PYTHON

BEGH\H\IERS

A Practical Guide For The People Who Want
to Learn Python The Right and Simple Way

JOHN SNOWDEN

A Practical Guide For
to Learn Python The |

PYTHON FOR BEGINNERS

A Practical Guide For The People Who Want to
Learn Python The Right and Simple Way

JOHN SNOWDEN

COPYRIGHT

This document is geared towards providing exact and reliable
information with regard to the topic and issue covered. The
publication is sold with the idea that the publisher is not required to
render accounting, officially permitted or otherwise qualified
services. If advice is necessary, legal or professional, a practiced
individual in the profession should be ordered. - From a Declaration
of Principles which was accepted and approved equally by a
Committee of the American Bar Association and a Committee of
Publishers and Associations.

In no way is it legal to reproduce, duplicate, or transmit any part of
this document in either electronic means or in printed format.
Recording of this publication is strictly prohibited, and any storage
of this document is not allowed unless with written permission from
the publisher. All rights reserved. The information provided herein is
stated to be truthful and consistent, in that any liability, in terms of
inattention or otherwise, by any usage or abuse of any policies,
processes, or directions contained within is the solitary and utter
responsibility of the recipient reader.

Under no circumstances will any legal responsibility or blame be
held against the publisher for any reparation, damages, or monetary
loss due to the information herein, either directly or indirectly.
Respective authors own all copyrights not held by the publisher.

The information herein is offered for informational purposes solely
and is universal as so. The presentation of the information is without
contract or any type of guarantee assurance.

CONTENTS

Welcome To Python
Advantages Of Becoming A Programmer
Why Choose Python?

The Python_Lang@gg)
Project: Hello World

Basic Types
Numeric Types
Boolean Types
String Types

Collections
Lists
Tuple
Set
Dictionaries

Flow Control
Conditional Control Structures
Iterative Control Structures

Functions
How To Define A Function In Python
Control Flow
Arguments And Parameters

Modules And Packages
Modules

Packages

Object-Oriented Programming
Elements And Characteristics Of Oop
Heritage
Polymorphism
Method Overload
Encapsulation

Functional Programming
Higher-Order Functions
Lambda Functions

Text Files
About Files
Read From A Text File
Append Text To An Existing Text File
Binary Files

Regular Expressions
Metacharacters
Sets
Regex Module

Databases
Database Peculiarities
Creating A Database Table
Sql Basics

Error Handling In Python
Syntax Errors
Exceptions
Records

Python Web Development
Contributions Of Python To Web Development
Web Frameworks For Python
Using Django
Website Project: Blog

Final Words

Welcome to Python

Hi! This book is made for all those people who like to work with
computers and who want to enter this world at a deeper level
through the programming language, which is the means of
communication between us and the technology that we use. allows
to eliminate the barriers between the digital world and ours, taking
control through orders, consecutive actions, data and algorithms
that control the physical and logical behavior of a machine.
Programming possibilities are unlimited. We can observe it from
something as every day as the apps on our cell phone to incredible
creations in robotics and artificial intelligence. If you are reading
this, it is because you have discovered the potential that
programming has as a professional career in a world that, due to
various circumstances.

Advantages of Becoming a Programmer

If you are here out of curiosity, because you have already found
some information about the programmer's world, but have not yet
decided if you want to master a programming language, I will tell
you that being a programmer brings many attractive benefits.
Among the reasons that exist to be a programmer, we can mention
these ten:

* We are in the best time to be programmers. The technological
world is growing all the time, and everyday technology is
becoming more important in all types of organizations. It will
not go out of style or go anywhere. It is here to stay, and every
day, its use will be as natural as possible. This continuous and
accelerated growth is easy to observe and important, which
guarantees a promising future.

* Therefore, the labor field is quite extensive since there is a great
demand for programmers in companies of all kinds, who have
understood that only through the use of available technological
tools will they be able to add value and compete in the market
satisfactorily. In addition, there are many ramifications in

programming, which means that there will always be a field that
is ideal for you. Programming does not necessarily have to be
tedious. If you find your ideal specialization, it will be something
that you always enjoy, which will be a source of pride and
satisfaction.

* In addition to being relatively easy to find work, programming
projects are well paid worldwide, as there are not enough
professionals in this industry yet. This means that salaries are
above average, in some cases by a fairly high margin, and it is
very likely that your employer or your clients will offer you
attractive benefits to retain your talent if they manage to
understand each other well.

* You can work from home. Programming does not necessarily
have to be carried out in an office environment, since you will be
providing the service of creating intangible products, which can
be easily shared between computers, avoiding the need for main
meetings. In fact, most companies prefer it this way since most
are not specifically dedicated to technology, and it is not feasible
for them to have plant personnel who are 100% dedicated to it.
A freelancer goes hand in hand with a programmer. Tired of
complicated bosses? Can't find a schedule that suits your needs?
Do you want to start? Scheduling is for you.

* You will exercise your brain since "computational thinking" is
excellent for learning to process any type of information
properly. You will also to solve problems more efficiently and
effectively. Your mind will be much more structured, and that
will provide different perspectives. That is, you will see the
world with different eyes.

* Being a programmer will awaken your creative side. With very
basic knowledge, you can do the most diverse things. A small
idea could easily become a great project by contributing to your
portfolio or even selling for a large sum of money. As Mark
Zuckerberg put it: "Programming allows you to create
something new entirely from scratch."

* Scheduling lets you create and take control in a digitized world.
You will no longer have to worry about them threatening your
privacy or because they sell your data; if you do not want it, you
will have enough information to put security locks where you

.

neea 1t

* Python is the language of the future. Although we have been
educated to focus on traditional languages, such as English,
Spanish, French, Chinese, among others, what really keeps
everyone connected is the language used by computers.

* You don't need a degree. Programming is about dedication and
effort, and with the application of knowledge that you can
acquire in a very short time, you can create projects that show
your potential clients what you are capable of.

* And finally, what we will show you in this book: anyone can
learn! Just like learning a new language, playing an instrument,
or practicing a sport, you don't need any specific prior
knowledge. All we will require is your determination to become
a programmer and follow the steps that we provide in this book
with their respective topics and exercises.

If you are already convinced, I invite you to continue reading this
book. I promise you that the more you go into each of the topics
presented, you will discover all the potential that programming has
in a practical way and that you are capable of doing much more than
you imagined. Scheduling is not difficult when you invest the right
amount of time, are persistent, and value selflearning. You will find
that solving the challenges faced during code development is
rewarding, and when you can visualize your creations after a day of
study, you will feel motivated to continue and eager to know more.

Why Choose Python?

Let's start by understanding why we choose the programming
language that we will be learning. Python 32 is a high-level, clean,
elegant, agile, and simple programming language. Unlike many of
the great successes that exist in the market, Python was created by
Guido Van Rossum, who developed all the components of this
language but does not alone receive the merit of what we have today,
as thousands of programmers and other anonymous professionals
have contributed to its improvement and expansion. The creation of
Python occurred under these circumstances according to the words
of the creator himself:

“In December 1989, I was looking for a 'hobby' programming
project that would keep me busy during Christmas week. My office
(...) would be closed, but I had a computer at home and not much
else in my hands. I decided to write an interpreter for the new
scripting language I had been thinking of lately: a descendant of
ABC that would appeal to Unix / C hackers. I chose Python as a
working title for the project, being in a slightly lighter mood.
irreverent (and a huge Monty Python's Flying Circus fan).”

Guido created Python keeping in mind that he wanted this to be an
easy and intuitive language, be open-source so that everyone could
contribute to its development, be a code as understandable as
English itself, and be allowed to develop in a short time to achieve
every day usage.

Python has common expressions that make it require fewer lines of
code to perform basic tasks than others that exist on the market.
Some even define this programming language as minimalist.
Python's syntax is very friendly and is its most prominent element.

At first, it was designed for Unix. Later, it was included in other
operating systems, so that today we can use it on Windows and Mac
OS as well. There will never be a problem with performance as long
as the correct interpreter is used. It is also multiparadigm (a
paradigm indicates the way to solve a problem) since it allows you to
create programs with more than one programming style. Allowing
programmers to choose the best paradigm for each project, since all
problems require specific solutions, makes it more effective and
efficient. It is also multipurpose as it has a multipurpose nature. For
example, R is good for data science and Machine Learning, but not
in web development. With Python, you can do everything at once.

As if this were not enough, it has a standard library provided by the
official Python website, which provides many free resources. It also
has a multitude of unofficial libraries, which allows them to execute
complex functions more easily than other languages. All of this
thanks to the act that it is an open code, which allows the general
public to modify it according to their needs and that. In addition, the
code is constantly improving, which means that your learning will be
low cost, you will be able to work Without the need for a lot of
investment each project and therefore, and you will turn

programming into a very profitable activity. You will never be alone!
Python has a community of developers looking to contribute, share,
and develop new software,

Python brings together the best of all languages through a simple
language that offers speed and great performance. For all this, the
learning curve will be very short, and in a short time you will be
ready to perform in areas such as games, web development, graphic
design, scientific computing, data processing, financial applications,
artificial intelligence, software development, among others. With
Python, everything is possible because it offers the best versatility.

Programming Languages

What is a Programming Language?

Let's start by understanding what a language is. This is a very
convenient method to express information and later create
sequences of actions necessary to perform a task. In our
environment, there are two types of language:

* Natural language: Natural language is what we use in our daily
lives. That is, it refers to the language we speak (English,
Spanish, French, Chinese ...). It has the advantage that we learn
it gradually thanks to exposure, observation, and practice, for
which it is given the name of natural. However, it has
disadvantages, such as limited comprehension since it is
difficult to understand people when they speak a different
language. There is sometimes ambiguity or imprecision because,
in most languages, there are synonyms or the words change
their meaning according to their context.

* Symbolic language: It is a set of artificially created symbols to
express specific meanings that can be universally understood
and avoid ambiguities. Therefore, this type of language can be
understood internationally, and each symbol will always have
the same meaning regardless of where it is used.

Therefore, a programming language is a clear example of a language
that occupies an intermediate position between natural language,
used particularly by humans, and the precise symbolic languages
that allow us to interact with a machine. In this regard, we should be
particularly grateful to the progressive evolution of translation
languages that allow us to convert instructions from a programming
language to a machine language, making the programming process
that we carry out today look the same every time more to natural
languages, making the task easier.

Programming languages use Western alphabet characters and
numbers as symbols. This set or sets of characters are programmed

by the user and interpreted by the computer. Nowadays, we can
distinguish between codes due to their use and popularity: ASCII
(American Standard Code for Information Interchange) and
EBCDIC (Extended Binary Coded Decimal Interchange Code). The
first uses 7 bits for each character to represent, which translates into
a total of 27 different characters to represent. In its extended
version, it uses 8 bits, making it consist of 256 characters. This code
is the standard on all personal computers. On the other hand, the
second code always uses 8 bits per character, making it 256 in total.
This type of code is used primarily in mainframe computers
(commonly used to process data for corporate and scientific
research functions) and mid-range computers (business-oriented).

Programming Languages Structure

A language is made up of a set of symbols and words (vocabulary
and lexicon) and a set of rules (syntax and semantics) that allow
symbols to be grouped to form the language's sentences. The
programming language has a set of special rules that allow it to build
a program. We will understand by a program, a set of commands or
instructions based on a programming language that a computer
interprets to solve a problem or execute a specific function.

Although the terms "programming language" and "computer
language" are often used as if they were synonyms, it does not have
to be that way, since computer languages encompass programming
languages and others, such as HTML (language for the markup of
web pages that is not properly a programming language).

A programming language allows one or more programmers to
specify precisely what data a computer should operate on, how this
data should be stored or transmitted, and what actions it should
take under a wide range of circumstances. All this, through a
language that tries to be relatively close to human or natural
language. A relevant characteristic of programming languages is that
more than one programmer can have a common set of instructions
that can be understood among them to carry out the construction of
the program in a collaborative way.

The basic elements of language are the lexicon, syntax, and
semantics. Within the lexicon, we can distinguish the following

components:

* Identifiers: symbolic names that will be given to certain
programming elements (e.g., names of variables, types,
modules, etc.).

* Constants: data that will not change its value throughout the
program.

* Operators: symbols that will represent operations between
variables and constants.

* Instructions: special symbols that will represent processing
structures and the definition of programming elements.

* Comments: text that will be used to document the programs.

Tthe rules (syntax) or productions specify the symbol sequence that
make up a sentence in the language.

Finally, semantics defines the meaning of the syntactic constructions
of the language and of the expressions and data types used.

Low and High-Level Languages

Programming languages can be classified into low-level and high-
level languages depending on how close or far they are from the
architecture of the machine on which they will operate.

Low-level languages take their fundamentals from the Von
Neumann machine, so they are at a level very close to the machine.
The instructions are different in each computer, so they are difficult
to program and are costly. They are classified into machine language
and assembly language.

In contrast, high-level languages are based on abstract machines,
and that makes it easier for people to understand them. Their
instructions are more flexible and have greater power than the
previous language types, but a translator is necessary to convert the
program to machine language. Even so, as it does not depend on the
processor, the same program works for different computers.

High-level languages have several philosophies for programming,
also called paradigms, of which we can highlight the following:

* Imperatives: they are languages controlled by commands or
instructions. It is created through statements that, when
executed, make the interpreter change the value of one location
or more in its memory; in other words, it causes a change of
state. The successive change of states is what causes the
achievement towards the goal or the creation of a solution.
Examples of languages of this type are C, C ++, FORTRAN,
ALGOL, PL / I, Pascal, Ada, Smalltalk, and COBOL.

* Applications: Also known as functional, these look at the desired
result instead of the available data. This means that the states
through which the machine must go to obtain a response are not
examined. Rather, the function that must be applied to the state
of the machine is identified through access to the set of variables
and the creation of combinations in specific forms to get an
answer.

* Rule-based languages: They are executed by verifying the
presence of a condition that enables the execution of
appropriate action. It is similar to an imperative language, with
the difference that the sentences are not sequential. Conditions
are made with logical expressions. Therefore, they are also
known as logical programming languages. Among these
languages, Prolog is the main representative.

* Object-oriented programming: Complex data objects are
created, and then a limited set of functions are designated to
operate on that data. Complex objects are designated as an
extension of other simpler objects, inheriting their properties.
The programs created with these languages are as efficient as
those created with imperatives and are as flexible and reliable as
those created with application languages.

Whenever a high-level language is being used, an interpretation or
translation process will be necessary, which helps to convert the
programming language to machine language so that it can be
executed. The process of translating and converting into a program
is different depending on the compiler or interpreter used. A
compiler is a program that is only responsible for carrying out a
translation, not the program, while an interpreter is designed to
both translate and execute.

This gives rise to two types of errors. Compilation errors are
produced in the compilation or interpretation phase of a program,
when the syntactic or semantic rules are not met. Execution errors
are produced during the program’s execution. These error messages
are not produced by the compiler, but by a piece of code that the
compiler adds to the program. The third type of error can occur
when no reference is made to either of these two. This problem can
be observed when the program does not give any error, but the
results are not as expected. It may be because the algorithm has
been incorrectly implemented or because the algorithm was poorly
made.

In short, when we refer to a programming language, we are talking
specifically about a set of commands or commands that describe the
desired process. Each language has its own instructions and
statements, and the combination of both allows us to build
computer programs. It is important to emphasize that a
programming language is not an application or the program itself,
but rather the tool that allows us to create and modify them.

What Languages Exist for Programming?

In 1945, the mathematician and chemist Jonh (Janos) Von
Neumann presented the general principles that a general-purpose
machine should follow. The first language in which computers were
programmed was that of the processor, that is, instructions
analogous to those present in Von Neumann's machine. However, it
was necessary to take into account the machine’s details in order to
perform any calculation, and it was also very tedious to introduce
the program into the computer.

In 1951, just seven years after Von Neumann introduced the concept
of the stored-in-memory program, Wilkes, Wheeler, and Gill
describe a program loader that converts from decimal to binary
values to allow for greater convenience in encoding instructions and
addresses. In order to simplify programming, assemblers gradually
became richer wuntil they became translators of symbolic
representations (mnemonics) from machine language (assembly
languages) to machine language itself. Assembly languages are still
close to machine languages and, although they considerably simplify

the programming process, they maintain two of their main
drawbacks.

That is why an attempt was made to create a new language that was
not based directly on the machine's own instructions (that did not
depend on the specific machine) but rather on an abstraction of
these, and that was more comfortable for the programmer. In the
same way, physical devices (registers, memory cells, etc.) would not
be used directly, but abstractions of these (variables). In this way, a
new concept of programming language arose, where each language
has an abstract machine associated with which your code can be run.

If we want to run programs written in a high-level language on a
specific computer, we must translate them into other equivalents in
a specific machine code (manually or through a process called
compilation) or have a tool that reads the program and interprets it
step by step the meaning of each sentence in the program
(interpretation process). Working in this direction, between 1954
and 1958, John Backus led a working group that aimed to carry out a
machine code translator of mathematical formulas that would
express calculations. The result was both the specification of a high-
level language, Fortran, and the realization of a compiler that
translated said language into the machine code of a specific
computer (IBM 704).

