

Python for ArcGIS Pro

Automate cartography and data analysis using ArcPy, ArcGIS API
for Python, Notebooks, and pandas

Silas Toms
Bill Parker

BIRMINGHAM—MUMBAI

“Python” and the Python Logo are trademarks of the Python Software Foundation.

Python for ArcGIS Pro
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Senior Publishing Product Manager: Dr. Shailesh Jain

Acquisition Editor – Peer Reviews: Saby Dsilva

Project Editor: Amisha Vathare

Content Development Editor: Lucy Wan

Copy Editor: Safis Editing

Technical Editor: Aditya Sawant

Proofreader: Safis Editing

Indexer: Subalakshmi Govindhan

Presentation Designer: Pranit Padwal

First published: April 2022

Production reference: 1220422

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80324-166-1

www.packt.com

www.packt.com

Forewords

Geography is a gift that allows us to see over the horizon, or around the corner; to explore distant

lands, or the complexities of the underground environments beneath our own feet. Geography, as

both an art and a science, helps us understand our ever-changing world in ways that let us address

our pressing challenges at local, regional, national, and global scales. The ability to rigorously

quantify our world has been the quest of Geography since Eratosthenes first surveyed his corner

of the planet, resulting in an amazingly accurate approximation of the Earth’s circumference,

more than 2,000 years ago.

It was this rich quantitative tradition that was supercharged when Geographic Information Sys-

tems became broadly accessible – enabling the industrious to characterize our world in infinite

detail with points, lines, and polygons; gridded rasters; quantized mesh; and other quantitative

frameworks that allow the rigorous interrogation of our planet as it changes geographically,

over time. This transformation of the field of Geography, which has been several decades in the

making, has seen Geographic Information Systems become more commonplace, applied to an

ever-increasing range of business and mission challenges. GIS has been key to the digital trans-

formation of industry, government, academe, and the social sector.

This transformation has been hastened, in no small part, by GIS’s embrace of scripting languages

that empower a wide community of practitioners to continuously innovate as they explore their

world in new and innovative ways. These scripts have extended and augmented our collective

GIS capabilities as they have been crafted, posted on the Web, shared with others, modified, im-

proved, reshared, and road-tested by countless geospatial practitioners and scholars across our

global community. These scripts have thrown fuel on the fire of geospatial innovation, helping

all of us better understand our world. Everything that has ever happened on Planet Earth, after

all, by definition, has existed in space and time – creating a mammoth amount of work that only

thoughtful and creative automation can help us address.

It is books like this one that will help expand the pool of geospatial innovators, expand geo-

graphic understanding, and help us all, as a global community, address the vital issues of the day,

through a geographic lens. As you read this book, I encourage you to think about how these new

superpowers might help you leave our world just a little better off than it was when you found it.

Dr. Christopher Tucker

Chairman, American Geographical Society

A popular question that comes up in the GIS community is “How do I become a GIS developer?”.

It’s a valid question; lots of people in GIS might be making maps, doing analysis, and looking

to further their knowledge. I probably have a lot to say on this topic, but one of the first things I

would recommend is to learn Python.

One of my duties in a previous career was to prepare a series of about two dozen maps every year

that would get printed in the newspaper. They weren’t complicated maps, but preparing the data,

updating the layouts, and generating the maps usually took two to three days. It wasn’t difficult,

but it was tedious. I figured there had to be a better way to do it. This was one of the first tasks I

had where I really embraced Python. I was able to use Python to prepare the latest data, update

dates and information on the layouts, and generate all the documents. Writing and testing the

script took me maybe a day, and saved me numerous hours over the following years. I was sold

after that.

As professionals working in the spatial industry, it’s important to stay up to date with technolo-

gy that can help us in our daily tasks. Many people working in GIS will have stories of having to

gather data from various sources, doing a little copying and pasting, maybe even editing in their

favorite spreadsheet software, and producing something useful for stakeholders. At the end of

the day, data is data; it’s our job to give it meaning.

Python is that Swiss army knife in a developer’s toolbox. It can parse data, analyze imagery, convert

file types, upload/download, iterate, massage, and output various results. There’s a strong possi-

bility that if you need to perform some analysis, there’s a Python library available for it. Combine

that with ArcGIS API for Python and you can take your skills to the next level. This book will walk

you through the basics, as well as working with data; even publishing it. This is the kind of book I

wish I had when I was a wide-eyed technician and I’m excited for what you can do with it today!

René Rubalcava

SoftWhere Development Engineer, Esri

Contributors

About the authors
Silas Toms is a geospatial data expert and data engineer with over 15 years of experience in

the field of geographic data systems. A graduate of Cal Poly Humboldt, he has gone from envi-

ronmental data analysis to building a GIS for the Super Bowl, to his current role as the Director

of Data Engineering for an electric vehicle charging company. This is his fourth book, including

two other ArcGIS and ArcPy books, and Mastering Geospatial Analysis with Python 3.

I would like to thank my partner, Laura, and daughter, Sloane, who brighten my day and whose support and

love helped me to write this book. I would like to thank my parents and sister for their years of support. I would

also like to thank Gabriel Paun, Dara O’Beirne, Josh Butler, and Beth Stone, who taught me and believed in me.

Bill Parker is a GIS Professional with over 15 years of GIS and Python experience. He previously

worked at ICF as a GIS lead on large-scale environmental projects, using ArcPy to automate GIS

analyses and map production. His project highlights include being the GIS lead for the Caltrain

Modernization EIR/S, the California High Speed Rail Project San Jose to Merced, and the San

Francisco to San Jose EIR/S. He is now working at Volta Charging, automating spatial analyses

and ArcGIS Online workflows using Python.

I would like to thank my wife, Natalie, and children, Teddy and Jack, for supporting me and being understanding

of the time I needed to work on this. I would also like to thank my co-author for inviting me to work on this

with him and believing that I could do it.

Josh Bonifield is an experienced geospatial analyst with a demonstrated history of working in

the marketing, energy, and agriculture industries. He holds an undergraduate degree from Loyola

University Chicago in Environmental Science and recently finished his master’s in GIS with a

focus on data science and predictive analytics from Johns Hopkins University. He now works at

OpenTeams as a Geospatial Data Engineer, organizing and applying mobile data with precision

to aid their customers in solving unique problems.

Though he is not credited on the cover, Josh kindly contributed the crop yield prediction case

study that constitutes Chapter 13.

About the reviewer
Gregory Brunner is an experienced data scientist and award-winning professor. He is an ex-

pert in the fields of geographic information systems, geospatial application development, remote

sensing, big data analytics, Python, and ArcGIS. Since 2011, he has worked for Esri, where he super-

vises a team of data scientists and consultants and supports customers by helping them develop

and implement geospatial solutions using ArcGIS. He has authored several series of lessons on

Python and ArcGIS Notebooks that are hosted on the Learn ArcGIS website. Greg also teaches

programming for GIS and remote sensing at Saint Louis University, where he has been an adjunct

professor since 2017. In 2019, he was the recipient of the award for Excellence in Adjunct Teaching.

Table of Contents

Preface � xix

Part I: Introduction to Python Modules for ArcGIS Pro � 1

Chapter 1: Introduction to Python for GIS � 3

Python: Built different ��� 4

Python versions • 5

ArcGIS Python versions • 6

What is Python? • 6

Where is it installed? • 7

Python interpreter • 8

What is a Python script? • 9

Executables included • 9

How to call the executable • 10

IDLE development environment • 12

Windows file path issues • 13

The operating system and Python system modules • 14

The basics of programming �� 16

Variables • 18

Variable formatting rules • 19

Assigned to vs is equal to (value comparison) • 19

Data types • 19

Table of Contentsx

Checking the data type • 20

Strings • 20

Integers • 26

Floating numbers • 26

Conversion between strings, integers, and floats • 28

Data structures or containers • 28

Tuples • 29

Lists • 30

Sets • 32

Dictionaries • 33

Iteration • 34

For loops • 34

While loops • 35

Counters and enumerators • 35

Conditionals • 36

If versus else • 37

Zero-based indexing • 37

Data extraction using index position • 37

Data extraction using reverse index position • 37

Functions • 38

Components of a function • 38

Namespaces • 39

Function examples • 39

Classes • 40

Installing and importing modules ��� 41

Using pip • 42

Installing modules that are not in PyPI • 44

The setup.py file • 44

Wheel files • 44

Installing in virtual environments • 44

Importing modules • 45

Table of Contents xi

Three ways to import • 46

Importing custom code • 47

The site-packages folder • 48

Basic style tips for writing scripts �� 49

Indentation • 49

Using print statements • 50

Structuring a script • 51

Summary ��� 52

Chapter 2: Basics of ArcPy � 53

Checking your ArcPy install ��� 53

Using the correct Python IDLE Shell • 56

Using the Python IDLE Shell • 60

The Python window in ArcGIS Pro • 63

ArcPy environment settings ��� 68

ArcPy tools: Geoprocessing using ArcPy ��� 69

Built-in ArcPy functions �� 76

The Describe function • 77

List functions • 78

The wildcard parameter • 84

Combining wildcard and feature type parameters • 86

Introduction to ArcPy modules ��� 88

Spatial Analyst module • 89

Summary ��� 93

Chapter 3: ArcGIS API for Python � 95

What is the ArcGIS API for Python? �� 96

ArcGIS API modules • 96

What does it do and why use it? • 97

The Python Package Manager �� 98

Python environments • 98

Table of Contentsxii

How to create a new virtual environment • 99

ArcGIS Pro Notebooks �� 104

Creating a Notebook in ArcGIS Pro • 105

Creating your first Notebook • 106

ArcGIS Notebook structure • 107

Keyboard shortcuts • 110

Connecting to ArcGIS Online or ArcGIS Enterprise • 111

Anonymous users • 112

ArcGIS Pro connection • 112

Built-in users • 112

Creating a Notebook • 113

Using the gis module to manage your GIS ��� 115

Searching for data, users, or groups • 115

Searching for public data as an anonymous user • 115

Searching for data when connected to your organization • 122

Managing users • 130

Summary �� 135

Part II: Applying Python Modules to Common GIS Tasks � 137

Chapter 4: The Data Access Module and Cursors � 139

Walking through a directory to find data ��� 140

arcpy.da.Walk • 140

arcpy.da.Walk exercise • 140

Unzipping files using os.walk • 141

Copying shapefiles to feature classes using arcpy.da.Walk • 142

Cursors �� 146

Search cursor • 146

Accessing the geometry of a feature class • 148

Using a search cursor with a data dictionary as a lookup value • 152

Table of Contents xiii

Update cursor • 157

Insert cursor • 160

Summary ��� 168

Chapter 5: Publishing to ArcGIS Online � 171

Using ContentManager for publishing and organizing data ��� 171

Publishing data • 172

Adding data from a CSV • 172

Adding and publishing tips • 176

Organizing data and managing groups and users • 177

Organizing data into a folder • 177

Accessing and managing groups • 180

Using the features module to work with feature layers �� 184

Querying feature layers • 185

Editing features • 188

Appending features • 191

Using the mapping module to visualize your data ��� 196

Summary ��� 204

Chapter 6: ArcToolbox Script Tools � 207

Introduction to script tools �� 207

How to create a script tool ��� 209

Script tool General settings • 211

Script tool Parameters tab • 214

Script tool Validation • 220

Writing messages • 221

Exercise: Turning scripts into tools �� 222

Exporting a Notebook to a script in ArcGIS Pro 2.8 • 223

Copying and pasting cells to a script in ArcGIS Pro 2.7 • 225

Modifying a script to accept user input in the script tool • 226

Creating your script tool in ArcGIS Pro • 230

Table of Contentsxiv

Running and testing the script tool • 234

Updating the script tool to take census geography files • 237

Testing input parameters • 239

Adding custom messages • 240

Testing the finished script tool • 243

Testing SQL with Contra Costa Tract data • 243

Testing the script with California county geography • 245

Testing the script with a space in the area name • 247

Summary ��� 250

Chapter 7: Automated Map Production � 251

Referencing projects and maps within projects ��� 252

Updating and fixing data sources ��� 255

Fixing broken links • 255

Working with layers ��� 260

Adding, moving, and removing layers • 260

Layer symbology • 267

Layouts �� 282

Layers • 282

Layout elements • 285

Legend • 288

North arrow, scale bar, and text • 295

Exporting layouts • 297

Summary ��� 301

Part III: Geospatial Data Analysis � 303

Chapter 8: Pandas, Data Frames, and Vector Data � 305

Introduction to Pandas �� 306

Pandas DataFrames • 306

Pandas Series • 306

Table of Contents xv

Spatially Enabled DataFrames • 307

Installing Pandas • 308

Getting data into (and out of) a Pandas DataFrame • 309

Reading data from a file • 309

Writing data to a file • 311

Exercise: From GeoJSON to CSV to SHP using Pandas �� 311

Normalizing the nested JSON data • 314

Joining data frames • 315

Dropping columns • 318

Creating a CSV • 319

Creating a Spatially Enabled DataFrame from a DataFrame • 320

Dropping NaN values using dropna • 323

Querying the data frame • 324

Publishing the data to ArcGIS Online • 327

Converting an ArcGIS Online layer to a DataFrame • 329

Indexing and slicing DataFrame rows and columns • 331

Summary ��� 333

Chapter 9: Raster Analysis with Python � 335

Raster data objects ��� 335

Creating a new blank raster • 336

Reading and copying raster properties • 337

Creating a raster object from an existing raster • 337

Saving a raster • 339

Accessing the raster properties • 339

Accessing raster and cell value properties • 341

Geographic properties • 343

ArcPy Raster tools �� 344

The Spatial Analyst toolset and the sa module • 344

Generating a raster object • 345

Statistical raster creation tool • 347

Table of Contentsxvi

Conditionals • 348

The Hillshade tool • 349

The Conditional tool • 353

Map Algebra • 355

Shorthand operators for Map Algebra • 360

Using arcgis.raster ��� 365

Working with imagery layers • 366

Plotting a histogram • 367

Working with raster layers • 370

Summary �� 371

Chapter 10: Geospatial Data Processing with NumPy � 373

Introduction to NumPy �� 374

Advantages of NumPy arrays • 374

NumPy arrays versus Python lists • 375

Importing NumPy • 375

Basics of NumPy for rasters �� 375

Creating an array • 376

Reading a raster into an array • 378

Array properties • 380

Size • 380

Shape • 381

Data type • 382

Accessing specific elements • 383

Accessing a subset of the array • 385

Slicing a raster • 387

Concatenating arrays • 388

Creating a raster from a NumPy array • 392

Mathematical operations with NumPy • 392

Array queries • 397

Table of Contents xvii

Exercise: Statistical analysis of raster data using NumPy ��� 399

Creating charts from NumPy arrays using Matplotlib • 402

Summary ��� 409

Part IV: Case Studies � 411

Chapter 11: Case Study: ArcGIS Online Administration
and Data Management � 413

Case study: Administering your ArcGIS Online account ��� 414

Creating users • 414

Assigning licenses and credits • 420

Creating reports for item usage • 425

Reassigning user data • 436

Transferring data to a different user and creating a new folder • 436

Transferring data to a different user with an existing folder • 442

Case study: Downloading and renaming attachments ��� 444

Summary ��� 455

Chapter 12: Case Study: Advanced Map Automation � 457

Case study introduction ��� 458

Setting up a layout for map automation �� 459

Source text element • 462

Inset map frame • 465

DetailsHeader and DetailsBox text elements • 469

Legend element • 469

Legend Item elements • 474

Scale bar and north arrow elements • 476

Scale bar • 476

North arrow • 479

Title text element • 481

Map Frame element • 481

Table of Contentsxviii

Creating and adding data to your map ��� 481

Working with legend and text elements in the layout �� 495

Changing the map view and exporting �� 498

Summary ��� 505

Chapter 13: Case Study: Predicting Crop Yields � 507

Case study introduction ��� 508

Data and study area • 508

Data concepts • 510

Downloading datasets �� 512

World countries • 513

Population • 515

Rainfall • 516

Agricultural land • 516

Crop yields • 517

Pesticide and fertilizer use • 521

Temperature change • 522

Cleaning up and combining the data ��� 524

Fitting a random forest model ��� 528

Loading the result into ArcGIS Online ��� 531

Generating an HTML file using ArcGIS API for JavaScript ��� 533

Summary �� 541

Other Books You May Enjoy � 545

Index � 549

Preface

This book will welcome you to the wide world of ArcGIS Pro automation, which will elevate your

skillset and career to new heights. We will teach you how to optimize and streamline data man-

agement, analysis, and map-making processes in ArcGIS Pro and ArcGIS Online by using Python.

The tips and tricks you’ll learn make it easy to manage data for entire cities or huge companies,

to create or edit entire map series, or to generate analysis results quickly from big data series,

making your life as a GIS professional easier – whether you work in a government organization,

private industry, or are an aspiring student.

Who this book is for
This book is for ArcGIS professionals, intermediate ArcGIS Pro users, ArcGIS Pro power users,

students, and people who want to move from being a GIS Technician to GIS Analyst; GIS Analyst

to GIS Programmer; or GIS Developer/Programmer to a GIS Architect.

Basic familiarity with geospatial/GIS syntax, ArcGIS, and data science (Pandas) is helpful, though

not necessary.

What this book covers
Part 1: Introduction to Python Modules for ArcGIS Pro
Chapter 1, Introduction to Python for GIS, introduces the core components of Python required for

the automation of ArcGIS Pro and other Esri productions. This chapter also includes an overview

of Python syntax to introduce the required data structures and scripting concepts.

Chapter 2, Basics of ArcPy, explains the syntax and modules available for ArcPy, a Python package

that it is very important to be familiar with for map production and data management for ArcGIS

Pro. You will explore the functions and modules available in ArcPy, and do some geoprocessing

in the ArcGIS Pro window using ArcPy.

Prefacexx

Chapter 3, ArcGIS API for Python, introduces ArcGIS API for Python. This is a Python package de-

signed to work with web GIS and allows you to work directly with data on ArcGIS Online or ArcGIS

Enterprise. We will cover how to set up and manage a virtual environment within ArcGIS Pro, and

introduce ArcGIS Pro Notebooks, which are similar to Jupyter Notebooks. The ArcGIS Notebooks

will be used throughout the book as a way to write and run Python in ArcGIS Pro.

Part 2: Applying Python Modules to Common GIS Tasks
Chapter 4, Data Access Module and Using Cursors, covers how to use the Data Access module to

assist in automating import steps in geoprocessing tasks. The Walk function will be used to walk

through directories to find datasets. The search, insert, and update cursors will be used for finding

and updating data within feature classes.

Chapter 5, Publishing to ArcGIS Online, covers how to publish and organize data on ArcGIS Online

from within ArcGIS Pro. We will use ArcGIS API for Python in ArcGIS Pro Notebooks to publish,

append, and edit data. We will also show you how repetitive tasks involved in managing ArcGIS

Online content can be automated using Python.

Chapter 6, ArcToolbox Script Tools, demonstrates the process of turning a Python script into a script

tool. A script tool is stored in a custom toolbox and runs like an ArcGIS tool. Creating script tools

is a great way to share your scripts, as it allows non-Python users in your organization to run

tools you developed for specific tasks.

Chapter 7, Automated Map Production, introduces the arcpy.mp module that is used to automate

map production tasks. We will see how to use Python to update broken data source links, add/

move/remove data layers from a map, adjust the symbology of a layer, work with the different

layout elements, and export maps.

Part 3: Geospatial Data Analysis
Chapter 8, Pandas, Data Frames, and Vector Data, introduces you to using Pandas for geospatial

data analysis. We cover some Pandas basics, how to get data in and out of Pandas DataFrames,

and look at a GeoJSON-to-CSV file-to-shapefile workflow that relies on Pandas.

Chapter 9, Raster Analysis with Python, demonstrates how to use the raster tools in the arcgis and

arcpy modules to work with raster and imagery layers. We look at creating rasters, saving them,

and accessing their properties, as well as how the Spatial Analyst toolset enables more advanced

spatial modeling and analysis.

Preface xxi

Chapter 10, Geospatial Data Processing with NumPy, covers how and when you can use the NumPy

module when working with raster data. We look at some basic NumPy array manipulations and

how they are used in the context of geospatial analysis.

Part 4: Case Studies
Chapter 11, Case Study: ArcGIS Online Administration and Data Management, contains case stud-

ies showing you how to create Notebooks within ArcGIS Pro to administer your ArcGIS Online

account. These Notebooks will allow you to manage users, report credits, reassign items, and

download and rename photos. All of this can be done from within ArcGIS Pro using the ArcGIS

API for Python, and ArcGIS Pro Notebooks.

Chapter 12, Case Study: Advanced Map Automation, is a case study showing you how to create a

map automation from start to finish. We walk through the different map settings that cannot be

changed with arcpy.mp to help create a good template for your map automation. Then, we use

arcpy.mp to create a map series showing the different minority status of the block groups around

bus lines that were suspended in 2020 to identify any potential environmental justice issues.

Chapter 13, Case Study: Interactive Data Science Web Map, is a case study that demonstrates an

extract, transform, load (ETL) workflow applied to the problem of predicting crop yields using

agricultural data from around the world. We write a Notebook that performs data collection,

data cleaning, and fits a random forest model to make our predictions, and then create a simple

JavaScript web app on top of our Python code.

To get the most out of this book
To follow along with the exercises in this book, you need to have ArcGIS Pro 2.7 or higher installed,

along with the Python version that is installed with ArcGIS Pro. Don’t worry, though - in Chapter 2,

we will guide you through how to check your environment is set up properly before you begin.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Python-for-ArcGIS-Pro. We also have other code bundles from our rich catalog of books and

videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://static.packt-cdn.com/downloads/9781803241661_

ColorImages.pdf

https://github.com/PacktPublishing/Python-for-ArcGIS-Pro
https://github.com/PacktPublishing/Python-for-ArcGIS-Pro
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781803241661_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781803241661_ColorImages.pdf

Prefacexxii

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “ArcGIS

Pro comes with a default environment called arcgispro-py3.”

A block of input code is set as follows:

from arcgis.gis import GIS

from IPython.display import display

gis = GIS('home')

When we wish to draw your attention to a particular part of a code block, the relevant lines or

items are highlighted:

from arcgis.gis import GIS

from IPython.display import display

gis = GIS('home')

Any Notebook output is written as follows:

<Item title:"Farmers Markets in Alameda County" type:Feature Layer
Collection owner:billparkermapping>

<Item title:"Farmers Markets in Alameda County" type:CSV
owner:billparkermapping>

Bold: Indicates a new term, an important word, or words that you see on the screen, for example,

in menus or dialog boxes. For example: “However, it is not just a Python package: it is also an

application programming interface (API).”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface xxiii

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book’s title in the subject of

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do hap-

pen. If you have found a mistake in this book, we would be grateful if you would report this to us.

Please visit http://www.packtpub.com/submit-errata, selecting your book, clicking on the

Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com.

Share your thoughts
Once you’ve read Python for ArcGIS Pro, we’d love to hear your thoughts! Please click here to

go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1803241667
https://packt.link/r/1803241667

Part I
 Introduction to Python
Modules for ArcGIS Pro

1
Introduction to Python for GIS

Programming with computers is one of the most rewarding and frustrating of human endeavors.

Those rewards can be in the form of money, as we can see with today’s high-tech salaries. I would

argue, however, that the most rewarding part of mastering programming is to make yourself into

a computer power user who can execute both simple and complex applications and analyses,

written in reusable code, with ease.

The frustrations will come and go, and it is a good thing: you, like me and millions before you, will

learn from each mistake. You will grow and learn with each exercise in this book, and by asking

the right questions and paying close attention you can avoid some of these issues.

If you are an ArcGIS expert or novice, seeking to expand on your skillsets, congratulations – you

are in the right place. In this book, you will learn how to take your existing GIS expertise (or inter-

est) and multiply its potential using a deceptively simple programming language called Python.

Computer programming is a vast field of knowledge, about which whole books have been written.

In this chapter, we will explain the basic knowledge necessary to read, write, and run Python

scripts. We’ll leave the ArcGIS tools for later chapters and focus on Python: its beginnings, its

current state, how to use it, and importantly, what Python is and what it is not.

We will cover the following topics:

•	 The basics of Python

•	 The basics of computer programming

•	 Installing and importing modules

•	 Writing and executing scripts

Introduction to Python for GIS4

Python: Built different
Guido Van Rossum, the creator of the Python programming language, was frustrated with the

state of computer programming in the late 1980s. Programming languages were too complex and,

at the same time, too loose with their formatting requirements. This led to large codebases with

complex scripts poorly written and rarely documented.

Merely running a simple program could take a long time, as the code would need to be type-

checked (variables declared correctly and assigned to the correct data type) and compiled (con-

verted from high-level code written in text files into the assembly language or machine code

understood by the CPU).

As this Dutch programmer had completed professional work on the ABC programming language,

where he had learned much about language design, he decided he wanted to turn his gripes about

the limits of ABC and other languages into a hobby.

With a master’s degree in mathematics and computer science from the University of Amsterdam,

his hobbies tended towards the computer, but he did have a love for Monty Python, the British

comedy series. So, he combined his passions and created Python, which is now used for all kinds

of programmatic solutions. Today Python is everywhere, used to power the internet, kitchen ap-

pliances, cars, and so much more. Because of its ubiquity and its simplicity, it has been adopted

by the GIS software ecosystem as a standard programming tool.

Thanks to Van Rossum’s extensive experience with the state of computer languages in the 1980s,

he was well positioned to create a language that solved many of their deficiencies. He added

features that he admired from many other languages and added a few of his own. Here is an

incomplete list of Python features built to improve on other languages:

Issue Improvement Python feature

Memory overrun Built-in memory management Garbage collection and

memory management

Slow compiler times One-line testing, dynamic

typing

Python interpreter

Unclear error messages Messages indicating the

offending line and affected

code

Error traceback

Spaghetti code, i.e. code with

unclear internal logic

Clean importation and

modularization

Importation

Chapter 1 5

Unclear code formatting

and spacing, making code

unreadable

Indentation rules and reduced

brackets

Forced whitespace

Too many ways to do

something

There should be only one way:

the Pythonic way

The Zen of Python, a

philosophy of programming

that is unique to Python,

which expects clean and

simple implementations. Type

import this into a Python

interpreter and explore the

built-in “easter egg” poem.

Python versions
The original Python version released in 1991 by Van Rossum, Python 1.0 and its successors, was

eventually superseded by the widely popular Python 2.x. Care was taken to ensure that version

2.0 and beyond were backward-compatible with Python 1.x. However, for the new Python 3.0

and beyond, backward compatibility with Python 1 and Python 2 was broken.

This break has caused a divergence in the Python ecosystem. Some companies chose to stick with

Python 2.x, which meant that the “sunset” date, or retirement date, for the older version was ex-

tended from 2015 until April 2020. Now that the sunset date has passed, there is no active work

by the Python Software Foundation (PSF) on Python 2.x. Python 3.x development continues

and will continue into the future, overseen by the PSF.

Van Rossum served as the Benevolent Dictator for Life of the PSF until he resigned from the

position in 2018.

Check out more about the history of Python here: https://docs.python.org/3/

faq/general.html

https://docs.python.org/3/faq/general.html
https://docs.python.org/3/faq/general.html

Introduction to Python for GIS6

ArcGIS Python versions
Since ArcMap version 9.x, Python has been integrated into the ArcGIS software suite. However,

ArcGIS Desktop and ArcGIS Pro now both depend on different versions of Python:

•	 ArcGIS Pro: Python 3.x

ArcGIS Pro, which was designed after the decision to sunset Python 2.0 was announced,

was divorced from the Python 2.x ecosystem and instead ships with Python 3.x.

Along with the arcpy module, ArcGIS Pro uses the arcgis module, known as the ArcGIS

API for Python.

•	 ArcGIS Desktop: Python 2.x

ArcGIS Desktop (or ArcMap) version 9.0 and above ships with Python 2.x included. The

installer for ArcGIS will automatically install Python 2.x and will add the arcpy module

(originally arcgisscripting) to the Python system path variable, making it available

for scripting.

ArcMap, ArcCatalog, ArcGIS Engine, and ArcGIS Server all depend on arcpy and the Py-

thon 2.x version included when the ArcGIS Desktop or Enterprise software is installed.

The sunsetting of ArcGIS Desktop has been extended to March 2025, meaning that Python 2.7

will be included by Esri until that time, despite it being officially retired by the Python Software

Foundation. With the sunsetting of ArcGIS Desktop approaching, users are now writing scripts

in Python 3 to work with ArcGIS Pro.

What is Python?
In short, Python is an application: python.exe. This application is an executable file, meaning

it can be run to process lines of code, or it can be called from other applications to run custom

scripts. When ArcGIS Pro is installed, Python is also installed on your computer, along with a

series of supporting files and folders, at this default location:

C:\Program Files\ArcGIS\Pro\bin\Python\envs\arcgispro-py3

Python includes a large standard library of tools, or modules. These include support for internet

requests, advanced math, CSV reading and writing, JSON serialization, and many more modules

included in the Python core. While these tools are powerful, Python was also built to be extensible,

meaning that third-party modules can be easily added to a Python installation.

Chapter 1 7

The ArcGIS Python modules, arcpy and arcgis, are both good examples of extending the ca-

pabilities of Python. There are hundreds of thousands of others, covering almost any type of

programming need, of varying quality.

Python is written in the programming language C. There are variants of Python written in other

languages for a variety of technical reasons, but most implementations of Python are built on top

of C. This means that Python is often expanded through modules built on top of C code, usually

for speed improvement reasons.

A Python code layer or wrapper is put on top of C code to make it work with normal Python

packages, gaining the simplicity of Python and the processing speed boosts of precompiled C

code. NumPy and SciPy (which are included with the ArcGIS installation of Python) are examples

of this type of module.

Python is free and open software, which is another reason it is packaged with so many other

software applications for automation purposes. While Python is already installed with ArcGIS

Pro, it can also be installed separately, using a free installer from the Python Software Foundation.

Where is it installed?
On Windows machines, Python is not included by default; it will be installed along with ArcGIS

Pro or separately using an installer from the Python Software Foundation.

Once the ArcGIS Installer is run, a few versions of Python will be installed. For our use in this book,

the main version is the Python 3 virtual environment installed at this folder location:

C:\Program Files\ArcGIS\Pro\bin\Python\envs\arcgispro-py3

Check out the Python Software Foundation on the internet: https://www.python.

org/psf

Download Python versions directly from the PSF: https://www.python.org/
downloads/

https://www.python.org/psf
https://www.python.org/psf
https://www.python.org/downloads/
https://www.python.org/downloads/

Introduction to Python for GIS8

Figure 1.1: Structure of the Python folder, containing the python.exe executable

Python interpreter
When you run python.exe (see below for multiple ways to run the executable), it starts what is

known as the Python interpreter.

This is a useful interface, allowing you to enter, one line at a time, bits of code for testing and

confirmation. Once the line is entered, hit Enter/Return and the code will be executed. This tool

helps you both to learn to code and to test code in the same environment.

Chapter 1 9

Double-clicking on python.exe from the folder or starting Python (command line) from the Start

menu will start the interpreter, which allows for one-line commands to be executed:

Figure 1.2: Python interpreter for Python 3.7

What is a Python script?
The python.exe executable file, along with being a program where code can be run, will also

execute Python scripts. These scripts are simple text files that can be edited by any text editing

software. Python scripts are saved with the .py extension.

When a Python script is run, it is passed as the first command-line argument to the Python

executable (python.exe). This program will read and then execute the code from the top to the

bottom, as long as it is valid Python and it contains no errors. If there is an error encountered, the

script will stop and return an error message. If there is no error, nothing will be returned unless

you have added “print” statements to return messages from the main loop to the Python window

as the script is running.

Executables included
Python comes with two versions of the python.exe file. These are the same version of Python,

to be clear, but each file has a different role. python.exe is the main file, and the other version

is pythonw.exe. This file will not open an interpreter if double-clicked, as the normal python.

exe will. No interpreter is available from pythonw.exe, which is the point: it is used to execute

scripts more “silently” than python.exe (for example, when called by another application such

as ArcGIS to run a Python script).

Introduction to Python for GIS10

Use python.exe to start the interpreter.

Figure 1.3: pythonw.exe in the Python folder

How to call the executable
The Python executable (python.exe) is accessed to run the Python interpreter or to run a custom

Python script. There are many different ways to call or start the Python executable:

•	 Double-click on python.exe ("C:\Program Files\ArcGIS\Pro\bin\Python\envs\

arcgispro-py3\python.exe"): This starts the Python interpreter.

•	 Run Python inside ArcGIS Pro: ArcGIS Pro has a built-in Python interpreter that you will

use in Chapter 2 to run custom lines of code. In Chapter 3, you will see how to use ArcGIS

Pro Notebooks as a way to test, store, and share custom scripts as Notebooks.

Chapter 1 11

•	 Open IDLE, the included integrated development environment (IDE): It can be run directly:

C:\Program Files\ArcGIS\Pro\bin\Python\envs\arcgispro-py3\Scripts\
idle.exe

In Chapter 2, you will see how to create a shortcut on your Desktop to the IDLE associated

with your Python 3.x install.

Figure 1.4: Python applications available through the Start/ArcGIS Menu

•	 Open a CMD terminal and type python: This only works if the Python executable is in

the Windows PATH environment variable. If you get an error that says 'python' is not
recognized as an internal or external command, operable program or batch

file, the python.exe program is not in the Windows PATH environment variable.

If you have ArcGIS Desktop and ArcGIS Pro along with other versions of

Python installed, always pay attention to which version of Python you are

opening from the Start menu. Not all versions may be associated with ArcGIS

and therefore may not have the arcpy module accessible.

Check out this blog for a discussion on how to add your executable to the Path

variable: https://www.educative.io/edpresso/how-to-add-python-
to-path-variable-in-windows

https://www.educative.io/edpresso/how-to-add-python-to-path-variable-in-windows
https://www.educative.io/edpresso/how-to-add-python-to-path-variable-in-windows

Introduction to Python for GIS12

•	 Use a third-party IDE such as PyCharm: Each PyCharm project can have its own virtual

environment, and therefore its own executable, or it can use the one installed by Esri when

ArcGIS is installed (C:\Program Files\ArcGIS\Pro\bin\Python\envs\arcgispro-py3\

python). There are a lot of IDEs, but PyCharm is the one we recommend for a variety of

reasons: clean interface, easy downloading of modules, built-in virtual environments,

and more.

•	 Use a Jupyter Notebook: This requires the installation of Jupyter, which is not included

in the standard Python installation.

•	 Run Python in the command line by using the whole path to the executable:

"C:\Program Files\ArcGIS\Pro\bin\Python\envs\arcgispro-py3\python.
exe"

There are multiple ways to directly run the script using the executable, but we find that IDEs

make it easier to edit and execute code.

IDLE development environment
The included IDE, called IDLE, is a useful environment that comes standard with every Python

instance:

Figure 1.5: The Python IDLE interpreter environment is similar to a shell environment. Code
can be run one line at a time.

You can create and execute scripts in this environment easily by opening a new script from the

File menu, and then using the script’s Run menu to execute the script:

You will be using ArcGIS Pro Notebooks starting in Chapter 3. These are based

on Jupyter Notebooks and are very similar, but are stored and run in ArcGIS

Pro.

Chapter 1 13

Figure 1.6: Running a script in IDLE

Windows file path issues
Because Python was developed in a Unix/Linux environment, it expects file paths to use forward

slashes (/). However, Windows uses backslashes (\) in its file paths.

Windows:

'C:\Python\python.exe'

Linux:

'C:/Python/python.exe'

This has consequences in a Python script, because of the presence of a number of special string

combinations made with backslashes. For instance, to create a tab character in a string, Python

uses a combination of a backslash and a “t” to create this character: \t.

The backslashes can be escaped; in other words, Python can be told to ignore the special characters

in a string, by doubling up the backslash. However, this is inconvenient. The easiest way to address

the backslashes inherent in Windows file paths (when passing a shapefile file path to an arcpy

function, for instance) is to make them into raw strings by putting an “r” in front of the string.

The following would cause an error when passed to an arcpy function, because of all the \t

characters:

'C:\test\test.shp'

To avoid this, you have three options. If you are copying a folder path from Windows Explorer,

use an “r” in front of the script to transform it into a raw string:

r'C:\test\test.shp'

Introduction to Python for GIS14

You can also use forward slashes:

'C:/test/test.shp'

Escaping the backslashes by doubling them up also works:

'C:\\test\\test.shp'

The operating system and Python system modules
Two important modules or code libraries built into Python to know about are the os and sys

modules. The first, os, is also called the operating system module. The second, sys, is the Py-

thon system module. They are used to control Windows system operations and Python system

operations respectively.

The os module
The os module is used for many things, including folder path operations such as creating folders,

removing folders, checking if a folder or file exists, or executing a file using the operating sys-

tem-associated application used to run that file extension. Getting the current directory, copying

files, and more, are made possible with this module. The os module will be used throughout this

book in examples to do all of the above.

In the following code snippet, we first import the os module since we intend to use it. A string,

"C:\Test_folder", is passed to the os.path.exists method, which returns a Boolean value

(either True or False). If it returns False, the folder does not exist, and is then created using the

os.mkdir method:

import os

folderpath = r"C:\Test_folder"

if not os.path.exists(folderpath):

 os.mkdir(folderpath)

The sys module
The sys module, among other functions, allows you to accept arguments to a script at runtime

(meaning when the script is executed). This is done by using the sys.argv method, which is a

list containing all arguments made to Python during the executing of the script.

Read about the os module here: https://www.geeksforgeeks.org/os-module-
python-examples/

https://www.geeksforgeeks.org/os-module-python-examples/
https://www.geeksforgeeks.org/os-module-python-examples/

Chapter 1 15

If a name variable is using the sys module to accept parameters, here is what the script looks like:

import sys

name = sys.argv[1]

print(name)

Note again that the sys.argv method is a list, and the second element in the list (assigned to

the variable name above) is the first parameter passed. Python uses zero-based indexing, which

we explore in further detail later in the chapter. The first element in the list is the file path of the

script being run.

The system path
The sys module contains the Python path or system path (system in this case means Python).

The Python system path, available from the sys module at sys.path, is a list that Python uses

to search for importable modules, after accessing the Windows Path variable. If you can’t edit

the Windows Path (due to permissions, usually), you can alter the Python path at runtime using

the system path.

The sys.path list is a part of the sys module built into Python:

Figure 1.7: Inspecting the sys.path list

We have given you a lot of information about what Python is, how the Python folder is structured,

how the Python executable is run, and how to execute and run scripts. This will help you run

Python scripts to automate your analyses. In the next section, we will be zooming out to gain a

wider view of computer programming.

Read more about the sys module here: https://www.geeksforgeeks.org/python-
sys-module/

https://www.geeksforgeeks.org/python-sys-module/
https://www.geeksforgeeks.org/python-sys-module/

Introduction to Python for GIS16

This will help you to gain more insight into why Python was chosen to be the language of auto-

mation for ArcGIS Pro, and help you to be a better programmer in general.

The basics of programming
Computer programming varies from language to language in terms of implementation, but there

are remarkable similarities among these languages in how their internal logic works. These pro-

gramming basics are applicable for all programming languages, with specific code implementa-

tions shown in Python:

Concept Description Examples in code

Variables Names assigned to Python

objects of any data type.

Variables must start with

a letter. Underscores are

encouraged.

x=0

y=1

xy = x+y

xy_str = str(xy)

Data types Strings are for text. Integers

are for whole numbers.

Floats are for floating-point

numbers. Data containers

such as lists, tuples, and

dictionaries are used

extensively to organize data.

Booleans are used for true or

false situations.

str_var = "string"

int_var = 4

float_var = 5.7

list_var = [45,43,24]

tuple_var = (87,'a',34)

dict_var = {'key':'value'}

bool_var = True

Iteration For loops are used to iterate

through an iterable data

object (an iterator, such

as a data list). While loops

are used to loop until a

condition has been met.

for item in datalist:

 print(item)

x=0

while x < 1:

 x+=1

As well as an introduction to Python programming, the rest of the chapter will be a

useful reference for you to come back to as you work through the book. If you’d like

to get hands-on with writing code straightaway, start with Chapter 2, Basics of ArcPy.

Chapter 1 17

Counters /

Enumerators

Using a variable to keep

track of the number of

loops performed by a for

loop or while loop is a

good idea. Some languages

have built-in enumeration

functionality. In Python, this

is the enumerate() function.

Counters are reassigned

to themselves after being

increased.

In Python, the shortcut x +=

y is the same as x = x + y.

counter = 0

list_var = [34,54,23,54]

for item in list_var:

 print(item, counter)

 counter += 1

l_var = [34,54,23,54]

for c,i in enumerate(l_var):

 print(i, c)

Conditionals If/Elif/Else statements that

interpret whether an object

meets a condition.

list_var = [1,'1',1.0]

for item in list_var:

 if type(item) == type(0):

 print('Integer')

 elif type(item) == type('a'):

 print('String')

 else:

 print('Float')

Zero-based

indexing

Data containers are accessed

using indexes that start with

0. The indexes are passed

to the list or tuple using

square brackets []. String

characters can be accessed

using the same pattern.

list_var = ['s','m','t']

m_var = list_var[0]

name_var = "logan"

l_var = name_var[0]

Introduction to Python for GIS18

Code

comments

Comments in code are

encouraged. They help

explain your thinking to

both other readers and

yourself. Comments are

created by using the #

symbol. Comments can be

on a line by themselves or

can be added to the end of a

statement, as anything after

the # symbol will be ignored.

This is a comment

x = 0 # also a comment

Errors Error messages of many

types are built into Python.

The error traceback shows

the affected lines of code

and the type of error. It’s not

perfect.

>>> str_var = 'red"

 File "<stdin>", line 1

 str_var = 'red"

 ^

SyntaxError: EOL while scanning
string literal

In the following sections, we take a look at some of these in more detail, as well as introducing

you to functions and classes.

Variables
Variables are used to assign objects to labels or identifiers. They are used to keep track of pieces of

data, to organize the flow of the data through the script, and to help programmers read the script.

variable = 1 # a variable assignment

We recommend you use descriptive variables that are neither too long nor too short. When vari-

ables are too short, they can become confusing to read. When they are too long, they can be

confusing to write. Using underscores to separate words in variables is a common practice.

Read more about Python variable naming conventions here: https://www.python.

org/dev/peps/pep-0008/#function-and-variable-names

https://www.python.org/dev/peps/pep-0008/#function-and-variable-names
https://www.python.org/dev/peps/pep-0008/#function-and-variable-names

Chapter 1 19

Variable formatting rules
Variables must start with a letter. They cannot start with a number or other symbol, otherwise a

SyntaxError will occur. However, numbers and underscores can be used in them:

>>> 2var = 34

 File "<stdin>", line 1

 2var = 34

 ^

SyntaxError: invalid syntax

>>> two_var = 34

>>> two_var

34

Assigned to vs is equal to (value comparison)
In Python, variables are assigned to an object using the equals sign (=). To check if a value is equal

to another value (in other words, to compare them), use a double equals sign (==):

variable = 1 # a variable assignment

variable == 1 # a comparison

Data types
The data type of a variable determines its behavior. For instance, the character 5 could be an

integer type (5), a float (5.0), or a string ("5"). Each version of 5 will have different available

tools, such as the replace() method for strings, which can replace characters in the string with

other characters.

Read more about variables here: https://realpython.com/python-variables/

https://realpython.com/python-variables/

Introduction to Python for GIS20

The following table presents key data types in Python, along with the corresponding data type

object in Python:

Data type Python data type object

Text data is stored as a String data type. str

Numeric data is stored as an Integer, Float,

or Complex type.

int, float, complex

Sequence data (lists or arrays) can be stored

as a list or tuple. In Python 3, range is a

generator, a special object that returns a

lazy iterator which, when called, returns

one member of the desired list.

list, tuple, range

Mapping or key/value pair data types are

also known as dictionaries in Python.

dict

A set is a data type that contains distinct,

immutable objects.

set, frozenset

Boolean is either True or False, 1 or 0. bool

Binary data types are used to access data

files in binary mode.

bytes, bytearray, memoryview

Checking the data type
To check the data type of a Python variable, use the type() function:

>>> x = 0

>>> type(x)

<class 'int'>

Strings
All text data is represented as the String data type in Python. These are known as strings. Common

data stored as strings includes names, addresses, or even whole blog posts.

Strings can also be templated in code to allow for “fill-in-the-blank” strings that are not set until

the script is run. Strings are technically immutable but can be manipulated using built-in Python

string tools and the separate String module.

Chapter 1 21

Here are some of the key concepts relating to strings:

Quotation

marks

Single or double quotation marks can be used to designate a string, as long as

the same number is used at the beginning and end. Quotes within a string can

be indicated using the opposite mark as the one opening and closing the string.

Triple quotation marks are used for strings with multiple lines.

String

addition

Strings can be “added” together to form a larger string. Strings can also be

“multiplied” by an integer N to repeat the string N times.

String

formatting

String templates or placeholders can be used in code and filled in at runtime

with the data required.

String

manipulation

Strings can be manipulated using built-in functionality. Characters can be

replaced or located. Strings can be split or joined.

Quotation marks
Strings must be surrounded by quotation marks. In Python, these can be either single or double

quotes, but they must be consistent. If a single quote is used to start the string, a single quote

must be used to stop it, or you will get an error:

>>> string_var = 'the red fox"

 File "<stdin>", line 1

 string_var = 'the red fox"

 ^

SyntaxError: EOL while scanning string literal

A correct way:

>>> string_var = 'the red fox'

>>> string_var

'the red fox'

Multiple line strings
Multiple line strings are created by a pair of three single quotes or double quotes at the beginning

of the string, and three at the end.

In the following example, the variable string_var is a multiple-line string (\n is a Python char-

acter representing a new line):

>>> string_var = """the red fox chased the

... dog across the yard"""

Introduction to Python for GIS22

>>> string_var

'the red fox chased the\ndog across the yard'

String addition (and more)
Strings can be “added” together to create a new string. This process allows you to build strings

from smaller strings, which can be useful for populating new fields composed of other fields in

a data file, and other tasks.

In this example, the string "forest" is assigned to string_var. Another string is then added to

string_var to create a longer string:

>>> string_var = "forest"

>>> string_var += " path" # same as string_var = string_var+ " path"

>>> string_var

'forest path'

String formatting
Strings in code often make use of “placeholders” for data that will be filled in later. This is known

as string formatting, and there are multiple ways to perform string formatting using Python.

Here are the key concepts:

Format function All strings have a built-in function called format() that allows the string to

have arguments passed. It will accept all data types and format the string

from a template.

String literals For Python 3.6+, there is a new tool called string literals, which allow you to

insert variables into strings directly. An f is placed in front of the string.

Data type string

operators

An older but still useful tool is the string operators, which are used in strings

as placeholders for specific data types (either strings, floats, or integers).

String format function
This method of formatting is the preferred form for Python 3. It allows you to pass the variables

to the format() function, which is built into all strings, and to have them fill up placeholders

within the string. Any data type can be passed to the format() function.

In the following example, the string template is filled with details contained in other variables

using the format() string function. The placeholders are filled in the order that the variables are

listed, so they must be in the correct order.

Chapter 1 23

The curly brackets are the placeholders, and the format() function will accept arguments and

fill in the string:

>>> year = 1980

>>> day = "Monday"

>>> month = "Feb"

>>> template = "It was a cold {} in {} {}"

>>> template.format(day, month, year)

'It was a cold Monday in Feb 1980'

In the next example, the placeholders are named, and are passed to keyword arguments in the

format() function. The arguments are named and do not need to be in order in the format()

function:

>>> template = 'It was a cold {day} in {month} {year}'

>>> template.format(month=month, year=year, day=day)

'It was a cold Monday in Feb 1980'

In this last example, the placeholders are numbered, which makes it much easier to repeat a string:

>>> template = "{0},{0} oh no,{1} gotta go"

>>> template.format("Louie", "Me")

'Louie,Louie oh no,Me gotta go'

String literals
There is a new (as of Python 3.6) method of formatting strings, known as formatted string literals.

By adding an f before strings, placeholder variables can become populated by variables without

using the format() function.

In this example, the variables are formatted directly into the string literal, which has an f before

the string to indicate that it is a string literal:

>>> year = 1980

>>> day = "Monday"

>>> month = "Feb"

>>> str_lit = f"It was a cold {day} in {month} {year}"

>>> str_lit

'It was a cold Monday in Feb 1980'

Introduction to Python for GIS24

String placeholder operators
An older but still useful method for inserting data into strings is the data type string operators.

These use placeholders that will format inserted strings in specific ways. However, they are da-

ta-specific, meaning that a number inserted into the string must use a number placeholder, and

a string being inserted must use a string placeholder, or an error will result.

The placeholders are %s for strings and %d or %f for numbers. They each have optional features

specific to the data type. For instance, the %f number placeholder can be manipulated to hold

only a specific number of decimal points:

>>> month = '%0.2f' % 3.1415926535

>>> month

3.14

To use them, you place the placeholder in the string template, and then follow the string with a

percent sign (%) and the values to be passed into the string template in a tuple after the percent sign:

>>> year = 1980

>>> month = "February,"

>>> str_result = "It was a cold %s %d" % month, year

>>> str_result

'It was a cold February, 1980'

String manipulation
String manipulation is common and lots of tools are built into the String data type. These allow

you to replace characters in a string or find their index location in the string.

The find() and index() methods are similar, but find() can be used in conditional statements.

If the character is not found in the string, find() will return -1, while index() will return an error.

Read more about string formatting here: https://realpython.com/python-

string-formatting/

Read more about string placeholders here: https://pyformat.info/

https://realpython.com/python-string-formatting/
https://realpython.com/python-string-formatting/
https://pyformat.info/

Chapter 1 25

The join() method is used to join together a list of string data. The split() method is the oppo-

site: it splits a string into a list based on a supplied character or the default empty space.

Here is a non-exhaustive list of methods and examples of their use:

Method Example

join() string_list = ['101 N Main St','Eureka','Illinois
60133']

address = ', '.join(string_list)

replace() address = '101 N Main St'.replace("St","Street")

find(), rfind() str_var = 'rare'

str_index = str_var.find('a') # index 1

str_index = str_var.find('r') # index 0

str_index = str_var.rfind('r') # index 2

str_index = str_var.rfind('d') # index -1

upper(), lower(),
title()

name = "Laura"

name_upper = name.upper()

name_lower = name.lower()

name_title = name_lower.title()

index(), rindex() str_var = 'rare'

str_index = str_var.index('a') # index 1

str_index = str_var.index('r') # index 0

str_index = str_var.rindex('r') # index 2

str_var.index('t') # this will cause an error

split() latitude,longitude = "45.123,-95.321".split(",")

address_split = '101 N Main St'.split()

String indexing
String indexing is similar to list indexing, as we will see later on. Individual characters, or groups

of characters, can be selected from a string by passing the index of the character needed to the

string in square brackets, where 0 is the index of the first character.

In the following example, the d from readiness is accessed by passing the index [3] to square

brackets next to the string:

>>> str_var = "readiness"

>>> d_var = str_var[3]

>>> d_var

'd'

Introduction to Python for GIS26

Groups of characters are selected by passing a start and end index, where the end index is the

index of the first character you do not want to include:

>>> str_var = "readiness"

>>> din_var = str_var[3:6] # index 6 is e

>>> din_var

'din'

>>> dine_var = str_var[3:7] # index 7 is s

>>> dine_var

'dine'

Integers
The Integer data type represents whole numbers. It can be used to perform addition, subtraction,

multiplication, and division (with one caveat as noted below):

>>> int_var = 50

>>> int_var * 5

250

>>> int_var / 5

10.0

>>> int_var ** 2

2500

Floating numbers
Floating-point numbers in Python are used to represent real numbers as 64-bit double-precision

values. Sometimes, using binary systems to represent decimal-based numbers can be a bit odd,

but in general, these will work as expected:

Starting in Python 3, you could divide two integers and get a float. In previous ver-

sions of Python 2.x, whenever you divided two integers you would only get an integer,

with no remainder. Because of the way Python 2.x did integer division, you will come

across code where integers are converted to floats for divison. You are encouraged

to do the same in your own code.

Read more about integers in Python here: https://realpython.com/python-
numbers/

https://realpython.com/python-numbers/
https://realpython.com/python-numbers/

Chapter 1 27

>>> x = 5.0

>>> x * 5

25.0

>>> x ** 5

3125.0

>>> x/2.3

2.173913043478261

One unique result from floating-point division is the case of 1/3. Because it is a binary repre-

sentation, the assumption that (1/3)* 3= 1 is True, even though the value 0.3333333333333333

(produced by the division operation) would never add up to 1 when added together three times

in a base 10 system. Here are some examples of binary math in action:

>>> 1/3

0.3333333333333333

>>> (1/3) * 3

1.0

>>> (1/3) + (1/3)

0.6666666666666666

>>> (1/3) + (1/3) + (1/3)

1.0

>>> (1/3) + (1/3) + 0.3333333333333333

1.0

>>> (1/3) + (1/3) + 0.3333

0.9999666666666667

>>> (1/3) + (1/3) + 0.3333333333

0.9999999999666667

>>> (1/3) + (1/3) + 0.333333333333333

0.9999999999999996

>>> (1/3) + (1/3) + 0.33333333333333333 1.0

Read more about floating-point numbers in Python here: https://www.

geeksforgeeks.org/python-float-type-and-its-methods

https://www.geeksforgeeks.org/python-float-type-and-its-methods
https://www.geeksforgeeks.org/python-float-type-and-its-methods

Introduction to Python for GIS28

Conversion between strings, integers, and floats
Conversion between data types is possible in Python using built-in functions that are part of the

standard library. As we saw earlier, the type() function is useful to find the data type of an object.

Once identified, the data object can be converted from Integer (int() function) to String (str()

function) to Float (float() function), as long as the character would be valid in that data type.

In these examples, a character is converted from String to Integer to Float to String using the

int(), str(), and float() functions:

>>> str_var = "5"

>>> int_var = int(str_var)

>>> int_var

5

>>> float_var = float(int_var)

>>> float_var

5.0

>>> str_var = str(float_var)

>>> type(str_var)

'<class 'str'>'

Data structures or containers
Data structures, also called data containers and data collections, are special data types that can

hold, in a retrievable order, any data item of any data type (including other data containers).

Data containers are used to organize data items by index in tuples or lists, or by key:value pairs

in dictionaries.

To get data out of data containers, square brackets are used to pass either indexes (lists and tu-

ples) or keys (dictionaries). If there is more than one level of data container (in other words, one

container contains another), first the data container inside is referenced using an index or key

inside a first square bracket, and then the data inside the container is accessed using a second.

The following table summarizes the different types of data containers and how data is retrieved

from each of them:

Data container Example

Tuple tuple_var = ("blue",
32,[5,7,2],'plod',{'name':'magnus'})

plod_var = tuple_var[-2]

magnus_var = tuple_var[-1]['name']

Chapter 1 29

List list_var =
['fast','times',89,4.5,(3,8),{'we':'believe'}]

times_var = list_var[1]

dict_var = list_var[-1]

believe_var = list_var[-1]['we']

Set list_var = [1,1,4,6,7,6]

set_var = set(list_var) # removes duplicates

{1, 4, 6, 7} # result

Dictionary dict_var = {"key": "value"}

dict_info = {"address": "123 Main Street", "name":
"John"}

name = dict_info["name"] # gets the name value
from the key

address = dict_info["address"] # gets the address
value

Tuples
Tuples are ordered lists that can hold any data type, even in the same tuple. They are immutable,

meaning they cannot be altered, and data cannot be added to or removed from the tuple once it

has been created. They have length and the built-in len() function can be used to get the length

of the tuple.

In Python, they are declared by using round brackets, (), or the tuple() function. Data is accessed

using zero-based indexing by passing the index to square brackets next to the tuple.

In the following example, a tuple is assigned to the variable name tuple_var(), and data is

accessed using indexing:

>>> tuple_var = ("red", 45, "left")

>>> type(tuple_var)

<class 'tuple'>

>>> ("red",45,"left")[0]

'red'

>>> tuple_var[0]

'red'

Read more about tuples in Python here: https://www.geeksforgeeks.org/

python-tuples/

https://www.geeksforgeeks.org/python-tuples/
https://www.geeksforgeeks.org/python-tuples/

Introduction to Python for GIS30

Lists
Lists (often called arrays in other programming languages) are data containers that can hold

any other type of data type, even in the same list, just like tuples. Unlike tuples, though, lists can

be altered after they are created. In Python, they are declared by using square brackets, [], or

the list() function. Data is accessed using zero-based indexing by passing the index to square

brackets next to the list.

In this example, a list is assigned to the variable name list_var, and data is accessed using

indexing:

>>> list_var = ["blue",42,"right"]

>>> type(list_var)

<class 'list'>

>>> ["blue",42,"right"][0]

'blue'

>>> list_var[0]

'blue'

Conversion between lists and tuples
Lists can be copied into a new tuple object using the tuple() function. Conversely, tuples can

be copied into a list data type using the list() function. This does not convert the original data

item but instead creates a copy of the data item in the new data type.

In the following example, the list is copied into a tuple data type, and then the tuple is copied into

a list data type. Note that the brackets change with each new data type created:

>>> tuple_copy = tuple(list_var)

>>> tuple_copy

('blue', 42, 'right')

>>> list_copy = list(tuple_copy)

>>> list_copy

['blue', 42, 'right']

Read more about lists in Python here: https://www.geeksforgeeks.org/python-
list/

https://www.geeksforgeeks.org/python-list/
https://www.geeksforgeeks.org/python-list/

Chapter 1 31

List operations for lists only
Using the append() method, a list can be appended to, which means one data item is added to

the list. Using the extend() method, a list can also be extended, which is where all data items in

a second list are all added to the first list:

>>> list_orig = [34, 'blanket', 'dog']

>>> list_orig.append(56)

>>> list_orig

[34,'blanket','dog',56]

>>> list_first = [34, 'blanket', 'dog']

>>> list_second = ['diamond', '321', 657]

>>> list_orig.extend(list_second)

>>> list_orig

[34,'blanket','dog','diamond','321'.657]

The items in a list can be reversed or sorted, using the reverse() method or the sort() method

respectively:

>>> list_var = [34,'blanket','dog']

>>> list_var.reverse()

>>> list_var

['dog','blanket',34]

In Python 3, sorting is only allowed on lists that do not have mixed data types:

>>> list_var = [34,5,123]

>>> list_var.sort()

>>> list_var

[5, 34, 123]

In Python 2, sorting is allowed on mixed lists, with numbers placed first.

Introduction to Python for GIS32

List operations for both tuples and lists
Lists and tuples can be iterated over using for loops, which we will look at shortly. They can both

be sliced as well, creating a subset of the list or tuple that will be operated on for the for loop or

another operation. Built-in functions allow for the calculation of the maximum (using the max()

function) or minimum (the min() function) value of a list/tuple, or even the sum of a list or tuple,

given the data type of the items in the list is correct.

Slicing
Slicing a list or tuple will create a new list or tuple. The slice is created by passing indexes to the

list or tuple in square brackets, separated by a colon. The first index is the start index, and it can

be ignored if it is index 0 (the beginning of the original list). The second index is the index of the

first value that you do not want to include (it can be blank if you want the rest of the original list).

In this first example, we see a tuple with three data items sliced to only include the first two items.

The string "left" is at index 2 in the tuple, meaning that the last index in the slice will be 2. The

slice is assigned to variable name tuple_slice:

>>> tuple_var = ("red", 45, "left")

>>> tuple_slice = tuple_var[:2]

>>> tuple_slice

('red', 45)

In this next example, we see a list with four data items sliced to only include the last two items. The

first index is the index of the first data item we want (the string "right"). The last index is blank:

>>> list_var = ["blue", 42, "right", "ankle"]

>>> list_slice = list_var[2:]

>>> list_slice

['right', 'ankle']

Sets
Sets represent a collection of distinct objects. In Python, sets are unordered, no duplicates are

allowed, and all data items inside a set must be immutable.

Set operations
Sets are especially useful for getting all distinct members of a list:

>>> orig_list = ["blue", "pink", "yellow", "red", "blue", "yellow"]

>>> set_var = set(orig_list)

Chapter 1 33

>>> set_var

{'pink', 'yellow', 'blue', 'red'}

Sets cannot be accessed using indexing, because they are unordered and therefore are not sub-

scriptable:

>>> set_var[0]

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'set' object is not subscriptable

However, they can be iterated over using looping:

>>> for item in set_var:

... print(item)

...

pink

yellow

blue

red

Dictionaries
Dictionaries are key:value stores, meaning they are data containers that use unordered key and

value pairs to organize data. Keys are used as reference points for organization and retrieval. When

a key is supplied to a dictionary in square brackets, the value is returned:

>>> dict_var = {"key":"value"}

>>> dict_var['key']

'value'

>>> dict_var = {"address":"123 Main St", "color":"blue"}

>>> dict_var["address"]

'123 Main St'

>>> dict_var["color"]

'blue'

Read more about dictionaries in Python here: https://www.geeksforgeeks.org/
python-dictionary/

https://www.geeksforgeeks.org/python-dictionary/
https://www.geeksforgeeks.org/python-dictionary/

Introduction to Python for GIS34

Keys and values
Keys can be any immutable data type, meaning lists cannot be used as keys, but strings, integers,

floats, and tuples can. Values can be any type of data, including other dictionaries.

All keys in a dictionary can be accessed as a list using the dictionary keys() function. In Python

3.x, the function is a generator, which means it must be called over and over to get each key. This

generator can also be passed to the list() function to convert it into a list.

All values in a dictionary can be accessed as a list using the dictionary values() function. In

Python 3.x, the function is a generator.

Iteration
The core of computer programming is iteration: recursively performing the same action, analysis,

function call, or whatever your script is built to process. Computers excel at this type of task: they

can quickly iterate through a dataset to perform whatever action you deem necessary, on each

data item in the set.

Iteration is run on iterators. An iterator is a Python object that contains other objects, each of

which can be processed in a loop. Iterators can be lists or tuples or even strings, but not integers.

For loops
A for loop is an iteration implementation that, when presented with a data list, will perform an

operation on each member of the list.

In the following example, a list of integers is assigned to the variable name data_list. The list is

then used to construct a for loop using the format for {var} in {iterable}, where {var} is a

variable name that is assigned to each object in the list, one at a time as the loop progresses. One

convention is to use item, but it can be any valid variable name:

data_list = [45,56,34,12,2]

for item in data_list:

 print (item * 2)

In Python 2.x, the keys() and values() functions return a list. In older code written

for ArcGIS Desktop, you may see this.

Chapter 1 35

This is the output:

90

112

68

24

4

While loops
A while loop is an iteration implementation that will loop until a specific threshold is met. While

loops can be dangerous as they can cause an infinite loop in a script if the threshold is never met.

In the following example, the while loop will run, doing nothing but adding 1 to x until it reaches

100, upon which the threshold is met and the while loop will end:

x = 0

while x < 100:

 x = x + 1 # same as x += 1

Counters and enumerators
Iteration in for loops or while loops often requires the use of counters (also called enumerators)

to track loops in an iteration.

for loops have the option to use the enumerate() function by passing the iterator to the function

and using a count variable (which can be any valid variable name, but count is logical) in front of

the item variable. The count variable will keep track of the loops, starting at index zero:

>>> data_list = ['a','b','c','d','e']

>>> for count,item in enumerate(data_list):

... print(count, item)

...

0 a

1 b

2 c

Read more about loops here: https://www.geeksforgeeks.org/loops-in-
python/

https://www.geeksforgeeks.org/loops-in-python/
https://www.geeksforgeeks.org/loops-in-python/

Introduction to Python for GIS36

3 d

4 e

In Python, the shortcut x += y is used to increase the value of x while keeping the same variable

name, and is the same as x = x + y:

>>> x = 0

>>> while x <100:

... x = x + 1

>>> x

100

>>> x = 0

>>> while x <100:

... x += 1

>>> x

100

Conditionals
if statements, elif statements (short for else if), and else statements are used to create

conditions that will be used to evaluate data objects. If statements can be used by themselves

(elif and else are optional) and are used by declaring the keyword if and then the condition the

data must meet.

In the following example, the data type of objects in a list is compared (notice the two equals

signs, meaning it is a comparison) to the data type for integers, shown here as type(0), or

for strings, shown as type('a'). If an object in the list meets one of the conditions, a specific

print() statement is triggered:

list_var = [1,'1',1.0]

for item in list_var:

 if type(item) == type(0):

 print('Integer')

 elif type(item) == type('a'):

 print('String')

 else:

 print('Float')

Chapter 1 37

If versus else
if statements are usually specific to one condition, whereas else statements are used as catch-alls

to ensure that any data that goes through the if statement will have some way of being dealt with,

even if it doesn’t meet the condition of the if statement. elif statements, which are dependent

on the if statement existing and are also condition-specific, are not catch-all statements.

Zero-based indexing
As we have seen, iteration occurs over lists or tuples that contain data. Within the list, these data

are differentiated by list order or position. Items in a list are retrieved by item index, the (current)

position of the data in the list.

In Python, like most computer programming languages, the first item in a list is at index 0, not

index 1.

This is a bit confusing to beginners but is a programming standard. It is slightly more computa-

tionally efficient to retrieve an item in a list that starts with 0 than a list that starts with 1, and

this became the standard in C and its precursors, which meant that Python (written in C) uses

zero-based indexing.

Data extraction using index position
This is the basic format of data retrieval from a list. This list of strings has an order, and the string

"Bill" is the second item, meaning it is at index 1. To assign this string to a variable, we pass the

index into square brackets:

names = ["Silas", "Bill", "Dara"]

name_bill = names[1]

Data extraction using reverse index position
This is the second format of data retrieval from a list. List order can be used in reverse, meaning

that the indexing starts from the last member of the list and counts backward. Negative numbers

are used, starting at -1, which is the index of the last member of the list, -2 is the second-to-last

member of the list, and so on.

Read more about conditionals here: https://realpython.com/python-
conditional-statements/

https://realpython.com/python-conditional-statements/
https://realpython.com/python-conditional-statements/

Introduction to Python for GIS38

This means that, in the following example, the "Bill" and "Silas" strings are at indexes -2 and

-3 respectively when using reverse index position, and so -2 (or -3) must be passed to the list in

square brackets:

names = ["Silas", "Bill", "Dara"]

name_bill = names[-2]

name_silas = names[-3]

Functions
Functions are subroutines defined by code. When called, or run, functions will do something

(or nothing, if written that way). Functions often accept parameters, and these can be required

or optional.

Functions make it easy to perform the same action over and over without writing the same code

over and over. This makes code cleaner, shorter, and smarter. They are a good idea and should

be used often.

Components of a function
Here are the main parts that make up a function in Python:

•	 def keyword: Functions are defined using the def keyword, which is short for “define

function.” The keyword is written, followed by the name of the function and round brack-

ets, (), into which expected parameters can be defined.

•	 Parameters: Parameters or arguments are values expected by functions and supplied by

the code at runtime. Some parameters are optional.

•	 Return statement: Functions allow for data to be returned from the subroutine to the

main loop using return statements. These allow the user to calculate a value or perform

some action in the function and then return back a value to the main loop.

Read more about indexing here: https://realpython.com/lessons/indexing-

and-slicing/

https://realpython.com/lessons/indexing-and-slicing/
https://realpython.com/lessons/indexing-and-slicing/

Chapter 1 39

•	 Docstrings: Functions allow for a string after the definition line that is used to declare

the purpose of the function:

def accept_param(value=12):

 'this function accepts a parameter' # docstring

 return value

Note that optional parameters with default values must always be defined after the required

parameters within functions.

Namespaces
In Python, there is a concept called namespaces. These are refined into two types of namespaces:

global and local.

All variables defined in the main part of a script (outside of any functions) are considered to be

in the global namespace. Within the function, variables have a different namespace, meaning

that variables inside a function are in a local namespace and are not the same as variables in the

main script, which are in the global namespace. If a variable name inside a function is the same

as one outside of the function, changing values inside the function (in the local namespace) will

not affect the variable outside the function (in the global namespace).

Function examples
In this first example, a function is defined and written to return "hello world" every time it is

called. There are no parameters, but the return keyword is used:

def new_function():

 return "hello world"

>>> new_function()

'hello world'

Read more about namespaces here: https://realpython.com/python-

namespaces-scope/

https://realpython.com/python-namespaces-scope/
https://realpython.com/python-namespaces-scope/

Introduction to Python for GIS40

In this next example, an expected parameter is defined in the brackets. When called, this value

is supplied, and the function then returns the value from the local namespace back to the global

namespace in the main loop:

def accept_param(value):

 return value

>>> accept_param('parameter')

'parameter'

In this final example, an expected parameter has a default value assigned, meaning it only has

to be supplied if the function uses a non-default parameter:

def accept_param(value=12):

 return value

>>> accept_param()

12

>>> accept_param(13)

13

Classes
Classes are special blocks of code that organize multiple variables and functions into an object

with its own methods and functions. Classes make it easy to create code tools that can reference

the same internal data lists and functions. The internal functions and variables are able to com-

municate across the class so that variables defined in one part of the class are available in another.

Classes use the idea of self to allow for the different parts of the class to communicate. By intro-

ducing self as a parameter into each function inside a class, the data can be called.

Here is an example of a class:

class ExampleClass():

 def __init__(self, name):

Read more about functions here: https://realpython.com/defining-your-own-
python-function/

https://realpython.com/defining-your-own-python-function/
https://realpython.com/defining-your-own-python-function/

Chapter 1 41

 'accepts a string'

 self.name = name

 def get_name(self):

 'return the name'

 return self.name

Classes are called or instantiated to create a class object. This means the class definition is kind

of like a factory for that class, and when you want one of those class objects, you call the class

type and pass the correct parameters if required:

>>> example_object = ExampleClass('fred')

>>> example_object.get_name()

'fred'

Installing and importing modules
Python was built to be shipped with a basic set of functionalities known as the standard library.

