit in the for statement):

for avariable in somegenerator(arguments):

For example, say that you want a sequence of numbers counting up from 1 to N and
then down to 1 again. A generator can help:
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def updown(N):
    for x in range(1, N):
        yield x
    for x in range(N, 0, -1):
        yield x
for i in updown(3):
    print(i)              # prints: 1 2 3 2 1

Here is a generator that works somewhat like built-in range, but returns an iterator
on floating-point values rather than on integers:

def frange(start, stop, stride=1.0):
    start = float(start)  # force all yielded values to be floats
    while start < stop:
        yield start
        start += stride

This example is only somewhat like range because, for simplicity, it makes the
arguments start and stop mandatory, and assumes that stride is positive.

Generator functions are more flexible than functions that return lists. A generator
function may return an unbounded iterator, meaning one that yields an infinite
stream of results (to use only in loops that terminate by other means, e.g., via
a conditionally executed break statement). Further, a generator object iterator per‐
forms lazy evaluation: the iterator can compute each successive item only when
and if needed, “just in time,” while the equivalent function does all computations
in advance and may require large amounts of memory to hold the results list.
Therefore, if all you need is the ability to iterate on a computed sequence, it is
usually best to compute the sequence in a generator object, rather than in a function
returning a list. If the caller needs a list of all the items produced by some bounded
generator object built by g(arguments), the caller can simply use the following code
to explicitly request that Python build a list:

resulting_list = list(g(arguments))

yield from
To improve execution efficiency and clarity when multiple levels of iteration are
yielding values, you can use the form yield from expression, where expression
is iterable. This yields the values from expression one at a time into the calling
environment, avoiding the need to yield repeatedly. We can thus simplify the
updown generator we defined earlier:

def updown(N):
    yield from range(1, N)
    yield from range(N, 0, -1)
for i in updown(3):
    print(i)              # prints: 1 2 3 2 1

Moreover, using yield from lets you use generators as coroutines, discussed next.
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Generators as near-coroutines
Generators are further enhanced with the possibility of receiving a value (or an
exception) back from the caller as each yield executes. This lets generators imple‐
ment coroutines, as explained in PEP 342. When a generator object resumes (i.e.,
you call next on it), the corresponding yield’s value is None. To pass a value x into
some generator object g (so that g receives x as the value of the yield on which it’s
suspended), instead of calling next(g), call g.send(x) (g.send(None) is just like
next(g)).

Other enhancements to generators regard exceptions: we cover them in “Generators
and Exceptions” on page 203.

Generator expressions
Python offers an even simpler way to code particularly simple generators: generator
expressions, commonly known as genexps. The syntax of a genexp is just like that
of a list comprehension (as covered in “List comprehensions” on page 88), except
that a genexp is within parentheses (()) instead of brackets ([]). The semantics of a
genexp are the same as those of the corresponding list comprehension, except that a
genexp produces an iterator yielding one item at a time, while a list comprehension
produces a list of all results in memory (therefore, using a genexp, when appropri‐
ate, saves memory). For example, to sum the squares of all single-digit integers,
you could code sum([x*x for x in range(10)]), but you can express this better as
sum(x*x for x in range(10)) (just the same, but omitting the brackets): you get
the same result but consume less memory. The parentheses that indicate the func‐
tion call also do “double duty” and enclose the genexp. Parentheses are, however,
required when the genexp is not the sole argument. Additional parentheses don’t
hurt, but are usually best omitted, for clarity.

Warning: Don’t Iterate over a Generator Multiple Times
A limitation of generators and generator expressions is that you can iterate over
them only once. Calling next on a generator that has been consumed will just
raise StopIteration again, which most functions will take as an indication that the
generator returns no values. If your code is not careful about reusing a consumed
generator, this can introduce bugs:

# create a generator and list its items and their sum

squares = (x*x for x in range(5))

print(list(squares))  # prints [0, 1, 4, 9, 16]

print(sum(squares))   # Bug! Prints 0

You can write code to guard against accidentally iterating over a consumed genera‐
tor by using a class to wrap the generator, like the following:

class ConsumedGeneratorError(Exception):

    """Raised if a generator is accessed after 

       already consumed.
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    """

class StrictGenerator:

    """Wrapper for generator that will only permit it 

       to be consumed once. Additional accesses will 

       raise ConsumedGeneratorError.

    """

    def __init__(self, gen):

        self._gen = gen

        self._gen_consumed = False

    def __iter__(self):

        return self

    def __next__(self):

        try:

            return next(self._gen)

        except StopIteration:

            if self._gen_consumed:

                raise ConsumedGeneratorError() from None

            self._gen_consumed = True

            raise

Now an erroneous reuse of a generator will raise an exception:

squares = StrictGenerator(x*x for x in range(5))

print(list(squares))  # prints: [0, 1, 4, 9, 16]

print(sum(squares))   # raises ConsumedGeneratorError

Recursion
Python supports recursion (i.e., a Python function can call itself, directly or indi‐
rectly), but there is a limit to how deep the recursion can go. By default, Python
interrupts recursion and raises a RecursionLimitExceeded exception (covered in
“Standard Exception Classes” on page 207) when it detects that recursion has
exceeded a depth of 1,000. You can change this default recursion limit by calling the
setrecursionlimit function in the module sys, covered in Table 8-3.

Note that changing the recursion limit does not give you unlimited recursion. The
absolute maximum limit depends on the platform on which your program is run‐
ning, and particularly on the underlying operating system and C runtime library,
but it’s typically a few thousand levels. If recursive calls get too deep, your program
crashes. Such runaway recursion, after a call to setrecursionlimit that exceeds the
platform’s capabilities, is one of the few things that can cause a Python program
to crash—really crash, hard, without the usual safety net of Python’s exception
mechanism. Therefore, beware of “fixing” a program that is getting RecursionLi
mitExceeded exceptions by raising the recursion limit with setrecursionlimit.
While this is a valid technique, most often you’re better advised to look for ways to
remove the recursion unless you are confident you’ve been able to limit the depth of
recursion that your program needs.
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Readers who are familiar with Lisp, Scheme, or functional programming languages
must in particular be aware that Python does not implement the optimization of
tail-call elimination, which is so crucial in those languages. In Python, any call,
recursive or not, has the same “cost” in terms of both time and memory space,
dependent only on the number of arguments: the cost does not change, whether the
call is a “tail call” (meaning that it’s the last operation that the caller executes) or not.
This makes recursion removal even more important.

For example, consider a classic use for recursion: walking a binary tree. Suppose
you represent a binary tree structure as nodes, where each node is a three-item tuple
(payload, left, right), and left and right are either similar tuples or None,
representing the left-side and right-side descendants. A simple example might be
(23, (42, (5, None, None), (55, None, None)), (94, None, None)) to represent
the tree shown in Figure 3-1.

Figure 3-1. An example of a binary tree

To write a generator function that, given the root of such a tree, “walks” the tree,
yielding each payload in top-down order, the simplest approach is recursion:

def rec(t):
    yield t[0]
    for i in (1, 2):
        if t[i] is not None:
            yield from rec(t[i])

But if a tree is very deep, recursion can become a problem. To remove recursion, we
can handle our own stack—a list used in last-in, first-out (LIFO) fashion, thanks to
its append and pop methods. To wit:

def norec(t):
    stack = [t]
    while stack:
        t = stack.pop()
        yield t[0]
        for i in (2, 1):
            if t[i] is not None:
                stack.append(t[i])

The only small issue to be careful about, to keep exactly the same order of yields as
rec, is switching the (1, 2) index order in which to examine descendants to (2, 1),
adjusting to the “reversed” (last-in, first-out) behavior of stack.
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1 Or “drawbacks,” according to one reviewer. One developer’s meat is another developer’s poison.

4
Object-Oriented Python

Python is an object-oriented (OO) programming language. Unlike some other
object-oriented languages, however, Python doesn’t force you to use the object-
oriented paradigm exclusively: it also supports procedural programming, with
modules and functions, so that you can select the best paradigm for each part
of your program. The object-oriented paradigm helps you group state (data) and
behavior (code) together in handy packets of functionality. Moreover, it offers some
useful specialized mechanisms covered in this chapter, like inheritance and special
methods. The simpler procedural approach, based on modules and functions, may
be more suitable when you don’t need the pluses1 of object-oriented programming.
With Python, you can mix and match paradigms.

In addition to core OO concepts, this chapter covers abstract base classes, decorators,
and metaclasses.

Classes and Instances
If you’re familiar with object-oriented programming in other OO languages such as
C++ or Java, you probably have a good grasp of classes and instances: a class is a
user-defined type, which you instantiate to build instances, i.e., objects of that type.
Python supports this through its class and instance objects.

Python Classes
A class is a Python object with the following characteristics:
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• You can call a class object just like you’d call a function. The call, known as•
instantiation, returns an object known as an instance of the class; the class is
also known as the instance’s type.

• A class has arbitrarily named attributes that you can bind and reference.•
• The values of class attributes can be descriptors (including functions), covered•

in “Descriptors” on page 119, or ordinary data objects.
• Class attributes bound to functions are also known as methods of the class.•
• A method can have any one of many Python-defined names with two lead‐•

ing and two trailing underscores (known as dunder names, short for “double-
underscore names”—the name __init__, for example, is pronounced “dunder
init”). Python implicitly calls such special methods, when a class supplies them,
when various kinds of operations occur on that class or its instances.

• A class can inherit from one or more classes, meaning it delegates to other class•
objects the lookup of some attributes (including regular and dunder methods)
that are not in the class itself.

An instance of a class is a Python object with arbitrarily named attributes that you
can bind and reference. Every instance object delegates attribute lookup to its class
for any attribute not found in the instance itself. The class, in turn, may delegate the
lookup to classes from which it inherits, if any.

In Python, classes are objects (values), handled just like other objects. You can pass
a class as an argument in a call to a function, and a function can return a class as
the result of a call. You can bind a class to a variable, an item in a container, or an
attribute of an object. Classes can also be keys into a dictionary. Since classes are
perfectly ordinary objects in Python, we often say that classes are first-class objects.

The class Statement
The class statement is the most usual way you create a class object. class is a
single-clause compound statement with the following syntax:

class Classname(base-classes, *, **kw):
    statement(s)

Classname is an identifier: a variable that the class statement, when finished, binds
(or rebinds) to the just-created class object. Python naming conventions advise
using title case for class names, such as Item, PrivilegedUser, MultiUseFacility,
etc.

base-classes  is a comma-delimited series of expressions whose values are class
objects. Various programming languages use different names for these class objects:
you can call them the bases, superclasses, or parents of the class. You can say the
class created inherits from, derives from, extends, or subclasses its base classes; in
this book, we generally use extend. This class is a direct subclass or descendant of its

116 | Chapter 4: Object-Oriented Python

https://oreil.ly/orJJ1


2 When that’s the case, it’s also OK to have other named arguments after metaclass=. Such
arguments, if any, are passed on to the metaclass.

base classes. **kw can include a named argument metaclass= to establish the class’s
metaclass,2 as covered in “How Python Determines a Class’s Metaclass” on page 160.

Syntactically, including base-classes is optional: to indicate that you’re creating
a class without bases, just omit base-classes (and, optionally, also omit the paren‐
theses around it, placing the colon right after the class name). Every class inherits
from object, whether you specify explicit bases or not.

The subclass relationship between classes is transitive: if C1 extends C2, and C2
extends C3, then C1 extends C3. The built-in function issubclass(C1, C2) accepts
two class objects: it returns True when C1 extends C2, and otherwise it returns
False. Any class is a subclass of itself; therefore, issubclass(C, C) returns True for
any class C. We cover how base classes affect a class’s functionality in “Inheritance”
on page 129.

The nonempty sequence of indented statements that follows the class statement is
the class body. A class body executes immediately as part of the class statement’s
execution. Until the body finishes executing, the new class object does not yet exist,
and the Classname identifier is not yet bound (or rebound). “How a Metaclass
Creates a Class” on page 160 provides more details about what happens when a
class statement executes. Note that the class statement does not immediately
create any instance of the new class, but rather defines the set of attributes shared by
all instances when you later create instances by calling the class.

The Class Body
The body of a class is where you normally specify class attributes; these attributes
can be descriptor objects (including functions) or ordinary data objects of any type.
An attribute of a class can be another class—so, for example, you can have a class
statement “nested” inside another class statement.

Attributes of class objects
You usually specify an attribute of a class object by binding a value to an identifier
within the class body. For example:

class C1:
    x = 23
print(C1.x)                      # prints: 23

Here, the class object C1 has an attribute named x, bound to the value 23, and
C1.x refers to that attribute. Such attributes may also be accessed via instances: c
= C1(); print(c.x). However, this isn’t always reliable in practice. For example,
when the class instance c has an x attribute, that’s what c.x accesses, not the
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class-level one. So, to access a class-level attribute from an instance, using, say,
print(c.__class__.x) may be best.

You can also bind or unbind class attributes outside the class body. For example:

class C2:
    pass
C2.x = 23
print(C2.x)                      # prints: 23

Your program is usually more readable if you bind class attributes only with state‐
ments inside the class body. However, rebinding them elsewhere may be necessary
if you want to carry state information at a class, rather than instance, level; Python
lets you do that, if you wish. There is no difference between a class attribute bound
in the class body and one bound or rebound outside the body by assigning to an
attribute.

As we’ll discuss shortly, all class instances share all of the class’s attributes.

The class statement implicitly sets some class attributes. The attribute __name__
is the Classname identifier string used in the class statement. The attribute
__bases__ is the tuple of class objects given (or implied) as the base classes in
the class statement. For example, using the class C1 we just created:

print(C1.__name__, C1.__bases__) # prints: C1 (<class 'object'>,)

A class also has an attribute called __dict__, which is the read-only mapping
that the class uses to hold other attributes (also known, informally, as the class’s
namespace).

In statements directly in a class’s body, references to class attributes must use a
simple name, not a fully qualified name. For example:

class C3:
    x = 23
    y = x + 22                   # must use just x, not C3.x

However, in statements within methods defined in a class body, references to class
attributes must use a fully qualified name, not a simple name. For example:

class C4:
    x = 23
    def amethod(self):
        print(C4.x)              # must use C4.x or self.x, not just x!

Attribute references (i.e., expressions like C.x) have semantics richer than attribute
bindings. We cover such references in detail in “Attribute Reference Basics” on page
124.

Function definitions in a class body
Most class bodies include some def statements, since functions (known as methods
in this context) are important attributes for most class instances. A def statement
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in a class body obeys the rules covered in “Functions” on page 93. In addition, a
method defined in a class body has a mandatory first parameter, conventionally
always named self, that refers to the instance on which you call the method. The
self parameter plays a special role in method calls, as covered in “Bound and
Unbound Methods” on page 126.

Here’s an example of a class that includes a method definition:

class C5:
    def hello(self):
        print('Hello')

A class can define a variety of special dunder methods relating to specific operations
on its instances. We discuss these methods in detail in “Special Methods” on page
141.

Class-private variables
When a statement in a class body (or in a method in the body) uses an identifier
starting (but not ending) with two underscores, such as __ident, Python implicitly
changes the identifier to _Classname__ident, where Classname is the name of the
class. This implicit change lets a class use “private” names for attributes, methods,
global variables, and other purposes, reducing the risk of accidentally duplicating
names used elsewhere (particularly in subclasses).

By convention, identifiers starting with a single underscore are private to the scope
that binds them, whether that scope is or isn’t a class. The Python compiler does not
enforce this privacy convention: it is up to programmers to respect it.

Class documentation strings
If the first statement in the class body is a string literal, the compiler binds that
string as the documentation string (or docstring) for the class. The docstring for
the class is available in the __doc__ attribute; if the first statement in the class
body is not a string literal, its value is None. See “Docstrings” on page 99 for more
information on documentation strings.

Descriptors
A descriptor is an object whose class supplies one or more special methods named
__get__, __set__, or __delete__. Descriptors that are class attributes control the
semantics of accessing and setting attributes on instances of that class. Roughly
speaking, when you access an instance attribute, Python gets the attribute’s value by
calling __get__ on the corresponding descriptor, if any. For example:

class Const:  # class with an overriding descriptor, see later
    def __init__(self, value):
        self.__dict__['value'] = value
    def __set__(self, *_):  
        # silently ignore any attempt at setting
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        # (a better design choice might be to raise AttributeError)
        pass
    def __get__(self, *_):
        # always return the constant value
        return self.__dict__['value']
    def __delete__(self, *_): 
        # silently ignore any attempt at deleting 
        # (a better design choice might be to raise AttributeError)
        pass

class X:
    c = Const(23)

x = X()
print(x.c)  # prints: 23
x.c = 42    # silently ignored (unless you raise AttributeError)
print(x.c)  # prints: 23
del x.c     # silently ignored again (ditto)
print(x.c)  # prints: 23

For more details, see “Attribute Reference Basics” on page 124.

Overriding and nonoverriding descriptors
When a descriptor’s class supplies a special method named __set__, the descriptor
is known as an overriding descriptor (or, using the older, confusing terminology, a
data descriptor); when the descriptor’s class supplies __get__ and not __set__, the
descriptor is known as a nonoverriding descriptor.

For example, the class of function objects supplies __get__, but not __set__;
therefore, function objects are nonoverriding descriptors. Roughly speaking, when
you assign a value to an instance attribute with a corresponding descriptor that is
overriding, Python sets the attribute value by calling __set__ on the descriptor. For
more details, see “Attributes of instance objects” on page 121.

The third dunder method of the descriptor protocol is __delete__, called when the
del statement is used on the descriptor instance. If del is not supported, it is still
a good idea to implement __delete__, raising a proper AttributeError exception;
otherwise, the caller will get a mysterious AttributeError: __delete__ exception.

The online docs include many more examples of descriptors and their related
methods.

Instances
To create an instance of a class, call the class object as if it were a function. Each call
returns a new instance whose type is that class:

an_instance = C5()

The built-in function isinstance(i, C), with a class as argument C, returns True
when i is an instance of class C or any subclass of C. Otherwise, isinstance returns
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False. If C is a tuple of types ( 3.10+  or multiple types joined using the | operator),
isinstance returns True if i is an instance or subclass instance of any of the given
types, and False otherwise.

__init__
When a class defines or inherits a method named __init__, calling the class object
executes __init__ on the new instance to perform per instance initialization. Argu‐
ments passed in the call must correspond to __init__’s parameters, except for the
parameter self. For example, consider the following class definition:

class C6:
    def __init__(self, n):
        self.x = n

Here’s how you can create an instance of the C6 class:

another_instance = C6(42)

As shown in the C6 class definition, the __init__ method typically contains state‐
ments that bind instance attributes. An __init__ method must not return a value
other than None; if it does, Python raises a TypeError exception.

The main purpose of __init__ is to bind, and thus create, the attributes of a newly
created instance. You may also bind, rebind, or unbind instance attributes outside
__init__. However, your code is more readable when you initially bind all class
instance attributes in the __init__ method.

When __init__ is absent (and not inherited from any base class), you must call the
class without arguments, and the new instance has no instance-specific attributes.

Attributes of instance objects
Once you have created an instance, you can access its attributes (data and methods)
using the dot (.) operator. For example:

an_instance.hello()                      # prints: Hello
print(another_instance.x)                # prints: 42

Attribute references such as these have fairly rich semantics in Python; we cover
them in detail in “Attribute Reference Basics” on page 124.

You can give an instance object an attribute by binding a value to an attribute
reference. For example:

class C7:
    pass
z = C7()
z.x = 23
print(z.x)                               # prints: 23
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Instance object z now has an attribute named x, bound to the value 23, and z.x
refers to that attribute. The __setattr__ special method, if present, intercepts every
attempt to bind an attribute. (We cover __setattr__ in Table 4-1.)

When you attempt to bind to an instance attribute whose name corresponds
to an overriding descriptor in the class, the descriptor’s __set__ method inter‐
cepts the attempt: if C7.x were an overriding descriptor, z.x=23 would execute
type(z).x.__set__(z, 23).

Creating an instance sets two instance attributes. For any instance z, z.__class__ is
the class object to which z belongs, and z.__dict__ is the mapping z uses to hold
its other attributes. For example, for the instance z we just created:

print(z.__class__.__name__, z.__dict__)  # prints: C7 {'x':23}

You may rebind (but not unbind) either or both of these attributes, but this is rarely
necessary.

For any instance z, any object x, and any identifier S (except __class__ and
__dict__), z.S=x is equivalent to z.__dict__['S']=x (unless a __setattr__ special
method, or an overriding descriptor’s __set__ special method, intercepts the bind‐
ing attempt). For example, again referring to the z we just created:

z.y = 45
z.__dict__['z'] = 67
print(z.x, z.y, z.z)                     # prints: 23 45 67

There is no difference between instance attributes created by assigning to attributes
and those created by explicitly binding an entry in z.__dict__.

The factory function idiom
It’s often necessary to create instances of different classes depending on some condi‐
tion, or avoid creating a new instance if an existing one is available for reuse. A
common misconception is that such needs might be met by having __init__ return
a particular object. However, this approach is infeasible: Python raises an exception
if __init__ returns any value other than None. The best way to implement flexible
object creation is to use a function rather than calling the class object directly. A
function used this way is known as a factory function.

Calling a factory function is a flexible approach: a function may return an existing
reusable instance or create a new instance by calling whatever class is appropriate.
Say you have two almost interchangeable classes, SpecialCase and NormalCase,
and want to flexibly generate instances of either one of them, depending on an
argument. The following appropriate_case factory function, as a “toy” example,
allows you to do just that (we’ll talk more about the self parameter in “Bound and
Unbound Methods” on page 126):

class SpecialCase:
    def amethod(self):
        print('special')
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class NormalCase:
    def amethod(self):
        print('normal')
def appropriate_case(isnormal=True):
    if isnormal:
        return NormalCase()
    else:
        return SpecialCase()
aninstance = appropriate_case(isnormal=False)
aninstance.amethod()                  # prints: special

__new__
Every class has (or inherits) a class method named __new__ (we cover class methods
in “Class methods” on page 135). When you call C(*args, **kwds) to create a
new instance of class C, Python first calls C.__new__(C, *args, **kwds), and
uses __new__’s return value x as the newly created instance. Then Python calls
C.__init__(x, *args, **kwds), but only when x is indeed an instance of C or
any of its subclasses (otherwise, x’s state remains as __new__ had left it). Thus, for
example, the statement x=C(23) is equivalent to:

x = C.__new__(C, 23)
if isinstance(x, C):
    type(x).__init__(x, 23)

object.__new__ creates a new, uninitialized instance of the class it receives as its
first argument. It ignores other arguments when that class has an __init__ method,
but it raises an exception when it receives other arguments beyond the first, and
the class that’s the first argument does not have an __init__ method. When
you override __new__ within a class body, you do not need to add __new__=class
method(__new__), nor use an @classmethod decorator, as you normally would:
Python recognizes the name __new__ and treats it as special in this context. In those
sporadic cases in which you rebind C.__new__ later, outside the body of class C, you
do need to use C.__new__=classmethod(whatever).

__new__ has most of the flexibility of a factory function, as covered in the previous
section. __new__ may choose to return an existing instance or make a new one, as
appropriate. When __new__ does create a new instance, it usually delegates creation
to object.__new__ or the __new__ method of another superclass of C.

The following example shows how to override the class method __new__ in order to
implement a version of the Singleton design pattern:

class Singleton:
    _singletons = {}
    def __new__(cls, *args, **kwds):
        if cls not in cls._singletons:
            cls._singletons[cls] = obj = super().__new__(cls)
            obj._initialized = False
        return cls._singletons[cls]
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3 That need arises because __init__, on any subclass of Singleton that defines this special
method, repeatedly executes, each time you instantiate the subclass, on the only instance that
exists for each subclass of Singleton.

(We cover the built-in super in “Cooperative superclass method calling” on page
132.)

Any subclass of Singleton (that does not further override __new__) has exactly one
instance. When the subclass defines __init__, it must ensure __init__ is safe to
call repeatedly (at each call of the subclass) on the subclass’s only instance.3 In this
example, we insert the _initialized attribute, set to False, when __new__ actually
creates a new instance. Subclasses’ __init__ methods can test if self._initial
ized is False and, if so, set it to True and continue with the rest of the __init__
method. When subsequent “creates” of the singleton instance call __init__ again,
self._initialized will be True, indicating the instance is already initialized, and
__init__ can typically just return, avoiding some repetitive work.

Attribute Reference Basics
An attribute reference is an expression of the form x.name, where x is any expression
and name is an identifier called the attribute name. Many Python objects have
attributes, but an attribute reference has special, rich semantics when x refers to a
class or instance. Methods are attributes, too, so everything we say about attributes
in general also applies to callable attributes (i.e., methods).

Say that x is an instance of class C, which inherits from base class B. Both classes and
the instance have several attributes (data and methods), as follows:

class B:
    a = 23
    b = 45
    def f(self):
        print('method f in class B')
    def g(self):
        print('method g in class B')
class C(B):
    b = 67
    c = 89
    d = 123
    def g(self):
        print('method g in class C')
    def h(self):
        print('method h in class C')
x = C()
x.d = 77
x.e = 88

A few attribute dunder names are special. C.__name__ is the string 'C', the class’s
name. C.__bases__ is the tuple (B,), the tuple of C’s base classes. x.__class__ is
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4 Except for instances of a class defining __slots__, covered in “__slots__” on page 139.

the class C to which x belongs. When you refer to an attribute with one of these
special names, the attribute reference looks directly into a dedicated slot in the class
or instance object and fetches the value it finds there. You cannot unbind these
attributes. You may rebind them on the fly, changing the name or base classes of a
class or the class of an instance, but this advanced technique is rarely necessary.

Class C and instance x each have one other special attribute: a mapping named
__dict__ (typically mutable for x, but not for C). All other attributes of a class or
instance,4 except the few special ones, are held as items in the __dict__ attribute of
the class or instance.

Getting an attribute from a class
When you use the syntax C.name to refer to an attribute on a class object C, lookup
proceeds in two steps:

1. When 'name' is a key in C.__dict__, C.name fetches the value v from1.
C.__dict__['name']. Then, when v is a descriptor (i.e., type(v) supplies
a method named __get__), the value of C.name is the result of calling
type(v).__get__(v, None, C). When v is not a descriptor, the value of C.name
is v.

2. When 'name' is not a key in C.__dict__, C.name delegates the lookup to C’s2.
base classes, meaning it loops on C’s ancestor classes and tries the name lookup
on each (in method resolution order, as covered in “Inheritance” on page 129).

Getting an attribute from an instance
When you use the syntax x.name to refer to an attribute of instance x of class C,
lookup proceeds in three steps:

1. When 'name' is in C (or in one of C’s ancestor classes) as the name of an1.
overriding descriptor v (i.e., type(v) supplies methods __get__ and __set__),
the value of x.name is the result of type(v).__get__(v, x, C).

2. Otherwise, when 'name' is a key in x.__dict__, x.name fetches and returns the2.
value at x.__dict__['name'].

3. Otherwise, x.name delegates the lookup to x’s class (according to the same3.
two-step lookup process used for C.name, as just detailed):
• When this finds a descriptor v, the overall result of the attribute lookup is,•

again, type(v).__get__(v, x, C).

• When this finds a nondescriptor value v, the overall result of the attribute•
lookup is just v.
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When these lookup steps do not find an attribute, Python raises an AttributeError
exception. However, for lookups of x.name, when C defines or inherits the special
method __getattr__, Python calls C.__getattr__(x, 'name') rather than raising
the exception. It’s then up to __getattr__ to return a suitable value or raise the
appropriate exception, normally AttributeError.

Consider the following attribute references, defined previously:

print(x.e, x.d, x.c, x.b, x.a)             # prints: 88 77 89 67 23

x.e and x.d succeed in step 2 of the instance lookup process, since no descriptors
are involved and 'e' and 'd' are both keys in x.__dict__. Therefore, the lookups
go no further but rather return 88 and 77. The other three references must proceed
to step 3 of the instance lookup process and look in x.__class__ (i.e., C). x.c and
x.b succeed in step 1 of the class lookup process, since 'c' and 'b' are both keys
in C.__dict__. Therefore, the lookups go no further but rather return 89 and 67.
x.a gets all the way to step 2 of the class lookup process, looking in C.__bases__[0]
(i.e., B). 'a' is a key in B.__dict__; therefore, x.a finally succeeds and returns 23.

Setting an attribute
Note that the attribute lookup steps happen as just described only when you refer to
an attribute, not when you bind an attribute. When you bind to a class or instance
attribute whose name is not special (unless a __setattr__ method, or the __set__
method of an overriding descriptor, intercepts the binding of an instance attribute),
you affect only the __dict__ entry for the attribute (in the class or instance, respec‐
tively). In other words, for attribute binding, there is no lookup procedure involved,
except for the check for overriding descriptors.

Bound and Unbound Methods
The method __get__ of a function object can return the function object itself, or a
bound method object that wraps the function; a bound method is associated with the
specific instance it’s obtained from.

In the code in the previous section, the attributes f, g, and h are functions; therefore,
an attribute reference to any one of them returns a method object that wraps the
respective function. Consider the following:

print(x.h, x.g, x.f, C.h, C.g, C.f)

This statement outputs three bound methods, represented by strings like:

<bound method C.h of <__main__.C object at 0x8156d5c>>

and then three function objects, represented by strings like:

<function C.h at 0x102cabae8>
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Bound Methods Versus Function Objects
We get bound methods when the attribute reference is on
instance x, and function objects when the attribute reference
is on class C.

Because a bound method is already associated with a specific instance, you can call
the method as follows:

x.h()                   # prints: method h in class C

The key thing to notice here is that you don’t pass the method’s first argument,
self, by the usual argument-passing syntax. Rather, a bound method of instance x
implicitly binds the self parameter to object x. Thus, the method’s body can access
the instance’s attributes as attributes of self, even though we don’t pass an explicit
argument to the method.

Let’s take a closer look at bound methods. When an attribute reference on an
instance, in the course of the lookup, finds a function object that’s an attribute in the
instance’s class, the lookup calls the function’s __get__ method to get the attribute’s
value. The call, in this case, creates and returns a bound method that wraps the
function.

Note that when the attribute reference’s lookup finds a function object directly in
x.__dict__, the attribute reference operation does not create a bound method. In
such cases, Python does not treat the function as a descriptor and does not call the
function’s __get__ method; rather, the function object itself is the attribute’s value.
Similarly, Python creates no bound methods for callables that are not ordinary
functions, such as built-in (as opposed to Python-coded) functions, since such
callables are not descriptors.

A bound method has three read-only attributes in addition to those of the function
object it wraps: im_class is the class object that supplies the method, im_func is
the wrapped function, and im_self refers to x, the instance from which you got the
method.

You use a bound method just like its im_func function, but calls to a bound
method do not explicitly supply an argument corresponding to the first parameter
(conventionally named self). When you call a bound method, the bound method
passes im_self as the first argument to im_func before other arguments (if any)
given at the point of call.

Let’s follow, in excruciatingly low-level detail, the conceptual steps involved in a
method call with the normal syntax x.name(arg). In the following context:

def f(a, b): ...              # a function f with two arguments

class C:
    name = f
x = C()
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5 Some other OO languages, like Modula-3, similarly require explicit use of self.

x is an instance object of class C, name is an identifier that names a method of x’s
(an attribute of C whose value is a function, in this case function f), and arg is any
expression. Python first checks if 'name' is the attribute name in C of an overriding
descriptor, but it isn’t—functions are descriptors, because their type defines the
method __get__, but not overriding ones, because their type does not define the
method __set__. Python next checks if 'name' is a key in x._dict__, but it isn’t.
So, Python finds name in C (everything would work just the same if name were
found, by inheritance, in one of C’s __bases__). Python notices that the attribute’s
value, function object f, is a descriptor. Therefore, Python calls f.__get__(x, C),
which returns a bound method object with im_func set to f, im_class set to C, and
im_self set to x. Then Python calls this bound method object, with arg as the only
argument. The bound method inserts im_self (i.e., x) as the first argument, and arg
becomes the second one in a call to the bound method’s im_func (i.e., function f).
The overall effect is just like calling:

x.__class__.__dict__['name'](x, arg)

When a bound method’s function body executes, it has no special namespace
relationship to either its self object or any class. Variables referenced are local or
global, just like any other function, as covered in “Namespaces” on page 105. Vari‐
ables do not implicitly indicate attributes in self, nor do they indicate attributes in
any class object. When the method needs to refer to, bind, or unbind an attribute of
its self object, it does so by standard attribute reference syntax (e.g., self.name).5
The lack of implicit scoping may take some getting used to (simply because Python
differs in this respect from many, though far from all, other object-oriented lan‐
guages), but it results in clarity, simplicity, and the removal of potential ambiguities.

Bound method objects are first-class objects: you can use them wherever you can
use a callable object. Since a bound method holds references to both the function
it wraps and the self object on which it executes, it’s a powerful and flexible
alternative to a closure (covered in “Nested functions and nested scopes” on page
107). An instance object whose class supplies the special method __call__ (covered
in Table 4-1) offers another viable alternative. These constructs let you bundle some
behavior (code) and some state (data) into a single callable object. Closures are
simplest, but they are somewhat limited in their applicability. Here’s the closure
from the section on nested functions and nested scopes:

def make_adder_as_closure(augend):
    def add(addend, _augend=augend):
        return addend + _augend
    return add

Bound methods and callable instances are richer and more flexible than closures.
Here’s how to implement the same functionality with a bound method:
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def make_adder_as_bound_method(augend):
    class Adder:
        def __init__(self, augend):
            self.augend = augend
        def add(self, addend):
            return addend+self.augend
    return Adder(augend).add

And here’s how to implement it with a callable instance (an instance whose class
supplies the special method __call__):

def make_adder_as_callable_instance(augend):
    class Adder:
        def __init__(self, augend):
            self.augend = augend
        def __call__(self, addend):
            return addend+self.augend
    return Adder(augend)

From the viewpoint of the code that calls the functions, all of these factory functions
are interchangeable, since all of them return callable objects that are polymorphic
(i.e., usable in the same ways). In terms of implementation, the closure is simplest;
the object-oriented approaches—i.e., the bound method and the callable instance
—use more flexible, general, and powerful mechanisms, but there is no need for
that extra power in this simple example (since no other state is required beyond
the augend, which is just as easily carried in the closure as in either of the object-
oriented approaches).

Inheritance
When you use an attribute reference C.name on a class object C, and 'name' is
not a key in C.__dict__, the lookup implicitly proceeds on each class object that
is in C.__bases__ in a specific order (which for historical reasons is known as
the method resolution order, or MRO, but in fact applies to all attributes, not just
methods). C’s base classes may in turn have their own bases. The lookup checks
direct and indirect ancestors, one by one, in MRO, stopping when 'name' is found.

Method resolution order
The lookup of an attribute name in a class essentially occurs by visiting ancestor
classes in left-to-right, depth-first order. However, in the presence of multiple inher‐
itance (which makes the inheritance graph a general directed acyclic graph, or DAG,
rather than specifically a tree), this simple approach might lead to some ancestor
classes being visited twice. In such cases, the resolution order leaves in the lookup
sequence only the rightmost occurrence of any given class.

Each class and built-in type has a special read-only class attribute called __mro__,
which is the tuple of types used for method resolution, in order. You can refer‐
ence __mro__ only on classes, not on instances, and, since __mro__ is a read-only
attribute, you cannot rebind or unbind it. For a detailed and highly technical

Classes and Instances | 129

O
b

ject-
O

riented
P

ytho
n



6 Many Python releases later, Michele’s essay still applies!

explanation of all aspects of Python’s MRO, you may want to study Michele Simio‐
nato’s essay “The Python 2.3 Method Resolution Order”6 and Guido van Rossum’s
article on “The History of Python”. In particular, note that it is quite possible that
Python cannot determine any unambiguous MRO for a certain class: in this case,
Python raises a TypeError exception when it executes that class statement.

Overriding attributes
As we’ve just seen, the search for an attribute proceeds along the MRO (typically,
up the inheritance tree) and stops as soon as the attribute is found. Descendant
classes are always examined before their ancestors, so that when a subclass defines
an attribute with the same name as one in a superclass, the search finds the defini‐
tion in the subclass and stops there. This is known as the subclass overriding the
definition in the superclass. Consider the following code:

class B:
    a = 23
    b = 45
    def f(self):
        print('method f in class B')
    def g(self):
        print('method g in class B')
class C(B):
    b = 67
    c = 89
    d = 123
    def g(self):
        print('method g in class C')
    def h(self):
        print('method h in class C')

Here, class C overrides attributes b and g of its superclass B. Note that, unlike in
some other languages, in Python you may override data attributes just as easily as
callable attributes (methods).

Delegating to superclass methods
When subclass C overrides a method f of its superclass B, the body of C.f often
wants to delegate some part of its operation to the superclass’s implementation of
the method. This can sometimes be done using a function object, as follows:

class Base:
    def greet(self, name):
        print('Welcome', name)
class Sub(Base):
    def greet(self, name):
        print('Well Met and', end=' ')
        Base.greet(self, name)
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x = Sub()
x.greet('Alex')

The delegation to the superclass, in the body of Sub.greet, uses a function object
obtained by attribute reference Base.greet on the superclass, and therefore passes
all arguments normally, including self. (If it seems a bit ugly explicitly using the
base class, bear with us; you’ll see a better way to do this shortly, in this very sec‐
tion). Delegating to a superclass implementation is a frequent use of such function
objects.

One common use of delegation occurs with the special method __init__. When
Python creates an instance, it does not automatically call the __init__ methods of
any base classes, unlike some other object-oriented languages. It is up to a subclass
to initialize its superclasses, using delegation as necessary. For example:

class Base:
    def __init__(self):
        self.anattribute = 23
class Derived(Base):
    def __init__(self):
        Base.__init__(self)
        self.anotherattribute = 45

If the __init__ method of class Derived didn’t explicitly call that of class Base,
instances of Derived would miss that portion of their initialization. Thus, such
instances would violate the Liskov substitution principle (LSP), since they’d lack
the attribute anattribute. This issue does not arise if a subclass does not define
__init__, since in that case it inherits it from the superclass. So, there is never any
reason to code:

class Derived(Base):
    def __init__(self):
        Base.__init__(self)

Never Code a Method That Just Delegates to the Superclass
You should never define a semantically empty __init__ (i.e.,
one that just delegates to the superclass). Instead, inherit
__init__ from the superclass. This advice applies to all meth‐
ods, special or not, but for some reason the bad habit of
coding such semantically empty methods seems to show up
most often for __init__.

The preceding code illustrates the concept of delegation to an object’s superclass,
but it is actually a poor practice, in today’s Python, to code these superclasses explic‐
itly by name. If the base class is renamed, all the call sites to it must be updated. Or,
worse, if refactoring the class hierarchy introduces a new layer between the Derived
and Base class, the newly inserted class’s method will be silently skipped.
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The recommended approach is to call methods defined in a superclass using the
super built-in type. To invoke methods up the inheritance chain, just call super(),
without arguments:

class Derived(Base):
    def __init__(self):
        super().__init__()
        self.anotherattribute = 45

Cooperative superclass method calling
Explicitly calling the superclass’s version of a method using the superclass’s name
is also quite problematic in cases of multiple inheritance with so-called “diamond-
shaped” graphs. Consider the following code:

class A:
    def met(self):
        print('A.met')
class B(A):
    def met(self):
        print('B.met')
        A.met(self)
class C(A):
    def met(self):
        print('C.met')
        A.met(self)
class D(B,C):
    def met(self):
        print('D.met')
        B.met(self)
        C.met(self)

When we call D().met(), A.met ends up being called twice. How can we ensure that
each ancestor’s implementation of the method is called once and only once? The
solution is to use super:

class A:
    def met(self):
        print('A.met')
class B(A):
    def met(self):
        print('B.met')
        super().met()
class C(A):
    def met(self):
        print('C.met')
        super().met()
class D(B,C):
    def met(self):
        print('D.met')
        super().met()
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7 One of the authors has used this technique to dynamically combine small mixin test classes to
create complex test case classes to test multiple independent product features.

Now, D().met() results in exactly one call to each class’s version of met. If you get
into the good habit of always coding superclass calls with super, your classes will fit
smoothly even in complicated inheritance structures—and there will be no ill effects
if the inheritance structure instead turns out to be simple.

The only situation in which you may prefer to use the rougher approach of call‐
ing superclass methods through the explicit syntax is when various classes have
different and incompatible signatures for the same method. This is an unpleasant
situation in many respects; if you do have to deal with it, the explicit syntax
may sometimes be the least of the evils. Proper use of multiple inheritance is
seriously hampered; but then, even the most fundamental properties of OOP, such
as polymorphism between base and subclass instances, are impaired when you give
methods of the same name different signatures in a superclass and its subclass.

Dynamic class definition using the type built-in function
In addition to the type(obj) use, you can also call type with three arguments to
define a new class:

NewClass = type(name, bases, class_attributes, **kwargs)

where name is the name of the new class (which should match the target variable),
bases is a tuple of immediate superclasses, class_attributes is a dict of class-
level methods and attributes to define in the new class, and **kwargs are optional
named arguments to pass to the metaclass of one of the base classes.

For example, with a simple hierarchy of Vehicle classes (such as LandVehicle,
WaterVehicle, AirVehicle, SpaceVehicle, etc.), you can dynamically create hybrid
classes at runtime, such as:

AmphibiousVehicle = type('AmphibiousVehicle', 
                         (LandVehicle, WaterVehicle), {})

This would be equivalent to defining a multiply inherited class:

class AmphibiousVehicle(LandVehicle, WaterVehicle): pass

When you call type to create classes at runtime, you do not need to manually define
the combinatorial expansion of all combinations of Vehicle subclasses, and adding
new subclasses does not require massive extension of defined mixed classes.7 For
more notes and examples, see the online documentation.

“Deleting” class attributes
Inheritance and overriding provide a simple and effective way to add or modify
(override) class attributes (such as methods) noninvasively—i.e., without modifying
the base class defining the attributes—by adding or overriding the attributes in
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subclasses. However, inheritance does not offer a way to delete (hide) base classes’
attributes noninvasively. If the subclass simply fails to define (override) an attribute,
Python finds the base class’s definition. If you need to perform such deletion,
possibilities include the following:

• Override the method and raise an exception in the method’s body.•
• Eschew inheritance, hold the attributes elsewhere than in the subclass’s•
__dict__, and define __getattr__ for selective delegation.

• Override __getattribute__ to similar effect.•
The last of these techniques is demonstrated in “__getattribute__” on page 140.

Consider Using Aggregation Instead of Inheritance
An alternative to inheritance is to use aggregation: instead of
inheriting from a base class, hold an instance of that base class
as a private attribute. You then get complete control over the
attribute’s life cycle and public interface by providing public
methods in the containing class that delegate to the contained
attribute (i.e., by calling equivalent methods on the attribute).
This way, the containing class has more control over the cre‐
ation and deletion of the attribute; also, for any unwanted
methods that the attribute’s class provides, you simply don’t
write delegating methods in the containing class.

The Built-in object Type
The built-in object type is the ancestor of all built-in types and classes. The object
type defines some special methods (documented in “Special Methods” on page 141)
that implement the default semantics of objects:

__new__, __init__
You can create a direct instance of object by calling object() without any
arguments. The call uses object.__new__ and object.__init__ to make and
return an instance object without attributes (and without even a __dict__ in
which to hold attributes). Such instance objects may be useful as “sentinels,”
guaranteed to compare unequal to any other distinct object.

__delattr__, __getattr__, __getattribute__, __setattr__
By default, any object handles attribute references (as covered in “Attribute
Reference Basics” on page 124) using these methods of object.

__hash__, __repr__, __str__
Passing an object to hash, repr, or str calls the object’s corresponding dunder
method.

A subclass of object (i.e., any class) may—and often will!—override any of these
methods and/or add others.
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Class-Level Methods
Python supplies two built-in nonoverriding descriptor types, which give a class two
distinct kinds of “class-level methods”: static methods and class methods.

Static methods
A static method is a method that you can call on a class, or on any instance of the
class, without the special behavior and constraints of ordinary methods regarding
the first parameter. A static method may have any signature; it may have no parame‐
ters, and the first parameter, if any, plays no special role. You can think of a static
method as an ordinary function that you’re able to call normally, despite the fact
that it happens to be bound to a class attribute.

While it is never necessary to define static methods (you can always choose to
instead define a normal function, outside the class), some programmers consider
them to be an elegant syntax alternative when a function’s purpose is tightly bound
to some specific class.

To build a static method, call the built-in type staticmethod and bind its result to a
class attribute. Like all binding of class attributes, this is normally done in the body
of the class, but you may also choose to perform it elsewhere. The only argument
to staticmethod is the function to call when Python calls the static method. The
following example shows one way to define and call a static method:

class AClass:
    def astatic():
        print('a static method')
    astatic = staticmethod(astatic)

an_instance = AClass()
print(AClass.astatic())             # prints: a static method
print(an_instance.astatic())        # prints: a static method

This example uses the same name for the function passed to staticmethod and
for the attribute bound to staticmethod’s result. This naming convention is not
mandatory, but it’s a good idea, and we recommend you always use it. Python offers
a special, simplified syntax to support this style, covered in “Decorators” on page
157.

Class methods
A class method is a method you can call on a class or on any instance of the
class. Python binds the method’s first parameter to the class on which you call the
method, or the class of the instance on which you call the method; it does not
bind it to the instance, as for normal bound methods. The first parameter of a class
method is conventionally named cls.

As with static methods, while it is never necessary to define class methods (you
can always choose to define a normal function, outside the class, that takes the
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class object as its first parameter), class methods are an elegant alternative to such
functions (particularly since they can usefully be overridden in subclasses, when
that is necessary).

To build a class method, call the built-in type classmethod and bind its result to a
class attribute. Like all binding of class attributes, this is normally done in the body
of the class, but you may choose to perform it elsewhere. The only argument to
classmethod is the function to call when Python calls the class method. Here’s one
way you can define and call a class method:

class ABase:
    def aclassmet(cls):
        print('a class method for', cls.__name__)
    aclassmet = classmethod(aclassmet)
class ADeriv(ABase):
    pass

b_instance = ABase()
d_instance = ADeriv()
print(ABase.aclassmet())        # prints: a class method for ABase
print(b_instance.aclassmet())   # prints: a class method for ABase
print(ADeriv.aclassmet())       # prints: a class method for ADeriv
print(d_instance.aclassmet())   # prints: a class method for ADeriv

This example uses the same name for the function passed to classmethod and for
the attribute bound to classmethod’s result. Again, this naming convention is not
mandatory, but it’s a good idea, and we recommend that you always use it. Python’s
simplified syntax to support this style is covered in “Decorators” on page 157.

Properties
Python supplies a built-in overriding descriptor type, usable to give a class’s instan‐
ces properties. A property is an instance attribute with special functionality. You ref‐
erence, bind, or unbind the attribute with the normal syntax (e.g., print(x.prop),
x.prop=23, del x.prop). However, rather than following the usual semantics for
attribute reference, binding, and unbinding, these accesses call on instance x the
methods that you specify as arguments to the built-in type property. Here’s one way
to define a read-only property:

class Rectangle:
    def __init__(self, width, height):
        self.width = width
        self.height = height
    def area(self):
        return self.width * self.height
    area = property(area, doc='area of the rectangle')

Each instance r of class Rectangle has a synthetic read-only attribute r.area, which
the method r.area() computes on the fly by multiplying the sides. The docstring
Rectangle.area.__doc__ is 'area of the rectangle'. The r.area attribute is
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read-only (attempts to rebind or unbind it fail) because we specify only a get
method in the call to property, and no set or del methods.

Properties perform tasks similar to those of the special methods __getattr__,
__setattr__, and __delattr__ (covered in “General-Purpose Special Methods” on
page 142), but properties are faster and simpler. To build a property, call the built-in
type property and bind its result to a class attribute. Like all binding of class
attributes, this is normally done in the body of the class, but you may choose to do it
elsewhere. Within the body of a class C, you can use the following syntax:

attrib = property(fget=None, fset=None, fdel=None, doc=None)

When x is an instance of C and you reference x.attrib, Python calls on x the
method you passed as argument fget to the property constructor, without argu‐
ments. When you assign x.attrib = value, Python calls the method you passed as
argument fset, with value as the only argument. When you execute del x.attrib,
Python calls the method you passed as argument fdel, without arguments. Python
uses the argument you passed as doc as the docstring of the attribute. All parameters
to property are optional. When an argument is missing, Python raises an exception
when some code attempts that operation. For example, in the Rectangle example,
we made the property area read-only because we passed an argument only for the
parameter fget, and not for the parameters fset and fdel.

An elegant syntax to create properties in a class is to use property as a decorator
(see “Decorators” on page 157):

class Rectangle:
    def __init__(self, width, height):
        self.width = width
        self.height = height
    @property
    def area(self):
        """area of the rectangle"""
        return self.width * self.height

To use this syntax, you must give the getter method the same name as you want
the property to have; the method’s docstring becomes the docstring of the property.
If you want to add a setter and/or a deleter as well, use decorators named (in this
example) area.setter and area.deleter, and name the methods thus decorated
the same as the property, too. For example:

import math
class Rectangle:
    def __init__(self, width, height):
        self.width = width
        self.height = height
    @property
    def area(self):
        """area of the rectangle"""
        return self.width * self.height
    @area.setter
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    def area(self, value):
        scale = math.sqrt(value/self.area)
        self.width *= scale
        self.height *= scale

Why properties are important
The crucial importance of properties is that their existence makes it perfectly safe
(and indeed advisable) for you to expose public data attributes as part of your class’s
public interface. Should it ever become necessary, in future versions of your class or
other classes that need to be polymorphic to it, to have some code execute when the
attribute is referenced, rebound, or unbound, you will be able to change the plain
attribute into a property and get the desired effect without any impact on any code
that uses your class (aka “client code”). This lets you avoid goofy idioms, such as
accessor and mutator methods, required by OO languages lacking properties. For
example, client code can use natural idioms like this:

some_instance.widget_count += 1

rather than being forced into contorted nests of accessors and mutators like this:

some_instance.set_widget_count(some_instance.get_widget_count() + 1)

If you’re ever tempted to code methods whose natural names are something like
get_this or set_that, wrap those methods into properties instead, for clarity.

Properties and inheritance
Inheritance of properties works just like for any other attribute. However, there’s
a little trap for the unwary: the methods called upon to access a property are those
defined in the class in which the property itself is defined, without intrinsic use of
further overriding that may happen in subclasses. Consider this example:

class B:
    def f(self):
        return 23
    g = property(f)
class C(B):
    def f(self):
        return 42

c = C()
print(c.g)                # prints: 23, not 42

Accessing the property c.g calls B.f, not C.f, as you might expect. The reason
is quite simple: the property constructor receives (directly or via the decorator
syntax) the function object f (and that happens at the time the class statement for
B executes, so the function object in question is the one also known as B.f). The
fact that the subclass C later redefines the name f is therefore irrelevant, since the
property performs no lookup for that name, but rather uses the function object it
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8 To complete the usually truncated famous quote: “except of course for the problem of too many
indirections.”

received at creation time. If you need to work around this issue, you can do it by
adding the extra level of lookup indirection yourself:

class B:
    def f(self):
        return 23
    def _f_getter(self):
        return self.f()
    g = property(_f_getter)
class C(B):
    def f(self):
        return 42

c = C()
print(c.g)                # prints: 42, as expected

Here, the function object held by the property is B._f_getter, which in turn does
perform a lookup for the name f (since it calls self.f()); therefore, the overriding
of f has the expected effect. As David Wheeler famously put it, “All problems in
computer science can be solved by another level of indirection.”8

__slots__
Normally, each instance object x of any class C has a dictionary x.__dict__ that
Python uses to let you bind arbitrary attributes on x. To save a little memory (at the
cost of letting x have only a predefined set of attribute names), you can define in
class C a class attribute named __slots__, a sequence (normally a tuple) of strings
(normally identifiers). When class C has __slots__, instance x of class C has no
__dict__: trying to bind on x an attribute whose name is not in C.__slots__ raises
an exception.

Using __slots__ lets you reduce memory consumption for small instance objects
that can do without the powerful and convenient ability to have arbitrarily named
attributes. __slots__ is worth adding only to classes that can have so many instan‐
ces that saving a few tens of bytes per instance is important—typically classes that
could have millions, not mere thousands, of instances alive at the same time. Unlike
most other class attributes, however, __slots__ works as we’ve just described only
if an assignment in the class body binds it as a class attribute. Any later alteration,
rebinding, or unbinding of __slots__ has no effect, nor does inheriting __slots__
from a base class. Here’s how to add __slots__ to the Rectangle class defined
earlier to get smaller (though less flexible) instances:

class OptimizedRectangle(Rectangle):
    __slots__ = 'width', 'height'
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There’s no need to define a slot for the area property: __slots__ does not constrain
properties, only ordinary instance attributes, which would reside in the instance’s
__dict__ if __slots__ wasn’t defined.

3.8+  __slots__ attributes can also be defined using a dict with attribute names
for the keys and docstrings for the values. OptimizedRectangle could be declared
more fully as:

class OptimizedRectangle(Rectangle):
    __slots__ = {'width': 'rectangle width in pixels',
                 'height': 'rectangle height in pixels'}

__getattribute__
All references to instance attributes go through the special method __getattri
bute__. This method comes from object, where it implements attribute reference
semantics (as documented in “Attribute Reference Basics” on page 124). You may
override __getattribute__ for purposes such as hiding inherited class attributes
for a subclass’s instances. For instance, the following example shows one way to
implement a list without append:

class listNoAppend(list):
    def __getattribute__(self, name):
        if name == 'append':
            raise AttributeError(name)
        return list.__getattribute__(self, name)

An instance x of class listNoAppend is almost indistinguishable from a built-in list
object, except that its runtime performance is substantially worse, and any reference
to x.append raises an exception.

Implementing __getattribute__ can be tricky; it is often easier to use the built-in
functions getattr and setattr and the instance’s __dict__ (if any), or to reim‐
plement __getattr__ and __setattr__. Of course, in some cases (such as the
preceding example), there is no alternative.

Per Instance Methods
An instance can have instance-specific bindings for all attributes, including callable
attributes (methods). For a method, just like for any other attribute (except those
bound to overriding descriptors), an instance-specific binding hides a class-level
binding: attribute lookup does not consider the class when it finds a binding
directly in the instance. An instance-specific binding for a callable attribute does not
perform any of the transformations detailed in “Bound and Unbound Methods” on
page 126: the attribute reference returns exactly the same callable object that was
earlier bound directly to the instance attribute.

140 | Chapter 4: Object-Oriented Python



However, this does not work as you might expect for per instance bindings of the
special methods that Python calls implicitly as a result of various operations, as
covered in “Special Methods” on page 141. Such implicit uses of special methods
always rely on the class-level binding of the special method, if any. For example:

def fake_get_item(idx):
    return idx
class MyClass:
    pass
n = MyClass()
n.__getitem__ = fake_get_item
print(n[23])                      # results in:
# Traceback (most recent call last):
#   File "<stdin>", line 1, in ?
# TypeError: unindexable object

Inheritance from Built-in Types
A class can inherit from a built-in type. However, a class may directly or indi‐
rectly extend multiple built-in types only if those types are specifically designed to
allow this level of mutual compatibility. Python does not support unconstrained
inheritance from multiple arbitrary built-in types. Normally, a new-style class only
extends at most one substantial built-in type. For example, this:

class noway(dict, list):
    pass

raises a TypeError exception, with a detailed explanation of “multiple bases have
instance lay-out conflict.” When you see such error messages, it means that you’re
trying to inherit, directly or indirectly, from multiple built-in types that are not
specifically designed to cooperate at such a deep level.

Special Methods
A class may define or inherit special methods, often referred to as “dunder” meth‐
ods because, as described earlier, their names have leading and trailing double
underscores. Each special method relates to a specific operation. Python implicitly
calls a special method whenever you perform the related operation on an instance
object. In most cases, the method’s return value is the operation’s result, and
attempting an operation when its related method is not present raises an exception.

Throughout this section, we point out the cases in which these general rules do
not apply. In the following discussion, x is the instance of class C on which you
perform the operation, and y is the other operand, if any. The parameter self
of each method also refers to the instance object x. Whenever we mention calls
to x.__whatever__(...), keep in mind that the exact call happening is rather,
pedantically speaking, x.__class__.__whatever__(x, ...).
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General-Purpose Special Methods
Some dunder methods relate to general-purpose operations. A class that defines
or inherits these methods allows its instances to control such operations. These
operations can be divided into categories:

Initialization and finalization
A class can control its instances’ initialization (a very common requirement)
via special methods __new__ and __init__, and/or their finalization (a rare
requirement) via __del__.

String representation
A class can control how Python renders its instances as strings via special
methods __repr__, __str__, __format__, and __bytes__.

Comparison, hashing, and use in a Boolean context
A class can control how its instances compare with other objects (via special
methods __lt__, __le__, __gt__, __ge__, __eq__, and __ne__), how diction‐
aries use them as keys and sets use them as members (via __hash__), and
whether they evaluate as truthy or falsy in Boolean contexts ( via__bool__).

Attribute reference, binding, and unbinding
A class can control access to its instances’ attributes (reference, bind‐
ing, unbinding) via special methods __getattribute__, __getattr__,
__setattr__, and __delattr__.

Callable instances
A class can make its instances callable, just like function objects, via special
method __call__.

Table 4-1 documents the general-purpose special methods.

Table 4-1. General-purpose special methods

__bool__ __bool__(self)

When evaluating x as true or false (see “Boolean Values” on page 51)—
for example, on a call to bool(x)—Python calls x.__bool__(), which
should return True or False. When __bool__ is not present, Python calls
__len__, and takes x as falsy when x.__len__() returns 0 (to check that
a container is nonempty, avoid coding if len(container)>0:; use if
container: instead). When neither __bool__ nor __len__ is present,
Python considers x truthy.

__bytes__ __bytes__(self)

Calling bytes(x) calls x.__bytes__(), if present. If a class supplies both
special methods __bytes__ and __str__, they should return “equivalent”
strings, respectively, of bytes and str type.
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__call__ __call__(self[, args...])
When you call x([args...]), Python translates the operation into a
call to x.__call__([args...]). The arguments for the call operation
correspond to the parameters for the __call__ method, minus the first one.
The first parameter, conventionally called self, refers to x: Python supplies it
implicitly, just as in any other call to a bound method.

__del__ __del__(self)

Just before x disappears via garbage collection, Python calls x.__del__() to
let x finalize itself. If __del__ is absent, Python does no special finalization
on garbage-collecting x (this is the most common case: very few classes
need to define __del__). Python ignores the return value of __del__ and
doesn’t implicitly call __del__ methods of class C’s superclasses. C.__del__
must explicitly perform any needed finalization, including, if need be, by
delegation. When class C has base classes to finalize, C.__del__ must call
super().__del__().
The __del__ method has no specific connection with the del statement,
covered in “del Statements” on page 56.
__del__ is generally not the best approach when you need timely and
guaranteed finalization. For such needs, use the try/finally statement
covered in “try/finally” on page 198 (or, even better, the with statement,
covered in “The with Statement” on page 93). Instances of classes defining
__del__ don’t participate in cyclic garbage collection, covered in “Garbage
Collection” on page 435. Be careful to avoid reference loops involving such
instances: define __del__ only when there is no feasible alternative.

__delattr__ __delattr__(self, name)
At every request to unbind attribute x.y (typically, del x.y), Python
calls x.__delattr__('y'). All the considerations discussed later for
__setattr__ also apply to __delattr__. Python ignores the return value
of __delattr__. Absent __delattr__, Python turns del x.y into del
x.__dict__['y'].

__dir__ __dir__(self)

When you call dir(x), Python translates the operation into a call to
x.__dir__(), which must return a sorted list of x’s attributes. When x’s
class has no __dir__, dir(x) performs introspection to return a sorted
list of x’s attributes, striving to produce relevant, rather than complete,
information.
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__eq__, __ge__,
__gt__, __le__,
__lt__, __ne__

__eq__(self, other), __ge__(self, other),
__gt__(self, other), __le__(self, other),
__lt__(self, other), __ne__(self, other)
The comparisons x == y, x >= y, x > y, x <= y, x < y, and x != y,
respectively, call the special methods listed here, which should return False or
True. Each method may return NotImplemented to tell Python to handle
the comparison in alternative ways (e.g., Python may then try y > x in lieu of x
< y).
Best practice is to define only one inequality comparison method
(normally __lt__) plus __eq__, and decorate the class with func
tools.total_ordering (covered in Table 8-7), to avoid boilerplate and
any risk of logical contradictions in your comparisons.

__format__ __format__(self, format_string='')

Calling format(x) calls x.__format__(''), and calling format(x,
format_string) calls x.__format__(format_string). The class
is responsible for interpreting the format string (each class may define its
own small “language” of format specifications, inspired by those implemented
by built-in types, as covered in “String Formatting” on page 287). When
__format__ is inherited from object, it delegates to __str__ and does
not accept a nonempty format string.

__getattr__ __getattr__(self, name)
When x.y can’t be found by the usual steps (i.e., when an AttributeEr
ror would usually be raised), Python calls x.__getattr__('y'). Python
does not call __getattr__ for attributes found by normal means (as keys
in x.__dict__, or via x.__class__). If you want Python to call __get
attr__ for every attribute, keep the attributes elsewhere (e.g., in another
dict referenced by an attribute with a private name), or override __getat
tribute__ instead. __getattr__ should raise AttributeError if it
can’t find y.
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__getattribute__ __getattribute_(self, name)
At every request to access attribute x.y, Python calls x.__getattri
bute__('y'), which must get and return the attribute value or else raise
AttributeError. The usual semantics of attribute access (x.__dict__,
C.__slots__, C’s class attributes, x.__getattr__) are all due to
object.__getattribute__.
When class C overrides __getattribute__, it must implement all
of the attribute semantics it wants to offer. The typical way to
implement attribute access is by delegating (e.g., call object.__getattri
bute__(self, ...) as part of the operation of your override of __getat
tribute__).

Overriding __getattribute__ Slows
Attribute Access
When a class overrides __getattribute__, all
attribute accesses on instances of the class become slow,
as the overriding code executes on every attribute access.

__hash__ __hash__(self)

Calling hash(x) calls x.__hash__() (and so do other contexts that need
to know x’s hash value, namely using x as a dictionary key, such as D[x]
where D is a dictionary, or using x as a set member). __hash__ must return
an int such that x==y implies hash(x)==hash(y), and must always
return the same value for a given object.
When __hash__ is absent, calling hash(x) calls id(x) instead, as long
as __eq__ is also absent. Other contexts that need to know x’s hash value
behave the same way.
Any x such that hash(x) returns a result, rather than raising an exception,
is known as a hashable object. When __hash__ is absent, but __eq__ is
present, calling hash(x) raises an exception (and so do other contexts that
need to know x’s hash value). In this case, x is not hashable and therefore
cannot be a dictionary key or set member.
You normally define __hash__ only for immutable objects that also define
__eq__. Note that if there exists any y such that x==y, even if y is of
a different type, and both x and y are hashable, you must ensure that
hash(x)==hash(y). (There are few cases, among Python built-ins, where
x==y can hold between objects of different types. The most important ones are
equality between different number types: an int can equal a bool, a float,
a fractions.Fraction instance, or a decimal.Decimal instance.)
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__init__ __init__(self[, args...])
When a call C([args...]) creates instance x of class C, Python calls
x.__init__([args...]) to let x initialize itself. If __init__ is absent
(i.e., it’s inherited from object), you must call C without arguments, C(),
and x has no instance-specific attributes on creation. Python performs no
implicit call to __init__ methods of class C’s superclasses. C.__init__
must explicitly perform any initialization, including, if need be, by delegation.
For example, when class C has a base class B to initialize without arguments,
the code in C.__init__ must explicitly call super().__init__().
__init__’s inheritance works just like for any other method or attribute:
if C itself does not override __init__, it inherits it from the first superclass in
its __mro__ to override __init__, like every other attribute.
__init__ must return None; otherwise, calling the class raises TypeError.

__new__ __new__(cls[, args...])
When you call C([args...]), Python gets the new instance x that you
are creating by invoking C.__new__(C[, args...]). Every class has the
class method __new__ (usually, it just inherits it from object), which can
return any value x. In other words, __new__ need not return a new instance
of C, although it’s expected to do so. If the value x that __new__ returns
is an instance of C or of any subclass of C (whether a new or a previously
existing one), Python then calls __init__ on x (with the same [args...]
originally passed to __new__).

Initialize Immutables in __new__, All
Others in __init__
You can perform most kinds of initialization of new
instances in either __init__ or __new__, so you may
wonder where it’s best to place them. Best practice is to
put the initialization in __init__ only, unless you have
a specific reason to put it in __new__. (When a type
is immutable, __init__ cannot change its instances: in
this case, __new__ has to perform all initialization.)

__repr__ __repr__(self)

Calling repr(x) (which happens implicitly in the interactive interpreter
when x is the result of an expression statement) calls x.__repr__()
to get and return a complete string representation of x. If __repr__ is
absent, Python uses a default string representation. __repr__ should return
a string with unambiguous information on x. When feasible, try to make
eval(repr(x))==x (but, don’t go crazy to achieve this goal!).
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9 Third-party extensions can also define types of containers that are not sequences, not mappings,
and not sets.

10 Lower bound included, upper bound excluded—as always, the norm for Python.

__setattr__ __setattr__(self, name, value)
At any request to bind attribute x.y (usually, an assignment statement
x.y=value, but also, e.g., setattr(x, 'y', value)), Python calls
x.__setattr__('y', value). Python always calls __setattr__
for any attribute binding on x—a major difference from __getattr__
(in this respect, __setattr__ is closer to __getattribute__). To
avoid recursion, when x.__setattr__ binds x’s attributes, it must
modify x.__dict__ directly (e.g., via x.__dict__[name]=value);
or better, __setattr__ can delegate to the superclass (call
super().__setattr__('y', value)). Python ignores the return value
of __setattr__. If __setattr__ is absent (i.e., inherited from object),
and C.y is not an overriding descriptor, Python usually translates x.y=z
into x.__dict__['y']=z (however, __setattr__ also works fine with
__slots__).

__str__ __str__(self)

Like print(x), str(x) calls x.__str__() to get an informal, concise string
representation of x. If __str__ is absent, Python calls x.__repr__.
__str__ should return a convenient human-readable string, even when that
entails some approximation.

Special Methods for Containers
An instance can be a container (a sequence, mapping, or set—mutually exclusive
concepts9). For maximum usefulness, containers should provide special methods
__getitem__, __contains__, and __iter__ (and, if mutable, also __setitem__ and
__delitem__), plus nonspecial methods discussed in the following sections. In
many cases, you can obtain suitable implementations of the nonspecial methods
by extending the appropriate abstract base class from the collections.abc mod‐
ule, such as Sequence, MutableSequence, and so on, as covered in “Abstract Base
Classes” on page 150.

Sequences
In each item-access special method, a sequence that has L items should accept
any integer key such that -L<=key<L.10 For compatibility with built-in sequences,
a negative index key, 0>key>=-L, should be equivalent to key+L. When key has an
invalid type, indexing should raise a TypeError exception. When key is a value
of a valid type but out of range, indexing should raise an IndexError exception.
For sequence classes that do not define __iter__, the for statement relies on
these requirements, as do built-in functions that take iterable arguments. Every
item-access special method of a sequence should also, if at all practical, accept as its
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index argument an instance of the built-in type slice whose start, step, and stop
attributes are ints or None; the slicing syntax relies on this requirement, as covered
in “Container slicing” on page 149.

A sequence should also allow concatenation (with another sequence of the same
type) by +, and repetition by * (multiplication by an integer). A sequence should
therefore have special methods __add__, __mul__, __radd__, and __rmul__, cov‐
ered in “Special Methods for Numeric Objects” on page 155; in addition, mutable
sequences should have equivalent in-place methods __iadd__ and __imul__. A
sequence should be meaningfully comparable to another sequence of the same type,
implementing lexicographic comparison, like lists and tuples do. (Inheriting from
the Sequence or MutableSequence abstract base class does not suffice to fulfill all
of these requirements; inheriting from MutableSequence, at most, only supplies
__iadd__.)

Every sequence should have the nonspecial methods covered in “List methods” on
page 67: count and index in any case, and, if mutable, then also append, insert,
extend, pop, remove, reverse, and sort, with the same signatures and semantics
as the corresponding methods of lists. (Inheriting from the Sequence or MutableSe
quence abstract base class does suffice to fulfill these requirements, except for sort.)

An immutable sequence should be hashable if, and only if, all of its items are. A
sequence type may constrain its items in some ways (for example, accepting only
string items), but that is not mandatory.

Mappings
A mapping’s item-access special methods should raise a KeyError exception, rather
than IndexError, when they receive an invalid key argument value of a valid type.
Any mapping should define the nonspecial methods covered in “Dictionary Meth‐
ods” on page 71: copy, get, items, keys, and values. A mutable mapping should
also define the methods clear, pop, popitem, setdefault, and update. (Inheriting
from the Mapping or MutableMapping abstract base class fulfills these requirements,
except for copy.)

An immutable mapping should be hashable if all of its items are. A mapping type
may constrain its keys in some ways—for example, accepting only hashable keys, or
(even more specifically) accepting, say, only string keys—but that is not mandatory.
Any mapping should be meaningfully comparable to another mapping of the same
type (at least for equality and inequality, although not necessarily for ordering
comparisons).

Sets
Sets are a peculiar kind of container: they are neither sequences nor mappings
and cannot be indexed, but they do have a length (number of elements) and are
iterable. Sets also support many operators (&, |, ^, and -, as well as membership tests
and comparisons) and equivalent nonspecial methods (intersection, union, and
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so on). If you implement a set-like container, it should be polymorphic to Python
built-in sets, covered in “Sets” on page 48. (Inheriting from the Set or MutableSet
abstract base class fulfills these requirements.)

An immutable set-like type should be hashable if all of its elements are. A set-like
type may constrain its elements in some ways—for example, accepting only hasha‐
ble elements, or (more specifically) accepting, say, only integer elements—but that is
not mandatory.

Container slicing
When you reference, bind, or unbind a slicing such as x[i:j] or x[i:j:k] on a
container x (in practice, this is only used with sequences), Python calls x’s applicable
item-access special method, passing as key an object of a built-in type called a slice
object. A slice object has the attributes start, stop, and step. Each attribute is None
if you omit the corresponding value in the slice syntax. For example, del x[:3] calls
x.__delitem__(y), where y is a slice object such that y.stop is 3, y.start is None,
and y.step is None. It is up to container object x to appropriately interpret slice
object arguments passed to x’s special methods. The method indices of slice objects
can help: call it with your container’s length as its only argument, and it returns
a tuple of three nonnegative indices suitable as start, stop, and step for a loop
indexing each item in the slice. For example, a common idiom in a sequence class’s
__getitem__ special method to fully support slicing is:

def __getitem__(self, index):
    # Recursively special-case slicing
    if isinstance(index, slice):
        return self.__class__(self[x]
                              for x in range(*index.indices(len(self))))
    # Check index, and deal with a negative and/or out-of-bounds index
    index = operator.index(index)
    if index < 0:
        index += len(self)
    if not (0 <= index < len(self)):
        raise IndexError
    # Index is now a correct int, within range(len(self))
    # ...rest of __getitem__, dealing with single-item access...

This idiom uses generator expression (genexp) syntax and assumes that your class’s
__init__ method can be called with an iterable argument to create a suitable new
instance of the class.

Container methods
The special methods __getitem__, __setitem__, __delitem__, __iter__, __len__,
and __contains__ expose container functionality (see Table 4-2).
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Table 4-2. Container methods

__contains__ __contains__(self, item)
The Boolean test y in x calls x.__contains__(y). When x is a sequence, or
set-like, __contains__ should return True when y equals the value of an item in x.
When x is a mapping, __contains__ should return True when y equals the value of
a key in x. Otherwise, __contains__ should return False. When __contains__
is absent and x is iterable, Python performs y in x as follows, taking time proportional
to len(x):

for z in x:
    if y==z:
        return True
return False

__delitem__ __delitem__(self, key)
For a request to unbind an item or slice of x (typically del x[key]), Python calls
x.__delitem__(key). A container x should have __delitem__ if x is mutable
and items (and possibly slices) can be removed.

__getitem__ __getitem__(self, key)
When you access x[key] (i.e., when you index or slice container x), Python calls
x.__getitem__(key). All (non-set-like) containers should have __getitem__.

__iter__ __iter__(self)

For a request to loop on all items of x (typically for item in x), Python calls
x.__iter__() to get an iterator on x. The built-in function iter(x) also calls
x.__iter__(). When __iter__ is absent, iter(x) synthesizes and returns an
iterator object that wraps x and yields x[0], x[1], and so on, until one of these
indexings raises an IndexError exception to indicate the end of the container.
However, it is best to ensure that all of the container classes you code have __iter__.

__len__ __len__(self)

Calling len(x) calls x.__len__() (and so do other built-in functions that need to
know how many items are in container x). __len__ should return an int, the number
of items in x. Python also calls x._len__() to evaluate x in a Boolean context, when
__bool__ is absent; in this case, a container is falsy if and only if the container is empty
(i.e., the container’s length is 0). All containers should have __len__, unless it’s just
too expensive for the container to determine how many items it contains.

__setitem__ __setitem__(self, key, value)
For a request to bind an item or slice of x (typically an assignment x[key]=value),
Python calls x.__setitem__(key, value). A container x should have __seti
tem__ if x is mutable, so items, and maybe slices, can be added or rebound.

Abstract Base Classes
Abstract base classes (ABCs) are an important pattern in object-oriented design:
they’re classes that cannot be directly instantiated, but exist to be extended by
concrete classes (the more usual kind of classes, ones that can be instantiated).
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11 See, for example, “Avoid Extending Classes” by Bill Harlan.

12 For a related concept focused on type checking, see typing.Protocols, covered in “Protocols” on
page 179.

13 The abc module does include the abstractproperty decorator, which combines these two, but
abstractproperty is deprecated, and new code should use the two decorators as described.

One recommended approach to OO design (attributed to Arthur J. Riel) is to never
extend a concrete class.11 If two concrete classes have enough in common to tempt
you to have one of them inherit from the other, proceed instead by making an
abstract base class that subsumes all they have in common, and have each concrete
class extend that ABC. This approach avoids many of the subtle traps and pitfalls of
inheritance.

Python offers rich support for ABCs—enough to make them a first-class part of
Python’s object model.12

The abc module
The standard library module abc supplies metaclass ABCMeta and class ABC (sub‐
classing abc.ABC makes abc.ABCMeta the metaclass, and has no other effect).

When you use abc.ABCMeta as the metaclass for any class C, this makes C an ABC
and supplies the class method C.register, callable with a single argument: that
single argument can be any existing class (or built-in type) X.

Calling C.register(X) makes X a virtual subclass of C, meaning that issub
class(X, C) returns True, but C does not appear in X.__mro__, nor does X inherit
any of C’s methods or other attributes.

Of course, it’s also possible to have a new class Y inherit from C in the normal way, in
which case C does appear in Y.__mro__, and Y inherits all of C’s methods, as usual in
subclassing.

An ABC C can also optionally override class method __subclasshook__, which
issubclass(X, C) calls with the single argument X (X being any class or type).
When C.__subclasshook__(X) returns True, then so does issubclass(X, C);
when C.__subclasshook__(X) returns False, then so does issubclass(X, C).
When C.__subclasshook__(X) returns NotImplemented, then issubclass(X, C)
proceeds in the usual way.

The abc module also supplies the decorator abstractmethod to designate meth‐
ods that must be implemented in inheriting classes. You can define a property
as abstract by using both the property and abstractmethod decorators, in that
order.13 Abstract methods and properties can have implementations (available to
subclasses via the super built-in), but the point of making methods and properties
abstract is that you can instantiate a nonvirtual subclass X of an ABC C only if X
overrides every abstract property and method of C.
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14 For backward compatibility these ABCs were also accessible in the collections module until
Python 3.9, but the compatibility imports were removed in Python 3.10. New code should import
these ABCs from collections.abc.

ABCs in the collections module
collections supplies many ABCs, in collections.abc.14 Some of these ABCs
accept as a virtual subclass any class defining or inheriting a specific abstract
method, as listed in Table 4-3.

Table 4-3. Single-method ABCs

ABC Abstract methods

Callable __call__

Container __contains__

Hashable __hash__

Iterable __iter__

Sized __len__

The other ABCs in collections.abc extend one or more of these, adding more
abstract methods and/or mixin methods implemented in terms of the abstract
methods. (When you extend any ABC in a concrete class, you must override the
abstract methods; you can also override some or all of the mixin methods, when
that helps improve performance, but you don’t have to—you can just inherit them,
when this results in performance that’s sufficient for your purposes.)

Table 4-4 details the ABCs in collections.abc that directly extend the preceding
ones.

Table 4-4. ABCs with additional methods

ABC Extends Abstract methods Mixin methods

Iterator Iterable __next__ __iter__

Mapping Container

Iterable

Sized

__getitem__

__iter__

__len__

__contains__

__eq__

__ne__

getitems

keys

values

MappingView Sized  __len__
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ABC Extends Abstract methods Mixin methods

Sequence Container

Iterable

Sized

__getitem__

__len__

__contains__

__iter__

__reversed__

count

index

Set Container

Iterable

Sized

__contains__

__iter

__len__

__and__a

__eq__

__ge__b

__gt__

__le__

__lt__

__ne__

__or__

__sub__

__xor__

isdisjoint

For sets and mutable sets, many dunder methods are equivalent to nonspecial methods
in the concrete class set; e.g., __add__ is like intersection and __iadd__ is like intersec
tion_update.

For sets, the ordering methods reflect the concept of subset: s1 <= s2 means “s1 is a subset of
or equal to s2.”

Table 4-5 details the ABCs in this module that further extend the previous ones.

Table 4-5. The remaining ABCs in collections.abc

ABC Extends Abstract methods Mixin methods

ItemsView MappingView

Set

 __contains__

__iter__

KeysView MappingView

Set

 __contains__

__iter__

MutableMapping Mapping __delitem__

__getitem__

__iter__

__len_

__setitem__

Mapping’s methods, plus:
clear

pop

popitem

setdefault

update
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ABC Extends Abstract methods Mixin methods

MutableSequence Sequence __delitem__

__getitem__

__len__

__setitem__

insert

Sequence’s methods, plus:
__iadd__

append

extend

pop

remove

reverse

MutableSet Set __contains__

__iter

__len__

add

discard

Set’s methods, plus:
__iand__

__ior__

__isub__

__ixor__

clear

pop

remove

ValuesView MappingView  __contains__

__iter__

See the online docs for further details and usage examples.

ABCs in the numbers module
numbers supplies a hierarchy (also known as a tower) of ABCs representing various
kinds of numbers. Table 4-6 lists the ABCs in the numbers module.

Table 4-6. ABCs supplied by the numbers module

ABC Description

Number The root of the hierarchy. Includes numbers of any kind; need not support any given operation.

Complex Extends Number. Must support (via special methods) conversions to complex and bool, +,
-, *, /, ==, !=, and abs, and, directly, the method conjugate and properties real and
imag.

Real Extends Complex.a Additionally, must support (via special methods) conversion to float,
math.trunc, round, math.floor, math.ceil, divmod, //, %, <, <=, >, and >=.

Rational Extends Real. Additionally, must support the properties numerator and denominator.

Integral Extends Rational.b Additionally, must support (via special methods) conversion to int, **,
and bitwise operations <<, >>, &, ^, |, and ~.

So, every int or float has a property real equal to its value, and a property imag equal to 0.

So, every int has a property numerator equal to its value, and a property denominator equal
to 1.

See the online docs for notes on implementing your own numeric types.

154 | Chapter 4: Object-Oriented Python

a

b

https://oreil.ly/AVoUU
https://oreil.ly/ViRw9


Special Methods for Numeric Objects
An instance may support numeric operations by means of many special methods.
Some classes that are not numbers also support some of the special methods in
Table 4-7 in order to overload operators such as + and *. In particular, sequences
should have special methods __add__, __mul__, __radd__, and __rmul__, as men‐
tioned in “Sequences” on page 43. When one of the binary methods (such as
__add__, __sub__, etc.) is called with an operand of an unsupported type for that
method, the method should return the built-in singleton NotImplemented.

Table 4-7. Special methods for numeric objects

__abs__,
__invert__,
__neg__,
__pos__

__abs_(self), __invert__(self), __neg__(self), __pos__(self)
The unary operators abs(x), ~x, -x, and +x, respectively, call these methods.

__add__,
__mod__,
__mul__,
__sub__

__add__ (self, other),
__mod__(self, other),
__mul__(self, other),
__sub__(self, other)
The operators x + y, x % y, x * y, and x - y, respectively, call these methods,
usually for arithmetic computations.

__and__,
__lshift__,
__or__,
__rshift__,
__xor__

__and__(self, other), __lshift__(self, other),
__or__(self, other), __rshift_(self, other),
__xor__(self, other)
The operators x & y, x << y, x | y, x >> y, and x ^ y, respectively, call these
methods, usually for bitwise operations.

__complex__,
__float__,
__int__

__complex__(self), __float__(self), __int__(self)
The built-in types complex(x), float(x), and int(x), respectively, call these
methods.

__divmod__ __divmod__(self, other)

The built-in function divmod(x, y) calls x.__divmod__(y). __divmod__
should return a pair (quotient, remainder) equal to (x // y, x % y).

__floordiv__,
__truediv__

__floordiv__(self, other),
__truediv__(self, other)
The operators x // y and x / y, respectively, call these methods, usually for arithmetic
division.
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__iadd__,
__ifloordiv__,
__imod__,
__imul__,
__isub__,
__itruediv__,
__imatmul__

__iadd__(self, other),
__ifloordiv__(self, other),
__imod__(self, other),
__imul__(self, other),
__isub__(self, other),
__itruediv__(self, other),
__imatmul__(self, other)
The augmented assignments x += y, x //= y, x %= y, x *= y, x -= y, x /= y,
and x @= y, respectively, call these methods. Each method should modify x in place
and return self. Define these methods when x is mutable (i.e., when x can change in
place).

__iand__,
__ilshift__,
__ior__,
__irshift__,
__ixor__

__iand_(self, other),
__ilshift_(self, other),
__ior__(self, other),
__irshift__(self, other),
__ixor__(self, other)
The augmented assignments x &= y, x <<= y, x \= y, x >>= y, and x ^= y,
respectively, call these methods. Each method should modify x in place and return
self. Define these methods when x is mutable (i.e., when x can change in place).

__index__ __index__(self)

Like __int__, but meant to be supplied only by types that are alternative
implementations of integers (in other words, all of the type’s instances can be exactly
mapped into integers). For example, out of all the built-in types, only int supplies
__index__; float and str don’t, although they do supply __int__. Sequence
indexing and slicing internally use __index__ to get the needed integer indices.

__ipow__ __ipow__(self,other)

The augmented assignment x **= y calls x.__ipow__(y). __ipow__ should
modify x in place and return self.

__matmul__ __matmul__(self, other)
The operator x @ y calls this method, usually for matrix multiplication.

__pow__ __pow__(self,other[, modulo])
x ** y and pow(x, y) both call x.__pow__(y), while pow(x, y, z)
calls x.__pow__(y, z). x.__pow__(y, z) should return a value equal to the
expression x.__pow__(y) % z.

__radd__,
__rmod__,
__rmul__,
__rsub__,
__rmatmul__

__radd__(self, other),
__rmod__(self, other),
__rmul__(self, other),
__rsub__(self, other),
__rmatmul__(self, other)
The operators y + x, y / x, y % x, y * x, y - x, and y @ x, respectively, call these
methods on x when y doesn’t have the needed method __add__, __truediv__,
and so on, or when that method returns NotImplemented.
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__rand__,
__rlshift__,
__ror__,
__rrshift__,
__rxor__

__rand__(self, other),
__rlshift__(self, other),
__ror__(self, other),
__rrshift__(self, other),
__rxor__(self, other)
The operators y & x, y << x, y | x, y >> x, and x ^ y, respectively, call these methods
on x when y doesn’t have the needed method __and__, __lshift__, and so on, or
when that method returns NotImplemented.

__rdivmod__ __rdivmod_(self, other)
The built-in function divmod(y, x) calls x.__rdivmod__(y) when y doesn’t
have __divmod__, or when that method returns NotImplemented. __rdiv
mod__ should return a pair (remainder, quotient).

__rpow__ __rpow__(self,other)
y ** x and pow(y, x) call x.__rpow__(y) when y doesn’t have __pow__, or
when that method returns NotImplemented. There is no three-argument form in
this case.

Decorators
In Python, you often use higher-order functions: callables that accept a function as
an argument and return a function as their result. For example, descriptor types
such as staticmethod and classmethod, covered in “Class-Level Methods” on page
135, can be used, within class bodies, as follows:

def f(cls, ...):
    # ...definition of f snipped...
f = classmethod(f)

However, having the call to classmethod textually after the def statement hurts
code readability: while reading f’s definition, the reader of the code is not yet aware
that f is going to become a class method rather than an instance method. The
code is more readable if the mention of classmethod comes before the def. For this
purpose, use the syntax form known as decoration:

@classmethod
def f(cls, ...):
    # ...definition of f snipped...

The decorator, here @classmethod, must be immediately followed by a def state‐
ment and means that f = classmethod(f) executes right after the def statement
(for whatever name f the def defines). More generally, @expression evaluates the
expression (which must be a name, possibly qualified, or a call) and binds the result
to an internal temporary name (say, __aux); any decorator must be immediately
followed by a def (or class) statement, and means that f = __aux(f) executes right
after the def or class statement (for whatever name f the def or class defines).
The object bound to __aux is known as a decorator, and it’s said to decorate function
or class f.
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15 Strictly speaking, the type of a class C could be said to be the metaclass only of instances of C
rather than of C itself, but this subtle semantic distinction is rarely, if ever, observed in practice.

Decorators are a handy shorthand for some higher-order functions. You can apply
decorators to any def or class statement, not just in class bodies. You may code
custom decorators, which are just higher-order functions accepting a function or
class object as an argument and returning a function or class object as the result.
For example, here is a simple example decorator that does not modify the function
it decorates, but rather prints the function’s docstring to standard output at function
definition time:

def showdoc(f):
    if f.__doc__:
        print(f'{f.__name__}: {f.__doc__}')
    else:
        print(f'{f.__name__}: No docstring!')
    return f

@showdoc
def f1():
    """a docstring"""  # prints: f1: a docstring

@showdoc
def f2():
    pass               # prints: f2: No docstring!

The standard library module functools offers a handy decorator, wraps, to enhance
decorators built by the common “wrapping” idiom:

import functools

def announce(f):
    @functools.wraps(f)
    def wrap(*a, **k):
        print(f'Calling {f.__name__}')
        return f(*a, **k)
    return wrap

Decorating a function f with @announce causes a line announcing the call to be
printed before each call to f. Thanks to the functools.wraps(f) decorator, the
wrapper adopts the name and docstring of the wrappee: this is useful, for example,
when calling the built-in help on such a decorated function.

Metaclasses
Any object, even a class object, has a type. In Python, types and classes are also first-
class objects. The type of a class object is also known as the class’s metaclass.15 An
object’s behavior is mostly determined by the type of the object. This also holds for
classes: a class’s behavior is mostly determined by the class’s metaclass. Metaclasses
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are an advanced subject, and you may want to skip the rest of this section. However,
fully grasping metaclasses can lead you to a deeper understanding of Python; very
occasionally, it can be useful to define your own custom metaclasses.

Alternatives to Custom Metaclasses for Simple Class Customization
While a custom metaclass lets you tweak classes’ behaviors in pretty much any way
you want, it’s often possible to achieve some customizations more simply than by
coding a custom metaclass.

When a class C has or inherits a class method __init_subclass__, Python calls
that method whenever you subclass C, passing the newly built subclass as the
only positional argument. __init_subclass__ can also have named parameters,
in which case Python passes corresponding named arguments found in the class
statement that performs the subclassing. As a purely illustrative example:

>>> class C:
...     def __init_subclass__(cls, foo=None, **kw):
...         print(cls, kw)
...         cls.say_foo = staticmethod(lambda: f'*{foo}*')
...         super().__init_subclass__(**kw)
... 
>>> class D(C, foo='bar'):
...     pass
...

<class '__main__.D'> {}

>>> D.say_foo()

'*bar*'

The code in __init_subclass__ can alter cls in any applicable, post-class-creation
way; essentially, it works like a class decorator that Python automatically applies to
any subclass of C.

Another special method used for customization is __set_name__, which lets you
ensure that instances of descriptors added as class attributes know what class you’re
adding them to, and under which names. At the end of the class statement that
adds ca to class C with name n, when the type of ca has the method __set_name__,
Python calls ca.__set_name__(C, n). For example:

>>> class Attrib:
...     def __set_name__(self, cls, name):
...         print(f'Attribute {name!r} added to {cls}')
... 
>>> class AClass:
...     some_name = Attrib()
...

Attribute 'some_name' added to <class '__main__.AClass'>

>>>
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16 Or when a base class has __init_subclass__, in which case the named arguments are passed to
that method, as covered in “Alternatives to Custom Metaclasses for Simple Class Customization”
on page 159.

17 This is similar to calling type with three arguments, as described in “Dynamic class definition
using the type built-in function” on page 133.

How Python Determines a Class’s Metaclass
The class statement accepts optional named arguments (after the bases, if any).
The most important named argument is metaclass, which, if present, identifies
the new class’s metaclass. Other named arguments are allowed only if a non-type
metaclass is present, in which case they are passed on to the optional __prepare__
method of the metaclass (it’s entirely up to the __prepare__ method to make use of
such named arguments).16 When the named argument metaclass is absent, Python
determines the metaclass by inheritance; for classes with no explicitly specified
bases, the metaclass defaults to type.

Python calls the __prepare__ method, if present, as soon as it determines the
metaclass, as follows:

class M:
    def __prepare__(classname, *classbases, **kwargs):
        return {}
    # ...rest of M snipped...
class X(onebase, another, metaclass=M, foo='bar'):
    # ...body of X snipped...

Here, the call is equivalent to M.__prepare__('X', onebase, another, foo='bar').
__prepare__, if present, must return a mapping (usually just a dictionary), which
Python uses as the d mapping in which it executes the class body. If __prepare__ is
absent, Python uses a new, initially empty dict as d.

How a Metaclass Creates a Class
Having determined the metaclass M, Python calls M with three arguments: the class
name (a str), the tuple of base classes t, and the dictionary (or other mapping
resulting from __prepare__) d in which the class body just finished executing.17

The call returns the class object C, which Python then binds to the class name,
completing the execution of the class statement. Note that this is in fact an instan‐
tiation of type M, so the call to M executes M.__init__(C, namestring, t, d), where
C is the return value of M.__new__(M, namestring, t, d), just as in any other
instantiation.

After Python creates the class object C, the relationship between class C and its
type (type(C), normally M) is the same as that between any object and its type. For
example, when you call the class object C (to create an instance of C), M.__call__
executes, with class object C as the first argument.
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18 __init_subclass__, covered in “Alternatives to Custom Metaclasses for Simple Class Customi‐
zation” on page 159, works much like an “inherited decorator,” so it’s often an alternative to a
custom metaclass.

Note the benefit, in this context, of the approach described in “Per Instance Meth‐
ods” on page 140, whereby special methods are looked up only on the class, not
on the instance. Calling C to instantiate it must execute the metaclass’s M.__call__,
whether or not C has a per instance attribute (method) __call__ (i.e., independently
of whether instances of C are or aren’t callable). This way, the Python object model
avoids having to make the relationship between a class and its metaclass an ad hoc
special case. Avoiding ad hoc special cases is a key to Python’s power: Python has
few, simple, general rules, and applies them consistently.

Defining and using your own metaclasses
It’s easy to define custom metaclasses: inherit from type and override some of its
methods. You can also perform most of the tasks for which you might consider cre‐
ating a metaclass with __new__, __init__, __getattribute__, and so on, without
involving metaclasses. However, a custom metaclass can be faster, since special
processing is done only at class creation time, which is a rare operation. A custom
metaclass lets you define a whole category of classes in a framework that magically
acquire whatever interesting behavior you’ve coded, quite independently of what
special methods the classes themselves may choose to define.

To alter a specific class in an explicit way, a good alternative is often to use a class
decorator, as mentioned in “Decorators” on page 157. However, decorators are not
inherited, so the decorator must be explicitly applied to each class of interest.18

Metaclasses, on the other hand, are inherited; in fact, when you define a custom
metaclass M, it’s usual to also define an otherwise empty class C with metaclass M, so
that other classes requiring M can just inherit from C.

Some behavior of class objects can be customized only in metaclasses. The following
example shows how to use a metaclass to change the string format of class objects:

class MyMeta(type):
    def __str__(cls):
        return f'Beautiful class {cls.__name__!r}'
class MyClass(metaclass=MyMeta):
    pass
x = MyClass()
print(type(x))      # prints: Beautiful class 'MyClass'

A substantial custom metaclass example
Suppose that, programming in Python, we miss C’s struct type: an object that is
just a bunch of data attributes, in order, with fixed names (data classes, covered
in the following section, fully address this requirement, which makes this example
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a purely illustrative one). Python lets us easily define a generic Bunch class that is
similar, apart from the fixed order and names:

class Bunch:
    def __init__(self, **fields):
        self.__dict__ = fields
p = Bunch(x=2.3, y=4.5)
print(p)       # prints: <_main__.Bunch object at 0x00AE8B10>

A custom metaclass can exploit the fact that attribute names are fixed at class
creation time. The code shown in Example 4-1 defines a metaclass, MetaBunch, and
a class, Bunch, to let us write code like:

class Point(Bunch):
    """A Point has x and y coordinates, defaulting to 0.0,
       and a color, defaulting to 'gray'-and nothing more,
       except what Python and the metaclass conspire to add,
       such as __init__ and __repr__.
    """
    x = 0.0
    y = 0.0
    color = 'gray'
# example uses of class Point
q = Point()
print(q)                    # prints: Point()
p = Point(x=1.2, y=3.4)
print(p)                    # prints: Point(x=1.2, y=3.4)

In this code, the print calls emit readable string representations of our Point
instances. Point instances are quite memory lean, and their performance is basi‐
cally the same as for instances of the simple class Bunch in the previous example
(there is no extra overhead due to implicit calls to special methods). Example 4-1 is
quite substantial, and following all its details requires a grasp of aspects of Python
discussed later in this book, such as strings (covered in Chapter 9) and module
warnings (covered in “The warnings Module” on page 538). The identifier mcl used
in Example 4-1 stands for “metaclass,” clearer in this special advanced case than the
habitual case of cls standing for “class.”

Example 4-1. The MetaBunch metaclass

import warnings
class MetaBunch(type):
    """
    Metaclass for new and improved "Bunch": implicitly defines
    __slots__, __init__, and __repr__ from variables bound in
    class scope.
    A class statement for an instance of MetaBunch (i.e., for a
    class whose metaclass is MetaBunch) must define only
    class-scope data attributes (and possibly special methods, but
    NOT __init__ and __repr__). MetaBunch removes the data
    attributes from class scope, snuggles them instead as items in
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    a class-scope dict named __dflts__, and puts in the class a
    __slots__ with those attributes' names, an __init__ that takes
    as optional named arguments each of them (using the values in
    __dflts__ as defaults for missing ones), and a __repr__ that
    shows the repr of each attribute that differs from its default
    value (the output of __repr__ can be passed to __eval__ to make
    an equal instance, as per usual convention in the matter, if
    each non-default-valued attribute respects that convention too).
    The order of data attributes remains the same as in the class body.
    """
    def __new__(mcl, classname, bases, classdict):
        """Everything needs to be done in __new__, since
           type.__new__ is where __slots__ are taken into account.
        """
        # Define as local functions the __init__ and __repr__ that
        # we'll use in the new class
        def __init__(self, **kw):
            """__init__ is simple: first, set attributes without
               explicit values to their defaults; then, set those
               explicitly passed in kw.
            """
            for k in self.__dflts__:
                if not k in kw:
                    setattr(self, k, self.__dflts__[k])
            for k in kw:
                setattr(self, k, kw[k])
        def __repr__(self):
            """__repr__ is minimal: shows only attributes that
               differ from default values, for compactness.
            """
            rep = [f'{k}={getattr(self, k)!r}'
                    for k in self.__dflts__
                    if getattr(self, k) != self.__dflts__[k]
                  ]
            return f'{classname}({', '.join(rep)})'
        # Build the newdict that we'll use as class dict for the
        # new class
        newdict = {'__slots__': [], '__dflts__': {},
                   '__init__': __init__, '__repr__' :__repr__,}
        for k in classdict:
            if k.startswith('__') and k.endswith('__'):
                # Dunder methods: copy to newdict, or warn
                # about conflicts
                if k in newdict:
                    warnings.warn(f'Cannot set attr {k!r}'
                                  f' in bunch-class {classname!r}')
                else:
                    newdict[k] = classdict[k]
            else:
                # Class variables: store name in __slots__, and
                # name and value as an item in __dflts__
                newdict['__slots__'].append(k)
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                newdict['__dflts__'][k] = classdict[k]
        # Finally, delegate the rest of the work to type.__new__
        return super().__new__(mcl, classname, bases, newdict)

class Bunch(metaclass=MetaBunch):
    """For convenience: inheriting from Bunch can be used to get
       the new metaclass (same as defining metaclass= yourself).
    """
    pass

Data Classes
As the previous Bunch class exemplified, a class whose instances are just a bunch of
named data items is a great convenience. Python’s standard library covers that with
the dataclasses module.

The main feature of the dataclasses module you’ll be using is the dataclass
function: a decorator you apply to any class whose instances you want to be just
such a bunch of named data items. As a typical example, consider the following
code:

import dataclasses
@dataclasses.dataclass
class Point:
    x: float
    y: float

Now you can call, say, pt = Point(0.5, 0.5) and get a variable with attributes
pt.x and pt.y, each equal to 0.5. By default, the dataclass decorator has imbued
the class Point with an __init__ method accepting initial floating-point values
for attributes x and y, and a __repr__ method ready to appropriately display any
instance of the class:

>>> pt

Point(x=0.5, y=0.5)

The dataclass function takes many optional named parameters to let you tweak
details of the class it decorates. The parameters you may be explicitly using most
often are listed in Table 4-8.

Table 4-8. Commonly used dataclass function parameters

Parameter
name

Default value and resulting behavior

eq True

When True, generates an __eq__ method (unless the class defines one)

frozen False

When True, makes each instance of the class read-only (not allowing rebinding or deletion
of attributes)
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Parameter
name

Default value and resulting behavior

init True

When True, generates an __init__ method (unless the class defines one)

kw_only False

3.10+  When True, forces arguments to __init__ to be named, not positional

order False

When True, generates order-comparison special methods (__le__, __lt__, and so on)
unless the class defines them

repr True

When True, generates a __repr__ method (unless the class defines one)

slots False

3.10+  When True, adds the appropriate __slots__ attribute to the class (saving
some amount of memory for each instance, but disallowing the addition of other, arbitrary
attributes to class instances)

The decorator also adds to the class a __hash__ method (allowing instances to be
keys in a dictionary and members of a set) when that is safe (typically, when you
set frozen to True). You may force the addition of __hash__ even when that’s not
necessarily safe, but we earnestly recommend that you don’t; if you insist, check the
online docs for details on how to do so.

If you need to tweak each instance of a dataclass after the automatically generated
__init__ method has done the core work of assigning each instance attribute,
define a method called __post_init__, and the decorator will ensure it is called
right after __init__ is done.

Say you wish to add an attribute to Point to capture the time when the point
was created. This could be added as an attribute assigned in __post_init__. Add
the attribute create_time to the members defined for Point, as type float with a
default value of 0, and then add an implementation for __post_init__:

def __post_init__(self):
    self.create_time = time.time()

Now if you create the variable pt = Point(0.5, 0.5), printing it out will display
the creation timestamp, similar to the following:

>>> pt

Point(x=0.5, y=0.5, create_time=1645122864.3553088)

Like regular classes, dataclasses can also support additional methods and proper‐
ties, such as this method that computes the distance between two Points and this
property that returns the distance from a Point at the origin:

def distance_from(self, other):
    dx, dy = self.x - other.x, self.y - other.y
    return math.hypot(dx, dy)
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19 Don’t confuse this concept with the unrelated enumerate built-in function, covered in Chapter 8,
which generates (number, item) pairs from an iterable.

@property
def distance_from_origin(self):
    return self.distance_from(Point(0, 0))

For example:

>>> pt.distance_from(Point(-1, -1))

2.1213203435596424

>>> pt.distance_from_origin

0.7071067811865476

The dataclasses module also supplies asdict and astuple functions, each taking
a dataclass instance as the first argument and returning, respectively, a dict and
a tuple with the class’s fields. Furthermore, the module supplies a field function
that you may use to customize the treatment of some of a dataclass’s fields (i.e.,
instance attributes), and several other specialized functions and classes needed only
for very advanced, esoteric purposes; to learn all about them, check out the online
docs.

Enumerated Types (Enums)
When programming, you’ll often want to create a set of related values that catalog
or enumerate the possible values for a particular property or program setting,19

whatever they might be: terminal colors, logging levels, process states, playing card
suits, clothing sizes, or just about anything else you can think of. An enumerated
type (enum) is a type that defines a group of such values, with symbolic names that
you can use as typed global constants. Python provides the Enum class and related
subclasses in the enum module for defining enums.

Defining an enum gives your code a set of symbolic constants that represent the
values in the enumeration. In the absence of enums, constants might be defined as
ints, as in this code:

# colors
RED = 1
GREEN = 2
BLUE = 3

# sizes
XS = 1
S = 2
M = 3
L = 4
XL = 5
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However, in this design, there is no mechanism to warn against nonsense expres‐
sions like RED > XL or L * BLUE, since they are all just ints. There is also no logical
grouping of the colors or sizes.

Instead, you can use an Enum subclass to define these values:

from enum import Enum, auto

class Color(Enum):
    RED = 1
    GREEN = 2
    BLUE = 3
    
class Size(Enum):
    XS = auto()
    S = auto()
    M = auto()
    L = auto()
    XL = auto()

Now, code like Color.RED > Size.S stands out visually as incorrect, and at runtime
raises a Python TypeError. Using auto() automatically assigns incrementing int
values beginning with 1 (in most cases, the actual values assigned to enum members
are not meaningful).

Calling Enum Creates a Class, Not an Instance
Surprisingly, when you call enum.Enum(), it doesn’t return a
newly built instance, but rather a newly built subclass. So, the
preceding snippet is equivalent to:

from enum import Enum
Color = Enum('Color', ('RED', 'GREEN', 'BLUE'))
Size = Enum('Size', 'XS S M L XL')

When you call Enum (rather than explicitly subclassing it in a
class statement), the first argument is the name of the subclass
you’re building; the second argument gives all the names of
that subclass’s members, either as a sequence of strings or as a
single whitespace-separated (or comma-separated) string.

We recommend that you define Enum subclasses using class
inheritance syntax, instead of this abbreviated form. The
class form is more visually explicit, so it is easier to see if
a member is missing, misspelled, or added later.

The values within an enum are called its members. It is conventional to use all
uppercase characters to name enum members, treating them much as though they
were manifest constants. Typical uses of the members of an enum are assignment
and identity checking:
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20 enum’s specialized metaclass behaves so differently from the usual type metaclass that it’s worth
pointing out all the differences between enum.Enum and ordinary classes. You can read about this
in the “How are Enums different?” section of Python’s online documentation.

while process_state is ProcessState.RUNNING:
    # running process code goes here
    if processing_completed():
        process_state = ProcessState.IDLE

You can obtain all members of an Enum by iterating over the Enum class itself, or
from the class’s __members__ attribute. Enum members are all global singletons, so
comparison with is and is not is preferred over == or !=.

The enum module contains several classes20 to support different forms of enums,
listed in Table 4-9.

Table 4-9. enum classes

Class Description

Enum Basic enumeration class; member values can be any Python object, typically ints or strs, but do
not support int or str methods. Useful for defining enumerated types whose members are an
unordered group.

Flag Used to define enums that you can combine with operators |, &, ^, and ~; member values must
be defined as ints to support these bitwise operations (Python, however, assumes no ordering
among them). Flag members with a 0 value are falsy; other members are truthy. Useful when
you create or check values with bitwise operations (e.g., file permissions). To support bitwise
operations, you generally use powers of 2 (1, 2, 4, 8, etc.) as member values.

IntEnum Equivalent to class IntEnum(int, Enum); member values are ints and support all int
operations, including ordering. Useful when order among values is significant, such as when
defining logging levels.

IntFlag Equivalent to class IntFlag(int, Flag); member values are ints (usually, powers of 2)
supporting all int operations, including comparisons.

StrEnum 3.11+  Equivalent to class StrEnum(str, Enum); member values are strs and support
all str operations.

The enum module also defines some support functions, listed in Table 4-10.

Table 4-10. enum support functions

Support
function

Description

auto Autoincrements member values as you define them. Values typically start at 1 and increment
by 1; for Flag, increments are in powers of 2.

unique Class decorator to ensure that members’ values differ from each other.
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The following example shows how to define a Flag subclass to work with the file
permissions in the st_mode attribute returned from calling os.stat or Path.stat
(for a description of the stat functions, see Chapter 11):

import enum
import stat

class Permission(enum.Flag):
    EXEC_OTH = stat.S_IXOTH
    WRITE_OTH = stat.S_IWOTH
    READ_OTH = stat.S_IROTH
    EXEC_GRP = stat.S_IXGRP
    WRITE_GRP = stat.S_IWGRP
    READ_GRP = stat.S_IRGRP
    EXEC_USR = stat.S_IXUSR
    WRITE_USR = stat.S_IWUSR
    READ_USR = stat.S_IRUSR

    @classmethod
    def from_stat(cls, stat_result):
        return cls(stat_result.st_mode & 0o777)

from pathlib import Path

cur_dir = Path.cwd()
dir_perm = Permission.from_stat(cur_dir.stat())
if dir_perm & Permission.READ_OTH:
    print(f'{cur_dir} is readable by users outside the owner group')

# the following raises TypeError: Flag enums do not support order 
# comparisons
print(Permission.READ_USR > Permission.READ_OTH)

Using enums in place of arbitrary ints or strs can add readability and type integrity
to your code. You can find more details on the classes and methods of the enum
module in the Python docs.
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5
Type Annotations

Annotating your Python code with type information is an optional step which
can be very helpful during development and maintenance of a large project or
a library. Static type checkers and lint tools help identify and locate data type
mismatches in function arguments and return values. IDEs can use these type anno‐
tations (also called type hints) to improve autocompletion and to provide pop-up
documentation. Third-party packages and frameworks can use type annotations
to tailor runtime behavior, or to autogenerate code based on type annotations for
methods and variables.

Type annotations and checking in Python continue to evolve, and touch on many
complicated issues. This chapter covers some of the most common use cases for
type annotations; you can find more comprehensive material in the resources listed
at the end of the chapter.

Type Annotation Support Varies by Python Version
Python’s features supporting type annotations have evolved
from version to version, with some significant additions and
deletions. The rest of this chapter will describe the type anno‐
tation support in the most recent versions of Python (3.10 and
later), with notes to indicate features that might be present or
absent in other versions.

History
Python is, fundamentally, a dynamically typed language. This lets you rapidly
develop code by naming and using variables without having to declare them.
Dynamic typing allows for flexible coding idioms, generic containers, and polymor‐
phic data handling without requiring explicit definition of interface types or class
hierarchies. The downside is that the language offers no help during development in
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1 Strong, extensive unit tests will also guard against many business logic problems that no amount
of type checking would ever catch for you—so, type hints are not to be used instead of unit tests,
but in addition to them.

2 The syntax for type annotation was introduced in Python 3.0, but only later were its semantics
specified.

3 This approach was also compatible with Python 2.7 code, still in widespread use at the time.

flagging variables of incompatible types being passed to or returned from functions.
In place of the development-time compile step that some languages utilize to detect
and report data type issues, Python relies on developers to maintain comprehensive
unit tests, especially (though far from exclusively!1) to uncover data type errors by
re-creating the runtime environment in a series of test cases.

Type Annotations Are Not Enforced
Type annotations are not enforced at runtime. Python does
not perform any type validation or data conversion based on
them; the executable Python code is still responsible for using
variables and function arguments properly. However, type
annotations must be syntactically correct. A late-imported
or dynamically imported module containing an invalid type
annotation raises a SyntaxError exception in your running
Python program, just like any invalid Python statement.

Historically, the absence of any kind of type checking was often seen as a shortcom‐
ing of Python, with some programmers citing this as a reason for choosing other
programming languages. However, the community wanted Python to maintain its
runtime type freedom, so the logical approach was to add support for static type
checks performed at development time by lint-like tools (described further in the
following section) and IDEs. Some attempts were made at type checking based on
parsing function signatures or docstrings. Guido van Rossum cited several cases
on the Python Developers mailing list showing that type annotations could be
helpful; for example, when maintaining large legacy codebases. With an annotation
syntax, development tools could perform static type checks to highlight variable and
function usages that conflict with the intended types.

The first official version of type annotations used specially formatted comments
to indicate variable types and return codes, as defined in PEP 484, a provisional
PEP for Python 3.5.2 Using comments allowed for rapid implementation of, and
experimentation with, the new typing syntax, without having to modify the Python
compiler itself.3 The third-party package mypy gained broad acceptance performing
static type checking using these comments. With the adoption of PEP 526 in Python
3.6, type annotations were fully incorporated into the Python language itself, with a
supporting typing module added to the standard library.
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Type-Checking Utilities
As type annotations have become an established part of Python, type-checking
utilities and IDE plug-ins have also become part of the Python ecosystem.

mypy
The standalone mypy utility continues to be a mainstay for static type checking,
always up-to-date (give or take a Python version!) with evolving Python type anno‐
tation forms. mypy is also available as a plug-in for editors including Vim, Emacs,
and SublimeText, and for the Atom, PyCharm, and VS Code IDEs. (PyCharm,
VS Code, and Wing IDE also incorporate their own type-checking features sepa‐
rate from mypy.) The most common command for running mypy is simply mypy
my_python_script.py.

You can find more detailed usage examples and command-line options in the mypy
online documentation, as well as a cheat sheet that serves as a handy reference.
Code examples later in this section will include example mypy error messages to
illustrate the kinds of Python errors that can be caught using type checking.

Other Type Checkers
Other type checkers to consider using include:

MonkeyType
Instagram’s MonkeyType uses the sys.setprofile hook to detect types
dynamically at runtime; like pytype (see below), it can also generate a .pyi
(stub) file instead of, or in addition to, inserting type annotations in the Python
code file itself.

pydantic

pydantic also works at runtime, but it does not generate stubs or insert type
annotations; rather, its primary goal is to parse inputs and ensure that Python
code receives clean data. As described in the online docs, it also allows you to
extend its validation features for your own environment. See “FastAPI” on page
605 for a simple example.

Pylance
Pylance is a type checking module primarily meant to embed Pyright (see
below) into VS Code.

Pyre
Facebook’s Pyre can also generate .pyi files. It currently does not run on Win‐
dows, unless you have the Windows Subsystem for Linux (WSL) installed.

Pyright
Pyright is Microsoft’s static type checking tool, available as a command-line
utility and a VS Code extension.
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pytype

pytype from Google is a static type checker that focuses on type inferencing
(and offers advice even in the absence of type hints) in addition to type
annotations. Type inferencing offers a powerful capability for detecting type
errors even in code without annotations. pytype can also generate .pyi files and
merge stub files back into .py sources (the most recent versions of mypy are
following suit on this). Currently, pytype does not run on Windows unless you
first install WSL.

The emergence of type-checking applications from multiple major software organi‐
zations is a testimonial to the widespread interest in the Python developer commu‐
nity in using type annotations.

Type Annotation Syntax
A type annotation is specified in Python using the form:

identifier: type_specification

type_specification can be any Python expression, but usually involves one or
more built-in types (for example, just mentioning a Python type is a perfectly valid
expression) and/or attributes imported from the typing module (discussed in the
following section). The typical form is:

type_specifier[type_parameter, ...]

Here are some examples of type expressions used as type annotations for a variable:

import typing

# an int
count: int

# a list of ints, with a default value
counts: list[int] = []

# a dict with str keys, values are tuples containing 2 ints and a str
employee_data: dict[str, tuple[int, int, str]]

# a callable taking a single str or bytes argument and returning a bool
str_predicate_function: typing.Callable[[str | bytes], bool]

# a dict with str keys, whose values are functions that take and return 
# an int
str_function_map: dict[str, typing.Callable[[int], int]] = {
    'square': lambda x: x * x,
    'cube': lambda x: x * x * x,
}
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Note that lambdas do not accept type annotations.

Typing Syntax Changes in Python 3.9 and 3.10
One of the most significant changes in type annotations during the span of Python
versions covered in this book was the support added in Python 3.9 for using built-in
Python types, as shown in these examples.

-3.9  Prior to Python 3.9, these annotations required the use of type names impor‐
ted from the typing module, such as Dict, List, Tuple, etc.

3.10+  Python 3.10 added support for using | to indicate alternative types, as a
more readable, concise alternative to the Union[atype, btype, ...] notation. The
| operator can also be used to replace Optional[atype] with atype | None.

For instance, the previous str_predicate_function definition would take one of
the following forms, depending on your version of Python:

# prior to 3.10, specifying alternative types 

# requires use of the Union type

from typing import Callable, Union

str_predicate_function: Callable[Union[str, bytes], bool]

# prior to 3.9, built-ins such as list, tuple, dict, 

# set, etc. required types imported from the typing

# module

from typing import Dict, Tuple, Callable, Union

employee_data: Dict[str, Tuple[int, int, str]]

str_predicate_function: Callable[Union[str, bytes], bool]

To annotate a function with a return type, use the form:

def identifier(argument, ...) -> type_specification :

where each argument takes the form:

identifier[: type_specification[ = default_value]]

Here’s an example of an annotated function:

def pad(a: list[str], min_len: int = 1, padstr: str = ' ') -> list[str]:
    """Given a list of strings and a minimum length, return a copy of
       the list extended with "padding" strings to be at least the
       minimum length.
    """
    return a + ([padstr] * (min_len - len(a)))

Note that when an annotated parameter has a default value, PEP 8 recommends
using spaces around the equals sign.
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Forward-Referencing Types That Are Not Yet Fully Defined
At times, a function or variable definition needs to reference
a type that has not yet been defined. This is quite common
in class methods, or methods that must define arguments or
return values of the type of the current class. Those function
signatures are parsed at compile time, and at that point the
type is not yet defined. For example, this classmethod fails to
compile:

class A:
    @classmethod
    def factory_method(cls) -> A:
        # ... method body goes here ...

Since class A has not yet been defined when Python compiles
factory_method, the code raises NameError.

The problem can be resolved by enclosing the return type A in
quotes:

class A:
    @classmethod
    def factory_method(cls) -> 'A':
        # ... method body goes here ...

A future version of Python may defer the evaluation of
type annotations until runtime, making the enclosing quotes
unnecessary (Python’s Steering Committee is evaluating vari‐
ous possibilities). You can preview this behavior using from
__future__ import annotations.

The typing Module
The typing module supports type hints. It contains definitions that are useful when
creating type annotations, including:

• Classes and functions for defining types•
• Classes and functions for modifying type expressions•
• Abstract base classes (ABCs)•
• Protocols•
• Utilities and decorators•
• Classes for defining custom types•

Types
The initial implementations of the typing module included definitions of types
corresponding to Python built-in containers and other types, as well as types from
standard library modules. Many of these types have since been deprecated (see
below), but some are still useful, since they do not correspond directly to any
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Python built-in type. Table 5-1 lists the typing types still useful in Python 3.9 and
later.

Table 5-1. Useful definitions in the typing module

Type Description

Any Matches any type.

AnyStr Equivalent to str | bytes. AnyStr is meant to be used to annotate function
arguments and return types where either string type is acceptable, but the types
should not be mixed between multiple arguments, or arguments and return types.

BinaryIO Matches streams with binary (bytes) content such as those returned from open
with mode='b', or io.BytesIO.

Callable Callable[[argument_type, ...], return_type]
Defines the type signature for a callable object. Takes a list of types corresponding
to the arguments to the callable, and a type for the return value of the function.
If the callable takes no arguments, indicate this with an empty list, []. If the
callable has no return value, use None for return_type.

IO Equivalent to BinaryIO | TextIO.

Literal

[expression,...]

3.8+  Specifies a list of valid values that the variable may take.

LiteralString 3.11+  Specifies a str that must be implemented as a literal quoted value.
Used to guard against leaving code open to injection attacks.

NoReturn Use as the return type for functions that “run forever,” such as those
that call http.serve_forever or event_loop.run_forever without
returning. This is not intended for functions that simply return with no explicit
value; for those use -> None. More discussion of return types can be found in
“Adding Type Annotations to Existing Code (Gradual Typing)” on page 193.

Self 3.11+  Use as the return type for instance functions that return self (and
in a few other cases, as exemplified in PEP 673).

TextIO Matches streams with text (str) content, such as those returned from open with
mode='t', or io.StringIO.

-3.9  Prior to 3.9, the definitions in the typing module were used to create types
representing built-in types, such as List[int] for a list of ints. From 3.9 onward,
these names are deprecated, as their corresponding built-in or standard library
types now support the [] syntax: a list of ints is now simply typed using list[int].
Table 5-2 lists the definitions from the typing module that were necessary prior to
Python 3.9 for type annotations using built-in types.
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Table 5-2. Python built-in types and their pre-3.9 definitions in the typing
module

Built-in type Pre-3.9 typing module equivalent

dict Dict

frozenset FrozenSet

list List

set Set

str Text

tuple Tuple

type Type

collections.ChainMap ChainMap

collections.Counter Counter

collections.defaultdict DefaultDict

collections.deque Deque

collections.OrderedDict OrderedDict

re.Match Match

re.Pattern Pattern

Type Expression Parameters
Some types defined in the typing module modify other type expressions. The types
listed in Table 5-3 provide additional typing information or constraints for the
modified types in type_expression.

Table 5-3. Type expression parameters

Parameter Usage and description

Annotated Annotated[type_expression, expression, ...]

3.9+  Extends the type_expression with additional metadata. The extra metadata
values for function fn can be retrieved at runtime using get_type_hints(fn,
include_extras=True).

ClassVar ClassVar[type_expression]

Indicates that the variable is a class variable, and should not be assigned as an instance
variable.

Final Final[type_expression]

3.8+  Indicates that the variable should not be written to or overridden in a subclass.
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Parameter Usage and description

Optional Optional[type_expression] Equivalent to type_expression | None. Often
used for named arguments with a default value of None. (Optional does not automatically
define None as the default value, so you must still follow it with =None in a function
signature.) 3.10+  With the availability of the | operator for specifying alternative type
attributes, there is a growing consensus to prefer type_expression | None over using
Optional[type_expression].

Abstract Base Classes
Just as for built-in types, the initial implementations of the typing module included
definitions of types corresponding to abstract base classes in the collections.abc
module. Many of these types have since been deprecated (see below), but two defi‐
nitions have been retained as aliases to ABCs in collections.abc (see Table 5-4).

Table 5-4. Abstract base class aliases

Type Method subclasses must implement

Hashable __hash__

Sized __len__

-3.9  Prior to Python 3.9, the following definitions in the typing module rep‐
resented abstract base classes defined in the collections.abc module, such as
Sequence[int] for a sequence of ints. From 3.9 onward, these names in the typing
module are deprecated, as their corresponding types in collections.abc now
support the [] syntax:

AbstractSet Container Mapping

AsyncContextManager ContextManager MappingView

AsyncGenerator Coroutine MutableMapping

AsyncIterable Generator MutableSequence

AsyncIterator ItemsView MutableSet

Awaitable Iterable Reversible

ByteString Iterator Sequence

Collection KeysView ValuesView

Protocols
The typing module defines several protocols, which are similar to what some other
languages call “interfaces.” Protocols are abstract base classes intended to concisely
express constraints on a type, ensuring it contains certain methods. Each protocol
currently defined in the typing module relates to a single special method, and its
name starts with Supports followed by the name of the method (however, other
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libraries, such as those defined in typeshed, need not follow the same constraints).
Protocols can be used as minimal abstract classes to determine a class’s support for
that protocol’s capabilities: all that a class needs to do to comply with a protocol is to
implement the protocol’s special method(s).

Table 5-5 lists the protocols defined in the typing module.

Table 5-5. Protocols in the typing module and their required methods

Protocol Has method

SupportsAbs __abs__

SupportsBytes __bytes__

SupportsComplex __complex__

SupportsFloat __float__

SupportsIndex 3.8+ __index__

SupportsInt __int__

SupportsRound __round__

A class does not have to explicitly inherit from a protocol in order to satisfy
issubclass(cls, protocol_type), or for its instances to satisfy isinstance(obj,
protocol_type). The class simply has to implement the method(s) defined in the
protocol. Imagine, for example, a class implementing Roman numerals:

class RomanNumeral:
    """Class representing some Roman numerals and their int 
       values.
    """
    int_values = {'I': 1, 'II': 2, 'III': 3, 'IV': 4, 'V': 5}

    def __init__(self, label: str):
        self.label = label

    def __int__(self) -> int:
        return RomanNumeral.int_values[self.label]

To create an instance of this class (to, say, represent a sequel in a movie title) and get
its value, you could use the following code:

>>> movie_sequel = RomanNumeral('II')
>>> print(int(movie_sequel))

2
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4 And SupportsInt uses the runtime_checkable decorator.

RomanNumeral satisfies issubclass, and isinstance checks with SupportsInt
because it implements __int__, even though it does not inherit explicitly from
the protocol class SupportsInt:4

>>> issubclass(RomanNumeral, typing.SupportsInt)

True

>>> isinstance(movie_sequel, typing.SupportsInt)

True

Utilities and Decorators
Table 5-6 lists commonly used functions and decorators defined in the typing
module; it’s followed by a few examples.

Table 5-6. Commonly used functions and decorators defined in the typing module

Function/decorator Usage and description

cast cast(type, var)
Signals to the static type checker that var should be considered as type type.
Returns var; at runtime there is no change, conversion, or validation of var. See
the example after the table.

final @final

3.8+  Used to decorate a method in a class definition, to warn if the method is
overridden in a subclass. Can also be used as a class decorator, to warn if the class
itself is being subclassed.

get_args get_args(custom_type)

Returns the arguments used to construct a custom type.

get_origin get_origin(custom_type)

3.8+  Returns the base type used to construct a custom type.

get_type_hints get_type_hints(obj)

Returns results as if accessing obj.__annotations__. Can be called with
optional globalns and localns namespace arguments to resolve forward type
references given as strings, and/or with optional Boolean include_extras
argument to include any nontyping annotations added using Annotations.

NewType NewType(type_name, type)
Defines a custom type derived from type. type_name is a string that should
match the local variable to which the NewType is being assigned. Useful for
distinguishing different uses for common types, such as a str used for an employee
name versus a str used for a department name. See “NewType” on page 190 for
more on this function.
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Function/decorator Usage and description

no_type_check @no_type_check

Used to indicate that annotations are not intended to be used as type information.
Can be applied to a class or function.

no_type_check_

decorator

@no_type_check_decorator

Used to add no_type_check behavior to another decorator.

overload @overload

Used to allow defining multiple methods with the same name but differing types in
their signatures. See the example after the table.

runtime_

checkable

@runtime_checkable

3.8+  Used to add isinstance and issubclass support for custom protocol
classes. See “Using Type Annotations at Runtime” on page 191 for more on this
decorator.

TypeAlias name: TypeAlias = type_expression
3.10+  Used to distinguish the definition of a type alias from a simple assignment.

Most useful in cases where type_expression is a simple class name or a
string value referring to a class that is not yet defined, which might look like an
assignment. TypeAlias may only be used at module scope. A common use is
to make it easier to consistently reuse a lengthy type expression, e.g.: Number:
TypeAlias = int | float | Fraction. See “TypeAlias” on page 189
for more on this annotation.

type_check_only @type_check_only

Used to indicate that the class or function is only used at type-checking time and is
not available at runtime.

TYPE_CHECKING A special constant that static type checkers evaluate as True but that is set to
False at runtime. Use this to skip imports of large, slow-to-import modules used
solely to support type checking (so that the import is not needed at runtime).

TypeVar TypeVar(type_name, *types)
Defines a type expression element for use in complex generic types using Generic.
type_name is a string that should match the local variable to which the Type
Var is being assigned. If types are not given, then the associated Generic will
accept any type. If types are given, then the Generic will only accept instances
of any of the provided types or their subclasses. Also accepts the named Boolean
arguments covariant and contravariant (both defaulting to False), and
the argument bound. These are described in more detail in “Generics and TypeVars”
on page 184 and in the typing module docs.

Use overload at type-checking time to flag named arguments that must be used in
particular combinations. In this case, fn must be called with either a str key and
int value pair, or with a single bool value:

@typing.overload
def fn(*, key: str, value: int):
    ...
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@typing.overload
def fn(*, strict: bool):
    ...

def fn(**kwargs):
    # implementation goes here, including handling of differing 
    # named arguments
    pass

# valid calls
fn(key='abc', value=100)
fn(strict=True)

# invalid calls
fn(1)
fn('abc')
fn('abc', 100)
fn(key='abc')
fn(True)
fn(strict=True, value=100)

Note that the overload decorator is used purely for static type checking. To
actually dispatch to different methods based on a parameter type at runtime, use
functools.singledispatch.

Use the cast function to force a type checker to treat a variable as being of a
particular type, within the scope of the cast:

def func(x: list[int] | list[str]):
    try:
        return sum(x)
    except TypeError:
        x = cast(list[str], x)
        return ','.join(x)

Use cast with Caution
cast is a way of overriding any inferences or prior annota‐
tions that may be present at a particular place in your code.
It may hide actual type errors in your code, rendering the
type-checking pass incomplete or inaccurate. The func in the
preceding example raises no mypy warnings itself, but fails at
runtime if passed a list of mixed ints and strs.

Defining Custom Types
Just as Python’s class syntax permits the creation of new runtime types and behav‐
ior, the typing module constructs discussed in this section enable the creation of
specialized type expressions for advanced type checking.

The typing module includes three classes from which your classes can inherit to get
type definitions and other default features, listed in Table 5-7.

The typing Module | 183

Typ
e

A
nno

tatio
ns



Table 5-7. Base classes for defining custom types

Generic Generic[type_var, ...]
Defines a type-checking abstract base class for a class whose methods reference one or
more TypeVar-defined types. Generics are described in more detail in the following
subsection.

NamedTuple NamedTuple

A typed implementation of collections.namedtuple. See “NamedTuple” on page
186 for further details and examples.

TypedDict TypedDict

3.8+  Defines a type-checking dict that has specific keys and value types for each key.
See “TypedDict” on page 187 for details.

Generics and TypeVars
Generics are types that define a template for classes that can adapt the type anno‐
tations of their method signatures based on one or more type parameters. For
instance, dict is a generic that takes two type parameters: the type for the dictio‐
nary keys and the type for the dictionary values. Here is how dict might be used to
define a dictionary that maps color names to RGB triples:

color_lookup: dict[str, tuple[int, int, int]] = {}

The variable color_lookup will support statements like:

color_lookup['red'] = (255, 0, 0)
color_lookup['red'][2]

However, the following statements generate mypy errors, due to a mismatched key or
value type:

color_lookup[0]

error: Invalid index type "int" for "dict[str, tuple[int, int, int]]";
expected type "str"

color_lookup['red'] = (255, 0, 0, 0)

error: Incompatible types in assignment (expression has type
"tuple[int, int, int, int]", target has type "tuple[int, int, int]")

Generic typing permits the definition of behavior in a class that is independent
of the specific types of the objects that class works with. Generics are often used
for defining container types, such as dict, list, set, etc. By defining a generic
type, we avoid the necessity of exhaustively defining types for DictOfStrInt, DictO
fIntEmployee, and so on. Instead, a generic dict is defined as dict[KT, VT], where
KT and VT are placeholders for the dict’s key type and value type, and the specific
types for any particular dict can be defined when the dict is instantiated.

As an example, let’s define a hypothetical generic class: an accumulator that can
be updated with values, but which also supports an undo method. Since the
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accumulator is a generic container, we declare a TypeVar to represent the type of the
contained objects:

import typing
T = typing.TypeVar('T')

The Accumulator class is defined as a subclass of Generic, with T as a type parame‐
ter. Here is the class declaration and its __init__ method, which creates a contained
list, initially empty, of objects of type T:

class Accumulator(typing.Generic[T]):
    def __init__(self):
        self._contents: list[T] = []

To add the update and undo methods, we define arguments that reference the
contained objects as being of type T:

    def update(self, *args: T) -> None:
        self._contents.extend(args)

    def undo(self) -> None:
        # remove last value added
        if self._contents:
            self._contents.pop()

Lastly, we add __len__ and __iter__ methods so that Accumulator instances can be
iterated over:

    def __len__(self) -> int:
        return len(self._contents)

    def __iter__(self) -> typing.Iterator[T]:
        return iter(self._contents)

Now this class can be used to write code using Accumulator[int] to collect a
number of int values:

acc: Accumulator[int] = Accumulator()
acc.update(1, 2, 3)
print(sum(acc))  # prints 6
acc.undo()
print(sum(acc))  # prints 3

Because acc is an Accumulator containing ints, the following statements generate
mypy error messages:

acc.update('A')

error: Argument 1 to "update" of "Accumulator" has incompatible type
"str"; expected "int"

print(''.join(acc))

error: Argument 1 to "join" of "str" has incompatible type
"Accumulator[int]"; expected "Iterable[str]"
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Restricting TypeVar to specific types
Nowhere in our Accumulator class do we ever invoke methods directly on the
contained T objects themselves. For this example, the T TypeVar is purely untyped,
so type checkers like mypy cannot infer the presence of any attributes or methods
of the T objects. If the generic needs to access attributes of the T objects it contains,
then T should be defined using a modified form of TypeVar.

Here are some examples of TypeVar definitions:

# T must be one of the types listed (int, float, complex, or str)
T = typing.TypeVar('T', int, float, complex, str)
# T must be the class MyClass or a subclass of the class MyClass
T = typing.TypeVar('T', bound=MyClass)
# T must implement __len__ to be a valid subclass of the Sized protocol
T = typing.TypeVar('T', bound=collections.abc.Sized)

These forms of T allow a generic defined on T to use methods from these types in T’s
TypeVar definition.

NamedTuple
The collections.namedtuple function simplifies the definition of class-like tuple
types that support named access to the tuple elements. NamedTuple provides a
typed version of this feature, using a class with attributes-style syntax similar to
dataclasses (covered in “Data Classes” on page 164). Here’s a NamedTuple with
four elements, with names, types, and optional default values:

class HouseListingTuple(typing.NamedTuple):
    address: str
    list_price: int
    square_footage: int = 0
    condition: str = 'Good'

NamedTuple classes generate a default constructor, accepting positional or named
arguments for each named field:

listing1 = HouseListingTuple(
    address='123 Main',
    list_price=100_000,
    square_footage=2400,
    condition='Good',
)

print(listing1.address)  # prints: 123 Main
print(type(listing1))    # prints: <class 'HouseListingTuple'>

Attempting to create a tuple with too few elements raises a runtime error:

listing2 = HouseListingTuple(
    '123 Main',
)
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# raises a runtime error: TypeError: HouseListingTuple.__new__() 
# missing 1 required positional argument: 'list_price'

TypedDict
3.8+  Python dict variables are often difficult to decipher in legacy codebases,

because dicts are used in two ways: as collections of key/value pairs (such as a
mapping from user ID to username), and records mapping known field names to
values. It is usually easy to see that a function argument is to be passed as a dict,
but the actual keys and value types are dependent on the code that may call that
function. Beyond simply defining that a dict may be a mapping of str values to int
values, as in dict[str, int], a TypedDict defines the expected keys and the types
of each corresponding value. The following example defines a TypedDict version
of the previous house listing type (note that TypedDict definitions do not accept
default value definitions):

class HouseListingDict(typing.TypedDict):
    address: str
    list_price: int
    square_footage: int
    condition: str

TypedDict classes generate a default constructor, accepting named arguments for
each defined key:

listing1 = HouseListingDict(
    address='123 Main',
    list_price=100_000,
    square_footage=2400,
    condition='Good',
)

print(listing1['address'])  # prints 123 Main
print(type(listing1))  # prints <class 'dict'>

listing2 = HouseListingDict(
    address='124 Main',
    list_price=110_000,
)

Unlike the NamedTuple example, listing2 will not raise a runtime error, simply
creating a dict with just the given keys. However, mypy will flag listing2 as a type
error with the message:

error: Missing keys ("square_footage", "condition") for TypedDict
"HouseListing"

To indicate to the type checker that some keys may be omitted (but to still validate
those that are given), add total=False to the class declaration:

class HouseListing(typing.TypedDict, total=False):
    # ...
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3.11+  Individual fields can also use the Required or NotRequired type annotations
to explicitly mark them as required or optional:

class HouseListing(typing.TypedDict):
    address: typing.Required[str]
    list_price: int
    square_footage: typing.NotRequired[int]
    condition: str

TypedDict can be used to define a generic type, too:

T = typing.TypeVar('T')

class Node(typing.TypedDict, typing.Generic[T]):
    label: T
    neighbors: list[T]

n = Node(label='Acme', neighbors=['anvil', 'magnet', 'bird seed'])

Do Not Use the Legacy TypedDict(name, **fields) Format
To support backporting to older versions of Python, the initial
release of TypedDict also let you use a syntax similar to that
for namedtuple, such as:

HouseListing = TypedDict('HouseListing',
                         address=str, 
                         list_price=int, 
                         square_footage=int, 
                         condition=str)

or:
HouseListing = TypedDict('HouseListing',
                         {'address': str, 
                          'list_price': int, 
                          'square_footage': int,
                          'condition': str})

These forms are deprecated in Python 3.11, and are planned
to be removed in Python 3.13.

Note that TypedDict does not actually define a new type. Classes created by inher‐
iting from TypedDict actually serve as dict factories, such that instances created
from them are dicts. Reusing the previous code snippet defining the Node class, we
can see this using the type built-in function:

n = Node(label='Acme', neighbors=['anvil', 'magnet', 'bird seed'])
print(type(n))           # prints: <class 'dict'>
print(type(n) is dict)   # prints: True

There is no special runtime conversion or initialization when using TypedDict; the
benefits of TypedDict are those of static type checking and self documentation,
which naturally accrue from using type annotations.
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Which Should You Use, NamedTuple or TypedDict?
The two data types appear similar in terms of their supported features, but there are
significant differences that should help you determine which one to use.

NamedTuples are immutable, so they can be used as dictionary keys or stored in sets,
and are inherently safe to share across threads. As a NamedTuple object is a tuple,
you can get its property values in order simply by iterating over it. However, to get
the attribute names, you need to use the special __annotations__ attribute.

Since classes created with TypedDict are actually dict factories, instances created
from them are dicts, with all the behavior and attributes of dicts. They are muta‐
ble, so their values can be updated without creating a new container instance, and
they support all the dict methods, such as keys, values, and items. They are also
easily serialized using JSON or pickle. However, being mutable, they cannot be
used as keys in another dict, nor can they be stored in a set.

TypedDicts are more lenient than NamedTuples about missing keys. When a key is
omitted when constructing a TypedDict, there is no error (though you will get a
type-check warning from the static type checker). On the other hand, if an attribute
is omitted when constructing a NamedTuple, this will raise a runtime TypeError.

In short, there is no across-the-board rule for when to use a NamedTuple versus
a TypedDict. Consider these alternative behaviors and how they relate to your
program and its use of these data objects when deciding between a NamedTuple
and a TypedDict—and don’t forget the other, often preferable, alternative of using a
dataclass (covered in “Data Classes” on page 164) instead!