Around 1960, three decisive languages were created: Algol 60,
Cobol, and Lisp. In 1958, Lisp, designed by John McCarthy, was a
very innovative language in the sense that it is far removed from the
Von Neumann concept of the machine. It is based almost exclusively
on the use of functions and lambda calculus, and its main purpose
was symbolic calculus. It was the precursor of so-called functional
languages. This language has been widely used in the field of
artificial intelligence. In 1959, the US Department of Defense
commissioned the Cobol. Its objective was clearly practical, and
although it was carried out without taking into account some of the
advances made at the time in the design of programming languages,
it was innovative in the treatment of data. It was also the first
standardized language, which favored its later use. In 1960, Algol 60
was primarily an academic language where numerous innovative
concepts were introduced and adopted by many later languages. The

language was fully specified with the BNF notation, a formalism
equivalent to non-contextual grammars. Already in 1964, the Basic
was born. This language was designed from the user's point of view.
That is, the language was intended to be easy to learn and use. This
language was quite successful in teaching and especially in the
programming of the first microcomputers, but it was hardly used in
the professional environment. Given the above, Simula was
developed in 1967, based on the Algol 60.

Pascal was born around 1970 after the software crisis. Niklaus Wirth
created a simple and clear language that allowed us to face the
increasing complexity of the programs of the time. It is the first
language based exclusively on structured programming, and thanks
to its simplicity, it has been the ideal language on which to develop
the semantics of languages and formal verification, whose
beginnings also date back to these years. In addition, Pascal has
been a good progenitor of later languages. In this sense, Wirth later
designed the Modula-2 language built on many concepts introduced
in Pascal, although he emphasizes the construction of the program
understood as a set of independent modules. After Pascal, a
multitude of languages were developed, including C, which at the
cost of a lower level of abstraction, provided great flexibility and
control over the machine’s resources. The concept of concurrent
programming also appeared around this time. The first logic
programming language, Prolog, was developed in 1975 by the
Kowalski and Colmerauer groups. However, unlike what happened
with other languages, its gestation was quite long. It can be
considered that the beginnings of Prolog are from 1960. Like Lisp,
Prolog is far from the Von Neumann machine’s concept, and it is
based almost entirely on first-order logic. Prolog has an important
advantage over other languages that the verification of programs is
almost immediate due to its logical base; however, it has the
counterpart that it is usually quite inefficient. it was developed in
1975 by the Kowalski and Colmerauer groups. Prolog has such an
important advantage over other languages that the verification of
programs is almost immediate due to its logical base; however, its
counterpart is usually quite inefficient.

In 1983, Ada was created, a language developed under the US
Department of Defense’s auspices. It is largely based on Pascal,

although it is more complex. It allows us to adequately address
concurrent programming and exception handling and introduces the
concept of overload.

Currently, there are a large number of new languages (C ++, Java,
Modula-3, Oberon, Delphi, Eiffel ...). Most of the evolutions of those
presented here, to which some of the concepts discussed above have
been added such as object orientation, exception handling,
overhead, modularity, etc.

Python is one of the most widely used programming languages
today, and the trend continues to rise. It has it all: it is open-source,
simple, and easy to understand syntax, thus saving time and
resources. It is one of the best to start with in the world of
programming. Python is a versatile language that can have multiple
applications such as Artificial Intelligence, thanks to libraries like
Keras or TensorFlow. It can also be useful for Big Data applications,
due to data processing libraries. This programming language is also
used in web development, especially thanks to its Django or Flask
frameworks. To give a few examples, the SemRush or Reddit
websites are developed with Python.

The Python Language

It is a high-level programming language (far removed from machine
language). It is a platformindependent and object-oriented scripting
language prepared to carry out any type of program, from Windows
applications to network servers or even web pages. It is an
interpreted language, which means that it is not necessary to
compile the source code to execute it, which offers advantages such
as the speed of development and disadvantages such as lower speed.

The creator of the language is a European named Guido Van
Rossum. Van Rossum's goal was to cover the need for a user-friendly
object-oriented language that could be used to deal with various
tasks within the programming that is usually done in Unix using C.
Python’s development lasted several years, during which he worked
for various United States companies. By 2000, it already had a fairly
complete product and a development team with which it had even
partnered on business projects. He currently works at Zope, a

content management platform and application server for the web, of
course, completely programmed in Python.

Its general purpose is to create all kinds of programs. It is not a
language created specifically for the web, although among its
possibilities is the development of pages. Python versions are
available on many different computer systems. It was originally
developed for Unix, although any system is compatible with the
language as long as there is an interpreter programmed for it. It is
an interpreted language, which means that the code must not be
compiled before its execution. Whe a compilation is done, it is done
in a transparent way for the programmer. In certain cases, when
code is first executed, some bytecodes are produced that are saved in
the system, serving to speed up the implicit compilation that the
interpreter performs each time the same code is executed. Python
has a command-line interpreter where you can enter statements.
Each statement is executed and produces a visible result, which can
help us understand the language better and test the results of
executing portions of code quickly.

Object-oriented programming is supported in Python; in many
cases, it is an easy way to create programs with reusable
components. It has many functions incorporated in the language
itself, for the treatment of strings, numbers, files, etc. In addition,
there are many libraries that we can import into programs to deal
with specific topics such as window programming or network
systems or things as interesting as creating compressed files in .zip.
It is remarkable that Python has a very visual syntax, thanks to an
indented notation (with margins) that is mandatory. In many
languages, elements such as curly braces or the begin and end
keywords are used to separate portions of code. To separate the
portions of code in Python, you must tabulate inwards, placing a
margin to the code that would go inside a function or a loop. This
helps all programmers adopt the same notations and ensures that
everyone's programs look very similar.

Preparing the Work Environment

There are several different implementations of Python: CPython,
Jython, IronPython, PyPy, etc. CPython is the most used, the fastest,

and the most mature. When people talk about Python, they usually
mean this implementation. In this case, both the interpreter and the
modules are written in C. Jython is the Java implementation of
Python, while IronPython is its C # (.NET) counterpart. By using
these implementations, it is possible to use all the libraries available
to Java and .NET programmers. PyPy, lastly, is a Python
implementation of Python.

Installing Python is very simple. How can you learn a programming
language if you don't have access to it? Python 2 tends to come pre-
installed on most Apple computers, but you're better off with Python
3. Python 2 is still used by many companies for one simple reason:
they built their websites with Python 2 years ago, and they haven't
yet updated to Python 3. Python 3 is a major update to the language,
with significant changes that make the transition from 2 to 3 very
complicated. That's why many companies that have made their page
with Python 2 choose to stay with it. The option is that, or rebuild
the entire page. New websites are almost always made with Python
3. In the next few years, companies that have stuck with Python 2
will make the switch to Python 3, since everyone is moving to
Python 3,

Installing Python on Mac OS X

To start using Python on Mac, we will first resort to the command
line. To access this terminal, we can follow two routes:

* Click on Spotlight and type "Terminal."

* Or, open the "Applications" folder, then the "Utilities" folder,
and finally "Terminal."

Once the terminal is open, try typing the following command and
hitting the Enter key:
Jot - 125

This should open and print a list of all the numbers from 1 to 25.
With this, we have practiced how to use a terminal.

Now we will acquire Homebrew, a manager of packages that will
allow us to install and manage software packages written in Python.
To obtain it and leave it functional, we will follow the steps below:

1. View the page https://brew.sh
2. Copy the installation command indicated on the page into
your terminal. It should look something like this:

/ bin / bash -¢ "$ (curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/master
/install.sh)".

3. A new text will open for you. Once this happens, press the
"Enter" key. This will prompt you for a password, type in your
computer's password, and press "Enter" again.

4. A new text will open for you. Go to the final lines, and if you
read the text “Installation successful,” the process has been a
success.

Now we will proceed to install Python; the steps for this will be as
follows:

1. Type the following in your terminal:

brew install python3

2. In the new text that will open, the "Summary" line will
indicate that you have finished, and it worked.

To check that everything is indeed in order, we will carry out a test
as follows:

1. Open your terminal and write the following line to check
which version you are working with:

Python3 - version

2. The text you should see after you post the above command is
as follows:

Python 3.xx

3. If the above text appears, it means that Python 3 is finally
installed and available to be used.

https://brew.sh/

Installing Python on Windows

To get everything ready, we will carry out three processes. The first
corresponds to the Python installation. To achieve this, we will
follow the following sequence of steps:

1. Visit the page https://www.python.org/downloads/ to install
Python 3.5.2.

2. Click on the installer to start the download.

3. Once the installation starts, be sure to click ADD Python to
3.5 paths.

4. Click install now. If the installation was successful, it will
indicate this phrase in the installer.

The following process corresponds to the installation of a more
suitable terminal so that we can program. Said terminal would be
Git Bash:

1. Download Git & Git Bash through the page https://git-
scm.com/download/win

2. Accept the license.

3. Allow it to be installed in the default folder and do not make
any changes to the configuration.

4. A screen will appear, indicating that the installation is
complete.

To perform a test and verify that everything is in order, you must do
the following:

1. Go to the start menu and open Git Bash.

2. Confirm that Python is available by typing: Python - -Version
and hitting the Enter key.

3. You should see the text Python 3.xx. If not, it means you have
Python 2.7 installed.

4. If you have an older Python installed, uninstall it and restart
Git Bash. This way, you should be able to view the previously
mentioned text.

Now you must install Pip, a package manager that will allow us to
install and manage software packages written in Python:

https://www.python.org/downloads/
https://git-scm.com/download/win

1. In your terminal, run the following;:
curl https://bootstrap.pypa.io/get-pip.py> get-pip.py
2. Once done, write this other line, which will install Pip:

Python get-pip.py
Ready! Now we have Python, a terminal, and a manager installed.

How to Get Python Support

After 20 years of support, Python ended support for Python 2. On
January 1, 2020, support for version 2.7 of the Python programming
language officially ended. The Python Software Foundation, led by
the language's creator, Guido van Rossum, announced that it would
no longer receive security updates and bug fixes in the future. This is
not something too serious, since the launch of its successor, Python
3, took place no less than 14 years ago, in 2006. In fact, support for
Python 2.7 should have ended in 2015. However, the huge
popularity of this version (it is still the default version of Python on
many Linux distributions) convinced the foundation of the need to
support both branches of development and to postpone the "death"
date of Python 2.7.

The aforementioned is yet another reason why we suggest you learn
Python 3 from scratch. However, you are never alone with either
Python 2 or Python 3 since the developer community is large and
united. Great software is supported by great people. The user base is
enthusiastic, dedicated to encouraging the language’s use, and
committed to making it diverse and friendly.

The official Python page is https://www.python.org , which provides
all the information related to this programming language; among its
main contents, you can find:

https://www.python.org/
https://www.python.org/

* Beginners Guide: Which is available both for those who want to
start programming from scratch (like you!). to veterans who
wish to review or update themselves on this topic.

* Downloads: Even though we have provided you with a very
specific guide to get started, you can also explore the Python
reads and their corresponding files on the official page.

* Documentation: Here, you will find the standard library, along
with additional tutorials and guides. Knowledge is power!

* Community: The phrase on the Python page is, “Python
community is vast; diverse & aims to grow; Python is Open." It
does justice to what is observed in reality. On the same official
page, it is possible to have access to the community, where you
can have access to FAQs, conferences, and support groups to
solve all the doubts that may arise both in your learning process
and in your programming career. Some prominent pages where
you can connect with the community are:

o PYSLACKERS: This is a community open by Python for
programming enthusiasts. It contains learning resources,
libraries, and resources, rules, and codes shared by the
community itself. Meet this community on the page:

https://pyslackers.com/web .

o Python Discord: The place that organizes the community
through events and challenges (with prizes!). The ideal place
to interact more directly with other developers to learn,
obtain resources, collaborate, and solve problems, you will
never get stuck. Meet this community on the page:
https://pythondiscord.com .

o Python forum: in this place, topics of all kinds are discussed:
new information, tips and advice, projects of all kinds (game
development, web development ...), tasks (for those who are
studying), and you can even share your own developments
to get feedback from other people and improve your project.
Meet this community on the page: https://python-forum.io

https://pyslackers.com/web
https://pyslackers.com/web
https://pythondiscord.com/
https://pythondiscord.com/
https://python-forum.io/

Your learning will not end with this book; being a programmer is a
continuous learning process that each of the projects that you will
carry out in the future has its own peculiarities, but you will never be
alone or adrift. Python puts at your disposal all the tools you could
need along the way. Your community will always offer help to those
who have less knowledge or are facing too great a challenge. So if
you ever encounter difficulties, don't be discouraged and visit the
pages shared here, as they will surely be something of value in your
new career as a programmer.

Project: Hello World

At last, the time you have been waiting for has arrived. The first
program that we are going to write in Python is the classic "Hello,
world!" And in this language, it is as simple as:

print ("Hello world")

Run Python and type the above line, and hit Enter. The response you
should receive in the console is the text:

Hello world

What we have done here is use the function built-in print() to print
the string Hello, world! On our screen. A string is a sequence of
characters. In Python, these are enclosed inside quotes, double
quotes, or triple quotes.

Next, we will proceed to create a text file with the previous code so
that we can distribute our great little program among our friends.
Open your preferred text editor and copy the previous line. Save it as
"hello.py," for example.

Running this program is as simple as telling Python the name of the
file to run:

python hello.py

If you use Windows, the .py files will already be associated with the
Python interpreter, so doubleclick on the file to run the program.
However, as this program does nothing more than print a text on the
console, the execution is too fast to be seen. To remedy this, we are
going to add a new line that waits for the user to enter data. This

way, a console will display the text "Hello, world!" until we press
Enter.

print "Hello world" raw__input ()

We could also run the program from the console as if it were
executable in all operating systems: ./hello.py

Basic Types

Data types are handled in any high-level programming language.
Data types define a set of values that have certain characteristics and
properties. Let's think for a moment when we were in math class.
Surely you had a class in which they taught you the different sets of
numbers. The natural ones (1, 2, 3, 4...), the integers (..., -2, -1, 0, 1,
2...), the real ones (... -1.1, -0.3, 2.1...), etc. Well, in programming
(and of course in Python), each of those sets would be what we call a
data type.

In Python, every value that can be assigned to a variable has a data
type associated with it. In Python, everything is an object. So the
data types would be the classes (where the properties are defined
and what can be done with them), and the variables would be the
instances (objects) of the data types. In short, a data type establishes
what values a variable can take and what operations can be
performed on them.

The basic Python data types are numeric (integer, floating-point,
and complex), Booleans, and strings.

Numeric types

Python defines three basic numeric data types: integers, reals, and
complex numbers.

Integer numbers

Whole numbers are those positive or negative numbers that do not
have decimals (other than zero). In Python, they can be represented
by the type int or the type long. Python's int type is implemented
low-level by a long type of C. And since Python uses underneath C,
like C, and unlike Java, the range of values it can represent is
platform dependent.

In most machines, the long of C is stored using 32 bits; that is, by
using a Python int type variable, we can store numbers from -231 to

231 - 1, or what is the same, from -2,147,483,648 to 2,147,483,647.
On 64-bit platforms, the range is -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807. Python's long type allows you to store
numbers of any precision, being limited only by the memory
available on the machine.

When assigning a number to a variable, it will become int unless the
number is so large as to require the use of the long type. We can also
tell Python that a number is stored using long by adding an L at the
end:

type (whole) return whole long = 23L

We can also represent whole numbers in the binary format octal or
hexadecimal.

The numbers octal are created by prepending “00” to a sequence of
octal digits (from o to 7):

ten_ octal = oo12
print (ten_octal)

To create an integer in hexadecimal , "0x" must be prepended to a
sequence of hexadecimal digits (from 0 to 9 and from A to F).

ten_hex = oxa
print (ten__hex)

Looking at the numbers in binary , "0b" is prepended to a sequence
of binary digits (0 and 1).

ten_binary = ob1010
print (ten_binary)
Real Numbers

Real numbers are those with decimals. In Python, they are expressed
by the type float. In other programming languages, like C, we also
have the type double, similar to float but with higher precision
(double = double precision). Python, however, implements its float

type at a low level by means of a double type variable of C, that is,
using 64 bits, then in Python double precision is always used, and
specifically, the IEEE 754: 1-bit standard is followed for the sign, 11
for the exponent, and 52 for the mantissa. This means that the
values that we can represent range from + 2.2250738585072020 X
10-308 to + 1.7976931348623157 x 10308. To represent a real
number in Python, the integer part is written first, followed by a
period and finally the decimal part:

decimal = 0.2703

You can also use scientific notation and add an e (for exponent) to
indicate an exponent in base 10. For example: decimal = 0.1e-3

It would be equivalent to 0.1 x 10-3 = 0.1 X 0.001 = 0.0001

Complex Numbers

Complex numbers are those that have an imaginary part. If you did
not know of its existence, it is more than likely that you will never
need it, so you can safely skip this section. In fact, most
programming languages lack this type, although it is widely used by
engineers and scientists in general.

In case you need to use complex numbers, or you are just curious, I
will tell you that this type, called complex in Python, is also stored
using floating-point because these numbers are an extension of the
real numbers. Specifically, it is stored in a C structure, composed of
two variables of type double, one of them serving to store the real
part and the other for the imaginary part. Complex numbers in
Python are represented as follows:

complex = 2.1 + 7.8j
Boolean Types

In Python, the class that represents boolean values is bool. A
Boolean variable can only have two values: True or False. These
values are especially important for conditional expressions and
loops.

These are the different types of operators with which we can work
with Boolean values, the socalled logical or conditional operators:

Boolean values are also the result of expressions that use relational
operators (comparisons between values):

Operator Description Example
and Isaand b r =True and False # ris
fulfilled? False
or Isaorb? r=TrueorFalse #ris
True
not Not r = not True # ris False

By default, any object is considered true with two exceptions:

Operator Description Example

== Are a and b equal? r=5==23#ris False

= Are they distinctivea |r=5=!3 #risTrue

and b?
< Is a less than b? r=5=<3#ris False
> Is a greater than b? r=5=>3#ris True

* That implements the method _bool_ (), and this returns False.
* That implements the method _len_ (), and this returns o.