Knowing that all programming needs would never be covered by the standard library, Python

was built to be open and extensible. This allows programmers to create their own modules to

solve their specific programming needs. These modules are often shared under an open-source

license on the Python Package Index, also known as PyPI. To add to the capabilities of the stan-

dard Python library of modules, third-party modules are downloaded from PyPI using either the

built-in pip program or another method. For us, modules such as arcpy and the ArcGIS API for

Python are perfect examples: they extend the capabilities of Python to be able to control the tools

that are available within ArcGIS Pro.

ArcGIS Pro comes with a Python Package Manager which will allow you to install additional

packages to any virtual environments you have set up. You will learn in Chapter 3 how to use this,

creating your own virtual environments in ArcGIS Pro and installing additional packages that you

may need. The following sections offer more detail about installing packages and creating virtual

environments through the command line in the terminal. Don’t worry if you aren’t comfortable

with the command line, as the Python Package Manager in ArcGIS Pro can manage much of the

same and you will work through that in more detail in Chapter 3.

Read more about classes here: https://www.geeksforgeeks.org/python-

classes-and-objects/

https://www.geeksforgeeks.org/python-classes-and-objects/
https://www.geeksforgeeks.org/python-classes-and-objects/

Introduction to Python for GIS42

Using pip
To make Python module installation easier, Python is now installed with a program called pip.

This name is a recursive acronym that stands for Pip Installs Programs. It simplifies installation

by allowing for one-line command line calls, which both locate the requested module on an online

repository and run the installation commands.

Here is an example, using the open-source PySHP module:

pip install pyshp

You can also install multiple modules at a time. Here are two separate modules that will be in-

stalled by pip:

pip install pyshp shapely

Pip connects to the Python Package Index. As we mentioned, stored on this repository are hun-

dreds of thousands of free modules written by other developers. It is worth checking the license

of the module to confirm that it will allow for your use of its code.

If you don’t plan on working in the command line, you can skip the next section.

But as you get more comfortable as a Python programmer, come back to this, as

you will find it very useful in helping you learn how to work from the command line

and install more packages. The Python Package Manager does not have access to all

the packages available in PyPI. If you need a package that is not listed in the Python

Package Manager, you will need the information below to install it.

Chapter 1 43

Pip lives in the Scripts folder, where lots of executable files are stored:

Figure 1.8: Locating pip in the Scripts folder

Introduction to Python for GIS44

Installing modules that are not in PyPI
Sometimes modules are not available in PyPI, or they are older modules that don’t understand the

pip install method. This means that available modules have different ways of being installed

that you should be aware of (although most now use pip).

The setup.py file
Often in Python 2.x, and sometimes in Python 3.x, a module includes a setup.py file. This file is

not run by pip; instead, it is run by Python itself.

These setup.py files are located in a module, often in a downloadable zipped folder. These zip files

should be copied to the /sites/packages folder. They should be unzipped, and then the Python

executable should be used to run the setup.py file using the install command:

python setup.py install

Wheel files
Sometimes modules are packaged as wheel files. Wheel files use the extension .whl. These are

essentially zip files that can be used by pip for easy installation of a module.

Use pip to run the wheel file and install the module, by downloading the file and running the

pip install command in the same folder as the wheel file (or you can pass the whole file path

of the wheel file to pip install):

pip install module.whl

Installing in virtual environments
Virtual environments are a bit of an odd concept at first, but they are extremely useful when pro-

gramming in Python. Because you will probably have two different Python versions installed on

your computer if you have ArcGIS Desktop and ArcGIS Pro, it is convenient to have each of these

versions located in a separate virtual environment.

Read more about wheel files here: https://realpython.com/python-wheels/

https://realpython.com/python-wheels/

Chapter 1 45

The core idea is to use one of the Python virtual environment modules to create a copy of your

preferred Python version, which is then isolated from the rest of the Python versions on your

machine. This avoids path issues when calling modules, allowing you to have more than one

version of these important modules on the same computer. In Chapter 3, you will see how to use

the Python Package Manager provided in ArcGIS Pro to create a virtual environment and install

a package that you want to run only in that environment.

Here are a few of the Python virtual environment modules:

Name Description Example virtual environment creation

venv Built into Python 3.3+. python3 -m venv

virtualenv Must be installed

separately. It is very

useful and my personal

favorite.

virtualenv namenv --python=python3.6

pyenv Used to isolate Python

versions for testing

purposes. Must be

installed separately.

pyenv install 3.7.7

Conda/Anaconda Used often in academic

and scientific

environments. Must be

installed separately.

conda create --name snakes python=3.9

Importing modules
To access the wide number of modules in the Python standard library, as well as third-party mod-

ules such as arcpy, we need to be able to import these modules in our script (or in the interpreter).

To do this, you will use import statements, as we have seen already. These declare the module or

sub-modules (smaller components of the module) that you will use in the script.

Read more about virtual environments here: https://towardsdatascience.com/
python-environment-101-1d68bda3094d

https://towardsdatascience.com/python-environment-101-1d68bda3094d
https://towardsdatascience.com/python-environment-101-1d68bda3094d

Introduction to Python for GIS46

As long as the modules are in the /sites/packages folder in your Python installation, or in the

Windows PATH environment variable (as arcpy is after it’s been installed), the import statements

will work as expected:

import csv

from datetime import timedelta

from arcpy import da

You will see in Chapter 2 what happens when you attempt to import arcpy from a Python install

that does not have the module in the site/packages folder. That is why it is important to know

which version of Python has the arcpy module and use that one when working with IDLE or in

the command line. When working in ArcGIS Pro using the Python window or ArcGIS Notebooks,

this is not an issue, as they will automatically be directed to the correct version of Python.

Three ways to import
There are three different and related ways to import modules. These import methods don’t care

if the module is from either the standard library or from third parties:

•	 Import the whole module: This is the simplest way to import a module, by importing

its top-level object. Its sub-methods are accessed using dot notation (for example, csv.

reader, a method used to read CSV files):

import csv

reader = csv.reader

•	 Import a sub-module: Instead of importing a top-level object, you can import only the

module or method you need, using the from X import Y format:

from datetime import timedelta

from arcpy import da

•	 Import all sub-modules: Instead of importing one sub-object, you can import all the

modules or methods, using the from X import * format:

from datetime import *

from arcpy import *

Read more about importing modules here: https://realpython.com/python-
import/

https://realpython.com/python-import/
https://realpython.com/python-import/

Chapter 1 47

Importing custom code
Modules don’t have to just come from “third parties”: they can come from you as well. With the

use of the special __init__.py file, you can convert a normal folder into an importable module.

This file, which can contain code but is most of the time just an empty file, indicates to Python

that a folder is a module that can be imported into a script. The file itself is just a text file with a

.py extension and the name __init__.py (that’s two underscores on each side), which is placed

inside a folder. As long as the folder with the __init__.py is either next to the script or in the

Python Path (e.g. in the site-packages folder), the code inside the folder can be imported.

In the following example, we see some code in a script called example_module.py:

import csv

from datetime import timedelta

def test_function():

 return "success"

if __name__ == "__main__":

 print('script imported')

Create a folder called mod_test. Copy this script into the folder. Then, create an empty text file

called __init__.py:

Figure 1.9: Creating an __init__.py file

Introduction to Python for GIS48

Now let’s import our module. Create a new script next to the mod_test folder. Call it module_

import.py:

Figure 1.10: Creating a new script

Inside the script, import the function test_function from the example_module script in the

mod_test folder using the format below:

from mod_test.example_module import test_function

print(test_function())

Scripts inside the module are accessed using dot notation (for instance, mod_test.example_

module). The functions and classes inside the script called example_module.py are able to be

imported by name.

Because the module is sitting next to the script that is importing the function, this import state-

ment will work. However, if you move your script and don’t copy the module to somewhere that

is on the Python system path (aka sys.path), it won’t be a successful import.

That is because the way import statements work is based on the Python system path. This is the

sys.path list of folder locations that Python will look in for the module that you are requesting.

By default, the first location is the local folder, meaning the folder containing your script. The

next location is the site-packages folder.

The site-packages folder
Most modules are installed in a special folder. This folder is inside the folder that contains the

Python executable. It is called the site-packages folder and it sits at *\Lib\sites-packages.

To make your module available for import without needing it to be next to your script, put your

module folder in the site-packages folder. When you run from mod_test.example_module import

test_function, it will locate the module called mod_test in the site-packages folder.

Chapter 1 49

Figure 1.11: The site-packages folder

These tips will make it easier to add your custom code to the Python installation and to import

reusable code in other scripts. In the last section, we will explore tips about writing good code.

Basic style tips for writing scripts
To make clean, readable code, it is encouraged to follow these basic tips about how the code

should be written and organized. The main rule enforced by Python is the indentation required,

which is intended to make the code easier to read and write. The major Python style suggestions

and implementations are collectively contained in the Python Enhancement Proposal 8, also

known as PEP8. We have included our own recommendations as well, based on lots of experience.

Indentation
Python code has strict indentation rules that are enforced by all IDEs. These rules relate to func-

tions and loops especially.

Read more about Python code style here: https://realpython.com/python-pep8/

Find the PEP8 style guide here: https://www.python.org/dev/peps/pep-0008/

https://realpython.com/python-pep8/
https://www.python.org/dev/peps/pep-0008/

Introduction to Python for GIS50

As a standard, four spaces are used after a function is declared, a loop is created, or a conditional

is used. This is just a standard, as it could be only one space or however many spaces you want,

but that indentation level becomes important when scripts get big. It helps to have four spaces

for all indented lines so that they can be more easily read.

Do not mix tabs and spaces when indenting, as this will make it impossible to execute scripts

in some IDEs.

Using print statements
The built-in function called print() is used to send messages from the script to the command

window while the script is running. Pass any valid data to the print() statement and use it to

track progress or to debug if there are issues:

>>> print("blueberry")

blueberry

>>> x = 0

>>> print(x)

0

Debugging using print statements is very common, and I encourage it as you learn to code. Well-

placed print statements will help you understand how the code execution is progressing, and will

help you to find the source of bugs by telling you which part of the script has executed and which

part has not. It is not a requirement to use print statements, but they really are a programmer’s

friend.

Read more about indentation here: https://www.python.org/dev/peps/pep-
0008/#indentation

Read more about print statements here: https://realpython.com/python-print/

https://www.python.org/dev/peps/pep-0008/#indentation
https://www.python.org/dev/peps/pep-0008/#indentation
https://realpython.com/python-print/

Chapter 1 51

Structuring a script
We suggest the following guidelines for good script structure:

•	 Add a comment at the top with script details: This is an optional but recommended way

to start your scripts: write a comment at the top with your name, the date, and a quick

explanation about what the script is supposed to do. This is especially nice when other

people have to read your code.

Add lots of other comments throughout the script as well, to make sure you know what

is happening throughout the script.

•	 Follow with import statements: It is encouraged, but not required, to put the import

statements at or near the top of the script. Imports must happen before the module objects

are called in the script, but the import statements can be placed anywhere. It is best to put

them at the top so that people reading the script can understand what is being imported.

•	 Define global variables: After the import statements, define the necessary variables that

will be used in this script. Sometimes it is necessary to define variables later in the script,

but it is best to put major variables near the top.

•	 Define functions: By placing function definitions below the global variables, it is easy to

read and understand what the functions do when reading them. It is sometimes hard to

find a function that is called in another part of the script if the function is not in a known

location in the script.

•	 Write the executable parts of the script: After importing modules and defining functions,

the next part of the script is where the action takes place. The for loops are run, the func-

tions are called, and the script is then done.

Make sure to add lots of comments to help yourself understand what is happening

throughout the script, and print statements as well to help while the script is running.

•	 if __name__ == '__main__': Often at the end of scripts you will see this line. What it

means is that the indented code below this line will be run if the script is executed directly,

but if the code in the script is imported by another script, the code blocks will not execute

until called in the second script.

Introduction to Python for GIS52

Summary
In this chapter, we had a concise but comprehensive overview of computer programming and the

Python programming language. We reviewed the basics of computer programming, including

variables, iteration, and conditionals. We explored the data types of Python, including integers,

strings, and floats, and the data containers of Python, such as lists, tuples, and dictionaries. We

learned about importing and installing modules. We learned some basic code structure for scripts,

and how to execute those scripts.

Don’t worry if this was too theoretical for you – we will get very hands-on in the rest of the book.

In the next chapter, we will discuss the basics of arcpy. We will learn how to ensure your Python

environment is set up for ArcPy, create a shortcut to the Python IDLE associated with ArcGIS Pro,

and begin to write some Python in the Python window in ArcGIS Pro by examining the environ-

ment settings and doing some simple geoprocessing.

Read more about this here: https://www.geeksforgeeks.org/what-does-the-
if-__name__-__main__-do/

https://www.geeksforgeeks.org/what-does-the-if-__name__-__main__-do/
https://www.geeksforgeeks.org/what-does-the-if-__name__-__main__-do/

2
Basics of ArcPy

Now that you have an understanding of Python syntax, you can start working with the ArcPy

package. ArcPy is the Python package provided by ArcGIS to perform and automate geoprocessing

and map production. In addition to the geoprocessing tools available in ArcGIS, ArcPy gives you

access to additional modules, functions, and classes. When these are combined, you can create

workflows and standalone tools that simplify and automate complex analysis and map production.

This chapter will cover:

•	 Ensuring your Python environment is set up for ArcPy

•	 Accessing environment settings in ArcPy

•	 ArcPy tools and how to use them in ArcGIS Pro

•	 Functions in ArcPy

•	 ArcPy modules

Checking your ArcPy install
Python is the official scripting language of ArcGIS and ArcPy is a site package designed to au-

tomate analysis and map production workflows. The ArcPy package allows you access to the

geoprocessing functionality of ArcGIS Pro.

To complete the exercises in this chapter, please download and unzip the Chapter2.

zip folder from the GitHub repository for this book: https://github.com/

PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter2.

https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter2
https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter2

Basics of ArcPy54

Python packages contain multiple modules, functions, and classes set up with a hierarchical

structure. The hierarchical structure allows properties and tools to nest within modules within

the ArcPy package.

ArcPy is installed with ArcGIS Pro and ArcGIS Desktop. ArcPy has been used to write Python

scripts in ArcGIS since ArcGIS 10.0. ArcGIS Desktop uses Python 2.7, which is currently up to re-

lease 2.7.18. ArcGIS Pro uses a new version of Python, Python 3. The most recent release of Python

3 as of publishing is Python 3.9.10. ArcGIS Desktop and ArcGIS Pro each will install a version of

Python on your computer when you install them. Which version of ArcGIS Desktop or ArcGIS

Pro you have installed will determine the version of Python you have. The most current install of

ArcGIS Pro 2.8.0 contains Python 3.7.10.

To check what version of Python you have installed, follow these steps:

1.	 Open ArcGIS Pro.

2.	 Do not open a project. Click on Settings in the bottom-left corner:

Figure 2.1: Settings button

3.	 Click on Python in the ribbon on the left:

Chapter 2 55

Figure 2.2: Clicking on Python

4.	 Scroll down Installed Packages to find python:

Figure 2.3: Installed Python package

To use the ArcPy package, it must be imported, as that will give you access to all the geoprocess-

ing tools and modules included in it. Most scripts start with import statements to allow access

to all the modules that are part of the package. To import ArcPy, use the following line of code:

import arcpy

Basics of ArcPy56

Some of the more common modules within arcpy are:

•	 arcpy.sa (Spatial Analyst): This gives you access to the Spatial Analyst geoprocessing

tools and specialized functions and classes for working with raster data.

•	 arcpy.da (Data Access): This helps you work with data by allowing control of edit sessions,

cursor functions, and working with tables.

•	 arcpy.mp (Mapping): This allows you to automate cartographic tasks for map production.

•	 arcpy.geocoding (Geocoding): This allows you to set locator properties through the

locator class and automate geocoding processes.

•	 arcpy.na (Network Analyst): This gives you access to the Network Analyst geoprocessing

tools and specialized functions and classes for working with networks.

You will look at how to use the Spatial Analyst module later in this chapter. In Chapter 4, you

will work with the Data Access module, and in Chapter 7 and Chapter 12, you will work with the

Mapping module.

Using the correct Python IDLE Shell
If you have both ArcGIS Desktop and ArcGIS Pro installed, you have multiple versions of Python

installed. Because of this, you need to make sure when using the IDLE Shell that you are using

the Python version associated with your install of ArcGIS Pro.

Unlike installs of ArcGIS Desktop, ArcGIS Pro does not install a desktop shortcut to its IDLE Shell.

Most of the time, you will be writing scripts either directly into ArcGIS Pro’s Python window, or

ArcGIS Pro Notebooks in ArcGIS Pro. Using the IDLE Shell that comes with the ArcGIS Pro install

is a convenient way to turn standalone scripts and Notebooks into script tools, as you can test

portions of the script.

The easiest way to ensure you are accessing the Python IDLE that comes with the install of ArcGIS

Pro is to create a shortcut, as one is not created on install.

Follow these steps to do so in Windows:

1.	 Find the path to run IDLE. For a typical ArcGIS Pro installation, it is here: C:\Program

Files\ArcGIS\Pro\bin\Python\envs\arcgispro-py3\Lib\idlelib\idle.bat. Dou-

When you want to use an IDLE to work with ArcGIS Pro, you need to use this shortcut,

as it is associated with your install of ArcGIS Pro.

Chapter 2 57

ble-clicking on that will open IDLE.

2.	 To create a shortcut, right-click on your desktop, click New > Shortcut, and paste the full

path of the idle.bat file:

Figure 2.4: Creating a shortcut for IDLE

3.	 Click Next, give your shortcut a name, then click Finish:

Figure 2.5: Naming the shortcut

Basics of ArcPy58

The icon will be the default shortcut icon:

.

Figure 2.6: The IDLE shortcut

To change the icon to the standard Python IDLE icon, do the following:

1.	 Right-click on it and click Properties.

2.	 On the Shortcut tab, click on Change Icon. You may get an alert that there are no icons

and that you need to choose an icon from a different file. If so, click OK so you can navigate

to the icon location.

3.	 Navigate to the Python IDLE location, which should be here: C:\Program Files\ArcGIS\

Pro\bin\Python\envs\arcgispro-py3\Lib\idlelib\Icons. Select the icon there and

click OK.

A shortcut to access the IDLE install for ArcGIS Pro is now installed on the desktop:

Figure 2.7: The IDLE shortcut with IDLE icon

I suggest using a name that will allow you to remember this is the Python

environment that was installed with ArcGIS Pro.

Chapter 2 59

This install is a place to test snippets of code when working on complex script tools, something

that will be explored in later chapters.

Figure 2.8: The IDLE Shell with the associated ArcPy module

If you are using an IDLE Shell that is not associated with ArcPy, you will get an error when you

attempt to import arcpy:

Figure 2.9: The IDLE Shell without the associated ArcPy module

A good way to ensure the correct IDLE is being used is to import arcpy. If three carets

(>>>) are displayed afterward, the install was successful.

Basics of ArcPy60

Using the Python IDLE Shell
The Python IDLE Shell is a good place to try out code as it is interactive and will display imme-

diate results:

Figure 2.10: The Python IDLE Shell

The IDLE Shell also shows how elements of the code will be interpreted using different colors.

Strings are shown in green, functions are in purple, loops and condition statements are in orange,

and results are in blue.

While it is useful to get immediate results from the IDLE Shell, it is not meant to be used for

saving code. It is possible to copy code out if needed, but it is a better practice to write it into a

script file for saving.

To start a script file, click in the menu bar of the IDLE Shell on File > New File. This opens a new

window that is an empty Python script file called untitled. Unlike the IDLE Shell, it doesn’t have

a command prompt and the menu bar is different. Below is a comparison:

Figure 2.11: The IDLE Shell (top) and a new script file (bottom)

Chapter 2 61

Let’s first write some code into IDLE. IDLE knows when you are writing multiline connected code

and won’t run until you press Enter twice.

1.	 Type the following into IDLE:

string = "Hello"

Press Enter. Type:

i = 1

Press Enter. Type:

while i < =5:

Press Enter. Type:

if i == 1:

Press Enter. Type:

print(string)

Press Enter, and on the new line press Backspace to get the correct indentation. Type:

else:

Press Enter. Type:

print(i)

Press Enter, and on the new line press Backspace to get the correct indentation. Finally, type:

i+=1

Press Enter twice to run. The output will be the word Hello on one line, followed by 2, 3,

4, 5, each on a new line.

Basics of ArcPy62

2.	 Copy the code you wrote in IDLE into a new script file:

Figure 2.12: IDLE code copied to a new file

3.	 Remove the carets (>>>).

4.	 Fix the indentation, remembering Python’s 4-space indent convention we saw in the

previous chapter:

Figure 2.13: Python code with correct indentation

5.	 Save the file by clicking File > Save and naming it HelloLoop.

This new file, HelloLoop.py, has a .py extension, signifying that it is a Python file. It can be run

by clicking Run > Run Module, which sends the results to the Python IDLE Shell. The results will

look the same as when running the code from IDLE.

Chapter 2 63

Now you should have an understanding of:

•	 How to ensure your Python environment is set up to work with ArcPy

•	 How to use the IDLE Shell

•	 How to start a new script file

You are ready to look at the Python window in ArcGIS Pro and what you can do there.

The Python window in ArcGIS Pro
ArcPy can be accessed not just through IDLE but also by using the Python window in ArcGIS Pro.

This is accessed in the Analysis tab of the ribbon:

Figure 2.14: The Python window icon

The Python window allows you to write and run code directly in ArcGIS Pro and see the results of

any geoprocessing tool as you run it. This can be an advantage when testing out new code to see

what it is doing and how it is working. Code written in the Python window can then be copied

or saved into large script tools. You will learn more about script tools in Chapter 6, ArcToolBox

Script Tools, and Chapter 12, Case Study: Advanced Map Production. For now, let’s look at the Python

window in ArcGIS Pro and see how powerful it can be.

1.	 Open ArcGIS Pro.

2.	 Click Open another Project, navigate to where you downloaded the Chapter 2 data, and

select Chapter2.aprx to load the Chapter2 project.

For this exercise, you will need to make sure you have downloaded the data from

the GitHub site for Chapter 2 and unzipped it.

Basics of ArcPy64

3.	 Once the project is open, click the Python window icon to open the Python window. Usu-

ally, the first time, it will be docked at the bottom of your screen:

Figure 2.15: Python window

Like all windows in ArcGIS Pro, the Python window can be docked anywhere or can be

floating. You can move it to where it is best for you to work, using the same process of

dragging and hiding as you would any ArcGIS Pro window.

The top part of the window is called the transcript and is where code you have previously

written is located. The bottom, where it says Enter Python code here, is called the prompt

and is where you type code. When you first open the Python window, the transcript is

blank, as you haven’t written any code yet.

4.	 Try some of the code you wrote in IDLE to see how it works in the Python window. Just

like in IDLE, when you enter a line of code, you need to press Enter.

a.	 Type in x = 10 and press Enter.

b.	 Type in y = 3 and press Enter.

Chapter 2 65

c.	 Type x + y and press Enter.

Figure 2.16: Python window with results in the transcript window

You can see that this is working just like IDLE.

The transcript can be cleared at any time by right-clicking in the transcript box and se-

lecting Clear Transcript. This does not remove your code or your variables from memory.

5.	 Right-click in the transcript and select Clear Transcript:

Figure 2.17: Clearing the transcript

All of the standard Python functions and tools will work in the Python win-

dow the same as in the IDLE Shell.

Basics of ArcPy66

6.	 Type x + y and press Enter:

Figure 2.18: Data is still held in memory

As you can see, the variables for x and y were saved in memory and are still usable even

after clearing the transcript. These variables are even available if you save and close the

project and open it again.

7.	 Just like in the IDLE Shell, the Python window understands when you are writing multi-

ple lines of connected code. You can see this by writing in the code for the HelloLoop.py

script you wrote earlier in this chapter.

Do the following:

a.	 Type in String = "Hello" and press Enter.

b.	 Type in i = 1 and press Enter.

c.	 Type in while i < 5: and press Enter.

Notice that the prompt window gets bigger and your cursor is indented. The Python

window understands that the while statement is starting a block of code and is part of

a multiline construct. As you continue to type in your code, the prompt window will get

bigger as additional lines are needed. The if statement we will write next is also part

of a multiline construct, so it too will get the additional lines and indent as the while

statement does:

d.	 Type in if i == 1: and press Enter.

e.	 Type in print(string) and press Enter.

The variables are saved into the memory of the project so they can be used

again later on the same project. This can be useful, but you will look at bet-

ter ways to save code for reuse in the same and other projects in Chapter 3,

ArcGIS API for Python, and Chapter 6, ArcToolBox Script Tools.

Chapter 2 67

f.	 Type in else: and press Enter.

g.	 Type in print(i) and press Enter.

h.	 Type in i+=1 and press Enter.

Your Python window should look like this:

Figure 2.19: HelloLoop in the Python window

Press Enter again and the program will execute:

Figure 2.20: HelloLoop output

What happens if you make a mistake in the Python window? It really depends on the mistake. If

you forget the i+=1 your code will run forever, you can click the X at the bottom of the Python

window or type Ctrl + C in the prompt window to stop your running code. If you need to edit

code already written, click where you need to edit and make the edits. Remember to follow the

rules for indentation within your code to ensure it will still run.

When you are writing your multiple lines of code and hit Enter, you will just

move down another line.

Basics of ArcPy68

ArcPy environment settings
ArcPy environment settings allow you access to general geoprocessing settings, as well as the

geoprocessing settings of a specific tool. For tools, they act as parameters you can set to change

the results of a tool. There are many that can be used, but there are some you will use more com-

monly than others.

In this section, we are going to look at two of the most common ones and see how to set them:

arcpy.env.workspace and arcpy.env.scratchWorkspace. Setting your workspace and scratch

workspace is a good idea, as it allows you to have a default location to send the data you are

creating. They are also the workspaces that will be used when using the list functions you will

explore below.

Using the workspace properties of the environment class, you can check and change your work-

space or scratch workspace. Your workspace is the default location for any data you write and

want to maintain. The scratch workspace is for data you do not want to maintain and is where

intermediate steps in ModelBuilder will be written.

You can check your workspace by typing in:

 arcpy.env.workspace

from the Python window and pressing Enter. The return value you see is your current workspace:

'C:\\PythonBook\\Chapter2\\Chapter2.gdb'

You can set your workspace by typing in:

 arcpy.env.workspace = r"C:\PythonBook\Project_2\Project_2.gdb"

and pressing Enter.

You can check your scratch workspace in a similar way; type in arcpy.env.scratchWorkspace

and press Enter. You can set your scratch workspace by typing in arcpy.env.scratchWorkspace

= r"C:\PythonBook\Project_2\Project_2.gdb" and pressing Enter.

In these examples, you have set your workspace and scratch workspace to geodatabases. However,

you could set them to a folder or a feature dataset or any workspace you wanted.

The workspace and scratchWorkspace can only be called in IDLE if you have already set them.

There is no default workspace or scratchWorkspace in IDLE and, if called without being set, they

will return None.

Chapter 2 69

There are many other environment settings that could be useful to you depending on the process

you are running. Most of the settings that you find for a tool in the properties of a tool can be set

in the environment settings. Things like analysis extent can be set with arcpy.env.extent, or a

snap raster when doing raster analysis with arcpy.env.snapRaster.

ArcPy tools: Geoprocessing using ArcPy
Now that you know some of the basics of how to use the Python window, it is time to look at

how to use geoprocessing tools. In this hands-on section, you will learn how to use the following

tools in the Python window:

•	 Select

•	 Buffer

•	 Make Feature Layer

•	 Select By Feature Layer

•	 Select Layer By Location

•	 Copy Features

What is the “r” in front of the path for the geodatabase?

Note the way you have typed in the locations, using an r followed by the location

enclosed in double quotes. The r stands for raw string and means that Python will

read everything within the quotes exactly as it is written. This is important because

the \ character in Python is an escape character and can be used to insert characters

otherwise not allowed in a string. Here, you don’t want the escape character, so

there are three options:

•	 Use an r in front of the quotes to create a raw string

•	 Change all the single backslashes (\) to double backslashes (\\)

•	 Change the single backslash (\) to a forward slash (/)

It is important to remember that once you set an environment setting, it stays set

until you change it. In more advanced script tools, you will change it or have it set

and reset throughout the code.

Basics of ArcPy70

Your task is to find all of the bus stops in Oakland that are within 1,000 feet of a park. You want

the end result to be a feature class of all the bus stops that fall within 1,000 feet of any park.

To do some geoprocessing, you will need some data. If you do not have the Chapter2.aprx file

open in ArcGIS Pro, do so now. You will be working first with the CPAD_2020b_Units.shp file that

is already in the map. If it is not in the map, add the shapefile from where you downloaded the

Chapter2 folder. This is California Protected Areas Database data that shows parks and other

protected areas throughout the state of California. For more information about the dataset, go

to https://www.calands.org/.

A common GIS task consists of finding all the features within a distance of something else and

creating a new feature from that selection. It can be the location of protected species within a

proposed project, schools near a proposed new playground, or bus stops near community facilities.

You will use the Python window to select the parks in Oakland, buffer them by 1,000 feet, select

the bus stops within that 1,000-foot buffer, and create a new feature class. Let’s begin:

1.	 Right-click the CPAD_2020b_Units file in the table of contents, select Attribute table, and

examine the data. The CPAD_2020b_Units shapefile contains the name of the park, the

agency responsible for the park, the type of agency, the city the park is in, a label for the

park, and much more information about each park.

2.	 You are going to use the AGNCY_NAME field to run a Select tool to create a new feature class of

just the protected areas in the City of Oakland. In the Python window, type in the following:

arcpy.Se

The Python window shows you some autocomplete options to help you find the tool

you want. You are using the Select tool from the Analysis toolbox, so you want Select()

analysis, the second option in the figure below:

Figure 2.21: The Python window autocompleting as you type

https://www.calands.org/

Chapter 2 71

3.	 After selecting the tool, you can see what parameters the tool expects. Hover on the tool

to get a help window popping up that shows you the tool parameters and what they mean.

The Select tool takes the following mandatory parameters:

1.	 in_features: The input feature class or shapefile.

2.	 out_features: The output feature class or shapefile.

It also takes the following optional parameter:

3.	 where_clause: The where clause is in curly braces ({}) because it is optional. It is

the SQL statement you will write to select features from in_features.

Figure 2.22: Hovering over the tool for more details

Note that in_features is in bold because it is the parameter that the tool is currently

expecting to be entered.

4.	 Complete the code as below to create the selection query:

arcpy.analysis.Select('CPAD_2020b_Units','CPAD_2020b_Units_
Oakland',"AGNCY_NAME = \'Oakland, City of\'")

Press Enter.

Basics of ArcPy72

After running, it will look like the following:

<Result 'C:\\PythonBook\Chapter2\\Chapter2.gdb\\CPAD_2020b_Units_
Oakland'>

and you should have a new feature class that consists of just the protected areas in Oakland.

If you are working in an ArcGIS Pro project, then a new file will be created in that project’s

geodatabase, as that is the default workspace. If you have set a workspace through the

environment settings, it will write to that workspace. If you have not set a workspace

and are not working in an ArcGIS project, then it will be stored in a temp space and not

written to disk.

How do we write the query in the where clause so it works? Using the

escape character (\) properly

The backslash (\) marks are escape characters that are necessary when you

need to use multiple single or double quotes. In this instance, since you are

running a selection query on a shapefile, the attribute field being selected

on needs double quotes and the string value needs single quotes. The entire

where clause needs to be inside single or double quotes.

The easiest option is to wrap the entire query in a single quote and use escape

clauses around the string being selected. If you wanted to wrap the entire

where clause in double quotes, it would look like this: "/"AGNCY_NAME" =

'Oakland, City of'". Both will work the same.

How do you specify a different workspace if you don’t want to use the

default workspace?

To specify a different location, you need to write the full path when saving. To

write out a shapefile to the MyProject folder, you would write the following:

arcpy.analysis.Select("CPAD_2020b_Units",r"C:\
Chapter2\Chapter2.gdb\CPAD_2020b_Units_Oakland.
shp",'"AGNCY_Name" = \'Oakland, City of\'')

Chapter 2 73

5.	 Now you can take the selected parks and buffer them by 1,000 feet. The Buffer tool is in

the Analysis toolbox, so to call it you type arcpy.analysis.Buffer(). You can see the

parameters the Buffer tool takes by hovering over the parentheses. It takes the following

mandatory parameters in this order:

1.	 in_features: The input feature class or shapefile.

2.	 out_features: The output feature class or shapefile to be written.

3.	 buffer_distance_or_field: The buffer distance or attribute field from in_

features to be used for buffering. It must include the units.

It also takes the following optional parameters in this order:

4.	 line_side: This is only used on line features and can be set to buffer the LEFT side,

RIGHT side, or BOTH. BOTH is the default.

5.	 line_end_type: This is only used on line features and will set the buffer end to

ROUND or FLAT. ROUND is the default.

6.	 dissolve_option: This is the type of dissolve for removing any buffer overlap. It

can be set to NONE, ALL, or LIST. NONE is the default.

7.	 dissolve_field: This is only used when dissolve_option is set to LIST. It is a

list of the different fields to dissolve on. Even when one field is used, it must still

be in square brackets as the tool requires a list.

8.	 method: This is the distance method to use. It has PLANAR and GEODESIC as options.

PLANAR is the default.

You want to have a buffer of 1,000 feet for the parks. You will set the dissolve option to LIST

and dissolve by the UNIT_NAME field. To get this, you will need to type in the in_features,

out_features, buffer_distance, dissolve_option, and dissolve_field parameters.

The in_features, out_features, and buffer_distance are the first three parameters,

but dissolve_option and dissolve_field are the sixth and seventh parameters. To

make sure they are in those positions, you will type a pair of single or double quotes in the

fourth and fifth parameters. This signifies to the function that those optional parameters

are blank, just as if they weren’t entered, and allows you to enter parameters after them.

Basics of ArcPy74

Type in:

arcpy.analysis.Buffer("CPAD_2020b_Units_Oakland","CPAD_2020b_Units_
Oakland_1000ft","1000 FEET", "","","LIST",["UNIT_NAME"])

Press Enter. The output will read:

 <Result 'C:\\PythonBook\\Chapter2\\Chpater2.gdb\\CPAD_2020b_Units_
Oakland_100ft'>

The buffers should have been added to your map. You can explore them and see what

they look like.

6.	 When you are ready, you are going to use the Make Feature Layer tool to make a feature

layer of the bus stops feature class. This feature layer will be used for selecting the bus

stops within the 1,000-foot buffer of the parks. Type in:

arcpy.management.MakeFeatureLayer()

You can see that the Make Feature Layer tool takes two mandatory parameters:

1.	 in_features: The input feature class or shapefile

2.	 out_layer: The name of the output feature layer

It also takes the following optional parameters:

3.	 where_clause: The SQL statement you will write to select features from in_

features. If left blank, the feature layer contains all the data from in_features.

4.	 workspace: The input workspace used to validate the field names.

5.	 field_info: This can be used to hide some fields in the output.

The layer you are going to be making a feature layer from is already in your map and is in

the default workspace you set earlier. Because of this, you do not have to use the entire

path as the input and can just use the name of the layer. You will make a feature layer of

all the bus stops by typing in the following:

arcpy.management.MakeFeatureLayer("UniqueStops_Summer21",

"AC_TransitStops_Summer21")

Press Enter. The output will read:

 <Result 'AC_TransitStops_Summer21'>

Chapter 2 75

7.	 The AC_TransitStops_Summer21 feature layer will have been added to your map. You can

explore it and see that it is just like the UniqueStops_Summer21 feature class. However,

because it is a feature layer, you can use the Select Layer By Location tool to select all of

the bus stops within the buffer. Type in:

arcpy.management.SelectLayerByLocation()

You can see that the Select Layer By Location tool takes one mandatory parameter:

1.	 in_layer: The input feature layer.

It also takes the following optional parameters:

2.	 overlap_type: The different overlaps that can be used for creating the selection

layer. INTERSECT is the default, and the one you will use most of the time.

3.	 select_features: The feature layer, feature class, or shapefile used to select

in_layer.

4.	 search_distance: The distance to search for additional features to be selected from

in_layer. It is only valid when overlap_type is WITHIN_A_DISTANCE, WITHIN_A_

DISTANCE_GEODESIC, WITHIN_A_DISTANCE_3D, INTERSECT, INTERSECT_3D, HAVE_

THEIR_CENTER_IN, or CONTAINS.

5.	 selection_type: This is how the selection will be applied to the in_feature layer.

It can be NEW_SELECTION (default), ADD_TO_SELECTION, REMOVE_FROM_SELECTION,

SUBSET_SELECTION, or SWITCH_SELECTION.

6.	 invert_spatial_relationship: This will invert the selection so that the features

that are not intersected or within a distance are those selected. It can be NOT_INVERT

(default) or INVERT.

To select the bus stops within the park buffers, type in the following:

arcpy.management.SelectLayerByLocation("AC_TransitStops_
Summer21","INTERSECT","CPAD_2020b_Units_Oakland_1000ft")

Press Enter. The result will read:

 <Result 'AC_TransitStops_Summer21'>

You should see the bus stops get selected. You can explore the data and see if this is what

you were looking for. From here, you can export your data to a table, CSV, or feature class,

or just use it for a map display.

Basics of ArcPy76

8.	 Feature layers are temporary files, so you are going to export to a feature class. To do this,

you will use the Copy Features tool. Type in:

arcpy.management.CopyFeatures()

The Copy Features tool takes two mandatory parameters:

1.	 in_features: The input feature class or shapefile, or feature layer.

2.	 out_features: The output feature class or shapefile.

It also takes one optional parameter:

3.	 config_keyword: A configuration keyword is only used if the output is a geoda-

tabase. It does not need to be used to output to the geodatabase and is a rarely

used parameter.

To copy the feature layer to a feature class, type in the following:

 arcpy.management.CopyFeatures("AC_TransitStops_Summer21",

"AC_TransitStops_Within1000ft_OaklandPark")

Press Enter. The result will be:

 <Result 'C:\\PythonBook\\Chapter2\\Chapter2.gdb\\AC_TransitStops_
Within1000ft_OaklandPark'>

Your resulting feature class is displayed in your map and written to your current work-

space. The next steps with this data will be explored in Chapter 4, Data Access Module and

Using Cursors. There, you will learn how to do this process all in memory and add the park

names to the bus stops.

In the next section, you will look at some of the built-in ArcPy functions. These functions are things

you do not have access to in Model Builder and are useful in automating the analysis process.

Built-in ArcPy functions
ArcPy has many built-in functions to help with geoprocessing. ArcPy functions look like geopro-

cessing tools in the way they are written. When you wrote the code to create a selection feature

class in the previous exercise, you wrote arcpy.analysis.Select(in_features, out_features,

{where_clause}). By encasing the input features, output features, and where clause in parentheses,

you were calling the function and passing to it those parameters.

Chapter 2 77

ArcPy has functions to assist with things such as the environment settings, describing data, li-

censing, ArcGIS Online, raster, listing data, along with functions for specific modules like the

Spatial Analyst or Mapping modules. In this section, you will explore two of the more commonly

used built-in functions:

•	 The Describe function

•	 List functions

These are common because they help you to set up and complete iterative processes, such as

doing the same analysis on different feature classes in one location.

The Describe function
The Describe function will return different properties depending on what type of element it is

being called on. It can be called on a variety of elements, including but not limited to shapefiles,

geodatabases, feature classes, feature datasets, tables, LAS files, rasters, and map documents.

The Describe function returns an object with all the properties of the object, so you need to

create a variable to hold those properties and then call them later. Let’s try this on CPAD data in

a new Python window:

1.	 Type in the following:

desc = arcpy.Describe(r"C:\PythonBook\Chapter2\CPAD_2020b_Units.
shp")

Press Enter. It looks like nothing has happened, but now you can use that desc variable

to get information about the shapefile.

2.	 You can see what data type desc is by typing in the following:

desc.dataType

Press Enter. The output will be 'Shapefile'.

That is all a function is: a bundle of code that contains instructions for how to pro-

cess the data you send it.

Basics of ArcPy78

3.	 You can also see what type of geometry a feature class has by typing in the following:

desc.shapeType

Press Enter. The output will be 'Polygon'.

You can see that if you don’t know anything about a file, you can call a Describe() function on

it and use the properties to find out information about the file. In the example above, you found

out that the data is a shapefile. You can see how this information could be useful if you were

searching through a folder and only wanted to run an analysis on the shapefiles.

List functions
Listing your data through data listing functions is a powerful tool. You create a list of all the data

within a workspace, which you can then iterate over.

Data list functions take the current workspace you are in and will create a list of all the datasets

or fields for that type of list function. There are the following list functions for listing data:

•	 ListDatasets

•	 ListFeatureClasses

•	 ListFields

•	 ListFiles

•	 ListIndexes

•	 ListRasters

•	 ListTables

•	 ListVersions

•	 ListWorkspaces

ListDatasets, ListFeatureClasses, ListFiles, ListRasters, ListTables, and ListWorkspaces

need to have the workspace set before being run, as they will only run on the current workspace.

There are some additional list functions in ArcPy: ListTools, ListToolboxes,

ListSpatialReferences, and ListDataStoreItems. These functions are designed to work with

the specific objects they are referencing. Like the list functions above, they return a list that can

be iterated through.

For these examples, you are going to use the data in the Chapter2 folder.

Chapter 2 79

Often, you will want to run a similar process on all the data in a workspace. You can access all

that data by creating a list of the data in the workspace. In this exercise, you will create a list of

workspaces within a folder and then use that list to create a list of the data within the workspace.

Let’s get started:

1.	 Start by listing the workspaces that your Chapter2.gdb file is in. First, you need to set

your workspace to the location of the geodatabase. Type the following line of code and

press Enter:

arcpy.env.workspace = r"C:\PythonBook\Chapter2"

2.	 Next, you will list the workspaces. The ListWorkspaces function has two optional pa-

rameters:

1.	 wild_card: This can be used to limit the returned values to those that match the

wildcard value. The wildcard will be encased in either single or double quotes, and

an asterisk (*) can be used to select everything that starts with or ends with the

wildcard. For example, if you wanted to select all the workspaces that start with

Project, you would type in "Project*"; to select all the workspaces that end with

Project, you would type in “*Project"; and to list all the workspaces that contain

Project anywhere in the name, you would type in "*Project*".

2.	 workspace: This can be used to limit the type of workspace using the following:

•	 "Access": Limits to personal geodatabases.

•	 "Coverage": Limits to coverage workspaces.

•	 "FileGDB": Limits to file geodatabases.

•	 "Folder": Limits to shapefile workspaces.

•	 "SDE": Limits to enterprise databases.

•	 "All": All workspaces will be selected. This is the default.

Assign the ListWorkspaces function to a variable called wksp. Type in the following and

press Enter:

 wksp = arcpy.ListWorkspaces()

Basics of ArcPy80

3.	 You can see what that looks like by just typing in wksp and pressing Enter. You can see it is

all of the workspaces that are standard when creating a new project in ArcGIS Pro. They

are a bit hard to read in this list:

['C:\\PythonBook\\Chapter2\\.backups', 'C:\\PythonBook\\Chapter2\\.
pyHistory', 'C:\\PythonBook\\Chapter2\\Chapter2.aprx', 'C:\\
PythonBook\\Chapter2\\Chapter2.gdb', 'C:\\PythonBook\\Chapter2\\
Chapter2.tbx', 'C:\\PythonBook\\Chapter2\\CPAD_2020b_Units.CPG',
'C:\\PythonBook\\Chapter2\\CPAD_2020b_Units.dbf', 'C:\\PythonBook\\
Chapter2\\CPAD_2020b_Units.prj', 'C:\\PythonBook\\Chapter2\\
CPAD_2020b_Units.sbn', 'C:\\PythonBook\\Chapter2\\CPAD_2020b_Units.
sbx', 'C:\\PythonBook\\Chapter2\\CPAD_2020b_Units.shp', 'C:\\
PythonBook\\Chapter2\\CPAD_2020b_Units.shp.BILL.26884.23180.
sr.lock', 'C:\\PythonBook\\Chapter2\\CPAD_2020b_Units.shp.
BILL.7612.23180.sr.lock', 'C:\\PythonBook\\Chapter2\\CPAD_2020b_
Units.shp.xml', 'C:\\PythonBook\\Chapter2\\CPAD_2020b_Units.shx',
'C:\\PythonBook\\Chapter2\\ImportLog', 'C:\\PythonBook\\Chapter2\\
Index']

To make them easier to read, let’s iterate through the list, printing out each one. Type in:

for w in wksp:

 print(w)

Press Enter. Now you can really read what you have, as the workspaces are printed on

one line each:

C:\PythonBook\Chapter2\.backups

C:\PythonBook\Chapter2\.pyHistory

C:\PythonBook\Chapter2\Chapter2.aprx

C:\PythonBook\Chapter2\Chapter2.gdb

C:\PythonBook\Chapter2\Chapter2.tbx

C:\PythonBook\Chapter2\CPAD_2020b_Units.CPG

C:\PythonBook\Chapter2\CPAD_2020b_Units.dbf

C:\PythonBook\Chapter2\CPAD_2020b_Units.prj

C:\PythonBook\Chapter2\CPAD_2020b_Units.sbn

C:\PythonBook\Chapter2\CPAD_2020b_Units.sbx

C:\PythonBook\Chapter2\CPAD_2020b_Units.shp

Chapter 2 81

C:\PythonBook\Chapter2\CPAD_2020b_Units.shp.BILL.26884.23180.sr.lock

C:\PythonBook\Chapter2\CPAD_2020b_Units.shp.BILL.7612.23180.sr.lock

C:\PythonBook\Chapter2\CPAD_2020b_Units.shp.xml

C:\PythonBook\Chapter2\CPAD_2020b_Units.shx

C:\PythonBook\Chapter2\ImportLog

C:\PythonBook\Chapter2\Index

This is great, as you can see all the workspaces in the folder. But you only want to select

the geodatabases in the folder. This is where the parameters come in. For this, you can

use the workspace type parameter.

4.	 To select just the file geodatabase, you need to write the following:

wksp = arcpy.ListWorkspaces("","FileGDB")

Press Enter.

5.	 If you call the wksp variable, you now have a list of just one value, MyProject.gdb. Type in:

wksp

Press Enter. The result is printed as:

 ['C:\\PythonBook\\Chapter2\\Chapter2.gdb']

Why are there quote marks (““) followed by a comma (,)?

The first parameter is for the wildcard, and writing "" will leave it

blank. The quote marks need to be there, though, as functions take the

parameters in the order they are written. If written as wksp = arpcy.

ListWorkspaces("FileGDB"), the function will still run. But when you

call it, you won’t have any data in the list because there is no workspace

called "FileGDB".

Basics of ArcPy82

While there is just the one value in the list, it is still a list and acts as such in Python. That

means that functions in ArcPy that expect a string will fail if given a list. For example, you

cannot update the workspace to this geodatabase location by using the wksp variable:

Figure 2.23: Error message when using the incorrect data type

6.	 To set the workspace, you need to use the list index to extract the workspace from the

list. Since the list has just one value, it is at the 0 index of the list. To set the workspace,

type in the following:

arcpy.env.workspace = wksp[0]

Press Enter.

7.	 Now that the workspace is set to your geodatabase, you can use the ListFeatureClasses

function to get a list of all the feature classes in the geodatabase and assign it to a variable.

You are going to write the code to get a list of feature classes, and then write a for loop

to iterate through the list so you can easily read what feature classes it contains. Enter

the following code:

What if you know you only have a single workspace that you are targeting?

In this example, you only have one item in the list as there was only one

geodatabase in the folder. In these cases, you could just write w = wksp[0]

to fetch the first (and only) element of the list. In fact, when you know you

only have one item in your list you can just write the following to set your

workspace:

arcpy.env.workspace = ListWorkspaces("","FileGDB")[0]

Be careful with using this notation, as if you have more than one workspace

you will only be setting the workspace to the first one in the list.

Chapter 2 83

fcs = arcpy.ListFeatureClasses()
for fc in fcs:
 print(fc)

Press Enter. Here is the output we get:

tl_2019_06_prisecroads
UniqueStops_Summer21
Summer21RouteShape
tl_2019_06_tract
CPAD_2020b_Units_Oakland
CPAD_2020b_Units_Oakland_1000ft
AC_TransitStops_Within1000ft_OaklandPark

You now have a list that contains all the feature classes in your geodatabase. This list can

be iterated through to give you a single feature class, which you can run through other

ArcPy functions or geoprocessing tools. You could use the Describe function from above

to find only the feature classes of a certain geometry to make sure you only run your

analysis on that.

8.	 Starting with your list of feature classes stored in the variable fcs, you will iterate through

it as in the previous step, when you just printed out the name. Then, you will use the

shapeType property of feature classes to determine what the shape is of each feature

class, and print out a statement saying that. To do this, write the following code in the

Python window:

for fc in fcs:
 desc = arcpy.Describe(fc)
 fcName = desc.name
 if desc.shapeType == "Polygon":
 print("Shape Type for " + fcName + " is " +
 desc.ShapeType)
 elif desc.shapeType == "Polyline":
 print("Shape Type for " + fcName + " is " +
 desc.ShapeType)
 elif desc.ShapeType == "Point":
 print("Shape Type for " + fcName + " is " +
 desc.ShapeType)
 else:
 print(fcName + " is not a Point, Line, or Polygon")

Basics of ArcPy84

You will need to press Backspace after each print statement line to ensure the indentation

is correct, and press Enter twice after the last line for the code to run. The for loop will

iterate through each feature class. For that feature class, you are creating a desc variable

to hold the Describe properties of that feature class. You also create an fcName variable

to hold the name of that feature class. Then, you write if/elif/else statements to test

the shapeType property of the Describe object. The output statement will look like this:

Shape Type for tl_2019_06_prisecroads is Polyline

Shape Type for UniqueStops_Summer21 is Point

Shape Type for Summer21RouteShape is Polyline

Shape Type for tl_2019_06_tract is Polygon

Shape Type for CPAD_2020b_Units_Oakland is Polygon

Shape Type for CPAD_2020b_Units_Oakland_1000ft is Polygon

Shape Type for AC_TransitStops_Within1000ft_OaklandPark is Point

The wildcard parameter
Another way to select elements in the list functions before putting them into the list is to use the

wildcard parameter. The wildcard limits what the function returns. It is not case sensitive and

uses an asterisk (*) to include any number of characters before or after the asterisk. Let’s look at

some examples of how this works using our current geodatabase workspace.

The ListFeatureClasses function allows you to list all of the feature classes within a workspace.

You will test different ways to use the wildcard to select data. First, you will use the wildcard to

create a list of all of the CPAD data; next, you will create a list of all the data that ends with Oakland;

and finally, you will create a list of all the 2019 census data. These are all examples of how to use

the wildcard parameter to filter your lists to smaller datasets containing what you want.

Continue in the Python window with the workspace set to C:\\PythonBook\\MyProject\\

MyProject.gdb:

1.	 Create a list of all the CPAD data. Type in the following and press Enter:

cpad_fcs = arcpy.ListFeatureClasses("CPAD*")

2.	 View the data in the list using a for loop. Type in the following pressing Enter after the

first line and Enter twice after the last line:

for fc in cpad_fcs:

 print(fc)

Chapter 2 85

The result printed out will be the feature classes that start with CPAD, and will look like

the following:

CPAD_2020b_Units_Oakland

CPAD_2020b_Units_Oakland_1000ft

3.	 Create a list that contains just the CPAD units in Oakland feature classes. Type in the

following and press Enter:

cpad_Oakland = arcpy.ListFeatureClass("*Oakland")

4.	 View the data using a for loop. Type in the following, pressing Enter after each line and

Enter twice after the last line:

for fc in cpad_Oakland:

 print(fc)

The result printed out will be the feature classes that end with Oakland, and will look

like the following:

CPAD_2020b_Units_Oakland

5.	 Create a list of the 2019 census feature classes. Type in the following and press Enter:

census_fcs = arcpy.ListFeatureClasses("*2019*")

6.	 View the data using a for loop. Type in the following, pressing Enter after each line and

Enter twice after the last line:

for fc in census_fcs:

 print(fc)

The result printed out will be the feature classes with 2019 anywhere in their name, and

will look like the following:

tl_2019_us_county

tl_2019_06_prisecroads

You have now seen how to use the * notation in the wild_card parameter to filter for different

feature classes within the ListFeatureClasses function. It will work the same way on any data

listing function that accepts wild_card parameters. In the next section, you will learn how to

combine the wild_card parameter with feature types.

Basics of ArcPy86

Combining wildcard and feature type parameters
The wildcard is one of the optional parameters in many of the list functions and can be used to-

gether with the other parameters. To illustrate, we’ll look at the ListFeatureClasses() function.

You used the ListFeatureClasses() function in the previous section to illustrate how to use

the wild_card parameter to create lists of specific feature classes. The ListFeatureClasses()

function has a total of three optional parameters:

1.	 wild_card: This can be used to limit the returned values to those that match the wild_card

value.

2.	 feature_type: This can be used to limit the returned values to specific feature classes. The

valid parameters are "Annotation", "Arc", "Dimension", "Edge", "Junction", "Label",

"Line", "Multipatch", "Node", "Point", "Polygon", "Region", "Route", "Tic", and "All"

(default).

The most common values you will use are "Point", "Polygon", and "Polyline". Using

one of those will limit the returned values to that type.

3.	 feature_dataset: This limits the feature classes to only those within the specified

feature_dataset. If this is blank, only feature classes that are not within a feature data-

set within the workspace will be returned to the list.

It is important to only return the data you will need to your list. This will ensure when doing anal-

yses that you are only working on the correct datasets. In this exercise, you will use the feature_

type parameter to further filter your feature classes returned using the ListFeatureClasses()

function and return just the census data from 2019 that is a Polygon.

Continue in the Python window with the workspace set to C:\\PythonBook\\Chapter2\\

Chapter2.gdb:

1.	 Create a list of just the 2019 census polygon data. Type in the following and press Enter:

census_fc_poly = arcpy.ListFeatureClasses("*2019*", "Polygon")

2.	 Verify the data by entering the variable and pressing Enter:

census_fc_poly

The result printed out will be a list of the feature classes that correspond to those limits,

and will look like the following:

['tl_2019_us_county']

Chapter 2 87

3.	 Note that the feature class is stored within the square parentheses ([]), as it is in a list. To

do any geoprocessing tasks on this, you either need to iterate through the list and do the

tasks in the for loop, or extract the feature class using the list index to grab whichever list

index you need. To select the individual feature class, type in the following and press Enter:

census_county = census_fc_poly[0]

4.	 Verify the data by entering the variable and pressing Enter:

census_county

The result printed out will be the single feature class and will look like the following:

'tl_2019_us_county'

Note that what the census_county variable returns is the name of the feature class. As

long as your workspace is still the geodatabase, you can use just that name to do geopro-

cessing tasks. If you reset your workspace, ArcPy won’t know where to find the feature

class with that name.

So, it is good practice to use the os library to create a variable that contains the full path

for your feature class. To use the os library, it needs to be imported like ArcPy when work-

ing in IDLE.

5.	 Continuing on from the previous step, type in the following and press Enter to import

the os library:

import os

6.	 Create a variable with the census feature class full path. Type in the following and press

Enter:

gdb = wksp[0]

7.	 You will use os.path.join() to create the full path. The os.path.join() method takes

any number of arguments you need and joins them up with a backslash (\) between the

arguments. This will give you the full path of the feature class. Type in the following and

press Enter:

census_county_full = os.path.join(gdb,census_county)

Basics of ArcPy88

8.	 Verify the data by entering the variable and pressing Enter:

census_county_full

The result printed out will be the full path of the feature class and will look like the fol-

lowing:

'C:\\PythonBook\\Chapter2\\Chapter2.gdb\\tl_2019_us_county'

Now you have the full path for the census county shapefile in a variable that you can use through-

out any further code you may write. The above steps are common steps in creating automated

analysis. You set a workspace, iterate through each dataset, set its full path, and do your analysis.

Introduction to ArcPy modules
ArcPy comes with a set of modules in addition to the geoprocessing tools and functions. As we’ve

already seen, modules are just files that contain additional Python definitions and statements,

including things like functions and variables. They are used to help organize code more logically.

ArcGIS Pro 2.8 comes with the following ArcPy modules:

•	 Charts module (arcpy.charts): Allows you to create charts of your data

•	 Data Access module (arcpy.da): Allows control of edit sessions and cursors for searching,

inserting, and updating data

•	 Geocoding module (arcpy.geocoding): Allows you to set locators and automate geoc-

oding

•	 Image Analysis module (arcpy.ia): Allows you to manage and process imagery

•	 Mapping module (arcpy.mp): Allows you to work with maps, layers, and layouts to au-

tomate map production

•	 Metadata module (arcpy.metadata): Allows you to access or manage an item’s metadata

•	 Network Analyst module (arcpy.na or arcpy.nax): Allows you to work with the Network

Analyst extension

•	 Sharing module (arcpy.sharing): Allows you to automate sharing data as web layers

or map services

•	 Spatial Analyst module (arcpy.sa): Allows you to work with the Spatial Analyst extension

•	 Workflow Manager module (arpcy.wmx): Allows you to work with the Workflow Manager

toolbox and automate business workflows

Chapter 2 89

Some of the above modules do require specific licenses to use the functions and tools within them.

For example, the Network Analyst and Spatial Analyst modules require you to have the Network

Analyst and Spatial Analyst extensions available. The two you will look at in depth in later chapters,

the Data Access module and the Mapping module, do not. The Data Access module can help you

to streamline your data cleaning and analysis processes. The Mapping module can streamline

mass map production and make creating hundreds of maps a simple process.

Spatial Analyst module
The Spatial Analyst module contains all of the geoprocessing tools associated with the Spatial

Analyst extension. Because it uses the Spatial Analyst extension, you need to import the extension:

from arcpy.sa import *

In this exercise, you will learn how to write the code to run Spatial Analyst tools in the Python

window using the FVEG data from CALFIRE. The FVEG data is a statewide raster land cover data-

set. It has a raster attribute table showing different classification levels of the land cover at each

raster grid square. The Chapter2.gbd file contains the CALFIRE FVEG data extracted to Alameda

County, as the entire dataset is larger than GitHub will allow.

If you would like to download the full statewide dataset, directions on how to do this are in the

CalFireVegdownload.md file in the Chapter2 folder on GitHub. The data is also available for

download here: https://frap.fire.ca.gov/mapping/gis-data/. The link will open a page to

all the CALFIRE GIS data. To download the FVEG data, scroll down to find FVEG and click on it

to expand the box. Click the Download the FVEG geodatabase link to download the data:

Figure 2.24: CALFIRE FVEG download

A common operation on raster data is extracting it to a study area. This is done using the

ExtractByMask tool. The ExtractByMask tool is part of the Spatial Analyst toolset and, in

ArcPy, is part of the Spatial Analyst module.

https://frap.fire.ca.gov/mapping/gis-data/

Basics of ArcPy90

You will be extracting the CALFIRE FVEG data to the boundaries of the parks in the City of Oakland

and running a Con() tool to find the areas that are not urban land cover. Let’s get started. We

have omitted the Enter instructions in each step, since you should be used to the interface by now:

1.	 In the Python window, type in the following:

from arcpy.sa import *

2.	 Check if a Spatial Analyst extension is available by typing in the following:

arcpy.CheckExtension("Spatial")

It should return:

'Available'

If not, you need to either enable your Spatial Analyst license or, if you are on a shared

license network, have someone release theirs. You may need to contact your system ad-

ministrator to ensure you have been given access to a Spatial Analyst license.

3.	 Once you have confirmed a license is available, you will need to check out the license to

use it. Checking in and out an extension helps to manage floating licenses on systems

where there are more users than extension licenses. Type in the following:

arcpy.CheckOutExtension("Spatial")

It should return:

'Checked Out'

4.	 The CALFIRE FVEG data for Alameda County is already in the Chapter2 map. If you need to

add it in, it is in Chapter2.gdb as C:\PythonBook\Chapter2\Chapter2.gdb\CalFireFVEG_

AlamedaCounty_CO.

5.	 Right-click on it and select Symbology.

6.	 Click the dropdown where it says Stretch and select Unique Values.

7.	 Click on the dropdown for Field 1 and select WHR10NAME. You can play with the colors

and color scheme if you want, or just select Basic Random to get each land cover sym-

bolized by a different color.

8.	 If you did not create the CPAD_2020b_Units_Oakland feature class from earlier in the

chapter, you will need to now. This consists of the parks that are just managed by the City

of Oakland. If you have already created CPAD_2020b_Units_Oakland, you do not need to

do this step. Type in the following:

Chapter 2 91

arcpy.analysis.Select(r"C:\PythonBook\Chapter2\CPAD_202b_Units.
shp", r"C:\PythonBook\Chapter2\Chapter2.gdb\CPAD_2020b_Units_
Oakland",'"AGNCY_NAME" = \'Oakland, City of\'')

9.	 To extract the FVEG land cover data to the Oakland parks boundaries, you will use the

ExtractByMask() tool. All the Spatial Analyst tools utilize a different syntax compared to

the other tools you have been using. You still input the parameters of the tool, but there

is no output parameter. The output parameter is created by setting the tool equal to a

variable. That variable holds your newly created raster as a temporary file. To create the

temporary file of the land cover within the Oakland parks, type in the following:

oaklandParksLandCover = ExtractByMask("CalFireFVEG_AlamedaCounty_
Co", r"C:\PythonBook\Chapter2\Chapter2.gdb\CPAD_2020b_Units_
Oakland")

The Python window will display no output, but a raster called OaklandParksLandCover

will be added to your map and will contain data only within the boundary of the parks.

10.	 To save the temporary file, you will use the save() method on the variable that holds the

temporary file. The save() method takes the full path of the raster you are saving. To save

the raster, type in the following:

oaklandParksLandCover.save(r"C:\Chapter2\Chapter2.gdb\
OaklandParksLandCover")

The Python window will display no output, but if you right-click on MyProject.

gdb in the Catalog window and click refresh, you will see that a new raster called

OaklandParksLandCover was saved there.

11.	 You will now use the Con() tool to extract out the land cover within the park that is not

urban. The Con() tool takes four parameters:

1.	 in_conditional_raster: The input raster layer that is the true or false result of

the condition

2.	 in_true_raster_or_constant: Either a raster or constant value that will be used

when in_conditional_raster evaluates as true

3.	 in_false_raster_or_constant: Either a raster or constant value that will be used

when in_conditional_raster evaluates as false

4.	 where_clause: A SQL expression that determines if the values of in_conditional_

raster are true or false

Basics of ArcPy92

The first parameter is the raster to evaluate and will be the OaklandParksLandCover ras-

ter just created. The second parameter is what to return to the raster when the condi-

tion is true and that will be the same as the in_conditional_raster, since you want

the land covers that are not urban. The third parameter is what is returned when the

condition is false; you want that to be a NULL value, as you want to remove all the urban

land from the parks land cover. The fourth parameter is the SQL clause that each cell in

in_conditional_raster will be evaluated against as true or false. To create the new raster

of all the non-urban parks land cover, type in the following:

oaklandParksNonUrban =
Con(oaklandParksLandCover,oaklandParksLandCover,"","WHR10NAME <>
'Urban'")

The Python window will display no output, but a new raster layer called

oaklandParksNonUrban will be added to your map.

12.	 A problem with the Con() tool is that it does not carry through the raster attribute table

from in_conditional_raster. All of the land cover values have been lost. To see this, open

up the attribute table on the new raster in your table of contents. It only has a Value field

and none of the rest of the attributes. This can be fixed by doing a join. The Join Field tool

is in the management toolbox and works on rasters as well as feature classes. It creates a

permanent join. The Join Field tool takes five parameters:

1.	 in_data: The input dataset. It can be a feature class, table, or raster dataset with

an attribute table.

2.	 in_field: The field in the input table to be used for joining.

3.	 join_table: The table to be joined to in_data. It can be a feature class, table, or

raster dataset with an attribute table.

4.	 join_field: The field in join_table to be used to join to in_data.

5.	 fields: A list of the fields from join_table to be joined to in_data.

You will want to join the oaklandParksLandCover data to the oaklandParksNonUrban

dataset. You will use the Value field from each and list all the descriptive land cover fields

as the fields. Type in the following:

arcpy.management.
JoinField(oaklandParksNonUrban,"VALUE",oaklandParksLandCover,
"VALUE", ["WHRNAME","WHRTYPE","WHR10NAME","WHR13NAME"])

Chapter 2 93

The following will be printed:

<Result 'C:\\Users\\William\\AppData\\Local\\Temp\\
ArcGISProTemp2356\\1d45ee13-5255-42fc-a41a-60f5727866ad\\Default.
gdb\\Con_oaklandP1'>

13.	 The result prints the location of the data that was joined. The oaklandParksNonUrban

raster is still in the temp workspace. To save it, use the save() method on it by typing

the following:

oaklandParksNonUrban.save(r"C:\Chapter2\Chapter2.gdb\
OaklandParksLandCover")

From the CALFIRE FVEG data, you have extracted just the land cover in the parks in Oakland. You

further extracted just the non-urban lands within the parks using the Con tool. Finally, you joined

back the land cover descriptions that were lost in the Con tool. This leaves you with a land cover

dataset of just the non-urban data within the parks in Oakland.

Summary
In this chapter, we introduced ArcPy and showed you how to verify a proper install of ArcPy. A

shortcut to the version of IDLE that connects to ArcPy for ArcGIS Pro was created and used to

write Python code in both the IDLE Shell and in a standalone script file. You learned how to use

the ArcGIS Pro Python window for listing data, and the wildcard parameter to filter lists. The

data returned to the list was extracted and used for geoprocessing analysis. Raster analysis was

completed using the Spatial Analysis module.

In the next chapter, you will be introduced to the ArcGIS API for Python for connecting ArcGIS Pro

to ArcGIS Online. ArcGIS Notebooks will also be introduced as a way to write and store Python code.

3
ArcGIS API for Python

The ArcGIS API for Python is a Python package designed to work with web GIS. It allows you to

work directly with data hosted on ArcGIS Online or ArcGIS Enterprise. Previously in this book

you have been using ArcPy, which is excellent for desktop work, but has limited capabilities when

working with hosted data. The ArcGIS API for Python provides tools to do many of the same func-

tions that ArcPy does, such as creating maps, geocoding, managing data, and geoprocessing, but

using data that is hosted within your organization. In addition to this, you can use it to manage

your organization’s data and ArcGIS Online account by managing users, groups, and items.

It is important to note that while all of the examples you will work through in this chapter are

within ArcGIS Pro Notebooks, you don’t have to work through ArcGIS Pro. You could install a

standalone environment with conda and access everything through a Jupyter notebook. This

book will not cover that, as it is focused on working with Python within ArcGIS Pro.

This chapter will cover:

•	 ArcGIS API for Python modules

•	 Managing virtual environments with the Python Package Manager

•	 ArcGIS Pro Notebooks

•	 Connecting to ArcGIS Online through the ArcGIS API for Python

•	 Searching for data

To complete the exercises in this chapter, please download and unzip the

Chapter3.zip folder from the GitHub repository for this book:
https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/

Chapter3.

https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter3
https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter3

ArcGIS API for Python96

What is the ArcGIS API for Python?
The ArcGIS API for Python is like ArcPy, in that it is a Python package. It contains classes, modules,

and functions. However, it is not just a Python package: it is also an application programming

interface (API). An API is code that allows different applications and software to talk to each

other. It interacts primarily with the ArcGIS REST API. This means that you can use the module

to make requests for data hosted on ArcGIS Online or ArcGIS Enterprise. This data is either in

your own organization or is publicly available. It is a Pythonic API, in that it is designed to Py-

thon standards and best practices. As a Pythonic API, it allows Python programmers to easily use

ArcGIS, and ArcGIS users familiar with Python to automate web GIS tasks.

ArcGIS API modules
The API is organized into different modules for your use. Each module has different functions

and types to assist in your GIS.

These are the modules you are likely to use the most:

•	 arcgis.gis: This module is the one you will use the most. It allows entry to the GIS, con-

nects you to your ArcGIS Online account, and provides the functionality to create, read,

update, and delete GIS users, groups, and content.

•	 arcgis.features: This module contains spatial analysis functions for working with fea-

ture data, feature layers, collections of feature layers, and feature sets.

•	 arcgis.geometry: This module is for working with geometry types. It has functions that

use geometry types as input and output, and for converting geometries to different rep-

resentations.

•	 arcgis.geocoding: This module is for geocoding and reverse geocoding. It creates points

of addresses with the output visualized on a map, or used as input data for spatial analysis.

•	 arcgis.geoenrichment: This module is for providing data about an area or location. Users

can get information about people and places in an area or within a certain distance. It can

assist by easily providing demographic data for models.

•	 arcgis.env: This module supplies a shared environment to be used by the different mod-

ules. It stores the currently active GIS and environment settings.

These are the modules that work with specific data types:

•	 arcgis.raster: This module contains classes and functions for working with raster and

imagery data.

Chapter 3 97

•	 arcgis.realtime: This module works with real-time data feeds. It is for use with stream-

ing data to perform continuous analysis. It allows for Python scripts that can subscribe

to data that is streamed and broadcast updates or alerts.

•	 arcgis.network: This module is for completing network analysis. It is for use on net-

work layers and can be used to find best routes, closest facilities, and service areas, and

calculate cost matrices.

•	 arcgis.schematics: This module is for working with schematics, which are simplified

networks. It is for explaining the structure and way networks work.

•	 arcgis.geoanalytics: This module is for creating distributed analyses of large datasets,

both feature and tabular. The tools are designed to work with big data as well as with

feature layers.

•	 arcgis.geoprocessing: This module is for creating and sharing geoprocessing tools.

These are the modules most associated with visualization:

•	 arcgis.mapping: This module is for providing visualization capabilities for GIS data. It

includes WebMap and WebScene to enable 2D and 3D visualization.

•	 arcgis.widgets: This module is for providing visualization of GIS data. It includes the

Jupyter notebook MapView widget to assist with the display of maps and layers.

•	 arcgis.apps: This module provides the ability to manage the web-based applications

available in ArcGIS.