TypeAlias
3.10+  Defining a simple type alias can be misinterpreted as assigning a class to a

variable. For instance, here we define a type for record identifiers in a database:

Identifier = int

To clarify that this statement is intended to define a custom type name for the
purposes of type checking, use TypeAlias:

Identifier: TypeAlias = int

TypeAlias is also useful when defining an alias for a type that is not yet defined, and
so referenced as a string value:

# Python will treat this like a standard str assignment
TBDType = 'ClassNotDefinedYet'

# indicates that this is actually a forward reference to a class
TBDType: TypeAlias = 'ClassNotDefinedYet'
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TypeAlias types may only be defined at module scope. Custom types defined using
TypeAlias are interchangeable with the target type. Contrast TypeAlias (which
does not create a new type, just gives a new name for an existing one) with NewType,
covered in the following section, which does create a new type.

NewType
NewType allows you to define application-specific subtypes, to avoid confusion that
might result from using the same type for different variables. If your program uses
str values for different types of data, for example, it is easy to accidentally inter‐
change values. Suppose you have a program that models employees in departments.
The following type declaration is not sufficiently descriptive—which is the key and
which is the value?

employee_department_map: dict[str, str] = {}

Defining types for employee and department IDs makes this declaration clearer:

EmpId = typing.NewType('EmpId', str)
DeptId = typing.NewType('DeptId', str)
employee_department_map: dict[EmpId, DeptId] = {}

These type definitions will also allow type checkers to flag this incorrect usage:

def transfer_employee(empid: EmpId, to_dept: DeptId):
    # update department for employee
     employee_department_map[to_dept] = empid

Running mypy reports these errors for the line employee_depart

ment_map[to_dept] = empid:

error: Invalid index type "DeptId" for "Dict[EmpId, DeptId]"; expected
type "EmpId"
error: Incompatible types in assignment (expression has type "EmpId",
target has type "DeptId")

Using NewType often requires you to use typing.cast too; for example, to create an
EmpId, you need to cast a str to the EmpId type.

You can also use NewType to indicate the desired implementation type for an
application-specific type. For instance, the basic US postal zip code is five numeric
digits. It is common to see this implemented using int, which becomes problematic
with zip codes that have a leading 0. To indicate that zip codes should be imple‐
mented using str, your code can define this type-checking type:

ZipCode = typing.NewType("ZipCode", str)

Annotating variables and function arguments using ZipCode will help flag incorrect
uses of int for zip code values.
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Using Type Annotations at Runtime
Function and class variable annotations can be introspected by accessing the func‐
tion or class’s __annotations__ attribute (although a better practice is to instead call
inspect.get_annotations()):

>>> def f(a:list[str], b) -> int:
...     pass
...
>>> f.__annotations__

{'a': list[str], 'return': <class 'int'>}

>>> class Customer:
...     name: str
...     reward_points: int = 0
...
>>> Customer.__annotations__

{'name': <class 'str'>, 'reward_points': <class 'int'>}

This feature is used by third-party packages such as pydantic and FastAPI to
provide extra code generation and validation capabilities.

3.8+  To define your own custom protocol class that supports runtime checking
with issubclass and isinstance, define that class as a subclass of typing.Proto
col, with empty method definitions for the required protocol methods, and deco‐
rate the class with @runtime_checkable (covered in Table 5-6). If you don’t decorate
it with @runtime_checkable, you’re still defining a Protocol that’s quite usable
for static type checking, but it won’t be runtime-checkable with issubclass and
isinstance.

For example, we could define a protocol that indicates that a class implements the
update and undo methods as follows (the Python Ellipsis, ..., is a convenient
syntax for indicating an empty method definition):

T = typing.TypeVar('T')

@typing.runtime_checkable
class SupportsUpdateUndo(typing.Protocol):
    def update(self, *args: T) -> None:
        ...
    def undo(self) -> None:
        ...

Without making any changes to the inheritance path of Accumulator (defined in
“Generics and TypeVars” on page 184), it now satisfies runtime type checks with
SupportsUpdateUndo:

>>> issubclass(Accumulator, SupportsUpdateUndo)

True
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>>> isinstance(acc, SupportsUpdateUndo)

True

In addition, any other class that implements update and undo methods will now
qualify as a SupportsUpdateUndo “subclass.”

How to Add Type Annotations to Your Code
Having seen some of the features and capabilities provided by using type anno‐
tations, you may be wondering about the best way to get started. This section
describes a few scenarios and approaches to adding type annotations.

Adding Type Annotations to New Code
When you start writing a short Python script, adding type annotations may seem
like an unnecessary extra burden. As a spinoff of the Two Pizza Rule, we suggest the
Two Function Rule: as soon as your script contains two functions or methods, go
back and add type annotations to the method signatures, and any shared variables
or types as necessary. Use TypedDict to annotate any dict structures that are used
in place of classes, so that dict keys get clearly defined up front or get documented
as you go; use NamedTuples (or dataclasses: some of this book’s authors strongly
prefer the latter option) to define the specific attributes needed for those data
“bundles.”

If you are beginning a major project with many modules and classes, then you
should definitely use type annotations from the beginning. They can easily make
you more productive, as they help avoid common naming and typing mistakes
and ensure you get more fully supported autocompletion while working in your
IDE. This is even more important on projects with multiple developers: having
documented types helps tell everyone on the team the expectations for types and
values to be used across the project. Capturing these types in the code itself makes
them immediately accessible and visible during development, much more so than
separate documentation or specifications.

If you are developing a library to be shared across projects, then you should also use
type annotations from the very start, most likely paralleling the function signatures
in your API design. Having type annotations in a library will make life easier
for your client developers, as all modern IDEs include type annotation plug-ins
to support static type checking and function autocompletion and documentation.
They will also help you when writing your unit tests, since you will benefit from the
same rich IDE support.

For any of these projects, add a type-checking utility to your pre-commit hooks,
so that you stay ahead of any type infractions that might creep into your new
codebase. This way you can fix them as they occur, instead of waiting until you do
a large commit and finding that you have made some fundamental typing errors in
multiple places.
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Adding Type Annotations to Existing Code (Gradual Typing)
Several companies that have run projects to apply type annotations to large existing
codebases recommend an incremental approach, referred to as gradual typing. With
gradual typing, you can work through your codebase in a stepwise manner, adding
and validating type annotations a few classes or modules at a time.

Some utilities, like mypy, will let you add type annotations function by function.
mypy, by default, skips functions without typed signatures, so you can methodically
go through your codebase a few functions at a time. This incremental process allows
you to focus your efforts on individual parts of the code, as opposed to adding type
annotations everywhere and then trying to sort out an avalanche of type-checker
errors.

Some recommended approaches are:

• Identify your most heavily used modules, and begin adding types to them, a•
method at a time. (These could be core application class modules, or widely
shared utility modules.)

• Annotate a few methods at a time, so that type-checking issues get raised and•
resolved gradually.

• Use pytype or pyre inference to generate initial .pyi stub files (discussed in•
the following section). Then, steadily migrate types from the .pyi files, either
manually or using automation such as pytype’s merge_pyi utility.

• Begin using type checkers in a lenient default mode, so that most code is•
skipped and you can focus attention on specific files. As work progresses, shift
to a stricter mode so that remaining items are made more prominent, and files
that have been annotated do not regress by taking on new nonannotated code.

Using .pyi Stub Files
Sometimes you don’t have access to Python type annotations. For example, you
might be using a library that does not have type annotations, or using a module
whose functions are implemented in C.

In these cases, you can use separate .pyi stub files containing just the related type
annotations. Several of the type checkers mentioned at the beginning of this chapter
can generate these stub files. You can download stub files for popular Python
libraries, as well as the Python standard library itself, from the typeshed repository.
You can maintain stub files from the Python source, or, using merging utilities
available in some of the type checkers, integrate them back into the original Python
source.
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5 NASA’s Jet Propulsion Lab used Python for the Persistence Mars Rover and the Ingenuity Mars
Helicopter; the team responsible for the discovery of gravitational waves used Python both to
coordinate the instrumentation and to analyze the resulting hoard of data.

Do Type Annotations Get in the Way of Coding?
Type annotations carry some stigma, especially for those who have worked with
Python for many years and are used to taking full advantage of Python’s adaptive
nature. Flexible method signatures like that of the built-in function max, which can
take a single argument containing a sequence of values or multiple arguments con‐
taining the values to be maximized, have been cited as being especially challenging
to type-annotate. Is this the fault of the code? Of typing? Of Python itself? Each of
these explanations is possible.

In general, typing fosters a degree of formalism and discipline that can be more
confining than the historical Python philosophy of “coding by and for consenting
adults.” Moving forward, we may find that the flexibility of style in older Python
code is not wholly conducive to long-term use, reuse, and maintenance by those
who are not the original code authors. As a recent PyCon presenter suggested, “Ugly
type annotations hint at ugly code.” (However, it may sometimes be the case, like for
max, that it’s the typing system that’s not expressive enough.)

You can take the level of typing difficulty as an indicator of your method design. If
your methods require multiple Union definitions, or multiple overrides for the same
method using different argument types, perhaps your design is too flexible across
multiple calling styles. You may be overdoing the flexibility of your API because
Python allows it, but that might not always be a good idea in the long run. After all,
as the Zen of Python says, “There should be one—and preferably only one—obvious
way to do it.” Maybe that should include “only one obvious way” to call your API!

Summary
Python has steadily risen to prominence as a powerful language and programming
ecosystem, supporting important enterprise applications. What was once a utility
language for scripting and task automation has become a platform for significant
and complex applications affecting millions of users, used in mission-critical and
even extraterrestrial systems.5 Adding type annotations is a significant step in devel‐
oping and maintaining these systems.

The online documentation for type annotations provides up-to-date descriptions,
examples, and best practices as the syntax and practices for annotating types
continue to evolve. The authors also recommend Fluent Python, 2nd edition, by
Luciano Ramalho (O’Reilly), especially Chapters 8 and 15, which deal specifically
with Python type annotations.
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6
Exceptions

Python uses exceptions to indicate errors and anomalies. When Python detects an
error, it raises an exception—that is, Python signals the occurrence of an anomalous
condition by passing an exception object to the exception propagation mechanism.
Your code can explicitly raise an exception by executing a raise statement.

Handling an exception means catching the exception object from the propagation
mechanism and taking actions as needed to deal with the anomalous situation. If
a program does not handle an exception, the program terminates with an error
message and traceback message. However, a program can handle exceptions and
keep running, despite errors or other anomalies, by using the try statement with
except clauses.

Python also uses exceptions to indicate some situations that are not errors, and not
even abnormal. For example, as covered in “Iterators” on page 86, calling the next
built-in function on an iterator raises StopIteration when the iterator has no more
items. This is not an error; it is not even an anomaly, since most iterators run out of
items eventually. The optimal strategies for checking and handling errors and other
special situations in Python are therefore different from those in other languages;
we cover them in “Error-Checking Strategies” on page 214.

This chapter shows how to use exceptions for errors and special situations. It also
covers the logging module of the standard library, in “Logging Errors” on page 217,
and the assert statement, in “The assert Statement” on page 219.

The try Statement
The try statement is Python’s core exception handling mechanism. It’s a compound
statement with three kinds of optional clauses:
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1. It may have zero or more except clauses, defining how to handle particular1.
classes of exceptions.

2. If it has except clauses, then it may also have, right afterwards, one else clause,2.
executed only if the try suite raised no exceptions.

3. Whether or not it has except clauses, it may have a single finally clause,3.
unconditionally executed, with the behavior covered in “try/except/finally” on
page 199.

Python’s syntax requires the presence of at least one except clause or a finally
clause, both of which might also be present in the same statement; else is only valid
following one or more excepts.

try/except
Here’s the syntax for the try/except form of the try statement:

try:
    statement(s)
except [expression [as target]]:
    statement(s)
[else:
    statement(s)]
[finally:
    statement(s)]

This form of the try statement has one or more except clauses, as well as an
optional else clause (and an optional finally clause, whose meaning does not
depend on whether except and else clauses are present: we cover this in the
following section).

The body of each except clause is known as an exception handler. The code executes
when the expression in the except clause matches an exception object propagating
from the try clause. expression is a class or tuple of classes, in parentheses, and
matches any instance of one of those classes or their subclasses. The optional
target is an identifier that names a variable that Python binds to the exception
object just before the exception handler executes. A handler can also obtain the
current exception object by calling the exc_info function ( 3.11+  or the exception
function) of the module sys (covered in Table 9-3).

Here is an example of the try/except form of the try statement:

try:
    1/0
    print('not executed')
except ZeroDivisionError:
    print('caught divide-by-0 attempt')

When an exception is raised, execution of the try suite immediately ceases. If a try
statement has several except clauses, the exception propagation mechanism checks

196 | Chapter 6: Exceptions



the except clauses in order; the first except clause whose expression matches the
exception object executes as the handler, and the exception propagation mechanism
checks no further except clauses after that.

Specific Before General
Place handlers for specific cases before handlers for more
general cases: when you place a general case first, the more
specific except clauses that follow never execute.

The last except clause need not specify an expression. An except clause without
any expression handles any exception that reaches it during propagation. Such
unconditional handling is rare, but it does occur, often in “wrapper” functions
that must perform some extra task before re-raising an exception (see “The raise
Statement” on page 200).

Avoid a “Bare Except” That Doesn’t Re-Raise
Beware of using a “bare” except (an except clause without an
expression) unless you’re re-raising the exception in it: such
sloppy style can make bugs very hard to find, since the bare
except is overly broad and can easily mask coding errors and
other kinds of bugs by allowing execution to continue after an
unanticipated exception.
New programmers who are “just trying to get things to work”
may even write code like:

try:
    # ...code that has a problem...
except:
    pass

This is a dangerous practice, since it catches important
process-exiting exceptions such as KeyboardInterrupt or Sys
temExit—a loop with such an exception handler can’t be
exited with Ctrl-C, and possibly not even terminated with a
system kill command. At the very least, such code should
use except Exception:, which is still overly broad but at least
does not catch the process-exiting exceptions.

Exception propagation terminates when it finds a handler whose expression
matches the exception object. When a try statement is nested (lexically in the
source code, or dynamically within function calls) in the try clause of another try
statement, a handler established by the inner try is reached first on propagation,
so it handles the exception when it matches it. This may not be what you want.
Consider this example:

try:
    try:
        1/0
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    except:
        print('caught an exception')
except ZeroDivisionError:
    print('caught divide-by-0 attempt')
# prints: caught an exception

In this case, it does not matter that the handler established by the clause except Zer
oDivisionError: in the outer try clause is more specific than the catch-all except:
in the inner try clause. The outer try does not enter into the picture: the exception
doesn’t propagate out of the inner try. For more on exception propagation, see
“Exception Propagation” on page 204.

The optional else clause of try/except executes only when the try clause termi‐
nates normally. In other words, the else clause does not execute when an excep‐
tion propagates from the try clause, or when the try clause exits with a break,
continue, or return statement. Handlers established by try/except cover only
the try clause, not the else clause. The else clause is useful to avoid accidentally
handling unexpected exceptions. For example:

print(repr(value), 'is ', end=' ')
try:
    value + 0
except TypeError:
    # not a number, maybe a string...?
    try:
        value + ''
    except TypeError:
        print('neither a number nor a string')
    else:
        print('some kind of string')
else:
    print('some kind of number')

try/finally
Here’s the syntax for the try/finally form of the try statement:

try:
    statement(s)
finally:
    statement(s)

This form has one finally clause, and no else clause (unless it also has one or
more except clauses, as covered in the following section).

The finally clause establishes what is known as a cleanup handler. This code
always executes after the try clause terminates in any way. When an exception
propagates from the try clause, the try clause terminates, the cleanup handler
executes, and the exception keeps propagating. When no exception occurs, the
cleanup handler executes anyway, regardless of whether the try clause reaches its
end or exits by executing a break, continue, or return statement.
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Cleanup handlers established with try/finally offer a robust and explicit way
to specify finalization code that must always execute, no matter what, to ensure
consistency of program state and/or external entities (e.g., files, databases, network
connections). Such assured finalization is nowadays usually best expressed via a
context manager used in a with statement (see “The with Statement and Context
Managers” on page 201). Here is an example of the try/finally form of the try
statement:

f = open(some_file, 'w')
try:
    do_something_with_file(f)
finally:
    f.close()

and here is the corresponding, more concise and readable, example of using with
for exactly the same purpose:

with open(some_file, 'w') as f:
    do_something_with_file(f)

Avoid break and return Statements in a finally Clause
A finally clause may contain one or more of the statements
continue, 3.8+  break, or return. However, such usage may
make your program less clear: exception propagation stops
when such a statement executes, and most programmers
would not expect propagation to be stopped within a finally
clause. This usage may confuse people who are reading your
code, so we recommend you avoid it.

try/except/finally
A try/except/finally statement, such as:

try:
    ...guarded clause...
except ...expression...:
    ...exception handler code...
finally:
    ...cleanup code...

is equivalent to the nested statement:

try:
    try:
        ...guarded clause...
    except ...expression...:
        ...exception handler code...
finally:
    ...cleanup code...

A try statement can have multiple except clauses, and optionally an else clause,
before a terminating finally clause. In all variations, the effect is always as just
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shown—that is, it’s just like nesting a try/except statement, with all the except
clauses and the else clause, if any, into a containing try/finally statement.

The raise Statement
You can use the raise statement to raise an exception explicitly. raise is a simple
statement with the following syntax:

raise [expression [from exception]]

Only an exception handler (or a function that a handler calls, directly or indirectly)
can use raise without any expression. A plain raise statement re-raises the same
exception object that the handler received. The handler terminates, and the excep‐
tion propagation mechanism keeps going up the call stack, searching for other
applicable handlers. Using raise without any expression is useful when a handler
discovers that it is unable to handle an exception it receives, or can handle the
exception only partially, so the exception should keep propagating to allow handlers
up the call stack to perform their own handling and cleanup.

When expression is present, it must be an instance of a class inheriting from the
built-in class BaseException, and Python raises that instance.

When from exception is included (which can only occur in an except block
that receives exception), Python raises the received expression “nested” in the
newly raised exception expression. “Exceptions “wrapping” other exceptions or
tracebacks” on page 209 describes this in more detail.

Here’s an example of a typical use of the raise statement:

def cross_product(seq1, seq2):
    if not seq1 or not seq2:
        raise ValueError('Sequence arguments must be non-empty') 
    return [(x1, x2) for x1 in seq1 for x2 in seq2]

Some people consider raising a standard exception here to be inappropriate,
and would prefer to raise an instance of a custom exception, as covered later in
this chapter; this book’s authors disagree with this opinion.

This cross_product example function returns a list of all pairs with one item from
each of its sequence arguments, but first, it tests both arguments. If either argument
is empty, the function raises ValueError rather than just returning an empty list as
the list comprehension would normally do.

Check Only What You Need To
There is no need for cross_product to check whether seq1
and seq2 are iterable: if either isn’t, the list comprehension
itself raises the appropriate exception, presumably a TypeEr
ror.
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Once an exception is raised, by Python itself or with an explicit raise statement
in your code, it is up to the caller to either handle it (with a suitable try/except
statement) or let it propagate further up the call stack.

Don’t Use raise for Redundant Error Checks
Use the raise statement only to raise additional exceptions
for cases that would normally be OK but that your specifica‐
tion defines to be errors. Do not use raise to duplicate the
same error checking that Python already (implicitly) does on
your behalf.

The with Statement and Context Managers
The with statement is a compound statement with the following syntax:

with expression [as varname] [, ...]:
    statement(s)

# 3.10+  multiple context managers for a with statement 
# can be enclosed in parentheses
with (expression [as varname], ...):
    statement(s)

The semantics of with are equivalent to:

_normal_exit = True
_manager = expression
varname = _manager.__enter__()
try:
    statement(s)
except:
    _normal_exit = False
    if not _manager.__exit_(*sys.exc_info()):
        raise
    # note that exception does not propagate if __exit__ returns 
    # a true value
finally:
    if _normal_exit:
        _manager.__exit__(None, None, None)

where _manager and _normal_exit are arbitrary internal names that are not used
elsewhere in the current scope. If you omit the optional as varname part of the with
clause, Python still calls _manager.__enter__, but doesn’t bind the result to any
name, and still calls _manager.__exit__ at block termination. The object returned
by the expression, with methods __enter__ and __exit__, is known as a context
manager.
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The with statement is the Python embodiment of the well-known C++ idiom
“resource acquisition is initialization” (RAII): you need only write context man‐
ager classes—that is, classes with two special methods, __enter__ and __exit__.
__enter__ must be callable without arguments. __exit__ must be callable with
three arguments: all None when the body completes without propagating exceptions,
and otherwise, the type, value, and traceback of the exception. This provides the
same guaranteed finalization behavior as typical ctor/dtor pairs have for auto
variables in C++ and try/finally statements have in Python or Java. In addition,
they can finalize differently depending on what exception, if any, propagates, and
optionally block a propagating exception by returning a true value from __exit__.

For example, here is a simple, purely illustrative way to ensure <name> and </name>
tags are printed around some other output (note that context manager classes often
have lowercase names, rather than following the normal title case convention for
class names):

class enclosing_tag:
    def __init__(self, tagname):
        self.tagname = tagname
    def __enter__(self):
        print(f'<{self.tagname}>', end='')
    def __exit__(self, etyp, einst, etb):
        print(f'</{self.tagname}>')

# to be used as:
with enclosing_tag('sometag'):
    # ...statements printing output to be enclosed in
    # a matched open/close `sometag` pair...

A simpler way to build context managers is to use the contextmanager decorator
in the contextlib module of the Python standard library. This decorator turns a
generator function into a factory of context manager objects.

The contextlib way to implement the enclosing_tag context manager, having
imported contextlib earlier, is:

@contextlib.contextmanager
def enclosing_tag(tagname):
    print(f'<{tagname}>', end='')
    try:
        yield
    finally:
        print(f'</{tagname}>')
# to be used the same way as before

contextlib supplies, among others, the class and functions listed in Table 6-1.

202 | Chapter 6: Exceptions

https://oreil.ly/vROml


Table 6-1. Commonly used classes and functions in the contextlib module

AbstractContext

Manager

AbstractContextManager

An abstract base class with two overridable methods: __enter__, which defaults to
return self, and __exit__, which defaults to return None.

chdir chdir(dir_path)

3.11+  A context manager whose __enter__ method saves the current working
directory path and performs os.chdir(dir_path), and whose __exit__
method performs os.chdir(saved_path).

closing closing(something)

A context manager whose __enter__ method is return something, and
whose __exit__ method calls something.close().

contextmanager contextmanager

A decorator that you apply to a generator to make it into a context manager.

nullcontext nullcontext(something)

A context manager whose __enter__ method is return something, and
whose __exit__ method does nothing.

redirect_stderr redirect_stderr(destination)

A context manager that temporarily redirects, within the body of the with
statement, sys.stderr to the file or file-like object destination.

redirect_stdout redirect_stdout(destination)

A context manager that temporarily redirects, within the body of the with
statement, sys.stdout to the file or file-like object destination.

suppress suppress(*exception_classes)

A context manager that silently suppresses exceptions occurring in the body of
the with statement of any of the classes listed in exception_classes. For
instance, this function to delete a file ignores FileNotFoundError:

def delete_file(filename):
    with contextlib.suppress(FileNotFoundError):
        os.remove(filename)

Use sparingly, since silently suppressing exceptions is often bad practice.

For more details, examples, “recipes,” and even more (somewhat abstruse) classes,
see Python’s online docs.

Generators and Exceptions
To help generators cooperate with exceptions, yield statements are allowed inside
try/finally statements. Moreover, generator objects have two other relevant meth‐
ods, throw and close. Given a generator object g built by calling a generator
function, the throw method’s signature is:

g.throw(exc_value)
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1 Except that multiple calls to close are allowed and innocuous: all but the first one perform no
operation.

When the generator’s caller calls g.throw, the effect is just as if a raise statement
with the same argument executed at the spot of the yield at which generator g is
suspended.

The generator method close has no arguments; when the generator’s caller calls
g.close(), the effect is like calling g.throw(GeneratorExit()).1 GeneratorExit is
a built-in exception class that inherits directly from BaseException. Generators also
have a finalizer (the special method __del__) that implicitly calls close when the
generator object is garbage-collected.

If a generator raises or propagates a StopIteration exception, Python turns the
exception’s type into RuntimeError.

Exception Propagation
When an exception is raised, the exception propagation mechanism takes control.
The normal control flow of the program stops, and Python looks for a suitable
exception handler. Python’s try statement establishes exception handlers via its
except clauses. The handlers deal with exceptions raised in the body of the try
clause, as well as exceptions propagating from functions called by that code, directly
or indirectly. If an exception is raised within a try clause that has an applicable
except handler, the try clause terminates and the handler executes. When the
handler finishes, execution continues with the statement after the try statement (in
the absence of any explicit change to the flow of control, such as a raise or return
statement).

If the statement raising the exception is not within a try clause that has an applica‐
ble handler, the function containing the statement terminates, and the exception
propagates “upward” along the stack of function calls to the statement that called
the function. If the call to the terminated function is within a try clause that has an
applicable handler, that try clause terminates, and the handler executes. Otherwise,
the function containing the call terminates, and the propagation process repeats,
unwinding the stack of function calls until an applicable handler is found.

If Python cannot find any applicable handler, by default the program prints an error
message to the standard error stream (sys.stderr). The error message includes
a traceback that gives details about functions terminated during propagation. You
can change Python’s default error-reporting behavior by setting sys.excepthook
(covered in Table 8-3). After error reporting, Python goes back to the interactive
session, if any, or terminates if execution was not interactive. When the exception
type is SystemExit, termination is silent and ends the interactive session, if any.

Here are some functions to show exception propagation at work:
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def f():
    print('in f, before 1/0')
    1/0    # raises a ZeroDivisionError exception
    print('in f, after 1/0')
def g():
    print('in g, before f()')
    f()
    print('in g, after f()')
def h():
    print('in h, before g()')
    try:
        g()
        print('in h, after g()')
    except ZeroDivisionError:
        print('ZD exception caught')
    print('function h ends')

Calling the h function prints the following:

in h, before g()
in g, before f()
in f, before 1/0
ZD exception caught
function h ends

That is, none of the “after” print statements execute, since the flow of exception
propagation cuts them off.

The function h establishes a try statement and calls the function g within the try
clause. g, in turn, calls f, which performs a division by 0, raising an exception of
type ZeroDivisionError. The exception propagates all the way back to the except
clause in h. The functions f and g terminate during the exception propagation
phase, which is why neither of their “after” messages is printed. The execution of
h’s try clause also terminates during the exception propagation phase, so its “after”
message isn’t printed either. Execution continues after the handler, at the end of h’s
try/except block.

Exception Objects
Exceptions are instances of BaseException (more specifically, instances of one of its
subclasses). Table 6-2 lists the attributes and methods of BaseException.

Table 6-2. Attributes and methods of the BaseException class

__cause__ exc.__cause__

Returns the parent exception of an exception raised using raise from.

__notes__ exc.__notes__

3.11+  Returns a list of strs added to the exception using add_note. This attribute only
exists if add_note has been called at least once, so the safe way to access this list is with
getattr(exc, '__notes__', []).
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add_note exc.add_note(note)

3.11+  Appends the str note to the notes on this exception. These notes are shown after
the traceback when displaying the exception.

args exc.args

Returns a tuple of the arguments used to construct the exception. This error-specific
information is useful for diagnostic or recovery purposes. Some exception classes interpret
args and set convenient named attributes on the classes’ instances.

with_

traceback

exc.with_traceback(tb)

Returns a new exception, replacing the original exception’s traceback with the new traceback
tb, or with no traceback if tb is None. Can be used to trim the original traceback to remove
internal library function call frames.

The Hierarchy of Standard Exceptions
As mentioned previously, exceptions are instances of subclasses of BaseException.
The inheritance structure of exception classes is important, as it determines which
except clauses handle which exceptions. Most exception classes extend the class
Exception; however, the classes KeyboardInterrupt, GeneratorExit, and System
Exit inherit directly from BaseException and are not subclasses of Exception.
Thus, a handler clause except Exception as e does not catch KeyboardInterrupt,
GeneratorExit, or SystemExit (we covered exception handlers in “try/except” on
page 196 and GeneratorExit in “Generators and Exceptions” on page 203). Instan‐
ces of SystemExit are normally raised via the exit function in the sys module
(covered in Table 8-3). When the user hits Ctrl-C, Ctrl-Break, or other interrupting
keys on their keyboard, that raises KeyboardInterrupt.

The hierarchy of built-in exception classes is, roughly:

BaseException
  Exception
    AssertionError, AttributeError, BufferError, EOFError,
    MemoryError, ReferenceError, OsError, StopAsyncIteration,
    StopIteration, SystemError, TypeError
    ArithmeticError (abstract)
      OverflowError, ZeroDivisionError
    ImportError
      ModuleNotFoundError, ZipImportError
    LookupError (abstract)
      IndexError, KeyError
    NameError
      UnboundLocalError
    OSError
      ...
    RuntimeError
      RecursionError
      NotImplementedError
    SyntaxError
      IndentationError
        TabError
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    ValueError
      UnsupportedOperation
      UnicodeError
        UnicodeDecodeError, UnicodeEncodeError,
        UnicodeTranslateError
    Warning
      ...
  GeneratorExit
  KeyboardInterrupt
  SystemExit

There are other exception subclasses (in particular, Warning and OSError have
many, whose omission is indicated here with ellipses), but this is the gist. A com‐
plete list is available in Python’s online docs.

The classes marked “(abstract)” are never instantiated directly; their purpose is to
make it easier for you to specify except clauses that handle a range of related errors.

Standard Exception Classes
Table 6-3 lists exception classes raised by common runtime errors.

Table 6-3. Standard exception classes

Exception class Raised when

AssertionError An assert statement failed.

AttributeError An attribute reference or assignment failed.

ImportError An import or from...import statement (covered in “The import
Statement” on page 222) couldn’t find the module to import (in this case, what
Python raises is actually an instance of ImportError’s subclass ModuleNot
FoundError), or couldn’t find a name to be imported from the module.

IndentationError The parser encountered a syntax error due to incorrect indentation. Subclasses
SyntaxError.

IndexError An integer used to index a sequence is out of range (using a noninteger as a
sequence index raises TypeError). Subclasses LookupError.

KeyboardInterrupt The user pressed the interrupt key combination (Ctrl-C, Ctrl-Break, Delete, or
others, depending on the platform’s handling of the keyboard).

KeyError A key used to index a mapping is not in the mapping. Subclasses LookupEr
ror.

MemoryError An operation ran out of memory.

NameError A name was referenced, but it was not bound to any variable in the current
scope.

NotImplemented

Error

Raised by abstract base classes to indicate that a concrete subclass must override
a method.
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Exception class Raised when

OSError Raised by functions in the module os (covered in “The os Module” on page 343
and “Running Other Programs with the os Module” on page 478) to indicate
platform-dependent errors. OSError has many subclasses, covered in the
following subsection.

RecursionError Python detected that the recursion depth has been exceeded. Subclasses Runti
meError.

RuntimeError Raised for any error or anomaly not otherwise classified.

SyntaxError Python’s parser encountered a syntax error.

SystemError Python has detected an error in its own code, or in an extension module.
Please report this to the maintainers of your Python version, or of the extension
in question, including the error message, the exact Python version (sys.ver
sion), and, if possible, your program’s source code.

TypeError An operation or function was applied to an object of an inappropriate type.

UnboundLocalError A reference was made to a local variable, but no value is currently bound to that
local variable. Subclasses NameError.

UnicodeError An error occurred while converting Unicode (i.e., a str) to a byte string, or vice
versa. Subclasses ValueError.

ValueError An operation or function was applied to an object that has a correct type but an
inappropriate value, and nothing more specific (e.g., KeyError) applies.

ZeroDivisionError A divisor (the righthand operand of a /, //, or % operator, or the second
argument to the built-in function divmod) is 0. Subclasses ArithmeticEr
ror.

OSError subclasses
OSError represents errors detected by the operating system. To handle such errors
more elegantly, OSError has many subclasses, whose instances are what actually get
raised; for a complete list, see Python’s online docs.

For example, consider this task: try to read and return the contents of a certain file,
return a default string if the file does not exist, and propagate any other exception
that makes the file unreadable (except for the file not existing). Using an existing
OSError subclass, you can accomplish the task quite simply:

def read_or_default(filepath, default):
    try:
        with open(filepath) as f:
            return f.read()
    except FileNotFoundError:
        return default

The FileNotFoundError subclass of OSError makes this kind of common task
simple and direct to express in code.
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Exceptions “wrapping” other exceptions or tracebacks
Sometimes, you cause an exception while trying to handle another. To let you
clearly diagnose this issue, each exception instance holds its own traceback object;
you can make another exception instance with a different traceback with the
with_traceback method.

Moreover, Python automatically stores which exception it’s handling as the __con
text__ attribute of any further exception raised during the handling (unless you
set the exception’s __suppress_context__ attribute to True with the raise...from
statement, which we cover shortly). If the new exception propagates, Python’s error
message uses that exception’s __context__ attribute to show details of the problem.
For example, take the (deliberately!) broken code:

try:
    1/0
except ZeroDivisionError:
    1+'x'

The error displayed is:

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "<stdin>", line 3, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

Thus, Python clearly displays both exceptions, the original and the intervening one.

To get more control over the error display, you can, if you wish, use the
raise...from statement. When you execute raise e from ex, both e and ex
are exception objects: e is the one that propagates, and ex is its “cause.” Python
records ex as the value of e.__cause__, and sets e.__suppress_context__ to true.
(Alternatively, ex can be None: then, Python sets e.__cause__ to None, but still sets
e.__suppress_context__ to true, and thus leaves e.__context__ alone).

As another example, here’s a class implementing a mock filesystem directory using a
Python dict, with the filenames as the keys and the file contents as the values:

class FileSystemDirectory:
    def __init__(self):
        self._files = {}

    def write_file(self, filename, contents):
        self._files[filename] = contents

    def read_file(self, filename):
        try:
            return self._files[filename]
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        except KeyError:
            raise FileNotFoundError(filename)

When read_file is called with a nonexistent filename, the access to the
self._files dict raises KeyError. Since this code is intended to emulate a file‐
system directory, read_file catches the KeyError and raises FileNotFoundError
instead.

As is, accessing a nonexistent file named 'data.txt' will output an exception
message similar to:

Traceback (most recent call last):
  File "C:\dev\python\faux_fs.py", line 11, in read_file
    return self._files[filename]
KeyError: 'data.txt'

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "C:\dev\python\faux_fs.py", line 20, in <module>
    print(fs.read_file("data.txt"))
  File "C:\dev\python\faux_fs.py", line 13, in read_file
    raise FileNotFoundError(filename)
FileNotFoundError: data.txt

This exception report shows both the KeyError and the FileNotFoundError. To
suppress the internal KeyError exception (to hide implementation details of File
SystemDirectory), we change the raise statement in read_file to:

    raise FileNotFoundError(filename) from None

Now the exception only shows the FileNotFoundError information:

Traceback (most recent call last):
  File "C:\dev\python\faux_fs.py", line 20, in <module>
    print(fs.read_file("data.txt"))
  File "C:\dev\python\faux_fs.py", line 13, in read_file
    raise FileNotFoundError(filename) from None
FileNotFoundError: data.txt

For details and motivations regarding exception chaining and embedding, see PEP
3134.

Custom Exception Classes
You can extend any of the standard exception classes in order to define your own
exception class. Often, such a subclass adds nothing more than a docstring:

class InvalidAttributeError(AttributeError):
    """Used to indicate attributes that could never be valid."""
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An Empty Class or Function Should Have a Docstring
As covered in “The pass Statement” on page 92, you don’t
need a pass statement to make up the body of a class.
The docstring (which you should always write, to docu‐
ment the class’s purpose if nothing else!) is enough to keep
Python happy. Best practice for all “empty” classes (regard‐
less of whether they are exception classes), just like for all
“empty” functions, is usually to have a docstring and no pass
statement.

Given the semantics of try/except, raising an instance of a custom exception class
such as InvalidAttributeError is almost the same as raising an instance of its
standard exception superclass, AttributeError, but with some advantages. Any
except clause that can handle AttributeError can handle InvalidAttributeError
just as well. In addition, client code that knows about your InvalidAttributeError
custom exception class can handle it specifically, without having to handle all other
cases of AttributeError when it is not prepared for those. For example, suppose
you write code like the following:

class SomeFunkyClass:
    """much hypothetical functionality snipped"""
    def __getattr__(self, name):
        """only clarifies the kind of attribute error"""
        if name.startswith('_'):
            raise InvalidAttributeError(
                f'Unknown private attribute {name!r}'
            )
        else:
            raise AttributeError(f'Unknown attribute {name!r}')

Now, client code can, if it so chooses, be more selective in its handlers. For example:

s = SomeFunkyClass()
try:
    value = getattr(s, thename)
except InvalidAttributeError as err:
    warnings.warn(str(err), stacklevel=2)
    value = None
# other cases of AttributeError just propagate, as they're unexpected

Use Custom Exception Classes
It’s an excellent idea to define, and raise, instances of custom
exception classes in your modules, rather than plain standard
exceptions. By using custom exception classes that extend
standard ones, you make it easier for callers of your module’s
code to handle exceptions that come from your module sepa‐
rately from others, if they choose to.
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2 This is somewhat controversial: while this book’s authors agree on this being “best practice,” some
others strongly insist that one should always avoid multiple inheritance, including in this specific
case.

Custom Exceptions and Multiple Inheritance
An effective approach to the use of custom exceptions is to multiply inherit excep‐
tion classes from your module’s special custom exception class and a standard
exception class, as in the following snippet:

class CustomAttributeError(CustomException, AttributeError):
    """An AttributeError which is ALSO a CustomException."""

Now, an instance of CustomAttributeError can only be raised explicitly and delib‐
erately, showing an error related specifically to your code that also happens to be
an AttributeError. When your code raises an instance of CustomAttributeError,
that exception can be caught by calling code that’s designed to catch all cases of
AttributeError as well as by code that’s designed to catch all exceptions raised
only, specifically, by your module.

Use Multiple Inheritance for Custom Exceptions
Whenever you must decide whether to raise an instance of
a specific standard exception, such as AttributeError, or
of a custom exception class you define in your module, con‐
sider this multiple inheritance approach, which, in this book’s
authors’ opinion,2 gives you the best of both worlds in such
cases. Make sure you clearly document this aspect of your
module, because the technique, although handy, is not widely
used. Users of your module may not expect it unless you
clearly and explicitly document what you are doing.

Other Exceptions Used in the Standard Library
Many modules in Python’s standard library define their own exception classes,
which are equivalent to the custom exception classes that your own modules can
define. Typically, all functions in such standard library modules may raise excep‐
tions of such classes, in addition to exceptions in the standard hierarchy covered
in “Standard Exception Classes” on page 207. We cover the main cases of such
exception classes throughout the rest of this book, in chapters covering the standard
library modules that supply and may raise them.

ExceptionGroup and except*
3.11+  In some circumstances, such as when performing validation of some input

data against multiple criteria, it is useful to be able to raise more than a single
exception at once. Python 3.11 introduced a mechanism to raise multiple exceptions
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at once using an ExceptionGroup instance and to process more than one exception
using an except* form in place of except.

To raise ExceptionGroup, the validating code captures multiple Exceptions into
a list and then raises an ExceptionGroup that is constructed using that list.
Here is some code that searches for misspelled and invalid words, and raises an
ExceptionGroup containing all of the found errors:

class GrammarError(Exception):
    """Base exception for grammar checking"""
    def __init__(self, found, suggestion):
        self.found = found
        self.suggestion = suggestion

class InvalidWordError(GrammarError):
    """Misused or nonexistent word"""

class MisspelledWordError(GrammarError):
    """Spelling error"""

invalid_words = {
    'irregardless': 'regardless',
    "ain't": "isn't",
} 
misspelled_words = {
    'tacco': 'taco',
}

def check_grammar(s):
    exceptions = []
    for word in s.lower().split():
        if (suggestion := invalid_words.get(word)) is not None:
            exceptions.append(InvalidWordError(word, suggestion))
        elif (suggestion := misspelled_words.get(word)) is not None:
            exceptions.append(MisspelledWordError(word, suggestion))
    if exceptions:
        raise ExceptionGroup('Found grammar errors', exceptions)

The following code validates a sample text string and lists out all the found errors:

text = "Irregardless a hot dog ain't a tacco"
try:
    check_grammar(text)
except* InvalidWordError as iwe:
    print('\n'.join(f'{e.found!r} is not a word, use {e.suggestion!r}'
                    for e in iwe.exceptions))
except* MisspelledWordError as mwe:
    print('\n'.join(f'Found {e.found!r}, perhaps you meant'
                    f' {e.suggestion!r}?'
                    for e in mwe.exceptions))
else:
    print('No errors!')
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giving this output:

'irregardless' is not a word, use 'regardless'
"ain't" is not a word, use "isn't"
Found 'tacco', perhaps you meant 'taco'?

Unlike except, after it finds an initial match, except* continues to look for addi‐
tional exception handlers matching exception types in the raised ExceptionGroup.

Error-Checking Strategies
Most programming languages that support exceptions raise exceptions only in rare
cases. Python’s emphasis is different. Python deems exceptions appropriate when‐
ever they make a program simpler and more robust, even if that makes exceptions
rather frequent.

LBYL Versus EAFP
A common idiom in other languages, sometimes known as “look before you leap”
(LBYL), is to check in advance, before attempting an operation, for anything that
might make the operation invalid. This approach is not ideal, for several reasons:

• The checks may diminish the readability and clarity of the common, main‐•
stream cases where everything is OK.

• The work needed for checking purposes may duplicate a substantial part of the•
work done in the operation itself.

• The programmer might easily err by omitting a needed check.•
• The situation might change between the moment when you perform the checks•

and the moment when, later (even by a tiny fraction of a second!), you attempt
the operation.

The preferred idiom in Python is to attempt the operation in a try clause and
handle the exceptions that may result in one or more except clauses. This idiom
is known as “It’s easier to ask forgiveness than permission” (EAFP), a frequently
quoted motto widely credited to Rear Admiral Grace Murray Hopper, co-inventor
of COBOL. EAFP shares none of the defects of LBYL. Here is a function using the
LBYL idiom:

def safe_divide_1(x, y):
    if y==0:
        print('Divide-by-0 attempt detected')
        return None
    else:
        return x/y

With LBYL, the checks come first, and the mainstream case is somewhat hidden at
the end of the function.
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Here is the equivalent function using the EAFP idiom:

def safe_divide_2(x, y):
    try:
        return x/y
    except ZeroDivisionError:
        print('Divide-by-0 attempt detected')
        return None

With EAFP, the mainstream case is up front in a try clause, and the anomalies are
handled in the following except clause, making the whole function easier to read
and understand.

EAFP is a good error-handling strategy, but it is not a panacea. In particular, you
must take care not to cast too wide a net, catching errors that you did not expect
and therefore did not mean to catch. The following is a typical case of such a risk
(we cover built-in function getattr in Table 8-2):

def trycalling(obj, attrib, default, *args, **kwds):
    try:
        return getattr(obj, attrib)(*args, **kwds)
    except AttributeError:
        return default

The intention of the trycalling function is to try calling a method named attrib
on the object obj, but to return default if obj has no method thus named. How‐
ever, the function as coded does not do just that: it also accidentally hides any error
case where an AttributeError is raised inside the sought-after method, silently
returning default in those cases. This could easily hide bugs in other code. To do
exactly what’s intended, the function must take a little bit more care:

def trycalling(obj, attrib, default, *args, **kwds):
    try:
        method = getattr(obj, attrib)
    except AttributeError:
        return default
    else:
        return method(*args, **kwds)

This implementation of trycalling separates the getattr call, placed in the try
clause and therefore guarded by the handler in the except clause, from the call
of the method, placed in the else clause and therefore free to propagate any
exception. The proper approach to EAFP involves frequent use of the else clause in
try/except statements (which is more explicit, and thus better Python style, than
just placing the nonguarded code after the whole try/except statement).

Handling Errors in Large Programs
In large programs, it is especially easy to err by making your try/except statements
too broad, particularly once you have convinced yourself of the power of EAFP as
a general error-checking strategy. A try/except combination is too broad when it
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catches too many different errors, or an error that can occur in too many different
places. The latter is a problem when you need to distinguish exactly what went
wrong and where, and the information in the traceback is not sufficient to pinpoint
such details (or you discard some or all of the information in the traceback). For
effective error handling, you have to keep a clear distinction between errors and
anomalies that you expect (and thus know how to handle) and unexpected errors
and anomalies that may indicate a bug in your program.

Some errors and anomalies are not really erroneous, and perhaps not even all that
anomalous: they are just special “edge” cases, perhaps somewhat rare but neverthe‐
less quite expected, which you choose to handle via EAFP rather than via LBYL
to avoid LBYL’s many intrinsic defects. In such cases, you should just handle the
anomaly, often without even logging or reporting it.

Keep Your try/except Constructs Narrow
Be very careful to keep try/except constructs as narrow as
feasible. Use a small try clause that contains a small amount
of code that doesn’t call too many other functions, and use
very specific exception class tuples in the except clauses. If
need be, further analyze the details of the exception in your
handler code, and raise again as soon as you know it’s not a
case this handler can deal with.

Errors and anomalies that depend on user input or other external conditions not
under your control are always expected, precisely because you have no control over
their underlying causes. In such cases, you should concentrate your effort on han‐
dling the anomaly gracefully, reporting and logging its exact nature and details, and
keeping your program running with undamaged internal and persistent state. Your
try/except clauses should still be reasonably narrow, although this is not quite as
crucial as when you use EAFP to structure your handling of not-really-erroneous
special/edge cases.

Lastly, entirely unexpected errors and anomalies indicate bugs in your program’s
design or coding. In most cases, the best strategy regarding such errors is to avoid
try/except and just let the program terminate with error and traceback messages.
(You might want to log such information and/or display it more suitably with
an application-specific hook in sys.excepthook, as we’ll discuss shortly.) In the
unlikely case that your program must keep running at all costs, even under dire
circumstances, try/except statements that are quite wide may be appropriate,
with the try clause guarding function calls that exercise vast swaths of program
functionality, and broad except clauses.

In the case of a long-running program, make sure to log all details of the anomaly
or error to some persistent place for later study (and also report to yourself some
indication of the problem, so that you know such later study is necessary). The
key is making sure that you can revert the program’s persistent state to some
undamaged, internally consistent point. The techniques that enable long-running
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programs to survive some of their own bugs, as well as environmental adversities,
are known as checkpointing (basically, periodically saving program state, and writ‐
ing the program so it can reload the saved state and continue from there) and
transaction processing; we do not cover them further in this book.

Logging Errors
When Python propagates an exception all the way to the top of the stack without
finding an applicable handler, the interpreter normally prints an error traceback
to the standard error stream of the process (sys.stderr) before terminating the
program. You can rebind sys.stderr to any file-like object usable for output in
order to divert this information to a destination more suitable for your purposes.

When you want to change the amount and kind of information output on such
occasions, rebinding sys.stderr is not sufficient. In such cases, you can assign your
own function to sys.excepthook: Python calls it when terminating the program
due to an unhandled exception. In your exception-reporting function, output what‐
ever information will help you diagnose and debug the problem and direct that
information to whatever destinations you please. For example, you might use the
traceback module (covered in “The traceback Module” on page 533) to format
stack traces. When your exception-reporting function terminates, so does your
program.

The logging module
The Python standard library offers the rich and powerful logging module to let you
organize the logging of messages from your applications in systematic, flexible ways.
Pushing things to the limit, you might write a whole hierarchy of Logger classes and
subclasses; you could couple the loggers with instances of Handler (and subclasses
thereof), or insert instances of the class Filter to fine-tune criteria determining
what messages get logged in which ways.

Messages are formatted by instances of the Formatter class—the messages them‐
selves are instances of the LogRecord class. The logging module even includes a
dynamic configuration facility, whereby you may dynamically set logging configura‐
tion files by reading them from disk files, or even by receiving them on a dedicated
socket in a specialized thread.

While the logging module sports a frighteningly complex and powerful architec‐
ture, suitable for implementing highly sophisticated logging strategies and policies
that may be needed in vast and complicated software systems, in most applications
you might get away with using a tiny subset of the package. First, import logging.
Then, emit your message by passing it as a string to any of the module’s functions
debug, info, warning, error, or critical, in increasing order of severity. If the
string you pass contains format specifiers such as %s (as covered in “Legacy String
Formatting with %” on page 297), then, after the string, pass as further arguments
all the values to be formatted in that string. For example, don’t call:
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logging.debug('foo is %r' % foo)

which performs the formatting operation whether it’s needed or not; rather, call:

logging.debug('foo is %r', foo)

which performs formatting if and only if needed (i.e., if and only if calling debug is
going to result in logging output, depending on the current threshold logging level).
If foo is used only for logging and is especially compute- or I/O-intensive to create,
you can use isEnabledFor to conditionalize the expensive code that creates foo:

if logging.getLogger().isEnabledFor(logging.DEBUG):
    foo = cpu_intensive_function()
    logging.debug('foo is %r', foo)

Configuring logging
Unfortunately, the logging module does not support the more readable formatting
approaches covered in “String Formatting” on page 287, but only the legacy one
mentioned in the previous subsection. Fortunately, it’s very rare to need any format‐
ting specifiers beyond %s (which calls __str__) and %r (which calls __repr__).

By default, the threshold level is WARNING: any of the functions warning, error,
or critical results in logging output, but the functions debug and info do not.
To change the threshold level at any time, call logging.getLogger().setLevel,
passing as the only argument one of the corresponding constants supplied by the
logging module: DEBUG, INFO, WARNING, ERROR, or CRITICAL. For example, once you
call:

logging.getLogger().setLevel(logging.DEBUG)

all of the logging functions from debug to critical result in logging output until
you change the level again. If later you call:

logging.getLogger().setLevel(logging.ERROR)

then only the functions error and critical result in logging output (debug, info,
and warning won’t result in logging output); this condition, too, persists until you
change the level again, and so forth.

By default, logging output goes to your process’s standard error stream
(sys.stderr, as covered in Table 8-3) and uses a rather simplistic format (for exam‐
ple, it does not include a timestamp on each line it outputs). You can control these
settings by instantiating an appropriate handler instance, with a suitable formatter
instance, and creating and setting a new logger instance to hold it. In the simple,
common case in which you just want to set these logging parameters once and
for all, after which they persist throughout the run of your program, the simplest
approach is to call the logging.basicConfig function, which lets you set things up
quite simply via named parameters. Only the very first call to logging.basicConfig
has any effect, and only if you call it before any of the logging functions (debug,
info, and so on). Therefore, the most common use is to call logging.basicConfig
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3 Some third-party frameworks, such as pytest, materially improve the usefulness of the assert
statement.

at the very start of your program. For example, a common idiom at the start of a
program is something like:

import logging
logging.basicConfig(
    format='%(asctime)s %(levelname)8s %(message)s',
    filename='/tmp/logfile.txt', filemode='w')

This setting writes logging messages to a file, nicely formatted with a precise
human-readable timestamp, followed by the severity level right-aligned in an eight-
character field, followed by the message proper.

For much, much more detailed information on the logging module and all the
wonders you can perform with it, be sure to consult Python’s rich online documen‐
tation.

The assert Statement
The assert statement allows you to introduce “sanity checks” into a program.
assert is a simple statement with the following syntax:

assert condition[, expression]

When you run Python with the optimize flag (-O, as covered in “Command-Line
Syntax and Options” on page 22), assert is a null operation: the compiler gener‐
ates no code for it. Otherwise, assert evaluates condition. When condition is
satisfied, assert does nothing. When condition is not satisfied, assert instantiates
AssertionError with expression as the argument (or without arguments, if there
is no expression) and raises the resulting instance.3

assert statements can be an effective way to document your program. When you
want to state that a significant, nonobvious condition C is known to hold at a certain
point in a program’s execution (known as an invariant of your program), assert C is
often better than a comment that just states that C holds.

Don’t Overuse assert
Never use assert for other purposes besides sanity-checking
program invariants. A serious but very common mistake is to
use assert about the values of inputs or arguments. Checking
for erroneous arguments or inputs is best done more explic‐
itly, and in particular must not be done using assert, since
it can be turned into a null operation by a Python command-
line flag.
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The advantage of assert is that, when C does not in fact hold, assert immediately
alerts you to the problem by raising AssertionError, if the program is running
without the -O flag. Once the code is thoroughly debugged, run it with -O, turning
assert into a null operation and incurring no overhead (the assert remains in
your source code to document the invariant).

The __debug__ Built-in Variable
When you run Python without the option -O, the __debug__
built-in variable is True. When you run Python with the
option -O, __debug__ is False. Also, in the latter case the
compiler generates no code for any if statement whose sole
guard condition is __debug__.
To exploit this optimization, surround the definitions of
functions that you call only in assert statements with if
__debug__:. This technique makes compiled code smaller and
faster when Python is run with -O, and enhances program
clarity by showing that those functions exist only to perform
sanity checks.
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7
Modules and Packages

A typical Python program is made up of several source files. Each source file is
a module, grouping code and data for reuse. Modules are normally independent
of each other, so that other programs can reuse the specific modules they need.
Sometimes, to manage complexity, developers group together related modules into
a package—a hierarchical, tree-like structure of related modules and subpackages.

A module explicitly establishes dependencies upon other modules by using import
or from statements. In some programming languages, global variables provide a
hidden conduit for coupling between modules. In Python, global variables are not
global to all modules, but rather are attributes of a single module object. Thus,
Python modules always communicate in explicit and maintainable ways, clarifying
the couplings between them by making them explicit.

Python also supports extension modules—modules coded in other languages such
as C, C++, Java, C#, or Rust. For the Python code importing a module, it does not
matter whether the module is pure Python or an extension. You can always start by
coding a module in Python. Should you need more speed later, you can refactor and
recode some parts of your module in lower-level languages, without changing the
client code that uses the module. Chapter 25 (available online) shows how to write
extensions in C and Cython.

This chapter discusses module creation and loading. It also covers grouping mod‐
ules into packages, using setuptools to install packages, and how to prepare pack‐
ages for distribution; this latter subject is more thoroughly covered in Chapter 24
(also available online). We close this chapter with a discussion of how best to
manage your Python environment(s) .
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1 One of our tech reviewers reports that .pyw files on Windows are an exception to this.

Module Objects
In Python, a module is an object with arbitrarily named attributes that you can bind
and reference. Modules in Python are handled like other objects. Thus, you can pass
a module as an argument in a call to a function. Similarly, a function can return a
module as the result of a call. A module, just like any other object, can be bound to a
variable, an item in a container, or an attribute of an object. Modules can be keys or
values in a dictionary, and can be members of a set. For example, the sys.modules
dictionary, discussed in “Module Loading” on page 227, holds module objects as
its values. The fact that modules can be treated like other values in Python is often
expressed by saying that modules are first-class objects.

The import Statement
The Python code for a module named aname usually lives in a file named aname.py,
as covered in “Searching the Filesystem for a Module” on page 228. You can use
any Python source file1 as a module by executing an import statement in another
Python source file. import has the following syntax:

import modname [as varname][,...]

After the import keyword come one or more module specifiers separated by com‐
mas. In the simplest, most common case, a module specifier is just modname, an
identifier—a variable that Python binds to the module object when the import
statement finishes. In this case, Python looks for the module of the same name to
satisfy the import request. For example, this statement:

import mymodule

looks for the module named mymodule and binds the variable named mymodule in
the current scope to the module object. modname can also be a sequence of identifiers
separated by dots (.) to name a module contained in a package, as covered in
“Packages” on page 233.

When as varname is part of a module specifier, Python looks for a module named
modname and binds the module object to the variable varname. For example, this:

import mymodule as alias

looks for the module named mymodule and binds the module object to the variable
alias in the current scope. varname must always be a simple identifier.

The module body
The body of a module is the sequence of statements in the module’s source file.
There is no special syntax required to indicate that a source file is a module; as
mentioned previously, you can use any valid Python source file as a module. A
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module’s body executes immediately the first time a given run of a program imports
it. When the body starts executing, the module object has already been created, with
an entry in sys.modules already bound to the module object. The module’s (global)
namespace is gradually populated as the module’s body executes.

Attributes of module objects
An import statement creates a new namespace containing all the attributes of the
module. To access an attribute in this namespace, use the name or alias of the
module as a prefix:

import mymodule
a = mymodule.f()

or:

import mymodule as alias
a = alias.f()

This reduces the time it takes to import the module and ensures that only those
applications that use that module incur the overhead of creating it.

Normally, it is the statements in the module body that bind the attributes of a
module object. When a statement in the module body binds a (global) variable,
what gets bound is an attribute of the module object.

A Module Body Exists to Bind the Module’s Attributes
The normal purpose of a module body is to create the mod‐
ule’s attributes: def statements create and bind functions,
class statements create and bind classes, and assignment
statements can bind attributes of any type. For clarity and
cleanliness in your code, be wary about doing anything else in
the top logical level of the module’s body except binding the
module’s attributes.

A __getattr__ function defined at module scope can dynamically create new mod‐
ule attributes. One possible reason for doing so would be to lazily define attributes
that are time-consuming to create; defining them in a module-level __getattr__
function defers the creation of the attributes until they are actually referenced, if
ever. For instance, this code could be added to mymodule.py to defer the creation
of a list containing the first million prime numbers, which can take some time to
compute:

def __getattr__(name):
    if name == 'first_million_primes':
        def generate_n_primes(n):
            # ... code to generate 'n' prime numbers ...

        import sys
        # Look up __name__ in sys.modules to get current module
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        this_module = sys.modules[__name__]
        this_module.first_million_primes = generate_n_primes(1_000_000)
        return this_module.first_million_primes

    raise AttributeError(f'module {__name__!r}
                  f' has no attribute {name!r}')

Using a module-level __getattr__ function has only a small impact on the
time to import mymodule.py, and only those applications that actually use
mymodule.first_million_primes will incur the overhead of creating it.

You can also bind module attributes in code outside the body (i.e., in other mod‐
ules); just assign a value to the attribute reference syntax M.name (where M is any
expression whose value is the module, and the identifier name is the attribute name).
For clarity, however, it’s best to bind module attributes only in the module’s own
body.

The import statement binds some module attributes as soon as it creates the module
object, before the module’s body executes. The __dict__ attribute is the dict object
that the module uses as the namespace for its attributes. Unlike other attributes of
the module, __dict__ is not available to code in the module as a global variable.
All other attributes in the module are items in __dict__ and are available to code
in the module as global variables. The __name__ attribute is the module’s name, and
__file__ is the filename from which the module was loaded; other dunder-named
attributes hold other module metadata. (See also “Special Attributes of Package
Objects” on page 234 for details on the attribute __path__, in packages only.)

For any module object M, any object x, and any identifier string S (except __dict__),
binding M.S = x is equivalent to binding M.__dict__['S'] = x. An attribute
reference such as M.S is also substantially equivalent to M.__dict__['S']. The only
difference is that, when S is not a key in M.__dict__, accessing M.__dict__['S']
raises KeyError, while accessing M.S raises AttributeError. Module attributes
are also available to all code in the module’s body as global variables. In other
words, within the module body, S used as a global variable is equivalent to M.S
(i.e., M.__dict__['S']) for both binding and reference (when S is not a key in
M.__dict__, however, referring to S as a global variable raises NameError).

Python built-ins
Python supplies many built-in objects (covered in Chapter 8). All built-in objects
are attributes of a preloaded module named builtins. When Python loads a mod‐
ule, the module automatically gets an extra attribute named __builtins__, which
refers either to the module builtins or to its dictionary. Python may choose either,
so don’t rely on __builtins__. If you need to access the module builtins directly
(a rare need), use an import builtins statement. When you access a variable found
neither in the local namespace nor in the global namespace of the current module,
Python looks for the identifier in the current module’s __builtins__ before raising
NameError.
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The lookup is the only mechanism that Python uses to let your code access built-
ins. Your own code can use the access mechanism directly (do so in moderation,
however, or your program’s clarity and simplicity will suffer). The built-ins’ names
are not reserved, nor are they hardwired in Python itself—you can add your own
built-ins or substitute your functions for the normal built-in ones, in which case all
modules see the added or replaced ones. Since Python accesses built-ins only when
it cannot resolve a name in the local or module namespace, it is usually sufficient to
define a replacement in one of those namespaces. The following toy example shows
how you can wrap a built-in function with your own function, allowing abs to take
a string argument (and return a rather arbitrary mangling of the string):

# abs takes a numeric argument; let's make it accept a string as well
import builtins
_abs = builtins.abs                       # save original built-in
def abs(str_or_num):
    if isinstance(str_or_num, str):       # if arg is a string
        return ''.join(sorted(set(str_or_num)))  # get this instead
    return _abs(str_or_num)               # call real built-in
builtins.abs = abs                        # override built-in w/wrapper

Module documentation strings
If the first statement in the module body is a string literal, Python binds that
string as the module’s documentation string attribute, named __doc__. For more
information on documentation strings, see “Docstrings” on page 99.

Module-private variables
No variable of a module is truly private. However, by convention, every identifier
starting with a single underscore (_), such as _secret, is meant to be private. In
other words, the leading underscore communicates to client-code programmers
that they should not access the identifier directly.

Development environments and other tools rely on the leading underscore naming
convention to discern which attributes of a module are public (i.e., part of the
module’s interface) and which are private (i.e., to be used only within the module).

Respect the “Leading Underscore Means Private” Convention
It’s important to respect the convention that a leading under‐
score means private, particularly when you write client
code that uses modules written by others. Avoid using any
attributes in such modules whose names start with _. Future
releases of the modules will strive to maintain their public
interface, but are quite likely to change private implemen‐
tation details: private attributes are meant exactly for such
details.
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The from Statement
Python’s from statement lets you import specific attributes from a module into the
current namespace. from has two syntax variants:

from modname import attrname [as varname][,...]
from modname import *

A from statement specifies a module name, followed by one or more attribute speci‐
fiers separated by commas. In the simplest and most common case, an attribute
specifier is just an identifier attrname, which is a variable that Python binds to the
attribute of the same name in the module named modname. For example:

from mymodule import f

modname can also be a sequence of identifiers separated by dots (.) to name a
module within a package, as covered in “Packages” on page 233.

When as varname is part of an attribute specifier, Python gets the value of the
attribute attrname from the module and binds it to the variable varname. For
example:

from mymodule import f as foo

attrname and varname are always simple identifiers.

You may optionally enclose in parentheses all the attribute specifiers that follow
the keyword import in a from statement. This can be useful when you have many
attribute specifiers, in order to split the single logical line of the from statement into
multiple logical lines more elegantly than by using backslashes (\):

from some_module_with_a_long_name import (
    another_name, and_another as x, one_more, and_yet_another as y)

from...import *
Code that is directly inside a module body (not in the body of a function or class)
may use an asterisk (*) in a from statement:

from mymodule import *

The * requests that “all” attributes of module modname be bound as global variables
in the importing module. When module modname has an attribute named __all__,
the attribute’s value is the list of the attribute names that this type of from statement
binds. Otherwise, this type of from statement binds all attributes of modname except
those beginning with underscores.

226 | Chapter 7: Modules and Packages



Beware Using “from M import *” in Your Code
Since from M import * may bind an arbitrary set of global
variables, it can have unforeseen, undesired side effects, such
as hiding built-ins and rebinding variables you still need. Use
the * form of from very sparingly, if at all, and only to import
modules that are explicitly documented as supporting such
usage. Your code is most likely better off never using this form,
which is meant mostly as a convenience for occasional use in
interactive Python sessions.

from versus import
The import statement is often a better choice than the from statement. When you
always access module M with the statement import M, and always access M’s attributes
with the explicit syntax M.A, your code is slightly less concise but far clearer and
more readable. One good use of from is to import specific modules from a package,
as we discuss in “Packages” on page 233. In most other cases, import is better style
than from.

Handling import failures
If you are importing a module that is not part of standard Python and wish to
handle import failures, you can do so by catching the ImportError exception. For
instance, if your code does optional output formatting using the third-party rich
module, but falls back to regular output if that module has not been installed, you
would import the module using:

try:
    import rich
except ImportError:
    rich = None

Then, in the output portion of your program, you would write:

if rich is not None:
... output using rich module features ...

else:
... output using normal print() statements ...

Module Loading
Module-loading operations rely on attributes of the built-in sys module (covered
in “The sys Module” on page 259) and are implemented in the built-in function
__import__. Your code could call __import__ directly, but this is strongly discour‐
aged in modern Python; rather, import importlib and call importlib.import_mod
ule with the module name string as the argument. import_module returns the
module object or, should the import fail, raises ImportError. However, it’s best to
have a clear understanding of the semantics of __import__, because import_module
and import statements both depend on it.
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To import a module named M, __import__ first checks the dictionary sys.modules,
using the string M as the key. When the key M is in the dictionary, __import__
returns the corresponding value as the requested module object. Otherwise,
__import__ binds sys.modules[M] to a new empty module object with a __name__
of M, then looks for the right way to initialize (load) the module, as covered in the
upcoming section on searching the filesystem for a module.

Thanks to this mechanism, the relatively slow loading operation takes place only
the first time a module is imported in a given run of the program. When a module
is imported again, the module is not reloaded, since __import__ rapidly finds and
returns the module’s entry in sys.modules. Thus, all imports of a given module
after the first one are very fast: they’re just dictionary lookups. (To force a reload, see
“Reloading Modules” on page 230.)

Built-in Modules
When a module is loaded, __import__ first checks whether the module is a built-in.
The tuple sys.builtin_module_names names all built-in modules, but rebinding
that tuple does not affect module loading. When it loads a built-in module, as when
it loads any other extension, Python calls the module’s initialization function. The
search for built-in modules also looks for modules in platform-specific locations,
such as the Registry in Windows.

Searching the Filesystem for a Module
If module M is not a built-in, __import__ looks for M’s code as a file on the filesystem.
__import__ looks at the items of the list sys.path, which are strings, in order. Each
item is the path of a directory, or the path of an archive file in the popular ZIP
format. sys.path is initialized at program startup, using the environment variable
PYTHONPATH (covered in “Environment Variables” on page 22), if present. The first
item in sys.path is always the directory from which the main program is loaded.
An empty string in sys.path indicates the current directory.

Your code can mutate or rebind sys.path, and such changes affect which directo‐
ries and ZIP archives __import__ searches to load modules. Changing sys.path
does not affect modules that are already loaded (and thus already recorded in
sys.modules).

If there is a text file with the extension .pth in the PYTHONHOME directory at startup,
Python adds the file’s contents to sys.path, one item per line. .pth files can contain
blank lines and comment lines starting with the character #; Python ignores any
such lines. .pth files can also contain import statements (which Python executes
before your program starts to execute), but no other kinds of statements.

When looking for the file for module M in each directory and ZIP archive along
sys.path, Python considers the following extensions in this order:
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1. .pyd and .dll (Windows) or .so (most Unix-like platforms), which indicate1.
Python extension modules. (Some Unix dialects use different extensions;
e.g., .sl on HP-UX.) On most platforms, extensions cannot be loaded from
a ZIP archive—only source or bytecode-compiled Python modules can.

2. .py, which indicates Python source modules.2.
3. .pyc, which indicates bytecode-compiled Python modules.3.
4. When it finds a .py file, Python also looks for a directory called __pycache__.4.

If it finds such a directory, Python looks in that directory for the exten‐
sion .<tag>.pyc, where <tag> is a string specific to the version of Python that is
looking for the module.

One last path in which Python looks for the file for module M is M/__init__.py: a file
named __init__.py in a directory named M, as covered in “Packages” on page 233.

Upon finding the source file M.py, Python compiles it to M.<tag>.pyc, unless the
bytecode file is already present, is newer than M.py, and was compiled by the same
version of Python. If M.py is compiled from a writable directory, Python creates a
__pycache__ subdirectory if necessary and saves the bytecode file to the filesystem
in that subdirectory so that future runs won’t needlessly recompile it. When the
bytecode file is newer than the source file (based on an internal timestamp in the
bytecode file, not on trusting the date as recorded in the filesystem), Python does
not recompile the module.

Once Python has the bytecode, whether built anew by compilation or read from the
filesystem, Python executes the module body to initialize the module object. If the
module is an extension, Python calls the module’s initialization function.

Be Careful About Naming Your Project’s .py Files
A common problem for beginners occurs when programmers
writing their first few projects accidentally name one of
their .py files with the same name as an imported package,
or a module in the standard library (stdlib). For example, an
easy mistake when learning the turtle module is to name
your program turtle.py. When Python then tries to import the
turtle module from the stdlib, it will load the local module
instead, and usually raise some unexpected AttributeErrors
shortly thereafter (since the local module does not include all
the classes, functions, and variables defined in the stdlib mod‐
ule). Do not name your project .py files the same as imported
or stdlib modules!
You can check whether a module name already exists using
a command of the form python -m testname. If the message
'no module testname' is displayed, then you should be safe to
name your module testname.py.
In general, as you become familiar with the modules in the
stdlib and common package names, you will come to know
what names to avoid.
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The Main Program
Execution of a Python application starts with a top-level script (known as the main
program), as explained in “The python Program” on page 21. The main program
executes like any other module being loaded, except that Python keeps the bytecode
in memory, not saving it to disk. The module name for the main program is
'__main__', both as the __name__ variable (module attribute) and as the key in
sys.modules.

Don’t Import the .py File You’re Using as the Main Program
You should not import the same .py file that is the main pro‐
gram. If you do, Python loads the module again, and the body
executes again in a separate module object with a different
__name__.

Code in a Python module can test if the module is being used as the main program
by checking if the global variable __name__ has the value '__main__'. The idiom:

if __name__ == '__main__':

is often used to guard some code so that it executes only when the module runs as
the main program. If a module is meant only to be imported, it should normally
execute unit tests when run as the main program, as covered in “Unit Testing and
System Testing” on page 514.

Reloading Modules
Python loads a module only the first time you import the module during a program
run. When you develop interactively, you need to reload your modules after editing
them (some development environments provide automatic reloading).

To reload a module, pass the module object (not the module name) as the
only argument to the function reload from the importlib module. impor
tlib.reload(M) ensures the reloaded version of M is used by client code that
relies on import M and accesses attributes with the syntax M.A. However, impor
tlib.reload(M) has no effect on other existing references bound to previous values
of M’s attributes (e.g., with a from statement). In other words, already-bound vari‐
ables remain bound as they were, unaffected by reload. reload’s inability to rebind
such variables is a further incentive to use import rather than from.

reload is not recursive: when you reload module M, this does not imply that other
modules imported by M get reloaded in turn. You must reload, by explicit calls to
reload, every module you have modified. Be sure to take into account any module
reference dependencies, so that reloads are done in the proper order.
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Circular Imports
Python lets you specify circular imports. For example, you can write a module a.py
that contains import b, while module b.py contains import a.

If you decide to use a circular import for some reason, you need to understand how
circular imports work in order to avoid errors in your code.

Avoid Circular Imports
In practice, you are nearly always better off avoiding circular
imports, since circular dependencies are fragile and hard to
manage.

Say that the main script executes import a. As discussed earlier, this import state‐
ment creates a new empty module object as sys.modules['a'], then the body of
module a starts executing. When a executes import b, this creates a new empty
module object as sys.modules['b'], and then the body of module b starts execut‐
ing. a’s module body cannot proceed until b’s module body finishes.

Now, when b executes import a, the import statement finds sys.modules['a']
already bound, and therefore binds global variable a in module b to the module
object for module a. Since the execution of a’s module body is currently blocked,
module a is usually only partly populated at this time. Should the code in b’s module
body try to access some attribute of module a that is not yet bound, an error results.

If you keep a circular import, you must carefully manage the order in which each
module binds its own globals, imports other modules, and accesses globals of
other modules. You get greater control over the sequence in which things happen
by grouping your statements into functions, and calling those functions in a con‐
trolled order, rather than just relying on sequential execution of top-level statements
in module bodies. Removing circular dependencies (for example, by moving an
import away from module scope and into a referencing function) is easier than
ensuring bombproof ordering to deal with circular dependencies.

sys.modules Entries
__import__ never binds anything other than a module object
as a value in sys.modules. However, if __import__ finds
an entry already in sys.modules, it returns that value, what‐
ever type it may be. import and from statements rely on
__import__, so they too can use objects that are not modules.

Custom Importers
Another advanced, rarely needed functionality that Python offers is the ability to
change the semantics of some or all import and from statements.
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Rebinding __import__
You can rebind the __import__ attribute of the builtin module to your own
custom importer function—for example, one using the generic built-in-wrapping
technique shown in “Python built-ins” on page 224. Such a rebinding affects all
import and from statements that execute after the rebinding and thus can have an
undesired global impact. A custom importer built by rebinding __import__ must
implement the same interface and semantics as the built-in __import__, and, in
particular, it is responsible for supporting the correct use of sys.modules.

Avoid Rebinding the Built-in __import__
While rebinding __import__ may initially look like an attrac‐
tive approach, in most cases where custom importers are nec‐
essary, you’re better off implementing them via import hooks
(discussed next).

Import hooks
Python offers rich support for selectively changing the details of imports’ behavior.
Custom importers are an advanced and rarely called for technique, yet some appli‐
cations may need them for purposes such as importing code from archives other
than ZIP files, databases, network servers, and so on.

The most suitable approach for such highly advanced needs is to record importer
factory callables as items in the meta_path and/or path_hooks attributes of the
module sys, as detailed in PEP 451. This is how Python hooks up the standard
library module zipimport to allow seamless importing of modules from ZIP files, as
previously mentioned. A full study of the details of PEP 451 is indispensable for any
substantial use of sys.path_hooks and friends, but here’s a toy-level example to help
understand the possibilities, should you ever need them.

Suppose that, while developing the first outline of some program, we want to be
able to use import statements for modules that we haven’t written yet, getting just
messages (and empty modules) as a consequence. We can obtain such functionality
(leaving aside the complexities connected with packages, and dealing with simple
modules only) by coding a custom importer module as follows:

import sys, types
class ImporterAndLoader:
     """importer and loader can be a single class"""
     fake_path = '!dummy!'
     def __init__(self, path):
         # only handle our own fake-path marker
         if path != self.fake_path:
             raise ImportError
     def find_module(self, fullname):
         # don't even try to handle any qualified module name
         if '.' in fullname:
             return None
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         return self
     def create_module(self, spec):
         # returning None will have Python fall back and
         # create the module "the default way"
         return None
     def exec_module(self, mod):
         # populate the already initialized module
         # just print a message in this toy example
         print(f'NOTE: module {mod!r} not yet written')
sys.path_hooks.append(ImporterAndLoader)
sys.path.append(ImporterAndLoader.fake_path)
if __name__ == '__main__':      # self-test when run as main script
    import missing_module       # importing a simple *missing* module
    print(missing_module)       # ...should succeed
    print(sys.modules.get('missing_module'))  # ...should also succeed

We just wrote trivial versions of create_module (which in this case just returns
None, asking the system to create the module object in the “default way”) and
exec_module (which receives the module object already initialized with dunder
attributes, and whose task would normally be to populate it appropriately).

We could, alternatively, have used the powerful new module spec concept, as detailed
in PEP 451. However, that requires the standard library module importlib; for this
toy example, we don’t need all that extra power. Therefore, we chose instead to
implement the method find_module, which, although now deprecated, still works
fine for backward compatibility.

Packages
As mentioned at the beginning of this chapter, a package is a module containing
other modules. Some or all of the modules in a package may be subpackages,
resulting in a hierarchical tree-like structure. A package named P typically resides
in a subdirectory, also called P, of some directory in sys.path. Packages can also
live in ZIP files; in this section we explain the case in which the package lives on
the filesystem, but the case in which a package is in a ZIP file is similar, relying on
the hierarchical filesystem-like structure within the ZIP file.

The module body of P is in the file P/__init__.py. This file must exist (except in the
case of namespace packages, described in PEP 420), even if it’s empty (representing
an empty module body), in order to tell Python that directory P is indeed a package.
Python loads the module body of a package when you first import the package (or
any of the package’s modules), just like with any other Python module. The other .py
files in the directory P are the modules of package P. Subdirectories of P containing
__init__.py files are subpackages of P. Nesting can proceed to any depth.

You can import a module named M in package P as P.M. More dots let you navigate
a hierarchical package structure. (A package’s module body always loads before any
module in the package.) If you use the syntax import P.M, the variable P is bound
to the module object of package P, and the attribute M of object P is bound to the
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module P.M. If you use the syntax import P.M as V, the variable V is bound directly to
the module P.M.

Using from P import M to import a specific module M from package P is a perfectly
acceptable and indeed highly recommended practice: the from statement is specifi‐
cally OK in this case. from P import M as V is also just fine, and exactly equivalent to
import P.M as V. You can also use relative paths: that is, module M in package P can
import its “sibling” module X (also in package P) with from . import X.

Sharing Objects Among Modules in a Package
The simplest, cleanest way to share objects (e.g., functions
or constants) among modules in a package P is to group the
shared objects in a module conventionally named common.py.
That way, you can use from . import common in every module
in the package that needs to access some of the common
objects, and then refer to the objects as common.f, common.K,
and so on.

Special Attributes of Package Objects
A package P’s __file__ attribute is the string that is the path of P’s module body—
that is, the path of the file P/__init__.py. P’s __package__ attribute is the name of P’s
package.

A package P’s module body—that is, the Python source that is in the file P/
__init__.py—can optionally set a global variable named __all__ (just like any other
module can) to control what happens if some other Python code executes the
statement from P import *. In particular, if __all__ is not set, from P import * does
not import P’s modules, but only names that are set in P’s module body and lack a
leading _. In any case, this is not recommended usage.

A package P’s __path__ attribute is the list of strings that are the paths to the
directories from which P’s modules and subpackages are loaded. Initially, Python
sets __path__ to a list with a single element: the path of the directory containing
the file __init__.py that is the module body of the package. Your code can modify
this list to affect future searches for modules and subpackages of this package. This
advanced technique is rarely necessary, but can be useful when you want to place
a package’s modules in multiple directories (a namespace package is, however, the
usual way to accomplish this goal).

Absolute Versus Relative Imports
As mentioned previously, an import statement normally expects to find its target
somewhere on sys.path—a behavior known as an absolute import. Alternatively,
you can explicitly use a relative import, meaning an import of an object from within
the current package. Using relative imports can make it easier for you to refactor
or restructure the subpackages within your package. Relative imports use module
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or package names beginning with one or more dots, and are only available within
the from statement. from . import X looks for the module or object named X in
the current package; from .X import y looks in module or subpackage X within the
current package for the module or object named y. If your package has subpackages,
their code can access higher-up objects in the package by using multiple dots at the
start of the module or subpackage name you place between from and import. Each
additional dot ascends the directory hierarchy one level. Getting too fancy with this
feature can easily damage your code’s clarity, so use it with care, and only when
necessary.

Distribution Utilities (distutils) and setuptools
Python modules, extensions, and applications can be packaged and distributed in
several forms:

Compressed archive files
Generally .zip, .tar.gz (aka .tgz), .tar.bz2, or .tar.xz files—all these forms are
portable, and many other forms of compressed archives of trees of files and
directories exist

Self-unpacking or self-installing executables
Normally .exe for Windows

Self-contained, ready-to-run executables that require no installation
For example, .exe for Windows, ZIP archives with a short script prefix on
Unix, .app for the Mac, and so on

Platform-specific installers
For example, .rpm and .srpm on many Linux distributions, .deb on Debian
GNU/Linux and Ubuntu, .pkg on macOS

Python wheels
Popular third-party extensions, covered in the following note

Python Wheels
A Python wheel is an archive file including structured
metadata as well as Python code. Wheels offer an excel‐
lent way to package and distribute your Python pack‐
ages, and setuptools (with the wheel extension, easily
installed with pip install wheel) works seamlessly
with them. Read all about them at PythonWheels.com
and in Chapter 24 (available online).

When you distribute a package as a self-installing executable or platform-specific
installer, a user simply runs the installer. How to run such a program depends on
the platform, but it doesn’t matter which language the program was written in.
We cover building self-contained, runnable executables for various platforms in
Chapter 24.
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2 distutils is scheduled for deletion in Python 3.12.

When you distribute a package as an archive file or as an executable that unpacks
but does not install itself, it does matter that the package was coded in Python. In
this case, the user must first unpack the archive file into some appropriate directory,
say C:\Temp\MyPack on a Windows machine or ~/MyPack on a Unix-like machine.
Among the extracted files there should be a script, conventionally named setup.py,
that uses the Python facility known as the distribution utilities (the now deprecated,
but still functioning, standard library package distutils2) or, better, the more pop‐
ular, modern, and powerful third-party package setuptools. The distributed package
is then almost as easy to install as a self-installing executable; the user simply opens
a command prompt window, changes to the directory into which the archive is
unpacked, then runs, for example:

C:\Temp\MyPack> python setup.py install

(Another, often preferable, option is to use pip; we’ll describe that momentarily.)
The setup.py script run with this install command installs the package as a
part of the user’s Python installation, according to the options specified by the
package’s author in the setup script. Of course, the user needs appropriate permis‐
sions to write into the directories of the Python installation, so permission-raising
commands such as sudo may also be needed; or, better yet, you can install into a
virtual environment, as described in the next section. distutils and setuptools,
by default, print some information when the user runs setup.py. Including the
option --quiet right before the install command hides most details (the user
still sees error messages, if any). The following command gives detailed help on
distutils or setuptools, depending on which toolset the package author used in
their setup.py:

C:\Temp\MyPack> python setup.py --help

An alternative to this process, and the preferred way to install packages nowadays, is
to use the excellent installer pip that comes with Python. pip—a recursive acronym
for “pip installs packages”—is copiously documented online, yet very simple to use
in most cases. pip install package finds the online version of package (usually in
the huge PyPI repository, hosting more than 400,000 packages at the time of this
writing), downloads it, and installs it for you (in a virtual environment, if one is
active; see the next section for details). This books’ authors have been using that
simple, powerful approach for well over 90% of their installs for quite a while now.

Even if you have downloaded the package locally (say to /tmp/mypack), for whatever
reason (maybe it’s not on PyPI, or you’re trying out an experimental version that
is not yet there), pip can still install it for you: just run pip install --no-index
--find-links=/tmp/mypack and pip does the rest.
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Python Environments
A typical Python programmer works on several projects concurrently, each with its
own list of dependencies (typically, third-party libraries and data files). When the
dependencies for all projects are installed into the same Python interpreter, it is very
difficult to determine which projects use which dependencies, and impossible to
handle projects with conflicting versions of certain dependencies.

Early Python interpreters were built on the assumption that each computer system
would have “a Python interpreter” installed on it, to be used to run any Python
program on that system. Operating system distributions soon started to include
Python in their base installations, but, because Python has always been under active
development, users often complained that they would like to use a more up-to-date
version of the language than the one their operating system provided.

Techniques arose to let multiple versions of the language be installed on a system,
but installation of third-party software remained nonstandard and intrusive. This
problem was eased by the introduction of the site-packages directory as the reposi‐
tory for modules added to a Python installation, but it was still not possible to
maintain multiple projects with conflicting requirements using the same interpreter.

Programmers accustomed to command-line operations are familiar with the con‐
cept of a shell environment. A shell program running in a process has a current
directory, variables that you can set with shell commands (very similar to a Python
namespace), and various other pieces of process-specific state data. Python pro‐
grams have access to the shell environment through os.environ.

Various aspects of the shell environment affect Python’s operation, as mentioned in
“Environment Variables” on page 22. For example, the PATH environment variable
determines which program, exactly, executes in response to python and other com‐
mands. You can think of those aspects of your shell environment that affect Python’s
operation as your Python environment. By modifying it you can determine which
Python interpreter runs in response to the python command, which packages and
modules are available under certain names, and so on.

Leave the System’s Python to the System
We recommend taking control of your Python environment.
In particular, do not build applications on top of a system-
distributed Python. Instead, install another Python distribu‐
tion independently, and adjust your shell environment so that
the python command runs your locally installed Python rather
than the system’s Python.

Enter the Virtual Environment
The introduction of the pip utility created a simple way to install (and, for the first
time, to uninstall) packages and modules in a Python environment. Modifying the
system Python’s site-packages still requires administrative privileges, and hence so
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does pip (although it can optionally install somewhere other than site-packages).
Modules installed in the central site-packages are visible to all programs.

The missing piece is the ability to make controlled changes to the Python envi‐
ronment, to direct the use of a specific interpreter and a specific set of Python
libraries. That functionality is just what virtual environments (virtualenvs) give you.
Creating a virtualenv based on a specific Python interpreter copies or links to
components from that interpreter’s installation. Critically, though, each one has its
own site-packages directory, into which you can install the Python resources of your
choice.

Creating a virtualenv is much simpler than installing Python, and requires far less
system resources (a typical newly created virtualenv takes up less than 20 MB). You
can easily create and activate virtualenvs on demand, and deactivate and destroy
them just as easily. You can activate and deactivate a virtualenv as many times as you
like during its lifetime, and if necessary use pip to update the installed resources.
When you are done with it, removing its directory tree reclaims all storage occupied
by the virtualenv. A virtualenv’s lifetime can span minutes or months.

What Is a Virtual Environment?
A virtualenv is essentially a self-contained subset of your Python environment that
you can switch in or out on demand. For a Python 3.x interpreter it includes,
among other things, a bin directory containing a Python 3.x interpreter, and a lib/
python3.x/site-packages directory containing preinstalled versions of easy-install,
pip, pkg_resources, and setuptools. Maintaining separate copies of these impor‐
tant distribution-related resources lets you update them as necessary rather than
forcing you to rely on the base Python distribution.

A virtualenv has its own copies of (on Windows) or symbolic links to (on
other platforms) Python distribution files. It adjusts the values of sys.prefix
and sys.exec_prefix, from which the interpreter and various installation utilities
determine the locations of some libraries. This means that pip can install dependen‐
cies in isolation from other environments, in the virtualenv’s site-packages directory.
In effect, the virtualenv redefines which interpreter runs when you run the python
command and which libraries are available to it, but leaves most aspects of your
Python environment (such as the PYTHONPATH and PYTHONHOME variables) alone.
Since its changes affect your shell environment, they also affect any subshells in
which you run commands.

With separate virtualenvs you can, for example, test two different versions of the
same library with a project, or test your project with multiple versions of Python.
You can also add dependencies to your Python projects without needing any special
privileges, since you normally create your virtualenvs somewhere you have write
permission.

The modern way to deal with virtualenvs is with the venv module of the standard
library: just run python -m venv envpath.
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Creating and Deleting Virtual Environments
The command python -m venv envpath creates a virtual environment (in the
envpath directory, which it also creates if necessary) based on the Python interpreter
used to run the command. You can give multiple directory arguments to create,
with a single command, several virtual environments (running the same Python
interpreter); you can then install different sets of dependencies in each virtualenv.
venv can take a number of options, as shown in Table 7-1.

Table 7-1. venv options

Option Purpose

--clear Removes any existing directory content before installing the virtual environment

--copies Installs files by copying on the Unix-like platforms where using symbolic links is the
default

--h or --help Prints out a command-line summary and a list of available options

--symlinks Installs files by using symbolic links on platforms where copying is the system default

--system-

site-packages

Adds the standard system site-packages directory to the environment’s search path,
making modules already installed in the base Python available inside the environment

--upgrade Installs the running Python in the virtual environment, replacing whichever version had
originally created the environment

--without-pip Inhibits the usual behavior of calling ensurepip to bootstrap the pip installer utility
into the environment

Know Which Python You’re Running
When you enter the command python at the command line,
your shell has rules (which differ among Windows, Linux, and
macOS) that determine which program you run. If you are
clear on those rules, you always know which interpreter you
are using.

Using python -m venv directory_path to create a virtual
environment guarantees that it’s based on the same Python
version as the interpreter used to create it. Similarly, using
python -m pip package_name will install the package for the
interpreter associated with the python command. Activating a
virtual environment changes the association with the python
command: this is the simplest way to ensure packages are
installed into the virtual environment.
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3 When running these commands on reduced-footprint Linux distributions, you may need to
separately install venv or other supporting packages first.

The following Unix terminal session shows the creation of a virtualenv and the
structure of the created directory tree. The listing of the bin subdirectory shows that
this particular user, by default, uses an interpreter installed in /usr/local/bin.3

$ python3 -m venv /tmp/tempenv
$ tree -dL 4 /tmp/tempenv
/tmp/tempenv
|--- bin
|--- include
|___ lib
     |___ python3.5
          |___ site-packages
               |--- __pycache__
               |--- pip
               |--- pip-8.1.1.dist-info
               |--- pkg_resources
               |--- setuptools
               |___ setuptools-20.10.1.dist-info

11 directories
$ ls -l /tmp/tempenv/bin/
total 80
-rw-r--r-- 1 sh wheel 2134 Oct 24 15:26 activate
-rw-r--r-- 1 sh wheel 1250 Oct 24 15:26 activate.csh
-rw-r--r-- 1 sh wheel 2388 Oct 24 15:26 activate.fish
-rwxr-xr-x 1 sh wheel  249 Oct 24 15:26 easy_install
-rwxr-xr-x 1 sh wheel  249 Oct 24 15:26 easy_install-3.5
-rwxr-xr-x 1 sh wheel  221 Oct 24 15:26 pip
-rwxr-xr-x 1 sh wheel  221 Oct 24 15:26 pip3
-rwxr-xr-x 1 sh wheel  221 Oct 24 15:26 pip3.5
lrwxr-xr-x 1 sh wheel    7 Oct 24 15:26 python->python3
lrwxr-xr-x 1 sh wheel   22 Oct 24 15:26 python3->/usr/local/bin/python3

Deleting a virtualenv is as simple as removing the directory in which it resides (and
all subdirectories and files in the tree: rm -rf envpath in Unix-like systems). Ease of
removal is a helpful aspect of using virtualenvs.

The venv module includes features to help the programmed creation of tailored
environments (e.g., by preinstalling certain modules in the environment or per‐
forming other post-creation steps). It is comprehensively documented online; we do
not cover the API further in this book.
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Working with Virtual Environments
To use a virtualenv, you activate it from your normal shell environment. Only
one virtualenv can be active at a time—activations don’t “stack” like function calls.
Activation tells your Python environment to use the virtualenv’s Python interpreter
and site-packages (along with the interpreter’s full standard library). When you
want to stop using those dependencies, deactivate the virtualenv, and your standard
Python environment is once again available. The virtualenv directory tree continues
to exist until deleted, so you can activate and deactivate it at will.

Activating a virtualenv in Unix-based environments requires using the source shell
command so that the commands in the activation script make changes to the
current shell environment. Simply running the script would mean its commands
were executed in a subshell, and the changes would be lost when the subshell
terminated. For bash, zsh, and similar shells, you activate an environment located at
path envpath with the command:

$ source envpath/bin/activate

or:

$ . envpath/bin/activate

Users of other shells are supported by the scripts activate.csh and activate.fish,
located in the same directory. On Windows systems, use activate.bat (or, if using
Powershell, Activate.ps1):

C:\> envpath/Scripts/activate.bat

Activation does many things. Most importantly, it:

• Adds the virtualenv’s bin directory at the beginning of the shell’s PATH environ‐•
ment variable, so its commands get run in preference to anything of the same
name already on the PATH

• Defines a deactivate command to remove all effects of activation and return•
the Python environment to its former state

• Modifies the shell prompt to include the virtualenv’s name at the start•

• Defines a VIRTUAL_ENV environment variable as the path to the virtualenv’s root•
directory (scripts can use this to introspect the virtualenv)

As a result of these actions, once a virtualenv is activated, the python command
runs the interpreter associated with that virtualenv. The interpreter sees the libraries
(modules and packages) installed in that environment, and pip—now the one
from the virtualenv, since installing the module also installed the command in the
virtualenv’s bin directory—by default installs new packages and modules in the
environment’s site-packages directory.

Those new to virtualenvs should understand that a virtualenv is not tied to any
project directory. It’s perfectly possible to work on several projects, each with its
own source tree, using the same virtualenv. Activate it, then move around your
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filesystem as necessary to accomplish your programming tasks, with the same
libraries available (because the virtualenv determines the Python environment).

When you want to disable the virtualenv and stop using that set of resources, simply
issue the command deactivate. This undoes the changes made on activation,
removing the virtualenv’s bin directory from your PATH, so the python command
once again runs your usual interpreter. As long as you don’t delete it, the virtualenv
remains available for future use: just repeat the command to activate it.

Do Not Use py –3.x in a Virtualenv on Windows
The Windows py launcher provides mixed support for virtua‐
lenvs. It makes it very easy to define a virtualenv using a
specific Python version, using a command like the following:

C:\> py -3.7 -m venv C:\path\to\new_virtualenv

This creates a new virtualenv, running the installed Python
3.7.
Once activated, you can run the Python interpreter in the
virtualenv using either the python command or the bare py
command with no version specified. However, if you specify
the py command using a version option, even if it is the same
version used to construct the virtualenv, you will not run the
virtualenv Python. Instead, you will run the corresponding
system-installed version of Python.

Managing Dependency Requirements
Since virtualenvs were designed to complement installation with pip, it should
come as no surprise that pip is the preferred way to maintain dependencies in
a virtualenv. Because pip is already extensively documented, we mention only
enough here to demonstrate its advantages in virtual environments. Having created
a virtualenv, activated it, and installed dependencies, you can use the pip freeze
command to learn the exact versions of those dependencies:

(tempenv) $ pip freeze
appnope==0.1.0
decorator==4.0.10
ipython==5.1.0
ipython-genutils==0.1.0
pexpect==4.2.1
pickleshare==0.7.4
prompt-toolkit==1.0.8
ptyprocess==0.5.1
Pygments==2.1.3
requests==2.11.1
simplegeneric==0.8.1
six==1.10.0
traitlets==4.3.1
wcwidth==0.1.7
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If you redirect the output of this command to a file called filename, you can
re-create the same set of dependencies in a different virtualenv with the command
pip install -r filename.

When distributing code for use by others, Python developers conventionally include
a requirements.txt file listing the necessary dependencies. pip installs any indicated
dependencies along with the packages you request when you install software from
PyPI. While you’re developing software it’s also convenient to have a requirements
file, as you can use it to add the necessary dependencies to the active virtua‐
lenv (unless they are already installed) with a simple pip install -r require
ments.txt.

To maintain the same set of dependencies in several virtualenvs, use the same
requirements file to add dependencies to each one. This is a convenient way to
develop projects to run on multiple Python versions: create virtualenvs based on
each of your required versions, then install from the same requirements file in each.
While the preceding example uses exactly versioned dependency specifications as
produced by pip freeze, in practice you can specify dependencies and version
requirements in quite complex ways; see the documentation for details.

Other Environment Management Solutions
Python virtual environments are focused on providing an isolated Python inter‐
preter, into which you can install dependencies for one or more Python appli‐
cations. The virtualenv package was the original way to create and manage
virtualenvs. It has extensive facilities, including the ability to create environments
from any available Python interpreter. Now maintained by the Python Packaging
Authority team, a subset of its functionality has been extracted as the standard
library venv module covered earlier, but virtualenv is worth learning about if you
need more control.

The pipenv package is another dependency manager for Python environments. It
maintains virtual environments whose contents are recorded in a file named Pipfile.
Much in the manner of similar JavaScript tools, it provides deterministic environ‐
ments through the use of a Pipfile.lock file, allowing the exact same dependencies to
be deployed as in the original installation.

conda, mentioned in “Anaconda and Miniconda” on page 8, has a rather broader
scope and can provide package, environment, and dependency management for any
language. conda is written in Python, and installs its own Python interpreter in the
base environment. Whereas a standard Python virtualenv normally uses the Python
interpreter with which it was created; in conda, Python itself (when it is included in
the environment) is simply another dependency. This makes it practical to update
the version of Python used in the environment, if necessary. You can also, if you
wish, use pip to install packages in a Python-based conda environment. conda can
dump an environment’s contents as a YAML file, and you can use the file to replicate
the environment elsewhere.
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Because of its additional flexibility, coupled with comprehensive open source sup‐
port led by its originator, Anaconda, Inc. (formerly Continuum), conda is widely
used in academic environments, particularly in data science and engineering, arti‐
ficial intelligence, and financial analytics. It installs software from what it calls
channels. The default channel maintained by Anaconda contains a wide range of
packages, and third parties maintain specialized channels (such as the bioconda
channel for bioinformatics software). There is also a community-based conda-forge
channel, open to anyone who wants to join up and add software. Signing up for an
account on Anaconda.org lets you create your own channel and distribute software
through the conda-forge channel.

Best Practices with Virtualenvs
There is remarkably little advice on how best to manage your work with virtualenvs,
though there are several sound tutorials: any good search engine will give you access
to the most current ones. We can, however, offer a modest amount of advice that we
hope will help you to get the most out of virtual environments.

When you are working with the same dependencies in multiple Python versions,
it is useful to indicate the version in the environment name and use a common
prefix. So, for the project mutex you might maintain environments called mutex_39
and mutex_310 for development under two different versions of Python. When
it’s obvious which Python is involved (remember, you see the environment name
in your shell prompt), there’s less risk of testing with the wrong version. You can
maintain dependencies using common requirements to control resource installation
in both.

Keep the requirements file(s) under source control, not the whole environment.
Given the requirements file it’s easy to re-create a virtualenv, which depends only
on the Python release and the requirements. You distribute your project, and let
your users decide which version(s) of Python to run it on and create the appropriate
virtual environment(s).

Keep your virtualenvs outside your project directories. This avoids the need to
explicitly force source code control systems to ignore them. It really doesn’t matter
where else you store them.

Your Python environment is independent of your projects’ locations in the filesys‐
tem. You can activate a virtual environment and then switch branches and move
around a change-controlled source tree to use it wherever is convenient.

To investigate a new module or package, create and activate a new virtualenv and
then pip install the resources that interest you. You can play with this new
environment to your heart’s content, confident in the knowledge that you won’t be
installing unwanted dependencies into other projects.

You may find that experiments in a virtualenv require installation of resources
that aren’t currently project requirements. Rather than “pollute” your development
environment, fork it: create a new virtualenv from the same requirements plus the
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testing functionality. Later, to make these changes permanent, use change control to
merge your source and requirements changes back in from the forked branch.

If you are so inclined, you can create virtual environments based on debug builds of
Python, giving you access to a wealth of information about the performance of your
Python code (and, of course, of the interpreter itself).

Developing a virtual environment also requires change control, and the ease of
virtualenv creation helps here too. Suppose that you recently released version 4.3
of a module, and you want to test your code with new versions of two of its depen‐
dencies. You could, with sufficient skill, persuade pip to replace the existing copies
of dependencies in your existing virtualenv. It’s much easier, though, to branch
your project using source control tools, update the requirements, and create an
entirely new virtual environment based on the updated requirements. The original
virtualenv remains intact, and you can switch between virtualenvs to investigate
specific aspects of any migration issues that might arise. Once you have adjusted
your code so that all tests pass with the updated dependencies, you can check
in your code and requirement changes and merge into version 4.4 to complete
the update, advising your colleagues that your code is now ready for the updated
versions of the dependencies.

Virtual environments won’t solve all of a Python programmer’s problems: tools can
always be made more sophisticated, or more general. But, by golly, virtualenvs work,
and we should take all the advantage of them that we can.
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8
Core Built-ins and Standard

Library Modules

The term built-in has more than one meaning in Python. In many contexts, built-in
means an object directly accessible to Python code without an import statement.
The section “Python built-ins” on page 224 shows Python’s mechanism to allow
this direct access. Built-in types in Python include numbers, sequences, dictionaries,
sets, functions (all covered in Chapter 3), classes (covered in “Python Classes” on
page 115), standard exception classes (covered in “Exception Objects” on page 205),
and modules (covered in “Module Objects” on page 222). “The io Module” on page
322 covers the file type, and “Internal Types” on page 434 some other built-in
types intrinsic to Python’s internal operation. This chapter provides additional
coverage of built-in core types in the opening section and covers built-in functions
available in the module builtins in “Built-in Functions” on page 251.

Some modules are called “built-in” because they’re in the Python standard library
(though it takes an import statement to use them), as opposed to add-on modules,
also known as Python extensions.

This chapter covers several built-in core modules: namely, the standard library
modules sys, copy, collections, functools, heapq, argparse, and itertools.
You’ll find a discussion of each module x in the respective section “The x Module.”

Chapter 9 covers some string-related built-in core modules (string, codecs, and
unicodedata) with the same section-name convention. Chapter 10 covers re in
“Regular Expressions and the re Module” on page 305.

Built-in Types
Table 8-1 provides a brief overview of Python’s core built-in types. More details
about many of these types, and about operations on their instances, are found
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throughout Chapter 3. In this section, by “any number” we mean, specifically, “any
noncomplex number.” Also, many built-ins accept at least some of their parameters
in a positional-only way; we use the 3.8+  positional-only marker /, covered in
“Positional-only marker” on page 96, to indicate this.

Table 8-1. Python’s core built-in types

bool bool(x=False, /)

Returns False when x evaluates as falsy; returns True when x evaluates as truthy (see
“Boolean Values” on page 51). bool extends int: the built-in names False and True
refer to the only two instances of bool. These instances are also ints equal to 0 and 1,
respectively, but str(True) is 'True' and str(False) is 'False'.

bytearray bytearray(x=b'', /[, codec[, errors]])

Returns a mutable sequence of bytes (ints with values from 0 to 255), supporting
the usual methods of mutable sequences, plus the methods of str. When x is a str,
you must also pass codec and may pass errors; the result is just like calling byte
array(x.encode(codec, errors)). When x is an int, it must be >=0: the
resulting instance has a length of x, and each item is initialized to 0. When x conforms to
the buffer protocol, the read-only buffer of bytes from x initializes the instance. Otherwise,
x must be an iterable yielding ints >=0 and <256; e.g., bytearray([1,2,3,4])
== bytearray(b'\x01\x02\x03\x04').

bytes bytes(x=b'', /[, codec[, errors]])

Returns an immutable sequence of bytes, with the same nonmutating methods and the
same initialization behavior as bytearray.

complex complex(real=0, imag=0)

Converts any number, or a suitable string, to a complex number. imag may be present only
when real is a number, and in that case imag is also a number: the imaginary part of the
resulting complex number. See also “Complex numbers” on page 42.

dict dict(x={}, /)

Returns a new dictionary with the same items as x. (We cover dictionaries in “Dictionaries”
on page 49.) When x is a dict, dict(x) returns a shallow copy of x, like x.copy().
Alternatively, x can be an iterable whose items are pairs (iterables with two items each). In
this case, dict(x) returns a dictionary whose keys are the first items of each pair in x,
and whose values are the corresponding second items. When a key appears more than once
in x, Python uses the value corresponding to the last occurrence of the key. In other words,
when x is any iterable yielding pairs, c = dict(x) is exactly equivalent to:

c = {}
for key, value in x:
    c[key] = value

You can also call dict with named arguments, in addition to, or instead of, positional
argument x. Each named argument becomes an item in the dictionary, with the name as
the key: each such extra item might “overwrite” an item from x.

float float(x=0.0, /)

Converts any number, or a suitable string, to a floating-point number. See “Floating-point
numbers” on page 41.
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frozenset frozenset(seq=(), /)

Returns a new frozen (i.e., immutable) set object with the same items as iterable seq.
When seq is a frozenset, frozenset(seq) returns seq itself, just like seq.copy()
does. See “Set Operations” on page 69.

int int(x=0, /, base=10)

Converts any number, or a suitable string, to an int. When x is a number, int truncates
toward 0, “dropping” any fractional part. base may be present only when x is a string:
then, base is the conversion base, between 2 and 36, with 10 as the default. You can
explicitly pass base as 0: the base is then 2, 8, 10, or 16, depending on the form of string
x, just like for integer literals, as covered in “Integer numbers” on page 41.

list list(seq=(), /)

Returns a new list object with the same items as iterable seq, in the same order. When
seq is a list, list(seq) returns a shallow copy of seq, like seq[:]. See “Lists” on
page 47.

memoryview memoryview(x, /)

Returns an object m “viewing” exactly the same underlying memory as x, which must be an
object supporting the buffer protocol (for example, an instance of bytes, bytearray,
or array.array), with items of m.itemsize bytes each. In the normal case in
which m is “one-dimensional” (we don’t cover the complicated case of “multidimensional”
memoryview instances in this book), len(m) is the number of items. You can index
m (returning int) or slice it (returning an instance of memoryview “viewing” the
appropriate subset of the same underlying memory). m is mutable when x is (but you can’t
change m’s size, so, when you assign to a slice, it must be from an iterable of the same
length as the slice). m is a sequence, thus iterable, and is hashable when x is hashable and
when m.itemsize is one byte.
m supplies several read-only attributes and methods; see the online docs for details. Two
particularly useful methods are m.tobytes (returns m’s data as an instance of bytes)
and m.tolist (returns m’s data as a list of ints).

object object()

Returns a new instance of object, the most fundamental type in Python. Instances of
type object have no functionality: the only use of such instances is as “sentinels”—i.e.,
objects not equal to any distinct object. For instance, when a function takes an optional
argument where None is a legitimate value, you can use a sentinel for the argument’s
default value to indicate that the argument was omitted:

MISSING = object()
def check_for_none(obj=MISSING):
    if obj is MISSING:
        return -1
    return 0 if obj is None else 1

set set(seq=(), /)

Returns a new mutable set object with the same items as iterable seq. When seq is a set,
set(seq) returns a shallow copy of seq, like seq.copy(). See “Sets” on page 48.

Built-in Types | 249

C
o

re B
uilt-ins

and
 M

o
d

ules

https://oreil.ly/HlOmv
https://oreil.ly/SIsvF


1 I.e., according to the Liskov substitution principle, a core notion of object-oriented program‐
ming.

slice slice([start, ]stop[, step], /)

Returns a slice object with the read-only attributes start, stop, and step bound to
the respective argument values, each defaulting to None when missing. For positive
indices, such a slice signifies the same indices as range(start, stop, step).
Slicing syntax, obj[start:stop:step], passes a slice object as the argument to
the __getitem__, __setitem__, or __delitem__ method of object obj. It is up
to obj’s class to interpret the slices that its methods receive. See also “Container slicing” on
page 149.

str str(obj='', /)

Returns a concise, readable string representation of obj. If obj is a string, str returns
obj. See also repr in Table 8-2 and __str__ in Table 4-1.

super super(), super(cls, obj, /)
Returns a superobject of object obj (which must be an instance of class cls or of any
subclass of cls), suitable for calling superclass methods. Instantiate this built-in type only
within a method’s code. The super(cls, obj) syntax is a legacy form from Python 2
that has been retained for compatibility. In new code, you usually call super() without
arguments, within a method, and Python determines the cls and obj by introspection
(as type(self) and self, respectively). See “Cooperative superclass method calling”
on page 132.

tuple tuple(seq=(), /)

Returns a tuple with the same items as iterable seq, in order. When seq is a tuple,
tuple returns seq itself, like seq[:]. See “Tuples” on page 47.

type type(obj, /)

Returns the type object that is the type of obj (i.e., the most-derived, aka leafmost, type
of which obj is an instance). type(x) is the same as x.__class__ for any x. Avoid
checking equality or identity of types (see the following warning for details). This function
is commonly used for debugging; for example, when value x does not behave as expected,
inserting print(type(x), x). It can also be used to dynamically create classes at
runtime, as described in Chapter 4.

Type Equality Checking: Avoid It!
Use isinstance (covered in Table 8-2), not equality comparison of types, to check
whether an instance belongs to a particular class in order to support inheritance
properly.1 Using type(x) to check for equality or identity to some other type
object is known as type equality checking. Type equality checking is inappropriate
in production Python code, as it interferes with polymorphism. Typically, you just
try to use x as if it were of the type you expect, handling any problems with a
try/except statement, as discussed in “Error-Checking Strategies” on page 214;
this is known as duck typing (one of this book’s authors is often credited with an
early use of this colorful phrase).
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When you just have to type-check, usually for debugging purposes, use isinstance
instead. In a broader sense, isinstance(x, atype) is also a form of type checking,
but it is a lesser evil than type(x) is atype. isinstance accepts an x that is an
instance of any subclass of atype, or an object that implements protocol atype, not
just a direct instance of atype itself. In particular, isinstance is fine when you’re
checking for an abstract base class (see “Abstract Base Classes” on page 150) or
protocol (see “Protocols” on page 179); this newer idiom is also sometimes known
as goose typing (again, this phrase is credited to one of this book’s authors).

Built-in Functions
Table 8-2 covers Python functions (and some types that, in practice, are only used
as if they were functions) in the module builtins, in alphabetical order. Built-ins’
names are not keywords. This means you can bind, in local or global scope, an iden‐
tifier that’s a built-in name, although we recommend avoiding it (see the following
warning!). Names bound in local or global scope override names bound in built-in
scope, so local and global names hide built-in ones. You can also rebind names in
built-in scope, as covered in “Python built-ins” on page 224.

Don’t Hide Built-ins
Avoid accidentally hiding built-ins: your code might need
them later. It’s often tempting to use natural names such as
input, list, or filter for your own variables, but don’t do
it: these are names of built-in Python types or functions, and
reusing them for your own purposes makes those built-in
types and functions inaccessible. Unless you get into the habit
of never hiding built-ins’ names with your own, sooner or
later you’ll get mysterious bugs in your code caused by just
such hiding occurring accidentally.

Many built-in functions cannot be called with named arguments, only with posi‐
tional ones. In Table 8-2, we mention cases in which this limitation does not
hold; when it does, we also use the 3.8+  positional-only marker /, covered in
“Positional-only marker” on page 96.

Table 8-2. Python’s core built-in functions

__import__ __import__(module_name[, globals[, locals[, fromlist]]], /)
Deprecated in modern Python; use importlib.import_module, covered in “Module
Loading” on page 227.

abs abs(x, /)

Returns the absolute value of number x. When x is complex, abs returns the square root
of x.imag ** 2 + x.real ** 2 (also known as the magnitude of the complex
number). Otherwise, abs returns -x when x < 0, or x when x >= 0. See also __abs__,
__invert__, __neg__, and __pos__ in Table 4-4.
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all all(seq, /)

seq is an iterable. all returns False when any item of seq is falsy; otherwise, all
returns True. Like the operators and and or, covered in “Short-Circuiting Operators” on
page 58, all stops evaluating and returns a result as soon as it knows the answer; in the
case of all, this means it stops as soon as a falsy item is reached, but proceeds throughout
seq if all of seq’s items are truthy. Here is a typical toy example of the use of all:

if all(x>0 for x in the_numbers):
    print('all of the numbers are positive')
else:
    print('some of the numbers are not positive')

When seq is empty, all returns True.

any any(seq, /)

seq is an iterable. any returns True if any item of seq is truthy; otherwise, any returns
False. Like the operators and and or, covered in “Short-Circuiting Operators” on page 58,
any stops evaluating and returns a result as soon as it knows the answer; in the case of any,
this means it stops as soon as a truthy item is reached, but proceeds throughout seq if all of
seq’s items are falsy. Here is a typical toy example of the use of any:

if any(x<0 for x in the_numbers):
    print('some of the numbers are negative')
else:
    print('none of the numbers are negative')

When seq is empty, any returns False.

ascii ascii(x, /)

Like repr, but escapes non-ASCII characters in the string it returns; the result is usually
similar to that of repr.

bin bin(x, /)

Returns a binary string representation of integer x. E.g., bin(23)=='0b10111‘.

breakpoint breakpoint()

Invokes the pdb Python debugger. Set sys.breakpointhook to a callable function if
you want breakpoint to invoke an alternate debugger.

callable callable(obj, /)

Returns True when obj can be called; otherwise, returns False. An object can be called if
it is a function, method, class, or type, or an instance of a class with a __call__ method.
See also __call__ in Table 4-1.

chr chr(code, /)

Returns a string of length 1, a single character corresponding to the integer code in Unicode.
See also ord later in this table.
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compile compile(source, filename, mode)
Compiles a string and returns a code object usable by exec or eval. compile raises
SyntaxError when source is not syntactically valid Python. When source is a
multiline compound statement, the last character must be '\n'. mode must be 'eval'
when source is an expression and the result is meant for eval; otherwise, mode must be
'exec' (for a single or multiple-statement string) or 'single' (for a string containing
a single statement) when the string is meant for exec. filename must be a string, used
only in error messages (if an error occurs). See also eval later in this table, and “compile
and Code Objects” on page 432. (compile also takes the optional arguments flags,
dont_inherit, optimize, and 3.11+  _feature_version, though these are
rarely used; see the online documentation for more information on these arguments.)

delattr delattr(obj, name, /)
Removes the attribute name from obj. delattr(obj, 'ident') is like del
obj.ident. If obj has an attribute named name just because its class has it (as is
normally the case, for example, for methods of obj), you cannot delete that attribute from
obj itself. You may be able to delete that attribute from the class, if the metaclass lets you. If
you can delete the class attribute, obj ceases to have the attribute, and so does every other
instance of that class.

dir dir([obj, ]/)

Called without arguments, dir returns a sorted list of all variable names that are bound in
the current scope. dir(obj) returns a sorted list of names of attributes of obj, including
ones coming from obj’s type or by inheritance. See also vars later in this table.

divmod divmod(dividend, divisor, /)
Divides two numbers and returns a pair whose items are the quotient and remainder. See also
__divmod__ in Table 4-4.

enumerate enumerate(iterable, start=0)

Returns a new iterator whose items are pairs. For each such pair, the second item is the
corresponding item in iterable, while the first item is an integer: start, start+1,
start+2.... For example, the following snippet loops on a list L of integers, changing L
in place by halving every even value:

for i, num in enumerate(L):
    if num % 2 == 0:
        L[i] = num // 2

enumerate is one of the few built-ins callable with named arguments.

eval eval(expr[, globals[, locals]], /)
Returns the result of an expression. expr may be a code object ready for evaluation,
or a string; if a string, eval gets a code object by internally calling compile(expr,
'<string>', 'eval'). eval evaluates the code object as an expression, using the
globals and locals dictionaries as namespaces (when they’re missing, eval uses
the current namespace). eval doesn’t execute statements: it only evaluates expressions.
Nevertheless, eval is dangerous; avoid it unless you know and trust that expr comes from
a source that you are certain is safe. See also ast.literal_eval (covered in “Standard
Input” on page 370), and “Dynamic Execution and exec” on page 430.
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exec exec(statement[, globals[, locals]], /)
Like eval, but applies to any statement and returns None. exec is very dangerous, unless
you know and trust that statement comes from a source that you are certain is safe. See
also “Statements” on page 39 and “Dynamic Execution and exec” on page 430.

filter filter(func, seq, /)
Returns an iterator of those items of seq for which func is true. func can be any
callable object accepting a single argument, or None. seq can be any iterable. When func
is callable, filter calls func on each item of seq, just like the following generator
expression:

(item for item in seq if func(item)
When func is None, filter tests for truthy items, just like:

(item for item in seq if item)

format format(x, format_spec='', /)
Returns x.__format__(format_spec). See Table 4-1.

getattr getattr(obj, name[, default], /)
Returns obj’s attribute named by string name. getattr(obj, 'ident') is like
obj.ident. When default is present and name is not found in obj, getattr returns
default instead of raising AttributeError. See also “Object attributes and items” on
page 53 and “Attribute Reference Basics” on page 124.

globals globals()

Returns the __dict__ of the calling module (i.e., the dictionary used as the global
namespace at the point of call). See also locals later in this table. (Unlike locals(), the
dict returned by globals() is read/write, and updates to that dict are equivalent to
ordinary name definitions.)

hasattr hasattr(obj, name, /)
Returns False when obj has no attribute name (i.e., when getattr(obj, name)
would raise AttributeError); otherwise, returns True. See also “Attribute Reference
Basics” on page 124.

hash hash(obj, /)
Returns the hash value for obj. obj can be a dictionary key, or an item in a set, only if obj
can be hashed. All objects that compare equal must have the same hash value, even if they
are of different types. If the type of obj does not define equality comparison, hash(obj)
normally returns id(obj) (see id in this table and __hash__ in Table 4-1).

help help([obj, /])

When called without an obj argument, begins an interactive help session, which you exit
by entering quit. When obj is given, help prints the documentation for obj and its
attributes, and returns None. help is useful in interactive Python sessions to get a quick
reference to an object’s functionality.

hex hex(x, /)

Returns a hex string representation of int x. See also __hex__ in Table 4-4.
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id id(obj, /)

Returns the integer value that is the identity of obj. The id of obj is unique and constant
during obj’s lifetimea (but may be reused at any later time after obj is garbage-collected,
so don’t rely on storing or checking id values). When a type or class does not define equality
comparison, Python uses id to compare and hash instances. For any objects x and y, identity
check x is y is the same as id(x)==id(y), but more readable and better performing.

input input(prompt='', /)

Writes prompt to standard output, reads a line from standard input, and returns the line
(without \n) as a str. At end-of-file, input raises EOFError.

isinstance isinstance(obj, cls, /)

Returns True when obj is an instance of class cls (or any subclass of cls, or implements
protocol or ABC cls); otherwise, returns False. cls can be a tuple whose items are classes
(or 3.10+  multiple types joined using the | operator): in this case, isinstance returns
True when obj is an instance of any of the items of cls; otherwise, it returns False. See
also “Abstract Base Classes” on page 150 and “Protocols” on page 179.

issubclass issubclass(cls1, cls2, /)
Returns True when cls1 is a direct or indirect subclass of cls2, or defines all the
elements of protocol or ABC cls2; otherwise, returns False. cls1 and cls2 must be
classes. cls2 can also be a tuple whose items are classes. In this case, issubclass
returns True when cls1 is a direct or indirect subclass of any of the items of cls2;
otherwise, it returns False. For any class C, issubclass(C, C) returns True.

iter iter(obj, /),
iter(func, sentinel, /)
Creates and returns an iterator (an object that you can repeatedly pass to the next built-in
function to get one item at a time; see “Iterators” on page 86). When called with one
argument, iter(obj) normally returns obj.__iter__(). When obj is a sequence
without a special method __iter__, iter(obj) is equivalent to the generator:

def iter_sequence(obj):
    i = 0
    while True:
        try:
            yield obj[i]
        except IndexError:
            raise StopIteration
        i += 1

See also “Sequences” on page 43 and __iter__ in Table 4-2.
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iter

(cont.)
When called with two arguments, the first argument must be callable without arguments,
and iter(func, sentinel) is equivalent to the generator:

def iter_sentinel(func, sentinel):
    while True:
        item = func()
        if item == sentinel:
            raise StopIteration
        yield item

Don’t Call iter in a for Clause
As discussed in “The for Statement” on page 84, the statement for x
in obj is exactly equivalent to for x in iter(obj); therefore,
do not explicitly call iter in such a for statement. That would be
redundant and, therefore, bad Python style, slower, and less readable.

iter is idempotent. In other words, when x is an iterator, iter(x) is x, as long as x’s
class supplies an __iter__ method whose body is just return self, as an iterator’s
class should.

len len(container, /)

Returns the number of items in container, which may be a sequence, a mapping, or a set.
See also __len__ in “Container methods” on page 149.

locals locals()

Returns a dictionary that represents the current local namespace. Treat the returned
dictionary as read-only; trying to modify it may or may not affect the values of local variables,
and might raise an exception. See also globals and vars in this table.

map map(func, seq, /),
map(func, /, *seqs)

map calls func on every item of iterable seq and returns an iterator of the results. When
you call map with multiple seqs iterables, func must be a callable object that accepts n
arguments (where n is the number of seqs arguments,). map repeatedly calls func with n
arguments, one corresponding item from each iterable.
For example, map(func, seq) is just like the generator expression:

(func(item) for item in seq).map(func, seq1, seq2)
is just like the generator expression:

(func(a, b) for a, b in zip(seq1, seq2))
When map’s iterable arguments have different lengths, map acts as if the longer ones were
truncated (just as zip itself does).

max max(seq, /, *, key=None[, default=...]),
max(*args, key=None[, default=...])

Returns the largest item in the iterable argument seq, or the largest one of multiple
positional arguments args. You can pass a key argument, with the same semantics covered
in “Sorting a list” on page 68. You can also pass a default argument, the value to
return if seq is empty; when you don’t pass default, and seq is empty, max raises
ValueError. (When you pass key and/or default, you must pass either or both as
named arguments.)
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min min(seq, /, *, key=None[, default=...]),
min(*args, key=None[, default=...])

Returns the smallest item in the iterable argument seq, or the smallest one of multiple
positional arguments args. You can pass a key argument, with the same semantics covered
in “Sorting a list” on page 68. You can also pass a default argument, the value to
return if seq is empty; when you don’t pass default, and seq is empty, min raises
ValueError. (When you pass key and/or default, you must pass either or both as
named arguments.)

next next(it[, default], /)
Returns the next item from iterator it, which advances to the next item. When it
has no more items, next returns default, or, when you don’t pass default, raises
StopIteration.

oct oct(x, /)

Converts int x to an octal string. See also __oct__ in Table 4-4.

open open(file, mode='r', buffering=-1)

Opens or creates a file and returns a new file object. open accepts many, many more
optional parameters; see “The io Module” on page 322 for details.
open is one of the few built-ins callable with named arguments.

ord ord(ch, /)

Returns an int between 0 and sys.maxunicode (inclusive), corresponding to the
single-character str argument ch. See also chr earlier in this table.

pow pow(x, y[, z], /)
When z is present, pow(x, y, z) returns (x ** y) % z. When z is missing, pow(x, y)
returns x ** y. See also __pow__ in Table 4-4. When x is an int and y is a nonnegative
int, pow returns an int and uses Python’s full value range for int (though evaluating
pow for large x and y integer values may take some time). When either x or y is a float,
or y is < 0, pow returns a float (or a complex, when x < 0 and y != int(y)); in
this case, pow raises OverflowError if x or y is too large.

print print(/, *args, sep=' ', end='\n', file=sys.stdout,
flush=False)

Formats with str, and emits to stream file, each item of args (if any), separated by
sep, with end after all of them; then, print flushes the stream if flush is truthy.

range range([start=0, ]stop[, step=1], /)

Returns an iterator of ints in arithmetic progression:
start, start+step, start+(2*step), ...

When start is missing, it defaults to 0. When step is missing, it defaults to 1. When
step is 0, range raises ValueError. When step is > 0, the last item is the largest
start+(i*step) strictly less than stop. When step is < 0, the last item is the
smallest start+(i*step) strictly greater than stop. The iterator is empty when start
is greater than or equal to stop and step is greater than 0, or when start is less than
or equal to stop and step is less than 0. Otherwise, the first item of the iterator is always
start.
When what you need is a list of ints in arithmetic progression, call
list(range(...)).
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repr repr(obj, /)

Returns a complete and unambiguous string representation of obj. When feasible, repr
returns a string that you could pass to eval in order to create a new object with the same
value as obj. See also str in Table 8-1 and __repr__ in Table 4-1.

reversed reversed(seq, /)

Returns a new iterator object that yields the items of seq (which must be specifically a
sequence, not just any iterable) in reverse order.

round round(number, ndigits=0)

Returns a float whose value is int or float number rounded to ndigits digits
after the decimal point (i.e., the multiple of 10**-ndigits that is closest to number).
When two such multiples are equally close to number, round returns the even multiple.
Since today’s computers represent floating-point numbers in binary, not in decimal, most of
round’s results are not exact, as the tutorial in the docs explains in detail. See also “The
decimal Module” on page 500 and David Goldberg’s famous language-independent article on
floating-point arithmetic.

setattr setattr(obj, name, value, /)
Binds obj’s attribute name to value. setattr(obj, 'ident', val) is like
obj.ident=val. See also getattr earlier in this table, “Object attributes and items” on
page 53, and “Setting an attribute” on page 126.

sorted sorted(seq, /, *, key=None, reverse=False)

Returns a list with the same items as iterable seq, in sorted order. Same as:
def sorted(seq, /, *, key=None, reverse=False):
    result = list(seq)
    result.sort(key, reverse)
    return result

See “Sorting a list” on page 68 for the meaning of the arguments. If you want to pass key
and/or reverse, you must pass them by name.

sum sum(seq, /, start=0)

Returns the sum of the items of iterable seq (which should be numbers, and, in particular,
cannot be strings) plus the value of start. When seq is empty, returns start. To “sum”
(concatenate) an iterable of strings, in order, use ''.join(iterofstrs), as covered in
Table 8-1 and “Building up a string from pieces” on page 554.

vars vars([obj, ]/)

When called with no argument, vars returns a dictionary with all variables that are bound
in the current scope (like locals, covered earlier in this table). Treat this dictionary as
read-only. vars(obj) returns a dictionary with all attributes currently bound in obj,
similar to dir, covered earlier in this table. This dictionary may be modifiable or not,
depending on the type of obj.
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zip zip(seq, /, *seqs, strict=False)

Returns an iterator of tuples, where the nth tuple contains the nth item from each of
the argument iterables. You must call zip with at least one (positional) argument, and
all positional arguments must be iterable. zip returns an iterator with as many items as
the shortest iterable, ignoring trailing items in the other iterable objects. 3.10+  When
the iterables have different lengths and strict is True, zip raises ValueError
once it reaches the end of the shortest iterable. See also map earlier in this table and
zip_longest in Table 8-10.

Otherwise arbitrary; often, an implementation detail, obj’s address in memory.

The sys Module
The attributes of the sys module are bound to data and functions that provide
information on the state of the Python interpreter or affect the interpreter directly.
Table 8-3 covers the most frequently used attributes of sys. Most sys attributes
we don’t cover are meant specifically for use in debuggers, profilers, and integrated
development environments; see the online docs for more information.

Platform-specific information is best accessed using the platform module, which
we do not cover in this book; see the online docs for details on this module.

Table 8-3. Functions and attributes of the sys module

argv The list of command-line arguments passed to the main script. argv[0] is the
name of the main script,a or '-c' if the command line used the -c option. See
“The argparse Module” on page 274 for one good way to use sys.argv.

audit audit(event, /, *args)

Raises an audit event whose name is str event and whose arguments are args.
The rationale for Python’s audit system is laid out in exhaustive detail in PEP 578;
Python itself raises the large variety of events listed in the online docs. To listen
for events, call sys.addaudithook(hook), where hook is a callable whose
arguments are a str, the event’s name, followed by arbitrary positional arguments.
For more details, see the docs.

builtin_

module_names

A tuple of strs: the names of all the modules compiled into this Python interpreter.

displayhook displayhook(value, /)

In interactive sessions, the Python interpreter calls displayhook, passing it the
result of each expression statement you enter. The default displayhook does
nothing when value is None; otherwise, it saves value in the built-in variable
whose name is _ (an underscore) and displays it via repr:

def _default_sys_displayhook(value, /):
    if value is not None:
        __builtins__._ = value
        print(repr(value))

You can rebind sys.displayhook in order to change interactive behavior. The
original value is available as sys.__displayhook__.
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dont_write_

bytecode

When True, Python does not write a bytecode file (with extension .pyc) to disk
when it imports a source file (with extension .py).

excepthook excepthook(type, value, traceback, /)
When an exception is not caught by any handler, propagating all the way up the
call stack, Python calls excepthook, passing it the exception class, object, and
traceback, as covered in “Exception Propagation” on page 204. The default except
hook displays the error and traceback. You can rebind sys.excepthook to
change how uncaught exceptions (just before Python returns to the interactive
loop or terminates) get displayed and/or logged. The original value is available as
sys.__excepthook__.

exception exception()

3.11+  When called within an except clause, returns the current exception
instance (equivalent to sys.exc_info()[1]).

exc_info exc_info()

When the current thread is handling an exception, exc_info returns a tuple with
three items: the class, object, and traceback for the exception. When the thread is
not handling an exception, exc_info returns (None, None, None). To display
information from a traceback, see “The traceback Module” on page 533.

Holding On to a Traceback Object Can Make
Some Garbage Uncollectable
A traceback object indirectly holds references to all variables on
the call stack; if you hold a reference to the traceback (e.g.,
indirectly, by binding a variable to the tuple that exc_info
returns), Python must keep in memory data that might
otherwise be garbage-collected. Make sure that any binding
to the traceback object is of short duration, for example with a
try/finally statement (discussed in “try/finally” on page
198). If you must hold a reference to an exception e, clear e’s
traceback: e.__traceback__=None.b

exit exit(arg=0, /)

Raises a SystemExit exception, which normally terminates execution after
executing cleanup handlers installed by try/finally statements, with
statements, and the atexit module. When arg is an int, Python uses arg
as the program’s exit code: 0 indicates successful termination; any other value
indicates unsuccessful termination of the program. Most platforms require exit codes
to be between 0 and 127. When arg is not an int, Python prints arg to
sys.stderr, and the exit code of the program is 1 (a generic “unsuccessful
termination” code).

float_info A read-only object whose attributes hold low-level details about the implementation
of the float type in this Python interpreter. See the online docs for details.
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getrecursion

limit

getrecursionlimit()

Returns the current limit on the depth of Python’s call stack. See also “Recursion” on
page 112 and setrecursionlimit later in this table.

getrefcount getrefcount(obj, /)

Returns the reference count of obj. Reference counts are covered in “Garbage
Collection” on page 435.

getsizeof getsizeof(obj[, default], /)
Returns the size, in bytes, of obj (not counting any items or attributes obj may
refer to), or default when obj does not provide a way to retrieve its size (in the
latter case, when default is absent, getsizeof raises TypeError).

maxsize The maximum number of bytes in an object in this version of Python (at least 2 **
31 - 1, that is, 2147483647).

maxunicode The largest codepoint for a Unicode character in this version of Python; currently,
always 1114111 (0x10FFFF). The version of the Unicode database used by
Python is in unicodedata.unidata_version.

modules A dictionary whose items are the names and module objects for all loaded modules.
See “Module Loading” on page 227 for more information on sys.modules.

path A list of strings that specifies the directories and ZIP files that Python searches when
looking for a module to load. See “Searching the Filesystem for a Module” on page
228 for more information on sys.path.

platform A string that names the platform on which this program is running. Typical values
are brief operating system names, such as 'darwin', 'linux2', and 'win32'.
For Linux, check sys.platform.startswith('linux'), for portability
among Linux versions. See also the online docs for the module platform, which
we don’t cover in this book.
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ps1, ps2 ps1 and ps2 specify the primary and secondary interpreter prompt strings, initially
>>> and ..., respectively. These sys attributes exist only in interactive interpreter
sessions. If you bind either attribute to a non-str object x, Python prompts by
calling str(x) on the object each time a prompt is output. This feature allows
dynamic prompting: code a class that defines __str__, then assign an instance of
that class to sys.ps1 and/or sys.ps2. For example, to get numbered prompts:

>>> import sys
>>> class Ps1(object):
...     def __init__(self):
...         self.p = 0
...     def __str__(self):
...         self.p += 1
...         return f'[{self.p}]>>> '
...
>>> class Ps2(object):
...     def __str__(self):
...         return f'[{sys.ps1.p}]... '
...
>>> sys.ps1, sys.ps2 = Ps1(), Ps2()
[1]>>> (2 +
[1]... 2)
4

[2]>>>

setrecursion

limit

setrecursionlimit(limit, /)

Sets the limit on the depth of Python’s call stack (the default is 1000). The
limit prevents runaway recursion from crashing Python. Raising the limit may be
necessary for programs that rely on deep recursion, but most platforms cannot
support very large limits on call stack depth. More usefully, lowering the limit helps
you check, during testing and debugging, that your program degrades gracefully,
rather than abruptly crashing with a RecursionError, under situations of
almost runaway recursion. See also “Recursion” on page 112 and getrecursion
limit earlier in this table.

stdin,
stdout,
stderr

stdin, stdout, and stderr are predefined file-like objects that correspond
to Python’s standard input, output, and error streams. You can rebind stdout
and stderr to file-like objects open for writing (objects that supply a write
method accepting a string argument) to redirect the destination of output and error
messages. You can rebind stdin to a file-like object open for reading (one that
supplies a readline method returning a string) to redirect the source from which
built-in function input reads. The original values are available as __stdin__,
__stdout__, and __stderr__. We cover file objects in “The io Module” on
page 322.

tracebacklimit The maximum number of levels of traceback displayed for unhandled exceptions.
By default, this attribute is not defined (i.e., there is no limit). When sys.trace
backlimit is <= 0, Python prints only the exception type and value, without a
traceback.
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version A string that describes the Python version, build number and date, and C compiler
used. Use sys.version only for logging or interactive output; to perform version
comparisons, use sys.version_info.

version_info A namedtuple of the major, minor, micro, releaselevel, and
serial fields of the running Python version. For example, in the first
post-beta release of Python 3.10, sys.version_info was sys.ver
sion_info(major=3, minor=10, micro=0, releaselevel='fi

nal', serial=0), equivalent to the tuple (3, 10, 0, 'final', 0).
This form is defined to be directly comparable between versions; to see if the
current version running is greater than or equal to, say, 3.8, you can test sys.ver
sion_info[:3] >= (3, 8, 0). (Do not do string comparisons of the string
sys.version, since the string "3.10" would compare as less than "3.9"!)

It could, of course, also be a path to the script, and/or a symbolic link to it, if that’s what you
gave Python.

One of the book’s authors had this very problem when memoizing return values and
exceptions raised in pyparsing: the cached exception tracebacks held many object references
and interfered with garbage collection. The solution was to clear the tracebacks of the
exceptions before putting them in the cache.

The copy Module
As discussed in “Assignment Statements” on page 53, assignments in Python do not
copy the righthand-side object being assigned. Rather, assignments add references to
the RHS object. When you want a copy of object x, ask x for a copy of itself, or ask
x’s type to make a new instance copied from x. If x is a list, list(x) returns a copy
of x, as does x[:]. If x is a dictionary, dict(x) and x.copy() return a copy of x. If
x is a set, set(x) and x.copy() return a copy of x. In each case, this book’s authors
prefer the uniform and readable idiom of calling the type, but there is no consensus
on this style issue in the Python community.

The copy module supplies a copy function to create and return a copy of many
types of objects. Normal copies, such as those returned by list(x) for a list x and
copy.copy(x) for any x, are known as shallow copies: when x has references to
other objects (either as items or as attributes), a normal (shallow) copy of x has
distinct references to the same objects. Sometimes, however, you need a deep copy,
where referenced objects are deep-copied recursively (fortunately, this need is rare,
since a deep copy can take a lot of memory and time); for these cases, the copy
module also supplies a deepcopy function. These functions are discussed further in
Table 8-4.

The copy Module | 263

C
o

re B
uilt-ins

and
 M

o
d

ules

a

b



Table 8-4. copy module functions

copy copy(x)

Creates and returns a shallow copy of x, for x of many types (modules, files, frames, and
other internal types, however, are not supported). When x is immutable, copy.copy(x)
may return x itself as an optimization. A class can customize the way copy.copy copies
its instances by having a special method __copy__(self) that returns a new object, a
shallow copy of self.

deepcopy deepcopy(x,[memo])

Makes a deep copy of x and returns it. Deep copying implies a recursive walk over a
directed (but not necessarily acyclic) graph of references. Be aware that to reproduce the
graph’s exact shape, when references to the same object are met more than once during
the walk, you must not make distinct copies; rather, you must use references to the same
copied object. Consider the following simple example:

sublist = [1,2]
original = [sublist, sublist]
thecopy = copy.deepcopy(original)

original[0] is original[1] is True (i.e., the two items of original refer to
the same object). This is an important property of original, and anything claiming to be
“a copy” must preserve it. The semantics of copy.deepcopy ensure that thecopy[0]
is thecopy[1] is also True: the graphs of references of original and thecopy
have the same shape. Avoiding repeated copying has an important beneficial side effect: it
prevents infinite loops that would otherwise occur when the graph of references has cycles.
copy.deepcopy accepts a second, optional argument: memo, a dict that maps the
id of each object already copied to the new object that is its copy. memo is passed by
all recursive calls of deepcopy to itself; you may also explicitly pass it (normally as an
originally empty dict) if you also need to obtain a correspondence map between the
identities of originals and copies (the final state of memo will then be just such a mapping).
A class can customize the way copy.deepcopy copies its instances by having a special
method __deepcopy__(self, memo) that returns a new object, a deep copy of
self. When __deepcopy__ needs to deep-copy some referenced object subobject,
it must do so by calling copy.deepcopy(subobject, memo). When a class
has no special method __deepcopy__, copy.deepcopy on an instance of that
class also tries calling the special methods __getinitargs__, __getnewargs__,
__getstate__, and __setstate__, covered in “Pickling instances” on page 393.