Furthermore, the following objects/instances are also considered
false:

* None.

- False.

* The zero value of any numeric type.
* Sequences and empty collections.

String Types

Once we have finished with the numbers, it’s the letters’ turn.
Another essential and basic Python building block are the sequences
or character strings. This type is known as a string, although its true
class is str. Strings are nothing more than text enclosed in single
('string’) or double (“string”) quotes. Inside the quotation marks,
you can add special characters escaping them with \, such as \ n, the
new line character, or \ t, the tab character.

A string can be preceded by the character or, or the character r,
which indicate, respectively, that it is a string using Unicode
encoding and a raw string. Raw strings differ from normal strings in
that characters escaped by the backslash (\) are not replaced by their
counterparts.

%2 Z A\

Unicode = u ”a6é
raw=r"\n"

It is also possible to enclose a string in triple quotes (single or
double). This way, we will be able to write the text in several lines,
and when printing the string, the line breaks that we entered will be
respected without having to resort to the \ n character, as well as the
quotation marks without having to escape them.

triple = "" "first line

mnmen

this will be seen in another line

Strings also support operators such as +, which works by
concatenating the strings used as operands, and *, in which the
string is repeated as many times as indicated by the number used as
the second operand.

a — Hon e"

b — HtWOH

c=a+Db#cis"onetwo"

c=a*g#cis "oneoneone

Collections

A collection of data in programming stores two or more elements in
an array with different index numbers, so it helps us to group
elements that have something to do with each other. There are four
types of data collections in the Python language:

* List: it is an ordered and modifiable collection. Allow duplicate

data.
* Tuple: it is an ordered and immutable collection. Allow
duplicate data.

* Set: it is a collection that does not have an order or an index.
There are no duplicate data.

* Dictionary: it is a collection without order, modifiable, and
indexed. It does not allow duplicate data.

When choosing an arrangement type, it is helpful to understand the
properties each one possesses. Choosing the right type for a
particular data set could mean retention of meaning and increase
the efficiency or safety of the program.

Lists

The lists can contain any type of data: numbers, strings, Booleans,
and also lists. It is an ordered and modifiable collection. In Python,
these are declared in brackets:

"nn "nnmn

Fruits list = ["Strawberry", "grape", "cherry"]
Print (fruits_list)

If we want to gain access to any element in the list, we will use the
following indication, placing the index number (remember that in
programming, these start at 0) that we want to print between the
brackets.

"non "non

Fruits list = ["Strawberry"”, "grape", "cherry"]

Print (fruits_list)

"nn nn

Fruit list = ["Strawberry", "grape", "cherry"]
Print (fruits_list [1])

The use of square brackets to access and modify the elements of a
list is common in many languages, but Python has several very
pleasant surprises in store for us. A curios thing about the Python []
operator is that we can also use negative numbers. If a negative
number is used as an index, it means that the index starts counting
from the end to the left; that is, with [-1] we would access the last
element of the list, with [-2] the penultimate, with [-3], the
penultimate, and so on.

"non "non

Fruits list = ["Strawberry"”, "grape", "cherry"]

Print (fruits_list [-1])

Another unusual thing is what in Python is known as slicing or
partitioning, and that consists of extending this mechanism to allow
selecting portions of the list. If instead of a number, we write two
start and end numbers separated by a colon [start: end], Python will
interpret that we want a list that goes from the start position to the
end position, without including the latter. If we write three numbers
(start: end: jump) instead of two, the third is used to determine how
many positions to add an element to the list.

"nn "nmn "nmn

Fruits list = ["Strawberry", "grape", "cherry", "watermelon",

s1n

"cantaloupe", "kiwi", "grapefruit"]

Print (fruits_list [2: 5])

Tuple

A tuple is a collection of data whose order is unalterable. That is,
they are elements ordered in a specific sequence and that have
importance. In Python, tuples are enclosed in parentheses. Actually
the constructor of the tuple is the comma, not the parentheses, but

the interpreter shows the parentheses, and we should use them for
clarity:

t=1, 2,3 >>> type (1) type "tuple”

Also, keep in mind that it is necessary to add a comma for tuples of a
single element to differentiate it from an element between
parentheses.

t=(1)

type (t)
type "int"
t=(1,)

type (1)
type "tuple"

To refer to elements of a tuple, as in a list, use the [] operator:

my_var =t [0] # my_varis 1

my_var =t [0: 2] # my_varis (1, 2)

We can use the [] operator because tuples, like lists, are part of a
type of object called sequences. Allow me a small paragraph to
indicate that text strings are also sequences, so it will not surprise
you that we can do things like these:

¢ = "Hello world" "
c[o] # he [5:] # world
cl::3] #hello

Tuples’ difference from lists is that tuples do not have these
modification mechanisms through the very useful functions that we
talked about at the end of the previous section. They are also
immutable. That is, their values cannot be modified once created,
and they have a fixed size. In exchange for these limitations, tuples
are "lighter" than lists, so if the use that we are going to give to a
collection is very basic, you can use tuples instead of lists and save
memory.

Set

The set type in Python is the class used by the language to represent
sets. A set is a messy collection of unique elements. That is, they do
not repeat themselves. The main characteristic of this data type is
that it is a collection whose elements do not keep any order and are
also unique. These characteristics mean that the main uses of this
class are to know if an element belongs to a collection and to
eliminate duplicates of a sequential type (list, tuple, or str).

To create a set, enclose a series of elements in braces {}, or use the
class constructor set() and pass it as an argument an iterable object
(like a list, a tuple, a string ...).

S ={1,2,3,4}

Python distinguishes this type of operation from creating a
dictionary by not including a colon. However, a set cannot include
mutable objects such as lists, dictionaries, and even other sets.

Dictionaries

A dictionary is a collection without order, modifiable, and indexed.
In Python, these are enclosed in braces and have keys and values.
This means that there will be different types of values within the
same category. For example, let's look at a dictionary of movies and
directors:

d = {"Love Actually": "Richard Curtis", "Kill Bill": "Tarantino",

n,n

"Ameélie": "Jean-Pierre Jeunet"}

The first value is the key, and the second is the value associated with
the key. As a key, we can use any immutable value: we could use
numbers, strings, Booleans, tuples ... but not lists or dictionaries
since they are mutable. This is because dictionaries are implemented
as hash tables, and when entering a new key-value pair in the
dictionary, the hash of the key is calculated so that the
corresponding entry can be quickly found later. If the key object
were modified after it was entered in the dictionary, obviously, its
hash would also change and could not be found.

The main difference between dictionaries and lists or tuples is that
the values stored in a dictionary are accessed not by their index,

because in fact, they have no order, but by their key, using the []
operator again.

d ["Love Actually"] # return "Richard Curtis"

As in lists and tuples, this operator can also be used to reassign
values.

d ["Kill Bill"] = "Quentin Tarantino"

However, in this case, slicing cannot be used, among other things,
because dictionaries are not sequences but rather mappings.

Flow Control

A Python program or script is a set of instructions parsed and
executed by the interpreter from top to bottom and from left to
right. When all the instructions have been executed, the program
ends. However, we have tools to alter the program’s natural flow:
make a piece of code skip according to this or that condition, repeat
a set of instructions, etc.

A control structure is a block of code that allows you to group
instructions in a controlled way. To talk about flow control
structures in Python, it is essential first to talk about indentation.

In a computer language, indentation is what indents written human
language (at the formal level). As for formal language, when one
writes a letter, you must respect certain indentations. Computer
languages require an indentation. Not all programming languages
need an indentation, although it is customary to implement it in
order to give the source code greater readability. But in Python’s
case, the indentation is mandatory since its structure will depend on
it.

A control structure, then, is defined as follows:
Control structure opening:
expressions

Encoding (or coding) is another element of the language that cannot
be omitted when talking about control structures. This is nothing
more than a directive that is placed at the beginning of a Python file
in order to indicate to the system the character encoding used in the
file. Utf-8 could be any character encoding. If no character encoding
is specified, Python might throw an error if it encounters strange
characters:

print "En el Nagara encontré un Nanda"

Instead, indicating the corresponding encoding, the file will be
executed successfully:

-*- coding: utf-8 -*- B
print "En el Nagara encontré un Nanda"
In this section, we will talk about two control structures:

* Conditional control
structures

* Tterative control structures

Conditional Control Structures

If a program were nothing more than a list of commands to be
executed sequentially, one by one, it would not be very useful.
Conditionals allow us to check conditions and make our program
behave in one way or another, to execute a piece of code or another,
depending on this condition.

Conditional control structures are those that allow us to evaluate if
one or more conditions are met, to say what action we are going to
execute. The condition evaluation can only return 1 of 2 results: true
or false.

In daily life, we act according to the evaluation of conditions, much
more frequently than we really think: If the traffic light is green,
cross the street. If not, wait for the traffic light to turn green.
Sometimes, we also evaluate more than one condition to execute a

certain action: If the electricity bill arrives and I have money, pay the
bill.

To describe the evaluation to be performed on a condition, relational
(or comparison) operators are used:

Symbol Meaning Example Outcome

== Like e False

| = Other than Red ! = Green | True

<= Smaller than 8 <12 True

> = Greater than 12> 7 True

<= Less than or 12 c=:12 True
equal to

S Greater thanor | 4> =5 False
equal

And to evaluate more than one condition simultaneously, logical
operators are used:

Operator| Example Explanation | Qutcome

and 5 ==7and | False and False | False
pdi b

and g9 <12 and | True and true | True
12> 7

and g <12 and | True and false | False
12> 15

or 12 = = 12 or | True or false True
15 <7

or 7> 5 0rg True or true True
<12

Xor 4 ==4xo0r | True or true False
9> 13

Xor 4 ==xor9 | True or false True
<3

Conditional flow control structures are defined through the use of

three reserved keywords from the language: if ,elif Yelse .

If

The simplest form of a conditional statement is a if followed by the
condition to evaluate, a colon (:), and in the next line and indented,

the code to be executed in case this condition is met.

fav = "geekworld.net"

si (if) fav is equal to “geekworld.net” if fav == “geekworld.net”:

print "You have great taste!"
print "Thank you"

If-else

We are now going to see a somewhat more complicated conditional.
What would we do if we wanted certain orders to be executed if the
condition was not fulfilled? We could certainly add another if that
had the negation of the first as a condition:

if fav == "geekworld.net":
print "You have great taste!"
print "Thank you"

if fav! = "geekworld.net":
print "Wow, it's a pity"

But the conditional has a much more useful second construction. We
see in the following example that the second condition can be
replaced with an else. If we read the code, we see that it makes a lot
of sense: "if fav is equal to mundogeek.net, print this and this; if not,
print this other."

if fav == "geekworld.net":
print "You have great taste!"
print "Thank you"
else:
print "Wow, it's a pity"
Elif

There is still one more construction to see, which is the one that
makes use of the elif. Our last conditional construction to see is the
one that makes use of the elif. Unlike the conditional control
structures, the iterative ones (also called cyclical or loops) allow us
to execute the same code repeatedly, as long as a condition is met.

if number <o :
print "Negative"
elif number> o:
print "Positive"
else:
print "zero"

There is also a construction similar to the operator ?. From other
languages, which is nothing more than a compact way of expressing
an if-else. In this construction, the predicate C is evaluated, and A is
returned if it is true or B if it is not true: A if C else B. Let's see an
example:

var = "pair" if (num% 2 == 0) else "odd"
Iterative control structures

In Python, there are two cyclic structures:

* Loopwhile
* Loopfor

While

The while loop executes a code snippet as long as a condition is met.
Let's look at the following example:

age = 0
while age <18: age =
age + 1
print “Congratulations, you have" + str (age)

What we observed previously is that the age variable begins with o.
Since the condition that age is less than 18 is true (0 is less than 18),
we enter the loop. Age is increased by one, and the message is
printed, informing that the user has reached one year.

Now the condition is reevaluated, and one is still less than 18, so the
code that increases the age by one year is rerun and prints the age to

the screen. The loop will continue executing until age equals 18, at
which point the condition will no longer be met, and the program
will continue executing the instructions following the loop.

Now let's imagine that we forgot to write the instruction that
increases age. In that case, the condition would never be reached
that age was equal to or greater than 18, it would always be 0, and
the loop would continue indefinitely writing on the screen. You have
reached o. This is what is known as an infinite loop. However, there
are situations where an infinite loop is useful. For example, let's look
at a little program that repeats everything the user says until they
write goodbye.

while True:
entry = raw_input (">")
if entry == "bye":
break
else:
print entry

To obtain what the user writes on the screen, we use the function
raw_input. You don't need to know what a function is or how it
works exactly. Just accept for now that in each iteration of the loop,
the input variable will contain what the user typed until hitting
Enter. We then check if what the user wrote was goodbye, in which
case the break command is executed or if it was something else, in
which case what the user wrote is printed on the screen. The break
keyword exits the loop we are in.

Another keyword that we can find inside the loops is continue. As
you may have guessed, it does nothing but goes directly to the next
iteration of the loop:

age =0
while age <18:
age = age + 1

if age% 2 == o:

continue
print "Congratulations, you have" + str (age)

As you can see, this is a small modification of our congratulations
program. This time we have added and if that checks if the age is
even, we jump to the next iteration instead of printing the message.
In other words, with this modification, the program would only print
congratulations when the age was odd.

For

In Python for is used as a generic way to iterate over a sequence. And
as such, it tries to facilitate its use for this purpose. This is what a for
loop looks like in Python:

sequence = ["one", "two", "three"]
for element in sequence:
print element
Let's look at the following example:
my_list = ['John', 'Anthony’, 'Peter’, 'Herbert']
for name in my_ list:

print name

Another iteration with the loop for can emulate while . In the following example, for each
year in the range 2001 to 2013, print the phrase "Year reports":

- *-coding: utf-8 - * -
for yer in range (2001, 2013):

print "Year reports", str (year)

Functions

Creating functions is inevitable in any type of application. A function
is a block of code with an associated name, which receives zero or
more arguments as input, follows a sequence of statements which
executes the desired operation and returns a value, and/or performs
a task. This block can be called when it is needed. Python is a
language that gives us a lot of flexibility when creating functions.
The use of functions is a very important component of the
programming paradigm called structured, and it has several
advantages:

* Modularization: allows segmenting a complex program into a
series of simpler parts or modules, thus facilitating
programming and debugging.

* Reuse: allows the same function to be reused in different
programs.

Python already defines by default a set of functions that we can use
directly in our applications. You have seen some of them in previous
tutorials. For example, the function len (), which gets the number of
elements in a container object such as a list, tuple, dictionary, or set.
We have also seen the function print (), which displays text on the
console.

However, as a programmer, you can define your own functions to
structure the code in a way that is more readable and to reuse those
parts that are repeated throughout an application. This is a critical
task as the number of lines in a program grows.

In principle, a program is an ordered sequence of instructions that
are executed one after the other. However, when using functions,
you can group parts of those instructions as a smaller unit that
executes those instructions and usually returns a result.

How to define a function in Python

https://entrenamiento-python-basico.readthedocs.io/es/latest/leccion5/programacion_estructurada.html

In Python, functions are declared by typing the keyword def followed
by the name of the function and in parentheses, the arguments
separated by commas. The def statement is a function definition
used to create user-defined function objects. Next, in another line,
indented and after the colon, we would have the lines of code that
make up the code to be executed by the function:

def my_ function (parami, param2):
print parami
print paramz2

We can also find a text string as the first line of the body of the
function. These chains are known by the name of docstring
(documentation string) and serve, as the name suggests, as function
documentation.

def my_ function (parami, param2) :

nn

"" "This function print the two previous values as parameters

"

print parami
print paramz2

It is important to clarify that when declaring the function, all we do
is associate a name to the code fragment that makes up the function
so that we can execute said code later by referencing it by name.
That is, at the time of writing these lines, the function is not
executed. To call the function (execute your code), you would write:

my_ function ("hello", 2)

The association of the parameters and the values passed to the
function is normally done from left to right: as we have given
param1 a "hello" value and param2 is 2, my_function would print
hello on one line, and then 2. However, it is possible to modify the
order of the parameters if we indicate the name of the parameter to
associate the value to when calling the function:

my_function (param2 = 2, param1 = "hello")

The number of values that are passed as a parameter when calling
the function has to match the number of parameters that the
function accepts according to the declaration of the function.
Otherwise, Python will complain:

>>> my_function ("hello")

Traceback (most recent call last):

File "", line 1, in

TypeError: my_function () takes exactly 2 arguments (1 given)

To define functions with a variable number of arguments, we put the
last parameter for the function whose name must be preceded by a *
sign:

def various (parami, paramz2, * others):
for val in others:
print val
various (1, 2)
various (1, 2, 3)
various (1, 2, 3, 4)

This syntax works by creating a tuple (named others in the example)
in which the values of all the extra parameters passed as arguments
are stored. For the first call, various (1, 2), the other tuple would be
empty since no more parameters than the two defined by default
have been passed; therefore, nothing would be printed. In the
second call, others would be worth (3), and in the third (3, 4).