In this chapter, the focus will be mostly on the arcgis.gis module to connect to your ArcGIS

Online account and search for data and users both outside of and within your organization. In

Chapter 5, Publishing to ArcGIS Online, you will learn how to publish and manage data, use the

features module to query and edit data, and the mapping module to visualize your data.

What does it do and why use it?
The ArcGIS API for Python allows you to access your data in ArcGIS Online through the ArcGIS Pro

interface. You can manage your ArcGIS Online or ArcGIS Enterprise organization, its users, and its

data from either a Jupyter notebook or an ArcGIS Pro Notebook. By doing this in a Notebook and

not through the ArcGIS Online web interface, you can use the full functionality of Python to iterate

over data to run the same process multiple times, and schedule tasks to be run. The ArcGIS API for

Python complements ArcPy, as it allows you to automate your organization’s web GIS processes.

ArcGIS API for Python98

The Python Package Manager
Python comes in many versions and installs for different operating systems; each one is called a

Python distribution. The Python distribution that you have is dependent on the version and the

operating system you have. All of the different Python versions come with the standard library

of built-in modules. You have already been introduced to the sys and os modules as two of the

more important built-in modules. In addition to those, there are many third-party packages that

can expand functionality. ArcPy is a third-party Python package that is installed with ArcGIS

Desktop and ArcGIS Pro.

When you install ArcGIS Pro, you also install a custom Python distribution that works with Arc-

GIS Pro; for ArcGIS Pro 2.9, that is Python 3.7.11, at time of writing. This distribution includes all

the standard libraries and packages, including ArcPy. To manage all of the different packages,

ArcGIS Pro uses a package manager called conda. In addition to managing packages, conda also

manages Python environments. Python environments are different collections of packages that

can be switched between depending on the needs of a project.

Python environments
The Python Package Manager in ArcGIS Pro is where you can manage your different Python

environments and packages. ArcGIS Pro comes with a default environment called arcgispro-

py3. You can create additional environments, which are referred to as virtual environments, or

sometimes conda environments, as conda is the package manager.

As we touched on in Chapter 1, Introduction to Python for GIS, a virtual environment is a Python

installation with a unique set of packages that has been added. They are called virtual environ-

ments because each environment replicates a separate install of Python as if it were a different

machine. Each virtual environment is isolated from the others. This allows you to have environ-

ments with additional packages or different versions of the same package, depending on what

your project needs. The Python Package Manager is an alternative to managing your environments

and packages through the command line.

Just like using ArcPy to automate a process in ArcGIS Pro, you would use the ArcGIS

API for Python when you need to automate a process on data that is stored in your

ArcGIS Online account or ArcGIS Enterprise organization.

Chapter 3 99

How to create a new virtual environment
Although the Python Package Manager makes no reference to virtual environments or conda, it

is a user interface designed for use in ArcGIS Pro to manage virtual environments. As mentioned,

the default environment is called arcigspro-py3 and can be viewed in the Project Environment

field in the Python Package Manager:

Figure 3.1: Python Package Manager with the default install

You cannot modify the default environment. It is kept this way so you always have a clean environ-

ment with default settings to switch back to if your other environments stop working. If you need

to update any packages or install any new packages, you have to create a new virtual environment.

In this exercise, you will create a new virtual environment, upgrade all packages, and then add

a package:

1.	 Open ArcGIS Pro and select Open Another Project.

2.	 Navigate to where you unzipped the Chapter3.zip folder, select Chapter3.aprx, and

click Open.

ArcGIS API for Python100

3.	 Click the Project tab in the ribbon.

4.	 Click Python in the side ribbon. This will open the Python Package Manager.

The Chapter3 project is currently using the default environment. You will create a new

environment.

5.	 Click the Manage Environments button. This will bring up the Manage Environments

dialog window. arcgispro-py is the active environment. You need to clone the default

environment first. There are two different ways to do that:

•	 Click the Clone Default button. A new environment will be created called

arcgispro-py-clone; if you have cloned arcgispro-py before, you may also see

a number after clone depending on how many times you have cloned it. It will

take some time for all of the packages to install.

•	 Click on the two squares under the Clone header for the arcgispro-py environ-

ment. This will bring up the Clone Environment dialog window. You can choose

a name and location to store your environment. It is suggested that you store it

in the default location, as that is the conda environments folder that was created

on your computer when you installed ArcGIS Pro.

Choose one of these two ways to create a new environment.

6.	 When all the standard packages are installed for your environment, you can change the

active environment to your new environment. Click on the radio button next to the en-

vironment under the Active header. An alert shows up at the bottom of the Manage

Environments dialog box , stating Restart ArcGIS Pro for your environment changes

to take effect.

7.	 Click OK to close the Manage Environments dialog window.

You have now changed to a new virtual environment. The Project Environment is now set

to arcgispro-py3-clone. For it to take effect, you need to restart ArcGIS Pro. Before doing

that, though, you can make some changes to the packages in this virtual environment.

Chapter 3 101

8.	 Click the Update Packages button in the Python Package Manager to update all of your

packages. This will change the list of packages to those that have updates available and

tell you how many have updates available. You can click on each package and update only

the ones you want to update by clicking the Update button in the package description

window. Alternatively, you can click the Update All button to update all of them.

Figure 3.2: Update Packages

Click the Update All button to update all the packages.

You will now add a package. R is a free software that is useful in statistical analysis and

graphics. There is a Python package called rpy2 that will allow you to call R functions

and methods in Python.

ArcGIS API for Python102

9.	 Add the rpy2 package by clicking on Add Packages and typing rpy2 in the search box.

Select the rpy2 package and click the Install button.

Figure 3.3: Add Packages window

10.	 An Install Package dialog window will open up. It displays the packages that the rpy2

package depends on and a Terms and Conditions. Read through the Terms and Conditions,

check I agree to the terms and conditions, and click Install.

Chapter 3 103

Figure 3.4: Install Package dialog window

The rpy2 package will now be installed. In addition to the rpy2 package, the packages

that it depends on will also be installed. It may take a few minutes to complete the install.

ArcGIS API for Python104

11.	 For the change to the new virtual environment to be complete, you need to shut down

ArcGIS Pro. Close ArcGIS Pro.

12.	 Open ArcGIS Pro back up. We will now follow the same steps from the start of this exercise.

13.	 Navigate to where you unzipped the Chapter3.zip folder, select Chapter3.aprx, and

click Open.

14.	 Click the Project tab in the ribbon.

15.	 Click Python in the side ribbon. Observe that the Project Environment is now set to

arcgispro-py-clone.

16.	 Click on Installed Packages. You will find the newly installed rpy2 package and the de-

pendent packages that were installed with it.

The virtual environment you created is available to use on any project and is the environment

any project will be set to when you open it. To see this, close ArcGIS Pro and reopen it with any

project. Then follow steps 14-16 from above to see the Python package your project is using. It will

be the package you were using in the last project you closed.

You can also remove some packages from your cloned virtual environment. To do that, just click on

the installed package and select Uninstall from the package description window. Some packages

cannot be uninstalled; these include arcpy, arcgis, numpy, and python.

Now that you have created a new virtual environment, you will use ArcGIS Pro Notebooks to work

with the ArcGIS API for Python.

ArcGIS Pro Notebooks
ArcGIS Pro Notebooks are a way to create, save, and share documents that contain Python code

and visualizations. They are built on top of the open-source web application, Jupyter notebook.

ArcGIS Pro Notebooks (referred to from here on as Notebooks) allow you to manage data, perform

analysis, and view your results immediately.

With Notebooks, you can automate workflows and then easily share your automation by sharing

your Notebook. In addition, they can be used as a sandbox to test your code and then save it when

you have it working.

If you were to start a new blank project, it would use the arcgispro-py-clone

virtual environment too.

Chapter 3 105

Notebooks have all the core Python functionality, in addition to ArcPy, the ArcGIS API for Python,

and access to third-party libraries such as NumPy and pandas.

In Chapter 2, Basics of ArcPy, you used the Python window to write code in ArcGIS Pro; Notebooks

are another way to write code in ArcGIS Pro. The following table shows you a comparison of the

benefits of the Python window and an ArcGIS Pro Notebook:

Python window ArcGIS Pro Notebook

Live code testing Live code testing

Quick to start and test small code blocks Save final finished code

Autocomplete while typing Code can be shared

Visualize output in the Notebook

Tab completion – autocomplete when pushing

tab

Markdown code for commenting on your code

Creating a Notebook in ArcGIS Pro
In ArcGIS Pro, there are often different ways to complete a task. You have a few options for creating

a new ArcGIS Notebook. When working in a Project, you can click on the Insert tab in the ribbon

and click the New Notebook button:

Figure 3.5: New Notebook in the Insert tab

Or you can click on the Analysis tab, click on the arrow next to Python, and select Open a new

notebook:

Figure 3.6: New Notebook in the Analysis tab

ArcGIS API for Python106

Both of these will create a Notebook in your project. You could also open the Catalog pane and

navigate to any folder, right-click that folder, and select New > Notebook:

Figure 3.7: New Notebook in the Catalog pane

This will create the Notebook wherever you choose. This approach allows you to create Notebooks

outside of projects, which can be helpful for Notebooks that might be needed across many projects.

Creating your first Notebook
This section will walk you through creating a Notebook. Your first Notebook will be a simple one

that connects to ArcGIS Online and displays a map of Oakland, California. This will also test out

your virtual environment and installation of the arcgis module:

1.	 If you closed ArcGIS Pro after the last section, open it back up and open up the Chapter3.

aprx file.

Chapter 3 107

2.	 Create a new Notebook using one of methods mentioned previously:

•	 Click on the Insert tab and then New Notebook.

•	 Click on the Analysis tab and then Python > New Notebook.

•	 Right-click on your project folder and select New > Notebook.

3.	 The Notebook created is named New Notebook. Rename it to Chapter3_FirstNotebook

by right-clicking on it in the Catalog pane and selecting Rename. Your Project should

look like this now:

Figure 3.8: New Project with a Notebook

ArcGIS Notebook structure
Before writing code in the Notebook, take a look at the structure and what you can see in it:

Figure 3.9: New Notebook

Cells
This is where you write the code in a Notebook. You can write as much code as you want in a cell,

but it is good coding practice to keep related things together as much as possible in single cells.

This is because you can run your code one cell at a time.

ArcGIS API for Python108

By doing this, you can test out portions of code and make sure you are getting the output you

want before running the entire Notebook.

Figure 3.10: Empty cell

Edit tab
The Edit tab is where you can edit your Notebook. It is where you find the tools to cut, paste,

delete, split, merge, and move cells.

Figure 3.11: The Edit tab

View tab
The View tab is where you can change the different view properties of your Notebook. You can

toggle on/off the toolbar, toggle on/off line numbers, and add different toolbars to the cell.

Figure 3.12: View tab

Chapter 3 109

Insert tab
The Insert tab is where you can insert new code cells and heading cells. Heading cells are a type

of Markdown cell. Markdown is a markup language that allows you to create formatted text

using plain text. When a Markdown cell is run, the plain text will be turned into rich text with

the Markdown syntax.

Markdown cells are the cells you use to add comments to code. Like comments in other coding

languages, comments you add are not read by the computer. They are there to give the human

reading the code direction on what the code is doing.

Cell tab
The Cell tab is where you can run single cells, groups of cells, or the entire code. It is also where

you can modify the setting for Output cells. Output cells are the output from anything you run

in a cell. This can be as simple as print statements, or data frames when using pandas, or maps

when using the ArcGIS API for Python. The Cell tab is also where you can change a cell from code

to Markdown.

Help tab
The Help tab is where you can get help. It has a tour of the user interface and keyboard short-

cuts. It also has links to documents on GitHub for general help with Notebooks, Markdown, and

Jupyter extensions.

Toolbar
The toolbar contains the most common tools you will use:

Figure 3.13: Notebook toolbar

It is useful to have line numbers inside your cells when you have cells that will be

more than one line. To add line numbers, click View > Toggle Line Numbers. You

should now see a line number in your cell.

For more information on Markdown syntax, see the Markdown Guide: https://

www.markdownguide.org/.

https://www.markdownguide.org/
https://www.markdownguide.org/

ArcGIS API for Python110

On the toolbar, you see the following:

•	 The + icon, which will add in a new cell below your selected cell.

•	 The scissors icon, which will cut your selected cell.

•	 The two pages icon, which will copy the selected cell.

•	 The single page, which will paste what you copied below the selected cell.

•	 The up arrow, which will move a cell up.

•	 The down arrow, which will move a cell down.

•	 The Run button, which will run a selected cell.

•	 The Code dropdown, which lets you toggle cells between code and Markdown.

•	 The keyboard icon. This will open up the command palette, which you can use to run

different commands for cells. It will also show you keyboard shortcuts.

The toolbar gives you quick access to many of tools you will use the most. There are also keyboard

shortcuts for many of the same functions.

Keyboard shortcuts
Depending on how you work, you may want to use keyboard shortcuts instead of the mouse to

point and click. There are two different modes when working in an ArcGIS Pro Notebook, com-

mand mode and edit mode. Command mode is whenever your cursor is not active in a cell and

edit mode is whenever your cursor is active in the cell. You can tell which mode you are in based

on the color of the outline around a cell. A blue outline means you are in command mode and

can use command mode keyboard shortcuts:

Figure 3.14: Command mode

A green outline means you are in edit mode and can use edit mode keyboard shortcuts:

Figure 3.15: Edit mode

Chapter 3 111

Below are some of the command mode keyboard shortcuts you may find useful:

•	 F – Find and replace

•	 Alt + Enter – Run cell and insert cell below

•	 Y – Change cell to code

•	 M – Change cell to Markdown

•	 A – Insert cell above

•	 B – Insert cell below

•	 X – Cut selected cell

•	 C – Copy selected cell

•	 V – Paste cells below

•	 Z – Undo cell deletion

Below are some edit mode keyboard shortcuts you may find useful:

•	 Tab – Code completion or indent

•	 Ctrl +] – Indent

•	 Ctrl + [– Dedent

•	 Ctrl + Z – Undo

•	 Ctrl + Y – Redo

•	 Esc – Enter command mode

•	 Alt + Enter – Run cell and insert cell below

There are many keyboard shortcuts. To see a full list, go to Help > Keyboard Shortcuts in the

Notebook menu.

Connecting to ArcGIS Online or ArcGIS Enterprise
There are different ways to connect to ArcGIS Online or ArcGIS Enterprise when using the ArcGIS

API for Python. You can connect as an anonymous user, through your ArcGIS Pro connection,

through built-in users, or with a URL, username, and password for an ArcGIS Online account. All

connections are made by constructing a GIS object by typing in gis = GIS(). What varies is the

parameters that are entered inside the parentheses, as that will determine the connection type.

ArcGIS API for Python112

Before connecting, you will need to import the GIS class from the gis module. You do that by

typing in the following in the first cell:

from arcgis.gis import GIS

Anonymous users
Connecting to ArcGIS Online as an anonymous user allows only for limited tasks. You have the

ability to query and view publicly available data; however, you cannot create or modify any of

the data you see, and you cannot perform any analysis. To connect as an anonymous user, type

in the following in the cell:

gis = GIS()

ArcGIS Pro connection
You can connect through ArcGIS Pro using the Pro authentication scheme. This will connect your

Notebook to your ArcGIS Online portal using the credentials used to sign in to ArcGIS Pro. This

is the most common way you will connect when you are in Pro, as it gives you access to all of

your data on your ArcGIS Online Portal. To connect to ArcGIS Online with the Pro authentication

scheme, type in the following in the cell:

gis = GIS("Pro")

Built-in users
ArcGIS Online and ArcGIS Enterprise come with a built-in identity store that allows you to create

accounts and manage them. Connecting to ArcGIS Online using a built-in account is similar to

connecting through a Pro authentication scheme when in Pro. The connection will use the cre-

dentials you are logged in to ArcGIS Pro with to make a connection to your ArcGIS Online Portal.

To connect to ArcGIS Online using a built-in account, type in the following:

gis = GIS("home")

The difference between the built-in account and Pro authentication is that the Pro authentication

scheme only works when ArcGIS Pro is installed locally and is running concurrently.

Connecting to an ArcGIS Enterprise account using a built-in account requires you to enter the

portal URL, username, and password as parameters. This will connect you to your Enterprise

portal and allow you access to your data stored there. To connect to ArcGIS Enterprise using a

built-in account, type in the following.

gis = GIS("https://portalname.domain.com", "username", "password")

Chapter 3 113

Most of the time, you will be connecting using either gis = GIS('home') or gis = GIS('Pro').

Creating a Notebook
Now that you are familiar with structure of a Notebook and how to connect to ArcGIS Online, you

will create a map. This exercise will help you become familiar with some of the steps you will

always take to connect to ArcGIS Online when using the ArcGIS API for Python, and ensure your

arcgis package and virtual environment are correctly installed.

1.	 If you closed ArcGIS Pro after the last section, open it back up and open up the Chapter3.

aprx file.

2.	 Find the Chapter3_FirstNotebook you created above and open it by double-clicking on it.

3.	 In the first cell, you will import the GIS class from the arcgis module. This will be in the

first cell of all of your ArcGIS API for Python Notebooks. The GIS class is what you use to

create the connection to either your ArcGIS Online or ArcGIS Enterprise account. Type

in the following:

from arcgis.gis import GIS

Click Run to run the cell.

4.	 In the newly created cell below your first cell, you will create the connection to ArcGIS

Online. You will connect through an anonymous connection, as you just want to create

a test map using publicly available data. Type in the following:

gis = GIS()

Run the cell.

5.	 In the next cell, you will create the map variable. When creating a map, you can pass

many different things to the parameter in the map widget to set the view. These different

options will be explored in more depth in Chapter 5, Publishing to ArcGIS Online, when

creating maps of your data.

When you run a cell with no cells below it by clicking Run or using the Alt

+ Enter keyboard shortcut, a new cell is created below it.

ArcGIS API for Python114

You will be using a city name to center your map on right now, as you just want to test

your setup. Type in the following:

map1 = gis.map("Oakland, California")

Run the cell.

6.	 The map is not displayed, as you have just created the variable for it. To display the map in

the Notebook, you just have to call the variable. In the next empty cell, type in the following:

map1

Run the cell.

The results will look like the figure below:

Figure 3.16: First Notebook results

Why is the variable map1 and not just map?

You cannot use map as a variable in Python, as map is reserved for the map() function.

You will most commonly see map1 or m used as a variable when creating a map in

the ArcGIS API for Python.

Chapter 3 115

You have just created your first map in a Notebook and used the ArcGIS API for Python. You created

an anonymous connection to ArcGIS Online and displayed a map in your Notebook. The results

show that you have a proper installation and virtual environment set up to work with the ArcGIS

API for Python in an ArcGIS Notebook. In the next section, you will continue to explore the gis

module and how it can be used to search for data.

Using the gis module to manage your GIS
Using the gis module, you can access and manage your folders, content, groups, and users. If you

have any repetitive tasks and workflows, you can automate them as scripts. In this section, you

are going to see how to search for data, access and manage groups, and access and manage users.

Searching for data, users, or groups
Creating a GIS object allows you access to many of the different classes and properties of the GIS

object. To search for users, groups, or content, you will use the UserManager, GroupManager, or

ContentManager classes through the users, groups, or content properties of the GIS object. This

means that when searching for users, groups, or content, you will use similar syntax within the

search() method. A search for data will use the ContentManager class as the content property

of the GIS object, with the following syntax: gis.content.search().

The search() method will return a list of items based on the arguments given. It has several

arguments that it can take. The only argument that is mandatory is a query argument. In this

section, you will look at how to query based on an item’s title or owner.

Searching for public data as an anonymous user
In the previous example, you were connecting anonymously to ArcGIS Online. For this search

example, you will still be connecting anonymously, as it is easier to find public data this way. You

will see later how to find public data when connected to your organizational account; it takes

more arguments.

Connecting anonymously in these examples also allows you to get the same data

returned as we do here. If you were searching with your own organizational account,

you would not see the same data.

ArcGIS API for Python116

You are going to search for publicly available feature layers for Oakland.

1.	 If you closed ArcGIS Pro after the last section, open it back up and open up the Chapter3.

aprx file.

2.	 Right-click on the Chapter3 folder and select New > Notebook. Rename the Notebook

to SearchForDataSample.

3.	 You are going to create your GIS using an anonymous login, and import a display module

that will make viewing the data returned easier. Type in the following:

from arcgis.gis import GIS

from IPython.display import display

gis = GIS()

Run the cell.

4.	 In the next cell, you will search for feature layers associated with Oakland, limited to just

five items, and display the results:

oaklandResults = gis.content.search(query="Oakland",
item_type="Feature Layer",max_items=5)

for item in oaklandResults:

 print(item)

for result in oaklandResults:

 display(result)

The two for loops will return the data details to you in two different ways. The first simply

prints out the results, while the second uses the display module to show more details.

Run the cell, and you should see something like the following:

Chapter 3 117

Figure 3.17: Results of the search for Oakland data

The results are just the first five feature layers returned that are associated with Oakland.

Your results may vary, as content on ArcGIS Online changes over time.

There are many more arguments that can be used to find different data. You can apply any or all

of the following arguments:

•	 query: This can be used to query for title or owner and can use wildcards.

•	 item_type: This can be used to query any type of item that can be on an ArcGIS Online

portal. It can find shapefiles, feature layers, feature collections, CSVs, tables, maps, web

scenes, and more. It also can take wildcards.

•	 sort_field: This can be used to sort the data on a field, such as the title, owner, or num-

ber of views.

ArcGIS API for Python118

•	 sort_order: This can be used with sort_field to sort in ascending or descending order.

•	 outside_org: This can be used when logged in to your organization to search for data

outside of it.

You are going to test some of these arguments to see how you can get different results from the

search() method.

First, you will take the last search and modify it to find feature layers or collections that have

Oakland in the title, sorting them by the number of views:

5.	 You are now searching for data with Oakland in the title and any item type that begins

with feature. You are also sorting this by descending number of views to get the most

viewed items, and returning only the first five of them. In the same Notebook, type in

the following:

oaklandResults2 =
gis.content.search(query="title:Oakland",item_type="Feature *",

sort_field="numViews",sort_order="desc",max_items=5)

for item in oaklandResults2:

 print(item)

for result in oaklandResults2:

 display(result)

The outside_org parameter is important to remember when you are logged in to

your ArcGIS Online account and are searching for public data. If you do not set this to

True when you search, you will only be searching within your ArcGIS Online account.

Chapter 3 119

Run the cell. The output should look something like this:

Figure 3.18: Results of search query for Oakland with different search arguments

ArcGIS API for Python120

You can also search for data by the owner of the data. Your query argument is structured

like this: query="owner:username". This will only return data that the owner has made

publicly available. You will see this now by using the owner of one of the datasets in the

above example and searching for all data owned by them.

6.	 In the same Notebook in the next cell, type the following:

oaklandResults3 = gis.content.
search(query="owner:antievictionmapdev", item_type="Feature *")

print(len(oaklandResults3))

Run the cell and see that they own 10 feature layers.

7.	 Now that you know there are 10 feature layers or feature collections, in the next cell you

can type the following to display them all:

for result in oaklandResults3:

 display(result)

Run the cell to see the layers be displayed:

When using title for a query, you do not need to use wildcard characters.

The search looks for any instance of the word “Oakland” in the title and re-

turns those feature classes. This is not true for other queries; note that you

had to use the wildcard character in the item_type query.

Chapter 3 121

Figure 3.19: List of layers from the owner query

ArcGIS API for Python122

You have seen how to use the search() method to search for data when anonymously connected

to ArcGIS Online. Next, you will see how to search when connected to your organization.

Searching for data when connected to your organization
So far, you have seen how to use the search() operation to search for public data as an anonymous

user. As you have seen, there are different ways to connect to your organization, depending on

how you are using the ArcGIS API for Python, and whether you are using ArcGIS Online or ArcGIS

Enterprise. Because you will be connected to your organization in this exercise, there will be a

limited number of figures showing the output cells as these will depend on what data you have

in your organization.

1.	 To search for data in your organization, you are going to continue to use the

SearchForDataSample Notebook from the exercises above. If you have closed ArcGIS Pro,

open it up and open up the Chapter3.aprx project.

2.	 When Chapter3.aprx is open, right-click on SearchForDataSample in the Project tab of

the Catalog pane to open the Notebook.

3.	 Go to the bottom of the Notebook and, if you need to, create a new blank cell. In this cell,

you are going to create another connection to ArcGIS Online using the account you are

logged into in ArcGIS Pro, by typing in the following:

gis2 = GIS('home')

This will create a GIS object under gis2 that you can use to access and manage content

and users in your ArcGIS Online instance. If you have an ArcGIS Enterprise portal, you

need to type the following:

gis2 = GIS("https://portal/domain.com/
webadapter","username","password")

The address above is for your organization’s ArcGIS Enterprise portal, and the username

and password are your username and password for accessing that portal.

Run the cell.

You can click on the layer name in the Output cell and a browser will open, showing

you the overview page for the item you clicked on.

Chapter 3 123

4.	 You can see properties of the user you are signed in under by typing the following:

gis2.properties.user

Run the cell. The result will be a data dictionary containing all the information about the

user. The data dictionary contains not just the username, full name, and email of the user,

but also information about credits and privileges.

5.	 All of this data can be further accessed and assigned to variables if needed. To store the

first name and then display it, type in:

firstName = gis2.properties.user.firstName

firstName

Run the cell. The output will be the first name of the account you are logged in with.

6.	 You can also access your user information by using users.me. This will display the picture

for the user, along with their full name, bio, username, and date joined. It is not displayed

as a data dictionary, but as a display card. To see this, type in the following:

gis2.users.me

Run the cell. The output will be a card like below, but with your user information displayed:

Figure 3.20: A users.me card

7.	 You can set the user information to a variable. You will create a variable to hold the user-

name so that you can use that later for searching through your data. Type in the following:

myUsername = gis2.users.me.username

Run the cell. There will be no output displayed, but you can now use the myUsername

variable to search for data owned by you.

ArcGIS API for Python124

8.	 Searching through your content is the same as when you are logged in anonymously. The

only difference is you are searching through data that is within your organization. In the

next cell, type in the following:

searchResults = gis2.content.search(query="*",
item_type="Feature Layer")

for result in searchResults:

 display(result)

Run the cell. It will display all of the feature layers in your organization.

9.	 To search for just the items owned by you, type in the following:

searchResults = gis2.content.search(query="owner:"+myUsername, item_
type="Feature Layer")

for result in searchResults:

 display(result)

Run the cell.

10.	 When connected to your organization, you can still search for publicly available data by

setting the outside_org argument to True. You can find the same Oakland datasets we

saw in the previous section in gis2 by writing the following code:

oaklandResultsHome =
gis2.content.search(query="title:Oakland",
item_type="Feature *",
sort_field="numViews", sort_order="desc",
max_items=5,outside_org=True)

for result in oaklandResultsHome:

 display(result)

Run the cell. The results should be the same as when connected anonymously:

The only argument required in the search() function is the query. Be-

cause wildcards can be used, you can search for everything by just writing

query="*". But be careful – if you have a lot of layers, the search can be slow.

Chapter 3 125

Figure 3.21: Results from searching outside your organization

ArcGIS API for Python126

In this section, you have seen how to search for data both anonymously and when you are con-

nected to your organization. Now that you can find data, you will learn how to search for groups

within your organization.

Searching for groups
Searching for groups is very similar to searching for data. You can search for groups that are open

to all when you are logged in anonymously, or search for groups within your organization when

logged in to your organization.

You are going to first search for groups anonymously and access the properties of the groups you

found. Then, you will search for groups within your organization.

1.	 If you have closed ArcGIS Pro, open it up and open up the Chapter3.aprx project.

2.	 Right-click on the Chapter3 folder and select New > Notebook. Rename the Notebook

to SearchForGroups.

3.	 In the first cell, type in your import statements and create your GIS object. You are going

to create the GIS object anonymously:

from arcgis.gis import GIS

from IPython.display import display

gis = GIS()

Run the cell.

4.	 In the next cell, you will create your search and then display the results. Just like with the

feature layers, you are going to limit your data search to the first five records. You will also

be using the display module to better show the group information. Type in the following:

oaklandGroups = gis.groups.search('title:Oakland', max_groups=5)

for group in oaklandGroups:

 display(group)

Chapter 3 127

Run the cell. You should have results that look like the figure below:

Figure 3.22: Results of group search for Oakland groups

5.	 Just like with items, you can search for groups by owner instead of title. You will use one

of the group owners from the search results. Type in the following code:

oaklandGroups2 =
gis.groups.search('owner:DebusB@oakgov.com_oakgov', max_groups=5)

for group in oaklandGroups2:

 display(group)

ArcGIS API for Python128

Run the cell. You should see results that look like the figure below:

Figure 3.23: Results of searching for group by owner

6.	 Just like with searching for items, the group search returns a list. To look further at a

group’s properties, you need to select it using the list index. You are going to select the first

group (index 0) from the first search to look at its properties. Type in the following code:

oaklandGroup1 = oaklandGroups[0]

oaklandGroup1

Run the cell. You should have results that look like the figure below:

Figure 3.24: Result of selecting a group from the group list

Chapter 3 129

7.	 Now you can see some the properties of the group. You are going to print out the property

values, using .format() to add some context to them:

print("Group Access is: {}".format(oaklandGroup1.access))

print("Group id is: {}".format(oaklandGroup1.id))

print("Group Tags are: {}".format(", ".join(oaklandGroup1.tags)))

print("Group is Invitation only: {}".format(oaklandGroup1.
isInvitationOnly))

Run the cell. You should have the following results:

Group Access is: public

Group id is: ae0252ba6fd64ab8bb2b8e507d659c51

Group Tags are: Hub Group, Hub Content Group, Hub Site Group

Group is Invitation only: False

8.	 To search for groups within your organization, you need to be logged in to your GIS. Create

a new GIS object in this workbook by typing the following in the next cell:

gis2 = GIS('home')

Run the cell.

9.	 In the next cell, you will run a search for all the groups in your organization that you have

access to. Type in the following:

myGroups = gis2.groups.search(query="*", max_groups=5)

for group in myGroups:

 display(group)

Run the cell. You should see at most five groups. If you are not a member of five groups,

you will only see those that you are a member of. If you want to see all the groups you are

a member of, remove max_groups=5.

You have now seen how to search for data and groups within and outside of your organization.

Next, you will see how to manage users.

There are more properties that you can access for a group. A full list of them

is here: https://developers.arcgis.com/rest/users-groups-and-

items/group-search.htm.

https://developers.arcgis.com/rest/users-groups-and-items/group-search.htm
https://developers.arcgis.com/rest/users-groups-and-items/group-search.htm

ArcGIS API for Python130

Managing users
Managing users in your organization through the ArcGIS API for Python can be a timesaver, as

you can have Notebooks that can be run to quickly create new users, access user data, reassign

user content, and delete users. The first step is understanding the users class to see what infor-

mation you can see about users.

User properties
In order to learn more about the properties of users, you are going to look at yourself and explore

the different user properties.

1.	 If you have closed ArcGIS Pro, open it up and open up the Chapter3.aprx project.

2.	 Right-click on the Chapter3 folder and select New > Notebook. Rename the Notebook

to UserProperties.

3.	 You are going to log in to your organization’s GIS through the user you are currently logged

in to ArcGIS Pro with, by typing in the following:

from arcgis.gis import GIS

from IPython.display import display

gis = GIS('home')

Run the cell.

4.	 In the next cell, you are going to view your own account by using the me property, as you

did in step 6 in the Searching for data when connected to your organization exercise. This time,

you will view the different properties for a user in the steps below. Type in the following:

me = gis.users.me

me

Run the cell. You should see the same output as Figure 3.19.

5.	 You can identify many different aspects of a user’s profile, such as the user’s first and

last name, email address, when they last accessed their account, what groups they are

a member of, and how much storage they are using. You are going to extract and write

out all of this information. You will need to import the time module to convert the time

returned to month/date/year format.

The groups property returns a list of all the groups with each group’s information stored

in a data dictionary. The group’s name is stored in the "title" key of each group’s data

dictionary. To access the group name, you will create an empty list.

Chapter 3 131

Then, you’ll iterate through the groups list and access the "title" key of each data dictio-

nary to get the group name. You will append() it to the list you created for storing group

names. Finally, you will use the join() function to write the contents of the list of the

groups to a string. In the next cell, type the following:

import time

firstName = me.firstName

lastName = me.lastName

email = me.email

accessedLast = time.localtime(me.lastLogin/1000)

groups = me.groups

myGroupsList =[]

for group in groups:

 groupName = group["title"]

 myGroupsList.append(groupName)

groupsName = ", ".join(myGroupsList)

storageAssigned = me.storageQuota

storageUsed = me.storageUsage

prctStorage = round((storageUsed/storageAssigned)*100,4)

print("First Name: {0}".format(firstName))

print("Last Name: {0}".format(lastName))

print("email: {0}".format(email))

print("Last Accessed:
{0}/{1}/{2}".format(accessedLast[1],accessedLast[2],accessedLast[0]))

print("Groups: {0}".format(groupsName))

print("Storage Assigned: {0}.".format(storageAssigned))

print("Storage Used: {0}.".format(storageUsed))

print("Percent Storage Used: {0}".format(prctStorage))

In a similar manner to before, you print out the user information, using format() to help

you.

ArcGIS API for Python132

Run the cell. You should see the following returned, but with your name and user infor-

mation:

First Name: Bill

Last Name: Parker

email:

Last Accessed: 10/24/2021

Groups: Census Demographic Data, Alameda County
Farmers Markets, City of Oakland Buses And Parks

Storage Assigned: 2199023255552.

Storage Used: 5827358.

Percent Storage Used: 0.0003

You have just been searching for information about yourself. If you have administrator privileg-

es in your organization, you can search and display this information for the other users in your

organization.

Searching for users
You can search for users just like you would with items or groups. You can set a query to look for a

user by username or find users by email address. In this exercise, you will set up a Notebook with

examples of both that you can use to search for users within your organization.

1.	 If you have closed ArcGIS Pro, open it up and open up the Chapter3.aprx project.

2.	 Right-click on the Chapter3 folder and select New > Notebook. Rename the Notebook

to SearchForUsers.

3.	 You are going to log in to your organization’s GIS through the user you are currently logged

in to ArcGIS Pro with, by typing in the following:

Why divide lastLogin by 1000, and what is round() doing?

You divide lastLogin by 1000 because the time returned is the time from the begin-

ning of the epoch in milliseconds. On Windows and most Unix systems, the epoch

begins on January 1, 1970. When you divide it by 1000, you get seconds. The time.

localtime() function will convert the seconds since the start of the epoch to the

year, month, day, hour, minute, second, and day of the week.

round() is there to round to a number of digits after the decimal point. In this case,

you are using 4 in the second argument to round the data to four digits after the

decimal point.

Chapter 3 133

from arcgis.gis import GIS

from IPython.display import display

gis = GIS('home')

Run the cell.

First, you will search for users by username. The search for users works just like all the

previous searches, in that it returns a list of values. Since you are searching for a specific

username, you should get back a list of one item. To be sure of this, you will run a test

to print out the length of the list. Type in the following, replacing {userName} with the

username you want to search for:

userNameSearch = gis.users.search(query="username:{userName}")

len(userNameSearch)

Run the cell. You should see a 1 returned, as you have created a list of users containing

just one user.

4.	 To access the user returned, you need to use the list index to extract the first user, then

display those results. Type in the following:

userNameSelect = userNameSearch[0]

userNameSelect

Run the cell. You should see something like the following:

Figure 3.25: Result of selecting a single user

5.	 You can also search by email using the wildcard *. This allows you to search for all email

addresses from the same email provider. The code is the same as for searching by user-

name, except for the query. In this example, you are again going to find the length of the

list returned to you, before extracting a user from it.

ArcGIS API for Python134

Type in the following in the next cell, replacing {@email.com} with your own email

provider:

emailSearch = gis.users.search(query="email: *{@email.com}")

len(emailSearch)

Run the cell.

Depending on how many people in your organization have that email host, you may have

a large number of search results. You are going to iterate through them using a for loop

and print out the user information from the last Notebook. Type in the following:

import time
for user in emailSearch:
 firstName = user.firstName
 lastName = user.lastName
 email = user.email
 accessedLast = time.localtime(user.lastLogin/1000)
 groups = user.groups
 myGroupsList =[]
 for group in groups:
 groupName = group["title"]
 myGroupsList.append(groupName)
 groupsName = ", ".join(myGroupsList)
 storageAssigned = user.storageQuota
 storageUsed = user.storageUsage
 prctStorage = round((storageUsed/storageAssigned)*100,4)

 print("--")
 print("First Name: {0}".format(firstName))
 print("Last Name: {0}".format(lastName))
 print("email: {0}".format(email))
 print("Last Accessed:
{0}/{1}/{2}".format(accessedLast[1],accessedLast[2],accessedLast[0]))
 print("Groups: {0}".format(groupsName))
 print("Storage Assigned: {0}.".format(storageAssigned))
 print("Storage Used: {0}.".format(storageUsed))
 print("Percent Storage Used: {0}".format(prctStorage))

Run the cell. It will print out the user information for each user in that search separated

by -----------, with each user looking like this:

Chapter 3 135

--

First Name: Bill

Last Name: Parker

email:

Last Accessed: 10/24/2021

Groups: Census Demographic Data, Alameda County
Farmers Markets, City of Oakland Buses And Parks

Storage Assigned: 2199023255552.

Storage Used: 5827358.

Percent Storage Used: 0.0003

You have seen how to search for users within your organization and print out user information.

The Notebook created here can help you easily identify the usage levels for each user to help you

manage access and credits.

Summary
In this chapter, we showed you how to set up a virtual environment, introduced ArcGIS Pro Note-

books, and the ArcGIS API for Python. You learned how to add additional modules to your virtual

environment to allow you to extend your Python analyses. ArcGIS Pro Notebooks were used to

begin exploring the ArcGIS API for Python. You created some sample Notebooks that you can use

to search for content inside and outside of your organization and groups within your organization,

as well as searching for and displaying user information.

In Chapter 5, Publishing to ArcGIS Online, you will learn more about the ArcGIS API for Python and

see how to add, move, and share data to your ArcGIS Online account. In the next chapter, we will

return to ArcPy and explore the Data Access module.

Part II
Applying Python Modules

to Common GIS Tasks

4
The Data Access Module and
Cursors

The Data Access module is for working with data. You have already seen some functions from the

Data Access module (the Describe function from Chapter 2, Basics of ArcPy) that assist you in find-

ing different data types. In addition to that, the Data Access module can be used to walk through

directories to find data; it contains cursors to assist in finding and updating data and an editor

class that allows you to edit data on enterprise systems when other users are accessing the data.

In this chapter, you will learn how to walk through a directory to extract all the ZIP files present

and move them to an organized geodatabase structure. You will also create a Notebook using

cursors that will insert census demographic data into a census geography feature class.

This chapter will cover:

•	 arcpy.da.Walk to walk through a directory and find data

•	 Search, insert, and update cursors to search, write, and update data

To complete the exercises in this chapter, you’ll need data from the Chapter4

folder in the GitHub repository for this book: https://github.com/

PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter4.

https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter4
https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter4

The Data Access Module and Cursors140

Walking through a directory to find data
So far, you have been working with single datasets and using ArcPy to do many things that you

could do as single tools. The benefit of ArcPy has been in helping you track your tasks and in be-

ing able to use Notebooks, which make sharing your analysis easy. However, what about when

you have a lot of datasets and need to search through them and organize them, or do analysis on

them? This is where the Data Access module comes in.

The first thing to look at in the Data Access module is the walk function, which will allow you to

walk through directories.

arcpy.da.Walk
The Python os module is one that you have seen in previous chapters. You have used os.path.

join to create a full path of a file from the directory and filename. It also has a walk() function that

will walk through a directory tree and find data. This means that you can run it on a folder and

be able to walk through all the data, not just within that folder but within the subfolders as well.

The problem with os.walk() is that it does not recognize database contents. That means it will

not find feature classes, tables, or rasters within geodatabases. This is where arcpy.da.Walk

comes in. It can see the data within databases. This makes it very useful, as you can use it to find

data within a geodatabase that is within a folder or subfolder.

In the following exercise, you are going to use arcpy.da.Walk to walk through a folder that con-

tains multiple unzipped folders and copy the data from each folder to the correct geodatabase

for that data.

arcpy.da.Walk exercise
The US Census Bureau TIGER program creates many useful shapefiles of different geographies

throughout the US. They are updated each year and have polygon geographies from the state

level all the way down to block groups. They also have line data such as roads and railroads, and

point data such as landmarks. In this exercise, you will write code in a Notebook that will use

os.walk to walk through the download folder and unzip each ZIP file. Then, it will use arcpy.

da.Walk to walk through the folders with the unzipped shapefiles and copy each shapefile to the

correct geodatabase.

Chapter 4 141

Unzipping files using os.walk
For this exercise, you should have downloaded the Chapter4CensusDownloads folder from the

GitHub repository. Take a look inside and see that there are 26 different ZIP files. They are a col-

lection of different data types from different state and national files. You could manually unzip

each one, manually create the needed geodatabases, and then manually import each shapefile

into the correct geodatabase. However, ArcPy and the Data Access module can do that for us:

1.	 Create a new Notebook in the Chapter4 project folder by right-clicking on the Chapter4

project folder and selecting New Notebook.

2.	 Rename the Notebook ExtractAndCopyCensusData.

3.	 Insert a heading cell by clicking Insert > Insert Heading Above.

4.	 Type in the following for the heading:

Extract Multiple Zip Files and Move to Geodatabases

Run the cell.

5.	 Since this is an ArcGIS Notebook, you do not need to import arcpy; it is already loaded.

You will be using the os module to start with, so you need to import it. In the next cell,

type in the following:

import os

6.	 You also need to import the ZipFile module. After import os, press Enter to get a new

line, and type in the following:

from zipfile import ZipFile

Run the cell. You now have access to the os module and the ZipFile module, which will

allow you to create the walk to find and extract the ZIP files.

7.	 You are going to create a variable for the workspace that contains the ZIP files, and an-

other one where you will create the geodatabases to store the data. Type in the following:

zipWksp = r"C:\PythonBook\Chapter4\Chapter4CensusDownloads"

gdbWksp = r"C:\PythonBook\Chapter4\Chapter4"

Run the cell.

The Data Access Module and Cursors142

8.	 Next, you need to create the walk object to walk through the downloads folder with all

of the ZIP files. In the next cell, type in the following:

zipWalk = os.walk(zipWksp)

Run the cell.

9.	 Now that you have the walk created, you can use a for loop to walk through the directory

names, directory paths, and filenames within that workspace. Within the first loop, you

will create another loop to find each filename. Within that loop, you will create a condi-

tional to test for filenames that end in .zip. For those that do, you will create a new path

name for the extracted folder that is the same as the ZIP folder name without the .zip

part. You will use os.path.isdir() to test whether the path exists; if it does not, you will

use os.mkdir() to create the new folder. You will then use the ZipFile module to open

the ZIP file in read mode, and extract all to the newly-created directory. To do this, in the

next cell, type in the following:

for dirpath, dirnames, filenames in zipWalk:

 for filename in filenames:

 if filename[-4:] == ".zip":

 path = os.path.join(dirpath,filename[:-4])

 if os.path.isdir(path) == False:

 os.mkdir(path)

 with ZipFile(os.path.join(dirpath,filename),"r")
as zipObj:

 zipObj.extractall(path)

Run the cell. Since you haven’t put any print statements in the code, the only way to see

it is running is to watch the * in the cell number. You can also look at the folder where

the new folders containing the unzipped data are being created, to see the folders created

and the contents being unzipped.

When it is done, you should have all 26 files unzipped. Now we can move on to using the arcpy.

da.Walk function to walk through them, create geodatabases, and import the shapefiles into

them as feature classes.

Copying shapefiles to feature classes using arcpy.da.Walk
Taking a closer look at all the census folders that were unzipped, you see that each folder has a sin-

gle shapefile in it. The folders and shapefiles all have a similar name structure of tl_YYYY_XX_Name.

Chapter 4 143

That uniformity is something you can use to create geodatabases for data and move the correct

data to the correct geodatabase. In this exercise, you will continue in the same Notebook as above,

to move the data for each state or country into a geodatabase for that state or country.

This can be done because the two-digit number or two letters after the year tell you what state

the data is for, or if it is country-wide data. For example, tl_2019_06_tract is tract data for the

entire state with a Federal Information Processing Standard (FIPS) code of 06. There are many

sites that have the state FIPS code lookup, but I prefer this one from the United States Department

of Agriculture (USDA) Natural Resource Conservation Service (NRCS): https://www.nrcs.usda.

gov/wps/portal/nrcs/detail/?cid=nrcs143_013696. It gives a list of states, their zip code, and

their FIPS code.

With this, continue on in the ExtractAndCopyCensusData Notebook from above:

1.	 The first step is creating a data dictionary to look up the different FIPS codes and find

the state they are associated with. This will allow you to create geodatabases with state

names instead of FIPS codes, which will be much more useful as not everyone knows ev-

ery state’s FIPS code. The data dictionary will be a simple key/value pair of strings, with

the key being the FIPS code and the value being the state name. You have the following

FIPS codes downloaded: 04, 06, 16, 32, 41, 53, 56, us. These correspond to the following

states: Arizona, California, Idaho, Nevada, Oregon, Washington, Wyoming, and United

States (US datasets cover the entire country). Click in the code box for the next cell and

type in the following code:

stateCountry_dict = {

 "04" : "Arizona",

 "06" : "California",

 "16" : "Idaho",

 "32" : "Nevada",

 "41" : "Oregon",

 "53" : "Washington",

 "56" : "Wyoming",

 "us" : "US_Full",

}

Run the cell. The data dictionary can now be used later in your Notebook by calling it.

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/?cid=nrcs143_013696
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/?cid=nrcs143_013696

The Data Access Module and Cursors144

2.	 Now create your arcpy.da.Walk by typing in the following in the next cell:

shpWalk = arcpy.da.Walk(zipWksp, datatype = "FeatureClass")

Run the cell. Note that the arcpy.da.Walk() function takes one mandatory parameter:

the workspace. It also has the following five optional parameters:

•	 topdown: A Boolean with True being the default. When it is set to True, the tuple

generated for the directory is generated before the workspace. Much of the time,

you will leave this set to True.

•	 onerror: A function that can be set to report any errors. It is set to None by default

and errors are ignored. Much of the time, you will leave this as None.

•	 followlinks: A Boolean with False as the default. When set to False, the walk

will not walk into connection links. A connection link is the same as a symbolic

link: a file that contains a reference to another file or directory. Much of the time,

you will leave this set to False.

•	 datatype: A string of the data type to limit the returns to. This can be set to a

number of different data types to ensure you are only finding the type you want.

The default is Any, which will find all the data types in each directory. For this task,

you are setting it to FeatureClass as you only want to find the shapefiles. It can

be set to select only data types like tables, rasters, tools, maps, and many more.

Multiple data types are allowed in a list or tuple.

•	 type: A string that can be used to further select within rasters or feature classes.

This allows you to limit your feature classes to point, polyline, polygon, multipatch,

or multipoint. Raster data can be limited to different raster types. Multiple types

are allowed in a list or tuple.

3.	 In the next cell, you will walk through the walk to get each shapefile. You will create a

variable that is just the shapefile name without the .shp part, and extract the FIPS code

from that by using the split() method and list index locations.

Why is datatype = written as a parameter in the function argument ?

The datatype is the fourth parameter, but instead of writing arcpy.

da.Walk(zipWksp, "", "", "", "FeatureClass") to get to it, you can

just type the parameter name and what it is equal to. Both ways of writing

the code are correct.

Chapter 4 145

The FIPS code will be used as a key to look up the state in the stateCountry_dict data dic-

tionary. Once you have the state or country name, you will use that to determine whether

there is a geodatabase for it, create it if not, then copy the feature class to the geodatabase.

You will include print statements throughout to track your progress. Write the following

code into the cell:

for dirpath, dirnames, filenames in shpWalk:
 for filename in filenames:
 fcName = filename[:-4]
 censusType = filename.split("_")[2]
 fileFullPath = os.path.join(dirpath,filename)
 stateCountry = stateCountry_dict[censusType]
 print(fileFullPath)
 print(censusType)
 print(stateCountry)
 gdb = os.path.join(gdbWksp,stateCountry+".gdb")
 if arcpy.Exists(gdb) == False:
 arcpy.management.CreateFileGDB(gdbWksp,stateCountry)
 fcFullPath = os.path.join(gdb,fcName)
 arcpy.management.CopyFeatures(fileFullPath,fcFullPath)
 print(fcFullPath + " was copied to " + gdb)

Run the cell. The code should run for a bit, as there are 26 shapefiles that need to be copied

to feature classes in the new geodatabases. Since you have print statements written in,

you can watch them run. You can also see the different geodatabases being created in the

Catalog pane and the feature classes written to them.

Print statements can be very valuable in error checking. They allow you to

see what your code is actually doing. If you are getting results you don’t

understand or errors you don’t understand, putting in print statements that

return your variables can help you see what the error might be.

Why do you check to see if something exists before creating it?

It is always a good idea to check and see if something exists before creating

it. If you do not, your code could throw an error. Or worse, it will work and

overwrite what you are creating. In this case, if it did that, you would end

up with a geodatabase that only has one feature class in it.

The Data Access Module and Cursors146

In this section, you have learned how to use both the os.walk() and arcpy.da.Walk() functions

to walk through folders looking for different data types. The os.walk() function was used to find

the ZIP folder and the arcpy.da.Walk() function was used to find shapefiles. You also learned

how to use a data dictionary as a lookup tool to find and decode FIPS codes. The end product is

a Notebook that will find all the ZIP files in a directory and its subdirectories, extract them, and

then copy any feature classes/shapefiles to a geodatabase that corresponds to the name of that

census geography. You were able to extract and copy 26 unorganized shapefiles to organized

geodatabases through using ArcPy.

Cursors
A cursor is used to access data. It is an object created using the Data Access module and can be

used to iterate over the rows in a table or insert data into the table. Cursors created in the Data

Access module have access to a feature class’s geometry and can read, write, and update geometries.

There are three different cursors in the data access module: search, insert, and update. In this

section, you will see examples of each and how they can be applied to automate your workflows.

Search cursor
arcpy.da.SearchCursor will search through your feature class, shapefile, or table line by line

and return the data to you. It can return the shape and attribute data, but the data is returned as

a tuple so it is immutable. The search cursor has the following two required parameters:

•	 in_table: The feature class, layer, table, or table view to be searched.

•	 field_names: A list or tuple of the field names to be returned. When using a single field,

you can use a string instead of a list; when needing all the fields, you can use an * instead

of listing them all.

It has the following five optional parameters:

•	 where_clause: A SQL statement used to query the records returned and limit them.

•	 spatial_reference: This will transform the spatial reference of the input feature class

to this spatial reference.

•	 explode_to_points: This will transform a feature into individual points or vertices. Each

point or vertex will be returned to the cursor object as an individual row.

•	 sql_clause: A tuple of SQL prefix and postfix clauses to organize the records returned.

Prefix clauses can be None (default), DISTINCT, or TOP. Postfix clauses can be None (default),

ORDER BY, or GROUP BY.

Chapter 4 147

•	 datum_transformation: A string used with the spatial_reference parameter for when

the projection from one reference to another requires a datum transformation.

When a cursor is created, it returns a cursor object. This object can be iterated over using a for

loop. In each loop, the cursor returns a single row from the dataset. The data returned can be

accessed using list indexing. The first item in the tuple is 0, the next is 1, and so on. The order of

the items returned corresponds to the order in the field list.

In addition to the attribute table data, arcpy.da.SearchCursor has access to the shape field in the

form of geometry tokens. A geometry token is a shortcut that allows access to specific properties

of the geometry. They are a time-saving option compared to accessing the full geometry when

you only need specific properties of the geometry. A full list of the geometry tokens available can

be found here: https://pro.arcgis.com/en/pro-app/latest/arcpy/get-started/reading-

geometries.htm. Most of the time, you will use the following, as they are the most common:

•	 SHAPE@XY: Returns a tuple of the feature’s centroid (x, y) coordinates

•	 SHAPE@X: Returns a double of the feature’s x coordinate

•	 SHAPE@Y: Returns a double of the feature’s y coordinate

Let’s take a look at a simple way of using the search cursor to access the attribute data of a dataset

and create a list of the unique values that we can use later for analysis.

For more information on how to use the sql_clause parameter, visit the

following page: https://pro.arcgis.com/en/pro-app/latest/arcpy/

data-access/searchcursor-class.htm.

For more information on this, visit the following page: https://pro.arcgis.
com/en/pro-app/latest/help/mapping/properties/geographic-

coordinate- system-transformation.htm.

The fields passed into the search cursor must match the name of those in the attri-

bute table, not the aliases.

https://pro.arcgis.com/en/pro-app/latest/arcpy/get-started/reading-geometries.htm
https://pro.arcgis.com/en/pro-app/latest/arcpy/get-started/reading-geometries.htm
https://pro.arcgis.com/en/pro-app/latest/arcpy/data-access/searchcursor-class.htm
https://pro.arcgis.com/en/pro-app/latest/arcpy/data-access/searchcursor-class.htm
https://pro.arcgis.com/en/pro-app/latest/help/mapping/properties/geographic-coordinate-system-transformation.htm
https://pro.arcgis.com/en/pro-app/latest/help/mapping/properties/geographic-coordinate-system-transformation.htm
https://pro.arcgis.com/en/pro-app/latest/help/mapping/properties/geographic-coordinate-system-transformation.htm

The Data Access Module and Cursors148

Accessing the geometry of a feature class
In this exercise, you will create a CSV of all of the transbay bus stops and the (x, y) coordinates of

each. This data could then be uploaded to ArcGIS Online to display the data or used for further

spatial analysis. You are simplifying the data from the shapefile and extracting the geometries of

it for use by other analysts. By putting it in a CSV file, you are using a format that people without

access to ArcGIS can also utilize.

A search cursor will work well for this, as it can access the attributes to create a list of transbay

bus routes in the feature class. An additional search cursor will then be used with a SQL query to

select the different stops for a bus route and export the information, along with the XY data of

the stops, to a CSV for each bus route.

1.	 In the Chapter4 project folder, right-click and select New > Notebook. Rename the Note-

book to AC_TransitTransbayStops.

2.	 You will import two modules, os and csv. You have used the os module before to create

paths and directories. The csv module will allow you to open, read, write, and append to

CSV files. In the first cell, type in:

import os, csv

Run the cell.

3.	 To output to a CSV, you are going to use the csv.writer() and writerow() functions in

the csv module. Instead of calling them multiple times when you need them, it is more

efficient to create a function so you can call it whenever you have data to write to a CSV.

You will create a function called createCSV with three parameters: the input data, the

name of the CSV, and the mode set to write ('w'). Within the function, you will open

the CSV in a with statement, pass in the mode from the parameter, and set the newline

parameter to ''.

In the next cell, type in the following:

The newline parameter has to be set to '' or your CSV output will have a

blank line between each line.

Chapter 4 149

def createCSV(data, csvName, mode ='w'):

 with open(csvName, mode, newline='') as csvfile:

 csvwriter = csv.writer(csvfile)

 csvwriter.writerow(data)

Run the cell. This function allows you to write one line of code when you need to write

data to a CSV.

4.	 In the Chapter4 folder, find the UniqueStops_Summer21.shp shapefile and add it to your

map. Create a variable in your Notebook by typing in:

AC_TransitStops = r"C:\PythonBook\Chapter4\UniqueStops_Summer21.shp"

5.	 Open up the attribute table and look at the ROUTE field. This is how you are going to

identify which routes are transbay routes. For AC Transit, all routes that start with a letter

are transbay lines. You can use this knowledge and how the table is set up to create your

query for each transbay line. The problem is that a stop can have multiple lines and the

letter you are looking for will not always be the first letter. This means that you need to

be careful about structuring your query, and that you want to set up your script to be able

to go through each bus line individually.

By looking at the current list of AC Transit transbay routes (https://www.actransit.org/

maps-schedules#transbay), you can see that you will need to look for the following bus

lines: F, G, J, L, LA, NL, NX, O, P, U, V, W. You want to create a list of these that you can

iterate through. In the same cell as the previous step, type in:

transbayRoutes =
["F","G","J","L","LA","NL","NX","O","P","U","V","W"]

Functions are very useful when you have code that you will need multiple

times throughout a script. They are usually written at the top of a script so

that you can call them later. In Python, all the functions you write will be

named functions, meaning that you give them a name to call them later. To

declare a function, you use def FunctionName(... , ...) and you put

your parameters in the parentheses. These parameters are the values you

will pass through to the function when you run it later.

https://www.actransit.org/maps-schedules#transbay
https://www.actransit.org/maps-schedules#transbay

The Data Access Module and Cursors150

6.	 You need headers for your CSV file so you know what the data is that you are extracting.

You are going to extract the 511 Stop ID, Stop Description, Route, X, and Y from each

point. Since the headers are going to be written to a CSV file, you want to put them in a

list so they will be comma-separated. In the same cell as the previous step, type in:

csvHeader = ["511 Stop ID","Stop Description","Route","X","Y"]

7.	 The last variable you need is a folder to write all of the CSVs to. You will be using the name

of the bus route for each CSV name, so you just need a location to put the CSVs. A folder

by the name TransbayStops needs to already exist in this location for you to write your

CSVs to it. In the same cell as above, type:

csvFolder = r"C:\PythonBook\Chapter4\Chapter4\TransbayStops"

Run the cell.

8.	 Now you are going to create a for loop to loop through that list. Within that loop, you

will create the SQL query for each bus route, create your search cursor to find, and write

the information about each stop that you want. This code will be written into the next

cell over the next two steps.

In this step, you will loop through the routes in the transbayRoutes list and create a SQL

statement to select any stop that contains that route. You will create a CSV name, the full

path for the CSV, and then call the createCSV function to write the headers to that CSV.

Within the loop, you will also write some print statements to track your output. In the

next cell, type in the following:

for route in transbayRoutes:
 sql = '"ROUTE" LIKE \'%{0}%\''.format(route)
 print(sql)
 csvName = "TransbayStopsRoute_{0}.csv".format(route)
 print(csvName)
 csvFullPath = os.path.join(csvFolder,csvName)
 print(csvFullPath)
 createCSV(csvHeader,csvFullPath)

Chapter 4 151

9.	 You have now created a SQL statement that will find all of the transbay stops for a par-

ticular route, and you also have a CSV file ready for the output. You are ready to create a

search cursor.

The search cursor will use a with...as... statement. The advantage of using this is that it

closes and deletes the cursor each time through, so you don’t have to remember to delete

the cursor at the end of your process. This helps reduce accidental schema locks on your

data. The search cursor will take the bus stops feature class and the list of fields as the

required parameters. It will take the sql variable as the where_clause parameter to limit

the records returned. You will create a for loop to iterate through each row returned in the

cursor object. This creates a list of data for each row and you will extract the data from the

list using list indexing on the row variable. You will create a list of this data in the order

of your headers from above, print this to the Out cell to track your results, and write it to

the CSV using the createCSV function. You will change the mode to 'a' in the createCSV

function to append each row to the CSV. In the same cell as above, type in the following:

with arcpy.da.SearchCursor(AC_TransitStops,
["STP_511_ID","STP_DESCRI","ROUTE","SHAPE@XY"],sql) as cursor:

 for row in cursor:

 stopID = row[0]

 stopDesc = row[1]

 route = row[2]

 locX = row[3][0]

 locY = row[3][1]

 csvData = [stopID,stopDesc,route,locX,locY]

 print(csvData)

 createCSV(csvData,csvFullPath,mode='a')

What is the {0} and the .format() in the sql variable?

The .format method allows you to insert data from a variable into a string.

The {} is a placeholder within your string, and the variable within the () is

inserted into the string in that location. You can include as many placehold-

ers and parameters as you need. The order in the () is 0-based, meaning the

first parameter is 0, the next is 1, and so on.

The Data Access Module and Cursors152

Run the cell.

When the Notebook runs, you should see print statements telling you the route that is being run,

the CSV that is being created, and each row being written to the CSV. When the first one is done,

you can open it up and see what the data looks like. Navigate to the folder you created them in

and double-click on the CSV. If you have Excel installed, it will default to opening them up in

Excel. If not, you can open them in Notepad or any other text editor:

Figure 4.1: Sample of output data to CSV opened in Excel

Figure 4.2: Sample of output data to CSV opened in Notepad

Using a search cursor with a data dictionary as a lookup value
In addition to accessing the shape of a feature class or shapefile, search cursors can be useful for

creating data dictionaries for lookup values for later use in code. This is important when you

don’t know how many different values a table may have. It can also save you from making errors

in attempting to create a lookup dictionary yourself. Instead of you typing in the values, Python

extracts them from the feature class or table.

Let’s consider an example. You want to be able to extract just the census tracts for a county and

you know that the tract FIPS code contains the county FIPS code within it. However, you don’t

know what the FIPS code is for any counties in the state. You do have the county feature class for

the state and the tract feature class for the state. You could do this using the intersect tool, select

by location, or possibly spatial join tools.

The SHAPE@XY data returns a tuple of the x and y value. In order to extract

the x value, you need to get the value at the first position of the tuple. The y

value is in the second position.

Chapter 4 153

However, those can cause slivers, and it would be quicker just to select the tracts by the FIPS

code. arcpy.da.SearchCursor can help by creating a lookup data dictionary and then using that

information to select the tracts you need.

In this next exercise, you are going to create a lookup table of county FIPS IDs for California. Then

you will use those lookup values to extract the census tracts of just one county based on the FIPS

code of the census tracts. Let’s get started:

1.	 In the Chapter4 project folder, right-click and select New > Notebook. Rename the Note-

book to CensusCountyExtractTract.

2.	 You will need the os module later to write data out. In the first cell, type:

import os

Run the cell.

3.	 In the next cell, you are going to declare the two variables to hold the county data and

the tract data. Type in:

usCounty = r"C:\PythonBook\Chapter4\Chapter4\US_Full.gdb\tl_2019_us_
county"

caTract = r"C:\PythonBook\Chapter4\Chapter4\California.gdb\
tl_2019_06_tract"

Run the cell.

4.	 In the next cell, you are going to create an empty data dictionary to hold all of the county

FIPS code and county name pairs. Type in:

countyLookUp = {}

Run the cell.

5.	 In the next cell, you will create a SQL statement to limit counties returned to those from

a single state. County FIPS codes are specific to a state, so two states could have the same

FIPS code for a county. If you wanted to do this for multiple states, you could create a data

dictionary for each state. You are just working in California for now, so you want to limit

the county data to only counties in California. The county feature class has an attribute

called STATEFP that contains the state FIPS code. You know from the arcpy.da.Walk ex-

ample that the FIPS code for California is 06. Type in:

sql = "STATEFP = '06'"

The Data Access Module and Cursors154

Run the cell.

6.	 In the next cell, you create the search cursor and add key/value pairs to the data dictio-

nary. The search cursor will take the usCounty feature class and a list of the fields as the

required parameters. It will take the sql variable as the where_clause parameter to limit

the results returned. You will create a for loop to iterate through each row returned in

the cursor object. Within the loop, you will test if the county name is in the countyLookUp

dictionary, and if not, you will add the name as the key and the county FIPS code as the

value. You will also add a print statement to track your results. Type in the following code:

with arcpy.da.SearchCursor(usCounty,
['STATEFP','COUNTYFP','NAMELSAD'],sql) as cursor:

 for row in cursor:

 if row[2] not in countyLookUp:

 countyLookUp[row[2]] = row[1]

 print("Adding key: {0} and value: {1} to countyLookUp".
format(row[2],row[1]))

Run the cell. You should see in the output cell the print statement when each county is

added. The first few lines will look similar to this:

Adding key: Sierra County and value: 091 to countyLookUp

Adding key: Sacramento County and value: 067 to countyLookUp

Adding key: Santa Barbara County and value: 083 to countyLookUp

7.	 You can check and see if all the counties were added. California has 58 counties; you can

check the length of the dictionary to see if it has 58 entries. In the next cell, type in the

following:

len(countyLookUp)

Run the cell. The result should indeed be 58.

It is a good idea to check the type of field you are writing your query on. Since

the FIPS code is 06, it is a string; if it was an integer, it would be 6. However,

don’t always assume a number is stored as a number in the attribute table.

Your SQL query will look different, as strings are encased in '' and numbers

are not.

Chapter 4 155

8.	 Now you can use that countyLookUp data dictionary to extract the tracts for a single county.

You need to create a variable for the feature class you are going to create. Since this will

be California data, you want to put it into the California geodatabase. You already have

a geodatabase for California created in the Notebook above. You are going to use that for

this data. Type in:

gdb = r'C:\PythonBook\Chapter4\Chapter4\California.gdb'

Run the cell. You should not see any results in the Out cell.

9.	 Next, you will select the single county you want. You will put it into a variable to make it

easy to change later if you need to extract the tracts for another county.

In the next cell, type in the following:

countyName = "Alameda County"

Run the cell. You should not see any results in the Out cell.

10.	 Now you can use the countyLookUp data dictionary to find the county FIPS code for Ala-

meda County. In the next cell, type in the following:

countyFips = countyLookUp[countyName]

Run the cell. You should not see any results in the Out cell.

11.	 You can take the countyFIPS variable and create a SQL statement from it. You will use the

GEOID field in the tract feature class. The GEOID field is set up to have the state FIPS code,

county FIPS code, and then the tract FIPS code. In order to select all the tracts within the

county, you have to structure your SQL statement properly. You do that by using the LIKE

and % values. In the next cell, type in the following:

sql = "GEOID LIKE '06{0}%'".format(countyFIPS)

print(sql)

Run the cell. You should see the following in the Out cell as your SQL statement:

GEOID LIKE '06001%'

If you needed to extract data for multiple counties, you could create a list

and iterate through that list.

The Data Access Module and Cursors156

12.	 The next step is creating a feature class to write to. In the next cell, you will type two lines

of code. The first will create a variable for the county name with the spaces removed. The

second will create a variable for the new feature class you will create, of just the tracts in

Alameda County. In the next cell, type in the following:

tractCounty = countyName.replace(" ","")

tractCountyFull = os.path.join(gdb,"Tracts_"+tractCounty)

Run the cell.

13.	 The last step is using the query to select the tracts. As we saw in Chapter 2, Basics of ArcPy,

the Select function takes three parameters: an input feature class, output feature class,

and where clause. All three of these parameters are variables you have declared above. The

input feature class is the state-wide tract data, the output feature class is the new feature

class you just declared, and the where clause is the SQL statement. Type in the following:

arcpy.analysis.Select(caTract,tractCountyFull,sql)

Run the cell. You should get an output message with the name of the new feature class:

Figure 4.3: Output message

The feature class should have been added to your map as well. Click over to your map

and take a look at the data:

Chapter 4 157

Figure 4.4: Alameda County tracts

You now have a feature class of the tracts from Alameda County. You also have a Notebook you

can utilize again to select out the tracts from any county in the US. Next, you will learn how to

not just select the tracts but add and calculate a field using the update cursor.

Update cursor
While it is nice to be able to use the county dataset to extract just the tract data in the county

and not have to worry about any slivers or extra tracts, it would be really nice to add the county

name to the statewide tract data. This would allow easier SQL querying of the statewide tract

data by county, as you and your team will not have to remember or look up the FIPS codes when

you need to extract county data. The update cursor can help you do that.

The update cursor gives you read and write access to the attributes in a feature class or a table.

It is set up in a similar way to the search cursor and has the same parameters, but the biggest

difference is that the update cursor returns a list and not a tuple. Since it gives you a list, you can

make changes to the data.

The Data Access Module and Cursors158

In this exercise, you are going to take the code you were working on for the California census tracts

in the previous exercise and add an update cursor to calculate a new county field. Let’s begin:

1.	 Right-click on the CensusCountyExtractTract.ipynb file and click Copy.

2.	 Right-click on the Chapter4 project folder and click Paste. This will create a new Notebook

named CensusCountyExtractTract_1.ipynb.

3.	 Rename CensusCountyExtractTract_1.ipynb to AddCountyToStateCensusTract.ipynb

and open the Notebook. You are going to keep the first five cells. These are the cells that

create variables for the county and tract data, the state SQL, and the county lookup table.

4.	 Starting with cell 6 that contains gdb = r"C:\PythonBook\Chapter4\Chapter4\

California.gdb, delete it and all the cells below it by selecting them and clicking the

scissors button, or pressing the d key twice.

5.	 You need to add a field for the county name to the tract feature class. The AddField func-

tion takes the following three required parameters:

•	 in_table: The feature class, shapefile, coverage, table, or raster with attribute

table to add a field to.

•	 field_name: A string for the name of the field being added.

•	 field_type: A string for the type of field to be added. It can be any of the following

values: "STRING", "LONG", "SHORT", "DOUBLE", "FLOAT", "DATE", "BLOB", "RASTER",

"GUID".

It also has the following seven optional parameters:

•	 field_precision: A long value that is the number of digits stored in the field.

•	 field_scale: A long value that is the number of decimal places stored in the field.

•	 field_length: A long value that is the limit for the number of characters in the

string field.

•	 field_alias: The alias name for the field.

•	 field_is_nullable: A Boolean value that is either NON_NULLABLE for fields that

cannot be set to null or NULLABLE (default) for fields that can be set to null.

•	 field_is_required: A Boolean value that is either NON_REQUIRED (default) for

fields that are not required or REQUIRED for fields that are required and cannot

be deleted.

•	 field_domain: The existing domain in the geodatabase to be applied to the field.