The collections Module
The collections module supplies useful types that are collections (i.e., containers),
as well as the ABCs covered in “Abstract Base Classes” on page 150. Since Python
3.4, the ABCs have been in collections.abc; for backward compatibility they
could still be accessed directly in collections itself until Python 3.9, but this
functionality was removed in 3.10.
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ChainMap
ChainMap “chains” multiple mappings together; given a ChainMap instance c, access‐
ing c[key] returns the value in the first of the mappings that has that key, while all
changes to c affect only the very first mapping in c. To further explain, you could
approximate this as follows:

class ChainMap(collections.abc.MutableMapping):
    def __init__(self, *maps):
        self.maps = list(maps)
        self._keys = set()
        for m in self.maps:
            self._keys.update(m)
    def __len__(self): return len(self._keys)
    def __iter__(self): return iter(self._keys)
    def __getitem__(self, key):
        if key not in self._keys: raise KeyError(key)
        for m in self.maps:
            try: return m[key]
            except KeyError: pass
    def __setitem__(self, key, value):
        self.maps[0][key] = value
        self._keys.add(key)
    def __delitem__(self, key):
        del self.maps[0][key]
        self._keys = set()
        for m in self.maps:
            self._keys.update(m)

Other methods could be defined for efficiency, but this is the minimum set that a
MutableMapping requires. See the online docs for more details and a collection of
recipes on how to use ChainMap.

Counter
Counter is a subclass of dict with int values that are meant to count how many
times a key has been seen (although values are allowed to be <= 0); it’s roughly
equivalent to types that other languages call “bag” or “multiset” types. A Counter
instance is normally built from an iterable whose items are hashable: c = collec
tions.Counter(iterable). Then, you can index c with any of iterable’s items to
get the number of times that item appeared. When you index c with any missing
key, the result is 0 (to remove an entry in c, use del c[entry]; setting c[entry]=0
leaves entry in c, with a value of 0).

c supports all methods of dict; in particular, c.update(otheriterable) updates all
the counts, incrementing them according to occurrences in otheriterable. So, for
example:

>>> c = collections.Counter('moo')
>>> c.update('foo')
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leaves c['o'] giving 4, and c['f'] and c['m'] each giving 1. Note that removing
an entry from c (with del) may not decrement the counter, but subtract (described
in the following table) does:

>>> del c['foo']    
>>> c['o']

4

>>> c.subtract('foo')
>>> c['o']

2

In addition to dict methods, c supports the extra methods detailed in Table 8-5.

Table 8-5. Methods of a Counter instance c

elements c.elements()

Yields, in arbitrary order, keys in c with c[key]>0, yielding each key as many times as its
count.

most_common c.most_common([n, /])

Returns a list of pairs for the n keys in c with the highest counts (all of them, if you omit
n), in order of decreasing count (“ties” between keys with the same count are resolved
arbitrarily); each pair is of the form (k, c[k]), where k is one of the n most common
keys in c.

subtract c.subtract(iterable=None, /, **kwds)

Like c.update(iterable) “in reverse”—that is, subtracting counts rather than
adding them. Resulting counts in c can be <= 0.

total c.total()

3.10+  Returns the sum of all the individual counts. Equivalent to sum(c.values()).

Counter objects support common arithmetic operators, such as +, -, &, and | for
addition, subtraction, union, and intersection. See the online docs for more details
and a collection of useful recipes on how to use Counter.

OrderedDict
OrderedDict is a subclass of dict with additional methods to access and manipulate
items with respect to their insertion order. o.popitem() removes and returns the
item at the most recently inserted key; o.move_to_end(key, last=True) moves
the item with key key to the end (when last is True, the default) or to the start
(when last is False). Equality tests between two instances of OrderedDict are
order sensitive; equality tests between an instance of OrderedDict and a dict or
other mapping are not. Since Python 3.7, dict insertion order is guaranteed to
be maintained: many uses that previously required OrderedDict can now just use
ordinary Python dicts. A significant difference remaining between the two is that
OrderedDict’s test for equality with other OrderedDicts is order sensitive, while

266 | Chapter 8: Core Built-ins and Standard Library Modules

https://oreil.ly/MylAp


dict’s equality test is not. See the online docs for more details and a collection of
recipes on how to use OrderedDict.

defaultdict
defaultdict extends dict and adds one per instance attribute, named default_fac
tory. When an instance d of defaultdict has None as the value of d.default_fac
tory, d behaves exactly like a dict. Otherwise, d.default_factory must be callable
without arguments, and d behaves just like a dict except when you access d with
a key k that is not in d. In this specific case, the indexing d[k] calls d.default_fac
tory(), assigns the result as the value of d[k], and returns the result. In other
words, the type defaultdict behaves much like the following Python-coded class:

class defaultdict(dict):
    def __init__(self, default_factory=None, *a, **k):
        super().__init__(*a, **k)
        self.default_factory = default_factory
    def __getitem__(self, key):
        if key not in self and self.default_factory is not None:
            self[key] = self.default_factory()
        return dict.__getitem__(self, key)

As this Python equivalent implies, to instantiate defaultdict you usually pass it
an extra first argument (before any other arguments, positional and/or named, if
any, to pass on to plain dict). The extra first argument becomes the initial value
of default_factory; you can also access and rebind default_factory later, though
doing so is infrequent in normal Python code.

All behavior of defaultdict is essentially as implied by this Python equivalent
(except str and repr, which return strings different from those they would return
for a dict). Named methods, such as get and pop, are not affected. All behavior
related to keys (method keys, iteration, membership test via operator in, etc.)
reflects exactly the keys that are currently in the container (whether you put them
there explicitly, or implicitly via an indexing that called default_factory).

A typical use of defaultdict is, for example, to set default_factory to list, to
make a mapping from keys to lists of values:

def make_multi_dict(items):
    d = collections.defaultdict(list)
    for key, value in items:
        d[key].append(value)
    return d

Called with any iterable whose items are pairs of the form (key, value), with
all keys being hashable, this make_multi_dict function returns a mapping that
associates each key to the lists of one or more values that accompanied it in the
iterable (if you want a pure dict result, change the last statement into return
dict(d)—this is rarely necessary).
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2 When first introduced, defaultdict(int) was commonly used to maintain counts of items.
Since Counter is now part of the collections module, use Counter instead of defaultdict(int)
for the specific task of counting items.

3 For last-in, first-out (LIFO) queues, aka “stacks,” a list, with its append and pop methods, is
perfectly sufficient.

If you don’t want duplicates in the result, and every value is hashable, use a
collections.defaultdict(set), and add rather than append in the loop.2

keydefaultdict
A variation on defaultdict that is not found in the collections module is a
defaultdict whose default_factory takes the key as an initialization argument.
This example shows how you can implement this for yourself:

class keydefaultdict(dict):

    def __init__(self, default_factory=None, *a, **k):

        super().__init__(*a, **k)

        self.default_factory = default_factory

    def __missing__(self, key):

        if self.default_factory is None:

            raise KeyError(key)

        self[key] = self.default_factory(key)

        return self[key]

The dict class supports the __missing__ method for subclasses to implement
custom behavior when a key is accessed that is not yet in the dict. In this example,
we implement __missing__ to call the default factory method with the new key, and
add it to the dict. You can use keydefaultdict rather than defaultdict when the
default_factory requires an argument (most often, this happens when the default
factory is a class that takes an identifier constructor argument).

deque
deque is a sequence type whose instances are “double-ended queues” (additions and
removals at either end are fast and thread-safe). A deque instance d is a mutable
sequence, with an optional maximum length, and can be indexed and iterated on
(however, d cannot be sliced; it can only be indexed one item at a time, whether for
access, rebinding, or deletion). If a deque instance d has a maximum length, when
items are added to either side of d so that d’s length exceeds that maximum, items
are silently dropped from the other side.

deque is especially useful for implementing first-in, first-out (FIFO) queues.3 deque
is also good for maintaining “the latest N things seen,” also known in some other
languages as a ring buffer.

Table 8-6 lists the methods the deque type supplies.
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Table 8-6. deque methods

deque deque(seq=(), /, maxlen=None)

The initial items of d are those of seq, in the same order. d.maxlen is a read-only
attribute: when its value is None, d has no maximum length; when an int, it must be
>=0. d’s maximum length is d.maxlen.

append d.append(item, /)

Appends item at the right (end) of d.

appendleft d.appendleft(item, /)

Appends item at the left (start) of d.

clear d.clear()

Removes all items from d, leaving it empty.

extend d.extend(iterable, /)

Appends all items of iterable at the right (end) of d.

extendleft d.extendleft(iterable, /)

Appends all items of iterable at the left (start) of d, in reverse order.

pop d.pop()

Removes and returns the last (rightmost) item from d. If d is empty, raises IndexError.

popleft d.popleft()

Removes and returns the first (leftmost) item from d. If d is empty, raises IndexError.

rotate d.rotate(n=1, /)

Rotates d n steps to the right (if n<0, rotates left).

Avoid Indexing or Slicing a deque
deque is primarily intended for cases that access, add, and
remove items from either the deque’s start or end. While
indexing or slicing into a deque is possible, it may only have
O(n) performance (vs O(1) for list) when accessing an inner
value using deque[i] form. If you must access inner values,
consider using a list instead.

The functools Module
The functools module supplies functions and types supporting functional pro‐
gramming in Python, listed in Table 8-7.

Table 8-7. Functions and attributes of the functools module

cached_

property

cached_property(func)

3.8+  A caching version of the property decorator. Evaluating the property the
first time caches the returned value, so that subsequent calls can return the cached
value instead of repeating the property calculation. cached_property uses a
threading lock to ensure that the property calculation is performed only once, even in a
multithreaded environment.a
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lru_cache,
cache

lru_cache(max_size=128, typed=False),
cache()

A memoizing decorator suitable for decorating a function whose arguments are
all hashable, adding to the function a cache storing the last max_size results
(max_size should be a power of 2, or None to have the cache keep all previous
results); when you call the decorated function again with arguments that are in the
cache, it immediately returns the previously cached result, bypassing the underlying
function’s body code. When typed is True, arguments that compare equal but
have different types, such as 23 and 23.0, are cached separately. 3.9+  If setting
max_size to None, use cache instead. For more details and examples, see the
online docs. 3.8+  lru_cache may also be used as a decorator with no ().

partial partial(func, /, *a, **k)
Returns a callable p that is just like func (which is any callable), but with some
positional and/or named parameters already bound to the values given in a and k.
In other words, p is a partial application of func, often also known (with debatable
correctness, but colorfully, in honor of mathematician Haskell Curry) as a currying of
func to the given arguments. For example, say that we have a list of numbers L and
want to clip the negative ones to 0. One way to do it is:

L = map(functools.partial(max, 0), L)
as an alternative to the lambda-using snippet:

L = map(lambda x: max(0, x), L)
and to the most concise approach, a list comprehension:

L = [max(0, x) for x in L]
functools.partial comes into its own in situations that demand callbacks, such
as event-driven programming for some GUIs and networking applications.
partial returns a callable with the attributes func (the wrapped function), args
(the tuple of prebound positional arguments), and keywords (the dict of
prebound named arguments, or None).

reduce reduce(func, seq[, init], /)
Applies func to the items of seq, from left to right, to reduce the iterable to a single
value. func must be callable with two arguments. reduce calls func on the first
two items of seq, then on the result of the first call and the third item, and so on, and
returns the result of the last such call. When init is present, reduce uses it before
seq’s first item, if any. When init is missing, seq must be nonempty. When init
is missing and seq has only one item, reduce returns seq[0]. Similarly, when
init is present and seq is empty, reduce returns init. reduce is thus roughly
equivalent to:

def reduce_equiv(func, seq, init=None):
    seq = iter(seq)
    if init is None:
        init = next(seq)
    for item in seq: 
        init = func(init, item)
    return init

An example use of reduce is to compute the product of a sequence of numbers:
prod=reduce(operator.mul, seq, 1)
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singledispatch,
singledispatch

method

Function decorators to support multiple implementations of a method with differing
types for their first argument. See the online docs for a detailed description.

total_ordering A class decorator suitable for decorating classes that supply at least one inequality
comparison method, such as __lt__, and, ideally, also supply __eq__. Based on
the class’s existing methods, the class decorator total_ordering adds to the class
all other inequality comparison methods that aren’t implemented in the class itself or
any of its superclasses, removing the need for you to add boilerplate code for them.

wraps wraps(wrapped)

A decorator suitable for decorating functions that wrap another function, wrapped
(often nested functions within another decorator). wraps copies the __name__,
__doc__, and __module__ attributes of wrapped on the decorated function,
thus improving the behavior of the built-in function help, and of doctests, covered in
“The doctest Module” on page 517.

In Python versions 3.8 to 3.11, cached_property is implemented using a class-level lock.
As such, it synchronizes for all instances of the class or any subclass, not just the current
instance. Thus, cached_property can reduce performance in a multithreaded environment,
and is not recommended.

The heapq Module
The heapq module uses min-heap algorithms to keep a list in “nearly sorted” order
as items are inserted and extracted. heapq’s operation is faster than calling a list’s
sort method after each insertion, and much faster than bisect (covered in the
online docs). For many purposes, such as implementing “priority queues,” the
nearly sorted order supported by heapq is just as good as a fully sorted order, and
faster to establish and maintain. The heapq module supplies the functions listed in
Table 8-8.

Table 8-8. Functions of the heapq module

heapify heapify(alist, /)

Permutes list alist as needed to make it satisfy the (min) heap condition:

For any i >= 0:
alist[i] <= alist[2 * i + 1] and
alist[i] <= alist[2 * i + 2]
as long as all the indices in question are <len(alist).

If a list satisfies the (min) heap condition, the list’s first item is the smallest (or equal-
smallest) one. A sorted list satisfies the heap condition, but many other permutations of
a list also satisfy the heap condition without requiring the list to be fully sorted. heapify
runs in O(len(alist)) time.
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heappop heappop(alist, /)

Removes and returns the smallest (first) item of alist, a list that satisfies the heap
condition, and permutes some of the remaining items of alist to ensure the heap
condition is still satisfied after the removal. heappop runs in O(log(len(alist)))
time.

heappush heappush(alist, item, /)
Inserts item in alist, a list that satisfies the heap condition, and permutes some
items of alist to ensure the heap condition is still satisfied after the insertion. heap
push runs in O(log(len(alist))) time.

heappushpop heappushpop(alist, item, /)
Logically equivalent to heappush followed by heappop, similar to:

def heappushpop(alist, item):
    heappush(alist, item)
    return heappop(alist)

heappushpop runs in O(log(len(alist))) time and is generally faster than the
logically equivalent function just shown. heappushpop can be called on an empty
alist: in that case, it returns the item argument, as it does when item is smaller than
any existing item of alist.

heapreplace heapreplace(alist, item, /)
Logically equivalent to heappop followed by heappush, similar to:

def heapreplace(alist, item):
    try: return heappop(alist)
    finally: heappush(alist, item)

heapreplace runs in O(log(len(alist))) time and is generally faster than the
logically equivalent function just shown. heapreplace cannot be called on an empty
alist: heapreplace always returns an item that was already in alist, never the
item just being pushed onto it.

merge merge(*iterables)

Returns an iterator yielding, in sorted order (smallest to largest), the items of the
iterables, each of which must be smallest-to-largest sorted.

nlargest nlargest(n, seq, /, key=None)
Returns a reverse-sorted list with the n largest items of iterable seq (or less than n if
seq has fewer than n items); like sorted(seq, reverse=True)[:n], but faster
when n is “small enough”a compared to len(seq). You may also specify a (named or
positional) key= argument, like you can for sorted.

nsmallest nsmallest(n, seq, /, key=None)
Returns a sorted list with the n smallest items of iterable seq (or less than n if seq
has fewer than n items); like sorted(seq)[:n], but faster when n is “small enough”
compared to len(seq). You may also specify a (named or positional) key= argument,
like you can for sorted.

To find out how specific values of n and len(seq) affect the timing of nlargest, nsmallest,
and sorted on your specific Python version and machine, use timeit, covered in “The timeit
module” on page 552.
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4 Also known as the Schwartzian transform.
5 This step is not quite a full “sort,” but it looks close enough to call it one, at least if you squint.

The Decorate–Sort–Undecorate Idiom
Several functions in the heapq module, although they perform comparisons, do not
accept a key= argument to customize the comparisons. This is inevitable, since the
functions operate in place on a plain list of the items: they have nowhere to “stash
away” custom comparison keys computed once and for all.

When you need both heap functionality and custom comparisons, you can apply
the good old decorate–sort–undecorate (DSU) idiom4 (which used to be crucial to
optimize sorting in ancient versions of Python, before the key= functionality was
introduced).

The DSU idiom, as applied to heapq, has the following components:

Decorate
Build an auxiliary list A where each item is a tuple starting with the sort key and
ending with the item of the original list L.

Sort
Call heapq functions on A, typically starting with heapq.heapify(A).5

Undecorate
When you extract an item from A, typically by calling heapq.heappop(A),
return just the last item of the resulting tuple (which was an item of the original
list L).

When you add an item to A by calling heapq.heappush(A, /, item), decorate the
actual item you’re inserting into a tuple starting with the sort key.

This sequence of operations can be wrapped up in a class, as in this example:

import heapq

class KeyHeap(object):
    def __init__(self, alist, /, key):
        self.heap = [(key(o), i, o) for i, o in enumerate(alist)]
        heapq.heapify(self.heap)
        self.key = key
        if alist:
            self.nexti = self.heap[-1][1] + 1
        else:
            self.nexti = 0

    def __len__(self):
        return len(self.heap)

    def push(self, o, /):
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        heapq.heappush(self.heap, (self.key(o), self.nexti, o))
        self.nexti += 1

    def pop(self):
        return heapq.heappop(self.heap)[-1]

In this example, we use an increasing number in the middle of the decorated tuple
(after the sort key, before the actual item) to ensure that actual items are never
compared directly, even if their sort keys are equal (this semantic guarantee is an
important aspect of the key argument’s functionality for sort and the like).

The argparse Module
When you write a Python program meant to be run from the command line (or
from a shell script in Unix-like systems, or a batch file in Windows), you often
want to let the user pass to the program, on the command line or within the script,
command-line arguments (including command-line options, which by convention
are arguments starting with one or two dash characters). In Python, you can
access the arguments as sys.argv, an attribute of the module sys holding those
arguments as a list of strings (sys.argv[0] is the name or path by which the user
started your program; the arguments are in the sublist sys.argv[1:]). The Python
standard library offers three modules to process those arguments; we only cover the
newest and most powerful one, argparse, and we only cover a small, core subset of
argparse’s rich functionality. See the online reference and tutorial for much, much
more. argparse provides one class, which has the following signature:

Argument

Parser

ArgumentParser(**kwargs)

ArgumentParser is the class whose instances perform argument parsing. It accepts
many named arguments, mostly meant to improve the help message that your program
displays if command-line arguments include -h or --help. One named argument
you should always pass is description=, a string summarizing the purpose of your
program.

Given an instance ap of ArgumentParser, prepare it with one or more calls to
ap.add_argument, then use it by calling ap.parse_args() without arguments (so it
parses sys.argv). The call returns an instance of argparse.Namespace, with your
program’s arguments and options as attributes.

add_argument has a mandatory first argument: an identifier string for positional
command-line arguments, or a flag name for command-line options. In the latter
case, pass one or more flag names; an option can have both a short name (dash,
then a character) and a long name (two dashes, then an identifier).

After the positional arguments, pass to add_argument zero or more named argu‐
ments to control its behavior. Table 8-9 lists the most commonly used ones.
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Table 8-9. Common named arguments to add_argument

action What the parser does with this argument. Default: 'store', which stores the argument’s
value in the namespace (at the name given by dest, described later in this table). Also useful:
'store_true' and 'store_false', making an option into a bool (defaulting to the
opposite bool if the option is not present), and 'append', appending argument values to a list
(and thus allowing an option to be repeated).

choices A set of values allowed for the argument (parsing the argument raises an exception if the value is
not among these). Default: no constraints.

default Value if the argument is not present. Default: None.

dest Name of the attribute to use for this argument. Default: same as the first positional argument
stripped of leading dashes, if any.

help A str describing the argument, for help messages.

nargs The number of command-line arguments used by this logical argument. Default: 1, stored in the
namespace. Can be an int > 0 (uses that many arguments, stores them as a list), '?' (1 or
none, in which case it uses default), '*' (0 or more, stored as a list), '+' (1 or more, stored
as a list), or argparse.REMAINDER (all remaining arguments, stored as a list).

type A callable accepting a string, often a type such as int; used to transform values from strings to
something else. Can be an instance of argparse.FileType to open the string as a filename
(for reading if FileType('r'), for writing if FileType('w'), and so on).

Here’s a simple example of argparse—save this code in a file called greet.py:

import argparse
ap = argparse.ArgumentParser(description='Just an example')
ap.add_argument('who', nargs='?', default='World')
ap.add_argument('--formal', action='store_true')
ns = ap.parse_args()
if ns.formal:
    greet = 'Most felicitous salutations, o {}.'
else:
    greet = 'Hello, {}!'
print(greet.format(ns.who))

Now, python greet.py prints Hello, World!, while python greet.py --formal
Cornelia prints Most felicitous salutations, o Cornelia.

The itertools Module
The itertools module offers high-performance building blocks to build and
manipulate iterators. To handle long processions of items, iterators are often better
than lists, thanks to the iterators’ intrinsic “lazy evaluation” approach: an iterator
produces items one at a time, as needed, while all items of a list (or other sequence)
must be in memory at the same time. This approach even makes it feasible to build
and use unbounded iterators, while lists must always have finite numbers of items
(since any machine has a finite amount of memory).
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6 Some experts recommend from itertools import *, but the authors of this book disagree.

Table 8-10 covers the most frequently used attributes of itertools; each of them
is an iterator type, which you call to get an instance of the type in question, or
a factory function behaving similarly. See the online docs for more itertools
attributes, including combinatorial generators for permutations, combinations, and
Cartesian products, as well as a useful taxonomy of itertools attributes.

The online docs also offer recipes describing ways to combine and use itertools
attributes. The recipes assume you have from itertools import * at the top of your
module; this is not recommended use, just an assumption to make the recipes’ code
more compact. It’s best to import itertools as it, then use references such as
it.something rather than the more verbose itertools.something.6

Table 8-10. Functions and attributes of the itertools module

accumulate accumulate(seq, func, /[, initial=init])
Similar to functools.reduce(func, seq), but returns an iterator of all the
intermediate computed values, not just the final value. 3.8+  You can also pass an initial
value init, which works the same way as in functools.reduce (see Table 8-7).

chain chain(*iterables)

Yields items from the first argument, then items from the second argument, and so on, until
the end of the last argument. This is just like the generator expression:

(it for iterable in iterables for it in iterable)

chain.from_

iterable

chain.from_iterable(iterables, /)

Yields items from the iterables in the argument, in order, just like the genexp:
(it for iterable in iterables for it in iterable)

compress compress(data, conditions, /)
Yields each item from data corresponding to a true item in conditions, just like the
genexp:

(it for it, cond in zip(data, conditions) if cond)

count count(start=0, step=1)

Yields consecutive integers starting from start, just like the generator:
def count(start=0, step=1):
    while True:
        yield start
        start += step

count returns an unending iterator, so use it carefully, always ensuring you explicitly
terminate any loop over it.
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cycle cycle(iterable, /)

Yields each item of iterable, endlessly repeating items from the beginning each time it
reaches the end, just like the generator:

def cycle(iterable):
    saved = []
    for item in iterable:
        yield item
        saved.append(item)
    while saved:
        for item in saved:
            yield item

cycle returns an unending iterator, so use it carefully, always ensuring you explicitly
terminate any loop over it.

dropwhile dropwhile(func, iterable, /)
Drops the 0+ leading items of iterable for which func is true, then yields each
remaining item, just like the generator:

def dropwhile(func, iterable):
    iterator = iter(iterable)
    for item in iterator:
        if not func(item):
            yield item
            break
    for item in iterator:
        yield item

filterfalse filterfalse(func, iterable, /)
Yields those items of iterable for which func is false, just like the genexp:

(it for it in iterable if not func(it))
func can be any callable accepting a single argument, or None. When func is None,
filterfalse yields false items, just like the genexp:

(it for it in iterable if not it)
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groupby groupby(iterable, /, key=None)

iterable normally needs to be already sorted according to key (None, as usual,
standing for the identity function, lambda x: x). groupby yields pairs (k, g), each
pair representing a group of adjacent items from iterable having the same value k for
key(item); each g is an iterator yielding the items in the group. When the groupby
object advances, previous iterators g become invalid (so, if a group of items needs to be
processed later, you’d better store somewhere a list “snapshot” of it, list(g)).
Another way of looking at the groups groupby yields is that each terminates as soon as
key(item) changes (which is why you normally call groupby only on an iterable
that’s already sorted by key).
For example, suppose that, given a set of lowercase words, we want a dict that maps
each initial to the longest word having that initial (with “ties” broken arbitrarily). We could
write:

import itertools as it
import operator
def set2dict(aset):
    first = operator.itemgetter(0)
    words = sorted(aset, key=first)
    adict = {}
    for init, group in it.groupby(words, key=first):
        adict[init] = max(group, key=len)
    return adict

islice islice(iterable[, start], stop[, step], /)
Yields items of iterable (skipping the first start ones, by default 0) up to but not
including stop, advancing by steps of step (default 1) at a time. All arguments must be
nonnegative integers (or None), and step must be > 0. Apart from checks and optional
arguments, it’s like the generator:

def islice(iterable, start, stop, step=1):
    en = enumerate(iterable)
    n = stop
    for n, item in en:
        if n>=start:
            break
    while n<stop:
        yield item
        for x in range(step):
            n, item = next(en)

pairwise pairwise(seq, /)

3.10+  Yields pairs of items in seq, with overlap (for example, pairwise('ABCD')
will yield 'AB', 'BC', and 'CD'). Equivalent to the iterator returned from zip(seq,
seq[1:]).
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repeat repeat(item, /[, times])
Repeatedly yields item, just like the genexp:

(item for _ in range(times))
When times is absent, the iterator is unbounded, yielding a potentially infinite number of
items, each of which is the object item, just like the generator:

def repeat_unbounded(item):
    while True:
        yield item

starmap starmap(func, iterable, /)
Yields func(*item) for each item in iterable (each such item must be an
iterable, normally a tuple), just like the generator:

def starmap(func, iterable):
    for item in iterable:
        yield func(*item)

takewhile takewhile(func, iterable, /)
Yields items from iterable as long as func(item) is truthy, then finishes, just like
the generator:

def takewhile(func, iterable):
    for item in iterable:
        if func(item):
            yield item
        else:
            break

tee tee(iterable, n=2, /)
Returns a tuple of n independent iterators, each yielding items that are the same as those
of iterable. The returned iterators are independent from each other, but they are not
independent from iterable; avoid altering the object iterable in any way, as long as
you’re still using any of the returned iterators.

zip_longest zip_longest(*iterables, /, fillvalue=None)

Yields tuples with one corresponding item from each of the iterables; stops when the
longest of the iterables is exhausted, behaving as if each of the others was “padded”
to that same length with references to fillvalue. If None is a value that might be valid
in one or more of the iterables (such that it could be confused with None values used for
padding), you can use a Python Ellipsis (...) or a sentinel object FILL=object() for
fillvalue.

We have shown equivalent generators and genexps for many attributes of iter
tools, but it’s important to take into account the sheer speed of itertools. As a
trivial example, consider repeating some action 10 times:

for _ in itertools.repeat(None, 10): pass

This turns out to be about 10 to 20% faster, depending on the Python release and
platform, than the straightforward alternative:

for _ in range(10): pass
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9
Strings and Things

Python’s str type implements Unicode text strings with operators, built-in func‐
tions, methods, and dedicated modules. The somewhat similar bytes type repre‐
sents arbitrary binary data as a sequence of bytes, also known as a bytestring or byte
string. Many textual operations are possible on objects of either type: since these
types are immutable, methods mostly create and return a new string unless return‐
ing the subject string unchanged. A mutable sequence of bytes can be represented as
a bytearray, briefly introduced in “bytearray objects” on page 47.

This chapter first covers the methods available on these three types, then discusses
the string module and string formatting (including formatted string literals), fol‐
lowed by the textwrap, pprint, and reprlib modules. Issues related specifically to
Unicode are covered at the end of the chapter.

Methods of String Objects
str, bytes, and bytearray objects are sequences, as covered in “Strings” on page 44;
of these, only bytearray objects are mutable. All immutable-sequence operations
(repetition, concatenation, indexing, and slicing) apply to instances of all three
types, returning a new object of the same type. Unless otherwise specified in
Table 9-1, methods are present on objects of all three types. Most methods of str,
bytes, and bytearray objects return values of the same type, or are specifically
intended to convert among representations.

Terms such as “letters,” “whitespace,” and so on refer to the corresponding attributes
of the string module, covered in the following section. Although bytearray
objects are mutable, their methods returning a bytearray result do not mutate
the object but instead return a newly created bytearray, even when the result is the
same as the subject string.
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For brevity, the term bytes in the following table refers to both bytes and byte
array objects. Take care when mixing these two types, however: while they are
generally interoperable, the type of the result usually depends on the order of the
operands.

In Table 9-1, since integer values in Python can be arbitrarily large, for conciseness
we use sys.maxsize for integer default values to mean, in practice, “integer of
unlimited magnitude.”

Table 9-1. Significant str and bytes methods

capitalize s.capitalize()

Returns a copy of s where the first character, if a letter, is uppercase, and all other
letters, if any, are lowercase.

 

casefold s.casefold()

str only. Returns a string processed by the algorithm described in section 3.13
of the Unicode standard. This is similar to s.lower (described later in this table)
but also takes into account equivalences such as that between the German 'ß' and
'ss', and is thus better for case-insensitive matching when working with text that
can include more than just the basic ASCII characters.

 

center s.center(n, fillchar=' ', /)
Returns a string of length max(len(s), n), with a copy of s in the central part,
surrounded by equal numbers of copies of character fillchar on both sides. The
default fillchar is a space. For example, 'ciao'.center(2) is 'ciao' and
'x'.center(4, '_') is '_x__'.

 

count s.count(sub, start=0, end=sys.maxsize, /)
Returns the number of nonoverlapping occurrences of substring sub in
s[start:end].

 

decode s.decode(encoding='utf-8', errors='strict')

bytes only. Returns a str object decoded from the bytes s according to the
given encoding. errors specifies how to handle decoding errors: 'strict'
causes errors to raise UnicodeError exceptions; 'ignore' ignores the
malformed values, while 'replace' replaces them with question marks (see
“Unicode” on page 301 for details). Other values can be registered via codecs.reg
ister_error, covered in Table 9-10.

 

encode s.encode(encoding='utf-8', errors='strict')

str only. Returns a bytes object obtained from str s with the given encoding
and error handling. See “Unicode” on page 301 for more details.

 

endswith s.endswith(suffix, start=0, end=sys.maxsize, /)
Returns True when s[start:end] ends with the string suffix; otherwise,
returns False. suffix can be a tuple of strings, in which case endswith returns
True when s[start:end] ends with any one of them.

 

expandtabs s.expandtabs(tabsize=8)

Returns a copy of s where each tab character is changed into one or more spaces,
with tab stops every tabsize characters.
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find s.find(sub, start=0, end=sys.maxsize, /)
Returns the lowest index in s where substring sub is found, such
that sub is entirely contained in s[start:end]. For example, 'bana
na'.find('na') returns 2, as does 'banana'.find('na', 1), while
'banana'.find('na', 3) returns 4, as does 'banana'.find('na',
-2). find returns -1 when sub is not found.

 

format s.format(*args, **kwargs)
str only. Formats the positional and named arguments according to formatting
instructions contained in the string s. See “String Formatting” on page 287 for
further details.

 

format_map s.format_map(mapping)
str only. Formats the mapping argument according to formatting instructions
contained in the string s. Equivalent to s.format(**mapping) but uses the
mapping directly. See “String Formatting” on page 287 for formatting details.

 

index s.index(sub, start=0, end=sys.maxsize, /)
Like find, but raises ValueError when sub is not found.

 

isalnum s.isalnum()

Returns True when len(s) is greater than 0 and all characters in s are Unicode
letters or digits. When s is empty, or when at least one character of s is neither a
letter nor a digit, isalnum returns False.

 

isalpha s.isalpha()

Returns True when len(s) is greater than 0 and all characters in s are letters.
When s is empty, or when at least one character of s is not a letter, isalpha
returns False.

 

isascii s.isascii()

Returns True when the string is empty or all characters in the string are ASCII, or
False otherwise. ASCII characters have codepoints in the range U+0000–U+007F.

 

isdecimal s.isdecimal()

str only. Returns True when len(s) is greater than 0 and all characters in s
can be used to form decimal-radix numbers. This includes Unicode characters defined
as Arabic digits.a

 

isdigit s.isdigit()

Returns True when len(s) is greater than 0 and all characters in s are Unicode
digits. When s is empty, or when at least one character of s is not a Unicode digit,
isdigit returns False.

 

isidentifier s.isidentifier()

str only. Returns True when s is a valid identifier according to the Python
language’s definition; keywords also satisfy the definition, so, for example,
'class'.isidentifier() returns True.

 

islower s.islower()

Returns True when all letters in s are lowercase. When s contains no letters, or
when at least one letter of s is uppercase, islower returns False.
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isnumeric s.isnumeric()

str only. Similar to s.isdigit(), but uses a broader definition of numeric
characters that includes all characters defined as numeric in the Unicode standard
(such as fractions).

 

isprintable s.isprintable()

str only. Returns True when all characters in s are spaces ('\x20') or are
defined in the Unicode standard as printable. Because the null string contains no
unprintable characters, ''.isprintable() returns True.

 

isspace s.isspace()

Returns True when len(s) is greater than 0 and all characters in s are
whitespace. When s is empty, or when at least one character of s is not whitespace,
isspace returns False.

 

istitle s.istitle()

Returns True when the string s is titlecased: i.e., with a capital letter at the start
of every contiguous sequence of letters, and all other letters lowercase (e.g., 'King
Lear'.istitle() returns True). When s contains no letters, or when at least
one letter of s violates the title case condition, istitle returns False (e.g.,
'1900'.istitle() and 'Troilus and Cressida'.istitle() return
False).

 

isupper s.isupper()

Returns True when all letters in s are uppercase. When s contains no letters, or
when at least one letter of s is lowercase, isupper returns False.

 

join s.join(seq, /)

Returns the string obtained by concatenating the items of seq separated by copies
of s (e.g., ''.join(str(x) for x in range(7)) returns '0123456' and
'x'.join('aeiou') returns 'axexixoxu').

 

ljust s.ljust(n, fillchar=' ', /)
Returns a string of length max(len(s),n), with a copy of s at the start, followed
by zero or more trailing copies of character fillchar.

 

lower s.lower()

Returns a copy of s with all letters, if any, converted to lowercase.
 

lstrip s.lstrip(x=string.whitespace, /)

Returns a copy of s after removing any leading characters found in string x. For
example, 'banana'.lstrip('ab') returns 'nana'.

 

removeprefix s.removeprefix(prefix, /)

3.9+  When s begins with prefix, returns the remainder of s; otherwise, returns
s.

 

removesuffix s.removesuffix(suffix, /)

3.9+  When s ends with suffix, returns the rest of s; otherwise, returns s.
 

replace s.replace(old, new, count=sys.maxsize, /)
Returns a copy of s with the first count (or fewer, if there are fewer)
nonoverlapping occurrences of substring old replaced by string new (e.g., 'bana
na'.replace('a', 'e', 2) returns 'benena').
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rfind s.rfind(sub, start=0, end=sys.maxsize, /)
Returns the highest index in s where substring sub is found, such that sub is
entirely contained in s[start:end]. rfind returns -1 if sub is not found.

 

rindex s.rindex(sub, start=0, end=sys.maxsize, /)
Like rfind, but raises ValueError if sub is not found.

 

rjust s.rjust(n, fillchar=' ', /)
Returns a string of length max(len(s),n), with a copy of s at the end, preceded
by zero or more leading copies of character fillchar.

 

rstrip s.rstrip(x=string.whitespace, /)

Returns a copy of s, removing trailing characters that are found in string x. For
example, 'banana'.rstrip('ab') returns 'banan'.

 

split s.split(sep=None, maxsplit=sys.maxsize)
Returns a list L of up to maxsplit+1 strings. Each item of L is a “word” from
s, where string sep separates words. When s has more than maxsplit words,
the last item of L is the substring of s that follows the first maxsplit words.
When sep is None, any string of whitespace separates words (e.g., 'four score
and seven years'.split(None, 3) returns ['four', 'score',
'and', 'seven years']).
Note the difference between splitting on None (any run of whitespace characters
is a separator) and splitting on ' ' (where each single space character, not other
whitespace such as tabs and newlines, and not strings of spaces, is a separator). For
example:

>>> x = 'a  bB'  # two spaces between a and bB
>>> x.split()    # or x.split(None)
['a', 'bB']

>>> x.split(' ')
['a', '', 'bB']

In the first case, the two-spaces string in the middle is a single separator; in the
second case, each single space is a separator, so that there is an empty string
between the two spaces.

 

splitlines s.splitlines(keepends=False)

Like s.split('\n'). When keepends is True, however, the trailing '\n' is
included in each item of the resulting list (except the last one, if s does not end with
'\n').

 

startswith s.startswith(prefix, start=0, end=sys.maxsize, /)
Returns True when s[start:end] starts with string prefix; otherwise,
returns False. prefix can be a tuple of strings, in which case startswith
returns True when s[start:end] starts with any one of them.

 

strip s.strip(x=string.whitespace, /)

Returns a copy of s, removing both leading and trailing characters that are found in
string x. For example, 'banana'.strip('ab') returns 'nan'.

 

swapcase s.swapcase()

Returns a copy of s with all uppercase letters converted to lowercase and vice versa.
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title s.title()

Returns a copy of s transformed to title case: a capital letter at the start of each
contiguous sequence of letters, with all other letters (if any) lowercase.

 

translate s.translate(table, /, delete=b'')

Returns a copy of s, where characters found in table are translated or deleted.
When s is a str, you cannot pass the argument delete; table is a dict whose
keys are Unicode ordinals and whose values are Unicode ordinals, Unicode strings, or
None (to delete the corresponding character). For example:

tbl = {ord('a'):None, ord('n'):'ze'}
print('banana'.translate(tbl))  # prints: 'bzeze'

When s is a bytes, table is a bytes object of length 256; the result of
s.translate(t, b) is a bytes object with each item b of s omitted if b is one
of the items of delete, and otherwise changed to t[ord(b)].
bytes and str each have a class method named maketrans which you can use
to build tables suitable for the respective translate methods.

 

upper s.upper()

Returns a copy of s with all letters, if any, converted to uppercase.
 

This does not include punctuation marks used as a radix, such as a dot (.) or comma (,).

The string Module
The string module supplies several useful string attributes, listed in Table 9-2.

Table 9-2. Predefined constants in the string module

ascii_letters The string ascii_lowercase+ascii_uppercase (the following two
constants, concatenated)

ascii_lowercase The string 'abcdefghijklmnopqrstuvwxyz'

ascii_uppercase The string 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

digits The string '0123456789'

hexdigits The string '0123456789abcdefABCDEF'

octdigits The string '01234567'

punctuation The string '!"#$%&\'()*+,-./:;<=>?@[\]^_'{|}~' (i.e., all ASCII
characters that are deemed punctuation characters in the C locale; does not depend
on which locale is active)

printable The string of those ASCII characters that are deemed printable (i.e., digits, letters,
punctuation, and whitespace)

whitespace A string containing all ASCII characters that are deemed whitespace: at least
space, tab, linefeed, and carriage return, but more characters (e.g., certain control
characters) may be present, depending on the active locale

You should not rebind these attributes; the effects of doing so are undefined, since
other parts of the Python library may rely on them.
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The module string also supplies the class Formatter, covered in the following
section.

String Formatting
Python provides a flexible mechanism for formatting strings (but not bytestrings:
for those, see “Legacy String Formatting with %” on page 297). A format string is
simply a string containing replacement fields enclosed in braces ({}), made up of a
value part, an optional conversion part, and an optional format specifier:

{value-part[!conversion-part][:format-specifier]}

The value part differs depending on the string type:

• For formatted string literals, or f-strings, the value part is evaluated as a Python•
expression (see the following section for details); expressions cannot end in an
exclamation mark.

• For other strings, the value part selects an argument, or an element of an•
argument, to the format method.

The optional conversion part is an exclamation mark (!) followed by one of the
letters s, r, or a (described in “Value Conversion” on page 290).

The optional format specifier begins with a colon (:) and determines how the
converted value is rendered for interpolation in the format string in place of the
original replacement field.

Formatted String Literals (F-Strings)
This feature allows you to insert values to be interpolated inline surrounded by
braces. To create a formatted string literal, put an f before the opening quote mark
(this is why they’re called f-strings) of your string, e.g., f'{value}':

>>> name = 'Dawn'
>>> print(f'{name!r} is {len(name)} characters long')

'Dawn' is 4 characters long

You can use nested braces to specify components of formatting expressions:

>>> for width in 8, 11:
...     for precision in 2, 3, 4, 5:
...         print(f'{2.7182818284:{width}.{precision}}')
...

     2.7
    2.72
   2.718
  2.7183
        2.7
       2.72
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      2.718
     2.7183

We have tried to update most of the examples in the book to use f-strings, since
they are the most compact way to format strings in Python. Do remember, though,
that these string literals are not constants—they evaluate each time a statement
containing them is executed, which involves runtime overhead.

The values to be formatted inside formatted string literals are already inside quotes:
therefore, take care to avoid syntax errors when using value-part expressions that
themselves contain string quotes. With four different string quotes, plus the ability
to use escape sequences, most things are possible, though admittedly readability can
suffer.

F-Strings Don’t Help Internationalization
Given a format whose contents will have to accommodate
multiple languages, it’s much better to use the format method,
since the values to be interpolated can then be computed
independently before submitting them for formatting.

Debug printing with f-strings
3.8+  As a convenience for debugging, the last nonblank character of the value

expression in a formatted string literal can be followed by an equals sign (=),
optionally surrounded by spaces. In this case the text of the expression itself and the
equals sign, including any leading and trailing spaces, are output before the value.
In the presence of the equals sign, when no format is specified, Python uses the
repr() of the value as output; otherwise, Python uses the str() of the value unless
an !r value conversion is specified:

>>> a = '*-'
>>> s = 12
>>> f'{a*s=}'

"a*s='*-*-*-*-*-*-*-*-*-*-*-*-'"

>>> f'{a*s = :30}'

'a*s = *-*-*-*-*-*-*-*-*-*-*-*-      '

Note that this form is only available in formatted string literals.

Here’s a simple f-string example. Notice that all text, including any whitespace,
surrounding the replacement fields is copied literally into the result:

>>> n = 10
>>> s = ('zero', 'one', 'two', 'three')
>>> i = 2
>>> f'start {"-"*n} : {s[i]} end'

'start ---------- : two end'
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Formatting Using format Calls
The same formatting operations available in formatted string literals can also be
performed by a call to the string’s format method. In these cases, rather than the
value appearing inline, the replacement field begins with a value part that selects an
argument of that call. You can specify both positional and named arguments. Here’s
an example of a simple format method call:

>>> name = 'Dawn'
>>> print('{name} is {n} characters long'
... .format(name=name, n=len(name)))

'Dawn' is 4 characters long

>>> "This is a {1}, {0}, type of {type}".format("green", "large", 
...                                             type="vase")

'This is a large, green, type of vase'

For simplicity, none of the replacement fields in this example contain a conversion
part or a format specifier.

As mentioned previously, the argument selection mechanism when using the
format method can handle both positional and named arguments. The simplest
replacement field is the empty pair of braces ({}), representing an automatic posi‐
tional argument specifier. Each such replacement field automatically refers to the
value of the next positional argument to format:

>>> 'First: {} second: {}'.format(1, 'two')

'First: 1 second: two'

To repeatedly select an argument, or use it out of order, use numbered replacement
fields to specify the argument’s position in the list of arguments (counting from
zero):

>>> 'Second: {1}, first: {0}'.format(42, 'two')

'Second: two, first: 42'

You cannot mix automatic and numbered replacement fields: it’s an either-or
choice.

For named arguments, use argument names. If desired, you can mix them with
(automatic or numbered) positional arguments:

>>> 'a: {a}, 1st: {}, 2nd: {}, a again: {a}'.format(1, 'two', a=3)

'a: 3, 1st: 1, 2nd: two, a again: 3'

>>> 'a: {a} first:{0} second: {1} first: {0}'.format(1, 'two', a=3)

'a: 3 first:1 second: two first: 1'
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If an argument is a sequence, you can use numeric indices to select a specific
element of the argument as the value to be formatted. This applies to both positional
(automatic or numbered) and named arguments:

>>> 'p0[1]: {[1]} p1[0]: {[0]}'.format(('zero', 'one'),
...                                    ('two', 'three'))

'p0[1]: one p1[0]: two'

>>> 'p1[0]: {1[0]} p0[1]: {0[1]}'.format(('zero', 'one'),
...                                      ('two', 'three'))

'p1[0]: two p0[1]: one'

>>> '{} {} {a[2]}'.format(1, 2, a=(5, 4, 3))

'1 2 3'

If an argument is a composite object, you can select its individual attributes as
values to be formatted by applying attribute-access dot notation to the argument
selector. Here is an example using complex numbers, which have real and imag
attributes that hold the real and imaginary parts, respectively:

>>> 'First r: {.real} Second i: {a.imag}'.format(1+2j, a=3+4j)

'First r: 1.0 Second i: 4.0'

Indexing and attribute-selection operations can be used multiple times, if required.

Value Conversion
You may apply a default conversion to the value via one of its methods. You indicate
this by following any selector with !s to apply the object’s __str__ method, !r for
its __repr__ method, or !a for the ascii built-in:

>>> "String: {0!s} Repr: {0!r} ASCII: {0!a}".format("banana 😀")

"String: banana 😀 Repr: 'banana 😀' ASCII: 'banana\\U0001f600'"

When a conversion is present, the conversion is applied to the value before it is
formatted. Since the same value is required multiple times, in this example a format
call makes much more sense than a formatted string literal, which would require the
value to be repeated three times.

Value Formatting: The Format Specifier
The final (optional) portion of the replacement field, known as the format specifier
and introduced by a colon (:), provides any further required formatting of the
(possibly converted) value. The absence of a colon in the replacement field means
that the converted value (after representation as a string if not already in string
form) is used with no further formatting. If present, a format specifier should be
provided conforming to the syntax:

[[fill]align][sign][z][#][0][width][grouping_option][.precision][type]
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Details are provided in the following subsections.

Fill and alignment
The default fill character is the space. To use an alternative fill character (which
cannot be an opening or closing brace), begin the format specifier with the fill
character. The fill character, if any, should be followed by an alignment indicator (see
Table 9-3).

Table 9-3. Alignment indicators

Character Significance as alignment indicator

'<' Align value on left of field

'>' Align value on right of field

'^' Align value at center of field

'=' Only for numeric types: add fill characters between the sign and the first digit of the numeric value

If the first and second characters are both valid alignment indicators, then the first is
used as the fill character and the second is used to set the alignment.

When no alignment is specified, values other than numbers are left-aligned. Unless
a field width is specified later in the format specifier (see “Field width” on page 293),
no fill characters are added, whatever the fill and alignment may be:

>>> s = 'a string'
>>> f'{s:>12s}'

'    a string'

>>> f'{s:>>12s}'

'>>>>a string'

>>> f'{s:><12s}'

'a string>>>>'

Sign indication
For numeric values only, you can indicate how positive and negative numbers are
differentiated by including a sign indicator (see Table 9-4).

Table 9-4. Sign indicators

Character Significance as sign indicator

'+' Insert + as sign for positive numbers; - as sign for negative numbers

'-' Insert - as sign for negative numbers; do not insert any sign for positive numbers (default behavior
if no sign indicator is included)

' ' Insert a space character as sign for positive numbers; - as sign for negative numbers
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The space is the default sign indication. If a fill is specified, it will appear between
the sign, if any, and the numerical value; place the sign indicator after the = to avoid
it being used as a fill character:

>>> n = -1234
>>> f'{n:12}'    # 12 spaces before the number

'       -1234'

>>> f'{-n:+12}'  # - to flip n's sign, + as sign indicator 

'       +1234'

>>> f'{n:+=12}'  # + as fill character between sign and number

'-+++++++1234'

# + as sign indicator, spaces fill between sign and number
>>> f'{n:=+12}'

'-       1234'

# * as fill between sign and number, + as sign indicator
>>> f'{n:*=+12}'

'-*******1234'

Zero normalization (z)
3.11+  Some numeric formats are capable of representing a negative zero, which is

often a surprising and unwelcome result. Such negative zeros will be normalized to
positive zeros when a z character appears in this position in the format specifier:

>>> x = -0.001
>>> f'{x:.1f}'

'-0.0'

>>> f'{x:z.1f}'

'0.0'

>>> f'{x:+z.1f}'

'+0.0'

Radix indicator (#)
For numeric integer formats only, you can include a radix indicator, the # charac‐
ter. If present, this indicates that the digits of binary-formatted numbers should
be preceded by '0b', those of octal-formatted numbers by '0o', and those of
hexadecimal-formatted numbers by '0x'. For example, '{23:x}' is '17', while
'{23:#x}' is '0x17', clearly identifying the value as hexadecimal.
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Leading zero indicator (0)
For numeric types only, when the field width starts with a zero, the numeric value
will be padded with leading zeros rather than leading spaces:

>>> f"{-3.1314:12.2f}"

'       -3.13'

>>> f"{-3.1314:012.2f}"

'-00000003.13'

Field width
You can specify the width of the field to be printed. If the width specified is less than
the length of the value, the length of the value is used (but for string values, see the
upcoming section “Precision specification”). If alignment is not specified, the value
is left justified (except for numbers, which are right justified):

>>> s = 'a string'
>>> f'{s:^12s}'

'  a string  '

>>> f'{s:.>12s}'

'....a string'

Using nested braces, when calling the format method, the field width can be a
format argument too:

>>> '{:.>{}s}'.format(s, 20)

'............a string'

See “Nested Format Specifications” on page 295 for a fuller discussion of this
technique.

Grouping option
For numeric values in the decimal (default) format type, you can insert either a
comma (,) or an underscore (_) to request that each group of three digits (digit
group) in the integer portion of the result be separated by that character. For
example:

>>> f'{12345678.9:,}'

'12,345,678.9'

This behavior ignores system locale; for a locale-aware use of digit grouping and
decimal point character, see format type n in Table 9-5.
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Precision specification
The precision (e.g., .2) has different meanings for different format types (see the
following subsection for details), with .6 as the default for most numeric formats.
For the f and F format types, it specifies the number of digits following the decimal
point to which the value should be rounded in formatting; for the g and G format
types, it specifies the number of significant digits to which the value should be
rounded; for nonnumeric values, it specifies truncation of the value to its leftmost
characters before formatting. For example:

>>> x = 1.12345
>>> f'as f: {x:.4f}'  # rounds to 4 digits after decimal point

'as f: 1.1235'

>>> f'as g: {x:.4g}'  # rounds to 4 significant digits

'as g: 1.123'

>>> f'as s: {"1234567890":.6s}'  # string truncated to 6 characters

'as s: 123456'

Format type
The format specification ends with an optional format type, which determines how
the value gets represented in the given width and at the given precision. In the
absence of an explicit format type, the value being formatted determines the default
format type.

The s format type is always used to format Unicode strings.

Integer numbers have a range of acceptable format types, listed in Table 9-5.

Table 9-5. Integer format types

Format type Formatting description

b Binary format—a series of ones and zeros

c The Unicode character whose ordinal value is the formatted value

d Decimal (the default format type)

n Decimal format, with locale-specific separators (commas in the UK and US) when system locale
is set

o Octal format—a series of octal digits

x or X Hexadecimal format—a series of hexadecimal digits, with the letters, respectively, in lower- or
uppercase

Floating-point numbers have a different set of format types, shown in Table 9-6.
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Table 9-6. Floating-point format types

Format type Formatting description

e or E Exponential format—scientific notation, with an integer part between one and nine, using e or
E just before the exponent

f or F Fixed-point format with infinities (inf) and nonnumbers (nan) in lower- or uppercase

g or G General format (the default format type)—uses a fixed-point format when possible, otherwise
exponential format; uses lower- or uppercase representations for e, inf, and nan, depending
on the case of the format type

n Like general format, but uses locale-specific separators, when system locale is set, for groups of
three digits and decimal points

% Percentage format—multiplies the value by 100 and formats it as fixed-point followed by %

When no format type is specified, a float uses the g format, with at least one digit
after the decimal point and a default precision of 12.

The following code takes a list of numbers and displays each right justified in a
field width of nine characters; it specifies that each number’s sign will always display,
adds a comma between each group of three digits, and rounds each number to
exactly two digits after the decimal point, converting ints to floats as needed:

>>> for num in [3.1415, -42, 1024.0]:
...     f'{num:>+9,.2f}' 
...

'    +3.14'
'   -42.00'
'+1,024.00'

Nested Format Specifications
In some cases you’ll want to use expression values to help determine the precise
format used: you can use nested formatting to achieve this. For example, to format a
string in a field four characters wider than the string itself, you can pass a value for
the width to format, as in:

>>> s = 'a string'
>>> '{0:>{1}s}'.format(s, len(s)+4)

'    a string'

>>> '{0:_^{1}s}'.format(s, len(s)+4)

'__a string__'

With some care, you can use width specification and nested formatting to print a
sequence of tuples into well-aligned columns. For example:

def columnar_strings(str_seq, widths):
    for cols in str_seq:
        row = [f'{c:{w}.{w}s}'
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               for c, w in zip(cols, widths)]
        print(' '.join(row))

Given this function, the following code:

c = [
        'four score and'.split(),
        'seven years ago'.split(),
        'our forefathers brought'.split(),
        'forth on this'.split(),
    ]

columnar_strings(c, (8, 8, 8))

prints:

four     score    and
seven    years    ago
our      forefath brought
forth    on       this

Formatting of User-Coded Classes
Values are ultimately formatted by a call to their __format__ method with the
format specifier as an argument. Built-in types either implement their own method
or inherit from object, whose rather unhelpful format method only accepts an
empty string as an argument:

>>> object().__format__('')

'<object object at 0x110045070>'

>>> import math
>>> math.pi.__format__('18.6')

'           3.14159'

You can use this knowledge to implement an entirely different formatting mini-
language of your own, should you so choose. The following simple example demon‐
strates the passing of format specifications and the return of a (constant) formatted
string result. The interpretation of the format specification is under your control,
and you may choose to implement whatever formatting notation you choose:

>>> class S:
...     def __init__(self, value):
...         self.value = value
...     def __format__(self, fstr):
...         match fstr:
...             case 'U':
...                 return self.value.upper()
...             case 'L':
...                 return self.value.lower()
...             case 'T':
...                 return self.value.title()
...             case _:
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1 In this book we cover only a subset of this legacy feature, the format specifier, that you must
know about to properly use the logging module (discussed in “The logging module” on page
217).

...                 return ValueError(f'Unrecognized format code'

...                                   f' {fstr!r}')
>>> my_s = S('random string')
>>> f'{my_s:L}, {my_s:U}, {my_s:T}'

'random string, RANDOM STRING, Random String'

The return value of the __format__ method is substituted for the replacement field
in the formatted output, allowing any desired interpretation of the format string.

This technique is used in the datetime module, to allow the use of strftime-style
format strings. Consequently, the following all give the same result:

>>> import datetime
>>> d = datetime.datetime.now()
>>> d.__format__('%d/%m/%y')

'10/04/22'

>>> '{:%d/%m/%y}'.format(d)

'10/04/22'

>>> f'{d:%d/%m/%y}'

'10/04/22'

To help you format your objects more easily, the string module provides a Format
ter class with many helpful methods for handling formatting tasks. See the online
docs for details.

Legacy String Formatting with %
A legacy form of string formatting expression in Python has the syntax:

format % values

where format is a str, bytes, or bytearray object containing format specifiers,
and values are the values to format, usually as a tuple.1 Unlike Python’s newer
formatting capabilities, you can also use % formatting with bytes and bytearray
objects, not just str ones.

The equivalent use in logging would be, for example:

logging.info(format, *values)

with the values coming as positional arguments after the format.

The legacy string-formatting approach has roughly the same set of features as the C
language’s printf and operates in a similar way. Each format specifier is a substring
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of format that starts with a percent sign (%) and ends with one of the conversion
characters shown in Table 9-7.

Table 9-7. String-formatting conversion characters

Character Output format Notes

d, i Signed decimal integer Value must be a number

u Unsigned decimal integer Value must be a number

o Unsigned octal integer Value must be a number

x Unsigned hexadecimal integer (lowercase letters) Value must be a number

X Unsigned hexadecimal integer (uppercase
letters)

Value must be a number

e Floating-point value in exponential form
(lowercase e for exponent)

Value must be a number

E Floating-point value in exponential form
(uppercase E for exponent)

Value must be a number

f, F Floating-point value in decimal form Value must be a number

g, G Like e or E when exp is >=4 or < precision;
otherwise, like f or F

exp is the exponent of the number being
converted

a String Converts any value with ascii

r String Converts any value with repr

s String Converts any value with str

% Literal % character Consumes no value

The a, r, and s conversion characters are the ones most often used with the logging
module. Between the % and the conversion character, you can specify a number of
optional modifiers, as we’ll discuss shortly.

What is logged with a formatting expression is format, where each format specifier
is replaced by the corresponding item of values converted to a string according to
the specifier. Here are some simple examples:

import logging
logging.getLogger().setLevel(logging.INFO)
x = 42
y = 3.14
z = 'george'
logging.info('result = %d', x)        # logs: result = 42
logging.info('answers: %d %f', x, y)  # logs: answers: 42 3.140000
logging.info('hello %s', z)           # logs: hello george
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Format Specifier Syntax
Each format specifier corresponds to an item in values by position. A format
specifier can include modifiers to control how the corresponding item in values is
converted to a string. The components of a format specifier, in order, are:

• The mandatory leading % character that marks the start of the specifier•
• Zero or more optional conversion flags:•

'#'

The conversion uses an alternate form (if any exists for its type).

'0'

The conversion is zero padded.

'-'

The conversion is left justified.

' '

Negative numbers are signed, and a space is placed before a positive
number.

'+'

A numeric sign (+ or -) is placed before any numeric conversion.

• An optional minimum width of the conversion: one or more digits, or an•
asterisk (*), meaning that the width is taken from the next item in values

• An optional precision for the conversion: a dot (.) followed by zero or more•
digits or by a *, meaning that the precision is taken from the next item in
values

• A mandatory conversion type from Table 9-7•
There must be exactly as many values as format has specifiers (plus one extra for
each width or precision given by *). When a width or precision is given by *, the *
consumes one item in values, which must be an integer and is taken as the number
of characters to use as the width or precision of that conversion.
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Always Use %r (or %a) to Log Possibly Erroneous Strings
Most often, the format specifiers in your format string will
all be %s; occasionally, you’ll want to ensure horizontal align‐
ment of the output (for example, in a right-justified, maybe
truncated space of exactly six characters, in which case you’d
use %6.6s). However, there is an important special case for %r
or %a.
When you’re logging a string value that might be erroneous
(for example, the name of a file that is not found), don’t use
%s: when the error is that the string has spurious leading or
trailing spaces, or contains some nonprinting characters such
as \b, %s can make this hard for you to spot by studying the
logs. Use %r or %a instead, so that all characters are clearly
shown, possibly via escape sequences. (For f-strings, the corre‐
sponding syntax would be {variable!r} or {variable!a}).

Text Wrapping and Filling
The textwrap module supplies a class and a few functions to format a string by
breaking it into lines of a given maximum length. To fine-tune the filling and
wrapping, you can instantiate the TextWrapper class supplied by textwrap and
apply detailed control. Most of the time, however, one of the functions exposed by
textwrap suffices; the most commonly used functions are covered in Table 9-8.

Table 9-8. Useful functions of the textwrap module

dedent dedent(text)

Takes a multiline string and returns a copy in which all lines have had the same amount of leading
whitespace removed, so that some lines have no leading whitespace.

fill fill(text, width=70)

Returns a single multiline string equal to '\n'.join(wrap(text, width)).

wrap wrap(text, width=70)

Returns a list of strings (without terminating newlines), each no longer than width characters.
wrap also supports other named arguments (equivalent to attributes of instances of class
TextWrapper); for such advanced uses, see the online docs.

The pprint Module
The pprint module pretty-prints data structures, with formatting that strives to
be more readable than that supplied by the built-in function repr (covered in
Table 8-2). To fine-tune the formatting, you can instantiate the PrettyPrinter class
supplied by pprint and apply detailed control, helped by auxiliary functions also
supplied by pprint. Most of the time, however, one of the functions exposed by
pprint suffices (see Table 9-9).
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Table 9-9. Useful functions of the pprint module

pformat pformat(object)

Returns a string representing the pretty-printing of object.

pp,
pprint

pp(object, stream=sys.stdout),
pprint(object, stream=sys.stdout)

Outputs the pretty-printing of object to open-for-writing file object stream, with a
terminating newline.
The following statements do exactly the same thing:

print(pprint.pformat(x))
pprint.pprint(x)

Either of these constructs is roughly the same as print(x) in many cases—for example,
for a container that can be displayed within a single line. However, with something like
x=list(range(30)), print(x) displays x in 2 lines, breaking at an arbitrary point,
while using the module pprint displays x over 30 lines, one line per item. Use pprint when
you prefer the module’s specific display effects to the ones of normal string representation.
pprint and pp support additional formatting arguments; consult the online docs for details.

The reprlib Module
The reprlib module supplies an alternative to the built-in function repr (covered
in Table 8-2), with limits on length for the representation string. To fine-tune the
length limits, you can instantiate or subclass the Repr class supplied by the reprlib
module and apply detailed control. Most of the time, however, the only function
exposed by the module suffices: repr(obj), which returns a string representing obj,
with sensible limits on length.

Unicode
To convert bytestrings into Unicode strings, use the decode method of bytestrings
(see Table 9-1). The conversion must always be explicit, and is performed using
an auxiliary object known as a codec (short for coder–decoder). A codec can also
convert Unicode strings to bytestrings using the encode method of strings. To
identify a codec, pass the codec name to decode or encode. When you pass no codec
name, Python uses a default encoding, normally 'utf-8'.

Every conversion has a parameter errors, a string specifying how conversion errors
are to be handled. Sensibly, the default is 'strict', meaning any error raises
an exception. When errors is 'replace', the conversion replaces each character
causing errors with '?' in a bytestring result, or with u'\ufffd' in a Unicode result.
When errors is 'ignore', the conversion silently skips characters causing errors.
When errors is 'xmlcharrefreplace', the conversion replaces each character
causing errors with the XML character reference representation of that character
in the result. You may code your own function to implement a conversion error
handling strategy and register it under an appropriate name by calling codecs.reg
ister_error, covered in the table in the following section.
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The codecs Module
The mapping of codec names to codec objects is handled by the codecs module.
This module also lets you develop your own codec objects and register them so that
they can be looked up by name, just like built-in codecs. It provides a function that
lets you look up any codec explicitly as well, obtaining the functions the codec uses
for encoding and decoding, as well as factory functions to wrap file-like objects.
Such advanced facilities are rarely used, and we do not cover them in this book.

The codecs module, together with the encodings package of the standard Python
library, supplies built-in codecs useful to Python developers dealing with interna‐
tionalization issues. Python comes with over 100 codecs; you can find a complete
list, with a brief explanation of each, in the online docs. It’s not good practice
to install a codec as the site-wide default in the module sitecustomize; rather,
the preferred usage is to always specify the codec by name whenever converting
between byte and Unicode strings. Python’s default Unicode encoding is 'utf-8'.

The codecs module supplies codecs implemented in Python for most ISO 8859
encodings, with codec names from 'iso8859-1' to 'iso8859-15'. A popular codec
in Western Europe is 'latin-1', a fast, built-in implementation of the ISO 8859-1
encoding that offers a one-byte-per-character encoding of special characters found
in Western European languages (beware that it lacks the Euro currency character
'€'; however, if you need that, use 'iso8859-15'). On Windows systems only,
the codec named 'mbcs' wraps the platform’s multibyte character set conversion
procedures. The codecs module also supplies various code pages with names from
'cp037' to 'cp1258', and Unicode standard encodings 'utf-8' (likely to be most
often the best choice, thus recommended, and the default) and 'utf-16' (which
has specific big-endian and little-endian variants: 'utf-16-be' and 'utf-16-le').
For use with UTF-16, codecs also supplies attributes BOM_BE and BOM_LE, byte-order
marks for big-endian and little-endian machines, respectively, and BOM, the byte-
order mark for the current platform.

In addition to various functions for more advanced uses, as mentioned earlier, the
codecs module supplies a function to let you register your own conversion error
handling functions:

register_

error

register_error(name, func, /)
name must be a string. func must be callable with one argument e that is an instance of
UnicodeDecodeError, and must return a tuple with two items: the Unicode string to
insert in the converted string result, and the index from which to continue the conversion (the
latter is normally e.end). The function can use e.encoding, the name of the codec of
this conversion, and e.object[e.start:e.end], the substring causing the conversion
error.
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The unicodedata Module
The unicodedata module provides easy access to the Unicode Character Database.
Given any Unicode character, you can use functions supplied by unicodedata to
obtain the character’s Unicode category, official name (if any), and other relevant
information. You can also look up the Unicode character (if any) that corresponds
to a given official name:

>>> import unicodedata
>>> unicodedata.name('⚀')

'DIE FACE-1'

>>> unicodedata.name('Ⅵ')

'ROMAN NUMERAL SIX'

>>> int('Ⅵ')

ValueError: invalid literal for int() with base 10: 'Ⅵ'

>>> unicodedata.numeric('Ⅵ')  # use unicodedata to get numeric value

6.0

>>> unicodedata.lookup('RECYCLING SYMBOL FOR TYPE-1 PLASTICS')

'♳'
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10
Regular Expressions

Regular expressions (REs, aka regexps) let programmers specify pattern strings and
perform searches and substitutions. Regular expressions are not easy to master, but
they can be a powerful tool for processing text. Python offers rich regular expres‐
sion functionality through the built-in re module. In this chapter, we thoroughly
present all about Python’s REs.

Regular Expressions and the re Module
A regular expression is built from a string that represents a pattern. With RE
functionality, you can examine any string and check which parts of the string, if any,
match the pattern.

The re module supplies Python’s RE functionality. The compile function builds an
RE object from a pattern string and optional flags. The methods of an RE object
look for matches of the RE in a string or perform substitutions. The re module also
exposes functions equivalent to an RE object’s methods, but with the RE’s pattern
string as the first argument.

This chapter covers the use of REs in Python; it does not teach every minute detail
about how to create RE patterns. For general coverage of REs, we recommend the
book Mastering Regular Expressions, by Jeffrey Friedl (O’Reilly), offering thorough
coverage of REs at both tutorial and advanced levels. Many tutorials and references
on REs can also be found online, including an excellent, detailed tutorial in Python’s
online docs. Sites like Pythex and regex101 let you test your REs interactively. Alter‐
natively, you can start IDLE, the Python REPL, or any other interactive interpreter,
import re, and experiment directly.
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REs and bytes Versus str
REs in Python work in two ways, depending on the type of the object being
matched: when applied to str instances, an RE matches accordingly (e.g., a Unicode
character c is deemed to be “a letter” if 'LETTER' in unicodedata.name(c)); when
applied to bytes instances, an RE matches in terms of ASCII (e.g., a byte c is
deemed to be “a letter” if c in string.ascii_letters). For example:

import re
print(re.findall(r'\w+', 'cittá'))            # prints: ['cittá']
print(re.findall(rb'\w+', 'cittá'.encode()))  # prints: [b'citt']

Pattern String Syntax
The pattern string representing a regular expression follows a specific syntax:

• Alphabetic and numeric characters stand for themselves. An RE whose pattern•
is a string of letters and digits matches the same string.

• Many alphanumeric characters acquire special meaning in a pattern when they•
are preceded by a backslash (\), or escaped.

• Punctuation characters work the other way around: they stand for themselves•
when escaped but have special meaning when unescaped.

• The backslash character is matched by a repeated backslash (\\).•
An RE pattern is a string concatenating one or more pattern elements; each element
in turn is itself an RE pattern. For example, r'a' is a one-element RE pattern that
matches the letter a, and r'ax' is a two-element RE pattern that matches an a
immediately followed by an x.

Since RE patterns often contain backslashes, it’s best to always specify RE patterns
in raw string literal form (covered in “Strings” on page 44). Pattern elements (such
as r'\t', equivalent to the string literal '\\t') do match the corresponding special
characters (in this case, the tab character \t), so you can use a raw string literal even
when you need a literal match for such special characters.

Table 10-1 lists the special elements in RE pattern syntax. The exact meanings
of some pattern elements change when you use optional flags, together with the
pattern string, to build the RE object. The optional flags are covered in “Optional
Flags” on page 311.

Table 10-1. RE pattern syntax

Element Meaning

. Matches any single character except \n (if DOTALL, also matches \n)

^ Matches start of string (if MULTILINE, also matches right after \n)

$ Matches end of string (if MULTILINE, also matches right before \n)

* Matches zero or more cases of the previous RE; greedy (matches as many as possible)
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Element Meaning

+ Matches one or more cases of the previous RE; greedy (matches as many as possible)

? Matches zero or one cases of the previous RE; greedy (matches one if possible)

*?, +?, ?? Nongreedy versions of *, +, and ?, respectively (match as few as possible)

{m} Matches m cases of the previous RE

{m, n} Matches between m and n cases of the previous RE; m or n (or both) may be omitted,
defaulting to m=0 and n=infinity (greedy)

{m, n}? Matches between m and n cases of the previous RE (nongreedy)

[...] Matches any one of a set of characters contained within the brackets

[^...] Matches one character not contained within the brackets after the caret ^

| Matches either the preceding RE or the following RE

(...) Matches the RE within the parentheses and indicates a group

(?aiLmsux) Alternate way to set optional flagsa

(?:...) Like (...) but does not capture the matched characters in a group

(?P<id>...) Like (...) but the group also gets the name <id>

(?P=<id>) Matches whatever was previously matched by the group named <id>

(?#...) Content of parentheses is just a comment; no effect on match

(?=...) Lookahead assertion: matches if RE ... matches what comes next, but does not consume
any part of the string

(?!...) Negative lookahead assertion: matches if RE ... does not match what comes next, and does
not consume any part of the string

(?<=...) Lookbehind assertion: matches if there is a match ending at the current position for RE ...
(... must match a fixed length)

(?<!...) Negative lookbehind assertion: matches if there is no match ending at the current position
for RE ... (... must match a fixed length)

\ number Matches whatever was previously matched by the group numbered number (groups are
automatically numbered left to right, from 1 to 99)

\A Matches an empty string, but only at the start of the whole string

\b Matches an empty string, but only at the start or end of a word (a maximal sequence of
alphanumeric characters; see also \w)

\B Matches an empty string, but not at the start or end of a word

\d Matches one digit, like the set [0-9] (in Unicode mode, many other Unicode characters
also count as “digits” for \d, but not for [0-9])

\D Matches one nondigit character, like the set [^0-9] (in Unicode mode, many other
Unicode characters also count as “digits” for \D, but not for [^0-9])

\N{name} 3.8+  Matches the Unicode character corresponding to name

\s Matches a whitespace character, like the set [\t\n\r\f\v]

\S Matches a nonwhitespace character, like the set [^\t\n\r\f\v]
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Element Meaning

\w Matches one alphanumeric character; unless in Unicode mode, or if LOCALE or UNICODE
is set, \w is like [a-zA-Z0-9_]

\W Matches one nonalphanumeric character, the reverse of \w

\Z Matches an empty string, but only at the end of the whole string

\\ Matches one backslash character

Always place the (?...) construct for setting flags, if any, at the start of the pattern, for
readability; placing it elsewhere raises DeprecationWarning.

Using a \ character followed by an alphabetic character not listed here or in
Table 3-4 raises an re.error exception.

Common Regular Expression Idioms

Always Use r’...’ Syntax for RE Pattern Literals
Use raw string literals for all RE pattern literals, and only for
them. This ensures you’ll never forget to escape a backslash
(\), and improves code readability since it makes your RE
pattern literals stand out.

.* as a substring of a regular expression’s pattern string means “any number of repe‐
titions (zero or more) of any character.” In other words, .* matches any substring
of a target string, including the empty substring. .+ is similar but matches only a
nonempty substring. For example, this:

r'pre.*post'

matches a string containing a substring 'pre' followed by a later substring 'post',
even if the latter is adjacent to the former (e.g., it matches both 'prepost' and
'pre23post'). On the other hand, this:

r'pre.+post'

matches only if 'pre' and 'post' are not adjacent (e.g., it matches 'pre23post' but
does not match 'prepost'). Both patterns also match strings that continue after the
'post'. To constrain a pattern to match only strings that end with 'post', end the
pattern with \Z. For example, this:

r'pre.*post\Z'

matches 'prepost' but not 'preposterous'.

All of these examples are greedy, meaning that they match the substring beginning
with the first occurrence of 'pre' all the way to the last occurrence of 'post'.
When you care about what part of the string you match, you may often want
to specify nongreedy matching, which in our example would match the substring
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beginning with the first occurrence of 'pre' but only up to the first following
occurrence of 'post'.

For example, when the string is 'preposterous and post facto', the greedy
RE pattern r'pre.*post' matches the substring 'preposterous and post'; the
nongreedy variant r'pre.*?post' matches just the substring 'prepost'.

Another frequently used element in RE patterns is \b, which matches a word
boundary. To match the word 'his' only as a whole word and not its occurrences
as a substring in such words as 'this' and 'history', the RE pattern is:

r'\bhis\b'

with word boundaries both before and after. To match the beginning of any word
starting with 'her', such as 'her' itself and 'hermetic', but not words that just
contain 'her' elsewhere, such as 'ether' or 'there', use:

r'\bher'

with a word boundary before, but not after, the relevant string. To match the end
of any word ending with 'its', such as 'its' itself and 'fits', but not words that
contain 'its' elsewhere, such as 'itsy' or 'jujitsu', use:

r'its\b'

with a word boundary after, but not before, the relevant string. To match whole
words thus constrained, rather than just their beginning or end, add a pattern
element \w* to match zero or more word characters. To match any full word
starting with 'her', use:

r'\bher\w*'

To match just the first three letters of any word starting with 'her', but not the
word 'her' itself, use a negative word boundary \B:

r'\bher\B'

To match any full word ending with 'its', including 'its' itself, use:

r'\w*its\b'

Sets of Characters
You denote sets of characters in a pattern by listing the characters within brackets
([]). In addition to listing characters, you can denote a range by giving the first
and last characters of the range separated by a hyphen (-). The last character of
the range is included in the set, differently from other Python ranges. Within a
set, special characters stand for themselves, except \, ], and -, which you must
escape (by preceding them with a backslash) when their position is such that, if
not escaped, they would form part of the set’s syntax. You can denote a class of
characters within a set by escaped-letter notation, such as \d or \S. \b in a set means
a backspace character (chr(8)), not a word boundary. If the first character in the
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set’s pattern, right after the [, is a caret (^), the set is complemented: such a set
matches any character except those that follow ^ in the set pattern notation.

A frequent use of character sets is to match a “word,” using a definition of which
characters can make up a word that differs from \w’s default (letters and digits). To
match a word of one or more characters, each of which can be an ASCII letter, an
apostrophe, or a hyphen, but not a digit (e.g., "Finnegan-O'Hara"), use:

r"[a-zA-Z'\-]+"

Always Escape Hyphens in Character Sets
It’s not strictly necessary to escape the hyphen with a back‐
slash in this case, since its position at the end of the set makes
the situation syntactically unambiguous. However, using the
backslash is advisable because it makes the pattern more read‐
able, by visually distinguishing the hyphen that you want to
have as a character in the set from those used to denote
ranges. (When you want to include a backslash in the charac‐
ter set, of course, you denote that by escaping the backslash
itself: write it as \\.)

Alternatives
A vertical bar (|) in a regular expression pattern, used to specify alternatives, has
low syntactic precedence. Unless parentheses change the grouping, | applies to the
whole pattern on either side, up to the start or end of the pattern, or to another |. A
pattern can be made up of any number of subpatterns joined by |. It is important to
note that an RE of subpatterns joined by | will match the first matching subpattern,
not the longest. A pattern like r'ab|abc' will never match 'abc' because the 'ab'
match gets evaluated first.

Given a list L of words, an RE pattern that matches any one of the words is:

'|'.join(rf'\b{word}\b' for word in L)

Escaping Strings
If the items of L can be more general strings, not just words,
you need to escape each of them with the function re.escape
(covered in Table 10-6), and you may not want the \b word
boundary markers on either side. In this case, you could use
the following RE pattern (sorting the list in reverse order by
length to avoid accidentally “masking” a longer word by a
shorter one):

'|'.join(re.escape(s) for s in sorted(
         L, key=len, reverse=True))
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Groups
A regular expression can contain any number of groups, from none to 99 (or even
more, but only the first 99 groups are fully supported). Parentheses in a pattern
string indicate a group. The element (?P<id>...) also indicates a group and gives
the group a name, id, that can be any Python identifier. All groups, named and
unnamed, are numbered, left to right, 1 to 99; “group 0” means the string that the
whole RE matches.

For any match of the RE with a string, each group matches a substring (possibly
an empty one). When the RE uses |, some groups may not match any substring,
although the RE as a whole does match the string. When a group doesn’t match any
substring, we say that the group does not participate in the match. An empty string
('') is used as the matching substring for any group that does not participate in a
match, except where otherwise indicated later in this chapter. For example, this:

r'(.+)\1+\Z'

matches a string made up of two or more repetitions of any nonempty substring.
The (.+) part of the pattern matches any nonempty substring (any character, one
or more times) and defines a group, thanks to the parentheses. The \1+ part of the
pattern matches one or more repetitions of the group, and \Z anchors the match to
the end of the string.

Optional Flags
The optional flags argument to the function compile is a coded integer built by
bitwise ORing (with Python’s bitwise OR operator, |) one or more of the following
attributes of the module re. Each attribute has both a short name (one uppercase
letter), for convenience, and a long name (an uppercase multiletter identifier),
which is more readable and thus normally preferable:

A or ASCII
Uses ASCII-only characters for \w, \W, \b, \B, \d, and \D; overrides the default
UNICODE flag

I or IGNORECASE
Makes matching case-insensitive

L or LOCALE
Uses the Python LOCALE setting to determine characters for \w, \W, \b, \B, \d,
and \D markers; you can only use this option with bytes patterns

M or MULTILINE
Makes the special characters ^ and $ match at the start and end of each line
(i.e., right after/before a newline), as well as at the start and end of the whole
string (\A and \Z always match only the start and end of the whole string)
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S or DOTALL
Causes the special character . to match any character, including a newline

U or UNICODE
Uses full Unicode to determine characters for \w, \W, \b, \B, \d, and \D mark‐
ers; although retained for backward compatibility, this flag is now the default

X or VERBOSE
Causes whitespace in the pattern to be ignored, except when escaped or in
a character set, and makes a nonescaped # character in the pattern begin a
comment that lasts until the end of the line

Flags can also be specified by inserting a pattern element with one or more of the
letters aiLmsux between (? and ), rather than by the flags argument to the compile
function of the re module (the letters correspond to the uppercase flags given in
the preceding list). Options should always be placed at the start of the pattern; not
doing this produces a deprecation warning. In particular, placement at the start
is mandatory if x (the inline flag character for verbose RE parsing) is among the
options, since x changes the way Python parses the pattern. Options apply to the
whole RE, except that the aLu options can be applied locally within a group.

Using the explicit flags argument is more readable than placing an options element
within the pattern. For example, here are three ways to define equivalent REs with
the compile function. Each of these REs matches the word “hello” in any mix of
upper- and lowercase letters:

import re
r1 = re.compile(r'(?i)hello')
r2 = re.compile(r'hello', re.I)
r3 = re.compile(r'hello', re.IGNORECASE)

The third approach is clearly the most readable, and thus the most maintainable,
though slightly more verbose. The raw string form is not strictly necessary here,
since the patterns do not include backslashes. However, using raw string literals
does no harm, and we recommend you always use them for RE patterns to improve
clarity and readability.

The option re.VERBOSE (or re.X) lets you make patterns more readable and under‐
standable through appropriate use of whitespace and comments. Complicated and
verbose RE patterns are generally best represented by strings that take up more than
one line, and therefore you normally want to use a triple-quoted raw string literal
for such pattern strings. For example, to match a string representing an integer that
may be in octal, hex, or decimal format, you could use use either of the following:

repat_num1 = r'(0o[0-7]*|0x[\da-fA-F]+|[1-9]\d*)\Z'
repat_num2 = r'''(?x)   # (re.VERBOSE) pattern matching int literals
              (  0o [0-7]*       # octal: leading 0o, 0+ octal digits
               | 0x [\da-fA-F]+  # hex: 0x, then 1+ hex digits
               | [1-9] \d*       # decimal: leading non-0, 0+ digits
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              )\Z                # end of string
              '''

The two patterns defined in this example are equivalent, but the second one is made
more readable and understandable by the comments and the free use of whitespace
to visually group portions of the pattern in logical ways.

Match Versus Search
So far, we’ve been using regular expressions to match strings. For example, the RE
with pattern r'box' matches strings such as 'box' and 'boxes', but not 'inbox'.
In other words, an RE match is implicitly anchored at the start of the target string,
as if the RE’s pattern started with \A.

Often you’ll be interested in locating possible matches for an RE anywhere in
the string, without anchoring (e.g., find the r'box' match within such strings as
'inbox', as well as in 'box' and 'boxes'). In this case, the Python term for the
operation is a search, as opposed to a match. For such searches, use the search
method of an RE object instead of the match method, which matches only from the
beginning of the string. For example:

import re
r1 = re.compile(r'box')
if r1.match('inbox'):
    print('match succeeds')
else:
    print('match fails')          # prints: match fails

if r1.search('inbox'):
    print('search succeeds')      # prints: search succeeds
else:
    print('search fails')

If you want to check that the whole string matches, not just its beginning, you can
instead use the method fullmatch. All of these methods are covered in Table 10-3.

Anchoring at String Start and End
\A and \Z are the pattern elements ensuring that a regular expression match is
anchored at the string’s start or end. The elements ^ for start and $ for end are also
used in similar roles. For RE objects that are not flagged as MULTILINE, ^ is the same
as \A, and $ is the same as \Z. For a multiline RE, however, ^ can anchor at the
start of the string or the start of any line (where “lines” are determined based on \n
separator characters). Similarly, with a multiline RE, $ can anchor at the end of the
string or the end of any line. \A and \Z always anchor exclusively at the start and
end of the string, whether the RE object is multiline or not.
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For example, here’s a way to check whether a file has any lines that end with digits:

import re
digatend = re.compile(r'\d$', re.MULTILINE)
with open('afile.txt') as f:
    if digatend.search(f.read()):
        print('some lines end with digits')
    else:
        print('no line ends with digits')

A pattern of r'\d\n' is almost equivalent, but in that case, the search fails if the
very last character of the file is a digit not followed by an end-of-line character.
With the preceding example, the search succeeds if a digit is at the very end of
the file’s contents, as well as in the more usual case where a digit is followed by an
end-of-line character.

Regular Expression Objects
Table 10-2 covers the read-only attributes of a regular expression object r that detail
how r was built (by the function compile of the module re, covered in Table 10-6).

Table 10-2. Attributes of RE objects

flags The flags argument passed to compile, or re.UNICODE when flags is omitted;
also includes any flags specified in the pattern itself using a leading (?...) element

groupindex A dictionary whose keys are group names as defined by elements (?P<id>...); the
corresponding values are the named groups’ numbers

pattern The pattern string from which r is compiled

These attributes make it easy to retrieve from a compiled RE object its original
pattern string and flags, so you never have to store those separately.

An RE object r also supplies methods to find matches for r in a string, as well as to
perform substitutions on such matches (see Table 10-3). Matches are represented by
special objects, covered in the following section.

Table 10-3. Methods of RE objects

findall r.findall(s)

When r has no groups, findall returns a list of strings, each a substring of s
that is a nonoverlapping match with r. For example, to print out all words in a file, one per
line:

import re
reword = re.compile(r'\w+')
with open('afile.txt') as f:
    for aword in reword.findall(f.read()):
        print(aword)
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findall

(cont.)
When r has exactly one group, findall also returns a list of strings, but each is the
substring of s that matches r’s group. For example, to print only words that are followed
by whitespace (not words followed by punctuation or the word at end of the string), you
need to change only one statement in the preceding example:

reword = re.compile('(\w+)\s')
When r has n groups (with n > 1), findall returns a list of tuples, one per
nonoverlapping match with r. Each tuple has n items, one per group of r, the substring of
s matching the group. For example, to print the first and last word of each line that has at
least two words:

import re
first_last = re.compile(r'^\W*(\w+)\b.*\b(\w+)\W*$', 
                        re.MULTILINE)
with open('afile.txt') as f:
    for first, last in first_last.findall(f.read()):
        print(first, last)

finditer r.finditer(s)

finditer is like findall, except that, instead of a list of strings or tuples, it returns an
iterator whose items are match objects (discussed in the following section). In most cases,
therefore, finditer is more flexible, and usually performs better, than findall.

fullmatch r.fullmatch(s, start=0, end=sys.maxsize)

Returns a match object when the complete substring s, starting at index start and
ending just short of index end, matches r. Otherwise, fullmatch returns None.

match r.match(s, start=0, end=sys.maxsize)

Returns an appropriate match object when a substring of s, starting at index start and
not reaching as far as index end, matches r. Otherwise, match returns None. match is
implicitly anchored at the starting position start in s. To search for a match with r at any
point in s from start onward, call r.search, not r.match. For example, here is one
way to print all lines in a file that start with digits:

import re
digs = re.compile(r'\d')
with open('afile.txt') as f:
    for line in f:
        if digs.match(line):
            print(line, end='')

search r.search(s, start=0, end=sys.maxsize)

Returns an appropriate match object for the leftmost substring of s, starting not before
index start and not reaching as far as index end, that matches r. When no such
substring exists, search returns None. For example, to print all lines containing digits,
one simple approach is as follows:

import re
digs = re.compile(r'\d')
with open('afile.txt') as f:
    for line in f:
        if digs.search(line):
            print(line, end='')
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split r.split(s, maxsplit=0)

Returns a list L of the splits of s by r (i.e., the substrings of s separated by nonoverlapping,
nonempty matches with r). For example, here’s a way to eliminate all occurrences of
'hello' (in any mix of lowercase and uppercase) from a string:

import re
rehello = re.compile(r'hello', re.IGNORECASE)
astring = ''.join(rehello.split(astring))

When r has n groups, n more items are interleaved in L between each pair of splits. Each
of the n extra items is the substring of s that matches r’s corresponding group in that
match, or None if that group did not participate in the match. For example, here’s one way
to remove whitespace only when it occurs between a colon and a digit:

import re
re_col_ws_dig = re.compile(r'(:)\s+(\d)')
astring = ''.join(re_col_ws_dig.split(astring))

If maxsplit is greater than 0, at most maxsplit splits are in L, each followed by n
items, while the trailing substring of s after maxsplit matches of r, if any, is L’s last
item. For example, to remove only the first occurrence of substring 'hello' rather than
all of them, change the last statement in the first example here to:

astring=''.join(rehello.split(astring, 1))

sub r.sub(repl, s, count=0)
Returns a copy of s where nonoverlapping matches with r are replaced by repl, which
can be either a string or a callable object, such as a function. An empty match is replaced
only when not adjacent to the previous match. When count is greater than 0, only the
first count matches of r within s are replaced. When count equals 0, all matches of r
within s are replaced. For example, here’s another, more natural way to remove only the
first occurrence of substring 'hello' in any mix of cases:

import re
rehello = re.compile(r'hello', re.IGNORECASE)
astring = rehello.sub('', astring, 1)

Without the final 1 (one) argument to sub, the example removes all occurrences of
'hello'.
When repl is a callable object, repl must accept one argument (a match object) and
return a string (or None, which is equivalent to returning the empty string '') to use as
the replacement for the match. In this case, sub calls repl, with a suitable match object
argument, for each match with r that sub is replacing. For example, here’s one way to
uppercase all occurrences of words starting with 'h' and ending with 'o' in any mix of
cases:

import re
h_word = re.compile(r'\bh\w*o\b', re.IGNORECASE)
def up(mo):
    return mo.group(0).upper()
astring = h_word.sub(up, astring)

316 | Chapter 10: Regular Expressions



sub

(cont.)
When repl is a string, sub uses repl itself as the replacement, except that it expands
backreferences. A backreference is a substring of repl of the form \g<id>, where id is
the name of a group in r (established by the syntax (?P<id>...) in r’s pattern string)
or \dd, where dd is one or two digits taken as a group number. Each back reference,
named or numbered, is replaced with the substring of s that matches the group of r that
the back reference indicates. For example, here’s a way to enclose every word in braces:

import re
grouped_word = re.compile('(\w+)')
astring = grouped_word.sub(r'{\1}', astring)

subn r.subn(repl, s, count=0)
subn is the same as sub, except that subn returns a pair (new_string, n), where
n is the number of substitutions that subn has performed. For example, here’s one way to
count the number of occurrences of substring 'hello' in any mix of cases:

import re
rehello = re.compile(r'hello', re.IGNORECASE)
_, count = rehello.subn('', astring)
print(f'Found {count} occurrences of "hello"') 

Match Objects
Match objects are created and returned by the methods fullmatch, match, and
search of a regular expression object, and are the items of the iterator returned by
the method finditer. They are also implicitly created by the methods sub and subn
when the argument repl is callable, since in that case the appropriate match object
is passed as the only argument on each call to repl. A match object m supplies the
following read-only attributes that detail how search or match created m, listed in
Table 10-4.

Table 10-4. Attributes of match objects

pos The start argument that was passed to search or match (i.e., the index into s where the
search for a match began)

endpos The end argument that was passed to search or match (i.e., the index into s before which
the matching substring of s had to end)

lastgroup The name of the last-matched group (None if the last-matched group has no name, or if no
group participated in the match)

lastindex The integer index (1 and up) of the last-matched group (None if no group participated in the
match)

re The RE object r whose method created m

string The string s passed to finditer, fullmatch, match, search, sub, or subn
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In addition, match objects supply the methods detailed in Table 10-5.

Table 10-5. Methods of match objects

end,
span,
start

m.end(groupid=0),
m.span(groupid=0),
m.start(groupid=0)

These methods return indices within m.string of the substring that matches the group
identified by groupid (a group number or name; 0, the default value for groupid,
means “the whole RE”). When the matching substring is m.string[i:j], m.start
returns i, m.end returns j, and m.span returns (i, j). If the group did not participate
in the match, i and j are -1.

expand m.expand(s)

Returns a copy of s where escape sequences and backreferences are replaced in the same
way as for the method r.sub, covered in Table 10-3.

group m.group(groupid=0, *groupids)
Called with a single argument groupid (a group number or name), m.group returns the
substring matching the group identified by groupid, or None when that group did not
participate in the match. m.group()—or m.group(0)—returns the whole matched
substring (group 0 means the whole RE). Groups can also be accessed using m[index]
notation, as if called using m.group(index) (in either case, index may be an int or
a str).
When group is called with multiple arguments, each argument must be a group number
or name. group then returns a tuple with one item per argument, the substring matching
the corresponding group, or None when that group did not participate in the match.

groupdict m.groupdict(default=None)

Returns a dictionary whose keys are the names of all named groups in r. The value for each
name is the substring that matches the corresponding group, or default if that group did
not participate in the match.

groups m.groups(default=None)

Returns a tuple with one item per group in r. Each item is the substring matching the
corresponding group, or default if that group did not participate in the match. The tuple
does not include the 0 group representing the full pattern match.

Functions of the re Module
In addition to the attributes listed in “Optional Flags” on page 311, the re module
provides one function for each method of a regular expression object (findall, fin
diter, fullmatch, match, search, split, sub, and subn, described in Table 10-3),
each with an additional first argument, a pattern string that the function implicitly
compiles into an RE object. It is usually better to compile pattern strings into RE
objects explicitly and call the RE object’s methods, but sometimes, for a one-off use
of an RE pattern, calling functions of the module re can be handier. For example,
to count the number of occurrences of 'hello' in any mix of cases, one concise,
function-based way is:
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1 This example is taken from regex; see “Match groups in Python” on Stack Overflow.

import re
_, count = re.subn(r'hello', '', astring, flags=re.I)
print(f'Found {count} occurrences of "hello"')

The re module internally caches RE objects it creates from the patterns passed to
functions; to purge the cache and reclaim some memory, call re.purge.

The re module also supplies error, the class of exceptions raised upon errors
(generally, errors in the syntax of a pattern string), and two more functions, listed in
Table 10-6.

Table 10-6. Additional re functions

compile compile(pattern, flags=0)

Creates and returns an RE object, parsing the string pattern, as per the syntax covered in
“Pattern String Syntax” on page 306, and using integer flags, as described in “Optional Flags”
on page 311

escape escape(s)

Returns a copy of string s with each nonalphanumeric character escaped (i.e., preceded by a
backslash, \); useful to match string s literally as part of an RE pattern string

REs and the := Operator
The introduction of the := operator in Python 3.8 established support for a
successive-match idiom in Python similar to the one that’s common in Perl. In
this idiom, a series of if/elsif branches tests a string against different regular
expressions. In Perl, the if ($var =~ /regExpr/) statement both evaluates the
regular expression and saves the successful match in the variable var:1

if    ($statement =~ /I love (\w+)/) {
  print "He loves $1\n";
}
elsif ($statement =~ /Ich liebe (\w+)/) {
  print "Er liebt $1\n";
}
elsif ($statement =~ /Je t\'aime (\w+)/) {
  print "Il aime $1\n";
}

Prior to Python 3.8, this evaluate-and-store behavior was not possible in a single
if/elif statement; developers had to use a cumbersome cascade of nested if/else
statements:

m = re.match('I love (\w+)', statement)
if m:
    print(f'He loves {m.group(1)}')
else:
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    m = re.match('Ich liebe (\w+)', statement)
    if m:
        print(f'Er liebt {m.group(1)}')
    else:
         m = re.match('J'aime (\w+)', statement)
        if m:
            print(f'Il aime {m.group(1)}')

Using the := operator, this code simplifies to:

if m := re.match(r'I love (\w+)', statement):
    print(f'He loves {m.group(1)}')

elif m := re.match(r'Ich liebe (\w+)', statement):
    print(f'Er liebt {m.group(1)}') 

elif m := re.match(r'J'aime (\w+)', statement):
    print(f'Il aime {m.group(1)}')

The Third-Party regex Module
As an alternative to the Python standard library’s re module, a popular package
for regular expressions is the third-party regex module, by Matthew Barnett. regex
has an API that’s compatible with the re module and adds a number of extended
features, including:

• Recursive expressions•
• Defining character sets by Unicode property/value•
• Overlapping matches•
• Fuzzy matching•
• Multithreading support (releases GIL during matching)•
• Matching timeout•
• Unicode case folding in case-insensitive matches•
• Nested sets•
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11
File and Text Operations

This chapter covers issues related to files and filesystems in Python. A file is a
stream of text or bytes that a program can read and/or write; a filesystem is a
hierarchical repository of files on a computer system.

Other Chapters That Also Deal with Files
Files are a crucial concept in programming: so, although this
chapter is one of the largest in the book, other chapters also
have material relevant to handling specific kinds of files. In
particular, Chapter 12 deals with many kinds of files related
to persistence and database functionality (CSV files in Chap‐
ter 12, JSON files in “The json Module” on page 386, pickle
files in “The pickle Module” on page 389, shelve files in “The
shelve Module” on page 395, DBM and DBM-like files in
“The dbm Package” on page 397, and SQLite database files in
“SQLite” on page 405), Chapter 22 deals with files in HTML
format, and Chapter 23 deals with files in XML format.

Files and streams come in many flavors. Their contents can be arbitrary bytes, or
text. They may be suitable for reading, writing, or both, and they may be buffered,
so that data is temporarily held in memory on the way to or from the file. Files may
also allow random access, moving forward and back within the file, or jumping to
read or write at a particular location in the file. This chapter covers each of these
topics.

In addition, this chapter also covers the polymorphic concept of file-like objects
(objects that are not actually files but behave to some extent like files), modules that
deal with temporary files and file-like objects, and modules that help you access
the contents of text and binary files and support compressed files and other data
archives. Python’s standard library supports several kinds of lossless compression,
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including (ordered by the typical ratio of compression on a text file, from highest to
lowest):

• LZMA (used, for example, by the xz program), see module lzma•

• bzip2 (used, for example, by the bzip2 program), see module bz2•

• deflate (used, for example, by the gzip and zip programs), see modules zlib,•
gzip, and zipfile

The tarfile module lets you read and write TAR files compressed with any one
of these algorithms. The zipfile module lets you read and write ZIP files and also
handles bzip2 and LZMA compressions. We cover both of these modules in this
chapter. We don’t cover the details of compression in this book; for details, see the
online docs.

In the rest of this chapter, we will refer to all files and file-like objects as files.

In modern Python, input/output (I/O) is handled by the standard library’s io
module. The os module supplies many of the functions that operate on the filesys‐
tem, so this chapter also introduces that module. It then covers operations on the
filesystem (comparing, copying, and deleting directories and files; working with
filepaths; and accessing low-level file descriptors) provided by the os module, the
os.path module, and the new and preferable pathlib module, which provides
an object-oriented approach to filesystem paths. For a cross-platform interprocess
communication (IPC) mechanism known as memory-mapped files, see the module
mmap, covered in Chapter 15.

While most modern programs rely on a graphical user interface (GUI), often via
a browser or a smartphone app, text-based, nongraphical “command-line” user
interfaces are still very popular for their ease, speed of use, and scriptability. This
chapter concludes with a discussion of non-GUI text input and output in Python
in “Text Input and Output” on page 368, terminal text I/O in “Richer-Text I/O”
on page 371, and, finally, how to build software showing text understandable to
different users, across languages and cultures, in “Internationalization” on page 374.

The io Module
As mentioned in this chapter’s introduction, io is the standard library module in
Python that provides the most common ways for your Python programs to read
or write files. In modern Python, the built-in function open is an alias for the
function io.open. Use io.open (or its built-in alias open) to make a Python file
object to read from, and/or write to, a file as seen by the underlying operating
system. The parameters you pass to open determine what type of object is returned.
This object can be an instance of io.TextIOWrapper if textual, or, if binary, one
of io.BufferedReader, io.BufferedWriter, or io.BufferedRandom, depending on
whether it’s read-only, write-only, or read/write. This section covers the various
types of file objects, as well as the important issue of making and using temporary
files (on disk, or even in memory).
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I/O Errors Raise OSError
Python reacts to any I/O error related to a file object by raising
an instance of built-in exception class OSError (many useful
subclasses exist, as covered in “OSError subclasses” on page
208). Errors causing this exception include a failing open call,
calls to a method on a file to which the method doesn’t apply
(e.g., write on a read-only file, or seek on a nonseekable file),
and actual I/O errors diagnosed by a file object’s methods.

The io module also provides the underlying classes, both abstract and concrete,
that, by inheritance and by composition (also known as wrapping), make up the file
objects that your program generally uses. We do not cover these advanced topics
in this book. If you have access to unusual channels for data, or nonfilesystem data
storage, and want to provide a file interface to those channels or storage, you can
ease your task (through appropriate subclassing and wrapping) using other classes
in the io module. For assistance with such advanced tasks, consult the online docs.

Creating a File Object with open
To create a Python file object, call open with the following syntax:

open(file, mode='r', buffering=-1, encoding=None, errors='strict', 
     newline=None, closefd=True, opener=os.open)

file can be a string or an instance of pathlib.Path (any path to a file as seen by
the underlying OS), or an int (an OS-level file descriptor as returned by os.open,
or by whatever function you pass as the opener argument). When file is a path (a
string or pathlib.Path instance), open opens the file thus named (possibly creating
it, depending on the mode argument—despite its name, open is not just for opening
existing files: it can also create new ones). When file is an integer, the underlying
OS file must already be open (via os.open).

Opening a File Pythonically
open is a context manager: use with open(...) as f:, not f =
open(...), to ensure the file f gets closed as soon as the with
statement’s body is done.

open creates and returns an instance f of the appropriate io module class, depend‐
ing on the mode and buffering settings. We refer to all such instances as file objects;
they are polymorphic with respect to each other.

mode
mode is an optional string indicating how the file is to be opened (or created). The
possible values for mode are listed in Table 11-1.
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Table 11-1. mode settings

Mode Meaning

'a' The file is opened in write-only mode. The file is kept intact if it already exists, and the data you write
is appended to the existing contents. The file is created if it does not exist. Calling f.seek on the file
changes the result of the method f.tell, but does not change the write position in the file opened
in this mode: that write position always remains at the end of the file.

'a+' The file is opened for both reading and writing, so all methods of f can be called. The file is kept intact
if it already exists, and the data you write is appended to the existing contents. The file is created if it
does not exist. Calling f.seek on the file, depending on the underlying operating system, may have
no effect when the next I/O operation on f writes data, but does work normally when the next I/O
operation on f reads data.

'r' The file must already exist, and it is opened in read-only mode (this is the default).

'r+' The file must exist and is opened for both reading and writing, so all methods of f can be called.

'w' The file is opened in write-only mode. The file is truncated to zero length and overwritten if it already
exists, or created if it does not exist.

'w+' The file is opened for both reading and writing, so all methods of f can be called. The file is truncated
to zero length and overwritten if it already exists, or created if it does not exist.

Binary and text modes
The mode string may include any of the values in Table 11-1, followed by a b or
t. b indicates that the file should be opened (or created) in binary mode, while t
indicates text mode. When neither b nor t is included, the default is text (i.e., 'r'
is like 'rt', 'w+' is like 'w+t', and so on), but per The Zen of Python, “explicit is
better than implicit.”

Binary files let you read and/or write strings of type bytes, and text files let you read
and/or write Unicode text strings of type str. For text files, when the underlying
channel or storage system deals in bytes (as most do), encoding (the name of an
encoding known to Python) and errors (an error-handler name such as 'strict',
'replace', and so on, as covered under decode in Table 9-1) matter, as they specify
how to translate between text and bytes, and what to do on encoding and decoding
errors.

Buffering
buffering is an integer value that denotes the buffering policy you’re requesting for
the file. When buffering is 0, the file (which must be binary mode) is unbuffered;
the effect is as if the file’s buffer is flushed every time you write anything to the file.
When buffering is 1, the file (which must be open in text mode) is line buffered,
which means the file’s buffer is flushed every time you write \n to the file. When
buffering is greater than 1, the file uses a buffer of about buffering bytes, often
rounded up to some value convenient for the driver software. When buffering is
<0, a default is used, depending on the type of file stream. Normally, this default
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1 tell’s value is opaque for text files, since they contain variable-length characters. For binary files,
it’s simply a straight byte count.

is line buffering for files that correspond to interactive streams, and a buffer of
io.DEFAULT_BUFFER_SIZE bytes for other files.

Sequential and nonsequential (“random”) access
A file object f is inherently sequential (a stream of bytes or text). When you read,
you get bytes or text in the sequential order in which they are present. When you
write, the bytes or text you write are added in the order in which you write them.

For a file object f to support nonsequential access (also known as random access),
it must keep track of its current position (the position in the storage where the
next read or write operation starts transferring data), and the underlying storage for
the file must support setting the current position. f.seekable returns True when f
supports nonsequential access.

When you open a file, the default initial read/write position is at the start of the file.
Opening f with a mode of 'a' or 'a+' sets f’s read/write position to the end of the
file before writing data to f. When you write or read n bytes to/from file object f, f’s
position advances by n. You can query the current position by calling f.tell, and
change the position by calling f.seek, both covered in the next section.

When calling f.seek on a text-mode f, the offset you pass must be 0 (to position f
at the start or end, depending on f.seek’s second parameter), or the opaque result
returned by an earlier call to f.tell,1 to position f back to a spot you had thus
“bookmarked” before.

Attributes and Methods of File Objects
A file object f supplies the attributes and methods documented in Table 11-2.

Table 11-2. Attributes and methods of file objects

close close()

Closes the file. You can call no other method on f after f.close. Multiple calls to
f.close are allowed and innocuous.

closed f.closed is a read-only attribute that is True when f.close() has been called;
otherwise, it is False.

encoding f.encoding is a read-only attribute, a string naming the encoding (as covered in
“Unicode” on page 301). The attribute does not exist on binary files.

fileno fileno()

Returns the file descriptor of f’s file at operating system level (an integer). File descriptors
are covered in “File and directory functions of the os module” on page 345.

The io Module | 325

File and
 Text

O
p

eratio
ns



flush flush()

Requests that f’s buffer be written out to the operating system, so that the file as seen
by the system has the exact contents that Python’s code has written. Depending on the
platform and the nature of f’s underlying file, f.flush may not be able to ensure the
desired effect.

isatty isatty()

Returns True when f’s underlying file is an interactive stream, such as to or from a
terminal; otherwise, returns False.

mode f.mode is a read-only attribute that is the value of the mode string used in the io.open
call that created f.

name f.name is a read-only attribute that is the value of the file (str or bytes) or int used
in the io.open call that created f. When io.open was called with a pathlib.Path
instance p, f.name is str(p).

read read(size=-1, /)

When f is open in binary mode, reads up to size bytes from f’s file and returns them as
a bytestring. read reads and returns less than size bytes if the file ends before size
bytes are read. When size is less than 0, read reads and returns all bytes up to the
end of the file. read returns an empty string when the file’s current position is at the end
of the file or when size equals 0. When f is open in text mode, size is a number of
characters, not bytes, and read returns a text string.

readline readline(size=-1, /)

Reads and returns one line from f’s file, up to the end of line (\n), included. When size
is greater than or equal to 0, reads no more than size bytes. In that case, the returned
string might not end with \n. \n might also be absent when readline reads up to the
end of the file without finding \n. readline returns an empty string when the file’s
current position is at the end of the file or when size equals 0.

readlines readlines(size=-1, /)

Reads and returns a list of all lines in f’s file, each a string ending in \n. If size > 0,
readlines stops and returns the list after collecting data for a total of about size bytes
rather than reading all the way to the end of the file; in that case, the last string in the list
might not end in \n.

seek seek(pos, how=io.SEEK_SET, /)
Sets f’s current position to the integer byte offset pos away from a reference point.
how indicates the reference point. The io module has attributes named SEEK_SET,
SEEK_CUR, and SEEK_END, to specify that the reference point is, respectively, the file’s
beginning, current position, or end.
When f is opened in text mode, f.seek must have a pos of 0, or, for io.SEEK_SET
only, a pos that is the result of a previous call to f.tell.
When f is opened in mode 'a' or 'a+', on some but not all platforms, data written to f
is appended to the data that is already in f, regardless of calls to f.seek.

tell tell()

Returns f’s current position: for a binary file this is an integer offset in bytes from the start
of the file, and for a text file it’s an opaque value usable in future calls to f.seek to
position f back to the position that is now current.
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truncate truncate(size=None, /)

Truncates f’s file, which must be open for writing. When size is present, truncates the
file to be at most size bytes. When size is absent, uses f.tell() as the file’s new
size. size may be larger than the current file size; in this case, the resulting behavior is
platform dependent.

write write(s, /)

Writes the bytes of string s (binary or text, depending on f’s mode) to the file.

writelines writelines(lst, /)

Like:
for line in lst: f.write(line)

It does not matter whether the strings in iterable lst are lines: despite its name, the method
writelines just writes each of the strings to the file, one after the other. In particular,
writelines does not add line-ending markers: such markers, if required, must already
be present in the items of lst.

Iteration on File Objects
A file object f, open for reading, is also an iterator whose items are the file’s lines.
Thus, the loop:

for line in f:

iterates on each line of the file. Due to buffering issues, interrupting such a loop
prematurely (e.g., with break), or calling next(f) instead of f.readline(), leaves
the file’s position set to an arbitrary value. If you want to switch from using f as an
iterator to calling other reading methods on f, be sure to set the file’s position to a
known value by appropriately calling f.seek. On the plus side, a loop directly on f
has very good performance, since these specifications allow the loop to use internal
buffering to minimize I/O without taking up excessive amounts of memory even for
huge files.

File-Like Objects and Polymorphism
An object x is file-like when it behaves polymorphically to a file object as returned
by io.open, meaning that we can use x “as if ” x were a file. Code using such an
object (known as client code of the object) usually gets the object as an argument,
or by calling a factory function that returns the object as the result. For example,
if the only method that client code calls on x is x.read, without arguments, then
all x needs to supply in order to be file-like enough for that code is a method read
that is callable without arguments and returns a string. Other client code may need
x to implement a larger subset of file methods. File-like objects and polymorphism
are not absolute concepts: they are relative to demands placed on an object by some
specific client code.

Polymorphism is a powerful aspect of object-oriented programming, and file-like
objects are a good example of polymorphism. A client-code module that writes to
or reads from files can automatically be reused for data residing elsewhere, as long
as the module does not break polymorphism by type checking. When we discussed
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the built-ins type and isinstance in Table 8-1, we mentioned that type checking
is often best avoided, as it blocks Python’s normal polymorphism. Often, to support
polymorphism in your client code, you just need to avoid type checking.

You can implement a file-like object by coding your own class (as covered in
Chapter 4) and defining the specific methods needed by client code, such as read.
A file-like object fl need not implement all the attributes and methods of a true
file object f. If you can determine which methods the client code calls on fl, you
can choose to implement only that subset. For example, when fl is only going to be
written, fl doesn’t need “reading” methods, such as read, readline, and readlines.

If the main reason you want a file-like object instead of a real file object is to keep
the data in memory, rather than on disk, use the io module’s classes StringIO
or BytesIO, covered in “In-Memory Files: io.StringIO and io.BytesIO” on page
334. These classes supply file objects that hold data in memory and largely behave
polymorphically to other file objects. If you’re running multiple processes that you
want to communicate via file-like objects, consider mmap, covered in Chapter 15.

The tempfile Module
The tempfile module lets you create temporary files and directories in the most
secure manner afforded by your platform. Temporary files are often a good idea
when you’re dealing with an amount of data that might not comfortably fit in
memory, or when your program must write data that another process later uses.

The order of the parameters for the functions in this module is a bit confus‐
ing: to make your code more readable, always call these functions with named-
argument syntax. The tempfile module exposes the functions and classes outlined
in Table 11-3.

Table 11-3. Functions and classes of the tempfile module

mkdtemp mkdtemp(suffix=None, prefix=None, dir=None)

Securely creates a new temporary directory that is readable, writable, and searchable
only by the current user, and returns the absolute path to the temporary directory. You
can optionally pass arguments to specify strings to use as the start (prefix) and end
(suffix) of the temporary file’s filename, and the path to the directory in which the
temporary file is created (dir). Ensuring that the temporary directory is removed when
you’re done with it is your program’s responsibility.

mkdtemp

(cont.)
Here is a typical usage example that creates a temporary directory, passes its path to
another function, and finally ensures the directory (and all contents) are removed:

import tempfile, shutil
path = tempfile.mkdtemp()
try:
    use_dirpath(path)
finally:
    shutil.rmtree(path)
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mkstemp mkstemp(suffix=None, prefix=None, dir=None, text=False)

Securely creates a new temporary file that is readable and writable only by the current
user, is not executable, and is not inherited by subprocesses; returns a pair (fd, path),
where fd is the file descriptor of the temporary file (as returned by os.open, covered in
Table 11-18) and the string path is the absolute path to the temporary file. The optional
arguments suffix, prefix, and dir are like for the function mkdtemp. If you want
the temporary file to be a text file, explicitly pass the argument text=True.
Ensuring that the temporary file is removed when you’re done using it is up to you.
mkstemp is not a context manager, so you can’t use a with statement; it’s best to use
try/finally instead. Here is a typical usage example that creates a temporary text file,
closes it, passes its path to another function, and finally ensures the file is removed:

import tempfile, os
fd, path = tempfile.mkstemp(suffix='.txt', 
                            text=True)
try:
    os.close(fd)
    use_filepath(path)
finally:
    os.unlink(path)

Named

Temporary

File

NamedTemporaryFile(mode='w+b', bufsize=-1, suffix=None,
prefix=None, dir=None)

Like TemporaryFile (covered later in this table), except that the temporary file does
have a name on the filesystem. Use the name attribute of the file object to access
that name. Some platforms (mainly Windows) do not allow the file to be opened again;
therefore, the usefulness of the name is limited if you want to ensure that your program
works cross-platform. If you need to pass the temporary file’s name to another program
that opens the file, you can use the function mkstemp instead of NamedTemporary
File to guarantee correct cross-platform behavior. Of course, when you choose to use
mkstemp, you do have to take care to ensure the file is removed when you’re done with
it. The file object returned from NamedTemporaryFile is a context manager, so you
can use a with statement.

Spooled

Temporary

File

SpooledTemporaryFile(mode='w+b', bufsize=-1, suffix=None,

prefix=None, dir=None)

Like TemporaryFile (see below), except that the file object that SpooledTemporar
yFile returns can stay in memory, if space permits, until you call its fileno method (or
its rollover method, which ensures the file gets written to disk, whatever its size). As a
result, performance can be better with SpooledTemporaryFile, as long as you have
enough memory that’s not otherwise in use.
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Temporary

Directory

TemporaryDirectory(suffix=None, prefix=None, dir=None,

ignore_cleanup_errors=False)

Creates a temporary directory, like mkdtemp (passing the optional arguments suffix,
prefix, and dir). The returned directory object is a context manager, so you
can use a with statement to ensure it’s removed as soon as you’re done with it.
Alternatively, when you’re not using it as a context manager, use its built-in class method
cleanup (not shutil.rmtree) to explicitly remove and clean up the directory. Set
ignore_cleanup_errors to True to ignore unhandled exceptions during cleanup.
The temporary directory and its contents are removed as soon as the directory object is
closed (whether implicitly on garbage collection or explicitly by a cleanup call).

Temporary

File

TemporaryFile(mode='w+b', bufsize=-1, suffix=None,

prefix=None, dir=None)

Creates a temporary file with mkstemp (passing to mkstemp the optional arguments
suffix, prefix, and dir), makes a file object from it with os.fdopen, covered
in Table 11-18 (passing to fdopen the optional arguments mode and bufsize), and
returns the file object. The temporary file is removed as soon as the file object is closed
(implicitly or explicitly). For greater security, the temporary file has no name on the
filesystem, if your platform allows that (Unix-like platforms do; Windows doesn’t). The file
object returned from TemporaryFile is a context manager, so you can use a with
statement to ensure it’s removed as soon as you’re done with it.

Auxiliary Modules for File I/O
File objects supply the functionality needed for file I/O. Other Python library
modules, however, offer convenient supplementary functionality, making I/O even
easier and handier in several important cases. We’ll look at two of those modules
here.

The fileinput Module
The fileinput module lets you loop over all the lines in a list of text files. Perfor‐
mance is good—comparable to the performance of direct iteration on each file—
since buffering is used to minimize I/O. You can therefore use this module for
line-oriented file input whenever you find its rich functionality convenient, with no
worry about performance. The key function of the module is input; fileinput also
supplies a FileInput class whose methods support the same functionality. Both are
described in Table 11-4.

Table 11-4. Key classes and functions of the fileinput module

FileInput class FileInput(files=None, inplace=False, backup='',
mode='r', openhook=None, encoding=None, errors=None)

Creates and returns an instance f of class FileInput. The arguments are the same as for
fileinput.input covered next, and methods of f have the same names, arguments,
and semantics as the other functions of the fileinput module (see Table 11-5). f
also supplies a readline method, which reads and returns the next line. Use the
FileInput class to nest or mix loops that read lines from multiple sequences of files.
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input input(files=None, inplace=False, backup='', mode='r',

openhook=None, encoding=None, errors=None)

Returns an instance of FileInput, an iterable yielding lines in files; that instance is
the global state, so all other functions of the fileinput module (see Table 11-5) operate
on the same shared state. Each function of the fileinput module corresponds directly to
a method of the class FileInput.
files is a sequence of filenames to open and read one after the other, in order. When
files is a string, it’s a single filename to open and read. When files is None, input
uses sys.argv[1:] as the list of filenames. The filename '-' means standard input
(sys.stdin). When the sequence of filenames is empty, input reads sys.stdin
instead.
When inplace is False (the default), input just reads the files. When inplace is
True, input moves each file being read (except standard input) to a backup file and
redirects standard output (sys.stdout) to write to a new file with the same path as the
original one of the file being read. This way, you can simulate overwriting files in place.
If backup is a string that starts with a dot, input uses backup as the extension of
the backup files and does not remove the backup files. If backup is an empty string (the
default), input uses .bak and deletes each backup file as the input files are closed. The
keyword argument mode may be 'r', the default, or 'rb'.
You may optionally pass an openhook function to use as an alternative to io.open.
For example, openhook=fileinput.hook_compressed decompresses any input
file with extension .gz or .bz2 (not compatible with inplace=True). You can write
your own openhook function to decompress other file types, for example using
LZMA decompressiona for .xz files; use the Python source for fileinput.hook_com
pressed as a template. 3.10+  You can also pass encoding and errors, which will
be passed to the hook as keyword arguments .

LZMA support may require building Python with optional additional libraries.

The functions of the fileinput module listed in Table 11-5 work on the global state
created by fileinput.input, if any; otherwise, they raise RuntimeError.

Table 11-5. Additional functions of the fileinput module

close close()

Closes the whole sequence so that iteration stops and no file remains open.

filelineno filelineno()

Returns the number of lines read so far from the file now being read. For example,
returns 1 if the first line has just been read from the current file.

filename filename()

Returns the name of the file now being read, or None if no line has been read yet.

isfirstline isfirstline()

Returns True or False, just like filelineno() == 1.

isstdin isstdin()

Returns True when the current file being read is sys.stdin; otherwise, returns
False.
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lineno lineno()

Returns the total number of lines read since the call to input.

nextfile nextfile()

Closes the file being read: the next line to read is the first one of the next file.

Here’s a typical example of using fileinput for a “multifile search and replace,”
changing one string into another throughout the text files whose names were passed
as command-line arguments to the script:

import fileinput
for line in fileinput.input(inplace=True):
    print(line.replace('foo', 'bar'), end='')

In such cases it’s important to include the end='' argument to print, since each
line has its line-end character \n at the end, and you need to ensure that print
doesn’t add another (or else each file would end up “double-spaced”).

You may also use the FileInput instance returned by fileinput.input as a context
manager. Just as with io.open, this will close all files opened by the FileInput upon
exiting the with statement, even if an exception occurs:

with fileinput.input('file1.txt', 'file2.txt') as infile:
    dostuff(infile)

The struct Module
The struct module lets you pack binary data into a bytestring, and unpack the
bytes of such a bytestring back into the Python data they represent. This is useful
for many kinds of low-level programming. Often, you use struct to interpret data
records from binary files that have some specified format, or to prepare records
to write to such binary files. The module’s name comes from C’s keyword struct,
which is usable for related purposes. On any error, functions of the module struct
raise exceptions that are instances of the exception class struct.error.

The struct module relies on struct format strings following a specific syntax. The
first character of a format string gives the byte order, size, and alignment of the
packed data; the options are listed in Table 11-6.

Table 11-6. Possible first characters in a struct format string

Character Meaning

@ Native byte order, native data sizes, and native alignment for the current platform; this is
the default if the first character is none of the characters listed here (note that the format
P in Table 11-7 is available only for this kind of struct format string). Look at the string
sys.byteorder when you need to check your system’s byte order; most CPUs today use
'little', but 'big' is the “network standard” for TCP/IP, the core protocols of the internet.

= Native byte order for the current platform, but standard size and alignment.

< Little-endian byte order; standard size and alignment.
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Character Meaning

>, ! Big-endian/network standard byte order; standard size and alignment.

Standard sizes are indicated in Table 11-7. Standard alignment means no forced
alignment, with explicit padding bytes used as needed. Native sizes and alignment
are whatever the platform’s C compiler uses. Native byte order can put the most
significant byte at either the lowest (big-endian) or highest (little-endian) address,
depending on the platform.

After the optional first character, a format string is made up of one or more format
characters, each optionally preceded by a count (an integer represented by decimal
digits). Common format characters are listed in Table 11-7; see the online docs
for a complete list. For most format characters, the count means repetition (e.g.,
'3h' is exactly the same as 'hhh'). When the format character is s or p—that is, a
bytestring—the count is not a repetition: it’s the total number of bytes in the string.
You can freely use whitespace between formats, but not between a count and its
format character. The format s means a fixed-length bytestring as long as its count
(the Python string is truncated, or padded with copies of the null byte b'\0', if
needed). The format p means a “Pascal-like” bytestring: the first byte is the number
of significant bytes that follow, and the actual contents start from the second byte.
The count is the total number of bytes, including the length byte.

Table 11-7. Common format characters for struct

Character C type Python type Standard size

B unsigned char int 1 byte

b signed char int 1 byte

c char bytes (length 1) 1 byte

d double float 8 bytes

f float float 4 bytes

H unsigned short int 2 bytes

h signed short int 2 bytes

I unsigned int long 4 bytes

i signed int int 4 bytes

L unsigned long long 4 bytes

l signed long int 4 bytes

P void* int N/A

p char[] bytes N/A

s char[] bytes N/A

x padding byte No value 1 byte
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The struct module supplies the functions covered in Table 11-8.

Table 11-8. Functions of the struct module

calcsize calcsize(fmt, /)

Returns the size, in bytes, corresponding to format string fmt.

iter_unpack iter_unpack(fmt, buffer, /)
Unpacks iteratively from buffer per format string fmt. Returns an iterator that will read
equally sized chunks from buffer until all its contents are consumed; each iteration yields
a tuple as specified by fmt. buffer’s size must be a multiple of the size required by the
format, as reflected in struct.calcsize(fmt).

pack pack(fmt, *values, /)
Packs the values per format string fmt, and returns the resulting bytestring. values must
match in number and type the values required by fmt.

pack_into pack_into(fmt, buffer, offset, *values, /)
Packs the values per format string fmt into writable buffer buffer (usually an instance
of bytearray) starting at index offset. values must match in number and type
the values required by fmt. len(buffer[offset:]) must be >=struct.calc
size(fmt).

unpack unpack(fmt, s, /)
Unpacks bytestring s per format string fmt, and returns a tuple of values (if just one value,
a one-item tuple). len(s) must equal struct.calcsize(fmt).

unpack_from unpack_from(fmt, /, buffer, offset=0)

Unpacks bytestring (or other readable buffer) buffer, starting from offset offset,
per format string fmt, returning a tuple of values (if just one value, a one-item tuple).
len(buffer[offset:]) must be >=struct.calcsize(fmt).

The struct module also offers a Struct class, which is instantiated with a format
string as an argument. Instances of this class implement pack, pack_into, unpack,
unpack_from, and iter_unpack methods corresponding to the functions described
in the preceding table; they take the same arguments as the corresponding module
functions, but omitting the fmt argument, which was provided on instantiation.
This allows the class to compile the format string once and reuse it. Struct objects
also have a format attribute that holds the format string for the object, and a size
attribute that holds the calculated size of the structure.

In-Memory Files: io.StringIO and io.BytesIO
You can implement file-like objects by writing Python classes that supply the meth‐
ods you need. If all you want is for data to reside in memory, rather than in a file as
seen by the operating system, use the classes StringIO or BytesIO of the io module.
The difference between them is that instances of StringIO are text-mode files, so
reads and writes consume or produce text strings, while instances of BytesIO are
binary files, so reads and writes consume or produce bytestrings. These classes are
especially useful in tests and other applications where program output should be

334 | Chapter 11: File and Text Operations



redirected for buffering or journaling; “The print Function” on page 369 includes a
useful context manager example, redirect, that demonstrates this.

When you instantiate either class you can optionally pass a string argument, respec‐
tively str or bytes, to use as the initial content of the file. Additionally, you can
pass the argument newline='\n' to StringIO (but not BytesIO) to control how
line endings are handled (like in TextIoWrapper); if newline is None, newlines are
written as \n on all platforms. In addition to the methods described in Table 11-2,
an instance f of either class supplies one extra method:

getvalue getvalue()

Returns the current data contents of f as a string (text or bytes). You cannot call
f.getvalue after you call f.close: close frees the buffer that f internally keeps,
and getvalue needs to return the buffer as its result.

Archived and Compressed Files
Storage space and transmission bandwidth are increasingly cheap and abundant,
but in many cases you can save such resources, at the expense of some extra
computational effort, by using compression. Computational power grows cheaper
and more abundant even faster than some other resources, such as bandwidth, so
compression’s popularity keeps growing. Python makes it easy for your programs to
support compression. We don’t cover the details of compression in this book, but
you can find details on the relevant standard library modules in the online docs.

The rest of this section covers “archive” files (which collect in a single file a collec‐
tion of files and optionally directories), which may or may not be compressed.
Python’s stdlib offers two modules to handle two very popular archive formats:
tarfile (which, by default, does not compress the files it bundles), and zipfile
(which, by default, does compress the files it bundles).

The tarfile Module
The tarfile module lets you read and writeTAR files (archive files compatible with
those handled by popular archiving programs such as tar), optionally with gzip,
bzip2, or LZMA compression. TAR files are typically named with a .tar or .tar.(com‐
pression type) extension. 3.8+  The default format of new archives is POSIX.1-2001
(pax). python -m tarfile offers a useful command-line interface to the module’s
functionality: run it without arguments to get a brief help message.
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The tarfile module supplies the functions listed in Table 11-9. When handling
invalid TAR files, functions of tarfile raise instances of tarfile.TarError.

Table 11-9. Classes and functions of the tarfile module

is_tarfile is_tarfile(filename)

Returns True when the file named by filename (which may be a str, 3.9+  or a file
or file-like object) appears to be a valid TAR file (possibly with compression), judging by the
first few bytes; otherwise, returns False.

open open(name=None, mode='r', fileobj=None, bufsize=10240,

**kwargs)

Creates and returns a TarFile instance f to read or create a TAR file through file-like
object fileobj. When fileobj is None, name may be a string naming a file or
a path-like object; open opens the file with the given mode (by default, 'r'), and f
wraps the resulting file object. open may be used as a context manager (e.g., with
tarfile.open(...) as f).

f.close may not close fileobj
Calling f.close does not close fileobj when f was opened
with a fileobj that is not None. This behavior of f.close is
important when fileobj is an instance of io.BytesIO: you can
call fileobj.getvalue after f.close to get the archived and
possibly compressed data as a string. This behavior also means that
you have to call fileobj.close explicitly after calling f.close.

mode can be 'r' to read an existing TAR file with whatever compression it has (if any);
'w' to write a new TAR file, or truncate and rewrite an existing one, without compression;
or 'a' to append to an existing TAR file, without compression. Appending to compressed
TAR files is not supported. To write a new TAR file with compression, mode can be
'w:gz' for gzip compression, 'w:bz2' for bzip2 compression, or 'w:xz' for LZMA
compression. You can use mode strings 'r:' or 'w:' to read or write uncompressed,
nonseekable TAR files using a buffer of bufsize bytes; for reading TAR files use plain
'r', since this will automatically uncompress as necessary.
In the mode strings specifying compression, you can use a vertical bar (|) instead of a colon
(:) to force sequential processing and fixed-size blocks; this is useful in the (admittedly very
unlikely) case that you ever find yourself handling a tape device!
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The TarFile class
TarFile is the underlying class for most tarfile methods, but is not used directly.
A TarFile instance f, created using tarfile.open, supplies the methods detailed in
Table 11-10.

Table 11-10. Methods of a TarFile instance f

add f.add(name, arcname=None, recursive=True, *, filter=None)

Adds to archive f the file named by name (can be any type of file, a directory, or a
symbolic link). When arcname is not None, it’s used as the archive member name in lieu
of name. When name is a directory, and recursive is True, add recursively adds the
whole filesystem subtree rooted in that directory in sorted order. The optional (named-only)
argument filter is a function that is called on each object to be added. It takes a
TarInfo object argument and returns either the (possibly modified) TarInfo object, or
None. In the latter case the add method excludes this TarInfo object from the archive.

addfile f.addfile(tarinfo, fileobj=None)

Adds to archive f a TarInfo object tarinfo. If fileobj is not None, the first
tarinfo.size bytes of binary file-like object fileobj are added.

close f.close()

Closes archive f. You must call close, or else an incomplete, unusable TAR file might
be left on disk. Such mandatory finalization is best performed with a try/finally,
as covered in “try/finally” on page 198, or, even better, a with statement, covered in
“The with Statement and Context Managers” on page 201. Calling f.close does not
close fileobj if f was created with a non-None fileobj. This matters especially
when fileobj is an instance of io.BytesIO: you can call fileobj.getvalue
after f.close to get the compressed data string. So, you always have to call fil
eobj.close (explicitly, or implicitly by using a with statement) after f.close.

extract f.extract(member, path='', set_attrs=True,

numeric_owner=False)

Extracts the archive member identified by member (a name or a TarInfo instance) into
a corresponding file in the directory (or path-like object) named by path (the current
directory by default). If set_attrs is True, the owner and timestamps will be set as
they were saved in the TAR file; otherwise, the owner and timestamps for the extracted file
will be set using the current user and time values. If numeric_owner is True, the UID
and GID numbers from the TAR file are used to set the owner/group for the extracted files;
otherwise, the named values from the TAR file are used. (The online docs recommend using
extractall over calling extract directly, since extractall does additional error
handling internally.)
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extractall f.extractall(path='.', members=None, numeric_owner=False)

Similar to calling extract on each member of TAR file f, or just those listed in the
members argument, with additional error checking for chown, chmod, and utime
errors that occur while writing the extracted members.

Don’t Use extractall on a Tarfile from an Untrusted
Source
extractall does not check the paths of extracted files, so there is
a risk that an extracted file will have an absolute path (or include one
or more .. components) and thus overwrite a potentially sensitive
file.a It is best to read each member individually and only extract it if
it has a safe path (i.e., no absolute paths or relative paths with any..
path component).

extractfile f.extractfile(member)

Extracts the archive member identified by member (a name or a TarInfo instance)
and returns an io.BufferedReader object with the methods read, readline,
readlines, seek, and tell.

getmember f.getmember(name)

Returns a TarInfo instance with information about the archive member named by the
string name.

getmembers f.getmembers()

Returns a list of TarInfo instances, one for each member in archive f, in the same order
as the entries in the archive itself.

getnames f.getnames()

Returns a list of strings, the names of each member in archive f, in the same order as the
entries in the archive itself.

gettarinfo f.gettarinfo(name=None, arcname=None, fileobj=None)

Returns a TarInfo instance with information about the open file object fileobj, when
not None, or else the existing file whose path is the string name. name may be a path-like
object. When arcname is not None, it’s used as the name attribute of the resulting
TarInfo instance.

list f.list(verbose=True, *, members=None)

Outputs a directory of the archive f to sys.stdout. If the optional argument verbose
is False, outputs only the names of the archive’s members. If the optional argument
members is given, it must be a subset of the list returned by getmembers.

next f.next()

Returns the next available archive member as a TarInfo instance; if none are available,
returns None.

Described further in CVE-2007-4559.
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The TarInfo class
The methods getmember and getmembers of TarFile instances return instances of
TarInfo, supplying information about members of the archive. You can also build
a TarInfo instance with a TarFile instance’s method gettarinfo. The name argu‐
ment may be a path-like object. The most useful attributes and methods supplied by
a TarInfo instance t are listed in Table 11-11.

Table 11-11. Useful attributes of a TarInfo instance t

isdir() Returns True if the file is a directory

isfile() Returns True if the file is a regular file

issym() Returns True if the file is a symbolic link

linkname Target file’s name (a string), when t.type is LNKTYPE or SYMTYPE

mode Permission and other mode bits of the file identified by t

mtime Time of last modification of the file identified by t

name Name in the archive of the file identified by t

size Size, in bytes (uncompressed), of the file identified by t

type File type—one of many constants that are attributes of the tarfile module (SYMTYPE for
symbolic links, REGTYPE for regular files, DIRTYPE for directories, and so on; see the online
docs for a complete list)

The zipfile Module
The zipfile module can read and write ZIP files (i.e., archive files compatible with
those handled by popular compression programs such as zip and unzip, pkzip
and pkunzip, WinZip, and so on, typically named with a .zip extension). python -m
zipfile offers a useful command-line interface to the module’s functionality: run it
without further arguments to get a brief help message.

Detailed information about ZIP files is available on the PKWARE and Info-ZIP
websites. You need to study that detailed information to perform advanced ZIP
file handling with zipfile. If you do not specifically need to interoperate with
other programs using the ZIP file standard, the modules lzma, gzip, and bz2 are
usually better ways to deal with compression, as is tarfile to create (optionally
compressed) archives.

The zipfile module can’t handle multidisk ZIP files, and cannot create encrypted
archives (it can decrypt them, albeit rather slowly). The module also cannot handle
archive members using compression types besides the usual ones, known as stored
(a file copied to the archive without compression) and deflated (a file compressed
using the ZIP format’s default algorithm). zipfile also handles the bzip2 and
LZMA compression types, but beware: not all tools can handle those, so if you use
them you’re sacrificing some portability to get better compression.
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The zipfile module supplies function is_zipfile and class Path, as listed in
Table 11-12. In addition, it supplies classes ZipFile and ZipInfo, described later.
For errors related to invalid ZIP files, functions of zipfile raise exceptions that are
instances of the exception class zipfile.error.

Table 11-12. Auxiliary function and class of the zipfile module

is_zipfile is_zipfile(file)

Returns True when the file named by string, path-like object, or file-like object file
seems to be a valid ZIP file, judging by the first few and last bytes of the file; otherwise,
returns False.

Path class Path(root, at='')
3.8+ A pathlib-compatible wrapper for ZIP files. Returns a pathlib.Path object p

from root, a ZIP file (which may be a ZipFile instance or file suitable for passing to the
ZipFile constructor). The string argument at is a path to specify the location of p in the
ZIP file: the default is the root. p exposes several pathlib.Path methods: see the online
docs for details.

The ZipFile class
The main class supplied by zipfile is ZipFile. Its constructor has the following
signature:

ZipFile class ZipFile(file, mode='r', compression=zip
file.ZIP_STORED, allowZip64=True, compresslevel=None, *,

strict_timestamps=True)

Opens a ZIP file named by file (a string, file-like object, or path-like object). mode can
be 'r' to read an existing ZIP file, 'w', to write a new ZIP file or truncate and rewrite an
existing one, or 'a' to append to an existing file. It can also be 'x', which is like 'w' but
raises an exception if the ZIP file already existed—here, 'x' stands for “exclusive.”
When mode is 'a', file can name either an existing ZIP file (in which case new
members are added to the existing archive) or an existing non-ZIP file. In the latter case,
a new ZIP file-like archive is created and appended to the existing file. The main purpose
of this latter case is to let you build an executable file that unpacks itself when run. The
existing file must then be a pristine copy of a self-unpacking executable prefix, as supplied
by www.info-zip.org and by other purveyors of ZIP file compression tools.
compression is the ZIP compression method to use in writing the archive:
ZIP_STORED (the default) requests that the archive use no compression, and
ZIP_DEFLATED requests that the archive use the deflation mode of compression
(the most usual and effective compression approach used in ZIP files). It can also be
ZIP_BZIP2 or ZIP_LZMA (sacrificing portability for more compression; these require
the bz2 or lzma module, respectively). Unrecognized values will raise NotImplemente
dError.
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2 Alas, yes—not sys.stderr, as common practice and logic would dictate!