You can also precede the name of the last parameter with **, in
which case a dictionary would be used instead of a tuple. The keys of
this dictionary would be the names of the parameters indicated
when calling the function and the values of the dictionary, the values
associated with these parameters. The following example uses the
dictionary items function, which returns a list of its elements, to
print the parameters that the dictionary contains.

def various (parami, paramz2, ** others):

for i in others.items ():
print i
various (1, 2, third = 3)

It is important to emphasize that defining is not invoking. Let's look
at this program:

Def (square (x)
Return x ** 2

If we try to run it, nothing will happen at all; well, at least nothing
that appears on the screen. Defining a function just makes Python
silently "learn," a calculation method associated with the identifier
square. Nothing else. Let's do the test by running the program:

$ Python square.py

Nothing has been printed on the screen. It is not that there is no
print, but that defining a function is a process that does not echo on
the screen. We repeat: defining a function only associates a
calculation method with an identifier and does not imply executing
said calculation method.

Control Flow

To ensure that a function is defined before its first use, you need to
know the order in which the statements are executed; this is called
the control flow or flow of execution. Execution always begins with
the first statement in the program. Statements are executed one at a
time, in order, until a function call is reached. Function definitions
do not alter the flow of program execution but remember that the
statements within the function are not executed until the function
call is made. Although not common, you can define one function
within another. In this case, the inner function definition is not
executed until the outer function is called.

Function calls are like a detour in the flow of execution. Instead of
going to the next statement, the flow jumps to the first line of the
called function, executes all the statements it finds there and
resumes execution from where it left off. This sounds pretty simple
... until you remember that one function can call another. While we

are in the middle of a function, we might be forced to abandon it and
go to execute statements in yet another function. But while we're in
this new role, we might as well go out and run yet another role!

Fortunately, Python is good at taking note of where it is so that every
time a function completes, the program picks up where it left off in
the calling function. When it reaches the end of the program, it ends.
What is the moral of this whole story? When you're reading a
program, don't read it from top to bottom. Instead, follow the flow of
execution.

Arguments and Parameters

When defining a function, the values which are received are called
parameters, but during the call, the values that are sent are called
arguments. Some of the internal functions require arguments, the
values that control how the function performs its task. For example,
if you want to find the sine of a number, you have to indicate what
number it is. Thus, sine takes a numeric value as an argument. Some
functions take more than one argument, such as pow, which takes
two arguments: the base and the exponent. Inside the function, the
values passed to it are assigned to variables called parameters.
Here's an example of a user-defined function, which takes a
parameter:

def printDouble (step):
print step, step

This function takes a single argument and assigns it to a parameter
called step. The parameter value (at this point, we still have no idea
what it will be) is printed twice, followed by a newline character. The
name step was chosen to suggest that the name you give to a
parameter is up to you, but in general, it is better to choose a more
illustrative name than step.

The printDouble function works with any type (of data) that can be
printed:

printDouble (Ham)

Ham Ham

printDouble (5)

55
printDouble (3.14159)

3.14159 3.14159

In the first call to the function, the argument is a string; in the
second, it is an integer, and in the third, it is a floating-point
number.

The same composition rules that apply to internal functions also
apply to user-defined functions, so you can use any type of
expression as an argument to printDouble.

printDouble (Ham * 4)

Ham Ham Ham Ham Ham Ham Ham Ham
printDouble (math.cos (math.pi))
-1.0 -1.0

As usual, the expression is evaluated before executing the function,
so printDouble returns Ham Ham Ham Ham Ham Ham Ham Ham
Ham instead of 'Ham' * 4 'Ham' * 4.

We can also use a variable as an argument:
>>> latoya = 'Dafne, half laurel half nymph'

>>> printDouble (latoya) Dafne, half laurel half nymph. Dafne, half
laurel half nymph.

Notice an important aspect in this case: the name of the variable that
we pass as an argument (latoya) has nothing to do with the name of
the parameter (step). It doesn't matter what the value was called in
its original place (the place it was invoked from); here at
printDouble we call everyone step.

Modules and Packages

Modules

A module allows you to logically organize your Python code.
Grouping related code within a module makes the code easier to
understand and use. A module is a Python object with arbitrary
named attributes that you can bind and reference. Simply, a module
is nothing but a file with a .py extension. A module can define
functions, classes, and variables. It can also include executable code.
Files are their physical counterpart: each Python file stored on disk
is equivalent to one module. We are going to create our first module,
then creating a small module.py file with the following content:

def my_ function ():
print "a function"
class MyClass:
def init __ (self):
print "a class"
print "a module"

If we wanted to use the functionality defined in this module in our
program, we would have to import it. To import a module, use the
keyword import followed by the module name, which consists of the
file name minus the extension. You can use any Python code file as a
module by executing this statement in another Python code file. The
import statement has the following syntax:

import you

import re, datetime

When the interpreter encounters an import statement, it imports the
module if it is present in the search path. A search path is a list of
directories that the interpreter searches before importing a module.

When creating our first module, it must be saved in the same
directory as the program that imports it. But in some cases, we may
need to import the modules from other directories. When importing
a Python module, it goes through all the directories indicated in the
PYTHONPATH environment variable in search of a file with the
appropriate name. The value of the PYTHONPATH variable can be
queried from Python using sys.path import sys sys.path

import sys
sys.path

In this way, for our module to be available to all the system
programs, it would be enough to copy it to one of the directories
indicated in PYTHONPATH.

The import clause also allows you to import multiple modules on the
same line. In the following example, we can see how the modules of
the Python os default distribution are imported with a single clause,
which includes functionality related to the operating system; sys,
with functionality related to the Python interpreter itself and time,
in which functions are stored to manipulate dates and times:

import os, sys, time
print time.asctime ()

It is necessary to precede the name of the objects that we import
from a module with the name of the module to which they belong, or
what is the same, the namespace in which they are located. This
allows us not to accidentally overwrite another object with the same
name when importing another module. However, it is possible to
use the from-import construction to save us having to indicate the
name of the module before the object that interests us. In this way,
the object or objects that we indicate are imported into the current
namespace:

from time import asctime

print asctime ()

Packages

A package is a folder that contains several modules. If modules are
used to organize code, packages are used to organize modules.
Packages are special types of modules (both are a type of module)
that allow grouping related modules. While modules correspond on
a physical level to files, packages are represented by directories.
Using packages offers us several advantages. First of all, it allows us
to unify different modules under the same package name, being able
to create hierarchies of modules and sub-modules, or sub-packages.
On the other hand, they allow us to easily distribute and handle our
code as if they were installable Python libraries. In this way, they can
be used as standard modules from the interpreter or scripts without
previously loading them.

To make Python treat a directory as a package, you need to create a
file _ init_ .py in that folder. This way, we get Python to
understand that it is a package and not a simple folder. In this way,
we can access some of the modules of the package. Like modules,
import and from-import are also used to import packages to
separate packages, sub-packages, and modules:

import package subpackage module

package.subpack.modulo.func ()

Object-Oriented Programming

Object-Oriented Programming (OOP), as we have seen previously, is
a programming paradigm. As such, it teaches us a method—proven
and studied—which is based on the interactions of objects to solve t
a computer system’s needs.

Elements and Characteristics of OOP

The elements of OOP can be understood as the materials we need to
design and program a system, while the characteristics could be
assumed as the tools that we have to build the system with those
materials. Among the main elements of OOP, we can find classes,
properties, methods, and objects.

Classes are the models on which our objects will be built. That is the
generic area template from which to instantiate the objects, a
template that is the one that defines what attributes and methods
will have the objects of that class. In Python, a class is defined with
the statement class followed by a generic name for the object:

class Object:
pass

Properties, as we have seen before, are the intrinsic characteristics of
the object. These are represented as variables, only they are called
properties :

class Object ():

nn

color =

nn

size =

nn

aspect =

The methods are functions, technically called methods, that
represent their own actions that the object (and not another) can

perform:
The methods are functions
class Object ():

color = "gree"

size = "big"

aspect = "ugly"
def float (self):
pass

The classes by themselves are nothing more than models that help
us create specific objects.

We can say that a class is an object’s abstract reasoning, while the
object is its materialization. Creating objects is called instantiate a
class, and this instance consists of assigning the class as a value to a
variable:

class Object ():
color = "green"
size = "big"
aspect = "ugly"
antennas = Antenna ()
eyes = Eye ()

hairs = Hair ()

def float (self):

print 12

et = Object ()
print et.color
print et.size
print et.aspect
et.color = "pink"

print et.color

Heritage

Some objects share the same properties and methods as another
object and also add new properties and methods. This is called
inheritance: a class that inherits from another. However, the act of
inheriting from a class is also often called "extending a class.” It is
worth clarifying that in Python when a class does not inherit from
any other, it must be inherited from an object, which is the main
Python class, which defines an object.

Suppose we want to model the musical instruments of a band, then
we will have a guitar class, a drum class, a bass class, and so on.
Each of these classes will have a series of attributes and methods,
but it happens that, by the mere fact of being musical instruments,
these classes will share many of their attributes and methods; an
example would be the method play().

It is easier to create an Instrument object type with the common
attributes and methods and tell the program that Guitar, Drums,
and Bass are instrument types, making them inherit from
Instrument. To indicate that one class inherits from another, place
the name of the class it inherits from in parentheses after the name
of the class:

class Instrument:
def _ init __ (self, price):

self.price = price

def play (self):

print "We are playing music'
def break (self):

print "You will pay that"

1

print "Are", self.price, "$$$"
class Battery (Instrument):
pass
class Guitar (Instrument):
pass

As Drums and Guitar inherit from Instrument, they both have a
method play() and a method break(), and are initialized by passing
a price parameter. But what if we wanted to specify a new
string_type parameter when creating a Guitar object? It would be
enough to write a new method _ init_ for the Guitar class that
would be played in place of the Instrument ___init__ . This is what is
known as overriding methods. Now, it can happen in some cases
that we need to overwrite a method of the parent class, but in that
method, we want to execute the method of the parent class because
our new method does not need more than to execute a couple of new
extra instructions. In that case, we would use the SuperClass.method
(self, args) syntax to call the method of the same name as the parent
class. For example, to call the Instrument _ init method from
Guitar, we would use Instrument ___ init __ (self, price). Note that,
in this case, it is necessary to specify the self parameter.

A class can inherit from multiple classes at the same time. For
example, we could have a Crocodile class that inherits from the
Terrestrial class, with methods like walk () and attributes like
speed_walk, and of the Aquatic class, with methods like swim () and
attributes like speed _swim. It is enough to enumerate the classes
from which it is inherited, separating them by commas:

class Crocodile (Ground, Aquatic):

pass

In the event that any of the parent classes had methods with the
same name and number of parameters, the classes would overwrite
the implementation of the methods of the classes further to their
right in the definition. In the following example, as Terrestrial is
more to the left, it would be the definition of displacement of this
class that would prevail, and therefore if we call the displace method
of an object of type Crocodile, what would be printed would be “The
animal walks":

class Ground:
def move (self):
print "The animal walks"
class Aquatic:
def move (self):
print "The animal swims"
class Crocodile (Ground, Aquatic):
pass
¢ = Crocodile ()

c.move ()
Polymorphism

It means the ability to take more than one form. An operation can
exhibit different behaviors in different instances. The behavior
depends on the data types used in the operation. Polymorphism is
widely used in the application of inheritance since an object of a
derived class is at the same time an object of the parent class, so
where an object of the parent class is required, one of the child class
can also be used.

In Python, since it is not necessary to explicitly specify the type of
the parameters that a function receives, functions are naturally
polymorphic. A block of code will be polymorphic when within that
code, calls are made to methods that can be redefined in different
classes.

Using polymorphism, we can invoke the same method of different
objects and obtain different results according to their class. This
means that we can call a method exactly the same as another, and
the interpreter will automatically detect which of them we refer to
according to various parameters, for example, the type of data we
pass as an argument when calling it, the class to which it belongs, or
we can even specify which method we mean. Polymorphism is a
matter of organization and good practice for the programmer who
works with many objects and methods.

Allowing the developer not to write, think, and remember many
different method names, but instead can call the appropriate object's
method with the same name that it would call others.

Polymorphism is used very often, more than we are aware of.
Remember that in Python, everything is an object, which makes it
very likely that even without resorting to classes, we will use
polymorphism. For example, only the print () function prints
various types of objects without the need for us to specify anything,
and this is also possible thanks to one of Python's properties called
"dynamic typing."

Method overload

In Python, method overloading as such does not exist. Those who
come from other languages such as Java find some confusion since it
is something very common in that language. In Python, overloading
is absurd, although there are those who have written about it
claiming that it is "good practice in any language."

Method overloading refers to the practice of having different
methods with the same name in the same class. In this way, the
interpreter or compiler will be able to differentiate them by the types
of data that are sent as arguments in the parameters.

In Python, the dynamism that characterizes this programming
language causes a conflict by not knowing what type of variables we
are referring to. Although it is possible to emulate overloading, we
will skip this practice since, although it works well, it is absurd and
unnecessary. In Python, you should not have two methods with the

same name or call the same method with different types of
parameters.

Encapsulation

Encapsulation in programming is a concept related to object-
oriented programming and refers to the hiding of a class’s internal
state from the outside. In other words, encapsulation consists of
making the attributes or methods internal to a class not accessible or
modified from the outside, but only the object itself can access them.

In Python, there are no access modifiers, and what is usually done is
that access to a variable or function is determined by its name: if the
name begins with two underscores (and does not also end with two
underscores), it is of a private variable or function; otherwise it is
public. Methods whose names begin and end with two underscores
are special methods that Python calls automatically under certain
circumstances:

Class Student ():
Def init_ (self.name =""):

Self.name = name

Self. secret = "asdasd"
a1 = Student ("Josheph")
al._secret
Traceback (most recent call last):
File “<stdin>”, line 1 in <module>
AttributeError: "Student" object has no attribute "_secret”

Functional Programming

For a few years, it has become fashionable to work with functional
programming as if the new generations had re-discovered the
advantages over object-oriented programming or began to become
aware of the limitations in their way of working.

The principles of functional programming are as follows:

* Using functions: As the name suggests, everything is built
through functions. This way of working is not only simple,
orderly, clear, easy to test, but it is also a practice that great
military figures such as Julius Caesar and Napoleon have used.
No, they did not use Python (at least there is no record of it), but
they applied the concept of: "divide and conquer." And
functional programming uses this strategy for just about
everything.

- First-class features: Functions are treated as one more variable.
They can even be returned.

* Pure functions: Fully predictive, the same input data will
produce the same output data. You can override the input
parameter without disturbing the flow of the program.

* Recursion: Functions can call themselves, simplifying tasks such
as traversing data trees or managing controlled loops.

- Immutability: There are no variables, only constants. Personally
understanding its potential and putting it into practice was like
resetting my brain; I had to re-learn how to use a variable.
Anecdote aside; Where does software usually fail? In the vast
majority of cases, it comes from a variable that has been
changed. This causes a block of code to be executed with
conditions unforeseen. It is necessary to review each variable in
different values until we find the culprit. I make a reflection:
What if those variables were never modified? Or, being more
practical, what if we create a new constant for each
modification? What if... I tell you that at the performance level...
it is more efficient? It is a very interesting concept to apply.

* Lazy evaluation (not strict): In functional programming, we can
work with expressions that have not been evaluated, or in other
words, we can have variables with operations whose result is not
yet known. This is called loose screening. One side effect is
increased performance, and another is that we can do crazy
things like doing calculations with very complex operations or
infinite lists without doing calculations. How is this possible?
Because you work with mathematical expressions, the value is
only calculated when you need it, for example, when performing
a print.

Why use functional programming? Functional techniques facilitate
the creation of concurrences, help us to reduce problems since the
variables are constant and immutable so that we will not observe the
programming error derived from the "Mutable global state."
Likewise, testing is a faster process because by knowing what
parameters to give to a function, we can know what results to expect.
Functional programming is not exclusive. It is combined in an
excellent way with imperative and object-oriented programming.
Since version 3 of Python, this language has adopted native tools.
Finally, we will obtain a compliant code that is easy to assimilate
and read since it is more comfortable to understand a function than
the structuring of an object.

Before starting with examples, it is worth knowing some of the
modules that facilitate functional programming in Python. Among
them, we can find the following:

* Intertools: This module comes already installed with the official
distribution of python; it provides us with a large number of
tools to facilitate the creation of iterators.

* Operator: We will also find this module already installed with
Python, in which we will be able to find the main operators of
Python turned into functions.

* Functools: Also already included within Python, this module
helps us créate Higherorder functions, that is, functions that act
on or return other functions.

* Fn: This module, created by Alexey Kachayev, gives Python
additional "batteries" to make the functional style of
programming much easier.

* Cytoolz: This module, created by Erik Welch, also provides
several tools for Functional programming, specially oriented to
data analysis operations.

* Macropy: This module, created by Li Haoyi brings to Python
characteristics of purely functional languages, such as pattern
matching, tail call optimization, Y case classes.

Python, without being a purely functional language, includes several
characteristics taken from functional languages such as higher-order
functions or lambda functions (anonymous functions).

https://docs.python.org/3/library/operator.html
http://python.org/
http://python.org/
https://docs.python.org/3/library/functools.html
http://python.org/
http://es.wikipedia.org/wiki/Funci%C3%B3n_de_orden_superior
https://github.com/kachayev/fn.py
https://github.com/kachayev
http://python.org/
https://github.com/pytoolz/cytoolz
https://github.com/eriknw
http://es.wikipedia.org/wiki/Programaci%C3%B3n_funcional
https://github.com/lihaoyi/macropy
https://github.com/lihaoyi
http://python.org/
http://es.wikipedia.org/wiki/B%C3%BAsqueda_de_patrones
http://en.wikipedia.org/wiki/Tail_call
http://en.wikipedia.org/wiki/Scala_%28programming_language%29

Higher-Order Functions

The concept of higher-order functions refers to the use of functions
as if it were any value, making it possible to pass functions as
parameters of other functions or to return functions as a return
value. This is possible because, as we have already insisted on
several occasions, in Python, everything are objects. And functions
are no exception.