Chapter 4 159

To add the field, in cell 5 press Enter after the last line and type in the following:

arcpy.management.AddField(tract,"CountyName","STRING")

6.	 In the next cell, you are going to create a for loop to loop through the countyLookUp dic-

tionary and then use the update cursor to calculate the county name for each tract. The

code will be written into this cell over the next two steps. In this step, you will create

the for loop to loop through the countyLookUp dictionary and create variables for the

county name, FIPS code, and SQL statement to select all the tracts within a county. You

will include print statements to track your progress. Type in the following:

for key in countyLookUp:

 countyName = key

 countyFIPS = countyLookUp[key]

 print(countyName)

 print(countyFIPS)

 sqlTract = "GEOID LIKE '06{0}%'".format(countyFIPS)

 print(sqlTract)

7.	 Continuing the same cell, you will create a with...as... statement to create the cursor

object. The update cursor will take the tract feature class and a list of the fields as the

required parameters. It will take the sqlTract variable as the where_clause parameter to

limit the results returned. Then, you will write a for loop to loop through each row from

the cursor. Within the loop, you will set the row with the CountyName field equal to the

countyName variable. You will then call the updateRow property on the cursor with row as

an argument to write the value to each row:

with arcpy.da.UpdateCursor(tract,
["GEOID","CountyName"],sqlTract) as cursor:

 for row in cursor:

 row[1] = countyName

 cursor.updateRow(row)

8.	 When you are ready, click Cell > Run All to run the Notebook.

You must remember to use the updateRow property on your cursor with your row as

an argument. If you do not, the row you just calculated will not be written.

The Data Access Module and Cursors160

After the code has run, switch over to the map to explore your data. Make sure the tl_2019_06_

tract feature class is loaded in and open up its attribute table. Scroll to see the CountyName field

and see if it has all the county values. Open up the attribute table and try a few Select By Attributes

to see how you can now select all the tracts that are within a county. You should now see how to

use both the search and update cursors to easily add value to your attribute table.

Insert cursor
The insert cursor is used to add in new rows of data to tables or feature classes. Like the search

and update cursors, it can act on the geometry of a feature class as well as the attribute tables.

While you can still use the with...as... format for insert cursors, the more common syntax

seen in the ArcGIS documentation involves creating a cursor, looping through it, and deleting

the cursor. You will write the code below using this convention.

To better understand why using an insert cursor to insert data into a table from the census CSV is

necessary, we should look at the census CSV file. Open up the ACSDT5Y2019.B03002_data_with_

overlays_2021-07-22T010002.csv file in the CensusCSV folder. This is the Hispanic or Latino

Origin By Race for the American Community Survey (ACS) 5-Year Estimates Detailed Tables for years

2014-2019, Table B03002 for Alameda County at the tract level. It shows the population totals for

Hispanic or Latino and non-Hispanic or Latino broken down by race. Here is a section of the data:

Figure 4.5: Census CSV file

There are some important things to notice about this table:

•	 It has two rows for headers:

a.	 The first row contains coded values.

b.	 The second row contains values that would not work well as field names for an

attribute table, as they have spaces and special characters.

•	 It contains a lot of data. In addition to the estimates for each race being split in terms of

non-Hispanic or Latino and Hispanic-Latino, it has a margin of error for each. You want

to get the totals for each race that is non-Hispanic or Latino, and just the total Hispanic

or Latino. This will allow you to calculate the total and percent minority of each tract.

Chapter 4 161

•	 The GEO_ID field is different from the one in the tract feature class. The GEO_ID field in

the CSV is prefixed with 1400000US before getting to the values in the GEOID field in the

feature class.

For these reasons, it is a good idea to create a table from this CSV containing just the data you

need. That table can then be used to join to the feature class so you can map the data. You are

going to do this by reading the CSV in a similar way to using a search cursor. Then, you are going

to use an insert cursor to insert those values into an empty table. Finally, you will join that table

to the feature class so you can display the data on a map:

1.	 Right-click on the Chapter4 project folder and select New > Notebook. Rename the Note-

book to CreateCensusTableInsertRows.

2.	 In the first cell, you will import the modules you will need, the csv and os modules. Type

in the following:

import csv, os

3.	 In the next cell, you are going to set variables that you will need throughout the Notebook.

They are:

a.	 The geodatabase you are working in

b.	 The tract feature class for Alameda County

c.	 The CSV file with the census data in it

d.	 The table name

e.	 The table full path

f.	 The new census polygon full path

To do so, type in the following:

gdb = r"C:\PythonBook\Chapter4\Chapter4\California.gdb"

tract = r"C:\PythonBook\Chapter4\Chapter4\California.gdb\Tracts_
AlamedaCounty"

csvFile = r"C:\PythonBook\Chapter4\CensusCSV\ACSDT5Y2019.
B03002_2021-07-22T010004\ACSDT5Y2019.B03002_data_with_overlays_2021-
07-22T010002.csv"

table = "AlamedaCounty_RaceHispanic"

tablePath = os.path.join(gdb,table)

censusPoly = os.path.join(gdb,table+"_Tract")

The Data Access Module and Cursors162

4.	 In the next cell, you are going to create a data dictionary of the field names, field aliases,

and field types. By using a data dictionary, you can use a loop to add all the fields and

their aliases. The data dictionary will not only contain the different Hispanic/race types

from the census data but also fields for the total minority and percent minority. For this

example, you will assume that all Hispanic/races that are not white are a minority.

The data dictionary will have a key that is the field name, and a list of values that are the

field alias and the field type. This will allow you to loop through the dictionary and use

the key and data from the value to create a field. Type in the following:

fields = {"geoid_census":["GeoID_Join","STRING"],

 "total_pop":["Total Population","LONG"],

 "white":["White","LONG"],

 "prct_white":["Percent White","FLOAT"],

 "black":["Black","LONG"],

 "prct_black":["Percent Black","FLOAT"],

 "am_indian_nat_alaska":["American Indian/Native
Alaskan","LONG"],

 "prct_am_indian_nat_alaska":["Percent American Indian/
Native Alaskan","FLOAT"],

 "asian":["Asian","LONG"],

 "prct_asian":["Percent Asian","FLOAT"],

 "nat_hawaiian_pac_island":["Native Hawaiian/Pacific
Islander","LONG"],

 "prct_nat_hawiian_pac_island":["Percent Native Hawaiian/
Pacific Islander","FLOAT"],

 "some_other":["Some Other Race","LONG"],

 "prct_some_other":["Percent Some Other Race","FLOAT"],

 "two_or_more":["Two Or More Races","LONG"],

 "prct_two_or_more":["Percent Two Or More Races","FLOAT"],

 "hispanic_latino":["Hispanic/Latino","LONG"],

Why do we take all non-white races to be minority?

In most environmental documents, it is common to consider all non-white

to be minority; occasionally you will see them not include two or more races

as minority. If you want to change that definition, you just have to change

the math later in the code that adds up the values for minority.

Chapter 4 163

 "prct_hispanic_latino":["Percent Hispanic/
Latino","FLOAT"],

 "total_minority":["Total Minority","LONG"],

 "percent_minority":["Percent Minority","FLOAT"],

 }

5.	 In the next cell, you are going to create a table. You will be writing the demographic data

you extract from the CSV to this table. The CreateTable tool takes the following two

mandatory parameters:

•	 out_path: The workspace to create the table in

•	 out_name: The name of the table

It also takes the following three optional parameters:

•	 template: A table with an attribute schema that will be applied to the new table.

•	 config_keyword: The configuration keyword that will determine where and in

what format to store a table in an enterprise geodatabase. You will use the Default

much of the time.

•	 out_alias: The alias of the table.

You will just be using the mandatory parameters. Type in the following:

 arcpy.management.CreateTable(gdb, table)

6.	 In the next cell, you are going to iterate through the data dictionary to add all the fields

to the new empty table. You will start by creating an empty list called tableFields that

you will add the field names to for future use. You will then loop through each field in the

data dictionary. Within the loop, you will create a variable to hold the name of the field,

which is the key from the data dictionary and what is returned when looping through a

data dictionary. You will then use the key to create variables for the alias and data type.

For more information on configuration keywords, see the docu-

mentation here: https://desktop.arcgis.com/en/arcmap/

latest/manage-data/geodatabases/what-are-configuration-

keywords.htm.

https://desktop.arcgis.com/en/arcmap/latest/manage-data/geodatabases/what-are-configuration-keywords.htm
https://desktop.arcgis.com/en/arcmap/latest/manage-data/geodatabases/what-are-configuration-keywords.htm
https://desktop.arcgis.com/en/arcmap/latest/manage-data/geodatabases/what-are-configuration-keywords.htm

The Data Access Module and Cursors164

You will then append the field name to the tableFields list. Finally, you will use the

AddField tool to add the field to the table passing in the table, field name, data type, and

alias variables you created. Type the following code:

tableFields = []

for field in fields:

 name = field

 alias = fields[field][0]

 dataType = fields[field][1]

 print(name)

 print(alias)

 tableFields.append(field)

 arcpy.management.AddField(tablePath,name,dataType,
field_alias = alias)

7.	 In the next cell, you are going to open the CSV and create a csv.reader object to read in

the data from the CSV row by row. Type in the following:

fileRef = open(csvFile)

csvRef = csv.reader(fileRef)

8.	 In the next cell, you are going to read in each line of the CSV, extract just the values you

need, use them to calculate the percentage of each Hispanic/race group, the total minority,

and percentage minority, then write that data to a row in the table you just created using

the insert cursor. The code will be written into the next cell over the next six steps.

In this step, you will create the for loop. Within the for loop, you will first create a condi-

tional to check the line number of the CSV using the line_num property of the CSV reader

object. You will check if the line number is less than or equal to 2. If so, the continue

keyword will be called. If not, the rest of the code will run. Type the following in the cell:

for row in csvRef:

 if csvRef.line_num <= 2:

 continue

Remember that the values in the data dictionary are a list, and when using

the key to access them you will be returned a list. You can use list indexing

to return the specific values from the list.

Chapter 4 165

9.	 In the same cell, you will now create a variable to join the feature class and table on. To

create the variable, you need to remove the first nine characters from the value in the

CSV, so it will match the value in the feature class. This will allow you to join the table

to the feature class.

Figure 4.6: First column value in the CSV

Figure 4.7: GEOID value in the tract feature class

Type the following in the cell:

 geoJoin = row[0][9:]

10.	 In the same cell, you will now create a variable that holds the total minority of the tract.

Remember from above that the total minority is the total Hispanic or Latino and all of

the non-white non-Hispanic or Latino races. Type in the following:

totMinority =
int(row[8])+int(row[10])+int(row[12])+int(row[14])+int(row[16])
+int(row[18])+int(row[24])

What does continue do?

The continue keyword tells the code not to run any of the code beneath it

and go back to the top of the for or while loop, starting on the next value.

In your code here, it is run to skip the first two lines of the CSV, but it could

be used to skip any line if you knew which one you wanted to skip. continue

is often compared to break. The difference is that continue resets to the

top of the loop, going to the next value, while break stops the loop and

breaks out of it.

In order to keep all the indexes straight, you could open up the CSV in Excel,

add a row at the top, write 0 in cell A1, write 1 in cell B1, and then autocom-

plete the rest. Now when you go back to the CSV to see what index you need,

it will be written there. Just be sure not to save it, or if you do save it, change

your if statement to be <=3, to account for the extra row you’ve added.

The Data Access Module and Cursors166

11.	 In the same cell, you will now create the percentages of each race and of the Hispanic or

Latino population in the tract. Since some tracts have a total population of 0 and divid-

ing by 0 will cause an error, you will create a conditional to check if the total population

is equal to 0. If it is not, you will divide the race or Hispanic Latino population by 0 and

multiply the result by 100, using the round() function to round the results to two decimal

places. If the population is 0, you will assign the percentage to -999. Type in the following:

 if int(row[2]) != 0:

 prctWht = round((int(row[6])/float(row[2]))*100,2)

 prctBlk = round((int(row[8])/float(row[2]))*100,2)

 prctAmIn = round((int(row[10])/float(row[2]))*100,2)

 prctAsi = round((int(row[12])/float(row[2]))*100,2)

 prctNatHaw = round((int(row[14])/float(row[2]))*100,2)

 prctSmOth = round((int(row[16])/float(row[2]))*100,2)

 prctTwoMr = round((int(row[18])/float(row[2]))*100,2)

 prctHispLat = round((int(row[24])/float(row[2]))*100,2)

 prctMinority = round((totMinority/float(row[2]))*100,2)

 else:

 prctWht = -999

 prctBlk = -999

 prctAmIn = -999

 prctAsi = -999

 prctNatHaw = -999

 prctSmOth = -999

 prctTwoMr = -999

 prctHispLat = -999

 prctMinority = -999

 prctMinority = -999

 prctMaj = -999

12.	 In the same cell, you will now create a list to hold all of the population totals and per-

centages of each race or Hispanic or Latino group. The order they are in in the list is the

order they will be written to the table in. You need to check against the data dictionary

you created above to make sure you are using the same order. Type in the following:

value =
[geoJoin,int(row[2]),int(row[6]),prctWht,int(row[8]),prctBlk,
int(row[10]),prctAmIn,int(row[12]),prctAsi,int(row[14]),prctNatHaw,

Chapter 4 167

int(row[16]),prctSmOth,int(row[18]),
prctTwoMr,int(row[24]),prctHispLat,totMinority,prctMinority]

13.	 In the same cell, you will now create the insert cursor with the table path and list of fields

as the arguments. You will add a print statement to track the values being inserted. Then,

you will call the insertRow property on your cursor to insert the list of the values you

created above into a new row. Finally, you will delete the cursor using the del command.

Deleting the cursor will remove any locks on the table so you can continue to write to it

when your loop continues through each row. Type in the following:

cursor = arcpy.da.InsertCursor(tablePath,tableFields)
 print(value)
 cursor.insertRow(value)
 del cursor

14.	 In the next cell, you will create a new feature class and then join the data from the table

up to it. You use the CopyFeatures tool to create the new tract polygon you stored in the

censusPoly variable. You will also use the JoinField function to join the new table of

data to the new tract polygon. The JoinField tool takes the following four mandatory

parameters:

•	 in_data: The input feature class, shapefile, table, or raster with attribute table for

the data to be joined to.

•	 in_field: The field from the in_data feature class, shapefile, table, or raster with

attribute table to join on.

•	 join_table: The feature class, shapefile, table, or raster with attribute table to be

joined to in_data.

•	 join_field: The field from join_table to be joined to in_field on.

The JoinField tool also takes the following optional parameter:

•	 fields: A list of fields to be transferred from the join table to the input table

You are going to use the newly created census polygon as your in_data, the GEOID field as

in_field, the table you have created as join_table, the geoid_census field as join_field,

and the tableFields list created as the optional fields. Type in the following:

arcpy.management.CopyFeatures(tract,censusPoly)

arcpy.management.JoinField(censusPoly,"GEOID",tablePath,"geoid_
census",tableFields)

The Data Access Module and Cursors168

15.	 When you have entered all the code, click on Cell > Run All to run the entire Notebook.

When it is finished, you can open up the attribute table of the AlamedaCounty_RaceHispanic_

Tract feature class and the AlamedaCounty_RaceHispanic table. You will see that the values from

the CSV were written to the table, and then joined to the feature class:

Figure 4.8: AlamedaCounty_RaceHispanic_Tract attribute table (truncated)

In this section, you have learned how to use a data dictionary with a list of lookup values to add

multiple fields to a table. You have learned how to read in data from a CSV row by row and insert

that data into a table using the insert cursor. Now that you have this in a Notebook, you can use it

for multiple different geographies, or you can take the base and use different tables and different

demographic data.

Summary
In this chapter, you have learned about arcpy.Walk and cursors in the Data Access module. You

have seen how the Data Access module allows you to access and modify your data. By using the

arcpy.Walk module in the Data Access module, you are able to walk through directories and

sub-directories and find geospatial data that the os.walk module would miss.

Why create a copy of a feature class before joining the data?

Creating a new feature class before the join means you keep your original

tract data containing no demographic data for future use, so you will be able

to add different demographic data to it too.

Chapter 4 169

This allows you to extract and transfer data programmatically. You explored how to use data

dictionaries as lookup tables and applied that in multiple examples. Finally, you used the search,

update, and insert cursors to find data, update it, and insert new data.

In the next chapter, you will use the ArcGIS API for Python to publish, organize, and manage

access to data on your ArcGIS Online account.

5
Publishing to ArcGIS Online

In Chapter 3, you were introduced to the ArcGIS API for Python and used it to search for data,

groups, and users in your organization. The data you were searching for was published to Arc-

GIS Online. This can be done by publishing maps and service definitions from within ArcGIS Pro,

but you can also add and publish CSVs, shapefiles, and geodatabases by using the ArcGIS API

for Python. By creating Notebooks or script tools to publish data to your organization, you can

automate repetitive tasks for data that needs to be updated regularly and reduce the number of

clicks you have to make.

In this chapter, you will cover:

•	 Using the ContentManager class to publish new content and organize it in folders

•	 Using the GroupManager class to create new groups and share content with them

•	 Using the features module to work with feature layers

•	 Using the mapping module to visualize your data

Using ContentManager for publishing and
organizing data
You have already seen how the ContentManager class can be used through the content property

of the GIS object to search for data. In Chapter 3, ArcGIS API for Python, you searched for data both

within and outside of your organization.

To complete the exercises in this chapter, please download and unzip the Chapter5.

zip folder from the GitHub repository for this book: https://github.com/
PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter5

https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter5
https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter5

Publishing to ArcGIS Online172

The content property can also be used to add data and publish it as a feature layer, and organize

your data into folders within ArcGIS Online.

In this section, you will add data from a CSV, publish it, and move it to a folder by using the ArcGIS

API for Python in an ArcGIS Pro Notebook.

Publishing data
When you publish data to ArcGIS Online or ArcGIS Enterprise, much of this is achieved within

ArcGIS Pro. This is useful and convenient when you are publishing a map that contains all of your

layers. However, it is less convenient when you want to publish a CSV, shapefile, or geodatabase,

as you have to create the map in ArcGIS Pro to publish it. Using the ArcGIS API for Python, you

can take a CSV, shapefile, or geodatabase, add it to your organization, and publish it with a few

lines of code.

Adding data from a CSV
To add data to your ArcGIS Online account, you are going to use the add method. Like the search()

method, the add() method is part of the ContentManager class of the GIS object. The add() method

takes the following parameters, with only item_properties being required:

•	 item_properties: A data dictionary with a set of key/value pairs. The list below contains

the most common key/value pairs you will use.

•	 data: A path or URL to the data.

•	 thumbnail: A path or URL to a thumbnail image.

•	 metadata: A path or URL to the metadata.

•	 owner: A string that defaults to the logged-in user.

•	 folder: The name of the folder in your ArcGIS Online account to place the data in.

The following are the most common item_properties values you will see. You will use most of

these for every item you create:

•	 type: The type of item being added. You will mostly use CSVs, shapefiles, and file geo-

databases.

A comprehensive list of acceptable types can be found here: https://
developers.arcgis.com/rest/users-groups-and-items/items-and
-item-types.htm

https://developers.arcgis.com/rest/users-groups-and-items/items-and-item-types.htm
https://developers.arcgis.com/rest/users-groups-and-items/items-and-item-types.htm
https://developers.arcgis.com/rest/users-groups-and-items/items-and-item-types.htm

Chapter 5 173

•	 title: The title of the item being added.

•	 tags: The tags for the item being added. They are listed as comma-separated values, or

a list of strings.

•	 description: The description for the item being added.

•	 snippet: A short description of fewer than 250 characters for the item being added.

The add() method will simply add the CSV to your ArcGIS Online account. To make it viewable

on a map, you need to publish the data to a hosted web layer. To do this, you use the publish()

method, which will create a hosted feature layer that can be displayed on maps and shared in

groups. The publish() method can be used to create hosted feature services from many file types,

including CSVs, file geodatabases, shapefiles, and service definitions. The publish() method does

not have any required parameters and often you will not need to set any. Some of the optional

parameters you may need are the following:

•	 publish_parameters: A data dictionary with publish instructions and customizations.

The different parameters available depend on the item type being published.

•	 address_fields: A data dictionary that maps the columns of your input data to address

fields. It is used when geocoding data to ArcGIS Online.

•	 geocode_service: A geocoder that can be set. If it is not set, the default ArcGIS Online

geocoder will be used.

•	 file_type: A string of the file type being published. It can be used when the file type is

not being automatically detected or you want to make sure it is detecting the correct

file type. The file_type values you can specify are "serviceDefinition", "shapefile",

"csv", "tilePackage", "featureService", "featureCollection", "fileGeodatabase",

"geojson", "scenepackage", "vectortilepackage", "imageCollection", "mapService",

and "sqliteGeodatabase".

You should have data for the farmers’ markets in Oakland and Berkeley in a CSV called

AlamedaCountyFarmersMarket.csv. It is included in the Chapter5.zip file you downloaded at

the start of this chapter.

Each item type has an extensive list of publish instructions that you can set.

Below you will see an example of how to set some for a CSV. To see all of the

customizations available for each item, visit this site: https://developers.
arcgis.com/rest/users-groups-and-items/publish-item.htm

https://developers.arcgis.com/rest/users-groups-and-items/publish-item.htm
https://developers.arcgis.com/rest/users-groups-and-items/publish-item.htm

Publishing to ArcGIS Online174

Open up the AlamedaCountyFarmersMarket.csv file to see the data you will be adding. It is a basic

CSV containing market names, opening days, opening times, location, city, latitude, and longitude:

Figure 5.1: Farmers’ market CSV

In this exercise, you will create a Notebook to add this data in and publish it as a feature layer.

1.	 Open up ArcGIS Pro, navigate to where you unzipped the Chapter5.zip folder, and open

up Chapter5.aprx.

2.	 Right-click on the Chapter5 folder and select New > Notebook. Rename the Notebook

to AddPublishData.

3.	 In the first cell, type in your import statements and create a GIS object that will be logged

into the same ArcGIS Online account you are using in ArcGIS Pro:

from arcgis.gis import GIS

from IPython.display import display

gis = GIS('home')

4.	 In the next cell, you are going to create a variable for the CSV. Type in the following:

csvFM = r"C:\PythonBook\Chapter5\AlamedaCountyFarmersMarket.csv"

5.	 In the next cell, you are going to create the data dictionary of the CSV properties. You will

fill in the properties for the title, description, and tags as the keys, with their properties

as the values. Type the following:

csvProperties = {

 "title": "Farmers Markets in Alameda County",

 "description": "Location, days, and hours of Farmers Markets in
Alameda County",

 "tags": "Farmers Market, Alameda County, ArcGIS API for Python"

}

If your CSV is saved to a different location, make sure you are using that

instead.

Chapter 5 175

6.	 In the next cell, you are going to create a variable to hold the CSV item being added. You

will use the add() method from the content property. The arguments passed are the

properties dictionary and the variable you created above with the path to the CSV. Type

the following:

addCsvFM = gis.content.add(item_properties=csvProperties,data=csvFM)

7.	 In the next cell, you will publish the CSV item you just added by calling the publish()

method. Type the following:

farmersMarketFL = addCsvFM.publish()

farmersMarketFL

8.	 In the next cell, you are going to create a quick map to visualize your data and verify that

the feature layer was created. Type the following:

map1 = gis.map("Oakland, California")

map1.add_layer(farmersMarketFL)

map1

9.	 Click Cell > Run All to run all the cells. The output map should look like this:

Figure 5.2: Map widget showing the farmers’ market feature layer

By assigning the publish method to a variable, that variable will contain

the feature layer. You can call that variable to display the feature layer’s

properties.

Publishing to ArcGIS Online176

You have now published a CSV of address locations to your ArcGIS Online account. Any time you

have a CSV of points that needs to be published to ArcGIS Pro, you just need to update the path

to the CSV and the item_properties in the data dictionary and then you can add and publish

that CSV.

Adding and publishing tips
You have seen how to publish a CSV that has latitude and longitude columns for point data.

This process could be turned into an iterative process using a loop to publish multiple CSVs; all

you would need to write is a properties data dictionary for each CSV. However, your data is not

always going to be a CSV of point locations with latitude and longitude. Below are some tips for

publishing other types of data:

•	 When publishing a CSV with latitude and longitude fields, make sure they are named

“latitude” and “longitude”. The module is looking for those field names. If they are not

found, it will not locate the points correctly. You can specify the field names to use by creat-

ing a publish_parameters dictionary in the publish() method. The publish_parameters

dictionary will be used to set the latitudeFieldName and longitudeFieldName values.

To set those field names, you also have to set the locationType value to "coordinates".

To see this, you can use the AlamedaCountyFarmersMarket_TestLatLongField.csv and

publish it using the same method as above. All you need to add is the following:

publishParam = {

 "locationType":"coordinates",

 "latitudeFieldName":"LatX",

 "longitudeFieldName":"LongY"

}

to the start of the cell containing this:

farmersMarketFL = addCsvFM.publish()

farmersMarketFL

and change the following:

farmersMarketFL = addCsvFM.publish()

to

farmersMarketFL = addCsvFM.publish(publish_parameters =
publishParam)

Chapter 5 177

•	 CSVs without latitudes and longitudes but with addresses can be geocoded. To geocode

data from a CSV, you would again use the publish_parameters dictionary:

publishParam = {

 "locationType":"address",

 "addressTemplate":"{address},{city},{state},{zip}"

}

The locationType field is set to "address". The addressTemplate field is then set to the

fields that contain the different address components. In this example, there is a field with

the street address, a field with the city, a field with the state, and a field with the zip code.

The setup of this will depend on how you have your data in your CSV.

•	 Shapefiles and file geodatabases can be added and published using this same method,

but they must be zipped. If you have a large number of shapefiles or file geodatabases that

are unzipped, you could automate the process of zipping them up and publishing them.

ArcGIS API for Python can be very useful for quickly adding data to your organization’s ArcGIS

Online or ArcGIS Enterprise account. You have seen how to add and publish a CSV, and that CSVs

can be geocoded on publishing using the ArcGIS Online geocoder. In the next section, you will

see how to organize data into folders, create groups, and manage access to groups.

Organizing data and managing groups and users
Organizing your data within your ArcGIS Online account or ArcGIS Enterprise is important; you

want to be able to find your data. In addition to folders to hold your data, you can also create

groups to share specific data with. In large organizations this is important, as not everyone needs

to have access to the same data.

In this section, you will see how to create folders and move data into them, create groups and

manage access to them, and create and manage users.

Organizing data into a folder
One of the first things to do after adding data or publishing it should be to find a folder to place

it in. It is good practice to use folders to organize your data. This helps you and other members

of your organization to find data. You can add folders and move data over using the ArcGIS API

for Python. In the exercise below, you will create a new folder and move the farmers’ market data

from the previous exercise:

Publishing to ArcGIS Online178

1.	 If you closed ArcGIS Pro, open it up, navigate to where you unzipped the Chapter5.zip

folder, and open up Chapter5.aprx.

2.	 Right-click on the Chapter5 folder and select New > Notebook. Rename the Notebook

to CreateFolderMoveData.

3.	 In the first cell, type in your import statements and create your GIS. You are going to create

the GIS logged in to your ArcGIS Online account that you are logged into ArcGIS Pro with:

from arcgis.gis import GIS

from IPython.display import display

gis = GIS('home')

4.	 In the next cell, you will create a new folder:

gis.content.create_folder(folder="AlamedaFarmersMarkets")

5.	 In the next cell, you will search for the data that you need to move to the folder you are

creating. Type in the following:

alamedaFM = gis.content.search(query="title:Farmers Markets in
Alameda County")

6.	 Remember that the search() method returns a list of items. To confirm what you have

in your list, you will run a for loop to iterate through the list and display the data. In the

same cell as above, type the following:

alamedaFM = gis.content.search(query="title:Farmers Markets in
Alameda County")

for item in alamedaFM:

 display(item)

Chapter 5 179

7.	 Click Cell > Run All to run all your cells up to this point. Your Notebook should look

similar to this now:

Figure 5.3: Output of creating the folder and finding data to move

8.	 In the next cell, you will move the feature layer and CSV into the new folder by looping

through the search results and using the move() method. Type the following:

for item in alamedaFM:

 item.move(folder="AlamedaFarmersMarkets")

 print(item)

Run the cell. You should see output like so:

<Item title:"Farmers Markets in Alameda County" type:Feature Layer
Collection owner:billparkermapping>

<Item title:"Farmers Markets in Alameda County" type:CSV
owner:billparkermapping>

This confirms that your data has been moved. If you go to your ArcGIS Online account,

you will see that you now have a new folder and that both datasets are inside.

Publishing to ArcGIS Online180

Creating a folder and moving data into that folder is a process that ArcGIS API for Python can

be used for. In the exercise, you were able to find all the datasets by their name and move them

to a newly created folder. Being able to search your GIS for data and move it to folders using the

ArcGIS API for Python is a valuable tool that will save you time.

Accessing and managing groups
Groups are spaces where you share data with other users. They are how you can create a collabo-

rative GIS by allowing other users access to your data and maps. Using the ArcGIS API for Python,

you can create and manage groups in a programmatic way to save you time, while fostering better

collaboration within and outside of your team.

In this section, you will see how to create a new group, manage a group by sharing data to it, and

add and remove users from a group.

Creating a group
You can create groups to share data publicly or just with members of the group. In this exercise,

you are going to walk through how to create a group for sharing data publicly. You will also see

the arguments needed to create private groups and how to change the sharing settings of a group:

1.	 If you closed ArcGIS Pro, open it up, navigate to where you unzipped the Chapter5.zip

folder, and open up Chapter5.aprx.

2.	 Right-click on the Chapter5 folder and select New > Notebook. Rename the Notebook

to CreateGroupMoveData.

3.	 In the first cell, you are going to log into your organization’s GIS through the user you are

currently logged into ArcGIS Pro with. Type in the following:

from arcgis.gis import GIS

from IPython.display import display

gis = GIS("home")

Run the cell.

If you need to move data back to the root directory, simply use the following code:

item.move("\")

Chapter 5 181

4.	 In the next cell, you will create a group by using the create() method of the groups mod-

ule. The create() method takes five arguments (explained below). Type in the following:

farmerMarketGroup = gis.groups.create(title="Alameda County Farmers
Markets",

tags="Alameda County, Farmers Market",

description = "Group with data for Alameda County Farmers Markets.",
access = "public",

is_invitation_only = "False"

)

Run the cell. You should get no output message, but you have created a new public group.

5.	 To check this, you can go to your ArcGIS Online account and look in Groups. You can

also type in farmerMarketGroup in a new cell and run it to see the group. It should look

something like below:

Figure 5.4: Newly created group

To create the group, you used five arguments: title, tags, description, access, and

is_invitation_only. Those are the minimum arguments you should use when setting

up a new group, as they give the group a title, tags, description, and set basic access. The

list below summarizes these arguments along with the values they can take:

•	 title: A string between single or double quotes that will be the title of your group.

•	 tags: A string between single or double quotes with a comma separating all the

tags. When returned, it is a list.

•	 description: A string between single or double quotes that will be the description

of your group.

Publishing to ArcGIS Online182

•	 access: A string between single or double quotes that sets the access. The access

values can be "org", "private", or "public". "org" is a group that everyone in

your organization can see. "private" is a private group that only invited users

can see. "public" is a public group available to everyone.

•	 is_invitation_only: A string between single or double quotes that is a Bool-

ean value. When set to "True", users can only gain access if invited. When set to

"False", users can request access or be invited.

6.	 You can verify any of the settings by typing the variable for the group, a dot, and the value.

For example, to verify the access of the group you just created, type the following in the

next cell:

farmerMarketGroup.access

Run the cell. You should see 'public' in the output cell.

7.	 To change any of the values of a group, you can use the update() function. The update()

function takes all the same arguments used to create the group. For example, to update

the access, type in the following:

farmerMarketGroup.update(access = "private")

Run the cell. You should see "True" in the output cell.

You have now created a new group and have seen how to change the values of that group. The

next step is sharing data with a group.

Sharing content to a group
An empty group is not very useful. The point of creating a group is to share data either publicly or

with other users. In this section, you will see how to share data with a group. You will continue

in the same Notebook from above in the steps below:

1.	 You are going to need to access the feature layer containing the Alameda County farmers’

markets. In the next cell of the same Notebook from above, you will use the search()

method to get the Farmers Markets in Alameda County feature layer. The search()

method returns a list; you only have one item with that title, so you can add a [0] at the

end of the search() method to return just the first value from the list to your variable.

Type the following:

Chapter 5 183

alamedaFM = gis.content.search(query="title:Farmers Markets in
Alameda County")[0]

alamedaFM

Run the cell. You should see the display for the Alameda County Farmers Market feature

layer.

2.	 Now you can check the access of the feature layer by typing in the following:

alamedaFM.access

Run the cell. You should see it return 'private'.

3.	 Now that you have a feature layer, you can share it with your group using the share()

method. You are going to use two arguments to set the organization sharing level. The

org argument can be set to True or False. When set to True, it shares the item with your

entire organization; when False, it is just shared with the group. The groups argument

takes the ID from the group. Since you have a variable holding the group, you just have

to access its ID by using the id() method. Type in the following:

alamedaFM.share(org=False,groups=farmerMarketGroup.id)

Run the cell. You should see the following result in the Out cell, but with a different itemId,

as it is auto-generated by ArcGIS Online:

{'results': [{'itemId': 'df1b9d3df42e4ba8b0634f439ed8dd48',
'success': True, 'notSharedWith': []}]}

4.	 You can check the sharing level of any of your items by calling the shared_with property

on it. To see that, type in the following:

alamedaFM.shared_with

Run the cell. You should see the result with your username as the owner:

{'everyone': False, 'org': False, 'groups': [<Group title:"Alameda
County Farmers Markets" owner:billparkermapping>]}

The result is a dictionary with values for everyone, org, and groups that the item is now

shared with.

Now that you have shared some data with the group, you need to add or invite users to join your

group.

Publishing to ArcGIS Online184

Adding, inviting, and removing users from a group
Adding, inviting, and removing users from a group all use similar code; they all apply a method

to the group. The methods take a list of strings of usernames as their argument. The table below

displays the syntax, using our farmers’ market group from the example:

add_users farmerMarketGroup.add_users(["user1","user2", . . .])

invite_users farmerMarketGroup.invite_users(["user1","user2", . . .])

remove_users farmerMarketGroup.remove_users(["user1","user2", . . .])

Table 5.1: Code for adding, inviting, and removing users from a group

When any of the above code is run, the output is a dictionary with a list of users that were not

added. If all users were added, the output would be {'notAdded':[]}. If a user was not added,

the output would contain the username and details about why the user was not added. Note that

the group owner cannot be removed from the group.

Now you have created a group, shared data with it, and added or invited new users to that group.

Next, you will see how to use the features module to query and update feature layers.

Using the features module to work with feature
layers
ArcGIS Online displays your geographic layers as a web layer. The following are the many types

of web layers that can be published in ArcGIS Online: map image layer, imagery layer, tile layer,

elevation layer, feature layer, scene layer, and table. Feature layers are the primary web layers of

vector data that you will use in ArcGIS Online. They are the feature data that you publish to your

web GIS and what you display on your web maps. Feature layers can be grouped into a collection

called a feature layer collection. You have already worked with a feature layer in this chapter,

when you published the CSV of farmers’ markets.

In this section, you will work with feature layers, querying a feature layer, editing the data in it,

appending data to it, downloading attachments, downloading data, and deleting the feature layer.

Which users can belong to a group is dependent on your organization type. In some

cases, organizations do not allow users from outside your organization or public

users to be part of a group.

Chapter 5 185

Querying feature layers
You have seen how to search for data in Chapter 3, ArcGIS API for Python. You are going to search

for data again to get the farmers’ market feature layer you uploaded earlier in this chapter. You

will find yourself querying for data a lot with search(), as it is a good way to get the data you

need. The get() method can also get a feature layer, but it takes the item ID as its argument.

The problem is that item IDs are long and difficult to remember; most people find it easier to

remember a feature layer’s name.

In this exercise, you will create a Notebook to query the farmers’ market feature layer for the

farmers’ markets in Oakland:

1.	 If you closed ArcGIS Pro, open it up, navigate to where you unzipped the Chapter5.zip

folder, and open up Chapter5.aprx.

2.	 Right-click on the Chapter5 folder and select New > Notebook. Rename the Notebook to

QueryAndEditFeatureLayer.

3.	 In the first cell, you are going to log into your organization’s GIS through the user you are

currently logged into ArcGIS Pro with. Type in the following:

from arcgis.gis import GIS

from IPython.display import display

gis = GIS('home')

Run the cell.

4.	 In the next cell, you will create a variable to hold the list returned from the search result,

and print out the search result to see what your search returned. You are going to search

for a feature layer based on a query of the title. Type in the following:

fmSearch = gis.content.search(query="title:Farmers Markets in
Alameda County",item_type="Feature Layer")

fmSearch

Run the cell.

5.	 In the next cell, to get the feature layer, you will use the list index and assign the index of

0 to a new variable. That variable will contain your feature layer object. Then, you will

display the feature layer. Type in the following:

farmersMarkets = fmSearch[0]

farmersMarkets

Publishing to ArcGIS Online186

Run the cell. You should see output that looks something like this:

Figure 5.5: Feature layer collection retrieved from search

6.	 Now you have your farmers’ market feature layer. If you look at the description in the dis-

play, you can see that the farmers’ market feature layer is actually a feature layer collection.

You cannot run a query on a feature layer collection; you have to select an individual layer

within it. To query it, you need to access each of the feature layers within the collection.

First, you need to know which feature layer you want. In the next cell, create a variable to

hold all the layers, and then loop through the layers, printing out the name of each layer:

fmLayers = farmersMarkets.layers

for layer in fmLayers:

 display(layer.properties.name)

Run the cell. You should see the following code in the Out cell:

'Farmers_Markets_in_Alameda_County'

7.	 Since only one name was outputted in the above step, you can see that Farmers Market in

Alameda County only has one layer called Farmers_Markets_In_Alameda_County. In the

next cell, create a variable to hold that layer object, and print out some of the properties:

alamedaFM = fmLayers[0]

print(alamedaFM.properties.geometryType)

print(alamedaFM.properties.type)

print(alamedaFM.properties.fields)

Run the cell. You should see the geometry type of esriGeometryPoint printed out, fol-

lowed by Feature Layer for the layer type, and a list of data dictionaries for each field.

Chapter 5 187

8.	 Now that you have a single feature layer, you can query it. To query a feature layer, you

call the query method and pass a query to the where argument. In the next cell, type in

the following:

oaklandFM = alamedaFM.query(where="City='Oakland'")

oaklandFM

Run the cell. You should see the following printed in the Out cell:

<FeatureSet> 8 features

9.	 What is returned to you is not a feature layer but a feature set. A feature set allows you

to look at the properties of the feature layer you have queried. You can view the different

fields and geometry of each attribute you have selected. Take a look at the geometry of

each feature in the feature set. Type in the following in the next cell:

i = 0

while i < len(oaklandFM):

 print(oaklandFM.features[i].geometry)

 i+=1

Run the cell. The results are a data dictionary with 'x', 'y', and 'spatialReference' as

keys. The value for the spatial reference key is another dictionary with a well-known ID

(WKID) and latest WKID. You should have eight data dictionaries printed to the Out cell,

with the first two looking like below:

{'x': -13608573.86722754, 'y': 4552721.437081691,
'spatialReference': {'wkid': 102100, 'latestWkid': 3857}}

{'x': -13611486.986982107, 'y': 4551375.895114394,
'spatialReference': {'wkid': 102100, 'latestWkid': 3857}}

You can see all the different properties available to you by pressing Tab after

calling a method. Try this by typing in alamedaFM.properties, then press

Tab and see all the different properties of the feature layer that you can access.

Publishing to ArcGIS Online188

10.	 In addition to the geometry, you can access the attributes using the same code as above.

Just replace geometry with attributes:

i = 0

while i < len(oaklandFM):

 print(oaklandFM.features[i].attributes)

 i+=1

Run the cell. The results are again a dictionary with the attributes as keys and the attribute

values as the pairs. You should have eight data dictionaries in the Out cell, with the first

two looking like below:

{'MarketName': 'Grand Lake ', 'Days': 'Saturday', 'Time': '9 am - 2
pm', 'Location': 'Splash Pad Park', 'City': 'Oakland', 'Latitude':
37.810721, 'Longitude': -122.247899, 'ObjectId': 4}

{'MarketName': 'Old Oakland', 'Days': 'Friday', 'Time': '8 am - 2
pm', 'Location': '9th Street and Broadway', 'City': 'Oakland',
'Latitude': 37.801171, 'Longitude': -122.274068, 'ObjectId': 5}

Now that you have seen how to query data, you will see how to edit the data that you have

searched for and queried.

Editing features
In looking at the data, you notice that you have a difference in the street name field in the Oak-

land data. All of the Berkeley locations use the full road type of Street, Way, or Avenue. However,

in Oakland, Street has been abbreviated to St. You are going to update all of those to change St

to Street. You can edit a single feature in the edit mode within ArcGIS Online quickly; but if you

had the same typo many times in a file, the method you will use in this exercise would be much

more efficient.

What is the difference between the WKID and latest WKID?

ArcGIS Online uses WGS 1984 Web Mercator (Auxiliary Sphere) projection

for web layers. At the release of ArcGIS 10, the WKID for WGS 1984 Web

Mercator (Auxiliary Sphere) was changed from 102100 to 3857. Because of

this, the latestWKID property was added to all ArcGIS releases after 10.1 to

ensure backward compatibility with older versions using the older WKID.

Chapter 5 189

To edit data, you create a feature set, isolate the features and attributes that need to be edited,

make the edit, and then update the feature layer with your edited feature set.

1.	 Continue working in the QueryAndEditFeatureLayer Notebook from the previous exercise

by checking to see if the feature layer is editable. Type in the following:

alamedaFM.properties.capabilities

Run the cell. The results in the Out cell are the capabilities enabled for the feature layer

and should look like the following:

'Create,Delete,Query,Update,Editing'

2.	 Once you know the edit capabilities are enabled, you can query the layer to create a feature

set. You already have one created from the previous exercise with all the Oakland farmers’

markets, so you can reuse that one here. You will create an empty list to hold the features

that need to be edited. You will loop through the features in the feature set looking for

the typo and, when found, add those features to an empty list. Do this by typing in the

following:

fmFeature = []
for f in oakFM_features:
 print(f.attributes["Location"])
 if "St" in f.attributes["Location"]:
 fmFeature.append(f)

Run the cell. The print statement will give you the results of each "Location" attribute

as you loop through the features.

3.	 Now that you have that list of features to be updated, you can apply the update. You want

to replace the word "St" with "Street". To do that, you need to access the attribute of

the Location field. That is done by passing the field name as the key to the attributes

dictionary of each feature as you loop through them, then setting that to the new value.

Since you just want to replace one word, you can use the replace() function. Do this by

typing in the following in a new cell:

featEditList = []
for feat in fmFeature:
 featEdit = feat
 featEdit.attributes["Location"] = featEdit.
attributes["Location"].replace("St","Street")
 featEditList.append(featEdit)

Publishing to ArcGIS Online190

Run the cell. The last line of your code will print out the list of features. The features are

stored as a dictionary so you see all the values. You should see that the value for Location

has been updated, and now contains "Street" instead of "St", as you wanted:

{'MarketName': 'Old Oakland', 'Days': 'Friday', 'Time': '8 am - 2
pm', 'Location': '9th Street and Broadway', 'City': 'Oakland',
'Latitude': 37.801171, 'Longitude': -122.274068, 'ObjectId': 5}

{'MarketName': 'Jack London Square', 'Days': 'Sunday', 'Time': '9
am - 2 pm', 'Location': '44 Webster Street', 'City': 'Oakland',
'Latitude': 37.793834, 'Longitude': -122.274985, 'ObjectId': 6}

{'MarketName': 'Fruitvale Farmers Market', 'Days': 'Tuesday,
Thursday', 'Time': '11 am - 7 pm', 'Location': 'Avenida de la
Fuente and 12th Street', 'City': 'Oakland', 'Latitude': 37.775899,
'Longitude': -122.224058, 'ObjectId': 9}

4.	 To edit the original feature layer, you call the edit_features method on it, passing through

your list of updated features. By setting that equal to a variable in a new cell, you can call

the variable to see the results and verify that it worked:

updateFM = alamedaFM.edit_features(updates = featEditList)

updateFM

Run the cell. You should see a dictionary returned with keys for addResults, updateResults,

and deleteResults. addResults and deleteResults are empty lists, as you didn’t add

or delete anything. updateResults lists the objectID, uniqueID, globalID, and success

status for each update you made. From the Out cell above, you see that the only features

that were edited have objectId values of 5, 6, and 9. The results should look like below,

showing an updateResults with an objectID of 5, 6, and 9 indeed having been updated:

{'addResults': [], 'updateResults': [{'objectId': 5, 'uniqueId': 5,
'globalId': None, 'success': True}, {'objectId': 6, 'uniqueId': 6,
'globalId': None, 'success': True}, {'objectId': 9, 'uniqueId': 9,
'globalId': None, 'success': True}], 'deleteResults': []}

In this section, you have seen how to edit the attributes of a feature layer. While this was only

done for one field, if you had the same typo many times you could loop through all the features

containing errors and edit them. This gives you base code to modify for when you have multiple

fields that need to be changed. You could also edit the geometry in the same way; you would just

need to access the geometry field and make edits to the x and y values. In the next section, you

will see how to append new features to an existing feature layer.

Chapter 5 191

Appending features
The farmers’ market data says “Alameda County”, but is only for Berkeley and Oakland. You have

now collected the rest of the market locations in Alameda County and want to add them to your

feature layer. To do that, you will upload the file geodatabase with the new features, publish it,

then append them to your existing feature layer.

1.	 Right-click on the Chapter5 folder and select New > Notebook. Rename the Notebook to

AppendDataToFeatureLayer.

2.	 In addition to the usual GIS import statement and logging into your organization’s ArcGIS

Online account, you will also need to import the zipfile module to zip the file geodata-

base, and arcpy and os to use the walk functions of each that we used in Chapter 4, The

Data Access Module and Cursors. In the first cell, type in the following:

from arcgis.gis import GIS

import zipfile

import arcpy

import os

gis = GIS('home')

Run the cell.

3.	 The data you are going to append is the AlamedaCountyAdditionalFarmersMarkets in

Chapter5.gdb. It contains the remaining farmers’ markets in Alameda County. Since the

feature class in the geodatabase has the same schema, you can append the data once you

have it on your GIS. To upload a file geodatabase, it needs to be zipped. In the next cell, set

the variables for the geodatabase, ZIP filename, ZIP file location, and full path of the ZIP file:

gdb = r"C:\PythonBook\Chapter5\Chapter5.gdb"

zipName = "AdditionalAlamedaFarmersMarket"

zipLoc = r"C:\PythonBook\Chapter5"

zipFull = os.path.join(zipLoc,zipName+".zip")

Run the cell.

4.	 The code for these next two steps will be written into the same cell. You will zip the

geodatabase using the zipfile module. This is done by calling the ZipFile class of the

zipfile object and passing in the full path of the ZIP file to be created, along with 'w' to

signify writing the ZIP file. You will also create an os.walk() to walk through the folder

location where the geodatabase is stored.

Publishing to ArcGIS Online192

In the next cell, type in the following:

writeZip = zipfile.ZipFile(zipFull, 'w')

walk = os.walk(zipLoc)

5.	 Geodatabases are not normal files or folders that Python sees well. os.walk sees a geoda-

tabase as the dirpath, and then the individual files in it as the filenames of the walk. To

zip up a geodatabase using Python, you will loop through the walk and use a conditional

if to find any dirpath values that are geodatabases. When a geodatabase is found, you

will loop through its filenames. You will use a conditional if to test if the filename is a

lock file, and if not, write it to the ZIP file using the write method of the writeZip object.

You need to set the arcname argument of the write property for each filename to the full

name of the file that includes the geodatabase and the file. This will ensure the ZIP file

contains just the geodatabase when zipped, and not all of the folders for the full path. This

is done by using the os.path.basename() function on the full path of the geodatabase to

get just the geodatabase name. In the next cell, type in the following:

for dirpath, dirnames, filenames in walk:

 if dirpath == gdb:

 for filename in filenames:

 if filename[-5:] != ".lock":

 writeZip.write(os.path.join(gdb,filename),

arcname=os.path.join(os.path.basename(gdb),filename))

writeZip.close()

Run the cell.

6.	 Next, you need to create the properties of the geodatabase to be loaded into ArcGIS On-

line and add the item. Recall from the previous exercise that the properties are stored

as a dictionary. The properties you will write in this dictionary are the title, type, tags,

snippet, and description. You will pass the properties to the add() function, along with

the path to the zipped geodatabase and the folder to store the data in. In the next cell,

type in the following:

A lock file can occur in a geodatabase when you have it open in ArcGIS Pro.

They always end in .lock, and you cannot zip a lock file. Therefore, by test-

ing for lock files and not writing them, you can zip a geodatabase that you

have open in ArcGIS Pro.

Chapter 5 193

fmNewProperties = {

 "title":"Additional Farmers Markets In Alameda County",

 "type":"File Geodatabase",

 "tags":"Alameda County, Farmers Market, Additional",

 "snippet":"Alameda Farmers Markets to be added",

 "description":"Farmers Markets outside Oakland and Berkeley to
be added to the full feature layer"

}

fmNewGdb = gis.content.add(item_properties=fmNewProperties,

 data=zipFull,

folder="AlamedaFarmersMarkets")

Run the cell.

7.	 In the next cell, you are going to get the ID of the geodatabase item you just added. You

will need this in the append function, as it takes the ID of the source data to be appended

as one of the arguments. Type in the following:

newFmGDBId = fmNewGdb.id

Run the cell.

8.	 You need to get the feature layer to append the data to. To do this, you will use the search

code that you have used previously in this chapter. You need to get the layer within the

feature layer collection that has the Alameda farmers’ markets locations. In both cases,

you know that there is just one feature layer with the title Farmers Markets in Alameda

County and just one layer within that. In the next cell, type in the following:

fmSearch = gis.content.search(query="title:Farmers Markets in
Alameda County",item_type="Feature Layer")

farmersMarkets = fmSearch[0]

fmLayer = farmersMarkets.layers[0]

fmLayer

You do not have to publish the geodatabase since you are just using it to

append data to an already published feature layer. If you wanted to display

the geodatabase data on its own without appending it, you would need to

publish it.

Publishing to ArcGIS Online194

Run the cell. You should see the following code in the Out cell, showing you that you have

just a single layer now:

<FeatureLayer url:"https://services3.arcgis.com/HReqYJDJNUe3sQwB/
arcgis/rest/services/Farmers_Markets_in_Alameda_County/
FeatureServer/0">

9.	 Now you can append the data from the geodatabase to that feature layer. You will use the

append() function and will need to supply it with four arguments:

•	 The item_id of the item to append to the feature layer.

•	 upload_format, which can take the following values: sqlite, shapefile, filegdb,

featureCollection, geojson, csv, or excel.

•	 source_table_append is needed when appending a file geodatabase, as you need

to specify which feature class within the file geodatabase to append, even when

there is only one.

•	 upsert is used to determine if the append is also going to update the data within

the feature layer. When upsert is set to True it will update the data; when False

it will simply append it.

In the next cell, type in the following:

fmLayer.append(item_id=newFmGDBId,
 upload_format='filegdb',
 source_table_name=
 'AlamedaCountyAdditionalFarmersMarkets',
 upsert = False
)

Run the cell. If the run is successful, you will get an output of True.

10.	 You can now check the data in ArcGIS Online. You will see that your feature layer now has

the additional farmers’ markets. Now that you have this data, you can download the full

set of farmers’ markets. To do that, you create an export and then download the export.

Be careful with the upsert argument. The default is True, and if left that

way you may overwrite all of your data in the feature layer with the new

data instead of appending it.

Chapter 5 195

The export() function works on a feature layer or feature layer collection, not on the

individual layers of a feature layer collection. The export() function has two required

arguments:

•	 title: A string that will be the name of the zip folder you download

•	 export_format: This can be the following types: "Shapefile", "CSV", "File

Geodatabase", "Feature Collection", "GeoJson", "Scene Package", "KML",

"Excel", "geoPackage", or "Vector Tile Package".

The download() function is called on the export item and takes the location of the export

item to be downloaded to. You are going to download this to the same location you zipped

up the geodatabase to earlier.

In the next cell, type in the following:

fmUpdateExport = farmersMarkets.
export(title="AllFarmersMarketsAlameda",
export_format="File Geodatabase")

fmUpdateExport.download(zipLoc)

Run the cell.

11.	 The zip file AllFarmersMarketsAlameda has been downloaded to your Chapter5 folder.

Now you can clean up your ArcGIS Online account by deleting data you don’t need. This

will help you save storage space and credits. You will delete the export item you just cre-

ated, and the file geodatabase of the additional farmers’ markets. The delete() function

takes no arguments and will only work on items that do not have delete protection turned

on. Type in the following:

fmUpdateExport.delete()

fmNewGdb.delete()

Run the cell. If run successfully, you will see True returned.

In this section, you have seen how to upload a file geodatabase to ArcGIS Online and append that

data to an existing feature class. The process involves zipping the file geodatabase, adding the

item to ArcGIS Online, and then appending it to an existing feature layer. You then downloaded

the new feature layer to a geodatabase and deleted the export and uploaded file geodatabase to

save space.

Publishing to ArcGIS Online196

Using the mapping module to visualize your data
So far, you have been managing and updating data, creating folders and moving data there, and

creating groups for sharing, all through ArcGIS API for Python. While that has been useful, all of

the data is geospatial and it might be helpful to see that data displayed on a map. By working in

the Jupyter Notebook environment with ArcGIS API for Python, you can visualize all of the data.

In this exercise, you are going to display the farmers’ market data and symbolize it by the day it

is open within the Notebook environment.

1.	 Right-click on the Chapter5 folder and select New > Notebook. Rename the Notebook

to CreateMap.

2.	 You will start with the standard code to import the arcgis module and create a connection

to your ArcGIS Online account. You will also import the pandas library. This will allow

you to create a Spatially Enabled DataFrame (SEDF). SEDFs are objects that can easily

manipulate geometric and attribute data. The pandas package and SEDFs will be explored

in more detail in Chapters 8, 9, and 10. Type the following in the first cell:

from arcgis.gis import GIS

import pandas as pd

import arcgis

gis = GIS('home')

Run the cell.

3.	 In the next cell, you will create the variable to hold the map widget and display the map.

You can set multiple arguments when you create the map, such as the zoom, extent, and

basemap. For this exercise, you will just set the location by typing in the city and state.

Type in the following:

In this exercise, the existing feature layer and the geodatabase to be appended

both had the same schema. If they do not, there are arguments that can be used

in the append() function to allow for appending data with differing schemas. For

more information, check the ArcGIS API for Python documentation at https://
developers.arcgis.com/python/api-reference/arcgis.features.toc.htm

l?highlight=append#featurelayer.

https://developers.arcgis.com/python/api-reference/arcgis.features.toc.html?highlight=append#featurelayer
https://developers.arcgis.com/python/api-reference/arcgis.features.toc.html?highlight=append#featurelayer
https://developers.arcgis.com/python/api-reference/arcgis.features.toc.html?highlight=append#featurelayer

Chapter 5 197

m = gis.map("Oakland,CA")

m

Run the cell. You will see a map displayed that is centered on Oakland, California:

Figure 5.6: Map widget display

4.	 You can find out a lot of information about this map by calling the properties. Find the

zoom level by typing the following in the next cell:

m.zoom

Run the cell. The Out cell will return to you the current zoom level:

11.0

5.	 You can also set the zoom level by calling the property and setting it equal to an integer.

Since the map will display the farmers’ market data for all of Alameda County, it would

look better if it were one more zoom level out. In the next cell, type in the following:

m.zoom = 10

Publishing to ArcGIS Online198

Run the cell. The map will update to the new zoom level:

Figure 5.7: Map with zoom level set to 10

6.	 You can also review the center of your map. Find the center by typing the following in

the next cell:

m.center

Run the cell. The Out cell will return to you the center of the map as a dictionary with the

spatial reference and the x and y coordinates:

{'spatialReference': {'latestWkid': 3857, 'wkid': 102100}, 'x':
-13611375.89013029, 'y': 4551936.947763765}

7.	 This zoom level looks good, but centering the map on Dublin would probably work better

for displaying the entire county. You can use the geocoding module to find the x and y

coordinates of Dublin and then set the map’s x and y values to those. To first find the x

and y values for Dublin, you call the geocode() function from the geocoding module. It

can take many different arguments; in this example, you are going to pass it the name of

the city and state, and a maximum number of locations to return. You will set the max to

1. Since the geocode function returns a list, you use list indexing to take the first, and only,

value. The variable will store a dictionary of values. In the next cell, type in the following:

Chapter 5 199

dublinLoc = arcgis.geocoding.geocode('Dublin, CA', max_locations=1)[0]

dublinLoc

Run the cell. The Out cell will be the dictionary of all the values in the dublinLoc variable:

{'address': 'Dublin, California', 'location': {'x':
-121.91634999999997, 'y': 37.70423000000005}, 'score': 100,
'attributes': {'Loc_name': 'World', 'Status': 'T', 'Score':
100, 'Match_addr': 'Dublin, California', 'LongLabel': 'Dublin,
CA, USA', 'ShortLabel': 'Dublin', 'Addr_type': 'Locality',
'Type': 'City', 'PlaceName': 'Dublin', 'Place_addr': 'Dublin,
California', 'Phone': '', 'URL': '', 'Rank': 8.67, 'AddBldg':
'', 'AddNum': '', 'AddNumFrom': '', 'AddNumTo': '', 'AddRange':
'', 'Side': '', 'StPreDir': '', 'StPreType': '', 'StName': '',
'StType': '', 'StDir': '', 'BldgType': '', 'BldgName': '',
'LevelType': '', 'LevelName': '', 'UnitType': '', 'UnitName':
'', 'SubAddr': '', 'StAddr': '', 'Block': '', 'Sector': '',
'Nbrhd': '', 'District': '', 'City': 'Dublin', 'MetroArea': 'San
Francisco Bay Area', 'Subregion': 'Alameda County', 'Region':
'California', 'RegionAbbr': 'CA', 'Territory': '', 'Zone': '',
'Postal': '', 'PostalExt': '', 'Country': 'USA', 'LangCode': 'ENG',
'Distance': 0, 'X': -121.91634999999997, 'Y': 37.70423000000005,
'DisplayX': -121.91634999999997, 'DisplayY': 37.70423000000005,
'Xmin': -121.96834999999997, 'Xmax': -121.86434999999996, 'Ymin':
37.65223000000005, 'Ymax': 37.75623000000005, 'ExInfo': ''},
'extent': {'xmin': -121.96834999999997, 'ymin': 37.65223000000005,
'xmax': -121.86434999999996, 'ymax': 37.75623000000005}}

8.	 Within the dictionary, there is a key called "location" that has a value of a dictionary

containing the x and y locations. You can use that to set the values of the center of the

map. To set the center of the map, you will enter the latitude and longitude values as a

list. Remember that latitude is the y value and longitude is the x value. In the next cell,

type in the following:

m.center = [dublinLoc["location"]["y"],dublinLoc["location"]["x"]]

Publishing to ArcGIS Online200

Run the cell. The map will have updated with its center moved to Dublin:

Figure 5.8: Map centered on Dublin

9.	 So far, you have been using the basemap that comes with the map widget. You can check

what that is called by calling the basemap property. Type the following in the next cell:

m.basemap

Run the cell. The Out cell will be the basemap currently displayed:

'default'

10.	 You can see a list of available basemaps by calling the basemaps property. Type the fol-

lowing in the next cell:

m.basemaps

Run the cell. The Out cell will be a list of the basemaps available to be used:

['dark-gray', 'dark-gray-vector', 'gray', 'gray-vector', 'hybrid',
'national-geographic', 'oceans', 'osm', 'satellite', 'streets',
'streets-navigation-vector', 'streets-night-vector', 'streets-
relief-vector', 'streets-vector', 'terrain', 'topo', 'topo-vector']

Chapter 5 201

11.	 Since this map shows the farmers’ markets in Alameda County, you want to use a street

map to help people navigate to them. To set the basemap to the street map, you assign

the basemap property to "streets". Type the following in the next cell:

m.basemap = "streets"

Run the cell. The map will be updated to the streets basemap:

Figure 5.9: Streets basemap

12.	 Now that you have your basemap set up, you can add in the farmers’ market layer. You

do this by either getting it if you know the item ID or searching for it using the title. You

can reuse the code from above to search for and get the feature layer. Type the following

in the next cell:

fmSearch = gis.content.search(query="title:Farmers Markets in
Alameda County",item_type="Feature Layer")

farmersMarkets = fmSearch[0]

fmLayer = farmersMarkets.layers[0]

fmLayer

Run the cell. The output returned will be the details of the farmers’ market feature layer.

At this point, you could just add the data to the map, as you have seen in other examples. But you

can also take the time to create a renderer to render the data with a different visual display than

the defaults. You have two options for renders. You can use ArcGIS API for JavaScript or create

an SEDF from your feature layer and use the plot() method on the spatial property.

Publishing to ArcGIS Online202

ArcGIS API for JavaScript for visualizing data will be explored in Chapter 13, Case Study: Predicting

Crop Yields. Here, you will explore the other option:

1.	 You are first going to create an SEDF. Type the following in a new cell:

sdf = pd.DataFrame.spatial.from_layer(fmLayer)

2.	 In the same cell, you will use the plot() method of the SEDF’s spatial property to plot

the data frame on the map. The plot() method has a number of arguments you can set

depending on the type of data and renderer used. Below is a list of those you will be using:

•	 map_widget: The map to display the data on.

•	 renderer type: This can be set to 's' for a simple renderer, 'u' for a unique values

renderer, 'c' for a class breaks renderer, 'h' for a heatmap renderer, or 'u-a' for

a unique values renderer that will use arcade expressions.

•	 palette: The color map to use.

•	 col: The column in your SEDF to be symbolized.

•	 marker_size: The size of your marker.

•	 line_width: The outline width of your marker.

3.	 Below the code you wrote in the previous step, type in the following:

sdf.spatial.plot(

 map_widget=m,

 renderer_type="u",

 palette = "nipsy_spectral",

 col= "Days",

 marker_size=10,

 line_width = 0.5,

)

Run the cell. Scroll back up to your map and you will see something like the figure below

but with different colors, as the color map chooses colors randomly:

For a full list and description, see the Plot argument here:
https://developers.arcgis.com/python/api-reference/arcgis.
features.toc.html#spatialdataframe

https://developers.arcgis.com/python/api-reference/arcgis.features.toc.html#spatialdataframe
https://developers.arcgis.com/python/api-reference/arcgis.features.toc.html#spatialdataframe

Chapter 5 203

Figure 5.10: Farmers’ market data displayed on the map

4.	 You can save a web map from a Notebook to your GIS. Like with adding CSVs, file geoda-

tabases, and other items, you need to create a data dictionary with the properties of the

item. Then, you call the save() function on the map, passing the properties and the folder

you want to save it to as arguments.

How do I know what color map options are available?

There are two ways to see the available color maps. Within your Notebook,

you can type the following into a cell and run it:

from arcgis.mapping import display_colormaps

display_colormaps()

The Out cell will display all of the available color maps.

You can also find them at this website: https://matplotlib.org/stable/
tutorials/colors/colormaps.html

https://matplotlib.org/stable/tutorials/colors/colormaps.html
https://matplotlib.org/stable/tutorials/colors/colormaps.html

Publishing to ArcGIS Online204

You will save the map to your AlamedaFarmersMarkets folder. In the next cell, type the

following code:

fmMapProperties = {

 "title":"Alameda County Farmers Market - Map",

 "snippet": "Alameda County Farmers Market Map from Jupyter
Notebook",

 "tags":["Alameda County","Farmers Market","Jupyter Notebook"]

}

fmMapItem = m.save(fmMapProperties, folder="AlamedaFarmersMarkets")

Run the cell. You won’t get any values returned to the output window, but when you nav-

igate to the AlamedaFarmersMarket folder in your GIS, you will see the map saved there.

In this section, you have explored the map widget in the Notebook. You have seen how to add a

map, and how to find and change the center, zoom, and basemap properties. You created an SEDF

out of your feature layer and used the arguments of the plot() method to display the farmers’

markets with different colors denoting the days they are open. Finally, you were able to save the

map you created in your Notebook as a web map in your ArcGIS Online organization.

Summary
In this chapter, you have seen the value of managing your organizational GIS with ArcGIS API

for Python. You uploaded data to your ArcGIS Online account from a Notebook. You created a

group and shared data with that group. You created a folder and moved data to that folder to

help organize your content. You have also seen how to find and edit attributes in a feature layer,

and how to upload and append data to a feature layer. Finally, you created a map in a Notebook,

added a feature layer to that as an SEDF and styled that data, and then saved the map to your

ArcGIS Online account.

If you are unhappy with your color map, you need to remove the layer before picking

a new color map. To do this, create a new cell and type in the following:

m.remove_layers(m.layers[0])

This will remove the top layer; if you want to remove a different layer, you will need

to change the index value.

Chapter 5 205

In the next chapter, you will continue to expand your skillset and learn how to create script tools.

These are Python scripts that can be accessed through a standard ArcToolbox interface and can

be made available for use by other team members. Script tools can access ArcGIS Online or local

resources, and standardize your custom scripts so that non-Python experts can benefit from

your code.

6
ArcToolbox Script Tools

This chapter will show you the process of turning a Python script into a script tool. You can take

standalone scripts or Notebooks that you have written and turn them into script tools. Script

tools can be run as standalone tools or integrated into models. They have a dialog box that looks

like ArcGIS tools and contains the parameters for the tool. The parameters in the dialog box can

be set to accept only certain data types, with a dropdown list of acceptable parameters to choose

from and other ways to assist the user with the tool. This control over how the user interacts with

the tool can reduce errors. Creating script tools is a great way to share your scripts, as it allows

non-Python users in your organization to run tools you developed for specific tasks.

This chapter will cover:

•	 What script tools are and why they are used

•	 How to create a script tool

•	 Exercise: Turning scripts into tools

Introduction to script tools
As discussed, a script tool is a tool written in Python with a tool dialog box where the user can

input the parameters they want. The tool is added to an ArcGIS Pro toolbox, where the param-

eters and properties for the dialog box are set.

To complete the exercises in this chapter, please download and un-

zip the Chapter6.zip folder from the GitHub repository for this book:
https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/
Chapter6

https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter6
https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter6

ArcToolbox Script Tools208

It has a different icon to an ArcGIS system tool or ModelBuilder model in a toolbox; the icon looks

like a little scroll, and the title is something you can set:

Figure 6.1: A script tool in a toolbox

You use an interface to manually set the properties and parameters to align with how the script

was written:

Figure 6.2: Script tool parameters

Once the script tool is created and tested, it can be used over and over by any user with access to

the toolbox. The script tool will have the same interface as an ArcGIS Pro tool. This makes it so

people who are new to Python within your organization can use the custom tools, as they look

and feel familiar to them.

A script tool can be thought of as a way to extend the tools you already use in ArcGIS Pro. You can

combine multiple geoprocessing steps into a single script tool that can be run with different inputs,

like a ModelBuilder tool. Like models built in ModelBuilder, they can help you to automate tasks

and can be run as standalone tools. By using Python, though, you have access to some of the ArcPy

modules that are not available in ModelBuilder. You have previously seen how the Data Access

module can simplify your workflow by using search, update, and insert cursors. However, these

have to be used in a Python script and require knowledge of Python and ArcPy to use.

Chapter 6 209

Creating a script tool offers many benefits over a standalone script. Some of these benefits are:

•	 A script tool has a user interface in the form of a tool dialog box. This box makes it easy

to set the input and output parameters.

•	 It also allows for error checking, as you can set data validation to ensure the tool will

work when run.

•	 A script tool can be implemented in your geoprocessing workflows. It can be called to run

a single instance, or can be part of a model in ModelBuilder.

•	 You can craft custom messages as part of the tool to output information to the user through

the tool dialog.

•	 Sharing a script tool is an easy way to share a complete geoprocessing task.

•	 Script tools use a tool dialog box that users unfamiliar with Python are familiar with. This

allows those users to use the tool and take advantage of the added functionality Python

provides without knowing Python.

How to create a script tool
Creating a script tool is a multi-step process. Beyond writing a script to execute a set of geopro-

cessing tasks, you will need to do the following steps:

1.	 Write and test that the script will complete the desired analysis and save it as a Python

file, with a .py extension.

2.	 Modify the script to take user parameters.

3.	 Identify or create the toolbox you will store your script tool in.

4.	 Add a script tool to the toolbox.

5.	 Associate your script to that script tool.

6.	 Set the parameters and properties of the script tool.

7.	 Test the script tool to ensure it works as intended. Make any modifications to the script

or the script tool parameters or properties as needed.

If you plan to share your script or incorporate it into an existing geoprocessing work-

flow, you will want to make it into a script tool.

ArcToolbox Script Tools210

A script tool must be created in a toolbox. It is where the script tool will live. Toolboxes are created

as part of a project when you create a new project using a template. In this chapter, you will be

working in a project that already has a toolbox. If your project does not contain a toolbox, you

can create a new toolbox in the following ways:

•	 As a standalone toolbox in any folder on your computer. This is a useful way to organize

script tools that could be used across many projects. For these tools, it can be a good idea

to have a folder that contains custom toolboxes with your script tools. These tools can

then be easily found and used for different projects. To create the toolbox, right-click on

the folder and click New > Toolbox.

•	 Within your project. There are two ways to create a toolbox within your project:

•	 Within the Project tab of the Catalog pane, right-click on the folder or geodatabase

for your project and click New > Toolbox.

•	 Within the toolboxes in the Project tab, right-click on Toolboxes and click New

> Toolbox.

No matter how you decide to create your toolbox or where you store it, the process for creating a

script tool within that toolbox is the same. What is important is finding a place to store your script

tool where you or others in your organization can find it again to complete the geoprocessing task.

This will depend on if the tool is specific to a project or is a universal tool to be used across projects.

Once you have identified the toolbox to store your script tool in, you can create the script tool by

right-clicking on the toolbox and selecting New > Script. This will bring up the script dialog box,

where you can start inputting your script tool information and parameters:

Chapter 6 211

Figure 6.3: New Script dialog box

We will now take a more detailed look at the settings available for your script tool.