ZipFile

(cont.)
When allowZip64 is True (the default), the ZipFile instance is allowed to use the
ZIP64 extensions to produce an archive larger than 4 GB; otherwise, any attempt to produce
such a large archive raises a LargeZipFile exception.
compresslevel is an integer (ignored when using ZIP_STORED or ZIP_LZMA) from
0 for ZIP_DEFLATED (1 for ZIP_BZIP2), which requests modest compression but fast
operation, to 9 to request the best compression at the cost of more computation.
3.8+  Set strict_timestamps to False to store files older than 1980-01-01 (sets

the timestamp to 1980-01-01) or beyond 2107-12-31 (sets the timestamp to 2107-12-31).

ZipFile is a context manager; thus, you can use it in a with statement to ensure the
underlying file gets closed when you’re done with it. For example:

with zipfile.ZipFile('archive.zip') as z:    
    data = z.read('data.txt')

In addition to the arguments with which it was instantiated, a ZipFile instance
z has the attributes fp and filename, which are the file-like object z works on
and its filename (if known); comment, the possibly empty string that is the archive’s
comment; and filelist, the list of ZipInfo instances in the archive. In addition,
z has a writable attribute called debug, an int from 0 to 3 that you can assign to
control how much debugging output to emit to sys.stdout:2 from nothing when
z.debug is 0, to the maximum amount of information available when z.debug is 3.

A ZipFile instance z supplies the methods listed in Table 11-13.

Table 11-13. Methods supplied by an instance z of ZipFile

close close()

Closes archive file z. Make sure to call z.close(), or an incomplete and unusable ZIP
file might be left on disk. Such mandatory finalization is generally best performed with a
try/finally statement, as covered in “try/finally” on page 198, or—even better—a
with statement, covered in “The with Statement and Context Managers” on page 201.

extract extract(member, path=None, pwd=None)

Extracts an archive member to disk, to the directory or path-like object path or, by default,
to the current working directory; member is the member’s full name, or an instance
of ZipInfo identifying the member. extract normalizes path info within member,
turning absolute paths into relative ones, removing any .. component, and, on Windows,
turning characters that are illegal in filenames into underscores (_). pwd, if present, is the
password to use to decrypt an encrypted member.
extract returns the path to the file it has created (or overwritten if it already existed),
or to the directory it has created (or left alone if it already existed). Calling extract on a
closed ZipFile raises ValueError.
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extractall extractall(path=None, members=None, pwd=None)

Extracts archive members to disk (by default, all of them), to directory or path- like object
path or, by default, to the current working directory; members optionally limits which
members to extract, and must be a subset of the list of strings returned by z.namelist.
extractall normalizes path info within members it extracts, turning absolute paths
into relative ones, removing any .. component, and, on Windows, turning characters that
are illegal in filenames into underscores (_). pwd, if present, is the password to use to
decrypt encrypted members, if any.

getinfo getinfo(name)

Returns a ZipInfo instance that supplies information about the archive member named
by the string name.

infolist infolist()

Returns a list of ZipInfo instances, one for each member in archive z, in the same order
as the entries in the archive.

namelist namelist()

Returns a list of strings, the name of each member in archive z, in the same order as the
entries in the archive.

open open(name, mode='r', pwd=None, *, force_zip64=False)

Extracts and returns the archive member identified by name (a member name string
or ZipInfo instance) as a (maybe read-only) file-like object. mode may be 'r' or
'w'. pwd, if present, is the password to use to decrypt an encrypted member. Pass
force_zip64=True when an unknown file size may exceed 2 GiB, to ensure the header
format is capable of supporting large files. When you know in advance the large file size,
use a ZipInfo instance for name, with file_size set appropriately.

printdir printdir()

Outputs a textual directory of the archive z to sys.stdout.

read read(name, pwd)
Extracts the archive member identified by name (a member name string or ZipInfo
instance) and returns the bytestring of its contents (raises ValueError if called on
a closed ZipFile). pwd, if present, is the password to use to decrypt an encrypted
member.

setpassword setpassword(pwd)

Sets string pwd as the default password to use to decrypt encrypted files.

testzip testzip()

Reads and checks the files in archive z. Returns a string with the name of the first archive
member that is damaged, or None if the archive is intact.

write write(filename, arcname=None, compress_type=None, compressle

vel=None)

Writes the file named by string filename to archive z, with archive member name
arcname. When arcname is None, write uses filename as the archive member
name. When compress_type or compresslevel is None (the default), write
uses z’s compression type and level; otherwise, compress_type and/or compressle
vel specify how to compress the file. z must be opened for modes 'w', 'x', or 'a';
otherwise ValueError is raised.
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writestr writestr(zinfo_arc, data, compress_type=None,
compresslevel=None)

Adds a member to archive z using the metadata specified by zinfo_arc and the data in
data. zinfo_arc must be either a ZipInfo instance specifying at least filename
and date_time, or a string to be used as the archive member name with the date
and time are set to the current moment. data is an instance of bytes or str. When
compress_type or compresslevel is None (the default), writestr uses z’s
compression type and level; otherwise, compress_type and/or compresslevel
specify how to compress the file. z must be opened for modes 'w', 'x', or 'a';
otherwise ValueError is raised.
When you have data in memory and need to write the data to the ZIP file archive z, it’s
simpler and faster to use z.writestr than z.write. The latter would require you to
write the data to disk first and later remove the useless disk file; with the former you can
just code:

import zipfile
with zipfile.ZipFile('z.zip', 'w') as zz:
    data = 'four score\nand seven\nyears ago\n'
    zz.writestr('saying.txt', data)

Here’s how you can print a list of all files contained in the ZIP file archive created by the
previous example, followed by each file’s name and contents:

with zipfile.ZipFile('z.zip') as zz:
    zz.printdir()
    for name in zz.namelist():
        print(f'{name}: {zz.read(name)!r}')

The ZipInfo class
The methods getinfo and infolist of ZipFile instances return instances of class
ZipInfo to supply information about members of the archive. Table 11-14 lists the
most useful attributes supplied by a ZipInfo instance z.

Table 11-14. Useful attributes of a ZipInfo instance z

comment A string that is a comment on the archive member

compress_size The size, in bytes, of the compressed data for the archive member

compress_type An integer code recording the type of compression of the archive member

date_time A tuple of six integers representing the time of the last modification to the file: the items
are year (>=1980), month, day (1+), hour, minute, second (0+)

file_size The size, in bytes, of the uncompressed data for the archive member

filename The name of the file in the archive

The os Module
os is an umbrella module presenting a nearly uniform cross-platform view of the
capabilities of various operating systems. It supplies low-level ways to create and
handle files and directories, and to create, manage, and destroy processes. This
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3 Or, even better, the even-higher-level pathlib module, covered later in this chapter.

section covers filesystem-related functions of os; “Running Other Programs with
the os Module” on page 478 covers process-related functions. Most of the time you
can use other modules at higher levels of abstraction and gain productivity, but
understanding what is “underneath” in the low-level os module can still be quite
useful (hence our coverage).

The os module supplies a name attribute, a string that identifies the kind of plat‐
form on which Python is being run. Common values for name are 'posix' (all
kinds of Unix-like platforms, including Linux and macOS) and 'nt' (all kinds
of Windows platforms); 'java' is for the old but still-missed Jython. You can
exploit some unique capabilities of a platform through functions supplied by os.
However, this book focuses on cross-platform programming, not platform-specific
functionality, so we cover neither parts of os that exist only on one platform, nor
platform-specific modules: functionality covered in this book is available at least on
'posix' and 'nt' platforms. We do, though, cover some of the differences among
the ways in which a given functionality is provided on various platforms.

Filesystem Operations
Using the os module, you can manipulate the filesystem in a variety of ways:
creating, copying, and deleting files and directories; comparing files; and examin‐
ing filesystem information about files and directories. This section documents the
attributes and methods of the os module that you use for these purposes, and covers
some related modules that operate on the filesystem.

Path-string attributes of the os module
A file or directory is identified by a string, known as its path, whose syntax depends
on the platform. On both Unix-like and Windows platforms, Python accepts Unix
syntax for paths, with a slash (/) as the directory separator. On non-Unix-like
platforms, Python also accepts platform-specific path syntax. On Windows, in par‐
ticular, you may use a backslash (\) as the separator. However, you then need to
double up each backslash as \\ in string literals, or use raw string literal syntax (as
covered in “Strings” on page 44); you also needlessly lose portability. Unix path syn‐
tax is handier and usable everywhere, so we strongly recommend that you always
use it. In the rest of this chapter, we use Unix path syntax in both explanations and
examples.

The os module supplies attributes that provide details about path strings on the cur‐
rent platform, detailed in Table 11-15. You should typically use the higher-level path
manipulation operations covered in “The os.path Module” on page 3543 rather than
lower-level string operations based on these attributes. However, these attributes
may be useful at times.
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Table 11-15. Attributes supplied by the os module

curdir The string that denotes the current directory ('.' on Unix and Windows)

defpath The default search path for programs, used if the environment lacks a PATH environment variable

extsep The string that separates the extension part of a file’s name from the rest of the name ('.' on
Unix and Windows)

linesep The string that terminates text lines ('\n' on Unix; '\r\n' on Windows)

pardir The string that denotes the parent directory ('..' on Unix and Windows)

pathsep The separator between paths in lists of paths expressed as strings, such as those used for the
environment variable PATH (':' on Unix; ';' on Windows)

sep The separator of path components ('/' on Unix; '\\' on Windows)

Permissions
Unix-like platforms associate nine bits with each file or directory: three each for the
file’s owner, its group, and everybody else (aka “others” or “the world”), indicating
whether the file or directory can be read, written, and executed by the given subject.
These nine bits are known as the file’s permission bits, and are part of the file’s
mode (a bit string that includes other bits that describe the file). You often display
these bits in octal notation, which groups three bits per digit. For example, mode
0o664 indicates a file that can be read and written by its owner and group, and
that anybody else can read, but not write. When any process on a Unix-like system
creates a file or directory, the operating system applies to the specified mode a bit
mask known as the process’s umask, which can remove some of the permission bits.

Non-Unix-like platforms handle file and directory permissions in very different
ways. However, the os functions that deal with file permissions accept a mode
argument according to the Unix-like approach described in the previous paragraph.
Each platform maps the nine permission bits in a way appropriate for it. For
example, on Windows, which distinguishes only between read-only and read/write
files and does not record file ownership, a file’s permission bits show up as either
0o666 (read/write) or 0o444 (read-only). On such a platform, when creating a file,
the implementation looks only at bit 0o200, making the file read/write when that bit
is 1 and read-only when it is 0.

File and directory functions of the os module
The os module supplies several functions (listed in Table 11-16) to query and set
file and directory status. In all versions and platforms, the argument path to any of
these functions can be a string giving the path of the file or directory involved, or it
can be a path-like object (in particular, an instance of pathlib.Path, covered later
in this chapter). There are also some particularities on some Unix platforms:

• Some of the functions also support a file descriptor (fd)—an int denoting a•
file as returned, for example, by os.open—as the path argument. The module
attribute os.supports_fd is the set of functions in the os module that support
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this behavior (the module attribute is missing on platforms lacking such sup‐
port).

• Some functions support the optional keyword-only argument follow_sym•
links, defaulting to True. When this argument is True, if path indicates a
symbolic link, the function follows it to reach an actual file or directory;
when it’s False, the function operates on the symbolic link itself. The module
attribute os.supports_follow_symlinks, if present, is the set of functions in
the os module that support this argument.

• Some functions support the optional named-only argument dir_fd, defaulting•
to None. When dir_fd is present, path (if relative) is taken as being relative
to the directory open at that file descriptor; when missing, path (if relative) is
taken as relative to the current working directory. If path is absolute, dir_fd
is ignored. The module attribute os.supports_dir_fd, if present, is the set of
functions of the os module that support this argument.

Additionally, on some platforms the named-only argument effective_ids, default‐
ing to False, lets you choose to use effective rather than real user and group
identifiers. Check whether it is available on your platform with os.supports_effec
tive_ids.

Table 11-16. os module functions

access access(path, mode, *, dir_fd=None, effective_ids=False,
follow_symlinks=True)

Returns True when the file or path-like object path has all of the permissions encoded
in integer mode; otherwise, returns False. mode can be os.F_OK to test for file
existence, or one or more of os.R_OK, os.W_OK, and os.X_OK (joined with the
bitwise OR operator |, if more than one) to test permissions to read, write, and execute
the file. If dir_fd is not None, access operates on path relative to the provided
directory (if path is absolute, dir_fd is ignored). Pass the keyword-only argument
effective_ids=True (the default is False) to use effective rather than real user
and group identifiers (this may not work on all platforms). If you pass follow_sym
links=False and the last element of path is a symbolic link, access operates on the
symbolic link itself, not on the file pointed to by the link.
access does not use the standard interpretation for its mode argument, covered in
the previous section. Rather, access tests only if this specific process’s real user and
group identifiers have the requested permissions on the file. If you need to study a file’s
permission bits in more detail, see the function stat, covered later in this table.
Don’t use access to check if a user is authorized to open a file, before opening it; this
might be a security hole.

chdir chdir(path)

Sets the current working directory of the process to path, which may be a file descriptor or
path-like object.
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chmod,
lchmod

chmod(path, mode, *, dir_fd=None, follow_symlinks=True)
lchmod(path, mode)
Changes the permissions of the file (or file descriptor or path-like object) path, as encoded
in integer mode. mode can be zero or more of os.R_OK, os.W_OK, and os.X_OK
(joined with the bitwise OR operator |, if more than one) for read, write, and execute
permissions. On Unix-like platforms, mode can be a richer bit pattern (as covered in the
previous section) to specify different permissions for user, group, and other, as well as
having other special, rarely used bits defined in the module stat and listed in the online
docs. Pass follow_symlinks=False (or use lchmod) to change permissions of a
symbolic link, not the target of that link.

DirEntry An instance d of class DirEntry supplies attributes name and path, holding the item’s
base name and full path, respectively, and several methods, of which the most frequently
used are is_dir, is_file, and is_symlink. is_dir and is_file by default
follow symbolic links: pass follow_symlinks=False to avoid this behavior. d avoids
system calls as much as feasible, and when it needs one, it caches the results. If you need
information that’s guaranteed to be up-to-date, you can call os.stat(d.path) and
use the stat_result instance it returns; however, this sacrifices scandir’s potential
performance improvements. For more complete information, see the online docs.

getcwd,
getcwdb

getcwd(),
getcwdb()

getcwd returns a str, the path of the current working directory. getcwdb returns a
bytes string ( 3.8+  with UTF-8 encoding on Windows).

link link(src, dst, *, src_dir_fd=None, dst_dir_fd=None,
follow_symlinks=True)

Creates a hard link named dst, pointing to src. Both may be path-like objects. Set
src_dir_fd and/or dst_dir_fd for link to operate on relative paths, and pass
follow_symlinks=False to only operate on a symbolic link, not the target of that
link. To create a symbolic (“soft”) link, use the symlink function, covered later in this
table.

listdir listdir(path='.')

Returns a list whose items are the names of all files and subdirectories in the directory, file
descriptor (referring to a directory), or path-like object path. The list is in arbitrary order
and does not include the special directory names '.' (current directory) and '..' (parent
directory). When path is of type bytes, the filenames returned are also of type bytes;
otherwise, they are of type str. See also the alternative function scandir, covered later
in this table, which can offer performance improvements in some cases. Don’t remove or
add files to the directory during the call of this function: that may produce unexpected
results.
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mkdir,
makedirs

mkdir(path, mode=0777, dir_fd=None), 
makedirs(path, mode=0777, exist_ok=False)

mkdir creates only the rightmost directory of path and raises OSError if any of the
previous directories in path do not exist. mkdir accepts dir_fd for paths relative to a
file descriptor. makedirs creates all directories that are part of path and do not yet exist
(pass exist_ok=True to avoid raising FileExistsError).
Both functions use mode as permission bits of directories they create, but some platforms,
and some newly created intermediate-level directories, may ignore mode; use chmod to
explicitly set permissions.

remove,
unlink

remove(path, *, dir_fd=None),
unlink(path, *, dir_fd=None)
Removes the file or path-like object path , which may be relative to dir_fd. See rmdir
later in this table to remove a directory, rather than a file. unlink is a synonym of
remove.

removedirs removedirs(path)

Loops from right to left over the directories that are part of path, which may be a
path-like object, removing each one. The loop ends when a removal attempt raises an
exception, generally because a directory is not empty. removedirs does not propagate
the exception, as long as it has removed at least one directory.

rename,
renames

rename(src, dst, *, src_dir_fd=None, dst_dir_fd=None),
renames(src, dst, /)
Renames (“moves”) the file, path-like object, or directory named src to dst. If dst
already exists, rename may either replace dst or raise an exception; to guarantee
replacement, instead call the function os.replace. To use relative paths, pass
src_dir_fd and/or dst_dir_fd.
renames works like rename, except it creates all intermediate directories needed for
dst. After renaming, renames removes empty directories from the path src using
removedirs. It does not propagate any resulting exception; it’s not an error if the
renaming does not empty the starting directory of src. renames cannot accept relative
path arguments.

rmdir rmdir(path, *, dir_fd=None)
Removes the empty directory or path-like object named path (which may be relative to
dir_fd). Raises OSError if the removal fails, and, in particular, if the directory is not
empty.

scandir scandir(path='.')

Returns an iterator yielding os.DirEntry instances for each item in path, which
may be a string, a path-like object, or a file descriptor. Using scandir and
calling each resulting item’s methods to determine its characteristics can provide
performance improvements compared to using listdir and stat, depending on
the underlying platform. scandir may be used as a context manager: e.g., with
os.scandir(path) as itr: to ensure closure of the iterator (freeing up resources)
when done.

348 | Chapter 11: File and Text Operations



stat,
lstat,
fstat

stat(path, *, dir_fd=None, follow_symlinks=True),
lstat(path, *, dir_fd=None),
fstat(fd)

stat returns a value x of type stat_result, which provides (at least) 10 items
of information about path. path may be a file, file descriptor (in this case you can
use stat(fd) or fstat, which only accepts file descriptors), path-like object, or
subdirectory. path may be a relative path of dir_fd, or a symlink (if follow_sym
links=False, or if using lstat; on Windows, all reparse points that the OS can resolve
are followed unless follow_symlinks=False). The stat_result value is a tuple
of values that also supports named access to each of its contained values (similar to a
collections.namedtuple, though not implemented as such). Accessing the items
of stat_result by their numeric indices is possible but not advisable, because the
resulting code is not readable; use the corresponding attribute names instead. Table 11-17
lists the main 10 attributes of a stat_result instance and the meaning of the
corresponding items.

Table 11-17. Items (attributes) of a stat_result instance

Item index Attribute name Meaning

0 st_mode Protection and other mode bits

1 st_ino Inode number

2 st_dev Device ID

3 st_nlink Number of hard links

4 st_uid User ID of owner

5 st_gid Group ID of owner

6 st_size Size, in bytes

7 st_atime Time of last access

8 st_mtime Time of last modification

9 st_ctime Time of last status change

For example, to print the size, in bytes, of file path, you can use any of:
import os
print(os.stat(path)[6])       # works but unclear
print(os.stat(path).st_size)  # easier to understand
print(os.path.getsize(path))  # convenience function
                            # that wraps stat

Time values are in seconds since the epoch, as covered in Chapter 13 (int, on most
platforms). Platforms unable to give a meaningful value for an item use a dummy value. For
other, platform-dependent attributes of stat_result instances, see the online docs.
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symlink symlink(target, symlink_path, target_is_directory=False, *,
dir_fd=None)

Creates a symbolic link named symlink_path to the file, directory, or path-like object
target, which may be relative to dir_fd. target_is_directory is used only
on Windows systems, to specify whether the created symlink should represent a file or
a directory; this argument is ignored on non-Windows systems. (Calling os.symlink
typically requires elevated privileges when run on Windows.)

utime utime(path, times=None, *, [ns, ]dir_fd=None, follow_sym
links=True)

Sets the accessed and modified times of file, directory, or path-like object path, which
may be relative to dir_fd, and may be a symlink if follow_symlinks=False. If
times is None, utime uses the current time. Otherwise, times must be a pair of
numbers (in seconds since the epoch, as covered in Chapter 13) in the order (accessed,
modified). To specify nanoseconds instead, pass ns as (acc_ns, mod_ns), where
each member is an int expressing nanoseconds since the epoch. Do not specify both
times and ns.

walk,
fwalk

walk(top, topdown=True, onerror=None, followlinks=False),
fwalk(top='.', topdown=True, onerror=None, *, follow_sym

links=False, dir_fd=None)

walk is a generator yielding an item for each directory in the tree whose root is the
directory or path-like object top. When topdown is True, the default, walk visits
directories from the tree’s root downward; when topdown is False, walk visits
directories from the tree’s leaves upward. By default, walk catches and ignores any
OSError exception raised during the tree-walk; set onerror to a callable in order
to catch any OSError exception raised during the tree-walk and pass it as the only
argument in a call to onerror, which may process it, ignore it, or raise it to terminate
the tree-walk and propagate the exception (the filename is available as the filename
attribute of the exception object).
Each item walk yields is a tuple of three subitems: dirpath, a string that is the
directory’s path; dirnames, a list of names of subdirectories that are immediate children
of the directory (special directories '.' and '..' are not included); and filenames,
a list of names of files that are directly in the directory. If topdown is True, you can
alter list dirnames in place, removing some items and/or reordering others, to affect the
tree-walk of the subtree rooted at dirpath; walk iterates only on subdirectories left in
dirnames, in the order in which they’re left. Such alterations have no effect if topdown
is False (in this case, walk has already visited all subdirectories by the time it visits the
current directory and yields its item).
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walk,
fwalk

(cont.)

By default, walk does not walk down symbolic links that resolve to directories. To get such
extra walking, pass followlinks=True, but beware: this can cause infinite looping if
a symbolic link resolves to a directory that is its ancestor. walk doesn’t take precautions
against this anomaly.

followlinks versus follow_symlinks
Note that, for os.walk only, the argument that is named fol
low_symlinks everywhere else is instead named followlinks.

fwalk (Unix only) works like walk, except that top may be a relative path of file
descriptor dir_fd, and fwalk yields four-member tuples: the first three members
(dirpath, dirnames, and filenames) are identical to walk’s yielded values, and
the fourth member is dirfd, a file descriptor of dirpath. Note that both walk and
fwalk default to not following symlinks.

File descriptor operations
In addition to the many functions covered earlier, the os module supplies several
that work specifically with file descriptors. A file descriptor is an integer that the
operating system uses as an opaque handle to refer to an open file. While it is usu‐
ally best to use Python file objects (covered in “The io Module” on page 322) for I/O
tasks, sometimes working with file descriptors lets you perform some operations
faster, or (at the possible expense of portability) in ways not directly available with
io.open. File objects and file descriptors are not interchangeable.

To get the file descriptor n of a Python file object f, call n = f.fileno(). To
create a new Python file object f using an existing open file descriptor fd, use f
= os.fdopen(fd), or pass fd as the first argument of io.open. On Unix-like and
Windows platforms, some file descriptors are preallocated when a process starts: 0
is the file descriptor for the process’s standard input, 1 for the process’s standard
output, and 2 for the process’s standard error. Calling os module methods such as
dup or close on these preallocated file descriptors can be useful for redirecting or
manipulating standard input and output streams.
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The os module provides many functions for dealing with file descriptors; some of
the most useful are listed in Table 11-18.

Table 11-18. Useful os module functions to deal with file descriptors

close close(fd)

Closes file descriptor fd.

closerange closerange(fd_low, fd_high)
Closes all file descriptors from fd_low, included, to fd_high, excluded, ignoring any
errors that may occur.

dup dup(fd)

Returns a file descriptor that duplicates file descriptor fd.

dup2 dup2(fd, fd2)
Duplicates file descriptor fd to file descriptor fd2. When file descriptor fd2 is already
open, dup2 first closes fd2.

fdopen fdopen(fd, *a, **k)
Like io.open, except that fd must be an int that is an open file descriptor.

fstat fstat(fd)

Returns a stat_result instance x, with information about the file open on file
descriptor fd. Table 11-17 covers x’s contents.

lseek lseek(fd, pos, how)
Sets the current position of file descriptor fd to the signed integer byte offset pos and
returns the resulting byte offset from the start of the file. how indicates the reference
(point 0). When how is os.SEEK_SET, a pos of 0 means the start of the file; for
os.SEEK_CUR it means the current position, and for os.SEEK_END it means the end
of the file. For example, lseek(fd, 0, os.SEEK_CUR) returns the current position’s
byte offset from the start of the file without affecting the current position. Normal disk files
support seeking; calling lseek on a file that does not support seeking (e.g., a file open for
output to a terminal) raises an exception.
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open open(file, flags, mode=0o777)
Returns a file descriptor, opening or creating a file named by string file. When open
creates the file, it uses mode as the file’s permission bits. flags is an int, normally the
bitwise OR (with operator |) of one or more of the following attributes of os:

O_APPEND

Appends any new data to file’s current contents

O_BINARY

Opens file in binary rather than text mode on Windows platforms (raises an
exception on Unix-like platforms)

O_CREAT

Creates file if file does not already exist

O_DSYNC, O_RSYNC, O_SYNC, O_NOCTTY
Set the synchronization mode accordingly, if the platform supports this

O_EXCL

Raises an exception if file already exists

O_NDELAY, O_NONBLOCK
Opens file in nonblocking mode, if the platform supports this

O_RDONLY, O_WRONLY, O_RDWR
Opens file for read-only, write-only, or read/write access, respectively
(mutually exclusive: exactly one of these attributes must be in flags)

O_TRUNC

Throws away previous contents of file (incompatible with O_RDONLY)

pipe pipe()

Creates a pipe and returns a pair of file descriptors (r_fd, w_fd), respectively open for
reading and writing.

read read(fd, n)

Reads up to n bytes from file descriptor fd and returns them as a bytestring. Reads and
returns m < n bytes when only m more bytes are currently available for reading from the
file. In particular, returns the empty string when no more bytes are currently available from
the file, typically because the file is finished.

write write(fd, s)
Writes all bytes from bytestring s to file descriptor fd and returns the number of bytes
written.
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The os.path Module
The os.path module supplies functions to analyze and transform path strings and
path-like objects. The most commonly useful functions from the module are listed
in Table 11-19.

Table 11-19. Frequently used functions of the os.path module

abspath abspath(path)

Returns a normalized absolute path string equivalent to path, just like (in the case where
path is the name of a file in the current directory):
os.path.normpath(os.path.join(os.getcwd(), path))
For example, os.path.abspath(os.curdir) is the same as os.getcwd().

basename basename(path)

Returns the base name part of path, just like os.path.split(path)[1]. For
example, os.path.basename('b/c/d.e') returns 'd.e'.

commonpath commonpath(list)

Accepts a sequence of strings or path-like objects, and returns the longest common
subpath. Unlike commonprefix, only returns a valid path; raises ValueError if list
is empty, contains a mixture of absolute and relative paths, or contains paths on different
drives.

common

prefix

commonprefix(list)

Accepts a list of strings or pathlike objects and returns the longest string that is a prefix
of all items in the list, or '.' if list is empty. For example, os.path.commonpre
fix(['foobar', 'foolish']) returns 'foo'. May return an invalid path; see
commonpath if you want to avoid this.

dirname dirname(path)

Returns the directory part of path, just like os.path.split(path)[0]. For
example, os.path.dirname('b/c/d.e') returns 'b/c'.

exists,
lexists

exists(path), lexists(path)
exists returns True when path names an existing file or directory (path may also
be an open file descriptor or path-like object); otherwise, returns False. In other words,
os.path.exists(x) is the same as os.access(x, os.F_OK). lexists is the
same, but also returns True when path names an existing symbolic link that indicates
a nonexistent file or directory (sometimes known as a broken symlink), while exists
returns False in such cases. Both return False for paths containing characters or bytes
that are not representable at the OS level.
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expandvars,
expanduser

expandvars(path), expanduser(path)
Returns a copy of string or path-like object path, where each substring of the form
$name or ${name} (and %name% on Windows only) is replaced with the value of
environment variable name. For example, if environment variable HOME is set to /u/
alex, the following code:

import os
print(os.path.expandvars('$HOME/foo/'))

emits /u/alex/foo/.
os.path.expanduser expands a leading ~ or ~user, if any, to the path of the home
directory of the current user.

getatime,
getctime,
getmtime,
getsize

getatime(path), getctime(path), getmtime(path), getsize(path)
Each of these functions calls os.stat(path) and returns an attribute from the result:
respectively, st_atime, st_ctime, st_mtime, and st_size. See Table 11-17 for
more details about these attributes.

isabs isabs(path)

Returns True when path is absolute. (A path is absolute when it starts with a
(back)slash (/ or \), or, on some non-Unix-like platforms, such as Windows, with a drive
designator followed by os.sep.) Otherwise, isabs returns False.

isdir isdir(path)

Returns True when path names an existing directory (isdir follows symlinks, so
isdir and islink may both return True ); otherwise, returns False.

isfile isfile(path)

Returns True when path names an existing regular file (isfile follows symlinks, so
islink may also be True); otherwise, returns False.

islink islink(path)

Returns True when path names a symbolic link; otherwise, returns False.

ismount ismount(path)

Returns True when path names a mount point; otherwise, returns False.

join join(path, *paths)
Returns a string that joins the arguments (strings or path-like objects) with the appropriate
path separator for the current platform. For example, on Unix, exactly one slash character /
separates adjacent path components. If any argument is an absolute path, join ignores
previous arguments. For example:

print(os.path.join('a/b', 'c/d', 'e/f'))
# on Unix prints: a/b/c/d/e/f
print(os.path.join('a/b', '/c/d', 'e/f'))
# on Unix prints: /c/d/e/f

The second call to os.path.join ignores its first argument 'a/b', since its second
argument '/c/d' is an absolute path.

normcase normcase(path)

Returns a copy of path with case normalized for the current platform. On case-sensitive
filesystems (typical in Unix-like systems), path is returned unchanged. On case-insensitive
filesystems (typical in Windows), it lowercases the string. On Windows, normcase also
converts each / to a \\.

The os Module | 355

File and
 Text

O
p

eratio
ns

https://oreil.ly/JYbY5


normpath normpath(path)

Returns a normalized pathname equivalent to path, removing redundant separators and
path-navigation aspects. For example, on Unix, normpath returns 'a/b' when path
is any of 'a//b', 'a/./b', or 'a/c/../b'. normpath makes path separators
appropriate for the current platform. For example, on Windows, separators become \\.

realpath realpath(path, *, strict=False)
Returns the actual path of the specified file or directory or path-like object, resolving
symlinks along the way. 3.10+  Set strict=True to raise OSError when path
doesn’t exist, or when there is a loop of symlinks.

relpath relpath(path, start=os.curdir)

Returns a path to the file or directory path (a str or path-like object) relative to directory
start.

samefile samefile(path1, path2)
Returns True if both arguments (strings or path-like objects) refer to the same file or
directory.

sameopen

file

sameopenfile(fd1, fd2)
Returns True if both arguments (file descriptors) refer to the same file or directory.

samestat samestat(stat1, stat2)
Returns True if both arguments (instances of os.stat_result, typically results of
os.stat calls) refer to the same file or directory.

split split(path)

Returns a pair of strings (dir, base) such that join(dir, base) equals path.
base is the last component and never contains a path separator. When path ends in a
separator, base is ''. dir is the leading part of path, up to the last separator excluded.
For example, os.path.split('a/b/c/d') returns ('a/b/c', 'd').

splitdrive splitdrive(path)

Returns a pair of strings (drv, pth) such that drv+pth equals path. drv is a drive
specification, or ''; it is always '' on platforms without drive specifications, e.g. Unix-like
systems. On Windows, os.path.splitdrive('c:d/e') returns ('c:', 'd/e').

splitext splitext(path)

Returns a pair (root, ext) such that root+ext equals path. ext is either
'' or starts with a '.' and has no other '.' or path separator. For example,
os.path.splitext('a.a/b.c.d') returns the pair ('a.a/b.c', '.d').

OSError Exceptions
When a request to the operating system fails, os raises an exception, an instance
of OSError. os also exposes the built-in exception class OSError with the syno‐
nym os.error. Instances of OSError expose three useful attributes, detailed in
Table 11-20.

Table 11-20. Attributes of OSError instances

errno The numeric error code of the operating system error
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filename The name of the file on which the operation failed (file-related functions only)

strerror A string that briefly describes the error

OSError has subclasses to specify what the problem was, as discussed in “OSError
subclasses” on page 208.

os functions can also raise other standard exceptions, such as TypeError or ValueEr
ror, when called with invalid argument types or values, so that they didn’t even
attempt the underlying operating system functionality.

The errno Module
The errno module supplies dozens of symbolic names for error code numbers.
Use errno to handle possible system errors selectively, based on error codes; this
will enhance your program’s portability and readability. However, a selective except
with the appropriate OSError subclass often works better than errno. For example,
to handle “file not found” errors, while propagating all other kinds of errors, you
could use:

import errno
try:
    os.some_os_function_or_other()
except FileNotFoundError as err:
    print(f'Warning: file {err.filename!r} not found; continuing')
except OSError as oserr:
    print(f'Error {errno.errorcode[oserr.errno]}; continuing')

errno supplies a dictionary named errorcode: the keys are error code numbers, and
the corresponding values are the error names, strings such as 'ENOENT'. Displaying
errno.errorcode[err.errno] as part of the explanation behind some OSError
instance’s err can often make the diagnosis clearer and more understandable to
readers who specialize in the specific platform.

The pathlib Module
The pathlib module provides an object-oriented approach to filesystem paths,
pulling together a variety of methods for handling paths and files as objects, not as
strings (unlike os.path). For most use cases, pathlib.Path will provide everything
you’ll need. On rare occasions, you’ll want to instantiate a platform-specific path,
or a “pure” path that doesn’t interact with the operating system; see the online docs
if you need such advanced functionality. The most commonly useful functions of
pathlib.Path are listed in Table 11-21, with examples for a pathlib.Path object
p. On Windows, pathlib.Path objects are returned as WindowsPath; on Unix, as
PosixPath, as shown in the examples in Table 11-21. (For clarity, we are simply
importing pathlib rather than using the more common and idiomatic from path
lib import Path.)
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pathlib Methods Return Path Objects, Not Strings
Keep in mind that pathlib methods typically return a path
object, not a string, so results of similar methods in os and
os.path do not test as being identical.

Table 11-21. Commonly used methods of pathlib.Path

chmod,
lchmod

p.chmod(mode, follow_symlinks=True),
p.lchmod(mode)

chmod changes the file mode and permissions, like os.chmod (see Table 11-16).
On Unix platforms, 3.10+  set follow_symlinks=False to change permissions
on the symbolic link rather than its target, or use lchmod. See the online docs for
more information on chmod settings.lchmod is like chmod but, when p points to
a symbolic link, changes the symbolic link rather than its target. Equivalent to path
lib.Path.chmod(follow_symlinks=False).

cwd pathlib.Path.cwd()

Returns the current working directory as a path object.

exists p.exists()

Returns True when p names an existing file or directory (or a symbolic link pointing to an
existing file or directory); otherwise, returns False.

expanduser p.expanduser()

Returns a new path object with a leading ~ expanded to the path of the home directory of
the current user, or ~user expanded to the path of the home directory of the given user.
See also home later in this table.

glob,
rglob

p.glob(pattern),
p.rglob(pattern)

Yield all matching files in directory p in arbitrary order. pattern may include ** to allow
recursive globbing in p or any subdirectory; rglob always performs recursive globbing in p
and all subdirectories, as if pattern started with '**/'. For example:

>>> sorted(td.glob('*'))
[WindowsPath('tempdir/bar'), 
WindowsPath('tempdir/foo')]

>>> sorted(td.glob('**/*'))
[WindowsPath('tempdir/bar'),
WindowsPath('tempdir/bar/baz'), 
WindowsPath('tempdir/bar/boo'), 
WindowsPath('tempdir/foo')]

>>> sorted(td.glob('*/**/*')) # expanding at 2nd+ level
[WindowsPath('tempdir/bar/baz'), 
WindowsPath('tempdir/bar/boo')]

>>> sorted(td.rglob('*'))  # just like glob('**/*')
[WindowsPath('tempdir/bar'), 
WindowsPath('tempdir/bar/baz'), 
WindowsPath('tempdir/bar/boo'), 
WindowsPath('tempdir/foo')]
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hardlink_to p.hardlink_to(target)

3.10+  Makes p a hard link to the same file as target. Replaces the deprecated
link_to 3.8+ , -3.10 Note: the order of arguments for link_to was like
os.link, described in Table 11-16; for hardlink_to, like for symlink_to later
in this table, it’s the reverse.

home pathlib.Path.home()

Returns the user’s home directory as a path object.

is_dir p.is_dir()

Returns True when p names an existing directory (or a symbolic link to a directory);
otherwise, returns False.

is_file p.is_file()

Returns True when p names an existing file (or a symbolic link to a file); otherwise, returns
False.

is_mount p.is_mount()

Returns True when p is a mount point (a point in a filesystem where a different filesystem
has been mounted); otherwise, returns False. See the online docs for details. Not
implemented on Windows.

is_symlink p.is_symlink()

Returns True when p names an existing symbolic link; otherwise, returns False.

iterdir p.iterdir()

Yields path objects for the contents of directory p ('.' and '..' not included) in
arbitrary order. Raises NotADirectoryError when p is not a directory. May produce
unexpected results if you remove a file from p, or add a file to p, after you create the
iterator and before you’re done using it.

mkdir p.mkdir(mode=0o777, parents=False, exist_ok=False)

Creates a new directory at the path. Use mode to set file mode and access flags. Pass
parents=True to create any missing parents as needed. Pass exist_ok=True to
ignore FileExistsError exceptions. For example:

>>> td=pathlib.Path('tempdir/')
>>> td.mkdir(exist_ok=True)
>>> td.is_dir()
True

See the online docs for thorough coverage.

open p.open(mode='r', buffering=-1, encoding=None, errors=None,

newline=None)

Opens the file pointed to by the path, like the built-in open(p) (with other args the
same).

read_bytes p.read_bytes()

Returns the binary contents of p as a bytes object.

read_text p.read_text(encoding=None, errors=None)

Returns the decoded contents of p as a string.

readlink p.readlink()

3.9+  Returns the path to which a symbolic link points.
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rename p.rename(target)

Renames p to target and 3.8+  returns a new Path instance pointing to target.
target may be a string, or an absolute or relative path; however, relative paths are
interpreted relative to the current working directory, not the directory of p. On Unix, when
target is an existing file or empty directory, rename replaces it silently when the user
has permission; on Windows, rename raises FileExistsError.

replace p.replace(target)

Like p.rename(target), but, on any platform, when target is an existing file (or,
except on Windows, an empty directory), replace replaces it silently when the user has
permission. For example:

>>> p.read_text()
'spam'

>>> t.read_text()
'and eggs'

>>> p.replace(t)
WindowsPath('C:/Users/annar/testfile.txt')

>>> t.read_text()
'spam'

>>> p.read_text()
Traceback (most recent call last):

...
FileNotFoundError: [Errno 2] No such file...

resolve p.resolve(strict=False)

Returns a new absolute path object with symbolic links resolved; eliminates any '..'
components. Set strict=True to raise exceptions: FileNotFoundError when the
path does not exist, or RuntimeError when it encounters an infinite loop. For example,
on the temporary directory created in the mkdir example earlier in this table:

>>> td.resolve()
PosixPath('/Users/annar/tempdir')

rmdir p.rmdir()

Removes directory p. Raises OSError if p is not empty.

samefile p.samefile(target)

Returns True when p and target indicate the same file; otherwise, returns False.
target may be a string or a path object.

stat p.stat(*, follow_symlinks=True)

Returns information about the path object, including permissions and size; see os.stat
in Table 11-16 for return values. 3.10+  To stat a symbolic link itself, rather than its
target, pass follow_symlinks=False.

symlink_to p.symlink_to(target, target_is_directory=False)

Makes p a symbolic link to target. On Windows, you must set target_is_direc
tory=True if target is a directory. (POSIX ignores this argument.) (On Windows 10+,
like os.symlink, requires Developer Mode permissions; see the online docs for details.)
Note: the order of arguments is the reverse of the order for os.link and os.symlink,
described in Table 11-16.
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touch p.touch(mode=0o666, exist_ok=True)

Like touch on Unix, creates an empty file at the given path. When the file already
exists, updates the modification time to the current time if exist_ok=True; if
exist_ok=False, raises FileExistsError. For example:

>>> d
WindowsPath('C:/Users/annar/Documents')

>>> f = d / 'testfile.txt'
>>> f.is_file()
False

>>> f.touch()
>>> f.is_file()
True

unlink p.unlink(missing_ok=False)

Removes file or symbolic link p. (Use rmdir for directories, as described earlier in this
table.) 3.8+  Pass missing_ok=True to ignore FileExistsError.

write_bytes p.write_bytes(data)

Opens (or, if need be, creates) the file pointed to in bytes mode, writes data to it, then
closes the file. Overwrites the file if it already exists.

write_text p.write_text(data, encoding=None, errors=None, newline=None)

Opens (or, if need be, creates) the file pointed to in text mode, writes data to it, then
closes the file. Overwrites the file if it already exists. 3.10+  When newline is None
(the default), translates any '\n' to the system default line separator; when '\r' or
'\r\n', translates '\n' to the given string; when '' or '\n', no translation takes
place.

pathlib.Path objects also support the attributes listed in Table 11-22 to access the
various component parts of the path string. Note that some attributes are strings,
while others are Path objects. (For brevity, OS-specific types such as PosixPath or
WindowsPath are shown simply using the abstract Path class.)

Table 11-22. Attributes of an instance p of pathlib.Path

Attribute Description Value for Unix path
Path('/usr/bin/ python')

Value for Windows
path Path(r’c:\Python3\
python.exe')

anchor Combination of drive and root '/' 'c:\\'

drive Drive letter of p '' 'c:'

name End component of p 'python' 'python.exe'

parent Parent directory of p Path('/usr/bin') Path('c:\

\Python3')

parents Ancestor directories of p (Path('/usr/

bin'), Path('/

usr'), Path('/'))

(Path('c:\

\Python3'),

Path('c:\\'))
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Attribute Description Value for Unix path
Path('/usr/bin/ python')

Value for Windows
path Path(r’c:\Python3\
python.exe')

parts Tuple of all components of p ('/', 'usr',

'bin', 'python')

('c:\\', 'Py

thon3', 'py

thon.exe')

root Root directory of p '/' '\\'

stem Name of p, minus suffix 'python' 'python'

suffix Ending suffix of p '' '.exe'

suffixes List of all suffixes of p, as delimited
by '.' characters

[] ['.exe']

The online documentation includes more examples for paths with additional com‐
ponents, such as filesystem and UNC shares.

pathlib.Path objects also support the '/' operator, an excellent alternative to
os.path.join or Path.joinpath from the Path module. See the example code in
the description of Path.touch in Table 11-21.

The stat Module
The function os.stat (covered in Table 11-16) returns instances of stat_result,
whose item indices, attribute names, and meaning are also covered there. The stat
module supplies attributes with names like those of stat_result’s attributes in
uppercase, and corresponding values that are the corresponding item indices.

The more interesting contents of the stat module are functions to examine the
st_mode attribute of a stat_result instance and determine the kind of file. os.path
also supplies functions for such tasks, which operate directly on the file’s path. The
functions supplied by stat, shown in Table 11-23, are faster than os’s when you
perform several tests on the same file: they require only one os.stat system call
at the start of a series of tests to obtain the file’s st_mode, while the functions in
os.path implicitly ask the operating system for the same information at each test.
Each function returns True when mode denotes a file of the given kind; otherwise, it
returns False.

Table 11-23. stat module functions for examining st_mode

S_ISBLK S_ISBLK(mode)

Indicates whether mode denotes a special-device file of the block kind

S_ISCHR S_ISCHR(mode)

Indicates whether mode denotes a special-device file of the character kind

S_ISDIR S_ISDIR(mode)

Indicates whether mode denotes a directory
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S_ISFIFO S_ISFIFO(mode)

Indicates whether mode denotes a FIFO (also known as a “named pipe”)

S_ISLNK S_ISLNK(mode)

Indicates whether mode denotes a symbolic link

S_ISREG S_ISREG(mode)

Indicates whether mode denotes a normal file (not a directory, special device-file, etc.)

S_ISSOCK S_ISSOCK(mode)

Indicates whether mode denotes a Unix-domain socket

Several of these functions are meaningful only on Unix-like systems, since other
platforms do not keep special files such as devices and sockets in the same name‐
space as regular files; Unix-like systems do.

The stat module also supplies two functions that extract relevant parts of a file’s
mode (x.st_mode, for some result x of function os.stat), listed in Table 11-24.

Table 11-24. stat module functions for extracting bits from mode

S_IFMT S_IFMT(mode)

Returns those bits of mode that describe the kind of file (i.e., the bits that are examined by the
functions S_ISDIR, S_ISREG, etc.)

S_IMODE S_IMODE(mode)

Returns those bits of mode that can be set by the function os.chmod (i.e., the permission bits
and, on Unix-like platforms, a few other special bits such as the set-user-id flag)

The stat module supplies a utility function, stat.filemode(mode), that converts a
file’s mode to a human readable string of the form '-rwxrwxrwx'.

The filecmp Module
The filecmp module supplies a few functions that are useful for comparing files and
directories, listed in Table 11-25.

Table 11-25. Useful functions of the filecmp module

clear_cache clear_cache()

Clears the filecmp cache, which may be useful in quick file comparisons.

cmp cmp(f1, f2, shallow=True)
Compares the files (or pathlib.Paths) identified by path strings f1 and f2. If the files
are deemed to be equal, cmp returns True; otherwise, it returns False. If shallow
is True, files are deemed to be equal if their stat tuples are equal. When shallow is
False, cmp reads and compares the contents of files whose stat tuples are equal.
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cmpfiles cmpfiles(dir1, dir2, common, shallow=True)
Loops on the sequence common. Each item of common is a string that names a file present
in both directories dir1 and dir2. cmpfiles returns a tuple whose items are three
lists of strings: (equal, diff, and errs). equal is the list of names of files that are
equal in both directories, diff is the list of names of files that differ between directories,
and errs is the list of names of files that it could not compare (because they do not exist
in both directories, or there is no permission to read one or both of them). The argument
shallow is the same as for cmp.

The filecmp module also supplies the class dircmp. The constructor for this class
has the signature:

dircmp class dircmp(dir1, dir2, ignore=None, hide=None)
Creates a new directory-comparison instance object comparing directories dir1 and dir2,
ignoring names listed in ignore and hiding names listed in hide (defaulting to '.' and
'..' when hide=None). The default value for ignore is supplied by the DEFAULT_IGNORE
attribute of the filecmp module; at the time of this writing it is ['RCS', 'CVS', 'tags',
'.git', '.hg', '.bzr', '_darcs', '__pycache__']. Files in the directories are
compared like with filecmp.cmp with shallow=True.

A dircmp instance d supplies three methods, detailed in Table 11-26.

Table 11-26. Methods supplied by a dircmp instance d

report report_full_closure()

Outputs to sys.stdout a comparison between dir1 and dir2 and all their
common subdirectories, recursively

report_full_

closure

report_full_closure()

Outputs to sys.stdout a comparison between dir1 and dir2 and all their
common subdirectories, recursively

report_partial_

closure

report_partial_closure()

Outputs to sys.stdout a comparison between dir1 and dir2 and their
common immediate subdirectories

In addition, d supplies several attributes, covered in Table 11-27. These attributes
are computed “just in time” (i.e., only if and when needed, thanks to a __getattr__
special method) so that using a dircmp instance incurs no unnecessary overhead.

Table 11-27. Attributes supplied by a dircmp instance d

common Files and subdirectories that are in both dir1 and dir2

common_dirs Subdirectories that are in both dir1 and dir2

common_files Files that are in both dir1 and dir2
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common_funny Names that are in both dir1 and dir2 for which os.stat reports an error or returns
different kinds for the versions in the two directories

diff_files Files that are in both dir1 and dir2 but with different contents

funny_files Files that are in both dir1 and dir2 but could not be compared

left_list Files and subdirectories that are in dir1

left_only Files and subdirectories that are in dir1 and not in dir2

right_list Files and subdirectories that are in dir2

right_only Files and subdirectories that are in dir2 and not in dir1

same_files Files that are in both dir1 and dir2 with the same contents

subdirs A dictionary whose keys are the strings in common_dirs; the corresponding values
are instances of dircmp (or 3.10+  of the same dircmp subclass as d) for each
subdirectory

The fnmatch Module
The fnmatch module (an abbreviation for filename match) matches filename strings
or paths with patterns that resemble the ones used by Unix shells, as listed in
Table 11-28.

Table 11-28. fnmatch pattern matching conventions

Pattern Matches

* Any sequence of characters

? Any single character

[chars] Any one of the characters in chars

[!chars] Any one character not among those in chars

fnmatch does not follow other conventions of Unix shell pattern matching, such as
treating a slash (/) or a leading dot (.) specially. It also does not allow escaping
special characters: rather, to match a special character, enclose it in brackets. For
example, to match a filename that’s a single close bracket, use '[]]'.

The fnmatch module supplies the functions listed in Table 11-29.

Table 11-29. Functions of the fnmatch module

filter filter(names, pattern)
Returns the list of items of names (a sequence of strings) that match pattern.
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fnmatch fnmatch(filename, pattern)
Returns True when string filename matches pattern; otherwise, returns False.
The match is case sensitive when the platform is (for example, typical Unix-like systems),
and otherwise (for example, on Windows) case insensitive; beware of that, if you’re dealing
with a filesystem whose case-sensitivity doesn’t match your platform (for example, macOS
is Unix-like; however, its typical filesystems are case insensitive).

fnmatchcase fnmatchcase(filename, pattern)
Returns True when string filename matches pattern; otherwise, returns False.
The match is always case-sensitive on any platform.

translate translate(pattern)

Returns the regular expression pattern (as covered in “Pattern String Syntax” on page 306)
equivalent to the fnmatch pattern pattern.

The glob Module
The glob module lists (in arbitrary order) the pathnames of files that match a path
pattern, using the same rules as fnmatch; in addition, it treats a leading dot (.),
separator (/), and ** specially, like Unix shells do. Table 11-30 lists some useful
functions provided by the glob module.

Table 11-30. Functions of the glob module

escape escape(pathname)

Escapes all special characters ('?', '*', and '['), so you can match an arbitrary literal string that
may contain special characters.

glob glob(pathname, *, root_dir=None, dir_fd=None, recursive=False)

Returns the list of pathnames of files that match the pattern pathname. root_dir (if not
None) is a string or path-like object specifying the root directory for searching (this works like
changing the current directory before calling glob). If pathname is relative, the paths returned
are relative to root_dir. To search paths relative to directory descriptors, pass dir_fd instead.
Optionally pass named argument recursive=True to have path component ** recursively
match zero or more levels of subdirectories.

iglob iglob(pathname, *, root_dir=None, dir_fd=None, recursive=False)
Like glob, but returns an iterator yielding one relevant pathname at a time.

The shutil Module
The shutil module (an abbreviation for shell utilities) supplies functions to copy
and move files, and to remove an entire directory tree. On some Unix platforms,
most of the functions support the optional keyword-only argument follow_sym
links, defaulting to True. When follow_symlinks=True, if a path indicates a sym‐
bolic link, the function follows it to reach an actual file or directory; when False,
the function operates on the symbolic link itself. Table 11-31 lists the functions
provided by the shutil module.
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Table 11-31. Functions of the shutil module

copy copy(src, dst)
Copies the contents of the file named by src, which must exist, and creates or
overwrites the file dst (src and dst are strings or instances of pathlib.Path).
If dst is a directory, the target is a file with the same base name as src, but located
in dst. copy also copies permission bits, but not last access and modification times.
Returns the path to the destination file it has copied to.

copy2 copy2(src, dst)
Like copy, but also copies last access time and modification time.

copyfile copyfile(src, dst)
Copies just the contents (not permission bits, nor last access and modification times)
of the file named by src, creating or overwriting the file named by dst.

copyfileobj copyfileobj(fsrc, fdst, bufsize=16384)
Copies all bytes from file object fsrc, which must be open for reading, to file object
fdst, which must be open for writing. Copies up to bufsize bytes at a time if
bufsize is greater than 0. File objects are covered in “The io Module” on page 322.

copymode copymode(src, dst)
Copies permission bits of the file or directory named by src to the file or directory
named by dst. Both src and dst must exist. Does not change dst’s contents, nor
its status as being a file or a directory.

copystat copystat(src, dst)
Copies permission bits and times of last access and modification of the file or directory
named by src to the file or directory named by dst. Both src and dst must exist.
Does not change dst’s contents, nor its status as being a file or a directory.

copytree copytree(src, dst, symlinks=False, ignore=None,
copy_function=copy2, ignore_dangling_symlinks=False,

dirs_exist_ok=False)

Copies the directory tree rooted at the directory named by src into the destination
directory named by dst. dst must not already exist: copytree creates it (as well
as creating any missing parent directories). copytree copies each file using the
function copy2, by default; you can optionally pass a different file-copy function
as named argument copy_function. If any exceptions occur during the copy
process, copytree will record them internally and continue, raising Error at the
end containing the list of all the recorded exceptions.
When symlinks is True, copytree creates symbolic links in the new tree when
it finds symbolic links in the source tree. When symlinks is False, copytree
follows each symbolic link it finds and copies the linked-to file with the link’s name,
recording an exception if the linked file does not exist (if ignore_dangling_sym
links=True, this exception is ignored). On platforms that do not have the concept
of a symbolic link, copytree ignores the argument symlinks.
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copytree

(cont.)
When ignore is not None, it must be a callable accepting two arguments (a
directory path and a list of the immediate children of the directory) and returning a
list of the children to be ignored in the copy process. If present, ignore is often the
result of a call to shutil.ignore_patterns. For example, this code:

import shutil
ignore = shutil.ignore_patterns('.*', '*.bak')
shutil.copytree('src', 'dst', ignore=ignore)

copies the tree rooted at directory src into a new tree rooted at directory dst,
ignoring any file or subdirectory whose name starts with a dot and any file or
subdirectory whose name ends with .bak.
By default, copytree will record a FileExistsError exception if a target
directory already exists. 3.8+  You can set dirs_exist_ok to True to allow
copytree to write into existing directories found in the copying process (and
potentially overwrite their contents).

ignore_patterns ignore_patterns(*patterns)

Returns a callable picking out files and subdirectories matching patterns, like
those used in the fnmatch module (see “The fnmatch Module” on page 365). The
result is suitable for passing as the ignore argument to the copytree function.

move move(src, dst, copy_function=copy2)
Moves the file or directory named by src to that named by dst. move first
tries using os.rename. Then, if that fails (because src and dst are on separate
filesystems, or because dst already exists), move copies src to dst (using copy2
for a file or copytree for a directory by default; you can optionally pass a file-copy
function other than copy2 as the named argument copy_function), then
removes src (using os.unlink for a file, rmtree for a directory).

rmtree rmtree(path, ignore_errors=False, onerror=None)
Removes the directory tree rooted at path. When ignore_errors is True,
rmtree ignores errors. When ignore_errors is False and onerror is
None, errors raise exceptions. When onerror is not None, it must be callable with
three parameters: func, path, and ex. func is the function raising the exception
(os.remove or os.rmdir), path is the path passed to func, and ex is the
tuple of information sys.exc_info returns. When onerror raises an exception,
rmtree terminates, and the exception propagates.

Beyond offering functions that are directly useful, the source file shutil.py in the
Python stdlib is an excellent example of how to use many of the os functions.

Text Input and Output
Python presents non-GUI text input and output streams to Python programs as
file objects, so you can use the methods of file objects (covered in “Attributes and
Methods of File Objects” on page 325) to operate on these streams.
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Standard Output and Standard Error
The sys module (covered in “The sys Module” on page 259) has the attributes
stdout and stderr, which are writable file objects. Unless you are using shell
redirection or pipes, these streams connect to the “terminal” running your script.
Nowadays, actual terminals are very rare: a so-called terminal is generally a screen
window that supports text I/O.

The distinction between sys.stdout and sys.stderr is a matter of convention.
sys.stdout, known as standard output, is where your program emits results.
sys.stderr, known as standard error, is where output such as error, status, or
progress messages should go. Separating program output from status and error
messages helps you use shell redirection effectively. Python respects this convention,
using sys.stderr for its own errors and warnings.

The print Function
Programs that output results to standard output often need to write to sys.stdout.
Python’s print function (covered in Table 8-2) can be a rich, convenient alternative
to sys.stdout.write. print is fine for the informal output used during develop‐
ment to help you debug your code, but for production output, you may need
more control of formatting than print affords. For example, you may need to
control spacing, field widths, the number of decimal places for floating-point values,
and so on. If so, you can prepare the output as an f-string (covered in “String
Formatting” on page 287), then output the string, usually with the write method of
the appropriate file object. (You can pass formatted strings to print, but print may
add spaces and newlines; the write method adds nothing at all, so it’s easier for you
to control what exactly gets output.)

If you need to direct output to a file f that is open for writing, just calling f.write is
often best, while print(..., file=f) is sometimes a handy alternative. To repeat‐
edly direct the output from print calls to a certain file, you can temporarily change
the value of sys.stdout. The following example is a general-purpose redirection
function usable for such a temporary change; in the presence of multitasking,
make sure to also add a lock in order to avoid any contention (see also the context
lib.redirect_stdout decorator described in Table 6-1):

def redirect(func: Callable, *a, **k) -> (str, Any):
    """redirect(func, *a, **k) -> (func's results, return value)
    func is a callable emitting results to standard output.
    redirect captures the results as a str and returns a pair
    (output string, return value).
    """
    import sys, io
    save_out = sys.stdout
    sys.stdout = io.StringIO()
    try:
        retval = func(*args, **kwds)
        return sys.stdout.getvalue(), retval
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    finally:
        sys.stdout.close()
        sys.stdout = save_out

Standard Input
In addition to stdout and stderr, the sys module provides the stdin attribute,
which is a readable file object. When you need a line of text from the user, you
can call the built-in function input (covered in Table 8-2), optionally with a string
argument to use as a prompt.

When the input you need is not a string (for example, when you need a number),
use input to obtain a string from the user, then other built-ins, such as int, float,
or ast.literal_eval, to turn the string into the number you need. To evaluate an
expression or string from an untrusted source, we recommend using the function
literal_eval from the standard library module ast (as covered in the online
docs). ast.literal_eval(astring) returns a valid Python value (such as an int,
a float, or a list) for the given literal astring when it can ( 3.10+  stripping
any leading spaces and tabs from string inputs), or else raises a SyntaxError or
ValueError exception; it never has any side effects. To ensure complete safety,
astring cannot contain any operator or any nonkeyword identifier; however, +
and - may be accepted as positive or negative signs on numbers, rather than as
operators. For example:

import ast
print(ast.literal_eval('23'))     # prints 23
print(ast.literal_eval('  23'))   # prints 23 (3.10++)
print(ast.literal_eval('[2,-3]')) # prints [2, -3]
print(ast.literal_eval('2+3'))    # raises ValueError
print(ast.literal_eval('2+'))     # raises SyntaxError

eval Can Be Dangerous
Don’t use eval on arbitrary, unsanitized user inputs: a nasty
(or well-meaning but careless) user can breach security or
otherwise cause damage this way. There is no effective defense
—just avoid using eval (and exec) on input from sources you
do not fully trust.

The getpass Module
Very occasionally, you may want the user to input a line of text in such a way that
somebody looking at the screen cannot see what the user is typing. This may occur
when you’re asking the user for a password, for example. The getpass module
provides a function for this, as well as one to get the current user’s username (see
Table 11-32).
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Table 11-32. Functions of the getpass module

getpass getpass(prompt='Password: ')

Like input (covered in Table 8-2), except that the text the user inputs is not echoed to the screen
as the user is typing, and the default prompt is different from input’s.

getuser getuser()

Returns the current user’s username. getuser tries to get the username as the value of one of
the environment variables LOGNAME, USER, LNAME, or USERNAME, in that order. If none of
these variables are in os.environ, getuser asks the operating system.

Richer-Text I/O
The text I/O modules covered so far supply basic text I/O functionality on all
platform terminals. Most platforms also offer enhanced text I/O features, such as
responding to single keypresses (not just entire lines), printing text in any terminal
row and column position, and enhancing the text with background and foreground
colors and font effects like bold, italic, and underline. For this kind of functionality
you’ll need to consider a third-party library. We focus here on the readline mod‐
ule, then take a quick look at a few console I/O options, including mscvrt, with a
brief mention of curses, rich, and colorama, which we do not cover further.

The readline Module
The readline module wraps the GNU Readline Library, which lets the user edit
text lines during interactive input and recall previous lines for editing and re-entry.
Readline comes preinstalled on many Unix-like platforms, and it’s available online.
On Windows, you can install and use the third-party module pyreadline.

When readline is available, Python uses it for all line-oriented input, such as
input. The interactive Python interpreter always tries to load readline to enable
line editing and recall for interactive sessions. Some readline functions control
advanced functionality: particularly history, for recalling lines entered in previ‐
ous sessions; and completion, for context-sensitive completion of the word being
entered. (See the Python readline docs for complete details on configuration
commands.) You can access the module’s functionality using the functions in
Table 11-33.

Table 11-33. Functions of the readline module

add_history add_history(s, /)
Adds string s as a line at the end of the history buffer. To temporarily
disable add_history, call set_auto_history(False), which will disable
add_history for this session only (it won’t persist across sessions);
set_auto_history is True by default.

append_

history_file

append_history_file(n, filename='~/.history', /)
Appends the last n items to existing file filename.
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clear_history clear_history()

Clears the history buffer.

get_completer get_completer()

Returns the current completer function (as last set by set_completer), or None if
no completer function is set.

get_

history_length

get_history_length()

Returns the number of lines of history to be saved to the history file. When the result is
less than 0, all lines in the history are to be saved.

parse_and_bind parse_and_bind(readline_cmd, /)
Gives readline a configuration command. To let the user hit Tab to request
completion, call parse_and_bind('tab: complete'). See the readline
documentation for other useful values of the string readline_cmd.
A good completion function is in the standard library module rlcompleter. In
the interactive interpreter (or in the startup file executed at the start of interactive
sessions, covered in “Environment Variables” on page 22), enter:

import readline, rlcompleter
readline.parse_and_bind('tab: complete')

For the rest of this interactive session, you can hit the Tab key during line editing and
get completion for global names and object attributes.

read_

history_file

read_history_file(filename='~/.history', /)

Loads history lines from the text file at path filename.

read_init_file read_init_file(filename=None, /)

Makes readline load a text file: each line is a configuration command. When
filename is None, loads the same file as the last time.

set_completer set_completer(func, /)

Sets the completion function. When func is None or omitted, readline disables
completion. Otherwise, when the user types a partial word start, then presses
the Tab key, readline calls func(start, i), with i initially 0. func returns
the ith possible word starting with start, or None when there are no more.
readline loops, calling func with i set to 0, 1, 2, etc., until func returns None.

set_

history_length

set_history_length(x, /)

Sets the number of lines of history that are to be saved to the history file. When x is
less than 0, all lines in the history are to be saved.

write_

history_file

write_history_file(filename='~/.history')

Saves history lines to the text file whose name or path is filename, overwriting any
existing file.
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4 “Curses” does describe well the typical utterances of programmers faced with this complicated,
low-level approach.

Console I/O
As mentioned previously, “terminals” today are usually text windows on a graphical
screen. You may also, in theory, use a true terminal, or (perhaps a tad less theoreti‐
cally, but these days not by much) the console (main screen) of a personal computer
in text mode. All such “terminals” in use today offer advanced text I/O functionality,
accessed in platform-dependent ways. The low-level curses package works on
Unix-like platforms. For a cross-platform (Windows, Unix, macOS) solution, you
may use the third-party package rich; in addition to its excellent online docs, there
are online tutorials to help you get started. To output colored text on the terminal,
see colorama, available on PyPI. msvcrt, introduced next, provides some low-level
(Windows only) functions.

curses
The classic Unix approach to enhanced terminal I/O is named curses, for obscure
historical reasons.4 The Python package curses lets you exert detailed control if
required. We don’t cover curses in this book; for more information, see A.M.
Kuchling’s and Eric Raymond’s online tutorial “Curses Programming with Python”.

The msvcrt module
The Windows-only msvcrt module (which you may need to install with pip) sup‐
plies a few low-level functions that let Python programs access proprietary extras
supplied by the Microsoft Visual C++ runtime library msvcrt.dll. For example, the
functions listed in Table 11-34 let you read user input character by character rather
than reading a full line at a time.
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5 I18n includes the process of “localization,” or adapting international software to local language
and cultural conventions.

Table 11-34. Some useful functions of the msvcrt module

getch,
getche

getch(), getche()
Reads and returns a single-character bytes from keyboard input, and if necessary blocks until one
is available (i.e., a key is pressed). getche echoes the character to screen (if printable), while
getch does not. When the user presses a special key (arrows, function keys, etc.), it’s seen as two
characters: first a chr(0) or chr(224), then a second character that, together with the first
one, defines the special key the user pressed. This means that the program must call getch or
getche twice to read these key presses. To find out what getch returns for any key, run the
following small script on a Windows machine:

import msvcrt
print("press z to exit, or any other key "
      "to see the key's code:")
while True:
    c = msvcrt.getch()
    if c == b'z':
        break
    print(f'{ord(c)} ({c!r})')

kbhit kbhit()

Returns True when a character is available for reading (getch, when called, returns
immediately); otherwise, returns False (getch, when called, waits).

ungetch ungetch(c)

“Ungets” character c; the next call to getch or getche returns c. It’s an error to call ungetch
twice without intervening calls to getch or getche.

Internationalization
Many programs present some information to users as text. Such text should be
understandable and acceptable to users in different locales. For example, in some
countries and cultures, the date “March 7” can be concisely expressed as “3/7.”
Elsewhere, “3/7” indicates “July 3,” and the string that means “March 7” is “7/3.” In
Python, such cultural conventions are handled with the help of the standard library
module locale.

Similarly, a greeting might be expressed in one natural language by the string
“Benvenuti,” while in another language the string to use is “Welcome.” In Python,
such translations are handled with the help of the stdlib module gettext.

Both kinds of issues are commonly addressed under the umbrella term internation‐
alization (often abbreviated i18n, as there are 18 letters between i and n in the
full spelling in English)—a misnomer, since the same issues apply not just between
nations, but also to different languages or cultures within a single nation.5
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The locale Module
Python’s support for cultural conventions imitates that of C, slightly simplified. A
program operates in an environment of cultural conventions known as a locale.
The locale setting permeates the program and is typically set at program startup.
The locale is not thread-specific, and the locale module is not thread-safe. In a
multithreaded program, set the program’s locale in the main thread; i.e., set it before
starting secondary threads.

Limitations of locale
locale is only useful for process-wide settings. If your appli‐
cation needs to handle multiple locales at the same time
in a single process—whether in threads or asynchronously—
locale is not the answer due to its process-wide nature. Con‐
sider, instead, alternatives such as PyICU, mentioned in “More
Internationalization Resources” on page 382.

If a program does not call locale.setlocale, the C locale (so called due to Python’s
C language roots) is used; it’s similar, but not identical, to the US English locale.
Alternatively, a program can find out and accept the user’s default locale. In this
case, the locale module interacts with the operating system (via the environment
or in other system-dependent ways) to try to find the user’s preferred locale. Finally,
a program can set a specific locale, presumably determining which locale to set on
the basis of user interaction or via persistent configuration settings.

Locale setting is normally performed across the board for all relevant categories
of cultural conventions. This common wide-spectrum setting is denoted by the
constant attribute LC_ALL of the locale module. However, the cultural conventions
handled by locale are grouped into categories, and, in some rare cases, a program
can choose to mix and match categories to build up a synthetic composite locale.
The categories are identified by the attributes listed in Table 11-35.
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Table 11-35. Constant attributes of the locale module

LC_COLLATE String sorting; affects functions strcoll and strxfrm in locale

LC_CTYPE Character types; affects aspects of module string (and string methods) that have to do
with lowercase and uppercase letters

LC_MESSAGES Messages; may affect messages displayed by the operating system (for example, messages
displayed by function os.strerror and module gettext)

LC_MONETARY Formatting of currency values; affects functions localeconv and currency in
locale

LC_NUMERIC Formatting of numbers; affects functions atoi, atof, format_string, locale
conv, and str in locale, as well as the number separators used in format strings (e.g.,
f-strings and str.format) when format character 'n' is used

LC_TIME Formatting of times and dates; affects the function time.strftime

The settings of some categories (denoted by LC_CTYPE, LC_MESSAGES, and LC_TIME)
affect behavior in other modules (string, os, gettext, and time, as indicated).
Other categories (denoted by LC_COLLATE, LC_MONETARY, and LC_NUMERIC) affect
only some functions of locale itself (plus string formatting in the case of
LC_NUMERIC).

The locale module supplies the functions listed in Table 11-36 to query, change,
and manipulate locales, as well as functions that implement the cultural conventions
of locale categories LC_COLLATE, LC_MONETARY, and LC_NUMERIC.

Table 11-36. Useful functions of the locale module

atof atof(s)

Parses the string s into a floating-point number using the current LC_NUMERIC setting.

atoi atoi(s)

Parses the string s into an integer number using the current LC_NUMERIC setting.

cur

rency

currency(data, grouping=False, international=False)
Returns the string or number data with a currency symbol, and, if grouping is True,
uses the monetary thousands separator and grouping. When international is True, uses
int_curr_symbol and int_frac_digits, described later in this table.
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format_

string

format_string(fmt, num, grouping=False, monetary=False)
Returns the string obtained by formatting num according to the format string fmt and the
LC_NUMERIC or LC_MONETARY settings. Except for cultural convention issues, the result is
like old-style fmt % num string formatting, covered in “Legacy String Formatting with %” on
page 297. If num is an instance of a number type and fmt is %d or %f, set grouping
to True to group digits in the result string according to the LC_NUMERIC setting. If mone
tary is True, the string is formatted with mon_decimal_point, and grouping uses
mon_thousands_sep and mon_grouping instead of the ones supplied by LC_NUMERIC
(see localeconv later in this table for more information on these). For example:

>>> locale.setlocale(locale.LC_NUMERIC, 
...                  'en_us')
'en_us'

>>> n=1000*1000
>>> locale.format_string('%d', n)
'1000000'

>>> locale.setlocale(locale.LC_MONETARY, 
...                  'it_it')
'it_it'

>>> locale.format_string('%f', n)
'1000000.000000'  # uses decimal_point

>>> locale.format_string('%f', n, 
...                      monetary=True)
'1000000,000000'  # uses mon_decimal_point

>>> locale.format_string('%0.2f', n, 
...                      grouping=True)
'1,000,000.00'    # separators & decimal from
                  # LC_NUMERIC

>>> locale.format_string('%0.2f', n, 
...                      grouping=True,
...                      monetary=True)
'1.000.000,00'    # separators & decimal from 
                  # LC_MONETARY

In this example, since the numeric locale is set to US English, when the argument grouping
is True, format_string groups digits by threes with commas and uses a dot (.) for the
decimal point. However, the monetary locale is set to Italian, so when the argument monetary
is True, format_string uses a comma (,) for the decimal point and grouping uses a dot
(.) for the thousands separator. Usually, the syntaxes for monetary and nonmonetary numbers
are equal within any given locale.

get

default

locale

getdefaultlocale(envvars=('LANGUAGE', 'LC_ALL', 'LC_TYPE',

'LANG'))

Checks the environment variables whose names are specified by envvars, in order. The first one
found in the environment determines the default locale. getdefaultlocale returns a pair
of strings (lang, encoding) compliant with RFC 1766 (except for the 'C' locale), such as
('en_US', 'UTF-8'). Each item of the pair may be None if gedefaultlocale is unable
to discover what value the item should have.

get

locale

getlocale(category=LC_CTYPE)

Returns a pair of strings (lang, encoding) with the current setting for the given
category. The category cannot be LC_ALL.
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locale

conv

localeconv()

Returns a dict d with the cultural conventions specified by categories LC_NUMERIC and
LC_MONETARY of the current locale. While LC_NUMERIC is best used indirectly, via other
functions of locale, the details of LC_MONETARY are accessible only through d. Currency
formatting is different for local and international use. For example, the '$' symbol is for local
use only; it is ambiguous in international use, since the same symbol is used for many currencies
called “dollars” (US, Canadian, Australian, Hong Kong, etc.). In international use, therefore, the
symbol for US currency is the unambiguous string 'USD'. The function temporarily sets the
LC_CTYPE locale to the LC_NUMERIC locale, or the LC_MONETARY locale if the locales are
different and the numeric or monetary strings are non-ASCII. This temporary change affects all
threads. The keys into d to use for currency formatting are the following strings:

'currency_symbol'

Currency symbol to use locally

'frac_digits'

Number of fractional digits to use locally

'int_curr_symbol'

Currency symbol to use internationally

'int_frac_digits'

Number of fractional digits to use internationally

'mon_decimal_point'

String to use as the “decimal point” (aka radix point) for monetary values

'mon_grouping'

List of digit-grouping numbers for monetary values

'mon_thousands_sep'

String to use as digit-groups separator for monetary values

'negative_sign', 'positive_sign'
Strings to use as the sign symbol for negative (positive) monetary values

'n_cs_precedes', 'p_cs_precedes'
True when the currency symbol comes before negative (positive) monetary values

'n_sep_by_space', 'p_sep_by_space'
True when a space goes between the sign and negative (positive) monetary values

'n_sign_posn', 'p_sign_posn'
See Table 11-37 for a list of numberic codes for formating negative (positive) monetary
values.

CHAR_MAX

Indicates that the current locale does not specify any convention for this formatting
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locale

conv

(cont.)

d['mon_grouping'] is a list of numbers of digits to group when formatting a
monetary value (but take care: in some locales, d['mon_grouping'] may be an empty
list). When d['mon_grouping'][-1] is 0, there is no further grouping beyond the
indicated numbers of digits. When d['mon_grouping'][-1] is locale.CHAR_MAX,
grouping continues indefinitely, as if d['mon_grouping'][-2] were endlessly repeated.
locale.CHAR_MAX is a constant used as the value for all entries in d for which the current
locale does not specify any convention.

local

ize

localize(normstr, grouping=False, monetary=False)

Returns a formatted string following LC_NUMERIC (or LC_MONETARY, when monetary is
True) settings from normalized numeric string normstr.

normal

ize

normalize(localename)

Returns a string, suitable as an argument to setlocale, that is the normalized form for
localename. When normalize cannot normalize the string localename, it returns
localename unchanged.

reset

locale

resetlocale(category=LC_ALL)

Sets the locale for category to the default given by getdefaultlocale.

set

locale

setlocale(category, locale=None)

Sets the locale for category to locale, if not None, and returns the setting (the existing one
when locale is None; otherwise, the new one). locale can be a string, or a pair (lang,
encoding). lang is normally a language code based on ISO 639 two-letter codes ('en' is
English, 'nl' is Dutch, and so on). When locale is the empty string '', setlocale sets
the user’s default locale. To see valid locales, view the locale.locale_alias dictionary.

str str(num)

Like locale.format_string('%f', num).

strcoll strcoll(str1, str2)
Respecting the LC_COLLATE setting, returns -1 when str1 comes before str2 in collation,
1 when str2 comes before str1, and 0 when the two strings are equivalent for collation
purposes.

strxfrm strxfrm(s)

Returns a string sx such that Python’s built-in comparisons of two or more strings so transformed
is like calling locale.strcoll on the originals. strxfrm lets you easily use the key
argument for sorts and comparisons needing locale-conformant string comparisons. For example,

def locale_sort_inplace(list_of_strings):
    list_of_strings.sort(key=locale.strxfrm)

Table 11-37. Numeric codes to format monetary values

0 The value and the currency symbol are placed inside parentheses

1 The sign is placed before the value and the currency symbol

2 The sign is placed after the value and the currency symbol

3 The sign is placed immediately before the value

4 The sign is placed immediately after the value
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The gettext Module
A key issue in internationalization is the ability to use text in different natural lan‐
guages, a task known as localization (sometimes l10n). Python supports localization
via the standard library module gettext, inspired by GNU gettext. The gettext
module is optionally able to use the latter’s infrastructure and APIs, but also offers
a simpler, higher-level approach, so you don’t need to install or study GNU gettext
to use Python’s gettext effectively.

For full coverage of gettext from a different perspective, see the online docs.

Using gettext for localization
gettext does not deal with automatic translation between natural languages.
Rather, it helps you extract, organize, and access the text messages that your pro‐
gram uses. Pass each string literal subject to translation, also known as a message,
to a function named _ (underscore) rather than using it directly. gettext normally
installs a function named _ in the builtins module. To ensure that your program
runs with or without gettext, conditionally define a do-nothing function, named
_, that just returns its argument unchanged. Then you can safely use _('message')
wherever you would normally use a literal 'message' that should be translated, if
feasible. The following example shows how to start a module for conditional use of
gettext:

try:
    _
except NameError:
    def _(s): return s
def greet():
    print(_('Hello world'))

If some other module has installed gettext before you run this example code, the
function greet outputs a properly localized greeting. Otherwise, greet outputs the
string 'Hello world' unchanged.

Edit your source, decorating message literals with the function _. Then use any
of various tools to extract messages into a text file (normally named messages.pot)
and distribute the file to the people who translate messages into the various natural
languages your application must support. Python supplies a script pygettext.py (in
the directory Tools/i18n in the Python source distribution) to perform message
extraction on your Python sources.

Each translator edits messages.pot to produce a text file of translated messages, with
extension .po. Compile the .po files into binary files with extension .mo, suitable for
fast searching, using any of various tools. Python supplies a script msgfmt.py (also
in Tools/i18n) for this purpose. Finally, install each .mo file with a suitable name in a
suitable directory.

Conventions about which directories and names are suitable differ among platforms
and applications. gettext’s default is subdirectory share/locale/<lang>/LC_MES‐
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SAGES/ of directory sys.prefix, where <lang> is the language’s code (two letters).
Each file is named <name>.mo, where <name> is the name of your application or
package.

Once you have prepared and installed your .mo files, you normally execute, at the
time your application starts up, some code such as the following:

import os, gettext
os.environ.setdefault('LANG', 'en')  # application-default language
gettext.install('your_application_name')

This ensures that calls such as _('message') return the appropriate translated
strings. You can choose different ways to access gettext functionality in your
program; for example, if you also need to localize C-coded extensions, or to switch
between languages during a run. Another important consideration is whether you’re
localizing a whole application, or just a package that is distributed separately.

Essential gettext functions
gettext supplies many functions. The most often used functions are listed in
Table 11-38; see the online docs for a complete list.

Table 11-38. Useful functions of the gettext module

install install(domain, localedir=None, names=None)

Installs in Python’s built-in namespace a function named _ to perform translations given
in the file <lang>/LC_MESSAGES/<domain>.mo in the directory localedir, with
language code <lang> as per getdefaultlocale. When localedir is None,
install uses the directory os.path.join(sys.prefix, 'share', 'loca
le'). When names is provided, it must be a sequence containing the names of functions
you want to install in the builtins namespace in addition to _. Supported names are
'gettext', 'lgettext', 'lngettext', 'ngettext', 3.8+  'npgettext',
and 3.8+  'pgettext'.

translation translation(domain, localedir=None, languages=None,

class_=None, fallback=False)

Searches for a .mo file, like the install function; if it finds multiple files, transla
tion uses later files as fallbacks for earlier ones. Set fallback to True to return a
NullTranslations instance; otherwise, the function raises OSError when it doesn’t
find any .mo file.
When languages is None, translation looks in the environment for the <lang>
to use, like install. It examines, in order, the environment variables LANGUAGE,
LC_ALL, LC_MESSAGES, and LANG, and splits the first nonempty one on ':' to give a
list of language names (for example, it splits 'de:en' into ['de', 'en']). When not
None, languages must be a list of one or more language names (for example, ['de',
'en']). translation uses the first language name in the list for which it finds a .mo
file.
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translation

(cont.)
translation returns an instance object of a translation class (by default, GNUTrans
lations; if present, the class’s constructor must take a single file object argument) that
supplies the methods gettext (to translate a str) and install (to install gettext
under the name _ in Python’s builtins namespace).
translation offers more detailed control than install, which is like transla
tion(domain, localedir).install(unicode). With translation, you
can localize a single package without affecting the built-in namespace, by binding the
name _ on a per-module basis—for example, with:

_ = translation(domain).ugettext

More Internationalization Resources
Internationalization is a very large topic. For a general introduction, see Wikipedia.
One of the best packages of code and information for internationalization, which
the authors happily recommend, is ICU, embedding also the Unicode Consortium’s
Common Locale Data Repository (CLDR) database of locale conventions and code
to access the CLDR. To use ICU in Python, install the third-party package PyICU.
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12
Persistence and Databases

Python supports several ways of persisting data. One way, serialization, views data
as a collection of Python objects. These objects can be serialized (saved) to a byte
stream, and later deserialized back (loaded and re-created) from the byte stream.
Object persistence relies on serialization, adding features such as object naming. This
chapter covers the Python modules that support serialization and object persistence.

Another way to make data persistent is to store it in a database (DB). One simple
category of DBs are files that use keyed access to enable selective reading and
updating of parts of the data. This chapter covers Python standard library modules
that support several variations of such a file format, known as DBM.

A relational DB management system (RDBMS), such as PostgreSQL or Oracle, offers
a more powerful approach to storing, searching, and retrieving persistent data.
Relational DBs rely on dialects of Structured Query Language (SQL) to create and
alter a DB’s schema, insert and update data in the DB, and query the DB with search
criteria. (This book does not provide reference material on SQL; for this purpose we
recommend O’Reilly’s SQL in a Nutshell, by Kevin Kline, Regina Obe, and Leo Hsu.)
Unfortunately, despite the existence of SQL standards, no two RDBMSs implement
exactly the same SQL dialect.

The Python standard library does not come with an RDBMS interface. However,
many third-party modules let your Python programs access a specific RDBMS. Such
modules mostly follow the Python Database API 2.0 standard, also known as the
DBAPI. This chapter covers the DBAPI standard and mentions a few of the most
popular third-party modules that implement it.

A DBAPI module that is particularly handy (because it comes with every standard
installation of Python) is sqlite3, which wraps SQLite. SQLite, “a self-contained,
server-less, zero-configuration, transactional SQL DB engine,” is the most widely
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1 In fact, “CSV” is something of a misnomer, since some dialects use tabs or other characters rather
than commas as the field separator. It might be easier to think of them as “delimiter-separated
values.”

deployed relational DB engine in the world. We cover sqlite3 in “SQLite” on page
405.

Besides relational DBs, and the simpler approaches covered in this chapter, there
exist several NoSQL DBs, such as Redis and MongoDB, each with Python interfaces.
We do not cover advanced nonrelational DBs in this book.

Serialization
Python supplies several modules to serialize (save) Python objects to various kinds
of byte streams and deserialize (load and re-create) Python objects back from
streams. Serialization is also known as marshaling, which means formatting for data
interchange.

Serialization approaches span a vast range, from the low-level, Python-version-
specific marshal and language-independent JSON (both limited to elementary data
types) to the richer but Python-specific pickle and cross-language formats such as
XML, YAML, protocol buffers, and MessagePack.

In this section, we cover Python’s csv, json, pickle, and shelve modules. We
cover XML in Chapter 23. marshal is too low-level to use in applications; should
you need to maintain old code using it, refer to the online docs. As for protocol
buffers, MessagePack, YAML, and other data-interchange/serialization approaches
(each with specific advantages and weaknesses), we cannot cover everything in this
book; we recommend studying them via the resources available on the web.

The csv Module
While the CSV (standing for comma-separated values1) format isn’t usually consid‐
ered a form of serialization, it is a widely used and convenient interchange format
for tabular data. Since much data is tabular, CSV data is used a lot, despite some
lack of agreement on exactly how it should be represented in files. To overcome
this issue, the csv module provides a number of dialects (specifications of the
way particular sources encode CSV data) and lets you define your own dialects.
You can register additional dialects and list the available dialects by calling the
csv.list_dialects function. For further information on dialects, consult the mod‐
ule’s documentation.

csv functions and classes
The csv module exposes the functions and classes detailed in Table 12-1. It provides
two kinds of readers and writers to let you handle CSV data rows in Python as
either lists or dictionaries.
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Table 12-1. Functions and classes of the csv module

reader reader(csvfile, dialect='excel', **kw)
Creates and returns a reader object r. csvfile can be any iterable object yielding text rows
as strs (usually a list of lines or a file opened with newline=''a); dialect is the name
of a registered dialect. To modify the dialect, add named arguments: their values override
dialect fields of the same name. Iterating over r yields a sequence of lists, each containing the
elements from one row of csvfile.

writer writer(csvfile, dialect='excel', **kw)
Creates and returns a writer object w. csvfile is an object with a write method (if a
file, open it with newline=''); dialect is the name of a registered dialect. To modify
the dialect, add named arguments: their values override dialect fields of the same name.
w.writerow accepts a sequence of values and writes their CSV representation as a row to
csvfile. w.writerows accepts an iterable of such sequences and calls w.writerow on
each. You are responsible for closing csvfile.

Dict

Reader

DictReader(csvfile, fieldnames=None, restkey=None,
restval=None, dialect='excel', *args,**kw)
Creates and returns an object r that iterates over csvfile to generate an iterable of
dictionaries ( -3.8  OrderedDicts), one for each row. When the fieldnames argument
is given, it is used to name the fields in csvfile; otherwise, the field names are taken from
the first row of csvfile. If a row contains more columns than field names, the extra values
are saved as a list with the key restkey. If there are insufficient values in any row, then
those column values will be set to restval. dialect, kw, and args are passed to the
underlying reader object.

Dict

Writer

DictWriter(csvfile, fieldnames, restval='',
extrasaction='raise', dialect='excel', *args, **kwds)

Creates and returns an object w whose writerow and writerows methods take a
dictionary or iterable of dictionaries and write them using the csvfile’s write method.
fieldnames is a sequence of strs, the keys to the dictionaries. restval is the value
used to fill up a dictionary that’s missing some keys. extrasaction specifies what to do
when a dictionary has extra keys not listed in fieldnames: when 'raise', the default,
the function raises ValueError in such cases; when 'ignore', the function ignores
such errors. dialect, kw, and args are passed to the underlying reader object. You are
responsible for closing csvfile (usually a file opened with newline='').

Opening a file with newline='' allows the csv module to use its own newline processing and
correctly handle dialects in which text fields may contain newlines.
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A csv example
Here is a simple example using csv to read color data from a list of strings:

import csv

color_data = '''\
color,r,g,b
red,255,0,0
green,0,255,0
blue,0,0,255
cyan,0,255,255
magenta,255,0,255
yellow,255,255,0
'''.splitlines()

colors = {row['color']: 
          row for row in csv.DictReader(color_data)}

print(colors['red']) 
# prints: {'color': 'red', 'r': '255', 'g': '0', 'b': '0'}

Note that the integer values are read as strings. csv does not do any data conver‐
sion; that needs to be done by your program code with the dicts returned from
DictReader.

The json Module
The standard library’s json module supports serialization for Python’s native data
types (tuple, list, dict, int, str, etc.). To serialize instances of your own custom
classes, you should implement corresponding classes inheriting from JSONEncoder
and JSONDecoder.

json functions
The json module supplies four key functions, detailed in Table 12-2.

Table 12-2. Functions of the json module

dump dump(value, fileobj, skipkeys=False, ensure_ascii=True,
check_circular=True, allow_nan=True, cls=JSONEncoder,

indent=None, separators=(', ', ': '), default=None,

sort_keys=False, **kw)
Writes the JSON serialization of object value to file-like object fileobj, which
must be opened for writing in text mode, via calls to fileobj.write. Each call to
fileobj.write passes a text string as an argument.
When skipkeys is True (by default, it’s False), dict keys that are not scalars (i.e.,
are not of types bool, float, int, str, or None) raise an exception. In any case, keys
that are scalars are turned into strings (e.g., None becomes 'null'): JSON only allows
strings as keys in its mappings.
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dump

(cont.)
When ensure_ascii is True (the default), all non-ASCII characters in the output are
escaped; when it’s False, they’re output as is.
When check_circular is True (the default), containers in value are checked for
circular references and a ValueError exception is raised if any are found; when it’s
False, the check is skipped, and many different exceptions can get raised as a result (even
a crash is possible).
When allow_nan is True (the default), float scalars nan, inf, and -inf are output
as their respective JavaScript equivalents, NaN, Infinity, and -Infinity; when it’s
False, the presence of such scalars raises a ValueError exception.
You can optionally pass cls in order to use a customized subclass of JSONEncoder (such
advanced customization is rarely needed, and we don’t cover it in this book); in this case,
**kw gets passed in the call to cls that instantiates it. By default, encoding uses the
JSONEncoder class directly.
When indent is an int > 0, dump “pretty-prints” the output by prepending that
many spaces to each array element and object member; when it’s an int <= 0, dump
just inserts \n characters. When indent is None (the default), dump uses the most
compact representation. indent can also be a str—for example, '\t'—and in that
case dump uses that string for indenting.
separators must be a tuple with two items, respectively the strings used to separate
items and to separate keys from values. You can explicitly pass separators=(',',
':') to ensure dump inserts no whitespace.
You can optionally pass default in order to transform some otherwise nonserializable
objects into serializable ones. default is a function called with a single argument that’s
a nonserializable object, and it must return a serializable object or raise ValueError (by
default, the presence of nonserializable objects raises ValueError).
When sort_keys is True (by default, it’s False), mappings are output in sorted order
of their keys; when False, they’re output in whatever is their natural order of iteration
(nowadays, for most mappings, insertion order).

dumps dumps(value, skipkeys=False, ensure_ascii=True, check_circu

lar=True, allow_nan=True, cls=JSONEncoder, indent=None,

separators=(', ', ': '), default=None, sort_keys=False,

**kw)

Returns the string that’s the JSON serialization of object value—that is, the string that
dump would write to its file object argument. All arguments to dumps have exactly the
same meaning as the arguments to dump.

JSON Serializes Just One Object per File
JSON is not what is known as a framed format: this means it is not
possible to call dump more than once in order to serialize multiple
objects into the same file, nor to later call load more than once
to deserialize the objects, as would be possible, for example, with
pickle (discussed in the following section). So, technically, JSON
serializes just one object per file. However, that one object can be a
list or dict that can contain as many items as you wish.
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load load(fileobj, encoding='utf-8', cls=JSONDecoder,

object_hook=None, parse_float=float, parse_int=int,

parse_constant=None, object_pairs_hook=None, **kw)
Creates and returns the object v previously serialized into file-like object fileobj, which
must be opened for reading in text mode, getting fileobj’s contents via a call to
fileobj.read. The call to fileobj.read must return a text (Unicode) string.
The functions load and dump are complementary. In other words, a single call to
load(f) deserializes the same value previously serialized when f’s contents were created
by a single call to dump(v, f) (possibly with some alterations: e.g., all dictionary keys are
turned into strings).
You can optionally pass cls in order to use a customized subclass of JSONDecoder (such
advanced customization is rarely needed, and we don’t cover it in this book); in this case,
**kw gets passed in the call to cls, which instantiates it. By default, decoding uses the
JSONDecoder class directly.
You can optionally pass object_hook or object_pairs_hook (if you pass both,
object_hook is ignored and only object_pairs_hook is used), a function
that lets you implement custom decoders. When you pass object_hook but not
object_pairs_hook, each time an object is decoded into a dict, load calls
object_hook with the dict as the only argument, and uses object_hook’s return
value instead of that dict. When you pass object_pairs_hook, each time an object
is decoded, load calls object_pairs_hook with, as the only argument, a list of the
pairs of (key, value) items of the object, in the order in which they are present in the
input, and uses object_pairs_hooks’s return value. This lets you perform specialized
decoding that potentially depends on the order of (key, value) pairs in the input.
parse_float, parse_int, and parse_constant are functions called with a
single argument: a str representing a float, an int, or one of the three special
constants 'NaN', 'Infinity', or '-Infinity'. load calls the appropriate
function each time it identifies in the input a str representing a number, and uses
the function’s return value. By default, parse_float is the built-in function float,
parse_int is int, and parse_constant is a function that returns one of the
three special float scalars nan, inf, or -inf, as appropriate. For example, you could
pass parse_float=decimal.Decimal to ensure that all numbers in the result that
would normally be floats are instead decimals (covered in “The decimal Module” on page
500).

loads loads(s, cls=JSONDecoder, object_hook=None,

parse_float=float, parse_int=int, parse_constant=None,

object_pairs_hook=None, **kw)
Creates and returns the object v previously serialized into the string s. All arguments to
loads have exactly the same meaning as the arguments to load.

A json example
Say you need to read several text files, whose names are given as your program’s
arguments, recording where each distinct word appears in the files. What you need
to record for each word is a list of (filename, linenumber) pairs. The following
example uses the fileinput module to iterate through all the files given as program
arguments, and json to encode the lists of (filename, linenumber) pairs as strings

388 | Chapter 12: Persistence and Databases



and store them in a DBM-like file (as covered in “DBM Modules” on page 396).
Since these lists contain tuples, each containing a string and a number, they are
within json’s abilities to serialize:

import collections, fileinput, json, dbm
word_pos = collections.defaultdict(list)
for line in fileinput.input():
    pos = fileinput.filename(), fileinput.filelineno()
    for word in line.split():
        word_pos[word].append(pos)
with dbm.open('indexfilem', 'n') as dbm_out:
    for word, word_positions in word_pos.items():
        dbm_out[word] = json.dumps(word_positions)

We can then use json to deserialize the data stored in the DBM-like file indexfilem,
as in the following example:

import sys, json, dbm, linecache
with dbm.open('indexfilem') as dbm_in:
    for word in sys.argv[1:]:
        if word not in dbm_in:
             print(f'Word {word!r} not found in index file',                                             file=sys.stderr)
             continue
        places = json.loads(dbm_in[word])
        for fname, lineno in places:
            print(f'Word {word!r} occurs in line {lineno}'
                  f' of file {fname!r}:')
            print(linecache.getline(fname, lineno), end='')

The pickle Module
The pickle module supplies factory functions, named Pickler and Unpickler, to
generate objects (instances of nonsubclassable types, not classes) that wrap files and
supply Python-specific serialization mechanisms. Serializing and deserializing via
these modules is also known as pickling and unpickling.

Serialization shares some of the issues of deep copying, covered in “The copy
Module” on page 263. The pickle module deals with these issues in much the same
way as the copy module does. Serialization, like deep copying, implies a recursive
walk over a directed graph of references. pickle preserves the graph’s shape: when
the same object is encountered more than once, the object is serialized only the first
time, and other occurrences of the same object serialize references to that single
value. pickle also correctly serializes graphs with reference cycles. However, this
means that if a mutable object o is serialized more than once to the same Pickler
instance p, any changes to o after the first serialization of o to p are not saved.
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2 Consider the third-party package dill if you need to extend pickle in this and other aspects.

Don’t Alter Objects While Their Serialization Is Underway
For clarity, correctness, and simplicity, don’t alter objects that
are being serialized while serialization to a Pickler instance is
in progress.

pickle can serialize with a legacy ASCII protocol or with one of several compact
binary protocols. Table 12-3 lists the available protocols.

Table 12-3. pickle protocols

Protocol Format Added in Python
version

Description

0 ASCII 1.4a Human-readable format, slow to serialize/deserialize

1 Binary 1.5 Early binary format, superseded by protocol 2

2 Binary 2.3 Improved support for later Python 2 features

3 Binary 3.0 ( -3.8  default) Added specific support for bytes objects

4 Binary 3.4 ( 3.8+  default) Included support for very large objects

5 Binary 3.8 3.8+  Added features to support pickling as serialization for
transport between processes, per PEP 574

Or possibly earlier. This is the oldest version of documentation available at Python.org.

Always Pickle with Protocol 2 or Higher
Always use at least protocol 2. The size and speed savings can
be substantial, and binary format has basically no downside
except loss of compatibility of resulting pickles with truly
ancient versions of Python.

When you reload objects, pickle transparently recognizes and uses any protocol
that the Python version you’re currently using supports.

pickle serializes classes and functions by name, not by value.2 pickle can therefore
deserialize a class or function only by importing it from the same module where
the class or function was found when pickle serialized it. In particular, pickle can
normally serialize and deserialize classes and functions only if they are top-level
names (i.e., attributes) of their respective modules. Consider the following example:
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def adder(augend):
    def inner(addend, augend=augend):
        return addend+augend
    return inner
plus5 = adder(5)

This code binds a closure to name plus5 (as covered in “Nested functions and
nested scopes” on page 107)—a nested function inner plus an appropriate outer
scope. Therefore, trying to pickle plus5 raises an AttributeError: a function can
be pickled only when it is top-level, and the function inner, whose closure is bound
to the name plus5 in this code, is not top-level but rather is nested inside the
function adder. Similar issues apply to pickling nested functions and nested classes
(i.e., classes not at the top level).

pickle functions and classes
The pickle module exposes the functions and classes listed in Table 12-4.

Table 12-4. Functions and classes of the pickle module

dump,
dumps

dump(value, fileobj, protocol=None, bin=None),
dumps(value, protocol=None, bin=None)
dumps returns a bytestring representing the object value. dump writes the same string
to the file-like object fileobj, which must be opened for writing. dump(v, f) is like
f.write(dumps(v)). The protocol parameter can be 0 (ASCII output, the slowest
and bulkiest option), or a larger int for various kinds of binary output (see Table 12-3).
Unless protocol is 0, the fileobj parameter to dump must be open for binary
writing. Do not pass the bin parameter, which exists only for compatibility with old
versions of Python.

load,
loads

load(fileobj),
loads(s, *, fix_imports=True, encoding="ASCII",

errors="strict")

The functions load and dump are complementary. In other words, a sequence of calls
to load(f) deserializes the same values previously serialized when f’s contents were
created by a sequence of calls to dump(v, f). load reads the right number of bytes
from file-like object fileobj and creates and returns the object v represented by those
bytes. load and loads transparently support pickles performed in any binary or ASCII
protocol. If data is pickled in any binary format, the file must be open as binary for both
dump and load. load(f) is like Unpickler(f).load().
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load,
loads

(cont.)

loads creates and returns the object v represented by bytestring s, so that for any object
v of a supported type, v==loads(dumps(v)). If s is longer than dumps(v), loads
ignores the extra bytes. Optional arguments fix_imports, encoding, and errors
are provided for handling streams generated by Python 2 code; see the pickle.loads
documentation for further information.

Never Unpickle Untrusted Data
Unpickling from an untrusted data source is a security risk; an attacker
could exploit this vulnerability to execute arbitrary code.

Pickler Pickler(fileobj, protocol=None, bin=None)

Creates and returns an object p such that calling p.dump is equivalent to calling
the function dump with the fileobj, protocol, and bin arguments passed to
Pickler. To serialize many objects to a file, Pickler is more convenient and faster
than repeated calls to dump. You can subclass pickle.Pickler to override Pickler
methods (particularly the method persistent_id) and create your own persistence
framework. However, this is an advanced topic and is not covered further in this book.

Unpickler Unpickler(fileobj)

Creates and returns an object u such that calling the u.load is equivalent to calling load
with the fileobj argument passed to Unpickler. To deserialize many objects from a
file, Unpickler is more convenient and faster than repeated calls to the function load.
You can subclass pickle.Unpickler to override Unpickler methods (particularly
the method persistent_load) and create your own persistence framework. However,
this is an advanced topic and is not covered further in this book.

A pickling example
The following example handles the same task as the json example shown earlier,
but uses pickle instead of json to serialize lists of (filename, linenumber) pairs as
strings:

import collections, fileinput, pickle, dbm
word_pos = collections.defaultdict(list)
for line in fileinput.input():
    pos = fileinput.filename(), fileinput.filelineno()
    for word in line.split():
        word_pos[word].append(pos)

with dbm.open('indexfilep', 'n') as dbm_out:
    for word, word_positions in word_pos.items():
        dbm_out[word] = pickle.dumps(word_positions, protocol=2)

We can then use pickle to read back the data stored to the DBM-like file indexfilep,
as shown in the following example:

import sys, pickle, dbm, linecache
with dbm.open('indexfilep') as dbm_in:
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    for word in sys.argv[1:]:
        if word not in dbm_in:
            print(f'Word {word!r} not found in index file',
                  file=sys.stderr)
            continue
        places = pickle.loads(dbm_in[word])
        for fname, lineno in places:
            print(f'Word {word!r} occurs in line {lineno}'
                  f' of file {fname!r}:')
            print(linecache.getline(fname, lineno), end='')

Pickling instances
In order for pickle to reload an instance x, pickle must be able to import x’s
class from the same module in which the class was defined when pickle saved the
instance. Here is how pickle saves the state of instance object x of class T and later
reloads the saved state into a new instance y of T (the first step of the reloading
is always to make a new empty instance y of T, except where we explicitly say
otherwise):

• When T supplies the method __getstate__, pickle saves the result d of calling•
T.__getstate__(x).

• When T supplies the method __setstate__, d can be of any type, and pickle•
reloads the saved state by calling T.__setstate__(y, d).

• Otherwise, d must be a dictionary, and pickle just sets y.__dict__ = d.•

• Otherwise, when T supplies the method __getnewargs__, and pickle is pick‐•
ling with protocol 2 or higher, pickle saves the result t of calling T.__getne
wargs__(x); t must be a tuple.

• pickle, in this one case, does not start with an empty y, but rather creates y by•
executing y = T.__new__(T, *t), which concludes the reloading.

• Otherwise, by default, pickle saves as d the dictionary x.__dict__.•

• When T supplies the method __setstate__, pickle reloads the saved state by•
calling T.__setstate__(y, d).

• Otherwise, pickle just sets y.__dict__ = d.•
All the items in the d or t object that pickle saves and reloads (normally a
dictionary or tuple) must, in turn, be instances of types suitable for pickling and
unpickling (aka pickleable objects), and the procedure just outlined may be repeated
recursively, if necessary, until pickle reaches primitive pickleable built-in types
(dictionaries, tuples, lists, sets, numbers, strings, etc.).

As mentioned in “The copy Module” on page 263, the __getnewargs__, __get
state__, and __setstate__ special methods also control the way instance objects
are copied and deep copied. If a class defines __slots__, and therefore its instan‐
ces do not have a __dict__ attribute, pickle does its best to save and restore a
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dictionary equivalent to the names and values of the slots. However, such a class
should define __getstate__ and __setstate__; otherwise, its instances may not be
correctly pickleable and copied through such best-effort endeavors.

Pickling customization with the copyreg module
You can control how pickle serializes and deserializes objects of an arbitrary type
by registering factory and reduction functions with the module copyreg. This is
particularly, though not exclusively, useful when you define a type in a C-coded
Python extension. The copyreg module supplies the functions listed in Table 12-5.

Table 12-5. Functions of the copyreg module

constructor constructor(fcon)

Adds fcon to the table of constructors, which lists all factory functions that pickle may
call. fcon must be callable and is normally a function.

pickle pickle(type, fred, fcon=None)
Registers function fred as the reduction function for type type, where type must be
a type object. To save an object o of type type, the module pickle calls fred(o)
and saves the result. fred(o) must return a tuple (fcon, t) or (fcon, t, d),
where fcon is a constructor and t is a tuple. To reload o, pickle uses o=fcon(*t).
Then, when fred also returns a d, pickle uses d to restore o’s state (when o supplies
__setstate__, o.__setstate__(d); otherwise, o.__dict__.update(d)),
as described in the previous section. If fcon is not None, pickle also calls construc
tor(fcon) to register fcon as a constructor.
pickle does not support pickling of code objects, but marshal does. Here’s how you
could customize pickling to support code objects by delegating the work to marshal
thanks to copyreg:

>>> import pickle, copyreg, marshal
>>> def marsh(x):
...     return marshal.loads, (marshal.dumps(x),)
...
>>> c=compile('2+2','','eval')
>>> copyreg.pickle(type(c), marsh)
>>> s=pickle.dumps(c, 2)
>>> cc=pickle.loads(s)
>>> print(eval(cc))
4

Using marshal Makes Your Code Python Version
Dependent
Be careful when using marshal in your code, as the preceding
example does. marshal’s serialization isn’t guaranteed to be stable
across versions, so using marshal means that programs written in
other versions of Python may be unable to load the objects your
program has serialized.
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3 dbm keys and values must be bytes; shelve will accept bytes or str and encode the strings
transparently.

The shelve Module
The shelve module orchestrates the modules pickle, io, and dbm (and its under‐
lying modules for access to DBM-like archive files, as discussed in the following
section) in order to provide a simple, lightweight persistence mechanism.

shelve supplies a function, open, that is polymorphic to dbm.open. The mapping
s returned by shelve.open is less limited, however, than the mapping a returned
by dbm.open. a’s keys and values must be strings.3 s’s keys must also be strings, but
s’s values may be of any pickleable types. pickle customizations (copyreg, __get
newargs__, __getstate__, and __setstate__) also apply to shelve, as shelve
delegates serialization to pickle. Keys and values are stored as bytes. When strings
are used, they are implicitly converted to the default encoding before being stored.

Beware of a subtle trap when you use shelve with mutable objects: when you
operate on a mutable object held in a shelf, the changes aren’t stored back unless
you assign the changed object back to the same index. For example:

import shelve
s = shelve.open('data')
s['akey'] = list(range(4))
print(s['akey'])           # prints: [0, 1, 2, 3]
s['akey'].append(9)        # trying direct mutation
print(s['akey'])           # doesn't "take"; prints: [0, 1, 2, 3]
x = s['akey']              # fetch the object
x.append(9)                # perform mutation
s['akey'] = x              # key step: store the object back!
print(s['akey'])           # now it "takes", prints: [0, 1, 2, 3, 9]

You can finesse this issue by passing the named argument writeback=True when
you call shelve.open, but this can seriously impair the performance of your
program.

A shelving example
The following example handles the same task as the earlier json and pickle exam‐
ples, but uses shelve to persist lists of (filename, linenumber) pairs:

import collections, fileinput, shelve
word_pos = collections.defaultdict(list)
for line in fileinput.input():
    pos = fileinput.filename(), fileinput.filelineno()
    for word in line.split():
        word_pos[word].append(pos)
with shelve.open('indexfiles','n') as sh_out:
    sh_out.update(word_pos)
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We must then use shelve to read back the data stored to the DBM-like file index‐
files, as shown in the following example:

import sys, shelve, linecache
with shelve.open('indexfiles') as sh_in:
    for word in sys.argv[1:]:
        if word not in sh_in:
            print(f'Word {word!r} not found in index file',

      file=sys.stderr)
            continue
        places = sh_in[word]
        for fname, lineno in places:
            print(f'Word {word!r} occurs in line {lineno}'
                  f' of file {fname!r}:')
            print(linecache.getline(fname, lineno), end='')

These two examples are the simplest and most direct of the various equivalent pairs
of examples shown throughout this section. This reflects the fact that shelve is
higher level than the modules used in previous examples.

DBM Modules
DBM, a longtime Unix mainstay, is a family of libraries supporting data files con‐
taining pairs of bytestrings (key, data). DBM offers fast fetching and storing of
the data given a key, a usage pattern known as keyed access. Keyed access, while
nowhere near as powerful as the data access functionality of relational DBs, imposes
less overhead, and it may suffice for some programs’ needs. If DBM-like files are
sufficient for your purposes, with this approach you can end up with a program that
is smaller and faster than one using a relational DB.

DBM Databases Are Bytes-Oriented
DBM databases require both keys and values to be bytes val‐
ues. You will see in the example included later that the text
input is explicitly encoded in UTF-8 before storage. Similarly,
the inverse decoding must be performed when reading back
the values.

DBM support in Python’s standard library is organized in a clean and elegant way:
the dbm package exposes two general functions, and within the same package live
other modules supplying specific implementations.

Berkeley DB Interfacing
The bsddb module has been removed from the Python stan‐
dard library. If you need to interface to a BSD DB archive, we
recommend the excellent third-party package bsddb3.
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The dbm Package
The dbm package provides the top-level functions described in Table 12-6.

Table 12-6. Functions of the dbm package

open open(filepath, flag='r', mode=0o666)

Opens or creates the DBM file named by filepath (any path to a file) and returns a mapping
object corresponding to the DBM file. When the DBM file already exists, open uses the function
whichdb to determine which DBM submodule can handle the file. When open creates a new
DBM file, it chooses the first available dbm submodule in the following order of preference: gnu,
ndbm, dumb.
flag is a one-character string that tells open how to open the file and whether to create it,
according to the rules shown in Table 12-7. mode is an integer that open uses as the file’s
permission bits if open creates the file, as covered in “Creating a File Object with open” on page
323.

Table 12-7. Flag values for dbm.open

Flag Read-only? If file exists: If file does not exist:

'r' Yes Opens the file Raises error

'w' No Opens the file Raises error

'c' No Opens the file Creates the file

'n' No Truncates the file Creates the file

dbm.open returns a mapping object m with a subset of the functionality of dictionaries (covered
in “Dictionary Operations” on page 71). m only accepts bytes as keys and values, and the only
nonspecial mapping methods m supplies are m.get, m.keys, and m.setdefault. You can
bind, rebind, access, and unbind items in m with the same indexing syntax m[key] that you
would use if m were a dictionary. If flag is 'r', m is read-only, so that you can only access
m’s items, not bind, rebind, or unbind them. You can check if a string s is a key in m with the
usual expression s in m; you cannot iterate directly on m, but you can, equivalently, iterate on
m.keys().
One extra method that m supplies is m.close, with the same semantics as the close method
of a file object. Just like for file objects, you should ensure m.close is called when you’re
done using m. The try/finally statement (covered in “try/finally” on page 198) is one way
to ensure finalization, but the with statement, covered in “The with Statement and Context
Managers” on page 201, is even better (you can use with, since m is a context manager).

whichdb whichdb(filepath)

Opens and reads the file specified by filepath to discover which dbm submodule created the
file. whichdb returns None when the file does not exist or cannot be opened and read. It
returns '' when the file exists and can be opened and read, but it is not possible to determine
which dbm submodule created the file (typically, this means that the file is not a DBM file). If it
can find out which module can read the DBM-like file, whichdb returns a string that names a
dbm submodule, such as 'dbm.ndbm', 'dbm.dumb', or 'dbm.gdbm'.
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In addition to these two top-level functions, the dbm package contains specific mod‐
ules, such as ndbm, gnu, and dumb, that provide various implementations of DBM
functionality, which you normally access only via the these top-level functions.
Third-party packages can install further implementation modules in dbm.

The only implementation module of the dbm package that’s guaranteed to exist on all
platforms is dumb. dumb has minimal DBM functionality and mediocre performance;
its only advantage is that you can use it anywhere, since dumb does not rely on any
library. You don’t normally import dbm.dumb: rather, import dbm, and let dbm.open
supply the best DBM module available, defaulting to dumb if no better submodule
is available in the current Python installation. The only case in which you import
dumb directly is the rare one in which you need to create a DBM-like file that must
be readable in any Python installation. The dumb module supplies an open function
polymorphic to dbm’s.

Examples of DBM-Like File Use
DBM’s keyed access is suitable when your program needs to record persistently
the equivalent of a Python dictionary, with strings as both keys and values. For
example, suppose you need to analyze several text files, whose names are given as
your program’s arguments, and record where each word appears in those files. In
this case, the keys are words and, therefore, intrinsically strings. The data you need
to record for each word is a list of (filename, linenumber) pairs. However, you
can encode the data as a string in several ways—for example, by exploiting the fact
that the path separator string, os.pathsep (covered in “Path-string attributes of the
os module” on page 344), does not normally appear in filenames. (More general
approaches to the issue of encoding data as strings were covered in the opening
section of this chapter, with the same example.) With this simplification, a program
to record word positions in files might be as follows:

import collections, fileinput, os, dbm
word_pos = collections.defaultdict(list)
for line in fileinput.input():
    pos = f'{fileinput.filename()}{os.pathsep}{fileinput.filelineno()}'
    for word in line.split():
        word_pos[word].append(pos)
sep2 = os.pathsep * 2
with dbm.open('indexfile','n') as dbm_out:
    for word in word_pos:
        dbm_out[word.encode('utf-8')] = sep2.join(

word_pos[word]
).encode('utf-8')

You can read back the data stored to the DBM-like file indexfile in several ways. The
following example accepts words as command-line arguments and prints the lines
where the requested words appear:

import sys, os, dbm, linecache

sep = os.pathsep

398 | Chapter 12: Persistence and Databases



sep2 = sep * 2
with dbm.open('indexfile') as dbm_in:
    for word in sys.argv[1:]:
        e_word = word.encode('utf-8')
        if e_word not in dbm_in:
            print(f'Word {word!r} not found in index file',
                  file=sys.stderr)
            continue
        places = dbm_in[e_word].decode('utf-8').split(sep2)
        for place in places:
            fname, lineno = place.split(sep)
            print(f'Word {word!r} occurs in line {lineno}'
                  f' of file {fname!r}:')
            print(linecache.getline(fname, int(lineno)), end='')

The Python Database API (DBAPI)
As we mentioned earlier, the Python standard library does not come with an
RDBMS interface (except for sqlite3, covered in “SQLite” on page 405, which is
a rich implementation, not just an interface). Many third-party modules let your
Python programs access specific DBs. Such modules mostly follow the Python
Database API 2.0 standard, aka the DBAPI, as specified in PEP 249.

After importing any DBAPI-compliant module, you can call the module’s connect
function with DB-specific parameters. connect returns x, an instance of Connec
tion, which represents a connection to the DB. x supplies commit and rollback
methods to deal with transactions, a close method to call as soon as you’re done
with the DB, and a cursor method to return c, an instance of Cursor. c supplies
the methods and attributes used for DB operations. A DBAPI-compliant module
also supplies exception classes, descriptive attributes, factory functions, and type-
description attributes.

Exception Classes
A DBAPI-compliant module supplies the exception classes Warning, Error, and
several subclasses of Error. Warning indicates anomalies such as data truncation
on insertion. Error’s subclasses indicate various kinds of errors that your program
can encounter when dealing with the DB and the DBAPI-compliant module that
interfaces to it. Generally, your code uses a statement of the form:

try:
    ...
except module.Error as err:
    ...

to trap all DB-related errors that you need to handle without terminating.
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Thread Safety
When a DBAPI-compliant module has a threadsafety attribute greater than 0,
the module is asserting some level of thread safety for DB interfacing. Rather than
relying on this, it’s usually safer, and always more portable, to ensure that a single
thread has exclusive access to any given external resource, such as a DB, as outlined
in “Threaded Program Architecture” on page 471.

Parameter Style
A DBAPI-compliant module has an attribute called paramstyle to identify the
style of markers used as placeholders for parameters. Insert such markers in SQL
statement strings that you pass to methods of Cursor instances, such as the method
execute, to use runtime-determined parameter values. Say, for example, that you
need to fetch the rows of DB table ATABLE where field AFIELD equals the current
value of Python variable x. Assuming the cursor instance is named c, you could the‐
oretically (but very ill-advisedly!) perform this task with Python’s string formatting:

c.execute(f'SELECT * FROM ATABLE WHERE AFIELD={x!r}')

Avoid SQL Query String Formatting: Use Parameter
Substitution
String formatting is not the recommended approach. It gener‐
ates a different string for each value of x, requiring statements
to be parsed and prepared anew each time; it also opens up
the possibility of security weaknesses, such as SQL injection
vulnerabilities. With parameter substitution, you pass to exe
cute a single statement string, with a placeholder instead of
the parameter value. This lets execute parse and prepare the
statement just once, for better performance; more importantly,
parameter substitution improves solidity and security, ham‐
pering SQL injection attacks.

For example, when a module’s paramstyle attribute (described next) is 'qmark',
you could express the preceding query as:

c.execute('SELECT * FROM ATABLE WHERE AFIELD=?', (some_value,))

The read-only string attribute paramstyle tells your program how it should use
parameter substitution with that module. The possible values of paramstyle are
shown in Table 12-8.

Table 12-8. Possible values of the paramstyle attribute

format The marker is %s, as in old-style string formatting (always with s: never use other type
indicator letters, whatever the data’s type). A query looks like:

c.execute('SELECT * FROM ATABLE WHERE AFIELD=%s', 
          (some_value,))
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named The marker is :name, and parameters are named. A query looks like:
c.execute('SELECT * FROM ATABLE WHERE AFIELD=:x', 
          {'x':some_value})

numeric The marker is :n, giving the parameter’s number, 1 and up. A query looks like:
c.execute('SELECT * FROM ATABLE WHERE AFIELD=:1', 
          (some_value,))

pyformat The marker is %(name)s, and parameters are named. Always use s: never use other type
indicator letters, whatever the data’s type. A query looks like:

c.execute('SELECT * FROM ATABLE WHERE AFIELD=%(x)s',
          {'x':some_value})

qmark The marker is ?. A query looks like:
c.execute('SELECT * FROM ATABLE WHERE AFIELD=?', (x,))

When parameters are named (i.e., when paramstyle is 'pyformat' or 'named'),
the second argument of the execute method is a mapping. Otherwise, the second
argument is a sequence.

format and pyformat Only Accept Type Indicator s
The only valid type indicator letter for format or pyformat
is s; neither accepts any other type indicator—for example,
never use %d or %(name)d. Use %s or %(name)s for all parame‐
ter substitutions, regardless of the type of the data.

Factory Functions
Parameters passed to the DB via placeholders must typically be of the right type:
this means Python numbers (integers or floating-point values), strings (bytes or
Unicode), and None to represent SQL NULL. There is no type universally used
to represent dates, times, and binary large objects (BLOBs). A DBAPI-compliant
module supplies factory functions to build such objects. The types used for this
purpose by most DBAPI-compliant modules are those supplied by the datetime
module (covered in Chapter 13), and strings or buffer types for BLOBs. The factory
functions specified by the DBAPI are listed in Table 12-9. (The *FromTicks meth‐
ods take an integer timestamp s representing the number of seconds since the epoch
of module time, covered in Chapter 13.)

Table 12-9. DBAPI factory functions

Binary Binary(string)

Returns an object representing the given string of bytes as a BLOB.

Date Date(year, month, day)
Returns an object representing the specified date.

DateFrom

Ticks

DateFromTicks(s)

Returns an object representing the date for integer timestamp s. For example, DateFrom
Ticks(time.time()) means “today.”

The Python Database API (DBAPI) | 401

P
ersistence

and
 D

atab
ases



Time Time(hour, minute, second)
Returns an object representing the specified time.

TimeFrom

Ticks

TimeFromTicks(s)

Returns an object representing the time for integer timestamp s. For example, TimeFrom
Ticks(time.time()) means “the current time of day.”

Timestamp Timestamp(year, month, day, hour, minute, second)
Returns an object representing the specified date and time.

Timestamp

FromTicks

TimestampFromTicks(s)

Returns an object representing the date and time for integer timestamp s. For example,
TimestampFromTicks(time.time()) is the current date and time.

Type Description Attributes
A Cursor instance’s description attribute describes the types and other character‐
istics of each column of the SELECT query you last executed on that cursor. Each
column’s type (the second item of the tuple describing the column) equals one of the
following attributes of the DBAPI-compliant module:

BINARY Describes columns containing BLOBs

DATETIME Describes columns containing dates, times, or both

NUMBER Describes columns containing numbers of any kind

ROWID Describes columns containing a row-identification number

STRING Describes columns containing text of any kind

A cursor’s description, and in particular each column’s type, is mostly useful for
introspection about the DB your program is working with. Such introspection can
help you write general modules and work with tables using different schemas,
including schemas that may not be known at the time you are writing your code.

The connect Function
A DBAPI-compliant module’s connect function accepts arguments that depend
on the kind of DB and the specific module involved. The DBAPI standard recom‐
mends that connect accept named arguments. In particular, connect should at least
accept optional arguments with the following names:

database Name of the specific database to connect to

dsn Name of the data source to use for the connection

host Hostname on which the database is running

password Password to use for the connection

user Username to use for the connection
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Connection Objects
A DBAPI-compliant module’s connect function returns an object x that is an
instance of the class Connection. x supplies the methods listed in Table 12-10.

Table 12-10. Methods of an instance x of class Connection

close x.close()

Terminates the DB connection and releases all related resources. Call close as soon
as you’re done with the DB. Keeping DB connections open needlessly can be a serious
resource drain on the system.

commit x.commit()

Commits the current transaction in the DB. If the DB does not support transactions,
x.commit() is an innocuous no-op.

cursor x.cursor()

Returns a new instance of the class Cursor (covered in the following section).

rollback x.rollback()

Rolls back the current transaction in the DB. If the DB does not support transactions,
x.rollback() raises an exception. The DBAPI recommends that, for DBs that
do not support transactions, the class Connection supplies no rollback
method, so that x.rollback() raises AttributeError: you can test whether
transactions are supported with hasattr(x, 'rollback').

Cursor Objects
A Connection instance provides a cursor method that returns an object c that is an
instance of the class Cursor. A SQL cursor represents the set of results of a query
and lets you work with the records in that set, in sequence, one at a time. A cursor
as modeled by the DBAPI is a richer concept, since it’s the only way your program
executes SQL queries in the first place. On the other hand, a DBAPI cursor allows
you only to advance in the sequence of results (some relational DBs, but not all,
also provide higher-functionality cursors that are able to go backward as well as
forward), and does not support the SQL clause WHERE CURRENT OF CURSOR. These
limitations of DBAPI cursors enable DBAPI-compliant modules to provide DBAPI
cursors even on RDBMSs that supply no real SQL cursors at all. An instance c of the
class Cursor supplies many attributes and methods; the most frequently used ones
are shown in Table 12-11.
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Table 12-11. Commonly used attributes and methods of an instance c of class
Cursor

close c.close()

Closes the cursor and releases all related resources.

description A read-only attribute that is a sequence of seven-item tuples, one per column in the last
query executed:
name, typecode, displaysize, internalsize, precision, scale,
nullable

c.description is None if the last operation on c was not a SELECT query or
returned no usable description of the columns involved. A cursor’s description is mostly
useful for introspection about the DB your program is working with. Such introspection can
help you write general modules that are able to work with tables using different schemas,
including schemas that may not be fully known at the time you are writing your code.

execute c.execute(statement, parameters=None)

Executes a SQL statement string on the DB with the given parameters. parame
ters is a sequence when the module’s paramstyle is 'format', 'numeric', or
'qmark', and a mapping when paramstyle is 'named' or 'pyformat'. Some
DBAPI modules require the sequences to be specifically tuples.

executemany c.executemany(statement, *parameters)
Executes a SQL statement on the DB, once for each item of the given parameters.
parameters is a sequence of sequences when the module’s paramstyle is 'for
mat', 'numeric', or 'qmark', and a sequence of mappings when paramstyle
is 'named' or 'pyformat'. For example, when paramstyle is 'qmark', the
statement:

c.executemany('UPDATE atable SET x=? '
              'WHERE y=?',(12,23),(23,34))

is equivalent to—but faster than—the two statements:
c.execute('UPDATE atable SET x=12 WHERE y=23')
c.execute('UPDATE atable SET x=23 WHERE y=34')

fetchall c.fetchall()

Returns all remaining rows from the last query as a sequence of tuples. Raises an exception
if the last operation was not a SELECT.

fetchmany c.fetchmany(n)

Returns up to n remaining rows from the last query as a sequence of tuples. Raises an
exception if the last operation was not a SELECT.

fetchone c.fetchone()

Returns the next row from the last query as a tuple. Raises an exception if the last operation
was not a SELECT.

rowcount A read-only attribute that specifies the number of rows fetched or affected by the last
operation, or -1 if the module is unable to determine this value.

DBAPI-Compliant Modules
Whatever relational DB you want to use, there’s at least one (often more than one)
Python DBAPI-compliant module downloadable from the internet. There are so
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many DBs and modules, and the set of possibilities changes so constantly, that we
couldn’t possibly list them all, nor (importantly) could we maintain the list over
time. Rather, we recommend you start from the community-maintained wiki page,
which has at least a fighting chance to be complete and up-to-date at any time.

What follows is therefore only a very short, time-specific list of a very few DBAPI-
compliant modules that, at the time of writing, are very popular and interface to
very popular open source DBs:

ODBC modules
Open Database Connectivity (ODBC) is a standard way to connect to many
different DBs, including a few not supported by other DBAPI-compliant mod‐
ules. For an ODBC-compliant DBAPI-compliant module with a liberal open
source license, use pyodbc; for a commercially supported one, use mxODBC.

MySQL modules
MySQL is a popular open source RDBMS, purchased by Oracle in 2010. Ora‐
cle’s “official” DBAPI-compliant interface to it is mysql-connector-python.
The MariaDB project also provides a DBAPI-compliant interface, mariadb,
connecting to both MySQL and MariaDB (a GPL-licensed fork).

PostgreSQL modules
PostgreSQL is another popular open source RDBMS. A widely used DBAPI-
compliant interface to it is psycopg3, a rationalized rewrite and extension of
the hallowed psycopg2 package.

SQLite
SQLite is a C-coded library that implements a relational DB within a single file, or
even in memory for sufficiently small and transient cases. Python’s standard library
supplies the package sqlite3, which is a DBAPI-compliant interface to SQLite.

SQLite has rich advanced functionality, with many options you can choose; sqlite3
offers access to much of that functionality, plus further possibilities to make inter‐
operation between your Python code and the underlying DB smoother and more
natural. We don’t have the space in this book to cover every nook and cranny of
these two powerful software systems; instead, we focus on the subset of functions
that are most commonly used and most useful. For a greater level of detail, includ‐
ing examples and tips on best practices, see the documentation for SQLite and
sqlite3, and Jay Kreibich’s Using SQLite (O’Reilly).

Among others, the sqlite3 package supplies the functions in Table 12-12.
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Table 12-12. Some useful functions of the sqlite3 module

connect connect(filepath, timeout=5.0, detect_types=0, isola

tion_level='', check_same_thread=True, factory=Connection,

cached_statements=100, uri=False)

Connects to the SQLite DB in the file named by filepath (creating it if necessary) and
returns an instance of the Connection class (or subclass thereof passed as factory). To
create an in-memory DB, pass ':memory:' as the first argument, filepath.
If True, the uri argument activates SQLite’s URI functionality, allowing a few extra options
to be passed along with the filepath via the filepath argument.
timeout is the number of seconds to wait before raising an exception if another connection
is keeping the DB locked in a transaction.
sqlite3 directly supports only the following SQLite native types, converting them to the
indicated Python types:

• BLOB: Converted to bytes

• INTEGER: Converted to int

• NULL: Converted to None

• REAL: Converted to float

• TEXT: Depends on the text_factory attribute of the Connection instance,
covered in Table 12-13; by default, str

Any other type name is treated as TEXT unless properly detected and passed through
a converter registered with the function register_converter, covered later in this
table. To allow type name detection, pass as detect_types either of the constants
PARSE_COLNAMES or PARSE_DECLTYPES, supplied by the sqlite3 package (or both,
joining them with the | bitwise OR operator).
When you pass detect_types=sqlite3.PARSE_COLNAMES, the type name is taken
from the name of the column in the SQL SELECT statement that retrieves the column; for
example, a column retrieved as foo AS [foo CHAR(10)] has a type name of CHAR.
When you pass detect_types=sqlite3.PARSE_DECLTYPES, the type name is taken
from the declaration of the column in the original CREATE TABLE or ALTER TABLE SQL
statement that added the column; for example, a column declared as foo CHAR(10) has a
type name of CHAR.
When you pass detect_types=sqlite3.PARSE_COLNAMES |
sqlite3.PARSE_DECLTYPES, both mechanisms are used, with precedence given to
the column name when it has at least two words (the second word gives the type name in this
case), falling back to the type that was given for that column at declaration (the first word of
the declaration type gives the type name in this case).
isolation_level lets you exercise some control over how SQLite processes transactions;
it can be '' (the default), None (to use autocommit mode), or one of the three strings
‘DEFERRED’, 'EXCLUSIVE', or 'IMMEDIATE'. The SQLite online docs cover the details
of types of transactions and their relation to the various levels of file locking that SQLite
intrinsically performs.
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connect

(cont.)
By default, a connection object can be used only in the Python thread that created it, to avoid
accidents that could easily corrupt the DB due to minor bugs in your program (minor bugs are,
alas, common in multithreaded programming). If you’re entirely confident about your threads’
use of locks and other synchronization mechanisms, and you need to reuse a connection object
among multiple threads, you can pass check_same_thread=False. sqlite3 will then
perform no checks, trusting your assertion that you know what you’re doing and that your
multithreading architecture is 100% bug-free—good luck!
cached_statements is the number of SQL statements that sqlite3 caches in a parsed
and prepared state, to avoid the overhead of parsing them repeatedly. You can pass in a value
lower than the default 100 to save a little memory, or a larger one if your application uses a
dazzling variety of SQL statements.

register_

adapter

register_adapter(type, callable)
Registers callable as the adapter from any object of Python type type to a corresponding
value of one of the few Python types that sqlite3 handles directly: int, float, str, and
bytes. callable must accept a single argument, the value to adapt, and return a value of
a type that sqlite3 handles directly.

register_

converter

register_converter(typename, callable)
Registers callable as the converter from any value identified in SQL as being of type
typename (see the description of the connect function’s detect_types parameter for an
explanation of how the type name is identified) to a corresponding Python object. callable
must accept a single argument, the string form of the value obtained from SQL, and return the
corresponding Python object. The typename matching is case-sensitive.

In addition, sqlite3 supplies the classes Connection, Cursor, and Row. Each can
be subclassed for further customization; however, this is an advanced topic that we
do not cover further in this book. The Cursor class is a standard DBAPI cursor
class, except for an extra convenience method, executescript, accepting a single
argument, a string of multiple statements separated by ; (no parameters). The other
two classes are covered in the following sections.

The sqlite3.Connection class
In addition to the methods common to all Connection classes of DBAPI-compliant
modules, covered in “Connection Objects” on page 403, sqlite3.Connection sup‐
plies the methods and attributes in Table 12-13.

Table 12-13. Additional methods and attributes of the sqlite3.Connection class

create_

aggregate

create_aggregate(name, num_params, aggregate_class)
aggregate_class must be a class supplying two instance methods: step,
accepting exactly num_param arguments, and finalize, accepting no arguments
and returning the final result of the aggregate, a value of a type natively supported by
sqlite3. The aggregate function can be used in SQL statements by the given name.
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create_

collation

create_collation(name, callable)
callable must accept two bytestring arguments (encoded in 'utf-8') and return
-1 if the first must be considered “less than” the second, 1 if it must be considered
“greater than,” and 0 if it must be considered “equal,” for the purposes of this
comparison. Such a collation can be named by the given name in a SQL ORDER BY
clause in a SELECT statement.

create_

function

create_function(name, num_params, func)
func must accept exactly num_params arguments and return a value of a type
natively supported by sqlite3; such a user-defined function can be used in SQL
statements by the given name.

interrupt interrupt()

Call from any other thread to abort all queries executing on this connection (raising an
exception in the thread using the connection).

isolation_

level

A read-only attribute that’s the value given as the isolation_level parameter to
the connect function.

iterdump iterdump()

Returns an iterator that yields strings: the SQL statements that build the current DB
from scratch, including both the schema and contents. Useful, for example, to persist
an in-memory DB to disk for future reuse.

row_factory A callable that accepts the cursor and the original row as a tuple, and returns
an object to use as the real result row. A common idiom is x.row_fac
tory=sqlite3.Row, to use the highly optimized Row class covered in the
following section, supplying both index-based and case-insensitive name-based access
to columns with negligible overhead.

text_factory A callable that accepts a single bytestring parameter and returns the object to use for
that TEXT column value—by default, str, but you can set it to any similar callable.

total_changes The total number of rows that have been modified, inserted, or deleted since the
connection was created.

A Connection object can also be used as a context manager, to automatically
commit database updates or roll back if an exception occurs; however, you will need
to call Connection.close() explicitly to close the connection in this case.

The sqlite3.Row class
sqlite3 also supplies the class Row. A Row object is mostly like a tuple but also
supplies the method keys, returning a list of column names, and supports indexing
by a column name as an alternative to indexing by column number.
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A sqlite3 example
The following example handles the same task as the examples shown earlier in the
chapter, but uses sqlite3 for persistence, without creating the index in memory:

import fileinput, sqlite3
connect = sqlite3.connect('database.db')
cursor = connect.cursor()
with connect:
    cursor.execute('CREATE TABLE IF NOT EXISTS Words '
                   '(Word TEXT, File TEXT, Line INT)')
    for line in fileinput.input():
        f, l = fileinput.filename(), fileinput.filelineno()
        cursor.executemany('INSERT INTO Words VALUES (:w, :f, :l)',
            [{'w':w, 'f':f, 'l':l} for w in line.split()])
connect.close()

We can then use sqlite3 to read back the data stored in the DB file database.db, as
shown in the following example:

import sys, sqlite3, linecache
connect = sqlite3.connect('database.db')
cursor = connect.cursor()
for word in sys.argv[1:]:
    cursor.execute('SELECT File, Line FROM Words '
                   'WHERE Word=?', [word])
    places = cursor.fetchall()
    if not places:
         print(f'Word {word!r} not found in index file',
               file=sys.stderr)
         continue
    for fname, lineno in places:
        print(f'Word {word!r} occurs in line {lineno}'
              f' of file {fname!r}:')
        print(linecache.getline(fname, lineno), end='')
connect.close()
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1 On older Unix systems, 1970-01-01 is the start of the epoch, and 2038-01-19 is when 32-bit time
wraps back to the epoch. Most modern systems now use 64-bit time, and many time methods
can accept a year from 0001 to 9999, but some methods, or old systems (especially embedded
ones), may still be limited.

13
Time Operations

A Python program can handle time in several ways. Time intervals are floating-
point numbers in units of seconds (a fraction of a second is the fractional part of
the interval): all standard library functions accepting an argument that expresses a
time interval in seconds accept a float as the value of that argument. Instants in time
are expressed in seconds since a reference instant, known as the epoch. (Although
epochs vary per language and per platform, on all platforms, Python’s epoch is
midnight, UTC, January 1, 1970.) Time instants often also need to be expressed as
a mixture of units of measurement (e.g., years, months, days, hours, minutes, and
seconds), particularly for I/O purposes. I/O, of course, also requires the ability to
format times and dates into human-readable strings, and parse them back from
string formats.

The time Module
The time module is somewhat dependent on the underlying system’s C library,
which sets the range of dates that the time module can handle. On older Unix
systems, the years 1970 and 2038 were typical cutoff points1 (a limitation avoided
by using datetime, discussed in the following section). Time instants are normally
specified in UTC (Coordinated Universal Time, once known as GMT, or Greenwich
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2 time and datetime don’t account for leap seconds, since their schedule is not known for the
future.

Mean Time). The time module also supports local time zones and daylight savings
time (DST), but only to the extent the underlying C system library does.2

As an alternative to seconds since the epoch, a time instant can be represented by
a tuple of nine integers, called a timetuple (covered in Table 13-1.) All the items
are integers: timetuples don’t keep track of fractions of a second. A timetuple is
an instance of struct_time. You can use it as a tuple; you can also, more usefully,
access the items as the read-only attributes x.tm_year, x.tm_mon, and so on, with
the attribute names listed in Table 13-1. Wherever a function requires a timetuple
argument, you can pass an instance of struct_time or any other sequence whose
items are nine integers in the right ranges (all ranges in the table include both lower
and upper bounds, both inclusive).