In the following lines, we can see an example of the above:

def greet (lang):

def greet_es ():
print "Hello"

def greet_en ():

print "Hi"
def greet_fr () :
print "Salut”

lang_func = {“es”: greet_es,
"En": greet_en,
"Fr'": greet_fr}

return lang_ func [lang]

f = greet ("is")

F()

As we can see, the first thing we do in our little program is called the
greet function with a parameter it is. In the greet function, several
functions are defined: greet_es, greet_en, and greet_fr, and then a
dictionary is created that has as keys text strings that identify each
language, and functions as values. The return value of the function is
one of these functions. The function to return is determined by the
value of the parameter lang that was passed as an argument to say
hello. Since the return value of hello is a function, as we have seen,
this means that f is a variable that contains a function. We can then

call the function referred to by f in the way that we would call any
other function, adding a few parentheses and, optionally, a series of
parameters between the parentheses. This could be shortened since
it is not necessary to store the function that is passed to us as a
return value in a variable to be able to call it:

g reet (“en”) () Hi
greet (“fr”) () Sal ut

In this case, the first pair of parentheses indicates the parameters of
the hello function, and the second pair, those of the function
returned by hello.

Using Map, Reduce, Filter, and Zip

One of the coolest things we can do with our higher-order functions
is passing them as arguments to the map, filter, and reduce
functions. These functions allow us to replace the typical loops of
imperative languages with equivalent constructions.

Map

The function map allows us to apply a function on each of the
elements of a collection (lists, tuples, etc ...). We will use this
function whenever we have the need to transform the value of one
element into another. The structure of the function is as follows:

map (functon to apply, iterable object)
The function to be applied must return a new value. It is from these

new values that we will obtain a new collection. Let's see an
example:

def square (element = 0):
return element * element

list = [1,2,3,4,5,6,7,8,9,10]

result = list (map (square, list))

print (result)

As of version 3, the map function returns a map object, which we can
easily convert to a list. In this case, as the function that we apply on
the elements, we can replace it with a lambda function. The code
could be as follows:

Result = list (map (lambda element: element * element, list))

Filter

The filter function is perhaps one of the most used functions when
working with collections. As its name indicates, this function allows
us to filter the elements of the collection. The structure of the
function is as follows:

Filter (function to apply, iterable object)

The function to apply will be applied to each of the elements of the
collection. This function should always return a Boolean value. All
those elements that result in True a fter applying this function, it
will be the elements that pass the filter. From these elements, a new
collection will be created. Let's see an example:

def greater_than_ five (element):

return element> 5
tuple = (5,2,6,7,8,10,77,55,2,1,30,4,2,3)
result = tuple (filter (greater_than_ five, tuple))
result = len (result)

print (result)

As of version 3, the filter function returns a filter object that we can
easily convert to a tuple.

Reduce

We will use the reduce function when we have a collection of
elements, and we need to generate a single result. Reduce will allow

us to reduce the elements of the collection. We can see this function
as an accumulator. The structure of the function is as follows:

reduce (function to apply, iterable object)

Here, the important thing is to detail the function to apply . This
function must necessarily have two parameters. The first parameter
will refer to the accumulator, a variable that will change its value for
each of the elements in the collection. On the other hand, the second
parameter will refer to each element of the collection. The function
must return a new value. It will be this new value that will be
assigned to the accumulator. This may sound confusing, but it will
improve with a couple of examples. Let's start with an imperative
approach:

list = [1,2,3,4]
accumulator = 0;
for element in list:

accumulator + = element

print (accumulator)

As we can see, to solve the problem, we had to declare a variable
accumulator that starts with the value of 0. As we go through the list,
the value of our variable increases. Its new value is the current value
plus the value of the item in the list. So far, I don't think there is any
doubt. Now let's look at the same example using the reduce function:

from functools import reduce
list = [1,2,3,4]
def function_accumulator (accumulator = o, item = 0):
return accumulator + element
result = reduce (function_ accumulator, list)
print (result)

For each element of the collection, the function is executed,
function_accumulator . The function returns the sum of the

parameters. This value is stored in our accumulator. At the end of
the iteration of all the elements, reduce will return the value of the
accumulator.

Zip

The built-in function (i.e., it doesn't need to be imported) zip() takes
as argument two or more iterable objects (ideally each one with the
same number of elements) and returns a new iterable whose
elements are tuples that contain one element from each of the
original iterators.

countries =["China", "India", "United States", "Indonesia"]
population = [1391, 1364, 327, 264]
list (zip (countries, populations))

[("China", 1391), (“India”, 1364), (“United States”, 327),
(“Indonesia”, 264)]

This function is especially useful in for loops to access the elements
of two or more iterables simultaneously:

for country, population in zip (countries, population):

print("{}: {} million inhabitants.". format (country, population))
China: 1391 million inhabitants.
India: 1364 million inhabitants.
United States: 327 million inhabitants.

Indonesia: 264 million inhabitants.

Lambda Functions

The lambda operator is used to create anonymous functions online.
As they are anonymous functions, that is, without a name, they
cannot be referenced later. Lambda functions are constructed using
the lambda operator, the function parameters separated by commas
(attention, no parentheses), a colon (:), and the function code. This
construction could have been useful in previous examples to reduce

code. The program we use to explain filter, for example, could be
expressed like this:

1=1[1,2,3]
12 = filter (lambda n: n% 2.0 == 0, 1)
Let's compare it to the previous version:
Def is_pair (n):

Return (n% 2.0 == 0)
1=11,2,3]
12 = filter (is_pair, 1)

Lambda functions are restricted by syntax to a single expression.

Text Files

About Files

Python makes working with files and text very easy. Let's start with
the files.

Let's start with a short discussion about terminology. In a previous
lesson, depending on the operating system of your computer, Mac or
Windows , you saw how information is sent to the "exit command"
window in your text editor by using the command print Python:

print (Hello world)

The Python programming language is of the object-oriented type.
This means that it is built around a special type of entity, an object,
which contains both data as well as a series of methods for accessing
and altering the data. Once an object is created, it can interact with
other objects.

In the example above, we saw one type of object, the string "Hello
world." The string is the sequence of a series of characters enclosed
in quotation marks. You can write a string in three different ways:

Message1 = 'Hello world'
Message2 = "Hello world"
Message3: "" "Hello
Hello

Hello world ”””

What is important here is to note that, as seen in the first two
examples, you can use single or double quotes, but you should never
mix the two types in the same string. In the third message, double
quotation marks repeated three times indicate a string that spans
more than one line.

Therefore the following messages contain errors:

https://programminghistorian.org/es/lecciones/instalacion-mac
https://programminghistorian.org/es/lecciones/instalacion-windows
https://docs.python.org/2/reference/simple_stmts.html

Message1 = "Hello world"
Message2 ='Hello, world'
Message3 ='His name is John O'Connor’

Counts the number of single quotes in the message 3. For this to
work correctly, we will have to save the apostrophe. Or rewrite the
phrase as:

Message3 = 'His name is John O \ “Connor’

Print is a command that prints objects in textual form. Combining
the print command with a text string produces a statement.

You will use the print command in this way in cases where you want
to generate information that needs to be manipulated immediately.
Sometimes, however, you will create information that needs to be
saved, sent to someone else, or used as input for further processing
by another program or set of programs. In these cases, we will want
to send information to files on the hard drive instead of sending it to
the output command panel. Write the following program in your text
editor and save it as file-output.py

f = open (‘'helloworld.txt', 'wb'
f.write ('Hello, world")
f. close ()

In Python, any line that starts with a pound sign or pound sign (#) is
called commentary and is ignored by the Python interpreter.
Comments are intended to allow programmers to communicate with
each other (or to remind themselves of what the code is doing when
they sit in front of it a few months later). In a broad sense, programs
are written and formed in a way that makes it easier for
programmers to work collectively. The code that is closest to the
requirements of the machine is called a low level , while the code
that is closest to the language of human beings is called high level .
One of the benefits of using a programming language like Python is
that it is of a higher level, which makes it easier for us to
communicate with you (of course, at a certain cost in terms of
computing efficiency).

In this show, f is an object while open, write, and close are methods .
In other words, open, write, and close act on the object f, which, in
this case, is defined as a .txt text file. This is probably a use of the
term "method" that you might expect, and from time to time, you
will find that words used in the context of programming have slightly
(or completely) different meanings than everyday speech. In this
case, remember that "method" means code snippets that perform
actions. They run something on one thing and return a result. You
can try to imagine this using some real-world referent, such as giving
orders to your dog that has been trained previously. Your pet (the
object) understands commands (i.e., it has "methods") like "bark,"
"sit," "lie down," and so on. We will discuss and learn how to use
many other methods as we progress.

The name of a variable that we have chosen is f. We could have called
him anything. In Python, variable names can be constructed with
uppercase letters, lowercase letters, or numbers. But we cannot use
the names of the language commands as variables. For example, if
we try to name a variable "print," the program will not respond
because that is a reserved word that is part of the programming
language. Variable names in Python are also case-sensitive, which
means that trap, Trap, or TRAP would be representations of different
variables.

When you run the program we wrote, the method open tells your
computer to produce a new text file called helloworld.txt in the same
folder that we created the file-output.py program in. The parameter
w indicates that we intend to write content to this new file using
Python. Keep in mind that both the file name and the parameter are
enclosed in single quotes, so you know that it will be data stored as
strings. If you forget to include the quotes, the program will crash. In
the next line, your program writes the message "Hello world" (which
is another string) in the file and then closes it. Run Python. And
although nothing will be written in the output command panel, you
will see a status message that will say something like this on Mac:

'/ usr / bin / python file-output.py' returned o.

While in Windows, you will see:

https://docs.python.org/release/2.5.4/ref/keywords.html

'C: \ Python27 \ Python.exe file-output.py' returned o.

Since plain text files include minimal information, they tend to be
small in volume, easy to exchange between different platforms (for
example, from Windows to Linux or Mac or vice versa), and easy to
send from one computer program to another. They can also be read
in all text editors.

Read From a Text File

Python also has methods that allow us to get information from files.
Write the following program in the text editor and save it as input-
file.py . When you click "Run Python," the program will open the text
file you just created, read the one-line text it contains, and print the
information in the "output command" panel.

LI N |

f = open (‘helloworld.txt', 'r')

message = f.read ()
print(message)

f. close ()

In this case, the parameter r is used to indicate that you are opening
a file to read the information it contains. Parameters allow you to
choose from a number of different options that a particular method
allows. Going back to the pet example, the dog can be trained to bark
once if it receives a beef-flavored treat and twice if it receives a
chicken-flavored treat. The taste of the prize cookie is the parameter.
Each method is different in terms of what parameters it will accept.
For example, you can't ask the dog to sing an Italian opera—unless
your dog is particularly talented. You can find the possibility of
parameters for each particular method on the Python website, or you
can even discover them yourself in any search engine by typing the
specific method accompanied by the word "Python."

Read is another file method. The content of the file (the single-line
message) is copied to the message, which is how we decide to call
that text string, and the print command is used to send the content
collected in the message to the output command panel.

Append Text to an Existing Text File

A third option is to open an existing file and add more information to
it. Note that if you open a file using open and you use the method
write, the program will overwrite whatever the file contains. Of
course, this is not a problem when creating a new file or when you
want to overwrite the contents of an existing file, but it is totally
undesirable when you are creating a long list of events or are
compiling a large amount of data into an archive. So instead of write,
we are going to use the method append, which is designated with a
to.

Write the following program in the text editor and save it as file-
apend.py. When you run it, this program will open the same
helloworld.txt™ text file that you created earlier and add a second
“Hello world” to the file. The syntax "\ n' represents a new line of text
in the file.

f = open (‘helloworld.txt', 'a")
f.write ("\ n' + Hello world)
f. close ()

After you've run the program, go to the helloworld.txt file, and open
it to see what happened. Close the text file and rerun the file-
apend.py program as many times as you like. When you open the
helloworld.txt file again, you will see that there will be a series of
lines with the message “Hello World” repeated as many times as you
run the program.

Binary Files

Not all files are text files, and therefore not all files can be line
processed. There are files in which each byte has a particular
meaning, and it is necessary to manipulate them knowing the format
in which the data is in order to process that information.

To open a file and handle it in the binary form, it is necessary to add
a b to the mode parameter.

To process the file bytes instead of lines, use the function content =
file.read (n) to read n bytes and file.write (content) to write content

to the current position of the file.

The b in the opening mode comes from binary, due to the binary
numbering system, since in the computer processor, the information
is handled only by zeros or ones (bits) that make up binary numbers.

Although it is not necessary for all systems (in general, the same
system detects that it is a binary file without our asking), it is a good
habit to use it, even though it serves mainly as documentation.

When handling a binary file, it is necessary to be able to know the
current position in the file and to be able to modify it. To obtain the
current position, use file.tell (), A that indicates the number of bytes
since the beginning of the file.

To modify the current position, use file.seek (start, from), which
allows moving a starting amount of bytes in the file, counting from
the beginning of the file, from the current position, or from the end .

Regular Expressions

One of the most frequent operations that you have come across is
looking for a certain pattern/substring in a list, table, or text file.

This is not difficult if the pattern you are looking for is static, and you
know it precisely. For example, if you want to find a certain name in
a contact list, just use functions like find () , which are already
included in Python.

But what happens when the substring you are trying to find has
variants in its writing? For example, suppose that in a certain text,
you want to find how many times the name “Handel” appears. Being
a Germanic name, in our language, it can be written as "Handel,"
"Handel" or "Haendel". If you only use functions like find (), you will
have to find each variant of the name separately. What if in a binary
sequence you want to find all the subsequences of the form o010,
0110, 01110, 011110, and others? Now you can no longer use the find
() method once for each case since there are infinite ones. Another
way is needed.

This is where regular expressions come into the picture, a very
powerful tool that makes it easy to find patterns in text. Regular
expressions come from the world of theoretical mathematics,
specifically the Theory of Formal Languages, but they are widely
used in programming. Without going into mathematical definitions,
a regular expression can be thought of as a word, made up of special
characters, that serves to identify a set of other words.

I will illustrate it with an example. Let's go back to the beginning
when we wanted to find the word Handel in a text. You could search
for the three variants ("Handel," "Handel" and "Haendel")
separately, or you could find another word that "encodes" these three
variants. In this case, the word that is needed would be"H (a | d | ae)
ndel” . The vertical bar is a type of metacharacter used to separate
the possible variants for the expression in parentheses. This word is
a regular expression, as it identifies a set of other words.

https://docs.python.org/3/library/stdtypes.html

Metacharacters

A regular expression can contain metacharacters, which are symbols
that have special meaning when placed inside a regular expression.
In the previous section, you have seen the metacharacter |, which is
equivalent to the Boolean expression or and is used to separate the
alternatives of a word. However, there are many more
metacharacters. Before we start with the Python examples, I'm going
to show you some of the most common ones.

'

The metacharacter '?' indicates "at most one match" of the
character that comes immediately before. Thus, the
expression "obscure" corresponds to the words "dark" and
"obscure." The expression “(re)? Place” would correspond to
“place” and “reposition.”

The metacharacter '*' indicates "zero or more matches" of the
character that comes immediately before. Thus, the
expression "01 * 0" would correspond to the words 0, 010,
0110, 01110, 011110, etc.

The metacharacter '+' works similar to the previous one, but
indicates "at least one match". The expression "01 + 0" would
now correspond to the words 010, 0110, 01110, 011110, etc.

The metacharacter '{n}' indicates "exactly n matches" of the
previous character. For example, the expression “ab {3} a”
would correspond to the word “abba”.

The metacharacter '{n, m}' indicates “between n and m
matches”. If the second space is blank, it means "at least n
matches". Therefore, the expression "01 {2,4} 0" would
correspond to 0110, 01110, 011110, while the expression "01
{2,} 0" would accept the words 0110, 01110, 011110, 0111110,

The metacharacter . is a wildcard that can be used in place of
any other character. Thus, in a binary alphabet, the regular
expression “01.0” would correspond to the words 0100 and
0110.

As you have seen in these examples, the parentheses () are also a
metacharacter and are used to group terms and specify the order of
operations. The expression “(01) * 0” is not the same as the
expression “01 * 0”. The first corresponds to the words 0, 010,
01010, 0101010 and others while the second corresponds to the
words 00, 010, 0110, 01110 ...

These are the most common metacharacters that you will find when
working with regular expressions, although there are more. It is
important to note that the syntax may vary a bit depending on the
language and the context in which they are applied. Metacharacters
can be combined to form more complex expressions. For example,
the expression “fi. * (A | 0)” would correspond to the words that
begin with “fi” and end with the letter a / o: finite, philosophy,
finalize, fixed, physical

Sets

A set is a set of characters enclosed in square brackets [] with a
special meaning. Some of the most frequent are:

o [abc]- searches for a match with any of the characters in
parentheses. The regular expression "[abc] aa" corresponds
to the words aaa, baa, caa. It also works with numeric
characters.

o [ak]- searches for a match with any of the alphabetic
characters between the first (a) and the last (k). The regular
expression "[be] a" corresponds to the words ba, ca, da, ea,
while an expression like "[az] aa" would correspond to words
that begin with any letter of the alphabet and end in "aa ”.

o [1-9]- is identical to the previous case, but with numeric
characters.

o [~ abe]- matches all characters that are NOT inside the
brackets. Thus, the regular expression “. * [* A]” would
correspond to any word that does NOT end with the letter

“_ . »

a.