Script tool General settings
The General tab is where you will input all the information about your tool. You will need to fill

in the following fields:

•	 Name: This is the name of your script tool. Just like ModelBuilder names, it cannot contain

spaces or special characters.

It is a good idea to only use alphabet characters and CamelCase in the name

field; this will ensure you always have a valid name.

ArcToolbox Script Tools212

•	 Label: This is the label of the script tool that will be displayed in the toolbox. It should

be a short and descriptive name of the script tool that other people can easily read. Just

like in ModelBuilder, it can contain spaces and special characters.

•	 Script File: This is where you link your Python script file to the script tool. There are two

options when you click the folder button. You can either browse to a script or create a

new script:

•	 Creating a new script will open up a window in which you navigate to the location

to save your new script to. It will not open up an editor for your new script. It will

simply create a blank template script for you to work on that you have to navigate to

and open to use.

Figure 6.4: Template script created by selecting New Script

Chapter 6 213

•	 Selecting Browse will open a browse window, where you can browse to your script

and select it to add to your script tool. This is the way you will add scripts to script

tools most of the time.

•	 Checking Import Script will turn the link to your script in the script file to embedded.

This will embed the script in the tool and store the script within the toolbox.

Figure 6.5: Import script option selected

When Import Script is checked, it allows you to check Set Password. Doing this will

prompt you for a password; a password dialog box will pop up and you will need to enter

and confirm your password. The password will be anonymized as you enter it:

Figure 6.6: Passwords do not match (Confirm Password field is red)

ArcToolbox Script Tools214

The Confirm Password characters are red until they match the password:

Figure 6.7: Passwords match (Confirm Password field is black)

Setting a password on a script tool allows only users with the password to see and modify

the script. This is useful for script tools that are for use among a large number of individ-

uals in your organization, as it protects against accidental changes.

•	 Store tool with relative path: This option is for if you want to store your script as a rela-

tive path. This can be beneficial if your script tool and toolbox may move around in their

folder locations; it allows the script tool to look for the script by relative path, rather than

absolute path.

Script tool Parameters tab
Once you have set the General settings for your script tool, you will set the script tool parameters

in the Parameters tab.

It is a good idea to check Store tool with relative path. It helps keep scripts linked

to script tools and is especially useful if you will be sharing script tools by sending

them to other users.

Chapter 6 215

Figure 6.8: Parameter dialog box

Not all of the parameters are mandatory. Many of them have more options than will be discussed

in this book. The following are the most common parameter settings:

•	 Label: The label that will appear for the input or output data in the tool dialog box when

you open the script tool to run. This is where you can tell the user specific directions for

input or output data.

•	 Name: The name of the parameter. It will be created from the Label parameter, with spaces

replaced by underscores for a default value. You can change the default value if you need

to, but most of the time the default value will be enough.

•	 Data Type: The type of data the parameter is. The default is String, but there is a list of

data types to choose from. Some of the common ones you will use are as follows:

When setting a data type, the script tool expects to see that data type and

will not run if provided with a different data type. For example, if you set

it to Feature Dataset and attempt to input a feature class, the script will

reject that input.

ArcToolbox Script Tools216

•	 String, Long, Double, Shapefile, Feature Class, Feature Dataset, and Raster Data-

set ensure that only these types can be input.

•	 Workspace: This ensures a workspace is input. This can be set to a folder, or is

what you would use for a geodatabase.

•	 Table: This ensures a table is input. It can be a CSV, DBF, or geodatabase table.

•	 Field: This ensures a field from a table, shapefile, or feature class is input. You

can set the field to be chosen from a table, shapefile, or feature class that is being

input into the script tool.

•	 SQL Expression: This ensures a SQL statement is input. This statement can be

created by pulling in fields and data from an input table, shapefile, or feature class.

The SQL field can be used to verify SQL statements and to access data within fields

of a table, shapefile, or feature class.

•	 File: This ensures a file is input. You need to specify the file extension to be written.

This is useful for reading or writing CSVs.

•	 Type: Determines if the parameter is required, optional, or derived:

•	 Required parameters must be filled in, or the script tool will not run.

•	 Optional parameters can be filled in or not, as the script will run with or without

the value.

•	 Derived parameters are output parameters that are not created in the script. Often,

this is used when the output is the same as the input. This is the case when adding

or calculating a field; the input and output parameters are the same.

•	 Direction: Determines if the parameter is an input to the script or is an output that will

be created in the script:

•	 Input direction are files that already exist and are being fed into the script tool.

•	 Output direction are files that are being created by the script.

•	 Category: Allows you to group parameters into a dropdown group in the tools dialog box.

This can be useful when creating a tool with a lot of parameters, some of which can be

grouped together.

Chapter 6 217

•	 Filter: Can be used to set different types of filters and is dependent on the Data Type

parameter. It is an optional parameter that can be left blank, which lets the user input

any values consistent with the data type. The following are some examples of filters on

some of the common data types:

•	 The String data type has an option for a Value List Filter. The Value List Filter opens

a dialog box where you can input different choices for the user. When the script

tool is run, the user will only be able to choose from the values in the value list:

Figure 6.9: Value List Filter

•	 The Long data type has an option for a Value List Filter or a Range Filter. The Range

Filter provides the option for a minimum value and a maximum value. The input

value must be within the minimum and maximum values:

Figure 6.10: Range Filter

•	 The Double data type has an option for a Value List Filter or Range Filter.

ArcToolbox Script Tools218

•	 The Shapefile data type has an option for a Feature Type Filter. This allows you

to set a specific type of data that will be allowed as input:

Figure 6.11: Feature Type Filter

•	 The Feature Class data type also has an option for a Feature Type Filter.

•	 The Workspace data type has an option for a Workspace Filter. This allows you to

set a type of workspace that will be allowed. It can limit the user to a File System,

Local Database, or Remote Database.

Figure 6.12: Workspace Filter

•	 The Field type has an option for a Field Filter. This allows you to set a specific field

type as the only type of field that will be allowed:

Chapter 6 219

Figure 6.13: Field Filter

•	 The File type has an option for a File Filter. This allows you to specify different file

types that will be allowed. The file types should be written without a period and

should be separated by a semicolon if you want to allow more than one file type.

Figure 6.14: File Filter

•	 The Feature Dataset, Raster Dataset, Table, and SQL Expression data types have

no filters.

ArcToolbox Script Tools220

•	 Dependency: Used to allow access from other input data. You set this to the name of a

parameter above it and it will allow you to access the data in that parameter. This can be

used to extract a specific field from a shapefile, feature class, or table. It can also be used

to allow a SQL Expression access to the shapefile, feature class, or table, and build and

validate expressions using the fields and data.

•	 Default: Allows you to set a default value when the user opens the script tool. It can take

any type of value, but it needs to be consistent with the data type and any filters you

have set.

•	 Environment: Allows you to set a parameter as a geoprocessing environment. All of the

geoprocessing environment options available to you are available in this as a dropdown.

•	 Symbology: Allows you to set the symbology of an output dataset to the same as that of

a layer file. The input to the symbology is the location of a layer file with the symbology

you wish to apply.

You have now seen all of the parameter options available to you in the script tool dialog box for

creating a script tool. You won’t need to use each setting for every parameter, but Label, Name,

Data Type, Type, and Direction will need to be set for each parameter.

Script tool Validation
The Validation panel allows you to set custom tool behavior. These custom behaviors act on

parameters, allowing you to customize the parameter values even more. For instance, you could

set parameters to be enabled or disabled based on the input from other parameters. You could

set default values for a parameter based on the input value from other parameters. In addition

to customizing parameters, you can also set custom error and warning messages.

When using the Field or SQL Expression data types, it is a good idea to use

the dependency to link them an input parameter. This allows your user to

access the fields or to build and validate a query from the dataset they will

be working on.

The Environment parameter is very useful when doing raster analysis, as

you can use it to set things like the snap raster, cell size, extent, and other

raster environment settings.

Chapter 6 221

Figure 6.15: Validation panel

Tool validation is written using a Python class called ToolValidator. This class is what controls

the look of the dialog box and how it changes based on user input. The ToolValidator class can

only be accessed in the Validation panel. The code is written in Python and can be written directly

into the panel or by clicking Open in Script Editor. Even though you can write the code in a Python

editor, the code is stored in the toolbox and not in a separate script file.

Writing messages
As you have seen, when running standalone scripts and Notebooks, messages are printed out

just to the interpreter or the Notebook. Script tools work in the same way as other geoprocessing

tools and print out basic start and stop messages. In addition to these basic messages, when you

create a script tool you can add custom messages to be printed to the dialog box. As for geopro-

cessing tools, these messages are stored in the geoprocessing history. The following are the ArcPy

functions you can use to write custom messages:

•	 arcpy.AddMessage(): This will output general information. You can write a message as a

string between quotes, you can output variables as messages, or do a combination of both.

This book will not discuss how to use the ToolValidator class. For more information

on ToolValidator, explore the details in the ArcGIS Pro help.

ArcToolbox Script Tools222

•	 arcpy.AddWarning(): This will output a warning message. You can write a message as a

string between quotes, output variables as messages, or a combination of both.

•	 arcpy.AddError(): This will output an error message. You can write a message as a string

between quotes, an output variable, or a combination of both.

•	 arcpy.AddIDMessage(): This allows you to output specific Esri system messages as error,

informative, or warning messages. It has two required and two optional parameters. Re-

quired are the type of message ("ERROR", "INFORMATIVE", or "WARNING") and the message

ID. The message ID can be a number from 0 to 999999. The two optional parameters are

arguments that may be required depending on the message ID. This is not a message type

you will explore in this book.

•	 arcpy.AddReturnMessage(): This will return all the messages from a previously run geo-

processing tool. Within scripts, the standard output messages from geoprocessing tools

are not written to the dialog box. This function allows you to output them after the tool

has run.

You will most often find yourself using arcpy.AddMessage() to write out informative messages

to the user. These messages can be used to check the progress of the script or to check that it is

working as you expected. It is good practice to insert messages throughout the scripts as you

convert them to script tools, and you will be doing so in the following exercise.

Exercise: Turning scripts into tools
Now that you are familiar with the steps to turn a script into a script tool, and with how the dialog

box is used to set up a script tool in ArcGIS Pro, it is time to create a script tool. In this section, you

will work through an exercise in which you will convert a script from a previous chapter into a

script tool. You will work through all the steps from the previous section to create a script tool

you can share within your organization.

The script tool you will create will be from CreateCensusTableInsertRows.ipynb from Chapter

4, The Data Access Module and Cursors. In this Notebook, you took a census CSV, extracted the data

you needed from it, inserted that data into a table, and then joined that table to the corresponding

census geography.

When using arcpy.AddError(), you will usually be running it after an if

statement test. In this case, you will typically want your script set up to end

after the error message. This will allow your user to see the error, fix it, and

rerun the script tool.

Chapter 6 223

You will use it to create a script tool that can be run by anyone in your organization, the result

being a feature class of the simplified Hispanic/race data from the census. This tool will work with

any census polygon geography, meaning you could create a census geography polygon with the

Hispanic/race data of a block group, tract, place, county, or state.

The process will start with getting the script out of the Notebook and into a Python interpreter.

You will modify the script to work with user parameters defined in the script dialog box. Next,

you will create a new script tool in ArcGIS Pro and associate it with the script. You will add output

messages, and finally, you will test it.

Exporting a Notebook to a script in ArcGIS Pro 2.8
Starting in ArcGIS Pro 2.8, an option to export your Notebook to a Python file or HTML file was

added. To export your Notebook to a Python file, do the following:

1.	 Open up ArcGIS Pro, navigate to where you unzipped the Chapter6.zip folder, and open

up Chapter6.aprx.

2.	 Open the CreateCensusTableInsertRows.ipynb Notebook. This is the same Notebook

you created in Chapter 4.

3.	 Click on the Notebook tab in the ribbon.

4.	 Click on the Export button.

Figure 6.16: Export button

If you are using ArcGIS Pro 2.7, skip down to the next section, Copying and pasting

cells to script in ArcGIS Pro 2.7.

ArcToolbox Script Tools224

5.	 Click on Export To Python File.

Figure 6.17: Export to Python File option

6.	 Navigate to the Chapter6 project folder and add a new folder, naming it PythonScripts.

7.	 Save the Python script as CreateCensusTableInsertRows.py.

Once you have saved the Python file, open it up in the following way:

1.	 Open IDLE from your Desktop icon.

2.	 Click File > Open.

3.	 Navigate to where you saved the file, select it, and click Open.

Your file should look like this:

Figure 6.18: Census script exported from Notebook

Chapter 6 225

This looks just like the Notebook but with all of the cells placed into a single Python file. This will

be very useful for modifying the script to become a script tool.

Copying and pasting cells to a script in ArcGIS Pro 2.7
If you do not have ArcGIS Pro 2.8 and are instead working with ArcGIS Pro 2.7, you will need to

use a more manual process to convert your Notebook to a script:

1.	 Open IDLE from your Desktop icon.

2.	 Click File > New.

3.	 Within the new script, click File > Save.

4.	 Navigate to the Chapter6 project folder and add a new folder, naming it PythonScripts.

5.	 Save the Python script as CreateCensusTableInsertRows.py.

6.	 Open up ArcGIS Pro, navigate to where you unzipped the Chapter6.zip folder, and open

up Chapter6.aprx.

7.	 Open the CreateCensusTableInsertRows.ipynb Notebook. This is the same Notebook

you created in Chapter 4.

8.	 Click in the first cell, highlight all the text, and copy it.

9.	 Click in your Python script and paste the text.

10.	 Repeat steps 8-9 with each cell, making sure the indentation after any for loops is correct.

The script exported directly from the Chapter 4 Notebook is also provided in the

PythonScripts folder in the Chapter4.zip as CreateCensusTableInsertRows_

ExportNotebook.py.

ArcToolbox Script Tools226

When you are finished, your file should look like this:

Figure 6.19: Census script copied from the Notebook

Both are acceptable ways to get a script from a Notebook. If you have ArcGIS Pro 2.8, it is better to

export, as it removes the possibility of you missing a cell when copying and pasting. Both ways

give you the same result, as you can see. The rest of the process will be the same, no matter which

version of ArcGIS Pro you have.

Modifying a script to accept user input in the script tool
Now that you have a script open in a Python editor, you will need to modify it to allow user input.

To do this, you need to decide what you will ask the user for and what needs to be hardcoded. We

provide some guidelines for this here.

Chapter 6 227

The following should be accepted as user input:

•	 Path for any input data

•	 Path for a workspace

•	 Path for any working location for intermediate data

•	 Path for output data when using an iterative process to create multiple outputs with

names derived from variables

•	 SQL expressions that may change based on the data being analyzed

•	 Variables that will change how the script runs, especially when the variables can be value

list parameters

The following should be hardcoded:

•	 Intermediate data names

•	 Data names that are created from other input values

•	 Output data names when using an iterative process to create multiple outputs with names

derived from variables

Based on this, when you look at the script we have, it appears that some of the variables declared

at the top are good candidates to be user input:

gdb = r"C:\PythonBook\Chapter4\Chapter4\California.gdb"

tract = r"C:\PythonBook\Chapter4\Chapter4\California.gdb\Tracts_
AlamedaCounty"

csvFile = r"C:\PythonBook\Chapter4\CensusCSV\ACSDT5Y2019.B03002_2021-07-
22T010004\ACSDT5Y2019.B03002_data_with_overlays_2021-07-22T010002.csv"

table = "AlamedaCounty_RaceHispanic"

tablePath = os.path.join(gdb,table)

censusPoly = os.path.join(gdb,table+"_Tract")

Let’s go through them one by one:

•	 gdb: This is the workspace defined in the Notebook as the path for all the data. You will

set this as a user-defined parameter in the script.

•	 tract: This is the input tracts geometry feature class that will be copied before having

the tabular data joined to it. You will set this as a user-defined parameter in the script.

•	 csvFile: This is the input CSV file from the census bureau that will be used to create a

table. You will set this as a user-defined parameter in the script.

ArcToolbox Script Tools228

•	 table: This is the name of the table created. If this script is always going to create the

same table, you could hardcode it. If this script is going to use the name of other data to

name the table, you could also hardcode it. In this case, the script will be able to take any

type of census polygon geometry, and this will vary depending on your study site. Because

of this, you will set part of the name as a user-defined parameter in the script. This will

allow the user to name the table based on the area they are analyzing.

•	 tablePath: This is the full path to where the table will be written. It is currently created

from the workspace and table name. This can be left as a hardcoded value, as the path

will change based on user input values.

•	 censusPoly: This is the full path of the new census polygon created with the joined de-

mographic data. It does have a value at the end for the geometry type: tract. Because of

this, you will set part of the name as a user-defined parameter in the script. This will allow

the user to name the file based on the geometry they are using.

Now that you have identified the variables that need to be changed to user input, you can update

the code:

1.	 Starting with gdb, find the following line:

gdb = r"C:\PythonBook\Chapter4\Chapter4\California.gdb"

Replace it with:

gdb = arcpy.GetParameterAsText(0)

2.	 For tract, replace the following line:

tract = r"C:\PythonBook\Chapter4\Chapter4\California.gdb"

with:

tract = arcpy.GetParameterAsText(1)

The (0) parameter is the index value. Since Python is 0-based, the first pa-

rameter is at position 0.

Chapter 6 229

3.	 For csvFile, replace the following line:

csvFile = r"C:\PythonBook\Chapter4\CensusCSV\ACSDT5Y2019.
B03002_2021-07-22T010004\ACSDT5Y2019.B03002_data_with_overlays_2021-
07-22T010002.csv"

with:

csvFile = arcpy.GetParameterAsText(2)

4.	 For table, you are going to create a new variable to split this variable into two, so part of

it can be user input and the other part hardcoded:

a.	 Place your cursor at the beginning of the line with the table variable and press

Enter to create a new line.

b.	 On the new line, create a new variable that will hold the user-defined census

geography area name. Type in the following:

areaName = arcpy.GetParameterAsText(3)

c.	 Change the value for the table attribute to contain the variable from the user and

the name of the demographic data. Type in the following:

table = "{0}_RaceHispanic".format(areaName)

5.	 For the censusPoly variable, you are also going to create a new variable to split this vari-

able into two, so one part can be user input and one part hardcoded:

a.	 Place your cursor at the beginning of the line with the censusPoly variable and

press Enter to create a new line.

b.	 On the new line, create a new variable that will hold the user-defined census

geography area type. Type in the following:

censusType = arcpy.GetParameterAsText(4)

c.	 Change the value for the censusPoly attribute to contain the variable from the user:

censusPoly = os.path.join(gdb,table+"_{0}".format(censusType))

You have now identified the variables to be set as user input and set them to arcpy.

GetParameterAsText(). The next step is to create the new tool in a toolbox and define all the

settings.

ArcToolbox Script Tools230

Creating your script tool in ArcGIS Pro
Now that you have finished updating your script to get it ready to be used in a script tool, it is

time to switch to ArcGIS Pro. You have already seen the different settings available in the script

tool dialog box, and now you will set them up based on the data in your script:

1.	 Open ArcGIS Pro, open up the Chapter6 Project you downloaded from the GitHub repos-

itory, and find the Chapter6.tbx file:

Figure 6.20: Chapter 6 Project and toolbox

2.	 Right-click on Chapter6.tbx and select New > Script:

Figure 6.21: Creating a new script tool

Chapter 6 231

3.	 You will see the New Script tool dialog box. Start with the General tab and fill in the

following:

a.	 For Name, give your script a simple name without special characters. Type in

JoinCensusDemographicData.

b.	 For Label, give your script tool a short label that describes what the script tool

does. This label is what will be displayed in the toolbox for the script tool. Type

in Join Census Demographic Data to Geographic Area.

c.	 For Script File, click the folder icon, navigate to where you stored your

CreateCensusTableInsertRows.py script, and select it.

d.	 Leave Import Script unchecked, as you don’t want to import the script until you

have tested it and verified that it works properly.

e.	 Leave Store tool with relative path checked to keep the script stored as a relative

path within the script tool.

Figure 6.22: Script tool General tab setup

4.	 Now click on the Parameters tab to set all of the tool parameters.

5.	 The first parameter to set is the gdb parameter from the script. Define the script tool pa-

rameter for it by entering the following:

a.	 Label: Input Geodatabase

b.	 Name: Take the default created.

c.	 Data Type: Workspace

ArcToolbox Script Tools232

d.	 Type: Required

e.	 Direction: Input

f.	 Category, Filter, Dependency, Default, Environment, and Symbology will all

be left blank.

6.	 The second parameter is the tract feature class from the script. Define the script tool

parameter for it by entering the following:

a.	 Label: Census Geography Feature class

b.	 Name: Take the default created.

c.	 Data Type: Feature Class

d.	 Type: Required

e.	 Direction: Input

f.	 Filter: Select the Feature Type filter and select Polygon to ensure only polygon

data is allowed as input.

g.	 Category, Dependency, Default, Environment, and Symbology can all be left

blank.

7.	 The third parameter is the csvFile from the script. Define the script tool parameter for

it by entering the following:

a.	 Label: Census Demographic Data CSV

b.	 Name: Take the default created.

c.	 Data Type: File	

d.	 Type: Required

e.	 Direction: Input

f.	 Filter: Select the File filter type and type in CSV to ensure only a CSV file is allowed

as input.

g.	 Category, Dependency, Default, Environment, and Symbology will all be left

blank.

”Tract” is the census geography, but since this tool will work with

any geography you will call the label Census Geography Feature

Class.

Chapter 6 233

8.	 The fourth parameter is the areaName from the script. Define the script tool parameter

for it by entering the following:

a.	 Label: Census Area Name (Do Not Use Spaces)

b.	 Name: Take the default created.

c.	 Data Type: String	

d.	 Type: Required

e.	 Direction: Input

f.	 Category, Filter, Dependency, Default, Environment, and Symbology can all

be left blank.

9.	 The fifth parameter is the censusType from the script. Define the script tool parameter

for it by entering the following:

a.	 Label: Census Geography Type

b.	 Name: Take the default created.

c.	 Data Type: String	

d.	 Type: Required

e.	 Direction: Input

f.	 Filter: Select the Value List Filter type and type in the following values:

•	 Block

•	 BlockGroup

•	 Tract

•	 Place

•	 County

•	 State

You can put hints and directions in the label to the tool user. In this

case, you are telling them not to use spaces in the name because that

would cause the tool not to work. Later you will see how to check for

spaces, throw a warning, and fix the issue within the script.

ArcToolbox Script Tools234

Figure 6.23: Value List Filter

g.	 Category, Dependency, Default, Environment, and Symbology can all be left

blank.

10.	 Check that your tool parameters look like the following figure and click OK:

Figure 6.24: Tool properties – Parameters

Your script tool is now ready to run and test.

Running and testing the script tool
The script tool should be displayed in your Chapter6 toolbox, ready to run for testing. It will run

just like a geoprocessing tool. To run a test, you will run the same data through it as you ran in

Chapter 4.

Chapter 6 235

You will be using the data in CensusGeographies.gdb and the CensusCSV folder that you down-

loaded from the GitHub site for this chapter:

1.	 Double-click on the script tool to open up its geoprocessing window:

Figure 6.25: Script tool location

2.	 A geoprocessing window will open, with Join Census Demographic Data to Geographic

Area (your script tool label) as the header, and all the tool parameters labeled:

Figure 6.26: Script tool Geoprocessing window

ArcToolbox Script Tools236

Fill in the tool parameters with the following:

a.	 Input Geodatabase: C:\PythonBook\Chapter6\Chapter6.gdb

b.	 Census Geography Feature Class: C:\PythonBook\Chapter6\CensusGeographies.

gdb\AlamedaCounty

c.	 Census Demographic Data CSV: C:\PythonBook\Chapter6\CensusCSV\
ACSDT5Y2019.B03002_2021-07-22T010004\ACSDT5Y2019.B03002_data_with_

overlays_2021-07-22T010002.csv

d.	 Census Area Name: AlamedaCounty

e.	 Census Geography Type: Tract

Figure 6.27: Script tool Geoprocessing window with parameters filled in

3.	 Click Run and the tool will take 1-3 minutes to run. When it is finished running, you will

have a new table and feature class in the Chapter6.gdb file. Add them to a map and view

the data to see that the demographic data from the CSV has now been joined to a new

feature class.

If you do not see the new feature class and table after running, right-click on the

Chapter6.gdb file and select Refresh. When a script tool is run, it does not always

refresh the geodatabase the data was written to like a geoprocessing tool, so some-

times you need to do that manually after running to see the datasets.

Chapter 6 237

You now have a script tool that a user with no knowledge of Python can run to create a new fea-

ture class of a census geography joined with Hispanic/race demographic data for that geography.

You may notice, though, that the input census feature class was one that you had already done

some geoprocessing on. In addition, there is no test to ensure the user didn’t use spaces in the

areaName field. You also haven’t added any custom messages, so you didn’t have any output written

to the geoprocessing window as the script tool ran. In the next section, you will work on all of these.

Updating the script tool to take census geography files
In the preceding exercise, you used a census geography file for the tracts in Alameda County. That

file was one you created in Chapter 4. However, the census geography for tracts that you download

from the census contains all the tracts in the state. If you were to run that file through the script

tool, you would still get the CSV data for Alameda County joined. However, the output feature

class would contain all the tracts in California, and those not in Alameda County would have null

values. That is not what you want; it is a larger area than you need and the null values are not ideal.

In this exercise, you will update the script tool to allow the user to create an optional SQL query

from the input census geography when creating the new feature class, and join the table to that

new feature class:

1.	 Open up the CreateCensusTableInsertRows.py file that is linked to your script tool from

ArcGIS Pro by right-clicking on the Join Census Demographic Data to Geographic Area

script tool in the Project pane and selecting Edit.

2.	 Add a new line after:

censusPoly = os.path.join(gdb,table+"_{0}".format(censusType))

by clicking at the end of the line and pressing Enter.

3.	 On this new line, you will declare a variable for the SQL statement and set it to arcpy.

GetParameterAsText(). Type in the following:

sql = arcpy.GetParameterAsText(5)

4.	 Scroll to the bottom of the script. You will replace CopyFeatures() with Select(). Delete

the following line:

arcpy.management.CopyFeatures(tract,censusPoly)

5.	 On the same line you just deleted, you will write a Select() function. As we’ve seen before,

the Select() function takes three arguments:

ArcToolbox Script Tools238

•	 Input feature: This can be a feature class or layer and is a mandatory field.

•	 Output feature: This can be a feature class or layer and is a mandatory field.

•	 SQL statement: This is an SQL statement that will be applied to the input feature

class, and is an optional field.

Type in the following:

arcpy.analysis.Select(tract,censusPoly,sql)

6.	 Save the script file and close it.

7.	 In ArcGIS Pro, you will update the script tool to take the new sql parameter. Right-click on

the Join Census Demographic Data to Geographic Area script tool and select Properties.

Select the Parameters tab in the Tool Properties dialog box.

8.	 In the Parameters tab, add the following to create a new parameter at the bottom:

a.	 Label: Census Geography SQL

b.	 Name: Take the default created.

c.	 Data Type: SQL Expression	

d.	 Type: Optional

e.	 Direction: Input

f.	 Dependency: Select Census_Geography_Feature_Class. This will allow you to

access the attributes for that input feature class to build your SQL Expression.

g.	 Category, Default, Environment, and Symbology can all be left blank.

9.	 Click OK to close the dialog box.

The script tool has been updated. You can now create a query of the input feature class to select

only the areas you have downloaded a CSV for. Take a look at the new script tool Geoprocessing

dialog box by double-clicking on the script tool:

Chapter 6 239

Figure 6.28: Join Census Demographic Data to Geographic Area, with a SQL statement

Before running a test of this, you will add a test and warning message to make sure that the

Census Area Name parameter does not contain spaces.

Testing input parameters
The input parameter for the Census Area Name is currently going directly into the code to be

part of the name for the table and feature class being created. If there are spaces in that value, it

will cause an error. You have already placed a reminder to the user in the label about this, but it

might not always be followed. Therefore, in this exercise, you will create a test in Python to see

if a space is present.

If your geographic area already matches the data in the CSV, you can leave the SQL

statement blank. The Select() tool will run with a blank SQL expression and just

select everything, making it work just like the CopyFeatures() tool.

ArcToolbox Script Tools240

If it is, you will send a warning message and fix the space. This will ensure that the script will still

run even if the user makes a mistake.

1.	 Open up the CreateCensusTableInsterRows.py file that is linked to your script tool from

ArcGIS Pro by right-clicking on the Join Census Demographic Data to Geographic Area

script tool and selecting Edit.

2.	 Add a line after areaName = arcpy.GetParameterAsText(3).

3.	 In the new line, you will test for the presence of a space in the areaName variable. To do

this, you will use the .find() method. The .find() method returns the position of a

character in a string. If a character is present more than once, .find() returns just the

first position. If a character is not present in the string, .find() returns -1. You will use

this to write a conditional to test if there are any spaces. If there are, then you will use

the .replace() method to remove the spaces, replacing them with nothing. You will also

use the arcpy.AddWarning() message to print out a warning message when the script

is running. Type in the following:

if areaName.find(" ") != -1:

 areaName = areaName.replace(" ","")

 arcpy.AddWarning("areaName input had spaces and has been updated
to the following {0}".format(areaName))

4.	 Save the script, but do not close it. You will continue working on it in the next section.

The script tool has now been updated to fix an input value if it is entered incorrectly and print a

warning message. The next step to finishing the script tool is adding custom messages to print

out its progress.

Adding custom messages
Adding custom messages to a script tool is valuable. It helps the user to see what has been run.

It can also help you to troubleshoot the script tool as you build it by showing you the output at

areas that are not working. Ultimately, adding messages makes your script tool appear much

more like a geoprocessing tool, allowing you to track your progress. Let’s see how you can do

this for your script tool:

You don’t need to put an else statement after the if; if there is no space in

the areaName attribute, the script tool can just run with it as it is.

Chapter 6 241

1.	 If you closed the script tool after the last section, open it up by right-clicking on the Join

Census Demographic Data to Geographic Area script tool and selecting Edit.

2.	 You are going to add some custom messages, but first you will convert any print state-

ments from when the code was in a Notebook to arcpy.AddMessage statements. In the

script header, click Edit > Replace to get the Replace Dialog box.

3.	 In the Find box, type in print.

4.	 In the Replace with box, type in arcpy.AddMessage.

Figure 6.29: Replace Dialog box

5.	 Click the Replace button to replace each instance of print, or click the Replace All button

to replace them all.

6.	 Now you will add some more custom messages so the user can view what is being done

in the tool:

a.	 Below arcpy.env.overwriteOutput = True, type in the following to let the user

know the script is starting:

arcpy.AddMessage("Starting . . .")

b.	 Above arcpy.management.CreateTable(gdb,table), type in the following to let

the user know the script is creating a new table:

arcpy.AddMessage("Creating a new table for the csv data")

If you have the word “print” anywhere other than print statements, it will

replace them as well when you click Replace All, so be careful when doing

that. By clicking Replace to replace each instance, you can see what you

are replacing.

ArcToolbox Script Tools242

c.	 Within the for field in fields: loop, find the following line:

arcpy.management.AddField(tablePath,name,dataType,field_alias
= alias)

Below it, type in the following to let the user know the script is adding fields to

the table:

arcpy.AddMessage("Adding field {0} to the table".
format(field))

d.	 Above for row in csvRef:, type in the following to let the user know the script

is inserting the CSV data into the table:

arcpy.AddMessage("Inserting csv values into table,
{0}".format(tablePath))

e.	 Above arcpy.analysis.Select(tract,censusPoly,sql), type in the following

to let the user know the script is running the Select() function:

arcpy.AddMessage("Selecting out geographies to join table to")

f.	 Above arcpy.management.JoinField(censusPoly,"GEOID",tablePath,"geo

id_census",tableFields), type in the following to let the user know the select

is done and the join is being run:

arcpy.AddMessage("Select has finished, joining the table to
the new feature class")

g.	 Below arcpy.management.JoinField(censusPoly,"GEOID",tablePath,"geo

id_census",tableFields), type in the following to let the user know the script

has finished:

arcpy.AddMessage("Finished")

7.	 Save the script and close it.

Chapter 6 243

Testing the finished script tool
An important part of creating a script tool is testing it. In this section, you will test your script

tool on tract, place, and county CSVs. In addition, for one of these test runs you will add a space

to the areaName parameter to check that the script tool runs properly and fixes the input.

Testing SQL with Contra Costa Tract data
In many situations, you will have downloaded the census geography files for a larger area than

you have downloaded your demographic data for. Instead of joining the demographic CSV to

the full geography, you can run an SQL query on the geography file to create a geography file

that only has the same area as your demographic data. In this exercise, you will do this by using

the Contra Costa Tract data in the CensusCSV folder along with the full State of California tract

geography file in CensusGeographies.gdb.

1.	 Double-click on the Join Census Demographic Data to Geographic Area script tool to

open up its geoprocessing window.

2.	 Fill in the tool parameters with the following:

•	 Input Geodatabase: C:\PythonBook\Chapter6\Chapter6.gdb

•	 Census Geography Feature Class: C:\PythonBook\Chapter6\CensusGeographies.

gdb\tl_2019_06_tract

•	 Census Demographic Data CSV: C:\PythonBook\Chapter6\CensusCSV\
ContraCostaTract_HispanicRace\ACSDT5Y2019.B03002_data_with_

overlays_2021-08-21T201533.csv

•	 Census Area Name: ContraCostaCounty

•	 Census Geography Type: Tract

Why add arcpy.AddMessage() statements?

Just like how print statements can be useful in debugging a standalone script, you can

use arcpy.AddMessage() to debug your script tool. This is useful when you become

comfortable creating script tools and start writing your scripts from the start for use

in a script tool. It can allow you to skip the step of testing them as standalone scripts.

ArcToolbox Script Tools244

•	 Census Geography SQL: Click + New Expression and build the following expres-

sion: Where COUNTYFP is equal to 013 (the FIPS County code for Contra Costa

County is 013)

Figure 6.30: Script tool Geoprocessing window with parameters for our Con-
tra Costa County test

3.	 Click Run to run. To view the messages when running, you need to click View Details in

the Geoprocessing window followed by Messages in the Details window:

Chapter 6 245

Figure 6.31 Custom messages printed out

4.	 When finished, you can load the ContraCostaCounty_RaceHispanic_Tract feature class

into a map to view the data. You will see that the script tool has created a new feature

class of just Contra Costa County tracts with Hispanic/race data.

This test shows that you can use tract-level census geography and a SQL statement to create a

new feature class that contains just the demographic data for a specific area. In the next section,

you will test the script on a different census geography.

Testing the script with California county geography
The census geography file contains all the counties within the United States. In this example,

you only have demographic data for California. Like the previous example, you will use the SQL

statement so that your output feature class is just the counties in California.

ArcToolbox Script Tools246

You will use the US county data in the CensusCSV folder along with the full United States county

geography file in CensusGeographies.gdb.

1.	 Double-click on the Join Census Demographic Data to Geographic Area script tool to

open up its geoprocessing window.

2.	 Fill in the tool parameters with the following:

a.	 Input Geodatabase: C:\PythonBook\Chapter6\Chapter6.gdb

b.	 Census Geography Feature Class: C:\PythonBook\Chapter6\CensusGeographies.

gdb\tl_2019_us_county

c.	 Census Demographic Data CSV: C:\PythonBook\Chapter6\CensusCSV\
CaliforniaCounty_HispanicRace\ACSDT5Y2019.B03002_data_with_

overlays_2021-08-21T201639.csv

d.	 Census Area Name: California

e.	 Census Geography Type: County

f.	 Census Geography SQL: Click + New Expression and build the following expres-

sion: Where STATEFP is equal to 06 (the FIPS State code for California is 06)

Figure 6.32: Script tool Geoprocessing window with parameters for the
county test

Chapter 6 247

3.	 Click Run to run. To view the messages when running, you need to click View Details in

the Geoprocessing window and then Messages in the Details window.

4.	 When finished, you can load the California_RaceHispanic_Tract feature class into a

map to view the data. You will see that the script tool has created a new feature class of

just the California counties with Hispanic/race data.

This test shows that the script tool will work with census county geography files too. You now

know that your script tool will work on tract and county geographies. In the next section, you

will test it on place geography and make an error in the input to see how it is handled.

Testing the script with a space in the area name
You will use the OaklandBerkeley Place data in the CensusCSV folder along with the full California

Place geography file in CensusGeographies.gdb. In this test, you will leave a space in the Census

Area Name parameter to check if the script is dealing with it correctly.

1.	 Double-click on the Join Census Demographic Data to Geographic Area script tool to

open up its geoprocessing window.

2.	 Fill in the tool parameters with the following:

a.	 Input Geodatabase: C:\PythonBook\Chapter6\Chapter6.gdb

b.	 Census Geography Feature Class: C:\PythonBook\Chapter6\CensusGeographies.

gdb\tl_2020_06_place

c.	 Census Demographic Data CSV: C:\PythonBook\Chapter6\CensusCSV\
OaklandBerkeleyPlace_HispanicRace\ACSDT5Y2019.B03002_data_with_

overlays_2021-08-21T201855.csv

d.	 Census Area Name: Oakland Berkeley

e.	 Census Geography Type: Place

ArcToolbox Script Tools248

f.	 Census Geography SQL: Click + New Expression and build the following ex-

pression: Where NAMELSAD includes the value(s) Berkeley city,Oakland city

Figure 6.33: Script tool Geoprocessing window with parameters for our area
name test

3.	 Click Run to run. To view the messages when running, you need to click View Details in

the Geoprocessing window and then Messages in the Details window. You will see that

a warning message has been output, telling you that the input for areaName had spaces

and has been changed to OaklandBerkeley:

Chapter 6 249

Figure 6.34: Warning message for Oakland Berkeley

4.	 When the test is finished, you can load the OaklandBerkeley_RaceHispanic_Tract fea-

ture class into a map to view the data. You will see that the script tool has created a new

feature class of just the Oakland and Berkeley places with Hispanic/race data.

You have now tested the script tool with three different geographies and checked the if statement

for the areaName. You can continue to check it with additional geographies to see how robust it is

and what it can handle. When you are satisfied that the script tool will work with all the specified

geographies in the Census Geography Type parameter, you can deploy this script tool to your

team. This script tool will now allow anyone on your team to download a census CSV of Hispanic/

race data and join it up to the census geography. It can be passed around your organization, and

members with no knowledge of Python can complete the task quickly for any area they need.

ArcToolbox Script Tools250

Summary
In this chapter, you have learned why it is useful to convert a script or Notebook into a script tool,

and how to do it. You learned about the different parameters available to you in the script tool

dialog box in ArcGIS Pro, and then you took a Notebook you had already written and turned it into

a script tool. You saw how to add custom messages to your script tool, which include warning and

error messages that can give the user the information they need to change their inputs. Finally, you

tested the finished script tool in a variety of different scenarios to check it was working correctly.

In the next chapter, you will learn how to use the arcpy.mp module to automate many tasks

involved in creating maps.

7
Automated Map Production

The arcpy.mp module is used to work with maps, layers, and layouts within an ArcGIS Pro proj-

ect. It was introduced with ArcGIS Pro to replace the arcpy.mapping module from ArcMap. The

new features of ArcGIS Pro allow for additional functionality in the arcpy.mp module. While the

goal is still to assist with map automation, the added functionality allows you more control over

symbology settings in map automation. Creating maps that display geospatial analysis is a vital

task for the GIS Professional, and the arcpy.mp module allows you to automate and update maps

en masse. In this chapter, you will learn about the following:

•	 Referencing projects and maps within projects

•	 Updating data sources for a layer in a map

•	 Adding, removing, and moving layers from a map

•	 Adjusting the symbology of layers in a map

•	 Working with the different layout elements: legend, north arrow, scale bar, and text

•	 Exporting maps

All of these tasks will be done in Notebooks to give you sample code to apply to your own projects.

To complete the exercises in this chapter, please download and unzip the

Chapter7.zip folder in the GitHub repository for this book: https://github.com/
PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter7

https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter7
https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter7

Automated Map Production252

Referencing projects and maps within projects
The arcpy.mp module can assist you in automating mapping tasks, but it does not remove the

need for creating a map in ArcGIS Pro. You will still want to create your maps in ArcGIS Pro, but

once created, arcpy.mp can be used to automate tasks such as adding, removing, and styling

layers, and exporting maps across maps and projects.

ArcGIS Pro projects are stored as .aprx files. The .aprx file contains any maps with their associated

layers, and any layouts with their associated layout elements. In this section, you will be starting

with a project that contains two maps and a layout.

1.	 Open up ArcGIS Pro, navigate to where you unzipped the Chapter7.zip folder, and open

up Chapter7.aprx. You will see two maps in the project, Map and Map1.

2.	 The first map, Map, contains the Oakland Vegetation from CalFire (OaklandFVeg), AC Tran-

sit Routes (Summer21RouteShape), and AC Transit Stops (UniqueStops_Summer21) from

Chapter 2, and Alameda County Race/Hispanic Data (AlamedaCounty_RaceHispanicTract)

from Chapters 4 and 6. In addition, it has two basemaps: World Topographic Map and

World Hillshade.

Figure 7.1: Starting map

Notice that the AC Transit Routes and Stops data do not display and have a

red exclamation point next to them, signifying that the links to those layers

are broken. You will see how to fix a broken link using the arcpy.mp module

in the next section.

Chapter 7 253

3.	 Click over to the layout titled AlamedaCounty. It is a basic layout with a title, north arrow,

scale bar, and legend to go along with the map. You will make changes to all of these in

this chapter.

Figure 7.2: AlamedaCounty layout

To make any edits to the map and layout, you will need to reference the project and then the map

and layout within the project. Referencing a project is done using arcpy.mp.ArcGISProject()

and can be achieved in two ways:

•	 Reference a project by using the full path to the project where it is stored. For example, on

this project, the code would look like the following:

 project = arcpy.mp.ArcGISProject(r "C:\PythonBook\Chapter7\
Chapter7.aprx")

•	 Reference the current project within ArcGIS Pro. That will always look like the following:

project = arcpy.mp.ArcGISProject("CURRENT")

Automated Map Production254

Which way you reference your project depends on what the goal of your script is:

•	 If you are writing a standalone script to be run outside of ArcGIS Pro, you must reference

the project with the full path. The script will not run the other way, as it does not recognize

a "CURRENT" project to be running.

•	 If you are writing script tools or Notebooks to be run inside an instance of ArcGIS Pro,

"CURRENT" will work better as it will always reference the project you have open.

Throughout this chapter, you will be working in Notebooks within ArcGIS Pro, so the samples

will reference the project using the "CURRENT" method.

An ArcGISProject object is created when you use the arcpy.mp.ArcGISProject() function. This

object allows you to access the different properties, classes, and methods within a project. To work

with maps, layers, and layouts, you will access the properties, classes, and methods available to

them through the project.

When you use these to modify the project, you will want to save the changes or save a new project.

The save() method applies to the project object that is open and will save the changes to that

project. The saveACopy() method works as the Save As option in ArcGIS Pro and takes a full path,

including the name and .aprx extension, to save a new project.

A lock is put on the project when it is referenced in a script. This lock will prevent anyone else

from modifying the project while the script is running. If the script is run to completion, the lock

is removed.

When referencing a project using "CURRENT", you must be working within ArcGIS

Pro. "CURRENT" will not work when running a standalone script.

Why not always use the full path when referencing a project?

The full path will always make sure that your script will work. But "CURRENT" does

have some advantages when working directly in ArcGIS Pro. For one, the map view

will automatically refresh with any changes you made when using "CURRENT". An-

other reason is that, when designing a script tool to work within ArcGIS Pro on an

open project, there is no reason to ask the user for the path of the project, as they

are working in it.

Chapter 7 255

The lock can also be deleted within the script by using the del statement to delete the ArcGISProject

object when the work is completed. It is considered best practice to delete the ArcGISProject

object when you are finished with it, to ensure the lock is removed.

In the next section, you will reference your project and the map you opened at the start to fix the

broken links.

Updating and fixing data sources
Updating data within a map can be a time-consuming process. It can involve many clicks to get

into a dataset’s properties to change the data source to a new dataset, which becomes frustrating

when multiple links are broken due to geodatabases being moved.

Luckily, the arcpy.mp module has a class that allows you access to the layers in your map. You

will be exploring many of the properties available in the layers class throughout this chapter.

First, you will look at how to use the updateConnectionProperties() method on the layers

class to fix broken links.

Fixing broken links
It can be frustrating to see the red exclamation point of a broken link on multiple layers when you

open a map. The data is not displaying and you have to click through the properties of multiple

layers to fix the broken link. The updateConnectionProperties() method in the layers class

of the arcpy.mp module can simplify the process and be used to automate the updating of links

of a layer.

In the Map of the Chapter7 project, there are two layers with broken links. They are the AC Transit

Stops and Routes layers, as we saw at the start of the chapter:

Figure 7.3: Broken links in the map

Walk through the following process to fix those links:

1.	 If you closed down ArcGIS Pro from the above section, open up ArcGIS Pro, navigate to

where you unzipped the Chapter7.zip folder, and open up Chapter7.aprx.

Automated Map Production256

2.	 You will see two maps in the project, Map and Map1. Make sure Map is the active map, as it

has the broken links from above.

3.	 Within the Projects tab of the Catalog tab, right-click on Chapter7 and select New >

Notebook to create a new Notebook.

4.	 Rename the Notebook to FixBrokenLinks.

5.	 The first cell will hold the variable mapName. This will be the name of the map that you

will search through to find broken links. Type in the following:

mapName = "Map"

Run the cell.

6.	 The second cell will hold the variable newLinkPath. This is the path to the geodatabase

that contains the layers. In this case, it is just a single geodatabase that contains both

layers. Type in the following:

newLinkPath = r"C:\PythonBook\Chapter7\TransitData.gdb"

Run the cell.

7.	 In the next cell, you are going to reference the CURRENT project to create an ArcGISProject

object, a map object using the listMaps object, and a list of all the layers using the

listLayers object. Then, you will iterate through all the layer objects and use the layer

name and isBroken properties to list the layer names and whether the link is broken or

not. Type in the following:

project = arcpy.mp.ArcGISProject("CURRENT")

m = project.listMaps(mapName)[0]

layers = m.listLayers()

print(layers)

for layer in layers:

 print(layer.name)

 print(layer.isBroken)

 print("---------")

Run the cell. The print statements will help you see the results of the code. Below is the

output of the first few lines of code:

Chapter 7 257

[<arcpy._mp.Layer object at 0x0000026E243AB588>, <arcpy._mp.Layer
object at 0x0000026E243AB908>, <arcpy._mp.Layer object at
0x0000026E243ABB88>, <arcpy._mp.Layer object at 0x0000026E243AB8C8>,
<arcpy._mp.Layer object at 0x0000026E243ABD48>, <arcpy._mp.Layer
object at 0x0000026E243AB2C8>, <arcpy._mp.Layer object at
0x0000026E25F7A088>]

DimondBridgeViewTrail

False

OaklandFVeg

False

UniqueStops_Summer21

True

Summer21RouteShape

True

The layers are stored as objects that are not very useful when printed out. Accessing the

properties of a layer object is the best way to get useful information out of the layer object.

There are many more properties of a layer that you can access and you will explore more

of them in this chapter.

8.	 In the next cell, you will loop through the layers and use a conditional to test whether the

layer isBroken. If a layer isBroken, you will print out the name and connectionProperties

property for that layer.

Type in the following:

for layer in layers:

 if layer.isBroken is True:

 print(layer.name)

 print(layer.connectionProperties)

connectionProperties is a read-only property, so you cannot update it by

writing new values to it; you have to use the updateConnectionProperties

method for this.

Automated Map Production258

Run the cell. The results of the print statement are the name of the layer as a string and

the connection properties as a dictionary:

UniqueStops_Summer21

{'dataset': 'UniqueStops_Summer21', 'workspace_factory': 'File
Geodatabase', 'connection_info': {'database': 'C:\\PythonBook\\
Chapter7_old\\Chapter7\\TransitData.gdb'}}

Summer21RouteShape

{'dataset': 'Summer21RouteShape', 'workspace_factory': 'File
Geodatabase', 'connection_info': {'database': 'C:\\PythonBook\\
Chapter7_old\\Chapter7\\TransitData.gdb'}}

The connectionProperties dictionary has the following key/value pairs:

•	 Key: 'dataset', Value: A string of the name of the layer.

•	 Key: 'workspace_factory', Value: A string of the type of workspace the layer is

stored in. This can be many things, including a ‘Shape File', ‘File Geodatabase',

‘SDE'.

•	 Key: connection_info, Value: A dictionary that can contain a number of key/value

pairs depending on 'workspace_factory'. For shapefiles and file geodatabases,

it contains just a database key with the value being either the path to the folder

for the shapefile or the full path of the geodatabase.

9.	 In the same cell you just ran, you will add to your loop to create a new connection prop-

erty for each of the layers. You will first create a copy of the current connection property

so you have the dictionary schema correct. Then, you will update just the database value

within the connection_info key. Below the last line from above, with the same inden-

tation, type in the following:

 newConnProp = layer.connectionProperties

 newConnProp["connection_info"]["database"] = newLinkPath

When the workspace factory is an SDE for enterprise geodatabases, the

connection_info dictionary has many more key/value pairs. Refer to the

documentation for updating and fixing data sources for more details, located

here: https://pro.arcgis.com/en/pro-app/latest/arcpy/mapping/
updatingandfixingdatasources.htm

https://pro.arcgis.com/en/pro-app/latest/arcpy/mapping/updatingandfixingdatasources.htm
https://pro.arcgis.com/en/pro-app/latest/arcpy/mapping/updatingandfixingdatasources.htm

Chapter 7 259

 print(newConnProp)

 print("---------")

Run the cell. Check the results from the print statement to make sure that the new con-

nection dictionary has the correct path for the data:

UniqueStops_Summer21

{'dataset': 'UniqueStops_Summer21', 'workspace_factory': 'File
Geodatabase', 'connection_info': {'database': 'C:\\PythonBook\\
Chapter7_old\\Chapter7\\TransitData.gdb'}}

{'dataset': 'UniqueStops_Summer21', 'workspace_factory': 'File
Geodatabase', 'connection_info': {'database': 'C:\\PythonBook\\
Chapter7\\TransitData.gdb'}}

Summer21RouteShape

{'dataset': 'Summer21RouteShape', 'workspace_factory': 'File
Geodatabase', 'connection_info': {'database': 'C:\\PythonBook\\
Chapter7_old\\Chapter7\\TransitData.gdb'}}

{'dataset': 'Summer21RouteShape', 'workspace_factory': 'File
Geodatabase', 'connection_info': {'database': 'C:\\PythonBook\\
Chapter7\\TransitData.gdb'}}

10.	 Now you can use the updateConnectionProperties() method to update the connection

properties. The updateConnectionProperties() method has two mandatory parameters:

•	 current_connection_info: The current connection properties for the layer.

•	 new_connection_info: The connection properties to be updated for the layer.

It also has three optional parameters:

•	 auto_updating_joins_and_relates, which is set to True by default. When set to

False, it will not update the source joined or related to the layer.

•	 validate, which is set to False by default. When set to True, the

updateConnectionProperties() method will not validate that new_connection_

info exists. This can force it to update to new_connection_info even if the con-

nection does not exist yet.

•	 ignore_case, which is set to False by default. When set to True, it will make the

searches for layers case-insensitive. This can help you find connections if you are

unsure of the case of the current connection layer.

Automated Map Production260

To update the connection, in the same cell as above, with the same indentation and below

the last line, type in the following:

 layer.updateConnectionProperties(

 layer.connectionProperties, newConnProp

)

Run the cell. The result in the Out cell will look the same as above, but the red exclamation

points next to the layer in the Contents pane are gone, and the data is now displayed on

the map.

Figure 7.4: Layers with links fixed

11.	 The last steps are saving the project and deleting the ArcGIS Pro project object from Python

to remove the lock. In a new cell below the above cell, type in the following:

project.save()

del project

Run the cell.

You have now fixed the broken links in your map. In addition, you have saved the code as a Note-

book and can now open this up in any project, change the variables for mapName and newLinkPath,

and run it to update any broken links in that project.

You have just begun to work with all the layer properties. In the next section, you will continue

to get comfortable with using layers.

Working with layers
You have already done some work with layers by fixing the broken links. In this section, you will

learn more about the layer object and its classes and functions, along with how it interacts with

the map object. First, you will learn how to add, move, and remove layers from a map.

Adding, moving, and removing layers
You can add layers to a map using different methods on the map object:

Chapter 7 261

•	 addBasemap(basemap_name) adds a basemap layer to a map.

•	 addDataFromPath(data_path) adds a layer to a map from the local path or a URL.

•	 addLayer(add_layer, {position}) adds a layer from another map, or a layer file (.lyrx)

to a map at a defined position of 'AUTO_ARRANGE' (default), 'TOP', or 'BOTTOM'.

•	 insertLayer(reference_layer, insert_layer, {insert_position}) adds a layer

either 'BEFORE' (default) or 'AFTER' a reference layer that is in the map.

In addition to adding layers to a map, you can move a layer using moveLayer(reference_layer,

move_layer, {insert_position}). This will move a layer up or down in the table of contents. Like

the insertLayer() method, the insert_position parameter is either 'BEFORE' or 'AFTER' the

reference_layer. Layers can be removed from a map by using the removeLayer(remove_layer)

method.

To explore this, you will create a Notebook that will store the sample code for these different

methods.

1.	 If you closed down the ArcGIS Pro session from the previous section, open it again, navigate

to where you unzipped the Chapter7.zip folder, and open up Chapter7.aprx.

2.	 Within the Projects tab of the Catalog tab, right-click on Chapter7 and select New >

Notebook to create a new Notebook.

3.	 Rename the Notebook to AddRemoveData.

4.	 The first cell will hold the variable mapName, the name of the map that you will add, move,

and remove layers to and from. Type in the following:

mapName = "Map"

Run the cell.

5.	 The next cell will contain the paths to the different layers you will be adding to the map.

Type in the following:

cpadUnits = r"C:\PythonBook\Chapter7\CPAD_2020b_Units.shp"

oaklandBerkeley = r"C:\PythonBook\Chapter7\OaklandBerkeley_
RaceHispanic_Place.lyrx"

The addLayer and insertLayer methods require a layer from another map, refer-

enced in from any map in any project, or a layer file. They will not work with a shape-

file, feature class, or URL. Those must use the addDataFromPath method instead.

Automated Map Production262

cpadOakland = r"C:\PythonBook\Chapter7\Chapter7.gdb\CPAD_2020b_
Units_Oakland"

Run the cell.

6.	 In the next cell, you will create the ArcGISProject object and the map object. Type in

the following:

project = arcpy.mp.ArcGISProject("CURRENT")

m = project.listMaps(mapName)[0]

Run the cell.

7.	 In the next cell, you will add a new basemap. When you use the addBasemap() method, you

are actually replacing the basemap already in your map. The basemap_name parameter is

the same name you see when adding a basemap from the basemap gallery in ArcGIS Pro:

Figure 7.5: Basemap gallery

You will add the Streets basemap. Type in the following:

m.addBasemap("Streets")

Run the cell. You will see that the basemap has been replaced with the World Street Map

basemap:

Chapter 7 263

Figure 7.6: Updated basemap

8.	 In the next cell, you will add a feature class from its full path. Type in the following:

m.addDataFromPath(cpadUnits)

Run the cell. The Out cell will output a layer object and the CPAD layer will be added to

your map in the top position:

Figure 7.7: Added layer

9.	 In the next cell, you will add a layer file using addLayer(). To add a layer, you need to

create a layer from the .lyrx file. You can also specify the "TOP" (default) or "BOTTOM"

position to add the layer to.

Automated Map Production264

To create the layer from the layer file and add it to the bottom, type in the following:

addLyr = arcpy.mp.LayerFile(oaklandBerkeley)

m.addLayer(addLyr,"BOTTOM")

Run the cell. Note that when you add to the "BOTTOM", the layer is added below the basemap:

Figure 7.8: Layer added to the bottom of a map

This isn’t the best position for the layer; it is below the basemap and won’t be seen.

10.	 To move the layer, you need to reference the layer in the map you want it to be above or be-

low. You will move this layer above the AlamedaCounty_RaceHispanic_Tract layer, using

the listLayers() method with the layer name as the wildcard. This will create a list with

just one layer; you will extract that layer from the list using the list index value of 0. You

must then do the same to create a layer object for the OaklandBerkeley_RaceHispanic_

Place layer that was just added.

In the next cell, type in the following:

refLayer = m.listLayers("AlamedaCounty_RaceHispanic_Tract")[0]

oakBerkLyr = m.listLayers("OaklandBerkeley_RaceHispanic_Place")[0]

m.moveLayer(refLayer, oakBerkLyr,"BEFORE")

Run the cell. Now the OaklandBerkeley_RaceHispanic_Place layer has been moved

above the AlamedaCounty_RaceHispanic_Tract layer.

Chapter 7 265

11.	 In the next cell, you will insert a layer. The insertLayer() method takes a layer and not

a path. Both addLayer and insertLayer can use layers already within other maps, either

in your project or other projects. Click over to Map1 and you will see that you have a

styled layer, CPAD_2020b_Units_Oakland. You will insert this layer into Map, position-

ing it above the OaklandBerkeley_RaceHispanic_Place layer that was just added. This

will be done by creating another map object from Map1, creating a layer object from the

CPAD_2020b_Units_Oakland layer that is in Map1, and using the insertLayer() method.

Type in the following:

m2 = project.listMaps("Map1")[0]

insertLyr = m2.listLayers("CPAD_2020b_Units_Oakland")[0]

m.insertLayer(oakBerkLyr,insertLyr,"AFTER")

Run the cell, and observe that CPAD_2020b_Units_Oakland is inserted below the

OaklandBerkeley_RaceHispanic_Place layer:

Figure 7.9: Inserted layer

The keyword "BEFORE" will move a layer above the reference layer, and

"AFTER" will move it below the reference layer.

Automated Map Production266

12.	 Now that you have inserted and moved around layers, it is time to remove those you won’t

need. Instead of removing them one at a time, you will create a list of all the layers to

remove and then iterate through the list to remove each layer. You will remove all the fol-

lowing datasets: CPAD_2020b_Units, CPAD_2020b_Units_Oakland, and OaklandBerkeley_

RaceHispanic_Place. You find each layer using the listLayers method and add it to a

list. Type in the following:

cpadUnits = m.listLayers("CPAD_2020b_Units")[0]

cpadOakland = m.listLayers("CPAD_2020b_Units_Oakland")[0]

oakBerRaceHis = m.listLayers("OaklandBerkeley_RaceHispanic_Place")
[0]

removeList = [cpadUnits, cpadOakland, oakBerRaceHis]

for layer in removeList:

 print(layer.name)

 m.removeLayer(layer)

Run the cell. All the layers in the list will be removed. The layers in your map should now

look like the figure below:

Figure 7.10: Layers remaining

The process of creating a list of layers to remove can also be used to create a

list of layers to add. You have to create a list of either layer files or full paths

of data, as layer files are added using the insertLayer method and full paths

for data are added using the addDataFromPath method.

Chapter 7 267

13.	 Now that you are done adding, moving, and removing layers, you can save your project

and delete the ArcGISProject object to remove any schema locks. Type in the following:

project.save()

del project

Run the cell.

You now have sample code in a Notebook that can be used to add, move, and remove layers from

a map in your project. This can make map updates quick; when you need to move a layer, you can

just open your Notebook, make the modifications, and then save your updated map. It is even

more valuable when you need to make the same change to multiple maps as you can loop through

the maps, adding, moving, or removing the same layer on those maps. You can also add layers

created through an analysis process and export the map; you will see how to do this in Chapter

12, Case Study: Advanced Map Automation.

In the next section, you will see how to use Python to change the symbology of layers.

Layer symbology
The way you symbolize the layers in your map is how you can create beautiful cartographic

designs. In ArcMap, you were limited in the ways you could do this using Python. The only way

to update the symbology of a layer was to apply the symbology of a previously created layer

file. This meant you had to create a layer file with the symbology you wanted, and then use the

arcpy.mapping module to update your layer’s symbology to that of your layer file. You did not

have access to most of the symbology settings in ArcMap through the arcpy.mapping module.

In the new arcpy.mp module available in ArcGIS Pro, you have many more options for creating

symbology. In this section, you will explore how to change the symbology of feature layers and

raster layers using the renderer and colorizer properties of the symbology class. A renderer is

used for symbolizing the vector data on your maps. Renders are applied to the symbology property

of feature layers on your map to create different symbologies. A colorizer is used for symbolizing

the raster data on your maps. Colorizers are applied to the symbology property of raster layers on

your maps to create different symbologies.

Feature layers have the following renderers:

•	 SimpleRenderer: Symbolizes a single value using one symbol

•	 UniqueValuesRenderer: Symbolizes unique values based on a single attribute

Automated Map Production268

•	 GraduatedColorsRenderer: Symbolizes graduated colors based on a single attribute

•	 GraduatedSymbolsRenderer: Symbolizes graduated symbols based on a single attribute

Raster layers have the following colorizers:

•	 RasterUniqueValueColorizer: Colorizes by unique values based on a single raster at-

tribute

•	 RasterClassifyColorizer: Colorizes by groups for values based on a single raster at-

tribute

•	 RasterStretchColorizer: Colorizes, creating a stretch of a color scheme across a single

raster value

Compare these feature layer renderers and raster colorizers to those available in ArcGIS Pro (shown

in the figures below) and you will see that not all are available:

Figure 7.11: Feature class symbology options

Chapter 7 269

Figure 7.12: Feature class symbology options continued

Figure 7.13: Raster symbology options

For feature classes, the following are not available through Python: Unclassed Colors,

Proportional Symbols, Dot Density, Charts, and Dictionary.

For rasters, the following are not available through Python: Discrete and Vector Field.

Automated Map Production270

In order to use the renderers or colorizers, you need to check to see if the layer or raster supports

it, as not all do. You use the has attribute method that is built into Python, hasattr(), to check

if an object has a property.

In this exercise, you will be looking to see whether the symbology property of a layer has

the render property if the layer is a feature layer, or the colorizer property if the layer is a

raster layer. You will work with UniqueValuesRenderer, GraduatedColorsRenderer, and

RasterUniqueValuesColorizer, creating a Notebook that contains sample code for using each

of those renderers/colorizers.

1.	 If you closed down the ArcGIS Pro session from the previous section, open it again, navigate

to where you unzipped the Chapter7.zip folder, and open up Chapter7.aprx.

2.	 Within the Projects tab of the Catalog tab, right-click on Chapter7 and select New >

Notebook to create a new Notebook.

3.	 Rename the Notebook to Symbolize.

4.	 The first cell will hold the variable for the project and map. Type in the following:

project = arcpy.mp.ArcGISProject("CURRENT")

mapName = "Map"

m = project.listMaps(mapName)[0]

Run the cell.

5.	 In the next cell, you will create variables for each of the layer names you will symbolize.

Type in the following:

census = "AlamedaCounty_RaceHispanic_Tract"

busRoute = "Summer21RouteShape"

vegRaster = "OaklandFVeg"

Run the cell.

6.	 In the next cell, you will create variables to hold each of the layers and use the listLayers

method to access each of those layers. You will add print statements at the end to verify

you have the correct layers. Type in the following:

censusLyr = m.listLayers(census)[0]

busRouteLyr = m.listLayers(busRoute)[0]

vegLyr = m.listLayers(vegRaster)[0]

print(busRouteLyr)

Chapter 7 271

print(censusLyr)

print(vegLyr)

Run the cell. The following results should be printed in the Out cell:

Summer21RouteShape

AlamedaCounty_RaceHispanic_Tract

OaklandFVeg

7.	 Over the next three cells, you will be creating a variable that contains the symbology

property of each layer, using the hasattr() method to test if it has renderer or colorizer

properties, and then printing out the existing renderer or colorizer.

In the next cell, type in the following:

censusLyrSym = censusLyr.symbology

print(hasattr(censusLyrSym,"renderer"))

print(censusLyrSym.renderer.type)

Run the cell. The following results should be printed in the Out cell:

True

SimpleRenderer

8.	 In the next cell, type the following:

busRouteLyrSym = busRouteLyr.symbology

print(hasattr(busRouteLyrSym,"renderer"))

print(busRouteLyrSym.renderer.type)

Run the cell. The following results should be printed in the Out cell:

True

SimpleRenderer

9.	 In the next cell, type the following:

vegLyrSym = vegLyr.symbology

print(hasattr(vegLyrSym,"colorizer"))

print(vegLyrSym.colorizer.type)

Run the cell. The following results should be printed in the Out cell:

True

RasterStretchColorizer

Automated Map Production272

10.	 UniqueValueRender needs to have at least two properties assigned for it to work: the fields,

and colors for the values. The fields property is a list value as you can use more than

one field to symbolize. To select the colors, you can either create if statements to apply

a specific RGB value to each unique field, or use a color ramp. The colorRamp property

is set by selecting a color ramp from a list of color ramps available in the project. This

property is called by using the listColorRamps() method and passing in the name of a

color ramp. To view all the available color ramps, type in the following in the next cell:

for ramp in project.listColorRamps():

 print(ramp.name)

Run the cell. You will see a long list of all the different color ramps available. Below are

the first ten that you should see printed in the Out cell:

Accent (3 Classes)

Accent (4 Classes)

Accent (5 Classes)

Accent (6 Classes)

Accent (7 Classes)

Accent (8 Classes)

Aspect

Basic Random

Bathymetric Scale

Bathymetry #1

These names correspond to names you see when checking the Show names box in the

Color Scheme dropdown in the Symbology window:

Figure 7.14: Color ramp names

Chapter 7 273

11.	 In the next cell, you will symbolize the different bus routes with different colors. This

will be done using UniqueValueRenderer and the PUB_RTE field and setting the colors to

the "Basic Random" color ramp. The listColorRamps() method takes a color ramp as

an argument and returns a list that contains just that color ramp. You will then use the

list index of 0 to extract the color ramp.

To change the symbology of a layer object, you access the variable that contains the sym-

bology and make the updates to that variable. What you are changing, though, is the

symbology properties of that variable, not of the layer. Once you have finished updating the

variable that contains the symbology properties, you will set the symbology property of the

layer equal to that newly created symbology variable. In the next cell, type the following:

busRouteLyrSym.updateRenderer('UniqueValueRenderer')

busRouteLyrSym.renderer.fields = ["PUB_RTE"]

print(busRouteLyrSym.renderer.fields)

busRouteLyrSym.renderer.colorRamp =
project.listColorRamps("Basic Random")[0]

busRouteLyr.symbology = busRouteLyrSym

Run the cell. Since you added a print statement to print out the field names being

used to symbolize, you should see ['PUB_RTE'] printed out. In addition to this, the

Summer21RouteShape layer should now have each route symbolized with a different color:

Figure 7.15: Unique value renderer table of contents

Automated Map Production274

Figure 7.16: Unique value renderer map

12.	 In the next cell, you will change the symbology of the AlamedaCounty_RaceHispanic_

Tract layer. You will be updating the renderer in the symbology variable to

GraduatedColorsRenderer, and updating the properties of the renderer that are associ-

ated with GraduateColorsRenderer.

To do this, you will set the classificationField property to the "percent_minority"

field. You will then set the number of breaks to 4 using the breakCount property. Finally,

you will set the colorRamp property to the "Condition Number" color ramp by using the

listColorRamps object. You will add in print statements to track your code as it runs.

Type in the following:

censusLyrSym.updateRenderer('GraduatedColorsRenderer')

print(censusLyrSym.renderer.type)

censusLyrSym.renderer.classificationField = "percent_minority"

print(censusLyrSym.renderer.classificationField)

censusLyrSym.renderer.breakCount = 4

censusLyrSym.renderer.colorRamp =
project.listColorRamps('Condition Number')[0]

censusLyr.symbology = censusLyrSym

Chapter 7 275

Run the cell. Since you added a print statement to print out the renderer type of

GraduatedColorsRenderer and the classification field of percent_minority, you will

see the following in the Out cell:

GraduatedColorsRenderer

percent_minority

The AlamedaCounty_RaceHispanic_Tract layer has now been updated and is symbolized

in four categories, with the green-to-red color ramp. Your contents and map will look like

the figures below:

Figure 7.17: GraduatedColorsRenderer table of contents (low values in green, high
values in red). Be mindful that this color ramp would not work from an accessibility

standpoint for those with red-green color blindness!

Figure 7.18: GraduatedColorsRenderer map

Automated Map Production276

13.	 When setting a graduated colors symbology in ArcGIS Pro, you also have the op-

tion of setting the classification method. You can do that using Python as well. The

classificationMethod property can be set to any of the following:

•	 DefinedInterval sets a defined interval classification scheme, with an interval

size where each class has the same number of units. For example, if the defined

interval is 10, each class will have 10 units, and the number of classes is determined

by the sample size.

•	 EqualInterval sets an equal interval classification scheme, with an interval size

where each class range is the same. It is set by defining the number of classes, and

the range is created based on the values. For example, if you have values from 0

to 50 and set it for 5 classes, your class ranges will be 0-10, 11-20, 21-30, 31-40,

and 41-50.

•	 GeometricInterval sets a geometric interval classification scheme, with an inter-

val size based on an algorithm that ensures classes have approximately the same

number of values in them, and that the change between intervals is somewhat

consistent.

•	 ManualInterval sets a user-defined classification scheme, with the intervals

specified by user-defined values.

•	 NaturalBreaks sets a Jenks Natural Breaks classification scheme, which uses

the Jenks Natural Breaks algorithm to find the best way to group similar values

together and show the difference between classes.

•	 Quantile sets a quantile classification scheme, which places the same number

of data points in each class. For example, if your sample size is 50 and you set it

to 5 classes, each class contains 10 values.

•	 StandardDeviation sets a standard deviation classification scheme, which calcu-

lates the data’s mean and standard deviation and creates class breaks with equal

values as a proportion of the standard deviation.