Table 13-1. Tuple form of time representation

Item Meaning Field name Range Notes

0 Year tm_year 1970–2038 0001–9999 on some platforms

1 Month tm_mon 1–12 1 is January; 12 is December

2 Day tm_mday 1–31  

3 Hour tm_hour 0–23 0 is midnight; 12 is noon

4 Minute tm_min 0–59  

5 Second tm_sec 0–61 60 and 61 for leap seconds

6 Weekday tm_wday 0–6 0 is Monday; 6 is Sunday

7 Year day tm_yday 1–366 Day number within the year

8 DST flag tm_isdst −1–1 −1 means the library determines DST

To translate a time instant from a “seconds since the epoch” floating-point value into
a timetuple, pass the floating-point value to a function (e.g., localtime) that returns
a timetuple with all nine items valid. When you convert in the other direction,
mktime ignores redundant items 6 (tm_wday) and 7 (tm_yday) of the tuple. In this
case, you normally set item 8 (tm_isdst) to −1 so that mktime itself determines
whether to apply DST.

time supplies the functions and attributes listed in Table 13-2.

412 | Chapter 13: Time Operations



Table 13-2. Functions and attributes of the time module

asctime asctime([tupletime])

Accepts a timetuple and returns a readable 24-character string, e.g., 'Sun Jan
8 14:41:06 2017'. Calling asctime() without arguments is like calling asc
time(time.localtime()) (formats current time in local time).

ctime ctime([secs])

Like asctime(localtime(secs)), accepts an instant expressed in seconds since
the epoch and returns a readable 24-character string form of that instant, in local time.
Calling ctime() without arguments is like calling asctime() (formats current time in
local time).

gmtime gmtime([secs])

Accepts an instant expressed in seconds since the epoch and returns a timetuple t with
the UTC time (t.tm_isdst is always 0). Calling gmtime() without arguments is like
calling gmtime(time()) (returns the timetuple for the current time instant).

localtime localtime([secs])

Accepts an instant expressed in seconds since the epoch and returns a timetuple t
with the local time (t.tm_isdst is 0 or 1, depending on whether DST applies to
instant secs by local rules). Calling localtime() without arguments is like calling
localtime(time()) (returns the timetuple for the current time instant).

mktime mktime(tupletime)

Accepts an instant expressed as a timetuple in local time and returns a floating-point value
with the instant expressed in seconds since the epoch (only accepts the limited epoch
dates between 1970–2038, not the extended range, even on 64-bit machines).a The DST
flag, the last item in tupletime, is meaningful: set it to 0 to get standard time, to 1 to
get DST, or to −1 to let mktime compute whether DST is in effect at the given instant.

monotonic monotonic()

Like time(), returns the current time instant, a float with seconds since the epoch;
however, the time value is guaranteed to never go backward between calls, even when
the system clock is adjusted (e.g., due to leap seconds or at the moment of switching to or
from DST).

perf_counter perf_counter()

For determining elapsed time between successive calls (like a stopwatch),
perf_counter returns a time value in fractional seconds using the highest-resolution
clock available to get accuracy for short durations. It is system-wide and includes time
elapsed during sleep. Use only the difference between successive calls, as there is no
defined reference point.

process_time process_time()

Like perf_counter; however, the returned time value is process-wide and doesn’t
include time elapsed during sleep. Use only the difference between successive calls, as
there is no defined reference point.
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sleep sleep(secs)

Suspends the calling thread for secs seconds. The calling thread may start executing
again before secs seconds (when it’s the main thread and some signal wakes it up) or
after a longer suspension (depending on system scheduling of processes and threads). You
can call sleep with secs set to 0 to offer other threads a chance to run, incurring no
significant delay if the current thread is the only one ready to run.

strftime strftime(fmt[, tupletime])
Accepts an instant expressed as a timetuple in local time and returns a string representing
the instant as specified by string fmt. If you omit tupletime, strftime uses
localtime(time()) (formats the current time instant). The syntax of fmt is similar
to that covered in “Legacy String Formatting with %” on page 297, though the conversion
characters are different, as shown in Table 13-3. Refer to the time instant specified by
tupletime; the format can’t specify width and precision.
For example, you can obtain dates just as formatted by asctime (e.g., 'Tue Dec 10
18:07:14 2002') with the format string '%a %b %d %H:%M:%S %Y'.
You can obtain dates compliant with RFC 822 (e.g., 'Tue, 10 Dec 2002
18:07:14 EST') with the format string '%a, %d %b %Y %H:%M:%S %Z'.
These strings can also be used for datetime formatting using the mechanisms discussed
in “Formatting of User-Coded Classes” on page 296, allowing you to equivalently write,
for a datetime.datetime object d, either f'{d:%Y/%m/%d}' or '{:%Y/%m/
%d}'.format(d), both of which give a result such as ’2022/04/17’. For ISO 8601–
format datetimes, see the isoformat() and fromisoformat() methods
covered in “The date Class” on page 416.

strptime strptime(str, fmt)
Parses str according to format string fmt (a string such as '%a %b %d %H:%M:%S
%Y', as covered in the discussion of strftime) and returns the instant as a timetuple. If
no time values are provided, defaults to midnight. If no date values are provided, defaults
to January 1, 1900. For example:

>>> print(time.strptime("Sep 20, 2022", '%b %d, %Y'))
time.struct_time(tm_year=2022, tm_mon=9, tm_mday=20, 
tm_hour=0, tm_min=0, tm_sec=0, tm_wday=1, 
tm_yday=263, tm_isdst=-1)

time time()

Returns the current time instant, a float with seconds since the epoch. On some (mostly
older) platforms, the precision of this time is as low as one second. May return a lower
value in a subsequent call if the system clock is adjusted backward between calls (e.g., due
to leap seconds).

timezone The offset in seconds of the local time zone (without DST) from UTC (<0 in the Americas;
>=0 in most of Europe, Asia, and Africa).

tzname A pair of locale-dependent strings, which are the names of the local time zone without and
with DST, respectively.

mktime’s result’s fractional part is always 0, since its timetuple argument does not account for
fractions of a second.
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Table 13-3. Conversion characters for strftime

Type char Meaning Special notes

a Weekday name, abbreviated Depends on locale

A Weekday name, full Depends on locale

b Month name, abbreviated Depends on locale

B Month name, full Depends on locale

c Complete date and time representation Depends on locale

d Day of the month Between 1 and 31

f Microsecond as decimal, zero-padded to six digits One to six digits

G ISO 8601:2000 standard week-based year number  

H Hour (24-hour clock) Between 0 and 23

I Hour (12-hour clock) Between 1 and 12

j Day of the year Between 1 and 366

m Month number Between 1 and 12

M Minute number Between 0 and 59

p A.M. or P.M. equivalent Depends on locale

S Second number Between 0 and 61

u Day of week Monday is 1, up to 7

U Week number (Sunday first weekday) Between 0 and 53

V ISO 8601:2000 standard week-based week number  

w Weekday number 0 is Sunday, up to 6

W Week number (Monday first weekday) Between 0 and 53

x Complete date representation Depends on locale

X Complete time representation Depends on locale

y Year number within century Between 0 and 99

Y Year number 1970 to 2038, or wider

z UTC offset as a string: ±HHMM[SS[.ffffff]]  

Z Name of time zone Empty if no time zone exists

% A literal % character Encoded as %%

The datetime Module
datetime provides classes for modeling date and time objects, which can be either
aware of time zones or naive (the default). The class tzinfo, whose instances
model a time zone, is abstract: the datetime module supplies only one simple
implementation, datetime.timezone (for all the gory details, see the online docs).
The zoneinfo module, covered in the following section, offers a richer concrete

The datetime Module | 415

Tim
e

O
p

eratio
ns

https://oreil.ly/8Bt8N


implementation of tzinfo, which lets you easily create time zone-aware datetime
objects. All types in datetime have immutable instances: attributes are read-only,
instances can be keys in a dict or items in a set, and all functions and methods
return new objects, never altering objects passed as arguments.

The date Class
Instances of the date class represent a date (no time of day in particular within
that date) between date.min <= d <= date.max, are always naive, and assume the
Gregorian calendar was always in effect. date instances have three read-only integer
attributes: year, month, and day. The constructor for this class has the signature:

date class date(year, month, day)
Returns a date object for the given year, month, and day arguments, in the valid ranges 1 <=
year <= 9999, 1 <= month <= 12, and 1 <= day <= n, where n is the number of days for
the given month and year. Raises ValueError if invalid values are given.

The date class also supplies three class methods usable as alternative constructors,
listed in Table 13-4.

Table 13-4. Alternative date constructors

fromordinal date.fromordinal(ordinal)

Returns a date object corresponding to the proleptic Gregorian ordinal ordinal,
where a value of 1 corresponds to the first day of year 1 CE.

fromtimestamp date.fromtimestamp(timestamp)

Returns a date object corresponding to the instant timestamp expressed in seconds
since the epoch.

today date.today()

Returns a date representing today’s date.

Instances of the date class support some arithmetic. The difference between date
instances is a timedelta instance; you can add or subtract a timedelta to or from
a date instance to make another date instance. You can also compare any two
instances of the date class (the later one is greater).
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An instance d of the class date supplies the methods listed in Table 13-5.

Table 13-5. Methods of an instance d of class date

ctime d.ctime()

Returns a string representing the date d in the same 24-character format as time.ctime
(with the time of day set to 00:00:00, midnight).

isocalendar d.isocalendar()

Returns a tuple with three integers (ISO year, ISO week number, and ISO weekday). See
the ISO 8601 standard for more details about the ISO (International Standards Organization)
calendar.

isoformat d.isoformat()

Returns a string representing date d in the format 'YYYY-MM-DD'; same as str(d).

isoweekday d.isoweekday()

Returns the day of the week of date d as an integer, 1 for Monday through 7 for Sunday;
like d.weekday() + 1.

replace d.replace(year=None, month=None, day=None)

Returns a new date object, like d except for those attributes explicitly specified as
arguments, which get replaced. For example:

date(x,y,z).replace(month=m) == date(x,m,z)

strftime d.strftime(fmt)

Returns a string representing date d as specified by string fmt, like:
time.strftime(fmt, d.timetuple())

timetuple d.timetuple()

Returns a timetuple corresponding to date d at time 00:00:00 (midnight).

toordinal d.toordinal()

Returns the proleptic Gregorian ordinal for date d. For example:
date(1,1,1).toordinal() == 1

weekday d.weekday()

Returns the day of the week of date d as an integer, 0 for Monday through 6 for Sunday;
like d.isoweekday() - 1.

The time Class
Instances of the time class represent a time of day (of no particular date), may be
naive or aware regarding time zones, and always ignore leap seconds. They have five
attributes: four read-only integers (hour, minute, second, and microsecond) and an
optional read-only tzinfo (None for naive instances). The constructor for the time
class has the signature:

time class time(hour=0, minute=0, second=0, microsecond=0, tzinfo=None)
Instances of the class time do not support arithmetic. You can compare two instances of time (the
one that’s later in the day is greater), but only if they are either both aware or both naive.
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An instance t of the class time supplies the methods listed in Table 13-6.

Table 13-6. Methods of an instance t of class time

isoformat t.isoformat()

Returns a string representing time t in the format 'HH:MM:SS'; same as str(t). If
t.microsecond != 0, the resulting string is longer: 'HH:MM:SS.mmmmmm'. If t is
aware, six more characters, '+HH:MM', are added at the end to represent the time zone’s
offset from UTC. In other words, this formatting operation follows the ISO 8601 standard.

replace t.replace(hour=None, minute=None, second=None, microsec

ond=None[, tzinfo])
Returns a new time object, like t except for those attributes explicitly specified as
arguments, which get replaced. For example:

time(x,y,z).replace(minute=m) == time(x,m,z)

strftime t.strftime(fmt)

Returns a string representing time t as specified by the string fmt.

An instance t of the class time also supplies methods dst, tzname, and utcoff
set, which accept no arguments and delegate to t.tzinfo, returning None when
t.tzinfo is None.

The datetime Class
Instances of the datetime class represent an instant (a date, with a specific time of
day within that date), may be naive or aware of time zones, and always ignore leap
seconds. datetime extends date and adds time’s attributes; its instances have read-
only integer attributes year, month, day, hour, minute, second, and microsecond,
and an optional tzinfo attribute (None for naive instances). In addition, datetime
instances have a readonly fold attribute to distinguish between ambiguous time‐
stamps during a rollback of the clock (such as the “fall back” at the end of daylight
savings time, which creates duplicate naive times between 1 A.M. and 2 A.M.). fold
has the value 0 or 1 0 corresponds to the time before the rollback; 1 to the time after
the rollback.

Instances of datetime support some arithmetic: the difference between datetime
instances (both aware, or both naive) is a timedelta instance, and you can add or
subtract a timedelta instance to or from a datetime instance to construct another
datetime instance. You can compare two instances of the datetime class (the later
one is greater) as long as they’re both aware or both naive. The constructor for this
class has the signature:

datetime class datetime(year, month, day, hour=0, minute=0, second=0,
microsecond=0, tzinfo=None, *, fold=0)

Returns a datetime object following similar constraints as the date class constructor.
fold is an int with the value 0 or 1, as described previously.
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datetime also supplies some class methods usable as alternative constructors, cov‐
ered in Table 13-7.

Table 13-7. Alternative datetime constructors

combine datetime.combine(date, time)
Returns a datetime object with the date attributes taken from date and the time
attributes (including tzinfo) taken from time. datetime.combine(d, t) is
like:

datetime(d.year, d.month, d.day,
         t.hour, t.minute, t.second,
         t.microsecond, t.tzinfo)

fromordinal datetime.fromordinal(ordinal)

Returns a datetime object for the date given proleptic Gregorian ordinal ordinal,
where a value of 1 means the first day of year 1 CE, at midnight.

fromtime

stamp

datetime.fromtimestamp(timestamp, tz=None)

Returns a datetime object corresponding to the instant timestamp expressed in
seconds since the epoch, in local time. When tz is not None, returns an aware
datetime object with the given tzinfo instance tz.

now datetime.now(tz=None)

Returns a naive datetime object for the current local date and time. When tz is not
None, returns an aware datetime object with the given tzinfo instance tz.

strptime datetime.strptime(str, fmt)
Returns a datetime representing str as specified by string fmt. When %z is present in
fmt, the resulting datetime object is time zone–aware.

today datetime.today()

Returns a naive datetime object representing the current local date and time; same as
the now class method but does not accept optional argument tz.

utcfrom

timestamp

datetime.utcfromtimestamp(timestamp)

Returns a naive datetime object corresponding to the instant timestamp expressed
in seconds since the epoch, in UTC.

utcnow datetime.utcnow()

Returns a naive datetime object representing the current date and time, in UTC.

An instance d of datetime also supplies the methods listed in Table 13-8.

Table 13-8. Methods of an instance d of datetime

astimezone d.astimezone(tz)

Returns a new aware datetime object, like d, except that the date and time are
converted along with the time zone to the one in tzinfo object tz.a d must be aware,
to avoid potential bugs. Passing a naive d may lead to unexpected results.

ctime d.ctime()

Returns a string representing date and time d in the same 24-character format as
time.ctime.
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date d.date()

Returns a date object representing the same date as d.

isocalendar d.isocalendar()

Returns a tuple with three integers (ISO year, ISO week number, and ISO weekday) for d’s
date.

isoformat d.isoformat(sep='T')

Returns a string representing d in the format 'YYYY-MM-DDxHH:MM:SS', where x
is the value of argument sep (must be a string of length 1). If d.microsecond !=
0, seven characters, '.mmmmmm', are added after the 'SS' part of the string. If t is
aware, six more characters, '+HH:MM', are added at the end to represent the time zone’s
offset from UTC. In other words, this formatting operation follows the ISO 8601 standard.
str(d) is the same as d.isoformat(sep=' ').

isoweekday d.isoweekday()

Returns the day of the week of d’s date as an integer, 1 for Monday through 7 for Sunday.

replace d.replace(year=None, month=None, day=None, hour=None,
minute=None, second=None, microsecond=None, tzinfo=None,*,
fold=0)

Returns a new datetime object, like d except for those attributes specified as
arguments, which get replaced (but does no time zone conversion—use astimezone if
you want the time converted). You can also use replace to create an aware datetime
object from a naive one. For example:

# create datetime replacing just month with no 
# other changes (== datetime(x,m,z))
datetime(x,y,z).replace(month=m) 
# create aware datetime from naive datetime.now()
d = datetime.now().replace(tzinfo=ZoneInfo(
                    "US/Pacific"))

strftime d.strftime(fmt)

Returns a string representing d as specified by the format string fmt.

time d.time()

Returns a naive time object representing the same time of day as d.

timestamp d.timestamp()

Returns a float with the seconds since the epoch. Naive instances are assumed to be in the
local time zone.

timetuple d.timetuple()

Returns a timetuple corresponding to instant d.

timetz d.timetz()

Returns a time object representing the same time of day as d, with the same tzinfo.

toordinal d.toordinal()

Returns the proleptic Gregorian ordinal for d’s date. For example:
datetime(1, 1, 1).toordinal() == 1

utctime

tuple

d.utctimetuple()

Returns a timetuple corresponding to instant d, normalized to UTC if d is aware.
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weekday d.weekday()

Returns the day of the week of d’s date as an integer, 0 for Monday through 6 for Sunday.

Note that d.astimezone(tz) is quite different from d.replace(tzinfo=tz): replace does no
time zone conversion, but rather just copies all of d’s attributes except for d.tzinfo.

An instance d of the class datetime also supplies the methods dst, tzname, and
utcoffset, which accept no arguments and delegate to d.tzinfo, returning None
when d.tzinfo is None (i.e., when d is naive).

The timedelta Class
Instances of the timedelta class represent time intervals with three read-only
integer attributes: days, seconds, and microseconds. The constructor for this class
has the signature:

time

delta

timedelta(days=0, seconds=0, microseconds=0, milliseconds=0,

minutes=0, hours=0, weeks=0)

Converts all units with the obvious factors (a week is 7 days, an hour is 3,600 seconds, and so on)
and normalizes everything to the three integer attributes, ensuring that 0 <= seconds < 24
* 60 * 60 and 0 <= microseconds < 1000000. For example:

>>> print(repr(timedelta(minutes=0.5)))
datetime.timedelta(days=0, seconds=30)

>>> print(repr(timedelta(minutes=-0.5)))
datetime.timedelta(days=-1, seconds=86370)

Instances of timedelta support arithmetic: + and - between themselves and with instances of
the classes date and datetime; * with integers; / with integers and timedelta instances
(floor division, true division, divmod, %). They also support comparisons between themselves.

While timedelta instances can be created using this constructor, they are more
often created by subtracting two date, time, or datetime instances, such that the
resulting timedelta represents an elapsed time period. An instance td of timedelta
supplies a method td.total_seconds() that returns a float representing the total
seconds of a timedelta instance.

The tzinfo Abstract Class
The tzinfo class defines the abstract class methods listed in Table 13-9, to support
creation and usage of aware datetime and time objects.

Table 13-9. Methods of the tzinfo class

dst dst(dt)

Returns the daylight savings offset of a given datetime, as a timedelta object

tzname tzname(dt)

Returns the abbreviation for the time zone of a given datetime
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3 Pre-3.9, use instead the third-party module pytz.

utcoffset utcoffset(dt)

Returns the offset from UTC of a given datetime, as a timedelta object

tzinfo also defines a fromutc abstract instance method, primarily for internal use
by the datetime.astimezone method.

The timezone Class
The timezone class is a concrete implementation of the tzinfo class. You construct
a timezone instance using a timedelta representing the time offset from UTC.
timezone supplies one class property, utc, a timezone representing the UTC time
zone (equivalent to timezone(timedelta(0))).

The zoneinfo Module
3.9+  The zoneinfo module is a concrete implementation of timezones for use

with datetime’s tzinfo.3 zoneinfo uses the system’s time zone data by default,
with tzdata as a fallback. (On Windows, you may need to pip install tzdata;
once installed, you don’t import tzdata in your program—rather, zoneinfo uses it
automatically.)

zoneinfo provides one class: ZoneInfo, a concrete implementation of the date
time.tzinfo abstract class. You can assign it to tzinfo during construction of an
aware datetime instance, or use it with the datetime.replace or datetime.astime
zone methods. To construct a ZoneInfo, use one of the defined IANA time zone
names, such as "America/Los_Angeles" or "Asia/Tokyo". You can get a list of these
time zone names by calling zoneinfo.available_timezones(). More details on
each time zone (such as offset from UTC and daylight savings information) can be
found on Wikipedia.

Here are some examples using ZoneInfo. We’ll start by getting the current local date
and time in California:

>>> from datetime import datetime
>>> from zoneinfo import ZoneInfo
>>> d=datetime.now(tz=ZoneInfo("America/Los_Angeles"))
>>> d

datetime.datetime(2021,10,21,16,32,23,96782,tzinfo=zoneinfo.ZoneInfo(key
='America/Los_Angeles'))
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We can now update the time zone to a different one without changing other
attributes (i.e., without converting the time to the new time zone):

>>> dny=d.replace(tzinfo=ZoneInfo("America/New_York"))
>>> dny

datetime.datetime(2021,10,21,16,32,23,96782,tzinfo=zoneinfo.ZoneInfo(key
='America/New_York')) 

Convert a datetime instance to UTC:

>>> dutc=d.astimezone(tz=ZoneInfo("UTC"))
>>> dutc

datetime.datetime(2021,10,21,23,32,23,96782,tzinfo=zoneinfo.ZoneInfo(key
='UTC')) 

Get an aware timestamp of the current time in UTC:

>>> daware=datetime.utcnow().replace(tzinfo=ZoneInfo("UTC"))
>>> daware

datetime.datetime(2021,10,21,23,32,23,96782,tzinfo=zoneinfo.ZoneInfo(key
='UTC'))

Display the datetime instance in a different time zone:

>>> dutc.astimezone(ZoneInfo("Asia/Katmandu")) # offset +5h 45m

datetime.datetime(2021,10,22,5,17,23,96782,tzinfo=zoneinfo.ZoneInfo(key
='Asia/Katmandu')) 

Get the local time zone:

>>> tz_local=datetime.now().astimezone().tzinfo
>>> tz_local

datetime.timezone(datetime.timedelta(days=-1, seconds=61200), 'Pacific
Daylight Time')

Convert the UTC datetime instance back into the local time zone:

>>> dt_loc=dutc.astimezone(tz_local)
>>> dt_loc

datetime.datetime(2021, 10, 21, 16, 32, 23, 96782, tzinfo=datetime.time
(datetime.timedelta(days=-1, seconds=61200), 'Pacific Daylight Time'))

>>> d==dt_local

True

And get a sorted list of all available time zones:

>>> tz_list=zoneinfo.available_timezones()
>>> sorted(tz_list)[0],sorted(tz_list)[-1]

('Africa/Abidjan', 'Zulu')
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Always Use the UTC Time Zone Internally
The best way to program around the traps and pitfalls of time
zones is to always use the UTC time zone internally, convert‐
ing from other time zones on input, and use datetime.astime
zone only for display purposes.
This tip applies even if your application runs only in your
own location, with no intention of ever using time data from
other time zones. If your application runs continuously for
days or weeks at a time, and the time zone configured for your
system observes daylight savings time, you will run into time
zone-related issues if you don’t work in UTC internally.

The dateutil Module
The third-party package dateutil (which you can install with pip install

python-dateutil) offers modules to manipulate dates in many ways. Table 13-10
lists the main modules it provides, in addition to those for time zone–related
operations (now best performed with zoneinfo, discussed in the previous section).

Table 13-10. dateutil modules

easter easter.easter(year)

Returns the datetime.date object for Easter of the given year. For example:
>>> from dateutil import easter
>>> print(easter.easter(2023))
2023-04-09

parser parser.parse(s)

Returns the datetime.datetime object denoted by string s, with very permissive (or
“fuzzy”) parsing rules. For example:

>>> from dateutil import parser
>>> print(parser.parse('Saturday, January 28,'
                       ' 2006, at 11:15pm'))
2006-01-28 23:15:00

relative

delta

relativedelta.relativedelta(...)

Provides, among other things, an easy way to find “next Monday,” “last year,” etc. dateu
til’s docs offer detailed explanations of the rules defining the inevitably complicated
behavior of relativedelta instances.

rrule rrule.rrule(freq, ...)

Implements RFC 2445 (also known as the iCalendar RFC), in all the glory of its 140+
pages. rrule allows you to deal with recurring events, providing such methods as
after, before, between, and count.

See the documentation for complete details on the dateutil module’s rich
functionality.
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The sched Module
The sched module implements an event scheduler, letting you easily deal with
events that may be scheduled in either a “real” or a “simulated” time scale. This
event scheduler is safe to use in single and multithreaded environments. sched sup‐
plies a scheduler class that takes two optional arguments, timefunc and delayfunc.

scheduler class scheduler(timefunc=time.monotonic, delayfunc=time.sleep)
The optional argument timefunc must be callable without arguments to get the current
time instant (in any unit of measure); for example, you can pass time.time. The optional
delayfunc is callable with one argument (a time duration, in the same units as time
func) to delay the current thread for that time. scheduler calls delayfunc(0) after
each event to give other threads a chance; this is compatible with time.sleep. By taking
functions as arguments, scheduler lets you use whatever “simulated time” or “pseudotime”
fits your application’s needsa.
If monotonic time (time that cannot go backward even if the system clock is adjusted backward
between calls, e.g., due to leap seconds) is critical to your application, use the default
time.monotonic for your scheduler.

A great example of the dependency injection design pattern for purposes not necessarily
related to testing.

A scheduler instance s supplies the methods detailed in Table 13-11.

Table 13-11. Methods of an instance s of scheduler

cancel s.cancel(event_token)

Removes an event from s’s queue. event_token must be the result of a previous call
to s.enter or s.enterabs, and the event must not yet have happened; otherwise,
cancel raises RuntimeError.

empty s.empty()

Returns True when s’s queue is currently empty; otherwise, returns False.

enter s.enter(delay, priority, func, argument=(), kwargs={})
Like enterabs, except that delay is a relative time (a positive difference forward from
the current instant), while enterabs’s argument when is an absolute time (a future
instant). To schedule an event for repeated execution, use a little wrapper function; for
example:

def enter_repeat(s, first_delay, period, priority,
        func, args):
    def repeating_wrapper():
        s.enter(period, priority,
                repeating_wrapper, ())
        func(*args)
    s.enter(first_delay, priority,
        repeating_wrapper, args)
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enterabs s.enterabs(when, priority, func, argument=(), kwargs={})
Schedules a future event (a callback to func(args, kwargs)) at time when. when
is in the units used by the time functions of s. Should several events be scheduled for the
same time, s executes them in increasing order of priority. enterabs returns an
event token t, which you may later pass to s.cancel to cancel this event.

run s.run(blocking=True)

Runs scheduled events. If blocking is True, s.run loops until s.empty returns
True, using the delayfunc passed on s’s initialization to wait for each scheduled event.
If blocking is False, executes any soon-to-expire events, then returns the next event’s
deadline (if any). When a callback func raises an exception, s propagates it, but s keeps
its own state, removing the event from the schedule. If a callback func runs longer than
the time available before the next scheduled event, s falls behind but keeps executing
scheduled events in order, never dropping any. Call s.cancel to drop an event explicitly
if that event is no longer of interest.

The calendar Module
The calendar module supplies calendar-related functions, including functions to
print a text calendar for a given month or year. By default, calendar takes Monday
as the first day of the week and Sunday as the last one. To change this, call calen
dar.setfirstweekday. calendar handles years in module time’s range, typically (at
least) 1970 to 2038.

The calendar module supplies the functions listed in Table 13-12.

Table 13-12. Functions of the calendar module

calendar calendar(year, w=2, li=1, c=6)
Returns a multiline string with a calendar for year year formatted into three
columns separated by c spaces. w is the width in characters of each date; each line
has length 21*w+18+2*c. li is the number of lines for each week.

firstweekday firstweekday()

Returns the current setting for the weekday that starts each week. By default, when
calendar is first imported, this is 0 (meaning Monday).

isleap isleap(year)

Returns True if year is a leap year; otherwise, returns False.

leapdays leapdays(y1, y2)
Returns the total number of leap days in the years within range(y1, y2)
(remember, this means that y2 is excluded).

month month(year, month, w=2, li=1)
Returns a multiline string with a calendar for month month of year year, one line
per week plus two header lines. w is the width in characters of each date; each line
has length 7*w+6. li is the number of lines for each week.
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monthcalendar monthcalendar(year, month)
Returns a list of lists of ints. Each sublist denotes a week. Days outside month
month of year year are set to 0; days within the month are set to their day of
month, 1 and up.

monthrange monthrange(year, month)
Returns two integers. The first one is the code of the weekday for the first day of the
month month in year year; the second one is the number of days in the month.
Weekday codes are 0 (Monday) to 6 (Sunday); month numbers are 1 to 12.

prcal prcal(year, w=2, li=1, c=6)

Like print(calendar.calendar(year, w, li, c)).

prmonth prmonth(year, month, w=2, li=1)
Like print(calendar.month(year, month, w, li)).

setfirstweekday setfirstweekday(weekday)

Sets the first day of each week to weekday code weekday. Weekday codes are 0
(Monday) to 6 (Sunday). calendar supplies the attributes MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY, whose values
are the integers 0 to 6. Use these attributes when you mean weekdays (e.g.,
calendar.FRIDAY instead of 4) to make your code clearer and more readable.

timegm timegm(tupletime)

Just like time.mktime: accepts a time instant in timetuple form and returns that
instant as a float number of seconds since the epoch.

weekday weekday(year, month, day)
Returns the weekday code for the given date. Weekday codes are 0 (Monday) to 6
(Sunday); month numbers are 1 (January) to 12 (December).

python -m calendar offers a useful command-line interface to the module’s func‐
tionality: run python -m calendar -h to get a brief help message.
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14
Customizing Execution

Python exposes, supports, and documents many of its internal mechanisms. This
may help you understand Python at an advanced level, and lets you hook your own
code into such Python mechanisms, controlling them to some extent. For example,
“Python built-ins” on page 224 covers the way Python arranges for built-ins to be
visible. This chapter covers some other advanced Python techniques, including site
customization, termination functions, dynamic execution, handling internal types,
and garbage collection. We’ll look at other issues related to controlling execution
using multiple threads and processes in Chapter 15; Chapter 17 covers issues spe‐
cific to testing, debugging, and profiling.

Per-Site Customization
Python provides a specific “hook” to let each site customize some aspects of
Python’s behavior at the start of each run. Python loads the standard module site
just before the main script. If Python is run with the option -S, it does not load
site. -S allows faster startup but saddles the main script with initialization chores.
site’s tasks are, chiefly, to put sys.path in standard form (absolute paths, no dupli‐
cates), including as directed by environment variables, by virtual environments, and
by each .pth file found in a directory in sys.path.

Secondarily, if the session starting is an interactive one, site adds several handy
built-ins (such as exit, copyright, etc.) and, if readline is enabled, configure
autocompletion as the function of the Tab key.

In any normal Python installation, the installation process sets everything up to
ensure that site’s work is sufficient to let Python programs and interactive sessions
run “normally,” i.e., as they would on any other system with that version of Python
installed. In exceptional cases, if as a system administrator (or in an equivalent role,
such as a user who has installed Python in their home directory for their sole use)
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you think you absolutely need to do some customization, perform it in a new file
called sitecustomize.py (create it in the same directory where site.py lives).

Avoid Modifying site.py
We strongly recommend that you do not alter the site.py file
that performs the base customization. Doing so might cause
Python to behave differently on your system than elsewhere.
In any case, the site.py file will be overwritten each and every
time you update your Python installation, and your modifica‐
tions will be lost.

In the rare cases where sitecustomize.py is present, what it typically does is add yet
more dictionaries to sys.path—the best way to perform this task is for sitecustom‐
ize.py to import site and then to call site.addsitedir(path_to_a_dir).

Termination Functions
The atexit module lets you register termination functions (i.e., functions to be
called at program termination, in LIFO order). Termination functions are similar
to cleanup handlers established by try/finally or with. However, termination
functions are globally registered and get called at the end of the whole program,
while cleanup handlers are established lexically and get called at the end of a
specific try clause or with statement. Termination functions and cleanup handlers
are called whether the program terminates normally or abnormally, but not when
the program ends by calling os._exit (so you normally call sys.exit instead).
The atexit module supplies a function called register that takes as arguments
func, *args, and *kwds and ensures that func(*args, **kwds) is called at program
termination time.

Dynamic Execution and exec
Python’s exec built-in function can execute code that you read, generate, or other‐
wise obtain during a program’s run. exec dynamically executes a statement or a
suite of statements. It has the following syntax:

exec(code, globals=None, locals=None, /)

code can be a str, bytes, bytearray, or code object. globals is a dict, and locals
can be any mapping.

If you pass both globals and locals, they are the global and local namespaces in
which code runs. If you pass only globals, exec uses globals as both namespaces.
If you pass neither, code runs in the current scope.
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Never Run exec in the Current Scope
Running exec in the current scope is a particularly bad idea: it
can bind, rebind, or unbind any global name. To keep things
under control, use exec, if at all, only with specific, explicit
dictionaries.

Avoiding exec
A frequently asked question about Python is “How do I set a variable whose name
I just read or built?” Literally, for a global variable, exec allows this, but it’s a very
bad idea to use exec for this purpose. For example, if the name of the variable is in
varname, you might think to use:

exec(varname + ' = 23')

Don’t do this. An exec like this in the current scope makes you lose control of
your namespace, leading to bugs that are extremely hard to find and making your
program unfathomably difficult to understand. Keep the “variables” that you need
to set with dynamically found names not as actual variables, but as entries in a
dictionary (say, mydict). You might then consider using:

exec(varname+'=23', mydict) # Still a bad idea

While this is not quite as terrible as the previous example, it is still a bad idea.
Keeping such “variables” as dictionary entries means that you don’t have any need
to use exec to set them! Just code:

mydict[varname] = 23

This way, your program is clearer, direct, elegant, and faster. There are some valid
uses of exec, but they are extremely rare: just use explicit dictionaries instead.

Strive to Avoid exec
Use exec only when it’s really indispensable, which is
extremely rare. Most often, it’s best to avoid exec and choose
more specific, well-controlled mechanisms: exec weakens
your control of your code’s namespace, can damage your
program’s performance, and exposes you to numerous hard-
to-find bugs and huge security risks.

Expressions
exec can execute an expression, because any expression is also a valid statement
(called an expression statement). However, Python ignores the value returned by an
expression statement. To evaluate an expression and obtain the expression’s value,
use the built-in function eval, covered in Table 8-2. (Note, however, that just about
all of the same security risk caveats for exec also apply to eval.)
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compile and Code Objects
To make a code object to use with exec, call the built-in function compile with the
last argument set to 'exec' (as covered in Table 8-2).

A code object c exposes many interesting read-only attributes whose names all start
with 'co_', such as those listed in Table 14-1.

Table 14-1. Read-only attributes of code objects

co_argcount The number of parameters of the function of which c is the code (0 when c is not the
code object of a function, but rather is built directly by compile)

co_code A bytes object with c’s bytecode

co_consts The tuple of constants used in c

co_filename The name of the file c was compiled from (the string that is the second argument to
compile, when c was built that way)

co_first

lineno

The initial line number (within the file named by co_filename) of the source code
that was compiled to produce c, if c was built by compiling from a file

co_name The name of the function of which c is the code ('<module>' when c is not the code
object of a function but rather is built directly by compile)

co_names The tuple of all identifiers used within c

co_varnames The tuple of local variables’ identifiers in c, starting with parameter names

Most of these attributes are useful only for debugging purposes, but some may help
with advanced introspection, as exemplified later in this section.

If you start with a string holding one or more statements, first use compile on the
string, then call exec on the resulting code object—that’s a bit better than giving
exec the string to compile and execute. This separation lets you check for syntax
errors separately from execution-time errors. You can often arrange things so that
the string is compiled once and the code object executes repeatedly, which speeds
things up. eval can also benefit from such separation. Moreover, the compile step
is intrinsically safe (both exec and eval are extremely risky if you execute them
on code that you don’t 100% trust), and you may be able to check the code object
before it executes, to lessen the risk (though it will never truly be zero).

As mentioned in Table 14-1, a code object has a read-only attribute co_names that is
the tuple of the names used in the code. For example, say that you want the user to
enter an expression that contains only literal constants and operators—no function
calls or other names. Before evaluating the expression, you can check that the string
the user entered satisfies these constraints:

def safer_eval(s):
    code = compile(s, '<user-entered string>', 'eval')
    if code.co_names:
        raise ValueError(
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            f'Names {code.co_names!r} not allowed in expression {s!r}')
    return eval(code)

This function safer_eval evaluates the expression passed in as argument s only
when the string is a syntactically valid expression (otherwise, compile raises Syn
taxError) and contains no names at all (otherwise, safer_eval explicitly raises
ValueError). (This is similar to the standard library function ast.literal_eval,
covered in “Standard Input” on page 370, but a bit more powerful, since it does
allow the use of operators.)

Knowing what names the code is about to access may sometimes help you optimize
the preparation of the dictionary that you need to pass to exec or eval as the
namespace. Since you need to provide values only for those names, you may
save work by not preparing other entries. For example, say that your application
dynamically accepts code from the user, with the convention that variable names
starting with data_ refer to files residing in the subdirectory data that user-written
code doesn’t need to read explicitly. User-written code may, in turn, compute and
leave results in global variables with names starting with result_, which your
application writes back as files in the data subdirectory. Thanks to this convention,
you may later move the data elsewhere (e.g., to BLOBs in a database instead of files
in a subdirectory), and user-written code won’t be affected. Here’s how you might
implement these conventions efficiently:

def exec_with_data(user_code_string):
    user_code = compile(user_code_string, '<user code>', 'exec')
    datadict = {}
    for name in user_code.co_names:
        if name.startswith('data_'):
            with open(f'data/{name[5:]}', 'rb') as datafile:
                datadict[name] = datafile.read()
        elif name.startswith('result_'):
            pass  # user code assigns to variables named `result_...`
        else:
            raise ValueError(f'invalid variable name {name!r}')
    exec(user_code, datadict)
    for name in datadict:
        if name.startswith('result_'):
            with open(f'data/{name[7:]}', 'wb') as datafile:
                datafile.write(datadict[name])

Never exec or eval Untrusted Code
Some older versions of Python supplied tools that aimed to ameliorate the risks of
using exec and eval, under the heading of “restricted execution,” but those tools
were never entirely secure against the ingenuity of able hackers, and recent versions
of Python have dropped them to avoid offering the user an unfounded sense of
security. If you need to guard against such attacks, take advantage of your operating
system’s protection mechanisms: run untrusted code in a separate process, with
privileges as restricted as you can possibly make them (study the mechanisms that
your OS supplies for the purpose, such as chroot, setuid, and jail; in Windows,
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you might try the third-party commercial add-on WinJail, or run untrusted code
in a separate, highly constrained virtual machine or container, if you’re an expert
on how to securitize containers). To guard against denial of service attacks, have
the main process monitor the separate one and terminate the latter if and when
resource consumption becomes excessive. Processes are covered in “Running Other
Programs” on page 476.

exec and eval Are Unsafe with Untrusted Code
The function exec_with_data defined in the previous section
is not at all safe against untrusted code: if you pass to it, as the
argument user_code, some string obtained in a way that you
cannot entirely trust, there is essentially no limit to the amount
of damage it might do. This is unfortunately true of just about
any use of exec or eval, except for those rare cases in which
you can set extremely strict and fully checkable limits on the
code to execute or evaluate, as was the case for the function
safer_eval.

Internal Types
Some of the internal Python objects described in this section are hard to use,
and indeed are not meant for you to use most of the time. Using such objects
correctly and to good effect requires some study of your Python implementation’s
C sources. Such black magic is rarely needed, except for building general-purpose
development tools and similar wizardly tasks. Once you do understand things in
depth, Python empowers you to exert control if and when needed. Since Python
exposes many kinds of internal objects to your Python code, you can exert that
control by coding in Python, even when you need an understanding of C to read
Python’s sources and understand what’s going on.

Type Objects
The built-in type named type acts as a callable factory, returning objects that are
types. Type objects don’t have to support any special operations except equality
comparison and representation as strings. However, most type objects are callable
and return new instances of the type when called. In particular, built-in types such
as int, float, list, str, tuple, set, and dict all work this way; specifically, when
called without arguments, they return a new empty instance, or, for numbers, one
that equals 0. The attributes of the types module are the built-in types that don’t
have built-in names. Besides being callable to generate instances, type objects are
useful because you can inherit from them, as covered in “Classes and Instances” on
page 115.
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The Code Object Type
Besides using the built-in function compile, you can get a code object via the
__code__ attribute of a function or method object. (For a discussion of the
attributes of code objects, see “compile and Code Objects” on page 432.) Code
objects are not callable, but you can rebind the __code__ attribute of a function
object with the right number of parameters in order to wrap a code object into
callable form. For example:

def g(x): 
    print('g', x)
code_object = g.__code__
def f(x): 
    pass
f.__code__ = code_object
f(23)     # prints: g 23

Code objects that have no parameters can also be used with exec or eval. Directly
creating code objects requires many parameters; see Stack Overflow’s unofficial docs
on how to do it (but bear in mind that you’re usually better off calling compile
instead).

The Frame Type
The function _getframe in the module sys returns a frame object from Python’s
call stack. A frame object has attributes giving information about the code executing
in the frame and the execution state. The traceback and inspect modules help
you access and display such information, particularly when an exception is being
handled. Chapter 17 provides more information about frames and tracebacks, and
covers the module inspect, which is the best way to perform such introspection.
As the leading underscore in the name _getframe hints, the function is “somewhat
private”; it’s meant for use only by tools such as debuggers, which inevitably require
deep introspection into Python’s internals.

Garbage Collection
Python’s garbage collection normally proceeds transparently and automatically, but
you can choose to exert some direct control. The general principle is that Python
collects each object x at some time after x becomes unreachable—that is, when
no chain of references can reach x by starting from a local variable of a function
instance that is executing, or from a global variable of a loaded module. Normally,
an object x becomes unreachable when there are no references at all to x. In
addition, a group of objects can be unreachable when they reference each other but
no global or local variables reference any of them, even indirectly (such a situation
is known as a mutual reference loop).

Classic Python keeps with each object x a count, known as a reference count, of
how many references to x are outstanding. When x’s reference count drops to
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0, CPython immediately collects x. The function getrefcount of the module sys
accepts any object and returns its reference count (at least 1, since getrefcount
itself has a reference to the object it’s examining). Other versions of Python, such
as Jython or PyPy, rely on other garbage collection mechanisms supplied by the
platform they run on (e.g., the JVM or the LLVM). The modules gc and weakref,
therefore, apply only to CPython.

When Python garbage-collects x and there are no references to x, Python finalizes x
(i.e., calls x.__del__) and frees the memory that x occupied. If x held any references
to other objects, Python removes the references, which in turn may make other
objects collectable by leaving them unreachable.

The gc Module
The gc module exposes the functionality of Python’s garbage collector. gc deals
with unreachable objects that are part of mutual reference loops. As mentioned pre‐
viously, in such a loop, each object in the loop refers to one or more of the others,
keeping the reference counts of all the objects positive, but there are no outside
references to any of the set of mutually referencing objects. Therefore, the whole
group, also known as cyclic garbage, is unreachable and thus garbage-collectable.
Looking for such cyclic garbage loops takes time, which is why the module gc
exists: to help you control whether and when your program spends that time.
By default, cyclic garbage collection functionality is enabled with some reasonable
default parameters: however, by importing the gc module and calling its functions,
you may choose to disable the functionality, change its parameters, and/or find out
exactly what’s going on in this respect.

gc exposes attributes and functions to help you manage and instrument cyclic
garbage collection, including those listed in Table 14-2. These functions can let you
track down memory leaks—objects that are not collected even though there should
be no more references to them—by helping you discover what other objects are
in fact holding on to references to them. Note that gc implements the architecture
known in computer science as generational garbage collection.

Table 14-2. gc functions and attributes

callbacks A list of callbacks that the garbage collector will invoke before and after
collection. See “Instrumenting garbage collection” on page 439 for further details.

collect collect()

Forces a full cyclic garbage collection run to happen immediately.

disable disable()

Suspends automatic, periodic cyclic garbage collection.

enable enable()

Reenables periodic cyclic garbage collection previously suspended with disable.
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freeze freeze()

Freezes all objects tracked by gc: moves them to a “permanent generation,” i.e., a
set of objects to be ignored in all the future collections.

garbage A list (but, treat it as read-only) of unreachable but uncollectable objects. This
happens when any object in a cyclic garbage loop has a __del__ special method,
as there may be no demonstrably safe order for Python to finalize such objects.

get_count get_count()

Returns the current collection counts as a tuple, (count0, count1,
count2).

get_debug get_debug()

Returns an int bit string, the garbage collection debug flags set with
set_debug.

get_freeze_count get_freeze_count()

Returns the number of objects in the permanent generation.

get_objects get_objects(generation=None)

Returns a list of objects being tracked by the collector. 3.8+  If the optional
generation argument is not None, lists only those objects in the selected
generation.

get_referents get_referents(*objs)

Returns a list of objects, visited by the arguments’ C-level tp_traverse methods,
that are referred to by any of the arguments.

get_referrers get_referrers(*objs)

Returns a list of all container objects currently tracked by the cyclic garbage collector
that refer to any one or more of the arguments.

get_stats get_stats()

Returns a list of three dicts, one per generation, containing counts of the number
of collections, the number of objects collected, and the number of uncollectable
objects.

get_threshold get_threshold()

Returns the current collection thresholds as a tuple of the three ints.

isenabled isenabled()

Returns True when cyclic garbage collection is currently enabled; otherwise returns
False.

is_finalized is_finalized(obj)

3.9+  Returns True when the garbage collector has finalized obj; otherwise,
returns False.

is_tracked is_tracked(obj)

Returns True when obj is currently tracked by the garbage collector; otherwise,
returns False.
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set_debug set_debug(flags)

Sets flags for debugging behavior during garbage collection. flags is an int,
interpreted as a bit string, built by ORing (with the bitwise OR operator, |) zero or
more constants supplied by the module gc. Each bit enables a specific debugging
function:

DEBUG_COLLECTABLE

Prints information on collectable objects found during garbage collection.

DEBUG_LEAK

Combines behavior for DEBUG_COLLECTABLE, DEBUG_UNCOL
LECTABLE, and DEBUG_SAVEALL. Together, these are the most
common flags used to help you diagnose memory leaks.

DEBUG_SAVEALL

Saves all collectable objects to the list gc.garbage (where
uncollectable ones are also always saved) to help you diagnose leaks.

DEBUG_STATS

Prints statistics gathered during garbage collection to help you tune the
thresholds.

DEBUG_UNCOLLECTABLE

Prints information on uncollectable objects found during garbage
collection.

set_threshold set_threshold(thresh0[, thresh1[, thresh2]])
Sets thresholds that control how often cyclic garbage collection cycles run. A
thresh0 of 0 disables garbage collection. Garbage collection is an advanced,
specialized topic, and the details of the generational garbage collection approach
used in Python (and consequently the detailed meanings of these thresholds) are
beyond the scope of this book; see the online docs for details.

unfreeze unfreeze()

Unfreezes all objects in the permanent generation, moving them all back to the
oldest generation.

When you know there are no cyclic garbage loops in your program, or when you
can’t afford the delay of cyclic garbage collection at some crucial time, suspend
automatic garbage collection by calling gc.disable(). You can enable collection
again later by calling gc.enable(). You can test whether automatic collection is
currently enabled by calling gc.isenabled(), which returns True or False. To
control when time is spent collecting, you can call gc.collect() to force a full
cyclic collection run to happen immediately. To wrap some time-critical code:

import gc
gc_was_enabled = gc.isenabled()
if gc_was_enabled:
    gc.collect()
    gc.disable()
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# insert some time-critical code here
if gc_was_enabled:
    gc.enable()

You may find this easier to use if implemented as a context manager:

import gc
import contextlib

@contextlib.contextmanager
def gc_disabled():
    gc_was_enabled = gc.isenabled()
    if gc_was_enabled:
        gc.collect()
        gc.disable()
    try:
        yield
    finally:
        if gc_was_enabled:
            gc.enable()

with gc_disabled():
    # ...insert some time-critical code here...

Other functionality in the module gc is more advanced and rarely used, and can
be grouped into two areas. The functions get_threshold and set_threshold and
debug flag DEBUG_STATS help you fine-tune garbage collection to optimize your pro‐
gram’s performance. The rest of gc’s functionality can help you diagnose memory
leaks in your program. While gc itself can automatically fix many leaks (as long
as you avoid defining __del__ in your classes, since the existence of __del__ can
block cyclic garbage collection), your program runs faster if it avoids creating cyclic
garbage in the first place.

Instrumenting garbage collection
gc.callbacks is an initially empty list to which you can add functions f(phase,
info) which Python is to call upon garbage collection. When Python calls each
such function, phase is 'start' or 'stop' to mark the beginning or end of a
collection, and info is a dictionary containing information about the generational
collection used by CPython. You can add functions to this list, for example to gather
statistics about garbage collection. See the documentation for more details.

The weakref Module
Careful design can often avoid reference loops. However, at times you need objects
to know about each other, and avoiding mutual references would distort and com‐
plicate your design. For example, a container has references to its items, yet it can
often be useful for an object to know about a container holding it. The result is
a reference loop: due to the mutual references, the container and items keep each
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other alive, even when all other objects forget about them. Weak references solve
this problem by allowing objects to reference others without keeping them alive.

A weak reference is a special object w that refers to some other object x without
incrementing x’s reference count. When x’s reference count goes down to 0, Python
finalizes and collects x, then informs w of x’s demise. Weak reference w can now
either disappear or get marked as invalid in a controlled way. At any time, a given w
refers to either the same object x as when w was created, or to nothing at all; a weak
reference is never retargeted. Not all types of objects support being the target x of a
weak reference w, but classes, instances, and functions do.

The weakref module exposes functions and types to create and manage weak
references, detailed in Table 14-3.

Table 14-3. Functions and classes of the weakref module

getweakref

count

getweakrefcount(x)

Returns len(getweakrefs(x)).

getweakrefs getweakrefs(x)

Returns a list of all weak references and proxies whose target is x.

proxy proxy(x[, f])
Returns a weak proxy p of type ProxyType (CallableProxyType when x is
callable) with x as the target. Using p is just like using x, except that, when you use
p after x has been deleted, Python raises ReferenceError. p is never hashable
(you cannot use p as a dictionary key). When f is present, it must be callable with one
argument, and is the finalization callback for p (i.e., right before finalizing x, Python calls
f(p)).) f executes right after x is no longer reachable from p.

ref ref(x[, f])
Returns a weak reference w of type ReferenceType with object x as the target. w is
callable without arguments: calling w() returns x when x is still alive; otherwise, w()
returns None. w is hashable when x is hashable. You can compare weak references for
equality (==, !=), but not for order (<, >, <=, >=). Two weak references x and y are
equal when their targets are alive and equal, or when x is y. When f is present, it must
be callable with one argument and is the finalization callback for w (i.e., right before
finalizing x, Python calls f(w)). f executes right after x is no longer reachable from w.

WeakKey

Dictionary

class WeakKeyDictionary(adict={})

A WeakKeyDictionary d is a mapping weakly referencing its keys. When the
reference count of a key k in d goes to 0, item d[k] disappears. adict is used to
initialize the mapping.

WeakSet class WeakSet(elements=[])
A WeakSet s is a set weakly referencing its content elements, initialized from ele
ments. When the reference count of an element e in s goes to 0, e disappears from s.

WeakValue

Dictionary

class WeakValueDictionary(adict={})

A WeakValueDictionary d is a mapping weakly referencing its values. When the
reference count of a value v in d goes to 0, all items of d such that d[k] is v disappear.
adict is used to initialize the mapping.
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WeakKeyDictionary lets you noninvasively associate additional data with some
hashable objects, with no change to the objects. WeakValueDictionary lets you
noninvasively record transient associations between objects, and build caches. In
each case, use a weak mapping, rather than a dict, to ensure that an object that
is otherwise garbage-collectable is not kept alive just by being used in a mapping.
Similarly, a WeakSet provides the same weak containment functionality in place of a
normal set.

A typical example is a class that keeps track of its instances, but does not keep them
alive just to keep track of them:

import weakref
class Tracking:
    _instances_dict = weakref.WeakValueDictionary()

    def __init__(self):
        Tracking._instances_dict[id(self)] = self

    @classmethod
    def instances(cls):
        return cls._instances_dict.values()

When the Tracking instances are hashable, a similar class can be implemented
using a WeakSet of the instances, or a WeakKeyDictionary with the instances as keys
and None for the values.
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15
Concurrency: Threads and

Processes

Processes are instances of running programs that the operating system protects from
one another. Processes that want to communicate must explicitly arrange to do
so via interprocess communication (IPC) mechanisms, and/or via files (covered in
Chapter 11), databases (covered in Chapter 12), or network interfaces (covered in
Chapter 18). The general way in which processes communicate using data storage
mechanisms such as files and databases is that one process writes data, and another
process later reads that data back. This chapter covers programming with processes,
including the Python standard library modules subprocess and multiprocessing;
the process-related parts of the module os, including simple IPC by means of pipes;
a cross-platform IPC mechanism known as memory-mapped files, available in the
module mmap; 3.8+  and the multiprocessing.shared_memory module.

A thread (originally called a “lightweight process”) is a flow of control that shares
global state (memory) with other threads inside a single process; all threads appear
to execute simultaneously, although they may in fact be “taking turns” on one or
more processors/cores. Threads are far from easy to master, and multithreaded
programs are often hard to test and to debug; however, as covered in “Threading,
Multiprocessing, or Async Programming?” on page 445, when used appropriately,
multithreading may improve performance in comparison to single-threaded pro‐
gramming. This chapter covers various facilities Python provides for dealing with
threads, including the threading, queue, and concurrent.futures modules.

Another mechanism for sharing control among multiple activities within a single
process is what has become known as asynchronous (or async) programming. When
you are reading Python code, the presence of the keywords async and await
indicate it is asynchronous. Such code depends on an event loop, which is, broadly
speaking, the equivalent of the thread switcher used within a process. When the

443



1 The best introductory work on async programming we have come across, though sadly now
dated (as the async approach in Python keeps improving), is Using Asyncio in Python, by Caleb
Hattingh (O’Reilly). We recommend you also study Brad Solomon’s Asyncio walkthrough on
Real Python.

event loop is the scheduler, each execution of an asynchronous function becomes a
task, which roughly corresponds with a thread in a multithreaded program.

Both process scheduling and thread switching are preemptive, which is to say that
the scheduler or switcher has control of the CPU and determines when any particu‐
lar piece of code gets to run. Asynchronous programming, however, is cooperative:
each task, once execution begins, can run for as long as it chooses before indicating
to the event loop that it is prepared to give up control (usually because it is awaiting
the completion of some other asynchronous task, most often an I/O-focused one).

Although async programming offers great flexibility to optimize certain classes of
problems, it is a programming paradigm that many programmers are unfamiliar
with. Because of its cooperative nature, incautious async programming can lead
to deadlocks, and infinite loops can starve other tasks of processor time: figuring
out how to avoid deadlocks creates significant extra cognitive load for the average
programmer. We do not cover asynchronous programming, including the module
asyncio, further in this volume, feeling that it is a complex enough topic to be well
worth a book on its own.1

Network mechanisms are well suited for IPC, and work just as effectively between
processes running on different nodes of a network as between ones that run on
the same node. The multiprocessing module supplies some mechanisms that are
suitable for IPC over a network; Chapter 18 covers low-level network mechanisms
that provide a basis for IPC. Other, higher-level mechanisms for distributed comput‐
ing (CORBA, DCOM/COM+, EJB, SOAP, XML-RPC, .NET, gRPC, etc.) can make
IPC a bit easier, whether locally or remotely; however, we do not cover distributed
computing in this book.

When multiprocessor computers arrived, the OS had to deal with more complex
scheduling problems, and programmers who wanted maximum performance had to
write their applications so that code could truly be executed in parallel, on different
processors or cores (from the programming point of view, cores are simply pro‐
cessors implemented on the same piece of silicon). This requires both knowledge
and discipline. The CPython implementation simplifies these issues by implement‐
ing a global interpreter lock (GIL). In the absence of any action by the Python
programmer, on CPython only the thread that holds the GIL is allowed access to
the processor, effectively barring CPython processes from taking full advantage of
multiprocessor hardware. Libraries such as NumPy, which are typically required to
undertake lengthy computations of compiled code that uses none of the interpreter’s
facilities, arrange for their code to release the GIL during such computations. This
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allows effective use of multiple processors, but it isn’t a technique that you can use if
all your code is in pure Python.

Threading, Multiprocessing, or Async Programming?
In many cases, the best answer is “none of the above!” Each of these approaches is,
at best, an optimization, and (as covered in “Optimization” on page 541) optimiza‐
tion is often unneeded, or at least premature. Each such approach can be prone to
bugs and hard to test and debug; stick with single threading as long as you possibly
can, and keep things simple.

When you do need optimization, and your program is I/O-bound (meaning that
it spends much time doing I/O), async programming is fastest, as long as you
can make your I/O operations nonblocking ones. Second best, when your I/O abso‐
lutely has to be blocking, the threading module can help an I/O-bound program’s
performance.

When your program is CPU-bound (meaning that it spends much time performing
computations), in CPython threading usually does not help performance. This is
because the GIL ensures that only one Python-coded thread at a time can execute
(this also applies to PyPy). C-coded extensions can “release the GIL” while they’re
doing a time-consuming operation; NumPy (covered in Chapter 16) does so for
array operations, for example. As a consequence, if your program is CPU-bound
via calls to lengthy CPU operations in NumPy or other similarly optimized C-coded
extension, the threading module may help your program’s performance on a multi‐
processor computer (as most computers are today).

When your program is CPU-bound via pure Python code and you’re using CPython
or PyPy on a multiprocessor computer, the multiprocessing module may help per‐
formance by allowing truly parallel computation. To solve problems across multi‐
ple network-connected computers (implementing distributed computing), however,
you should look at the more specialized approaches and packages discussed on the
Python wiki, which we don’t cover in this book.

Threads in Python
Python supports multithreading on platforms that support threads, such as Win‐
dows, Linux, and just about all variants of Unix (including macOS). An action is
known as atomic when it’s guaranteed that no thread switching occurs between the
start and the end of the action. In practice, in CPython, operations that look atomic
(e.g., simple assignments and accesses) mostly are atomic, but only when executed
on built-in types (augmented and multiple assignments, however, aren’t atomic).
Mostly, though, it’s not a good idea to rely on such “atomicity.” You might be dealing
with an instance of a user-coded class rather than of a built-in type, in which there
might be implicit calls to Python code that invalidate assumptions of atomicity.
Further, relying on implementation-dependent atomicity may lock your code into a
specific implementation, hampering future changes. You’re better-advised to use the
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synchronization facilities covered in the rest of this chapter, rather than relying on
atomicity assumptions.

The key design issue in multithreading systems is how best to coordinate multiple
threads. The threading module, covered in the following section, supplies several
synchronization objects. The queue module (discussed in “The queue Module”
on page 456) is also very useful for thread synchronization: it supplies synchron‐
ized, thread-safe queue types, handy for communication and coordination between
threads. The package concurrent (covered in “The concurrent.futures Module” on
page 468) supplies a unified interface for communication and coordination that can
be implemented by pools of either threads or processes.

The threading Module
The threading module supplies multithreading functionality. The approach of
threading is to model locks and conditions as separate objects (in Java, for example,
such functionality is part of every object), and threads cannot be directly controlled
from the outside (thus, no priorities, groups, destruction, or stopping). All methods
of objects supplied by threading are atomic.

threading supplies the following thread-focused classes, all of which we’ll explore
in this section: Thread, Condition, Lock, RLock, Event, Semaphore, BoundedSema
phore, Timer, and Barrier.

threading also supplies a number of useful functions, including those listed in
Table 15-1.

Table 15-1. Functions of the threading module

active_count active_count()

Returns an int, the number of Thread objects currently alive (not ones that have
terminated or not yet started).

current_

thread

current_thread()

Returns a Thread object for the calling thread. If the calling thread was not created
by threading, current_thread creates and returns a semi-dummy Thread
object with limited functionality.

enumerate enumerate()

Returns a list of all Thread objects currently alive (not ones that have terminated
or not yet started).

excepthook excepthook(args)

3.8+  Override this function to determine how in-thread exceptions are handled; see
the online docs for details. The args argument has attributes that allow you to access
exception and thread details. 3.10+  threading.__excepthook__ holds the
module’s original threadhook value.
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get_ident get_ident()

Returns a nonzero int as a unique identifier among all current threads. Useful to
manage and track data by thread. Thread identifiers may be reused as threads exit and
new threads are created.

get_native_id get_native_id()

3.8+  Returns the native integer ID of the current thread as assigned by the operating
system kernel. Available on most common operating systems.

stack_size stack_size([size])

Returns the current stack size, in bytes, used for new threads, and (when size
is provided) establishes the value for new threads. Acceptable values for size are
subject to platform-specific constraints, such as being at least 32768 (or an even
higher minimum, on some platforms), and (on some platforms) being a multiple of
4096. Passing size as 0 is always acceptable and means “use the system’s default.”
When you pass a value for size that is not acceptable on the current platform,
stack_size raises a ValueError exception.

Thread Objects
A Thread instance t models a thread. You can pass a function to be used as t’s
main function as the target argument when you create t, or you can subclass
Thread and override its run method (you may also override __init__, but you
should not override other methods). t is not yet ready to run when you create it;
to make t ready (active), call t.start. Once t is active, it terminates when its main
function ends, either normally or by propagating an exception. A Thread t can be a
daemon, meaning that Python can terminate even if t is still active, while a normal
(nondaemon) thread keeps Python alive until the thread terminates. The Thread
class supplies the constructor, properties, and methods detailed in Table 15-2.

Table 15-2. Constructor, methods, and properties of the Thread class

Thread class Thread(name=None, target=None, args=(), kwargs={}, *,
daemon=None)

Always call Thread with named arguments: the number and order of parameters is not
guaranteed by the specification, but the parameter names are. You have two options when
constructing a Thread:

• Instantiate the class Thread itself with a target function (t.run then calls
target(*args, **kwargs) when the thread is started).

• Extend the Thread class and override its run method.

In either case, execution will begin only when you call t.start. name becomes t’s name. If
name is None, Thread generates a unique name for t. If a subclass T of Thread overrides
__init__, T.__init__ must call Thread.__init__ on self (usually via the super
built-in function) before any other Thread method. daemon can be assigned a Boolean value
or, if None, will take this value from the daemon attribute of the creating thread.
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daemon daemon is a writable Boolean property that indicates whether t is a daemon (i.e., the process
can terminate even when t is still active; such a termination also ends t). You can assign
to t.daemon only before calling t.start; assigning a true value sets t to be a daemon.
Threads created by a daemon thread have t.daemon set to True by default.

is_alive t.is_alive()

is_alive returns True when t is active (i.e., when t.start has executed and t.run has
not yet terminated); otherwise, returns False.

join t.join(timeout=None)

join suspends the calling thread (which must not be t) until t terminates (when t is already
terminated, the calling thread does not suspend). timeout is covered in “Timeout parameters”
on page 448. You can call t.join only after t.start. It’s OK to call join more than once.

name t.name

name is a property returning t’s name; assigning name rebinds t’s name (name exists only to
help you debug; name need not be unique among threads). If omitted, the thread will receive a
generated name Thread-n, where n is an incrementing integer ( 3.10+  and if target is
specified, (target.__name__) will be appended).

run t.run()

run is the method called by t.start that executes t’s main function. Subclasses of Thread
can override run. Unless overridden, run calls the target callable passed on t’s creation. Do
not call t.run directly; calling t.run is the job of t.start!

start t.start()

start makes t active and arranges for t.run to execute in a separate thread. You must call
t.start only once for any given Thread object t; calling it again raises an exception.

Thread Synchronization Objects
The threading module supplies several synchronization primitives (types that let
threads communicate and coordinate). Each primitive type has specialized uses,
discussed in the following sections.

You May Not Need Thread Synchronization Primitives
As long as you avoid having (nonqueue) global variables that
change and which several threads access, queue (covered in
“The queue Module” on page 456) can often provide all
the coordination you need, as can concurrent (covered in
“The concurrent.futures Module” on page 468). “Threaded
Program Architecture” on page 471 shows how to use Queue
objects to give your multithreaded programs simple and effec‐
tive architectures, often without needing any explicit use of
synchronization primitives.

Timeout parameters
The synchronization primitives Condition and Event supply wait methods that
accept an optional timeout argument. A Thread object’s join method also accepts
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an optional timeout argument (see Table 15-2). Using the default timeout value
of None results in normal blocking behavior (the calling thread suspends and waits
until the desired condition is met). When it is not None, a timeout argument is
a floating-point value that indicates an interval of time, in seconds (timeout can
have a fractional part, so it can indicate any time interval, even a very short one).
When timeout seconds elapse, the calling thread becomes ready again, even if the
desired condition has not been met; in this case, the waiting method returns False
(otherwise, the method returns True). timeout lets you design systems that are
able to overcome occasional anomalies in a few threads, and thus are more robust.
However, using timeout may slow your program down: when that matters, be sure
to measure your code’s speed accurately.

Lock and RLock objects
Lock and RLock objects supply the same three methods, described in Table 15-3.

Table 15-3. Methods of an instance L of Lock

acquire L.acquire(blocking=True, timeout=-1)

When L is unlocked, or if L is an RLock acquired by the same thread that’s calling acquire,
this thread immediately locks it (incrementing the internal counter if L is an RLock, as described
shortly) and returns True.
When L is already locked and blocking is False, acquire immediately returns False.
When blocking is True, the calling thread is suspended until either:

• Another thread releases the lock, in which case this thread locks it and returns True.

• The operation times out before the lock can be acquired, in which case acquire
returns False. The default -1 value never times out.

locked L.locked()

Returns True when L is locked; otherwise, returns False.

release L.release()

Unlocks L, which must be locked (for an RLock, this means to decrement the lock count, which
cannot go below zero—the lock can only be acquired by a new thread when the lock count is
zero). When L is locked, any thread may call L.release, not just the thread that locked L.
When more than one thread is blocked on L (i.e., has called L.acquire, found L locked, and is
waiting for L to be unlocked), release wakes up an arbitrary one of the waiting threads. The
thread calling release does not suspend: it remains ready and continues to execute.

The following console session illustrates the automatic acquire/release done on
locks when they are used as a context manager (as well as other data Python
maintains for the lock, such as the owner thread ID and the number of times the
lock’s acquire method has been called):

>>> lock = threading.RLock()
>>> print(lock)

<unlocked _thread.RLock object owner=0 count=0 at 0x102878e00>
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>>> with lock:
...     print(lock)
...

<locked _thread.RLock object owner=4335175040 count=1 at 0x102878e00>

>>> print(lock)

<unlocked _thread.RLock object owner=0 count=0 at 0x102878e00>

The semantics of an RLock object r are often more convenient (except in peculiar
architectures where you need threads to be able to release locks that a different
thread has acquired). RLock is a reentrant lock, meaning that when r is locked,
it keeps track of the owning thread (i.e., the thread that locked it, which for an
RLock is also the only thread that can release it—when any other thread tries to
release an RLock, this raises a RuntimeError exception). The owning thread can call
r.acquire again without blocking; r then just increments an internal count. In a
similar situation involving a Lock object, the thread would block until some other
thread releases the lock. For example, consider the following code snippet:

lock = threading.RLock()
global_state = []
def recursive_function(some, args):
    with lock:  # acquires lock, guarantees release at end
        # ...modify global_state...
        if more_changes_needed(global_state):
            recursive_function(other, args)

If lock was an instance of threading.Lock, recursive_function would block its
calling thread when it calls itself recursively: the with statement, finding that the
lock has already been acquired (even though that was done by the same thread),
would block and wait…and wait. With a threading.RLock, no such problem
occurs: in this case, since the lock has already been acquired by the same thread,
on getting acquired again it just increments its internal count and proceeds.

An RLock object r is unlocked only when it has been released as many times as
it has been acquired. An RLock is useful to ensure exclusive access to an object
when the object’s methods call each other; each method can acquire at the start, and
release at the end, the same RLock instance.

Use with Statements to Automatically Acquire and Release
Synchronization Objects
Using a try/finally statement (covered in “try/finally” on
page 198) is one way to ensure that an acquired lock is indeed
released. Using a with statement, covered in “The with State‐
ment and Context Managers” on page 201, is usually better:
all locks, conditions, and semaphores are context managers, so
an instance of any of these types can be used directly in a with
clause to acquire it (implicitly with blocking) and ensure it is
released at the end of the with block.
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Condition objects
A Condition object c wraps a Lock or RLock object L. The class Condition exposes
the constructor and methods described in Table 15-4.

Table 15-4. Constructor and methods of the Condition class

Condition class Condition(lock=None)
Creates and returns a new Condition object c with the lock L set to lock. If lock is
None, L is set to a newly created RLock object.

acquire,
release

c.acquire(blocking=True), c.release()
These methods just call L’s corresponding methods. A thread must never call any other
method on c unless the thread holds (i.e., has acquired) lock L.

notify,
notify_all

c.notify(), c.notify_all()
notify wakes up an arbitrary one of the threads waiting on c. The calling thread must hold
L before it calls c.notify, and notify does not release L. The awakened thread does
not become ready until it can acquire L again. Therefore, the calling thread normally calls
release after calling notify. notify_all is like notify, but wakes up all waiting
threads, not just one.

wait c.wait(timeout=None)

wait releases L, then suspends the calling thread until some other thread calls notify or
notify_all on c. The calling thread must hold L before it calls c.wait. timeout is
covered in “Timeout parameters” on page 448. After a thread wakes up, either by notification
or timeout, the thread becomes ready when it acquires L again. When wait returns True
(meaning it has exited normally, not by timeout), the calling thread is always holding L
again.

Usually, a Condition object c regulates access to some global state s shared among
threads. When a thread must wait for s to change, the thread loops:

with c:
    while not is_ok_state(s):
        c.wait()
    do_some_work_using_state(s)

Meanwhile, each thread that modifies s calls notify (or notify_all if it needs to
wake up all waiting threads, not just one) each time s changes:

with c:
    do_something_that_modifies_state(s)
    c.notify()    # or, c.notify_all()
# no need to call c.release(), exiting 'with' intrinsically does that

You must always acquire and release c around each use of c’s methods: doing so via
a with statement makes using Condition instances less error prone.
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Event objects
Event objects let any number of threads suspend and wait. All threads waiting on
Event object e become ready when any other thread calls e.set. e has a flag that
records whether the event happened; it is initially False when e is created. Event
is thus a bit like a simplified Condition. Event objects are useful to signal one-shot
changes, but brittle for more general use; in particular, relying on calls to e.clear is
error prone. The Event class exposes the constructor and methods in Table 15-5.

Table 15-5. Constructor and methods of the Event class

Event class Event()
Creates and returns a new Event object e, with e’s flag set to False.

clear e.clear()

Sets e’s flag to False.

is_set e.is_set()

Returns the value of e’s flag: True or False.

set e.set()

Sets e’s flag to True. All threads waiting on e, if any, become ready to run.

wait e.wait(timeout=None)

Returns immediately if e’s flag is True; otherwise, suspends the calling thread until some other
thread calls set. timeout is covered in “Timeout parameters” on page 448.

The following code shows how Event objects explicitly synchronize processing
across multiple threads:

import datetime, random, threading, time

def runner():
    print('starting')
    time.sleep(random.randint(1, 3))
    print('waiting')
    event.wait()
    print(f'running at {datetime.datetime.now()}')

num_threads = 10
event = threading.Event()

threads = [threading.Thread(target=runner) for _ in range(num_threads)]
for t in threads:
    t.start()

event.set()

for t in threads:
    t.join()
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Semaphore and BoundedSemaphore objects
Semaphores (also known as counting semaphores) are a generalization of locks.
The state of a Lock can be seen as True or False; the state of a Semaphore s is
a number between 0 and some n set when s is created (both bounds included).
Semaphores can be useful to manage a fixed pool of resources—e.g., 4 printers or
20 sockets—although it’s often more robust to use Queues (described later in this
chapter) for such purposes. The class BoundedSemaphore is very similar, but raises
ValueError if the state ever becomes higher than the initial value: in many cases,
such behavior can be a useful indicator of a bug. Table 15-6 shows the constructors
of the Semaphore and BoundedSemaphore classes and the methods exposed by an
object s of either class.

Table 15-6. Constructors and methods of the Semaphore and BoundedSemaphore
classes

Semaphore,
Bounded

Semaphore

class Semaphore(n=1),
class BoundedSemaphore(n=1)
Semaphore creates and returns a Semaphore object s with the state set to n; Bounded
Semaphore is very similar, except that s.release raises ValueError if the state
becomes higher than n.

acquire s.acquire(blocking=True)

When s’s state is >0, acquire decrements the state by 1 and returns True. When s’s
state is 0 and blocking is True, acquire suspends the calling thread and waits until
some other thread calls s.release. When s’s state is 0 and blocking is False,
acquire immediately returns False.

release s.release()

When s’s state is >0, or when the state is 0 but no thread is waiting on s, release
increments the state by 1. When s’s state is 0 and some threads are waiting on s,
release leaves s’s state at 0 and wakes up an arbitrary one of the waiting threads. The
thread that calls release does not suspend; it remains ready and continues to execute
normally.

Timer objects
A Timer object calls a specified callable, in a newly made thread, after a given delay.
The class Timer exposes the constructor and methods in Table 15-7.

Table 15-7. Constructor and methods of the Timer class

Timer class Timer(interval, callback, args=None, kwargs=None)
Creates an object t that calls callback, interval seconds after starting (interval is a
floating-point number of seconds).

cancel t.cancel()

Stops the timer and cancels the execution of its action, as long as t is still waiting (hasn’t called its
callback yet) when you call cancel.
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start t.start()

Starts t.

Timer extends Thread and adds the attributes function, interval, args, and
kwargs.

A Timer is “one-shot”: t calls its callback only once. To call callback periodically,
every interval seconds, here’s a simple recipe—the Periodic timer runs callback
every interval seconds, stopping only when callback raises an exception:

class Periodic(threading.Timer):
    def __init__(self, interval, callback, args=None, kwargs=None):
        super().__init__(interval, self._f, args, kwargs)
        self.callback = callback

    def _f(self, *args, **kwargs):
        p = type(self)(self.interval, self.callback, args, kwargs)
        p.start()
        try:
            self.callback(*args, **kwargs)
        except Exception:
            p.cancel()

Barrier objects
A Barrier is a synchronization primitive allowing a certain number of threads to
wait until they’ve all reached a certain point in their execution, at which point they
all resume. Specifically, when a thread calls b.wait, it blocks until the specified
number of threads have made the same call on b; at that time, all the threads
blocked on b are allowed to resume.

The Barrier class exposes the constructor, methods, and properties listed in
Table 15-8.

Table 15-8. Constructor, methods, and properties of the Barrier class

Barrier class Barrier(num_threads, action=None, timeout=None)
Creates a Barrier object b for num_threads threads. action is a callable without
arguments: if you pass this argument, it executes on any single one of the blocked threads
when they are all unblocked. timeout is covered in “Timeout parameters” on page 448.

abort b.abort()

Puts Barrier b in the broken state, meaning that any thread currently waiting resumes
with a threading.BrokenBarrierException (the same exception also gets
raised on any subsequent call to b.wait). This is an emergency action typically used when
a waiting thread is suffering some abnormal termination, to avoid deadlocking the whole
program.

broken b.broken

True when b is in the broken state; otherwise, False.
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n_waiting b.n_waiting

The number of threads currently waiting on b.

parties parties

The value passed as num_threads in the constructor of b.

reset b.reset()

Returns b to the initial empty, nonbroken state; any thread currently waiting on b,
however, resumes with a threading.BrokenBarrierException.

wait b.wait()

The first b.parties-1 threads calling b.wait block; when the number of threads
blocked on b is b.parties-1 and one more thread calls b.wait, all the threads
blocked on b resume. b.wait returns an int to each resuming thread, all distinct
and in range(b.parties), in unspecified order; threads can use this return value to
determine which one should do what next (though passing action in the Barrier’s
constructor is simpler and often sufficient).

The following code shows how Barrier objects synchronize processing across mul‐
tiple threads (contrast this with the example code shown earlier for Event objects):

import datetime, random, threading, time

def runner():
    print('starting')
    time.sleep(random.randint(1, 3))
    print('waiting')
    try:
        my_number = barrier.wait()
    except threading.BrokenBarrierError:
        print('Barrier abort() or reset() called, thread exiting...')
        return
    print(f'running ({my_number}) at {datetime.datetime.now()}')

def announce_release():
    print('releasing')

num_threads = 10
barrier = threading.Barrier(num_threads, action=announce_release)

threads = [threading.Thread(target=runner) for _ in range(num_threads)]
for t in threads:
    t.start()

for t in threads:
    t.join()

Thread Local Storage
The threading module supplies the class local, which a thread can use to
obtain thread-local storage, also known as per-thread data. An instance L of local
has arbitrary named attributes that you can set and get, stored in a dictionary
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L.__dict__ that you can also access. L is fully thread-safe, meaning there is no
problem if multiple threads simultaneously set and get attributes on L. Each thread
that accesses L sees a disjoint set of attributes: any changes made in one thread have
no effect in other threads. For example:

import threading

L = threading.local()
print('in main thread, setting zop to 42')
L.zop = 42

def targ():
  print('in subthread, setting zop to 23')
  L.zop = 23
  print('in subthread, zop is now', L.zop)

t = threading.Thread(target=targ)
t.start()
t.join()
print('in main thread, zop is now', L.zop)
# prints:
# in main thread, setting zop to 42
# in subthread, setting zop to 23
# in subthread, zop is now 23
# in main thread, zop is now 42

Thread-local storage makes it easier to write code meant to run in multiple threads,
since you can use the same namespace (an instance of threading.local) in multi‐
ple threads without the separate threads interfering with each other.

The queue Module
The queue module supplies queue types supporting multithreaded access, with one
main class Queue, one simplified class SimpleQueue, two subclasses of the main
class (LifoQueue and PriorityQueue), and two exception classes (Empty and Full),
described in Table 15-9. The methods exposed by instances of the main class and its
subclasses are detailed in Table 15-10.

Table 15-9. Classes of the queue module

Queue class Queue(maxsize=0)
Queue, the main class in the module queue, implements a first-in, first-out (FIFO) queue: the
item retrieved each time is the one that was added earliest.
When maxsize > 0, the new Queue instance q is considered full when q has maxsize
items. When q is full, a thread inserting an item with block=True suspends until another
thread extracts an item. When maxsize <= 0, q is never considered full and is limited in size
only by available memory, like most Python containers.
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Simple

Queue

class SimpleQueue
SimpleQueue is a simplified Queue: an unbounded FIFO queue lacking the methods full,
task_done, and join (see Table 15-10) and with the method put ignoring its optional
arguments but guaranteeing reentrancy (which makes it usable in __del__ methods and
weakref callbacks, where Queue.put would not be).

Lifo

Queue

class LifoQueue(maxsize=0)
LifoQueue is a subclass of Queue; the only difference is that LifoQueue implements a
last-in, first-out (LIFO) queue, meaning the item retrieved each time is the most recently added
one (often called a stack).

Priority

Queue

class PriorityQueue(maxsize=0)
PriorityQueue is a subclass of Queue; the only difference is that PriorityQueue
implements a priority queue, meaning the item retrieved each time is the smallest one currently
in the queue. Since there is no way to specify ordering, you’ll typically use (priority,
payload) pairs as items, with low values of priority meaning earlier retrieval.

Empty Empty is the exception that q.get(block=False) raises when q is empty.

Full Full is the exception that q.put(x, block=False) raises when q is full.

An instance q of the class Queue (or either of its subclasses) supplies the methods
listed in Table 15-10, all thread-safe and guaranteed to be atomic. For details on the
methods exposed by an instance of SimpleQueue, see Table 15-9.

Table 15-10. Methods of an instance q of class Queue, LifoQueue, or Priority
Queue

empty q.empty()

Returns True when q is empty; otherwise, returns False.

full q.full()

Returns True when q is full; otherwise, returns False.

get,
get_nowait

q.get(block=True, timeout=None),
q.get_nowait()

When block is False, get removes and returns an item from q if one is available;
otherwise, get raises Empty. When block is True and timeout is None, get
removes and returns an item from q, suspending the calling thread, if need be, until an
item is available. When block is True and timeout is not None, timeout must
be a number >=0 (which may include a fractional part to specify a fraction of a second),
and get waits for no longer than timeout seconds (if no item is yet available by then,
get raises Empty). q.get_nowait() is like q.get(False), which is also like
q.get(timeout=0.0). get removes and returns items: in the same order as put
inserted them (FIFO) if q is a direct instance of Queue itself, in LIFO order if q is an instance
of LifoQueue, or in smallest-first order if q is an instance of PriorityQueue.
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put,
put_nowait

q.put(item, block=True, timeout=None)

q.put_nowait(item)

When block is False, put adds item to q if q is not full; otherwise, put raises Full.
When block is True and timeout is None, put adds item to q, suspending the
calling thread, if need be, until q is not full. When block is True and timeout is not
None, timeout must be a number >=0 (which may include a fractional part to specify a
fraction of a second), and put waits for no longer than timeout seconds (if q is still full
by then, put raises Full). q.put_nowait(item) is like q.put(item, False),
which is also like q.put(item, timeout=0.0).

qsize q.qsize()

Returns the number of items that are currently in q.

q maintains an internal, hidden count of unfinished tasks, which starts at zero. Each
call to put increments the count by one. To decrement the count by one, when a
worker thread has finished processing a task, it calls q.task_done. To synchronize
on “all tasks done,” call q.join: when the count of unfinished tasks is nonzero,
q.join blocks the calling thread, unblocking later when the count goes to zero;
when the count of unfinished tasks is zero, q.join continues the calling thread.

You don’t have to use join and task_done if you prefer to coordinate threads in
other ways, but they provide a simple, useful approach when you need to coordinate
systems of threads using a Queue.

Queue offers a good example of the idiom “It’s easier to ask forgiveness than
permission” (EAFP), covered in “Error-Checking Strategies” on page 214. Due to
multithreading, each nonmutating method of q (empty, full, qsize) can only be
advisory. When some other thread mutates q, things can change between the instant
a thread gets information from a nonmutating method and the very next moment,
when the thread acts on the information. Relying on the “look before you leap”
(LBYL) idiom is therefore futile, and fiddling with locks to try to fix things is a
substantial waste of effort. Avoid fragile LBYL code, such as:

if q.empty():
    print('no work to perform')
else:  # Some other thread may now have emptied the queue!
    x = q.get_nowait()
    work_on(x)

and instead use the simpler and more robust EAFP approach:

try:
    x = q.get_nowait()
except queue.Empty:  # Guarantees the queue was empty when accessed
    print('no work to perform')
else:
    work_on(x)
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2 The online docs include an especially helpful “Programming Guidelines” section that lists a
number of additional practical recommendations when using the multiprocessing module.

The multiprocessing Module
The multiprocessing module supplies functions and classes to code pretty
much as you would for multithreading, but distributing work across processes,
rather than across threads: these include the class Process (analogous to thread
ing.Thread) and classes for synchronization primitives (Lock, RLock, Condition,
Event, Semaphore, BoundedSemaphore, and Barrier—each similar to the class with
the same name in the threading module—as well as Queue and JoinableQueue,
both similar to queue.Queue). These classes make it easy to take code written to
use threading and port it to a version using multiprocessing instead; just pay
attention to the differences we cover in the following subsection.

It’s usually best to avoid sharing state among processes: use queues, instead, to
explicitly pass messages among them. However, for those rare occasions in which
you do need to share some state, multiprocessing supplies classes to access shared
memory (Value and Array), and—more flexibly (including coordination among
different computers on a network) though with more overhead—a Process sub‐
class, Manager, designed to hold arbitrary data and let other processes manipulate
that data via proxy objects. We cover state sharing in “Sharing State: Classes Value,
Array, and Manager” on page 461.

When you’re writing new code, rather than porting code originally written to use
threading, you can often use different approaches supplied by multiprocessing.
The Pool class, in particular (covered in “Process Pools” on page 464), can often
simplify your code. The simplest and highest-level way to do multiprocessing is to
use the concurrent.futures module (covered in “The concurrent.futures Module”
on page 468) along with the ProcessPoolExecutor.

Other highly advanced approaches, based on Connection objects built by the Pipe
factory function or wrapped in Client and Listener objects, are even more flexi‐
ble, but quite a bit more complex; we do not cover them further in this book.
For more in-depth coverage of multiprocessing, refer to the online docs2 and
third-party online tutorials like in PyMOTW.
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Differences Between multiprocessing and threading
You can pretty easily port code written to use threading into a variant using multi
processing instead—however, there are several differences you must consider.

Structural differences
All objects that you exchange between processes (for example, via a queue, or an
argument to a Process’s target function) are serialized via pickle, covered in “The
pickle Module” on page 389. Therefore, you can only exchange objects that can
be thus serialized. Moreover, the serialized bytestring cannot exceed about 32 MB
(depending on the platform), or else an exception is raised; therefore, there are
limits to the size of objects you can exchange.

Especially in Windows, child processes must be able to import as a module the main
script that’s spawning them. Therefore, be sure to guard all top-level code in the
main script (meaning code that must not be executed again by child processes) with
the usual if __name__ == '__main__' idiom, covered in “The Main Program” on
page 230.

If a process is abruptly killed (for example, via a signal) while using a queue or
holding a synchronization primitive, it won’t be able to perform proper cleanup
on that queue or primitive. As a result, the queue or primitive may get corrupted,
causing errors in all other processes trying to use it.

The Process class
The class multiprocessing.Process is very similar to threading.Thread; it sup‐
plies all the same attributes and methods (see Table 15-2), plus a few more, listed in
Table 15-11. Its constructor has the following signature:

Process class Process(name=None, target=None, args=(), kwargs={})
Always call Process with named arguments: the number and order of parameters is not
guaranteed by the specification, but the parameter names are. Either instantiate the class Pro
cess itself, passing a target function (p.run then calls target(*args, **kwargs)
when the thread is started); or, instead of passing target, extend the Process class and
override its run method. In either case, execution will begin only when you call p.start.
name becomes p’s name. If name is None, Process generates a unique name for p. If a
subclass P of Process overrides __init__, P.__init__ must call Process.__init__
on self (usually via the super built-in function) before any other Process method.

Table 15-11. Additional attributes and methods of the Process class

authkey The process’s authorization key, a bytestring. This is initialized to random bytes supplied
by os.urandom, but you can reassign it later if you wish. Used in the authorization
handshake for advanced uses we do not cover in this book.
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close close()

Closes a Process instance and releases all resources associated with it. If the underlying
process is still running, raises ValueError.

exitcode None when the process has not exited yet; otherwise, the process’s exit code. This is an
int: 0 for success, >0 for failure, <0 when the process was killed.

kill kill()

Same as terminate, but on Unix sends a SIGKILL signal.

pid None when the process has not started yet; otherwise, the process’s identifier as set by the
operating system.

terminate terminate()

Kills the process (without giving it a chance to execute termination code, such as cleanup of
queues and synchronization primitives; beware of the likelihood of causing errors when the
process is using a queue or holding a synchronization primitive!).

Differences in queues
The class multiprocessing.Queue is very similar to queue.Queue, except that an
instance q of multiprocessing.Queue does not supply the methods join and
task_done (described in “The queue Module” on page 456). When methods
of q raise exceptions due to timeouts, they raise instances of queue.Empty or
queue.Full. multiprocessing has no equivalents to queue’s LifoQueue and Priori
tyQueue classes.

The class multiprocessing.JoinableQueue does supply the methods join and
task_done, but with a semantic difference compared to queue.Queue: with an
instance q of multiprocessing.JoinableQueue, the process that calls q.get must
call q.task_done when it’s done processing that unit of work (it’s not optional, as it
is when using queue.Queue).

All objects you put in multiprocessing queues must be serializable by pickle. There
may be a delay between the time you execute q.put and the time the object is
available from q.get. Lastly, remember that an abrupt exit (crash or signal) of a
process using q may leave q unusable for any other process.

Sharing State: Classes Value, Array, and Manager
To use shared memory to hold a single primitive value in common among two or
more processes, multiprocessing supplies the class Value, and for a fixed-length
array of primitive values, it provides the class Array. For more flexibility (including
sharing nonprimitive values and “sharing” among different systems joined by a
network but sharing no memory), at the cost of higher overhead, multiprocessing
supplies the class Manager, which is a subclass of Process. We’ll look at each of these
in the following subsections.
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3 A race condition is a situation in which the relative timings of different events, which are usually
unpredictable, can affect the outcome of a computation…never a good thing!

The Value class
The constructor for the class Value has the signature:

Value class Value(typecode, *args, *, lock=True)
typecode is a string defining the primitive type of the value, just like for the array module,
covered in “The array Module” on page 502. (Alternatively, typecode can be a type from the
module ctypes, discussed in “ctypes” in Chapter 25, but this is rarely necessary.) args is passed on
to the type’s constructor: therefore, args is either absent (in which case the primitive is initialized as
per its default, typically 0) or a single value, which is used to initialize the primitive.
When lock is True (the default), Value makes and uses a new lock to guard the instance.
Alternatively, you can pass as lock an existing Lock or RLock instance. You can even pass
lock=False, but that is rarely advisable: when you do, the instance is not guarded (thus, it is not
synchronized among processes) and is missing the method get_lock. If you do pass lock, you
must pass it as a named argument, using lock=something.

An instance v of the class Value supplies the method get_lock, which returns
(but neither acquires nor releases) the lock guarding v, and the read/write attribute
value, used to set and get v’s underlying primitive value.

To ensure atomicity of operations on v’s underlying primitive value, guard the
operation in a with v.get_lock(): statement. A typical example of such usage
might be for augmented assignment, as in:

with v.get_lock():
    v.value += 1

If any other process does an unguarded operation on that same primitive value,
however—even an atomic one such as a simple assignment like v.value = x—all
bets are off: the guarded operation and the unguarded one can get your system into
a race condition.3 Play it safe: if any operation at all on v.value is not atomic (and
thus needs to be guarded by being within a with v.get_lock(): block), guard all
operations on v.value by placing them within such blocks.

The Array class
A multiprocessing.Array is a fixed-length array of primitive values, with all items
of the same primitive type. The constructor for the class Array has the signature:
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Array class Array(typecode, size_or_initializer, *, lock=True)
typecode is a string defining the primitive type of the value, just like for the module array,
as covered in “The array Module” on page 502. (Alternatively, typecode can be a type from the
module ctypes, discussed in “ctypes” in Chapter 25, but this is rarely necessary.) size_or_ini
tializer can be an iterable, used to initialize the array, or an integer used as the length of the
array, in which case each item of the array is initialized to 0.
When lock is True (the default), Array makes and uses a new lock to guard the instance.
Alternatively, you can pass as lock an existing Lock or RLock instance. You can even pass
lock=False, but that is rarely advisable: when you do, the instance is not guarded (thus it is not
synchronized among processes) and is missing the method get_lock. If you do pass lock, you
must pass it as a named argument, using lock=something.

An instance a of the class Array supplies the method get_lock, which returns (but
neither acquires nor releases) the lock guarding a.

a is accessed by indexing and slicing, and modified by assigning to an indexing or
to a slice. a is fixed length: therefore, when you assign to a slice, you must assign an
iterable of exactly the same length as the slice you’re assigning to. a is also iterable.

In the special case where a was built with a typecode of 'c', you can also access
a.value to get a’s contents as a bytestring, and you can assign to a.value any
bytestring no longer than len(a). When s is a bytestring with len(s) < len(a),
a.value = s means a[:len(s)+1] = s + b'\0'; this mirrors the representation of
char strings in the C language, terminated with a 0 byte. For example:

a = multiprocessing.Array('c', b'four score and seven')
a.value = b'five'
print(a.value)   # prints b'five'
print(a[:])      # prints b'five\xOOscore and seven'

The Manager class
multiprocessing.Manager is a subclass of multiprocessing.Process, with the
same methods and attributes. In addition, it supplies methods to build an instance
of any of the multiprocessing synchronization primitives, plus Queue, dict, list,
and Namespace, the latter being a class that just lets you set and get arbitrary named
attributes. Each of the methods has the name of the class whose instances it builds,
and returns a proxy to such an instance, which any process can use to call methods
(including special methods, such as indexing of instances of dict or list) on the
instance held in the manager process.

Proxy objects pass most operators, and accesses to methods and attributes, on to the
instance they proxy for; however, they don’t pass on comparison operators—if you
need a comparison, you need to take a local copy of the proxied object. For example:

manager = multiprocessing.Manager()
p = manager.list()

p[:] = [1, 2, 3]
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print(p == [1, 2, 3])       # prints False,  it compares with p itself
print(list(p) == [1, 2, 3]) # prints True,  it compares with copy

The constructor of Manager takes no arguments. There are advanced ways to cus‐
tomize Manager subclasses to allow connections from unrelated processes (includ‐
ing ones on different computers connected via a network) and to supply a different
set of building methods, but we do not cover them in this book. Rather, one simple,
often-sufficient approach to using Manager is to explicitly transfer to other processes
the proxies it produces, typically via queues, or as arguments to a Process’s target
function.

For example, suppose there is a long-running, CPU-bound function f that, given
a string as an argument, eventually returns a corresponding result; given a set of
strings, we want to produce a dict with the strings as keys and the corresponding
results as values. To be able to follow on which processes f runs, we also print the
process ID just before calling f. Example 15-1 shows one way to do this.

Example 15-1. Distributing work to multiple worker processes

import multiprocessing as mp
def f(s):
    """Run a long time, and eventually return a result."""
    import time, random
    time.sleep(random.random()*2)  # simulate slowness
    return s+s                     # some computation or other

def runner(s, d):
    print(os.getpid(), s)
    d[s] = f(s)

def make_dict(strings):
    mgr = mp.Manager()
    d = mgr.dict()
    workers = []
    for s in strings:
        p = mp.Process(target=runner, args=(s, d))
        p.start()
        workers.append(p)
    for p in workers:
        p.join()
    return {**d}

Process Pools
In real life, you should always avoid creating an unbounded number of worker pro‐
cesses, as we did in Example 15-1. Performance benefits accrue only up to the num‐
ber of cores in your machine (available by calling multiprocessing.cpu_count),
or a number just below or just above this, depending on such minutiae as your
platform, how CPU-bound or I/O-bound your code is, other tasks running on your
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computer, etc. Making many more worker processes than such an optimal number
incurs substantial extra overhead without any compensating benefit.

As a consequence, it’s a common design pattern to start a pool with a limited
number of worker processes, and farm out work to them. The class multiprocess
ing.Pool lets you orchestrate this pattern.

The Pool class
The constructor for the class Pool has the signature:

Pool class Pool(processes=None, initializer=None, initargs=(),
maxtasksperchild=None)

processes is the number of processes in the pool; it defaults to the value returned by
cpu_count. When initializer is not None, it’s a function, called at the start of each process in
the pool, with initargs as arguments, like initializer(*initargs).
When maxtasksperchild is not None, it’s the maximum number of tasks that can be executed in
each process in the pool. When a process in the pool has executed that many tasks, it terminates, then
a new process starts and joins the pool. When maxtasksperchild is None (the default), each
process lives as long as the pool.

An instance p of the class Pool supplies the methods listed in Table 15-12 (each of
them must be called only in the process that built instance p).

Table 15-12. Methods of an instance p of class Pool

apply apply(func, args=(), kwds={})

In an arbitrary one of the worker processes, runs func(*args, **kwds), waits for it to
finish, and returns func’s result.

apply_async apply_async(func, args=(), kwds={}, callback=None)

In an arbitrary one of the worker processes, starts running func(*args, **kwds)
and, without waiting for it to finish, immediately returns an AsyncResult instance,
which eventually gives func’s result, when that result is ready. (The AsyncResult class
is discussed in the following section.) When callback is not None, it’s a function to
call (in a new, separate thread in the process that calls apply_async), with func’s
result as the only argument, when that result is ready; callback should execute rapidly,
because otherwise it blocks the calling process. callback may mutate its argument if
that argument is mutable; callback’s return value is irrelevant (so, the best, clearest
style is to have it return None).

close close()

Sets a flag prohibiting further submissions to the pool. Worker processes terminate when
they’re done with all outstanding tasks.
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imap imap(func, iterable, chunksize=1)
Returns an iterator calling func on each item of iterable, in order. chunksize
determines how many consecutive items are sent to each process; on a very long
iterable, a large chunksize can improve performance. When chunksize is 1
(the default), the returned iterator has a method next (even though the canonical name
of the iterator’s method is __next__), accepting an optional timeout argument (a
floating-point value, in seconds) and raising multiprocessing.TimeoutError
should the result not yet be ready after timeout seconds.

imap_

unordered

imap_unordered(func, iterable, chunksize=1)
Same as imap, but the ordering of the results is arbitrary (this can sometimes improve
performance when the order of iteration is unimportant). It is usually helpful if the
function’s return value includes enough information to allow the results to be associated
with the values from the iterable used to generate them.

join join()

Waits for all worker processes to exit. You must call close or terminate before you
call join.

map map(func, iterable, chunksize=1)
Calls func on each item of iterable, in order, in worker processes in the pool;
waits for them all to finish, and returns the list of results. chunksize determines how
many consecutive items are sent to each process; on a very long iterable, a large
chunksize can improve performance.

map_async map_async(func, iterable, chunksize=1, callback=None)
Arranges for func to be called on each item of iterable in worker processes in the
pool; without waiting for any of this to finish, immediately returns an AsyncResult
instance (described in the following section), which eventually gives the list of func’s
results, when that list is ready.
When callback is not None, it’s a function to call (in a separate thread in the process
that calls map_async) with the list of func’s results, in order, as the only argument,
when that list is ready; callback should execute rapidly, since otherwise it blocks the
process. callback may mutate its list argument; callback’s return value is irrelevant
(so, best, clearest style is to have it return None).

terminate terminate()

Terminates all worker processes at once, without waiting for them to complete work.

For example, here’s a Pool-based approach to perform the same task as the code in
Example 15-1:

import os, multiprocessing as mp
def f(s):
    """Run a long time, and eventually return a result."""
    import time, random
    time.sleep(random.random()*2)  # simulate slowness
    return s+s                     # some computation or other

def runner(s):
    print(os.getpid(), s)
    return s, f(s)
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def make_dict(strings):
    with mp.Pool() as pool:
        d = dict(pool.imap_unordered(runner, strings))
        return d

The AsyncResult class
The methods apply_async and map_async of the class Pool return an instance of
the class AsyncResult. An instance r of the class AsyncResult supplies the methods
listed in Table 15-13.

Table 15-13. Methods of an instance r of class AsyncResult

get get(timeout=None)

Blocks and returns the result when ready, or re-raises the exception raised while computing
the result. When timeout is not None, it’s a floating-point value in seconds; get
raises multiprocessing.TimeoutError should the result not yet be ready after
timeout seconds.

ready ready()

Does not block; returns True if the call has completed with a result or has raised an
exception; otherwise, returns False.

successful successful()

Does not block; returns True if the result is ready and the computation did not raise an
exception, or returns False if the computation raised an exception. If the result is not yet
ready, successful raises AssertionError.

wait wait(timeout=None)

Blocks and waits until the result is ready. When timeout is not None, it’s a floating-point
value in seconds: wait raises multiprocessing.TimeoutError should the result
not yet be ready after timeout seconds.

The ThreadPool class
The multiprocessing.pool module also offers a class called ThreadPool, with
exactly the same interface as Pool, implemented with multiple threads within a sin‐
gle process (not with multiple processes, despite the module’s name). The equivalent
make_dict code to Example 15-1 using a ThreadPool would be:

def make_dict(strings):
    num_workers=3
    with mp.pool.ThreadPool(num_workers) as pool:
        d = dict(pool.imap_unordered(runner, strings))
        return d

Since a ThreadPool uses multiple threads but is limited to running in a single pro‐
cess, it is most suitable for applications where the separate threads are performing
overlapping I/O. As stated previously, Python threading offers little advantage when
the work is primarily CPU-bound.
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In modern Python, you should generally prefer the Executor abstract class from
the module concurrent.futures, covered in next section, and its two implementa‐
tions, ThreadPoolExecutor and ProcessPoolExecutor. In particular, the Future
objects returned by submit methods of the executor classes implemented by con
current.futures are compatible with the asyncio module (which, as previously
mentioned, we do not cover in this book, but which is nevertheless a crucial part
of much concurrent processing in recent versions of Python). The AsyncResult
objects returned by the methods apply_async and map_async of the pool classes
implemented by multiprocessing are not asyncio compatible.

The concurrent.futures Module
The concurrent package supplies a single module, futures. concurrent.futures
provides two classes, ThreadPoolExecutor (using threads as workers) and Proces
sPoolExecutor (using processes as workers), which implement the same abstract
interface, Executor. Instantiate either kind of pool by calling the class with one
argument, max_workers, specifying how many threads or processes the pool should
contain. You can omit max_workers to let the system pick the number of workers.

An instance e of the Executor class supports the methods in Table 15-14.

Table 15-14. Methods of an instance e of class Executor

map map(func, *iterables, timeout=None, chunksize=1)
Returns an iterator it whose items are the results of func called with one argument
from each of the iterables, in order (using multiple worker threads or processes
to execute func in parallel). When timeout is not None, it’s a float number
of seconds: should next(it) not produce any result in timeout seconds, raises
concurrent.futures.TimeoutError.
You may also optionally specify (by name, only) argument chunksize: ignored for a
ThreadPoolExecutor; for a ProcessPoolExecutor it sets how many items of
each iterable in iterables are passed to each worker process.

shutdown shutdown(wait=True)

No more calls to map or submit allowed. When wait is True, shutdown blocks until
all pending futures are done; when False, shutdown returns immediately. In either
case, the process does not terminate until all pending futures are done.

submit submit(func, *a, **k)
Ensures func(*a, **k) executes on an arbitrary one of the pool’s processes or threads.
Does not block, but rather immediately returns a Future instance.

Any instance of an Executor is also a context manager, and therefore suitable for
use on a with statement (__exit__ being like shutdown(wait=True)).
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For example, here’s a concurrent-based approach to perform the same task as in
Example 15-1:

import concurrent.futures as cf
def f(s):
    """run a long time and eventually return a result"""
    # ... like before!

def runner(s):
    return s, f(s)

def make_dict(strings):
    with cf.ProcessPoolExecutor() as e:
        d = dict(e.map(runner, strings))
    return d

The submit method of an Executor returns a Future instance. A Future instance f
supplies the methods described in Table 15-15.

Table 15-15. Methods of an instance f of class Future

add_done_

callback

add_done_callback(func)

Adds callable func to f; func gets called, with f as the only argument, when f
completes (i.e., is canceled, or finishes).

cancel cancel()

Tries canceling the call. Returns False when the call is being executed and cannot be
canceled; otherwise, returns True.

cancelled cancelled()

Returns True if the call was successfully canceled; otherwise, returns False.

done done()

Returns True when the call is completed (i.e., finished, or successfully canceled).

exception exception(timeout=None)

Returns the exception raised by the call, or None if the call raised no exception. When time
out is not None, it’s a float number of seconds to wait. If the call hasn’t completed after
timeout seconds, exception raises concurrent.futures.TimeoutError; if
the call is canceled, exception raises concurrent.futures.CancelledError.

result result(timeout=None)

Returns the call’s result. When timeout is not None, it’s a float number of
seconds. If the call hasn’t completed within timeout seconds, result raises con
current.futures.TimeoutError; if the call is canceled, result raises concur
rent.futures.CancelledError.

running running()

Returns True when the call is executing and cannot be canceled; otherwise, returns
False.
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The concurrent.futures module also supplies two functions, detailed in
Table 15-16.

Table 15-16. Functions of the concurrent.futures module

as_completed as_completed(fs, timeout=None)

Returns an iterator it over the Future instances that are the items of iterable fs.
If there are duplicates in fs, each gets yielded just once. it yields one completed
future at a time, in order, as they complete. If timeout is not None, it’s a
float number of seconds; should it ever happen that no new future can yet be
yielded within timeout seconds from the previous one, as_completed raises
concurrent.futures.Timeout.

wait wait(fs, timeout=None, return_when=ALL_COMPLETED)

Waits for the Future instances that are the items of iterable fs. Returns a named
2-tuple of sets: the first set, named done, contains the futures that completed
(meaning that they either finished or were canceled) before wait returned; the
second set, named not_done, contains as-yet-uncompleted futures.
timeout, if not None, is a float number of seconds, the maximum time wait
lets elapse before returning (when timeout is None, wait returns only when
return_when is satisfied, no matter how much time elapses before that happens).
return_when controls when, exactly, wait returns; it must be one of three
constants supplied by the module concurrent.futures:

ALL_COMPLETED

Return when all futures finish or are canceled.

FIRST_COMPLETED

Return when any future finishes or is canceled.

FIRST_EXCEPTION

Return when any future raises an exception; should no future raise an
exception, becomes equivalent to ALL_COMPLETED.

This version of make_dict illustrates how to use concurrent.futures.as_comple
ted to process each task as it finishes (in contrast with the previous example using
Executor.map, which always returns the tasks in the order in which they were
submitted):

import concurrent.futures as cf

def make_dict(strings):
    with cf.ProcessPoolExecutor() as e:
        futures = [e.submit(runner, s) for s in strings]
        d = dict(f.result() for f in cf.as_completed(futures))
    return d

470 | Chapter 15: Concurrency: Threads and Processes



Threaded Program Architecture
A threaded program should always try to arrange for a single thread to “own” any
object or subsystem that is external to the program (such as a file, a database, a GUI,
or a network connection). Having multiple threads that deal with the same external
object is possible, but can often create intractable problems.

When your threaded program must deal with some external object, devote a
dedicated thread to just such dealings, and use a Queue object from which the
external-interfacing thread gets work requests that other threads post. The external-
interfacing thread returns results by putting them on one or more other Queue
objects. The following example shows how to package this architecture into a
general, reusable class, assuming that each unit of work on the external subsystem
can be represented by a callable object:

import threading, queue

class ExternalInterfacing(threading.Thread):
    def __init__(self, external_callable, **kwds):
        super().__init__(**kwds)
        self.daemon = True
        self.external_callable = external_callable
        self.request_queue = queue.Queue()
        self.result_queue = queue.Queue()
        self.start()

    def request(self, *args, **kwds):
        """called by other threads as external_callable would be"""
        self.request_queue.put((args, kwds))
        return self.result_queue.get()

    def run(self):
        while True:
            a, k = self.request_queue.get()
            self.result_queue.put(self.external_callable(*a, **k))

Once some ExternalInterfacing object ei is instantiated, any other thread may
call ei.request just as it would call external_callable absent such a mechanism
(with or without arguments, as appropriate). The advantage of ExternalInterfac
ing is that calls to external_callable are serialized. This means that just one
thread (the Thread object bound to ei) performs them, in some defined sequential
order, without overlap, race conditions (hard-to-debug errors that depend on which
thread just happens to “get there” first), or other anomalies that might otherwise
result.

If you need to serialize several callables together, you can pass the callable as part
of the work request, rather than passing it at the initialization of the class External
Interfacing, for greater generality. The following example shows this more general
approach:
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import threading, queue

class Serializer(threading.Thread):
    def __init__(self, **kwds):
        super().__init__(**kwds)
        self.daemon = True
        self.work_request_queue = queue.Queue()
        self.result_queue = queue.Queue()
        self.start()

    def apply(self, callable, *args, **kwds):
        """called by other threads as `callable` would be"""
        self.work_request_queue.put((callable, args, kwds))
        return self.result_queue.get()

    def run(self):
        while True:
            callable, args, kwds = self.work_request_queue.get()
            self.result_queue.put(callable(*args, **kwds))

Once a Serializer object ser has been instantiated, any other thread may call
ser.apply(external_callable) just as it would call external_callable without
such a mechanism (with or without further arguments, as appropriate). The Serial
izer mechanism has the same advantages as ExternalInterfacing, except that all
calls to the same or different callables wrapped by a single ser instance are now
serialized.

The user interface of the whole program is an external subsystem, and thus should
be dealt with by a single thread—specifically, the main thread of the program (this
is mandatory for some user interface toolkits, and advisable even when using other
toolkits that don’t mandate it). A Serializer thread is therefore inappropriate.
Rather, the program’s main thread should deal only with user-interface issues, and
farm out all actual work to worker threads that accept work requests on a Queue
object and return results on another. A set of worker threads is generally known as
a thread pool. As shown in the following example, all worker threads should share a
single queue of requests and a single queue of results, since the main thread is the
only one to post work requests and harvest results:

import threading

class Worker(threading.Thread):
    IDlock = threading.Lock()
    request_ID = 0

    def __init__(self, requests_queue, results_queue, **kwds):
        super().__init__(**kwds)
        self.daemon = True
        self.request_queue = requests_queue
        self.result_queue = results_queue
        self.start()
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    def perform_work(self, callable, *args, **kwds):
        """called by main thread as `callable` would be,

   but w/o return"""
        with self.IDlock:
            Worker.request_ID += 1
            self.request_queue.put(
                (Worker.request_ID, callable, args, kwds))
            return Worker.request_ID

    def run(self):
        while True:
            request_ID, callable, a, k = self.request_queue.get()
            self.result_queue.put((request_ID, callable(*a, **k)))

The main thread creates the two queues, then instantiates worker threads, as
follows:

import queue
requests_queue = queue.Queue()
results_queue = queue.Queue()
number_of_workers = 5
for i in range(number_of_workers):
    worker = Worker(requests_queue, results_queue)

Whenever the main thread needs to farm out work (execute some callable object
that may take substantial time to produce results), the main thread calls worker.per
form_work(callable), much as it would call callable without such a mechanism
(with or without further arguments, as appropriate). However, perform_work does
not return the result of the call. Instead of the results, the main thread gets an ID
that identifies the work request. When the main thread needs the results, it can keep
track of that ID, since the request’s results are tagged with the ID when they appear.
The advantage of this mechanism is that the main thread never blocks waiting for
the callable’s execution to complete, but rather becomes ready again at once and can
immediately return to its main business of dealing with the user interface.

The main thread must arrange to check the results_queue, since the result of
each work request eventually appears there, tagged with the request’s ID, when the
worker thread that took that request from the queue finishes computing the result.
How the main thread arranges to check for both user interface events and the
results coming back from worker threads onto the results queue depends on what
user interface toolkit is used, or—if the user interface is text-based—on the platform
on which the program runs.

A widely applicable, though not always optimal, general strategy is for the main
thread to poll (check the state of the results queue periodically). On most Unix-like
platforms, the function alarm of the module signal allows polling. The tkinter
GUI toolkit supplies an after method that is usable for polling. Some toolkits
and platforms afford more effective strategies (such as letting a worker thread alert
the main thread when it places some result on the results queue), but there is no
generally available, cross-platform, cross-toolkit way to arrange for this. Therefore,
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the following artificial example ignores user interface events and just simulates work
by evaluating random expressions, with random delays, on several worker threads,
thus completing the previous example:

import random, time, queue, operator
# copy here class Worker as defined earlier

requests_queue = queue.Queue()
results_queue = queue.Queue()

number_of_workers = 3
workers = [Worker(requests_queue, results_queue)
           for i in range(number_of_workers)]
work_requests = {}

operations = {
    '+': operator.add,
    '-': operator.sub,
    '*': operator.mul,
    '/': operator.truediv,
    '%': operator.mod,
}

def pick_a_worker():
    return random.choice(workers)

def make_work():
    o1 = random.randrange(2, 10)
    o2 = random.randrange(2, 10)
    op = random.choice(list(operations))
    return f'{o1} {op} {o2}'

def slow_evaluate(expression_string):
    time.sleep(random.randrange(1, 5))
    op1, oper, op2 = expression_string.split()
    arith_function = operations[oper]
    return arith_function(int(op1), int(op2))

def show_results():
    while True:
        try:
            completed_id, results = results_queue.get_nowait()
        except queue.Empty:
            return
        work_expression = work_requests.pop(completed_id)
        print(f'Result {completed_id}: {work_expression} -> {results}')

for i in range(10):
    expression_string = make_work()
    worker = pick_a_worker()
    request_id = worker.perform_work(slow_evaluate, expression_string)
    work_requests[request_id] = expression_string
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    print(f'Submitted request {request_id}: {expression_string}')
    time.sleep(1.0)
    show_results()

while work_requests:
    time.sleep(1.0)
    show_results()

Process Environment
The operating system supplies each process P with an environment, a set of variables
whose names are strings (most often, by convention, uppercase identifiers) and
whose values are also strings. In “Environment Variables” on page 22, we cover
environment variables that affect Python’s operations. Operating system shells offer
ways to examine and modify the environment via shell commands and other means
mentioned in that section.

Process Environments Are Self-Contained
The environment of any process P is determined when P
starts. After startup, only P itself can change P’s environment.
Changes to P’s environment affect only P: the environment is
not a means of interprocess communication. Nothing that P
does affects the environment of P’s parent process (the process
that started P), nor that of any child process previously started
from P and now running, or of any process unrelated to P.
Child processes of P normally get a copy of P’s environment
as it stands at the time P creates that process as a starting envi‐
ronment. In this narrow sense, changes to P’s environment do
affect child processes that P starts after such changes.

The module os supplies the attribute environ, a mapping that represents the cur‐
rent process’s environment. When Python starts, it initializes os.environ from the
process environment. Changes to os.environ update the current process’s environ‐
ment if the platform supports such updates. Keys and values in os.environ must
be strings. On Windows (but not on Unix-like platforms), keys into os.environ are
implicitly uppercased. For example, here’s how to try to determine which shell or
command processor you’re running under:

import os
shell = os.environ.get('COMSPEC')
if shell is None:
    shell = os.environ.get('SHELL')
if shell is None:
    shell = 'an unknown command processor'
print('Running under ', shell)

When a Python program changes its environment (e.g., via os.environ['X'] =
'Y'), this does not affect the environment of the shell or command processor that
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started the program. As already explained—and for all programming languages,
including Python—changes to a process’s environment affect only the process itself,
not other processes that are currently running.

Running Other Programs
You can run other programs via low-level functions in the os module, or (at a
higher and usually preferable level of abstraction) with the subprocess module.

Using the Subprocess Module
The subprocess module supplies one very broad class: Popen, which supports many
diverse ways for your program to run another program. The constructor for Popen
has the signature:

Popen class Popen(args, bufsize=0, executable=None, capture_out
put=False, stdin=None, stdout=None, stderr=None, preexec_fn=None,

close_fds=False, shell=False, cwd=None, env=None, text=None, uni

versal_newlines=False, startupinfo=None, creationflags=0)

Popen starts a subprocess to run a distinct program, and creates and returns an object p,
representing that subprocess. The args mandatory argument and the many optional named
arguments control all details of how the subprocess is to run.
When any exception occurs during the subprocess creation (before the distinct program starts),
Popen re-raises that exception in the calling process with the addition of an attribute named
child_traceback, which is the Python traceback object for the subprocess. Such an exception
would normally be an instance of OSError (or possibly TypeError or ValueError to indicate
that you’ve passed to Popen an argument that’s invalid in type or value).

subprocess.run() is a Convenience Wrapper Function for
Popen
The subprocess module includes the run function that encap‐
sulates a Popen instance and executes the most common pro‐
cessing flow on it. run accepts the same arguments as Popen’s
constructor, runs the given command, waits for completion
or timeout, and returns a CompletedProcess instance with
attributes for the return code and stdout and stderr contents.
If the output of the command needs to be captured, the most
common argument values would be to set the capture_out
put and text arguments to True.

What to run, and how
args is a sequence of strings: the first item is the path to the program to execute,
and the following items, if any, are arguments to pass to the program (args can
also be just a string, when you don’t need to pass arguments). executable, when
not None, overrides args in determining which program to execute. When shell
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4 Just like 2>&1 would specify in a Unix-y shell command line.

is True, executable specifies which shell to use to run the subprocess; when shell
is True and executable is None, the shell used is /bin/sh on Unix-like systems (on
Windows, it’s os.environ['COMSPEC']).

Subprocess files
stdin, stdout, and stderr specify the subprocess’s standard input, output, and
error files, respectively. Each may be PIPE, which creates a new pipe to/from the
subprocess; None, meaning that the subprocess is to use the same file as this (“par‐
ent”) process; or a file object (or file descriptor) that’s already suitably open (for
reading, for standard input; for writing, for standard output and standard error).
stderr may also be subprocess.STDOUT, meaning that the subprocess’s standard
error must use the same file as its standard output.4 When capture_output is true,
you can not specify stdout, nor stderr: rather, behavior is just as if each was
specified as PIPE. bufsize controls the buffering of these files (unless they’re already
open), with the same semantics as the same argument to the open function covered
in “Creating a File Object with open” on page 323 (the default, 0, means “unbuf‐
fered”). When text (or its synonym universal_newlines, provided for backward
compatibility) is true, stdout and stderr (unless they are already open) are opened
as text files; otherwise, they’re opened as binary files. When close_fds is true,
all other files (apart from standard input, output, and error) are closed in the
subprocess before the subprocess’s program or shell executes.

Other, advanced arguments
When preexec_fn is not None, it must be a function or other callable object, and
it gets called in the subprocess before the subprocess’s program or shell is executed
(only on Unix-like systems, where the call happens after fork and before exec).

When cwd is not None, it must be a string that gives the full path to an existing
directory; the current directory gets changed to cwd in the subprocess before the
subprocess’s program or shell executes.

When env is not None, it must be a mapping with strings as both keys and values,
and fully defines the environment for the new process; otherwise, the new process’s
environment is a copy of the environment currently active in the parent process.

startupinfo and creationflags are Windows-only arguments passed to the Crea
teProcess Win32 API call used to create the subprocess, for Windows-specific pur‐
poses (we do not cover them further in this book, which focuses almost exclusively
on cross-platform uses of Python).

Attributes of subprocess.Popen instances
An instance p of the class Popen supplies the attributes listed in Table 15-17.
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Table 15-17. Attributes of an instance p of class Popen

args Popen’s args argument (string or sequence of strings).

pid The process ID of the subprocess.

return

code

None to indicate that the subprocess has not yet exited; otherwise, an integer: 0 for successful
termination, >0 for termination with an error code, or <0 if the subprocess was killed by a
signal.

stderr,
stdin,
stdout

When the corresponding argument to Popen was subprocess.PIPE, each of these
attributes is a file object wrapping the corresponding pipe; otherwise, each of these attributes
is None. Use the communicate method of p, rather than reading and writing to/from these
file objects, to avoid possible deadlocks.

Methods of subprocess.Popen instances
An instance p of the class Popen supplies the methods listed in Table 15-18.

Table 15-18. Methods of an instance p of class Popen

communicate p.communicate(input=None, timeout=None)

Sends the string input as the subprocess’s standard input (when input is not None),
then reads the subprocess’s standard output and error files into in-memory strings so
and se until both files are finished, and finally waits for the subprocess to terminate and
returns the pair (two-item tuple) (so, se).

poll p.poll()

Checks if the subprocess has terminated; returns p.returncode if it has; otherwise,
returns None.

wait p.wait(timeout=None)

Waits for the subprocess to terminate, then returns p.returncode. Should the
subprocess not terminate within timeout seconds, raises TimeoutExpired.

Running Other Programs with the os Module
The best way for your program to run other processes is usually with the subpro
cess module, covered in the previous section. However, the os module (introduced
in Chapter 11) also offers several lower-level ways to do this, which, in some cases,
may be simpler to use.

The simplest way to run another program is through the function os.system,
although this offers no way to control the external program. The os module also
provides a number of functions whose names start with exec. These functions
offer fine-grained control. A program run by one of the exec functions replaces
the current program (i.e., the Python interpreter) in the same process. In practice,
therefore, you use the exec functions mostly on platforms that let a process dupli‐
cate itself using fork (i.e., Unix-like platforms). os functions whose names start with
spawn and popen offer intermediate simplicity and power: they are cross-platform
and not quite as simple as system, but simple enough for many purposes.
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The exec and spawn functions run a given executable file, given the executable file’s
path, arguments to pass to it, and optionally an environment mapping. The system
and popen functions execute a command, which is a string passed to a new instance
of the platform’s default shell (typically /bin/sh on Unix, cmd.exe on Windows).
A command is a more general concept than an executable file, as it can include
shell functionality (pipes, redirection, and built-in shell commands) using the shell
syntax specific to the current platform.

os provides the functions listed in Table 15-19.

Table 15-19. Functions of the os module related to processes

execl,
execle,
execlp,
execv,
execve,
execvp,
execvpe

execl(path, *args),
execle(path, *args),
execlp(path,*args),
execv(path, args),
execve(path, args, env),
execvp(path, args),
execvpe(path, args, env)
Run the executable file (program) indicated by string path, replacing the current program
(i.e., the Python interpreter) in the current process. The distinctions encoded in the function
names (after the prefix exec) control three aspects of how the new program is found and
run:

• Does path have to be a complete path to the program’s executable file, or can
the function accept a name as the path argument and search for the executable
in several directories, as operating system shells do? execlp, execvp, and
execvpe can accept a path argument that is just a filename rather than a
complete path. In this case, the functions search for an executable file of that
name in the directories listed in os.environ['PATH']. The other functions
require path to be a complete path to the executable file.

• Does the function accept arguments for the new program as a single sequence
argument args, or as separate arguments to the function? Functions whose
names start with execv take a single argument args that is the sequence
of arguments to use for the new program. Functions whose names start with
execl take the new program’s arguments as separate arguments (execle, in
particular, uses its last argument as the environment for the new program).

• Does the function accept the new program’s environment as an explicit mapping
argument env, or implicitly use os.environ? execle, execve, and exe
cvpe take an argument env that is a mapping to use as the new program’s
environment (keys and values must be strings), while the other functions use
os.environ for this purpose.
Each exec function uses the first item in args as the name under which
the new program is told it’s running (for example, argv[0] in a C program’s
main); only args[1:] are arguments proper to the new program.
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popen popen(cmd, mode='r', buffering=-1)

Runs the string command cmd in a new process P and returns a file-like object f that
wraps a pipe to P’s standard input or from P’s standard output (depending on mode);
f uses text streams in both directions rather than raw bytes. mode and buffering
have the same meaning as for Python’s open function, covered in “Creating a File Object
with open” on page 323. When mode is 'r' (the default), f is read-only and wraps P’s
standard output. When mode is 'w', f is write-only and wraps P’s standard input.
The key difference of f from other file-like objects is the behavior of method f.close.
f.close waits for P to terminate and returns None, as close methods of file-like
objects normally do, when P’s termination is successful. However, if the operating system
associates an integer error code c with P’s termination, indicating that P’s termination was
unsuccessful, f.close returns c. On Windows systems, c is a signed integer return code
from the child process.

spawnv,
spawnve

spawnv(mode, path, args),
spawnve(mode, path, args, env)
These functions run the program indicated by path in a new process P, with the
arguments passed as sequence args. spawnve uses mapping env as P’s environment
(both keys and values must be strings), while spawnv uses os.environ for
this purpose. On Unix-like platforms only, there are other variations of os.spawn,
corresponding to variations of os.exec, but spawnv and spawnve are the only two
that also exist on Windows.
mode must be one of two attributes supplied by the os module: os.P_WAIT indicates
that the calling process waits until the new process terminates, while os.P_NOWAIT
indicates that the calling process continues executing simultaneously with the new process.
When mode is os.P_WAIT, the function returns the termination code c of P: 0 indicates
successful termination, c < 0 indicates P was killed by a signal, and c > 0 indicates
normal but unsuccessful termination. When mode is os.P_NOWAIT, the function returns
P’s process ID (or, on Windows, P’s process handle). There is no cross-platform way to
use P’s ID or handle; platform-specific ways (not covered further in this book) include
os.waitpid on Unix-like platforms, and third-party extension package pywin32 on
Windows.
For example, suppose you want your interactive program to give the user a chance to
edit a text file that your program is about to read and use. You must have previously
determined the full path to the user’s favorite text editor, such as c:\\windows\\notepad.exe
on Windows or /usr/bin/vim on a Unix-like platform. Say that this path string is bound to
the variable editor, and the path of the text file you want to let the user edit is bound to
textfile:

import os
os.spawnv(os.P_WAIT, editor, (editor, textfile))

The first item of the argument args is passed to the program being spawned as “the name
under which the program is being invoked.” Most programs don’t look at this, so you can
usually place just about any string here. Just in case the editor program does look at this
special first argument (some versions of Vim, for example, do), passing the same string
editor that is used as the second argument to os.spawnv is the simplest and most
effective approach.
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system system(cmd)

Runs the string command cmd in a new process and returns 0 when the new process
terminates successfully. When the new process terminates unsuccessfully, system returns
an integer error code not equal to 0. (Exactly what error codes may be returned depends on
the command you’re running: there’s no widely accepted standard for this.)

The mmap Module
The mmap module supplies memory-mapped file objects. An mmap object behaves
similarly to a bytestring, so you can often pass an mmap object where a bytestring is
expected. However, there are differences:

• An mmap object does not supply the methods of a string object.•

• An mmap object is mutable, like a bytearray, while bytes objects are•
immutable.

• An mmap object also corresponds to an open file, and behaves polymorphically•
to a Python file object (as covered in “File-Like Objects and Polymorphism” on
page 327).

An mmap object m can be indexed or sliced, yielding bytestrings. Since m is mutable,
you can also assign to an indexing or slicing of m. However, when you assign to
a slice of m, the righthand side of the assignment statement must be a bytestring
of exactly the same length as the slice you’re assigning to. Therefore, many of the
useful tricks available with list slice assignment (covered in “Modifying a list” on
page 66) do not apply to mmap slice assignment.

The mmap module supplies a factory function, slightly different on Unix-like systems
and on Windows:

mmap Windows: mmap(filedesc, length, tagname='', access=None, offset=None)
Unix: mmap(filedesc, length, flags=MAP_SHARED, prot=PROT_READ|
PROT_WRITE, access=None, offset=0)

Creates and returns an mmap object m that maps into memory the first length bytes of the file
indicated by file descriptor filedesc. filedesc must be a file descriptor opened for both reading
and writing, except, on Unix-like platforms, when the argument prot requests only reading or only
writing. (File descriptors are covered in “File descriptor operations” on page 351.) To get an mmap
object m for a Python file object f, use m=mmap.mmap(f.fileno(), length). filedesc can
be -1 to map anonymous memory.
On Windows, all memory mappings are readable and writable, and shared among processes, so all
processes with a memory mapping on a file can see changes made by other processes. On Windows
only, you can pass a string tagname to give an explicit tag name for the memory mapping. This tag
name lets you have several separate memory mappings on the same file, but this is rarely necessary.
Calling mmap with only two arguments has the advantage of keeping your code portable between
Windows and Unix-like platforms.
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mmap

(cont.)
On Unix-like platforms only, you can pass mmap.MAP_PRIVATE as flags to get a mapping that
is private to your process and copy-on-write. mmap.MAP_SHARED, the default, gets a mapping that
is shared with other processes so that all processes mapping the file can see changes made by one
process (the same as on Windows). You can pass mmap.PROT_READ as the prot argument to get
a mapping that you can only read, not write. Passing mmap.PROT_WRITE gets a mapping that you
can only write, not read. The default, the bitwise OR mmap.PROT_READ|mmap.PROT_WRITE,
gets a mapping you can both read and write.
You can pass the named argument access instead of flags and prot (it’s an error to pass
both access and either or both of the other two arguments). The value for access can be
one of ACCESS_READ (read-only), ACCESS_WRITE (write-through, the default on Windows), or
ACCESS_COPY (copy-on-write).
You can pass the named argument offset to start the mapping after the beginning of the file;
offset must be an int >= 0, a multiple of ALLOCATIONGRANULARITY (or, on Unix, of
PAGESIZE).

Methods of mmap Objects
An mmap object m supplies the methods detailed in Table 15-20.

Table 15-20. Methods of an instance m of mmap

close m.close()

Closes m’s file.

find m.find(sub, start=0, end=None)

Returns the lowest i >= start such that sub == m[i:i+len(sub)] (and
i+len(sub)-1 <= end, when you pass end). If no such i exists, m.find returns -1.
This is the same behavior as the find method of str, covered in Table 9-1.

flush m.flush([offset, n])
Ensures that all changes made to m exist in m’s file. Until you call m.flush, it’s unsure if
the file reflects the current state of m. You can pass a starting byte offset offset and a
byte count n to limit the flushing effect’s guarantee to a slice of m. Pass both arguments, or
neither: it’s an error to call m.flush with just one argument.

move m.move(dstoff, srcoff, n)
Like the slice assignment m[dstoff:dstoff+n] = m[srcoff:srcoff+n], but
potentially faster. The source and destination slices can overlap. Apart from such potential
overlap, move does not affect the source slice (i.e., the move method copies bytes but does
not move them, despite the method’s name).

read m.read(n)

Reads and returns a byte string s containing up to n bytes starting from m’s file pointer, then
advances m’s file pointer by len(s). If there are fewer than n bytes between m’s file pointer
and m’s length, returns the bytes available. In particular, if m’s file pointer is at the end of m,
returns the empty bytestring b''.
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read_byte m.read_byte()

Returns a byte string of length 1 containing the byte at m’s file pointer, then advances m’s
file pointer by 1. m.read_byte() is similar to m.read(1). However, if m’s file pointer
is at the end of m, m.read(1) returns the empty string b'' and doesn’t advance, while
m.read_byte() raises a ValueError exception.

readline m.readline()

Reads and returns, as a bytestring, one line from m’s file, from m’s current file pointer up to
the next '\n', included (or up to the end of m if there is no '\n'), then advances m’s file
pointer to point just past the bytes just read. If m’s file pointer is at the end of m, readline
returns the empty string b''.

resize m.resize(n)

Changes the length of m so that len(m) becomes n. Does not affect the size of m’s file. m’s
length and the file’s size are independent. To set m’s length to be equal to the file’s size, call
m.resize(m.size()). If m’s length is larger than the file’s size, m is padded with null
bytes (\x00).

rfind rfind(sub, start=0, end=None)

Returns the highest i >= start such that sub == m[i:i+len(sub)] (and
i+len(sub)-1 <= end, when you pass end). If no such i exists, m.rfind returns
-1. This is the same as the rfind method of string objects, covered in Table 9-1.

seek m.seek(pos, how=0)
Sets m’s file pointer to the integer byte offset pos, relative to the position indicated by how:

0 or os.SEEK_SET
Offset is relative to start of m

1 or os.SEEK_CUR
Offset is relative to m’s current file pointer

2 or os.SEEK_END
Offset is relative to end of m

A seek trying to set m’s file pointer to a negative offset, or to an offset beyond m’s length,
raises a ValueError exception.

size m.size()

Returns the length (number of bytes) of m’s file (not the length of m itself). To get the length
of m, use len(m).

tell m.tell()

Returns the current position of m’s file pointer, a byte offset within m’s file.

write m.write(b)

Writes the bytes in bytestring b into m at the current position of m’s file pointer, overwriting
the bytes that were there, and then advances m’s file pointer by len(b). If there aren’t
at least len(b) bytes between m’s file pointer and the length of m, write raises a
ValueError exception.

The mmap Module | 483

Thread
s and

P
ro

cesses



write_byte m.write_byte(byte)

Writes byte, which must be an int, into mapping m at the current position of m’s
file pointer, overwriting the byte that was there, and then advances m’s file pointer
by 1. m.write_byte(x) is similar to m.write(x.to_bytes(1, 'little')).
However, if m’s file pointer is at the end of m, m.write_byte(x) silently does nothing,
while m.write(x.to_bytes(1, 'little')) raises a ValueError exception.
Note that this is the reverse of the relationship between read and read_byte at end-of-
file: write and read_byte may raise ValueError, while read and write_byte
never do.

Using mmap Objects for IPC
Processes communicate using mmap pretty much the same way they communicate
using files: one process writes data, and another process later reads the same data
back. Since an mmap object has an underlying file, you can have some processes
doing I/O on the file (as covered in “The io Module” on page 322), while others use
mmap on the same file. Choose between mmap and I/O on file objects on the basis
of convenience: functionality is the same, performance is roughly equivalent. For
example, here is a simple program that repeatedly uses file I/O to make the contents
of a file equal to the last line interactively typed by the user:

fileob = open('xxx','wb')
while True:
    data = input('Enter some text:')
    fileob.seek(0)
    fileob.write(data.encode())
    fileob.truncate()
    fileob.flush()

And here is another simple program that, when run in the same directory as the
former, uses mmap (and the time.sleep function, covered in Table 13-2) to check
every second for changes to the file and print out the file’s new contents, if there
have been any changes:

import mmap, os, time
mx = mmap.mmap(os.open('xxx', os.O_RDWR), 1)
last = None
while True:
    mx.resize(mx.size())
    data = mx[:]
    if data != last:
        print(data)
        last = data
    time.sleep(1)
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16
Numeric Processing

You can perform some numeric computations with operators (covered in “Numeric
Operations” on page 60) and built-in functions (covered in “Built-in Functions”
on page 251). Python also provides modules that support additional numeric com‐
putations, covered in this chapter: math and cmath, statistics, operator, random
and secrets, fractions, and decimal. Numeric processing often requires, more
specifically, the processing of arrays of numbers; this topic is covered in “Array
Processing” on page 502, focusing on the standard library module array and popu‐
lar third-party extension NumPy. Finally, “Additional numeric packages” on page
510 lists several additional numeric processing packages produced by the Python
community. Most examples in this chapter assume you’ve imported the appropriate
module; import statements are only included where the situation might be unclear.

Floating-Point Values
Python represents real numeric values (that is, those that are not integers) using
variables of type float. Unlike integers, computers can rarely represent floats
exactly, due to their internal implementation as a fixed-size binary integer signifi‐
cand (often incorrectly called “mantissa”) and a fixed-size binary integer exponent.
floats have several limitations (some of which can lead to unexpected results).

For most everyday applications, floats are sufficient for arithmetic, but they are
limited in the number of decimal places they can represent:

>>> f = 1.1 + 2.2 - 3.3  # f should be equal to 0
>>> f

4.440892098500626e-16
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They are also limited in the range of integer values they can accurately store (in
the sense of being able to distinguish one from the next largest or smallest integer
value):

>>> f = 2 ** 53
>>> f

9007199254740992

>>> f + 1

9007199254740993    # integer arithmetic is not bounded

>>> f + 1.0

9007199254740992.0  # float conversion loses integer precision at 2**53

Always keep in mind that floats are not entirely precise, due to their internal repre‐
sentation in the computer. The same consideration applies to complex numbers.

Don’t Use == Between Floating-Point or Complex Numbers
Given that floating-point numbers and operations only
approximate the behavior of mathematical “real numbers,” it
seldom makes sense to check two floats x and y for exact
equality. Tiny variations in how each was computed can easily
result in unexpected differences.

For testing floating-point or complex numbers for equality, use the function
isclose exported by the built-in module math. The following code illustrates why:

>>> import math
>>> f = 1.1 + 2.2 - 3.3  # f intuitively equal to 0
>>> f == 0

False

>>> f

4.440892098500626e-16

>>> # default tolerance fine for this comparison
>>> math.isclose(-1, f-1)

True

For some values, you may have to set the tolerance value explicitly (this is always
necessary when you’re comparing with 0):

>>> # near-0 comparison with default tolerances
>>> math.isclose(0, f)

False

>>> # must use abs_tol for comparison with 0
>>> math.isclose(0, f, abs_tol=1e-15)

True
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You can also use isclose for safe looping.

Don’t Use a float as a Loop Control Variable
A common error is to use a floating-point value as the control
variable of a loop, assuming that it will eventually equal some
ending value, such as 0. Instead, it most likely will end up
looping forever.

The following loop, expected to loop five times and then end, will in fact loop
forever:

>>> f = 1
>>> while f != 0:
...     f -= 0.2 

Even though f started as an int, it’s now a float. This code shows why:

>>> 1-0.2-0.2-0.2-0.2-0.2  # should be 0, but...

5.551115123125783e-17

Even using the inequality operator > results in incorrect behavior, looping six times
instead of five (since the residual float value is still greater than 0):

>>> f = 1
>>> count = 0
>>> while f > 0:
...     count += 1
...     f -= 0.2
>>> print(count)

6   # one loop too many!