Regex module

To work with regular expressions in Python, you need the regex
module. In the following examples, you will see some of its most
basic methods.

To find a pattern in a string, we can use the method search ().
import re

text = "Lorem ipsum pain sit amet, consectetur adipiscing elit"
pattern = "Lorem"

x = re.search (pattern, text) #Searches the pattern inside the text

print (x.span ()) #Writes the initial position and the end of the
occurrence

You can also use the method match () , but this only returns a
position if the occurrence is at the beginning of the text. This second
code will give an error when trying to do the print() of the second
match since the "ipsum" pattern is not at the beginning of the text,
and therefore, the method match() bring back None :

import re

text = "Lorem ipsum pain sit amet, consectetur adipiscing elit door"
patterni = "Lorem"

pattern2 = "ipsum"

x = re.match (patterni, text) # Searches the pattern inside the text

print (x.span ()) # Writes the initial position and the end of the
occurrence

y = re.match (pattern2, text) # Return None
print (y.span ()) #ERROR!

So much match() as search() they only keep the first occurrence
found. If you think there may be more than one, you can use the

function find iter() to search them all. This code looks for the
pattern "pain" in a long text and writes its positions:

import re
text = "" "Lorem ipsum pain sit amet, consectetur adipiscing elit,
sed do eiusmod tempor incididunt ut labor et pain magna aliqua.

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. """

pattern = "pain"

x = re.finditer (pattern, text) #Returns a vector with the occurrences
positions

foriin x:
print (i.span ())

In the previous example, we have limited ourselves to searching for a
static word in the text, but metacharacters can be used within the
pattern to create regular expressions. I will put some examples.

In this first code, the regular expression "01 + 0" is used to find in a
binary sequence all the sub-sequences that start and end with zero
and only have ones in the middle: 010, 0110, 01110, etc.

import re

text = "010001000100111001"
pattern = "01 + 0"

x = re.finditer (pattern, text)
foriin x:

print (i.span ())

Of course, metacharacters can be combined to create more complex
regular expressions. This code asks the user for a binary sequence
and checks if it is capicua. The regular expression '(0. {3} 0) | (1. {3}
1)' accepts sequences that start and end with o or 1, with any three
characters in between.

import re

text = raw_input ("Input a binary sequence of five figures: \ n")
pattern = "(0. {3} 0) | (1. {3})"

valid = False

#The input is checked for validity

if len (text) == 5:

valid = True

foriin text:

ifi!="o"and i! ="1"

valid = False

break

#If the input is valid it is checked if it is capicua
if valid:

x = re.search (pattern, text)

if (x! = None):

print ("Is capicua!")

else:

print ("It is not capicua!")

#If the input is not valid and an error message appears:
else:

print ("ERROR: text is not valid")

This code uses sets to analyze a sequence of three-digit numbers and
sticks with those that are odd. Here the method is used in all() that,
unlike find iter(), returns a vector with the substrings of the
occurrences instead of the positions.

import re

text = "551 889 302 105 012 817 894 206"
pattern = "[0-9] {2} [13579]"

x = re.findall (pattern, text) #Returns a vector with the substrings of
the occurrences

foriin x:
print (i)

What does the regular expression “[0-9] {2} [13579]” that I just used
mean? We know that a number will be odd if its last digit is odd. So
I'm looking for numbers whose first two digits are between 0 and 9
and whose last digit is odd.

In this other example, the set ["] is used to discard all numbers that
contain the digit '1. The "space" character is also discarded to
separate each of the numbers:

import re
text = "551 889 302 105 012 817 894 206"
pattern = "[* 1] {3}"

x = re.findall (pattern, text) # Returns a vector with the substrings of
the occurrences

foriin x:

print (i)

Databases

A database is a file that is organized to store data. Most databases
are organized like a dictionary in that they are mapped from keys to
values. The biggest difference is that the database is on disk (or
other permanent storage), so it persists after the program ends.
Because a database is stored in permanent storage, it can store much
more data than a dictionary, which is limited to the size of memory
on the computer.

Like a dictionary, database software is designed to keep data entry
and access very fast, even for large amounts of data. The database
software maintains its performance by creating indexes as data is
added to allow the computer to quickly jump to a particular entry.

Database Peculiarities

However, the types of data and the way they are stored can differ
greatly depending on the context exactly, and that is why, over time,
a number of different models have been developed to manage
databases.

* Hierarchical: The data that is organized in the form of an
inverted tree uses a model where a parent node of information
can have several children.

* Network: An improvement of the hierarchical model that allows
a child to have multiple parents.

* ransactional: Whose sole purpose is the sending and receiving
of data at high speeds. These bases are very rare.

* Relational: This is the model used today to represent real
problems and manage data dynamically. It's the one we're going
to focus on, but there are others.

* Documentaries: They allow us to save full text, and in general,
to carry out more powerful searches. They serve to store large
volumes of historical background information. Together with
the relational ones, they are the most used in web development.

* Object-oriented: This model is quite recent and typical of
object-oriented computer models, where it is about storing
complete objects in the database. It is possible that it will take
on more importance in the future.

* Deductives: They are databases that allow deductions. They are
mainly based on rules and facts that are stored in the database,
so they are somewhat complex.

Relational databases are widely used today because it is easy to
represent and manage realworld problems. They are based on the
idea of creating relationships between data sets, in which each
relationship is also a table. Each table consists of records, made up
of rows and columns, also known as tuples and fields. Obviously,
within relational databases, there are many DBMS. Most are also
compatible with Python. Some are paid, others free, some are
simple, and others are very advanced. Let's do a review:

* SQL Server: It is a relational model database management
system developed by Microsoft and only available for Windows
systems. It is proprietary and a direct competitor of Oracle,
MySQL, and PostgreSQL.

* Oracle: This database is a proprietary object-relational type
database management system, developed by Oracle
Corporation, considered one of the most complete systems. Its
dominance in the enterprise server market was almost total
until the appearance of the competition. It is multiplatform, and
also the latest versions of Oracle have been certified to work
under GNU / Linux.

- MySQL: It is a relational database management system
developed under dual GPL / Commercial license by Oracle
Corporation and is considered the most popular open-source
database in the world, and one of the most popular in general
together with Oracle and Microsoft SQL Server, especially for
web development environments.

* PostgreSQL: It is a free object-oriented relational database
management system. Like many other open-source projects,
PostgreSQL development is not managed by one company or
person but is led by a community of developers who work
selflessly, altruistically, freely, or supported by commercial
organizations.

- SQLite: It is a relational database management system
contained in a small library written in C. It is a public domain
project, and unlike the other systems that use the client-server
architecture, its engine is not an independent process, but
rather it links with the program by becoming an integral part of
it. However, do not be fooled, because although it seems like the
simple solution, SQLite in its third version allows databases of
up to 2 Terabytes in size and many other functionalities. In
short, its configuration is very simple, so simple that it does not
exist, so it will not cause problems, and it is the best solution for
this course.

As you can see, we find many Relational DBMS. In Python, each of
them have free modules and connector programs to communicate
the databases and the programming language. Even though they are
different systems, the query language does not vary much.

Otherwise, it would be difficult to go from one system to another,
and the DBMS could not compete with each other.

Apart from programming languages such as Python, focused on the
creation of programs, DBMS implement their own syntax or
language to make queries and modifications to their registers. The
most used language in relational databases is SQL (Structured
Query Language), and it is necessary to learn it if we want to use this
type of database in our programs. Obviously, this language covers a
lot, so in this unit, we will only see some basic queries to use in
conjunction with SQLite in our Python scripts. While this chapter
will focus on using Python to work with data in SQLite database
files, many operations can be more conveniently performed using
the software called Database Browser for SQLite, which is freely
available at:

http://sqlitebrowser.org/

With the browser, you can easily create tables, insert data, edit data,
or run simple SQL queries. In a sense, the database browser is
similar to a text editor when working with text files. When you want
to perform one or very few operations on a text file, you can open it
in a text editor and make the changes you want. When you have
many changes to make to, you will often write a simple Python
program. You will find the same pattern when working with
databases. You will do simple operations in the database manager,
and more complex operations will be performed more conveniently
in Python.

Creating a Database Table

When you first look at a database, it looks like a spreadsheet with
multiple sheets. The main data structures in a database are tables,
rows, and columns. In technical descriptions of relational databases,
the concepts of the table, row, and column are more formally called
relation, tuple, and attribute, respectively. We will use less formal
terms in this chapter.

Databases require a more defined structure than Python lists or
dictionaries. When we create a table in the database, we must tell
the database in advance the names of each of the columns in the

http://sqlitebrowser.org/

table and the type of data we plan to store in each of them. When the
database software knows the type of data in each column, you can
choose the most efficient way to store and search the data based on
the type of data. You can see the various data types supported by
SQLite at the following URL: http://www.sqlite.org/datatypes.html

Defining the structure of your data in advance may seem
inconvenient at first, but the payoff is quick access to your data,
even when the database contains large amounts of data. The code to
create a database file and a table called Tracks with two columns in
the database is the following:

import SQLite 3
con = sqlite3.connect ('music.sqlite’)
cur = conn.cursor ()

cur.execute ('DROP TABLE IF EXISTS Tracks')
cur.execute ('CREATE TABLE Tracks (title TEXT, plays INTEGER"))

conn.close ()

#Code: http://www.py4e.com/code3/db1.py

$ Or select Download from this trinket's left-hand menu

The operation connect makes a "connection" to the database stored
in the filemusic.sqlite3 in the current directory. If the file does not
exist, it will be created. The reason this is called a "connection" is
that sometimes the database is stored on a "database server"
separate from the server on which we run our application. In our
simple examples, the database will just be a local file in the same
directory as the Python code we are running. A cursor is like a
filehandle that we can use to perform operations on the data stored
in the database. Call to cursor() is conceptually very similar to
calling open () when dealing with text files.

Once we have the cursor, we can start executing commands on the
content of the database using the method execute(). The database
commands are expressed in a special language that has been
standardized across many database vendors to allow us to learn a

http://www.sqlite.org/datatypes.html

single database language. The database language is called Structured
Query Language or SQL.

http://en.wikipedia.org/wiki/SQL

In our example, we are running two SQL commands against our
database. As a convention, we will display SQL keywords in
uppercase, and the parts of the command that we are adding (such
as table and column names) will be displayed in lowercase. The first
SQL command drops the table Tracks from the database if it exists.
This pattern is simply to allow us to run the same program to create
the table Tracks over and over without causing an error. Note that
the command DROP TABLE removes the table and all its contents
from the database (that is, there is no "undo").

Cur.execute ('DROP TABLE IF EXISTS Tracks')

The second command creates a table called tracks with a column of
text called title and an integer

cur.execute ('CREATE TABLE Tracks (title TEXT, plays INTEGER"))

Now that we have created a table called tracks, we can put some data
in that table using SQL INSERT operation. Again, we start by
making a connection to the database and getting the cursor. Then
we can execute SQL commands using the cursor.

The SQL INSERT command indicates which table we are using and
then defines a new row by listing the fields we want to include (title,
plays) followed by the VALUES we want to place in the new row. We
specify the values as question marks (??) to indicate that the actual
values are passed as a tuple ('My Way' 15) as the second parameter
to the call execute().

import sqlite3

conn = sqlite3.connect ('music.sqlite")

cur = conn.cursor ()

cur.execute ('DROP TABLE IF EXISTS Tracks')

cur.execute ('CREATE TABLE Tracks (title TEXT, plays INTEGER)")

http://en.wikipedia.org/wiki/SQL

cur.execute ('INSERT INTO Tracks (title, plays) VALUES (?,?)’,
("Thunderstruck’, 20))

cur.execute ('INSERT INTO Tracks (title, plays) VALUES (?,?)',
(‘My Way', 15))

conn.commit ()

print ("Tracks:")

cur.execute ('SELECT title, plays FROM Tracks')

for row in cur:

print (row)

First, we insert two rows into our table and use commit() to force the
data to be written to the database file.

Tracks
title plays
Thunderstruck twenty
My way fifteen

Then we use the command SELECT to retrieve the rows we just
inserted from the table. In command SELECT, we indicate which
columns we would like to extract (title, we play), and we indicate
from which table we want to retrieve the data. After executing the
statement SELECT, the cursor is something we can loop through in
an instruction for. For efficiency, the cursor does not read all the
data from the database when we execute the statement SELECT.
Instead, the data is read as we walk through the rows in the
declaration for. The output of the program is as follows:

Tracks:

('Thunderstruck’, 20)

('My Way', 15)

Our loop for finds two rows, and each row is a Python tuple with the
first value as title and the second value as the number of plays.

At the end of the program, we run an SQL command to 'CLEAR' the
rows we just created so that we can run the program over and over
again. The command DELETE shows the use of a clause WHERE
which allows us to express a selection criteria so that we can ask the
database to apply the command only to the rows that match the
criteria. In this example, the criteria now apply to all rows, so we
empty the table so we can run the program repeatedly. After the
DELETE, we also call commit() to force the data to be removed from
the database.

SQL Basics

So far, we have been using the structured query language in our
Python examples and have covered many of the basics of SQL
commands. In this section, we discuss the SQL language in
particular and provide an overview of SQL syntax. Since there are so
many different database vendors, Structured Query Language (SQL)
was standardized so that we could easily communicate with multi-
vendor database systems. A relational database is made up of tables,
rows, and columns. Columns generally have a type such as text,
numeric, or date data. When we create a table, we indicate the
names and types of the columns:

CREATE TABLE Tracks (title TEXT, plays INTEGER)

To insert a row in a table, we use the SQL commandINSERT:
INSERT INTO Tracks (title, plays) VALUES ('My Way', 15)

When using the declaration insert, specify the table name, then a list
of the fields/columns you would like to set in the new row, and then
the keyword VALUES and a list of corresponding values for each of
the fields. The SQL command SELECT used to retrieve rows and
columns from a database. The declaration SELECT allows you to
specify which columns you want to retrieve, as well as a clause
WHERE to select which rows you want to see. It also allows an
optional clause order BY to control the sorting of the returned rows.

SELECT * FROM Tracks WHERE title = 'My Way'

Using * indicates that you want the database to return all columns
for each row that matches the clause WHERE. Note that unlike
Python, in an SQL clause WHERE, we use a single equals sign to
indicate a test of equality instead of a double equals sign. Other
logical operations allowed in a clause WHERE include <,>, <=,> =,!
=, as well as AND / OR and parentheses to build your logical
expressions. You can request that the returned rows be ordered by
one of the fields as follows:

SELECT title, plays FROM Tracks ORDER BY title

To delete a row, you need a clause WHERE in an SQL statement
DELETE. The clause WHERE determines which rows are to be
removed:

DELETE FROM Tracks WHERE title = 'My Way'

It's possible UPDATE a column or columns within one or more rows
in a table using SQL statement UPDATE as follows:

UPDATE Tracks SET plays = 16 WHERE title = "My Way'

The declaration UPDATE specifies a table and then a list of fields
and values to change after the keyword SET and then an optional
clause WHERE to select the rows to update. Single instruction
UPDATE will change all rows that match the clause WHERE. If no
clause is specified WHERE, perform the UPDATE in all rows of the
table. These four basic SQL commands (INSERT, SELECT,
UPDATE, and DELETE) enable the four basic operations required
to create and maintain data.

Error Handling in Python

In software development, different types of errors can occur. These
could be syntax errors, logic errors, or runtime errors. Syntax errors
are more likely to occur during the initial development phase and
are the result of incorrect syntax. Syntax errors can easily be caught
when compiling the program for execution. Logical errors, on the
other hand, are the result of incorrect logic implementation. An
example would be a program accessing an unordered list assuming
it was ordered. Logical errors are the hardest to track down.
Runtime errors are the most interesting errors that occur if we don't
consider all possible cases. An example would be trying to access a
non-existent file.

In this section, we will learn how to handle errors in Python and how
to log errors for a better understanding of what happened within the
application.

Syntax errors

Syntax errors, also known as misinterpretations, are perhaps the
most common type of complaint you get when you're still learning
Python:

while True print 'Hello world'

Traceback (most recent call last):

while True print 'Hello world'

N

SyntaxError: invalid syntax

The interpreter repeats the faulty line and displays a small 'arrow’
pointing to the first place where the error was detected. This is
caused by (or at least detected in) the symbol that precedes the

arrow: in the example, the error is detected in the print statement
since there is a missing colon (':") before it. The file name and line
number are displayed, so you know where to look if the input is
coming from a program.

Exceptions

Even if the statement or expression is syntactically correct, it can
generate an error when you try to execute it. Errors caught during
execution are called exceptions, and they are not unconditionally
fatal: you will soon learn how to handle them in Python programs.
Let's start with a simple program to add two numbers in Python.
Our program takes two parameters as input and prints the sum.
Here is a Python program for adding two numbers:

def addnumbers (a, b):
printa+b
addNumbers (5, 10)

When writing the above program, we didn't really consider the fact
that something could go wrong. What if one of the parameters
passed is not a number?

addNumbers (", 10)

We have not handled that case; therefore, our program will break
with the following error message:

Traceback (most recent call last):

File "addNumber.py", line 4, in <module>
addNumbers (", 10)

File "addNumber.py", line 2, in addNumbers
printa + b

TypeError: cannot concatenate 'str' and 'int' objects

We can handle the above question by checking if the parameters
passed are integers. But that does not solve the problem. What if the
code breaks for some other reason and causes the program to crash?