For more information on all the classification schemes available in ArcGIS

Pro, visit the documentation here: https://pro.arcgis.com/en/pro-
app/latest/help/mapping/layer-properties/data-classification-
methods.htm

https://pro.arcgis.com/en/pro-app/latest/help/mapping/layer-properties/data-classification-methods.htm
https://pro.arcgis.com/en/pro-app/latest/help/mapping/layer-properties/data-classification-methods.htm
https://pro.arcgis.com/en/pro-app/latest/help/mapping/layer-properties/data-classification-methods.htm

Chapter 7 277

You will verify what classification method was set as the default, since you did not choose

one when setting the renderer to GraduatedColorsRenderer. Type in the following:

print(censusLyrSym.renderer.classificationMethod)

Run the cell. The result will be the following in the Out cell:

NaturalBreaks

The Jenks Natural Breaks classification is the default when one is not specified.

14.	 The Jenks Natural Breaks classification method does a good job of symbolizing the data,

except that its lowest value is -999. Recall that you have set the areas with 0 population

to a -999 percent minority to show that no one lives in those tracts.

You will use the classBreaks property to set new break values. This will allow you to

display the lowest value as 0. You will define the first break value and the interval to be

used, and then iterate through the different class breaks, increasing the first value and

break value. When the loop has finished running, you will set the symbology property to

the new variable containing the updated class breaks. Finally, you will set the transparency

of the layer using the transparency property of the layer. Type in the following:

breakValue = 25
firstVal = 0
for brk in censusLyrSym.renderer.classBreaks:
 brk.upperBound = breakValue
 brk.label = "{0} - {1}".format(str(firstVal),str(breakValue))
 breakValue += 25
 firstVal += 25
censusLyr.symbology = censusLyrSym
censusLyr.transparency = 40

Run the cell. Since you added no print statements, there will be no output, but the sym-

bology will have changed in the table of contents and the map:

Figure 7.19: Manual breaks in the table of contents

Automated Map Production278

Figure 7.20: Manual breaks on the map

The above map now splits the 0-50% minority groups into 0-25% and 25-50%. This al-

lows you to see those differences better than the previous version, which had just a single

class for 0-50%.

15.	 You have changed the break values to manual values, which will also change the

classificationMethod property to ManualInterval. To check this, type in the following:

print(censusLyrSym.renderer.classificationMethod)

Run the cell. The value returned will be ManualInterval.

16.	 The next layer to symbolize is the OaklandFVeg raster layer, which shows the different land

covers in Oakland. You will update the colorizer on the vegLyrSym symbology variable to

RasterUniqueValueColorizer. You will then use the field property of the colorizer to

select the field to be used for colorizing. Next, you will use the listColorRamps() method

of the ArcGISProject object to extract the "Basic Random" color ramp and set it to the

colorRamp property of the symbology variable. Finally, you will update the symbology of

the layer by setting it equal to the new symbology variable you created. You will add in

a print statement to track the process and ensure the values are what you expect. Type

in the following:

Chapter 7 279

vegLyrSym.updateColorizer("RasterUniqueValueColorizer")
print(vegLyrSym.colorizer.type)
vegLyrSym.colorizer.field = "WHR10NAME"
vegLyrSym.colorizer.colorRamp =
project.listColorRamps("Basic Random")[0]
vegLyr.symbology = vegLyrSym

Run the cell. The OaklandFVeg layer in the table of contents and map will have updated

symbology. Since a random color ramp was used, yours will not look the same as the

figures below:

Figure 7.21: Oakland vegetation table of contents

Figure 7.22: Oakland vegetation symbology map

Automated Map Production280

17.	 Using the Basic Random color ramp can be good when you have a lot of categories and

the color choice doesn’t matter much. For land cover, though, it can look a little odd to

not have water in blue and urban areas in gray, so you will change just those colors by

accessing each item. To access the items, you have to access the group they are in first.

You always have at least one group, as your items are displayed in the default group.

You will check each item’s label for Water or Urban and, when found, change the item’s

color using the RGB values.

The last step is to set the layer symbology equal to the new symbology variable with the

updated colors. Type in the following:

for group in vegLyrSym.colorizer.groups:

 for item in group.items:

 if item.label == "Water":

 item.color = {'RGB' : [0, 0, 255,100]}

 elif item.label == "Urban":

 item.color = {'RGB' : [153, 153, 153,100]}

vegLyr.symbology = vegLyrSym

Run the cell. The OaklandFVeg layer will now use blue for Water and gray for Urban:

Groups are ways to group similar types of data in your symbology and give

them all a header to show this similarity. For example, you could create a

Forest group and place all the forest land cover types in that group.

You are actually using RGBA, as you are also setting the alpha value for trans-

parency. The alpha value runs from 0 (for fully transparent) to 100 (for fully

opaque).

Chapter 7 281

Figure 7.23: Updated colors for Water and Urban

18.	 Lastly, to save your map and release the schema lock on the project, type in the following:

project.save()

del project

Run the cell.

How do you determine what the RGB values are?

There are many different websites that will help you determine the RGB

values of colors. The HTML Color Picker from w3.schools at https://www.

w3schools.com/colors/colors_picker.asp is a good option. You can

pick a color and see the RGB value of that color, as well as having the ability

to select lighter and darker options.

The method used to update individual colors using the colorizer can be modified

to use a renderer. You would iterate through the groups in the layer, replacing

colorizer with renderer. Then, when iterating through the items, you would use

item.symbol.color instead of the item.color you used in the colorizer exercise.

https://www.w3schools.com/colors/colors_picker.asp
https://www.w3schools.com/colors/colors_picker.asp

Automated Map Production282

You now have seen many different examples of how to update layer symbology within a map.

You can use default class breaks in a graduated color renderer or set your own manual breaks.

You also have examples of how to access and change specific colors in a raster layer. While these

methods might not seem more efficient than doing the same tasks in ArcGIS Pro, the real power in

these Notebooks emerges when they are applied to making the same symbology changes across

multiple maps and projects.

Layouts
Now that you know how to update the symbology on your layers, you can start working with lay-

outs. Layouts are what you create to export your maps to files. They include layers and elements

like the legend, north arrow, scale bar, title, and text. You can modify all of these layout elements

using Python. In addition to modifying layout elements, you can also use Python to export your

layouts to different file types, like PDF, JPG, PNG, and more. Exporting your map to a file is the

final step in map production, as you can then print your map or insert it into a document.

In this section, you will see how to make additional modifications to the layers, like creating defi-

nition queries and changing layer names to make your maps more informative and easier to read.

You will learn how to turn layers on and off in a map. Then, you will see how you can modify all

the different layout elements and, finally, how to export your map. You will continue working in

your Chapter7 project using the same Map and AlamedaCounty layout you have been using so far.

Layers
In the previous sections, you have worked with layers to update their data sources, add and remove

them, move them, and change their symbology. In this section, you will see how to change their

name, turn them on or off, and apply definition queries. All of these will allow you to continue

to manipulate how a layer looks on the map and the legend.

1.	 If you closed down the ArcGIS Pro session from the previous section, open it again, navigate

to where you unzipped the Chapter7.zip folder, and open up Chapter7.aprx.

2.	 Within the Projects tab of the Catalog tab, right-click on Chapter7 and select New >

Notebook to create a new Notebook.

3.	 Rename the Notebook to LayoutElements.

4.	 The first cell will hold the variables for the project, map, and layout. Type in the following:

project = arcpy.mp.ArcGISProject("CURRENT")

mapName = "Map"

layoutName = "AlamedaCounty"

Chapter 7 283

m = project.listMaps(mapName)[0]

layout = project.listLayouts(layoutName)[0]

Run the cell.

5.	 In the next cell, you will create the same variables as in the SymbolizeNotebook exercises,

for the AlamedaCounty_RaceHispanic_Tract, Summer21RouteShape, and OaklandFVeg

layers. Type in the following:

census = "AlamedaCounty_RaceHispanic_Tract"

busRoute = "Summer21RouteShape"

vegRaster = "OaklandFVeg"

censusLyr = m.listLayers(census)[0]

busRouteLyr = m.listLayers(busRoute)[0]

vegLyr = m.listLayers(vegRaster)[0]

Run the cell.

6.	 You can turn a layer on and off by changing its visible property. The visible property

is a Boolean type that is True when the layer is visible and False when it is not. You will

check the visibility of all three layers by typing the following:

print(censusLyr.visible)

print(busRouteLyr.visible)

print(vegLyr.visible)

Run the cell. Depending on which layers are turned on or off in your view, you should

see a combination of True and False printed out. If you still have all the layers turned on

from the last exercise, you will see the following in the Out cell:

True

True

True

7.	 You can change the visibility of a layer by setting the visible property to True or False,

depending on whether you want the layer to be drawn or not. For the layout you are

working on, you do not want the vegLyr to be drawn, so you will set that to False by

typing in the following:

vegLyr.visible = False

print(vegLyr.visible)

Automated Map Production284

Run the cell. The OaklandFVeg layer in the contents will now be unchecked:

Figure 7.24: Layer with the visible property set to False

8.	 When viewing the AlamedaCounty layout, it is difficult to see all the bus routes at this

scale, and there are too many for the legend:

Figure 7.25: AlamedaCounty layout

You will change the bus routes layer so that it only displays the transbay bus routes. To do

that, you can write a definition query for the busRouteLyr layer that queries the PUB_RTE

field for just the transbay routes.

Chapter 7 285

This is done using the definitionQuery property of a layer. Recall from earlier chapters

that all of the AC Transit transbay routes start with a letter. Type in the following:

busRouteLyr.definitionQuery = "PUB_RTE In
('F','G','J','L','LA','NL','NX','O','P','U','V','W')"

Run the cell. You will not see any change in the Contents tab as you are still symbolizing

with colors. However, in the AlamedaCounty layout, you will see only the transbay bus

lines, while the legend still shows all of the bus routes. This will be changed later using

the LegendItem properties of LegendElement.

Now that you have reduced the number of bus lines shown, it is time to learn about the different

layout elements that are available in ArcPy.

Layout elements
The layout object has many properties and methods available to you that allow you to modify it.

For instance, you can view and write the name and page dimensions through the name, pageHeight,

pageUnits, and pageWidth properties.

In addition to those properties, there are methods available for exporting a layout to different file

formats that we will look at later in this section.

You can also access all of the elements in the layout by using the listElements method. The

listElements method returns a list of all the layout elements in the layout object. It takes two

optional arguments to filter the list of returned elements: element_type and wildcard. The dif-

ferent element_type values are:

•	 GRAPHIC_ELEMENT: Filters the list for just graphic elements on the page layout. Graphic

elements include any line or polygon elements drawn on your map.

•	 LEGEND_ELEMENT: Filters the list for just legend elements on the page layout.

•	 MAPFRAME_ELEMENT: Filters the list for just map frames on the page layout.

•	 MAPSURROUND_ELEMENT: Filters the list for the different map surround elements on the

page layout. Map surround elements include the north arrow, scale bar, and neatline.

pageUnits must be set to CENTIMETER, INCH, MILLIMETER, or POINT; the pageHeight

and pageWidth values are then based on those units.

Automated Map Production286

•	 PICTURE_ELEMENT: Filters the list for the different picture elements on the page layout.

Picture elements include JPG or PNG files added to the map layout.

•	 TEXT_ELEMENT: Filters the list for the different text elements on a page. Text element in-

cludes any title or subtitles on your map.

You will continue working in the LayoutElements Notebook to explore these different properties

and methods.

1.	 In the next cell of the LayoutElements Notebook, you will print out the name, pageUnits,

pageHeight, and pageWidth. Type in the following:

print(layout.name)

print(layout.pageUnits)

print(layout.pageHeight)

print(layout.pageWidth)

Run the cell. You will see the following in the Out cell:

AlamedaCounty

INCH

8.5

11.0

2.	 The layout is going to show the transbay bus routes in Alameda County, so you should

change the layout name to reflect that. Once the layout name property has been updated,

you will also want to update the layoutName variable to match the name of the proper-

ty. You will add a print statement to check that your code works properly. Type in the

following:

layout.name = "AlamedaCountyTransbayBus"

layoutName = layout.name

print(layoutName)

Run the cell. The print statement shows the new layout name, and the layout name has

changed in the project:

Chapter 7 287

Figure 7.26: Changed layout name

3.	 In the next cell, you will create a list of all the different layout elements, printing out their

name and element_type. Type in the following:

lytElems = layout.listElements()

for elem in lytElems:

 print("{0} is a {1} element".format(elem.name,elem.type))

Run the cell. The print statement will show that the names printed out match those

names in the Contents tab for the layout. You will see the following in the Out cell:

Text is a TEXT_ELEMENT element

Legend is a LEGEND_ELEMENT element

Scale Bar is a MAPSURROUND_ELEMENT element

North Arrow is a MAPSURROUND_ELEMENT element

Map Frame is a MAPFRAME_ELEMENT element

4.	 It is important to have useful names for the elements in your layout. This will help you

identify the correct element in your code. The text element named "Text" is not very

descriptive. You will change that name to "Title" by accessing the text element and

changing its name property. Type in the following:

textElem = layout.listElements("TEXT_ELEMENT","Text")[0]

textElem.name = "Title"

print(textElem.name)

Automated Map Production288

Run the cell. You will see the following in the Out cell:

Title

The layout element name in the Contents tab will also have changed to Title:

Figure 7.27: Updated text element name

Now you have an understanding of the different layout elements and how to list them, you will

look at each one in more detail.

Legend
The first layout element you will work with is LegendElement, which has a number of properties

and methods associated with it. These properties allow you to make adjustments to the legend.

Some of the properties you are likely to use most often are listed below:

•	 mapFrame: The map that the legend is referenced to. This must be set to a map frame data

type.

•	 name: The name of the legend.

•	 elementPositionX: The x location of the anchor’s position. The units are the same as

those set in the pageUnits property of the layout object.

•	 elementPositionY: The y location of the anchor’s position. The units are the same as

those set in pageUnits.

elementPostionX and elementPositionY are set based on the anchor point.

The anchor point can only be set in ArcGIS Pro.

Chapter 7 289

•	 elementHeight: The height of the element. The units are the same as those set in pageUnits.

•	 elementWidth: The width of the element. The units are the same as those set in pageUnits.

•	 fitingStrategy: The fitting strategy method to be applied to the legend. The accepted

values are AdjustFontSize, AdjustColumns, AdjustColumnsAndFont, AdjustFrame, and

ManualColumns.

•	 columnCount: The number of columns in a legend. Only applies when fittingStrategy

is set to AdjustFontSize, AdjustFrame, or ManualColumns.

•	 title: The title of the legend.

•	 showTitle: A Boolean that displays the title when set to True and removes the title when

set to False.

•	 items: A list of LegendItem classes that can be accessed by using the LegendItem class to

modify the properties of the legend items.

As well as the properties associated with LegendElement, there are also some methods you can use:

•	 addItem(layer, {add_position}): This will add a layer to the legend. The optional add_

position argument can be set to the 'TOP' (default) or 'BOTTOM' of the legend layer stack.

The fittingStrategy methods are the same as are found within the Fitting

Strategy dropdown in the Legend Arrangement Options tab:

Figure 7.28: Fitting strategy options

There are additional properties available for LegendElement. For more information

about them, refer to the LegendElement documentation at https://pro.arcgis.

com/en/pro-app/latest/arcpy/mapping/legendelement-class.htm.

https://pro.arcgis.com/en/pro-app/latest/arcpy/mapping/legendelement-class.htm
https://pro.arcgis.com/en/pro-app/latest/arcpy/mapping/legendelement-class.htm

Automated Map Production290

•	 moveItem(reference_item, move_item, {move_position}): This will move move_item

to a move_position, based on the reference_item. The move_position is either 'AFTER'

or 'BEFORE' (default). 'AFTER' places move_item below reference_item, and 'BEFORE'

places move_item above reference_item.

•	 removeItem(remove_item): This will remove remove_item from the legend.

The items property of the LegendElements object returns a list of LegendItem objects. There is

an object for each item in the legend. Each LegendItem has properties that can be modified using

Python. The LegendItem properties are many of the different legend options you have access to

for each legend item within ArcGIS Pro. The properties available are:

•	 arrangement: The arrangement of legend items.

•	 column: The column number position for a legend item. It is only available when the

fittingStrategy is set to ManualColumns.

•	 name: A read-only value of the legend item name. To change the legend item name, you

must change the layer name.

•	 patchHeight: The height of the legend item patch. The units are in points.

•	 patchWidth: The width of the legend item patch. The units are in points.

•	 showFeatureCount: A Boolean that will show the count of the feature items next to the

legend item. A True value will show the feature count, and False will remove it.

•	 showVisibleFeatures: A Boolean value; when set to True, the legend item will only dis-

play the visible features. When set to False, all the features in the layer will be displayed

in the legend.

•	 visible: A Boolean value; when set to True, the legend item will be displayed, and when

set to False it will be removed.

•	 type: Returns the type, which is LEGEND_ITEM.

Take a look at the legend in the AlamedaCountyTransbayBus layout and you’ll see that it needs

to have some work done. It is currently displaying all of the bus lines in the layer even though

only the transbay routes are displayed in the figure. It is also not able to show the items for the

AlamedaCounty_RaceHispanic_Tract data. In this exercise, you will explore some of the prop-

erties above and create a better-looking legend.

1.	 Continuing to work in the LayoutElements Notebook, in the next cell, you will access the

legend using the listElements() method and display the legend title, height, width, and

fitting strategy properties. Type in the following:

Chapter 7 291

legend = layout.listElements("LEGEND_ELEMENT","Legend")[0]

print(legend.title)

print(legend.showTitle)

print(legend.elementHeight)

print(legend.elementWidth)

print(legend.fittingStrategy)

Run the cell. You will see the following in the Out cell:

Legend

False

1.66

3.86

AdjustColumnsAndFont

2.	 In the next cell, you will change fittingStrategy to AdjustFontSize. Type in the fol-

lowing:

legend.fittingStrategy = "AdjustFontSize"

print(legend.fittingStrategy)

Run the cell. You will see the following in the Out cell:

AdjustFontSize.

The legend should have changed in the AlamedaCountyTransbayBus layout to look like

the following figure:

Figure 7.29: Legend set to AdjustFontSize

This doesn’t look any better, and the old fitting strategy, AdjustColumnsAndFont, will be

more desirable as ArcGIS Pro will automatically change column sizes and font sizes as

you remove data from the legend in the next steps.

Automated Map Production292

3.	 Return the fitting strategy to the old settings by typing in the following:

legend.fittingStrategy = "AdjustColumnsAndFont"

print(legend.fittingStrategy)

Run the cell. You will see the following in the Out cell:

AdjustColumnsAndFont

The legend should be returned to its original appearance.

4.	 To adjust the legend so that it only shows the bus routes displayed on the map, you will

iterate through all of the items objects in the LegendItem list. Within the loop, you will

test for the name of an item being "Summer21RouteShape". When that name is found,

you will print the item name to confirm it has been found, set the showVisibleFeatures

property to True, and then print the showVisibleFeature property to verify it was changed.

Type the following:

for item in legend.items:

 if item.name == "Summer21RouteShape":

 print(item.name)

 item.showVisibleFeatures = True

 print(item.showVisibleFeatures)

Run the cell. You should see the following in the Out cell:

Summer21RouteShape

True

The legend should now appear like the figure below:

Figure 7.30: Legend with showVisibleFeatures set to True

Chapter 7 293

It now shows the transbay routes, but the heading is still the field name of PUB_RTE,

which is not very useful.

The heading can be changed using what you learned earlier about the symbology of a

layer. The group heading is part of the renderer object.

5.	 To change the heading, you will create a symbology variable for the bus route layer and

then iterate through the groups returned from the groups object of the renderer, looking

for the group heading "PUB_RTE". When that group heading is found, you will change it

to "Transbay Routes" in the symbology variable. Then, you will set the bus routes layer

symbology to the symbology variable. Type in the following:

busRouteLyrSym = busRouteLyr.symbology

for group in busRouteLyrSym.renderer.groups:

 print(group.heading)

 if group.heading == "PUB_RTE":

 group.heading = "Transbay Routes"

 print(group.heading)

busRouteLyr.symbology = busRouteLyrSym

Run the cell. You will see the following in the Out cell:

PUB_RTE

Transbay Routes

The legend should be updated to look like the figure below:

Figure 7.31: Legend with updated heading

Headings in the legend cannot be changed in LegendElement or LegendItem;

they must be changed in the layer itself.

Automated Map Production294

6.	 The census layer heading also needs to be updated, as it has no heading.

GraduatedColorsRender does not have a groups object, so you will update the layer name.

Type in the following:

censusLyr.name = "Percent Minority by Tract"

Run the cell. The legend should now look like the figure below:

Figure 7.32: Legend with updated heading

You may notice the difference in the font size between the heading (Transbay Routes)

and the layer name (Percent Minority by Tract) in the legend. This is because you are

using AdjustColumnsAndFont, and headings and layer names get different font sizes.

You will learn more about how to ensure your legend is better set up in ArcGIS Pro to be

manipulated by Python in Chapter 12.

7.	 The legend can be moved using the elementPositionX and elementPositionY properties.

The legend’s anchor point is set to the bottom left. You will move the x and y positions to

leave a 0.1-inch space between the edge of the map and the start of the legend, by setting

the positions to 0.7, which allows for the 0.1 inch of space between the legend boundary

and the map boundary. This is because the legend has a 0.1-inch gap for the background

and border and the map edge is set with a 0.5-inch margin. In the next cell, type in the

following:

legend.elememtPositionX = 0.7

legend.elementPositionY = 0.7

Run the cell. The legend has now moved to be set where you want it.

It is important to set as much of your legend display as possible. Features like

which legend items to show, the font, and the font size cannot be changed

using ArcPy.

Chapter 7 295

You have seen how to make many changes to the legend. You have also seen some of the limitations

in what you can do with ArcPy. ArcPy can assist in automating map production, but you still need

to take the time to ensure that the layout is cartographically sound and has been set up properly.

This will be explored further in Chapter 12, Case Study: Advanced Map Automation.

North arrow, scale bar, and text
The north arrow and scale bar are both map surround elements. As such, they have limited prop-

erties that can be adjusted through ArcPy. You cannot change the north arrow type or scale bar type

through ArcPy. They must be set up with what you want in ArcGIS Pro. However, you can move them

around and change their sizes.

Text elements have more options. In addition to being able to move text elements around the

layout, you can update the text within the element and its font size. You cannot change the font; it

must be set in ArcGIS Pro.

In this exercise, you will move the scale bar and north arrow around the layout, and change the

text of the title element.

1.	 Continuing to work in the LayoutElements Notebook, in the next cell, you access the

north arrow, scale bar, and title using the listElements() method. Type in the following:

scalebar = layout.listElements("MAPSURROUND_ELEMENT","Scale Bar")[0]

northArrow =
layout.listElements("MAPSURROUND_ELEMENT","North Arrow")[0]

title = layout.listElements("TEXT_ELEMENT","Title")[0]

Run the cell. There will be nothing returned.

2.	 In the next cell, you will move the scale bar using the elementPositionX and

elementPositionY properties. The scale bar’s anchor point is set to the bottom right.

You will move the x position to just inside the frame at 10.4 and the y position to also just

inside the frame at 0.6. Type in the following:

scalebar.elementPositionX = 10.4

scalebar.elementPositionY = 0.6

Be aware that if you change the size of your scale bar, you will change the scale it

is showing.

Automated Map Production296

Run the cell. There will be nothing returned, but the scale bar should have moved over

to the edge of the figure:

Figure 7.33: Moved scale bar

3.	 Next, you will move the north arrow to be above the middle of the scale bar. The north

arrow’s anchor point is the bottom middle. Since the width of the scale bar is returned in

inches, you can divide that by two to get the length of half the scale bar. This value is then

added to the scale bar’s x position to find the x position that is the midpoint of the scale bar.

You will set the north arrow’s x position to that value. To set the north arrow’s y position,

you will use the y position of the scale bar, its height, and add 0.25 inches to it. This will

set the north arrow y position to 0.25 inches above the scale bar. Type in the following:

northArrow.elementPositionX = scalebar.elementPositionX -
(scalebar.elementWidth/2)

northArrow.elementPositionY = scalebar.elementPositionY +
scalebar.elementHeight + .25

Run the cell. There will be nothing returned, but the north arrow should have moved over

the middle of the scale bar:

Figure 7.34: Moved north arrow

Chapter 7 297

4.	 The title element has placeholder text. You can access that text using the text property

of TEXT_ELEMENT. Since you have a placeholder here, you will just set the text property

to a new string. Type in the following:

title.text = "AC Transit Trans-Bay Bus Routes and Percent Minority
in Alameda County"

Run the cell. There will be nothing returned, but the title will have changed in the figure.

Since the anchor point is the top center, the title stays centered:

Figure 7.35: Updated title

If you want to ensure that your title is in the correct location after changing the text, you

can use elementPositionX and elementPositionY to check the anchor point is correct.

You have now updated the symbology of the layer, updated the legend, moved the north arrow

and scale bar, and updated the title. The layout is now ready for export. In the next section, you

will learn how to export a layout to different formats.

Exporting layouts
Exporting layouts to different file types is a useful process to automate. Often, your arcpy.mp

scripts will do some work on the map and layout and end with exporting to a file. Each file format

has a different method for exporting. The following are all of the methods available:

•	 exportToAIX

•	 exportToBMP

•	 exportToEMF

•	 exportToEPS

•	 exportToGIF

You can set a variable to hold the title text and then use standard Python functions

on it, such as replace(), string indexing, or any other functions that work on strings.

Once you have finished creating the new text, set the text property equal to the

variable containing your new title text.

Automated Map Production298

•	 exportToJPEG

•	 exportToPDF

•	 exportToPNG

•	 exportToSVG

•	 exportToTGA

•	 exportToTIFF

All of the methods have the same required argument: the full name of the export file, including

the path.

All of the methods also have an argument for resolution. For most, it is set to 96 dots per inch

(DPI) by default. Beyond that, different methods have different arguments for things like color,

quality, and compression. The most common export files you will use are JPEG, PNG, and PDF.

In this exercise, you will export your layout to all three formats in a new Notebook.

1.	 Within the Projects tab of the Catalog tab, right-click on Chapter7 and select New >

Notebook to create a new Notebook.

2.	 Rename the Notebook to ExportLayouts.

3.	 In the first cell, you will need to import the os module, which will help you create full

paths for your export files. Type in the following:

import os

Run the cell.

4.	 In the next cell, you will create a variable for the output location of the files. Type in the

following:

outputLoc = r"C:\PythonBook\Chapter7"

Run the cell.

5.	 In the next cell, you will create an ArcGISProject object based on the current project

you have open. Then, you will create a list of all the layouts within the project. Type in

the following:

You do not need to include the file type extension; if it is not present, it will be added.

Chapter 7 299

project = arcpy.mp.ArcGISProject("CURRENT")

layouts = project.listLayouts()

Run the cell.

6.	 The next cell will be for exporting to JPEG. On top of the required filename argument, the

exportToJPEG() method has five additional optional parameters:

•	 resolution: The DPI of the exported file. If not set, 96 is the default value.

•	 jpeg_color_mode: This can be set to 8-BIT_GRAYSCALE or 24-BIT_TRUE_COLOR

(default).

•	 jpeg_quality: Sets the amount of compression applied to the JPEG; a value be-

tween 0 and 100. 100 provides the best quality but will create large files. If not

set, 80 is the default value.

•	 embeded_color_profile: A Boolean that will embed the color profile information

into the JPEG’s metadata. If not set, True is the default value.

•	 clip_to_elements: A Boolean that will clip the layout to the smallest bounding

box containing all the layout elements when set to True. If not set, False is the

default value.

You will be setting the resolution for this example. To export a layout, you will need to

access the layout object within the list of layouts. You will do this by iterating through the

list and using the layout name to create a name for the export file. Then, you will export

the file. You will add a print statement to see the full name of the file you are exporting.

Type in the following:

for layout in layouts:

 name = layout.name

 jpgName = os.path.join(outputLoc,name+".jpg")

 print(jpgName)

 layout.exportToJPEG(jpgName, resolution=250)

Run the cell. You should see C:PythonBook\Chapter7\AlamedaCountyTransbayBus.jpg

printed and the file should be in that location.

7.	 In the next cell, you will export to PNG. On top of the required filename argument, the

exportToPNG() method has four additional optional parameters:

•	 resolution: The same as in exportToJPEG().

Automated Map Production300

•	 color_mode: Can be set to 8-BIT_ADAPTIVE_PALETTE, 8-BIT_GRAYSCALE, 24-BIT_

TRUE_COLOR, or 32-BIT_WITH_ALPHA (default).

•	 transparent_background: A Boolean that can set the white page background to

transparent when True. If not set, False is the default value.

•	 clip_to_elements: The same as in exportToJPEG().

You will be setting the resolution for this example. The export process is the same as with

exportToJPEG(); the only difference is the method being used and the variable names.

Type in the following:

for layout in layouts:

 name = layout.name

 pngName = os.path.join(outputLoc,name+".png")

 print(pngName)

 layout.exportToPNG(pngName,resolution=250)

Run the cell. You should see C:PythonBook\Chapter7\AlamedaCountyTransbayBus.png

printed and the file should be in that location.

8.	 In the next cell, you will export to PDF. For exporting to PDF, the default resolution is set

to 300 DPI. The exportToPDF tool has many additional parameters. Some of them allow

you control over the compression and quality of the image.

The export process is the same as for exportToJPEG() and exportToPNG(). The only dif-

ference is the method being used and the variable names. Type in the following:

for layout in layouts:

 name = layout.name

 pdfName = os.path.join(outputLoc,name+".pdf")

 print(pdfName)

 layout.exportToPDF(pdfName,resolution=250)

Run the cell. You should see C:PythonBook\Chapter7\AlamedaCountyTransbayBus.pdf

printed and the file should be in that location.

For a full explanation of all the parameters available, refer to the documen-

tation here: https://pro.arcgis.com/en/pro-app/latest/arcpy/

mapping/layout-class.htm. In most cases, you will just be using the de-

faults and will not need to worry about changing them.

https://pro.arcgis.com/en/pro-app/latest/arcpy/mapping/layout-class.htm
https://pro.arcgis.com/en/pro-app/latest/arcpy/mapping/layout-class.htm

Chapter 7 301

You have seen how to use three of the more common export methods. All three worked in the

same way, and it is no different for the other methods. These examples only export one layout, but

in a map with many layouts, the code would export all of them. You could create code to iterate

through a folder of projects, make some updates, and export the layouts. You could also use this

to create custom map series and export each page as the layout updates.

Summary
In this chapter, you learned how to reference a project and map in an ArcGIS Pro Notebook by

using the arcpy.mp module. You also learned how to add, remove, and move layers to your maps

with the arcpy.mp module. You explored the different options to symbolize vector and raster data

using the different renderer and colorizer classes available through the module. You learned what

legend properties you can adjust by using the LegendElement and LegendItem classes. You also

learned how to move the scale bar and north arrow, and change the text in a text element, by

accessing them through the MapSurroundElement class. You exported your layout to JPEG, PNG,

and PDF using the export methods in the layout class. The example code you have seen can be

applied to one map in a project, multiple maps in a project, or even multiple projects by adding

loops to loop through all maps or projects. In Chapter 12, you will see more advanced examples

using these skills.

It is important to remember that good cartography in layouts starts from building a layout in

ArcGIS Pro; but Python can help you make updates to those elements more efficiently, especially

when you are making the same changes across many maps and projects.

In the next chapter, you will learn how to integrate the pandas data toolkit with ArcGIS API for

Python to perform geospatial analysis.

Part III
 Geospatial Data Analysis

8
Pandas, Data Frames, and
Vector Data

Data analysis is a popular use of Python. Since Python can read and write lots of data formats,

has powerful built-in mathematical functionality, and has a large number of third-party mod-

ules written for specific analytical and statistical realms, it has gained wide popularity among

analysts and scientists.

One of the most popular data analysis modules is Pandas. It has become a standard tool for data

analysis and data science, and has extended into geospatial analysis and geodata science.

In this chapter, we will cover the following topics:

•	 What a DataFrame is

•	 The basics of using Pandas, including reading and writing files

•	 Performing data analysis and manipulation with Pandas

•	 Using Spatially Enabled DataFrames (SEDFs)

To complete the exercises in this chapter, please download and unzip the Chapter8.

zip folder from the GitHub repository for this book: https://github.com/

PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter8.

https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter8
https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter8

Pandas, Data Frames, and Vector Data306

Introduction to Pandas
Pandas is a Python module used for data analysis and manipulation. It is an open-source module

that can be installed and used separately from ArcGIS Pro; in fact, it is the most popular Python

data analysis module. As it is so useful and well-known, it is included along with Python when

ArcGIS Pro is installed.

Its origins lie in the financial world, where statistical analysis is used constantly. In 2007, needing

a more powerful tool to perform quantitative analysis, a financial analyst and programmer named

Wes McKinney developed the first version of Pandas. It was made open source in 2012 and was

quickly recognized as a powerful and flexible data tool.

Pandas DataFrames
The basic data structure in Pandas is the Pandas DataFrame. A Pandas DataFrame is essentially

a data table, much like ArcGIS attribute tables or Excel tables, but with a whole lot of built-in

features that make it easy to manipulate and manage data.

Pandas Series
DataFrames are made up of individual data “columns.” In Pandas, a data column is known as

a Pandas Series. It is a one-dimensional array of data, of any data type, but only one data type.

Groups of Series are combined to create a DataFrame.

Much like a Python, a Series is a set of values grouped in an array that has a direction (meaning

the values are in a specific order) and only one dimension, though unlike a data list, values in a

Series must all be of the same data type.

In this example, the data list valueslist data list is passed to the Pandas Series function to

create a Series:

import pandas as pd

valueslist = [3,5,6,7,9]

a_series = pd.Series(valueslist)

This Series contains data values that are all integers. The data type can be implicitly passed, as

in the example above, or it can be explicitly passed as the parameter dtype. Other optional pa-

rameters include the name of the Series or its index:

valueslist = [3,5,6,7,9]

b_series = pd.Series(valueslist, dtype=float, name= 'values')

Chapter 8 307

By combining one or more Pandas Series, you can create a Pandas DataFrame:

df = pd.DataFrame({"a":a_series,"b": b_series})

Another way to combine the Pandas Series is to use the concat function, which will concatenate

Pandas Series into a DataFrame or into one Series, depending on the axis orientation used. An

axis of 1 will put all of the Series in the iterable list passed to concat into a DataFrame:

pd.concat([a_series, b_series],axis=1)

From these one-dimensional Pandas Series (think of these as the “columns”), we can create

Pandas DataFrames that combine any type of data, from strings to numbers, or even binary data

types like spatial data.

The technical definition of data frames, of which the Pandas DataFrame is but one implementation,

is lists of equal length that have a magnitude and direction. The vectors within the list are akin

to columns, and the magnitude or length of the vector is the number of rows. As each column is

a separate vector, they can be different data types. This allows one data frame to hold multiple

data types, each in its own column.

The concept of data frames is not only found in Pandas. Other data processing libraries, such

as Apache Spark and Apache Sedona, use data frames to store data in memory. The R statistical

language is also built on data frames. It is a popular and powerful data concept that makes up

the basis of modern data engineering.

Spatially Enabled DataFrames
Esri created the Spatially Enabled DataFrame (SEDF) object to allow you to add spatial object

types to Pandas DataFrames. This object is used to perform geospatial operations within the

Pandas framework. It acts just like a Pandas DataFrame, except that there is a "SHAPE" column

that can be used to perform geospatial analysis such as buffers, clips, or spatial joins.

We will use SEDF objects to do some spatial ETL in this chapter: extracting data from a data

source, transforming it into a Spatially Enabled DataFrame and performing analysis, and loading

it into a new data source.

Read more about Pandas Series here in the Pandas API docs: https://pandas.

pydata.org/docs/reference/api/pandas.Series.html.

https://pandas.pydata.org/docs/reference/api/pandas.Series.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.html

Pandas, Data Frames, and Vector Data308

Pandas can read data from CSVs, Excel files, JSON data, databases, and more, even from feature

classes when ArcGIS Pro is installed, allowing it to be used in both spatial and non-spatial data

engineering tasks. The freedom it offers for either one-off data analysis in Jupyter Notebooks or

data processing within a Python script is unparalleled in the Python module ecosystem.

Esri has made it possible to use SEDFs either with or without the ArcPy module. If you have

installed PySHP, Shapely, and Fiona, three open-source modules built to read, write, and edit

spatial data, you can use SEDFs along with the ArcGIS API for Python module. This means that

you can execute scripts or Jupyter notebooks on a MacBook, as the requirement of having the

Windows-only ArcPy module on the machine is removed.

Installing Pandas
Pandas is installed along with Python when ArcGIS Pro is installed, but it can also be installed

using pip. In a command line or terminal, type this command:

pip install pandas

This will make it possible to get the latest Pandas version from the Python Package Index (PyPI).

Using the package manager Conda is also a popular method for installing Pandas. The pip manager

is included with Python, and is more ubiquitous, but the Conda package manager is well-known

within the scientific and data science communities.

Similar to pip, Conda can be used in the command line. If you have Conda installed, use this

command to install Pandas:

conda install pandas

Read more about Spatially Enabled DataFrames here: https://developers.arcgis.

com/python/guide/introduction-to-the-spatially-enabled-dataframe/.

Read more about Pandas and ArcGIS here: https://developers.arcgis.com/

python/guide/part3-introduction-to-pandas/.

https://developers.arcgis.com/python/guide/introduction-to-the-spatially-enabled-dataframe/
https://developers.arcgis.com/python/guide/introduction-to-the-spatially-enabled-dataframe/
https://developers.arcgis.com/python/guide/part3-introduction-to-pandas/
https://developers.arcgis.com/python/guide/part3-introduction-to-pandas/

Chapter 8 309

Getting data into (and out of) a Pandas DataFrame
While the Pandas library is worthy of a whole book or more, even just on its uses for geospatial and

attribute data, we are going to focus on major functions that you can use right away to improve

your geospatial data processing. The first one is getting data into a data frame from either a CSV

or JSON file, or even a shapefile or feature class.

Reading data from a file
Here are some basic examples showing how to read data into a Pandas DataFrame from various

sources, including CSVs, feature classes, or ArcGIS Online layers, which are among the many file

read options included in Pandas. The result of all of these methods is a data frame, which is often

assigned to the variable df, but can be assigned to any valid variable.

•	 Importing Pandas as the variable pd is a well-known shorthand. This makes it easier to

write and to access the submodules and methods of the Pandas library:

import pandas as pd

•	 CSVs, or comma-separated values, are common data files stored in plain text:

df = pd.read_csv('example.csv')

•	 Reading JSON data is also very common. Note that the pd.read_json method is being

discontinued in favor of the pd.io.json.read_json method:

df = pd.io.json.read_json('example.json')

•	 Importing data from a database is common in enterprise-level code. The read_sql method

requires a connection to talk to the database. These connections often require a second

module, which in this example is psycopg2 (used to connect to PostgreSQL databases).

Other possible modules include SQLAlchemy or mysql.connector.

Pass a select statement, or the name of a specific table, to the function:

import pandas as pd

import psycopg2 as pg

Read more details about Pandas and data science here: https://jakevdp.github.

io/PythonDataScienceHandbook/03.00-introduction-to-pandas.html.

https://jakevdp.github.io/PythonDataScienceHandbook/03.00-introduction-to-pandas.html
https://jakevdp.github.io/PythonDataScienceHandbook/03.00-introduction-to-pandas.html

Pandas, Data Frames, and Vector Data310

engine = pg.connect("dbname='db_name' user='pguser' host='127.0.0.1'
port='5432' password='pgpass'")

df = pd.read_sql('select * from my_table', con=engine)

•	 To access spatial data, the Pandas included with the Python version in ArcGIS Pro has a

DataFrame.spatial submodule, which has the from_featureclass method:

import pandas as pd

from arcgis.features import GeoAccessor, GeoSeriesAccessor

df = pd.DataFrame.spatial.from_featureclass('a.shp')

•	 If your computer does not have ArcPy installed, the ArcGIS API for Python requires that you

log in to your ArcGIS Online account to be able to read from shapefiles. This is done either

in the ArcGIS Pro Python environment using gis = GIS("Pro") or like this in a script:

from arcgis import GIS

gis = GIS("https://www.arcgis.com", "username", "password")

Using the ArcGIS API for Python (the arcgis module) to access ArcGIS Online layers is a common

practice. With the module, you can add, update, or remove layers that are stored online, which

can save you a lot of time and credits. In the following example, you will use the arcgis module

to access a layer in the ArcGIS Online cloud:

1.	 First, import the module:

from arcgis import GIS

gis = GIS("Pro")

2.	 Using a layer ID, you can access a layer and turn it into a DataFrame:

layerid = '85d0ca4ea1ca4b9abf0c51b9bd34de2e'

geocontent = gis.content.get(layerid)

3.	 Select the layer of interest from the variable:

glayer = geocontent.layers[0]

4.	 Pass the selected layer to the Pandas DataFrame.spatial method to create the DataFrame:

from arcgis.features import GeoAccessor, GeoSeriesAccessor

df_layer = pd.DataFrame.spatial.from_layer(glayer)

Chapter 8 311

These methods are often used in a common modern analysis workflow where data is stored in

the cloud for web applications but pulled down to your local machine for processing, or pushed

up to the cloud as a layer after creating a new dataset.

Writing data to a file
There are many write methods available for Pandas DataFrames, and only a few common ones

are shown below. These methods do not depend on the read method, meaning you can (for

example) read data from a database into a Pandas DataFrame and then output a CSV from the

same data frame.

•	 To write a data frame as a CSV, use this method:

df.to_csv('output.csv')

•	 Creating a JSON file from a data frame uses this method:

df.to_json('output.json')

•	 Writing to a database is a bit more complex, as it requires a connection to the database.

In the following example, SQLAlchemy is used to connect to a SQLite database:

from sqlalchemy import create_engine

engine = create_engine('sqlite://dbname')

df.to_sql('my_table', engine)

•	 Spatial data formats such as shapefiles and feature classes can be created, but only from

a Spatially Enabled DataFrame. These data frames have a special method, spatial.to_

featureclass:

df.spatial.to_featureclass('output.shp')

These are only some of the methods available for accessing data in files and loading it into Pandas

DataFrames.

Exercise: From GeoJSON to CSV to SHP using
Pandas
In this exercise, you will explore Pandas using an example of addresses stored in a GeoJSON file.

The address file is from openaddresses.io and represents a county in Pennsylvania. You will use

the basic features of Pandas and Notebooks to transform data from the raw format supplied by

OpenAddresses into a feature class. Along the way, you will create maps displaying the address

data.

https://openaddresses.io

Pandas, Data Frames, and Vector Data312

Pandas can be used in a standalone Python script, but for this example we will use a Notebook,

a common method.

1.	 Open ArcGIS Pro and start a new project, then add a new Notebook from the Insert tab.

Rename the Notebook to Chapter8.

2.	 In the first cell, you will import arcpy and arcgis, as well as pandas. Type in the following:

import arcgis, arcpy

import pandas as pd

3.	 In the same cell, you will read the cameron-addresses-county.geojson file into a Pan-

das DataFrame. You will open the file and assign it to a data frame using the pd.io.json.

read_json command. While this file is a GeoJSON, Pandas will treat it as a plain JSON file.

However, it needs to read the JSON in a line-by-line format. To do so, you will pass the

lines=True parameter to Pandas, so that it reads each line in the JSON file as a separate

row in the resulting Pandas DataFrame. You will assign the result of the read object to a

variable, df_json.

Type in the following, making sure to adjust the file path to match where you downloaded

the Chapter 8 data to:

df_json = pd.io.json.read_json("cameron-addresses- county.geojson",

 lines=True)

Run the cell.

4.	 In the next cell, you will test the newly loaded DataFrame using the .head() method, which

gets the first five rows of the DataFrame. This is helpful for checking the rows and columns

of the DataFrame to make sure that they are structured as expected. Type in the following:

df_json.head()

Run the cell. You should see the following output:

Chapter 8 313

Figure 8.1: A new Notebook in ArcGIS Pro, and the file read and df.head() used to
show the first five rows

5.	 You can access these columns by passing the name of the column you want to the data

frame in brackets. This will allow us to access only the data in that column, instead of all

of the data in all of the columns in the data frame. We will need this to be able to perform

specific operations on the columns of interest.

Type the following into the next Notebook cell:

df_json["properties"]

Run the cell. You should only see the properties column of the data frame.

Now that the data has been imported into a spreadsheet, it must be flattened or normalized to

be able to access the data within the JSON structure using Pandas tools.

 Similarly, you can use df_json.tail() to see the last five rows.

If you pass an integer to head() or tail(), it will show you that

number of rows; the default is five.

Pandas, Data Frames, and Vector Data314

Normalizing the nested JSON data
The rows shown have three columns ("type", "properties", and "geometry"). While this is

correct, it’s not the form that we want the data to be in for our use. Both df_json["properties"]

and df_json["geometry"] contain nested JSON data, which we want to see as rows of data so

that they can be processed in the data frame.

The solution is to use a Pandas function called json_normalize, which makes it possible to take

nested JSON objects (JSON objects inside other JSON objects) and expand each JSON object into

a row. We will have to do this twice, as df_json["properties"] and df_json["geometry"] both

have nested JSON data that we want to expand and then join back together into the final data frame.

6.	 Continuing in the same Notebook, you will pass the df_json["properties"] column

to the pd.json_normalize function, which creates a new data frame (df_properties)

containing only the data from the column. Enter this code into the next Notebook cell:

df_properties = pd.json_normalize(df_json['properties'])

df_properties

Run the cell. You should see the following output:

Figure 8.2: The new df_properties data frame is created and displayed

In Jupyter Notebooks, if you type the name of the data frame as the last line

of the code cell, the data frame will be displayed in the output window below

the cell. This is useful as it allows us to see the new df_properties data

frame, so we can confirm that the data is now correctly formatted.

Chapter 8 315

7.	 Now you need to repeat the normalization process for the df_json["geometry"] col-

umn. In the next cell, type in the following code to create a new data frame from the

df_json["geometry"] column:

df_geometry = pd.json_normalize(df_json['geometry'])

df_geometry

Run the cell. You should see the following output:

Figure 8.3: The column is now normalized (the keys are now column labels and the
values are rows)

This data frame will have the same number of rows as the original data frame (df_json), but

because it is normalized – meaning the nested JSON keys are now column labels, and the nested

JSON values are now row values – the data is easier to access and perform Pandas data operations

on. The data must also be normalized to (eventually) be written out as a shapefile.

Joining data frames
Now that we have taken the original df_json data frame and split it into two normalized data

frames (df_properties and df_geometry), we need to join the data frames back together to

reunite the attribute data with the geometry data.

Pandas, Data Frames, and Vector Data316

To accomplish this, we will use the Pandas join function, which makes it possible to join two

data frames together into a new data frame. There are a number of optional parameters for the

join function, but because we have the same number of rows in both of the data frames we are

joining, and they are using the same index values (meaning a row at index N in one data frame

corresponds to the row at index N in the other data frame), we can just pass the data frame to

the join function and ignore the other parameters.

8.	 You don’t need the "type" column in the df_geometry data frame, so you can just add

the df_geometry["coordinates"] column to the df_properties data frame using the

join function. In the next cell, type in:

df_data = df_properties.join(df_geometry['coordinates'])

df_data

Run the cell. The resulting data frame (df_data) now contains all of the attribute values

from the df_properties data frame and the df_geometry['coordinates'] column:

Figure 8.4: The result of the join operation

As you can see in Figure 8.4, the data has been normalized and joined using the two op-

erations described above. However, you need to do one more operation to get the data

into the final format.

Chapter 8 317

9.	 There are two steps to the process of adding the latitude and longitude to the data frame.

First, the df_data['coordinates'] column is actually stored as an “object” data type. The

Pandas function to_list allows us to convert the data from an object type to a list, and

then create a new data frame with two columns ('long'and 'lat'). As the 'coordinates'

column is a list type of data, you need to split the values in the list into their own columns:

one for longitude and one for latitude. Luckily, Pandas can easily perform this type of

operation. In the next cell, type in the following:

df3 = pd.DataFrame(df_data['coordinates'].to_list(),

 columns=['long','lat'])

df3

Run the cell. You should see the following:

Figure 8.5: The new data frame with the coordinates column now split up into two
new columns

10.	 We can then join the new df3 data frame back to the df_data data frame, and reassign

the result to a variable that will overwrite the original df_data data frame. In the next

cell, type in the following:

df_data = df_data.join(df3)

df_data

Pandas, Data Frames, and Vector Data318

Run the cell. You should see the following:

Figure 8.6: The newly joined data frame

Dropping columns
The data frame now has the new long and lat columns added, but there are extraneous columns

that we should get rid of before the data is ready, as they will not be needed for the final product.

Luckily, Pandas makes it easy to drop columns and create a new data frame without the columns

you don’t need.

11.	 As the coordinates column has been split into the long and lat columns, we can drop

it. The coordinates column is also the wrong data type to be used to create a shapefile.

Additionally, the id and hash columns provided by openaddresses.io are not needed for

this analysis and can be dropped. Using the data frame drop function, you can specify the

columns to drop. In the next cell, type in the following:

df_data = df_data.drop(columns=['id','coordinates','hash'])

df_data

The result is a copy of the original data frame in memory when run. If you want to re-

place the original (and not assign it to a new variable), you can use the "inplace=True"

parameter.

https://openaddresses.io

Chapter 8 319

Run the cell. You should see the following output:

Figure 8.7: The extra columns are now dropped from the data frame

Creating a CSV
Now that the df_data data frame is in the format you want, you can use the Pandas write func-

tionality to create an output file. While there are many different output possibilities, we’ll create

a CSV for now.

12.	 To create a CSV, use the Pandas to_csv function, specifying the file path you want the

CSV to be saved to. In the next cell, type in the following:

df_data.to_csv(r'C:\Projects\output.csv')

Run the cell and view the resulting output; there is one issue with it. While it outputs

the row index, there is no data label for the index column, which results in a malformed

CSV file:

Figure 8.8: The output of the CSV, which has no data label (column name) for the
first column

Pandas, Data Frames, and Vector Data320

13.	 To remedy this, you can add a name to the index column using the name property of the

index column. Type in the following in the next cell. I’ve chosen the name "oid", but it

could be any valid string:

df_data.index.name = 'oid'

14.	 Now that the data label (or column name) has been added, the CSV can be written again,

and the column will have the correct name. Rerun the cell containing the df_data.to_

csv() line and review the output:

Figure 8.9: The correct output with the correct number of column names

Creating a Spatially Enabled DataFrame from a DataFrame
Since our data frame has the long and lat columns, we can create a Spatially Enabled DataFrame

from the original Pandas DataFrame. To do this, we will use a special feature of the ArcGIS API

for Python, the GeoAccessor, which adds the spatial column to the data frame. In this case, we

want to be able to see the data on a map. The GeoAccessor makes it easy to read in data from

files or data frames.

15.	 Continuing in the same Notebook, you are going to plot the df_data data frame from the

last section on a map. After importing the relevant modules, you will create a new SEDF

called sdf_address, and use the from_xy method of GeoAccessor to generate a new SHAPE

column. This method accepts a pair of X/Y columns, which, in the case of the df_data

data frame, are named long and lat.

Chapter 8 321

You will use the spatial.plot method to plot the data. In the next cell, type in the fol-

lowing:

from arcgis.features import GeoAccessor

sdf_address = GeoAccessor.from_xy(df_data, 'long', 'lat')

sdf_address.spatial.plot()

Run the cell. You should see the plot:

Figure 8.10: The new Spatially Enabled DataFrame plotted on a map in a Notebook

16.	 Next, you will create a shapefile from the new data frame with the spatial column, using

the spatial.to_featureclass method we saw earlier. In the next cell, type in:

sdf_address.spatial.to_featureclass(r'C:\Projects\test.shp')

Run the cell. You should see the following output:

'C:\\Projects\\test.shp'

Because the new data frame is a Spatially Enabled DataFrame, it can be saved as a shapefile,

feature class, or even a GeoJSON, among other formats. Specify the output type using the

correct extension for that data type.

Pandas, Data Frames, and Vector Data322

17.	 Once the data is saved as a shapefile, add the data to an ArcGIS Pro map using the Add

Data interface:

Figure 8.11: The new shapefile has been added to a map

The new Spatially Enabled DataFrame is still a Pandas DataFrame. Both spatial and

non-spatial operations can be performed on these data frames.

18.	 For the example address data, you can use Pandas functionality to remove rows of data

that don’t have valid addresses. In the next cell, you will import numpy, another Python

module, and use the Pandas replace function to convert empty spaces into NaN values

(which are the NULL values for Pandas). Type in the following:

import numpy as np

sdf_address['number'] = sdf_address['number'].replace(r'^\s*$',

 np.NaN,

 regex=True)

sdf_address

Chapter 8 323

The regular expression and the replacement value (np.NaN) are passed to the replace

function, and the result is written back into the number column.

Run the cell. You should see the following output:

Figure 8.12: Empty strings have been replaced in the number column

Observe that all empty strings in the number column have been identified and replaced.

Dropping NaN values using dropna
Now that we have identified these NaN values, we can use a special function of Pandas: dropna.

We don’t want to process any rows with these NULL values in those columns, and this function is

an effective way to reduce the number of rows with bad data.

19.	 In the next cell, you will use the dropna function on your data frame and specify that

rows with NaN values in the number column should be dropped, using the optional subset

parameter. Type in the following:

sdf_address = sdf_address.dropna(subset=['number'])

sdf_address

Note that you are using a regular expression (regex) to locate all empty spac-

es within the number column of the data frame. Regexes are a complex topic

best covered elsewhere, but in general they are used for pattern matching.

Pandas, Data Frames, and Vector Data324

Run the cell. You should see the following output:

Figure 8.13: A reduction in the number of rows after the dropna function is used.
Nearly 3000 were dropped.

The result of the operation is a reduction in the number of rows in the Pandas data frame. These

can be done in place (meaning there is no need to assign it to a new data frame variable) using the

inplace=true parameter. You can also use the how parameter to control whether a row or column

will be dropped if it contains a minimum of one NaN value (how='any') or or whether they should

only be dropped if all the values in the row or column are NaN (how='all').

Querying the data frame
Pandas makes it easy to perform queries on data frames. These queries can be used to create

subsets and/or to select specific rows or columns. There are two major ways you will encounter

for using a query to select specific rows of data. The first is the query method, a function built

into DataFrames and accessed using dot notation. We will look at the second method shortly.

20.	 In this case, you will use the query method to find all addresses where the street name is

equal to "CASTLE GARDEN RD". Type in the following:

sdf_query = sdf_address.query("street == 'CASTLE GARDEN RD'")

sdf_query

Chapter 8 325

Run the cell. The result of this query is a new DataFrame (sdf_query). This new Data-

Frame is still a Spatially Enabled DataFrame because it started as one, but it is limited to

only rows where the street column matches the conditional passed to the query function:

Figure 8.14: The query results are shown for rows that meet the query condition

21.	 By using the DataFrame’s spatial.plot() method, you can see the results of the query.

In the next cell, type in the following:

sdf_query.spatial.plot()

Run the cell. You should see the following output (and can ignore the warning in red):

Figure 8.15: Using the spatial.plot() method to view the data frame created from a
query

Pandas, Data Frames, and Vector Data326

The query function explained above is a newer Pandas DataFrame method. The older way

to do a query and return a subset is to use brackets to contain a conditional.

22.	 In the next cell, you will perform the same query as above with the older method, passing

the column of interest to the DataFrame and specifying the condition that has to be met.

Type in the following:

sdf_query = sdf_address[sdf_address["street"] == 'CASTLE GARDEN RD']

Run the cell. This method is related to the method of selecting a subset of columns. By

passing a set of columns to the DataFrame in brackets, we can view only those records.

23.	 To view the first five records in the new data frame, you can use the head() method again

in the next cell:

sdf_query[["number","street"]].head()

Run the cell. You should see the following output:

Figure 8.16: A subset of a DataFrame showing the selected columns only

24.	 Similarly, you can create a new DataFrame by specifying the columns and assigning the

result to a variable. In a new cell, type in the following:

new_sdf = sdf_query[["number","street"]]

Run the cell.

These methods make it easy to get rid of extraneous rows or columns. Once the data has been

selected and cleaned up, it can then be saved as a file, or even published to ArcGIS Online.

Chapter 8 327

Publishing the data to ArcGIS Online
Pandas DataFrames and the ArcGIS API for Python are used for pushing data into ArcGIS Online,

making them available for online maps. Layers that already exist on ArcGIS Online can be called

using an ID and edited locally with Pandas and the ArcGIS API for Python. Both spatial and at-

tribute data can be edited in this fashion.

25.	 Continue in the same Notebook you have been working on so far. The first step is to log in

to your ArcGIS Online account using the ArcGIS API for Python, as you’ve been doing so far.

Then, a local data frame can be pushed up to ArcGIS Online using the to_featurelayer

method, which requires a layer name as a parameter. In the next cell, type in the following:

from arcgis import GIS

gis = GIS("Pro")

sdf_layer = sdf_address.spatial.to_featurelayer("sdf-address")

sdf_layer

Run the cell. You should see the following output:

Figure 8.17: The result of publishing a layer to ArcGIS Online using the to_featurelayer
method

Read more about queries here: https://developers.arcgis.com/python/guide/

working-with-feature-layers-and-features/.

https://developers.arcgis.com/python/guide/working-with-feature-layers-and-features/
https://developers.arcgis.com/python/guide/working-with-feature-layers-and-features/

Pandas, Data Frames, and Vector Data328

If you log in to ArcGIS Online, you will find the new feature layer in the Content tab. It

can be viewed on a map to confirm the results of the layer publish event:

Figure 8.18: Confirming in ArcGIS Online that the SEDF has been published

26.	 Similarly, once the credentials have been shared, the available layers in the Content tab

of ArcGIS Online can be called and used locally in your Notebook by referencing a layer ID

and using the ArcGIS API for Python to get the layer. In the next cell, type in the following

to do this with the layer we published in the previous step:

from arcgis.gis import GIS

gis = GIS("Pro")

layer_id = sdf_layer.id

item = gis.content.get(layer_id)

flayer = item.layers[0]

flayer

Chapter 8 329

Run the cell. You should get the following output, which tells you that the feature layer

has become a hosted layer in AGOL:

Figure 8.19: A layer stored in ArcGIS Online has been accessed

The ability to create data locally, edit it, and publish it to ArcGIS Online as a feature layer, and

then later pull down the data, edit it again, and push it back to ArcGIS Online, makes it easy to

control and update your data.

Converting an ArcGIS Online layer to a DataFrame
Once a layer from ArcGIS Online has been retrieved using the arcgis module, it can be loaded

into a DataFrame using the Spatially Enabled DataFrame’s spatial.from_layer method. This

will allow you to perform normal Pandas operations on the data contained in the layer, as well

as spatial operations.

27.	 In the next cell, you will load the feature layer from the previous step and examine the

first few layers. Type in the following:

sdf_layer = pd.DataFrame.spatial.from_layer(flayer)

sdf_layer.head()

Read more about hosted layers here: https://doc.arcgis.com/en/arcgis-

online/manage-data/publish-features.htm.

https://doc.arcgis.com/en/arcgis-online/manage-data/publish-features.htm
https://doc.arcgis.com/en/arcgis-online/manage-data/publish-features.htm

Pandas, Data Frames, and Vector Data330

Run the cell. You should see the following rows:

Figure 8.20: Converting a feature layer from ArcGIS Online into a DataFrame

28.	 Layers from ArcGIS Online can be queried in a very similar manner to data frames, even

before being converted into a data frame. In the next cell, you will query the feature layer

from ArcGIS Online and then convert it into a Spatially Enabled DataFrame using its sdf

method. The sdf method allows you to create a data frame directly from a feature layer.

Type in the following:

df = flayer.query(where="street = 'CASTLE GARDEN RD'").sdf

df

Run the cell. You should see the following:

Figure 8.21: Querying a feature layer and assigning it to a DataFrame

Note that there is a where keyword used in the conditional, unlike the query

function for DataFrames.

Chapter 8 331

The data frame returned will only contain the data rows that meet the conditional statement.

Indexing and slicing DataFrame rows and columns
Sometimes you may need to get just one row or a subset of rows by referencing their row indices.

This is known as slicing, and is performed in a similar manner to slicing a Python list.

Using the .loc function of DataFrames, you can pass row indices to a DataFrame (or Spatially

Enabled DataFrame) to access those rows. For instance, sdf_row = sdf_address.loc[100] will

give you the row at index 100.

29.	 In the next cell, you will get a subset of rows from the sdf_address DataFrame by passing

start and stop row indices. Type in the following:

sdf_slice = sdf_address.loc[100:110]

sdf_slice

Run the cell. You should see the rows you selected:

Figure 8.22: Slicing a data frame using the loc function to get a set of rows

30.	 Similarly, these slicing and access by index methods can be combined with column se-

lection to get a section of rows for only specific columns. In the next cell, you will select

the "number", "street", "long", and "lat" columns for the row numbers specified in the

previous step. Type in the following:

sdf_slice = sdf_address.loc[100:110][['number','street','long','lat']]

sdf_slice

Pandas, Data Frames, and Vector Data332

Run the cell. You should see the following output:

Figure 8.23: This slice is also a subset of columns

As you can see, slicing and accessing specific rows is made easy by the loc function. Accessing

specific columns is also made easy by passing a list of column names to the DataFrame in square

brackets.

31.	 Using the shapefile called cameron-county-pa.shp, you will create a Spatially Enabled

DataFrame. You will then perform slicing using loc to access the "SHAPE" row of the SEDF.

In the next cell, type in the following:

sdf_county = pd.DataFrame.spatial.from_featureclass(r"cameron-
county-pa.shp")

sdf_county.loc[0]['SHAPE']

Run the cell. You should see the following output:

Figure 8.24: Using loc to get the first row from the county data frame

Chapter 8 333

The spatial.plot method will also work to view the data, which is one of the best things

about Notebooks, as the data frame and the visualization are available in the same space.

In the next cell, type in the following:

sdf_county.spatial.plot()

Run the cell. You should see the data visualized on the map:

Figure 8.25: Visualization of a polygon using Spatially Enabled DataFrames

Summary
In this chapter, you were introduced to Pandas and DataFrames. You were also introduced to the

ArcGIS concept of the Spatially Enabled DataFrame. You explored reading data into Pandas, using

multiple methods designed to read from different file types. You also looked at manipulating data

using splicing and column manipulation. You learned how to query data in two different ways,

and how to output new datasets from the transformed data.

In the next chapter, we will explore using raster data with ArcPy and ArcGIS API for Python.

Read more about ArcGIS API for Python visualizations and symbology here: https://
developers.arcgis.com/python/guide/visualizing-data-with-the-

spatially-enabled-dataframe/.

https://developers.arcgis.com/python/guide/visualizing-data-with-the-spatially-enabled-dataframe/
https://developers.arcgis.com/python/guide/visualizing-data-with-the-spatially-enabled-dataframe/
https://developers.arcgis.com/python/guide/visualizing-data-with-the-spatially-enabled-dataframe/

9
Raster Analysis with Python

Both the arcpy and arcgis modules have raster tools included in their classes and methods. For

arcpy, the tools exposed are available in the Spatial Analyst toolbox, as well as some unique

methods of performing Map Algebra known as operators. For the arcgis module, the tools are

available in the arcgis.raster class.

In this chapter, we will use a Notebook in ArcGIS Pro and a digital elevation model (DEM) TIF

file to explore how to use Python with raster data. We will cover the following topics:

•	 Raster data objects and their properties

•	 ArcPy raster tools: The Spatial Analyst toolset and Map Algebra

•	 Using arcgis.raster

Each section covers a distinct component and does not require the completion of the preceding

component.

Raster data objects
Raster data can be read and written using ArcPy. The module allows you to create a new raster

object, add data to it, and save it as a raster dataset, or to read an existing raster into memory to

perform analysis on it.

To complete the exercises in this chapter, please download and un-

zip the Chapter9.zip folder from the GitHub repository for this book:
https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/
tree/main/Chapter9

https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter9
https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter9

Raster Analysis with Python336

ArcPy also allows you to use an existing raster to create a new raster object with the same schema

as the original.

A raster is referred to as a raster object when it has been read into memory using Python. A raster

object can be read-only, meaning it can’t be overwritten, or it can have read-and-write permissions

so that the data in the original raster can be changed when the raster object is saved.

In this section, you will use a Notebook to explore the available raster tools in the arcpy module.

Open ArcGIS Pro and start a new project, and then add a new Notebook from the Insert tab. Re-

name the Notebook to Chapter9. Using the Notebook will allow you to view the output of using

these tools.

Creating a new blank raster
When a new raster is needed, a few parameters must be supplied to create the output raster

dataset. These include basics such as the output folder and filename, cell size, number of bands,

pixel type (meaning available shades of color), and spatial projection (which defaults to the spa-

tial reference set in the ArcGIS environment), as well as other required and optional parameters.

This example shows required and optional parameters passed to the ArcPy tool called

CreateRasterDataset. There are many other values available to be passed to the tool and we

have chosen these only to demonstrate their order and use.

1.	 In a Notebook cell, enter the following lines and adjust the filepaths to match your system:

import arcpy

out_path = r'C:\projects\'

out_name = 'raster1.tif'

cell_size = '20'

pixel_type = '16_BIT_UNSIGNED'

spatial_ref = arcpy.SpatialReference(2227)

num_of_bands = '1'

config_keyword ='' # optional

pyramids = '' # optional

tile_size = '256' # optional

compression = 'NONE' # optional

pyramid_origin = '' # optional

out_raster = arcpy.management.CreateRasterDataset(out_path,out_name,
cell_size, pixel_type, spatial_ref, num_of_bands, config_keyword,
pyramids, tile_size, compression, pyramid_origin)

Chapter 9 337

The parameters must be passed to the CreateRasterDataset function in the order as shown. As

for the file type, the extension chosen will define the type of raster file created. In the example

above, we have chosen to create a TIF raster, with a cell size of 20. The spatial reference system

chosen is in feet, so the cell size represents 20 feet.

Reading and copying raster properties
To capture the details from another raster when creating a new raster, use the getRasterInfo

method of the existing raster object. This method simplifies the process of creating a new raster,

as the cell size, spatial reference, and all other details are copied from the existing raster into the

new raster object. The data is not copied, however.

To use this method, first read the existing raster into memory using the Raster tool to create a

raster object. Then, use the raster object and pass its getRasterInfo property to the Raster tool

to create a new raster.

2.	 Type the following code into a Notebook cell, adjusting the filepath to match an existing

raster on your system (the raster we just created, for example):

from arcpy import Raster

orig_raster = Raster(r'C:\project\oldraster')

orig_raster_info = orig_raster.getRasterInfo()

new_raster = Raster(orig_raster_info)

Run the cell.

Creating a raster object from an existing raster
By passing a string filepath to the arcpy.Raster class, we can access the data, including its

metadata and the array data itself.

Read more about the required and optional parameters here: https://pro.
arcgis.com/en/pro-app/latest/tool-reference/data-management
create-raster-dataset.htm

Check out more information here about the raster object: https://pro.arcgis.
com/en/pro-app/latest/arcpy/classes/raster-object.htm

https://pro.arcgis.com/en/pro-app/latest/tool-reference/data-management/create-raster-dataset.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/data-management/create-raster-dataset.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/data-management/create-raster-dataset.htm
https://pro.arcgis.com/en/pro-app/latest/arcpy/classes/raster-object.htm
https://pro.arcgis.com/en/pro-app/latest/arcpy/classes/raster-object.htm

Raster Analysis with Python338

The raster readOnly property is set to True by default, to avoid accidentally overwriting the raster

or its cells, but it can be set to False when creating the raster object.

Here is an example of accessing an existing raster and creating a raster object. We’ll use the USGS

DEM data (which is a TIF) included in the chapter’s ZIP file.

3.	 Enter the following into a Notebook cell, being sure to adjust the filepath to match where

you copied the TIF:

import arcpy

data = r'USGS_13_n38w123_20210301.tif'

raster_obj = arcpy.Raster(data)

raster_obj

Running the cell should give you the following output:

Figure 9.1: The resulting raster object

As a quick reminder, the final line in the screenshot above (raster_obj) creates an output in

the Out cell. In this case, the output is the raster object visualization. It can be thought of as the

equivalent of a print statement of a script.

Chapter 9 339

Saving a raster
All of the work done on a raster object will be performed in memory, which is not made perma-

nent unless it is saved to your hard drive. Even if a raster is added to the Map component of your

project in ArcGIS Pro, unless it is saved explicitly it will not be available the next time you open

your project, and you will see the dreaded red exclamation point next to your layers in the Map:

Figure 9.2: Red exclamation points are displayed when a dataset isn’t available

To save the raster object to the hard drive, use the save method of the raster object.

4.	 In a Notebook cell, type the following, adjusting the filepath to where you want to save to:

import arcpy

data = r'USGS_13_n38w123_20210301.tif'

raster_obj = arcpy.Raster(data)

raster_obj.save(r"C:\Projects\raster_save.tif")

Run the cell.

Once the raster object is saved, it can be added again to a Map or read back into memory in a

Notebook. This will allow you to explore the raster properties.

Accessing the raster properties
Once you have the raster object in memory, you can explore the properties of the raster. These

properties include geographic details such as the spatial coordinate system and the spatial extent,

or raster-specific properties such as the number of bands or the NoData value. Some properties

are about the raster itself and some are about the cell values contained within the raster. Some

of these methods and properties are read-only, while others are adjustable.

Raster Analysis with Python340

With the built-in dir function, you can explore the available methods and properties available

with a raster object. This will allow you to use the methods and properties in your analysis or

when assessing a dataset.

5.	 In the next cell, type in the following to read in this chapter’s raster object and explore

its properties:

import arcpy

data = r'USGS_13_n38w123_20210301.tif'

raster_obj = arcpy.Raster(data)

dir(raster_obj)

The output of the dir function is shown below. All of the functions of the Raster class are

listed, starting with internal functions that start with (and end with) double underscores.