If instead you use math.isclose for comparing f with 0, the for loop repeats the
correct number of times:

>>> f = 1
>>> count = 0
>>> while not math.isclose(0,f,abs_tol=1e-15):
...     count += 1
...     f -= 0.2
>>> print(count)

5   # just right this time!

In general, try to use an int for a loop’s control variable, rather than a float.

Finally, mathematical operations that result in very large floats will often cause an
OverflowError, or Python may return them as inf (infinity). The maximum float
value usable on your computer is sys.float_info.max: on 64-bit computers, it’s
1.7976931348623157e+308. This may cause unexpected results when doing math
using very large numbers. When you need to work with very large numbers, we
recommend using the decimal module or third-party gmpy instead.
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The math and cmath Modules
The math module supplies mathematical functions for working with floating-point
numbers; the cmath module supplies equivalent functions for complex numbers.
For example, math.sqrt(-1) raises an exception, but cmath.sqrt(-1) returns 1j.

Just like for any other module, the cleanest, most readable way to use these is to
have, for example, import math at the top of your code, and explicitly call, say,
math.sqrt afterward. However, if your code includes a large number of calls to the
modules’ well-known mathematical functions, you might (though it may lose some
clarity and readability) either use from math import *, or use from math import
sqrt, and afterward just call sqrt.

Each module exposes three float attributes bound to the values of fundamental
mathematical constants, e, pi, and tau, and a variety of functions, including those
shown in Table 16-1. The math and cmath modules are not fully symmetric, so for
each method the table indicates whether it is in math, cmath, or both. All examples
assume you have imported the appropriate module.

Table 16-1. Methods and attributes of the math and cmath modules

  math cmath

acos, asin,
atan, cos,
sin, tan

acos(x), etc.
Return the trigonometric functions arccosine, arcsine, arctangent, cosine,
sine, or tangent, respectively, of x, given in radians.

✓ ✓

acosh, asinh,
atanh, cosh,
sinh, tanh

acosh(x), etc.
Return the arc hyperbolic cosine, arc hyperbolic sine, arc hyperbolic
tangent, hyperbolic cosine, hyperbolic sine, or hyperbolic tangent,
respectively, of x, given in radians.

✓ ✓

atan2 atan2(y, x)

Like atan(y/x), except that atan2 properly takes into account the
signs of both arguments. For example:

>>> math.atan(-1./-1.)
0.7853981633974483

>>> math.atan2(-1., -1.)
-2.356194490192345

When x equals 0, atan2 returns π/2, while dividing by x would raise
ZeroDivisionError.

✓  

cbrt cbrt(x)

3.11+  Returns the cube root of x.
✓  

ceil ceil(x)

Returns float(i), where i is the smallest integer such that i>=x.
✓  
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  math cmath

comb comb(n, k)
3.8+  Returns the number of combinations of n items taken k items at

a time, regardless of order. When counting the number of combinations
taken from three items A, B, and C, two at a time, comb(3, 2)
returns 3 because, for example, A-B and B-A are considered the same
combination (contrast this with perm, later in this table). Raises Val
ueError when k or n is negative; raises TypeError when k or n is
not an int. When k>n, just returns 0, raising no exceptions.

✓  

copysign copysign(x, y)
Returns the absolute value of x with the sign of y.

✓  

degrees degrees(x)

Returns the degree measure of the angle x given in radians.
✓  

dist dist(pt0, pt1)
3.8+  Returns the Euclidean distance between two n-dimensional

points, where each point is represented as a sequence of values
(coordinates). Raises ValueError if pt0 and pt1 are sequences of
different lengths.

✓  

e The mathematical constant e (2.718281828459045). ✓ ✓
erf erf(x)

Returns the error function of x as used in statistical calculations.
✓  

erfc erfc(x)

Returns the complementary error function at x, defined as 1.0 -
erf(x).

✓  

exp exp(x)

Returns eˣ.
✓ ✓

exp2 exp2(x)

3.11+  Returns 2ˣ.
✓  

expm1 expm1(x)

Returns eˣ - 1. Inverse of log1p.
✓  

fabs fabs(x)

Returns the absolute value of x. Always returns a float, even if x is an
int (unlike the built-in abs function).

✓  

factorial factorial(x)

Returns the factorial of x. Raises ValueError when x is negative, and
TypeError when x is not integral.

✓  

floor floor(x)

Returns float(i), where i is the greatest integer such that i<=x.
✓  

fmod fmod(x, y)

Returns the float r, with the same sign as x, such that r==x-n*y for
some integer n, and abs(r)<abs(y). Like x%y, except that, when x
and y differ in sign, x%y has the same sign as y, not the same sign as x.

✓  
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  math cmath

frexp frexp(x)

Returns a pair (m, e) where m is a floating-point number and e is an
integer such that x==m*(2**e) and 0.5<=abs(m)<1,a except that
frexp(0) returns (0.0, 0).

✓  

fsum fsum(iterable)

Returns the floating-point sum of the values in iterable to greater
precision than the sum built-in function.

✓  

gamma gamma(x)

Returns the Gamma function evaluated at x.
✓  

gcd gcd(x, y)

Returns the greatest common divisor of x and y. When x and y are both
zero, returns 0. ( 3.9+  gcd can accept any number of values; gcd()
without arguments returns 0.)

✓  

hypot hypot(x, y)

Returns sqrt(x*x+y*y). ( 3.8+  hypot can accept any number of
values, to compute a hypotenuse length in n dimensions.)

✓  

inf A floating-point positive infinity, like float('inf'). ✓ ✓
infj A complex imaginary infinity, equal to complex(0,

float('inf')).
 ✓

isclose isclose(x, y, rel_tol=1e-09, abs_tol=0.0) Returns
True when x and y are approximately equal, within relative tolerance
rel_tol, with minimum absolute tolerance of abs_tol; otherwise,
returns False. Default is rel_tol within nine decimal digits.
rel_tol must be greater than 0. abs_tol is used for comparisons
near zero: it must be at least 0.0. NaN is not considered close to any
value (including NaN itself); each of -inf and inf is only considered
close to itself. Except for behavior at +/– inf, isclose is like:

abs(x-y) <= max(rel_tol*max(abs(x), 
                abs(y)),abs_tol)

✓ ✓

isfinite isfinite(x)

Returns True when x (in cmath, both the real and imaginary parts of
x) is neither infinity nor NaN; otherwise, returns False.

✓ ✓

isinf isinf(x)

Returns True when x (in cmath, either the real or imaginary part of x,
or both) is positive or negative infinity; otherwise, returns False.

✓ ✓

isnan isnan(x)

Returns True when x (in cmath, either the real or imaginary part of x,
or both) is NaN; otherwise, returns False.

✓ ✓

isqrt isqrt(x)

3.8+  Returns int(sqrt(x)).
✓  
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  math cmath

lcm lcm(x, ...)

3.9+  Returns the least common multiple of the given ints. If not all
values are ints, raises TypeError.

✓  

ldexp ldexp(x, i)

Returns x*(2**i) (i must be an int; when i is a float, ldexp
raises TypeError). Inverse of frexp.

✓  

lgamma lgamma(x)

Returns the natural logarithm of the absolute value of the Gamma
function evaluated at x.

✓  

log log(x)

Returns the natural logarithm of x.
✓ ✓

log10 log10(x)

Returns the base-10 logarithm of x.
✓ ✓

log1p log1p(x)

Returns the natural logarithm of 1+x. Inverse of expm1.
✓  

log2 log2(x)

Returns the base-2 logarithm of x.
✓  

modf modf(x)

Returns a pair (f, i) with the fractional and integer parts of x,
meaning two floats with the same sign as x such that i==int(i)
and x==f+i.

✓  

nan nan

A floating-point “Not a Number” (NaN) value, like float('nan') or
complex('nan').

✓ ✓

nanj A complex number with a 0.0 real part and floating-point “Not a
Number” (NaN) imaginary part.

 ✓

nextafter nextafter(a, b)
3.9+  Returns the next higher or lower float value from a in the

direction of b.

✓  

perm perm(n, k)
3.8+  Returns the number of permutations of n items taken k items

at a time, where selections of the same items but in differing order
are counted separately. When counting the number of permutations of
three items A, B, and C, taken two at a time, perm(3, 2) returns
6, because, for example, A-B and B-A are considered to be different
permutations (contrast this with comb, earlier in this table). Raises
ValueError when k or n is negative; raises TypeError when k or
n is not an int.

✓  

pi The mathematical constant π, 3.141592653589793. ✓ ✓
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  math cmath

phase phase(x)

Returns the phase of x, a float in the range (–π, π). Like
math.atan2(x.imag, x.real). See “Conversions to and from
polar coordinates” in the online docs for details.

 ✓

polar polar(x)

Returns the polar coordinate representation of x, as a pair (r, phi)
where r is the modulus of x and phi is the phase of x. Like (abs(x),
cmath.phase(x)). See “Conversions to and from polar coordinates”
in the online docs for details.

 ✓

pow pow(x, y)

Returns float(x)**float(y). For large int values of x and y,
to avoid OverflowError exceptions, use x**y or the pow built-in
function instead (which does not convert to floats).

✓  

prod prod(seq, start=1)

3.8+  Returns the product of all values in the sequence, beginning with
the given start value, which defaults to 1. If seq is empty, returns the
start value.

✓  

radians radians(x)

Returns the radian measure of the angle x given in degrees.
✓  

rect rect(r, phi)
Returns the complex value representing the polar coordinates (r,
phi) converted to rectangular coordinates as (x + yj).

 ✓

remainder remainder(x, y)
Returns the signed remainder from dividing x/y (the result may be
negative if x or y is negative).

✓  

sqrt sqrt(x)

Returns the square root of x.
✓ ✓

tau The mathematical constant τ = 2π, or 6.283185307179586. ✓ ✓
trunc trunc(x)

Returns x truncated to an int.
✓  

ulp ulp(x)

3.9+  Returns the least significant bit of floating-point value x.
For positive values, equals math.nextafter(x, x+1) - x. For
negative values, equals ulp(-x). If x is NaN or inf, returns x. ulp
stands for unit of least precision.

✓  

Formally, m is the significand, and e is the exponent. Used to render a cross-platform portable
representation of a floating-point value.
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The statistics Module
The statistics module supplies the class NormalDist to perform distribution
analytics, and the functions listed in Table 16-2 to compute common statistics.

Table 16-2. Functions of the statistics module (with functions added in
versions 3.8 and 3.10)

 3.8+ 3.10+

harmonic_mean

mean

median

median_grouped

median_high

median_low

mode

pstdev

pvariance

stdev

variance

fmean

geometric_mean

multimode

quantiles

NormalDist

correlation

covariance

linear_regression

The online docs contain detailed information on the signatures and use of these
functions.

The operator Module
The operator module supplies functions that are equivalent to Python’s operators.
These functions are handy in cases where callables must be stored, passed as argu‐
ments, or returned as function results. The functions in operator have the same
names as the corresponding special methods (covered in “Special Methods” on
page 141). Each function is available with two names, with and without “dunder”
(leading and trailing double underscores): for example, both operator.add(a, b)
and operator.__add__(a, b) return a + b.

Matrix multiplication support has been added for the infix operator @, but you must
implement it by defining your own __matmul__, __rmatmul__, and/or __imatmul__
methods; NumPy currently supports @ (but, as of this writing, not yet @=) for matrix
multiplication.

Table 16-3 lists some of the functions supplied by the operator module. For
detailed information on these functions and their use, see the online docs.
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Table 16-3. Functions supplied by the operator module

Function Signature Behaves like

abs abs(a) abs(a)

add add(a, b) a + b

and_ and_(a, b) a & b

concat concat(a, b) a + b

contains contains(a, b) b in a

countOf countOf(a, b) a.count(b)

delitem delitem(a, b) del a[b]

delslice delslice(a, b, c) del a[b:c]

eq eq(a, b) a == b

floordiv floordiv(a, b) a // b

ge ge(a, b) a >= b

getitem getitem(a, b) a[b]

getslice getslice(a, b, c) a[b:c]

gt gt(a, b) a > b

index index(a) a.__index__()

indexOf indexOf(a, b) a.index(b)

invert, inv invert(a), inv(a) ~a

is_ is_(a, b) a is b

is_not is_not(a, b) a is not b

le le(a, b) a <= b

lshift lshift(a, b) a << b

lt lt(a, b) a < b

matmul matmul(m1, m2) m1 @ m2

mod mod(a, b) a % b

mul mul(a, b) a * b

ne ne(a, b) a != b

neg neg(a) -a

not_ not_(a) not a

or_ or_(a, b) a | b

pos pos(a) +a

pow pow(a, b) a ** b

repeat repeat(a, b) a * b
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Function Signature Behaves like

rshift rshift(a, b) a >> b

setitem setitem(a, b, c) a[b] = c

setslice setslice(a, b, c, d) a[b:c] = d

sub sub(a, b) a - b

truediv truediv(a, b) a/b # no truncation

truth truth(a) bool(a), not not a

xor xor(a, b) a ^ b

The operator module also supplies additional higher-order functions, listed in
Table 16-4. Three of these functions, attrgetter, itemgetter, and methodcaller,
return functions suitable for passing as named argument key to the sort method of
lists, the sorted, min, and max built-in functions, and several functions in standard
library modules, such as heapq and itertools (discussed in Chapter 8).

Table 16-4. Higher-order functions supplied by the operator module

attrgetter attrgetter(attr),
attrgetter(*attrs)

Returns a callable f such that f(o) is the same as getattr(o, attr). The string
attr can include dots (.), in which case the callable result of attrgetter calls
getattr repeatedly. For example, operator.attrgetter('a.b') is equivalent
to lambda o: getattr(getattr(o, 'a'), 'b').
When you call attrgetter with multiple arguments, the resulting callable extracts each
attribute thus named and returns the resulting tuple of values.

itemgetter itemgetter(key),
itemgetter(*keys)

Returns a callable f such that f(o) is the same as getitem(o, key).
When you call itemgetter with multiple arguments, the resulting callable extracts each
item thus keyed and returns the resulting tuple of values.
For example, say that L is a list of lists, with each sublist at least three items long: you
want to sort L, in place, based on the third item of each sublist, with sublists having equal
third items sorted by their first items. The simplest way to do this is:

L.sort(key=operator.itemgetter(2, 0))

length_hint length_hint(iterable, default=0)

Used to try to preallocate storage for items in iterable. Calls object iterable’s
__len__ method to try to get an exact length. If __len__ is not implemented,
then Python tries calling iterable’s __length_hint__ method. If this is also not
implemented, length_hint returns the given default. Any mistake in using this
“hint” helper may result in a performance issue, but not in silent, incorrect behavior.

method

caller

methodcaller(methodname, args...)

Returns a callable f such that f(o) is the same as o.methodname(args, ...).
The optional args may be given as positional or named arguments.
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Random and Pseudorandom Numbers
The random module of the standard library generates pseudorandom numbers with
various distributions. The underlying uniform pseudorandom generator uses the
powerful, popular Mersenne Twister algorithm, with a (huge!) period of length
219937-1.

The random Module
All functions of the random module are methods of one hidden global instance
of the class random.Random. You can instantiate Random explicitly to get multiple
generators that do not share state. Explicit instantiation is advisable if you require
random numbers in multiple threads (threads are covered in Chapter 15). Alterna‐
tively, instantiate SystemRandom if you require higher-quality random numbers (see
the following section for details). Table 16-5 documents the most frequently used
functions exposed by the random module.

Table 16-5. Useful functions supplied by the random module

choice choice(seq)

Returns a random item from nonempty sequence seq.

choices choices(seq, weights=None, *, cum_weights=None, k=1)
Returns k elements from nonempty sequence seq, with replacement. By default, elements
are chosen with equal probability. If the optional weights, or the named argument
cum_weights, is passed (as a list of floats or ints), then the respective choices are
weighted by that amount during choosing. The cum_weights argument accepts a list of
floats or ints as would be returned by itertools.accumulate(weights); e.g.,
if weights for a seq containing three items were [1, 2, 1], then the corresponding
cum_weights would be [1, 3, 4]. (Only one of weights or cum_weights may be
specified, and must be the same length as seq. If used, cum_weights and k must be given
as named arguments.)

getrand

bits

getrandbits(k)

Returns an int >= 0 with k random bits, like randrange(2 ** k) (but faster, and with
no problems for large k).

getstate getstate()

Returns a hashable and pickleable object S representing the current state of the generator. You
can later pass S to the function setstate to restore the generator’s state.

jumpahead jumpahead(n)

Advances the generator state as if n random numbers had been generated. This is faster than
generating and ignoring n random numbers.

randbytes randbytes(k)

3.9+  Generates k random bytes. To generate bytes for secure or cryptographic applications,
use secrets.randbits(k * 8), then unpack the int it returns into k bytes, using
int.to_bytes(k, 'big').
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randint randint(start, stop)
Returns a random int i from a uniform distribution such that start <= i <= stop.
Both endpoints are included: this is quite unnatural in Python, so you would normally prefer
randrange.

random random()

Returns a random float r from a uniform distribution, 0 <= r < 1.

randrange randrange([start,]stop[,step])

Like choice(range(start, stop, step)), but much faster.

sample sample(seq, k)
Returns a new list whose k items are unique items randomly drawn from seq. The list is in
random order, so that any slice of it is an equally valid random sample. seq may contain
duplicate items. In this case, each occurrence of an item is a candidate for selection in the
sample, and the sample may also contain such duplicates.

seed seed(x=None)

Initializes the generator state. x can be any int, float, str, bytes, or bytearray.
When x is None, and when the module random is first loaded, seed uses the current
system time (or some platform-specific source of randomness, if any) to get a seed. x is
normally an int up to 2256, a float, or a str, bytes, or bytearray up to 32 bytes in
size.a Larger x values are accepted, but may produce the same generator state as smaller ones.
seed is useful in simulation or modeling for repeatable runs, or to write tests that require a
reproducible sequence of random values.

setstate setstate(S)

Restores the generator state. S must be the result of a previous call to getstate (such a call
may have occurred in another program, or in a previous run of this program, as long as object S
has correctly been transmitted, or saved and restored).

shuffle shuffle(seq)

Shuffles, in place, mutable sequence seq.

uniform uniform(a, b)

Returns a random floating-point number r from a uniform distribution such that a <= r < b.

As defined in the Python language specification. Specific Python implementations may
support larger seed values for generating unique random number sequences.

The random module also supplies several other functions that generate pseudo‐
random floating-point numbers from other probability distributions (Beta, Gamma,
exponential, Gauss, Pareto, etc.) by internally calling random.random as their source
of randomness. See the online docs for details.

Crypto-Quality Random Numbers: The secrets Module
Pseudorandom numbers provided by the random module, while sufficient for sim‐
ulation and modeling, are not of cryptographic quality. To get random numbers
and sequences for use in security and cryptography applications, use the functions
defined in the secrets module. These functions use the random.SystemRandom
class, which in turn calls os.urandom. os.urandom returns random bytes, read from
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physical sources of random bits such as /dev/urandom on older Linux releases, or
the getrandom() syscall on Linux 3.17 and above. On Windows, os.urandom uses
cryptographical-strength sources such as the CryptGenRandom API. If no suitable
source exists on the current system, os.urandom raises NotImplementedError.

secrets Functions Cannot Be Run with a Known Seed
Unlike the random module, which includes a seed function to
support generation of repeatable sequences of random values,
the secrets module has no such capability. To write tests
dependent on specific sequences of random values generated
by the secrets module functions, developers must emulate
those functions with their own mock versions.

The secrets module supplies the functions listed in Table 16-6.

Table 16-6. Functions of the secrets module

choice choice(seq)

Returns a randomly selected item from nonempty sequence seq.

randbelow randbelow(n)

Returns a random int x in the range 0 <= x < n.

randbits randbits(k)

Returns an int with k random bits.

token_bytes token_bytes(n)

Returns a bytes object of n random bytes. When you omit n, uses a default value,
usually 32.

token_hex token_hex(n)

Returns a string of hexadecimal characters from n random bytes, with two characters per
byte. When you omit n, uses a default value, usually 32.

token_url

safe

token_urlsafe(n)

Returns a string of Base64-encoded characters from n random bytes; the resulting
string’s length is approximately 1.3 times n. When you omit n, uses a default value,
usually 32.

Additional recipes and best cryptographic practices are provided in Python’s online
documentation.

Alternative sources of physically random numbers are available online, e.g. from
Fourmilab.

The fractions Module
The fractions module supplies a rational number class, Fraction, whose instances
you can construct from a pair of integers, another rational number, or a str.
Fraction class instances have read-only attributes numerator and denominator.
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You can pass a pair of (optionally signed) ints as the numerator and denominator. A
denominator of 0 raises ZeroDivisionError. A string can be of the form '3.14', or
can include an optionally signed numerator, a slash (/) , and a denominator, such as
'-22/7'.

Fraction Reduces to Lowest Terms
Fraction reduces the fraction to the lowest terms—for exam‐
ple, f = Fraction(226, 452) builds an instance f equal to
one built by Fraction(1, 2). The specific numerator and
denominator originally passed to Fraction are not recovera‐
ble from the resulting instance.

Fraction also supports construction from decimal.Decimal instances, and from
floats (the latter may not provide the results you expect, given floats’ bounded
precision). Here are some examples of using Fraction with various inputs.

>>> from fractions import Fraction
>>> from decimal import Decimal
>>> Fraction(1,10)

Fraction(1, 10)

>>> Fraction(Decimal('0.1'))

Fraction(1, 10)

>>> Fraction('0.1')

Fraction(1, 10)

>>> Fraction('1/10')

Fraction(1, 10)

>>> Fraction(0.1)

Fraction(3602879701896397, 36028797018963968)

>>> Fraction(-1, 10)

Fraction(-1, 10)

>>> Fraction(-1,-10)

Fraction(1, 10)

The Fraction class supplies methods including limit_denominator, which
allows you to create a rational approximation of a float—for example,
Fraction(0.0999).limit_denominator(10) returns Fraction(1, 10). Fraction
instances are immutable and can be keys in dicts or members of sets, as well as
being usable in arithmetic operations with other numbers. See the online docs for
complete coverage.

The fractions module also supplies a function gcd that’s just like math.gcd, cov‐
ered in Table 16-1.
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1 Superseded, technically, by the more recent, very similar standard 754-2008, but practically still
useful!

The decimal Module
A Python float is a binary floating-point number, normally according to the
standard known as IEEE 754 implemented in hardware in modern computers. An
excellent, concise, practical introduction to floating-point arithmetic and its issues
can be found in David Goldberg’s paper “What Every Computer Scientist Should
Know About Floating-Point Arithmetic”. A Python-focused essay on the same
issues is part of the tutorial in the Python docs; another excellent summary (not
focused on Python), Bruce Bush’s “The Perils of Floating Point,” is also available
online.

Often, particularly for money-related computations, you may prefer to use decimal
floating-point numbers. Python supplies an implementation of the standard known
as IEEE 854,1 for base 10, in the standard library module decimal. The module has
excellent documentation: there, you can find complete reference material, pointers
to the applicable standards, a tutorial, and advocacy for decimal. Here, we cover
only a small subset of decimal’s functionality, the most frequently used parts of the
module.

The decimal module supplies a Decimal class (whose immutable instances are
decimal numbers), exception classes, and classes and functions to deal with the
arithmetic context, which specifies such things as precision, rounding, and which
computational anomalies (such as division by zero, overflow, underflow, and so on)
raise exceptions when they occur. In the default context, precision is 28 decimal
digits, rounding is “half-even” (round results to the closest representable decimal
number; when a result is exactly halfway between two such numbers, round to the
one whose last digit is even), and the anomalies that raise exceptions are invalid
operation, division by zero, and overflow.

To build a decimal number, call Decimal with one argument: an int, float, str, or
tuple. If you start with a float, Python converts it losslessly to the exact decimal
equivalent (which may require 53 digits or more of precision):

>>> from decimal import Decimal
>>> df = Decimal(0.1)
>>> df

Decimal('0.1000000000000000055511151231257827021181583404541015625')

If this is not the behavior you want, you can pass the float as a str; for example:

>>> ds = Decimal(str(0.1))  # or, more directly, Decimal('0.1')
>>> ds

Decimal('0.1')
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You can easily write a factory function for ease of interactive experimentation with
decimal:

def dfs(x):
    return Decimal(str(x))

Now dfs(0.1) is just the same thing as Decimal(str(0.1)), or Decimal('0.1'),
but more concise and handier to write.

Alternatively, you may use the quantize method of Decimal to construct a new
decimal by rounding a float to the number of significant digits you specify:

>>> dq = Decimal(0.1).quantize(Decimal('.00'))
>>> dq

Decimal('0.10')

If you start with a tuple, you need to provide three arguments: the sign (0 for
positive, 1 for negative), a tuple of digits, and the integer exponent:

>>> pidigits = (3, 1, 4, 1, 5)
>>> Decimal((1, pidigits, -4))

Decimal('-3.1415')

Once you have instances of Decimal, you can compare them, including comparison
with floats (use math.isclose for this); pickle and unpickle them; and use them
as keys in dictionaries and as members of sets. You may also perform arithmetic
among them, and with integers, but not with floats (to avoid unexpected loss of
precision in the results), as shown here:

>>> import math
>>> from decimal import Decimal
>>> a = 1.1
>>> d = Decimal('1.1')
>>> a == d

False

>>> math.isclose(a, d)

True

>>> a + d

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'float' and 
'decimal.Decimal'

>>> d + Decimal(a) # new decimal constructed from 'a'

Decimal('2.200000000000000088817841970')

>>> d + Decimal(str(a)) # convert 'a' to decimal with str(a)

Decimal('2.20')
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The online docs include useful recipes for monetary formatting, some trigonomet‐
ric functions, and a list of FAQs.

Array Processing
You can represent what most languages call arrays, or vectors, with lists (covered
in “Lists” on page 47), as well as with the array standard library module (covered
in the following subsection). You can manipulate arrays with loops, indexing and
slicing, list comprehensions, iterators, generators, and genexps (all covered in Chap‐
ter 3); built-ins such as map, reduce, and filter (all covered in “Built-in Functions”
on page 251); and standard library modules such as itertools (covered in “The
itertools Module” on page 275). If you only need a lightweight, one-dimensional
array of instances of a simple type, stick with array. However, to process large
arrays of numbers, such functions may be slower and less convenient than third-
party extensions such as NumPy and SciPy (covered in “Extensions for Numeric
Array Computation” on page 504). When you’re doing data analysis and modeling,
Pandas, which is built on top of NumPy (but not discussed in this book), might be
most suitable.

The array Module
The array module supplies a type, also called array, whose instances are mutable
sequences, like lists. An array a is a one-dimensional sequence whose items can
be only characters, or only numbers of one specific numeric type, fixed when you
create a. The constructor for array is:

array class array(typecode, init='', /)
Creates and returns an array object a with the given typecode. init can be a string (a
bytestring, except for typecode 'u') whose length is a multiple of itemsize: the string’s bytes,
interpreted as machine values, directly initialize a’s items. Alternatively, init can be an iterable (of
characters when typecode is 'u', otherwise of numbers): each item of the iterable initializes one
item of a.

array.array’s advantage is that, compared to a list, it can save memory when you
need to hold a sequence of objects all of the same (numeric or character) type. An
array object a has a one-character, read-only attribute a.typecode, set on creation,
which specifies the type of a’s items. Table 16-7 shows the possible typecode values
for array.

Table 16-7. Type codes for the array module

typecode C type Python type Minimum size

'b' char int 1 byte

'B' unsigned char int 1 byte

'u' unicode char str (length 1) See note
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typecode C type Python type Minimum size

'h' short int 2 bytes

'H' unsigned short int 2 bytes

'i' int int 2 bytes

'I' unsigned int int 2 bytes

'l' long int 4 bytes

'L' unsigned long int 4 bytes

'q' long long int 8 bytes

'Q' unsigned long long int 8 bytes

'f' float float 4 bytes

'd' double float 8 bytes

Minimum Size of typecode ‘u’
'u' has an item size of 2 on a few platforms (notably,
Windows) and 4 on just about every other platform. You
can check the build type of a Python interpreter by using
array.array('u').itemsize.

The size, in bytes, of each item of an array a may be larger than the minimum,
depending on the machine’s architecture, and is available as the read-only attribute
a.itemsize.

Array objects expose all methods and operations of mutable sequences (as covered
in “Sequence Operations” on page 62), except sort. Concatenation with + or +=,
and slice assignment, require both operands to be arrays with the same typecode;
in contrast, the argument to a.extend can be any iterable with items acceptable to
a. In addition to the methods of mutable sequences (append, extend, insert, pop,
etc.), an array object a exposes the methods and properties listed in Table 16-8.

Table 16-8. Methods and properties of an array object a

buffer_info a.buffer_info()

Returns a two-item tuple (address, array_length), where array_length is
the number of items that you can store in a. The size of a in bytes is a.buffer_info()
[1] * a.itemsize.

byteswap a.byteswap()

Swaps the byte order of each item of a.

frombytes a.frombytes(s)

Appends to a the bytes, interpreted as machine values, of bytes s. len(s) must be an
exact multiple of a.itemsize.
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fromfile a.fromfile(f, n)
Reads n items, taken as machine values, from file object f and appends the items to a. f
should be open for reading in binary mode—typically, mode 'rb' (see “Creating a File
Object with open” on page 323). When fewer than n items are available in f, fromfile
raises EOFError after appending the items that are available (so, be sure to catch this in a
try/except, if that’s OK in your app!).

fromlist a.fromlist(L)

Appends to a all items of list L.

fromunicode a.fromunicode(s)

Appends to a all characters from string s. a must have typecode 'u'; otherwise, Python
raises ValueError.

itemsize a.itemsize

Property that returns the size, in bytes, of each item in a.

tobytes a.tobytes()

tobytes returns the bytes representation of the items in a. For any a,
len(a.tobytes()) == len(a)*a.itemsize. f.write(a.tobytes()) is
the same as a.tofile(f).

tofile a.tofile(f)

Writes all items of a, taken as machine values, to file object f. Note that f should be open
for writing in binary mode—for example, with mode 'wb'.

tolist a.tolist()

Creates and returns a list object with the same items as a, like list(a).

tounicode a.tounicode()

Creates and returns a string with the same items as a, like ''.join(a). a must have
typecode 'u'; otherwise, Python raises ValueError.

typecode a.typecode

Property that returns the typecode used to create a.

Extensions for Numeric Array Computation
As you’ve seen, Python has great built-in support for numeric processing. The
third-party library SciPy, and many, many other packages, such as NumPy, Matplot‐
lib, SymPy, Numba, Pandas, PyTorch, CuPy, and TensorFlow, provide even more
tools. We introduce NumPy here, then provide a brief description of SciPy and
some other packages, with pointers to their documentation.

NumPy
If you need a lightweight, one-dimensional array of numbers, the standard library’s
array module may suffice. If your work involves scientific computing, image pro‐
cessing, multidimensional arrays, linear algebra, or other applications involving
large amounts of data, the popular third-party NumPy package meets your needs.
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2 Python and the NumPy project have worked closely together for many years, with Python
introducing language features specifically for NumPy (such as the @ operator and extended
slicing) even though such novel language features are not (yet?) used anywhere in the Python
standard library.

Extensive documentation is available online; a free PDF of Travis Oliphant’s Guide
to NumPy is also available.2

NumPy or numpy?
The docs variously refer to the package as NumPy or Numpy;
however, in coding, the package is called numpy, and you usu‐
ally import it with import numpy as np. This section follows
those conventions.

NumPy provides the class ndarray, which you can subclass to add functionality
for your particular needs. An ndarray object has n dimensions of homogeneous
items (items can include containers of heterogeneous types). Each ndarray object a
has a certain number of dimensions (aka axes), known as its rank. A scalar (i.e., a
single number) has rank 0, a vector has rank 1, a matrix has rank 2, and so forth.
An ndarray object also has a shape, which can be accessed as property shape. For
example, for a matrix m with 2 columns and 3 rows, m.shape is (3,2).

NumPy supports a wider range of numeric types (instances of dtype) than Python;
the default numerical types are bool_ (1 byte), int_ (either int64 or int32,
depending on your platform), float_ (short for float64), and complex_ (short
for complex128).

Creating a NumPy array
There are several ways to create an array in NumPy. Among the most common are:

• With the factory function np.array, from a sequence (often a nested one), with•
type inference or by explicitly specifying dtype

• With factory functions np.zeros, np.ones, or np.empty, which default to•
dtype float64

• With factory function np.indices, which defaults to dtype int64•

• With factory functions np.random.uniform, np.random.normal, np.ran•
dom.binomial, etc., which default to dtype float64

• With factory function np.arange (with the usual start, stop, stride), or•
with factory function np.linspace (with start, stop, quantity) for better
floating-point behavior

• By reading data from files with other np functions (e.g., CSV with np.gen•
fromtxt)

Array Processing | 505

N
um

eric
P

ro
cessing

https://docs.scipy.org/doc
https://oreil.ly/QA2xJ
https://oreil.ly/QA2xJ
https://oreil.ly/FK9qK
https://oreil.ly/HPxtV


Here are some examples of creating an array using the various techniques just
described:

>>> import numpy as np
>>> np.array([1, 2, 3, 4])  # from a Python list

array([1, 2, 3, 4])

>>> np.array(5, 6, 7)  # a common error: passing items separately (they
                       # must be passed as a sequence, e.g. a list)

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: array() takes from 1 to 2 positional arguments, 3 were given

>>> s = 'alph', 'abet'  # a tuple of two strings
>>> np.array(s)

array(['alph', 'abet'], dtype='<U4')

>>> t = [(1,2), (3,4), (0,1)]  # a list of tuples
>>> np.array(t, dtype='float64')  # explicit type designation

array([[1., 2.],
       [3., 4.],
       [0., 1.]])

>>> x = np.array(1.2, dtype=np.float16)  # a scalar
>>> x.shape

()

>>> x.max()

1.2

>>> np.zeros(3)  # shape defaults to a vector

array([0., 0., 0.])

>>> np.ones((2,2))  # with shape specified

array([[1., 1.],
[1., 1.]])

>>> np.empty(9)  # arbitrary float64s

array([ 6.17779239e-31, -1.23555848e-30,  3.08889620e-31,
       -1.23555848e-30,  2.68733969e-30, -8.34001973e-31,  

    3.08889620e-31, -8.34001973e-31,  4.78778910e-31])

>>> np.indices((3,3))

array([[[0, 0, 0],
        [1, 1, 1],
        [2, 2, 2]],

       [[0, 1, 2],
        [0, 1, 2],
        [0, 1, 2]]])
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>>> np.arange(0, 10, 2)  # upper bound excluded

array([0, 2, 4, 6, 8])

>>> np.linspace(0, 1, 5)  # default: endpoint included

array([0.  , 0.25, 0.5 , 0.75, 1.  ])

>>> np.linspace(0, 1, 5, endpoint=False)  # endpoint not included

array([0. , 0.2, 0.4, 0.6, 0.8])

>>> np.genfromtxt(io.BytesIO(b'1 2 3\n4 5 6'))  # using a pseudo-file

array([[1., 2., 3.],
       [4., 5., 6.]])

>>> with open('x.csv', 'wb') as f:
...     f.write(b'2,4,6\n1,3,5')
...

11

>>> np.genfromtxt('x.csv', delimiter=',')  # using an actual CSV file

array([[2., 4., 6.],
       [1., 3., 5.]])

Shape, indexing, and slicing
Each ndarray object a has an attribute a.shape, which is a tuple of ints.
len(a.shape) is a’s rank; for example, a one-dimensional array of numbers (also
known as a vector) has rank 1, and a.shape has just one item. More generally, each
item of a.shape is the length of the corresponding dimension of a. a’s number of
elements, known as its size, is the product of all items of a.shape (also available as
property a.size). Each dimension of a is also known as an axis. Axis indices are
from 0 and up, as usual in Python. Negative axis indices are allowed and count from
the right, so -1 is the last (rightmost) axis.

Each array a (except a scalar, meaning an array of rank 0) is a Python sequence.
Each item a[i] of a is a subarray of a, meaning it is an array with a rank one
less than a’s: a[i].shape == a.shape[1:]. For example, if a is a two-dimensional
matrix (a is of rank 2), a[i], for any valid index i, is a one-dimensional subarray of
a that corresponds to one row of the matrix. When a’s rank is 1 or 0, a’s items are a’s
elements (just one element, for rank 0 arrays). Since a is a sequence, you can index a
with normal indexing syntax to access or change a’s items. Note that a’s items are a’s
subarrays; only for an array of rank 1 or 0 are the array’s items the same thing as the
array’s elements.

As with any other sequence, you can also slice a. After b = a[i:j], b has the same
rank as a, and b.shape equals a.shape except that b.shape[0] is the length of the
slice a[i:j], (i.e., when a.shape[0] > j >= i >= 0, the length of the slice is j - i, as
described in “Slicing a sequence” on page 64).
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Once you have an array a, you can call a.reshape (or, equivalently, np.reshape
with a as the first argument). The resulting shape must match a.size: when a.size
is 12, you can call a.reshape(3, 4) or a.reshape(2, 6), but a.reshape(2, 5)
raises ValueError. Note that reshape does not work in place: you must explicitly
bind or rebind the array, for example, a = a.reshape(i, j) or b = a.reshape(i, j).

You can also loop on (nonscalar) a with for, just as you can with any other
sequence. For example, this:

for x in a:
    process(x)

means the same thing as:

for _ in range(len(a)):
    x = a[_]
    process(x)

In these examples, each item x of a in the for loop is a subarray of a. For example,
if a is a two-dimensional matrix, each x in either of these loops is a one-dimensional
subarray of a that corresponds to a row of the matrix.

You can also index or slice a by a tuple. For example, when a’s rank is >= 2, you
can write a[i][j] as a[i, j], for any valid i and j, for rebinding as well as for
access; tuple indexing is faster and more convenient. Do not put parentheses inside
the brackets to indicate that you are indexing a by a tuple: just write the indices
one after the other, separated by commas. a[i, j] means exactly the same thing as
a[(i, j)], but the form without parentheses is more readable.

An indexing is a slicing in which one or more of the tuple’s items are slices, or (at
most once per slicing) the special form ... (the Python built-in Ellipsis). ...
expands into as many all-axis slices (:) as needed to “fill” the rank of the array
you’re slicing. For example, a[1,...,2] is like a[1,:,:,2] when a’s rank is 4, but
like a[1,:,:,:,:,2] when a’s rank is 6.

The following snippets show looping, indexing, and slicing:

>>> a = np.arange(8)
>>> a

array([0, 1, 2, 3, 4, 5, 6, 7])

>>> a = a.reshape(2,4)
>>> a

array([[0, 1, 2, 3],
       [4, 5, 6, 7]])

>>> print(a[1,2])

6

>>> a[:,:2]
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array([[0, 1],
       [4, 5]])

>>> for row in a:
...     print(row)
...

[0 1 2 3]
[4 5 6 7]

>>> for row in a:
...     for col in row[:2]:  # first two items in each row
...         print(col)
...

0
1
4
5

Matrix operations in NumPy
As mentioned in “The operator Module” on page 493, NumPy implements the
operator @ for matrix multiplication of arrays. a1 @ a2 is like np.matmul(a1, a2).
When both matrices are two-dimensional, they’re treated as conventional matrices.
When one argument is a vector, you conceptually promote it to a two-dimensional
array, as if by temporarily appending or prepending a 1, as needed, to its shape. Do
not use @ with a scalar; use * instead. Matrices also allow addition (using +) with a
scalar, as well as with vectors and other matrices of compatible shapes. Dot product
is also available for matrices, using np.dot(a1, a2). A few simple examples of these
operators follow:

>>> a = np.arange(6).reshape(2,3)  # a 2D matrix
>>> b = np.arange(3)               # a vector
>>>
>>> a

array([[0, 1, 2],
       [3, 4, 5]])

>>> a + 1    # adding a scalar

array([[1, 2, 3],
       [4, 5, 6]])

>>> a + b    # adding a vector

array([[0, 2, 4],
       [3, 5, 7]])

>>> a * 2    # multiplying by a scalar

array([[ 0,  2,  4],
       [ 6,  8, 10]])

>>> a * b    # multiplying by a vector
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array([[ 0,  1,  4],
       [ 0,  4, 10]])

>>> a @ b    # matrix-multiplying by a vector

array([ 5, 14])

>>> c = (a*2).reshape(3,2)  # using scalar multiplication to create
>>> c

array([[ 0,  2],
       [ 4,  6],
       [ 8, 10]])

>>> a @ c    # matrix-multiplying two 2D matrices

array([[20, 26],
       [56, 80]])

NumPy is rich and powerful enough to warrant whole books of its own; we have
only touched on a few details. See the NumPy documentation for extensive coverage
of its many, many features.

SciPy
Whereas NumPy contains classes and functions for handling arrays, the SciPy
library supports more advanced numeric computation. For example, while NumPy
provides a few linear algebra methods, SciPy provides advanced decomposition
methods and supports more advanced functions, such as allowing a second matrix
argument for solving generalized eigenvalue problems. In general, when you are
doing advanced numeric computation, it’s a good idea to install both SciPy and
NumPy.

SciPy.org also hosts docs for a number of other packages, which are integrated
with SciPy and NumPy, including Matplotlib, which provides 2D plotting support;
SymPy, which supports symbolic mathematics; Jupyter Notebook, a powerful inter‐
active console shell and web application kernel; and Pandas, which supports data
analysis and modeling. You may also want to take a look at mpmath, for arbitrary
precision, and sagemath, for even richer functionality.

Additional numeric packages
The Python community has produced many more packages in the field of numeric
processing. A few of them are:

Anaconda
A consolidated environment that simplifies the installation of Pandas, NumPy,
and many related numerical processing, analytical, and visualization packages,
and provides package management via its own conda package installer.
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3 Originally derived from the work of one of this book’s authors.

gmpy2

A module3 that supports the GMP/MPIR, MPFR, and MPC libraries, to extend
and accelerate Python’s abilities for multiple-precision arithmetic.

Numba
A just-in-time compiler to convert Numba-decorated Python functions and
NumPy code to LLVM. Numba-compiled numerical algorithms in Python can
approach the speeds of C or FORTRAN.

PyTorch
An open source machine learning framework.

TensorFlow
A comprehensive machine learning platform that operates at large scale and
in mixed environments, using dataflow graphs to represent computation,
shared state, and state manipulation operations. TensorFlow supports process‐
ing across multiple machines in a cluster, and within-machine across multi‐
core CPUs, GPUs, and custom-designed ASICs. TensorFlow’s main API uses
Python.
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17
Testing, Debugging, and

Optimizing

You’re not finished with a programming task when you’re done writing the code;
you’re finished only when the code runs correctly and with acceptable performance.
Testing means verifying that code runs correctly by automatically exercising the
code under known conditions and checking that the results are as expected. Debug‐
ging means discovering causes of incorrect behavior and repairing them (repair is
often easy, once you figure out the causes).

Optimizing is often used as an umbrella term for activities meant to ensure
acceptable performance. Optimizing breaks down into benchmarking (measuring
performance for given tasks to check that it’s within acceptable bounds), profiling
(instrumenting the program with extra code to identify performance bottlenecks),
and actual optimizing (removing bottlenecks to improve program performance).
Clearly, you can’t remove performance bottlenecks until you’ve found out where
they are (via profiling), which in turn requires knowing that there are performance
problems (via benchmarking).

This chapter covers these subjects in the natural order in which they occur in
development: testing first and foremost, debugging next, and optimizing last. Most
programmers’ enthusiasm focuses on optimization: testing and debugging are often
(wrongly!) perceived as being chores, while optimization is seen as being fun. Were
you to read only one section of the chapter, we might suggest that section be
“Developing a Fast-Enough Python Application” on page 542, which summarizes
the Pythonic approach to optimization—close to Jackson’s classic “Rules of Optimi‐
zation: Rule 1. Don’t do it. Rule 2 (for experts only). Don’t do it yet.”
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1 This issue is related to “technical debt” and other topics covered in the “‘Good enough’ is good
enough” tech talk by one of this book’s authors (that author’s favorite tech talk out of the many he
delivered!), excellently summarized and discussed by Martin Michlmayr on LWN.net.

All of these tasks are important; discussion of each could fill at least a book by itself.
This chapter cannot even come close to exploring every related technique; rather, it
focuses on Python-specific approaches and tools. Often, for best results, you should
approach the issue from the higher-level viewpoint of system analysis and design,
rather than focusing only on implementation (in Python and/or any other mix of
programming languages). Start by studying a good general book on the subject,
such as Systems Analysis and Design by Alan Dennis, Barbara Wixom, and Roberta
Roth (Wiley).

Testing
In this chapter, we distinguish between two different kinds of testing: unit testing
and system testing. Testing is a rich, important field: many more distinctions could
be drawn, but we focus on the issues that most matter to most software developers.
Many developers are reluctant to spend time on testing, seeing it as time stolen from
“real” development, but this is shortsighted: problems in code are easier to fix the
earlier you find out about them. An extra hour spent developing tests will amply pay
for itself as you find defects early, saving you many hours of debugging that would
otherwise have been needed in later phases of the software development cycle.1

Unit Testing and System Testing
Unit testing means writing and running tests to exercise a single module, or an even
smaller unit, such as a class or function. System testing (also known as functional,
integration, or end-to-end testing) involves running an entire program with known
inputs. Some classic books on testing also draw the distinction between white-box
testing, done with knowledge of a program’s internals, and black-box testing, done
without such knowledge. This classic viewpoint parallels, but does not exactly
duplicate, the modern one of unit versus system testing.

Unit and system testing serve different goals. Unit testing proceeds apace with
development; you can and should test each unit as you’re developing it. One rela‐
tively modern approach (first proposed in 1971 in Gerald Weinberg’s immortal
classic The Psychology of Computer Programming [Dorset House]) is known as
test-driven development (TDD): for each feature that your program must have, you
first write unit tests, and only then do you proceed to write code that implements
the feature and makes the tests pass. TDD may seem upside down, but it has
advantages; for example, it ensures that you won’t omit unit tests for some feature.
This approach is helpful because it urges you to focus first on exactly what tasks a
certain function, class, or method should accomplish, dealing only afterward with
how to implement that function, class, or method. An innovation along the lines of
TDD is behavior-driven development (BDD).
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2 The language used in this area is confused and confusing: terms like dummies, fakes, spies, mocks,
stubs, and test doubles are utilized by different people to mean slightly different things. For an
authoritative approach to terminology and concepts (though not the exact one we use), see the
essay “Mocks Aren’t Stubs” by Martin Fowler.

3 That’s partly because the structure of the system tends to mirror the structure of the organization,
per Conway’s law.

To test a unit—which may depend on other units not yet fully developed—you often
have to write stubs, also known as mocks:2 fake implementations of various units’
interfaces giving known, correct responses in cases needed to test other units. The
mock module (part of Python’s standard library, in the package unittest) helps you
implement such stubs.

System testing comes later, since it requires the system to exist, with at least some
subset of system functionality believed (based on unit testing) to be working. Sys‐
tem testing offers a soundness check: each module in the program works properly
(passes unit tests), but does the whole program work? If each unit is OK but the
system is not, there’s a problem in the integration between units—the way the units
cooperate. For this reason, system testing is also known as integration testing.

System testing is similar to running the system in production use, except that you
fix inputs in advance so that any problems you may find are easy to reproduce. The
cost of failures in system testing is lower than in production use, since outputs from
system testing are not used to make decisions, serve customers, control external
systems, and so on. Rather, outputs from system testing are systematically compared
with the outputs that the system should produce given the known inputs. The
purpose is to find, in cheap and reproducible ways, discrepancies between what the
program should do and what the program actually does.

Failures discovered by system testing (just like system failures in production use)
may reveal defects in unit tests, as well as defects in the code. Unit testing may have
been insufficient: a module’s unit tests may have failed to exercise all the needed
functionality of the module. In that case, the unit tests need to be beefed up. Do that
before you change your code to fix the problem, then run the newly enhanced unit
tests to confirm that they now show the problem. Then fix the problem, and run
the unit tests again to confirm that they no longer show it. Finally, rerun the system
tests to confirm that the problem has indeed gone away.

Bug-Fixing Best Practice
This best practice is a specific application of test-driven design
that we recommend without reservation: never fix a bug
before having added unit tests that would have revealed the
bug. This provides an excellent, cheap insurance against soft‐
ware regression bugs.

Often, failures in system testing reveal communication problems within the devel‐
opment team:3 a module correctly implements a certain functionality, but another
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module expects different functionality. This kind of problem (an integration prob‐
lem in the strict sense) is hard to pinpoint in unit testing. In good development
practice, unit tests must run often, so it is crucial that they run fast. It’s therefore
essential, in the unit testing phase, that each unit can assume other units are
working correctly and as expected.

Unit tests run in reasonably late stages of development can reveal integration
problems if the system architecture is hierarchical, a common and reasonable orga‐
nization. In such an architecture, low-level modules depend on no others (except
library modules, which you can typically assume to be correct), so the unit tests of
such low-level modules, if complete, suffice to provide confidence of correctness.
High-level modules depend on low-level ones, and thus also depend on correct
understanding about what functionality each module expects and supplies. Running
complete unit tests on high-level modules (using true low-level modules, not stubs)
exercises interfaces between modules, as well as the high-level modules’ own code.

Unit tests for high-level modules are thus run in two ways. You run the tests with
stubs for the low levels during the early stages of development, when the low-level
modules are not yet ready or, later, when you only need to check the correctness
of the high levels. During later stages of development, you also regularly run the
high-level modules’ unit tests using the true low-level modules. In this way, you
check the correctness of the whole subsystem, from the high levels downward. Even
in this favorable case, you still need to run system tests to ensure that you have
checked that all of the system’s functionality is exercised and you have neglected no
interfaces between modules.

System testing is similar to running the program in normal ways. You need special
support only to ensure supply of known inputs and capture of resulting outputs
for comparison with expected outputs. This is easy for programs that perform I/O
on files, and hard for programs whose I/O relies on a GUI, network, or other
communication with external entities. To simulate such external entities and make
them predictable and entirely observable, you generally need platform-dependent
infrastructure. Another useful piece of supporting infrastructure for system testing
is a testing framework to automate the running of system tests, including logging of
successes and failures. Such a framework can also help testers prepare sets of known
inputs and corresponding expected outputs.

Both free and commercial programs for these purposes exist, and usually do not
depend on which programming languages are used in the system under test. System
testing is a close relative of what was classically known as black-box testing: testing
that is independent from the implementation of the system under test (and thus,
in particular, independent from the programming languages used for implementa‐
tion). Instead, testing frameworks usually depend on the operating system platform
on which they run, since the tasks they perform are platform dependent. These
include:

• Running programs with given inputs•
• Capturing their outputs•
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• Simulating/capturing GUI, network, and other interprocess communication•
I/O

Since frameworks for system testing depend on the platform, not on programming
languages, we do not cover them further in this book. For a thorough list of Python
testing tools, see the Python wiki.

The doctest Module
The doctest module exists to let you create good examples in your code’s doc‐
strings, checking that the examples do in fact produce the results that your doc‐
strings show for them. doctest recognizes such examples by looking within the
docstring for the interactive Python prompt >>>, followed on the same line by a
Python statement, and the statement’s expected output on the next line(s).

As you develop a module, keep the docstrings up-to-date and enrich them with
examples. Each time a part of the module (e.g., a function) is ready, or partially
ready, make it a habit to add examples to its docstring. Import the module into an
interactive session, and use the parts you just developed to provide examples with
a mix of typical cases, limit cases, and failing cases. For this specific purpose only,
use from module import * so that your examples don’t prefix module. to each name
the module supplies. Copy and paste the interactive session into the docstring in an
editor, adjust any glitches, and you’re almost done.

Your documentation is now enriched with examples, and readers will have an easier
time following it (assuming you choose a good mix of examples, wisely seasoned
with nonexample text). Make sure you have docstrings, with examples, for the
module as a whole, and for each function, class, and method the module exports.
You may choose to skip functions, classes, and methods whose names start with _,
since (as their names indicate) they’re private implementation details; doctest by
default ignores them, and so should readers of your module’s source code.

Make Your Examples Match Reality
Examples that don’t match the way your code works are worse
than useless. Documentation and comments are useful only
if they match reality; docs and comments that “lie” can be
seriously damaging.

Docstrings and comments often get out of date as code changes, and thus become
misinformation, hampering, rather than helping, any reader of the source. It’s better
to have no comments and docstrings at all, poor as such a choice would be, than to
have ones that lie. doctest can help you by running and checking the examples in
your docstrings. A failing doctest run should prompt you to review the docstring
that contains the failing example, thus reminding you to keep the whole docstring
updated.

At the end of your module’s source, insert the following snippet:
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if __name__ == '__main__':
    import doctest
    doctest.testmod()

This code calls the function testmod of the module doctest when you run your
module as the main program. testmod examines docstrings (the module’s docstring,
and the docstrings of all public functions, classes, and methods thereof). In each
docstring, testmod finds all examples (by looking for occurrences of the interpreter
prompt >>>, possibly preceded by whitespace) and runs each example. testmod
checks that each example’s results match the output given in the docstring right after
the example. In case of exceptions, testmod ignores the traceback, and just checks
that the expected and observed error messages are equal.

When everything goes right, testmod terminates silently. Otherwise, it outputs
detailed messages about the examples that failed, showing expected and actual
output. Example 17-1 shows a typical example of doctest at work on a module
mod.py.

Example 17-1. Using doctest

"""
This module supplies a single function reverse_words that reverses
a string word by word.

>>> reverse_words('four score and seven years')
'years seven and score four'
>>> reverse_words('justoneword')
'justoneword'
>>> reverse_words('')
''

You must call reverse_words with a single argument, a string:

>>> reverse_words()
Traceback (most recent call last):
    ...
TypeError: reverse_words() missing 1 required positional argument: 'astring'
>>> reverse_words('one', 'another')
Traceback (most recent call last):
    ...
TypeError: reverse_words() takes 1 positional argument but 2 were given
>>> reverse_words(1)
Traceback (most recent call last):
    ...
AttributeError: 'int' object has no attribute 'split'
>>> reverse_words('Unicode is all right too')
'too right all is Unicode'

As a side effect, reverse_words eliminates any redundant spacing:
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4 However, be sure you know exactly what you’re using doctest for in any given case: to quote
Peter Norvig, writing precisely on this subject: “Know what you’re aiming for; if you aim at two
targets at once you usually miss them both.”

>>> reverse_words('with  redundant   spacing')
'spacing redundant with'
"""

def reverse_words(astring):
    words = astring.split()
    words.reverse()
    return ' '.join(words)

if __name__ == '__main__':
    import doctest
    doctest.testmod()

In this module’s docstring, we snipped the tracebacks from the docstring and
replaced them with ellipses (...): this is good practice, since doctest ignores
tracebacks, which add nothing to the explanatory value of a failing case. Apart from
this snipping, the docstring is the copy and paste of an interactive session, plus
some explanatory text and empty lines for readability. Save this source as mod.py,
and then run it with python mod.py. It produces no output, meaning that all the
examples work right. Try python mod.py -v to get an account of all tests it tries,
and a verbose summary at the end. Finally, alter the example results in the module
docstring, making them incorrect, to see the messages doctest provides for errant
examples.

While doctest is not meant for general-purpose unit testing, it can be tempting
to use it for that purpose. The recommended way to do unit testing in Python is
with a test framework such as unittest, pytest, or nose2 (covered in the following
sections). However, unit testing with doctest can be easier and faster to set up,
since it requires little more than copying and pasting from an interactive session.
If you need to maintain a module that lacks unit tests, retrofitting such tests into
the module with doctest is a reasonable short-term compromise, as a first step. It’s
better to have just doctest-based unit tests than not to have any unit tests at all,
as might otherwise happen should you decide that setting up tests properly with
unittest from the start would take you too long.4

If you do decide to use doctest for unit testing, don’t cram extra tests into your
module’s docstrings. This would damage the docstrings by making them too long
and hard to read. Keep in the docstrings the right amount and kind of examples,
strictly for explanatory purposes, just as if unit testing were not in the picture.
Instead, put the extra tests into a global variable of your module, a dictionary
named __test__. The keys in __test__ are strings to use as arbitrary test names;
corresponding values are strings that doctest picks up and uses just like it uses
docstrings. The values in __test__ may also be function and class objects, in which
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case doctest examines their docstrings for tests to run. This latter feature is a
convenient way to run doctest on objects with private names, which doctest skips
by default.

The doctest module also supplies two functions that return instances of the
unittest.TestSuite class based on doctests, so that you can integrate such tests
into testing frameworks based on unittest. Full documentation for this advanced
functionality is available online.

The unittest Module
The unittest module is the Python version of a unit testing framework originally
developed by Kent Beck for Smalltalk. Similar, widespread versions of the frame‐
work also exist for many other programming languages (e.g., the JUnit package for
Java) and are often collectively referred to as xUnit.

To use unittest, don’t put your testing code in the same source file as the tested
module: rather, write a separate test module for each module to test. A popular
convention is to name the test module like the module being tested, with a prefix
such as 'test_', and put it in a subdirectory of the source’s directory named
test. For example, the test module for mod.py can be test/test_mod.py. A simple,
consistent naming convention helps you write and maintain auxiliary scripts that
find and run all unit tests for a package.

Separation between a module’s source code and its unit testing code lets you refac‐
tor the module more easily, including possibly recoding some functionality in C
without perturbing the unit testing code. Knowing that test_mod.py stays intact,
whatever changes you make to mod.py, enhances your confidence that passing the
tests in test_mod.py indicates that mod.py still works correctly after the changes.

A unit testing module defines one or more subclasses of unittest’s TestCase class.
Each such subclass specifies one or more test cases by defining test case methods:
methods that are callable without arguments and whose names start with test.

The subclass usually overrides setUp, which the framework calls to prepare a new
instance just before each test case, and often also tearDown, which the framework
calls to clean things up right after each test case; the entire setup/teardown arrange‐
ment is known as a test fixture.

Each test case calls, on self, methods of the class TestCase whose names start with
assert to express the conditions that the test must meet. unittest runs the test
case methods within a TestCase subclass in arbitrary order, each on a new instance
of the subclass, running setUp just before each test case and tearDown just after
each test case.
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Have setUp Use addCleanup When Needed
When setUp propagates an exception, tearDown does not exe‐
cute. So, when setUp prepares several things needing eventual
cleanup, and some preparation steps might cause uncaught
exceptions, it should not rely on tearDown for the cleanup
work. Instead, right after each preparation step succeeds, call
self.addCleanup(f, *a, **k), passing a cleanup callable f
(and optionally positional and named arguments for f). In
this case, f(*a, **k) does get called after the test case (after
tearDown when setUp propagates no exception, but, uncondi‐
tionally, even when setUp does propagate exceptions), so the
necessary cleanup code always executes.

unittest provides other facilities, such as grouping test cases into test suites,
per-class and per-module fixtures, test discovery, and other, even more advanced
functionality. You do not need such extras unless you’re building a custom unit
testing framework on top of unittest, or, at the very least, structuring complex
testing procedures for equally complex packages. In most cases, the concepts and
details covered in this section are enough to perform effective and systematic unit
testing. Example 17-2 shows how to use unittest to provide unit tests for the
module mod.py of Example 17-1. This example, for purely demonstrative purposes,
uses unittest to perform exactly the same tests that Example 17-1 uses as examples
in docstrings using doctest.

Example 17-2. Using unittest

"""This module tests function reverse_words
provided by module mod.py."""
import unittest
import mod

class ModTest(unittest.TestCase):

    def testNormalCaseWorks(self):
        self.assertEqual(
            'years seven and score four',
            mod.reverse_words('four score and seven years'))

    def testSingleWordIsNoop(self):
        self.assertEqual(
            'justoneword',
            mod.reverse_words('justoneword'))
            
    def testEmptyWorks(self):
        self.assertEqual('', mod.reverse_words(''))

    def testRedundantSpacingGetsRemoved(self):
        self.assertEqual(
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            'spacing redundant with',
            mod.reverse_words('with   redundant   spacing'))
            
    def testUnicodeWorks(self):
        self.assertEqual(
            'too right all is Unicode'
            mod.reverse_words('Unicode is all right too'))
            
    def testExactlyOneArgumentIsEnforced(self):
        with self.assertRaises(TypeError):
            mod.reverse_words('one', 'another')

    def testArgumentMustBeString(self):
        with self.assertRaises((AttributeError, TypeError)):
            mod.reverse_words(1)

if __name__=='__main__':
    unittest.main()

Running this script with python test/test_mod.py (or, equivalently, python -m
test.test_mod) is just a bit more verbose than using python mod.py to run doct
est, as in Example 17-1. test_mod.py outputs a . (dot) for each test case it runs,
then a separator line of dashes, and finally a summary line, such as “Ran 7 tests in
0.110s,” and a final line of “OK” if every test passed.

Each test case method makes one or more calls to methods whose names start
with assert. Here, no method has more than one such call; in more complicated
cases, however, multiple calls to assert methods from a single test case method are
common.

Even in a case as simple as this, one minor aspect shows that, for unit testing,
unittest is more powerful and flexible than doctest. In the method testArgument
MustBeString, we pass as the argument to assertRaises a pair of exception classes,
meaning we accept either kind of exception. test_mod.py therefore accepts these
as valid multiple implementations of mod.py. It accepts the implementation in
Example 17-1, which tries calling the method split on its argument, and therefore
raises AttributeError when called with an argument that is not a string. However,
it also accepts a different hypothetical implementation, one that raises TypeError
instead when called with an argument of the wrong type. It is possible to code such
checks with doctest, but it would be awkward and nonobvious, while unittest
makes it simple and natural.

This kind of flexibility is crucial for real-life unit tests, which to some extent
are executable specifications for their modules. You could, pessimistically, view
the need for test flexibility as meaning the interface of the code you’re testing is
not well-defined. However, it’s best to view the interface as being defined with a
useful amount of flexibility for the implementer: under circumstance X (argument
of invalid type passed to function reverse_words, in this example), either of two
things (raising AttributeError or TypeError) is allowed to happen.
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Thus, implementations with either of the two behaviors are correct: the imple‐
menter can choose between them on the basis of such considerations as perfor‐
mance and clarity. Viewed in this way—as executable specifications for their
modules (the modern view, and the basis of test-driven development), rather than
as white-box tests strictly constrained to a specific implementation (as in some tra‐
ditional taxonomies of testing)—unit tests become an even more vital component of
the software development process.

The TestCase class
With unittest, you write test cases by extending TestCase, adding methods, calla‐
ble without arguments, whose names start with test. These test case methods, in
turn, call methods that your class inherits from TestCase, whose names start with
assert, to indicate conditions that must hold for the tests to succeed.

The TestCase class also defines two methods that your class can optionally override
to group actions to perform right before and after each test case method runs. This
doesn’t exhaust TestCase’s functionality, but you won’t need the rest unless you’re
developing testing frameworks or performing other advanced tasks. Table 17-1 lists
the frequently called methods of a TestCase instance t.

Table 17-1. Methods of an instance t of TestCase

assertAlmost

Equal

assertAlmostEqual(first, second, places=7, msg=None)
Fails and outputs msg when first != second to within places decimal digits;
otherwise, does nothing. This method is better than assertEqual to compare
floats, since they are approximations that may differ in less significant decimal
digits. When producing diagnostic messages if the test fails, unittest will assume
that first is the expected value and second is the observed value.

assertEqual assertEqual(first, second, msg=None)
Fails and outputs msg when first != second; otherwise, does nothing. When
producing diagnostic messages if the test fails, unittest will assume that first
is the expected value and second is the observed value.

assertFalse assertFalse(condition, msg=None)

Fails and outputs msg when condition is true; otherwise, does nothing.

assertNotAlmost

Equal

assertNotAlmostEqual(first, second, places=7, msg=None)
Fails and outputs msg when first == second to within places decimal digits;
otherwise, does nothing.

assertNotEqual assertNotEqual(first, second, msg=None)
Fails and outputs msg when first == second; otherwise, does nothing.
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assertRaises assertRaises(exceptionSpec, callable, *args, **kwargs)
Calls callable(*args, **kwargs). Fails when the call doesn’t raise any
exception. When the call raises an exception that does not meet exceptionSpec,
assertRaises propagates the exception. When the call raises an exception that
meets exceptionSpec, assertRaises does nothing. exceptionSpec can
be an exception class or a tuple of classes, just like the first argument of the except
clause in a try/except statement.
The preferred way to use assertRaises is as a context manager—that is, in a
with statement:

with self.assertRaises(exceptionSpec):
    # ...a block of code...

Here, the block of code indented in the with statement executes, rather than just
the callable being called with certain arguments. The expectation (which avoids
the construct failing) is that the block of code raises an exception meeting the given
exception specification (an exception class or a tuple of classes). This alternative
approach is more general and readable than passing a callable.

assertRaises

Regex

assertRaisesRegex(exceptionSpec, expected_regex, calla
ble, *args, **kwargs)
Just like assertRaises, but also checks that the exception’s error message
matches regex; regex can be a regular expression object or a string pattern to
compile into one, and the test (when the expected exception has been raised) checks
the error message by calling search on the RE object.
Just like assertRaises, assertRaisesRegex is best used as a context
manager—that is, in a with statement:

with self.assertRaisesRegex(exceptionSpec, regex):
    # ...a block of code...

enterContext enterContext(ctx_manager)

3.11+  Use this call in a TestCase.setup() method. Returns the value from
calling ctx_manager.__enter__, and adds ctx_manager.__exit__ to
the list of cleanup methods that the framework is to run during the TestCase’s
cleanup phase.

fail fail(msg=None)

Fails unconditionally and outputs msg. An example snippet might be:
if not complex_check_if_its_ok(some, thing):
    self.fail(
      'Complex checks failed on'
      f' {some}, {thing}'
    )

setUp setUp()

The framework calls t.setUp() just before calling each test case method. setUp
in TestCase does nothing; it exists only to let your class override the method when
your class needs to perform some preparation for each test.
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subTest subTest(msg=None, **k)

Returns a context manager that can define a portion of a test within a test method.
Use subTest when a test method runs the same test multiple times with varying
parameters. Enclosing these parameterized tests in subTest ensures that all the
cases will be run, even if some of them fail or raise exceptions.

tearDown tearDown()

The framework calls t.tearDown() just after each test case method. tearDown
in the base TestCase class does nothing; it exists only to let your class override the
method when your class needs to perform some cleanup after each test.

In addition, a TestCase instance maintains a LIFO stack of cleanup functions. When
code in one of your tests (or in setUp) does something that requires cleanup,
call self.addCleanup, passing a cleanup callable f and optionally positional and
named arguments for f. To perform the stacked cleanups, you may call doCleanups;
however, the framework itself calls doCleanups after tearDown. Table 17-2 lists the
signatures of the two cleanup methods of a TestCase instance t.

Table 17-2. Cleanup methods of an instance t of TestCase

addCleanup addCleanup(func, *a, **k)
Appends (func, a, k) at the end of the cleanups list.

doCleanups doCleanups()

Performs all cleanups, if any are stacked. Substantially equivalent to:
while self.list_of_cleanups:
    func, a, k = self.list_of_cleanups.pop()
    func(*a, **k)

for a hypothetical stack self.list_of_cleanups, plus, of course, error checking and
reporting.

Unit tests dealing with large amounts of data
Unit tests must be fast, as you should run them often as you develop. So, when
feasible, unit test each aspect of your modules on small amounts of data. This makes
your unit tests faster, and lets you embed the data in the test’s source code. When
you test a function that reads from or writes to a file object, use an instance of
the class io.TextIO for a text file (or io.BytesIO for a binary file, as covered in
“In-Memory Files: io.StringIO and io.BytesIO” on page 334) to get a file with the
data in memory: this approach is faster than writing to disk, and it requires no
cleanup (removing disk files after the tests).

In rare cases, it may be impossible to exercise a module’s functionality without sup‐
plying and/or comparing data in quantities larger than can be reasonably embedded
in a test’s source code. In such cases, your unit test must rely on auxiliary, external
data files to hold the data to supply to the module it tests, and/or the data it needs
to compare to the output. Even then, you’re generally better off using instances of
the abovementioned io classes, rather than directing the tested module to perform
actual disk I/O. Even more importantly, we strongly suggest that you generally use
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stubs to unit test modules that interact with external entities, such as databases,
GUIs, or other programs over a network. It’s easier to control all aspects of the
test when using stubs rather than real external entities. Also, to reiterate, the speed
at which you can run unit tests is important, and it’s faster to perform simulated
operations with stubs than real operations.

Make Test Randomness Reproducible by Supplying a Seed
If your code uses pseudorandom numbers (e.g., as covered in
“The random Module” on page 496), you can make it easier to
test by ensuring its “random” behavior is reproducible: specifi‐
cally, ensure that it’s easy for your tests to call random.seed
with a known argument, so that the ensuing pseudorandom
numbers are fully predictable. This also applies when you use
pseudorandom numbers to set up your tests by generating
inputs: such generation should default to a known seed, to be
used in most testing, keeping the flexibility of changing seeds
only for specific techniques such as fuzzing.

Testing with nose2
nose2 is a pip-installable third-party test utility and framework that builds on top
of unittest to provide additional plug-ins, classes, and decorators to aid in writing
and running your test suite. nose2 will “sniff out” test cases in your project, building
its test suite by looking for unittest test cases stored in files named test*.py.

Here is an example of using nose2’s params decorator to pass data parameters to a
test function:

import unittest
from nose2.tools import params

class TestCase(unittest.TestCase):

    @params((5, 5), (-1, 1), ('a', None, TypeError))
    def test_abs_value(self, x, expected, should_raise=None):
        if should_raise is not None:
            with self.assertRaises(should_raise):
                abs(x)
        else:
            assert abs(x) == expected

nose2 also includes additional decorators, the such context manager to define
groups of test functions, and a plug-in framework to provide testing metafunctions
such as logging, debugging, and coverage reporting. For more information, see the
online docs.
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5 When evaluating assert a == b, pytest interprets a as the observed value and b as the expected
value (the reverse of unittest).

Testing with pytest
The pytest module is a pip-installable third-party unit testing framework that
introspects a project’s modules to find test cases in test_*.py or *_test.py files,
with method names starting with test at the module level, or in classes with
names starting with Test. Unlike the built-in unittest framework, pytest does not
require that test cases extend any testing class hierarchy; it runs the discovered test
methods, which use Python assert statements to determine the success or failure
of each test.5 If a test raises any exception other than AssertionError, that indicates
that there is an error in the test, rather than a simple test failure.

In place of a hierarchy of test case classes, pytest provides a number of helper
methods and decorators to simplify writing unit tests. The most common methods
are listed in Table 17-3; consult the online docs for a more complete list of methods
and optional arguments.

Table 17-3. Commonly used pytest methods

approx approx(float_value)

Used to support asserts that must compare floating-point values. float_value can be a single
value or a sequence of values:

assert 0.1 + 0.2 == approx(0.3)
assert [0.1, 0.2, 0.1+0.2] == approx([0.1, 0.2, 0.3])

fail fail(failure_reason)

Forces failure of the current test. More explicit than injecting an assert False statement, but
otherwise equivalent.

raises raises(expected_exception, match=regex_match)

A context manager that fails unless its context raises an exception exc such that isin
stance(exc, expected_exception) is true. When match is given, the test fails unless
exc’s str representation also matches re.search(match, str(exc)).

skip skip(skip_reason)

Forces skipping of the current test; use this, for example, when a test is dependent on a previous
test that has already failed.

warns warns(expected_warning, match=regex_match)

Similar to raises; used to wrap code that tests that an expected warning is raised.

The pytest.mark subpackage includes decorators to “mark” test methods with
additional test behavior, including the ones listed in Table 17-4.
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Table 17-4. Decorators in the pytest.mark subpackage

parametrize @parametrize(args_string, arg_test_values)
Calls the decorated test method, setting the arguments named in the comma-separated list
args_string to the values from each argument tuple in arg_test_values.
The following code runs test_is_greater twice, once with x=1, y=0, and
expected=True; and once with x=0, y=1, and expected=False.

@pytest.mark.parametrize
("x,y,expected", 
 [(1, 0, True), (0, 1, False)])
def test_is_greater(x, y, expected):
assert (x > y) == expected

skip,
skipif

@skip(skip_reason),
@skipif(condition, skip_reason)
Skip a test method, optionally based on some global condition.

Debugging
Since Python’s development cycle is fast, the most effective way to debug is often
to edit your code to output relevant information at key points. Python has many
ways to let your code explore its own state to extract information that may be
relevant for debugging. The inspect and traceback modules specifically support
such exploration, which is also known as reflection or introspection.

Once you have debugging-relevant information, print is often the natural way to
display it (pprint, covered in “The pprint Module” on page 300, is also often a good
choice). However, it’s frequently even better to log debugging information to files.
Logging is useful for programs that run unattended (e.g., server programs). Display‐
ing debugging information is just like displaying other information, as covered in
Chapter 11. Logging such information is like writing to files (covered in the same
chapter); however, Python’s standard library supplies a logging module, covered in
“The logging module” on page 217, to help with this frequent task. As covered in
Table 8-3, rebinding excepthook in the module sys lets your program log error info
just before terminating with a propagating exception.

Python also offers hooks to enable interactive debugging. The pdb module supplies
a simple text-mode interactive debugger. Other powerful interactive debuggers
for Python are part of IDEs such as IDLE and various commercial offerings, as
mentioned in “Python Development Environments” on page 27; we do not cover
these advanced debuggers further in this book.
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Before You Debug
Before you embark on lengthy debugging explorations, make sure you have thor‐
oughly checked your Python sources with the tools mentioned in Chapter 2. Such
tools catch only a subset of the bugs in your code, but they’re much faster than
interactive debugging: their use amply pays for itself.

Moreover, again before starting a debugging session, make sure that all the code
involved is well covered by unit tests, as described in “The unittest Module” on page
520. As mentioned earlier in the chapter, once you have found a bug, before you fix
it, add to your suite of unit tests (or, if need be, to the suite of system tests) a test
or two that would have found the bug had they been present from the start, and
run the tests again to confirm that they now reveal and isolate the bug; only once
that is done should you proceed to fix the bug. Regularly following this procedure
will help you learn to write better, more thorough tests, ensuring that you end up
with a more robust test suite and have greater confidence in the overall, enduring
correctness of your code.

Remember, even with all the facilities offered by Python, its standard library, and
whatever IDE you fancy, debugging is still hard. Take this into account even before
you start designing and coding: write and run plenty of unit tests, and keep your
design and code simple, to reduce to the minimum the amount of debugging you
will need! Brian Kernighan offers this classic advice: “Debugging is twice as hard
as writing the code in the first place. Therefore, if you write the code as cleverly as
you can, you are, by definition, not smart enough to debug it.” This is part of why
“clever” is not a positive word when used to describe Python code, or a coder.

The inspect Module
The inspect module supplies functions to get information about all kinds of
objects, including the Python call stack (which records all function calls currently
executing) and source files. The most frequently used functions of inspect are
listed in Table 17-5.

Table 17-5. Useful functions of the inspect module

currentframe currentframe()

Returns the frame object for the current function (the caller of currentframe).
formatargvalues(*getargvalues(currentframe())), for example,
returns a string representing the arguments of the calling function.

getargspec,
formatargspec

getargspec(f)

-3.11  Deprecated in Python 3.5, removed in Python 3.11. The forward-compatible
way to introspect callables is to call inspect.signature(f) and use the
resulting instance of class inspect.Signature, covered in the following
subsection.
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getargvalues,
formatargvalues

getargvalues(f)

f is a frame object—for example, the result of a call to the function _getframe
in the sys module (covered in “The Frame Type” on page 435) or the function
currentframe in the inspect module. getargvalues returns a named
tuple with four items: (args, varargs, keywords, locals). args is
the sequence of names of f’s function’s parameters. varargs is the name of the
special parameter of form *a, or None when f’s function has no such parameter.
keywords is the name of the special parameter of form **k, or None when f’s
function has no such parameter. locals is the dictionary of local variables for f.
Since arguments, in particular, are local variables, the value of each argument can
be obtained from locals by indexing the locals dictionary with the argument’s
corresponding parameter name.
formatargvalues accepts one to four arguments that are the same as the items
of the named tuple that getargvalues returns, and returns a string with this
information. formatargvalues(*getargvalues(f)) returns a string with
f’s arguments in parentheses, in named form, as used in the call statement that
created f. For example:

def f(x=23):
    return inspect.currentframe()
print(inspect.formatargvalues(
      *inspect.getargvalues(f())))
# prints: (x=23)

getdoc getdoc(obj)

Returns the docstring for obj, a multiline string with tabs expanded to spaces and
redundant whitespace stripped from each line.

getfile,
getsourcefile

getfile(obj),
getsourcefile(obj)

getfile returns the name of the binary or source file that defined obj. Raises
TypeError when unable to determine the file (for example, when obj is a
built-in). getsourcefile returns the name of the source file that defined obj; it
raises TypeError when all it can find is a binary file, not the corresponding source
file.

getmembers getmembers(obj, filter=None)

Returns all attributes (members), both data and methods (including special methods)
of obj, as a sorted list of (name, value) pairs. When filter is not None,
returns only attributes for which callable filter returns a truthy result when called
on the attribute’s value, equivalent to:

((n, v) for n, v in getmembers(obj) 
        if filter(v))

getmodule getmodule(obj)

Returns the module that defined obj, or None when unable to determine it.
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getmro getmro(c)

Returns a tuple of bases and ancestors of class c in method resolution order
(discussed in “Inheritance” on page 129). c is the first item in the tuple, and each
class appears only once in the tuple. For example:

class A: pass
class B(A): pass
class C(A): pass
class D(B, C): pass
for c in inspect.getmro(D):
    print(c.__name__, end=' ')
# prints: D B C A object

getsource,
getsourcelines

getsource(obj),
getsourcelines(obj)

getsource returns a multiline string that is the source code for obj, and raises
IOError if it is unable to determine or fetch it. getsourcelines returns a pair:
the first item is the source code for obj (a list of lines), and the second item is the
line number of the first line within its file.

isbuiltin,
isclass,
iscode, isframe,
isfunction,
ismethod,
ismodule,
isroutine

isbuiltin(obj), etc.
Each of these functions accepts a single argument obj and returns True when
obj is of the kind indicated in the function name. Accepted objects are, respectively:
built-in (C-coded) functions, class objects, code objects, frame objects, Python-coded
functions (including lambda expressions), methods, modules, and—for isrou
tine—all methods or functions, either C-coded or Python-coded. These functions
are often used as the filter argument to getmembers.

stack stack(context=1)

Returns a list of six-item tuples. The first tuple is about stack’s caller, the second
about the caller’s caller, and so on. The items in each tuple are: frame object,
filename, line number, function name, list of context source lines around the
current line, index of current line within the list.

Introspecting callables
To introspect a callable’s signature, call inspect.signature(f), which returns an
instance s of class inspect.Signature.

s.parameters is a dict mapping parameter names to inspect.Parameter instan‐
ces. Call s.bind(*a, **k) to bind all parameters to the given positional and named
arguments, or s.bind_partial(*a, **k) to bind a subset of them: each returns an
instance b of inspect.BoundArguments.

For detailed information and examples of how to introspect callables’ signatures
through these classes and their methods, see PEP 362.

An example of using inspect
Suppose that somewhere in your program you execute a statement such as:

x.f()
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and unexpectedly receive an AttributeError informing you that object x has no
attribute named f. This means that object x is not as you expected, so you want to
determine more about x as a preliminary to ascertaining why x is that way and what
you should do about it. A simple first approach might be:

print(type(x), x)
# or, from v3.8, use an f-string with a trailing '=' to show repr(x)
# print(f'{x=}')
x.f()

This will often provide sufficient information to go on; or you might change it to
print(type(x), dir(x), x) to see what x’s methods and attributes are. But if this
isn’t sufficient, change the statement to:

try:
    x.f()
except AttributeError:
    import sys, inspect
    print(f'x is type {type(x).__name__}, ({x!r})', file=sys.stderr)
    print("x's methods are:", file=sys.stderr, end='')
    for n, v in inspect.getmembers(x, callable):
        print(n, file=sys.stderr, end=' ')
    print(file=sys.stderr)
    raise

This example properly uses sys.stderr (covered in Table 8-3), since it displays
information related to an error, not program results. The function getmembers of
the module inspect obtains the names of all the methods available on x in order
to display them. If you often need this kind of diagnostic functionality, you can
package it up into a separate function, such as:

import sys, inspect
def show_obj_methods(obj, name, show=sys.stderr.write):
    show(f'{name} is type {type(obj).__name__}({obj!r})\n')
    show(f"{name}'s methods are: ")
    for n, v in inspect.getmembers(obj, callable):
       show(f'{n} ')
    show('\n')

And then the example becomes just:

try:
    x.f()
except AttributeError:
    show_obj_methods(x, 'x')
    raise

Good program structure and organization are just as necessary in code intended
for diagnostic and debugging purposes as they are in code that implements your
program’s functionality. See also “The assert Statement” on page 219 for a good
technique to use when defining diagnostic and debugging functions.
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The traceback Module
The traceback module lets you extract, format, and output information about
tracebacks that uncaught exceptions normally produce. By default, this module
reproduces the formatting Python uses for tracebacks. However, the traceback
module also lets you exert fine-grained control. The module supplies many func‐
tions, but in typical use you need only one of them:

print_exc print_exc(limit=None, file=sys.stderr)

Call print_exc from an exception handler, or from a function called, directly or indirectly, by
an exception handler. print_exc outputs to file-like object file the traceback that Python
outputs to stderr for uncaught exceptions. When limit is an integer, print_exc
outputs only limit traceback nesting levels. For example, when, in an exception handler, you
want to cause a diagnostic message just as if the exception propagated, but stop the exception
from propagating further (so that your program keeps running and no further handlers are
involved), call traceback.print_exc().

The pdb Module
The pdb module uses the Python interpreter’s debugging and tracing hooks to
implement a simple command-line interactive debugger. pdb lets you set break‐
points, single-step and jump to source code, examine stack frames, and so on.

To run code under pdb’s control, import pdb, then call pdb.run, passing as the
single argument a string of code to execute. To use pdb for postmortem debugging
(debugging of code that just terminated by propagating an exception at an interac‐
tive prompt), call pdb.pm() without arguments. To trigger pdb directly from your
application code, use the built-in function breakpoint.

When pdb starts, it first reads text files named .pdbrc in your home directory and
in the current directory. Such files can contain any pdb commands, but most often
you put alias commands in them to define useful synonyms and abbreviations for
other commands that you use often.

When pdb is in control, it prompts with the string (Pdb), and you can enter pdb
commands. The command help (which you can enter in the abbreviated form h)
lists the available commands. Call help with an argument (separated by a space)
to get help about any specific command. You can abbreviate most commands to
the first one or two letters, but you must always enter commands in lowercase:
pdb, like Python itself, is case-sensitive. Entering an empty line repeats the previous
command. The most frequently used pdb commands are listed in Table 17-6.
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Table 17-6. Commonly used pdb commands

! ! statement
Executes Python statement statement with the currently selected stack frame (see the
d and u commands later in this table) as the local namespace.

alias,
unalias

alias [name [command]],
unalias name
Defines a short form of a frequently used command. command is any pdb command, with
arguments, and may contain %1, %2, and so on to refer to specific arguments passed to
the new alias name being defined, or %* to refer to all such arguments. alias with no
arguments lists currently defined aliases. alias name outputs the current definition of
alias name. unalias name removes an alias.

args, a args

Lists all arguments passed to the function you are currently debugging.

break, b break [location[, condition]]
With no arguments, lists the currently defined breakpoints and the number of times
each breakpoint has triggered. With an argument, break sets a breakpoint at the given
location. location can be a line number or a function name, optionally preceded
by filename: to set a breakpoint in a file that is not the current one or at the start of
a function whose name is ambiguous (i.e., a function that exists in more than one file).
When condition is present, it is an expression to evaluate (in the debugged context)
each time the given line or function is about to execute; execution breaks only when
the expression returns a truthy value. When setting a new breakpoint, break returns a
breakpoint number, which you can later use to refer to the new breakpoint in any other
breakpoint-related pdb command.

clear, cl clear [breakpoint-numbers]

Clears (removes) one or more breakpoints. clear with no arguments removes all
breakpoints after asking for confirmation. To deactivate a breakpoint temporarily, without
removing it, see disable, covered below.

condition condition breakpoint-number [expression]
condition n expression sets or changes the condition on breakpoint n. condi
tion n, without expression, makes breakpoint n unconditional.

continue, c,
cont

continue

Continues execution of the code being debugged, up to a breakpoint, if any.

disable disable [breakpoint-numbers]

Disables one or more breakpoints. disable without arguments disables all breakpoints
(after asking for confirmation). This differs from clear in that the debugger remembers
the breakpoint, and you can reactivate it via enable.

down, d down

Moves down one frame in the stack (i.e., toward the most recent function call). Normally,
the current position in the stack is at the bottom (at the function that was called most
recently and is now being debugged), so down can’t go further down. However, down is
useful if you have previously executed the command up, which moves the current position
upward in the stack.
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enable enable [breakpoint-numbers]

Enables one or more breakpoints. enable without arguments enables all breakpoints
after asking for confirmation.

ignore ignore breakpoint-number [count]
Sets the breakpoint’s ignore count (to 0 if count is omitted). Triggering a breakpoint
whose ignore count is greater than 0 just decrements the count. Execution stops,
presenting you with an interactive pdb prompt, only when you trigger a breakpoint
whose ignore count is 0. For example, say that module fob.py contains the following code:

def f():
    for i in range(1000):
        g(i)
def g(i):
    pass

Now consider the following interactive pdb session (minor formatting details may change
depending on the Python version you’re running):

>>> import pdb
>>> import fob
>>> pdb.run('fob.f()')
> <string>(1)?()
(Pdb) break fob.g
Breakpoint 1 at C:\mydir\fob.py:5
(Pdb) ignore 1 500
Will ignore next 500 crossings of breakpoint 1.
(Pdb) continue
> C:\mydir\fob.py(5)
g()-> pass
(Pdb) print(i)
500

The ignore command, as pdb says, tells pdb to ignore the next 500 hits on breakpoint
1, which we set at fob.g in the previous break statement. Therefore, when execution
finally stops, the function g has already been called 500 times, as we show by printing
its argument i, which indeed is now 500. The ignore count of breakpoint 1 is now 0; if
we execute another continue and print i, i shows as 501. In other words, once the
ignore count decrements to 0, execution stops every time the breakpoint is hit. If we want
to skip some more hits, we must give pdb another ignore command, setting the ignore
count of breakpoint 1 to some value greater than 0 yet again.

jump, j jump line_number
Sets the next line to execute to the given line number. You can use this to skip over some
code by advancing to a line beyond it, or revisit some code that was already run by jumping
to a previous line. (Note that a jump to a previous source line is not an undo command:
any changes to program state made after that line are retained.)
jump does come with some limitations—for example, you can only jump within the
bottom frame, and you cannot jump into a loop or out of a finally block—but it can
still be an extremely useful command.
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list, l list [first [, last] ]
Without arguments, lists 11 (eleven) lines centered on the current one, or the next 11
lines if the previous command was also a list. Arguments to the list command can
optionally specify the first and last lines to list within the current file; use a dot (.) to
indicate the current debug line. The list command lists physical lines, counting and
including comments and empty lines, not logical lines. list’s output marks the current
line with ->; if the current line was reached in the course of handling an exception, the
line that raised the exception is marked with >>.

ll ll

Long version of list, showing all lines in the current function or frame.

next, n next

Executes the current line, without “stepping into” any function called from the current line.
However, hitting breakpoints in functions called directly or indirectly from the current line
does stop execution.

print, p print(expression),
p expression
Evaluates expression in the current context and displays the result.

quit, q quit

Immediately terminates both pdb and the program being debugged.

return, r return

Executes the rest of the current function, stopping only at breakpoints, if any.

step, s step

Executes the current line, stepping into any function called from the current line.

tbreak tbreak [location[, condition]]
Like break, but the breakpoint is temporary (i.e., pdb automatically removes the
breakpoint as soon as the breakpoint is triggered).

up, u up

Moves up one frame in the stack (i.e., away from the most recent function call and toward
the calling function).

where, w where

Shows the stack of frames and indicates the current one (i.e., in which frame’s context the
command ! executes statements, the command args shows arguments, the command
print evaluates expressions, etc.).

You can also enter a Python expression at the (Pdb) prompt, and pdb will evaluate
it and display the result, just as if you were at the Python interpreter prompt.
However, when you enter an expression whose first term coincides with a pdb
command, the pdb command will execute. This is especially problematic when
debugging code with single-letter variables like p and q. In these cases, you must
begin the expression with ! or precede it with the print or p command.
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Other Debugging Modules
While pdb is built into Python, there are third-party packages that provide
enhanced features for debugging.

ipdb
Just as ipython extends the interactive interpreter provided by Python, ipdb adds
the same inspection, tab completion, command-line editing, and history features
(and magic commands) to pdb. Figure 17-1 shows an example interaction.

Figure 17-1. Example of an ipdb session

ipdb also adds configuration and conditional expressions to its version of
set_trace, giving more control over when your program is to break out into the
debugging session. (In this example, the breakpoint is conditional on i being equal
to 2.)

pudb
pudb is a lightweight “graphical-like” debugger that runs in a terminal console (see
Figure 17-2), utilizing the urwid console UI library. It is especially useful when
connecting to remote Python environments using terminal sessions such as ssh,
where a windowed-GUI debugger is not easy to install or run.
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Figure 17-2. Example of a pudb session

pudb has its own set of debugging commands and interface, which take some
practice to use; however, it makes a visual debugging environment handily available
when working in tight computing spaces.

The warnings Module
Warnings are messages about errors or anomalies that aren’t serious enough to
disrupt the program’s control flow (as would happen by raising an exception). The
warnings module affords fine-grained control over which warnings are output and
what happens to them. You can conditionally output a warning by calling the func‐
tion warn in the warnings module. Other functions in the module let you control
how warnings are formatted, set their destinations, and conditionally suppress some
warnings or transform some warnings into exceptions.

Classes
Exception classes that represent warnings are not supplied by warnings: rather, they
are built-ins. The class Warning subclasses Exception and is the base class for all
warnings. You may define your own warning classes, which must subclass Warning,
either directly or via one of its other existing subclasses—these include:

DeprecationWarning

For use of deprecated features which are still supplied only for backward
compatibility
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RuntimeWarning

For use of features whose semantics are error prone

SyntaxWarning

For use of features whose syntax is error prone

UserWarning

For other user-defined warnings that don’t fit any of the above cases

Objects
Python supplies no concrete “warning objects.” Rather, a warning is made up of a
message (a string), a category (a subclass of Warning), and two pieces of informa‐
tion to identify where the warning was raised: module (the name of the module that
raised the warning) and lineno (the number of the line in the source code that
raised the warning). Conceptually, you may think of these as attributes of a warning
object w: we use attribute notation later, strictly for clarity, but no specific object w
actually exists.

Filters
At any time, the warnings module keeps a list of active filters for warnings. When
you import warnings for the first time in a run, the module examines sys.warnop
tions to determine the initial set of filters. You can run Python with the option -W
to set sys.warnoptions for a given run. Do not rely on the initial set of filters being
held specifically in sys.warnoptions, as this is an implementation detail that may
change in future versions of Python.

As each warning w occurs, warnings tests w against each filter until a filter matches.
The first matching filter determines what happens to w. Each filter is a tuple of five
items. The first item, action, is a string that defines what happens on a match. The
other four items, message, category, module, and lineno, control what it means
for w to match the filter: for a match, all conditions must be satisfied. Here are the
meanings of these items (using attribute notation to indicate conceptual attributes
of w):

message

A regular expression pattern string; the match condition is re.match(message,
w.message, re.I) (the match is case insensitive)

category

Warning or a subclass; the match condition is issubclass(w.category,
category)

module

A regular expression pattern string; the match condition is re.match(module,
w.module) (the match is case sensitive)
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lineno

An int; the match condition is lineno in (0, w.lineno): that is, either lineno
is 0, meaning w.lineno does not matter, or w.lineno must exactly equal
lineno

Upon a match, the first field of the filter, the action, determines what happens. It
can have the following values:

'always'

w.message is output whether or not w has already occurred.

'default'

w.message is output if, and only if, this is the first time w has occurred from this
specific location (i.e., this specific (w.module, w.location) pair).

'error'

w.category(w.message) is raised as an exception.

'ignore'

w is ignored.

'module'

w.message is output if, and only if, this is the first time w occurs from
w.module.

'once'

w.message is output if, and only if, this is the first time w occurs from any
location.

When a module issues a warning, warnings adds to that module’s global variables a
dict named __warningsgregistry__, if that dict is not already present. Each key
in the dict is a pair (message, category), or a tuple with three items (message,
category, lineno); the corresponding value is True when further occurrences
of that message are to be suppressed. Thus, for example, you can reset the sup‐
pression state of all warnings from a module m by executing m.__warningsregis
try__.clear(): when you do that, all messages are allowed to get output again
(once), even when, for example, they’ve previously triggered a filter with an action
of 'module'.

Functions
The warnings module supplies the functions listed in Table 17-7.
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Table 17-7. Functions of the warnings module

filter

warnings

filterwarnings(action, message='.*', category=Warning,

module='.*', lineno=0, append=False)

Adds a filter to the list of active filters. When append is True, filterwarnings
adds the filter after all other existing filters (i.e., appends the filter to the list of existing
filters); otherwise, filterwarnings inserts the filter before any other existing filter. All
components, save action, have default values that mean “match everything.” As detailed
above, message and module are pattern strings for regular expressions, category
is some subclass of Warning, lineno is an integer, and action is a string that
determines what happens when a message matches this filter.

format

warning

formatwarning(message, category, filename, lineno)
Returns a string that represents the given warning with standard formatting.

reset

warnings

resetwarnings()

Removes all filters from the list of filters. resetwarnings also discards any filters
originally added with the -W command-line option.

showwarning showwarning(message, category, filename, lineno,
file=sys.stderr)

Outputs the given warning to the given file object. Filter actions that output warnings call
showwarning, letting the argument file default to sys.stderr. To change what
happens when filter actions output warnings, code your own function with this signature
and bind it to warnings.showwarning, thus overriding the default implementation.

warn warn(message, category=UserWarning, stacklevel=1)

Sends a warning so that the filters examine and possibly output it. The location of the
warning is the current function (caller of warn) if stacklevel is 1, or the caller of the
current function if stacklevel is 2. Thus, passing 2 as the value of stacklevel lets
you write functions that send warnings on their caller’s behalf, such as:

def to_unicode(bytestr):
    try:
        return bytestr.decode()
    except UnicodeError:
        warnings.warn(f'Invalid characters in 
                      {bytestr!r}',
                      stacklevel=2)
        return bytestr.decode(errors='ignore')

Thanks to the parameter stacklevel=2, the warning appears to come from the caller
of to_unicode, rather than from to_unicode itself. This is very important when the
action of the filter that matches this warning is 'default' or 'module', since
these actions output a warning only the first time the warning occurs from a given location
or module.

Optimization
“First make it work. Then make it right. Then make it fast.” This quotation, often
with slight variations, is widely known as “the golden rule of programming.” As far
as we’ve been able to ascertain, the source is Kent Beck, who credits his father with
it. This principle is often quoted, but too rarely followed. A negative form, slightly
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6 “Oh, but I’ll only be running this code for a short time!” is not an excuse to get sloppy: the Rus‐
sian proverb “nothing is more permanent than a temporary solution” is particularly applicable in
software. All over the world, plenty of “temporary” code performing crucial tasks is over 50 years
old.

7 A typical case of the Pareto principle in action.
8 Per Amdahl’s law.

exaggerated for emphasis, is a quotation by Don Knuth (who credits Sir Tony Hoare
with it): “Premature optimization is the root of all evil in programming.”

Optimization is premature if your code is not working yet, or if you’re not sure
what, precisely, your code should be doing (since then you cannot be sure if it’s
working). First make it work: ensure that your code is correctly performing exactly
the tasks it is meant to perform.

Optimization is also premature if your code is working but you are not satisfied
with the overall architecture and design. Remedy structural flaws before worrying
about optimization: first make it work, then make it right. These steps are not
optional; working, well-architected code is always a must.6

Having a good test suite is key before attempting any optimization. After all, the
purpose of optimization is to increase speed or reduce memory consumption—or
both—without changing the code’s behavior.

In contrast, you don’t always need to make it fast. Benchmarks may show that
your code’s performance is already acceptable after the first two steps. When perfor‐
mance is not acceptable, profiling often shows that all performance issues are in
a small part of the code, with your program spending perhaps 80 or 90% of its
time in 10 to 20% of the code.7 Such performance-crucial regions of your code are
known as bottlenecks, or hot spots. It’s a waste of effort to optimize large portions
of code that account for, say, 10 percent of your program’s running time. Even
if you made that part run 10 times as fast (a rare feat), your program’s overall
runtime would only decrease by 9%,8 a speedup no user would likely even notice.
If optimization is needed, focus your efforts where they matter: on bottlenecks. You
can often optimize bottlenecks while keeping your code 100% pure Python, thus not
preventing future porting to other Python implementations.

Developing a Fast-Enough Python Application
Start by designing, coding, and testing your application in Python, using available
extension modules if they save you work. This takes much less time than it would
with a classic compiled language. Then benchmark the application to find out if the
resulting code is fast enough. Often it is, and you’re done—congratulations! Ship it!

Since much of Python itself is coded in highly optimized C (as are many of its
standard library and extension modules), your application may even turn out to
already be faster than typical C code. However, if the application is too slow, you
need, first and foremost, to rethink your algorithms and data structures. Check for

542 | Chapter 17: Testing, Debugging, and Optimizing

https://oreil.ly/iJVCX
https://oreil.ly/e6PEg


bottlenecks due to application architecture, network traffic, database access, and
operating system interactions. For many applications, each of these factors is more
likely than language choice, or coding details, to cause slowdowns. Tinkering with
large-scale architectural aspects can often dramatically speed up an application, and
Python is an excellent medium for such experimentation. If you’re using a version
control system (and you ought to be!), it should be easy to create experimental
branches or clones where you can try out different techniques to see which—if
any—deliver significant improvements, all without jeopardizing your working code.
You can then merge back any improvements that pass your tests.

If your program is still too slow, profile it: find out where the time is going! As we
previously mentioned, applications often exhibit computational bottlenecks, with
small areas of the source code accounting for the vast majority of the running
time. Optimize the bottlenecks, applying the techniques suggested in the rest of this
chapter.

If normal Python-level optimizations still leave some outstanding computational
bottlenecks, you can recode those as Python extension modules, as covered in
Chapter 25. In the end, your application will run at roughly the same speed as if you
had coded it all in C, C++, or FORTRAN—or faster, when large-scale experimenta‐
tion has let you find a better architecture. Your overall programming productivity
with this process will not be much lower than if you had coded everything in
Python. Future changes and maintenance are easy, since you use Python to express
the overall structure of the program, and lower-level, harder-to-maintain languages
for only a few specific computational bottlenecks.

As you build applications in a given area following this process, you will accumulate
a library of reusable Python extension modules. You will therefore become more
and more productive at developing other fast-running Python applications in the
same field.

Even if external constraints eventually force you to recode your whole application
in a lower-level language, you’ll still be better off for having started in Python.
Rapid prototyping has long been acknowledged as the best way to get software
architecture right. A working prototype lets you check that you have identified the
right problems and taken a good path to their solution. A prototype also affords
the kind of large-scale architectural experimentation that can make a real difference
in performance. You can migrate your code gradually to other languages by way
of extension modules, if need be, and the application remains fully functional and
testable at each stage. This ensures against the risk of compromising a design’s
architectural integrity in the coding stage.

Even if you are required to use a low-level language for the entire application,
it can often be more productive to write it in Python first (especially if you are
new to the application’s domain). Once you have a working Python version, you
can experiment with the user or network interface or library API, and with the
architecture. Also, it is much easier to find and fix bugs and to make changes in
Python code than in lower-level languages. At the end, you’ll know the code so
well that porting to a lower-level language should be very fast and straightforward,
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safe in the knowledge that most of the design mistakes were made and fixed in the
Python implementation.

The resulting software will be faster and more robust than if all of the coding had
been lower-level from the start, and your productivity—while not quite as good as
with a pure Python application—will still be higher than if you had been coding at a
lower level throughout.

Benchmarking
Benchmarking (also known as load testing) is similar to system testing: both activi‐
ties are much like running the program for production purposes. In both cases,
you need to have at least some subset of the program’s intended functionality
working, and you need to use known, reproducible inputs. For benchmarking, you
don’t need to capture and check your program’s output: since you make it work
and make it right before you make it fast, you’re already fully confident about
your program’s correctness by the time you load test it. You do need inputs that
are representative of typical system operation—ideally ones that are likely to pose
the greatest challenges to your program’s performance. If your program performs
several kinds of operations, make sure you run some benchmarks for each different
kind of operation.

Elapsed time as measured by your wristwatch is probably precise enough to bench‐
mark most programs. A 5 or 10% difference in performance, except in programs
with very peculiar constraints, makes no practical difference to a program’s real-life
usability. (Programs with hard real-time constraints are another matter, since they
have needs very different from those of normal programs in most respects. )

When you benchmark “toy” programs or snippets in order to help you choose an
algorithm or data structure, you may need more precision: the timeit module of
Python’s standard library (covered in “The timeit module” on page 552) is quite
suitable for such tasks. The benchmarking discussed in this section is of a different
kind: it is an approximation of real-life program operation for the sole purpose
of checking whether the program’s performance on each task is acceptable, before
embarking on profiling and other optimization activities. For such “system” bench‐
marking, a situation that approximates the program’s normal operating conditions
is best, and high accuracy in timing is not all that important.

Large-Scale Optimization
The aspects of your program that are most important for performance are large-
scale ones: your choice of overall architecture, algorithms, and data structures.

The performance issues that you must often take into account are those connected
with the traditional big-O notation of computer science. Informally, if you call N
the input size of an algorithm, big-O notation expresses algorithm performance,
for large values of N, as proportional to some function of N. (In precise computer
science lingo, this should be called big-Theta notation, but in real life, programmers
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always call it big-O, perhaps because an uppercase Theta looks a bit like an O with a
dot in the center!)

An O(1) algorithm (also known as “constant time”) is one that takes a certain
amount of time not growing with N. An O(N) algorithm (also known as “linear
time”) is one where, for large enough N, handling twice as much data takes about
twice as much time, three times as much data takes three times as much time,
and so on, proportionally to N. An O(N²) algorithm (also known as a “quadratic
time” algorithm) is one where, for large enough N, handling twice as much data
takes about four times as much time, three times as much data takes nine times as
much time, and so on, growing proportionally to N squared. Identical concepts and
notation are used to describe a program’s consumption of memory (“space”) rather
than of time.

To find more information on big-O notation, and about algorithms and their
complexity, any good book about algorithms and data structures can help; we rec‐
ommend Magnus Lie Hetland’s excellent book Python Algorithms: Mastering Basic
Algorithms in the Python Language, 2nd edition (Apress).

To understand the practical importance of big-O considerations in your programs,
consider two different ways to accept all items from an input iterable and accumu‐
late them into a list in reverse order:

def slow(it):
    result = []
    for item in it:
        result.insert(0, item)
    return result

def fast(it):
    result = []
    for item in it:
        result.append(item)
    result.reverse()
    return result

We could express each of these functions more concisely, but the key difference
is best appreciated by presenting the functions in these elementary terms. The
function slow builds the result list by inserting each input item before all previously
received ones. The function fast appends each input item after all previously
received ones, then reverses the result list at the end. Intuitively, one might think
that the final reversing represents extra work, and therefore slow should be faster
than fast. But that’s not the way things work out.

Each call to result.append takes roughly the same amount of time, independent of
how many items are already in the list result, since there is (nearly) always a free
slot for an extra item at the end of the list (in pedantic terms, append is amortized
O(1), but we don’t cover amortization in this book). The for loop in the function
fast executes N times to receive N items. Since each iteration of the loop takes a
constant time, overall loop time is O(N). result.reverse also takes time O(N), as it
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is directly proportional to the total number of items. Thus, the total running time
of fast is O(N). (If you don’t understand why a sum of two quantities, each O(N),
is also O(N), consider that the sum of any two linear functions of N is also a linear
function of N—and “being O(N)” has exactly the same meaning as “consuming an
amount of time that is a linear function of N.”)

On the other hand, each call to result.insert makes space at slot 0 for the new
item to insert, moving all items that are already in list result forward one slot.
This takes time proportional to the number of items already in the list. The overall
amount of time to receive N items is therefore proportional to 1+2+3+...N-1, a sum
whose value is O(N²). Therefore, the total running time of slow is O(N²).

It’s almost always worth replacing an O(N²) solution with an O(N) one, unless you
can somehow assign rigorous small limits to input size N. If N can grow without
very strict bounds, the O(N²) solution turns out to be disastrously slower than the
O(N) one for large values of N, no matter what the proportionality constants in each
case may be (and no matter what profiling tells you). Unless you have other O(N²)
or even worse bottlenecks elsewhere that you can’t eliminate, a part of the program
that is O(N²) turns into the program’s bottleneck, dominating runtime for large
values of N. Do yourself a favor and watch out for the big-O: all other performance
issues, in comparison, are usually almost insignificant.

Incidentally, you can make the function fast even faster by expressing it in more
idiomatic Python. Just replace the first two lines with the following single statement:

result = list(it)

This change does not affect fast’s big-O character (fast is still O(N) after the
change), but does speed things up by a large constant factor.

Simple Is Better than Complex, and Usually Faster!
More often than not, in Python, the simplest, clearest, most
direct and idiomatic way to express something is also the
fastest.

Choosing algorithms with good big-O performance is roughly the same task in
Python as in any other language. You just need a few hints about the big-O
performance of Python’s elementary building blocks, and we provide them in the
following sections.

List operations
Python lists are internally implemented as vectors (also known as dynamic arrays),
not as “linked lists.” This implementation choice determines the performance char‐
acteristics of Python lists, in big-O terms.

Chaining two lists L1 and L2, of length N1 and N2 (i.e., L1+L2) is O(N1+N2). Multiply‐
ing a list L of length N by integer M (i.e., L*M) is O(N*M). Accessing or rebinding any
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9 Using the invented-for-Python adaptive sorting algorithm Timsort.

list item is O(1). len() on a list is also O(1). Accessing any slice of length M is O(M).
Rebinding a slice of length M with one of identical length is also O(M). Rebinding a
slice of length M1 with one of different length M2 is O(M1+M2+N1), where N1 is the
number of items after the slice in the target list (so, length-changing slice rebindings
are relatively cheap when they occur at the end of a list, but costlier when they occur
at the beginning or around the middle of a long list). If you need first-in, first-out
operations, a list is probably not the fastest data structure for the purpose: instead,
try the type collections.deque, covered in “deque” on page 268.

Most list methods, as shown in Table 3-5, are equivalent to slice rebindings and have
equivalent big-O performance. The methods count, index, remove, and reverse,
and the operator in, are O(N). The method sort is generally O(N log N), but sort is
highly optimized9 to be O(N) in some important special cases, such as when the list
is already sorted or reverse-sorted except for a few items. range(a, b, c) is O(1),
but looping on all items of the result is O((b - a) // c).

String operations
Most methods on a string of length N (be it bytes or Unicode) are O(N).
len(astring) is O(1). The fastest way to produce a copy of a string with translitera‐
tions and/or removal of specified characters is the string’s method translate. The
single most practically important big-O consideration involving strings is covered
in “Building up a string from pieces” on page 554.

Dictionary operations
Python dicts are implemented with hash tables. This implementation choice deter‐
mines all the performance characteristics of Python dictionaries, in big-O terms.

Accessing, rebinding, adding, or removing a dictionary item is O(1), as are the
methods get, setdefault, and popitem, and the operator in. d1.update(d2) is
O(len(d2)). len(adict) is O(1). The methods keys, items, and values are O(1),
but looping on all items of the iterators those methods return is O(N), as is looping
directly on a dict.

When the keys in a dictionary are instances of classes that define __hash__ and
equality comparison methods, dictionary performance is of course affected by those
methods. The performance indications presented in this section hold when hashing
and equality comparison on keys are O(1).

Set operations
Python sets, like dicts, are implemented with hash tables. All performance charac‐
teristics of sets are, in big-O terms, the same as for dictionaries.
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Adding or removing an item in a set is O(1), as is the operator in. len(aset) is
O(1). Looping on a set is O(N). When the items in a set are instances of classes that
define __hash__ and equality comparison methods, set performance is of course
affected by those methods. The performance hints presented in this section hold
when hashing and equality comparison on items are O(1).

Summary of big-O times for operations on Python built-in types
Let L be any list, T any string (str or bytes), D any dict, S any set (with, say,
numbers as items, just for the purpose of ensuring O(1) hashing and comparison),
and x any number (ditto):

O(1)

len(L), len(T), len(D), len(S), L[i], T[i], D[i], del D[i], if x in D, if x in
S, S.add(x), S.remove(x), appends or removals to/from the very right end of L

O(N)

Loops on L, T, D, S, general appends or removals to/from L (except at the very
right end), all methods on T, if x in L, if x in T, most methods on L, all
shallow copies

O(N log N)

L.sort(), mostly (but O(N) if L is already nearly sorted or reverse sorted)

Profiling
As mentioned at the start of this section, most programs have hot spots: relatively
small regions of source code that account for most of the time elapsed during a
program run. Don’t try to guess where your program’s hot spots are: a programmer’s
intuition is notoriously unreliable in this field. Instead, use the Python standard
library module profile to collect profile data over one or more runs of your
program, with known inputs. Then use the module pstats to collate, interpret, and
display that profile data.

To gain accuracy, you can calibrate the Python profiler for your machine (i.e.,
determine what overhead profiling incurs on that machine). The profile module
can then subtract this overhead from the times it measures, making profile data
you collect closer to reality. The standard library module cProfile has similar
functionality to profile; cProfile is preferable, since it’s faster, which means it
imposes less overhead.

There are also many third-party profiling tools worth considering, such as pyinstru‐
ment and Eliot; an excellent article by Itamar Turner-Trauring explains the basics
and advantages of each of these tools.

The profile module
The profile module supplies one often-used function:
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run run(code, filename=None)

code is a string that is usable with exec, normally a call to the main function of the program you’re
profiling. filename is the path of a file that run creates or rewrites with profile data. Usually, you
call run a few times, specifying different filenames and different arguments to your program’s main
function, in order to exercise various program parts in proportion to your expectations about their use
“in real life.” Then, you use the pstats module to display collated results across the various runs.
You may call run without a filename to get a summary report, similar to the one the pstats
module provides, on standard output. However, this approach gives you no control over the output
format, nor any way to consolidate several runs into one report. In practice, you should rarely use this
feature: it’s best to collect profile data into files, then use pstats.
The profile module also supplies the class Profile (discussed briefly in the next section). By
instantiating Profile directly, you can access advanced functionality, such as the ability to run a
command in specified local and global dictionaries. We do not cover such advanced functionality of the
class profile.Profile further in this book.

Calibration
To calibrate profile for your machine, use the class Profile, which profile
supplies and internally uses in the function run. An instance p of Profile supplies
one method you use for calibration:

calibrate p.calibrate(N)

Loops N times, then returns a number that is the profiling overhead per call on your
machine. N must be large if your machine is fast. Call p.calibrate(10000) a few
times and check that the various numbers it returns are close to each other, then pick the
smallest one of them. If the numbers vary a lot, try again with a larger value of N.
The calibration procedure can be time-consuming. However, you need to perform it
only once, repeating it only when you make changes that could alter your machine’s
characteristics, such as applying patches to your operating system, adding memory, or
changing your Python version. Once you know your machine’s overhead, you can tell
profile about it each time you import it, right before using profile.run. The
simplest way to do this is as follows:

import profile
profile.Profile.bias = ...the overhead you measured...
profile.run('main()', 'somefile')

The pstats module
The pstats module supplies a single class, Stats, to analyze, consolidate, and
report on the profile data contained in one or more files written by the function
profile.run. Its constructor has the signature:

Stats class Stats(filename, *filenames, stream=sys.stdout)
Instantiates Stats with one or more filenames of files of profile data written by the function
profile.run, with profiling output sent to stream.
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An instance s of the class Stats provides methods to add profile data and sort and
output results. Each method returns s, so you can chain many calls in the same
expression. s’s main methods are listed in Table 17-8.

Table 17-8. Methods of an instance s of class Stats

add add(filename)

Adds another file of profile data to the set that s is holding for analysis.

print_

callees,
print_

callers

print_callees(*restrictions),
print_callers(*restrictions)

Outputs the list of functions in s’s profile data, sorted according to the latest call to
s.sort_stats and subject to given restrictions, if any. You can call each printing
method with zero or more restrictions, to be applied one after the other, in order,
to reduce the number of output lines. A restriction that is an int n limits the output
to the first n lines. A restriction that is a float f between 0.0 and 1.0 limits the
output to a fraction f of the lines. A restriction that is a string is compiled as a regular
expression pattern (covered in “Regular Expressions and the re Module” on page 305); only
lines that satisfy a search method call on the regular expression are output. Restrictions
are cumulative. For example, s.print_callees(10, 0.5) outputs the first 5 lines
(half of 10). Restrictions apply only after the summary and header lines: the summary and
header lines are output unconditionally.
Each function f in the output is accompanied by the list of f’s callers (functions that called
f) or f’s callees (functions that f called), according to the name of the method.

print_stats print_stats(*restrictions)

Outputs statistics about s’s profile data, sorted according to the latest call to
s.sort_stats and subject to given restrictions, if any, as covered in print_call
ees and print_callers, above. After a few summary lines (date and time on which
profile data was collected, number of function calls, and sort criteria used), the output—
absent restrictions—is one line per function, with six fields per line, labeled in a header
line. print_stats outputs the following fields for each function f:

1. Total number of calls to f

2. Total time spent in f, exclusive of other functions that f called

3. Total time per call to f (i.e., field 2 divided by field 1)

4. Cumulative time spent in f, and all functions directly or indirectly called from f

5. Cumulative time per call to f (i.e., field 4 divided by field 1)

6. The name of function f
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10 A once-slower idiom may be optimized in some future version of Python, so it’s worth redoing
timeit measurements to check for this when you upgrade to newer versions of Python.

sort_stats sort_stats(*keys)

Gives one or more keys on which to sort future output. Each key is either a string or a
member of the enum pstats.SortKey. The sort is descending for keys that indicate
times or numbers, and alphabetical for key 'nfl'. The most frequently used keys when
calling sort_stats are:

SortKey.CALLS or 'calls'
Number of calls to the function (like field 1 in the print_stats output)

SortKey.CUMULATIVE or 'cumulative'
Cumulative time spent in the function and all functions it called (like field 4 in
the print_stats output)

SortKey.NFL or 'nfl'
Name of the function, its module, and the line number of the function in its file
(like field 6 in the print_stats output)

SortKey.TIME or 'time'
Total time spent in the function itself, exclusive of functions it called (like field 2
in the print_stats output)

strip_dirs strip_dirs()

Alters s by stripping directory names from all module names to make future output
more compact. s is unsorted after s.strip_dirs, and therefore you normally call
s.sort_stats right after calling s.strip_dirs.

Small-Scale Optimization
Fine-tuning of program operations is rarely important. It may make a small but
meaningful difference in some particularly hot spot, but it is hardly ever a decisive
factor. And yet, fine-tuning—in the pursuit of mostly irrelevant microefficiencies—
is where a programmer’s instincts are likely to lead them. It is in good part because
of this that most optimization is premature and best avoided. The most that can
be said in favor of fine-tuning is that, if one idiom is always speedier than another
when the difference is measurable, then it’s worth your while to get into the habit of
always using the speedier way.10

In Python, if you do what comes naturally, choosing simplicity and elegance, you
typically end up with code that has good performance and is clear and maintainable.
In other words, let Python do the work: when Python provides a simple, direct
way to perform a task, chances are that it’s also the fastest way. In a few cases, an
approach that may not be intuitively preferable still offers performance advantages,
as discussed in the rest of this section.
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The simplest optimization is to run your Python programs using python -O or
-OO. -OO makes little difference to performance compared to -O but may save some
memory, as it removes docstrings from the bytecode, and memory is sometimes
(indirectly) a performance bottleneck. The optimizer is not powerful in current
releases of Python, but it may gain you performance advantages on the order
of 5-10% (and potentially larger if you make use of assert statements and if
__debug__: guards, as suggested in “The assert Statement” on page 219). The best
aspect of -O is that it costs nothing—as long as your optimization isn’t premature, of
course (don’t bother using -O on a program you’re still developing).

The timeit module
The standard library module timeit is handy for measuring the precise perfor‐
mance of specific snippets of code. You can import timeit to use timeit’s function‐
ality in your programs, but the simplest and most normal use is from the command
line:

$ python -m timeit -s 'setup statement(s)' 'statement(s) to be timed'

The “setup statement” is executed only once, to set things up; the “statements to be
timed” are executed repeatedly, to accurately measure the average time they take.

For example, say you’re wondering about the performance of x=x+1 versus x+=1,
where x is an int. At a command prompt, you can easily try:

$ python -m timeit -s 'x=0' 'x=x+1'

1000000 loops, best of 3: 0.0416 usec per loop

$ python -m timeit -s 'x=0' 'x+=1'

1000000 loops, best of 3: 0.0406 usec per loop

and find out that performance is, for all intents and purposes, the same in both
cases (a tiny difference, such as the 2.5% in this case, is best regarded as “noise”).

Memoizing
Memoizing is the technique of saving values returned from a function that is
called repeatedly with the same argument values. When the function is called with
arguments that have not been seen before, a memoizing function computes the
result, and then saves the arguments used to call it and the corresponding result
in a cache. When the function is called again later with the same arguments, the
function just looks up the computed value in the cache instead of rerunning the
function calculation logic. In this way, the calculation is performed just once for any
particular argument or arguments.

Here is an example of a function for calculating the sine of a value given in degrees:

import math
def sin_degrees(x):
    return math.sin(math.radians(x))
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If we determined that sin_degrees was a bottleneck, and was being repeatedly
called with the same values for x (such as the integer values from 0 to 360, as you
might use when displaying an analog clock), we could add a memoizing cache:

_cached_values = {}
def sin_degrees(x):
    if x not in _cached_values:
        _cached_values[x] = math.sin(math.radians(x))
    return _cached_values[x]

For functions that take multiple arguments, the tuple of argument values would be
used for the cache key.

We defined _cached_values outside the function, so that it is not reset each time we
call the function. To explicitly associate the cache with the function, we can utilize
Python’s object model, which allows us to treat functions as objects and assign
attributes to them:

def sin_degrees(x):
    cache = sin_degrees._cached_values
    if x not in cache:
        cache[x] = math.sin(math.radians(x))
    return cache[x]
sin_degrees._cached_values = {}

Caching is a classic approach to gain performance at the expense of using mem‐
ory (the time–memory trade-off). The cache in this example is unbounded, so, as
sin_degrees is called with many different values of x, the cache will continue to
grow, consuming more and more program memory. Caches are often configured
with an eviction policy, which determines when values can be removed from the
cache. Removing the oldest cached value is a common eviction policy. Since Python
keeps dict entries in insertion order, the “oldest” key will be the first one found if
we iterate over the dict:

def sin_degrees(x):
    cache = sin_degrees._cached_values
    if x not in cache:
        cache[x] = math.sin(math.radians(x))
        # remove oldest cache entry if exceed maxsize limit
        if len(cache) > sin_degrees._maxsize:
            oldest_key = next(iter(cache))
            del cache[oldest_key]
    return cache[x]
sin_degrees._cached_values = {}
sin_degrees._maxsize = 512

You can see that this starts to complicate the code, with the original logic for
computing the sine of a value given in degrees hidden inside all the caching logic.
The Python stdlib module functools includes caching decorators lru_cache, 3.9+
cache, and 3.8+  cached_property to perform memoization cleanly. For example:
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import functools
@functools.lru_cache(maxsize=512)
def sin_degrees(x):
    return math.sin(math.radians(x))

The signatures for these decorators are described in detail in “The functools Mod‐
ule” on page 269.

Caching Floating-Point Values Can Give Undesirable
Behavior
As was described in “Floating-Point Values” on page 485,
comparing float values for equality can return False when
the values are actually within some expected tolerance for
being considered equal. With an unbounded cache, a cache
containing float keys may grow unexpectedly large by cach‐
ing multiple values that differ only in the 18th decimal place.
For a bounded cache, many float keys that are very nearly
equal may cause the unwanted eviction of other values that are
significantly different.
All the cache techniques listed here use equality matching,
so code for memoizing a function with one or more float
arguments should take extra steps to cache rounded values, or
use math.isclose for matching.

Precomputing a lookup table
In some cases, you can predict all the values that your code will use when calling
a particular function. This allows you to precompute the values and save them in
a lookup table. For example, in our application that is going to compute the sin
function for the integer degree values 0 to 360, we can perform this work just once
at program startup and keep the results in a Python dict:

_sin_degrees_lookup = {x: math.sin(math.radians(x))
                       for x in range(0, 360+1)}
sin_degrees = _sin_degrees_lookup.get

Binding sin_degrees to the _sin_degrees_lookup dict’s get method means the
rest of our program can still call sin_degrees as a function, but now the value
retrieval occurs at the speed of a dict lookup, with no additional function overhead.

Building up a string from pieces
The single Python “anti-idiom” that is most likely to damage your program’s perfor‐
mance, to the point that you should never use it, is to build up a large string from
pieces by looping on string concatenation statements such as big_string += piece.
Python strings are immutable, so each such concatenation means that Python must
free the M bytes previously allocated for big_string, and allocate and fill M + K
bytes for the new version. Doing this repeatedly in a loop, you end up with roughly
O(N²) performance, where N is the total number of characters. More often than not,
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11 Even though current Python implementations bend over backward to help reduce the perfor‐
mance hit of this specific, terrible, but common anti-pattern, they can’t catch every occurrence, so
don’t count on that!

getting O(N²) performance where O(N) is easily available is a disaster.11 On some
platforms, things may be even bleaker due to memory fragmentation effects caused
by freeing many areas of progressively larger sizes.

To achieve O(N) performance, accumulate intermediate pieces in a list, rather than
building up the string piece by piece. Lists, unlike strings, are mutable, so appending
to a list is O(1) (amortized). Change each occurrence of big_string += piece
into temp_list.append(piece). Then, when you’re done accumulating, use the
following code to build your desired string result in O(N) time:

big_string = ''.join(temp_list)

Using a list comprehension, generator expression, or other direct means (such as a
call to map, or use of the standard library module itertools) to build temp_list
may often offer further (substantial, but not big-O) optimization over repeated calls
to temp_list.append. Other O(N) ways to build up big strings, which a few Python
programmers find more readable, are to concatenate the pieces to an instance of
array.array('u') with the array’s extend method, use a bytearray, or write the
pieces to an instance of io.TextIO or io.BytesIO.

In the special case where you want to output the resulting string, you may gain
a further small slice of performance by using writelines on temp_list (never
building big_string in memory). When feasible (i.e., when you have the output file
object open and available in the loop, and the file is buffered), it’s just as effective to
perform a write call for each piece, without any accumulation.

Although not nearly as crucial as += on a big string in a loop, another case where
removing string concatenation may give a slight performance improvement is when
you’re concatenating several values in an expression:

oneway = str(x) + ' eggs and ' + str(y) + ' slices of ' + k + ' ham'
another = '{} eggs and {} slices of {} ham'.format(x, y, k)
yetanother = f'{x} eggs and {y} slices of {k} ham'

Formatting strings using the format method or f-strings (discussed in Chapter 8)
is often a good performance choice, as well as being more idiomatic and thereby
clearer than concatenation approaches. On a sample run of the preceding example,
the format approach is more than twice as fast as the (perhaps more intuitive)
concatenation, and the f-string approach is more than twice as fast as format.

Optimization | 555

Test, D
eb

ug
,

O
p

tim
ize



Searching and sorting
The operator in, the most natural tool for searching, is O(1) when the righthand-
side operand is a set or dict, but O(N) when the righthand-side operand is a
string, list, or tuple. If you must perform many such checks on a container, you’re
much better off using a set or dict, rather than a list or tuple, as the container.
Python sets and dicts are highly optimized for searching and fetching items by
key. Building the set or dict from other containers, however, is O(N), so for this
crucial optimization to be worthwhile, you must be able to hold on to the set or
dict over several searches, possibly altering it apace as the underlying sequence
changes.

The sort method of Python lists is also a highly optimized and sophisticated tool.
You can rely on sort’s performance. Most functions and methods in the standard
library that perform comparisons accept a key argument to determine how, exactly,
to compare items. You provide a key function, which computes a key value for each
element in the list. The list elements are sorted by their key values. For instance,
you might write a key function for sorting objects based on an attribute attr as
lambda ob: ob.attr, or one for sorting dicts by dict key 'attr' as lambda d:
d['attr']. (The attrgetter and itemgetter methods of the operator module are
useful alternatives to these simple key functions; they’re clearer and sharper than
lambda and offer performance gains as well.)

Older versions of Python used a cmp function, which would take list elements in
pairs (A, B) and return -1, 0, or 1 for each pair depending on which of A < B, A == B,
or A > B is true. Sorting using a cmp function is very slow, as it may have to compare
every element to every other element (potentially O(N2) performance). The sort
function in current Python versions no longer accepts a cmp function argument. If
you are migrating ancient code and only have a function suitable as a cmp argument,
you can use functools.cmp_to_key to build from it a key function suitable to pass
as the new key argument.

However, several functions in the module heapq, covered in “The heapq Module”
on page 271, do not accept a key argument. In such cases, you can use the DSU
idiom, covered in “The Decorate–Sort–Undecorate Idiom” on page 273. (Heaps are
well worth keeping in mind, since in some cases they can save you from having to
perform sorting on all of your data.)

Avoid exec and from ... import *
Code in a function runs faster than code at the top level in a module, because access
to a function’s local variables is faster than access to globals. If a function contains
an exec without explicit dicts, however, the function slows down. The presence
of such an exec forces the Python compiler to avoid the modest but important
optimization it normally performs regarding access to local variables, since the exec
might alter the function’s namespace. A from statement of the form:

from my_module import *
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wastes performance too, since it also can alter a function’s namespace unpredictably,
and therefore inhibits Python’s local-variable optimization.

exec itself is also quite slow, and even more so if you apply it to a string of source
code rather than to a code object. By far the best approach—for performance, for
correctness, and for clarity—is to avoid exec altogether. It’s most often possible to
find better (faster, more robust, and clearer) solutions. If you must use exec, always
use it with explicit dicts, although avoiding exec altogether is far better, if at all
feasible. If you need to exec a dynamically obtained string more than once, compile
the string just once and then repeatedly exec the resulting code object.

eval works on expressions, not on statements; therefore, while still slow, it avoids
some of the worst performance impacts of exec. With eval, too, you’re best advised
to use explicit dicts. As with exec, if you need multiple evaluations of the same
dynamically obtained string, compile the string once and then repeatedly eval the
resulting code object. Avoiding eval altogether is even better.

See “Dynamic Execution and exec” on page 430 for more details and advice about
exec, eval, and compile.

Short-circuiting of Boolean expressions
Python evaluates Boolean expressions from left to right according to the precedence
of the operations not, and, and or. When, from evaluating just the leading terms,
Python can determine that the overall expression must be True or False, it skips
the rest of the expression. This feature is known as short-circuiting, so called because
Python bypasses unneeded processing the same way an electrical short bypasses
parts of an electrical circuit.

In this example, both conditions must be True to continue:

if slow_function() and fast_function():
    # ... proceed with processing ...

When fast_function is going to return False, it’s faster to evaluate it first, poten‐
tially avoiding the call to slow_function altogether:

if fast_function() and slow_function():
    # ... proceed with processing ...

This optimization also applies when the operator is or, when either case must be
True to continue: when fast_function returns True, Python skips slow_function
completely.

You can optimize these expressions by considering the order of the expressions’
operators and terms, and order them so that Python evaluates the faster subexpres‐
sions first.
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Short-Circuiting May Bypass Needed Functions
In the preceding examples, when slow_function performs
some important “side effect” behavior (such as logging to an
audit file, or notifying an administrator of a system condi‐
tion), short-circuiting may unexpectedly skip that behavior.
Take care when including necessary behavior as part of a
Boolean expression, and do not overoptimize and remove
important functionality.

Short-circuiting of iterators
Similarly to short-circuiting in Boolean expressions, you can short-circuit the evalu‐
ation of values in an iterator. Python’s built-in functions all, any, and next return
after finding the first item in the iterator that meets the given condition, without
generating further values:

any(x**2 > 100 for x in range(50)) 
# returns True once it reaches 10, skips the rest

odd_numbers_greater_than_1 = range(3, 100, 2)
all(is_prime(x) for x in odd_numbers_greater_than_1) 
# returns False: 3, 5, and 7 are prime but 9 is not

next(c for c in string.ascii_uppercase if c in "AEIOU")
# returns 'A' without checking the remaining characters

Your code gains an added advantage when the iterator is specifically a generator,
as shown in all three of these cases. When the sequence of items is expensive to
produce (as might be the case with records fetched from a database, for example),
retrieving those items with a generator and short-circuiting to retrieve only the
minimum needed can provide significant performance benefits.

Optimizing loops
Most of your program’s bottlenecks will be in loops, particularly nested loops,
because loop bodies execute repeatedly. Python does not implicitly perform any
code hoisting: if you have any code inside a loop that you could execute just once by
hoisting it out of the loop, and the loop is a bottleneck, hoist the code out yourself.
Sometimes the presence of code to hoist may not be immediately obvious:

def slower(anobject, ahugenumber):
    for i in range(ahugenumber):
        anobject.amethod(i)

def faster(anobject, ahugenumber):
    themethod = anobject.amethod
    for i in range(ahugenumber):
        themethod(i)
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In this case, the code that faster hoists out of the loop is the attribute lookup
anobject.amethod. slower repeats the lookup every time, while faster performs
it just once. The two functions are not 100% equivalent: it is (barely) conceivable
that executing amethod might cause such changes on anobject that the next lookup
for the same named attribute fetches a different method object. This is part of
why Python doesn’t perform such optimizations itself. In practice, such subtle,
obscure, and tricky cases happen very rarely; it’s almost invariably safe to perform
such optimizations yourself, to squeeze the last drop of performance out of some
bottleneck.

Python is faster with local variables than with global ones. If a loop repeatedly
accesses a global whose value does not change between iterations, you can “cache”
the value in a local variable, and access that instead. This also applies to built-ins:

def slightly_slower(asequence, adict):
    for x in asequence:
        adict[x] = hex(x)

def slightly_faster(asequence, adict):
    myhex = hex
    for x in asequence:
        adict[x] = myhex(x)

Here, the speedup is very modest.

Do not cache None, True, or False. Those constants are keywords: no further
optimization is needed.

List comprehensions and generator expressions can be faster than loops, and, some‐
times, so can map and filter. For optimization purposes, try changing loops into
list comprehensions, generator expressions, or perhaps map and filter calls, where
feasible. The performance advantage of map and filter is nullified, and worse, if
you have to use a lambda or an extra level of function call. Only when the argument
to map or filter is a built-in function, or a function you’d have to call anyway even
from an explicit loop, list comprehension, or generator expression, do you stand to
gain some tiny speedup.

The loops that you can replace most naturally with list comprehensions, or map and
filter calls, are ones that build up a list by repeatedly calling append on the list.
The following example shows this optimization in a microperformance benchmark
script (the example includes a call to the the timeit convenience function repeat,
which simply calls timeit.timeit the specified number of times):
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import timeit, operator

def slow(asequence):
    result = []
    for x in asequence:
        result.append(-x)
    return result

def middling(asequence):
    return list(map(operator.neg, asequence))

def fast(asequence):
    return [-x for x in asequence]

for afunc in slow, middling, fast:
    timing = timeit.repeat('afunc(big_seq)',
                           setup='big_seq=range(500*1000)',
                           globals={'afunc': afunc},
                           repeat=5,
                           number=100)
    for t in timing:
        print(f'{afunc.__name__},{t}')

As we reported in the previous edition of this book (using a different set of test
parameters):

Running this example in v2 on an old laptop shows that fast takes about
0.36 seconds, middling 0.43 seconds, and slow 0.77 seconds. In other
words, on that machine, slow (the loop of append method calls) is about
80 percent slower than middling (the single map call), and middling, in
turn, is about 20 percent slower than fast (the list comprehension).
The list comprehension is the most direct way to express the task being
microbenchmarked in this example, so, not surprisingly, it’s also fastest—
about two times faster than the loop of append method calls.

At that time, using Python 2.7, there was a clear advantage to using the middling
function over slow, and a modest speed increase resulted from using the fast
function over middling. For the versions covered in this edition, the improvement
of fast over middling is much less, if any. Of greater interest is that the slow
function is now starting to approach the performance of the optimized functions.
Also, it is easy to see the progressive performance improvements in successive
versions of Python, especially Python 3.11 (see Figure 17-3).

The clear lesson is that performance tuning and optimization measures should be
revisited when upgrading to newer Python versions.
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Figure 17-3. Performance of the example on various Python versions

Using multiprocessing for heavy CPU work
If you have heavily CPU-bound processing that can be done in independent pieces,
then one important way to optimize is to use multiprocessing, as described in
Chapter 15. You should also consider whether using one of the numeric packages
described in Chapter 16, capable of applying vector processing to large data sets, is
applicable.

Optimizing I/O
If your program does substantial amounts of I/O, it’s quite likely that performance
bottlenecks are due to I/O, rather than to computation. Such programs are said to
be I/O-bound, rather than CPU-bound. Your operating system tries to optimize I/O
performance, but you can help it in a couple of ways.

From the point of view of a program’s convenience and simplicity, the ideal amount
of data to read or write at a time is often small (one character or one line) or very
large (an entire file at a time). That’s often fine: Python and your operating system
work behind the scenes to let your program use convenient logical chunks for I/O,
while arranging for physical I/O operations to use chunk sizes more attuned to
performance. Reading and writing a whole file at a time is quite likely to be OK for
performance as long as the file is not very large. Specifically, file-at-a-time I/O is fine
as long as the file’s data fits very comfortably in physical RAM, leaving ample mem‐
ory available for your program and operating system to perform whatever other
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tasks they’re doing at the same time. The hard problems of I/O-bound performance
come with huge files.

If performance is an issue, never use a file’s readline method, which is limited
in the amount of chunking and buffering it can perform. (Using writelines, on
the other hand, causes no performance problems when that method is convenient
for your program.) When reading a text file, loop directly on the file object to
get one line at a time with best performance. If the file isn’t too huge, and so
can conveniently fit in memory, time two versions of your program: one looping
directly on the file object, the other reading the whole file into memory. Either may
prove faster by a little.

For binary files, particularly large binary files whose contents you need just a part
of on each given run of your program, the module mmap (covered in “The mmap
Module” on page 481) can sometimes help keep your program simple and boost
performance.

Making an I/O-bound program multithreaded sometimes affords substantial per‐
formance gains, if you can arrange your architecture accordingly. Start a few worker
threads devoted to I/O, have the computational threads request I/O operations from
the I/O threads via Queue instances, and post the request for each input operation
as soon as you know you’ll eventually need that data. Performance increases only
if there are other tasks your computational threads can perform while I/O threads
are blocked waiting for data. You get better performance this way only if you can
manage to overlap computation and waiting for data by having different threads do
the computing and the waiting. (See “Threads in Python” on page 445 for detailed
coverage of Python threading and a suggested architecture.)