Working with a program that breaks when encountering an error is
not a good sight. Even if an unknown error has occurred, the code
must be robust enough to handle the break gracefully and let the
user know that something is wrong.

In Python, we use the declarations tryYexcept to handle exceptions.
When code breaks, an exception is thrown without crashing the
program. We are going to modify the program that adds numbers to
include the declarations tryYexcept.

def addNumbers (a, b):
try:
returna + b

except exception as e:

return 'Error occurred:' + str (e)
print addNumbers (", 10)

Python would process all the code inside the statements try and
except. When it encounters an error, control is passed to the block
except, skipping the code in the middle. As seen in the above code,
we have moved our code within a statement try and except. You try
to run the program, and it should throw an error message instead of
the program crashing. Also, the reason for the exception is returned
as an exception message. The above method handles unexpected
exceptions. Let's take a look at how to handle an expected exception.
It assumes that we are trying to read a file with our Python program,
but the file does not exist. In this case, we will handle the exception
and let the user know that the file does not exist when it occurs.
Take a look at the file reading code:

try:

try:

with open (‘fname') as f:
content = f.readlines ()

except IOError as e:

print str (e)
except exception as e:
print str (e)

In the above code, we have handled the file reading inside an
exception handler IOError. If the code breaks due to the
unavailability of the file name, the error would be handled within
the controller IO Error. Similar to the exception IO Error, there are
many more standard exceptions like Arithmetic, Overflow Error,
and Import Error, to name a few.

We can handle multiple exceptions at once by putting together the
standard exceptions as shown:

try:

with open (‘fname') as f:

content = f.readlines ()

printb

except (IOError, NameError) as e:
print str (e)

The above code would show the exceptions IOError and NameError
when the program runs.

Suppose we are using certain resources in our Python program.
During the execution of the program, an error was encountered, and
it was only half executed. In this case, the resource will be kept
unnecessarily. We can clean up such resources using the clause
finally. Take a look at the following code:

try:

filePointer = open (‘fname’, 'r') try: content = filePointer.readline ()
finally:

filePointer.close ()

except IOError as e:

print str (e)

If, during the execution of the above code, an exception occurs while
reading the file, the file Pointer would be closed on the block finally.

Records

When something goes wrong within an application, it is easier to
debug if we know the source of the error. When an exception occurs,
we can record the information necessary to locate the problem.
Python provides a simple and powerful registry library. Let's take a
look at how to use registers in Python.

import logging
initialize the log settings

logging.basicConfig (filename = 'app.log’, level = logging.INFO)

try:

logging.info ('Trying to open the file')
filePointer = open ('appFile’, 'r')

try:

logging.info ('Trying to read the file content’)
content = filePointer.readline ()

finally:

filePointer.close ()

except IOError as e:

logging.error ('Error occurred' + str (e))

As seen in the above code, we first have to import the Python log
library and then initialize the logger with the log file name and log
level. There are five log levels: DEBUG, INFO, WARNING, ERROR,
and CRITICAL. Here we have to set the log level to INFO; therefore,
INFO and the previous logs will be logged.

In the above code, we had a program file, so it was easier to figure
out where the error had occurred. But what do we do when it comes
to multiple program files? In such a case, getting the error stack
helps in finding the source of the error. The exception stack trace
may have been logged as shown:

import logging

initialize the log settings
logging.basicConfig (filename = 'app.log’, level = logging.INFO)
try:

filePointer = open (‘appFile', 'r")
try:

content = filePointer.readline ()
finally:

filePointer.close ()

except IOError as e:
logging.exception (str (e))

If you try to run the above program when an exception occurs, the
following error is logged in the log file:

ERROR: root: [Errno 2] No such file or directory: 'appFile'
Traceback (most recent call last):

File "readFile.py", line 7, in <module>

filePointer = open (‘appFile', 'r')

IOError: [Errno 2] No such file or directory: 'appFile'

Python Web Development

Contributions of Python to Web Development

Python is a programming language that can also be used to create
personal and business web pages. Knowing how to program websites
and applications is synonymous with success and a job gap. The
future is in the network, and professionals capable of placing
companies in this new medium of commerce are needed. It is
because of the above that many programmers have chosen to
specialize in this category.

Python webs are chosen every day by high-level companies, a sign of
the quality and good usability offered by webs created with this
code. Thus, programming in Python is one of the skills most sought
after by the headhunters of companies such as Netflix, Spotify, and
Pixar. Choosing Python web ensures you are not pigeonholed into a
single type of web development. It is an opensource whose creation
possibilities are endless, as well as its direct applications. With a
good study on Python, you will learn to make websites from scratch
with all its functionalities, from ecommerce to a platform with
products on consumer demand like Netflix.

Python code has numerous advantages at the time of sitting down to
create webs. We detail some of them below:

https://www.tokioschool.com/noticias/ventajas-curso-programador-python/

It is an open-source language, which means that it is free
software. You can use it for free at all times.

- It is multiplatform, valid for all types of systems and devices.

* It is understandable to all programmers. The way of writing
Python code is neat and clean, so anyone will know how to
understand and work on your created structure.

- It has a flexible style. With Python web, you can create a
multitude of elements, from lists to more complex functions.

- It has a healthy programming style. Python web is designed to
work according to specific rules so that everyone follows the
same guidelines.

Web Frameworks for Python

A web framework is a set of components that help you develop
websites easier and faster. When you build a website, you always
need a set of similar components: a way to handle user
authentication (register, login, logout), an administration panel for
your website, forms, a way to upload files, etc. Luckily for us, other
developers realized long ago that they always faced the same
problems when building websites, so they came together and built
frameworks (such as Django) with out-of-the-box components. The
frameworks serve so that we do not have to reinvent the wheel each
time and that we can move faster when building a new site.

To understand what frameworks are really for, we need to look at
how servers work. The first thing is that the server needs to know
that you want a web page to serve you. Imagine a mailbox (port) in
which someone is constantly looking for incoming letters (requests).
This is what a web server does. The web server reads the letter and
sends a response to the web page. But to send something, we have to
have some content. And frameworks help us create that content.
When a request arrives at a web server, it is passed to the
framework, which tries to find out what is actually requested. Take a
website address first and try to figure out what to do with it. This
part is done by the URL resolver of our framework (note that a
website address is called URL - Uniform Resource Locator, so the
name URL resolver makes sense). This one isn't very smart - it takes
a list of patterns and tries to match the URL. The framework checks

the patterns from top to bottom, and if something matches, it passes
the request to the associated function (which is called view).
Imagine a postman carrying a letter. He walks down the street and
checks each house number with the one on the letter. If it matches,
he leaves the letter there.

All the cool things are done in the view function: we can look at a
database to find some information. Maybe the user asked to change
something in the data, like a letter saying, "Please change my job
description." The view can check if you have permission to do so,
update your job description, and return a message: "Done!" The
view then generates a response, and Django can send it to the user's
browser. This description is a bit simplistic, but at the moment, you
don't need to know all the technical details. Just having a general
idea is more than enough.

There are quite a few Python web frameworks out there, but here are
some of the best:

* Django: Django is a high-level web framework that enables
rapid development of safe and maintainable websites.
Developed by seasoned programmers, Django takes care of
much of the complications of web development, so you can
focus on writing your application without reinventing the wheel.
It's free and open-source, has a thriving and active community,
great documentation, and many free and paid support options.

* Grok: Grok, defined by its authors, is a framework for web
applications made for Python developers. It is aimed at
beginners and experts. Grok is intended for agile development.
This framework comes from the well-known Zope, a complete
dean in the world of application servers in web environments, of
which the Zope Toolkit is used, a set of objectoriented libraries
specially oriented to the reuse of components in web
environments.

* Webpy: This is the software written by Aaron Swartz for
creating dynamic websites with Python. It was officially posted
while I was working on reddit.com (which was later rewritten
using other tools). “Simple as powerful”, “It is the anti-
framework framework. web.py doesn't get in your way"; some of
the characteristics and opinions for which it is made known on
the official website webpy.org. It is in the public domain, so it
can be applied for the development of any type of project.

* Turbogears: TurboGears is a Python web application framework
that consists of various WSGI components such as WebOb,
SQLAlchemy, Genshi, and Repoze. TurboGears is designed
around the model-view-controller (MVC) architecture, very
similar to Struts or Ruby on Rails, designed to make rapid web
application development in Python easier and easier to
maintain. Since version 2.3, the framework has also provided a
"minimal mode" that allows it to act as a microframe for use in
environments where the full stack is not required or desired.

Using Django

We will focus on introducing ourselves to web development in
Python in the Django framework because this helps you write
software that is:

http://www.zope.org/

* Full: Django follows the "Batteries Included" philosophy and
provides almost everything developers would like it to have "out
of the box". All you need is part of a single "product,"” everything
works perfectly, follows consistent design principles, and has a
wide and updated documentation.

* Versatile: Django can be (and has been) used to build almost
any type of website - from content management systems and
wikis to social media and news sites. It can work with any
framework on the client-side, and it can return content in
almost any format (including HTML, RSS feeds, JSON, XML,
etc.). The site you are currently reading is based on Django!
While it offers options for almost any functionality you want
(different database engines, template engines, etc.), it can be
extended to use other components if necessary.

Insurance: Django helps developers avoid several common
security mistakes by providing a framework that is designed to
"do the right thing" to protect the website automatically. For
example, Django provides a secure way to manage user accounts
and passwords, thus avoiding common mistakes such as placing
session information in cookies where it is vulnerable (instead,
cookies only contain a key and the data is stored in the database
data) or passwords are stored directly in a password hash.
Django allows protection against some vulnerabilities by
default, including SQL injection, cross-site scripting, cross-site
request spoofing, and clickjacking.

* Scalable: Django uses a component based on the architecture
"shared-nothing” (Each part of the architecture is independent
of the others, and therefore can be replaced or changed if
necessary). Taking into account a clear separation between the
different parts means that you can scale to increase traffic by
adding hardware at any level: cache servers, database servers, or
application servers. Some of the busiest sites have scaled Django
to meet their demands (for example, Instagram and Disqus, to
name just two).

Maintainable: Django code is written using design principles
and patterns to encourage the creation of maintainable and
reusable code. It uses the "Don't Repeat Yourself' (DRY)
principle so there is no unnecessary duplication, reducing the

nmn11n+ f\'p nf\f]f\ n-:r\“n-r\ n]nn 'ata¥alashhalaVavaYal (\'1"[\111’\‘:“(\' vn]nl-nr]

https://docs.djangoproject.com/en/1.10/
https://en.wikipedia.org/wiki/Shared_nothing_architecture

allilvuullilt vl JvuUucCc. UJ ClllSU alduyv CliLvul ClSCD Sl v uPlllS i1TliaiLcu
functionality into reusable "applications" and, at a lower level,
groups related code into modules (following the pattern model
View Controller (MVQ)) .

* Portable: Django is written in Python, which runs on many
platforms. This means you are not tied to any particular
platform and can run your applications on Linux, Windows, and
Mac OS X distributions. Additionally, Django is supported by
many web-hosting providers, and they often provide specific
infrastructure and documentation for hosting Django sites.

Django Origins

Django was initially developed between 2003 and 2005 by a team
that was responsible for creating and maintaining newspaper
websites. After creating several sites, the team began to consider and
reuse many common design codes and patterns. This common code
became a generic web framework, which was open source, known as
the "Django" project in July 2005.

Django continues to grow and improve from its first milestone, the
release of version (1.0) in 2008, to the recent release of version 1.11
(2017). Each release has added new functionality and bug fixes,
ranging from support for new database types, template engines,
caching to the addition of generic functions, and display classes
(which reduce the amount of code developers have to write).

Django is now a thriving collaborative open source project, with
thousands of users and contributors. While it still has some features
that reflect its origin, Django has evolved into a versatile framework
that is capable of developing any type of website.

Django Possibilities

The preceding sections show the main features that in almost all web
applications: URL mapping, views, models, and templates. Just a
few other things that Django provides, including;:

https://developer.mozilla.org/en-US/Apps/Fundamentals/Modern_web_app_architecture/MVC_architecture

* Forms: HTML forms are used to collect user data for processing
on the server. Django simplifies the creation, validation, and
processing of forms.

* User authentication and permissions: Django includes a robust
authentication and permission system that has been built with
security in mind.

* Search: Dynamic content creation is much more
computationally intensive (and slow) than a static content
service. Django provides flexible caching so that you can store
all or part of a rendered page so that it is not re-rendered only
when necessary.

* Administration site: The Django admin site is included by
default when you create an app using the basic skeleton. This
makes it trivially easy to provide an administration page for
administrators to create, edit, and view any of their site's data
models.

- Data serialization: Django makes it easy to serialize and serve
your data as XML or JSON. This can be useful when creating a
web service (a website that only serves data to be consumed by
other applications or sites and does not display anything on its
own) or when creating a website where the client-side code
handles all the rendering of the data.

Virtual Environment

Django makes it easy to set up your computer so you can start
developing web applications. This section explains what you get out
of the development environment and provides an overview of some
of your startup and configuration options. It explains the
recommended method of installing the Django development
environment on Mac OS X and Windows and how you can test it.

The development environment is an installation of Django on your
local computer that you can use to develop and test Django apps
before deploying them to the production environment. The main
tools that Django provides are a set of Python scripts for creating
and working with Django projects, along with a simple development
web server that you can use to test locally (i.e., on your computer,

not on a server. external web) Django web applications with your
computer's web browser.

When you install Python3, you get a single global environment that
is shared with all Python3 code, while you can install the packages
you like in your environment. You can only install one particular
version of each package at a time. If you install Django in the default
/ global environment, you will only be able to target a single version
of Django on the computer. This can be a problem if you want to
create new sites using the latest version of Django but keep websites
that depend on older versions. Experienced Python / Django
developers run Python applications within separate Python virtual
environments. This enables multiple different Django environments
on the same computer. The same Django development team
recommends that you use virtual Python environments!

The libraries that we will use to create our virtual environments are
in virtualenvwrapper (Mac OS X) and virtualenvwrapper-win
(Windows), which in turn use the tool virtualenv. The toolswrapper
creates a consistent interface for managing interfaces on all
platforms.

Mac OS X

Install virtualenvwrapper (virtualenvi ncluded in the package) using
pip3 shown in the following.
Sudo pip3 install virtualenvwrapper

Then add the following lines to the end of the start file of your shell.
The startup file is called differently .bash_profile and it's hidden in
your home directory.

export WORKON_HOME = $ HOME / .virtualenvs

export VIRTUALENVWRAPPER_PYTHON = / usr / bin / python3
export PROJECT_HOME = $ HOME / Devel

source /usr/local/bin/virtualenvwrapper.sh

Then reload the startup file by making the following call in the
terminal:

source ~ / .bash_profile

At this point, you should see a handful of scripts starting to run. You
should now be able to create a new virtual environment with the
command mkvirtualenv.

Windows

Installing virtualenvwrapper-win is even simpler than starting
virtualenvwrapper because you don't need to configure where the
tool stores the environment information (there is a default value).
All you need to do is run the following command in the online
command console:

pip3 install virtualenvwrapper-win

And then you can create a new virtual environment with
mkvirtualenv

Taking Advantage of Virtual Environments

Once you have installed virtualenvwrapper or virtualenvwrapper-
win, working with virtual environments is similar on all platforms.
Now you can create a new virtual environment with the command
mkvirtualenv. As this command is executed, you will see that the
environment starts up (what you will see is slightly platform-
specific). When the command is completed, the new virtual
environment will be active - you can check it because the beginning
of the prompt will be the name of the environment in parentheses
(as shown below).

$ mkvirtualenv my_django_environment

Running virtualenv with interpreter / usr / bin / python3

virtualenvwrapper.user_ scripts creating
/home/ubuntu/.virtualenvs/t_env7/bin/get_env_details
(my_django_environment) ubuntu @ ubuntu : ~ $

Once you are inside the virtual environment, you can install Django
and start development. There are just a few other useful commands

you should know about (there are more in the tool's documentation,
but these are the ones you will use regularly:

* deactivate - Exit the current Python virtual environment
* workon- List the virtual environments available

- workon name_of_ environment- Activate the specified Python
virtual environment

- rmvirtualenv name_of_ environment- Delete the specified
environment.
Django Installation

Once you have created the virtual environment and made the
callworkonto get into it, you can use pip3 to install Django.

pip3 install Django

You can check that Django is installed by running the following
command (this checks that Python can find the Django module):

Mac OS X
python3 -m Django --version

1.11.7

Windows

py -3 -m Django --version
1.11.7

The above test works, but it's not very fun. A more interesting check
is to create a project skeleton and see if it works. To do this, navigate
in your command console/terminal to where you want to store your
Django applications. Create a folder for your site verification and
navigate to it.

mkdir django_ test

cd django_ test

You can then create a new site skeleton called "mytestsite" using the
tool Django-admin as it's shown in the following. After creating the
site, you can navigate to the folder where you will find the main
script for project management, called manage.py.

Django-admin startproject mytestsite

cd mytestsite

We can start the development web server from this folder using
manage.py and the command runserver, as shown.

$ python3 manage.py runserver
Performing system checks ...

System check identified no issues (0 silenced).

You have 13 unapplied migration (s). Your project may not work
properly until you apply the migrations for app (s): admin, auth,
contenttypes, sessions.

Run 'python manage.py migrate' to apply them.