The public functions come after these internal functions, and each allows you to access

a property of a raster object (such as the extent property) or a built-in function (such as

the save function). These functions are accessed using dot notation, where a period is

placed after the raster object and then the function is written:

Figure 9.3: The result of using the built-in dir function

For example, you can get the extent of the raster, and its constituent minimum and maxi-

mum values (known as XMin, YMin, XMax, and YMax), using the extent function. You might

then use those properties to create an ArcPy Point object from these inputs if you need

to create a vector representation of the raster extent.

6.	 To do this, in the next cell, type in the following:

lowerLeft = arcpy.Point(raster_obj.extent.XMin, raster_obj.extent.YMin)

print(lowerLeft)

Chapter 9 341

Run the cell. The raster object’s extent properties, XMin and YMin, are accessed directly

and passed to the arcpy.Point function.

Accessing raster and cell value properties
Many properties of rasters are accessed to assess the cell values contained within the raster.

These include properties such as mean, minimum, and maximum, and the NoData value. In the

example raster used in this chapter, the cell values represent elevation data, so understanding

the maximum or minimum value is very useful.

7.	 In the next cell, the minimum and maximum cell values are called using the respective

properties:

import arcpy

data = r'USGS_13_n38w123_20210301.tif'

raster_obj = arcpy.Raster(data)

print(raster_obj.minimum, raster_obj.maximum)

Running this cell should give you:

-103.81411743164062 985.8399047851562

8.	 The mean value of all the raster cells is also easy to obtain using the built-in mean method:

print(raster_obj.mean)

This gives us:

72.00359745334588

9.	 For rasters, there are often cells that have no data. Different raster formats use various

values to represent these NoData cells. Sometimes, there is even more than one NoData

value used within a single raster.

To access the specific NoData values, use the noDataValue or noDataValues method:

print(raster_obj.noDataValue)

This raster uses a float as a NoData value:

-3.4028234663852886e+38

Raster Analysis with Python342

10.	 As there are sometimes multiple values used as NoData values, the noDataValues meth-

od exists, and will return a tuple (unless there is a NoneType used as the NoData value):

print(raster_obj.noDataValues)

This gives us the following:

(-3.4028234663852886e+38,)

11.	 The height and width of the raster object represent the number of cells in the y and x

dimensions, respectively, from some geographic origin point. A raster does have to be

a rectangle but does not have to be a square. This means that the height and width will

not always be equal:

print(raster_obj.height,raster_obj.width)

In this case, running the cell shows us the height and width are the same:

10812 10812

12.	 Other raster information is available using the properties method:

raster_obj.properties

Run the cell. This is the output for the example raster:

{'KIND': 'IMAGE', 'BAND_COUNT': 1, 'HAS_TABLE': False, 'HAS_XFORM':
False, 'DataType': '*'}

The value of any specific cell can be accessed directly using the GetCellValue function of ArcPy.

You do not have to create a raster object first, but instead access the raster directly by passing the

raster filepath as the first parameter. The second parameter is the cell location in x/y notation,

and the third (optional) parameter is the band parameter, which can be used to get the value of

the cell in either all bands when left blank or only in specific bands when included.

13.	 In the next Notebook cell, type in the following to access the value of a specific raster cell.

The x and y value (the second parameter) must be in the same spatial reference system

as the raster:

result = arcpy.GetCellValue_management(r'USGS_13_n38w123_20210301.
tif', "-122.45 37.767", "1")

cellvalue = int(result.getOutput(0))

Chapter 9 343

Running this gives us the value at the specific cell:

'87.660217'

These tools make it easy to assess your raster and to access the data each cell contains. The prop-

erties of the raster will determine the allowable operations, so accessing them is an important

component of each analysis you will perform.

Geographic properties
There are a number of geographic properties used to help understand the area on Earth that the

raster represents. In the digital elevation dataset used in this chapter, the raster represents the

San Francisco Bay Area from Marin County in the west to Oakland in the east.

14.	 The extent of a raster represents the geographic space that the raster occupies. Type the

following into the next cell:

print(raster_obj.extent)

Run the cell. The extent will be reported in the coordinates of the spatial reference system

of the raster. In this case, the raster uses a geographic coordinate system based on the

North American datum of 1983, so it is reported in longitude and latitude:

-123.000555555794 36.999444440379 -121.999444440278 38.000555555895
NaN NaN NaN NaN

15.	 To access the spatial reference system itself, the spatialReference method is used:

raster_obj.spatialReference

Running this gives you a table that looks like the following:

Figure 9.4: The components of the spatialReference property

Raster Analysis with Python344

Raster properties are important for understanding your datasets. ArcPy makes it easy to access

these properties, and even to adjust them as well.

ArcPy Raster tools
Now that you understand how to create a raster object, let’s explore the use of raster objects with

raster tools. These tools are the same ones available in ArcToolbox and are executed by passing

the same parameters as you do when using the user interface through ArcGIS Pro.

However, by using Python, we can automate the analysis and run it as a script, or run these tools

in the Jupyter Notebook environment in ArcGIS Pro, as shown below.

In this section, you will use a digital elevation model to explore the tools that are available. These

tools include Slope, Hillshade, and Conditionals, to name just a few. Some of these tools can be

used without a Spatial Analyst license, but most advanced raster tools in ArcGIS Pro require

Spatial Analyst. You can use the same Notebook you created at the start of the chapter for this

code exploration.

The Spatial Analyst toolset and the sa module
The Spatial Analyst toolset enables advanced spatial modeling and analysis. It is represented as

the sa module within ArcPy. We were already introduced to this module in Chapter 2, Basics of

ArcPy, and we will recap and extend what we know in this section. A Spatial Analyst extension

license is required to access these tools.

To enable the license, you may need to log in to arcgis.com and go to the Licenses menu in your

account:

Figure 9.5: Organization page of arcgis.com, with the Licenses section at the upper right

https://arcgis.com

Chapter 9 345

Navigate down to the Spatial Analyst license section and click Manage. Then, click the on/off

switch to enable the license.

Figure 9.6: The Spatial Analyst license card in ArcGIS Online

Once the license has been checked out, the extension can be used successfully. Using ArcPy’s

CheckOutExtension method, check out the extension in a Notebook:

import arcpy

arcpy.CheckOutExtension("Spatial")

The 'CheckedOut' message returned confirms that the extension is licensed and available for use.

Generating a raster object
All of the tools in ArcToolbox can be used with in-memory raster objects.

1.	 For instance, we can create a Slope raster from the raster object:

import arcpy

data = r'USGS_13_n38w123_20210301.tif'

raster_obj = arcpy.Raster(data)

slope_raster = arcpy.sa.Slope(raster_obj)

slope_raster

Raster Analysis with Python346

The result is a Slope dataset, which can be viewed directly in your Notebook by running

the cell:

Figure 9.7: The resulting slope object

The Slope dataset is also added to the Map component automatically:

Figure 9.8: The Map component and its Table of Contents

Remember that these are objects in memory, and not saved anywhere. To save these types of

raster objects, you need to use the save method of the object, as we’ve been doing throughout:

slope_raster.save(r"C:\Projects\rast_slope_obj.tif")

Chapter 9 347

Statistical raster creation tool
Sometimes you will need to create a raster for statistical analysis with either a constant value, a

distributed value, or a random value, and ArcPy allows for that as well. These functions will pro-

duce rasters with one value assigned to every cell, rasters where a normal Gaussian distribution

is applied, or random rasters, which will assign a random value to all cell values in the output

raster. These are useful for adding other raster values to a blank raster canvas or for creating

random values for testing purposes.

The output spatial reference system (as well as other parameters) is controlled by environmen-

tal variables, or by the spatial reference of the map view. If there is no known spatial coordinate

system, the spatial reference of the output rasters will be set to Unknown.

You will need to check out a Spatial Analyst license, as explained above.

2.	 For instance, the Create Constant Raster tool allows you to generate a raster of a specific

data type (floating point data or integer data), and a constant value.

Cell size and extent are optional parameters, which can otherwise be set using environ-

mental variables, but are included here. In the next cell, type in the following:

import arcpy
const_raster = arcpy.sa.CreateConstantRaster(13, "INTEGER", 2,
Extent(0, 0, 500, 500))
const_raster.save("C:/projects/constant_raster")

Run the cell.

3.	 A raster with a normal Gaussian distribution is created using the Create Normal Raster

tool. This raster will assign a floating-point value to all cells. In the next cell, type in the

following:

from arcpy.sa import Extent, CreateNormalRaster
normal_raster = CreateNormalRaster(1, Extent(0, 0, 200, 200)) * 3.7 + 24
normal_raster.save(r"C:\arcpy\normal_raster")

Run the cell.

4.	 For a random raster, use the Create Random Raster tool. The parameters (seed value, cell

size, and extent) are optional. In the next cell, type in the following:

from arcpy.sa import Extent, CreateRandomRaster
outRandRaster = CreateRandomRaster(45, 10, Extent(0, 0, 250, 250))
outRandRaster.save(r"C:\arcpy\random_raster")

Raster Analysis with Python348

Run the cell.

Conditionals
If you want to select cell values using a conditional statement, use the ExtractByAttributes tool

instead. Using the Value keyword, we can select cells that meet the condition, and the resulting

raster will assign a NoData value to all cells that do not meet the condition.

5.	 In this example, we’ll select all areas that are below 200 meters in the elevation model:

extract_raster = arcpy.sa.ExtractByAttributes(raster_obj,

 "Value <= 200")

extract_raster

Run the cell. The result of the code shows a raster object where only cells with values below

200 meters are retained. All other cells (the white cells) are NoData cells:

Figure 9.9: Cells that are not white represent values below 200 meters

Learn more about this method of creating statistical rasters here: https://
pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst
/an-overview-of-the-raster-creation-tools.htm

https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/an-overview-of-the-raster-creation-tools.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/an-overview-of-the-raster-creation-tools.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/an-overview-of-the-raster-creation-tools.htm

Chapter 9 349

The screenshot below shows what information is returned when you click on a white cell

on the extract_raster in the Map component.

The original raster in the Table of Contents represents the same cell as a value of 227.95

meters in the info popup:

Figure 9.10: Clicking on the Map shows the value of a cell on the extracted raster to
be NoData where the original (raster_obj.tif) was above 200

The Hillshade tool
Another often-used tool within the Spatial Analyst toolset is the Hillshade tool. It requires an

input raster object and a number of optional parameters, including the azimuth (angle of the

light source), the altitude angle of the light source, the model shadow type, and the Z factor (the

number of ground units in each surface z-unit or elevation unit). The output is a Hillshade object,

which can be saved to disk and used for creating terrain models.

Raster Analysis with Python350

In the example below, we will create a Hillshade from a raster object and a set of parameters.

6.	 In the next cell, type in the following:

import arcpy

azimuth = 200

altitude = 45

model_shadows = 'NO_SHADOWS'

z_factor = 1

hillshade_obj = arcpy.sa.Hillshade(raster_obj, azimuth, altitude,
model_shadows, z_factor)

hillshade_obj

Run the cell. This screenshot shows the result you should obtain:

Figure 9.11: The resulting hillshade object produced by the Hillshade tool

Chapter 9 351

When running this tool, the results are sometimes ugly because the data below zero is also turned

into a “hill.”

It results in an odd and unwanted Hillshade result, as shown below:

Figure 9.12: A hillshade with odd “hills” created by data artifacts

To avoid this, you can use the tool in combination with the ExtractByAttributes tool to perform

the Hillshade operation only on the cells that meet the conditional. Since the ExtractByAttributes

tool returns an output raster, it can be added to the Hillshade tool as an input.

Raster Analysis with Python352

7.	 In this code below, we see that two operations are combined into one line. The

ExtractByAttributes tool is executed first. All cell values above 1 are extracted, and the

resulting raster object is passed to the Hillshade object:

from arcpy.sa import Hillshade, ExtractByAttributes

azimuth = 200

altitude = 45

model_shadows = 'NO_SHADOWS'

z_factor = 1

hillshade_obj2 = Hillshade(ExtractByAttributes(raster_obj,

 "Value >= 1"),

 azimuth, altitude,model_shadows, z_factor)

hillshade_obj2

Run the cell. The result of both operations (hillshade_obj2) is added to the Table of

Contents of the Map component of the project, as shown in the screenshot below:

Figure 9.13: The hillshades have been added to the Table of Contents on the left

Remember that the layers added to the Map component are only in memory and

will not be saved to disk unless you explicitly use the raster object’s save method.

Chapter 9 353

This will result in a much prettier hillshade:

Figure 9.14: A prettier hillshade produced by using only elevations above 1 meter

The Conditional tool
Another very useful tool in the sa module is the Con or Conditional tool, which we briefly saw

in action in Chapter 2, Basics of ArcPy. It allows you to perform an if/else evaluation of a raster’s

cells, and to assign a value when the condition is true, as well as an optional value for when the

condition is false.

For instance, if a cell has a value of 5 and the conditional states that all values below 10 are to

be replaced with the value 3, then the condition is true and the cell value will be adjusted to 3.

However, if the cell value is 11 for the same conditional, the condition is false, and either nothing

will happen, or it will be replaced with the value designated for false conditions.

There are two ways to organize this tool. One method mirrors how the tool is filled out using

the ArcToolbox interface, and the other uses a Map Algebra-like statement. The second method

avoids the conditional’s reliance on a default field name like VALUE, as sometimes the field name

may not be known to you when you are performing the analysis and may differ from the default.

8.	 Here is the first way to do it, where the first parameter is the input raster object, and the

second is the value of the raster object cells, the third is a value to be used for a cell if the

conditional is false, and the last is the conditional.

Raster Analysis with Python354

If you wanted to select all elevations above 200 feet, you could use this statement:

from arcpy.sa import Con

from arcpy import Raster

data = r'USGS_13_n38w123_20210301.tif'

input_raster = Raster(data)

result = Con(input_raster, input_raster, 0, "VALUE > 200")

Run the cell.

9.	 Here is the second way, known as the Map Algebra form. Instead of using a where condi-

tional with the keyword VALUE, a greater than operator (see next section) is used against

the raster object itself to create the condition. Cells that meet the condition are populat-

ed with values from the original input raster. Values that do not meet the condition are

assigned a NoData value:

result2 = Con(input_raster > 200, input_raster)

Run the cell.

The Con tool can be combined with other tools such as IsNull, which will allow you to

assess a raster for Null cell values and replace them or ignore them as needed.

10.	 In this example, the Null values are replaced with the value zero if the condition is true

(in other words, the cell values are Null). Otherwise, the cell values are not replaced:

result2 = Con(IsNull(input_raster), 0, input_raster)

Run the cell.

Similarly, the Con tool can be used inside another Con tool and combined with other

operators, creating a complete analysis flow in one statement. If you need to select areas

that are near sea level or near the top of hills, but avoid areas in between, you can use

this type of process. It will allow for multiple comparisons to happen in order to replace

values and then reassess the result.

11.	 To see this in action, type in the following:

result3 = Con(input_raster1 < 34,1, Con((input_raster1 >= 34) &
(input_raster1 < 37),2, Con((input_raster1 >= 37) & (input_raster1 <
45),3, Con(input_raster1 >= 45,4))))

Chapter 9 355

Run the cell. In this code, the conditional statements work together to create the output.

The first value supplied to the main, or outside, Conditional tool is the result of the oper-

ation input_raster1 < 34, meaning all cell values below 34 are assigned the value 1, and

all cells equal to or above 34 are assigned the result of the next conditional. In this next

conditional, values that are above or equal to 34 but below 37 are assigned the value 2; all

others are assigned the value of the next conditional. In this third conditional, those cell

values above or equal to 37 and below 45 are assigned the value 3. The final Con tool says

that all cell values above or equal to 45 are assigned the value of 4. In this way, the DEM

is divided into 4 “bins” where each bin is associated with a band of elevation.

The Conditional tool is even more useful when combined with Map Algebra operators, which

we will discuss next.

Map Algebra
ArcPy makes it easy to use Map Algebra on rasters. Map Algebra operators allow for mathematical

or conditional operations on the values of the cells of the rasters, including multiplying the values

or selecting specific cells based on those values and a conditional statement.

To explore how we’ll use Map Algebra within the Notebook, let’s take a look at the following ex-

ample, where a new raster object is created from an existing raster by applying a conditional value

against the existing raster object. This might apply when you need to select only high elevation

areas within a DEM, as part of a raster elevation workflow.

12.	 In the next cell, type in the following:

new_raster_obj = raster_obj > 30

new_raster_obj

Raster Analysis with Python356

Run the cell. The result of this operation is a Boolean, showing True or False areas that do

or do not meet the condition, as shown in this screenshot of the resulting raster:

Figure 9.15: This Boolean result shows areas above (light) or below (dark) 30 meters

Similarly, a mathematical operation could be directly applied against a raster object, such as

multiplying the raster object by 4. This would be useful for creating an exaggerated DEM or to

scale a raster to match other rasters:

13.	 In the next cell, type in the following:

times_raster = raster_obj * 4

times_raster

Chapter 9 357

Run the cell. The screenshot below contains an info popup that shows the value of the

same cell:

Figure 9.16: The cell queried shows two different values: in the original raster and
the raster object in memory, it is ~117, and the cell in the result of the multiplication

operation is 4 times that value

Another example would be adding two raster objects together. In this manner, the resulting raster

object would represent the addition of all of the cell values, using this format. Imagining that

there are two rasters (raster1 and raster2) in your project, you could do:

raster_obj_addition = Raster("raster1") + Raster("raster2")

Raster Analysis with Python358

Let’s look at an example with actual rasters:

14.	 First, we create a Boolean raster that represents a True value for all areas above 100 within

the original raster object:

high_raster_obj = raster_obj > 100

high_raster_obj

Run the cell. The resulting Boolean raster has two distinct areas: cells that are above 100

meters and cells that are below (in other words, the cells where the statement raster_obj

> 100 is true or false):

Figure 9.17: The raster result has cells above 100 (lighter) or below (darker)

15.	 Then, we create a raster object that is True if the value of the cell is below 70:

med_raster_obj = raster_obj < 70

med_raster_obj

Chapter 9 359

Run the cell. This results in a Boolean with two areas, representing cells that meet the

statement conditions and those that do not:

Figure 9.18: The raster result has areas above 70 (true) or below (false)

16.	 Finally, we add them together:

result_raster_objs = med_raster_obj + high_raster_obj
result_raster_objs

Run the cell. The resulting raster object is not Boolean, although it contains cells with

values of 1 or 0. Where the raster cells are 1, the zero areas of the high raster object were

added to the 1 value areas of the medium raster object.

Raster Analysis with Python360

Where the raster cells are 0, there were only zeros in both parent raster objects. It creates

a kind of outline, defined as the areas between 70 and 100 in the original DEM:

Figure 9.19: The result of the addition, where areas between 70 and 100 are given
the value 1

Shorthand operators for Map Algebra
There are a number of shorthand operators that we can use when working with raster objects.

These operators allow inline code to execute many different kinds of Map Algebra operations

on a raster object. We saw above the use of multiplication using the asterisk (*), but there are

many more.

17.	 For instance, to raise a raster to the power of a number, N, you would use two asterisks

(**). This makes it easy to exaggerate raster elevation heights or to differentiate between

cell value classes:

power_raster_obj = raster_obj ** 2

power_raster_obj

Run the cell. The result of the operation is a raster where each cell value has been squared.

Chapter 9 361

The following screenshot shows the cell value at a selected cell, with the cell value of the

original raster object below it:

Figure 9.20: The selected cell has a value of 15.393963 to the power of 2

Addition and subtraction are performed using the expected plus (+) and minus (-) signs. This

can be used with another raster object or with an integer or float value. When used with another

raster, as we saw above, the value of the cell in the second raster object will be added or subtracted

from the initial raster. The result is then assigned to an output raster object, which is temporary

and must be saved to be committed to disk.

Negative operator
One cool feature of the operators is that some of them can be placed in front of the raster object

to create a new raster object. The minus operator can be used in this fashion to create a negative

of the original raster object.

Raster Analysis with Python362

This will allow you to add a positive and negative raster together in an analysis, or use the raster

to create an inverse DEM.

18.	 In the next cell, type in the following:

negative_raster = -raster_obj

negative_raster

Run the cell. The resulting raster shows the mountain tops as valleys (where the dark

areas are negative):

Figure 9.21: A negative raster where the highest value is on the sea floor

Division operators
Division is performed using the forward slash (/), but to achieve integer division (where the

operation produces integer cell values), you’ll need to use the double forward slash instead (//).

This will allow you, for example, to reduce the height of hillshades.

Chapter 9 363

19.	 In this example, we’ll divide the values in each cell by 3.5 using the forward slash operator:

division_raster = raster_obj / 3.5

This gives us:

Figure 9.22: The cell value of the raster is 3.5x smaller than the original raster cell value

20.	 Instead of using the division operator, in this next example, we’ll use the integer division

operator. This makes the resulting cell values into integers, even when divided by a float.

You may need this for simplifying raster addition analyses or for creating cell “bins”:

integer_division_raster = raster_obj // 3.5

Raster Analysis with Python364

Run the cell. The resulting raster object has only integer values, as shown in the Table

of Contents:

Figure 9.23: The Table of Contents shows the result of both types of division operations

Boolean operators
Another useful set of operators are Boolean (True/False) operators, which allow you to perform

Boolean operations on raster cell data. You may need to find areas that meet a set of conditions

and evaluate them as true or false, and then add them together.

To perform a Boolean OR, use the pipe symbol (|). The result of this operation will contain only

1 or 0 (True or False) cell values, or a NoData value:

raster_or_output = Raster("raster1") | Raster("raster2")

Chapter 9 365

In the above state, the rasters would be combined in such a way that matching raster cells where

there is a value above zero (on either raster) will be assigned True (1), cells where both rasters

are equal to zero will be assigned False (0), and values where there is a NoData value on either

raster will be assigned NoData.

A Boolean AND is performed using an ampersand (&):

raster_and_output = Raster("raster1") & Raster("raster2")

Like the OR operation, the result of this operation will contain only 1 or 0 (True or False) cell

values or a NoData value. However, in this case, it assigns True (1) where both rasters, when

overlaid, contain a value above 0; False (0) where the overlaid cells both have a value of 0 or

where one raster has a cell of 0; and NoData where at least one raster has a cell value of NoData.

The greater than and less than operators use the (>) and (<) symbols, respectively, but remember

that these are Boolean operators, and the result will be an output raster object that splits the cell

values into True (1) or False (0), depending on the condition set. This may not be the desired out-

put, so if you want to select cell values using a conditional statement, use the ExtractByAttributes

tool from the Spatial Analyst module instead.

Using arcgis.raster
ArcGIS API for Python (the arcgis module) also contains useful tools for raster layers and imagery

layers. Used in combination with arcpy, it can allow you to store rasters or imagery in the cloud,

pull down the rasters, perform analysis or a process on the rasters, and then put the rasters back

into ArcGIS Online.

Much like arcpy, there are a ton of built-in functions for arcgis that enable you to interact with

raster data. These functions allow you, for example, to get statistical properties of the raster such

as mean or maximum or minimum cell value, or to perform mathematics on the cell values. Most

of these functions are part of the raster subclass of arcgis and are available at arcgis.raster.

functions.

Read more about working with the Map Algebra operators here: https://
pro.arcgis.com/en/pro-app/latest/help/analysis/spatial-analyst/

mapalgebra/working-with-operators.htm

https://pro.arcgis.com/en/pro-app/latest/help/analysis/spatial-analyst/mapalgebra/working-with-operators.htm
https://pro.arcgis.com/en/pro-app/latest/help/analysis/spatial-analyst/mapalgebra/working-with-operators.htm
https://pro.arcgis.com/en/pro-app/latest/help/analysis/spatial-analyst/mapalgebra/working-with-operators.htm

Raster Analysis with Python366

Working with imagery layers
In this example, we will load an imagery layer from the web into a map and save it to disk.

You may carry on in the same Notebook as the previous section.

1.	 The first step is to create a GIS object to access the satellite image from an imagery service

using a URL. In a new cell, type in the following:

from arcgis.gis import GIS

from arcgis.raster import *

gis = GIS("pro")

map_obj = gis.map()

imagery_obj = ImageryLayer("https://sentinel-cogs.s3.us-
west-2.amazonaws.com/sentinel-s2-l2a-cogs/1/C/CV/2018/10/
S2B_1CCV_20181004_0_L2A/B02.tif", gis=gis)

imagery_obj

Run the cell. The result of the call to the URL is an imagery object:

Figure 9.24: The image selected from the imagery service

2.	 To add the layer to the map, use the add_layer function:

map_obj.add_layer(imagery_obj)

Run the cell.

Chapter 9 367

3.	 The imagery layer can be saved to disk using the export_image method:

imagery_obj.export_image(size=[1400, 600],

 export_format="tiff",

 f="image",

 save_folder=r"C:\my\save_folder",

 save_file="raster.tif")

Run the cell. The output format can also be JSON, KMZ, an image, or even a NumPy ar-

ray. In this example, it is an image type (f="image"). Other optional parameters include

compression and aspect ratio.

Much like our exploration of the arcpy raster tools, this is just scratching the surface of

the available tools in the arcgis module. For instance, imagery statistics can be created

using built-in functions.

4.	 The extent of the image can be used to understand where on Earth the image represents

(which may not be obvious), and is accessed via the extent property:

imagery_obj.extent

Run the cell. This is the result:

{

 "xmin": 300000,

 "ymin": 1890220,

 "xmax": 409800,

 "ymax": 2000020,

 "spatialReference": {

 "wkid": 32701,

 "latestWkid": 32701

 }

}

You can use the extent JSON to create a new JSON object for calculating a histogram. It reveals

the WKID (Well Known ID), a spatial reference identifier, along with the bounding box extent

envelope coordinates.

Plotting a histogram
A histogram is a summary of the distribution of the pixel values of the image, combined into bins.

Raster Analysis with Python368

It gives you a statistical insight into the images available from the imagery service or from a

raster object.

The histogram values must be calculated using the compute_histograms function. It requires

a geometry object (a Polygon or Envelope), passed as a JSON object. This JSON uses the same

WKID as the extent JSON.

5.	 In the next cell, type in the following to use the extent in the previous step to compute

a histogram:

hist =imagery_obj.compute_histograms({

 "xmin": 300000,

 "ymin": 1890220,

 "xmax": 301800,

 "ymax": 1900020,

 "spatialReference": {

 "wkid": 32701,

 "latestWkid": 32701

 }

})

hist

Run the cell. The result of the operation is shown below:

Figure 9.25: The result of the histogram calculation

6.	 Using the Matplotlib library, which is included with the Python installation for ArcGIS

Pro, the histogram statistics can be plotted to reveal the concentration of pixel values.

Chapter 9 369

In the next cell, type in the following:

import matplotlib.pyplot as plt

%matplotlib inline

plt.hist(hist['histograms'][0]['counts'],

 len(hist['histograms'][0]['counts']),

 density=True,

 histtype='bar',

 facecolor='b',

 alpha=0.5)

plt.show()

Run the cell. This code will pass the histogram data to the library (with no “binning”)

and create a bar graph of the data:

Figure 9.26: The histogram plotted with Matplotlib

This is one quick way to assess the statistics of the imagery data or raster you are working with,

using the included tools for ArcGIS API for Python and the useful matplotlib library, which

cannot be fully covered here.

Raster Analysis with Python370

Working with raster layers
The arcgis.raster.Raster function creates a raster object, in a similar manner to the arcpy.

Raster function:

7.	 In the next cell, type in the following to generate a raster object from the DEM:

araster_obj = arcgis.raster.Raster('USGS_13_n38w123_20210301.tif')

Run the cell.

8.	 The extent of the raster can be accessed using the extent function:

araster_obj.extent

This is the result after running the cell:

{'xmin': -123.00055555579371, 'ymin': 36.999444443707034, 'xmax':
-121.99944444360563, 'ymax': 38.00055555589506, 'spatialReference':
{'wkid': 4269, 'latestWkid': 4269}}

9.	 The raster statistics can be accessed using the get_statistics method:

stats = araster_obj.get_statistics()

This is the result, showing the minimum, maximum, and mean cell values, among other

details:

[{'min': -103.81411743164, 'max': 985.83990478516, 'mean':
72.003597453322, 'standardDeviation': 141.66796857683, 'skipX': 1,
'skipY': 1, 'count': 0.0}]

10.	 Save the raster into a folder using the save method:

araster_obj.save(output_name='C:/projects/test_raster.tif',gis=gis)

The raster can also be written to a cloud service using this save method, by specifying

that the gis object is writing to ArcGIS Online instead of a local filesystem.

These methods can be combined with the ArcPy methods for raster objects to create custom

raster workflows. This chapter was limited in length and could only touch on a selection of the

available raster tools in these modules.

Chapter 9 371

There are many other functions available for processing, and accessing the properties of, the

rasters in both modules.

Summary
In this chapter, you learned how to use ArcPy to read rasters into memory or create new rasters,

and to save the result. You learned how to read the raster properties for both the cell values and

the geographic values. You also learned how to use the sa module to access Spatial Analyst tools,

and to perform operations on the rasters to create Slope or Hillshade rasters. You also reviewed

the uses of arcgis.raster to get data from the web and save it locally.

In the next chapter, you will learn about the NumPy module and how it is used with arrays and

Notebooks to process raster data quickly for statistical analysis.

Read more about using the arcgis module for rasters here: https://developers.

arcgis.com/python/api-reference/index.html

https://developers.arcgis.com/python/api-reference/index.html
https://developers.arcgis.com/python/api-reference/index.html

10
Geospatial Data Processing with
NumPy

Data processing tools are often limited to the pre-built tools discussed in other chapters, or open-

source tools such as Shapely, Rasterio, or GDAL. These tools can be limited in terms of processing

speed and flexibility. When creating geospatial data workflows, you will often have to create

custom tools to process data quickly, and those other libraries can be limiting.

NumPy offers a third way. Used for scientific computing, it is an incredibly fast and powerful

module written in C, with a Python code “wrapper” so it can be used in your existing Python

environment. It is built to read, analyze, and write multidimensional arrays of data.

Esri has included easy tools to convert rasters into NumPy arrays and back, which makes it easy to

add custom NumPy functions into your existing pipelines. Selecting or clipping areas of a raster,

performing array math, creating new arrays and populating them with data, processing specific

raster bands or cell values; these are all suitable processes to perform with the NumPy module.

The results can then be written back as raster output and used in other ArcGIS Pro workflows.

In this chapter, we will cover the following topics:

•	 The advantages of NumPy arrays in Python processing

•	 Importing rasters into arrays

•	 Replacing raster processing tools using NumPy tools

•	 Saving arrays as rasters

•	 Mathematical operations using arrays

Geospatial Data Processing with NumPy374

•	 Exercise: Statistical analysis of raster data using NumPy

•	 Creating charts from NumPy arrays using Matplotlib

Introduction to NumPy
NumPy is an important data processing module included with ArcGIS Pro. NumPy was originally

written by Travis Oliphant, who also went on to develop the Anaconda project. It is an open-

source Python library based on two competing numeric structure libraries known as Numeric

and Numarray.

NumPy was written to be able to handle large arrays of data and also to extend the functionality of

Python for mathematical and scientific processing. This makes it a very useful library for writing

code to read, analyze, and write raster data.

For ArcGIS Pro users and code writers, using NumPy directly allows you to create custom func-

tions and tools that are not available in the basic tools included in ArcGIS Pro. NumPy’s speed

and mathematical capabilities open up new ways to perform analyses and create data workflows.

These custom data workflows will often use Pandas, and NumPy is at the heart of Pandas. Pandas

is built on NumPy and its array structure, known as ndarray (or N-dimensional array), is what

is used for the Pandas Series data structure. As we learned in Chapter 8, a Pandas Series is akin to

a row of data and will often be called a row in this chapter.

Advantages of NumPy arrays
NumPy ndarrays are homogenous (all data is of the same data type) and multidimensional. This

makes ndarrays very useful for many data types used in GIS, including continuous geospatial data

such as rasters, which often have multiple dimensions, known as bands.

The core code of NumPy is written in the C programming language. This allows for better memory

management of large arrays of data and quicker processing of data. Python, as an interpreted

language, must be converted into byte-code to be executed, which can make the code run more

slowly for some applications. Owing to that C code core, NumPy is more efficient and faster.

To complete the exercises in this chapter, please download and unzip the Chapter10.

zip folder from the GitHub repository for this book: https://github.com/

PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter10.

https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter10
https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter10

Chapter 10 375

NumPy arrays versus Python lists
NumPy arrays are often compared to the built-in Python list data type. Both lists and ndarrays

are ordered data structures that are mutable and enclosed in square brackets. However, there are

some major differences between them.

A Python list can contain a combination of different types of data, while NumPy arrays can only

contain one type of data per array. This means that there is no type checking on each object in

the list. NumPy arrays are also faster when accessing data, and are more compact in memory use.

Data objects in an array are stored with much less metadata describing the object (size, reference

count, object type, and object value are stored for Python lists). Python lists therefore balloon the

memory usage, making it much slower to access or iterate each object.

Importing NumPy
The first step toward using NumPy is to import the module. Open a new Notebook in ArcGIS Pro

and type the following into the first cell:

import numpy as np

Run the cell. Using the variable np to represent the numpy module is not required, but it is an ac-

cepted shorthand for Python code that makes it easier to access the submodules and properties

of NumPy.

Basics of NumPy for rasters
Using NumPy for rasters is very straightforward. Rasters are data organized into regular rows

and columns, and may have multiple bands of data. These data behaviors can be precisely rec-

reated using NumPy arrays, which can have any number of rows or columns, as well as multiple

dimensions.

Read more about NumPy here: https://numpy.org/.

Read the basic introduction to NumPy here: https://numpy.org/doc/stable/

user/absolute_beginners.html.

https://numpy.org/
https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/absolute_beginners.html

Geospatial Data Processing with NumPy376

Creating an array
Often in GIS you must create rasters for analyses. These arrays may need to be blank, allowing

you to accumulate values from inputs to a continuous surface based on location; all one value to

create a constant raster; or merged with vector data inputs such as GeoJSON files or shapefiles.

All of these are possible with NumPy arrays.

There are many ways to create a NumPy array. Some of these are built-in tools, and some are

methods to derive an array from an existing dataset such as a raster, CSV file, or JSON data, as seen

in Chapter 8’s exploration of Pandas. Data can also be read from a vector file such as a shapefile

or feature class, or even a raw text file.

To create an array of any shape where every value is 0, there is a built-in tool: numpy.zeros. Instead

of passing in a set of values, a tuple containing only the shape of the array is passed, where the

shape represents the number of rows and number of columns respectively.

This example will create a uniform array where the values are 0, with 4 rows and 6 columns:

nparray_zeros = np.zeros((4,6))

The resulting array looks like this:

Figure 10.1: Creating an array of zeroes

Chapter 10 377

Similarly, you can create an array where all values are 1. In this example, the result will be an array

with 6 rows, each with 7 elements. We want an array with more than a single row, so we use the

numpy.ndarray.ones function, for which the default data type is float:

nparray_ones = np.ones((6,7))

The array looks like this:

Figure 10.2: Creating an array of ones

In this next example, an array is created from a Python list with 4 elements:

onelist = [2,4,6,8]

nparray = np.array(onelist)

You can create a random array using the randint function. It will produce an array of the specified

shape (the parameter called size, confusingly) and will populate the array with random values

up to the first parameter. The seed function is used to “seed” the random generator (as “random”

generators are not truly random, and rely on a seed value to create the generated output):

np.random.seed(0)

nparray_3d = np.random.randint(10, size=(3, 4, 5))

Geospatial Data Processing with NumPy378

The array will look something like:

Figure 10.3: Creating a random array

Ranges can be used to create an array as well, using the NumPy arange method. The following

line of code will create an array with 1 row, containing the numbers 0-9:

nparray3 = np.arange(10)

As you have seen, there are many different ways to create arrays in NumPy.

Reading a raster into an array
To read data from a raster into a NumPy array, ArcPy has a built-in method, RasterToNumPyArray.

This allows you to read any type of raster into an array and perform analysis using custom NumPy

processing.

Chapter 10 379

The input to RasterToNumPyArray can be either a raster object or a string that is the path on your

computer to the raster. In the example below, you will read a raster into a raster object and pass

the raster object into RasterToNumPyArray.

1.	 In your Notebook, add the following lines to a new cell. Adjust the file path variable to

match where you have placed the elevation TIF from Chapter 9:

import arcpy

file_path = r'USGS_13_n38w123_20210301.tif'

raster_obj = arcpy.Raster(file_path)

raster_obj

Run the cell. You should see the following output:

Figure 10.4: Elevation data as a raster object

2.	 Now that you have the raster object, it can be converted into a NumPy array:

nparr_raster = arcpy.RasterToNumPyArray(raster_obj)

nparr_raster

Geospatial Data Processing with NumPy380

Run the cell. You should see the NumPy array in the output cell:

Figure 10.5: The Notebook representation of the array after being converted from
a raster

With the raster now converted into an array, NumPy tools can be used on the raster data. We will

cover these more later in the chapter.

Now that we can create an array or import an array, let’s review the properties of arrays using

built-in NumPy functions.

Array properties
NumPy arrays all have a size, shape, dimension, and data type. These behaviors influence their

use and behaviors.

Size
The size of an array refers to the number of data elements within it, which can be determined using

the total number of rows multiplied by the total number of columns multiplied by the number of

dimensions. The size of an array is called using the size property of an array, numpy.ndarray.size.

If you want to explore more about the parameters of the RasterToNumpyArray

function, check out the official documentation here: https://pro.arcgis.com/

en/pro-app/latest/arcpy/functions/rastertonumpyarray-function.htm.

https://pro.arcgis.com/en/pro-app/latest/arcpy/functions/rastertonumpyarray-function.htm
https://pro.arcgis.com/en/pro-app/latest/arcpy/functions/rastertonumpyarray-function.htm

Chapter 10 381

For example, consider the size of an array with 2 rows, each with 4 columns, with 1 dimension:

datalist = [[2,4,6,8], [1,3,5,7]]

nparray = np.array(datalist)

print(nparray.size)

The result of the print statement will be 2 * 4 * 1 = 8.

Shape
The shape property of an array refers to a tuple that contains up to 3 values; however, there may

only be 2. Instead of the total number of elements, which is the size, the shape describes the

array’s structure.

If there is only 1 dimension (or band, in raster terminology) to the array, the shape will describe

the number of rows and the number of columns that the array contains. If the number of dimen-

sions is more than 1, the shape array will include a third value, with the number of dimensions

first, then rows, then columns.

If we look at the array from above, created from a list of lists, it has a shape of (2,4):

datalist = [[2,4,6,8], [1,3,5,7]]

nparray = np.array(datalist)

nparray.shape

This is the result:

 (2, 4)

In the following example, an array with a shape of 3 dimensions, 4 rows, and 5 columns is created

and populated with random integer elements:

np.random.seed(0)

nparray_3d = np.random.randint(10, size=(3, 4, 5))

Below we see the output:

array([[[5, 0, 3, 3, 7],

 [9, 3, 5, 2, 4],

 [7, 6, 8, 8, 1],

 [6, 7, 7, 8, 1]],

Geospatial Data Processing with NumPy382

 [[5, 9, 8, 9, 4],

 [3, 0, 3, 5, 0],

 [2, 3, 8, 1, 3],

 [3, 3, 7, 0, 1]],

 [[9, 9, 0, 4, 7],

 [3, 2, 7, 2, 0],

 [0, 4, 5, 5, 6],

 [8, 4, 1, 4, 9]]])

Note that the randint function confusingly uses the parameter size to describe the shape, but

the resulting array’s shape and size properties are reported as expected:

print("shape: ",nparray_3d.shape,"\n", "size:", nparray_3d.size)

The output:

shape: (3, 4, 5)

size: 60

You can see above the 3 dimensions of the array, each of which has 4 rows of 5 columns. As 3 * 4 * 5 is

60, the size of the array is 60.

Data type
The dtype property allows you to confirm the data type of the array. As it is an array, and not a

Python list, all of the data in the array is the same type, so only 1 value will be returned. All arrays

have a dtype method, no matter the data type. Let’s check the dtype of the nparr_raster array

from above:

print(nparr_raster.dtype)

In this case, the dtype is float32. The data type of the array will determine what kinds of mathe-

matical operations can be performed on the array. If you are going to perform Map Algebra on en-

vironmental rasters, for instance, you want to be sure that the data types can be “added” together.

The data type can be specified using the dtype parameter for most array creation functions. Use

the dtype parameter like this:

onelist = [2,4,6,8]

nparray = np.array(onelist, dtype=float)

Chapter 10 383

It works the same for more dimensions:

twolist = [[2,4,6,8], [1,2,3,4]]

nparray = np.array(twolist, dtype=float)

The results look like this:

Figure 10.6: Specifying the float data type for two arrays

Accessing specific elements
Updating a specific element value of an array, or a set of elements, is made simple using NumPy.

Finding a portion of a raster and using only that smaller subsection of the raster for analysis is a

very useful function that NumPy makes easy.

To get to the specific element, you can use indexing. If the shape of the array has more than 1 row,

the indexing is more specific. This is useful for updating continuous rasters such as precipitation.

In the following example, the indexing of the array acts much like the indexing on a Python list.

The result is the last two values in the array, which have a dtype of float:

onelist = [2,4,6,8]

nparray = np.array(onelist,dtype=float)

print(nparray[2], nparray[3])

This is the output:

 6.0 8.0

Geospatial Data Processing with NumPy384

In the next example, the array has a shape of (2,4). To access data elements, you must specify an

index that includes the row number (starting from 0) and then the element in the row. Below, we

print the array’s shape, the fourth element of the second row, and the third element of the first row:

twolist = [[2,4,6,8],[1,2,3,4]]

nparray = np.array(twolist,dtype=float)

print(nparray.shape, nparray[1,3], nparray[0,2])

The code in a Notebook cell looks like this:

Figure 10.7: Getting the shape of an array and accessing elements

For arrays with more than one dimension (or band for rasters), as well as multiple rows and col-

umns, the indexing requires three values: a dimensional index, a row index, and a column index:

nparray = np.random.randint(10, size=(3, 2, 5))

This is the result:

 array([[[8, 1, 1, 7, 9],

 [9, 3, 6, 7, 2]],

 [[0, 3, 5, 9, 4],

 [4, 6, 4, 4, 3]],

 [[4, 4, 8, 4, 3],

 [7, 5, 5, 0, 1]]])

We can use indexing to get the data from specific cells by listing the dimension, row, and column:

print(nparray[0,0,1], nparray[0,1,0], nparray[1,0,0])

This is the result of the indexing for this particular random array:

1 9 0

Chapter 10 385

Using indexes to access elements is helpful for updating specific values, one at a time. To access

or update a subset of rows, use array slicing.

Accessing a subset of the array
Instead of just accessing one element, it’s often important to select a subset of the array. For in-

stance, when processing a raster, it’s useful to select a portion of the raster instead of working

on the whole raster, which might be very large. NumPy arrays make this easy using the power of

slicing, making it possible to perform analysis on just the subset selected.

The slicing mechanism matches the shape of the array. If there is one row, you need to pass one

index “set” or description of the indexes to select. If there is more than one row, you will need

two index sets, and if there is more than one dimension (think rasters with multiple bands) you

will need to include three index sets.

Slicing an array with one row is simple and mirrors the slicing of a Python list. Using indexing, you

select the subset of values in the array as a new array, and often assign them to a new variable:

onelist = [2,4,6,8]

nparray = np.array(onelist)

print(nparray[1:4])

This is the result of our slicing operation:

 [4 6 8]

Slicing an array with more than one row (which describes most rasters) is a bit more complex. It

requires two separate selection sets, which indicate the rows and the columns to select.

The first set includes the indexes of the rows to be selected, and the second set includes the indexes

of the columns. These indexes can be one value (if only one row or column is to be selected) but

generally more than one row or column is selected at a time. This is achieved by using the colon

to separate the start and end indexes.

This example demonstrates how to select the last 4 columns of the first 2 rows. First, let’s make

the array:

nparray_2d = np.random.randint(10, size=(6, 6))

Our array looks like this:

array([[5, 9, 3, 0, 5, 0],

 [1, 2, 4, 2, 0, 3],

Geospatial Data Processing with NumPy386

 [2, 0, 7, 5, 9, 0],

 [2, 7, 2, 9, 2, 3],

 [3, 2, 3, 4, 1, 2],

 [9, 1, 4, 6, 8, 2]])

Let’s slice the last 4 columns of the first 2 rows:

nparray_2d[0:2, 2:6]

We get:

array([[1, 1, 2, 7],

 [9, 5, 0, 4]])

Slicing arrays with more than one dimension is similar, but you need to include a third set to

describe the dimensions that you want to select. Let’s make a random array with 3 dimensions,

with 3 rows each, containing 9 elements each (the columns):

nparray_3d = np.random.randint(10, size=(3, 3, 9))

This is the array:

array([[[3, 0, 0, 6, 0, 6, 3, 3, 8],

 [8, 8, 2, 3, 2, 0, 8, 8, 3],

 [8, 2, 8, 4, 3, 0, 4, 3, 6]],

 [[9, 8, 0, 8, 5, 9, 0, 9, 6],

 [5, 3, 1, 8, 0, 4, 9, 6, 5],

 [7, 8, 8, 9, 2, 8, 6, 6, 9]],

 [[1, 6, 8, 8, 3, 2, 3, 6, 3],

 [6, 5, 7, 0, 8, 4, 6, 5, 8],

 [2, 3, 9, 7, 5, 3, 4, 5, 3]]])

To select the subset, the first index set (1) indicates that only the second band should be selected

from, and the second (:) indicates that all values from the first index onward should be included

(in other words, every row). The third set (2:7) indicates that only the elements from the selected

columns should be included:

nparray_3d[1,:,2:7]

Chapter 10 387

This is the result:

 array([[0, 8, 5, 9, 0],

 [1, 8, 0, 4, 9],

 [8, 9, 2, 8, 6]])

Slicing a raster
Performing these slice operations on an array generated from a raster can be very useful, as it

can replace raster clipping operations in a workflow, meaning you can choose to only work on

a section of the raster. In the following example, we’ll read a raster into an array, slice it, assess

it, and save it.

1.	 First, let’s import the raster and convert it to a NumPy array:

import arcpy

file_path = r'USGS_13_n38w123_20210301.tif'

raster_obj = arcpy.Raster(file_path)

nparr_raster = arcpy.RasterToNumPyArray(raster_obj)

print(nparr_raster.shape, nparr_raster.size)

Running the cell allows us to see its shape and size:

(10812, 10812) 116899344

2.	 Next, we’ll select a subset:

nparray_subset = nparr_raster[6000:, 6000:]

nparray_subset.shape

Run the cell. You should see:

(4812, 4812)

Notice that the selected data is in the lower-right quadrant of the original raster array,

which had a shape of (10812, 10812). The new array has a shape of (4812, 4812) after the

slicing operation.

3.	 After selecting the subset, the resulting array can be converted back into a raster to be

viewed. In the next cell, type in:

raster_nparray = arcpy.NumPyArrayToRaster(nparray_subset)

raster_nparray

Geospatial Data Processing with NumPy388

This is the resulting raster:

Figure 10.8: The “sliced” raster, representing a 4812x4812 area of the original raster

4.	 To save the subset of the raster array, use the save method. Give the raster output a name

as well as an extension to make it a valid file:

 raster_nparray.save("C:/Projects/subset.tif")

Run the cell.

Slicing is very common, especially when you need to clip the raster to process just one part of it.

When you need to join the arrays back together, use the concatenate tool.

Concatenating arrays
Combining arrays of a similar shape is easy using the numpy.concatenate function. The

concatenate function allows you to adjust the “axis” of the concatenation, meaning the method

of joining the two arrays. The default axis (0) allows you to maintain the shape of the columns

while adding the second array as new rows. Let’s look at an example:

Chapter 10 389

onelist = [[2,4,6,8],[1,4,6,7]]

nparray = np.array(onelist)

twolist = [[3,5,1,9],[2,3,8,5]]

nparray2 = np.array(twolist)

np.concatenate((nparray, nparray2), axis=0)

With an axis of 0, this is the result of the concatenation:

 array([[2, 4, 6, 8],

 [1, 4, 6, 7],

 [3, 5, 1, 9],

 [2, 3, 8, 5]])

Using an axis of 1 will increase the number of columns instead:

np.concatenate((nparray, nparray2),axis=1)

This is the new result:

 array([[2, 4, 6, 8, 3, 5, 1, 9],

 [1, 4, 6, 7, 2, 3, 8, 5]])

Let’s explore this concept with raster data.

1.	 First, enter the following code to create the subset array from the elevation raster into a new

cell. This subset array starts at the 6,000th row and the 6,000th column of the raster array:

file_path = 'USGS_13_n38w123_20210301.tif'

raster_obj = arcpy.Raster(file_path)

nparr_raster = arcpy.RasterToNumPyArray(raster_obj)

nparray_subset = nparr_raster[6000:, 6000:]

Run the cell.

2.	 Next, create a second subset array:

nparray_subset2 = nparr_raster[:6000, 6000:]

raster_nparray2 = arcpy.NumPyArrayToRaster(nparray_subset2)

Run the cell. The second subset array starts at row 0 (meaning the first row of the array)

and goes until row 5,999, and includes the same columns of those rows (from column

6,000 until the last column).

Geospatial Data Processing with NumPy390

3.	 Now, we can concatenate these columns. Note that the second subset is added first to the

parameters, as it’s “above” the first subset:

joined_array_axis0 =
np.concatenate([nparray_subset2,nparray_subset],axis=0)

raster_joined_axis0 = arcpy.NumPyArrayToRaster(joined_array_axis0)

raster_joined_axis0

Run the cell. Here is the result:

Figure 10.9: The concatenation using axis 0 joins along the y axis

Chapter 10 391

The resulting array is 12,000 rows of data, each with 6,000 columns. This produces an

array that stretches along the y axis, meaning that the columns were concatenated.

Similarly, using an axis of 1 would allow you to concatenate rows instead of columns.

4.	 Create a new subset using a different slice:

nparray_subset3 = nparr_raster[:4000, 2000:6000]

raster3 = arcpy.NumPyArrayToRaster(nparray_subset3)

Run the cell. In this slice, the rows go from 0 to 3,999 and the columns start at 2,000 and

go to 5,999.

5.	 In the next slice, the columns will go from 6,000 until the last column:

nparray_subset4 = nparr_raster[:4000, 6000:]

raster4 = arcpy.NumPyArrayToRaster(nparray_subset4)

Run the cell.

6.	 To concatenate these two subsets, use axis 1:

joined_array2 = np.concatenate([nparray_subset3,

 nparray_subset4],axis=1)

raster_joined_axis1 = arcpy.NumPyArrayToRaster(joined_array2)

Run the cell. This is the result:

Figure 10.10: The concatenation using axis 1 joins along the x axis

Geospatial Data Processing with NumPy392

The concatenation allows the array to be “mended” after splitting, and should serve as useful for

combining arrays when processing data in big data pipelines.

Creating a raster from a NumPy array
Once the data has been processed, use the NumPyArrayToRaster function to create a new raster

object, which can then be saved to your hard drive. Make sure to adjust the output file path to

match your desired folder:

raster_nparray = arcpy.NumPyArrayToRaster(nparray_subset)

raster_nparray.save("subset.tif")

This ability to go from raster to raster object to array and back will make it possible to create cus-

tom tools that take advantage of the speed increases available when using NumPy for processing

geospatial data.

Mathematical operations with NumPy
The structure of NumPy arrays allows for unique mathematical operations. For instance, multi-

plication, addition, or subtraction operations on an array can be performed using another array,

or even a constant value that will add or subtract or multiply each element of an array by that

same value.

You may need to create DEMs with values multiplied so that the resulting Hillshades are more

extreme, or use raster math to add two rasters together. With NumPy, it is as simple as a few lines

of code in a Notebook or script, as shown below. An example with addition will help explain it.

1.	 First, create an array with a shape of (3,3) using numpy.arange and reshape:

arr1 = np.arange(9.0).reshape((3,3))

arr1

Run the cell to view the array.

2.	 To it, you will add a second array, with a shape of (1,3), which means it has 1 row and 3

columns in that row. Create the second array now:

arr2 = np.arange(3.0)

arr2

Run the cell to view the array.

Chapter 10 393

3.	 Now add the two arrays together:

numpy.add(arr1, arr2)

Run the cell. The result of the addition operation is that the first column of the original

array is increased by the value in the first column of the second array; the second column is

increased by the value in the second column of the second array; finally, the third column

is increased by the third element in the second array. Below is the output for all three cells:

Figure 10.11: Adding two arrays together

4.	 Another addition operation would be to add one value to every element in the array. This

is done by using the numpy.add function and supplying a value as the second parameter,

instead of another array:

numpy.add(arr1, 5)

Run the cell. You should see the following output, with all elements of arr1 (defined in

step 1) increased by 5:

Figure 10.12: Adding 5 to an array

Geospatial Data Processing with NumPy394

5.	 Another way to perform an addition operation (between arrays or between arrays and a

single value) is to use this intuitive shorthand:

arr1 + 5

Run the cell. You should see the same output as that of the previous cell:

Figure 10.13: Adding 5 to an array – the shorthand way

6.	 Similarly, the numpy.subtract function allows for subtraction operations. If an array is

supplied as a second array, it will subtract from each element according to the matching

column index. If the second parameter is an integer or float, that value will be subtracted

from each element in the array. Type the following in the next cell:

numpy.subtract(arr1,5)

Run the cell. This is the result:

array([[-5., -4., -3.],

 [-2., -1., 0.],

 [1., 2., 3.]])

7.	 If you create a new array with the same number of columns and use it to subtract from

the original array, each column will be subtracted by the value in that column of the

second array:

arr4 = np.arange(1,4.0)

numpy.subtract(arr1,arr4)

Run the cell. You should see:

array([[-1., -1., -1.],

 [2., 2., 2.],

 [5., 5., 5.]])

8.	 As with addition, a shorthand that can be used is to just use the normal subtraction sym-

bol directly:

Chapter 10 395

arr1 - arr4

Run the cell. You should see:

array([[-1., -1., -1.],

 [2., 2., 2.],

 [5., 5., 5.]])

To perform multiplication using NumPy arrays, the numpy.multiply function is used. Much like

the add and subtract operations, you can perform a multiplication of two arrays (or more) or an

array and a value.

In these examples, the multiplication operation operates on every element in the first array. The

second parameter can be either another array or a value.

1.	 First, view the initial arrays:

arr1, arr4

Running the cell gives us:

(array([[0., 1., 2.],

 [3., 4., 5.],

 [6., 7., 8.]]),

array([1., 2., 3.]))

2.	 Let’s see a multiplication operation between the arrays:

np.multiply(arr1, arr4)

Run the cell. We get:

array([[0., 2., 6.],

 [3., 8., 15.],

 [6., 14., 24.]])

3.	 Now, the same multiplication operation between the arrays using shorthand:

arr1 * arr4

Run the cell. We see:

array([[0., 2., 6.],

 [3., 8., 15.],

 [6., 14., 24.]])

Geospatial Data Processing with NumPy396

A similar operation can be used to raise array elements to the power of the array or value provided.

1.	 In the next cell, raise all elements to the power of 2:

arr1 ** 2

Run the cell. Your output should be:

array([[0., 1., 4.],

 [9., 16., 25.],

 [36., 49., 64.]])

2.	 Now, raise all elements of the same array to the power of 3:

arr1 ** 3

Run the cell. You should see:

array([[0., 1., 8.],

 [27., 64., 125.],

 [216., 343., 512.]])

3.	 Using the two arrays, you can raise one to the power of the other:

arr1 ** arr4

Run the cell. You should see:

array([[0., 1., 8.],

 [3., 16., 125.],

 [6., 49., 512.]])

Other available operations include numpy.sqrt, which can be used to get the square root of all

elements; numpy.sin, numpy.cos, or numpy.tan, which will get the sine, cosine, or tangent respec-

tively; and numpy.min and numpy.max, which get the minimum or maximum element respectively.

Read more about NumPy mathematical operations here: https://numpy.org/doc/

stable/reference/routines.math.html.

https://numpy.org/doc/stable/reference/routines.math.html
https://numpy.org/doc/stable/reference/routines.math.html

Chapter 10 397

Array queries
Arrays can be queried to find specific elements that meet a condition. These queries can be per-

formed in a few different ways: using a built-in numpy.where function or using a shorthand op-

eration.

The numpy.where tool uses a condition to process an array. For example, let’s apply it to a simple

array of numbers from 0 to 9:

import numpy as np

arr1 = np.arange(10)

np.where(arr1 < 3, arr1, -1)

This is the result:

array([0., 1., 2., -1., -1., -1., -1., -1., -1., -1.])

This function will evaluate a condition (the first parameter) upon the array (the second parameter)

and replace all elements that meet the condition with the third parameter. You can see that all

the elements greater than or equal to 3 have been replaced with -1 values.

The shorthand operation, on the other hand, uses square brackets to contain a conditional. If the

shorthand conditional operation is assigned to a variable, it will produce a new array containing

the elements of the original array that meet the condition. Otherwise, the operation can instead

be used to populate the array with a new value that replaces all elements that meet the operation.

Consider this example below. The array has a conditional statement passed to it using square

brackets, and those elements that meet the condition are replaced with the None value used by

NumPy (which is known as numpy.nan):

arr1[arr1 < 5]

The result is an array containing only those elements of arr1 less than 5:

array([0., 1., 2., 3., 4.])

Check out more details on the function here: https://numpy.org/doc/stable/

reference/generated/numpy.where.html.

https://numpy.org/doc/stable/reference/generated/numpy.where.html
https://numpy.org/doc/stable/reference/generated/numpy.where.html

Geospatial Data Processing with NumPy398

For instance, in the DEM file we have been using throughout this chapter, there are cells that

have a value below 0, meaning they are below sea level. If we wanted to change the value of those

elements below sea level to a NoData or None value, it’s very easy using NumPy:

import arcpy

file_path = r'USGS_13_n38w123_20210301.tif'

raster_obj = arcpy.Raster(file_path)

nparr_raster2 = arcpy.RasterToNumPyArray(raster_obj)

nparr_raster2[nparr_raster2 < 0] = None

nparr_raster2

The code produces the following output:

Figure 10.14: Raster with elements < 0 changed to nan

Another useful operation would be to select specific elements and perform a multiplication op-

eration. In the next example, the elements above 30 are multiplied by 3:

nparr_raster = arcpy.RasterToNumPyArray(raster_obj)

nparr_raster[nparr_raster > 30] * 3

Chapter 10 399

Below is the expected output:

Figure 10.15: Raster with elements above 30 multiplied by 3

Note that the shape of the array remains the same; calling nparr_raster.shape gives us (10812,

10812).

Exercise: Statistical analysis of raster data using
NumPy
In the Chapter 10 folder of the GitHub repo, you will find a set of rasters that represent pollution

over New York City. This data covers 10 years of annual average pollution for a variety of pollution

types. You will use the Nitrous Oxide files for this section. The files go from 2009 ("aa1_no300m")

to 2018 ("aa10_no300m") and are at a resolution of 300 meters.

You’ll use them to explore the statistical methods available using NumPy, including mean, me-

dian, and standard deviation. You’ll also create histograms and charts depicting the reduction in

pollution data over the 10-year monitoring period.

1.	 To start, create a new cell in your Notebook and make sure you have the filepath for the

raster pollution data for 2009. You’ll need to convert the raster data into a NumPy array:

import arcpy

file_path = r'AnnAvg1_10_300mRaster\aa1_no300m'

arcpy.Raster(file_path)

The data was downloaded from this dataset: https://catalog.data.gov/

dataset/nyccas-air-pollution-rasters.

https://catalog.data.gov/dataset/nyccas-air-pollution-rasters
https://catalog.data.gov/dataset/nyccas-air-pollution-rasters

Geospatial Data Processing with NumPy400

Run the cell. You should see the following:

Figure 10.16: The raster object shows the pollution throughout New York City for 2009

2.	 Next, you will use the RasterToNumPyArray tool to create an array:

raster_adf = arcpy.Raster(file_path)

 air_array = arcpy.RasterToNumPyArray(raster_adf)

air_array

This is the result:

array([[-3.4028231e+38, -3.4028231e+38, -3.4028231e+38, ...,

 -3.4028231e+38, -3.4028231e+38, -3.4028231e+38],

 [-3.4028231e+38, -3.4028231e+38, -3.4028231e+38, ...,

 -3.4028231e+38, -3.4028231e+38, -3.4028231e+38],

 [-3.4028231e+38, -3.4028231e+38, -3.4028231e+38, ...,

 -3.4028231e+38, -3.4028231e+38, -3.4028231e+38],

 ...,

 [1.0976446e+01, 1.0357784e+01, 1.0420952e+01, ...,

 -3.4028231e+38, -3.4028231e+38, -3.4028231e+38],

 [-3.4028231e+38, 1.0228572e+01, 1.0283316e+01, ...,

 -3.4028231e+38, -3.4028231e+38, -3.4028231e+38],

 [-3.4028231e+38, -3.4028231e+38, 1.0180457e+01, ...,

 -3.4028231e+38, -3.4028231e+38, -3.4028231e+38]],
dtype=float32)

Chapter 10 401

Now that you have an array, you can use some of the statistical methods built into NumPy to un-

derstand the data. To do so, you will need to query the array, and also make sure that the negative

values (which represent NoData) are ignored using the NumPy nan value, which is similar to the

Python None value. It allows NumPy to ignore the value of that cell when calculating statistics.

3.	 In this step, you will use the NumPy where function to get only values above 0. As a re-

minder, the function accepts a condition, the values to apply if the condition is True, and

a value to apply if the condition is False. In the next cell, type in:

no_nan_array = np.where(air_array > 0, air_array, numpy.nan)

Run the cell. In this case, the array values are kept if the condition is True, and NumPy.nan

values are used if it is False.

4.	 Now that the incorrect values are removed, let’s explore the average value of the data.

To generate the mean value of the nitrous oxide pollutant, you can use the np.nanmean

function, which ignores the nan values. In the next cell, type in:

np.nanmean(no_nan_array)

Run the cell. This is the result for the first year of the study:

22.480715

5.	 To generate the median value of the nitrous oxide pollutant, we can use the np.nanmedian

function. In the next cell, type in:

np.nanmedian(no_nan_array)

Run the cell. This is the result for the first year of the study:

21.17925

6.	 To generate the standard deviation of the nitrous oxide pollutant, use the np.nanstd

function:

np.nanstd(no_nan_array)

Run the cell. This is the result for the first year of the study:

8.013502

Geospatial Data Processing with NumPy402

You will use these basic statistics in a graph, which will show you a comparison between the first

year of the study, the 5th year, and the 10th year.

Creating charts from NumPy arrays using Matplotlib
Using the Matplotlib module, which is included in the Python installation and we touched on

briefly in Chapter 9, you can create charts of your data. It’s a convenient and powerful module

that can’t be captured here fully but deserves more investigation.

A histogram will give you a good idea about the distribution of your data in the raster array. In this

example, you will use Matplotlib to generate both the histogram and the chart for the histogram,

which are separate things.

7.	 In the next cell, you will call the Matplotlib pyplot tool and use it to generate the histogram

and chart. Note that the %matplotlib inline line will allow the charts to be generated

in the Notebook:

import numpy as np

import matplotlib.pyplot as plt

Keep the chart in the Notebook

%matplotlib inline

num_bins = 5

n, bins, patches = plt.hist(no_nan_array, num_bins,
facecolor='blue', alpha=0.5)

plt.show()

Read more about Matplotlib here: https://matplotlib.org/.

https://matplotlib.org/

Chapter 10 403

Run the cell. This will result in the following histogram for the nitrous oxide levels in

2009. The x axis represents the cell value, and the y axis represents the number of times

the cell value occurs:

Figure 10.17: Histogram showing nitrous oxide levels in 2009

The parameters passed to the plt.hist method include the array, the number of “bins”

(meaning how many sections the values are divided into, which in this case is 5), and

those controlling the color and opacity of the result. Then, the plt.show() method is

called to finally generate the chart.

8.	 For the histograms of the years 2013 and 2018, which can be created in the exact

same manner, you can see the reduction in the count for higher-value readings. Re-

run the code in the steps above, replacing the raster with the filepath for the ras-

ter for 2013 (AnnAvg1_10_300mRaster\aa5_no300m) and then the raster for 2018

(AnnAvg1_10_300mRaster\aa10_no300m) to produce the mean, median, and standard

deviation for those years.

Geospatial Data Processing with NumPy404

In 2013, there are fewer high values (in other words, values above 50):

Figure 10.18: Histogram showing nitrous oxide levels in 2013

In 2018, the values have been reduced even further:

Figure 10.19: Histogram showing nitrous oxide levels in 2018

This means that there has been a reduction in nitrous oxide pollution over the 10-year monitoring

period.

Chapter 10 405

To be able to compare the values across the years, you will need to read three different rasters

into arrays and generate their statistics. The code below will perform the statistical analysis and

generate the bar chart.

9.	 First, import the necessary modules and make sure that the charts will appear in the

Notebook:

import arcpy

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

Run the cell.

10.	 Then, create NumPy arrays from the rasters, which must first become raster objects:

file_path10 = 'AnnAvg1_10_300mRaster\aa10_no300m' # year 10

file_path05 = 'AnnAvg1_10_300mRaster\aa5_no300m' # year 5

file_path01 = 'AnnAvg1_10_300mRaster\aa1_no300m' # year 1

arrays =[arcpy.RasterToNumPyArray(arcpy.Raster(file_path01)),

 arcpy.RasterToNumPyArray(arcpy.Raster(file_path05)),

 arcpy.RasterToNumPyArray(arcpy.Raster(file_path10))]

Run the cell.

11.	 Now, query each array to get only values above 0, and pass the resulting array to a new list:

nan_arrays = []

for r_array in arrays:

 nan_arrays.append(np.where(r_array>0,r_array,np.nan))

Run the cell.

12.	 Then, in a new cell, generate the average (mean) value of each raster and store it in a new

list:

means = []

for n_array in nan_arrays:

 means.append(np.nanmean(n_array))

print(means)

Geospatial Data Processing with NumPy406

Run the cell and examine the mean value returned.

13.	 Finally, type the following code in a new cell to create a Matplotlib figure, pass the details

about the chart to the figure, and then view the result:

Create the plot

years = ['2009','2013','2018']

plt.xticks(range(len(means)), years)

plt.bar(years, means)

plt.xlabel('Year')

plt.ylabel('Mean NO')

plt.show()

Run the cell. You should see the following bar chart, which confirms that the mean pol-

lution value has been decreasing over the 10-year study period:

Figure 10.20: Bar chart showing decreasing mean pollution values

Chapter 10 407

To get a more detailed view, you can create another chart that includes both bars and an estima-

tion of the standard deviation.

14.	 With the means created above, you can skip recreating them. Instead, create a new list of

the standard deviations of each year:

stdevs = []

for n_array in nan_arrays:

 stdevs.append(np.nanstd(n_array))

Run the cell.

15.	 Now, use a new cell and create the chart using the subplots function. This function is a

utility wrapper, which allows you to combine multiple plots together, and to add chart

details such as labels, a title, grid ticks, and even bar color and opacity:

years = ['2009','2013','2018']

x_pos = np.arange(len(years))

fig, ax = plt.subplots()

ax.set_ylabel('Nitrous Oxide')

ax.set_xlabel('Year')

ax.set_xticks(x_pos)

ax.set_xticklabels(years)

ax.set_title('Monitoring of NO in NYC')

ax.yaxis.grid(True)

Run the cell.

16.	 Next, you need to pass the mean data list and the standard deviation data list to the bar

function, along with some parameters that describe the color of the bar and the error bar:

ax.bar(x_pos, means, yerr=stdevs, align='center',
alpha=0.5, ecolor='black', capsize=10)

Run the cell.

17.	 Finally, call the method to view the chart:

plt.show()

Geospatial Data Processing with NumPy408

Run the cell. This is the result:

Figure 10.21: A more sophisticated bar chart with error bars

The output of your analysis proves that nitrous oxide has been decreasing in New York City over

the decade of observation included in the raster set. You can explore the statistics of the other

years included, as well as the other pollutants studied, by repeating the above analysis using

those files. For instance, can you determine the rate of reduction of particulate matter (the PM300

files) over the 10-year period?

Using NumPy and Matplotlib, you can perform analysis and generate data visualizations quickly.

There are other data visualization modules for Python that work well with Notebooks, including

Seaborn, but Matplotlib is included with the installation of ArcGIS Pro, making it an easy choice

for charting.

Chapter 10 409

Summary
Using NumPy to process rasters (or vector data) can offer a unique way to create custom functions

or complete custom tools. The ability to process n-dimensional arrays quickly makes NumPy a

powerful tool for fast mathematical and statistical operations.

In this chapter, we reviewed many different functions NumPy has, including viewing and changing

the properties of arrays and the mathematical operations that can be performed on arrays. Queries

on arrays and converting rasters into arrays and back again were also covered. We explained the

concatenation of arrays, and wrapped up by demonstrating how to generate charts from statistics

using Matplotlib in an end-to-end exercise.

*

Up to now, you have learned how to use ArcPy, ArcGIS API for Python, Pandas, Spatially Enabled

DataFrames, and NumPy to automate much of your analysis, data management, and map pro-

duction. The next three chapters will be different, as they will be case studies. In each chapter,

you will see how to apply what the previous chapters have taught you to real-world problems

you may come across:

•	 Chapter 11 will show you how to create Notebooks to manage ArcGIS Online administrator

tasks from within ArcGIS Pro. This will highlight ways to make it more efficient for you to

work on project tasks while still administering your ArcGIS Online account.

•	 In Chapter 12, you will learn how to set up a map layout for creating a map series. Then,

you will create a map series to explore the environmental justice issues associated with

the removal of a bus route.

•	 Chapter 13 will show you an end-to-end crop yield prediction process, from gathering and

processing data, to creating a random forest classifier, to uploading a layer to ArcGIS Online

for use in a custom web map. We will go beyond Python at the very end and introduce

you to the ArcGIS API for JavaScript, which is used in web mapping.