On the other hand, a possibly even faster and more scalable approach is to eschew
threads in favor of asynchronous (event-driven) architectures, as mentioned in
Chapter 15.
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18
Networking Basics

Connection-oriented protocols work like making a telephone call. You request a con‐
nection to a particular network endpoint (equivalent to dialing somebody’s phone
number), and your party either answers or doesn’t. If they do, you can talk to them
and hear them talking back (simultaneously, if necessary), and you know that noth‐
ing is getting lost. At the end of the conversation you both say goodbye and hang
up, so it’s obvious something has gone wrong if that closing event doesn’t occur
(for example, if you just suddenly stop hearing the other party). The Transmission
Control Protocol (TCP) is the main connection-oriented transport protocol of the
internet, used by web browsers, secure shells, email, and many other applications.

Connectionless or datagram protocols work more like communicating by sending
postcards. Mostly, the messages get through, but if anything goes wrong you have
to be prepared to cope with the consequences—the protocol doesn’t notify you
whether your messages have been received, and messages can arrive out of order.
For exchanging short messages and getting answers, datagram protocols have less
overhead than connection-oriented ones, as long as the overall service can cope
with occasional disruptions. For example, a Domain Name Service (DNS) server
may fail to respond: most DNS communication was until recently connectionless.
The User Datagram Protocol (UDP) is the main connectionless transport protocol
for internet communications.

Nowadays, security is increasingly important: understanding the underlying basis of
secure communications helps you ensure that your communications are as secure
as they need to be. If this summary dissuades you from trying to implement such
technology yourself without a thorough understanding of the issues and risks, it will
have served a worthwhile purpose.

All communications across network interfaces exchange strings of bytes. To com‐
municate text, or indeed most other information, the sender must encode it as
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bytes, which the receiver must decode. We limit our discussion in this chapter to the
case of a single sender and a single receiver.

The Berkeley Socket Interface
Most networking nowadays uses sockets. Sockets give access to pipelines between
independent endpoints, using a transport layer protocol to move information
between those endpoints. The socket concept is general enough that the endpoints
can be on the same computer, or on different computers networked together, either
locally or via a wide area network.

The most frequently used transport layers today are UDP (for connectionless net‐
working) and TCP (for connection-oriented networking); each is carried over a
common Internet Protocol (IP) network layer. This stack of protocols, along with
the many application protocols that run over them, is collectively known as TCP/IP.
A good introduction is Gordon McMillan’s (dated but still perfectly valid) Socket
Programming HOWTO.

The two most common socket families are internet sockets based on TCP/IP
communications (available in two flavors, to accommodate the modern IPv6 and
the more traditional IPv4) and Unix sockets, though other families are also avail‐
able. Internet sockets allow communication between any two computers that can
exchange IP datagrams; Unix sockets can only communicate between processes on
the same Unix machine.

To support many concurrent internet sockets, the TCP/IP protocol stack uses end‐
points identified by an IP address, a port number, and a protocol. The port numbers
allow protocol handling software to distinguish between different endpoints at the
same IP address using the same protocol. A connected socket is also associated with
a remote endpoint, the counterparty socket to which it is connected and with which
it can communicate.

Most Unix sockets have names in the Unix filesystem. On Linux platforms, sockets
whose names begin with a zero byte live in a name pool maintained by the kernel.
These are useful for communicating with a chroot-jail process, for example, where
no filesystem is shared between two processes.

Both internet and Unix sockets support connectionless and connection-oriented
networking, so if you write your programs carefully, they can work over either
socket family. It is beyond the scope of this book to discuss other socket families,
though we should mention that raw sockets, a subtype of the internet socket family,
let you send and receive link layer packets (for example, Ethernet packets) directly.
This is useful for some experimental applications and for packet sniffing.

After creating an internet socket, you can associate (bind) a specific port number
with the socket (as long as that port number is not in use by some other socket).
This is the strategy many servers use, offering service on so-called well-known port
numbers defined by internet standards as being in the range 1–1,023. On Unix
systems, root privileges are required to gain access to these ports. A typical client is
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1 When you code an application program, you normally use sockets through higher-abstraction
layers, such as those covered in Chapter 19.

unconcerned with the port number it uses, and so it typically requests an ephemeral
port, assigned by the protocol driver and guaranteed to be unique on that host.
There is no need to bind client ports.

Consider two processes on the same computer, each acting as a client to the
same remote server. The full association for their sockets has five components,
(local_IP_address, local_port_number, protocol, remote_IP_address,

remote_port_number). When packets arrive at the remote server, the destination,
source IP address, destination port number, and protocol are the same for both
clients. The guarantee of uniqueness for ephemeral port numbers lets the server dis‐
tinguish between traffic from the two clients. This is how TCP/IP handles multiple
conversations between the same two IP addresses.1

Socket Addresses
The different types of sockets use different address formats:

• Unix socket addresses are strings naming a node in the filesystem (on Linux•
platforms, bytestrings starting with b'\0' and corresponding to names in a
kernel table).

• IPv4 socket addresses are (address, port) pairs. The first item is an IPv4•
address, the second a port number in the range 1–65,535.

• IPv6 socket addresses are four-item (address, port, flowinfo, scopeid)•
tuples. When providing an address as an argument, the flowinfo and scopeid
items can generally be omitted, as long as the address scope is unimportant.

Client/Server Computing
The pattern we discuss hereafter is usually referred to as client/server networking,
where a server listens for traffic on a specific endpoint from clients requiring the
service. We do not cover peer-to-peer networking, which, lacking any central server,
has to include the ability for peers to discover each other.

Most, though by no means all, network communication is performed using cli‐
ent/server techniques. The server listens for incoming traffic at a predetermined or
advertised network endpoint. In the absence of such input, it does nothing, simply
sitting there waiting for input from clients. Communication is somewhat different
between connectionless and connection-oriented endpoints.

In connectionless networking, such as via UDP, requests arrive at a server ran‐
domly and are dealt with immediately: a response is dispatched to the requester
without delay. Each request is handled on its own, usually without reference to
any communications that may previously have occurred between the two parties.
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Connectionless networking is well suited to short-term, stateless interactions such
as those required by DNS or network booting.

In connection-oriented networking, the client engages in an initial exchange with
the server that effectively establishes a connection across a network pipeline
between two processes (sometimes referred to as a virtual circuit), across which
the processes can communicate until both indicate their willingness to end the
connection. In this case, serving needs to use parallelism (via a concurrency mecha‐
nism such as threads, processes, or asynchronicity: see Chapter 15) to handle each
incoming connection asynchronously or simultaneously. Without parallelism, the
server would be unable to handle new incoming connections before earlier ones
have terminated, since calls to socket methods normally block (meaning they pause
the thread calling them until they terminate or time out). Connections are the best
way to handle lengthy interactions such as mail exchanges, command-line shell
interactions, or the transmission of web content, and offer automatic error detection
and correction when they use TCP.

Connectionless client and server structures
The broad logic flow of a connectionless server proceeds as follows:

1. Create a socket of type socket.SOCK_DGRAM by calling socket.socket.1.

2. Associate the socket with the service endpoint by calling the socket’s bind2.
method.

3. Repeat the following steps ad infinitum:3.
a. Request an incoming datagram from a client by calling the socket’sa.

recvfrom method; this call blocks until a datagram is received.
b. Compute or look up the result.b.

c. Send the result back to the client by calling the socket’s sendto method.c.
The server spends most of its time in step 3a, awaiting input from clients.

A connectionless client’s interaction with the server proceeds as follows:

1. Create a socket of type socket.SOCK_DGRAM by calling socket.socket.1.
2. Optionally, associate the socket with a specific endpoint by calling the socket’s2.

bind method.

3. Send a request to the server’s endpoint by calling the socket’s sendto method.3.

4. Await the server reply by calling the socket’s recvfrom method; this call blocks4.
until the response is received. It’s necessary to apply a timeout to this call, to
handle the case where a datagram goes missing and the program must either
retry or abort the attempt: connectionless sockets don’t guarantee delivery.

5. Use the result in the remainder of the client program’s logic.5.
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2 And the relatively newfangled multiplexed connections transport protocol QUIC, supported in
Python by third-party aioquic.

A single client program can perform several interactions with the same or multiple
servers, depending on the services it needs to use. Many such interactions are
hidden from the application programmer inside library code. A typical example is
the resolution of a hostname to the appropriate network address, which commonly
uses the gethostbyname library function (implemented in Python’s socket module,
discussed shortly). Connectionless interactions normally involve sending a single
packet to the server and receiving a single packet in response. The main exceptions
involve streaming protocols such as the Real-time Transport Protocol (RTP),2 which
are typically layered on top of UDP to minimize latency and delays: in streaming,
many datagrams are sent and received.

Connection-oriented client and server structures
The broad flow of logic of a connection-oriented server is as follows:

1. Create a socket of type socket.SOCK_STREAM by calling socket.socket.1.
2. Associate the socket with the appropriate server endpoint by calling the socket’s2.

bind method.
3. Start the endpoint listening for connection requests by calling the socket’s3.

listen method.
4. Repeat the following steps ad infinitum:4.

a. Await an incoming client connection by calling the socket’s accept method;a.
the server process blocks until an incoming connection request is received.
When such a request arrives, a new socket object is created whose other
endpoint is the client program.

b. Create a new control thread or process to handle this specific connection,b.
passing it the newly created socket; the main thread of control then contin‐
ues by looping back to step 4a.

c. In the new control thread, interact with the client using the new socket’sc.
recv and send methods, respectively, to read data from the client and send
data to it. The recv method blocks until data is available from the client
(or the client indicates it wishes to close the connection, in which case recv
returns an empty result). The send method only blocks when the network
software has so much data buffered that communication has to pause until
the transport layer has emptied some of its buffer memory. When the server
wishes to close the connection, it can do so by calling the socket’s close
method, optionally calling its shutdown method first.

The server spends most of its time in step 4a, awaiting connection requests from
clients.
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A connection-oriented client’s overall logic is as follows:

1. Create a socket of type socket.SOCK_STREAM by calling socket.socket.1.
2. Optionally, associate the socket with a specific endpoint by calling the socket’s2.

bind method.

3. Establish a connection to the server by calling the socket’s connect method.3.

4. Interact with the server using the socket’s recv and send methods, respectively,4.
to read data from the server and send data to it. The recv method blocks until
data is available from the server (or the server indicates it wishes to close the
connection, in which case the recv call returns an empty result). The send
method only blocks when the network software has so much data buffered that
communications have to pause until the transport layer has emptied some of its
buffer memory. When the client wishes to close the connection, it can do so by
calling the socket’s close method, optionally calling its shutdown method first.

Connection-oriented interactions tend to be more complex than connectionless
ones. Specifically, determining when to read and write data is more complicated,
because inputs must be parsed to determine when a transmission from the other
end of the socket is complete. The higher-layer protocols used in connection-
oriented networking accommodate this determination; sometimes this is done by
indicating the data length as a part of the content, sometimes by more sophisticated
methods.

The socket Module
Python’s socket module handles networking with the socket interface. There are
minor differences between platforms, but the module hides most of them, making it
relatively easy to write portable networking applications.

The module defines three exception classes, all subclasses of the built-in exception
class OSError (see Table 18-1).

Table 18-1. socket module exception classes

herror Identifies hostname resolution errors: e.g., socket.gethostbyname cannot
convert a name to a network address, or socket.gethostbyaddr can find no
hostname for a network address. The accompanying value is a two-element tuple
(h_errno, string), where h_errno is the integer error number from the
operating system, and string is a description of the error.

gaierror Identifies addressing errors encountered in socket.getaddrinfo or
socket.getnameinfo.

timeout Raised when an operation takes longer than the timeout limit (as per socket.setde
faulttimeout, overridable on a per-socket basis).

The module defines many constants. The most important of these are the address
families (AF_*) and the socket types (SOCK_*) listed in Table 18-2, members of
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IntEnum collections. The module also defines many other constants used to set
socket options, but the documentation does not define them fully: to use them you
must be familiar with documentation for the C sockets library and system calls.

Table 18-2. Important constants defined in the socket module

AF_BLUETOOTH Used to create sockets of the Bluetooth address family, used in mobile and Personal Area
Network (PAN) applications.

AF_CAN Used to create sockets for the Controller Area Network (CAN) address family, widely used
in automation, automotive, and embedded device applications.

AF_INET Used to create sockets of the IPv4 address family.

AF_INET6 Used to create sockets of the IPv6 address family.

AF_UNIX Used to create sockets of the Unix address family. This constant is only defined on
platforms that make Unix sockets available.

SOCK_DGRAM Used to create connectionless sockets, which provide best-effort message delivery
without connection capabilities or error detection.

SOCK_RAW Used to create sockets that give direct access to the link layer drivers; typically used to
implement lower-level network features.

SOCK_RDM Used to create reliable connectionless message sockets used in the Transparent Inter
Process Communication (TIPC) protocol.

SOCK_SEQ

PACKET

Used to create reliable connection-oriented message sockets used in the TIPC protocol.

SOCK_STREAM Used to create connection-oriented sockets, which provide full error detection and
correction facilities.

The module defines many functions to create sockets, manipulate address informa‐
tion, and assist with standard representations of data. We do not cover all of them
in this book, as the socket module’s documentation is fairly comprehensive; we deal
only with those that are essential in writing networked applications.

The socket module contains many functions, most of which are only used in
specific situations. For example, when communication takes place between network
endpoints, the computers at either end might have architectural differences and rep‐
resent the same data in different ways, so there are functions to handle translation of
a limited number of data types to and from a network-neutral form. Table 18-3 lists
a few of the more generally applicable functions this module provides.
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Table 18-3. Useful functions of the socket module

getaddrinfo socket.getaddrinfo(host, port, family=0, type=0, proto=0,
flags=0)

Takes a host and port and returns a list of five-item tuples of the form (fam
ily, type, proto, canonical_name, socket) usable to create a socket
connection to a specific service. canonical_name is an empty string unless the
socket.AI_CANONNAME bit is set in the flags argument. When you pass a
hostname rather than an IP address, getaddrinfo returns a list of tuples, one per IP
address associated with the name.

getdefault

timeout

socket.getdefaulttimeout()

Returns the default timeout value in seconds for socket operations, or None if no value
has been set. Some functions let you specify explicit timeouts.

getfqdn socket.getfqdn([host])

Returns the fully qualified domain name associated with a hostname or network address
(by default, that of the computer on which you call it).

gethostbyaddr socket.gethostbyaddr(ip_address)

Takes a string containing an IPv4 or IPv6 address and returns a three-item tuple of
the form (hostname, aliaslist, ipaddrlist). hostname is the canonical
name for the IP address, aliaslist is a list of alternative names, and ipaddrlist
is a list of IPv4 and IPv6 addresses.

gethostbyname socket.gethostbyname(hostname)

Returns a string containing the IPv4 address associated with the given hostname. If
called with an IP address, returns that address. This function does not support IPv6: use
getaddrinfo for IPv6.

getnameinfo socket.getnameinfo(sock_addr, flags=0)

Takes a socket address and returns a (host, port) pair. Without flags, host is
an IP address and port is an int.

setdefault

timeout

socket.setdefaulttimeout(timeout)

Sets sockets’ default timeout as a value in floating-point seconds. Newly created sockets
operate in the mode determined by the timeout value, as discussed in the next
section. Pass timeout as None to cancel the implicit use of timeouts on subsequently
created sockets.

Socket Objects
The socket object is the primary means of network communication in Python. A
new socket is also created when a SOCK_STREAM socket accepts a connection, each
such socket being used to communicate with the relevant client.

Socket Objects and with Statements
Every socket object is a context manager: you can use any
socket object in a with statement to ensure proper termina‐
tion of the socket at exit from the statement’s body. For further
details, see “The with Statement and Context Managers” on
page 201.
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There are several ways to create a socket, as detailed in the next section. Sockets
can operate in three different modes, shown in Table 18-4, according to the timeout
value, which can be set in different ways:

• By providing the timeout value as an argument on socket creation•

• By calling the socket object’s settimeout method•

• According to the socket module’s default timeout value as returned by the•
socket.getdefaulttimeout function

The timeout values to establish each possible mode are listed in Table 18-4.

Table 18-4. Timeout values and their associated modes

None Sets blocking mode. Each operation suspends the thread (blocks) until the operation
completes, unless the operating system raises an exception.

0 Sets nonblocking mode. Each operation raises an exception when it cannot be completed
immediately, or when an error occurs. Use the selectors module to find out
whether an operation can be completed immediately.

>0.0 Sets timeout mode. Each operation blocks until complete, or the timeout elapses (in
which case it raises a socket.timeout exception), or an error occurs.

Socket objects represent network endpoints. The socket module supplies several
functions to create a socket (see Table 18-5).

Table 18-5. Socket creation functions

create_

connection

create_connection([address[, timeout[, source_address]]])
Creates a socket connected to a TCP endpoint at an address (a (host, port) pair).
host can either be a numeric network address or a DNS hostname; in the latter
case, name resolution is attempted for both AF_INET and AF_INET6 (in unspecified
order), then a connection is attempted to each returned address in turn—a convenient
way to create client programs able to use either IPv6 or IPv4.
The timeout argument, if given, specifies the connection timeout in seconds
and thereby sets the socket’s mode (see Table 18-4); when not present, the
socket.getdefaulttimeout function is called to determine the value. The
source_address argument, if given, must also be a (host, port) pair that the
remote socket gets passed as the connecting endpoint. When host is '' or port is 0,
the default OS behavior is used.

socket socket(family=AF_INET, type=SOCK_STREAM, proto=0,

fileno=None)

Creates and returns a socket of the appropriate address family and type (by default, a
TCP socket on IPv4). Child processes do not inherit the socket thus created. The protocol
number proto is only used with CAN sockets. When you pass the fileno argument,
other arguments are ignored: the function returns the socket already associated with the
given file descriptor.
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socketpair socketpair([family[, type[, proto]]])
Returns a connected pair of sockets of the given address family, socket type, and (for
CAN sockets only) protocol. When family is not specified, the sockets are of family
AF_UNIX on platforms where the family is available; otherwise, they are of family
AF_INET. When type is not specified, it defaults to SOCK_STREAM.

A socket object s provides the methods listed in Table 18-6. Those dealing with
connections or requiring connected sockets work only for SOCK_STREAM sockets,
while the others work with both SOCK_STREAM and SOCK_DGRAM sockets. For meth‐
ods that take a flags argument, the exact set of flags available depends on your
specific platform (the values available are documented on the Unix manual pages
for recv(2) and send(2) and in the Windows docs); if omitted, flags defaults to 0.

Table 18-6. Methods of an instance s of socket

accept accept()

Blocks until a client establishes a connection to s, which must have been bound to
an address (with a call to s.bind) and set to listening (with a call to s.listen).
Returns a new socket object, which can be used to communicate with the other
endpoint of the connection.

bind bind(address)

Binds s to a specific address. The form of the address argument depends on the
socket’s address family (see “Socket Addresses” on page 565).

close close()

Marks the socket as closed. Calling s.close does not necessarily close the
connection immediately, depending on whether other references to the socket exist. If
immediate closure is required, call the s.shutdown method first. The simplest way
to ensure a socket is closed in a timely fashion is to use it in a with statement, since
sockets are context managers.

connect connect(address)

Connects to a remote socket at address. The form of the address argument
depends on the address family (see “Socket Addresses” on page 565).

detach detach()

Puts the socket into closed mode, but allows the socket object to be reused for further
connections (by calling connect again).

dup dup()

Returns a duplicate of the socket, not inheritable by child processes.

fileno fileno()

Returns the socket’s file descriptor.

getblocking getblocking()

Returns True if the socket is set to be blocking, either with a call to s.setblock
ing(True) or s.settimeout(None). Otherwise, returns False.
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get_

inheritable

get_inheritable()

Returns True when the socket is able to be inherited by child processes. Otherwise,
returns False.

getpeername getpeername()

Returns the address of the remote endpoint to which this socket is connected.

getsockname getsockname()

Returns the address being used by this socket.

gettimeout gettimeout()

Returns the timeout associated with this socket.

listen listen([backlog])

Starts the socket listening for traffic on its associated endpoint. If given, the integer
backlog argument determines how many unaccepted connections the operating
system allows to queue up before starting to refuse connections.

makefile makefile(mode, buffering=None, *, encoding=None, new

line=None)

Returns a file object allowing the socket to be used with file-like operations such as
read and write. The arguments are like those for the built-in open function (see
“Creating a File Object with open” on page 323). mode can be 'r' or 'w'; 'b' can
be added for binary transmission. The socket must be in blocking mode; if a timeout
value is set, unexpected results may be observed if a timeout occurs.

recv recv(bufsiz[, flags])
Receives and returns a maximum of bufsiz bytes of data from the socket s.

recvfrom recvfrom(bufsiz[, flags])
Receives a maximum of bufsiz bytes of data from s. Returns a pair (bytes,
address): bytes is the received data, address the address of the counterparty
socket that sent the data.

recvfrom_into recvfrom_into(buffer[, nbytes[, flags]])
Receives a maximum of nbytes bytes of data from s, writing it into the given
buffer object. If nbytes is omitted or 0, len(buffer) is used. Returns a pair
(nbytes, address): nbytes is the number of bytes received, address the
address of the counterparty socket that sent the data (*_into functions can be faster
than “plain” ones allocating new buffers).

recv_into recv_into(buffer[, nbytes[, flags]])
Receives a maximum of nbytes bytes of data from s, writing it into the given
buffer object. If nbytes is omitted or 0, len(buffer) is used. Returns the
number of bytes received.
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recvmsg recvmsg(bufsiz[, ancbufsiz[, flags]])
Receives a maximum of bufsiz bytes of data on the socket and a maximum
of ancbufsiz bytes of ancillary (“out-of-band”) data. Returns a four-item
tuple (data, ancdata, msg_flags, address), where bytes is the
received data, ancdata is a list of three-item (cmsg_level, cmsg_type,
cmsg_data) tuples representing the received ancillary data, msg_flags holds
any flags received with the message (documented on the Unix manual page for the
recv(2) system call or in the Windows docs), and address is the address of
the counterparty socket that sent the data (if the socket is connected, this value is
undefined, but the sender can be determined from the socket).

send send(bytes[, flags])
Sends the given data bytes over the socket, which must already be connected to a
remote endpoint. Returns the number of bytes sent, which you should check: the call
may not transmit all data, in which case transmission of the remainder will have to be
separately requested.

sendall sendall(bytes[, flags])
Sends all the given data bytes over the socket, which must already be connected to
a remote endpoint. The socket’s timeout value applies to the transmission of all the
data, even if multiple transmissions are needed.

sendfile sendfile(file, offset=0, count=None)
Send the contents of file object file (which must be open in binary mode) to
the connected endpoint. On platforms where os.sendfile is available, it’s used;
otherwise, the send call is used. offset, if any, determines the starting byte
position in the file from which transmission begins; count sets the maximum
number of bytes to transmit. Returns the total number of bytes transmitted.

sendmsg sendmsg(buffers[, ancdata[, flags[, address]]])
Sends normal and ancillary (out-of-band) data to the connected endpoint. buffers
should be an iterable of bytes-like objects. The ancdata argument should be an
iterable of (data, ancdata, msg_flags, address) tuples representing
the ancillary data. msg_flags are flags documented on the Unix manual page
for the send(2) system call or in the Windows docs. address should only be
provided for an unconnected socket, and determines the endpoint to which the data is
sent.

sendto sendto(bytes,[flags,]address)

Transmits the bytes (s must not be connected) to the given socket address, and
returns the number of bytes sent. The optional flags argument has the same
meaning as for recv.

setblocking setblocking(flag)

Determines whether s operates in blocking mode (see “Socket Objects” on page
570), according to the truth value of flag. s.setblocking(True) works like
s.settimeout(None); s.set_blocking(False) works like s.settime
out(0.0).

set_

inheritable

set_inheritable(flag)

Determines whether the socket gets inherited by child processes, according to the
truth value of flag.
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settimeout settimeout(timeout)

Establishes the mode of s (see “Socket Objects” on page 570) according to the value
of timeout.

shutdown shutdown(how)

Shuts down one or both halves of a socket connection according to the value of the
how argument, as detailed here:

socket.SHUT_RD

No further receive operations can be performed on s.

socket.SHUT_RDWR

No further receive or send operations can be performed on s.

socket.SHUT_WR

No further send operations can be performed on s.

A socket object s also has the attributes family (s’s socket family) and type (s’s
socket type).

A Connectionless Socket Client
Consider a simplistic packet-echo service, where a client sends text encoded in
UTF-8 to a server, which sends the same information back to the client. In a
connectionless service, all the client has to do is send each chunk of data to the
defined server endpoint:

import socket

UDP_IP = 'localhost'
UDP_PORT = 8883
MESSAGE = """\
This is a bunch of lines, each
of which will be sent in a single
UDP datagram. No error detection
or correction will occur.
Crazy bananas! £€ should go through."""

server = UDP_IP, UDP_PORT
encoding = 'utf-8'
with socket.socket(socket.AF_INET,    # IPv4
                   socket.SOCK_DGRAM, # UDP
                  ) as sock:
    for line in MESSAGE.splitlines():
        data = line.encode(encoding)
        bytes_sent = sock.sendto(data, server)
        print(f'SENT {data!r} ({bytes_sent} of {len(data)})'

      f' to {server}')
        response, address = sock.recvfrom(1024)  # buffer size: 1024
        print(f'RCVD {response.decode(encoding)!r}'
              f' from {address}')
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print('Disconnected from server')

Note that the server only performs a bytes-oriented echo function. The client,
therefore, encodes its Unicode data into bytestrings, and decodes the bytestring
responses received from the server back into Unicode text using the same encoding.

A Connectionless Socket Server
A server for the packet-echo service described in the previous section is also quite
simple. It binds to its endpoint, receives packets (datagrams) at that endpoint, and
returns to the client sending each datagram a packet with exactly the same data. The
server treats all clients equally and does not need to use any kind of concurrency
(though this last handy characteristic might not hold for a service where request
handling takes more time).

The following server works, but offers no way to terminate the service other than by
interrupting it (typically from the keyboard, with Ctrl-C or Ctrl-Break):

import socket

UDP_IP = 'localhost'
UDP_PORT = 8883
with socket.socket(socket.AF_INET,    # IPv4
                   socket.SOCK_DGRAM  # UDP
                   ) as sock:
    sock.bind((UDP_IP, UDP_PORT))
    print(f'Serving at {UDP_IP}:{UDP_PORT}')
    while True:
        data, sender_addr = sock.recvfrom(1024)  # 1024-byte buffer
        print(f'RCVD {data!r}) from {sender_addr}')
        bytes_sent = sock.sendto(data, sender_addr)
        print(f'SENT {data!r} ({bytes_sent}/{len(data)})'
              f' to {sender_addr}')

Neither is there any mechanism to handle dropped packets and similar network
problems; this is often acceptable in simple services.

You can run the same programs using IPv6: simply replace the socket type AF_INET
with AF_INET6.
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3 This client example isn’t secure; see “Transport Layer Security” on page 579 for an introduction
to making it secure.

A Connection-Oriented Socket Client
Now consider a simplistic connection-oriented “echo-like” protocol: a server lets
clients connect to its listening socket, receives arbitrary bytes from them, and sends
back to each client the same bytes that client sent to the server, until the client closes
the connection. Here’s an example of an elementary test client:3

import socket

IP_ADDR = 'localhost'
IP_PORT = 8881
MESSAGE = """\
A few lines of text
including non-ASCII characters: €£
to test the operation
of both server
and client."""

encoding = 'utf-8'
with socket.socket(socket.AF_INET,     # IPv4
                   socket.SOCK_STREAM  # TCP
                   ) as sock:
    sock.connect((IP_ADDR, IP_PORT))
    print(f'Connected to server {IP_ADDR}:{IP_PORT}')
    for line in MESSAGE.splitlines():
        data = line.encode(encoding)
        sock.sendall(data)
        print(f'SENT {data!r} ({len(data)})')
        response, address = sock.recvfrom(1024)  # buffer size: 1024
        print(f'RCVD {response.decode(encoding)!r}'
              f' ({len(response)}) from {address}')

print('Disconnected from server')

Note that the data is text, so it must be encoded with a suitable representation. We
chose the usual suspect, UTF-8. The server works in terms of bytes (since it is bytes,
aka octets, that travel on the network); the received bytes object gets decoded with
UTF-8 back into Unicode text before printing. Any other suitable codec could be
used instead: the key point is that text must be encoded before transmission and
decoded after reception. The server, working in terms of bytes, does not even need
to know which encoding is being used, except maybe for logging purposes.
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A Connection-Oriented Socket Server
Here is a simplistic server corresponding to the testing client shown in the previous
section, using multithreading via concurrent.futures (covered in “The concur‐
rent.futures Module” on page 468):

import concurrent
import socket

IP_ADDR = 'localhost'
IP_PORT = 8881

def handle(new_sock, address):
    print('Connected from', address)
    with new_sock:
        while True:
            received = new_sock.recv(1024)
            if not received:
                break
            s = received.decode('utf-8', errors='replace')
            print(f'Recv: {s!r}')
            new_sock.sendall(received)
            print(f'Echo: {s!r}')
    print(f'Disconnected from {address}')

with socket.socket(socket.AF_INET,     # IPv4 
                   socket.SOCK_STREAM  # TCP
                   ) as servsock:
    servsock.bind((IP_ADDR, IP_PORT))
    servsock.listen(5)
    print(f'Serving at {servsock.getsockname()}')
    with cconcurrent.futures.ThreadPoolExecutor(20) as e:
        while True:
            new_sock, address = servsock.accept()
            e.submit(handle, new_sock, address)

This server has its limits. In particular, it runs only 20 threads, so it cannot simulta‐
neously serve more than 20 clients; any further client trying to connect while 20
others are already being served waits in servsock’s listening queue. Should that
queue fill up with five clients waiting to be accepted, further clients attempting
connection get rejected outright. This server is intended just as an elementary
example for demonstration purposes, not as a solid, scalable, or secure system.

As before, the same programs can be run using IPv6 by replacing the socket type
AF_INET with AF_INET6.
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4 We say “almost” because, when you code a server, you don’t wrap the socket you bind, listen on,
and accept connections from.

Transport Layer Security
Transport Layer Security (TLS), the successor of Secure Sockets Layer (SSL), pro‐
vides privacy and data integrity over TCP/IP, helping you defend against server
impersonation, eavesdropping on the bytes being exchanged, and malicious alter‐
ation of those bytes. For an introduction to TLS, we recommend the extensive
Wikipedia entry.

In Python, you can use TLS via the ssl module of the standard library. To use ssl
well, you need a good grasp of its rich online docs, as well as a deep and broad
understanding of TLS itself (the Wikipedia article, excellent and vast as it is, can
only begin to cover this large, difficult subject). In particular, you must study and
thoroughly understand the security considerations section of the online docs, as
well as all the materials found at the many links helpfully offered in that section.

If these warnings make it sound as though a perfect implementation of security
precautions is a daunting task, that’s because it is. In security, you’re pitting your
wits and skills against those of sophisticated attackers who may be more familiar
with the nooks and crannies of the problems involved: they specialize in finding
workarounds and breaking in, while (usually) your focus is not exclusively on such
issues—rather, you’re trying to provide some useful services in your code. It’s risky
to see security as an afterthought or a secondary point—it has to be front and center
throughout, to win said battle of skills and wits.

That said, we strongly recommend that all readers undertake the study of TLS
mentioned above—the better all developers understand security considerations, the
better off we all are (except, we guess, the security-breaker wannabes!).

Unless you have acquired a really deep and broad understanding of TLS and
Python’s ssl module (in which case, you’ll know what exactly to do—better than
we possibly could!), we recommend using an SSLContext instance to hold all the
details of your use of TLS. Build that instance with the ssl.create_default_con
text function, add your certificate if needed (it is needed if you’re writing a
secure server), then use the instance’s wrap_socket method to wrap (almost4) every
socket.socket instance you make into an instance of ssl.SSLSocket—behaving
almost identically to the socket object it wraps, but nearly transparently adding
security checks and validation “on the side.”

The default TLS contexts strike a good compromise between security and broad
usability, and we recommend you stick with them (unless you’re knowledgeable
enough to fine-tune and tighten security for special needs). If you need to sup‐
port outdated counterparts that are unable to use the most recent, most secure
implementations of TLS, you may feel tempted to learn just enough to relax your

Transport Layer Security | 579

N
etw

o
rking

B
asics

https://oreil.ly/EzLWt
https://oreil.ly/2EGr0
https://oreil.ly/ohqtT


security demands. Do that at your own risk—we most definitely don’t recommend
wandering into such territory!

In the following sections, we cover the minimal subset of ssl you need to be
familiar with if you just want to follow our recommendations. But even if that is the
case, please also read up on TLS and ssl, just to gain some background knowledge
about the intricate issues involved. It may stand you in good stead one day!

SSLContext
The ssl module supplies an ssl.SSLContext class, whose instances hold informa‐
tion about TLS configuration (including certificates and private keys) and offer
many methods to set, change, check, and use that information. If you know exactly
what you’re doing, you can manually instantiate, set up, and use your own SSLCon
text instances for your own specialized purposes.

However, we recommend instead that you instantiate an SSLContext using
the well-tuned function ssl.create_default_context, with a single argument:
ssl.Purpose.CLIENT_AUTH if your code is a server (and thus may need to authen‐
ticate clients), or ssl.Purpose.SERVER_AUTH if your code is a client (and thus
definitely needs to authenticate servers). If your code is both a client to some servers
and a server to other clients (as, for example, some internet proxies are), then you’ll
need two instances of SSLContext, one for each purpose.

For most client-side uses, your SSLContext is ready. If you’re coding a server, or
a client for one of the rare servers that require TLS authentication of the clients,
you need to have a certificate file and a key file (see the online docs to learn how
to obtain these files). Add them to the SSLContext instance (so that counterparties
can verify your identity) by passing the paths to the certificate and key files to the
load_cert_chain method with code like the following:

ctx = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
ctx.load_cert_chain(certfile='mycert.pem', keyfile='mykey.key')

Once your context instance ctx is ready, if you’re coding a client, just call
ctx.wrap_socket to wrap any socket you’re about to connect to a server, and use
the wrapped result (an instance of ssl.SSLSocket) instead of the socket you just
wrapped. For example:

sock = socket.socket(socket.AF_INET)
sock = ctx.wrap_socket(sock, server_hostname='www.example.com')
sock.connect(('www.example.com', 443))  
# use 'sock' normally from here on

Note that, in the client case, you should also pass wrap_socket a server_hostname
argument corresponding to the server you’re about to connect to; this way, the
connection can verify that the identity of the server you end up connecting to is
indeed correct, an absolutely crucial security step.
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Server-side, don’t wrap the socket that you are binding to an address, listening on,
or accepting connections on; just wrap the new socket that accept returns. For
example:

sock = socket.socket(socket.AF_INET)
sock.bind(('www.example.com', 443))
sock.listen(5)
while True:
    newsock, fromaddr = sock.accept()
    newsock = ctx.wrap_socket(newsock, server_side=True)
    # deal with 'newsock' as usual; shut down, then close it, when done

In this case, you need to pass wrap_socket the argument server_side=True so it
knows that you’re on the server side of things.

Again, we recommend consulting the online docs—particularly the examples—for
better understanding, even if you stick to just this simple subset of ssl operations.
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19
Client-Side Network

Protocol Modules

Python’s standard library supplies several modules to simplify the use of internet
protocols on both the client and server sides. These days, the Python Package Index,
best known as PyPI, offers many more such packages. Because many of the standard
library modules date back to the previous century, you will find that nowadays
third-party packages support a wider array of protocols, and several offer better
APIs than the standard library’s equivalents. When you need to use a network
protocol that’s missing from the standard library, or covered by the standard library
in a way you think is not satisfactory, be sure to search PyPI—you’re likely to find
better solutions there.

In this chapter, we cover some standard library packages that allow relatively simple
uses of network protocols: these let you code without requiring third-party pack‐
ages, making your application or library easier to install on other machines. You
may therefore come across them when dealing with legacy code, and their simplicity
also makes them interesting reading for the Python student. We also mention a
few third-party packages covering important network protocols not included in
the standard library, but we do not cover third-party packages using asynchronous
programming.

For the very frequent use case of HTTP clients and other network resources (such
as anonymous FTP sites) best accessed via URLs, the third-party requests package
is even recommended in the Python documentation, so we cover that and recom‐
mend its use instead of standard library modules.
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1 IMAP4, per RFC 1730; or IMAP4rev1, per RFC 2060.
2 The specification of the POP protocol can be found in RFC 1939.

Email Protocols
Most email today is sent via servers implementing the Simple Mail Transport Proto‐
col (SMTP) and received via servers and clients using Post Office Protocol version
3 (POP3) and/or Internet Message Access Protocol version 4 (IMAP4).1 Clients for
these protocols are supported by the Python standard library modules smtplib,
poplib, and imaplib, respectively, the first two of which we cover in this book.
When you need to handle parsing or generating email messages, use the email
package, covered in Chapter 21.

If you need to write a client that can connect via either POP3 or IMAP4, a standard
recommendation would be to pick IMAP4, since it is more powerful and—accord‐
ing to Python’s own online docs—often more accurately implemented on the server
side. Unfortunately, imaplib is very complex, and far too vast to cover in this book.
If you do choose to go that route, use the online docs, inevitably complemented
by the IMAP RFCs, and possibly other related RFCs, such as 5161 and 6855 for
capabilities and 2342 for namespaces. Using the RFCs in addition to the online docs
for the standard library module can’t be avoided: many of the arguments passed
to imaplib functions and methods, and results from calling them, are strings with
formats that are only documented in the RFCs, not in Python’s own docs. A highly
recommended alternative is to use the simpler, higher-abstraction-level third-party
package IMAPClient, available with a pip install and well documented online.

The poplib Module
The poplib module supplies a class, POP3, to access a POP mailbox.2 The construc‐
tor has the following signature:

POP3 class POP3(host, port=110)
Returns an instance p of class POP3 connected to the specified host and port. The class
POP3_SSL behaves just the same, but connects to the host (by default on port 995) over a secure
TLS channel; it’s needed to connect to email servers that demand some minimum security, such as
pop.gmail.com.a

To connect to a Gmail account, in particular, you need to configure that account to enable
POP, “allow less secure apps,” and avoid two-step verification—things that in general we don’t
recommend, as they weaken your email’s security.

An instance p of the class POP3 supplies many methods; the most frequently used
are listed in Table 19-1. In each case, msgnum, the identifying number of a message,
can be a string containing an integer value or an int.
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Table 19-1. Methods of an instance p of POP3

dele p.dele(msgnum)

Marks message msgnum for deletion and returns the server response string. The
server queues such deletion requests, and executes them only when you terminate this
connection by calling p.quit.a

list p.list(msgnum=None)

Returns a three-item tuple (response, messages, octets), where
response is the server response string; messages a list of bytestrings, each of
two words b'msgnum bytes', the message number and length, in bytes, of each
message in the mailbox; and octets is the length, in bytes, of the total response.
When msgnum is not None, list returns a string, the response for the given
msgnum, not a tuple.

pass_ p.pass_(password)

Sends the password to the server, and returns the server response string. Must be
called after p.user. The trailing underscore in the name is needed because pass is a
Python keyword.

quit p.quit()

Ends the session and tells the server to perform deletions that were requested by calls
to p.dele. Returns the server response string.

retr p.retr(msgnum)

Returns a three-item tuple (response, lines, bytes), where response is
the server response string, lines is the list of all lines in message msgnum as
bytestrings, and bytes is the total number of bytes in the message.

set_

debuglevel

p.set_debuglevel(debug_level)

Sets the debug level to debug_level, an int with value 0 (the default) for no
debugging, 1 for a modest amount of debugging output, or 2 or more for a complete
output trace of all control information exchanged with the server.

stat p.stat()

Returns a pair (num_msgs, bytes), where num_msgs is the number of messages
in the mailbox and bytes is the total number of bytes.

top p.top(msgnum, maxlines)
Like retr, but returns at most maxlines lines from the message’s body (in addition
to all the lines from the headers). Can be useful for peeking at the start of long
messages.

user p.user(username)

Sends the server the username; invariably followed up by a call to p.pass_.

The standard states that if disconnection occurs before the quit call, the deletions should
not be actioned. Despite this, some servers will perform the deletion after any disconnection,
planned or unplanned.
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3 The specification of the SMTP protocol can be found in RFC 2821.

The smtplib Module
The smtplib module supplies a class, SMTP, to send mail via an SMTP server.3 The
constructor has the following signature:

SMTP class SMTP([host, port=25])

Returns an instance s of the class SMTP. When host (and optionally port) is given, implicitly calls
s.connect(host, port). The class SMTP_SSL behaves just the same, but connects to the host
(by default on port 465) over a secure TLS channel; it’s needed to connect to email servers that demand
some minimum security, such as smtp.gmail.com.

An instance s of the class SMTP supplies many methods. The most frequently used of
these are listed in Table 19-2.

Table 19-2. Methods of an instance s of SMTP

connect s.connect(host=127.0.0.1, port=25)

Connects to an SMTP server on the given host (by default, the local host) and port (port
25 is the default port for the SMTP service; 465 is the default port for the more secure
“SMTP over TLS”).

login s.login(user, password)
Logs in to the server with the given user and password. Needed only if the SMTP
server requires authentication (as just about all do).

quit s.quit()

Terminates the SMTP session.

sendmail s.sendmail(from_addr, to_addrs, msg_string)
Sends mail message msg_string from the sender whose address is in string
from_addr to each of the recipients in the list to_addrs.a msg_string must be
a complete RFC 822 message in a single multiline bytestring: the headers, an empty line
for separation, then the body. The mail transport mechanism uses only from_addr and
to_addrs to determine routing, ignoring any headers in msg_string.b To prepare
RFC 822–compliant messages, use the package email, covered in “MIME and Email
Format Handling” on page 611.

send_message s.send_message(msg, from_addr=None, to_addrs=None)
A convenience function taking an email.message.Message object as its first
argument. If either or both of from_addr and to_addrs are None, they are extracted
from the message instead.

While the standard places no limits on the number of recipients in from_addr, individual mail
servers may well do so, often making it advisable to batch messages with a maximum number
of recipients in each one.

This allows email systems to implement Bcc (blind copy) emails, for example, as the routing
does not depend on the message envelope.
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HTTP and URL Clients
Most of the time, your code uses the HTTP and FTP protocols through the higher-
abstraction URL layer, supported by the modules and packages covered in the fol‐
lowing sections. Python’s standard library also offers lower-level, protocol-specific
modules that are less often used: for FTP clients, ftplib; for HTTP clients, http.cli
ent (we cover HTTP servers in Chapter 20). If you need to write an FTP server,
look at the third-party module pyftpdlib. Implementations of the newer HTTP/2
may not be fully mature, but your best bet as of this writing is the third-party
module HTTPX. We do not cover any of these lower-level modules in this book: we
focus on higher-abstraction, URL-level access throughout the following sections.

URL Access
A URL is a type of uniform resource identifier (URI). A URI is a string that identi‐
fies a resource (but does not necessarily locate it), while a URL locates a resource
on the internet. A URL is a string composed of several parts (some optional),
called components: the scheme, location, path, query, and fragment. (The second
component is sometimes also known as a net location, or netloc for short.) A URL
with all parts looks like:

scheme://lo.ca.ti.on/pa/th?qu=ery#fragment

In https://www.python.org/community/awards/psf-awards/#october-2016, for exam‐
ple, the scheme is http, the location is www.python.org, the path is /commu‐
nity/awards/psf-awards/, there is no query, and the fragment is #october-2016. (Most
schemes default to a well-known port when the port is not explicitly specified; for
example, 80 is the well-known port for the HTTP scheme.) Some punctuation
is part of one of the components it separates; other punctuation characters are
just separators, not part of any component. Omitting punctuation implies missing
components. For example, in mailto:me@you.com, the scheme is mailto, the path
is me@you.com (mailto:me@you.com), and there is no location, query, or fragment.
No // means the URI has no location, no ? means it has no query, and no # means it
has no fragment.

If the location ends with a colon followed by a number, this denotes a TCP port for
the endpoint. Otherwise, the connection uses the well-known port associated with
the scheme (e.g., port 80 for HTTP).
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The urllib Package
The urllib package supplies several modules for parsing and utilizing URL strings
and associated resources. In addition to the urllib.parse and urllib.request
modules described here, these include the module urllib.robotparser (for the
specific purpose of parsing a site’s robots.txt file as per RFC 9309) and the module
urllib.error, containing all exception types raised by other urllib modules.

The urllib.parse module
The urllib.parse module supplies functions for analyzing and synthesizing URL
strings, and is typically imported with from urllib import parse as urlparse. Its
most frequently used functions are listed in Table 19-3.

Table 19-3. Useful functions of the urllib.parse module

urljoin urljoin(base_url_string, relative_url_string)
Returns a URL string u, obtained by joining relative_url_string, which may be
relative, with base_url_string. The joining procedure that urljoin performs to
obtain its result may be summarized as follows:

• When either of the argument strings is empty, u is the other argument.

• When relative_url_string explicitly specifies a scheme that is
different from that of base_url_string, u is relative_url_string.
Otherwise, u’s scheme is that of base_url_string.

• When the scheme does not allow relative URLs (e.g., mailto), or when
relative_url_string explicitly specifies a location (even when it is the
same as the location of base_url_string), all other components of u
are those of relative_url_string. Otherwise, u’s location is that of
base_url_string.

• u’s path is obtained by joining the paths of base_url_string and rela
tive_url_string according to standard syntax for absolute and relative
URL paths.a For example:

urlparse.urljoin(
  'http://host.com/some/path/here','../other/path')
# Result is: 'http://host.com/some/other/path'
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urlsplit urlsplit(url_string, default_scheme='', allow_frag

ments=True)

Analyzes url_string and returns a tuple (actually an instance of SplitResult,
which you can treat as a tuple or use with named attributes) with five string items:
scheme, netloc, path, query, and fragment. default_scheme is the first item
when the url_string lacks an explicit scheme. When allow_fragments is False,
the tuple’s last item is always '', whether or not url_string has a fragment. Items
corresponding to missing parts are also ''. For example:

urlparse.urlsplit(
  'http://www.python.org:80/faq.cgi?src=file')
# Result is:
# 'http','www.python.org:80','/faq.cgi','src=file',''

urlunsplit urlunsplit(url_tuple)

url_tuple is any iterable with exactly five items, all strings. Any return value from a
urlsplit call is an acceptable argument for urlunsplit. urlunsplit returns a
URL string with the given components and the needed separators, but with no redundant
separators (e.g., there is no # in the result when the fragment, url_tuple’s last item, is
'' ). For example:

urlparse.urlunsplit((
  'http','www.python.org','/faq.cgi','src=fie',''))
# Result is: 'http://www.python.org/faq.cgi?src=fie'

urlunsplit(urlsplit(x)) returns a normalized form of URL string x, which is not
necessarily equal to x because x need not be normalized. For example:

urlparse.urlsplit('http://a.com/path/a?'))
# Result is: 'http://a.com/path/a'

In this case, the normalization ensures that redundant separators, such as the trailing ? in
the argument to urlsplit, are not present in the result.

Per RFC 1808.

The urllib.request module
The urllib.request module supplies functions for accessing data resources over
standard internet protocols, the most commonly used of which are listed in
Table 19-4. (The examples in the table assume you’ve imported the module.)
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Table 19-4. Useful functions of the urllib.request module

urlopen urlopen(url, data=None, timeout, context=None)
Returns a response object whose type depends on the scheme in url:

• HTTP and HTTPS URLs return an http.client.HTTPResponse object (with
the msg attribute modified to contain the same data as the reason attribute; for
details, see the online docs). Your code can use this object like an iterable, and as a
context manager in a with statement.

• FTP, file, and data URLs return a urllib.response.addinfourl object.
url is the string or urllib.request.Request object for the URL to
open. data is an optional bytes object, file-like object, or iterable of bytes,
encoding additional data to send to the URL following application/x-www-
form-urlencoded format. timeout is an optional argument for specifying,
in seconds, a timeout for blocking operations of the URL opening process,
applicable only for HTTP, HTTPS, and FTP URLs. When context is given, it must
contain an ssl.SSLContext object specifying SSL options; context replaces
the deprecated cafile, capath, and cadefault arguments. The following
example downloads a file from an HTTPS URL and extracts it into a local bytes
object, unicode_db:

unicode_url = ("https://www.unicode.org/Public"
               "/14.0.0/ucd/UnicodeData.txt")
with urllib.request.urlopen(unicode_url 
     )as url_response:
    unicode_db = url_response.read()

url

retrieve

urlretrieve(url_string, filename=None, report_hook=None,

data=None)

A compatibility function to support migration from Python 2 legacy code. url_string gives
the URL of the resource to download. filename is an optional string naming the local file in
which to store the data retrieved from the URL. report_hook is a callable to support progress
reporting during downloading, called once as each block of data is retrieved. data is similar to
the data argument for urlopen. In its simplest form, urlretrieve is equivalent to:

def urlretrieve(url, filename=None):
    if filename is None:
        filename = ...parse filename from url...
    with urllib.request.urlopen(url 
         )as url_response:
        with open(filename, "wb") as save_file:
            save_file.write(url_response.read())
        return filename, url_response.info()

Since this function was developed for Python 2 compatibility, you may still see it in existing
codebases. New code should use urlopen.

For full coverage of urllib.request see the online docs and Michael Foord’s
HOWTO, which includes examples on downloading files given a URL. There’s a
short example using urllib.request in “An HTML Parsing Example with Beauti‐
fulSoup” on page 635.
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The Third-Party requests Package
The third-party requests package (very well documented online) is how we recom‐
mend you access HTTP URLs. As usual for third-party packages, it’s best installed
with a simple pip install requests. In this section, we summarize how best to
use it for reasonably simple cases.

Natively, requests only supports the HTTP and HTTPS transport protocols; to
access URLs using other protocols, you need to install other third-party packages
(known as protocol adapters), such as requests-ftp for FTP URLs, or others supplied
as part of the rich requests-toolbelt package of requests utilities.

The requests package’s functionality hinges mostly on three classes it supplies:
Request, modeling an HTTP request to be sent to a server; Response, modeling
a server’s HTTP response to a request; and Session, offering continuity across
a sequence of requests, also known as a session. For the common use case of a
single request/response interaction, you don’t need continuity, so you may often just
ignore Session.

Sending requests
Typically, you don’t need to explicitly consider the Request class: rather, you call
the utility function request, which internally prepares and sends the Request and
returns the Response instance. request has two mandatory positional arguments,
both strs: method, the HTTP method to use, and url, the URL to address. Then,
many optional named parameters may follow (in the next section, we cover the
most commonly used named parameters to the request function).

For further convenience, the requests module also supplies functions whose names
are those of the HTTP methods delete, get, head, options, patch, post, and put;
each takes a single mandatory positional argument, url, then the same optional
named arguments as the function request.

When you want some continuity across multiple requests, call Session to make
an instance s, then use s’s methods request, get, post, and so on, which are just
like the functions with the same names directly supplied by the requests module
(however, s’s methods merge s’s settings with the optional named parameters to
prepare each request to send to the given url).

request’s optional named parameters
The function request (just like the functions get, post, and so on, and methods
with the same names on an instance s of class Session) accepts many optional
named parameters. Refer to the requests package’s excellent online docs for the full
set if you need advanced functionality such as control over proxies, authentication,
special treatment of redirection, streaming, cookies, and so on. Table 19-5 lists the
most frequently used named parameters.
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4 According to RFC 2388.

Table 19-5. Named parameters accepted by the request function

data A dict, a sequence of key/value pairs, a bytestring, or a file-like object to use as the body of the
request

files A dict with names as keys and file-like objects or file tuples as values, used with the POST
method to specify a multipart-encoding file upload (we cover the format of values for files in
the next section)

headers A dict of HTTP headers to send in the request

json Python data (usually a dict) to encode as JSON as the body of the request

params A dict of (name, value) items, or a bytestring to send as the query string with the request

timeout A float number of seconds, the maximum time to wait for the response before raising an
exception

data, json, and files are mutually incompatible ways to specify a body for the
request; you should normally use at most one of them, and only for HTTP methods
that do use a body (namely PATCH, POST, and PUT). The one exception is that you
can have both a data argument passing a dict and a files argument. That is very
common usage: in this case, both the key/value pairs in the dict and the files form
the body of the request as a single multipart/form-data whole.4

The files argument (and other ways to specify the request’s body)
When you specify the request’s body with json or data (passing a bytestring or
a file-like object, which must be open for reading, usually in binary mode), the
resulting bytes are directly used as the request’s body. When you specify it with
data (passing a dict or a sequence of key/value pairs), the body is built as a form,
from the key/value pairs formatted in application/x-www-form-urlencoded format,
according to the relevant web standard.

When you specify the request’s body with files, the body is also built as a form,
in this case with the format set to multipart/form-data (the only way to upload
files in a PATCH, POST, or PUT HTTP request). Each file you’re uploading is
formatted into its own part of the form; if, in addition, you want the form to give
to the server further nonfile parameters, then in addition to files, you need to
pass a data argument with a dict value (or a sequence of key/value pairs) for the
further parameters. Those parameters get encoded into a supplementary part of the
multipart form.

For flexibility, the value of the files argument can be a dict (its items are taken as
a sequence of (name, value) pairs), or a sequence of (name, value) pairs (order is
maintained in the resulting request body).
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5 As it gives you complete, explicit control of exactly what octets are uploaded.

Either way, each value in a (name, value) pair can be a str (or, better,5 a bytes or
bytearray) to be used directly as the uploaded file’s contents, or a file-like object
open for reading (then, requests calls .read() on it and uses the result as the
uploaded file’s contents; we strongly urge that in such cases you open the file in
binary mode to avoid any ambiguity regarding content length). When any of these
conditions apply, requests uses the name part of the pair (e.g., the key into the dict)
as the file’s name (unless it can improve on that because the open file object is able
to reveal its underlying filename), takes its best guess at a content type, and uses
minimal headers for the file’s form part.

Alternatively, the value in each (name, value) pair can be a tuple with two to
four items, (fn, fp[, ft[, fh]]) (using square brackets as metasyntax to indicate
optional parts). In this case, fn is the file’s name, fp provides the contents (in just
the same way as in the previous paragraph), optional ft provides the content type
(if missing, requests guesses it, as in the previous paragraph), and the optional
dict fh provides extra headers for the file’s form part.

How to interpret requests examples
In practical applications, you don’t usually need to consider the internal instance
r of the class requests.Request, which functions like requests.post is building,
preparing, and then sending on your behalf. However, to understand exactly what
requests is doing, working at a lower level of abstraction (building, preparing,
and examining r—no need to send it!) is instructive. For example, after importing
requests, passing data as in the following example:

r = requests.Request('GET', 'http://www.example.com',
    data={'foo': 'bar'}, params={'fie': 'foo'})
p = r.prepare()
print(p.url)
print(p.headers)
print(p.body)

prints out (splitting the p.headers dict’s printout for readability):

http://www.example.com/?fie=foo
{'Content-Length': '7',
 'Content-Type': 'application/x-www-form-urlencoded'}
foo=bar
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Similarly, when passing files:

r = requests.Request('POST', 'http://www.example.com',
    data={'foo': 'bar'}, files={'fie': 'foo'})
p = r.prepare()
print(p.headers)
print(p.body)

this prints out (with several lines split for readability):

{'Content-Length': '228',
 'Content-Type': 'multipart/form-data; boundary=dfd600d8aa58496270'}
b'--dfd600d8aa58496270\r\nContent-Disposition: form-data;
="foo"\r\n\r\nbar\r\n--dfd600d8aa584962709b936134b1cfce\r\n
Content-Disposition: form-data; name="fie" filename="fie"\r\n\r\nfoo\r\n
--dfd600d8aa584962709b936134b1cfce--\r\n'

Happy interactive exploring!

The Response class
The one class from the requests module that you always have to consider is
Response: every request, once sent to the server (typically, that’s done implicitly by
methods such as get), returns an instance r of requests.Response.

The first thing you usually want to do is to check r.status_code, an int that tells
you how the request went, in typical “HTTPese”: 200 means “everything’s fine,” 404
means “not found,” and so on. If you’d rather just get an exception for status codes
indicating some kind of error, call r.raise_for_status; that does nothing if the
request went fine, but raises requests.exceptions.HTTPError otherwise. (Other
exceptions, not corresponding to any specific HTTP status code, can and do get
raised without requiring any such explicit call: e.g., ConnectionError for any kind
of network problem, or TimeoutError for a timeout.)

Next, you may want to check the response’s HTTP headers: for that, use r.headers,
a dict (with the special feature of having case-insensitive string-only keys indicat‐
ing the header names as listed, e.g., in Wikipedia, per the HTTP specs). Most head‐
ers can be safely ignored, but sometimes you’d rather check. For example, you can
verify whether the response specifies which natural language its body is written in,
via r.headers.get('content-language'), to offer different presentation choices,
such as the option to use some kind of language translation service to make the
response more usable for the user.

You don’t usually need to make specific status or header checks for redirects: by
default, requests automatically follows redirects for all methods except HEAD (you
can explicitly pass the allow_redirection named parameter in the request to alter
that behavior). If you allow redirects, you may want to check r.history, a list
of all Response instances accumulated along the way, oldest to newest, up to but
excluding r itself (r.history is empty if there have been no redirects).
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Most often, maybe after checking status and headers, you want to use the response’s
body. In simple cases, just access the response’s body as a bytestring, r.content,
or decode it as JSON (once you’ve checked that’s how it’s encoded, e.g., via r.head
ers.get('content-type')) by calling r.json.

Often, you’d rather access the response’s body as (Unicode) text, with the property
r.text. The latter gets decoded (from the octets that actually make up the respon‐
se’s body) with the codec requests thinks is best, based on the Content-Type header
and a cursory examination of the body itself. You can check what codec has been
used (or is about to be used) via the attribute r.encoding; its value will be the name
of a codec registered with the codecs module, covered in “The codecs Module”
on page 302. You can even override the choice of codec to use by assigning to
r.encoding the name of the codec you choose.

We do not cover other advanced issues, such as streaming, in this book; see the
requests package’s online docs for further information.

Other Network Protocols
Many, many other network protocols are in use—a few are best supported by
Python’s standard library, but for most of them you’ll find better and more recent
third-party modules on PyPI.

To connect as if you were logging in to another machine (or a separate login session
on your own node), you can use the Secure Shell (SSH) protocol, supported by
the third-party module paramiko or the higher abstraction layer wrapper around it,
the third-party module spur. (You can also, with some likely security risks, still use
classic Telnet, supported by the standard library module telnetlib.)

Other network protocols include, among many others:

• NNTP, to access Usenet News servers, supported by the standard library mod‐•
ule nntplib

• XML-RPC, for a rudimentary remote procedure call functionality, supported•
by xmlrpc.client

• gRPC, for a more modern remote procedure functionality, supported by third-•
party module grpcio

• NTP, to get precise time off the network, supported by third-party module•
ntplib

• SNMP, for network management, supported by third-party module pysnmp•
No single book (not even this one!) could possibly cover all these protocols and
their supporting modules. Rather, our best suggestion in the matter is a strategic
one: whenever you decide that your application needs to interact with some other
system via a certain networking protocol, don’t rush to implement your own mod‐
ules to support that protocol. Instead, search and ask around, and you’re likely
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6 Even more importantly, if you think you need to invent a brand-new protocol and implement it
on top of sockets, think again, and search carefully: it’s far more likely that one or more of the
huge number of existing internet protocols meets your needs just fine!

to find excellent existing Python modules (third-party or standard-library ones)
supporting that protocol.6

Should you find some bug or missing feature in such modules, open a bug or
feature request (and, ideally, supply a patch or pull request that would fix the
problem and satisfy your application’s needs). In other words, become an active
member of the open source community, rather than just a passive user: you will be
welcome there, scratch your own itch, and help many others in the process. “Give
forward,” since you cannot “give back” to all the awesome people who contributed
to give you most of the tools you’re using!
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1 One historical legacy is that, in CGI, a server provided the CGI script with information about
the HTTP request to be served mostly via the operating system’s environment (in Python, that’s
os.environ); to this day, interfaces between web servers and application frameworks rely on “an
environment” that’s essentially a dictionary and generalizes and speeds up the same fundamental
idea.

20
Serving HTTP

When a browser (or any other web client) requests a page from a server, the server
may return either static or dynamic content. Serving dynamic content involves
server-side web programs generating and delivering content on the fly, often based
on information stored in a database.

In the early history of the web, the standard for server-side programming was
the Common Gateway Interface (CGI), which required the server to run a separate
program each time a client requested dynamic content. Process startup time, inter‐
preter initialization, connection to databases, and script initialization add up to
measurable overhead; CGI did not scale well.

Nowadays, web servers support many server-specific ways to reduce overhead,
serving dynamic content from processes that can serve for several hits rather than
starting up a new process per hit. Therefore, we do not cover CGI in this book.
To maintain existing CGI programs, or better yet, port them to more modern
approaches, consult the online docs (especially PEP 594 for recommendations) and
check out the standard library modules cgi (deprecated as of 3.11) and http.cook
ies.1

HTTP has become even more fundamental to distributed systems design with
the emergence of systems based on microservices, offering a convenient way to
transport between processes the JSON content that is frequently used. There are
thousands of publicly available HTTP data APIs on the internet. While HTTP’s
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2 More advanced versions of HTTP exist, but we do not cover them in this book.
3 Please don’t. As Titus Brown once pointed out, Python is (in)famous for having more web

frameworks than keywords. One of this book’s authors once showed Guido how to easily fix that
problem when he was first designing Python 3—just add a few hundred new keywords—but, for
some reason, Guido was not very receptive to this suggestion.

principles remain almost unchanged since its inception in the mid-1990s, it has
been significantly enhanced over the years to extend its capabilities.2 For a thorough
grounding with excellent reference materials we recommend HTTP: The Definitive
Guide by David Gourley et al. (O’Reilly).

http.server
Python’s standard library includes a module containing the server and handler
classes to implement a simple HTTP server.

You can run this server from the command line by just entering:

$ python -m http.server port_number

By default, the server listens on all interfaces and provides access to the files in the
current directory. One author uses this as a simple means for file transfer: start up a
Python http.server in the file directory on the source system, and then copy files
to the destination using a utility such as wget or curl.

http.server has very limited security features. You can find further information on
http.server in the online docs. For production use, we recommend that you use
one of the frameworks mentioned in the following sections.

WSGI
Python’s Web Server Gateway Interface (WSGI) is the standard way for all modern
Python web development frameworks to interface with underlying web servers or
gateways. WSGI is not meant for direct use by your application programs; rather,
you code your programs using any one of many higher-abstraction frameworks,
and the framework, in turn, uses WSGI to talk to the web server.

You need to care about the details of WSGI only if you’re implementing the WSGI
interface for a web server that doesn’t already provide it (should any such server
exist), or if you’re building a new Python web framework.3 In that case, study the
WSGI PEP, the docs for the standard library package wsgiref, and the archive of
WSGI.org.

A few WSGI concepts may be important to you if you use lightweight frameworks
(i.e., ones that match WSGI closely). WSGI is an interface, and that interface has two
sides: the web server/gateway side, and the application/framework side.

The framework side’s job is to provide a WSGI application object, a callable object
(often the instance of a class with a __call__ special method, but that’s an imple‐
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4 Installing uWSGI on Windows currently requires compiling it with Cygwin.

mentation detail) respecting conventions in the PEP, and to connect the application
object to the server by whatever means the specific server documents (often a few
lines of code, or configuration files, or just a convention such as naming the WSGI
application object application as a top-level attribute in a module). The server
calls the application object for each incoming HTTP request, and the application
object responds appropriately so that the server can form the outgoing HTTP
response and send it on—all according to said conventions. A framework, even
a lightweight one, shields you from such details (except that you may have to
instantiate and connect the application object, depending on the specific server).

WSGI Servers
An extensive list of servers and adapters you can use to run WSGI frameworks and
applications (for development and testing, in production web setups, or both) is
available online—extensive, but just partial. For example, it does not mention that
Google App Engine’s Python runtime is also a WSGI server, ready to dispatch WSGI
apps as directed by the app.yaml configuration file.

If you’re looking for a WSGI server to use for development, or to deploy in produc‐
tion behind, say, an Nginx-based load balancer, you should be happy, at least on
Unix-like systems, with Gunicorn: pure Python goodness, supporting nothing but
WSGI, very lightweight. A worthy (also pure Python and WSGI-only) alternative,
currently with better Windows support, is Waitress. If you need richer features
(such as support for Perl and Ruby as well as Python, and many other forms of
extensibility), consider the bigger, more complex uWSGI.4

WSGI also has the concept of middleware, a subsystem that implements both the
server and application sides of WSGI. A middleware object “wraps” a WSGI appli‐
cation; can selectively alter requests, environments, and responses; and presents
itself to the server as “the application.” Multiple layers of wrappers are allowed
and common, forming a “stack” of middleware offering services to the actual
application-level code. If you want to write a cross-framework middleware compo‐
nent, then you may, indeed, need to become a WSGI expert.
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5 Since Python has fewer than 40 keywords, you can see why Titus Brown once pointed out that
Python has more web frameworks than keywords.

ASGI
If you’re into asynchronous Python (which we don’t cover in this book), you should
definitely investigate ASGI, which sets out to do pretty much what WSGI does, but
asynchronously. As is usually the case for asynchronous programs in a networking
environment, it can offer greatly improved performance, albeit (arguably) with
some increase in cognitive load for the developer.

Python Web Frameworks
For a survey of Python web frameworks, see the Python wiki page. It’s authoritative
since it’s on the official Python.org website, and it’s community curated, so it stays
up-to-date as time goes by. The wiki lists and points to dozens of frameworks5

that it identifies as “active,” plus many more it identifies as “discontinued/inactive.”
In addition, it points to separate wiki pages about Python content management
systems, web servers, and web components and libraries thereof.

“Full-Stack” Versus “Lightweight” Frameworks
Roughly speaking, Python web frameworks can be classified as being either full-
stack (trying to supply all the functionality you may need to build a web application)
or lightweight (supplying just a handy interface to web serving itself, and letting
you pick and choose your own favorite components for tasks such as interfacing
to databases and templating). Of course, like all taxonomies, this one is imprecise
and incomplete, and requires value judgments; however, it’s one way to start making
sense of the many Python web frameworks.

In this book, we do not thoroughly cover any full-stack frameworks—each is far too
complex. Nevertheless, one of them might be the best approach for your specific
applications, so we do mention a few of the most popular ones, and recommend
that you check out their websites.

A Few Popular Full-Stack Frameworks
By far the most popular full-stack framework is Django, which is sprawling and
extensible. Django’s so-called applications are in fact reusable subsystems, while
what’s normally called “an application” Django calls a project. Django requires its
own unique mindset, but offers enormous power and functionality in return.
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An excellent alternative is web2py: it’s just about as powerful, easier to learn, and
well known for its dedication to backward compatibility (if it keeps up its great
track record, any web2py application you code today will keep working far into the
future). web2py also has outstanding documentation.

A third worthy contender is TurboGears, which starts out as a lightweight frame‐
work but achieves “full-stack” status by fully integrating other, independent third-
party projects for the various other functionalities needed in most web apps, such
as database interfacing and templating, rather than designing its own. Another
somewhat philosophically similar “light but rich” framework is Pyramid.

Considerations When Using Lightweight Frameworks
Whenever you use a lightweight framework, if you need any database, templating,
or other functionality not strictly related to HTTP, you’ll be picking and choos‐
ing separate components for that purpose. However, the lighter in weight your
framework, the more components you will need to understand and integrate, for
purposes such as authenticating a user or maintaining state across web requests by
a given user. Many WSGI middleware packages can help you with such tasks. Some
excellent ones are quite focused—for example, Oso for access control, Beaker for
maintaining state in the form of lightweight sessions of any one of several kinds, and
so forth.

However, when we (the authors of this book) require good WSGI middleware for
just about any purpose, we almost invariably first check Werkzeug, a collection of
such components that’s amazing in breadth and quality. We don’t cover Werkzeug
in this book (just as we don’t cover other middleware), but we recommend it
highly (Werkzeug is also the foundation on which Flask—our favorite lightweight
framework, which we do cover later in this chapter—is built).

You may notice that properly using lightweight frameworks requires you to under‐
stand HTTP (in other words, to know what you’re doing), while a full-stack frame‐
work tries to lead you by the hand and have you do the right thing without really
needing to understand how or why it is right—at the cost of time and resources, and
of accepting the full-stack framework’s conceptual map and mindset. The authors
of this book are enthusiasts of the knowledge-heavy, resources-light approach of
lightweight frameworks, but we acknowledge that there are many situations where
the rich, heavy, all-embracing full-stack frameworks are more appropriate. To each
their own!

A Few Popular Lightweight Frameworks
As mentioned, Python has multiple frameworks, including many lightweight ones.
We cover two of the latter here: the popular, general-purpose Flask, and API-centric
FastAPI.
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Flask
The most popular Python lightweight framework is Flask, a third-party pip-
installable package. Although lightweight, it includes a development server and
debugger, and it explicitly relies on other well-chosen packages such as Werkzeug
for middleware and Jinja for templating (both packages were originally authored by
Armin Ronacher, the author of Flask).

In addition to the project website (which includes rich, detailed docs), look at the
sources on GitHub and the PyPI entry. If you want to run Flask on Google App
Engine (locally on your computer, or on Google’s servers at appspot.com), Dough
Mahugh’s Medium article can be quite handy.

We also highly recommend Miguel Grinberg’s book Flask Web Development
(O’Reilly): although the second edition is rather dated (almost four years old at
the time of this writing), it still provides an excellent foundation, on top of which
you’ll have a far easier time learning the latest new additions.

The main class supplied by the flask package is named Flask. An instance of
flask.Flask, besides being a WSGI application itself, also wraps a WSGI applica‐
tion as its wsgi_app property. When you need to further wrap the WSGI app in
some WSGI middleware, use the idiom:

import flask

app = flask.Flask(__name__)
app.wsgi_app = some_middleware(app.wsgi_app)

When you instantiate flask.Flask, always pass it as the first argument the appli‐
cation name (often just the __name__ special variable of the module where you
instantiate it; if you instantiate it from within a package, usually in __init__.py,
__name__.partition('.')[0] works). Optionally, you can also pass named param‐
eters such as static_folder and template_folder to customize where static files
and Jinja templates are found; however, that’s rarely needed—the default values
(subfolders named static and templates, respectively, located in the same folder as
the Python script that instantiates flask.Flask) make perfect sense.

An instance app of flask.Flask supplies more than 100 methods and properties,
many of them decorators to bind functions to app in various roles, such as view
functions (serving HTTP verbs on a URL) or hooks (letting you alter a request
before it’s processed or a response after it’s built, handling errors, and so forth).

flask.Flask takes just a few parameters at instantiation (and the ones it takes are
not ones that you usually need to compute in your code), and it supplies decorators
you’ll want to use as you define, for example, view functions. Thus, the normal pat‐
tern in flask is to instantiate app early in your main script, just as your application
is starting up, so that the app’s decorators, and other methods and properties, are
available as you def view functions and so on.
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Since there is a single global app object, you may wonder how thread-safe it can
be to access, mutate, and rebind app’s properties and attributes. Not to worry: the
names you see are actually just proxies to actual objects living in the context of a
specific request, in a specific thread or greenlet. Never type-check those properties
(their types are in fact obscure proxy types), and you’ll be fine.

Flask also supplies many other utility functions and classes; often, the latter subclass
or wrap classes from other packages to add seamless, convenient Flask integration.
For example, Flask’s Request and Response classes add just a little handy function‐
ality by subclassing the corresponding Werkzeug classes.

Flask request objects     The class flask.Request supplies a large number of thor‐
oughly documented properties. Table 20-1 lists the ones you’ll be using most often.

Table 20-1. Useful properties of flask.Request

args A MultiDict of the request’s query arguments

cookies A dict with the cookies from the request

data A bytes string, the request’s body (typically for POST and PUT requests)

files A MultiDict of uploaded files in the request, mapping the files’ names to file-like objects
containing each file’s data

form A MultiDict with the request’s form fields, provided in the request’s body

headers A MultiDict with the request’s headers

values A MultiDict combining the args and form properties

A MultiDict is like a dict, except that it can have multiple values for a key. Index‐
ing and get on a MultiDict instance m return an arbitrary one of the values; to get
the list of values for a key (an empty list, if the key is not in m), call m.getlist(key).

Flask response objects     Often, a Flask view function can just return a string
(which becomes the response’s body): Flask transparently wraps an instance r of
flask.Response around the string, so you don’t have to worry about the response
class. However, sometimes you want to alter the response’s headers; in this case,
in the view function, call r = flask.make_response(astring), alter r.headers
as you want, then return r. (To set a cookie, don’t use r.headers; rather, call
r.set_cookie.)

Some of Flask’s built-in integrations with other systems don’t require subclassing:
for example, the templating integration implicitly injects into the Jinja context the
Flask globals config, request, session, and g (the latter being the handy “globals
catch-all” object flask.g, a proxy in application context, in which your code can
store whatever you want to “stash” for the duration of the request being served) and
the functions url_for (to translate an endpoint to the corresponding URL, same
as flask.url_for) and get_flashed_messages (to support flashed messages, which
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we do not cover in this book; same as flask.get_flashed_messages). Flask also
provides convenient ways for your code to inject more filters, functions, and values
into the Jinja context, without any subclassing.

Most of the officially recognized or approved Flask extensions (hundreds are avail‐
able from PyPI at the time of this writing) adopt similar approaches, supplying
classes and utility functions to seamlessly integrate other popular subsystems with
your Flask applications.

In addition, Flask introduces other features, such as signals to provide looser
dynamic coupling in a “pub/sub” pattern and blueprints, offering a substantial
subset of a Flask application’s functionality to ease refactoring large applications in
highly modular, flexible ways. We do not cover these advanced concepts in this
book.

Example 20-1 shows a simple Flask example. (After using pip to install Flask, run
the example using the command flask --app flask_example run.)

Example 20-1. A Flask example

import datetime, flask
app = flask.Flask(__name__)

# secret key for cryptographic components such as encoding session cookies;
# for production use, use secrets.token_bytes()
app.secret_key = b'\xc5\x8f\xbc\xa2\x1d\xeb\xb3\x94;:d\x03'

@app.route('/')
def greet():
    lastvisit = flask.session.get('lastvisit')
    now = datetime.datetime.now()
    newvisit = now.ctime()
    template = '''
      <html><head><title>Hello, visitor!</title>
      </head><body>
      {% if lastvisit %}
        <p>Welcome back to this site!</p>
        <p>You last visited on {{lastvisit}} UTC</p>
        <p>This visit on {{newvisit}} UTC</p>
      {% else %}
        <p>Welcome to this site on your first visit!</p>
        <p>This visit on {{newvisit}} UTC</p>
        <p>Please Refresh the web page to proceed</p>
      {% endif %}
      </body></html>'''
    flask.session['lastvisit'] = newvisit
    return flask.render_template_string(
      template, newvisit=newvisit, lastvisit=lastvisit)
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This example shows how to use just a few of the many building blocks that Flask
offers—the Flask class, a view function, and rendering the response (in this case,
using render_template_string on a Jinja template; in real life, templates are
usually kept in separate files rendered with render_template). The example also
shows how to maintain continuity of state among multiple interactions with the
server from the same browser, with the handy flask.session variable. (It could
alternatively have put together the HTML response in Python code instead of using
Jinja, and used a cookie directly instead of the session; however, real-world Flask
apps do tend to use Jinja and sessions by preference.)

If this app had multiple view functions, it might want to set lastvisit in the
session to whatever URL had triggered the request. Here’s how to code and decorate
a hook function to execute after each request:

@app.after_request
def set_lastvisit(response):
    now = datetime.datetime.now()
    flask.session['lastvisit'] = now.ctime()
    return response

You can now remove the flask.session['lastvisit'] = newvisit statement
from the view function greet, and the app will keep working fine.

FastAPI
FastAPI is of a more recent design than Flask or Django. While both of the latter
have very usable extensions to provide API services, FastAPI aims squarely at
producing HTTP-based APIs, as its name suggests. It’s also perfectly capable of
producing dynamic web pages intended for browser consumption, making it a
versatile server. FastAPI’s home page provides simple, short examples showing how
it works and highlighting the advantages, backed up by very thorough and detailed
reference documentation.

As type annotations (covered in Chapter 5) entered the Python language, they
found wider use than originally intended in tools like pydantic, which uses them
to perform runtime parsing and validation. The FastAPI server exploits this support
for clean data structures, demonstrating great potential to improve web coding
productivity through built-in and tailored conversion and validation of inputs.

FastAPI also relies on Starlette, a high-performance asynchronous web framework,
which in turn uses an ASGI server such as Uvicorn or Hypercorn. You don’t need
to use async techniques directly to take advantage of FastAPI. You can write your
application in more traditional Python style, though it might perform even faster if
you do switch to the async style.

FastAPI’s ability to provide type-accurate APIs (and automatically generated docu‐
mentation for them) aligned with the types indicated by your annotations means it
can provide automatic parsing of incoming data and conversion on both input and
output.
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Consider the sample code shown in Example 20-2, which defines a simple model
for both pydantic and mongoengine. Each has four fields: name and description
are strings, price and tax are decimal. Values are required for the name and price
fields, but description and tax are optional. pydantic establishes a default value
of None for the latter two fields; mongoengine does not store a value for fields whose
value is None.

Example 20-2. models.py: pydantic and mongoengine data models

from decimal import Decimal
from pydantic import BaseModel, Field
from mongoengine import Document, StringField, DecimalField
from typing import Optional

class PItem(BaseModel):
    "pydantic typed data class."
    name: str
    price: Decimal
    description: Optional[str] = None
    tax: Optional[Decimal] = None

class MItem(Document):
    "mongoengine document."
    name = StringField(primary_key=True)
    price = DecimalField()
    description = StringField(required=False)
    tax = DecimalField(required=False)

Suppose you wanted to accept such data through a web form or as JSON, and be
able to retrieve the data as JSON or display it in HTML. The skeletal Example 20-3
(offering no facilities to maintain existing data) shows you how you might do this
with FastAPI. This example uses the Uvicorn HTTP server, but makes no attempt
to explicitly use Python’s async features. As with Flask, the program begins by
creating an application object app. This object has decorator methods for each
HTTP method, but the app.route decorator (while available) is eschewed in favor
of app.get for HTTP GET, app.post for HTTP POST, and the like, and those
determine which view function handles requests to the paths for different HTTP
methods.
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Example 20-3. server.py: FastAPI sample code to accept and display item data

from decimal import Decimal
from fastapi import FastAPI, Form
from fastapi.responses import HTMLResponse, FileResponse
from mongoengine import connect
from mongoengine.errors import NotUniqueError
from typing import Optional
import json
import uvicorn
from models import PItem, MItem

DATABASE_URI = "mongodb://localhost:27017"
db=DATABASE_URI+"/mydatabase"
connect(host=db)
app = FastAPI()

def save(item):
    try:
        return item.save(force_insert=True)
    except NotUniqueError:
        return None

@app.get('/')
def home_page():
    "View function to display a simple form."
    return FileResponse("index.html")

@app.post("/items/new/form/", response_class=HTMLResponse)
def create_item_from_form(name: str=Form(...),
                          price: Decimal=Form(...),
                          description: Optional[str]=Form(""),
                          tax: Optional[Decimal]=Form(Decimal("0.0"))):
    "View function to accept form data and create an item."
    mongoitem = MItem(name=name, price=price, description=description, 
                      tax=tax)
    value = save(mongoitem)
    if value:
        body = f"Item({name!r}, {price!r}, {description!r}, {tax!r})"
    else:
        body = f"Item {name!r} already present."
    return f"""<html><body><h2>{body}</h2></body></html>"""

@app.post("/items/new/")
def create_item_from_json(item: PItem):
    "View function to accept JSON data and create an item."
    mongoitem = MItem(**item.dict())
    value = save(mongoitem)
    if not value:
        return f"Primary key {item.name!r} already present"
    return item.dict()
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@app.get("/items/{name}/")
def retrieve_item(name: str):
    "View function to return the JSON contents of an item."
    m_item = MItem.objects(name=name).get()
    return json.loads(m_item.to_json())

if __name__ == "__main__":
    # host as "localhost" or "127.0.0.1" allows only local apps to access the
    # web page. Using "0.0.0.0" will accept access from apps on other hosts,
    # but this can raise security concerns, and is generally not recommended.
    uvicorn.run("__main__:app", host="127.0.0.1", port=8000, reload=True)

The home_page function, which takes no arguments, simply renders a minimal
HTML home page containing a form from the index.html file, shown in Exam‐
ple 20-4. The form posts to the /items/new/form/ endpoint, which triggers a call to
the create_item_from_form function, which is declared in the routing decorator as
producing an HTML response rather than the default JSON.

Example 20-4. The index.html file

<!DOCTYPE html>
<html lang="en">
  <body>
  <h2>FastAPI Demonstrator</h2>
  <form method="POST" action="/items/new/form/">
    <table>
    <tr><td>Name</td><td><input name="name"></td></tr>
    <tr><td>Price</td><td><input name="price"></td></tr>
    <tr><td>Description</td><td><input name="description"></td></tr>
    <tr><td>Tax</td><td><input name="tax"></td></tr>
    <tr><td></td><td><input type="submit"></td></tr>
    </table>
  </form>
  </body>
</html>

The form, shown in Figure 20-1, is handled by the create_item_from_form func‐
tion, whose signature takes an argument for each form field, with annotations
defining each as a form field. Note that the signature defines its own default values
for description and tax. The function creates an MItem object from the form data
and tries to save it in the database. The save function forces insertions, inhibiting
the update of an existing record, and reports failure by returning None; the return
value is used to formulate a simple HTML reply. In a production application, a
templating engine such as Jinja would typically be used to render the response.
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Figure 20-1. Input form for FastAPI Demonstrator

The create_item_from_json function, routed from the /items/new/ endpoint, takes
JSON input from a POST request. Its signature accepts a pydantic record, so in
this case, FastAPI will use pydantic’s validation to determine whether the input is
acceptable. The function returns a Python dictionary, which FastAPI automatically
converts to a JSON response. This can easily be tested with a simple client, shown in
Example 20-5.

Example 20-5. FastAPI test client

import requests, json

result = requests.post('http://localhost:8000/items/new/',
                       json={"name": "Item1",
                             "price": 12.34,
                             "description": "Rusty old bucket"})
print(result.status_code, result.json())
result = requests.get('http://localhost:8000/items/Item1/')
print(result.status_code, result.json())
result = requests.post('http://localhost:8000/items/new/',
                       json={"name": "Item2",
                             "price": "Not a number"})
print(result.status_code, result.json())

The results of running this program are as follows:

200 {'name': 'Item1', 'price': 12.34, 'description': 'Rusty old
bucket'> 'tax': None}
200 {'_id': 'Item1', 'price': 12.34, 'description': 'Rusty old bucket'}
422 {'detail': [{'loc': ['body', 'price'], 'msg': 'value is not a valid
decimal', 'type': 'type_error.decimal'}]}
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The first POST request to /items/new/ sees the server returning the same data it was
presented with, confirming that it has been saved in the database. Note that the tax
field was not supplied, so the pydantic default value is used here. The second line
shows the output from retrieving the newly stored item (mongoengine identifies the
primary key using the name _id). The third line shows an error message, generated
by the attempt to store a nonnumeric value in the price field.

Finally, the retrieve_item view function, routed from URLs such as /items/Item1/,
extracts the key as the second path element and returns the JSON representation of
the given item. It looks up the given key in mongoengine and converts the returned
record to a dictionary that is rendered as JSON by FastAPI.
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21
Email, MIME, and Other

Network Encodings

What travels on a network are streams of bytes, also known in networking jargon
as octets. Bytes can, of course, represent text, via any of several possible encodings.
However, what you want to send over the network often has more structure than
just a stream of text or bytes. The Multipurpose Internet Mail Extensions (MIME)
and other encoding standards bridge the gap, by specifying how to represent
structured data as bytes or text. While often originally designed for email, such
encodings are also used on the web and in many other networked systems. Python
supports such encodings through various library modules, such as base64, quopri,
and uu (covered in “Encoding Binary Data as ASCII Text” on page 619), and the
modules of the email package (covered in the following section). These encodings
allow us, for example, to seamlessly create messages in one encoding containing
attachments in another, avoiding many awkward tasks along the way.

MIME and Email Format Handling
The email package handles parsing, generation, and manipulation of MIME files
such as email messages, Network News Transfer Protocol (NNTP) posts, HTTP
interactions, and so on. The Python standard library also contains other modules
that handle some parts of these jobs. However, the email package offers a complete
and systematic approach to these important tasks. We suggest you use email, not
the older modules that partially overlap with parts of email’s functionality. email,
despite its name, need have nothing to do with receiving or sending email; for such
tasks, see the modules imaplib, poplib, and smtplib, covered in “Email Protocols”
on page 584. Rather, email deals with handling MIME messages (which may or may
not be mail) after you receive them, or constructing them properly before you send
them.
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Functions in the email Package
The email package supplies four factory functions that return an instance m of the
class email.message.Message from a string or file (see Table 21-1). These functions
rely on the class email.parser.Parser, but the factory functions are handier and
simpler. Therefore, we do not cover the email.parser module further in this book.

Table 21-1. email factory functions that build message objects from strings or files

message_from_binary_

file

message_from_binary_file(f)

Builds m by parsing the contents of binary file-like object f, which must be
open for reading

message_from_bytes message_from_bytes(s)

Builds m by parsing bytestring s

message_from_file message_from_file(f)

Builds m by parsing the contents of text file-like object f, which must be
open for reading

message_from_string message_from_string(s)

Builds m by parsing string s

The email.message Module
The email.message module supplies the class Message. All parts of the email pack‐
age make, modify, or use instances of Message. An instance m of Message models
a MIME message, including headers and a payload (data content). m is a mapping,
with header names as keys, and header value strings as values.

To create an initially empty m, call Message with no arguments. More often, you
create m by parsing via one of the factory functions in Table 21-1, or other indirect
means such as the classes covered in “Creating Messages” on page 616. m’s payload
can be a string, a single other instance of Message, or a multipart message (a
recursively nested list of other Message instances).

You can set arbitrary headers on email messages you’re building. Several internet
RFCs specify headers for a wide variety of purposes. The main applicable RFC
is RFC 2822; you can find a summary of many other RFCs about headers in
nonnormative RFC 2076.

To make m more convenient, its semantics as a mapping are different from those
of a dict. m’s keys are case insensitive. m keeps headers in the order in which you
add them, and the methods keys, values, and items return lists (not views!) of
headers in that order. m can have more than one header named key: m[key] returns
an arbitrary such header (or None when the header is missing), and del m[key]
deletes all of them (it’s not an error if the header is missing).

To get a list of all headers with a certain name, call m.get_all(key). len(m) returns
the total number of headers, counting duplicates, not just the number of distinct
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header names. When there is no header named key, m[key] returns None and does
not raise KeyError (i.e., it behaves like m.get(key)): del m[key] does nothing in
this case, and m.get_all(key) returns None. You can loop directly on m: it’s just like
looping on m.keys() instead.

An instance m of Message supplies various attributes and methods that deal with m’s
headers and payload, listed in Table 21-2.

Table 21-2. Attributes and methods of an instance m of Message

add_header m.add_header(_name, _value, **_params)
Like m[_name]=_value, but you can also supply header parameters as named
arguments. For each named argument pname=pvalue, add_header changes any
underscores in pname to dashes, then appends to the header’s value a string of the form:
; pname="pvalue"
When pvalue is None, add_header appends only a string of the form:
; pname
When a parameter’s value contains non-ASCII characters, specify it as a tuple with three
items, (CHARSET, LANGUAGE, VALUE). CHARSET names the encoding to use for
the value. LANGUAGE is usually None or '' but can be set any language value per RFC
2231; VALUE is the string value containing non-ASCII characters.

as_string m.as_string(unixfrom=False)

Returns the entire message as a string. When unixfrom is true, also includes a first
line, normally starting with 'From ', known as the envelope header of the message.

attach m.attach(payload)

Adds payload, a message, to m’s payload. When m’s payload is None, m’s payload is
now the single-item list [payload]. When m’s payload is a list of messages, appends
payload to the list. When m’s payload is anything else, m.attach(payload) raises
MultipartConversionError.

epilogue The attribute m.epilogue can be None, or a string that becomes part of the
message’s string form after the last boundary line. Mail programs normally don’t display
this text. epilogue is a normal attribute of m: your program can access it when you’re
handling any m, and bind it when you’re building or modifying m.

get_all m.get_all(name, default=None)

Returns a list with all values of headers named name in the order in which the headers
are added to m. When m has no header named name, get_all returns default.

get_boundary m.get_boundary(default=None)

Returns the string value of the boundary parameter of m’s Content-Type header.
When m has no Content-Type header, or the header has no boundary parameter,
get_boundary returns default.

get_charsets m.get_charsets(default=None)

Returns the list L of string values of parameter charset of m’s Content-Type header.
When m is multipart, L has one item per part; otherwise, L has length 1. For parts that
have no Content-Type header, no charset parameter, or a main type different from
'text', the corresponding item in L is default.
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get_content_

maintype

m.get_content_maintype(default=None)

Returns m’s main content type: a lowercase string 'maintype' taken from
header Content-Type. For example, when Content-Type is 'Text/Html', get_con
tent_maintype returns 'text'. When m has no Content-Type header,
get_content_maintype returns default.

get_content_

subtype

m.get_content_subtype(default=None)

Returns m’s content subtype: a lowercase string 'subtype' taken from header
Content-Type. For example, when Content-Type is 'Text/Html', get_con
tent_subtype returns 'html'. When m has no Content-Type header, get_con
tent_subtype returns default.

get_content_

type

m.get_content_type(default=None)

Returns m’s content type: a lowercase string 'maintype/subtype' taken
from header Content-Type. For example, when Content-Type is 'Text/Html',
get_content_type returns 'text/html'. When m has no Content-Type header,
get_content_type returns default.

get_filename m.get_filename(default=None)

Returns the string value of the filename parameter of m’s Content-Disposition header.
When m has no Content-Disposition header, or the header has no filename parameter,
get_filename returns default.

get_param m.get_param(param, default=None, header='Content-Type')
Returns the string value of parameter param of m’s header header. Returns '' for a
parameter specified just by name (without a value). When m has no header header, or
the header has no parameter named param, get_param returns default.

get_params m.get_params(default=None, header='Content-Type')

Returns the parameters of m’s header header, a list of pairs of strings that give each
parameter’s name and value. Uses '' as the value for parameters specified just by name
(without a value). When m has no header header, get_params returns default.

get_payload m.get_payload(i=None, decode=False)

Returns m’s payload. When m.is_multipart is False, i must be None, and
m.get_payload returns m’s entire payload, a string or Message instance. If
decode is true and the value of header Content-Transfer-Encoding is either 'quoted-
printable' or 'base64', m.get_payload also decodes the payload. If
decode is false, or header Content-Transfer-Encoding is missing or has other values,
m.get_payload returns the payload unchanged.
When m.is_multipart is True, decode must be false. When i is None,
m.get_payload returns m’s payload as a list. Otherwise, m.get_payload(i)
returns the ith item of the payload, or raises TypeError if i < 0 or i is too large.

get_unixfrom m.get_unixfrom()

Returns the envelope header string for m, or None when m has no envelope header.

is_multipart m.is_multipart()

Returns True when m’s payload is a list; otherwise, returns False.
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preamble Attribute m.preamble can be None, or a string that becomes part of the message’s
string form before the first boundary line. A mail program shows this text only if it
doesn’t support multipart messages, so you can use this attribute to alert the user that
your message is multipart and a different mail program is needed to view it. preamble
is a normal attribute of m: your program can access it when you’re handling an m that
is built by whatever means, and bind, rebind, or unbind it when you’re building or
modifying m.

set_boundary m.set_boundary(boundary)

Sets the boundary parameter of m’s Content-Type header to boundary. When m has
no Content-Type header, raises HeaderParseError.

set_payload m.set_payload(payload)

Sets m’s payload to payload, which must be a string, or a list of Message instances,
as appropriate to m’s Content-Type.

set_unixfrom m.set_unixfrom(unixfrom)

Sets the envelope header string for m. unixfrom is the entire envelope header line,
including the leading 'From ' but not including the trailing '\n'.

walk m.walk()

Returns an iterator on all parts and subparts of m to walk the tree of parts, depth-first
(see “Recursion” on page 112).

The email.Generator Module
The email.Generator module supplies the class Generator, which you can use
to generate the textual form of a message m. m.as_string() and str(m) may be
enough, but Generator gives more flexibility. Instantiate the Generator class with a
mandatory argument, outfp, and two optional arguments:

Generator class Generator(outfp, mangle_from_=False, maxheaderlen=78)
outfp is a file or file-like object that supplies the method write. When man
gle_from_ is true, g prepends a greater-than sign (>) to any line in the payload
that starts with 'From ', to make the message’s textual form easier to parse. g wraps
each header line, at semicolons, into physical lines of no more than maxheaderlen
characters. To use g, call g.flatten; for example:

g.flatten(m, unixfrom=False)
This emits m as text to outfp, like (but consuming less memory than):

outfp.write(m.as_string(unixfrom))
.
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Creating Messages
The subpackage email.mime supplies various modules, each with a subclass
of Message named like the module. The modules’ names are lowercase (e.g.,
email.mime.text), while the class names are in mixed case. These classes, listed
in Table 21-3, help you create Message instances of different MIME types.

Table 21-3. Classes supplied by email.mime

MIMEAudio class MIMEAudio(_audiodata, _subtype=None, _encoder=None,
**_params)

Creates MIME message objects of major type ‘audio’. _audiodata is a bytestring
of audio data to pack in a message of MIME type 'audio/_subtype'. When
_subtype is None, _audiodata must be parsable by standard Python library
module sndhdr to determine the subtype; otherwise, MIMEAudio raises TypeError.
3.11+  Since sndhdr is deprecated, you should always specify the _subtype. When
_encoder is None, MIMEAudio encodes data as Base64, which is usually optimal.
Otherwise, _encoder must be callable with one parameter, m, which is the message
being constructed; _encoder must then call m.get_payload to get the payload,
encode the payload, put the encoded form back by calling m.set_payload, and set
m’s Content-Transfer-Encoding header. MIMEAudio passes the _params dictionary of
named argument names and values to m.add_header to construct m’s Content-Type
header.

MIMEBase class MIMEBase(_maintype, _subtype, **_params)
Base class of all MIME classes; extends Message. Instantiating:

m = MIMEBase(mainsub, **params)
is equivalent to the longer and slightly less convenient idiom:

m = Message()
m.add_header('Content-Type', f'{main}/{sub}', 
             **params)
m.add_header('Mime-Version', '1.0')

MIMEImage class MIMEImage(_imagedata, _subtype=None, _encoder=None,
**_params)

Like MIMEAudio, but with main type 'image'; uses standard Python module imghdr
to determine the subtype, if needed. 3.11+  Since imghdr is deprecated, you should
always specify the _subtype.

MIMEMessage class MIMEMessage(msg, _subtype='rfc822')
Packs msg, which must be an instance of Message (or a subclass), as the payload of a
message of MIME type 'message/_subtype'.

MIMEText class MIMEText(_text, _subtype='plain', _charset='us-ascii',
_encoder=None)

Packs text string _text as the payload of a message of MIME type 'text/_subtype'
with the given _charset. When _encoder is None, MIMEText does not encode
the text, which is generally the best choice. Otherwise, _encoder must be callable with
one parameter, m, which is the message being constructed; _encoder must then call
m.get_payload to get the payload, encode the payload, put the encoded form back by
calling m.set_payload, and set m’s Content-Transfer-Encoding header appropriately.
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The email.encoders Module
The email.encoders module supplies functions that take a nonmultipart message m
as their only argument, encode m’s payload, and set m’s headers appropriately. These
functions are listed in Table 21-4.

Table 21-4. Functions of the email.encoders module

encode_base64 encode_base64(m)

Uses Base64 encoding, usually optimal for arbitrary binary data (see “The base64
Module” on page 620).

encode_noop encode_noop(m)

Does nothing to m’s payload and headers.

encode_quopri encode_quopri(m)

Uses Quoted Printable encoding, usually optimal for text that is almost but not fully
ASCII (see “The quopri Module” on page 621).

encode_7or8bit encode_7or8bit(m)

Does nothing to m’s payload, but sets the header Content-Transfer-Encoding to
'8bit' when any byte of m’s payload has the high bit set; otherwise, sets it to
'7bit'.

The email.utils Module
The email.utils module supplies several functions for email processing, listed in
Table 21-5.

Table 21-5. Functions of the email.utils module

formataddr formataddr(pair)

Takes a pair of strings (realname, email_address) and returns a string s
with the address to insert in header fields such as To and Cc. When realname is
false (e.g., the empty string, ''), formataddr returns email_address.

formatdate formatdate(timeval=None, localtime=False)

Returns a string with the time instant formatted as specified by RFC 2822. timeval
is a number of seconds since the epoch. When timeval is None, formatdate
uses the current time. When localtime is True, formatdate uses the local
time zone; otherwise, it uses UTC.

getaddresses getaddresses(L)

Parses each item of L, a list of address strings as used in header fields such as
To and Cc, and returns a list of pairs of strings (name, address). When
getaddresses cannot parse an item of L as an email address, it sets ('', '')
as the corresponding item in the list.
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mktime_tz mktime_tz(t)

Returns a float representing the number of seconds since the epoch, in UTC,
corresponding to the instant that t denotes. t is a tuple with 10 items. The first nine
items of t are in the same format used in the module time, covered in “The time
Module” on page 411. t[-1] is a time zone as an offset in seconds from UTC (with
the opposite sign from time.timezone, as specified by RFC 2822). When t[-1]
is None, mktime_tz uses the local time zone.

parseaddr parseaddr(s)

Parses string s, which contains an address as typically specified in header fields
such as To and Cc, and returns a pair of strings (realname, address). When
parseaddr cannot parse s as an address, it returns ('', '').

parsedate parsedate(s)

Parses string s as per the rules in RFC 2822 and returns a tuple t with nine items,
as used in the module time, covered in “The time Module” on page 411 (the items
t[-3:] are not meaningful). parsedate also attempts to parse some erroneous
variations on RFC 2822 that commonly encountered mailers use. When parsedate
cannot parse s, it returns None.

parsedate_tz parsedate_tz(s)

Like parsedate, but returns a tuple t with 10 items, where t[-1] is s’s time
zone as an offset in seconds from UTC (with the opposite sign from time.time
zone, as specified by RFC 2822), like in the argument that mktime_tz accepts.
Items t[-4:-1] are not meaningful. When s has no time zone, t[-1] is None.

quote quote(s)

Returns a copy of string s, where each double quote (") becomes '\"', and each
existing backslash is repeated.

unquote unquote(s)

Returns a copy of string s where leading and trailing double-quote characters (") and
angle brackets (<>) are removed if they surround the rest of s.

Example Uses of the email Package
The email package helps you both in reading and composing email and email-like
messages (but it’s not involved in receiving and transmitting such messages: those
tasks belong to separate modules covered in Chapter 19). Here is an example of how
to use email to read a possibly multipart message and unpack each part into a file in
a given directory:

import pathlib, email
def unpack_mail(mail_file, dest_dir):
    '''Given file object mail_file, open for reading, and dest_dir,
       a string that is a path to an existing, writable directory,
       unpack each part of the mail message from mail_file to a
       file within dest_dir.
    '''
    dest_dir_path = pathlib.Path(dest_dir)
    with mail_file:
        msg = email.message_from_file(mail_file)
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    for part_number, part in enumerate(msg.walk()):
        if part.get_content_maintype() == 'multipart':
            # we get each specific part later in the loop,
            # so, nothing to do for the 'multipart' itself
            continue
        dest = part.get_filename()
        if dest is None: dest = part.get_param('name')
        if dest is None: dest = f'part-{part_number}'
        # in real life, make sure that dest is a reasonable filename
        # for your OS; otherwise, mangle that name until it is
        part_payload = part.get_payload(decode=True)
        (dest_dir_path / dest).write_text(part_payload)

And here is an example that performs roughly the reverse task, packaging all files
that are directly under a given source directory into a single file suitable for mailing:

def pack_mail(source_dir, **headers):
     '''Given source_dir, a string that is a path to an existing,
        readable directory, and arbitrary header name/value pairs
        passed in as named arguments, packs all the files directly
        under source_dir (assumed to be plain text files) into a
        mail message returned as a MIME-formatted string.
     '''
     source_dir_path = pathlib.Path(source_dir)
     msg = email.message.Message()
     for name, value in headers.items():
         msg[name] = value
     msg['Content-type'] = 'multipart/mixed'
     filepaths = [path for path in source_dir_path.iterdir() 
                  if path.is_file()]
     for filepath in filepaths:
         m = email.message.Message()
         m.add_header('Content-type', 'text/plain', name=filename)
         m.set_payload(filepath.read_text())
         msg.attach(m)
     return msg.as_string()

Encoding Binary Data as ASCII Text
Several kinds of media (e.g., email messages) can contain only ASCII text. When
you want to transmit arbitrary binary data via such media, you need to encode the
data as ASCII text strings. The Python standard library supplies modules that sup‐
port the standard encodings known as Base64, Quoted Printable, and Unix-to-Unix,
described in the following sections.
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The base64 Module
The base64 module supports the encodings specified in RFC 3548 as Base16,
Base32, and Base64. Each of these encodings is a compact way to represent arbitrary
binary data as ASCII text, without any attempt to produce human-readable results.
base64 supplies 10 functions: 6 for Base64, plus 2 each for Base32 and Base16. The
six Base64 functions are listed in Table 21-6.

Table 21-6. Base64 functions of the base64 module

b64decode b64decode(s, altchars=None, validate=False)

Decodes B64-encoded bytestring s, and returns the decoded bytestring. altchars, if
not None, must be a bytestring of at least two characters (extra characters are ignored)
specifying the two nonstandard characters to use instead of + and / (potentially useful to
decode URL-safe or filesystem-safe B64-encoded strings). When validate is True, the
call raises an exception if s contains any bytes that are not valid in B64-encoded strings
(by default, such bytes are just ignored and skipped). Also raises an exception when s is
improperly padded according to the Base64 standard.

b64encode b64encode(s, altchars=None)

Encodes bytestring s and returns the bytestring with the corresponding B64-encoded
data. altchars, if not None, must be a bytestring of at least two characters (extra
characters are ignored) specifying the two nonstandard characters to use instead of + and /
(potentially useful to make URL-safe or filesystem-safe B64-encoded strings).

standard_

b64decode

standard_b64decode(s)

Like b64decode(s).

standard_

b64encode

standard_b64encode(s)

Like b64encode(s).

urlsafe_

b64decode

urlsafe_b64decode(s)

Like b64decode(s, '-_').

urlsafe_

b64encode

urlsafe_b64encode(s)

Like b64encode(s, '-_').

The four Base16 and Base32 functions are listed in Table 21-7.

Table 21-7. Base16 and Base32 functions of the base64 module

b16decode b16decode(s, casefold=False)

Decodes B16-encoded bytestring s, and returns the decoded bytestring. When casefold is
True, lowercase characters in s are treated like their uppercase equivalents; by default, when
lowercase characters are present, the call raises an exception.

b16encode b16encode(s)

Encodes bytestring s, and returns the bytestring with the corresponding B16-encoded data.
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b32decode b32decode(s, casefold=False, map01=None)

Decodes B32-encoded bytestring s, and returns the decoded bytestring. When casefold
is True, lowercase characters in s are treated like their uppercase equivalents; by default,
when lowercase characters are present, the call raises an exception. When map01 is None,
characters 0 and 1 are not allowed in the input; when not None, it must be a single-character
bytestring specifying what 1 is mapped to (lowercase 'l' or uppercase 'L'); 0 is then
always mapped to uppercase 'O'.

b32encode b32encode(s)

Encodes bytestring s and returns the bytestring with the corresponding B32-encoded data.

The module also supplies functions to encode and decode the nonstandard but
popular encodings Base85 and Ascii85, which, while not codified in RFCs or com‐
patible with each other, can offer space savings of 15% by using larger alphabets for
encoded bytestrings. See the online docs for details on those functions.

The quopri Module
The quopri module supports the encoding specified in RFC 1521 as Quoted Print‐
able (QP). QP can represent any binary data as ASCII text, but it’s mainly intended
for data that is mostly text, with a small amount of characters with the high bit set
(i.e., characters outside the ASCII range). For such data, QP produces results that
are both compact and human-readable. The quopri module supplies four functions,
listed in Table 21-8.

Table 21-8. Functions of the quopri module

decode decode(infile, outfile, header=False)
Reads the binary file-like object infile by calling infile.readline until end-of-file
(i.e., until a call to infile.readline returns an empty string), decodes the QP-encoded
ASCII text thus read, and writes the results to binary file-like object outfile. When header
is true, decode also turns _ (underscores) into spaces (per RFC 1522).

decode

string

decodestring(s, header=False)

Decodes bytestring s, QP-encoded ASCII text, and returns the bytestring with the decoded data.
When header is true, decodestring also turns _ (underscores) into spaces.

encode encode(infile, outfile, quotetabs, header=False)
Reads binary file-like object infile by calling infile.readline until end-of-file (i.e.,
until a call to infile.readline returns an empty string), encodes the data thus read in
QP, and writes the encoded ASCII text to binary file-like object outfile. When quotetabs
is true, encode also encodes spaces and tabs. When header is true, encode encodes
spaces as _ (underscores).

encode

string

encodestring(s, quotetabs=False, header=False)

Encodes bytestring s, which contains arbitrary bytes, and returns a bytestring with QP-encoded
ASCII text. When quotetabs is true, encodestring also encodes spaces and tabs. When
header is true, encodestring encodes spaces as _ (underscores).
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1 Deprecated in Python 3.11, to be removed in Python 3.13; the online docs direct users to update
existing code to use the base64 module for data content and MIME headers for metadata.

The uu Module
The uu module1 supports the classic Unix-to-Unix (UU) encoding, as implemented
by the Unix programs uuencode and uudecode. UU starts encoded data with a begin
line, which includes the filename and permissions of the file being encoded, and
ends it with an end line. Therefore, UU encoding lets you embed encoded data
in otherwise unstructured text, while Base64 encoding (discussed in “The base64
Module” on page 620) relies on the existence of other indications of where the
encoded data starts and finishes. The uu module supplies two functions, listed in
Table 21-9.

Table 21-9. Functions of the uu module

decode decode(infile, outfile=None, mode=None)

Reads the file-like object infile by calling infile.readline until end-of-file (i.e., until a
call to infile.readline returns an empty string) or until a terminator line (the string 'end'
surrounded by any amount of whitespace). decode decodes the UU-encoded text thus read and
writes the decoded data to the file-like object outfile. When outfile is None, decode
creates the file specified in the UU-format begin line, with the permission bits given by mode (the
permission bits specified in the begin line, when mode is None). In this case, decode raises an
exception if the file already exists.

encode encode(infile, outfile, name='-', mode=0o666)
Reads the file-like object infile by calling infile.read (45 bytes at a time, which is the
amount of data that UU encodes into 60 characters in each output line) until end-of-file (i.e., until a
call to infile.read returns an empty string). It encodes the data thus read in UU and writes the
encoded text to file-like object outfile. encode also writes a UU-format begin line before the
text and a UU-format end line after the text. In the begin line, encode specifies the filename as
name and the mode as mode.
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22
Structured Text: HTML

Most documents on the web use HTML, the HyperText Markup Language. Markup
is the insertion of special tokens, known as tags, in a text document, to structure
the text. HTML is, in theory, an application of the large, general standard known as
SGML, the Standard Generalized Markup Language. In practice, many documents
on the web use HTML in sloppy or incorrect ways.

HTML was designed for presenting documents in a browser. As web content
evolved, users realized it lacked the capability for semantic markup, in which the
markup indicates the meaning of the delineated text rather than simply its appear‐
ance. Complete, precise extraction of the information in an HTML document often
turns out to be unfeasible. A more rigorous standard called XHTML attempted
to remedy these shortcomings. XHTML is similar to traditional HTML, but it is
defined in terms of XML, the eXtensible Markup Language, and more precisely than
HTML. You can handle well-formed XHTML with the tools covered in Chapter 23.
However, as of this writing, XHTML has not enjoyed overwhelming success, getting
scooped instead by the more pragmatic HTML5.

Despite the difficulties, it’s often possible to extract at least some useful information
from HTML documents (a task known as web scraping, spidering, or just scraping).
Python’s standard library tries to help, supplying the html package for the task of
parsing HTML documents, whether for the purpose of presenting the documents
or, more typically, as part of an attempt to extract information from them. However,
when you’re dealing with somewhat-broken web pages (which is almost always the
case!), the third-party module BeautifulSoup usually offers your last, best hope.
In this book, for pragmatic reasons, we mostly cover BeautifulSoup, ignoring the
standard library modules competing with it. The reader looking for alternatives
should also investigate the increasingly popular scrapy package.

Generating HTML and embedding Python in HTML are also reasonably frequent
tasks. The standard Python library doesn’t support HTML generation or embed‐
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ding, but you can use Python string formatting, and third-party modules can
also help. BeautifulSoup lets you alter an HTML tree (so, in particular, you can
build one up programmatically, even “from scratch”); an often preferable alternative
approach is templating, supported, for example, by the third-party module jinja2,
whose bare essentials we cover in “The jinja2 Package” on page 639.

The html.entities Module
The html.entities module in Python’s standard library supplies a few attributes,
all of them mappings (see Table 22-1). They come in handy whatever general
approach you’re using to parse, edit, or generate HTML, including the Beauti
fulSoup package covered in the following section.

Table 22-1. Attributes of html.entities

codepoint2

name

A mapping from Unicode codepoints to HTML entity names. For example, enti
ties.codepoint2name[228] is 'auml', since Unicode character 228, ä, “lowercase
a with diaeresis,” is encoded in HTML as '&auml;'.

entitydefs A mapping from HTML entity names to Unicode equivalent single-character strings.
For example, entities.entitydefs['auml'] is 'ä', and entities.entity
defs['sigma'] is 'σ'.

html5 A mapping from HTML5 named character references to equivalent single-character strings.
For example, entities.html5['gt;'] is '>'. The trailing semicolon in the key does
matter—a few, but far from all, HTML5 named character references can optionally be
spelled without a trailing semicolon, and in those cases both keys (with and without the
trailing semicolon) are present in entities.html5.

name2code

point

A mapping from HTML entity names to Unicode codepoints. For example, enti
ties.name2codepoint['auml'] is 228.

The BeautifulSoup Third-Party Package
BeautifulSoup lets you parse HTML even if it’s rather badly formed. It uses simple
heuristics to compensate for typical HTML brokenness, and succeeds at this hard
task surprisingly well in most cases. The current major version of BeautifulSoup is
version 4, also known as bs4. In this book, we specifically cover version 4.10; as of
this writing, that’s the latest stable version of bs4.

Installing Versus Importing BeautifulSoup
BeautifulSoup is one of those annoying modules whose
packaging requires you to use different names inside and out‐
side Python. You install the module by running pip install
beautifulsoup4 at a shell command prompt, but when you
import it in your Python code, you use import bs4.
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1 The BeautifulSoup documentation provides detailed information about installing various pars‐
ers.

The BeautifulSoup Class
The bs4 module supplies the BeautifulSoup class, which you instantiate by calling
it with one or two arguments: first, htmltext—either a file-like object (which is read
to get the HTML text to parse) or a string (which is the text to parse)—and second,
an optional parser argument.

Which parser BeautifulSoup uses
If you don’t pass a parser argument, BeautifulSoup “sniffs around” to pick the best
parser (but you may get a GuessedAtParserWarning warning in this case). If you
haven’t installed any other parser, BeautifulSoup defaults to html.parser from the
Python standard library; if you have other parsers installed, BeautifulSoup defaults
to one of them (lxml is currently the preferred one). Unless specified otherwise,
the following examples use the default Python html.parser. To get more control
and to avoid the differences between parsers mentioned in the BeautifulSoup
documentation, pass the name of the parser library to use as the second argument as
you instantiate BeautifulSoup.1

For example, if you have installed the third-party package html5lib (to parse
HTML in the same way as all major browsers do, albeit slowly), you may call:

soup = bs4.BeautifulSoup(thedoc, 'html5lib')

When you pass 'xml' as the second argument, you must already have the third-
party package lxml installed. BeautifulSoup then parses the document as XML,
rather than as HTML. In this case, the attribute is_xml of soup is True; otherwise,
soup.is_xml is False. You can also use lxml to parse HTML, if you pass 'lxml'
as the second argument. More generally, you may need to install the appropriate
parser library depending on the second argument you choose to pass to a call to
bs4.BeautifulSoup; BeautifulSoup reminds you with a warning message if you
don’t.

Here’s an example of using different parsers on the same string:

>>> import bs4, lxml, html5lib
>>> sh = bs4.BeautifulSoup('<p>hello', 'html.parser')
>>> sx = bs4.BeautifulSoup('<p>hello', 'xml')
>>> sl = bs4.BeautifulSoup('<p>hello', 'lxml')
>>> s5 = bs4.BeautifulSoup('<p>hello', 'html5lib')
>>> for s in [sh, sx, sl, s5]:
...   print(s, s.is_xml)
...

<p>hello</p> False
<?xml version="1.0" encoding="utf-8"?>
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2 As explained in the BeautifulSoup documentation, which also shows various ways to guide, or
completely override, BeautifulSoup’s guesses about encoding.

<p>hello</p> True
<html><body><p>hello</p></body></html> False
<html><head></head><body><p>hello</p></body></html> False

Differences between parsers in fixing invalid HTML input
In the preceding example, 'html.parser' simply inserts the
end tag </p>, missing from the input. Other parsers vary in
the degree to which they repair invalid HTML input by adding
required tags, such as <html>, <head>, and <body>, as you can
see in the example.

BeautifulSoup, Unicode, and encoding
BeautifulSoup uses Unicode, deducing or guessing the encoding2 when the input
is a bytestring or binary file. For output, the prettify method returns a str
representation of the tree, including tags and their attributes. prettify formats
the string with whitespace and newlines added to indent elements, displaying the
nesting structure. To have it instead return a bytes object (a bytestring) in a given
encoding, pass it the encoding name as an argument. If you don’t want the result to
be “prettified,” use the encode method to get a bytestring, and the decode method to
get a Unicode string. For example:

>>> s = bs4.BeautifulSoup('<p>hello', 'html.parser')
>>> print(s.prettify())

<p>
 hello
</p>

>>> print(s.decode())

<p>hello</p>

>>> print(s.encode())

b'<p>hello</p>'

The Navigable Classes of bs4
An instance b of class BeautifulSoup supplies attributes and methods to “navigate”
the parsed HTML tree, returning instances of navigable classes Tag and Navigable
String, along with subclasses of NavigableString (CData, Comment, Declaration,
Doctype, and ProcessingInstruction, differing only in how they are emitted when
you output them).

Each instance of a navigable class lets you keep navigating—i.e., dig for more infor‐
mation—with pretty much the same set of navigational attributes and search meth‐
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ods as b itself. There are differences: instances of Tag can have HTML attributes
and child nodes in the HTML tree, while instances of NavigableString cannot
(instances of NavigableString always have one text string, a parent Tag, and zero
or more siblings, i.e., other children of the same parent tag).

Navigable Class Terminology
When we say “instances of NavigableString,” we include
instances of any of its subclasses; when we say “instances of
Tag,” we include instances of BeautifulSoup since the latter is
a subclass of Tag. Instances of navigable classes are also known
as the elements or nodes of the tree.

All instances of navigable classes have attribute name: it’s the tag string for Tag
instances, '[document]' for BeautifulSoup instances, and None for instances of
NavigableString.

Instances of Tag let you access their HTML attributes by indexing, or you can get
them all as a dict via the .attrs Python attribute of the instance.

Indexing instances of Tag
When t is an instance of Tag, t['foo'] looks for an HTML attribute named foo
within t’s HTML attributes and returns the string for the foo attribute. When t has
no HTML attribute named foo, t['foo'] raises a KeyError exception; just like on
a dict, call t.get('foo', default=None) to get the value of the default argument
instead of an exception.

A few attributes, such as class, are defined in the HTML standard as being able
to have multiple values (e.g., <body class="foo bar">...</body>). In these cases,
the indexing returns a list of values—for example, soup.body['class'] would
be ['foo', 'bar'] (again, you get a KeyError exception when the attribute isn’t
present at all; use the get method, instead of indexing, to get a default value
instead).

To get a dict that maps attribute names to values (or, in a few cases defined in the
HTML standard, lists of values), use the attribute t.attrs:

>>> s = bs4.BeautifulSoup('<p foo="bar" class="ic">baz')
>>> s.get('foo')
>>> s.p.get('foo')

'bar'

>>> s.p.attrs

{'foo': 'bar', 'class': ['ic']}
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How to Check if a Tag Instance Has a Certain Attribute
To check if a Tag instance t’s HTML attributes include one
named 'foo', don’t use if 'foo' in t:—the in operator
on Tag instances looks among the Tag’s children, not its
attributes. Rather, use if 'foo' in t.attrs: or, better, if
t.has_attr('foo'):.

Getting an actual string
When you have an instance of NavigableString, you often want to access the
actual text string it contains. When you have an instance of Tag, you may want
to access the unique string it contains, or, should it contain more than one, all of
them—perhaps with their text stripped of any whitespace surrounding it. Here’s
how you can best accomplish these tasks.

When you have a NavigableString instance s and you need to stash or pro‐
cess its text somewhere, without further navigation on it, call str(s). Or, use
s.encode(codec='utf8') to get a bytestring, or s.decode() to get a text string (i.e.,
Unicode). These give you the actual string, without references to the BeautifulSoup
tree that would impede garbage collection (s supports all methods of Unicode
strings, so call those directly if they do all that you need).

Given an instance t of Tag containing a single NavigableString instance s,
you can use t.string to fetch s (or, to just get the text you want from s, use
t.string.decode()). t.string only works when t has a single child that’s a Naviga
bleString, or a single child that’s a Tag whose only child is a NavigableString;
otherwise, t.string is None.

As an iterator on all contained (navigable) strings, use t.strings. You can use
''.join(t.strings) to get all the strings concatenated into one, in a single
step. To ignore whitespace around each contained string, use the iterator t.strip
ped_strings (which also skips all-whitespace strings).

Alternatively, call t.get_text(): this returns a single (Unicode) string with all the
text in t’s descendants, in tree order (equivalent to accessing the attribute t.text).
You can optionally pass, as the only positional argument, a string to use as separa‐
tor. The default is the empty string, ''. Pass the named parameter strip=True
to have each string stripped of surrounding whitespace and all-whitespace strings
skipped.

The following examples demonstrate these methods for getting strings from within
tags:

>>> soup = bs4.BeautifulSoup('<p>Plain <b>bold</b></p>')
>>> print(soup.p.string)

None

>>> print(soup.p.b.string)

bold
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>>> print(''.join(soup.strings))

Plain bold

>>> print(soup.get_text())

Plain bold

>>> print(soup.text)

Plain bold

>>> print(soup.get_text(strip=True))

Plainbold

Attribute references on instances of BeautifulSoup and Tag
The simplest, most elegant way to navigate down an HTML tree or subtree in bs4 is
to use Python’s attribute reference syntax (as long as each tag you name is unique, or
you care only about the first tag so named at each level of descent).

Given any instance t of Tag, a construct like t.foo.bar looks for the first tag foo
within t’s descendants and gets a Tag instance ti for it, then looks for the first tag
bar within ti’s descendants and returns a Tag instance for the bar tag.

It’s a concise, elegant way to navigate down the tree, when you know there’s a single
occurrence of a certain tag within a navigable instance’s descendants, or when the
first occurrence of several is all you care about. But beware: if any level of lookup
doesn’t find the tag it’s looking for, the attribute reference’s value is None, and then
any further attribute reference raises AttributeError.

Beware of Typos in Attribute References on Tag Instances
Due to this BeautifulSoup behavior, any typo you make in an
attribute reference on a Tag instance gives a value of None, not
an AttributeError exception—so, be especially careful!

bs4 also offers more general ways to navigate down, up, and sideways along the
tree. In particular, each navigable class instance has attributes that identify a single
“relative” or, in plural form, an iterator over all relatives of that ilk.

contents, children, and descendants
Given an instance t of Tag, you can get a list of all of its children as t.contents,
or an iterator on all children as t.children. For an iterator on all descendants
(children, children of children, and so on), use t.descendants:

>>> soup = bs4.BeautifulSoup('<p>Plain <b>bold</b></p>')
>>> list(t.name for t in soup.p.children)

[None, 'b']
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>>> list(t.name for t in soup.p.descendants)

[None, 'b', None]

The names that are None correspond to the NavigableString nodes; only the first
one of them is a child of the p tag, but both are descendants of that tag.

parent and parents
Given an instance n of any navigable class, its parent node is n.parent:

>>> soup = bs4.BeautifulSoup('<p>Plain <b>bold</b></p>')
>>> soup.b.parent.name

'p'

An iterator on all ancestors, going upwards in the tree, is n.parents. This includes
instances of NavigableString, since they have parents, too. An instance b of Beauti
fulSoup has b.parent None, and b.parents is an empty iterator.

next_sibling, previous_sibling, next_siblings, and previous_siblings
Given an instance n of any navigable class, its sibling node to the immediate left is
n.previous_sibling, and the one to the immediate right is n.next_sibling; either
or both can be None if n has no such sibling. An iterator on all left siblings, going
leftward in the tree, is n.previous_siblings; an iterator on all right siblings, going
rightward in the tree, is n.next_siblings (either or both iterators can be empty).
This includes instances of NavigableString, since they have siblings, too. For an
instance b of BeautifulSoup, b.previous_sibling and b.next_sibling are both
None, and both of its sibling iterators are empty:

>>> soup = bs4.BeautifulSoup('<p>Plain <b>bold</b></p>')
>>> soup.b.previous_sibling, soup.b.next_sibling

('Plain ', None)

next_element, previous_element, next_elements, and previous_elements
Given an instance n of any navigable class, the node parsed just before it is n.previ
ous_element, and the one parsed just after it is n.next_element; either or both
can be None when n is the first or last node parsed, respectively. An iterator on all
previous elements, going backward in the tree, is n.previous_elements; an iterator
on all following elements, going forward in the tree, is n.next_elements (either or
both iterators can be empty). Instances of NavigableString have such attributes,
too. For an instance b of BeautifulSoup, b.previous_element and b.next_element
are both None, and both of its element iterators are empty:

>>> soup = bs4.BeautifulSoup('<p>Plain <b>bold</b></p>')
>>> soup.b.previous_element, soup.b.next_element

('Plain ', 'bold')

630 | Chapter 22: Structured Text: HTML



As shown in the previous example, the b tag has no next_sibling (since it’s the last
child of its parent); however, it does have a next_element (the node parsed just after
it, which in this case is the 'bold' string it contains).

bs4 find… Methods (aka Search Methods)
Each navigable class in bs4 offers several methods whose names start with find,
known as search methods, to locate tree nodes that satisfy specified conditions.

Search methods come in pairs—one method of each pair walks all the relevant parts
of the tree and returns a list of nodes satisfying the conditions, while the other one
stops and returns a single node satisfying all the conditions as soon as it finds it (or
None when it finds no such node). Calling the latter method is therefore like calling
the former one with argument limit=1, then indexing the resulting one-item list to
get its single item, but faster and more elegant.

So, for example, for any Tag instance t and any group of positional and named
arguments represented by ..., the following equivalence always holds:

just_one = t.find(...)
other_way_list = t.find_all(..., limit=1)
other_way = other_way_list[0] if other_way_list else None
assert just_one == other_way

The method pairs are listed in Table 22-2.

Table 22-2. bs4 find... method pairs

find,
find_all

b.find(...),
b.find_all(...)

Searches the descendants of b or, when you pass named argument recur
sive=False (available only for these two methods, not for other search
methods), b’s children only. These methods are not available on Navigable
String instances, since they have no descendants; all other search methods are
available on Tag and NavigableString instances.
Since find_all is frequently needed, bs4 offers an elegant shortcut: calling
a tag is like calling its find_all method. In other words, when b is a Tag,
b(...) is the same as b.find_all(...).
Another shortcut, already mentioned in “Attribute references on instances
of BeautifulSoup and Tag” on page 629, is that b.foo.bar is like
b.find('foo').find('bar').

find_next,
find_all_next

b.find_next(...),
b.find_all_next(...)

Searches the next_elements of b.

find_next_

sibling,
find_next_

siblings

b.find_next_sibling(...),
b.find_next_siblings(...)

Searches the next_siblings of b.
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find_parent,
find_parents

b.find_parent(...),
b.find_parents(...)

Searches the parents of b.

find_previous,
find_all_

previous

b.find_previous(...),
b.find_all_previous(...)

Searches the previous_elements of b.

find_previous_

sibling,
find_previous_

siblings

b.find_previous_sibling(...), b.find_previous_sib
lings(...)

Searches the previous_siblings of b.

Arguments of search methods
Each search method has three optional arguments: name, attrs, and string. name
and string are filters, as described in the following subsection; attrs is a dict, as
described later in this section. In addition, as mentioned in Table 22-2, find and
find_all only (not the other search methods) can optionally be called with the
named argument recursive=False, to limit the search to children, rather than all
descendants.

Any search method returning a list (i.e., one whose name is plural or starts with
find_all) can optionally take the named argument limit: its value, if any, is an
integer, putting an upper bound on the length of the list it returns (when you pass
limit, the returned list result is truncated if necessary).

After these optional arguments, each search method can optionally have any num‐
ber of arbitrary named arguments: the argument name can be any identifier (except
the name of one of the search method’s specific arguments), while the value is a
filter.

Filters     A filter is applied against a target that can be a tag’s name (when passed as
the name argument), a Tag’s string or a NavigableString’s textual content (when
passed as the string argument), or a Tag’s attribute (when passed as the value of a
named argument, or in the attrs argument). Each filter can be:

A Unicode string
The filter succeeds when the string exactly equals the target.

A bytestring
It’s decoded to Unicode using utf-8, and the filter succeeds when the resulting
Unicode string exactly equals the target.

A regular expression object (as produced by re.compile, covered in “Regular Expres‐
sions and the re Module” on page 305)

The filter succeeds when the search method of the RE, called with the target as
the argument, succeeds.
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A list of strings
The filter succeeds if any of the strings exactly equals the target (if any of the
strings are bytestrings, they’re decoded to Unicode using utf-8).

A function object
The filter succeeds when the function, called with the Tag or NavigableString
instance as the argument, returns True.

True

The filter always succeeds.

As a synonym of “the filter succeeds,” we also say “the target matches the filter.”

Each search method finds all relevant nodes that match all of its filters (that is, it
implicitly performs a logical and operation on its filters on each candidate node).
(Don’t confuse this logic with that of a specific filter having a list as an argument
value. That one filter matches when any of the items in the list do; that is, the
filter implicitly performs a logical or operation on the items of the list that is its
argument value.)

name     To look for Tags whose name matches a filter, pass the filter as the first
positional argument to the search method, or pass it as name=filter:

# return all instances of Tag 'b' in the document
soup.find_all('b') # or soup.find_all(name='b')

# return all instances of Tags 'b' and 'bah' in the document
soup.find_all(['b', 'bah'])

# return all instances of Tags starting with 'b' in the document
soup.find_all(re.compile(r'^b'))

# return all instances of Tags including string 'bah' in the document
soup.find_all(re.compile(r'bah'))

# return all instances of Tags whose parent's name is 'foo'
def child_of_foo(tag):
    return tag.parent.name == 'foo'

soup.find_all(child_of_foo)

string     To look for Tag nodes whose .string’s text matches a filter, or Navigable
String nodes whose text matches a filter, pass the filter as string=filter:

# return all instances of NavigableString whose text is 'foo'
soup.find_all(string='foo')

# return all instances of Tag 'b' whose .string's text is 'foo'
soup.find_all('b', string='foo')
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attrs     To look for Tag nodes that have attributes whose values match filters, use a
dict d with attribute names as keys, and filters as the corresponding values. Then,
pass d as the second positional argument to the search method, or pass attrs=d.

As a special case, you can use, as a value in d, None instead of a filter; this matches
nodes that lack the corresponding attribute.

As a separate special case, if the value f of attrs is not a dict, but a filter, that is
equivalent to having attrs={'class': f}. (This convenient shortcut helps because
looking for tags with a certain CSS class is a frequent task.)

You cannot apply both special cases at once: to search for tags without any CSS
class, you must explicitly pass attrs={'class': None} (i.e., use the first special case,
but not at the same time as the second one):

# return all instances of Tag 'b' w/an attribute 'foo' and no 'bar'
soup.find_all('b', {'foo': True, 'bar': None})

Matching Tags with Multiple CSS Classes
Unlike most attributes, a tag’s 'class' attribute can have mul‐
tiple values. These are shown in HTML as a space-separated
string (e.g., '<p class='foo bar baz'>...'), and in bs4
as a list of strings (e.g., t['class'] being ['foo', 'bar',
'baz']).
When you filter by CSS class in any search method, the filter
matches a tag if it matches any of the multiple CSS classes of
such a tag.
To match tags by multiple CSS classes, you can write a custom
function and pass it as the filter to the search method; or, if
you don’t need other added functionality of search methods,
you can eschew search methods and instead use the method
t.select, covered in the following section, and go with the
syntax of CSS selectors.

Other named arguments     Named arguments, beyond those whose names are
known to the search method, are taken to augment the constraints, if any, specified
in attrs. For example, calling a search method with foo=bar is like calling it with
attrs={'foo': bar}.

bs4 CSS Selectors
bs4 tags supply the methods select and select_one, roughly equivalent to
find_all and find but accepting as the single argument a string that is a CSS
selector and returning, respectively, the list of Tag nodes satisfying that selector or
the first such Tag node. For example:
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def foo_child_of_bar(t):
    return t.name=='foo' and t.parent and t.parent.name=='bar'

# return tags with name 'foo' children of tags with name 'bar'
soup.find_all(foo_child_of_bar)

# equivalent to using find_all(), with no custom filter function needed
soup.select('bar > foo')

bs4 supports only a subset of the rich CSS selector functionality, and we do not
cover CSS selectors further in this book. (For complete coverage of CSS, we recom‐
mend O’Reilly’s CSS: The Definitive Guide, by Eric Meyer and Estelle Weyl.) In
most cases, the search methods covered in the previous section are better choices;
however, in a few special cases, calling select can save you the (small) trouble of
writing a custom filter function.

An HTML Parsing Example with BeautifulSoup
The following example uses bs4 to perform a typical task: fetch a page from the web,
parse it, and output the HTTP hyperlinks in the page:

import urllib.request, urllib.parse, bs4

f = urllib.request.urlopen('http://www.python.org')
b = bs4.BeautifulSoup(f)

seen = set()
for anchor in b('a'):
    url = anchor.get('href')
    if url is None or url in seen:
        continue
    seen.add(url)
    pieces = urllib.parse.urlparse(url)
    if pieces[0].startswith('http'):
        print(urllib.parse.urlunparse(pieces))

We first call the instance of class bs4.BeautifulSoup (equivalent to calling its
find_all method) to obtain all instances of a certain tag (here, tag '<a>'), then the
get method of instances of the tag in question to obtain the value of an attribute
(here, 'href'), or None when that attribute is missing.

Generating HTML
Python does not come with tools specifically meant to generate HTML, nor with
ones that let you embed Python code directly within HTML pages. Development
and maintenance are eased by separating logic and presentation issues through
templating, covered in “Templating” on page 638. An alternative is to use bs4 to
create HTML documents in your Python code by gradually altering very minimal
initial documents. Since these alterations rely on bs4 parsing some HTML, using
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different parsers affects the output, as mentioned in “Which parser BeautifulSoup
uses” on page 625.

Editing and Creating HTML with bs4
You have various options for editing an instance t of Tag. You can alter the tag
name by assigning to t.name, and you can alter t’s attributes by treating t as a
mapping: assign to an indexing to add or change an attribute, or delete the indexing
to remove an attribute (for example, del t['foo'] removes the attribute foo).
If you assign some str to t.string, all previous t.contents (Tags and/or strings
—the whole subtree of t’s descendants) are discarded and replaced with a new
NavigableString instance with that str as its textual content.

Given an instance s of NavigableString, you can replace its textual content: calling
s.replace_with('other') replaces s’s text with 'other'.

Building and adding new nodes
Altering existing nodes is important, but creating new ones and adding them to the
tree is crucial for building an HTML document from scratch.

To create a new NavigableString instance, call the class with the text content as the
single argument:

s = bs4.NavigableString(' some text ')

To create a new Tag instance, call the new_tag method of a BeautifulSoup instance,
with the tag name as the single positional argument and (optionally) named argu‐
ments for attributes:

>>> soup = bs4.BeautifulSoup()
>>> t = soup.new_tag('foo', bar='baz')
>>> print(t)

<foo bar="baz"></foo>

To add a node to the children of a Tag, use the Tag’s append method. This adds the
node after any existing children:

>>> t.append(s)
>>> print(t)

<foo bar="baz"> some text </foo>

If you want the new node to go elsewhere than at the end, at a certain index among
t’s children, call t.insert(n, s) to put s at index n in t.contents (t.append and
t.insert work as if t is a list of its children).

If you have a navigable element b and want to add a new node x as b’s previous_sib
ling, call b.insert_before(x). If instead you want x to become b’s next_sibling,
call b.insert_after(x).
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If you want to wrap a new parent node t around b, call b.wrap(t) (which also
returns the newly wrapped tag). For example:

>>> print(t.string.wrap(soup.new_tag('moo', zip='zaap')))

<moo zip="zaap"> some text </moo>

>>> print(t)

<foo bar="baz"><moo zip="zaap"> some text </moo></foo>

Replacing and removing nodes
You can call t.replace_with on any tag t: the call replaces t, and all its previous
contents, with the argument, and returns t with its original contents. For example:

>>> soup = bs4.BeautifulSoup(
...        '<p>first <b>second</b> <i>third</i></p>', 'lxml')
>>> i = soup.i.replace_with('last')
>>> soup.b.append(i)
>>> print(soup)

<html><body><p>first <b>second<i>third</i></b> last</p></body></html>

You can call t.unwrap on any tag t: the call replaces t with its contents, and returns
t “emptied” (that is, without contents). For example:

>>> empty_i = soup.i.unwrap()
>>> print(soup.b.wrap(empty_i))

<i><b>secondthird</b></i>

>>> print(soup)

<html><body><p>first <i><b>secondthird</b></i> last</p></body></html>

t.clear removes t’s contents, destroys them, and leaves t empty (but still in its
original place in the tree). t.decompose removes and destroys both t itself, and its
contents:

>>> # remove everything between <i> and </i> but leave tags
>>> soup.i.clear()
>>> print(soup)

<html><body><p>first <i></i> last</p></body></html>

>>> # remove everything between <p> and </p> incl. tags
>>> soup.p.decompose()
>>> print(soup)

<html><body></body></html>

>>> # remove <body> and </body>
>>> soup.body.decompose()
>>> print(soup)

<html></html>
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Lastly, t.extract extracts and returns t and its contents, but does not destroy
anything.

Building HTML with bs4
Here’s an example of how to use bs4’s methods to generate HTML. Specifically, the
following function takes a sequence of “rows” (sequences) and returns a string that’s
an HTML table to display their values:

def mktable_with_bs4(seq_of_rows):
    tabsoup = bs4.BeautifulSoup('<table>')
    tab = tabsoup.table
    for row in seq_of_rows:
        tr = tabsoup.new_tag('tr')
        tab.append(tr)
        for item in row:
            td = tabsoup.new_tag('td')
            tr.append(td)
            td.string = str(item)
    return tab

Here is an example using the function we just defined:

>>> example = (
...     ('foo', 'g>h', 'g&h'),
...     ('zip', 'zap', 'zop'),
... )
>>> print(mktable_with_bs4(example))

<table><tr><td>foo</td><td>g&gt;h</td><td>g&amp;h</td></tr>
<tr><td>zip</td><td>zap</td><td>zop</td></tr></table>

Note that bs4 automatically converts markup characters such as <, >, and & to their
corresponding HTML entities; for example, 'g>h' renders as 'g&gt;h'.