September 19, 2016 - 23:31:14

Django version 1.10.1, using settings 'mysite.settings'

Starting development server at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

Once you have the server running, you can view the site by
navigating to the following URL in your local web browser:
http://127.0.0.1:8000/.

Website Project: Blog

We will build a blog system today to learn the basics. First, we will
create a Django project.

cd ~ / Documents / Projects

http://127.0.0.1:8000/

Django-admin.py startproject FirstBlog
cd FirstBlog

Is

What do these files do?

- _init_.py tells Python that this folder is a Python package. We
learned about this in the third lesson; it allows Python to import
all the scripts in the folder as modules.

* manage.py is not really part of your website; it is a utility script
that you run from the command line. It contains an array of
functions to manage your site.

* settings.py contains your website settings. Django doesn't use
XML files for configuration; everything is Python. This file is
simply a number of variables that define your site settings.

* URLs.py is the file that assigns the URLs to the pages. For
example, you could map yourwebsite.com/about to an "About
Us" page.

Applications

However, none of these files create a functional website. For that, we
need applications. Applications are where the code that makes the
website work is written, but before we take a look at them, we need
to get a little understanding of Django's design principles.

First, Django is an MVC framework, which stands for Model View
Controller. Django refers to itself as an MTV framework, which
stands for Model Template View. It is a slightly different approach
than MVC, but fundamentally, they are quite similar. MVC is an
architectural pattern that provides a method to structure your
projects. Separates the code that is used to process data from the
code that manages the user interface.

Second, Django subscribes to the DRY, or Don't Repeat Yourself
philosophy, which means you should never write code that performs
a certain task more than once. For example, on our Blog, if we wrote
a function that picked a random article from the archive and

implemented this function on multiple pages, we would not re-code
it every time it was needed. We code it once and then use it on every

page.

So how does this relate to apps? Well, the applications allow you to
write your website in a DRY style. Each project, like the one we have
here, can contain multiple applications. Rather, each application can
be part of multiple projects. Using the example from before, this
means that if we created another site in the future that also needed a
random page function, we wouldn't have to rewrite it. We could just
import the application from this project. Because of this, it is
important that each application has a different purpose. If you write
all the functionality of your site inside one app, and then you need to
use part of it again later, you have to import it all. If you were
creating an e-commerce website, for example, you wouldn't want to
import all the blog features. However, if you create an app for the
shuffle function and an app for the blog publishing system, you can
choose the bits you need.

This also means that within site, the code is well organized. If you
want to modify a feature, you don't have to search a massive archive;
instead, you can navigate to the corresponding app and change it
without worrying about interfering with anything else.

python mangage.py startapp blog
cd blog
Is

Again, we have a file _init_.py to convert it into a package and three
other files: models, tests, and views. We don't need to worry about
testing for now, but the other two are important. Models and Views
are the parts M and V by MVC.

When you want to access that data, go through these models by
calling the method on them, rather than running raw queries. This is
very useful because Django can use multiple database programs. We
are going to use MySQL today because it is the most powerful, and it
is what most hosts offer. However, if we need to switch to a different
database in the future, all the code will still be valid! In other
languages, if you wanted to switch to SQLite or something similar,

you would need to rewrite the code that accesses your database. In
the views file, we write the code that generates the web pages. This
ties all the other parts together. When typing a URL, it is sent
through the scripturls that we saw before the script ofviews, which
then obtains relevant data from the models, processes it, and passes
it to a template, which is finally served as the page the user sees.
We'll take a look at those templates shortly. They are the easiest
part, mainly HTML.

For a blog, we will need a table of posts, with various fields for the
title, body text, author, time of writing, etc. An actual blog demo.

from Django.db import models

class posts (models.Model):

author = models.CharField (max_length = 30)
title = models.CharField (max_length = 100)
bodytext = models.TextField ()

timestamp = models.DateTimeField ()

MySQL

These models are only a description. We need to make a real
database of them. First, however, we need MySQL to run on our
system. On a real webserver, this wouldn't be a problem as they
usually have it pre-installed. Fortunately, with a package manager, it
is easy to install. First, you need to install Homebrew and Easy
installation.

brew install MySQL

easy_install MySQL-python

mysqld_safe --skip-grant-tables #let anyone have full permissions
mysql -u root

UPDATE mysql.user SET Password = PASSWORD ('nettuts')
WHERE User = root';

#give the user 'root' a password
FLUSH PRIVILEGES;

MySQL -u root -p #log in with our password 'nettuts'
CREATE DATABASE firstblog;

quit

python2.6 manage.py runserver

When you reboot, MySQL won't run, so whenever you need to do
this in the future, run MySQL to start the server. You can then run
python2.6 manage.py runserver in a new tab to start the
development server.

This command will not run the server yet. It will just return an error.
That's because we have to adjust our settings. Let's take a look at
settings.py.

You must first change the database configuration. These start in line
twelve.

DATABASES = {
'default”: {

'ENGINE': 'django.db.backends.mysql’, # Add
"postgresql_psycopg2', 'postgresql’, 'mysql’, 'sqlite3’ or 'oracle’.

'NAME': 'firstblog', # Or path to database file if using sqlites.
'USER": 'root', # Not used with sqlite3.

'PASSWORD': 'nettuts', # Not used with sqlites.

'HOST": ", # Set to empty string for localhost. Not used with sqlites.
'PORT'": ", # Set to empty string for default. Not used with sqlites.

¥
¥

If you try to run the server again, it should work, provided you have
installed MySQL correctly. If you visit 127.0.01: 8000In your web
browser, you should see the default Django page. Now let's turn our
Django site into a blog. First, we need to use our Models to create
tables in the database by running the following command:

python2.6 manage.py syncdb

Every time you change your models, you must run this command to
update the database. Note that this cannot alter existing fields; you
can only add new ones. So if you want to remove fields, you will have
to do it manually with something like PhpMyAdmin. Since this is
our first time running the command, Django will configure all the
built-in default tables for things like the admin system. Just write
"yes" and then fill in your details. Now let's configure the file urls.py.
Write the line:

URL (r'* $', 'FirstBlog.blog.views.home', name = 'home").
Now, we create the views file to respond to these requests.
from django.shortcuts import render_to_response

from Blog.models import posts

def home (request):

return render_to_response ('index.html')

Templates

This index.html file doesn't exist yet, so let's do it. Create a folder
called templates in your application Blog and save a file
calledindex.html, which can simply contain "Hello World" for now.
Next, we need to edit the config file, so Django knows where this
template is located.

Line 105 is where the section for declaring template folders begins;
so adjust it like this:

TEMPLATE_DIRS = (

"blog / templates",

Put strings here, like "/ home / html / django_templates" or "C: /
www / django / templates".

Always use forward slashes, even on Windows.
Don't forget to use absolute paths, not relative paths.

)

If you run the server again and refresh the page in your browser, you
should see a "Hello world" message. Now we can start designing our
blog. We will add some boilerplate HTML for the home page.

<! DOCTYPE html>

<html lang = "en">

<head>

<meta charset = "utf-8" />

<link rel = "stylesheet" href = "css / style.css">
<link href = "images / favicon.ico" rel = "shortcut icon">
<title> First Blog </title>

</head>

<body>

<div class = "container" >

<h1> First Blog </h1>

<h2> Title </h2>

<h3> Posted on date by author </h3>

<p> Body Text </p>

</div>

</body>

</html>

If you save and refresh the page, you should see that the page has
been updated with this new content. The next step is to add dynamic
content from the database. To achieve this, Django has a template
language that allows you to insert variables with braces. Change the
middle section of your page to look like this:

<div class = "container">

<h1> First Blog </h1>

<h2> {{title}} </h2>

<h3> Posted on {{date}} by {{author}} </h3>
<p> {{body}} </p>

</div>

We can then pass values to these variable placeholders from the file
views.py, creating a dictionary of values.

from django.shortcuts import render_to_response
from Blog.models import posts

def home (request):

content = {

'title": 'My First Post’,
'author': 'Giles',

'date’: '18th September 2011',

'body': 'Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Etiam cursus tempus dui, ut vulputate nisl eleifend eget. Aenean just
felis, dapibus quis vulputate at, porta et pain. Praesent enim libero,
malesuada nec vestibulum vitae, fermentum nec ligula. Etiam eget
convallis turpis. Donec non sem fair.

'
b

h

return render_to_response (‘index.html', content)

Save and update, and you should see that you are now transferring
content to a template from your views file. The last step is to get data
from our database and pass it in instead. Fortunately, we can do all
of this without SQL queries, using Django's models. We need to add
our application ofBlog to our project FirstBlogchanging other
settings. Go toINSTALLED_APPS on line 112 and add to the list the
'FirstBlog.blog', to then change views.py for you to add data from the
database.

from django.shortcuts import render_to_response

from Blog.models import posts

def home (request):

entries = posts.objects.all () [: 10]

return render_to_response (‘index.html’, {'posts': entries})

Then update the template to access this information.

<div class = "container">

<h1> First Blog </h1>

<hr />

{% for post in posts%}

<div class = "post">

<h2> {{post.title}} </h2>

<h3> Posted on {{post.timestamp}} by {{post.author}} </h3>

<p> {{post.bodytext}} </p>

</div>

<hr />

{% endfor%}
</div>

Here, we can access all the data in our table in the file views.py, then
select only the first ten entries. We pass this data to the template, we
go through the inputs, and display the data with the HTML of our
site. This will not work yet, because there is nothing in the database.
Stop the server and run:

python2.6 manage.py syncdb

This will add the new table for our posts to the database. Then open
a new tab and type:

MySQL -u root —p
Type your password, press Enter, and run:

INSERT INTO blog_posts (author, title, bodytext) values ('Bob’,
'Hello World', 'Lorem Ipsum');

Go back to the previous tab and run the server again. Refresh the
page, and you should see a blog post with the fictional content you
just added. If you run the MySQL command a few more times, you
should see more posts appear on the page when you refresh.

Django Administration System

The last thing we need to do with this is to check out the Django
admin system. This is a powerful feature in Django that allows you
to manage your site without writing any more code, just like you
would if you were building a site from scratch. To enable it, we need
to change some settings. First, uncomment lines 4, 5, 13, and 16 in
urls.py, so you can access the administration page.

Then go to section INSTALLED_APPS from settings.py and delete
the comment

'django.contrib.admin' and 'django.contrib.admindocs', To allow the
administrator to control his table of publications, create a new file
calledadmin.py in the folder of Blog and add the following lines:

from Django.contrib import admin

from Blog.models import posts

admin.site.register (posts)

Run python2.6 manage.py syncdb again to add the tables for the
admin section and restart the server. If you visit
127.0.0.1:8000/admin now in your browser, you should see a login

page.

Use the details you chose earlier when you ran the command
syncdbto login. You should see a section called Blog, with a caption
for the table of publications. You can use this to create, edit, and
delete blog posts with a simple interface. That's all you have to do.
You just created a fully functional yet simple blog. To finish this
lesson, we are going to see how to install Django on a web server.

Installation on a Web Server

Most web servers run scripts in various languages using CGI. Django
can run on FastCGI and also theoretically CGI, but this is not
officially supported and would be too slow for a real production
website. You will need to check if they are installed. They are usually
found under a heading, such as "CGI and scripting language
support.”

If you have VPS hosting or are lucky enough to have a dedicated
server, your life is so much easier. These usually come with Python
pre-installed, and from there, you just need to follow the same steps
we went through to get a local copy of Django running. If you don't
have Python, you can install it with a package manager. Your system
can even come with Django.

ssh root@example.com

wget http://www.djangoproject.com/download/1.3.1/tarball/
tar xzvf Django-1.3.1.tar.gz

cd Django-1.3.1

python setup.py install

Once you have Django installed on your server, upload the site you
just created using any file transfer client. You can put the files
anywhere, but keep them out of the folderpublic, or anyone will be

able to view the source code of your site. I use /home for all my
projects.

Next, create a MySQL database called 'firstblog' on your server and
run syncdb again. You will need to re-create your account for the
admin control panel, but this is a one-time thing. If you try to run
this, you may get an error, and that's because the settings for the
server are different from your local computer. You may need to
change the database password withinsettings.py, but depending on
your server configuration, you may encounter other problems as
well. Google is your friend!

To run the server this time, the command is slightly different. You
must specify an IP address and a port so that you can access the site
over the Internet.

python manage.py runserver 0.0.0.0:8000

If you visit your site in a web browser, on port 8000, you should see
your site!

Final Words

In the Computer Industry, a phenomenon known as free software
has been gaining influence. This is a movement that proclaims
access to the source code of a program, which admits to being free of
use, execution, distribution, and modification. In other words, the
new software created under this concept could be used for any
purpose, run in any environment, be distributed at the user's own
discretion, and be modified if necessary. Programming languages
are the basic tool for building programs, as are the machete and hoe
for a peasant, the pick and shovel for a builder. Python has been
gaining followers in communities such as free, scientific, and
educational software due to its simplicity and ability to focus on
current problems.

Although this book is not intended for professional programmers,
programming at a professional level can be rewarding work, both
financially and personally. Creating useful, elegant, and smart
programs for others to use is a very creative activity. Your computer
or Personal Digital Assistant usually contains many different
programs belonging to different groups of programmers, each of
them competing for your attention and interest. They all do their
best to adapt to your needs and provide you with a satisfying user
experience. Sometimes when you choose a certain software, its
programmers are directly rewarded for your choice.

Likewise, writing programs is a creative and rewarding activity. You
can write programs for many reasons, ranging from being active in
solving a complex data analysis problem to doing it for the fun of it
by helping others solve a puzzle. This book assumes that everyone
needs to know how to program and that once you learn to program,
you will find out what you want to do with those newly acquired
skills. Python is a language that everyone should know. It is
straightforward and clear, and the simple syntax, the dynamic
typing, the memory manager, the large number of libraries
available, and the power of the language, among others, make

developing an application in Python easy, fast, and, what is more
important, fun.

Python's syntax is so simple and close to natural language that
Python programs look like pseudocode. For this reason, it is also one
of the best languages to start programming. Python is, however, not
suitable for low-level programming or performance-critical
applications. Some success stories in the use of Python are Google,
Yahoo, NASA, Light & Magic Industries, and all Linux distributions,
in which Python represents an increasing percentage of the available
programs. Always learning a new programming language has new
challenges from learning about the philosophy of the language and
even its own lexicons, which make the use and expression of its
programs with this new language characteristic. But this requires
practice and time to become fluent in speaking and writing Python
programs. For now, in this book, we learned:

* What is a programming language, and what its fundamentals
are.

* The fundamentals of programming with the Python language.

* Working with data types: how to make collections, lists, input
and output, and use of variables.

* What classes are and everything that Object-Oriented
Programming covers (inheritance and polymorphism).

- The management of files and databases (SQLite).

* The graphical interface for developing visual programs.

* How to document your code and make it an official document.
* How to develop a web page.

There are many useful reports in which we can see that Python is
becoming one of the programming languages with the highest
growth rate. Python is, statistically, one of the programming
languages that has grown the most in recent years. More and more
people are interested in learning to program with Python. In fact,
there are those who consider it the programming language of the
future. A situation that leads to a great demand for specialized
professionals. However, this is just one of the benefits of becoming a
Python programmer. Becoming a Python programmer is not only

limited to getting more job opportunities but believe us, you are
going to have them. It is also about working and specializing in an
exciting programming language that you will like more the more you
learn about it. Whether you are new to programming or are already
a veteran looking for new challenges, Python is for you.

Programming is considered by many a form of art, and like all art, it
needs a language that allows you to express ideas in the way you
want. Python is the canvas that allows you to reflect, in a simple and
elegant way, ideas in an algorithmic way. Its applications, both in
the teaching and scientific communities, will allow it to increase its
popularity and adoption internationally. Hopefully, this
information, especially to the community of geeks around the world,
where there are many people, computer scientists or not, interested
in taking their first steps in the world of programming in a free
software environment, since Python constitutes, without a doubt,
one of the best variants.

The learning has not ended here. Indeed, it has only just begun. This
book is a tool with every intention of taking you by the hand on your
journey as a programmer from day zero. We hope to be a clear, solid,
and lasting base of knowledge that will be kept in your collection
whenever it is necessary in any challenge encountered in the world
of programming. Remember that you can always consult this
information again and that a large community of people with the
same interests as you is waiting to meet you to help you learn and
collaborate.

	Welcome To Python
	Advantages Of Becoming A Programmer
	Why Choose Python?
	Programming Languages
	What Is A Programming Language?
	Programming Languages Structure
	Low And High-Level Languages
	What Languages Exist For Programming?
	The Python Language
	Project: Hello World
	Basic Types
	Numeric Types
	Boolean Types
	String Types
	Collections
	Lists
	Tuple
	Set
	Dictionaries
	Flow Control
	Conditional Control Structures
	Iterative Control Structures
	Functions
	How To Define A Function In Python
	Control Flow
	Arguments And Parameters
	Modules And Packages
	Modules
	Packages
	Object-Oriented Programming
	Elements And Characteristics Of Oop
	Heritage
	Polymorphism
	Method Overload
	Encapsulation
	Functional Programming
	Higher-Order Functions
	Lambda Functions
	Text Files
	About Files
	Read From A Text File
	Append Text To An Existing Text File
	Binary Files
	Regular Expressions
	Metacharacters
	Sets
	Regex Module
	Databases
	Database Peculiarities
	Creating A Database Table
	Sql Basics
	Error Handling In Python
	Syntax Errors
	Exceptions
	Records
	Python Web Development
	Contributions Of Python To Web Development
	Web Frameworks For Python
	Using Django
	Website Project: Blog
	Final Words