Templating
To generate HTML, the best approach is often templating. You start with a template
—a text string (often read from a file, database, etc.) that is almost valid HTML, but
includes markers, known as placeholders, where dynamically generated text must be
inserted—and your program generates the needed text and substitutes it into the
template.

In the simplest case, you can use markers of the form {name}. Set the dynamically
generated text as the value for key 'name' in some dictionary d. The Python string
formatting method .format (covered in “String Formatting” on page 287) lets you
do the rest: when t is the template string, t.format(d) is a copy of the template
with all values properly substituted.

In general, beyond substituting placeholders, you’ll also want to use conditionals,
perform loops, and deal with other advanced formatting and presentation tasks; in
the spirit of separating “business logic” from “presentation issues,” you’d prefer it if
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all of the latter were part of your templating. This is where dedicated third-party
templating packages come in. There are many of them, but all of this book’s authors,
having used and authored some in the past, currently prefer jinja2, covered next.

The jinja2 Package
For serious templating tasks, we recommend jinja2 (available on PyPI, like other
third-party Python packages, so, easily installable with pip install jinja2).

The jinja2 docs are excellent and thorough, covering the templating language itself
(conceptually modeled on Python, but with many differences to support embedding
it in HTML, and the peculiar needs specific to presentation issues); the API your
Python code uses to connect to jinja2, and expand or extend it if necessary; as well
as other issues, from installation to internationalization, from sandboxing code to
porting from other templating engines—not to mention, precious tips and tricks.

In this section, we cover only a tiny subset of jinja2’s power, just what you need to
get started after installing it. We earnestly recommend studying jinja2’s docs to get
the huge amount of extra, useful information they effectively convey.

The jinja2.Environment class
When you use jinja2, there’s always an Environment instance involved—in a
few cases you could let it default to a generic “shared environment,” but that’s
not recommended. Only in very advanced usage, when you’re getting templates
from different sources (or with different templating language syntax), would you
ever define multiple environments—usually, you instantiate a single Environment
instance env, good for all the templates you need to render.

You can customize env in many ways as you build it, by passing named arguments
to its constructor (including altering crucial aspects of templating language syntax,
such as which delimiters start and end blocks, variables, comments, etc.). The one
named argument you’ll almost always pass in real-life use is loader (the others are
rarely set).

An environment’s loader specifies where to load templates from, on request—usu‐
ally some directory in a filesystem, or perhaps some database (you’d have to code
a custom subclass of jinja2.Loader for the latter purpose), but there are other
possibilities. You need a loader to let templates enjoy some of jinja2’s most
powerful features, such as template inheritance.

You can equip env, as you instantiate it, with custom filters, tests, extensions, and so
on (each of those can also be added later).

In the examples presented later, we assume env was instantiated with nothing
but loader=jinja2.FileSystemLoader('/path/to/templates'), and not further
enriched—in fact, for simplicity, we won’t even make use of the loader argument.
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env.get_template(name) fetches, compiles, and returns an instance of jinja2.Tem
plate based on what env.loader(name) returns. In the examples at the end of this
section, for simplicity, we’ll instead use the rarely warranted env.from_string(s) to
build an instance of jinja2.Template from string s.

The jinja2.Template class
An instance t of jinja2.Template has many attributes and methods, but the one
you’ll be using almost exclusively in real life is:

render t.render(...context...)

The context argument(s) are the same you might pass to a dict constructor—a
mapping instance, and/or named arguments enriching and potentially overriding the
mapping’s key-to-value connections.
t.render(context) returns a (Unicode) string resulting from the context
arguments applied to the template t.

Building HTML with jinja2
Here’s an example of how to use a jinja2 template to generate HTML. Specifically,
just like in “Building HTML with bs4” on page 638, the following function takes a
sequence of “rows” (sequences) and returns an HTML table to display their values:

TABLE_TEMPLATE = '''\
<table>
{% for s in s_of_s %}
  <tr>
  {% for item in s %}
    <td>{{item}}</td>
  {% endfor %}
  </tr>
{% endfor %}
</table>'''
def mktable_with_jinja2(s_of_s):
    env = jinja2.Environment(
        trim_blocks=True,
        lstrip_blocks=True,
        autoescape=True)
    t = env.from_string(TABLE_TEMPLATE)
    return t.render(s_of_s=s_of_s)

The function builds the environment with option autoescape=True, to automati‐
cally “escape” strings containing markup characters such as <, >, and &; for example,
with autoescape=True, 'g>h' renders as 'g&gt;h'.

The options trim_blocks=True and lstrip_blocks=True are purely cosmetic, just
to ensure that both the template string and the rendered HTML string can be nicely
formatted; of course, when a browser renders HTML, it does not matter whether
the HTML text itself is nicely formatted.
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Normally, you would always build the environment with the loader argument and
have it load templates from files or other storage with method calls such as t
= env.get_template(template_name). In this example, just to present everything
in one place, we omit the loader and build the template from a string by calling
the method env.from_string instead. Note that jinja2 is not HTML- or XML-
specific, so its use alone does not guarantee the validity of the generated content,
which you should carefully check if standards conformance is a requirement.

The example uses only the two most common features out of the many dozens that
the jinja2 templating language offers: loops (that is, blocks enclosed in {% for ...
%} and {% endfor %}) and parameter substitution (inline expressions enclosed in
{{ and }}).

Here is an example use of the function we just defined:

>>> example = (
...   ('foo', 'g>h', 'g&h'),
...   ('zip', 'zap', 'zop'),
... )
>>> print(mktable_with_jinja2(example))

<table>
  <tr>
    <td>foo</td>
    <td>g&gt;h</td>
    <td>g&amp;h</td>
  </tr>
  <tr>
    <td>zip</td>
    <td>zap</td>
    <td>zop</td>
  </tr>
</table>
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1 Alex is far too modest to mention it, but from around 1995 to 2005 both he and Fredrik were,
along with Tim Peters, the Python bots. Known as such for their encyclopedic and detailed
knowledge of the language, the effbot, the martellibot, and the timbot have created software and
documentation that are of immense value to millions of people.

23
Structured Text: XML

XML, the eXtensible Markup Language, is a widely used data interchange format. On
top of XML itself, the XML community (in good part within the World Wide Web
Consortium, or W3C) has standardized many other technologies, such as schema
languages, namespaces, XPath, XLink, XPointer, and XSLT.

Industry consortia have additionally defined industry-specific markup languages on
top of XML for data exchange among applications in their respective fields. XML,
XML-based markup languages, and other XML-related technologies are often used
for inter-application, cross-language, cross-platform data interchange in specific
fields.

Python’s standard library, for historical reasons, has multiple modules supporting
XML under the xml package, with overlapping functionality; this book does not
cover them all, but interested readers can find details in the online documentation.

This book (and, specifically, this chapter) covers only the most Pythonic approach
to XML processing: ElementTree, created by the deeply missed Fredrik Lundh, best
known as “the effbot.”1 Its elegance, speed, generality, multiple implementations,
and Pythonic architecture make this the package of choice for Python XML applica‐
tions. For tutorials and complete details on the xml.etree.ElementTree module
beyond what this chapter provides, see the online docs. This book takes for granted
some elementary knowledge of XML itself; if you need to learn more about XML,
we recommend XML in a Nutshell by Elliotte Rusty Harold and W. Scott Means
(O’Reilly).
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Parsing XML from untrusted sources puts your application at risk of many possi‐
ble attacks. We do not cover this issue specifically, but the online documentation
recommends third-party modules to help safeguard your application if you do
have to parse XML from sources you can’t fully trust. In particular, if you need
an ElementTree implementation with safeguards against parsing untrusted sources,
consider defusedxml.ElementTree.

ElementTree
Python and third-party add-ons offer several alternative implementations of the Ele
mentTree functionality; the one you can always rely on in the standard library is the
module xml.etree.ElementTree. Just importing xml.etree.ElementTree gets you
the fastest implementation available in your Python installation’s standard library.
The third-party package defusedxml, mentioned in this chapter’s introduction,
offers slightly slower but safer implementations if you ever need to parse XML from
untrusted sources; another third-party package, lxml, gets you faster performance,
and some extra functionality, via lxml.etree.

Traditionally, you get whatever available implementation of ElementTree you prefer
using a from...import...as statement such as this:

from xml.etree import ElementTree as et

Or this, which tries to import lxml and, if unable, falls back to the version provided
in the standard library:

try:
    from lxml import etree as et
except ImportError:
    from xml.etree import ElementTree as et

Once you succeed in importing an implementation, use it as et (some prefer the
uppercase variant, ET) in the rest of your code.

ElementTree supplies one fundamental class representing a node within the tree that
naturally maps an XML document: the class Element. ElementTree also supplies
other important classes, chiefly the one representing the whole tree, with methods
for input and output and many convenience classes equivalent to ones on its
Element root—that’s the class ElementTree. In addition, the ElementTree module
supplies several utility functions, and auxiliary classes of lesser importance.

The Element Class
The Element class represents a node in the tree that maps an XML document,
and it’s the core of the whole ElementTree ecosystem. Each element is a bit like a
mapping, with attributes that map string keys to string values, and also a bit like
a sequence, with children that are other elements (sometimes referred to as the
element’s “subelements”). In addition, each element offers a few extra attributes and
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methods. Each Element instance e has four data attributes or properties, detailed in
Table 23-1.

Table 23-1. Attributes of an Element instance e

attrib A dict containing all of the XML node’s attributes, with strings, the attributes’ names, as its keys
(and, usually, strings as corresponding values as well). For example, parsing the XML fragment <a
x="y">b</a>c, you get an e whose e.attrib is {'x': 'y'}.

Avoid Accessing attrib on Element Instances
It’s normally best to avoid accessing e.attrib when possible, because the
implementation might need to build it on the fly when you access it. e itself
offers some typical mapping methods (listed in Table 23-2) that you might
otherwise want to call on e.attrib; going through e’s own methods allows
an implementation to optimize things for you, compared to the performance
you’d get via the actual dict e.attrib.

tag The XML tag of the node: a string, sometimes also known as the element’s type. For example,
parsing the XML fragment <a x="y">b</a>c, you get an e with e.tag set to 'a'.

tail Arbitrary data (a string) immediately “following” the element. For example, parsing the XML
fragment <a x="y">b</a>c, you get an e with e.tail set to 'c'.

text Arbitrary data (a string) directly “within” the element. For example, parsing the XML fragment <a
x="y">b</a>c, you get an e with e.text set to 'b'.

e has some methods that are mapping-like and avoid the need to explicitly ask for
the e.attrib dict. These are listed in Table 23-2.

Table 23-2. Mapping-like methods of an Element instance e

clear e.clear()

Leaves e “empty,” except for its tag, removing all attributes and children, and setting text and
tail to None.

get e.get(key, default=None)

Like e.attrib.get(key, default), but potentially much faster. You cannot use e[key],
since indexing on e is used to access children, not attributes.

items e.items()

Returns the list of (name, value) tuples for all attributes, in arbitrary order.

keys e.keys()

Returns the list of all attribute names, in arbitrary order.

set e.set(key, value)
Sets the value of the attribute named key to value.
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The other methods of e (including methods for indexing with the e[i] syntax and
for getting the length, as in len(e)) deal with all of e’s children as a sequence, or in
some cases—indicated in the rest of this section—with all descendants (elements in
the subtree rooted at e, also known as subelements of e).

Don’t Rely on Implicit bool Conversion of an Element
In all versions up through Python 3.11, an Element instance
e evaluates as false if e has no children, following the normal
rule for Python containers’ implicit bool conversion. How‐
ever, it is documented that this behavior may change in some
future version of Python. For future compatibility, if you want
to check whether e has no children, explicitly check if len(e)
== 0: instead of using the normal Python idiom if not e:.

The named methods of e dealing with children or descendants are listed in
Table 23-3 (we do not cover XPath in this book: see the online docs for informa‐
tion on that topic). Many of the following methods take an optional argument
namespaces, defaulting to None. When present, namespaces is a mapping with
XML namespace prefixes as keys and corresponding XML namespace full names as
values.

Table 23-3. Methods of an Element instance e dealing with children or
descendants

append e.append(se)

Adds subelement se (which must be an Element) at the end of e’s children.

extend e.extend(ses)

Adds each item of iterable ses (every item must be an Element) at the end of e’s
children.

find e.find(match, namespaces=None)
Returns the first descendant matching match, which may be a tag name or an XPath
expression within the subset supported by the current implementation of ElementTree.
Returns None if no descendant matches match.

findall e.findall(match, namespaces=None)

Returns the list of all descendants matching match, which may be a tag name or an XPath
expression within the subset supported by the current implementation of ElementTree.
Returns [] if no descendants match match.

findtext e.findtext(match, default=None, namespaces=None)

Returns the text of the first descendant matching match, which may be a tag name
or an XPath expression within the subset supported by the current implementation of
ElementTree. The result may be an empty string, '', if the first descendant matching
match has no text. Returns default if no descendant matches match.

insert e.insert(index, se)
Adds subelement se (which must be an Element) at index index within the sequence
of e’s children.
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iter e.iter(tag='*')

Returns an iterator walking in depth-first order over all of e’s descendants. When tag
is not '*', only yields subelements whose tag equals tag. Don’t modify the subtree
rooted at e while you’re looping on e.iter.

iterfind e.iterfind(match, namespaces=None)

Returns an iterator over all descendants, in depth-first order, matching match, which
may be a tag name or an XPath expression within the subset supported by the current
implementation of ElementTree. The resulting iterator is empty when no descendants
match match.

itertext e.itertext(match, namespaces=None)

Returns an iterator over the text (not the tail) attribute of all descendants, in depth-
first order, matching match, which may be a tag name or an XPath expression within the
subset supported by the current implementation of ElementTree. The resulting iterator
is empty when no descendants match match.

remove e.remove(se)

Removes the descendant that is element se (as covered in Table 3-4).

The ElementTree Class
The ElementTree class represents a tree that maps an XML document. The core
added value of an instance et of ElementTree is to have methods for wholesale
parsing (input) and writing (output) of a whole tree. These methods are described
in Table 23-4.

Table 23-4. ElementTree instance parsing and writing methods

parse et.parse(source, parser=None)

source can be a file open for reading, or the name of a file to open and read (to parse a
string, wrap it in io.StringIO, covered in “In-Memory Files: io.StringIO and io.BytesIO” on page
334), containing XML text. et.parse parses that text, builds its tree of Elements as the new
content of et (discarding the previous content of et, if any), and returns the root element of
the tree. parser is an optional parser instance; by default, et.parse uses an instance of class
XMLParser supplied by the ElementTree module (this book does not cover XMLParser; see
the online docs).

write et.write(file, encoding='us-ascii', xml_declaration=None,

default_namespace=None, method='xml', short_empty_elements=True)

file can be a file open for writing, or the name of a file to open and write (to write into a
string, pass as file an instance of io.StringIO, covered in “In-Memory Files: io.StringIO and
io.BytesIO” on page 334). et.write writes into that file the text representing the XML document
for the tree that is the content of et.
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write

(cont.)
encoding should be spelled according to the standard, not by using common “nicknames”—for
example, 'iso-8859-1', not 'latin-1', even though Python itself accepts both spellings
for this encoding, and similarly 'utf-8', with the dash, not 'utf8', without it. The best
choice often is to pass encoding as 'unicode'. This outputs text (Unicode) strings, when
file.write accepts such strings; otherwise, file.write must accept bytestrings, and that will
be the type of strings that et.write outputs, using XML character references for characters not
in the encoding—for example, with the default US-ASCII encoding, “e with an acute accent,” é, is
output as &#233;.
You can pass xml_declaration as False to not have the declaration in the resulting text, or as
True to have it; the default is to have the declaration in the result only when encoding is not one
of 'us-ascii', 'utf-8', or 'unicode'.
You can optionally pass default_namespace to set the default namespace for xmlns
constructs.
You can pass method as 'text' to output only the text and tail of each node (no tags). You
can pass method as 'html' to output the document in HTML format (which, for example, omits
end tags not needed in HTML, such as </br>). The default is 'xml', to output in XML format.
You can optionally (only by name, not positionally) pass short_empty_elements as False
to always use explicit start and end tags, even for elements that have no text or subelements; the
default is to use the XML short form for such empty elements. For example, an empty element with
tag a is output as <a/> by default, or as <a></a> if you pass short_empty_elements as
False.

In addition, an instance et of ElementTree supplies the method getroot (to return
the root of the tree) and the convenience methods find, findall, findtext, iter,
and iterfind, each exactly equivalent to calling the same method on the root of the
tree—that is, on the result of et.getroot.

Functions in the ElementTree Module
The ElementTree module also supplies several functions, described in Table 23-5.

Table 23-5. ElementTree functions

Comment Comment(text=None)

Returns an Element that, once inserted as a node in an ElementTree, will be output
as an XML comment with the given text string enclosed between '<!--' and '-->'.
XMLParser skips XML comments in any document it parses, so this function is the only
way to insert comment nodes.

dump dump(e)

Writes e, which can be an Element or an ElementTree, as XML to sys.stdout.
This function is meant only for debugging purposes.

fromstring fromstring(text, parser=None)

Parses XML from the text string and returns an Element, just like the XML function just
covered.
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fromstring

list

fromstringlist(sequence, parser=None)

Just like fromstring(''.join(sequence)), but can be a bit faster by avoiding
the join.

iselement iselement(e)

Returns True if e is an Element; otherwise, returns False.

iterparse iterparse(source, events=['end'], parser=None)

Parses an XML document and incrementally builds the corresponding ElementTree.
source can be a file open for reading, or the name of a file to open and read,
containing an XML document as text. iterparse returns an iterator yielding two-item
tuples (event, element), where event is one of the strings listed in the argument
events (each string must be 'start', 'end', 'start-ns', or 'end-ns'), as
the parsing progresses. element is an Element for events 'start' and 'end',
None for event 'end-ns', and a tuple of two strings (namespace_prefix,
namespace_uri) for event 'start-ns'. parser is an optional parser instance;
by default, iterparse uses an instance of the class XMLParser supplied by the
ElementTree module (see the online docs for details on the XMLParser class).
The purpose of iterparse is to let you iteratively parse a large XML document, without
holding all of the resulting ElementTree in memory at once, whenever feasible. We
cover iterparse in more detail in “Parsing XML Iteratively” on page 652.

parse parse(source, parser=None)

Just like the parse method of ElementTree, covered in Table 23-4, except that it
returns the ElementTree instance it creates.

Processing

Instruction

ProcessingInstruction(target, text=None)

Returns an Element that, once inserted as a node in an ElementTree, will be
output as an XML processing instruction with the given target and text strings
enclosed between '<?' and '?>'. XMLParser skips XML processing instructions in
any document it parses, so this function is the only way to insert processing instruction
nodes.

register_

namespace

register_namespace(prefix, uri)
Registers the string prefix as the namespace prefix for the string uri; elements in the
namespace get serialized with this prefix.

SubElement SubElement(parent, tag, attrib={}, **extra)
Creates an Element with the given tag, attributes from dict attrib, and others
passed as named arguments in extra, and appends it as the rightmost child of
Element parent; returns the Element it has created.

tostring tostring(e, encoding='us-ascii, method='xml',

short_empty_elements=True)

Returns a string with the XML representation of the subtree rooted at Element e.
Arguments have the same meaning as for the write method of ElementTree,
covered in Table 23-4.

tostring

list

tostringlist(e, encoding='us-ascii', method='xml',
short_empty_elements=True)

Returns a list of strings with the XML representation of the subtree rooted at Element
e. Arguments have the same meaning as for the write method of ElementTree,
covered in Table 23-4.
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XML XML(text, parser=None)

Parses XML from the text string and returns an Element. parser is an optional
parser instance; by default, XML uses an instance of the class XMLParser supplied by
the ElementTree module (this book does not cover the XMLParser class; see the
online docs for details).

XMLID XMLID(text, parser=None)

Parses XML from the text string and returns a tuple with two items: an Element and
a dict mapping id attributes to the only Element having each (XML forbids duplicate
ids). parser is an optional parser instance; by default, XMLID uses an instance of the
class XMLParser supplied by the ElementTree module (this book does not cover the
XMLParser class; see the online docs for details).

The ElementTree module also supplies the classes QName, TreeBuilder, and
XMLParser, which we do not cover in this book, and the class XMLPullParser,
covered in “Parsing XML Iteratively” on page 652.

Parsing XML with ElementTree.parse
In everyday use, the most common way to make an ElementTree instance is by
parsing it from a file or file-like object, usually with the module function parse or
with the method parse of instances of the class ElementTree.

For the examples in the remainder of this chapter, we use the simple XML file found
at http://www.w3schools.com/xml/simple.xml; its root tag is 'breakfast_menu', and
the root’s children are elements with the tag 'food'. Each 'food' element has a
child with the tag 'name', whose text is the food’s name, and a child with the tag
'calories', whose text is the string representation of the integer number of calories
in a portion of that food. In other words, a simplified representation of that XML
file’s content of interest to the examples is:

<breakfast_menu>
  <food>
    <name>Belgian Waffles</name>
    <calories>650</calories>
  </food>
  <food>
    <name>Strawberry Belgian Waffles</name>
    <calories>900</calories>
  </food>
  <food>
    <name>Berry-Berry Belgian Waffles</name>
    <calories>900</calories>
  </food>
  <food>
    <name>French Toast</name>
    <calories>600</calories>
  </food>
  <food>
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    <name>Homestyle Breakfast</name>
    <calories>950</calories>
  </food>
</breakfast_menu>

Since the XML document lives at a WWW URL, you start by obtaining a file-
like object with that content, and passing it to parse; the simplest way uses the
urllib.request module:

from urllib import request
from xml.etree import ElementTree as et
content = request.urlopen('http://www.w3schools.com/xml/simple.xml')
tree = et.parse(content)

Selecting Elements from an ElementTree
Let’s say that we want to print on standard output the calories and names of the
various foods, in order of increasing calories, with ties broken alphabetically. Here’s
the code for this task:

def bycal_and_name(e):
    return int(e.find('calories').text), e.find('name').text

for e in sorted(tree.findall('food'), key=bycal_and_name):
    print(f"{e.find('calories').text} {e.find('name').text}")

When run, this prints:

600 French Toast
650 Belgian Waffles
900 Berry-Berry Belgian Waffles
900 Strawberry Belgian Waffles
950 Homestyle Breakfast

Editing an ElementTree
Once an ElementTree is built (be that via parsing, or otherwise), you can “edit”
it—inserting, deleting, and/or altering nodes (elements)—via various methods of
the ElementTree and Element classes, and module functions. For example, suppose
our program is reliably informed that a new food has been added to the menu—
buttered toast, two slices of white bread toasted and buttered, 180 calories—while
any food whose name contains “berry,” case insensitive, has been removed. The
“editing the tree” part for these specs can be coded as follows:

# add Buttered Toast to the menu
menu = tree.getroot()
toast = et.SubElement(menu, 'food')
tcals = et.SubElement(toast, 'calories')
tcals.text = '180'
tname = et.SubElement(toast, 'name')
tname.text = 'Buttered Toast'
# remove anything related to 'berry' from the menu
for e in menu.findall('food'):
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    name = e.find('name').text
    if 'berry' in name.lower():
        menu.remove(e)

Once we insert these “editing” steps between the code parsing the tree and the code
selectively printing from it, the latter prints:

180 Buttered Toast
600 French Toast
650 Belgian Waffles
950 Homestyle Breakfast

The ease of editing an ElementTree can sometimes be a crucial consideration,
making it worth your while to keep it all in memory.

Building an ElementTree from Scratch
Sometimes, your task doesn’t start from an existing XML document: rather, you
need to make an XML document from data your code gets from a different source,
such as a CSV file or some kind of database.

The code for such tasks is similar to the code we showed for editing an existing
ElementTree—just add a little snippet to build an initially empty tree.

For example, suppose you have a CSV file, menu.csv, whose two comma-separated
columns are the calories and names of various foods, one food per row. Your task
is to build an XML file, menu.xml, similar to the one we parsed in the previous
examples. Here’s one way you could do that:

import csv
from xml.etree import ElementTree as et

menu = et.Element('menu')
tree = et.ElementTree(menu)
with open('menu.csv') as f:
    r = csv.reader(f)
    for calories, namestr in r:
        food = et.SubElement(menu, 'food')
        cals = et.SubElement(food, 'calories')
        cals.text = calories
        name = et.SubElement(food, 'name')
        name.text = namestr

tree.write('menu.xml')

Parsing XML Iteratively
For tasks focused on selecting elements from an existing XML document, some‐
times you don’t need to build the whole ElementTree in memory—a consideration
that’s particularly important if the XML document is very large (not the case for the
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tiny example document we’ve been dealing with, but stretch your imagination and
visualize a similar menu-focused document that lists millions of different foods).

Suppose we have such a large document, and we want to print on standard output
the calories and names of the 10 lowest-calorie foods, in order of increasing calories,
with ties broken alphabetically. Our menu.xml file, which for simplicity’s sake we’ll
assume is now a local file, lists millions of foods, so we’d rather not keep it all in
memory (obviously, we don’t need complete access to all of it at once).

The following code represents a naive attempt to parse without building the whole
structure in memory:

import heapq
from xml.etree import ElementTree as et

def cals_and_name():
    # generator for (calories, name) pairs
    for _, elem in et.iterparse('menu.xml'):
        if elem.tag != 'food':
            continue
        # just finished parsing a food, get calories and name
        cals = int(elem.find('calories').text)
        name = elem.find('name').text
        yield (cals, name)

lowest10 = heapq.nsmallest(10, cals_and_name())

for cals, name in lowest10:
    print(cals, name)

This approach does indeed work, but unfortunately it consumes just about as much
memory as an approach based on a full et.parse would! This is because iterparse
builds up a whole ElementTree in memory, even though it only communicates back
events such as (and by default only) 'end', meaning “I just finished parsing this
element.”

To actually save memory, we can at least toss all the contents of each element
as soon as we’re done processing it—that is, right after the yield, we can add
elem.clear() to make the just-processed element empty.

This approach would indeed save some memory—but not all of it, because the tree’s
root would still end up with a huge list of empty child nodes. To be really frugal in
memory consumption, we need to get 'start' events as well, so we can get hold
of the root of the ElementTree being built and remove each element from it as it’s
used, rather than just clearing the element. That is, we want to change the generator
into:

def cals_and_name():
    # memory-thrifty generator for (calories, name) pairs
    root = None
    for event, elem in et.iterparse('menu.xml', ['start', 'end']):
        if event == 'start':
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            if root is None:
                root = elem
            continue
        if elem.tag != 'food':
            continue
        # just finished parsing a food, get calories and name
        cals = int(elem.find('calories').text)
        name = elem.find('name').text
        yield (cals, name)
        root.remove(elem)

This approach saves as much memory as feasible, and still gets the task done!

Parsing XML Within an Asynchronous Loop
While iterparse, used correctly, can save memory, it’s still
not good enough to use within an asynchronous loop. That’s
because iterparse makes blocking read calls to the file object
passed as its first argument: such blocking calls are a no-no in
async processing.

ElementTree offers the class XMLPullParser to help with this
issue; see the online docs for the class’s usage pattern.
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24
Packaging Programs and

Extensions

In this chapter, abridged for print publication, we describe the packaging ecosystem’s
development. We provide additional material in the online version of this chapter,
available in the GitHub repository for this book. Among other topics (see “Online
Material” on page 658 for a complete list), in the online version we describe poetry,
a modern standards-compliant Python build system, and compare it with the more
traditional setuptools approach.

Suppose you have some Python code that you need to deliver to other people and
groups. It works on your machine, but now you have the added complication of
making it work for other people. This involves packaging your code in a suitable
format and making it available to its intended audience.

The quality and diversity of the Python packaging ecosystem have greatly improved
since the last edition, and its documentation is both better organized and much
more complete. These improvements are based on careful work to specify a Python
source tree format independent of any specific build system in PEP 517, “A Build-
System Independent Format for Source Trees,” and the minimum build system
requirements in PEP 518, “Specifying Minimum Build System Requirements for
Python Projects.” The “Rationale” section of the latter document concisely describes
why these changes were required, the most significant being removal of the need
to run the setup.py file to discover (presumably by observing tracebacks) the build’s
requirements.

The major purpose of PEP 517 is to specify the format of build definitions in a file
called pyproject.toml. The file is organized into sections called tables, each with a
header comprising the table’s name in brackets, much like a config file. Each table
contains values for various parameters, consisting of a name, an equals sign, and a
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1 Users of older versions can install the library from PyPI with pip install toml.

value. 3.11+  Python includes the tomllib module for extracting these definitions,
with load and loads methods similar to those in the json module.1

Although more and more tools in the Python ecosystem are using these modern
standards, you should still expect to continue to encounter the more traditional
setuptools-based build system (which is itself transitioning to the pyproject.toml
base recommended in PEP 517). For an excellent survey of packaging tools avail‐
able, see the list maintained by the Python Packaging Authority (PyPA).

To explain packaging, we first describe its development, then we discuss poetry
and setuptools. Other PEP 517-compliant build tools worth mentioning include
flit and hatch, and you should expect their number to grow as interoperability
continues to improve. For distributing relatively simple pure Python packages, we
also introduce the standard library module zipapp, and we complete the chapter
with a short section explaining how to access data bundled as part of a package.

What We Don’t Cover in This Chapter
Apart from the PyPA-sanctioned methods, there are many other possible ways of
distributing Python code—far too many to cover in a single chapter. We do not
cover the following packaging and distribution topics, which may well be of interest
to those wishing to distribute Python code:

• Using conda•
• Using Docker•
• Various methods of creating binary executable files from Python code, such as•

the following (these tools can be tricky to set up for complex projects, but they
repay the effort by widening the potential audience for an application):
— PyInstaller, which takes a Python application and bundles all the required—

dependencies (including the Python interpreter and necessary extension
libraries) into a single executable program that can be distributed as a
standalone application. Versions exist for Windows, macOS, and Linux,
though each architecture can only produce its own executable.

— PyOxidizer, the main tool in a utility set of the same name, which not only—
allows the creation of standalone executables but can also create Windows
and macOS installers and other artifacts.

— cx_Freeze, which creates a folder containing a Python interpreter, extension—
libraries, and a ZIP file of the Python code. You can convert this into either
a Windows installer or a macOS disk image.
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2 Be aware that some packages are less than friendly to virtual environments. Happily, these are few
and far between.

A Brief History of Python Packaging
Before the advent of virtual environments, maintaining multiple Python projects
and avoiding conflicts between their different dependency requirements was a
complex business involving careful management of sys.path and the PYTHONPATH
environment variable. If different projects required the same dependency in two
different versions, no single Python environment could support both. Nowadays,
each virtual environment (see “Python Environments” on page 237 for a refresher
on this topic) has its own site_packages directory into which third-party and local
packages and modules can be installed in a number of convenient ways, making it
largely unnecessary to think about the mechanism.2

When the Python Package Index was conceived in 2003, no such features were
available, and there was no uniform way to package and distribute Python code.
Developers had to carefully adapt their environment to each different project
they worked on. This changed with the development of the distutils standard
library package, soon leveraged by the third-party setuptools package and its
easy_install utility. The now-obsolete platform-independent egg packaging for‐
mat was the first definition of a single-file format for Python package distribution,
allowing easy download and installation of eggs from network sources. Installing
a package used a setup.py component, whose execution would integrate the pack‐
age’s code into an existing Python environment using the features of setuptools.
Requiring a third-party (i.e., not part of the standard distribution) module such as
setuptools was clearly not a fully satisfactory solution.

In parallel with these developments came the creation of the virtualenv pack‐
age, vastly simplifying project management for the average Python programmer
by offering clean separation between the Python environments used by different
projects. Shortly after this, the pip utility, again largely based on the ideas behind
setuptools, was introduced. Using source trees rather than eggs as its distribution
format, pip could not only install packages but uninstall them as well. It could also
list the contents of a virtual environment and accept a versioned list of the project’s
dependencies, by convention in a file named requirements.txt.

setuptools development was somewhat idiosyncratic and not responsive to com‐
munity needs, so a fork named distribute was created as a drop-in replacement (it
installed under the setuptools name), to allow development work to proceed along
more collaborative lines. This was eventually merged back into the setuptools
codebase, which is nowadays controlled by the PyPA: the ability to do this affirmed
the value of Python’s open source licensing policy.
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-3.11  The distutils package was originally designed as a standard library com‐
ponent to help with installing extension modules (particularly those written in
compiled languages, covered in Chapter 25). Although it currently remains in the
standard library, it has been deprecated and is scheduled for removal from version
3.12, when it will likely be incorporated into setuptools. A number of other tools
have emerged that conform to PEPs 517 and 518. In this chapter we’ll look at
different ways to install additional functionality into a Python environment.

With the acceptance of PEP 425, “Compatibility Tags for Built Distributions,” and
PEP 427, “The Wheel Binary Package Format,” Python finally had a specification for
a binary distribution format (the wheel, whose definition has since been updated)
that would allow the distribution of compiled extension packages for different
architectures, falling back to installing from source when no appropriate binary
wheel is available.

PEP 453, “Explicit Bootstrapping of pip in Python Installations,” determined that
the pip utility should become the preferred way to install packages in Python, and
established a process whereby it could be updated independently of Python to allow
new deployment features to be delivered without waiting for new language releases.

These developments and many others that have rationalized the Python ecosystem
are due to a lot of hard work by the PyPA, to whom Python’s ruling “Steering
Council” has delegated most matters relating to packaging and distribution. For a
more in-depth and advanced explanation of the material in this chapter, see the
“Python Packaging User Guide”, which offers sound advice and useful instruction
to anyone who wants to make their Python software widely available.

Online Material
As mentioned at the start of the chapter, the online version of this chapter contains
additional material. The topics covered are:

• The build process•
• Entry points•
• Distribution formats•

• poetry•

• setuptools•

• Distributing your package•

• zipapp•
• Accessing data included with your•

code
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25
Extending and Embedding

Classic Python

The content of this chapter has been abbreviated for the print edition of this book. The
full content is available online, as described in “Online Material” on page 660.

CPython runs on a portable, C-coded virtual machine. Python’s built-in objects—
such as numbers, sequences, dictionaries, sets, and files—are coded in C, as are
several modules in Python’s standard library. Modern platforms support dynami‐
cally loaded libraries, with file extensions such as .dll on Windows, .so on Linux,
and .dylib on Mac: building Python produces such binary files. You can code
your own extension modules for Python in C (or any language that can produce
C-callable libraries), using the Python C API covered in this chapter. With this API,
you can produce and deploy dynamic libraries that Python scripts and interactive
sessions can later use with the import statement, covered in “The import Statement”
on page 222.

Extending Python means building modules that Python code can import to access
the features the modules supply. Embedding Python means executing Python code
from an application coded in another language. For such execution to be useful,
Python code must in turn be able to access some of your application’s functional‐
ity. In practice, therefore, embedding implies some extending, as well as a few
embedding-specific operations. The three main reasons for wishing to extend
Python can be summarized as follows:

• Reimplementing some functionality (originally coded in Python) in a lower-•
level language, hoping to get better performance

• Letting Python code access some existing functionality supplied by libraries•
coded in (or, at any rate, callable from) lower-level languages
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1 There are many other such tools, but we tried to pick just the most popular and promising ones.

• Letting Python code access some existing functionality of an application that is•
in the process of embedding Python as the application’s scripting language

Embedding and extending are covered in Python’s online documentation; there,
you can find an in-depth tutorial and an extensive reference manual. Many details
are best studied in Python’s extensively documented C sources. Download Python’s
source distribution and study the sources of Python’s core, C-coded extension
modules, and the example extensions supplied for this purpose.

Online Material

This Chapter Assumes Some Knowledge of C
Although we include some non-C extension options, to
extend or embed Python using the C API you must know
the C and/or C++ programming languages. We do not cover
C and C++ in this book, but there are many print and online
resources that you can consult to learn them. Most of the
online content of this chapter assumes that you have at least
some knowledge of C.

In the online version of this chapter, you will find the following sections:

“Extending Python with Python’s C API”
Includes reference tables and examples for creating C-coded Python extension
modules that you can import into your Python programs, showing how to code
and build such modules. This section includes two complete examples:

• An extension implementing custom methods for manipulating dicts•
• An extension defining a custom type•

“Extending Python Without Python’s C API”
Discusses (or, at least, mentions and links to) several utilities and libraries that
support creating Python extensions that do not directly require C or C++ pro‐
gramming,1 including the third-party tools F2PY, SIP, CLIF, cppyy, pybind11,
Cython, CFFI, and HPy, and standard library module ctypes. This section
includes a complete example on how to create an extension using Cython.

“Embedding Python”
Includes reference tables and a conceptual overview of embedding a Python
interpreter within a larger application, using Python’s C API for embedding.
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26
v3.7 to v3.n Migration

This book spans several versions of Python and covers some substantial (and still
evolving!) new features, including:

• Order-preserving dicts•
• Type annotations•

• := assignment expressions (informally called “the walrus operator”)•
• Structural pattern matching•

Individual developers may be able to install each new Python version as it is
released, and solve compatibility issues as they go. But for Python developers work‐
ing in a corporate environment or maintaining a shared library, migrating from one
version to the next involves deliberation and planning.

This chapter deals with the changing shape of the Python language, as seen from
a Python programmer’s viewpoint. (There have been many changes in Python
internals as well, including to the Python C API, but those are beyond the scope of
this chapter: for details, see the “What’s New in Python 3.n” sections of each release’s
online documentation.)
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1 While Python 3.6 is outside the range of versions covered in this book, it introduced some
significant new features, and we include it here for historical context.

Significant Changes in Python Through 3.11
Most releases have a handful of significant new features and improvements that
characterize that release, and it is useful to have these in mind as high-level reasons
for targeting a particular release. Table 26-1 details only major new features and
breaking changes in versions 3.6–3.111 that are likely to affect many Python pro‐
grams; see the Appendix for a more complete list.

Table 26-1. Significant changes in recent Python releases

Version New features Breaking changes

3.6 • dicts preserve order (as an
implementation detail of CPython)

• F-strings added

• _ in numeric literals supported

• Annotations can be used for types,
which can be checked with external
tools such as mypy

• asyncio is no longer a provisional
module

Initial release: December 2016
End of support: December 2021

• Unknown escapes of \ and an ASCII letter
no longer supported in pattern arguments
to most re functions (still permitted in
re.sub() only)

3.7 • dicts preserve order (as a formal
language guarantee)

• dataclasses module added

• breakpoint() function added

Initial release: June 2018
Planned end of support: June 2023

• Unknown escapes of \ and an ASCII letter
no longer supported in pattern arguments to
re.sub()

• Named arguments no longer supported
in bool(), float(), list(), and
tuple()

• Leading named argument in int() no
longer supported
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Version New features Breaking changes

3.8 • Assignment expressions (:= , aka
the walrus operator) added

• / and * in function argument
lists to indicate positional-only and
named-only arguments

• Trailing = for debugging in f-
strings (f'{x=}' short form for
f'x={x!r}')

• Typing classes added (Lit
eral, TypedDict, Final,
Protocol)

Initial release: October 2019
Planned end of support: October
2024

• time.clock() removed; use
time.perf_counter()

• pyvenv script removed; use python -m
venv

• yield and yield from no longer
allowed in comprehensions or genexps

• SyntaxWarnings on is and is not
tests against str and int literals added

3.9 • Union operators | and |= on
dicts supported

• str.removeprefix() and
str.removesuffix()

methods added

• zoneinfo module added for IANA
time zone support (to replace third-
party pytz module)

• Type hints can now use built-in
types in generics (list[int]
instead of List[int])

Initial release: October 2020
Planned end of support: October
2025

• array.array.tostring() and from
string() removed

• threading.Thread.isAlive()

removed (use is_alive() instead)

• ElementTree and Element’s getch
ildren() and getiterator()
removed

• base64.encodestring() and deco
destring() removed (use encode
bytes() and decodebytes() instead)

• fractions.gcd() removed (use
math.gcd() instead)

• typing.NamedTuple._fields

removed (use __annotations__
instead)

Significant Changes in Python Through 3.11 | 663

v3.7 to
 v3.n

M
ig

ratio
n



Version New features Breaking changes

3.10 • match/case structural pattern
matching supported

• Writing union types as X | Y
(in type annotations and as second
argument to isinstance())
allowed

• Optional strict argument added
to zip() built-in to detect
sequences of differing lengths

• Parenthesized context managers
now officially supported;
e.g., with(ctxmgr,
ctxmgr, ...):

Initial release: October 2021
Planned end of support: October
2026

• Importing ABCs from collections
removed (must now import from
collections.abc)

• loop parameter removed from most of
asyncio’s high-level API

3.11 • Improved error messages

• General performance boost

• Exception groups and except*
added

• Typing classes added (Never,
Self)

• tomllib TOML parser added to
stdlib

Initial release: October 2022
Planned end of support: October
2027 (est.)

• binhex module removed

• int to str conversion restricted to 4,300
digits

Planning a Python Version Upgrade
Why upgrade in the first place? If you have a stable, running application, and a
stable deployment environment, a reasonable decision might be to leave it alone.
But version upgrades do come with benefits:

• New versions usually introduce new features, which may allow you to simplify•
code.

• Updated versions include bug fixes and refactorings, which can improve sys‐•
tem stability and performance.
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2 When this happens, it is usually an “all hands on deck” emergency situation to do the upgrade
in a hurry. These events are the very ones you are trying to avoid, or at least minimize, by
implementing a steady and ongoing Python version upgrade program.

• Security vulnerabilities identified in an older version may be fixed in a new•
version.2

Eventually, old Python versions fall out of support, and projects running on older
versions become difficult to staff and more costly to maintain. Upgrading might
then become a necessity.

Choosing a Target Version
Before deciding which version to migrate to, sometimes you have to figure out first,
“What version am I running now?” You may be unpleasantly surprised to find old
software running unsupported Python versions lurking in your company’s systems.
Often this happens when those systems depend on some third-party package that
is itself behind in version upgrades, or does not have an upgrade available. The
situation is even more dire when such a system is critical in some way for company
operations. You may be able to isolate the lagging package behind a remote-access
API, allowing that package to run on the old version while permitting your own
code to safely upgrade. The presence of systems with these upgrade constraints
must be made visible to senior management, so they can be advised of the risks and
trade-offs of retaining, upgrading, isolating, or replacing.

The choice of target version often defaults to “whatever version is the most current.”
This is a reasonable choice, as it is usually the most cost-effective option with
respect to the investment involved in doing the upgrade: the most recent release
will have the longest support period moving forward. A more conservative position
might be “whatever version is the most current, minus 1.” You can be reasonably
sure that version N–1 has undergone some period of in-production testing at other
companies, and someone else has shaken out most of the bugs.

Scoping the Work
After you have selected your target version of Python, identify all the breaking
changes in the versions after the version your software is currently using, up to and
including the target version (see the Appendix for a detailed table of features and
breaking changes by version; additional details can be found in the “What’s New in
Python 3.n” sections of the online docs). Breaking changes are usually documented
with a compatible form that will work with both your current version and the target
version. Document and communicate the source changes that development teams
will need to make before upgrading. (There may be significantly more work than
expected involved in moving directly to the selected target version, if a lot of your
code is affected by breaking changes or compatibility issues with related software.
You may even end up revisiting the choice of target version or considering smaller
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steps. Perhaps you’ll decide on upgrading to target–1 as a first step and deferring the
task of the upgrade to target or target+1 for a subsequent upgrade project.)

Identify any third-party or open source libraries that your codebase uses, and
ensure that they are compatible with (or have plans to be compatible with) the tar‐
get Python version. Even if your own codebase is ready for upgrading to the target,
an external library that lags behind may hold up your upgrade project. If necessary,
you may be able to isolate such a library in a separate runtime environment (using
virtual machines or container technologies), if that library offers a remote access
programming interface.

Make the target Python version available in development environments, and
optionally in deployment environments, so that developers can confirm that their
upgrade changes are complete and correct.

Applying the Code Changes
Once you have decided on your target version and identified all the breaking
changes, you’ll need to make changes in your codebase to make it compatible with
the target version. Your goal, ideally, is to have the code in a form that is compatible
with both the current and target Python versions.

Imports from __future__
__future__ is a standard library module containing a variety
of features, documented in the online docs, to ease migra‐
tion between versions. It is unlike any other module, because
importing features can affect the syntax, not just the seman‐
tics, of your program. Such imports must be the initial exe‐
cutable statements of your code.
Each “future feature” is activated using the statement:

from __future__ import feature

where feature is the name of the feature you want to use.
In the span of versions this book covers, the only future fea‐
ture you might consider using is:

from __future__ import annotations

which permits references to as-yet-undefined types without
enclosing them in quotes (as covered in Chapter 5). If your
current version is Python 3.7 or later, then adding this
__future__ import will permit use of the unquoted types in
type annotations, so you don’t have to redo them later.

Begin by reviewing libraries that are shared across multiple projects. Removing the
blocking changes from these libraries will be a crucial first step, since you will be
unable to deploy any dependent applications on the target version until this is done.
Once a library is compatible with both versions, it can be deployed for use in the
migration project. Moving forward, the library code must maintain compatibility

666 | Chapter 26: v3.7 to v3.n Migration

https://oreil.ly/3NaU5


with both the current Python version and the target version: shared libraries will
likely be the last projects that will be able to utilize any new features of the target
version.

Standalone applications will have earlier opportunities to use the new features in
the target version. Once the application has removed all code affected by breaking
changes, commit it to your source control system as a cross-version-compatible
snapshot. Afterwards, you may add new features to the application code and deploy
it into environments that support the target version.

If version compatibility changes affect type annotations, you can use .pyi stub files
to isolate version-dependent typing from your source code.

Upgrade Automation Using pyupgrade
You may be able to automate much of the toil in upgrading your code using
automation tools such as the pyupgrade package. pyupgrade analyzes the abstract
syntax tree (AST) returned by Python’s ast.parse function to locate issues and
make corrections to your source code. You can select a specific target Python
version using command-line switches.

Whenever you use automatic code conversion, review the output of the conversion
process. A dynamic language like Python makes it impossible to perform a perfect
translation; while testing helps, it can’t pick up all imperfections.

Multiversion Testing
Make sure that your tests cover as much of your project as possible, so that inter-
version errors are likely to be picked up during testing. Aim for at least 80% testing
coverage; much more than 90% can be difficult to achieve, so don’t spend too much
effort trying to reach a too-ambitious standard. (Mocks, mentioned in “Unit Testing
and System Testing” on page 514, can help you increase the breadth of your unit
testing coverage, if not the depth.)

The tox package is useful to help you manage and test multiversion code. It lets you
test your code under a number of different virtual environments, and it supports
multiple CPython versions, as well as PyPy.

Use a Controlled Deployment Process
Make the target Python version available in deployment environments, with an
application environment setting to indicate whether an application should run using
the current or target Python version. Continuously track, and periodically report,
the completion percentage to your management team.

How Often Should You Upgrade?
The PSF releases Python on a minor-release-per-year cadence, with each version
enjoying five years of support after release. If you apply a latest-release-minus-1
strategy, it provides you with a stable, proven version to migrate to, with a four-year
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support horizon (in case a future upgrade needs to be deferred). Given the four-year
time window, doing upgrades to the latest release minus 1 every year or two should
provide a reasonable balance of periodic upgrade cost and platform stability.

Summary
Maintaining the version currency of the software that your organization’s systems
depend on is an ongoing habit of proper “software hygiene,” in Python just like in
any other development stack. By performing regular upgrades of just one or two
versions at a time, you can keep this work at a steady and manageable level, and it
will become a recognized and valued activity in your organization.
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A
New Features and Changes in Python 3.7

Through 3.11

The following tables enumerate language and standard library changes in Python
versions 3.7 through 3.11 that are most likely to be found in Python code. Use these
tables to plan your upgrade strategy, as constrained by your exposure to breaking
changes in your codebase.

The following types of changes are considered to be “breaking” and are marked
with a ! symbol in the last column:

• Introduces new keywords or built-ins (which may clash with names used in•
existing Python source code)

• Removes a method from a stdlib module or built-in type•
• Changes a built-in or stdlib method signature in a way that is not backward-•

compatible (such as removing a parameter, or renaming a named parameter)
New warnings (including DeprecatedWarning) are also shown as “breaking,” but
marked with a * symbol in the last column.

Also see the table of proposed deprecations and removals from the standard library
(“dead batteries”) in PEP 594, which lists modules that are slated for deprecation or
removal, the versions in which these changes are scheduled to be made (beginning
with Python 3.12), and recommended replacements.
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Python 3.7
The following table summarizes changes in Python version 3.7. For further details,
see “What’s New in Python 3.7” in the online docs.

Python 3.7 Added Deprecated Removed Breaking
change

Functions accept > 255 arguments +    

argparse.ArgumentParser.parse_inter

mixed_args()

+    

ast.literal_eval() no longer evaluates addition and
subtraction

   !

async and await become reserved language keywords +   !

asyncio.all_tasks(),
asyncio.create_task(),
asyncio.current_task(),
asyncio.get_running_loop(),
asyncio.Future.get_loop(),
asyncio.Handle.cancelled(),
asyncio.loop.sock_recv_into(),
asyncio.loop.sock_sendfile(),
asyncio.loop.start_tls(),
asyncio.ReadTransport.is_reading(),
asyncio.Server.is_serving(),
asyncio.Server.get_loop(),
asyncio.Task.get_loop(),
asyncio.run() (provisional)

+    

asyncio.Server is an async context manager +    

asyncio.loop.call_soon(),
asyncio.loop.call_soon_threadsafe(),
asyncio.loop.call_later(),
asyncio.loop.call_at(), and
asyncio.Future.add_done_callback() all
accept optional named context argument

+    

asyncio.loop.create_server(),
asyncio.loop.create_unix_server(),
asyncio.Server.start_serving(),
and asyncio.Server.serve_forever() all accept
optional named start_serving argument

+    

asyncio.Task.current_task() and
asyncio.Task.all_tasks() are deprecated; use
asyncio.current_task() and
asyncio.all_tasks()

 —  *
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Python 3.7 Added Deprecated Removed Breaking
change

binascii.b2a_uu() accepts named backtick
argument

+    

bool() constructor no longer accepts a named argument
(positional only)

   !

breakpoint() built-in function +   !

bytearray.isascii() +    

bytes.isascii() +    

collections.namedtuple supports default values +    

concurrent.Futures.ProcessPoolExecutor

and concurrent.Futures.ThreadPoolExecutor
constructors accept optional initializer and
initargs arguments

+    

contextlib.AbstractAsyncContextManager,
contextlib.asynccontextmanager(),
contextlib.AsyncExitStack,
contextlib.nullcontext()

+    

contextvars module (similar to thread-local vars, with
asyncio support)

+    

dataclasses module +    

datetime.datetime.fromisoformat() +    

DeprecationWarning shown by default in __main__
module

+   *

dict maintaining insertion order now guaranteed;
dict.popitem() returns items in LIFO order

+    

__dir__() at module level +    

dis.dis() method accepts named depth argument +    

float() constructor no longer accepts a named argument
(positional only)

   !

fpectl module removed   X !

from __future__ import annotations enables
referencing as-yet-undefined types in type annotations
without enclosing in quotes

+    

gc.freeze() +    

__getattr__() at module level +    

hmac.digest() +    

http.client.HTTPConnection and
http.client.HTTPSConnection constructors accept
optional blocksize argument

+    
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Python 3.7 Added Deprecated Removed Breaking
change

http.server.ThreadingHTTPServer +    

importlib.abc.ResourceReader,
importlib.resources module,
importlib.source_hash()

+    

int() constructor no longer accepts a named x argument
(positional only; named base argument is still supported)

   !

io.TextIOWrapper.reconfigure() +    

ipaddress.IPv*Network.subnet_of(),
ipaddress.IPv*Network.supernet_of()

+    

list() constructor no longer accepts a named argument
(positional only)

   !

logging.StreamHandler.setStream() +    

math.remainder() +    

multiprocessing.Process.close(),
multiprocessing.Process.kill()

+    

ntpath.splitunc() removed;
use ntpath.splitdrive()

  X !

os.preadv(), os.pwritev(),
os.register_at_fork()

+    

os.stat_float_times() removed
(compatibility function with Python 2; all timestamps in
stat result are floats in Python 3)

  X !

pathlib.Path.is_mount() +    

pdb.set_trace() accepts named header argument +    

plist.Dict,
plist.Plist, and
plist._InternalDict removed

  X !

queue.SimpleQueue +    

re compiled expressions and match objects can be copied
with copy.copy and copy.deepcopy

+    

re.sub() no longer supports unknown escapes of \ and
an ASCII letter

  X !

socket.close(), socket.getblocking(),
socket.TCP_CONGESTION,
socket.TCP_USER_TIMEOUT,
socket.TCP_NOTSENT_LOWAT (Linux platforms only)

+    

sqlite3.Connection.backup() +    

StopIteration handling in generators +    
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Python 3.7 Added Deprecated Removed Breaking
change

str.isascii() +    

subprocess.run() named argument capture_out
put=True for simplified stdin/stdout capture

+    

subprocess.run() and
subprocess.Popen() named argument text,
alias for universal_newlines

+    

subprocess.run(), subprocess.call(),
and subprocess.Popen() improved
KeyboardInterrupt handling

+    

sys.breakpointhook(),
sys.getandroidapilevel(),
sys.get_coroutine_origin_track

ing_depth(),
sys.set_coroutine_origin_track

ing_depth()

+    

time.clock_gettime_ns(),
time.clock_settime_ns(),
time.monotonic_ns(),
time.perf_counter_ns(),
time.process_time_ns(), time.time_ns(),
time.CLOCK_BOOTTIME, time.CLOCK_PROF,
time.CLOCK_UPTIME

+    

time.thread_time() and
time.thread_time_ns() for per-thread CPU timing

+    

tkinter.ttk.Spinbox +    

tuple() constructor no longer accepts a named argument
(positional only)

   !

types.ClassMethodDescriptorType,
types.MethodDescriptorType,
types.MethodWrapperType,
types.WrapperDescriptorType

+    

types.resolve_bases() +    

uuid.UUID.is_safe +    

yield and yield from in comprehensions or generator
expressions are deprecated

 —  *

zipfile.ZipFile constructor accepts named
compresslevel argument

+    
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Python 3.8
The following table summarizes changes in Python version 3.8. For further details,
see “What’s New in Python 3.8” in the online docs.

Python 3.8 Added Deprecated Removed Breaking
change

Assignment expressions (:= “walrus” operator) +    

Positional-only and named-only parameters
(/ and * arg separators)

+    

F-string trailing = for debugging +    

is and is not tests against str and int literals emit
SyntaxWarning

   *

ast AST nodes end_lineno and
end_col_offset attributes

+    

ast.get_source_segment() +    

ast.parse() accepts named arguments
type_comments, mode, and feature_version

+    

async REPL can be run using python -m asyncio +    

asyncio tasks can be named +    

asyncio.coroutine decorator deprecated  —  *

asyncio.run() to execute a coroutine directly +    

asyncio.Task.get_coro() +    

bool.as_integer_ratio() +    

collections.namedtuple._asdict() returns
dict instead of OrderedDict

+    

continue permitted in finally block +    

cgi.parse_qs, cgi.parse_qsl, and
cgi.escape removed;
import from urllib.parse and html modules

  X !

csv.DictReader returns dicts
instead of OrderedDicts

+    

datetime.date.fromisocalendar(),
datetime.datetime.fromisocalendar()

+    

dict comprehensions compute key first, value second    !

dict and dictviews returned from dict.keys(),
dict.values() and dict.items() now iterable
with reversed()

+    

fractions.Fraction.as_integer_ratio() +    
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Python 3.8 Added Deprecated Removed Breaking
change

functools.cached_property() decorator
(see cautionary notes here and here)

+    

functools.lru_cache can be used as a decorator
without ()

+    

functools.singledispatchmethod decorator +    

gettext.pgettext() +    

importlib.metadata module +    

int.as_integer_ratio() +    

itertools.accumulate() accepts named
initial argument

+    

macpath module removed   X !

math.comb(), math.dist(), math.isqrt(),
math.perm(), math.prod()

+    

math.hypot() added support for > 2 dimensions +    

multiprocessing.shared_memory module +    

namedtuple._asdict() returns dict instead of
OrderedDict

+    

os.add_dll_directory() on Windows +    

os.memfd_create() +    

pathlib.Path.link_to() +    

platform.popen() removed; use os.popen()   X !

pprint.pp() +    

pyvenv script removed; use python -m venv   X !

re regular expression patterns support \N{name} escapes +    

shlex.join() (inverse of shlex.split()) +    

shutil.copytree() accepts named
dirs_exist_ok argument

+    

__slots__ accepts a dict of {name: docstring} +    

socket.create_server(),
socket.has_dualstack_ipv6()

+    

socket.if_nameindex(), socket.if_name
toindex(), and socket.if_indextoname()
are all supported on Windows

+    

sqlite3 Cache and Statement objects no longer
user-visible

  X !
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Python 3.8 Added Deprecated Removed Breaking
change

ssl.post_handshake_auth(),
ssl.verify_client_post_handshake()

+    

statistics.fmean(),
statistics.geometric_mean(),
statistics.multimode(),
statistics.NormalDist,
statistics.quantiles()

+    

sys.get_coroutine_wrapper() and
sys.set_coroutine_wrapper() removed

  X !

sys.unraisablehook() +    

tarfile.filemode() removed   X !

threading.excepthook(),
threading.get_native_id(),
threading.Thread.native_id

+    

time.clock() removed;
use time.perf_counter()

  X !

tkinter.Canvas.moveto(),
tkinter.PhotoImage.transparency_get(),
tkinter.PhotoImage.transparency_set(),
tkinter.Spinbox.selection_from(),
tkinter.Spinbox.selection_present(),
tkinter.Spinbox.selection_range(),
tkinter.Spinbox.selection_to()

+    

typing.Final, typing.get_args(),
typing.get_origin(), typing.Literal,
typing.Protocol, typing.SupportsIndex,
typing.TypedDict

+    

typing.NamedTuple._field_types deprecated  —  *

unicodedata.is_normalized() +    

unittest supports coroutines as test cases +    

unittest.addClassCleanup(), unittest.
addModuleCleanup(), unittest.AsyncMock

+    

xml.etree.Element.getchildren(),
xml.etree.Element.getiterator(),
xml.etree.ElementTree.getchildren(), and
xml.etree.ElementTree.getiterator()

deprecated

 —  *

XMLParser.doctype() removed   X !

xmlrpc.client.ServerProxy accepts named
headers argument

+    
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Python 3.8 Added Deprecated Removed Breaking
change

yield and return unpacking no longer requires
enclosing parentheses

+    

yield and yield from no longer allowed in
comprehensions or generator expressions

  X !

Python 3.9
The following table summarizes changes in Python version 3.9. For further details,
see “What’s New in Python 3.9” in the online docs.

Python 3.9 Added Deprecated Removed Breaking
change

Type annotations can now use built-in types in generics
(e.g., list[int] instead of List[int])

+    

array.array.tostring() and
array.array.fromstring() removed;
use tobytes() and frombytes()

  X !

ast.unparse() +    

asyncio.loop.create_datagram_endpoint()

argument reuse_address disabled
   !

asyncio.PidfdChild Watcher,
asyncio.shutdown_default_executor(),
asyncio.to_thread()

+    

asyncio.Task.all_asks removed;
use asyncio.all_tasks()

  X !

asyncio.Task.current_task removed;
use asyncio.current_task()

  X !

base64.encodestring() and base64.decode
string() removed; use base64.encodebytes()
and base64.decodebytes()

  X !

concurrent.futures.Executor.shutdown()

accepts named cancel_futures argument
+    

curses.get_escdelay(),
curses.get_tabsize(),
curses.set_escdelay(),
curses.set_tabsize()

+    

dict supports union operators | and |= +    

fcntl.F_OFD_GETLK,
fcntl.F_OFD_SETLK,
fcntl.F_OFD_SETKLW

+    
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Python 3.9 Added Deprecated Removed Breaking
change

fractions.gcd() removed; use math.gcd()   X !

functools.cache()

(lightweight/faster version of lru_cache)
+    

gc.is_finalized() +    

graphlib module with TopologicalSorter class +    

html.parser.HTMLParser.unescape() removed   X !

imaplib.IMAP4.unselect() +    

importlib.resources.files() +    

inspect.BoundArguments.arguments returns
dict instead of OrderedDict

+    

ipaddress module does not accept leading zeros in IPv4
address strings

   !

logging.getLogger('root') returns the root
logger

+   !

math.gcd() accepts multiple arguments +    

math.lcm(), math.nextafter(), math.ulp() +    

multiprocessing.SimpleQueue.close() +    

nntplib.NNTP.xpath() and
nntplib.xgtitle() removed

  X !

os.pidfd_open() +    

os.unsetenv() available on Windows +    

os.waitstatus_to_exitcode() +    

parser module deprecated  —  *

pathlib.Path.readlink() +    

plistlib API removed   X !

pprint supports types.SimpleNamespace +    

random.choices() with weights argument raises
ValueError if weights are all 0

   !

random.Random.randbytes() +    

socket.CAN_RAW_JOIN_FILTERS,
socket.send_fds(), socket.recv_fds()

+    

str.removeprefix(),
str.removesuffix()

+    

symbol module deprecated  —  *
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Python 3.9 Added Deprecated Removed Breaking
change

sys.callstats(), sys.getcheckinterval(),
sys.getcounts(), and
sys.setcheckinterval() removed

  X !

sys.getcheckinterval() and
sys.setcheckinterval() removed;
use sys.getswitchinterval() and
sys.setswitchinterval()

  X !

sys.platlibdir attribute +    

threading.Thread.isAlive() removed;
use threading.Thread.is_alive()

  X !

tracemalloc.reset_peak() +    

typing.Annotated type +    

typing.Literal deduplicates values;
equality matching is order independent (3.9.1)

   !

typing.NamedTuple._field_types removed;
use __annotations__

  X !

urllib.parse.parse_qs() and
urllib.parse.parse_qsl() accept ; or & query
parameter separator, but not both (3.9.2)

   !

urllib.parse.urlparse() changed handling of
numeric paths; a string like 'path:80' is no longer parsed
as a path but as a scheme ('path') and a path ('80')

   !

with (await asyncio.Condition) and
with (yield from asyncio.Condition)
removed;
use async with condition

  X !

with (await asyncio.lock) and
with (yield from asyncio.lock) removed;
use async with lock

  X !

with (await asyncio.Semaphore) and with
(yield from asyncio.Semaphore) removed; use
async with semaphore

  X !

xml.etree.Element.getchildren(),
xml.etree.Element.getiterator(),
xml.etree.ElementTree.getchildren(), and
xml.etree.ElementTree.getiterator()

removed

  X !

zoneinfo module for IANA time zone support +    
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Python 3.10
The following table summarizes changes in Python version 3.10. For further details,
see “What’s New in Python 3.10” in the online docs.

Python 3.10 Added Deprecated Removed Breaking
change

Building requires OpenSSL 1.1.1 or newer +    

Debugging improved with precise line numbers +    

Structural pattern matching using match, case,
and _ soft keywordsa

+    

aiter() and anext() built-ins +   !

array.array.index() accepts optional arguments
start and stop

+    

ast.literal_eval(s) strips leading spaces and tabs
from input string s

+    

asynchat module deprecated  —  *

asyncio functions remove loop parameter   X !

asyncio.connect_accepted_socket() +    

asyncore module deprecated  —  *

base64.b32hexdecode,
base64.b32hexencode

+    

bdb.clearBreakpoints() +    

bisect.bisect, bisect.bisect_left,
bisect.bisect_right, bisect.insort,
bisect.insort_left, and
bisect.insert_right all accept optional key
argument

+    

cgi.log deprecated  —  *

codecs.unregister() +    

collections module compatibility definitions of ABCs
removed; use collections.abc

  X !

collections.Counter.total() +    

contextlib.aclosing() decorator,
contextlib.AsyncContextDecorator

+    

curses.has_extended_color_support() +    

dataclasses.dataclass() decorator accepts
optional slots argument

+    

dataclasses.KW_ONLY +    
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Python 3.10 Added Deprecated Removed Breaking
change

distutils deprecated, to be removed in Python 3.12  —  *

enum.StrEnum +    

fileinput.input() and fileinput.FileInput
accept optional encoding and errors arguments

+    

formatter module removed   X !

glob.glob() and glob.iglob() accept optional
root_dir and dir_fd arguments to specify root search
directory

+    

importlib.metadata.package_distribu

tions()

+    

inspect.get_annotations() +    

int.bit_count() +    

isinstance(obj, (atype, btype)) can be
written isinstance(obj, atype|btype)

+    

issubclass(cls, (atype, btype)) can be
written issubclass(cls, atype|btype)

+    

itertools.pairwise() +    

os.eventfd(), os.splice() +    

os.path.realpath() accepts optional strict
argument

+    

os.EVTONLY, os.O_FSYNC, os.O_SYMLINK,
and os.O_NOFOLLOW_ANY all added on macOS

+    

parser module removed   X !

pathlib.Path.chmod() and
pathlib.Path.stat() accept optional
follow_symlinks keyword argument

+    

pathlib.Path.hardlink_to() +    

pathlib.Path.link_to() deprecated;
use hardlink_to()

 —  *

platform.freedesktop_os_release() +    

pprint.pprint() accepts optional
underscore_numbers keyword argument

+    

smtpd module deprecated  —  *

ssl.get_server_certificate accepts optional
timeout argument

+    
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Python 3.10 Added Deprecated Removed Breaking
change

statistics.correlation(),
statistics.covariance(),
statistics.linear_regression()

+    

SyntaxError.end_line_no and
SyntaxError.end_offset attributes

+    

sys.flags.warn_default_encoding

to emit EncodingWarning
+   *

sys.orig_argv and sys.stdlib_module_names
attributes

+    

threading.__excepthook__ +    

threading.getprofile(),
threading.gettrace()

+    

threading.Thread appends
'(<target.__name__>)' to generated thread names

+    

traceback.format_exception(),
traceback.format_exception_only(),
and traceback.print_exception() signature
changes

   !

types.EllipsisType, types.NoneType,
types.NotImplementedType

+    

typing module includes parameter specification variables
for specifying Callable types

+    

typing.io module deprecated; use typing  —  *

typing.is_typeddict() +    

typing.Literal deduplicates values;
equality matching is order-independent

   !

typing.Optional[X] can be written as X | None +    

typing.re module deprecated; use typing  —  *

typing.TypeAlias for defining explicit type aliases +    

typing.TypeGuard +    

typing.Union[X, Y] can use | operator as X | Y +    

unittest.assertNoLogs() +    

urllib.parse.parse_qs() and
urllib.parse.parse_qsl() accept ; or & query
parameter separator, but not both

   !

with statement accepts parenthesized context managers:
with(ctxmgr, ctxmgr, ...)

+    

xml.sax.handler.LexicalHandler +    
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Python 3.10 Added Deprecated Removed Breaking
change

zip built-in accepts optional strict named argument for
length-checking

+    

zipimport.find_spec(),
zipimport.zipimporter.create_module(),
zipimport.zipimporter.exec_module(),
zipimport.zipimporter.invalid

ate_caches()

+    

Since these are defined as soft keywords, they do not break existing code using those same
names.

Python 3.11
The following table summarizes changes in Python version 3.11. For further details,
see “What’s New in Python 3.11” in the online docs.

Python 3.11 Added Deprecated Removed Breaking
change

Security patch released in Python 3.11.0 and
backported to versions 3.7–3.10:
int conversion to str and str conversion to
int in bases other than 2, 4, 8, 16, or 32 raises
ValueError if the resulting string > 4,300 digits
(addresses CVE-2020-10735)

   !

General performance improvements +    

Improved error messages +    

New syntax: for x in *values +    

aifc module deprecated  —  *

asynchat and asyncore modules deprecated  —  *

asyncio.Barrier,
asyncio.start_tls(),
asyncio.TaskGroup

+    

asyncio.coroutine decorator removed   X !

asyncio.loop.create_datagram_endpoint()

argument reuse_address removed
  X !

asyncio.TimeoutError deprecated;
use TimeoutError

 —  *

audioop module deprecated  —  *

BaseException.add_note(),
BaseException.__notes__ attribute

+    

Python 3.11 | 683

a

https://oreil.ly/4Df8q
https://oreil.ly/lS-gO


Python 3.11 Added Deprecated Removed Breaking
change

binascii.a2b_hqx(),
binascii.b2a_hqx(),
binascii.rlecode_hqx(), and
binascii.rledecode_hqx() removed

  X !

binhex module removed   X !

cgi and cgitb modules deprecated  —  *

chunk module deprecated  —  *

concurrent.futures.ProcessPoolExecu

tor() max_tasks_per_child argument
+    

concurrent.futures.TimeoutError deprecated;
use built-in TimeoutError

 —  *

contextlib.chdir context manager
(change current working dir and then restore it)

+    

crypt module deprecated  —  *

dataclasses check for mutable defaults disallows any
value that is not hashable (formerly allowed any value that
was not a dict, list, or set)

   !

datetime.UTC as a convenience alias for
datetime.timezone.utc

+    

enum.Enum str() output just gives name +    

enum.EnumCheck, enum.FlagBoundary,
enum.global_enum() decorator,
enum.member() decorator, enum.nonmember()
decorator, enum.property, enum.ReprEnum,
enum.StrEnum, and enum.verify()

+    

ExceptionGroups and except* +    

fractions.Fraction initialization from string +    

gettext.l*gettext() methods removed   X !

glob.glob() and glob.iglob() accept optional
include_hidden argument

+    

hashlib.file_digest() +    

imghdr module deprecated  —  *

inspect.formatargspec() and
inspect.getargspec() removed; use
inspect.signature()

  X !

inspect.getmembers_static(),
inspect.ismethodwrapper()

+    
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Python 3.11 Added Deprecated Removed Breaking
change

locale.getdefaultlocale() and
locale.resetlocale() deprecated

 —  *

locale.getencoding() +    

logging.getLevelNamesMapping() +    

mailcap module deprecated  —  *

math.cbrt() (cube root),
math.exp2() (computes 2ⁿ)

+    

msilib module deprecated  —  *

nis module deprecated  —  *

nntplib module deprecated  —  *

operator.call +    

ossaudiodev module deprecated  —  *

pipes module deprecated  —  *

re pattern syntax supports *+, ++, ?+, and {m,n}+
possessive quantifiers, and (?>...) atomic grouping

+    

re.template() deprecated  —  *

smtpd module deprecated  —  *

sndhdr module deprecated  —  *

spwd module deprecated  —  *

sqlite3.Connection.blobopen(),
sqlite3.Connection.create_window_func

tion(),
sqlite3.Connection.deserialize(),
sqlite3.Connection.getlimit(),
sqlite3.Connection.serialize(),
sqlite3.Connection.setlimit()

+    

sre_compile, sre_constants, and sre_parse
deprecated

 —  *

statistics.fmean() optional weights argument +    

sunau module deprecated  —  *

sys.exception()

(equivalent to sys.exc_info()[1])
+    

telnetlib module deprecated  —  *

time.nanosleep() (Unix-like systems only) +    

tomllib TOML parser module +    
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Python 3.11 Added Deprecated Removed Breaking
change

typing.assert_never(),
typing.assert_type(),
typing.LiteralString, typing.Never,
typing.reveal_type(), typing.Self

+    

typing.Text deprecated; use str  —  *

typing.TypedDict items can be marked as
Required or NotRequired

+    

typing.TypedDict(a=int, b=str) form
deprecated

 —  *

unicodedata updated to Unicode 14.0.0 +    

unittest.enterModuleContext(),
unittest.IsolatedAsyncioTestCase.enterA

syncContext(),
unittest.TestCase.enterClassContext(),
unittest.TestCase.enterContext()

+    

unittest.findTestCases(),
unittest.getTestCaseName(),
and unittest.makeSuite() deprecated;
use methods of unittest.TestLoader

 —  *

uu module deprecated  —  *

with statement now raises TypeError instead of
AttributeError for objects that do not support the
context manager protocol

   !

xdrlib module deprecated  —  *

z string format specifier added, for negative sign of values
close to zero

+    

zipfile.ZipFile.mkdir() added +    

Add your own notes here:     
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Symbols
! (exclamation point), 35
!= (not equal to operator), 62
!a format marker, 290
!r format marker, 290
!s format marker, 290
" (double quote), 38, 44
""" (triple double quotes), 44
# (hash sign), 33, 38
# (radix indicator) (f-strings), 292
#! (shebang), 30, 35
$ (dollar sign), 35, 38
% (percent sign)

legacy string format operator, 297
log message placeholder, 217
modulus division operator, 61
SQL statement placeholder, 400

%= character, 38, 55
%a format marker, 300
%r format marker, 300
%s character, 401
%s format marder, 300
& (bitwise AND operator), 57
&= character, 38, 55
' (single quote), 38, 44
''' (triple single quotes), 44
'<' (align left), 291
'=' (add fill characters), 291
'>' (align right), 291
'^' (align center), 291
() (parentheses)

function calls, 101
in generator expressions, 111

lines and indentation, 34
* (asterisk)

argument collector parameters, 98
concatenation and repetition, 63
extended unpacking, 55
in fnmatch module, 365
import statement, 226

** (double star) operator
dict unpacking, 50
exponentiation operator, 62
glob recursive wildcard, 358, 366
kwargs, 98, 103
kwds, 98, 104
mapping pattern (structural pattern

matching), 81
metaclass arguments, 117, 133
named argument collector, 97-98

**= character, 38, 55
*= character, 38, 55
*args, 98
*seq, 103
+ (plus sign), 63
+= character, 38, 55
, (comma)

in delete statements, 56
delimiters, 38
in dictionaries, 49
in global statements, 106
in lists, 48
in tuples, 47

-= operator, 38, 55
. (period)

floating-point numbers, 41
import statement, 222
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object attributes, 53
treatment by glob module, 366

... (ellipsis), 26, 51

.pyi stub files, 193
/ (positional-only marker), 96
/ (slash)

in arithmetic operations, 61
in file paths, 22
in glob module, 366
pathlib.Path join operator, 362

// (floor division operator), 61
//= character, 38, 55
/= character, 38, 55
0 (leading zero indicator) (f-strings), 293
: (colon), 38, 40, 49
:= (assignment operator)

assignment expressions, 59
regular expressions and, 319
simple statements, 39

; (semicolon)
in simple statements, 39
lines and indentation, 34

< (less than symbol)
alignment indicator (f-strings), 291
comparisons, 62

< (little-endian byte order), 332
<<= character, 55
<= (less than or equal to operator), 62
= (equal sign)

alignment indicator (f-strings), 291
assignment statements, 39
delimiters, 38
in plain assignment, 55
struct format strings, 332

== (equal to operator), 62, 486
> (greater than symbol)

alignment indicator (f-strings), 291
comparison operator, 62

>, ! (big endian/network standard byte
order), 333

>= (greater than or equal to operator), 62
>>= operator, 38, 55
? (question mark), 307, 365
@ (commercial at sign)

decorators, 157-158
matrix multiplication, 493
struct format strings, 332

@= (matrix multiplication assignment
operator), 55

\" (double quote escaped), 45
\' (single quote escaped), 45
\<newline> (ignore end of line), 45
\a (bell), 45
\b (backspace), 45
\DDD (octal value escape sequence in

strings), 45
\f (form feed), 45
\n (newline), 45
\N{name} (Unicode character), 45
\r (carriage return), 45
\t (tab), 45
\U (eight hex digits), 46
\u (four hex digits), 46
\v (vertical tab), 45
\x XX (hexadecimal escape sequence), 45
\\ (backslash escaped), 45
^ (alignment indicator) (f-strings), 291
^= character, 38, 55
_ (underscore)

with gettext module, 380
in identifiers, 35, 119
in interactive interpreter, 37
module-private variables, 225
numeric literals, 43
simple statements, 39
wildcard pattern, 77

_getframe function (sys module), 435
__ (double underscore), 116, 119, 141
__abs__ (numeric special method), 155
__add__ (numeric special method), 148,

155
__and__ (numeric special method), 155
__annotations__, 176, 189, 191
__bool__ (special method), 142
__builtins__ dictionary, 224
__bytes__ (special method), 142
__call__ (special method), 142, 143, 152
__code__ attribute (function or method

object), 435
__complex__ (numeric special method),

155
__contains__ (container method), 150,

152
__debug__ variable, 220
__delattr__ (special method), 142, 143
__delete__ (descriptor method), 119
__delitem__ (container method), 150
__del__ (special method), 142, 143
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__dir__ (special method), 143
__divmod__ (numeric special method),

155
__doc__ attribute, 119, 225
__eq__ (special method), 142, 144
__float__ (numeric special method), 155
__floordiv__ (numeric special method),

155
__format__ (special method), 142, 144
__future__ module, 666
__getattribute__ (special method), 140,

142, 145
__getattr__ (special method), 142, 144,

223
__getitem__ (container method), 150
__get__ (descriptor method), 119
__ge__ (special method), 142, 144
__gt__ (special method), 142, 144
__hash__ (special method), 142, 145, 152
__ident, 119
__import__ (built-in function), 228, 232
__index__ (numeric special method), 156
__init__ (special method), 121, 142, 146
__int__ (numeric special method), 155
__invert__ (numeric special method), 155
__iter__ (container method), 150, 152
__len__ (container method), 150, 152
__le__ (special method), 142, 144
__lshift__ (numeric special method), 155
__lt__ (special method), 142, 144
__matmul__ (numeric special method),

156
__missing__ (dict type), 268
__mod__ (numeric special method), 155
__mul__ (numeric special method), 148,

155
__neg__ (numeric special method), 155
__new__ (special method), 142, 146
__ne__ (special method), 142, 144
__or__ (numeric special method), 155
__pos__ (numeric special method), 155
__pow__ (numeric special method), 156
__repr__ (special method), 146
__rshift__ (numeric special method), 155
__setattr__ (special method), 142, 147
__setitem__ (container method), 150
__set__ (descriptor method), 119
__slots__ attribute, 139
__str__ (special method), 142, 147

__sub__ (numeric special method), 155
__truediv__ (numeric special method),

155
__xor__ (numeric special method), 155
\ (backslash)

lines and indentation, 34
re module, 306
special meaning of in tokens, 38
strings, 44-46

{} (braces)
command-line syntax and options, 22
delimiters, 38
in dictionaries, 49
lines and indentation, 34
in sets, 48

| (vertical bar), 22, 50
|= character, 38, 55
[] (brackets)

command line syntax, 22
in-place list operations, 67
indexing a dictionary, 71
lines and indentation, 34
in lists, 48
slicing a sequence, 64

~ (tilde), 57
· (middle dot), 35
˃˃˃ (prompt), 26, 39

A
abc module, 151
abort (threading module), 454
abs (built-in function), 251
absolute imports, 234
abspath (os.path module), 354
abstract base classes (ABCs), 150-154, 179
abstract syntax tree (AST), 667
access (os module), 346
accumulate (itertools module), 276
acquire (threading module), 449, 451, 453
add (set method), 70
add fill characters ('='), 291
addCleanup (unittest.TestCase class), 525
add_history (readline module), 371
algorithms, 544-548
align center ('^'), 291
align left ('<'), 291
align right ('>'), 291
alignment indicators, 291
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all (built-in function), 252
Anaconda, 8, 244, 510
anchoring, 313
and keyword, 57-58
annotations, 100
any (built-in function), 252
Any (typing module), 177
append method

collections.deque, 269
list, 67

appendleft (collections.deque), 269
archived files, 335-343
argparse module, 274
argument collector parameters, 98
arguments, 94, 101-105
argv (sys module), 259
arithmetic context, 500
arithmetic operations, 61
Array class (multiprocessing module), 462
array module

array type, 502
methods and properties of array

objects, 503
type codes for, 502

array processing, 502-511
as (file opening), 323
as (import statement), 226
as (match statement), 80
as (with statement), 201, 323
as patterns, 80
ascii (built-in function), 252
ASCII characters, 34, 619-622
asctime (time module), 412
ASGI (Asynchronous Server Gateway

Interface), 600
assert statement, 219, 527
assertEqual (unittest.TestCase class), 523
assertRaises (unittest.TestCase class), 524
assignment expressions, 59
assignment operator (:=)

assignment expressions, 59
regular expressions and, 319
simple statements, 39

assignment statements, 39, 53-56, 263
AST (abstract syntax tree), 667
ast module, 370
ast.literal_eval function, 370
asterisk (*)

argument collector parameters, 98

concatenation and repetition, 63
extended unpacking, 55
in fnmatch module, 365
import statement, 226

astimezone (datetime.datetime class), 419
async keyword, 443
asynchronous (async) programming, 443,

600
Asynchronous Server Gateway Interface

(ASGI), 600
AsyncResult class, 467
as_integer_ratio (float method), 42
as_integer_ratio (int method), 41
at sign (@)

decorators, 157-158
delimiters, 38
matrix multiplication, 493
matrix multiplication assignment

operator, 55
struct format strings, 332

atexit module, 430
atomic actions, 445
attrgetter (operator module), 495
attributes

attribute reference basics, 124-126
attribute reference special methods,

142
attribute references, 54
denoting, 53
of instance objects, 121
mutability, 40
of file objects, 325-327
special attributes of package objects,

234
specifying, 117

audit (sys module), 259
augmented assignment, 55
augmented operators, 55
automatic code conversion, 667
available_timezones (zoneinfo module),

423
await keyword, 443, 679
aware, 415 (see also datetime module)

B
b64decode (base64 module), 620
b64encode (base64 module), 620
backslash (\)
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lines and indentation, 34
special meaning of in tokens, 38
strings, 44-46

backslash escaped (\\), 45
backspace (\b), 45
backward compatibility, 11
bare excepts, 197
Barrier (threading module), 454
Barrier objects, 454
base-classes, 116
base64 module, 620-621
basename (os.path module), 354
BDD (behavior-driven development), 514
BDFL (Benevolent Dictator for Life), 10
Beaker, 601
BeautifulSoup package

BeautifulSoup class, 625
benefits of, 624
building HTML with, 638
CSS selectors, 634
editing and creating HTML with,

636-638
installing versus importing, 624
navigable classes of, 626-631
parsing example, 635
search methods, 631-634

behavior-driven development (BDD), 514
bell (\a), 45
benchmarking, 544
Benevolent Dictator for Life (BDFL), 10
Berkeley DB library, 396
Berkeley socket interface

client/server computing, 565-568
networking using sockets, 564
socket addresses, 565
socket clients

connection-oriented, 577
connectionless, 575

socket module, 568-570
socket objects, 570-575
socket servers

connection-oriented, 578
connectionless, 576

big endian/network standard byte order
(>, !), 333

big-O notation, 544-548
operations on Python built-in types,

548
bin function (built-in), 252

binary data, encoding as ASCII text,
619-622

binary literals, 41
binary mode, 324
binding

attributes, 142
port numbers, 564
unbinding with del, 56
variables, 52-54

bitwise AND operator (&), 57
bitwise operations on integers, 62
bit_count (int method), 41
bit_length (int method), 41
black tool, xiii, 29, 44
black-box testing, 514
blank lines, 33
block structure, 34
blocks, 40, 74
blue tool, 29, 44
bodies, 40
bool (built-in type), 51, 248
Boolean expressions, 557
Boolean values, 51, 142
bottlenecks, 542
bound methods, 126-129, 135, 143
bounded iterables, 43
BoundedSemaphore (threading module),

453
BoundedSemaphore objects, 453
braces ({})

command-line syntax and options, 22
delimiters, 38
in dictionaries, 49
lines and indentation, 34
in sets, 48

brackets ([])
command line syntax, 22
in-place list operations, 67
indexing a dictionary, 71
lines and indentation, 34
in lists, 48
slicing a sequence, 64

break (pdb module), 534
break keyword

break statement, 90
in else clauses, 92
in for statements, 85
in generators, 110
in try/except, 198
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in while statements, 84
breakpoint (built-in function), 252
broken (threading module), 454
browsers, running Python in, 30-32
bs4 module (see BeautifulSoup package)
bsddb3 package, 396
buffering, 321, 324
bugs, fixing, 515
built-ins

core built-ins, 247-251
definition of built-in, 247
functions, 251-259
hiding, 251
inheritance from types, 141

bytearray (built-in type), 248
bytearray objects, 47
bytes (built-in type), 248
bytes objects, 46
bytes type, 281
BytesIO class (io module), 334
bytestring/byte string, 281
bzip2 file compression, 322

C
C API, 659
cache (functools module), 270
cached_property (functools module), 269
caching, 552
calcsize (struct module), 334
calendar module, 426
callable (built-in function), 252
Callable (typing module), 177
callable attributes, 53
callable instances, 142
callables, 51
cancel (threading module), 453
capitalize method (string method), 282
capture patterns, 77
carriage return (\r), 45
case

in class names, 36
in identifier names, 35

case clauses, 75, 82
case soft keyword, 37, 76
casefold (str method), 282
cast (typing module), 181
center (string method), 282
CFFI, 3, 660

CGI (Common Gateway Interface), 597
chain (itertools module), 276
chain.from_iterable (itertools module),

276
ChainMap class (collections module), 265
character sets, 34, 309
chdir (contextlib module), 203
chdir (os module), 346
checkpointing, 217
chmod (os module), 347
chmod (pathlib.Path class), 358
choice (random module), 496
choice (secrets module), 498
chr (built-in function), 252
chroot-jail process, 564
circular imports, 231
class names, 36
class patterns, 81 (see also match)
class statements, 116
class-private variables, 119
classes, 83, 115-141

attribute reference basics, 124
bound and unbound methods, 126
class body, 117
class statements, 116
class-level methods, 135
configuring for positional matching,

83
descriptors, 119
inheritance, 129
inheritance from built-in types, 141
instances, 120
per instance methods, 140
properties, 136
__getattribute__ (special method), 140
__slots__ attribute, 139

CLDR (Common Locale Data Reposi‐
tory), 382

cleanup handlers, 198
clear (threading module), 452
clear method

collections.deque, 269
dict type, 72
list type, 67
set type, 70

client codes, 327
client-side network modules (see network

protocol modules)
client/server computing, 565-568
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close (file method), 325
close (fileinput module), 331
closing (contextlib module), 203
closures, 107
cmath module, 488-492
code conversion, 667
code examples, obtaining and using, xiv
code hosting, 558
code objects, 432, 435
code, untrusted, 433
codecs module, 302
coding directive comments, 35
collect (gc module), 436
collections module, 152, 264-269
colon (:), 38, 40, 49
colorama package, 373
colored text, 373
comb (math module), 489
combinatorial generators, 276
combine (datetime.datetime class), 419
comma (,)

in delete statements, 56
in dictionaries, 49
in global statements, 106
in lists, 48
in tuples, 47

command-line options, 22-24
parsing (argparse module), 274

commands (executing system), 479
comments and questions, xv
Common Gateway Interface (CGI), 597
Common Locale Data Repository

(CLDR), 382
commonpath (os.path module), 354
commonprefix (os.path module), 354
comparison

comparison chaining, 58
comparison operators, 62
lexicographic comparison, 148
special methods for, 142

compile (built-in function), 253, 432
compile (re module), 319
complex (built-in type), 248
complex numbers, 42
compound statements, 40
compress (itertools module), 276
compressed files, 335-343
concatenation, 63
concrete classes, 151

concurrency (see threads and processes)
concurrent.futures module, 468-470
conda package management system, 243
Condition (threading module), 451
Condition objects, 451
conditional operator, 58
conferences, 13
conjugate, 43
connect function (DBAPI-compliant

modules), 402
connection objects (DBAPI-compliant

modules), 403
connection-oriented protocols, 563, 566
connection-oriented socket clients, 577
connection-oriented socket servers, 578
connectionless protocols, 563, 565
connectionless socket clients, 575
connectionless socket servers, 576
console I/O, 373
constant time performance (O(1)), 545
containers

indexing and, 54
object attributes and, 53
special methods for, 147-150

context managers, 199, 201-203
contextlib module, 202
contextmanager (contextlib module), 203
continuation lines, 34
continue statements, 91
control characters, 38
control flow statements, 73-93

break, 90
continue, 91
else clause, 74, 84, 92, 198
for statement, 84
if, 74
match, 75
pass, 92
try and raise, 93
while, 84
with, 93

controlled deployment, 667
copy function

copy module, 264
shutil module, 367

copy method
dict type, 72
set type, 69

copy module, 263
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copyfile function (shutil module), 367
copyfileobj function (shutil module), 367
copymode function (shutil module), 367
copyreg module, 394
copysign (math module), 489
copystat function (shutil module), 367
copytree function (shutil module), 367
coroutines, 111
cos (math module), 488
count (itertools module), 276
count (string method), 282
count method

list type, 67
sequence type, 148
str and bytes types, 284
tuple type, 65

Counter class (collections module), 265
counting semaphores, 453
cProfile module, 548
CPU-bound programs, 445, 561
CPython (Classic Python), 3-5, 659
cryptography applications, 497
CSS selectors, 634
csv module, 384-386
ctime (datetime.datetime class), 419
ctypes module, 3, 462, 463, 660
cultural conventions, 374
curdir (os module), 345
currency (locale module), 376
currency values, 376-379, 502
currentframe (inspect module), 529
curses module, 373
cursor objects (DBAPI-compliant), 403
custom exception classes, 210-212
custom importers, 231
custom types

base classes for defining, 183
generics and TypeVars, 184
NamedTuple, 186
NamedTuple versus TypedDict, 189
NewType, 190
restricting TypeVar to specific types,

186
TypeAlias, 189
TypedDict, 187-188

customizing execution (see execution,
customizing)

cwd (pathlib.Path class), 358
cycle (itertools module), 277

cyclic garbage loops, 436
Cython, 3, 221, 660

D
data descriptors, 120
data interchange, 384
data types, 40-52 (see also lists; strings)

Boolean values, 51
callables, 51
dictionaries, 49
Ellipsis (…), 51
frozensets, 48
None, 50
numbers, 40
sequences, 43
sets, 48
tuples, 47, 65, 412

Database API 2.0 standard (DBAPI)
connect function, 402
connection objects, 403
cursor objects, 403
DBAPI-compliant modules, 404-409
exception classes, 399
factory functions, 401
importing DBAPI-compliant modules,

399
parameter style, 400
SQLite, 405
thread safety, 400
type description attributes, 402

DataBase Manager (DBM) modules,
396-398

databases (see persistence and databases)
dataclasses module, 164
datagram protocols, 563
date (datetime.datetime class), 420
date class (datetime module), 416-417
datetime class (datetime module),

418-421
datetime module, 415-422

date class, 416
datetime class, 418
time class, 417
timedelta class, 421
timezone class, 422
tzinfo abstract class, 421

dateutil module, 424
DBAPI (see Database API)
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DBM (DataBase Manager) modules,
396-398

deadlocks, 444
debugging

definition of term, 513
initial steps, 529
inspect module, 529-532
ipdb module, 537
pdb module, 533-536
printing versus logging information,

528
pudb module, 537
timing of, 528
traceback module, 533
using f-strings, 288

decimal literals, 41
decimal module, 500-502
decode method (bytes type), 46
decorate–sort–undecorate (DSU) idiom,

273
decorators, 157-158, 181-183
dedent (textwrap module), 300
deepcopy (copy module), 264
def statement, 94, 118
default parameters, 95
default values, 95, 97
defaultdict class (collections module), 267
deflate file compression, 322
del statement, 56
delattr (built-in function), 253
delimiters, 38
denominators, 499
deployment, 667
DeprecationWarning class, 538
deque (double-ended queue) (collections

module)
deque class (collections module), 268

descendants, 116
descriptors, 116, 119
deserialization, 384
development environments, 27-29

free text editors, 28
Integrated Development and Learning

Environment (IDLE), 27
other Python IDEs, 27
tools for checking programs, 28

dict (built-in type), 248, 268
dictionaries, 49-50
dictionary comprehensions, 90

dictionary operations, 71-73, 547
dictionary membership, 71
dictionary methods, 71
indexing dictionaries, 71
optimizing, 547

difference (set method), 69
digit grouping (f-strings), 293
dir (built-in function), 253
direct subclasses, 116
dirname (os.path module), 354
disable (gc module), 436
discard (set method), 70
displayhook (sys module), 259
dist (math module), 489
distributed computing, 444-445
distribution utilities (distutils), 235-236
Diversity and Inclusion workgroup, 13
division, 61
divmod (built-in function), 62, 253
Django, 600
docstrings (documentation strings), 99,

119
doctest module, 517-520
documentation, 11-12
documentation strings (docstrings), 99,

119
dollar sign ($), 35, 38
double quote ("), 38, 44
double quote escaped (\"), 45
double star (**) operator

dict unpacking, 50
exponentiation operator, 62
glob recursive wildcard, 358, 366
kwargs, 98, 103
kwds, 98, 104
mapping pattern (structural pattern

matching), 81
metaclass arguments, 117, 133
named argument collector, 97-98

double-ended queue (deque), 268
dropwhile (itertools module), 277
dst (datetime.time class), 418
dst (tzinfo class), 421
DSU (decorate–sort–undecorate) idiom,

273
dtype, 505
duck typing, 250
dunder (double underscore)

attribute references, 124
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availability of, 119
definition of term, 116, 141
general-purpose special methods, 142
import hooks, 233
inheritance and, 116
module metadata, 224
object type, 134
operator module, 493
overriding and nonoverriding descrip‐

tors, 120
dynamic arrays, 546
dynamic execution, 430-434
dynamically typed languages, 171

E
EAFP (It’s easier to ask forgiveness than

permission), 214, 458
elements (collections.Counter class), 266
ElementTree

building an ElementTree from scratch,
652

Element class, 644-647
ElementTree class, 647
functions in ElementTree module,

648-650
packages implementing, 644
parsing XML with ElementTree.parse,

650-652
elif clauses, 74
ellipsis (...), 26, 51
else clause

if/else, 74
try-except-else, 198
on while and for loops, 92

Emacs text editor, 28
email module

creating messages, 616
email.encoders module, 617
email.Generator module, 615
email.message module, 612-615
email.utils module, 617
example uses of, 618
functions in, 612
versus imaplib, poplib, and smtplib

modules, 611
email protocols, 584-586
embedding, 659
empty lines, 34

enable (gc module), 436
encode (str method), 282
encoding binary data, 619-622
encoding declarations, 35
end-to-end testing, 514
endswith (str and bytes method), 282
English language, 36
enum module, 166
enumerate (built-in function), 253
enumerated types (enums), 166-169
environment variables

documentation, 22
PYTHONDONTWRITEBYTECODE,

23
PYTHONHOME, 22
PYTHONINSPECT, 23
PYTHONOPTIMIZE, 23
PYTHONPATH, 22
PYTHONSTARTUP, 22
PYTHONUNBUFFERED, 23
PYTHONVERBOSE, 23

epochs, 411
(see also time operations)

equal sign (=)
alignment indicator (f-strings), 291
assignment statements, 39
delimiters, 38
in plain assignment, 55
struct format strings, 332

equal to operator (==), 62, 486
equality checking, 250
errno module, 357
error-checking strategies

handling errors in large programs, 215
logging errors, 217-219
look before you leap (LBYL), 214

errors
diagnosing, 53
ValueError, 63

escape sequences, 45, 310
eval (built-in function), 253, 431-434
Event (threading module), 452
Event objects, 452
eviction policies, 553
except clause, 196-200, 206, 454
excepthook (sys module), 260
exception (sys module), 260
exception classes, 399
exception handlers, 196
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exception handling, 93, 195
exceptions

assert statement, 219
custom classes, 210-212
error-checking strategies, 214-219
exception objects, 205-210
exception propagation, 204
ExceptionGroup and except*, 212-214
generators and, 203
purpose of, 195
raise statement, 200
standard exceptions, 207
try statement, 195-200
with statement and context managers,

201-203
exclamation point (!), 35
exc_info (sys module), 260
exec (built-in function), 254, 430-434,

478, 556
executable files, 479
executing system commands, 479
execution, customizing

dynamic execution and exec function,
430-434

garbage collection, 435-441
internal types, 434
per-site customization, 429
termination functions, 430

Executor class (concurrent package), 468
execvpe (os module), 479
exists (os.path module), 354
exists (pathlib.Path class), 358
exit (sys module), 260
exp (math module), 489
expandtabs method (string method), 282
expanduser (os.path module), 355
expanduser (pathlib.Path class), 358
expression is true/false, 52
expression statements, 431
expressions and operators

assignment expressions, 59
Boolean context of, 74
comparison chaining, 58
evaluation of versus returns from, 75
expressions as simple statements, 39
obtaining expression values, 431
short-circuiting operators, 58

extend method
array, 503, 555

collections.deque, 269
list, 67
MutableSequence, 154
sequence type, 148

extendleft (collections.deque), 269
Extensible HyperText Markup Language

(XHTML), 623
eXtensible Markup Language (XML), 623,

643
Extensible Markup Language remote pro‐

cedure call (XML-RPC) protocol, 595
extension modules

benefits of, 221
versus built-in modules, 247
in collections.abc, 152
documentation, 12
introduction to, 2
packaging programs and extensions,

655-658

F
f-strings (formatted string literals), 46,

287
factory functions (DBAPI-compliant),

401
falsy

definition of term, 51
evaluates as versus returns, 75
evaluation in Boolean contexts, 142,

248
FastAPI, 605-610
fdopen (os module), 352
field width (f-strings), 293
file and text operations (see also struc‐

tured text)
archived and compressed files,

335-343
chapters discussing files, 321
definition of file, 321
errno module, 357
filecmp module, 363-365
fileinput module, 330-332
fnmatch module, 365
glob module, 366
in-memory files, 334
internationalization, 288, 374-382
io module, 322-328
os module, 343-368
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overview of, 321
pathlib module, 357-362
richer-text I/O, 371-374
shutil module, 366-368
stat module, 362
struct module, 332-334
tempfile module, 328-330
text input and output, 368-371

file descriptor (fd), 323, 345, 351-353
file-like objects, 327, 334
filecmp module, 363-365
FileInput class (fileinput module), 330
fileinput module, 330-332
filelineno (fileinput module), 331
filename (fileinput module), 331
filename matching, 365
fileno method

socket module, 572
fileno method)

file object, 325
filesystem

definition of term, 321
searching for modules, 228-229

filesystem operations (os module)
file and directory functions, 345-351
file descriptor operations, 351-353
path-string attributes, 344
permissions, 345

fill (textwrap module), 300
fill character (f-strings), 291
filter (built-in function), 254
filter (fnmatch module), 365
filterfalse (itertools module), 277
final (typing module), 181
finalization, 142
finally clauses, 198
find method

bs4.BeautifulSoup, 631
ElementTree.Element, 646
mmap module, 482
string and bytes types, 283

first-class objects, 54, 94
flake 8 tool, 28
Flask, 602-605
flit tool, 656
float (built-in type), 248
float methods, 42
floating-point numbers

basics of, 41

caching and, 554
comparing for equality, 62
decimal numbers, 500
formatting, 294
numeric processing of, 485-487

floor division operator (//), 61
fnmatch module, 365
for statement, 84-90

basics of, 84
dictionary comprehensions, 90
iterables versus iterators, 87
iterators, 86
list comprehensions (listcomps), 88
mutable objects and, 86
range function, 88
set comprehensions, 90
syntax of, 84

form feed (\f), 45
formal parameters, 95
format (built-in function), 254
format (str method), 283, 288
format calls, 289
format specifier

f-strings, 290-295
legacy str formatting, 299

format types, 294
formatargspec (inspect module), 529
formatargvalues (inspect module), 530
formatted string literals (f-strings), 46,

287
format_map method (str method), 283
forward-referencing types, 176
fractions module, 498
frame objects, 435
free variables, 107
freeze (gc module), 437
from ... import, 226-227, 556
fromordinal (datetime.datetime class),

419
fromtimestamp (datetime.datetime class),

419
from_bytes (int method), 41
from_hex (float method), 42
frozenset (built-in type), 249
frozensets, 48
fsum (math module), 490
ftplib module, 587
full-stack frameworks, 600
function calls, 93
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function signatures
*args and **kwds in, 98
adding type annotations to new code,

192
argument collector parameters, 98
Array class (multiprocessing module),

462
callable object, 177
forward-referencing types, 176
generics and TypeVars, 184
keyword-only parameters, 103
matching arguments to parameters,

104
overload decorator, 182
Pool class (multiprocessing module),

465
Popen class (subprocess module), 476
positional argument collector (*), 96
positional-only marker (/), 96
Process class (multiprocessing mod‐

ule), 460
Value class (multiprocessing module),

462
functional testing, 514
functions

attributes of function objects, 99
built-in functions, 251-259
calling functions, 101
defining with def statement, 94
definition of term, 93
function annotations, 100
function definitions in class bodies,

118
generators, 109
higher-order functions, 157, 495
namespaces, 105
nested functions, 107
parameters, 95
positional and named arguments,

101-103
recursion, 112
return statement, 100

functools module, 269-271
Future class (concurrent.futures module),

469
fuzzing, 526

G
garbage collection, 52, 56, 435-441
gc module, 436-441
generator expressions (genexps), 89, 111
generator functions, 109
generator objects, 109
generators, 109-111, 203, 276
Generic (typing module), 184
get (dict method), 72
getargspec (inspect module), 529
getargvalues (inspect module), 530
getattr (built-in function), 254
getch (msvcrt module), 374
getcwd (os module), 347
getdefaultlocale (locale module), 377
getdoc (inspect module), 530
getfile (inspect module), 530
gethostbyaddr (socket module), 570
gethostbyname (socket module), 570
getlocale (locale module), 377
getmembers (inspect module), 530
getmodule (inspect module), 530
getmro (inspect module), 531
getpass (getpass module), 371
getpass module, 370
getrecursion limit (sys module), 261
getrefcount (sys module), 261, 436
getsizeof (sys module), 261
getsource (inspect module), 531
getsourcefile (inspect module), 530
getsourcelines (inspect module), 531
gettext module, 380-382
getuser (getpass module), 371
getvalue (io.BytesIO, io.StringIO), 335
getweakrefcount (weakref module), 440
getweakrefs (weakref module), 440
get_stats (gc module), 437
get_threshold (gc module), 437
GIL (global interpreter lock), 444
GitHub repository, xv, 655
glob (glob module), 366
glob (pathlib.Path class), 358
global interpreter lock (GIL), 444
global variables, 52, 106, 431
globals (built-in function), 254
gmpy2, 511
GNU Public License (GPL), 9
GNU Readline Library, 371
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GraalVM Python, 3, 5
gradual typing, 193
greedy matching, 308
group patterns, 79
groupby (itertools module), 278
grouping option, 293
groups, 311
gRPC protocol, 595
grpcio module, 595
guards, 58, 76, 82
Gunicorn, 599

H
hardlink_to (pathlib.Path class), 359
hasattr (built-in function), 254
hash (built-in function), 254
hash sign (#), 33, 38
hashing

hashable items (sets), 48
hashable keys, 49
special methods for, 142

hatch tool, 656
header lines, 74
headers, 40, 612
heapq module, 271-274
help (built-in function), 26, 254
help argument, 275
help, getting, 14
hex (built-in function), 254
hex (float method), 42
hexadecimal literals, 41

escape sequence (\x XX), 45
higher-order functions, 157, 495
home (pathlib.Path class), 359
homoglyphs, 36
hot spots, 542
HTML (HyperText Markup Language),

623, 635-641
html.entities module, 624
HTTP (Hypertext Transfer Protocol), 597
http.server module, 598
httpx module, 587
Hypercorn, 605
HyperText Markup Language (HTML),

623, 635-641
Hypertext Transfer Protocol (HTTP), 597

I
I/O (input/output), 322 (see also console

I/O; file and text operations; richer-
text I/O)

I/O-bound programs, 445, 561
i18n (internationalization), 288, 374-382
id (built-in function), 255
identifiers, 35, 54
IDLE (Integrated Development and

Learning Environment), 27
if statement, 74

if/else conditional expression, 58-59
ignore end of line (\<newline>), 45
IMAP4 (Internet Message Access Protocol

version 4), 584
imaplib module, 584
immutable objects, 40
immutable strings, 44
import

absolute versus relative imports, 234
from M import, 227
import failures, 227
import hooks, 232
import statement, 222-225, 227
importer factory, 232
__import__ function, 251

in keyword
dict membership, 71
in for statement, 84
membership testing, 57, 63
searching and sorting, 556
set membership, 69

in-memory files, 334
in-place assignment, 55
indentation, 33
index (list method), 67
index (string method), 283
indexfile, 398
indexing

arrays, 507
dictionaries, 71
index, 53
in plain assignment, 54
sequences, 64

inequality operator (!=), 62
inf (math module), 490
infj (cmath module), 490
inheritance
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basics of, 116
from built-in types, 141
checking instances to support, 250
custom exceptions and multiple inher‐

itance, 212
details of, 129-134

initialization, 142
input (built-in function), 255
input (fileinput module), 331
input/output (I/O), 322 (see also console

I/O; file and text operations; richer-
text I/O)

insert (list method), 67
inspect module, 435, 529-532
installation, 14-19

from binaries, 15
from source code, 16
macOS, 16
Microsoft Windows, 16
pre-installed versions, 15
Unix-like platforms, 17

installers, 5
instances

basics of, 116
details of, 120-124
per instance methods, 140

instantiation, 116
instants (time), 411
int (built-in type), 249
int type

int methods, 41
integer numbers, 41, 294
Integrated Development and Learning

Environment (IDLE), 27
integration testing, 514
interactive sessions, 25-27, 429
internal types, 434
internationalization (i18n), 288, 374-382
Internet Message Access Protocol version

4 (IMAP4), 584
internet sockets, 564
interpreter (see Python interpreter)
interprocess communication (IPC), 443,

484
intersection (set method), 69
intervals (time), 411
introspection, 528
io module, 322-328

io.BytesIO, 334

io.StringIO, 334
IPC (interprocess communication), 443,

484
ipdb debugger, 537
IPython, 6
IronPython, 5
is keyword, 168, 251, 355, 568-570
isclose (math module), 486, 490
isdir (os.path module), 355
isdisjoint (set method), 69
isenabled (gc module), 437
isfile (os.path module), 355
isfirstline (fileinput module), 331
isinstance (built-in function), 120, 250,

255
islice (itertools module), 278
isocalendar (datetime.date class), 417
isocalendar (datetime.datetime class), 420
isoformat (datetime.date class), 417
isoformat (datetime.datetime class), 420
isoformat (datetime.time class), 418
isoweekday (datetime.date class), 417
isoweekday (datetime.datetime class), 420
isstdin (fileinput module), 331
issubclass (built-in function), 255
issubset (set method), 69
issuperset (set method), 69
is_dir (pathlib.Path class), 359
is_file (pathlib.Path class), 359
is_integer (float method), 42
itemgetter (operator module), 495
items, 40, 53
items (dict method), 72
iter (built-in function), 255
iterables, 43
iterators, 86, 558
itertools module, 275-279
It’s easier to ask forgiveness than permis‐

sion (EAFP), 214, 458

J
jinja2 package, 639-641
join (os.path module), 355
join (string method), 284
json module, 386-389
Jupyter, 31
Jython, 5
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K
key argument

heapq, 273
itertools.groupby, 278
sequence comparisons, 63
sorting, 67

key value pairs, 49
key: pattern pairs, 81
keydefaultdict class (see default dict)
keyed access, 396
keys, 49, 53
keys (dict method), 72
keyword module, 37
keyword parameters, 95
keyword-only parameters, 103
kill commands, 197

L
l10n (localization), 380-382
lambda, 58, 108, 175
last-in, first-out (LIFO), 113
lazy evaluation, 110, 275
LBYL (look before you leap), 214, 458
lc-clauses (in list comprehensions), 89
leading zero indicator (0) (f-strings), 293
lefthand side (LHS), 54
legacy string formatting, 297
len (built-in function), 63, 256
less than or equal to operator (<=), 62
less than symbol (<)

alignment indicator (f-strings), 291
comparison operator, 62

Lesser GPL (LGPL), 10
lexical structure, 33-40

character sets, 34
definition of term, 33
lines and indentation, 33
statements, 39
tokens, 35

lexicographic comparison, 148
LGPL (Lesser GPL), 10
LHS (lefthand side), 54
licensing issues, 9
LIFO (last-in, first-out), 113
lightweight frameworks, 600-610
lightweight processes, 443
linear time performance (O(N)), 545

lineno (fileinput module), 332
lines, 33
linesep (os module), 345
link (os module), 347
list (built-in type), 249
list comprehension filters, 60
list comprehensions (listcomps), 88-90
listdir (os module), 347
lists

basics of, 47
versus generator expressions, 89
in-place operations on, 66
methods, 67
modifying, 66
optimizing operations, 546
sorting, 68

Literal (typing module), 177
literals, 38
literal_eval function (ast module), 370
little-endian byte order (<), 332
ljust (string method), 284
load testing, 544
local namespace/scope, 105
local scope, 105
local variables, 52
locale module, 375-379
localization (l10n), 380-382
localize (locale module), 379
locals (built-in function), 256
Lock (threading module), 449-451
Lock objects, 449
locked (threading module), 449
log (math module), 491
logging

debugging information, 528
errors, 217-219
logging module, 217

logical lines, 33
look before you leap (LBYL), 214, 458
lookup tables, 554
loops

else clause, 92
floating-point values and, 487
optimizing, 558-560
while statement, 84

lossless compression, 321
lower (string method), 284
lowercase letters, 35-37
lru_cache (functools module), 270

702 | Index



lstrip (string method), 284
LZMA file compression, 322

M
mailing lists, 14
main program, 230
Manager class (multiprocessing module),

463
map (built-in function), 256
mapping patterns, 81
mappings

in dictionaries, 49
special methods for containers, 148

markup, 623
marshaling, 384, 394
match, 75

as patterns, 80
building patterns, 76
capture patterns, 77
class patterns, 81
configuring classes for positional

matching, 83
group patterns, 79
guards, 82
literal patterns, 77
mapping patterns, 81
OR patterns, 79
pattern matching with, 75
in regular expressions, 315
sequence patterns, 79
value patterns, 78
wildcard pattern, 77

match objects, 317-318
math module, 488-492
matrix multiplication, 493, 509
max (built-in function), 63, 256
membership testing, 63
memoization, 270, 552-554
memory-mapped files, 443, 481
memoryview (built-in type), 249
merge (heaapq module), 272
metaclasses, 158-169

alternatives to, 159
class creation by, 160
custom metaclass example, 161
data classes, 164
defining and using your own, 161
definition of term, 158

methodcaller (operator module), 495
methods

basics of, 116
bound and unbound methods,

126-129
class-level methods, 135
definition of term, 53, 93
function definitions in class bodies,

118
mixin methods, 152
of file objects, 325-327
per instance methods, 140
special methods, 51

MicroPython, 7
Microsoft Windows

installing Python, 16
py launcher, 24
python.exe, 21
running Python programs, 30
virtual environments, 242

middle dot (·), 35
middleware, 599
migration, 661-668
MIME (Multipurpose Internet Mail

Extensions), 611
min (built-in function), 63, 257
Miniconda, 8
mixin methods, 152
mkdir (os module), 348
mkdir (pathlib.Path class), 359
mkdtemp (tempfile module), 328
mkstemp (tempfile module), 329
mmap module, 481-484
mocks, 515
mode (files), 345
modf (math module), 491
module spec concept, 233
modules (see also extension modules;

standard library modules)
attribute (sys module), 262
basics of, 221
built-in versus extension, 247
DBAPI-compliant modules, 404
definition of term, 29, 221
distutils and setuptools, 235-236
module objects, 222-227
module-loading operations, 227-233
Python environments, 237-245
sharing objects among, 234
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monetary formatting, 502
MonkeyType, 173
monotonic (time module), 413
most_common (collections.Counter

class), 266
move function (shutil module), 368
msvcrt module, 373
multipart messages, 612
multiple inheritance, 212
multiprocessing module, 459-468

basics of, 459
multiprocessing versus threading, 460
process pools, 464
sharing state, 461

Multipurpose Internet Mail Extensions
(MIME), 611

multithreading, 443 (see also threads and
processes)

multiversion testing, 667
mutable objects, 40
mutual reference loops, 435
mypy utility, 172-173
MySQL modules, 405

N
naive (see datetime module)
named argument collector, 97
named arguments, 50, 101
named parameters, 95
NamedTemporaryFile class (tempfile

module), 329
NamedTuple, 186, 189
NamedTuple (typing module), 184
names and naming

avoiding reuse of built-in names, 251
of classes, 36
of identifiers, 35
project .py files, 229

namespaces, 105-109
nan (math module), 491
nanj (cmath module), 491
navigable classes (BeautifulSoup),

626-631
ndarray class (NumPy package), 505
negative numbers, 291
negative zero, 292
nested format specifications, 295
nested functions, 107

nested scopes, 107
net location (netloc), 587
network encodings

encoding binary data as ASCII text,
619-622

MIME and email format handling,
611-619

network endpoints, 563
Network News Transfer Protocol

(NNTP), 595, 611
network protocol modules (client-side)

availability of, 583
email protocols, 584-586
HTTP and URL clients, 587-595
other network protocols, 595

Network Time Protocol (NTP), 595
networking basics

Berkeley socket interface, 564-578
overview of, 563
SSLContext class, 580
transport layer security (TLS), 579

new features
significant changes, 662
version notations in text, xiii
versions 3.7 to 3.11, 669-686

newline (\n), 45
NewType, 190
NewType (typing module), 181
next (built-in function), 257
nextafter (math module), 491
nextfile (fileinput module), 332
NFKC normalization, 36
nlargest (heapq module), 272
NNTP (Network News Transfer Proto‐

col), 595, 611
non-multipart messages, 617
nonblocking operations, 445
None, 50
nongreedy matching, 308
nonlocal keyword, 108
nonoverriding descriptors, 120
nonsequential file access, 325
normalization strategies, 36, 292
normpath (os.path module), 356
nose2 utility and framework, 526
not, 57, 168
not equal to operator (!=), 62
notify (threading module), 451
NotImplemented, 144, 151, 155, 156
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now (datetime.datetime class), 419
nsmallest (heapq module), 272
NTP (Network Time Protocol), 595
ntplib module, 595
Nuitka, 3
null objects (none), 50
nullcontext (contextlib module), 203
Numba, 6, 511
numbers, 40-43, 291
numbers module, 154
numeric conversions, 60
numeric objects, special methods for,

155-157
numeric operations, 60-62

arithmetic operations, 61
bitwise operations on integers, 62
numeric conversions, 60

numeric processing
array processing, 502-511
decimal module, 500-502
floating-point values, 485
fractions module, 498
math and cmath modules, 488-492
operator module, 493-495
random and pseudorandom numbers,

496-498
statistics module, 493

NumPy, 504-510

O
object (built-in type), 249
object-oriented Python (see also Python

language)
benefits of, 115
classes and instances, 115-141
decorators, 157-158
metaclasses, 158-169
polymorphism, 327
special methods, 141-157

objects
attributes of, 53
built-in object type, 224
deleting, 56
first-class objects, 54, 94
items of, 53
mutable and immutable, 40
null objects, 50

oct (built-in function), 257

octal value (\DDD escape sequence in
strings), 45

online material
extending and embedding Python, 660
packaging programs and extensions,

655
open (built-in function), 257
open (pathlib.Path class), 359
open (with open), 323
Open DataBase Connectivity (ODBC),

405
operator module, 493-495
operators

precedence (in expressions), 57
short-circuiting operators, 58

optimization
avoiding premature, 541
benchmarking, 544
definition of term, 513
fast-enough applications, 542-544
large-scale, 544-548
profiling, 548-551
small-scale, 551-554

Optional (typing module), 179
optional parameters, 95
options, command line

py launcher, 24
Python interpreter, 22-24

or, 57
OR patterns, 79
ord (built-in function), 257
OrderedDict class (collections module),

266
os module

basics of, 343
filesystem operations, 344-353
os.path module, 354-356

(see also pathlib module)
OSError exceptions, 356
in process environments, 475
running programs with, 478

OSError, 208, 323, 356
Oso, 601
outer functions, 107
overload (typing module), 182
overriding descriptors, 120
owning threads, 450, 471
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P
pack function (struct module), 334
packages

absolute versus relative imports, 234
basics of, 233
definition of term, 221
distutils and setuptools, 235-236
Python environments, 237-245
sharing objects among modules in,

234
special attributes of package objects,

234
packaging programs and extensions,

655-658
packet sniffing, 564
pack_into function (struct module), 334
pairs, 47
pairwise (itertools module), 278
parameter style (DBAPI-compliant), 400
parameter substitution, 400
parameters, 95-98, 103-105
paramiko package, 595
parentheses (())

function calls, 101
in generator expressions, 111
lines and indentation, 34

parents, 116
parse_and_bind (readline module), 372
partial (functools module), 270
parties (threading module), 455
pass statement, 92
path (sys module), 261
PATH environment variable, 237
path patterns, 366
pathlib module, 357-362
pathlib.Path class, 361
paths, 344-351
pattern expressions, 76

(see also match)
pattern matching (see fnmatch module;

match; regular expressions)
pattern string syntax, 306
payload, 612
pdb module, 533-536
peer-to-peer networking, 565
PEPs (Python Enhancement Proposals),

10
per instance methods, 140

per-site customization, 429
per-thread data, 455
percent sign (%)

legacy string format operator, 297
log message placeholder, 217
modulus division operator, 61
SQL statement placeholder, 400

perf_counter (time module), 413
period (.)

floating-point numbers, 41
import statement, 222
object attributes, 53
treatment by glob module, 366

perm (math module), 491
permission bits, 345
persistence and databases

DBM modules, 396-398
overview of, 383
Python Database API 2.0 standard

(DBAPI), 399-409
serialization, 384-396

phase (cmath module), 492
physical lines, 33
pickle module, 389-394
pipenv package, 243
pipes, 443
placeholders, 638
plain assignment statements, 53
platform (sys module), 261
plus sign (+), 63
polar (cmath module), 492
polling, 473
polymorphism, 327
Pool class (multiprocessing module), 464
pop method

dict type, 72
list type, 67
set type, 70

POP3 (Post Office Protocol version 3),
584

popen (os module), 480
Popen class (subprocess module), 476
popitem (dict method), 72
poplib module, 584
port numbers, 564
positional argument collector, 96
positional arguments, 101
positional matching, 83
positional parameters, 95
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positional-only parameters, 96
positional-only marker (/), 96
positive numbers, 291
Post Office Protocol version 3 (POP3),

584
PostgreSQL modules, 405
pow (built-in function), 257
pow (math module), 492
pprint module, 300
pre-commit package, 29
precision specification (f-strings), 294
price issues, 9
print (built-in function), 257, 369
private versus public variables, 225
procedural programming, 115
Process class (multiprocessing module),

460
process environment, 475
process pools, 464
processes, definition of term, 443 (see also

threads and processes)
process_time (time module), 413
profile module, 548
profiling, 543, 548-551
programs

block structure of, 34
CPU-bound programs, 445
I/O-bound programs, 445, 561
running, 29
running in browsers, 30
threaded program architecture,

471-474
tools for checking, 28, 529

prompt (˃˃˃), 26, 39
properties, 136-139
protocol adapters, 591
proxy (weakref module), 440
pseudorandom numbers, 496-498, 526
pstats module, 549-551
pudb debugger, 537
py launcher (Windows), 24
pydantic, 173, 605
pyenv, 8
pyflakes tool, 28
pyftpdlib module, 587
PyICU, 382
Pyjion, 6
Pylance, 173

PyPA (Python Packaging Authority), 13,
656

PyPI (Python Package Index), 12, 583
PyPy, 4, 11, 25
Pyramid, 601
Pyre, 173
Pyright, 173
PyScript, 31
pysnmp module, 595
pytest package, 527
Pythex site, 305
Python

chapter overviews, ix
development and versions, 10
extending and embedding, 659-660
implementations of, 3-9
installation, 14-19
introduction to, 1-2
licensing and price issues, 9
resources, 11-14
significant changes through 3.11,

662-664, 669-686
standard library and extension mod‐

ules, 2
upgrading, 664-668
v3.7-v3.n migration, 661-668
versions covered, xiii

Python community, 13-14, 596
Python Database API 2.0 standard

(DBAPI) (see Database API)
Python Developer's Guide, 10
Python Education workgroup, 13
Python Enhancement Proposals (PEPs),

10
Python environments, 237-244

other environment solutions, 243
Python interpreter

development environments, 27-29
for multiple environments, 237
purpose of, 21
python program, 21-27
running programs, 29
running Python in browsers, 30

Python language (see also object-oriented
Python)
control flow statements, 73-93
data types, 40
dictionary operations, 71-73
documentation, 33
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expressions and operators, 57-60
functions, 93-113
lexical structure, 33-40
numeric operations, 60-62
sequence operations, 62-68
set operations, 69-71
style guide, 33

Python Package Index (PyPI), 12, 583
Python Packaging Authority (PyPA), 13,

656
python program, 21-27

command-line syntax and options, 22
environment variables, 22
interactive sessions, 25, 37
PyPy interpreter, 25
Windows py launcher, 24

Python Software Foundation (PSF)
development and versions, 10
licensing and price issues, 9
resources available, 13

Python wheels, 235
PyTorch, 511
pytype, 174
pyupgrade package, 667

Q
quadratic time performance (O(N²)), 545
question mark (?), 307, 365
questions and comments, xv
queue module, 456-458
quopri module, 621
Quoted Printable (QP) encoding, 621
quotes

double quote ("), 38, 44
double quote escaped (\"), 45
single quote ('), 38, 44
single quote escaped (\"), 45
triple double quotes ("""), 44
triple single quotes ('''), 44

R
radix indicator (#) (f-strings), 292
RAII (resource acquisition is initializa‐

tion), 202
raise statement, 93, 200
raise to power operator (**), 62
randint (random module), 497

random (random module), 497
random access, 321, 325
random module, 496-498
randrange (random module), 497
range (built-in function), 88, 257
rapid prototyping, 543
raw sockets, 564
raw string literals, 45
RDBMS (relational DB management sys‐

tem), 383, 403, 405
re module, 305-311 (see also regular

expressions)
read (file method), 326
readline (file method), 326
readline module, 371
readlines (file method), 326
readlink (pathlib.Path class), 359
read_bytes (pathlib.Path class), 359
read_history_file (readline module), 372
read_text (pathlib.Path class), 359
realpath (os.path module), 356
rebinding, 52
rect (cmath module), 492
recursion, 112-113
redirect_stderr (contextlib module), 203
redirect_stdout (contextlib module), 203
reduce (functools module), 270
reentrant locks, 450
ref (weakref module), 440
reference counts, 435
reference loops, 439
references (see also variables and other

references)
accessing nonexistent, 53
creating new, 53
definition of term, 52
unbinding, 56

reflection, 528
regex module, 320
regex101 site, 305
regexps, 305
regular expressions (REs)

:= operator, 319
anchoring at string start and end, 313
functions of re module, 318
match objects, 317-318
match versus search, 313
optional flags, 311-313
re module, 305-311
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regex module, 320
regular expression objects, 314-317

relational DB management system
(RDBMS), 383, 403, 405

relative imports, 234
relative paths, 234
release (threading module), 449, 451, 453
relpath (os.path module), 356
remainder (math module), 492
remote endpoints, 564
remove (os module), 348
remove method

list type, 67
set type, 70

removeprefix (string method), 284
removessuffic method (string method),

284
rename (os module), 348
repeat (itertools module), 279
repetition, 63
replace (datetime.date class), 417
replace (datetime.datetime class), 420
replace (datetime.time class), 418
replace method (string method), 284
repr (built-in function), 258
reprlib module, 301
reproducibility, 526
requests package, 591-595

Response class, 594
reserved words, 37
resolve (pathlib.Path class), 360
resource acquisition is initialization

(RAII), 202
resources

books, 12
community, 13-14, 596
documentation, 11-12
new features and changes v3.7 to 3.11,

xiii, 662-664, 669-686
restricted execution, 433
return statement, 100
reverse (list method), 67
reversed (built-in function), 258
rglob (glob module), 366
rglob (pathlib.Path class), 358
RHS (righthand side), 54
richer-text I/O, 371-374
righthand side (RHS), 54
rjust method (string method), 285

rmdir (os module), 348
rmdir (pathlib.Path class), 360
rmtree function (shutil module), 368
root privileges, 564
round (built-in function), 258
rounding values, 294
rstrip method (string method), 285
runtime errors, 53
RuntimeWarning class, 539
runtime_checkable (typing module), 182
RustPython, 3

S
sample (random module), 497
scandir (os module), 348
sched module, 425
SciPy, 510
SciTE text editor, 28
scope

nested scope, 107
variable scope, 90

scraping, 623
scripts, definition of term, 29
search (re instance methods), 315
search methods, 631-634
searches, optimization of, 556
secrets module, 497
Secure Shell (SSH) protocol, 595
Secure Sockets Layer (SSL), 579
seed (random module), 497, 526
seek (file method), 326
self parameter, 86, 119, 122, 127
semantic errors, 53
semantic markup, 623
Semaphore (threading module), 453
Semaphore objects, 453
semicolon (;)

in simple statements, 39
lines and indentation, 34

sep (os module), 345
sequence operations, 62-68, 147

lists, 66
sequences in general, 63
special methods for containers, 147
strings, 65
tuples, 65

sequence patterns, 79
sequences, 43-48
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sequential file access, 325
serialization, 384-396

csv module, 384
json module, 386
pickle module, 389
shelve module, 395

serialized calls (threading), 471
server-side web programming (see web

programming)
serving HTTP (see web programming)
set (built-in type), 249
set (threading module), 452
set comprehensions, 90
set operations

optimizing, 547
set membership, 69
set methods, 69
special methods for containers, 148

setattr (built-in function), 258
setdefault (dict method), 72
setdefaulttimeout (socket module), 570
setrecursionlimit (sys module), 112, 262
sets, 48
sets of characters, 309
setUp (unittest.TestCase class), 524
setuptools, 235-236
set_completer (readline module), 372
set_debug (gc module), 438
set_threshold (gc module), 438
SGML (Standard Generalized Markup

Language), 623
shallow copies, 263
shebang (#!), 30, 35
shell environments, 237
shell utilities, 366-368
shelve module, 395
short-circuiting operators, 58
shuffle (random module), 497
shutil module, 366-368
sign indication, 291
signatures (see function signatures)
significand, 485
significant changes, xiii, 662-664, 669-686
significant digits, 294
Simple Mail Transport Protocol (SMTP),

584
Simple Network Management Protocol

(SNMP), 595
simple statements, 39

sin (math module), 488
single quote ('), 38, 44

escaped (\'), 45
single-line loops, 89
singledispatch (functools module), 271
singledispatchmethod (functools mod‐

ule), 271
site customization, 429
site module, 429
site-packages directory, 237, 241
site.py, 430
sitecustomize.py, 430
slash (/)

in arithmetic operations, 61
in file paths, 22
in glob module, 366
pathlib.Path join operator, 362

sleep (time module), 414
slice (built-in type), 250
slicing

arrays, 507
plain assignment and, 54
sequences, 64
special methods for containers, 149

SMTP (Simple Mail Transport Protocol),
584

smtplib module, 586
snake case, 37
SNMP (Simple Network Management

Protocol), 595
social media, 14
socket module, 568-570
socket objects, 570-575
sockets

internet and Unix sockets, 564
networking using, 564
raw sockets, 564
socket addresses, 565
socket clients

connection-oriented, 577
connectionless, 575

socket servers
connection-oriented, 578
connectionless, 576

soft keywords, 37
sort (list method), 67
sorted (built-in function), 258
sorting, optimization of, 556
source distribution, 12, 16
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spaces, 34
spawn function (os module), 479
spawnv function (os module), 480
special methods, 141-157

abstract base classes (ABCs), 150
basics of, 141
for containers, 147
general-purpose, 142
for numeric objects, 155

spidering, 623
split (os.path module), 356
split (string method), 285
splitlines (string method), 285
SpooledTemporaryFile class (tempfile

module), 329
spur module, 595
SQL injection attacks, 400
SQLite library (sqlite3 module), 405-409
sqlite3.Connection class, 407
SSH (Secure Shell) protocol, 595
SSL (Secure Sockets Layer), 579
ssl module, 580
SSLContext class (ssl module), 580
stack (inspect module), 531
standard error, 369
standard exceptions

classes raised by runtime errors, 207
hierarchy of, 206
OSError subclasses, 208

Standard Generalized Markup Language
(SGML), 623

standard input, 370
standard library modules

abc, 151
argparse, 274-275
ast, 370
atexit, 430
base64, 620
calendar, 426
codecs, 302
collections, 264-269
contextlib, 202
copy, 263-264
copyreg, 394
csv, 384-386
ctypes, 660
curses, 373
data classes, 164
datetime, 415-422

dbm, 396
decimal, 500
doctest, 517
email, 612
enum, 166
errno, 357
filecmp, 363-365
fileinput, 330-332
fnmatch, 365
fractions, 498
ftplib, 587
functools, 269-271
gc, 436-439
getpass, 370
gettext, 380-382
glob, 366
html.entities, 624
html.parser, 625
http.server, 598
imaplib, 584
inspect, 435, 529
io, 322-328
itertools, 275-279
json, 386-389
keyword, 37
locale, 375-379
logging, 217
math and cmath, 488
mmap, 481
multiprocessing, 459
ntplib, 595
numbers, 154
operator, 493
os, 343-353
os.path, 354-356
pathlib, 357-362
pdb, 533
pickle, 389-394
poplib, 584
pprint, 300
profile, 548
pstats, 549
queue, 456
quopri, 621
random, 496
re, 305-311
readline, 371
reprlib , 301
sched, 425
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secrets, 497
shelve, 395
shutil, 366-368
site, 429
smtplib, 586
socket, 568
sqlite3, 405-409
ssl, 580
stat, 362
statistics, 493
string, 286
struct, 332-334
subprocess, 476
sys, 259-263, 369
tarfile, 322
telnetlib, 595
tempfile, 328-330
textwrap, 300
threading, 446
time, 411-414
timeit, 552
tomllib, 656
traceback, 435
unicodedata, 303
unittest, 520
urlib, 588
uu, 622
warnings, 538
weakref, 439
xml.etree.ElementTree, 644
zipfile, 339-343
zoneinfo, 422
__future__, 666

standard output, 369
Starlette, 605
starmap (itertools module), 279
starred targets, 55
start (threading module), 454
startswith (string method), 285
stat (os module), 349
stat (pathlib.Path class), 360
stat module, 362
statements, 39
statistics module, 493
stderr (sys module), 262, 369
stdin (sys module), 262, 370
stdout (sys module), 262, 369
str (built-in type), 250, 281
strftime (datetime.datetime class), 420

strftime (time module), 414
string module, 286
StringIO class (io module), 334
strings

building from pieces, 554
built-in string types, 44-46
methods of string objects, 281-286
optimizing string operations, 547
pprint module, 300
reprlib module, 301
sequence operations, 65
special methods for string representa‐

tion, 142
string formatting, 287-300, 400
string module, 286
text wrapping and filing, 300
Unicode, 301-303

strip (string method), 285
strongly private identifiers, 36
strptime (datetime.datetime class), 419
strptime (time module), 414
Struct class (struct module), 334
struct format strings, 332
struct module, 332-334
structural pattern matching, 75
structured text

eXtensible Markup Language (XML)
building an ElementTree from

scratch, 652
ElementTree, 644-650
parsing XML iteratively, 652
parsing XML with Element‐

Tree.parse, 650-652
working with XML, 643

HyperText Markup Language (HTML)
BeautifulSoup package, 624-635
generating HTML, 635-641
html.entities module, 624
working with HTML, 623

stubs, 515
sub (re instance methods), 316
Sublime Text text editor, 28
subpackages, 233
subprocess module, 476-481
subtract (collections.Counter class), 266
sum (built-in function), 258
super (built-in type), 250
superclasses, 116
supplemental material, obtaining, xv, 655
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SupportsAbs and other protocols (typing
module), 180

suppress (contextlib module), 203
swapcase (string method), 285
symlink (os module), 350
symlink_to (pathlib.Path class), 360
symmetric_difference (set method), 70
synchronization objects (threads),

448-450
syntax (see command-line syntax and

options)
syntax errors, 53
SyntaxWarning class, 539
sys module, 259-263, 369
sys.stderr, 369
sys.stdout, 369
system (os module), 481
system analysis and design, 514
system testing, 514-517

T
tab (\t), 45
tables, 655
tabs, 34
tags, 623
tail-call elimination, 113
takewhile (itertools module), 279
tan (math module), 488
TarFile class, 337
tarfile module, 322, 335-339
targets, 54
TarInfo class, 339
tasks, 444
TCP (Transmission Control Protocol),

563
TCP/IP protocols, 564
TDD (test-driven development), 514
tearDown (unittest.TestCase class), 520,

525
tee (itertools module), 279
tell (file method), 326
telnetlib module, 595
tempfile module, 328-330
templating, 638-641
temporary files, 322
TemporaryDirectory class (tempfile mod‐

ule), 330

TemporaryFile class (tempfile module),
330

TensorFlow, 511
termination functions (see atexit module)
ternary operator, 57

(see also if/else)
test case methods, 520
test fixtures, 520
test frameworks, 519
test-driven development (TDD), 514
TestCase class (unittest module), 520,

523-525
testing

definition of term, 513
doctest module, 517-520
multiversion testing, 667
nose2 utility and framework, 526
pytest package, 527
unit testing and system testing,

514-517
unittest module, 520-526

testing frameworks, 516, 526-528
text editors, 28
text input and output, 368-371 (see also

file and text operations; structured
text)

text mode, 324
textwrap module, 300
Thread class (threading module), 447
thread local storage, 455
thread pools, 472
thread safety, 400
threading module, 446-456

functions of, 446
Thread class, 447
thread local storage, 455
thread synchronization objects, 448

ThreadPool class (multiprocessing.pool
module), 467

threads and processes
basics of, 443
concurrent.futures module, 468-470
mmap module, 481-484
multiprocessing module, 459-468
process environments, 475
queue module, 456-458
running other programs, 476-481
selecting the best approach, 445
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threaded program architecture,
471-474

threading module, 446-456
threads in Python, 445
using for optimization, 561

tilde (~), 57
time class (datetime module), 417
time method (datetime.datetime class),

420
time module, 411-414
time operations

calendar module, 426
datetime module, 415-422
dateutil module, 424
sched module, 425
time module, 411-414
zoneinfo module, 422

time zone, 415, 417-424
in email, 617

timedelta (datetime.datetime class), 416,
421

timeit module, 552
Timer (threading module), 453
timestamp (datetime.datetime class), 420
timetuple (datetime.datetime class), 420
timetuples, 412
timetz (datetime.datetime class), 420
timezone (time module), 414
timezone class, 422
time–memory trade-off, 553
timsort algorithm, 68
title (string method), 286
tkinter GUI toolkit, 473
TLS (transport layer security), 579
today (datetime.date class), 416
today (datetime.datetime class), 419
tokens, 35-39

identifiers, 35
keywords, 37
types of, 35

tomllib module, 656
toordinal (datetime.date class), 417
toordinal (datetime.datetime class), 420
total (collections.Counter class), 266
total_ordering (functools module), 271
touch (pathlib.Path class), 361
to_bytes (int method), 41
traceback module, 435, 533
transaction processing, 217

Transcrypt, 9
translate (fnmatch module), 366
translate (string method), 286
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transport layer protocol, 564
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True, 40, 51, 75, 142, 248
true division, 61
trunc (math module), 492
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try statement, 93, 195-200
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tuples, 47, 65, 412
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Two Function Rule, 192
Two Pizza Rule, 192
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type annotations

adding to code, 192-193
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syntax for, 174-176
typing module, 176-190
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type checking
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utilities for, 173

type equality checking, 250
type hints, 171
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typing module
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tzdata, 422
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tzname (time module), 414
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UDP (User Datagram Protocol), 563
umask (file), 345
unbinding, 52, 56, 142
unbound methods, 126-129
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double (__ dunder), 116, 119, 141
with gettext module, 380
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Uniform Resource Locator (URL), 587
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unittest module, 520-526
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