When you are finished with all three case studies, you will have broadened your knowledge of how

to use Python in ArcGIS Pro, and seen how to solve and automate real-world problems. In addition,

you will have Notebooks that you can modify to fit the problems you find in your job every day.

Part IV
Case Studies

11
Case Study: ArcGIS Online
Administration and Data
Management

Administrating your ArcGIS Online account and managing all of the users and data is an im-

portant yet difficult aspect for GIS professionals. You can make this process easier by creating

Notebooks to help you manage users, create reports on credit usage, reassign items to a new user,

and download attachments. These tools will allow you to be more efficient in switching between

your project tasks and administering your organization’s ArcGIS Online account.

This chapter will cover a few case studies with Notebooks that you can create to assist you in

administering your ArcGIS Online account from within ArcGIS Pro. The benefit of being able to

manage your ArcGIS Online account from within ArcGIS Pro is that you can automate tasks and

you do not have to switch to the ArcGIS Online platform; everything can be completed within

ArcGIS Pro.

This chapter contains the following case studies:

•	 Administering your ArcGIS Online account: Adding users, managing licenses and ArcGIS

Online credits, creating item usage reports, and reassigning user data

•	 Downloading photo attachments from ArcGIS Online feature layers

Case Study: ArcGIS Online Administration and Data Management414

Case study: Administering your ArcGIS Online
account
In this case study, you will explore what you can do if you are the administrator. With admin

privileges you can add users, move data ownership from one user to another, delete users, and

manage ArcGIS Online credits.

As a GIS administrator, you are responsible for ensuring your ArcGIS Online account is current and

your users have access and credits. You are also responsible for removing users and transferring

data when someone leaves your organization. This is just a portion of your job, though, as you

have projects and tasks that need your attention. These projects take place in ArcGIS Pro; you

create ArcPy scripts and models in ModelBuilder for analysis tasks, or figures for publication in

documents. Having to leave the ArcGIS Pro environment to go to the ArcGIS Online environment

and manage your users can take time away from your other tasks. You can create Notebooks to

do these same tasks from ArcGIS Online and save time and clicks, since it is easy to update the

variables in the Notebooks and run them.

In the first two parts of this case study, you will create a user and manage their licenses and

credits. In the third part, you will create a report to identify all the items each user owns. In the

final part, you will transfer ownership of data from a user that has left your organization to a new

user within your organization.

You must have admin privileges to do any of the following. To add users, you must have the cre-

dentials available for the new user.

Creating users
Your company is growing quickly and you have new GIS analysts who will need to be added to

your organization’s ArcGIS Online. Creating new users is a common task for a GIS administrator.

A common way to create a new user is within ArcGIS Online. Once you are signed into your ArcGIS

Online account, complete the following steps:

To complete the exercises in this chapter, please download and unzip the Chapter11.

zip folder from the GitHub repository for this book: https://github.com/

PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter11.

https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter11
https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter11

Chapter 11 415

1.	 Click Organization in the top banner.

Figure 11.1: ArcGIS Online banner

2.	 Click Members in the Organization banner.

Figure 11.2: ArcGIS Online Organization banner

3.	 Click the Invite members button.

4.	 In the next window, you have choices to Add members without sending invitations,

Add members and notify them via email, or Invite members to join using an account

of their choice.

Figure 11.3: Options for adding a member

Select the first option, Add members without sending invitations, and click the Next

button at the bottom of the screen.

Case Study: ArcGIS Online Administration and Data Management416

5.	 On the next screen, you have to choose from New member or New members from a file.

Figure 11.4: New member options

Select New member.

6.	 The next screen will appear, in which you need to fill in all the information for the new

user. You will see later how creating a function in a Notebook makes adding all of this

information a simple process.

Figure 11.5: New member information

Chapter 11 417

Fill in all the information for the user and click Next.

7.	 The next screen will show the user type, role, and licenses the new user has.

Figure 11.6: New member roles and licenses

After confirming the new member information, click Next.

8.	 On the next screen, you can add on licenses, assign the user to groups, set Esri access,

allocate credits, and change user settings.

Figure 11.7: New user properties

Leave all as the defaults and click Next.

Case Study: ArcGIS Online Administration and Data Management418

9.	 This is the final screen, where you can now add the user after reviewing that the infor-

mation is correct:

Figure 11.8: New user add screen

If you want to add this user, click Add members; if not, click Cancel.

While you could do this for each new team member, the entire nine-step process can be performed

in a single Notebook that can be used for all new team members you need to add. You simply

open up the Notebook in ArcGIS Pro, type in the new user information, and run the Notebook to

add them and give them access to any existing groups.

To create new users in ArcGIS Online, you use the create() operation, which is part of the

UserManager class. We introduced the UserManager class in Chapter 3 and you used it to search

for users. The create() operation has the following five mandatory arguments:

•	 username: A 6–24-character-long string that must be unique in your organization.

•	 password: A password string that must be 8 characters long. When creating an ArcGIS

Online account this can be left blank, and the user will receive an email that will allow

them to set their password.

•	 firstname: A string that specifies the first name of the user.

•	 lastname: A string that specifies the last name of the user.

•	 email: A string that specifies the email of the user.

The create() operation also has eight optional arguments: description, thumbnail, role,

provider, idp_username, level, credits, and groups.

Chapter 11 419

Let’s get started with creating the Notebook.

1.	 Right-click on the Chapter11 folder and select New > Notebook. Rename the Notebook

to AdministeringYourOrg.

2.	 You will log in to your organization’s GIS through the user you are currently logged in to

ArcGIS Pro with. In the next cell, type in the following:

from arcgis.gis import GIS

gis = GIS("home")

Run the cell.

3.	 You are going to create a function to create a new user. This will allow you to create multiple

users at a time easily by calling the function and passing the new user information to it.

This function will act the same way as the information you would input in Figure 11.5, but

you don’t have to go through multiple pages in ArcGIS Online to get to it. The function is

called new_user, and takes arguments for user, password, firstName, lastName, and email,

as they are the most common ones you will use. In the next cell, type in the following:

def new_user(user,password,firstName,lastName,email):

 new_user1 = gis.users.create(

 username = user,

 password = password,

 firstname = firstName,

 lastname = lastName,

 email = email,

)

Run the cell.

You will use the role and provider arguments the most when creating new users.

Visit this webpage: https://developers.arcgis.com/python/api-reference/

arcgis.gis.toc.html#user and this webpage: https://doc.arcgis.com/en/

arcgis-online/reference/roles.htm to read more about them.

https://developers.arcgis.com/python/api-reference/arcgis.gis.toc.html#user
https://developers.arcgis.com/python/api-reference/arcgis.gis.toc.html#user
https://doc.arcgis.com/en/arcgis-online/reference/roles.htm
https://doc.arcgis.com/en/arcgis-online/reference/roles.htm

Case Study: ArcGIS Online Administration and Data Management420

4.	 Now that you have created the function, call it and pass through to each argument the

information to create the new user. This is where you can input all of the information you

would have done in Figure 11.5. In the next cell, type in the following:

new_user("Jane.Smith.Company", "ch@ng3MeA$AP", "Jane", "Smith",
"Jane.Smith@company.com)

Run the cell.

5.	 You can verify the user was created by searching for their username. Type in the following:

user = gis.users.search(query="username:Jane.Smith.Company")[0]

user

Run the cell. You should see output similar to below:

Figure 11.9: New user

In this example, only Jane Smith has joined your company. If you had more than one new hire,

you could add each of them by calling the function for each user and passing the specific argu-

ments for them.

Assigning licenses and credits
When you are adding users to ArcGIS Online in ArcGIS Pro, you can also manage user licenses

and credits. This will allow you to more efficiently administer your team’s ArcGIS Online account

while continuing with your project work.

Chapter 11 421

You are first going to see how to check the apps in your organization, and then you will view the

licenses in your organization and see how to assign them.

1.	 Continue working in the AdministeringYourOrg Notebook from the previous exercise.

First, you will find all the apps licensed in your organization. You will create a variable

to hold the list of apps, and then a loop to print out the apps, each on a single line. Type

in the following:

license = gis.admin.license.all()

for l in license:

 print(l)

2.	 Run the cell. You will see the apps your organization has licensed. The Out cell will look

similar to the following:

<ArcGIS Insights License at https://www.arcgis.com/sharing/rest/>

<ArcGIS Pro License at https://www.arcgis.com/sharing/rest/>

<ArcGIS GeoPlanner License at https://www.arcgis.com/sharing/rest/>

<ArcGIS Business Analyst Web and Mobile Apps License at https://www.
arcgis.com/sharing/rest/>

3.	 In the next cell, you will use the get() method to get the license to your ArcGIS Pro app,

so you can see what individual license you have. Type in the following:

proLic = gis.admin.license.get("ArcGIS Pro")

Run the cell.

4.	 Now that you have the Pro app license saved in a variable, you can see what extensions

you have licensed and if any are assigned. You are going to use the report object to get a

table showing you what licenses you have, how many are assigned, and how many are

remaining. Type in the following:

proLic.report

Case Study: ArcGIS Online Administration and Data Management422

Run the cell. You should see a table similar to the following, just with the licenses in your

organization:

Figure 11.10: ArcGIS Pro licenses in your organization

5.	 Now that you know what licenses you have available, you can assign one. To do this, use

the assign() method, specifying the username and the extension as the entitlements

argument. The entitlements available to your organization are in the Out cell you just

printed. Type the following to assign yourself a Spatial Analyst license:

proLic.assign(username = gis.users.me.username,
entitlements="spatialAnalystN")

Run the cell. If assigned, you should see True in the Out cell. You can run just this cell of

the Notebook when you need to assign someone a license, instead of having to change

over to ArcGIS Online and go into their profile.

You can also type in the username of the user you want to assign an enti-

tlement to, surrounded by single or double quotes. In the code above, Bill

would type in 'billparkermapping' in place of gis.users.me.username.

Chapter 11 423

6.	 You can check what extension a user has assigned with the user_entitlement() method,

passing in the username as the argument. Check what extensions you have assigned to

you by typing in the following, putting in your username between the quotes:

proLic.user_entitlement("{yourUserName}")

Run the cell. The results are returned in a dictionary with the following key/value pairs:

username, lastlogin, disconnected, entitlements. The value of the entitlements is a list

of your entitlements currently checked out. The Out cell will look similar to the following:

 {'username': 'billparkermapping', 'lastLogin': -1, 'disconnected':
False, 'entitlements': ['spatialAnalystN']}

7.	 To revoke a license, you use the revoke() method on the license object. The arguments

are the same as for assign(), a username and the extensions to be revoked. You can use

the * wildcard to revoke all licenses. Revoke all the licenses assigned to you by typing in

the following:

proLic.revoke(username = gis.users.me.username, entitlements="*")

Run the cell. If the license was revoked, you should see True in the Out cell. Just like when

you need to assign a license, you can revoke one by running this cell. There is no need to

switch to ArcGIS Online. You can open the Notebook, run the cell, and get back to your

project.

8.	 To verify you have no license, use the user_entitlement method again:

proLic.user_entitlement("{yourUserName}")

Run the cell. The result in the Out cell should be {}, which is an empty dictionary.

9.	 You can use the credits property to view the number of credits available in your organi-

zation. Type in the following:

gis.admin.credits.credits

Run the cell. The Out cell will display the number of credits in your organization.

10.	 You can manage the credits available to each user by using credit budgeting. Turn on credit

budgeting by using the enable() method on the credits property:

gis.admin.credits.enable()

Case Study: ArcGIS Online Administration and Data Management424

Run the cell. Your result in the Out cell should be True.

11.	 Now you can allocate credits to a user by using the allocate() method. The allocate()

method takes the username and number of credits as its arguments. Allocate 10 credits

to yourself by typing in the following:

gis.admin.credits.allocate(username=gis.users.me.username, credits=10)

Run the cell. Your result in the Out cell should be True.

12.	 When credit budgeting is enabled, you can check the available credits for each user, as

they get an assignedCredits and availableCredits property. Check the credits you

have available by typing in the following:

gis.users.me.availableCredits

Run the cell. The result will be the number of credits available to you.

You have created a time-saving Notebook that will allow you complete your administrator tasks

with little interruption from your project tasks. You should store this Notebook in a folder that you

have easy access to; open it in ArcGIS Pro and run the necessary cells, with minimal changes, to

make updates to users quickly. This will reduce the amount of time you have to spend switching

between platforms.

You can also remove credits from a user by using the deallocate() method,

which removes all the credits from a user. If you want to do this, type in the

following: gis.admin.credits.deallocate(username='{username}') .

If you are using a single user account, you cannot assign credits to yourself, as you

have access to all the credits.

Chapter 11 425

Creating reports for item usage
Data storage can be a major consumer of credits in your organization’s ArcGIS Online account.

As an administrator, you have the ability to view credit usage by user and run different reports.

These can be accessed in the Status tab of the Organization tab.

Within the Dashboard tab, you can view a breakdown of how credits are being used in your or-

ganization over different time periods. The Reports tab is where any reports you run are stored.

Figure 11.11: Status tab in the Organization tab

The Credits tab will show you the number of credits used over a given time period for storage,

analytics, subscriber content, or published content. Many of the different charts and elements

can be clicked on to get more details about the credit usage. By clicking on the cloud icon with

the down arrow as shown in Figure 11.12, you can download a report of the credit usage over this

time period:

Figure 11.12: Credits tab

The Content tab will show you details about the different items you have in your ArcGIS Online

account. An item is anything you have stored; it can be a CSV, shapefile, geodatabase, feature

layer, raster layer, or anything else that ArcGIS Online can store.

Case Study: ArcGIS Online Administration and Data Management426

Figure 11.13: Content tab

The Apps tab will show details about the apps you have created and stored:

Figure 11.14: Apps tab

Chapter 11 427

The Members tab will show you details about the members in your organization. You are only

able to view a single member at a time:

Figure 11.15: Members tab

Case Study: ArcGIS Online Administration and Data Management428

The Groups tab will show details about the groups in your organization.

Figure 11.16: Groups tab

Within every tab, many of the different charts and elements can be clicked on if you want to see

more details. Each tab will give you a lot of information about how credits are being used and

which members are using credits for different analyses.

A big part of credits usage is often storage, and while the Credits tab can show you how many

credits you are using for storage along with the size of the items, it can’t tell you if the items have

been viewed often or recently, which may indicate whether or not they can be removed. You have

to go into each item’s properties for that information.

Instead, you can leave ArcGIS Online behind and create a Notebook to efficiently identify all the

items owned by each user and information about those items’ usage. This can help your team to

identify old items that can be removed from ArcGIS Online. Doing this will save your organization

money, as you won’t be storing items that you aren’t using anymore.

In the following example, you will create a Notebook to export a CSV all of the items in all the

folders owned by a user, along with the usage and last time accessed for each item.

Chapter 11 429

This CSV will allow you to show each user what items they have that are not being used and

could be deleted:

1.	 Right-click on the Chapter11 folder and select New > Notebook. Rename the Notebook

to UserCreditsReport.

2.	 You are going to import the time, csv, and os modules for use in the Notebook. The time

module will allow you to convert the datetime value of an item to a month, date, year

format. The csv module will allow you to export your results to a CSV. The os module

will allow you to create a full path for the new CSV you are creating in the folder you are

storing all the CSVs in. Along with those, you will import the GIS module and log in to

your organization’s GIS through the user you are currently logged in to ArcGIS Pro with.

In the first cell, type in the following:

import time, csv, os

from arcgis.gis import GIS

gis = GIS("home")

3.	 In the next cell, you are going to create a function to create a new CSV. This is the same

function as you wrote in Chapter 4 to export bus stop locations; please refer to the Accessing

the geometry of a feature class section in that chapter for a full explanation of the function.

Type in the following:

def createCSV(data, csvName, mode = 'w'):

 with open(csvName, mode, newline = '') as csvfile:

 csvwriter = csv.writer(csvfile)

 csvwriter.writerow(data)

4.	 In the next cell, you will create a variable for the path of the CSVs you will be creating, as

well as a list of the headers for the CSV. The path will be set to the Chapter11 folder, and

you will be creating a CSV for each user based on their username. By creating a CSV for

each user, you will make it easy for your users to find all of their data. The headers will be

for the item ID, item name, item size in megabytes, the date the item was last modified,

the number of views the item has, and the last view date of the item. In the new cell, type

in the following:

csvPath = r'C:\PythonBook\Chapter11'

csvHeaders = ['itemId', 'itemName', 'itemSize_MB', 'lastModified',

 'NumberOfViews', 'LastViewDate']

Case Study: ArcGIS Online Administration and Data Management430

5.	 In the next cell, you will create a function that takes a list of items that a user owns and

loops through all of them. You will create this list of items from items in the user’s root

folders and subfolders. For each item, you will find the ID, name, size, last modified date,

number of views, and last view date, and write these to a line in the CSV. This information

will allow the user to see what items they have that aren’t being used and take up a lot of

space. By adding the item number, you can later write another Notebook that will take

all the item numbers that have been identified for deletion and delete them. The next 6

steps will create this function and will all be written in the same cell.

You will start by declaring the function that takes a list of items as its parameter. In the

function, you will loop through each item and extract information about it. You will find

the item ID, the item title, the item size, the last modified date, the item type, and the

number of views. The item size is reported in bytes, so you will multiply it by 0.000001

to convert it to megabytes. The last modified date returns the time from the last epoch

in milliseconds, so you will divide it by 1000 and use the time module to convert it to a

date and time.

You will also add print statements to print out all of the information you are extracting

from the item. In a new cell, type in the following:

def userStorage(items):

 for item in items:

 itemId = item.id

 print(itemId)

 itemName = item.title

 print(itemName)

 itemSize = round(item.size*0.000001,2)

 print(itemSize)

 lastMod = time.localtime(int(item.modified)/1000)

 lastModDate = '{0}/{1}/{2}'.format(

 lastMod[1],lastMod[2],lastMod[0]

)

 print(lastModDate)

 itemType = item.type

Refer to Chapter 3 for more information on how to use the time module.

Chapter 11 431

 print(itemType)

 numbViews = item.numViews

 print(numbViews)

6.	 Continuing in the same cell, you will create a variable to hold the usage of the item. The

usage property has the following two optional arguments:

•	 date_range: The time period used to query the item for the number of views or

downloads. It has the following values: 24H for past 24 hours, 7D for past 7 days

(default), 14D for past 14 days, 30D for past 30 days, 60D for past 60 days, 6M for

past 6 months, and 1Y for past year.

•	 as_df: A Boolean; when set to True (default), a pandas DataFrame is returned,

and when set to False a data dictionary is returned.

You will set the date_range argument to 6M and as_df to False to return a data dictionary

with the usage data for the item. Each data dictionary returned will look like the code

below when there are no views over the selected time period:

{'startTime': 1635897600000, 'endTime': 1636588800000, 'period':
'1d', 'data': []}

In the same cell as above, type in the following:

 itemUsage = item.usage('6M',False)

For longer time periods, like 6 months or 1 year, usage actually returns a list of data dic-

tionaries that looks like the code below:

[{'startTime': 1620777600000, 'endTime': 1626048000000, 'period':
'1d', 'data': []}, {'startTime': 1626048000000, 'endTime':
1631232000000, 'period': '1d', 'data': [{'etype': 'svcusg', 'name':
'6c7d00d2be7844f49a75b2780992299d', 'num': [['1626048000000', '0'],
['1626134400000', '0'], ['1626220800000', '0'], ['1626307200000',
'0'], ['1626393600000', '0'], ['1626480000000', '0'],
['1626566400000', '0'], ['1626652800000', '0'], ['1626739200000',
'0'], ['1626825600000', '0'], ['1626912000000', '0'],
['1626998400000', '0'], ['1627084800000', '0'], ['1627171200000',
'0'], ['1627257600000', '0'], ['1627344000000', '0'],
['1627430400000', '0'], ['1627516800000', '0'], ['1627603200000',
'0'], ['1627689600000', '0'], ['1627776000000', '0'],
['1627862400000', '0'], ['1627948800000', '0'], ['1628035200000',
'0'], ['1628121600000', '0'], ['1628208000000', '0'],

Case Study: ArcGIS Online Administration and Data Management432

['1628294400000', '0'], ['1628380800000', '0'], ['1628467200000',
'0'], ['1628553600000', '0'], ['1628640000000', '0'],
['1628726400000', '1'], ['1628812800000', '0'], ['1628899200000',
'0'], ['1628985600000', '0'], ['1629072000000', '0'],
['1629158400000', '0'], ['1629244800000', '0'], ['1629331200000',
'0'], ['1629417600000', '0'], ['1629504000000', '0'],
['1629590400000', '0'], ['1629676800000', '0'], ['1629763200000',
'0'], ['1629849600000', '0'], ['1629936000000', '0'],
['1630022400000', '0'], ['1630108800000', '0'], ['1630195200000',
'0'], ['1630281600000', '0'], ['1630368000000', '0'],
['1630454400000', '0'], ['1630540800000', '0'], ['1630627200000',
'0'], ['1630713600000', '0'], ['1630800000000', '0'],
['1630886400000', '0'], ['1630972800000', '0'], ['1631059200000',
'0'], ['1631145600000', '0']]}]}, {'startTime': 1631232000000,
'endTime': 1636416000000, 'period': '1d', 'data': []}, {'startTime':
1636416000000, 'endTime': 1636675200000, 'period': '1d', 'data':
[]}]

It is from this list of data dictionaries that you will need to extract the last viewed data of

the item. This information is within the 'data' key of each data dictionary. That 'data'

key has a value that is a list containing a single data dictionary. Within each data dictio-

nary in that list, there is a key called 'num' that is a list of pairs. The pairs consist of the

date in milliseconds from the epoch and the number of views on that date. You can see

in the above code that the item was last viewed 1 time on 162872640000.

This structure and information can be used to loop through all of the data dictionaries and

compare the dates that have views to find the most recent view date. You need to start by

creating a variable for the view date set to 0 and a loop to loop through each usage data

dictionary. In the same cell as above, type in the following:

 viewDate = 0

 for usage in itemUsage:

7.	 Within the loop, you will first use a conditional to determine if the data key has any values

in its list. If it does, you will create a variable to store the list of date and view pairs in the

'num' key of the data dictionary. In the same cell as above, type in the following:

 if len(usage['data']) > 0:

 listNumViews = usage['data'][0]['num']

Chapter 11 433

8.	 You now have a list that contains lists of pairs consisting of a date and number of views.

You will loop through this list and use a conditional to determine if there was a view that

day. If there was a view, the date field will be converted from the string it is stored as to

an integer, and stored in a variable. This value will be compared to the viewDate variable

that was originally set at 0; if it is larger than the current viewDate, the viewDate will

be set to the new view date. This comparison will be made for each view, with the final

viewDate variable being the largest number, representing the most recent view date. In

the same cell as above, type in the following:

 for views in listNumViews:

 if int(views[1]) > 0:

 print(views)

 newViewDate = int(views[0])

 if newViewDate > viewDate:

 viewDate=newViewDate

9.	 Now that you have the last view date for the item, you can convert it to a month/day/

year format using the time module to make it easier for each user to see when it was last

accessed. You will print the last view date to help track your progress. In the same cell as

above, type in the following:

 lastView = time.localtime(viewDate/1000)

 lastViewDate = '{0}/{1}/{2}'.format(

 lastView[1],lastView[2],lastView[0]

)

 print(lastViewDate)

10.	 You are now ready to create the list of all the data about the item you are working on and

then write that list to the CSV using the createCSV function. In the same cell as above,

type in the following:

 itemList = [itemId, itemName, itemSize, lastModDate,

 numbViews, lastViewDate]

 createCSV(itemList, csvFull, mode = 'a')

11.	 In a new cell, you will create a list of all the users in your organization and then loop

through it. First, you will create a variable for the user’s full name and username, and,

within the loop, print the full name so you can track which user the function is running.

Case Study: ArcGIS Online Administration and Data Management434

Then, you will use the items property of the user object to get a list of all the items the

user owns in their root folder, setting the max_items argument to a value of more than

the total items in your organization. After this, you will create a full path for the CSV for

the user with the username, replacing any dots with underscores, and use the createCSV

function to create the CSV and write the headers.

You will then use the userStorage function from the above cell, passing to it the list of

items. This will give you all the items in the user’s root folder, but not any items in any

other folders. To access those items, you must create a variable to hold a list of all the

user’s folders using the folders property, and then loop through each folder and get a

list of all the items in the folder using the items property again. In the new cell, type in

the following:

users = gis.users.search()

for user in users:

 print(user)

 userFullName = user.fullName

 userName = user.username

 print(userFullName)

 items = user.items(max_items=10000)

 csvFull = os.path.join(csvPath,'{0}_data.csv'

 .format(userName.replace('.','_')))

 createCSV(csvHeaders, csvFull, mode = 'w')

 userStorage(items)

 print(len(items))

 folders = user.folders

 for folder in folders:

 folder_items = user.items(

 folder=folder, max_items=10000)

 print(len(folder_items))

 userStorage(folder_items)

You must set the max_items argument, or you will only get the first 10 items

returned (as the default is set to 10).

Chapter 11 435

12.	 You are now ready to run the Notebook; run all the cells. This will create a CSV for each

user in your organization containing all of the data they own and information about the

size and usage of that data:

Figure 11.17: User credit reports CSV

You should also see the data from the print statements in the Out cell, looking similar

to the following:

<User username:billparkermapping>

Bill Parker

6c7d00d2be7844f49a75b2780992299d

Farmers Markets

674b4c2835984d2da04ec22b57a8e116

AdditionalAlamedaFarmersMarket_Test2

...

15478346101f43548714e12b69278f17

Alameda County Farmers Market_stakeholder

How do you find the total number of items in your organization?

Unfortunately, there is no easy way using the ArcGIS API for Python to find

the total number of items in your organization. The quickest way is to go

to the Content tab in the Organization dashboard, as seen above in Figure

11.13, and scroll down to the bottom. There, you will see the total items in

your organization.

If you want to run the code for a single user only, you can update

gis.user.search() using the search syntax from Chapter 3. To search for

just Bill’s username within his organization, the first row would look like this:

users = gis.users.search(query='username:billparkerma
pping')

Case Study: ArcGIS Online Administration and Data Management436

You now have a CSV that tells you all of the items a user owns, along with how large the items are

and when they were last viewed. This can be distributed to users to help them identify any data

that can be removed from ArcGIS Online. Removing any out-of-date items will help you ensure

your users are always using the correct data and will save you credits. You can run this Notebook

for all users in your organization, which is more efficient than creating reports for each user from

within ArcGIS Online.

Reassigning user data
You will inevitably have users leave your organization, and you will need to delete their user ac-

count when they do. Before doing that, you will have to move all of the content they own to a new

user, as ArcGIS Online will not let you delete a user that owns items and groups. You can reassign

all data and groups from one user to another when calling the delete method on a user, but that

will just move all of the data into the target owner’s root folder. This means the target owner has

to move all of that data to folders. Instead, you can reassign the data to an existing folder in the

target owner’s account or create a new folder for the data in the target owner’s account.

In the following case study, your company has lost one of its GIS analysts and you need create two

different Notebooks to transfer their items to a new user. The first will reassign items to a new

user and create a new folder for those items in the new user’s account. The second will reassign

items to a new user and place the items into an existing folder in the new user’s account.

Transferring data to a different user and creating a new folder
The first example you will work through is transferring data from one user to another and creating

a folder of the same name in the new user’s account to hold all the data. This will keep the same

data organization for the new user, and not clutter their content folder with new data:

1.	 Right-click on the Chapter11 folder and select New > Notebook. Rename the Notebook

to TransferOwnershipCreateFolder.

2.	 You are going to log in to your organization’s GIS through the user you are currently logged

in to ArcGIS Pro with. In the first cell, type in the following:

from arcgis.gis import *

from IPython.display import display

gis = GIS("home")

Run the cell.

Chapter 11 437

3.	 In the next cell, you will create a variable to hold the username for the old user, a variable

to hold the username for the new user, and a variable for the folder name in the old user’s

account that will be created in the new user’s account. The code here has placeholders for

the old and new users; replace them with users in your organization. Type in the following:

oldUserName = "John.Doe.Company"

newUserName = "Jane.Smith.Company"

folderName = "Folder From Old User"

Run the cell.

4.	 In the next cell, you will use the variables above to create user objects for the old user and

new user. In addition, you will get all of the folders in the old user’s account and store

them in a variable. Type in the following:

oldUser = gis.users.get(oldUserName)

newUser = gis.users.get(newUserName)

folders = oldUser.folders

You have now done all the setup you need to write the code to transfer data from the old

user to the new user into a newly created folder with the same name. The code will be

written in one cell, as it is all part of a single for loop. It will be broken up over the next

six steps. It is in this cell where you are really gaining efficiency. To do this within ArcGIS

Online, you would have to select each item to transfer its ownership:

5.	 You will begin by looping though the folders variable you created above that holds all

of the folders in the old user’s account. The folders variable is a list of data dictionaries,

with a data dictionary for each folder.

You will use this to print the title of each folder as you iterate through the folders. Type

in the following:

for folder in folders:

 print(folder["title"])

Recall from Chapter 3 that the data dictionary for a folder contains the

"username", "id", and "title" keys.

Case Study: ArcGIS Online Administration and Data Management438

6.	 You will use a conditional statement to test the folder title against the title in your

folderName variable. All of the work to move the data will be done in this conditional

and there will be no else statement at the end. This is because you are only concerned

with a single folder in the list of folders; all the rest can just be skipped over. After the

if statement, you will create a list of the current folders the new user has, and an empty

list that will be used to store the folder names. You will then loop through the list of new

user folders and append the title of each folder to the list. You are doing this so you can

check later that the new user doesn’t already have a folder with the same name. Type in

the following in the same cell as above:

 if folder["title"] == folderName:

 newUserFoldersDict = newUser.folders

 newUserFolders = []

 for f in newUserFoldersDict:

 newUserFolders.append(str(f["title"]))

7.	 Now you have a list of all the new user’s folders, you will use a conditional to check if the

new user has a folder of the same name. If the folder does not exist, a new folder with

that name will be created. If it does exist, the script will print out that the folder already

exists and call the break keyword, which will stop the loop and end the cell. Type the

following in the same cell as above:

 if folderName not in newUserFolders:

 gis.content.create_folder(folderName,newUserName)

 else:

 print("{0} folder already exists, you need to use the

 TransferExistingFolder Notebook"

 .format(folderName))

 break

Why check if a folder exists?

It is good practice to always check if a folder or directory exists before creat-

ing it within the script. Even though you may have looked at the old user’s

content structure, you could have missed it, and if you did, trying to create

a folder that already exists will cause the Notebook to fail. This check keeps

it from failing and tells you what your error is.

Chapter 11 439

8.	 In the same cell, you are going to create empty lists to store different types of ArcGIS Online

data. You will create a list to hold all of the service definition files, replica geodatabases,

and all other items. You need to do this because the replica geodatabases need to be reas-

signed first and the service definition files last. If you try to reassign a replica geodatabase

after the layer it is replicating is reassigned, the script will be unable to find the replica

geodatabase, as it was reassigned with the layer it was replicating. The opposite is true

of service definition files. They need to be reassigned after all other maps and layers; if

they are reassigned before a layer they are associated with, the layer will not be found, as

it was reassigned with the service definition file.

Type in the following in the same cell as above:

 serviceDef = []

 otherItems = []

 replgdb = []

Replica geodatabases are SQLite geodatabases that ArcGIS Online creates

for files that are made available for offline use. You will not see them when

looking at your data within ArcGIS Online. You will only see them when

listing all the items owned by a user within a folder.

Why is the above splitting of type necessary? Why doesn’t ArcGIS Online

know that it moved files together?

When a layer is reassigned and the replica geodatabase is reassigned with it,

it is unclear why ArcGIS Online doesn’t recognize that both have had their

ownership transferred. The above is a workaround to ensure that files are

reassigned in the proper order, and was only found through trial and error. If

you get an error that an item was not found when it is called to be reassigned,

it most likely means that the item’s ownership was already reassigned as

part of another item that was reassigned. This means you can just run the

cell again and that item that was not found when it was to be reassigned

will not be in the list of items, as it was already reassigned.

Case Study: ArcGIS Online Administration and Data Management440

9.	 Now that you have created the empty lists, you will loop through all the items in the folder

and add an item to each list depending on its type. In addition to this, you will delete any

map area items. A map area is a downloadable area for a map that was created in ArcGIS

Online. Ownership of map areas cannot be transferred, and a map that already has map

areas created for it cannot have additional areas created by anyone other than the owner

of the map.

Because of these rules around map areas, you will have to delete them and allow the new

owner to create their own. If you were to do this manually in ArcGIS Online, you would

have to go into each map to delete the map areas. Instead, your code will simply identify

any map areas in the folder and delete them. Something that would have taken separate

steps in ArcGIS Online is now part of your entire process in the Notebook.

Type in the following in the same cell as above:

 folderItems = oldUser.items(folder=folderName)

 for item in folderItems:

 print(item.name)

 print(item.type)

 if item.type == "Map Area":

 print("deleting map area")

 item.delete()

 elif item.type == "Service Definition":

 serviceDef.append(item)

 elif item.type == "SQLite Geodatabase":

 replgdb.append(item)

 else:

 otherItems.append(item)

10.	 You have now deleted all the map areas and separated out the different item types so you

can transfer them in the correct order to remove potential errors. To move the items, you

will loop through each list of items and move all of the items in that list. Because of the

ordering issues discussed in step 9 above, you will first move the replica geodatabases,

then the other items, and finally the service definitions.

For more information about offline maps, see the documentation here:
https://doc.arcgis.com/en/arcgis-online/manage-data/take-

maps-offline.htm#.

https://doc.arcgis.com/en/arcgis-online/manage-data/take-maps-offline.htm#
https://doc.arcgis.com/en/arcgis-online/manage-data/take-maps-offline.htm#

Chapter 11 441

You will add print statements to track which list you are in and which items are being

moved. In the same cell as above, type in the following:

 print("---Moving replicag gdbs (needed for offline work)---")

 for item in replgdb:

 print("Moving {0}".format(item["title"]))

 item.reassign_to(newUserName, target_folder=folderName)

 print("---Moving all other non service definitions---")

 for item in otherItems:

 print("Moving {0}".format(item["title"]))

 item.reassign_to(newUserName, target_folder=folderName)

 print("---Moving service definitions---")

 for item in serviceDef:

 if item["title"] not in otherItems["title"]:

 print("Moving {0}".format(item["title"]))

 item.reassign_to(

 newUserName,

 target_folder=folderName

)

11.	 Your Notebook is now ready to run. Run all the cells. When completed, you will see that the

new user has a new folder created and all of the items have been transferred to that folder.

You now have a Notebook that will create a folder and reassign the data from the old user to the

new user, placing each item in the newly created folder. It allows you to transfer ownership of

projects to different team members and easily transfer the ownership of all the items for that

project. This process works well for projects that have one team member who owns all of the

data and is working on the project by themselves.

In larger projects, you may have multiple team members assigned to them. In those situations,

you may have a standard folder structure that your team is supposed to follow. This would mean

that each team member will already have a folder with the same name for the project to store

their data. In this case, you would not need to create a new folder for the new user but find the

existing folder that already contains their data for the project. In the next section, you will mod-

ify the above Notebook to reassign ownership of items from the old user to the new user, in the

scenario where the new user has an existing folder.

Case Study: ArcGIS Online Administration and Data Management442

Transferring data to a different user with an existing folder
In the above example, the new user has never worked on this project before and does not have

a folder set up to contain any items for it. However, in this example, the new user was already

working on the project and has a folder with the same name as the old user. The above Notebook

will not work because a user cannot have two folders with the same name. Instead of creating a

new folder for the new user, you will just find their existing folder and transfer ownership of the

items to that new user, placing the items in the existing folder:

1.	 Right-click on TransferOwnershipCreateFolder and select Copy.

2.	 Right-click on the folder with TransferOwnershipCreateFolder and select Paste. The

result will be a new file created called TransferOwnershipCreateFolder_1.

3.	 Right-click on the TransferOwnershipCreateFolder_1 file and select Rename. Type in

TransferOwnershipExistingFolder.

4.	 The first cell will remain the same as it is, importing in the modules you need and creating

a connection to your ArcGIS Online account.

5.	 In the second cell, you will add a line at the bottom of the cell for a variable to hold the fold-

er name in the new user’s account. Type in the following on a new line in the second cell:

newFolderName = "Existing New User Folder"

6.	 The third cell will remain the same as it is, creating user objects for the old and new users,

and a list of all the folders in the old user’s account.

7.	 The fourth cell will require some changes that will be covered in this step and the next step.

First, you will delete the lines that create a list of folders within the new user’s account,

check if the folder exists, and create a new folder with the same name as the folder from

the old user. Delete the following lines from the fourth cell:

 newUserFoldersDict = newUser.folders
 newUserFolders = []
 for f in newUserFoldersDict:
 newUserFolders.append(str(f["title"]))
 if folderName not in newUserFolders:
 gis.content.create_folder(folderName,newUserName)
 else:
 print("{0} folder already exists, you need to use the
 TransferExistingFolder Notebook"
 .format(folderName))
 break

Chapter 11 443

8.	 You now just have to change the target_folder argument for each item being reassigned

to the new folder. Since you have to call the reassign_to property for each of the three

lists, you will have to change the target_folder three times. Update each of the lines

with item.reassign_to in the fourth cell, so the code looks like the following:

 for item in replgdb:

 print("Moving {0}".format(item["title"]))

 item.reassign_to(newUserName, target_folder=newFolderName)

 print("---Moving all other non-service definitions---")

 for item in otherItems:

 print("Moving {0}".format(item["title"]))

 item.reassign_to(newUserName, target_folder=newFolderName)

 print("---Moving service definitions---")

 for item in serviceDef:

 if item["title"] not in otherItems["title"]:

 print("Moving {0}".format(item["title"]))

 item.reassign_to(

 newUserName,

 target_folder=newFolderName

)

9.	 Your Notebook is now ready to run. Run all the cells. When completed, you will see that

the new user has been reassigned all the data from the old user, and it has been placed in

the new user’s existing folder for the project.

You now have two Notebooks that will reassign all of a user’s items in their folder to a new user,

in either a new folder or an existing folder for the user. Both Notebooks will save you time when

transferring projects between users in your organization, as running them is much quicker than

transferring item ownership within ArcGIS Online.

In the next section, you will create a Notebook and a script tool from the Notebook to assist with

downloading attachments from data collected in the field.

You can alternatively reassign all of a user’s items when you delete them; you are only

able to reassign them to the root folder. To do this, use the following code: newUser.

delete(reassign_to ="{userNameToAssignTo}").

Case Study: ArcGIS Online Administration and Data Management444

Case study: Downloading and renaming attachments
Field data collection is an important way users interact with ArcGIS Online. Through the use

of apps like Field Maps and Survey123, field staff can collect data. That data can be stored as a

feature layer or feature layer collection on ArcGIS Online. On many occasions, it is necessary for

field staff to take pictures of the data they are collecting.

Reviewing those pictures on ArcGIS Online or in the app the data was collected in is useful, but

sometimes the pictures need to be downloaded from your account. While this can be done by

exporting the feature layer to a geodatabase and then running a tool in ArcGIS to extract the

photos, the photos do not have names associated with the features. It would be useful for the

photos to have names of attributes from the feature layer.

In the case study for this section, you have been collecting survey data from Survey123 on farmers’

markets in Oakland and Berkeley, which checks on different produce at the stands across Oak-

land. You are looking to track the availability of produce at the markets throughout the season.

Chapter 11 445

Figure 11.18: The farmers’ market survey

Case Study: ArcGIS Online Administration and Data Management446

You have been tasked with taking pictures of the stands and produce to help show how the dif-

ferent stands are set up. The team will be producing a written report in which the photos will be

associated with each stand.

Figure 11.19: A photo from Survey123

This data from Survey123 is stored as a feature layer in ArcGIS Online, with the photos as at-

tachments. This means you need to extract the photos from ArcGIS Online and download them.

Esri has a technical support document that walks you through the process to download a ZIP

file with a geodatabase that contains the photos (https://support.esri.com/en/technical-

article/000012232).

However, the problem still remains that the photos are in a geodatabase; they will need to be

individually extracted in order to be associated with the market and stand, by clicking on them

and saving them with a name.

https://support.esri.com/en/technical-article/000012232
https://support.esri.com/en/technical-article/000012232

Chapter 11 447

Figure 11.20: Photos stored in the file geodatabase

There is an Esri technical document about how to batch export photos by creating a script tool in

ArcMap (https://support.esri.com/en/technical-article/000011912). However, that script

tool is written for ArcMap, so you would have to update it to work in ArcGIS Pro. It also takes the

name of the picture as it is stored in the file geodatabase and downloads it using that name. As

you can see in the figure above, the name is not very useful in associating that photo with a cer-

tain market and stand. If you have many pictures, it will take a lot of time to sort through them

and rename them appropriately.

https://support.esri.com/en/technical-article/000011912

Case Study: ArcGIS Online Administration and Data Management448

It would be much more useful to download the photos directly from ArcGIS Online and name

them using the attributes within the feature layer. You can then easily find all the photos associ-

ated with a farmers’ market and stand, as that information will be part of the name of the photo.

You will now create a Notebook to do just this.

1.	 Right-click on the Chapter11 folder and select New > Notebook. Rename the Notebook

to DownloadPhotos.

2.	 You are going to log in anonymously, as you will be looking for public data available out-

side your organization. You will also import the os module, which you will need to create

folder names and rename the pictures. Type in the following:

from arcgis.gis import GIS

import os

gis = GIS()

Run the cell.

3.	 In the next cell, you are going to create a variable for the location of the folder to store

your folder of downloaded photos in. Type in the following:

folderLoc = r"C:\PythonBook\Chapter11"

Run the cell.

4.	 In the next cell, you will search for the feature layer. In this case, it is a feature layer collec-

tion that is created from the Survey123 survey, but it would work with any feature layer. If

you had survey crews using ArcGIS Collector or ArcGIS Field Maps, this would work the

same way. You would just need to find the correct layer using the title and owner.

To find the layer, you need to query for both the title and the owner by putting an & be-

tween the title and owner queries. Type in the following:

fmSurveySearch = gis.content.search(

 query='title:Alameda County Farmers Market &

 owner:billparkermapping',

 item_type="Feature Layer"

)

print(fmSurveySearch)

print(len(fmSurveySearch))

Chapter 11 449

Run the cell. The result will be a list containing the list of feature layers and its length,

showing that there is just one layer in the list:

[<Item title:"Alameda County Farmers Market_fieldworker"
type:Feature Layer Collection owner:billparkermapping>]

1

5.	 Now that you have a list of results, you can extract the first and only item from the list

using the list index and display the feature layer. Type in the following:

fmSurvey = fmSurveySearch[0]

display(fmSurvey)

Run the cell. The result will be the details of the feature layer:

Figure 11:21: Feature layer collection with survey data

6.	 In the next cell, you can check how many layers are in the feature layer collection by looping

through each layer and printing out the results. Type in the following:

for lyr in fmSurvey.layers:

 display(lyr)

Run the cell. The result should be a single layer within the feature layer collection:

<FeatureLayer url:"https://services3.arcgis.com/HReqYJDJNUe3sQwB/
arcgis/rest/services/survey123_85b524e1efac48a6bf3d96a8bfb07022_
fieldworker/FeatureServer/0">

7.	 Since there is just the one, you can again use the list index to select that layer. Type in

the following:

fmSurveyLyr = fmSurvey.layers[0]

fmSurveyLyr

Case Study: ArcGIS Online Administration and Data Management450

Run the cell. The result is the same as above, a single layer within the feature layer col-

lection:

<FeatureLayer url:"https://services3.arcgis.com/HReqYJDJNUe3sQwB/
arcgis/rest/services/survey123_85b524e1efac48a6bf3d96a8bfb07022_
fieldworker/FeatureServer/0">

In this survey, there is just one layer in the feature layer collection. If, for example, your

survey team is completing biological surveys, they may be collecting data in different

layers all within one feature layer collection. It is important to know which layer within

the feature layer collection contains the photo attachments you want to download. If you

are unsure, you can navigate to the feature layer collection on ArcGIS Online and view

the list of layers. The top layer is layer 0 and the layers after that are 1, 2, and so on. In the

following Figure 11.22, survey is layer 0, Summer21RouteShape is layer 1, and Alameda-

ContraCostaCounty_RaceHispanic_BlockGroup is layer 2.

Figure 11.22: Layers in a feature layer collection

8.	 Now that you have the layer with the photo attachments, you can create a folder to hold

those photos based on the name of the layer. You use the properties.name property of

the layer to get the name of the layer.

Then, you use the os.mkdir function to create a folder after using the os.path.exists

function to make sure it doesn’t exist yet. Type in the following:

lyrName = fmSurveyLyr.properties.name

PhotoPath = os.path.join(folderLoc,lyrName+"_Photos")

Making the folder in your script allows you to use the name of the layer for

the folder. It is another step that the Notebook is doing, so you don’t have

to do it manually. This helps you keep your entire process contained in one

Notebook.

Chapter 11 451

if not os.path.exists(PhotoPath):

 os.makedirs(PhotoPath)

Run the cell.

9.	 Next, you want to check and make sure that the layer has attachments. That is part of

the properties property. If you are using field survey data where there are many layers

within a feature layer collection, this step will help to ensure you have selected the correct

layer. Type in the following:

fmSurveyLyr.properties.hasAttachments

Run the cell. The Out cell will return the following:

True

10.	 To extract the photos, you need to query the feature layer. First, you should check the

capabilities property to make sure the layer can be queried. Type in the following:

fmSurveyLyr.properties.capabilities

Run the cell. The Out cell will return the following:

Create, Query, Editing, Sync

This shows that the layer can indeed be queried.

11.	 Now you can use the fields property of the layer to find the field names available for

naming the photos:

for field in fmSurveyLyr.properties.fields:

 print(field["name"])

Run the cell. The Out cell will return all of the field names to you:

objectid

globalid

CreationDate

Creator

EditDate

Editor

market_visited

date_of_visit

stand_visited

Case Study: ArcGIS Online Administration and Data Management452

purchased

purchased_other

These are the fields that you can use to pull attributes from for naming your photos. You

should work with your survey team on their specific survey to identify which fields they

will find the most useful in naming photos. For example, a team doing an archaeologi-

cal survey may want the site ID in the photo name so they can find all the photos for a

particular site.

12.	 You plan to use the market_visited and stand_visited fields. In the next cell, create two

variables to hold the field names for use later:

nameField1 = "market_visited"

nameField2 = "stand_visited"

Run the cell. Since there are no print statements, nothing will be returned.

13.	 In the next cell, you will create a list of the object IDs. You will iterate over this list later

and use the values to query each feature in the layer. To get the list of object IDs, you use

the query function and pass in the argument return_ids_only set to True. This will give

you a dictionary of just object IDs. From this you can create a list, as one of the values of

the dictionary is a list of the object IDs. Type in the following:

objIds = fmSurveyLyr.query(return_ids_only = True)

print(objIds)

listObjIds = objIds["objectIds"]

print(listObjIds)

Run the cell. The first print statement will return the dictionary from the query function.

The second print statement will return the list extracted from the dictionary:

{'objectIdFieldName': 'objectid', 'objectIds': [1, 2, 3, 4]}

[1, 2, 3, 4]

You need to make sure that the field you choose is fully populated and does

not have any null values. It is important to work with your survey teams

before they go out to identify the potential fields for naming photos and, if

you are using Survey123 or Field Maps, set up those fields so they cannot

be left blank.

Chapter 11 453

14.	 This next cell is where you are going to download and rename all of the photos. The code

for this will be written in one cell, as it is all part of a single for loop. It will be broken

up over the next two steps.

You will loop through the list of object IDs from above. Within the loop, you will get the

list of attachments for each feature in the layer and print it to see what the list looks like

and what values you have access to. You will then create a query for the object ID of the

layer and create a layer query, using that layer query to extract the values of the two fields

you are going to use to rename the photos. You will run a replace() on those values to

replace any spaces with underscores, and print out the names to track your progress.

Type in the following:

for objID in listObjIds:

 objAtt = lyr.attachments.get_list(oid=objID)

 print(objAtt)

 sql = "OBJECTID = {}".format(objID)

 lyrQuery = fmSurveyLyr.query(where = sql, out_fields="*")

 lyrQueryFeatures = lyrQuery.features

 name1 = lyrQueryFeatures[0].attributes["{0}".
format(nameField1)].replace(" ","_")

 print(name1)

 name2 = lyrQueryFeatures[0].attributes["{0}".
format(nameField2)].replace(" ","_")

 print(name2)

15.	 In the same cell as above, you will create another for loop to loop through the attachments

list. The attachments list contains the data dictionary for each attachment. You can access

the attachment name and ID and set each to a variable. Next, you will download a photo

by passing arguments for the object ID of the layer, the attachment ID of the photo, and

the path for the folder to save it to, to the download function. This will download the photo

with the attachment name, which does not contain the useful information collected in

the survey. You will then create a new name for the photo using the name of the layer,

the values from the attributes, and the attachment ID. To rename the photo, you use the

os.rename function, passing the downloaded photo name and the new name you just

created. In the same cell as above, type in the following:

 k = 0

 while k < (len(objAtt)):

Case Study: ArcGIS Online Administration and Data Management454

 attachmentName = objAtt[k]["name"]

 print(attachmentName)

 attachmentID = objAtt[k]["id"]

 print(attachmentID)

 pic = lyr.attachments.download(

 id=objID,

 attachment_id=attachmentID, save_path=PhotoPath

)

 newName = os.path.join(PhotoPath,lyrName+"_"+str(name1)+"_"
+str(name2)+"_"+str(attachmentID)+".jpg")

 os.rename(pic[0],newName)

 k+=1

Run the cell. You will see the data dictionary for the object attachment, which are the pho-

tos, along with the names of the two values to name the photos with, the attachment name,

and the attachment ID for each photo. The first object ID will look like the code below:

[{'id': 1, 'globalId': '22a7b523-03a3-423a-9a92-9984fd093fb5',
'parentGlobalId': '143d832f-faf4-4fbe-9943-a4459ec081ee', 'name':
'stand_picture-20210727-212156.jpg', 'contentType': 'image/jpeg',
'size': 804201, 'keywords': 'stand_picture', 'exifInfo': None},
{'id': 2, 'globalId': '0580dc2a-d45e-41af-910a-f4b840efea8c',
'parentGlobalId': '143d832f-faf4-4fbe-9943-a4459ec081ee', 'name':
'stand_picture-20210727-212207.jpg', 'contentType': 'image/jpeg',
'size': 973045, 'keywords': 'stand_picture', 'exifInfo': None}]

South_Berkeley

blossom_bluff

stand_picture-20210727-212156.jpg

1

stand_picture-20210727-212207.jpg

2

You have now downloaded all of the photos from your survey and renamed them based on at-

tributes. This makes reviewing the photos offline easier, as they now have recognizable names

based on the data collected.

This process was just for a single layer within a feature layer collection. It could be modified to

go through all the layers in a feature layer collection. It could also be modified to download only

certain photos from a feature layer based on an attribute or spatial query.

Chapter 11 455

All of this allows you to extract photo attachments from your survey without having to download

an entire geodatabase of data, and then rename the photos manually.

As always, you have the option of converting this Notebook to a script tool so you can deploy it

to your entire team, no matter their level of Python knowledge. Creating script tools to help your

team administer their data collection without your assistance will allow you to focus more on

managing your projects and create a more self-sufficient team.

We covered the Notebook-to-script tool conversion process in Chapter 6, ArcToolbox Script Tools,

so we will not proceed with it here. It is a good idea when creating a script tool to create a help

document to go along with the script tool. In this document, you should explain the different

parameters and where to find them. Once the help document is created, you can deploy the

script tool to your team, so your GIS staff and field staff can self-serve downloading photos and

renaming them from field visits.

Summary
In this chapter, you have seen multiple case studies that show how you can streamline adminis-

trative tasks. You looked at creating users and usage reports, assigning licenses and credits, and

reassigning user data, as well as downloading attachments. These case studies highlight how

you can write Notebooks in ArcGIS Pro to handle tasks in ArcGIS Online that take multiple clicks

through multiple pages. This allows you to easily switch from your project work with ArcGIS Pro

to your admin tasks without having to change platforms. All of the Notebooks can be kept in an

administrator toolbox in the Favorites tab of your Catalog pane to give you easy access to them.

In the next chapter, we will look at a case study on creating an advanced map automation to view

the impact of suspended bus lines on minority groups.

You can find a copy of the final script tool along with an accompanying help

document in the GitHub repository for this chapter, at https://github.com/

PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter11.

https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter11
https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter11

12
Case Study: Advanced Map
Automation

You may be familiar with data-driven pages in ArcGIS Desktop and using them to export mul-

tiple pages to PDF from one layout view to make a map book. In ArcGIS Pro, data-driven pages

have been replaced with map series, which also use a single layout to export multiple pages to

PDF. This chapter’s case study will see you using ArcPy to take a layout and create, add, and style

layers to the layout, along with extracting data from those layers and adding that data as text to

the layout. Then, you will export a map to PDF before moving to the next selected block group

and completing the process again. Finally, you will merge all the PDFs into a single map book.

In Chapter 7, you learned how to automate map production using ArcPy. In this chapter’s case

study, you will take what you have learned and extend that to create a set of maps displaying

minority populations along a discontinued bus route. You will be highlighting block groups with

a minority population greater than that of a reference community. A reference community is a

larger community that is compared to smaller areas, like block groups or tracts. This is a practice

you will see in Environmental Justice sections of Environmental Impact Reports/Statements to

determine if minority populations are being disproportionately impacted. The skills you learn

in this case study can be applied to creating custom wetland delineation maps, habitat maps,

parcel maps, or any other maps where the data remains the same but the view changes along a

project corridor.

This chapter will cover:

•	 Setting up a layout for use in map automation

Case Study: Advanced Map Automation458

•	 Creating and adding data to a map

•	 Querying layers within the map to improve display

•	 Changing the map view in the map frame

•	 Updating the map title for each page

•	 Exporting each page to PDF

•	 Combining all the pages into one PDF

Case study introduction
In this case study, you will use ArcPy to create a custom map series displaying Census Block

Group data along AC Transit Transbay bus routes.

In the summer of 2020, due to COVID-19, many Transbay bus routes were suspended, leaving

limited service from Alameda and Contra Costa County to San Francisco. You are working with a

group on a preliminary Environmental Justice study to see if one of the lines that was suspended

had a disproportionate impact on minority communities. You have been asked to produce a series

of maps that highlight the block groups along the route of one bus line that have a higher-per-

centage minority population than that of block groups along the routes that were not suspended.

In addition to highlighting those block groups, the population of each race group in the selected

block group needs to be displayed as a dot density map and a table included on the figure that

contains the percentage of each race group.

This requires you to create a custom map series in an ArcGIS Notebook in ArcPy, as the map series

function in ArcGIS Pro cannot add and style layers or extract attribute data for display on the

map in a table.

To complete the exercises in this chapter, please download and unzip the

Chapter12.zip folder in the GitHub repository for this book: https://github.

com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter12.

For more information on creating a map series by using the ArcGIS Pro tool for map

series, see the documentation here: https://pro.arcgis.com/en/pro-app/

latest/help/layouts/map-series.htm.

https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter12
https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter12
https://pro.arcgis.com/en/pro-app/latest/help/layouts/map-series.htm
https://pro.arcgis.com/en/pro-app/latest/help/layouts/map-series.htm

Chapter 12 459

Setting up a layout for map automation
To create your custom map series, you need to first create a layout that contains all the elements

you will need. In most cases, your layout will include the following elements, with many of the

elements defined before you start writing Python code:

•	 A map frame for your main map

•	 A legend with any static data properly styled

•	 A scale bar

•	 A north arrow

•	 A text box for the title

•	 A map frame for an inset map

Optionally, you may also include the following elements:

•	 Text boxes for additional information

•	 Additional map frames as needed

You need to make sure that all of the settings that you cannot change using ArcPy are already set

correctly for your map. Often, this is an iterative process of changing your map extent and export-

ing sample pages to ensure all the settings are correct. In this case study, we have already done

that and created a layout for you in the Chapter12.aprx file. You will inspect all of the elements

of the Map, Layout, and Inset to view the settings that have been chosen for this map series.

1.	 Open up ArcGIS Pro.

2.	 Click Open another Project, navigate to where you unzipped the Chapter12.zip folder,

and select Chapter12.aprx to load the Chapter12 project.

3.	 Click on the map to view the data already loaded in the map. You should see a World Street

Map set as the basemap, along with the following feature classes:

•	 AC_Transit_AdditionalTransbay: A feature class containing the Transbay bus

routes that were discontinued in 2020.

•	 Summer21RouteShape: A feature class containing all the AC Transit bus routes in

Summer 2021. It has a definition query on it so it only displays Transbay routes.

To view this, right-click on the layer and select Properties. In the Layer Properties

dialog box, click on Definition Query to see the query. It reads:

Pub_RTE In ('W', 'V', 'U', 'P', 'O', 'NX', 'NL', 'LA', 'L',
'J', 'G', 'F', 'DB1', 'DB')

Case Study: Advanced Map Automation460

•	 AlamedaContraCostaCounty_RaceHispanic_BlockGroup: This is the American

Community Survey (ACS) 5-year data for 2019 at the block group level for race

counts. It was created using the script tool from Chapter 6, with block group shape-

files and census CSVs for Alameda and Contra Costa County. The script tool has

been included in the Toolbox in the Chapter12 project, and the census CSV is in

the censusCSV folder in the Chapter12.zip folder. The feature class has already

been styled using dot density symbology. It is set to 1 dot = 1 person, which will

look much better when the scale is set to a block group.

4.	 Click on Layout to look at the default starting layout:

Figure 12.1: Map layout

Chapter 12 461

Figure 12.2: Layout view drawing order

Case Study: Advanced Map Automation462

We will go through the layout elements in the drawing order to observe the settings of each el-

ement, noting which settings cannot be modified with Python and must be set manually before

starting your automation.

Source text element
The top element in the layout drawing order is the text element named Source. This contains the

source information for your map. Below, you will explore the different settings available for a text

element, highlighting those that can be set using ArcPy and those that cannot.

1.	 Click on Source to bring up the element pane.

2.	 Within the Text tab, you will find the General and Text tabs.

Figure 12.3: Source element Text tab options

Chapter 12 463

You can see the name of the element and the text written in the text box.

3.	 The Text box shows the text printed in the text box. It contains the source for the census

data and the bus route data. It also contains the serviceLayerCredits button for the dy-

namic text for the service layers. Click on the button to see how that is written:

Figure 12.4: Dynamic text in serviceLayerCredits button

This service layer credit text has been modified from the standard text inserted when you

click Dynamic Text > Service Layer Credit. The following code has been added:

separator="\n" showLayerNames="True" layerNameSeparator=":"/>

The separator tag is set to "\n", which will create a new line after each service lay-

er. The showLayerNames tag is set to True to show the basemap layer names. The

layerNameSeparator is set to ": " to place a colon and a space between the layer name

and the credits. This all makes the source for the maps easier to read. When you are fin-

ished viewing this, click OK to close the box.

Case Study: Advanced Map Automation464

4.	 Now view the Placement tab to see the Size and Position tabs:

Figure 12.5: Text Placement tab

This shows the width and height of the text box, its position, and the anchor point. This

is what the X and Y locations are based on when moving elements in ArcPy. Verify that

the anchor location is the top left.

5.	 Now look at the Text Symbol tab:

While the width, height, and positions can be changed using ArcPy, the anchor

location cannot and must be set manually here. Always check the anchor point

location. If you do not have it set to the anchor point you expect, your element

will be in the wrong place. You cannot change the anchor point in ArcPy. It

must be set in the element pane.

Chapter 12 465

Figure 12.6: Text Symbol General tab

Only font size under the Appearance setting and angle under the Rotation Setting, are

available to be modified in ArcPy. Everything else must be set manually and must work

for all views in your automation. All of the elements in the Formatting tab (the icon con-

taining the “A”) must be set prior to any automation, as they cannot be accessed via ArcPy.

For all of the text properties you can modify in a text element, you are limited to what you can

call in ArcPy. It is important to test different settings out on different views to understand how

they work. In this template, I have modified the source text element to wrap the dynamic text to

a new line for each source, set the font size to 6 pts, the font color to gray, and the anchor point

to the top left. If you want to modify any of these, you must set them in the layout as they cannot

be changed in the Notebook.

Inset map frame
The next layout is the Inset map frame, which is the map frame layout element for the inset map

that shows the extent of your study area. Below, you will explore the different settings available

for a map frame element.

Case Study: Advanced Map Automation466

1.	 Click on Inset to bring up the element pane to format the Map Frame:

Figure 12.7: Inset Map Frame element

There are more options for a map frame element than for a text frame. You have a drop-

down that is set to Map Frame and the Options tab as your starting view. This is where

you can change the name of the layout element and the map associated with that map

frame. You can adjust the map displayed in a map frame and the name of the map frame

using ArcPy. You will be leaving the name and map as Inset.

2.	 Click on the dropdown to the right of the top Map Frame. You will see options for Map

Frame, Background, Border, and Shadow:

Figure 12.8: Map Frame dropdown choices

You can modify the background, border, and shadow effects for the Map Frame from

these tabs. They must be set here, as none of the properties can be controlled with ArcPy.

3.	 Now look at the Display Options tab:

Chapter 12 467

Figure 12.9: Inset Map Frame Display Options

The Constraint option cannot be accessed with ArcPy and must be set here for your map

series. The extent and scale can both be changed through the ArcPy Camera object. You

will use this later in this chapter to change the scale and extent of your maps.

4.	 Look at the Display tab next. You can make changes to the display of the border, back-

ground, and shadow here by setting their colors, offset, and rounding. None of these

settings can be controlled using ArcPy and must be set manually.

5.	 Now look at the Placement tab. These are the same placement settings as from the Source

text element. The width, height, and position elements can be modified through ArcPy,

but not the anchor point. Verify that the anchor point is set to the bottom left.

6.	 The last setting to check on the Inset map frame is the Extent Indicator. It has already

been placed in the map frame and set to a cyan color.

Case Study: Advanced Map Automation468

Click on Extent of Map Frame in the Contents tab:

Figure 12.10: Extent Indicator in the Contents tab

This will bring up the Extent of Map Frame elements pane. In this tab, you can change the

name of the element, the source of the extent, the color and shape of the extent indicator,

the setting for a leader line if needed, and the setting for turning an extent indicator into

a point on collapsing. You will leave all of these as their current settings.

You have seen all the settings for a map frame and how they are set up for an inset map for map

automation. You must set any of these that cannot be accessed through ArcPy before creating

your automation. In many cases, you will need to test different views to ensure that your settings

have the look you expect them to.

None of the extent indicator settings can be accessed in ArcPy and must be

set here manually before creating your automation.

Chapter 12 469

DetailsHeader and DetailsBox text elements
DetailsHeader and DetailsBox are both text elements. DetailsHeader is used as a header for a

box of text information you will be printing out for each page. DetailsBox holds the different

information for each page, which will change with what is being viewed on each page. Since it

is a text box like the Source element, it has the same settings. You should check the anchor point

to make sure it is in the correct location.

1.	 Click on DetailsHeader to bring up the element pane to format the DetailsHeader text box.

2.	 Click on the Placement tab under the Text tab to show the placement settings. Check to

make sure that the anchor point is the top-left corner.

Do the same for the DetailsBox element. You can further explore the settings for both elements

in your own time. Like with all text elements, you are limited in what you can control in ArcPy

and you will need to set some of the different properties of your text element before creating

your automation.

You will be extracting data from a map layer and writing to this text box in your script, and it has

been set to take up to nine lines of data. If more lines were needed, you would need to modify

the settings here to allow for that. You would then verify those settings on a single page before

continuing on to create your automation.

Legend element
The Legend element has many settings that can be changed through the Element tab. Many of the

settings cannot be changed by using ArcPy; the settings that can are accessed through the Legen-

dElement and LegendItem classes. Much of what you can change in ArcPy involves adding layers,

moving them, and changing layer names and group names. Because of this, it is important to think

about what legend elements will be displayed on your map and how you want them displayed.

You will explore the different settings that have been set for this legend that allow for layers to

be added to the map and the legend through your automation script.

Case Study: Advanced Map Automation470

1.	 Click on Legend to bring up the element pane to format the legend element.

Figure 12.11: Legend element Options tab

The above view is of the Options tab within the Legend element tab. This shows the name

of the legend element, the map frame for the legend, a button to access the properties of all

the legend items, and settings for synchronizing with the map. The synchronize settings

can all be controlled through ArcPy with the following properties:

•	 syncLayerVisibility: A Boolean that corresponds to the Layer visibility check-

box. When True or checked, a layer will automatically appear in the legend if it

is visible on the map.

•	 syncLayerOrder: A Boolean that corresponds to the Layer order checkbox. When

True or checked, the layer order in the legend is the same as the map.

Chapter 12 471

•	 syncNewLayer: A Boolean that corresponds to the New layer checkbox. When

True or checked, a layer will be automatically added to the legend when added

to the map.

•	 syncReferenceScale: A Boolean that corresponds to the Reference scale check-

box. When True or checked, the symbols in the legend will match the scale of the

symbols in the map.

You will set these here before creating your automation as they will be the same through-

out. Set Layer visibility and Reference scale to checked and Layer order and New layer

to unchecked. This will ensure that the only layers on the legend are layers you have

added. You will be adding layers to the legend in the order you want as you create them

in your automation.

2.	 Click on the dropdown next to the word Legend to see what the options are:

Figure 12.12: Legend dropdown options

Legend is the option you are in right now. Background, Border, and Shadow give you

access to those display settings for the legend box. They cannot be set using ArcPy and

must be set manually here before your automation. Title, Group Layer Names, Layer

Names, Headings, Labels, and Description will allow you to change all of the text for-

matting options for all of the legend elements. These options are the same as the text

formatting options you have for a text box. When you set them here, they are universal

for all legend elements.

Case Study: Advanced Map Automation472

3.	 Within the Legend Item tab, click the Show Properties (...) button. This will select all the

legend items and show the different settings you can set for all of them.

Figure 12.13: Legend Item multiple selection

If something is grayed out, it means the different items selected have different settings

selected for that option, and you will have to change them individually. The Text Symbol

tab will bring up the tabs for formatting the text. When you are done viewing this, click

the back arrow to get back to the Legend Options tab.

None of these settings can be accessed with ArcPy. You need to set them

either here or for the individual legend elements.

Chapter 12 473

4.	 Click the Legend Arrangement Options tab next to the Options tab.

Figure 12.14: Legend Arrangement tab

The only setting here that can be controlled using ArcPy is the Fitting Strategy; refer to

Chapter 7 for the different fittingStrategy methods available. Adjust columns and font

size has been selected for this map. This Fitting Strategy should ensure that when you

add items to your map and legend, the legend will display all of them.

5.	 Look at the Display tab. It has the same border, background, and shadow settings that

cannot be modified using ArcPy.

6.	 View the Placement tab and make sure the anchor point is set to the top left.

You have checked all of the legend elements and set them for your map. Now it is time to look at

the individual legend elements and set them up so when you automate your map creation, the

legend items are displayed correctly.

The Show Properties (...) button is useful for creating universal settings

for all of your legend items. It can save you time in creating a legend that

is ready for automation if you want all of your patch sizes, arrangements,

and fonts to be the same for each element. Otherwise, you have to create

the same settings for each element.

Case Study: Advanced Map Automation474

Legend Item elements
You have three legend items in your legend right now:

•	 AC_Transit_Additional_Transbay

•	 Summer21_RouteShape

•	 AlamedaContraCostaCounty_RaceHispanic_BlockGroup

Only AlamedaContraCostaCounty_RaceHispanic_BlockGroup should be checked to make it visible.

From here, you are going to view the legend item elements for AlamedaContraCostaCounty_

RaceHispanic_BlockGroup and then save a legend item setting as a default.

1.	 Click the AlamedaContraCostaCounty_RaceHispanic_BlockGroup legend item to view

the Legend Item elements pane.

Figure 12.15: Legend Item element tab

Saving a default will mean that whenever a legend item is added it will have those

settings.

Chapter 12 475

You will set the display settings for the different elements of this Legend Item here.

2.	 Click the dropdown next to Legend Item to view the dropdown options.

Figure 12.16: Legend Item dropdown

Legend Item is the top level where you select what legend items will be displayed. Group

Layer Names, Layer Names, Headings, Labels, and Descriptions all give you access to the

text formatting settings. You can select all the same text formatting settings as with the

text element here. None of these settings can be accessed with ArcPy and must be set here.

3.	 Click on Legend Item to stay with the legend item settings. The legend item for

AlamedaContraCostaCounty_RaceHispanic_BlockGroup is set to only display the Label

(or Layer Name). The legend right now is showing only the label for each race and the dot

symbol for each. You want the layers you add to also only display the label or layer name

when they are added. To do that, you will save this legend item as the default.

4.	 Right-click on AlamedaContraCostaCounty_RaceHispanic_BlockGroup and select Save

As Default. Now every layer that is added to the legend will have the same setting as the

AlamedaContraCostaCounty_RaceHispanic_BlockGroup item.

5.	 Click the checkbox next to Layer name in the legend item element tab. This will turn on

the layer name for the AlamedaContraCostaCounty_RaceHispanic_BlockGroup item. You

should use the layer name for display on the AlamedaContraCostaCounty_RaceHispanic_

BlockGroup item, as you can access and change that in ArcPy.

6.	 Check the box next to Headings on the AlamedaContraCostaCounty_RaceHispanic_

BlockGroup item tab.

You can update and make changes to the AlamedaContraConstaCounty_

RaceHispanic_BlockGroup legend item now and they will not impact the

default; that default is saved based on the settings at the point of saving.

Case Study: Advanced Map Automation476

This will display the heading for a dot density that shows the ratio for what each dot

equals. Your legend should now look like this:

Figure 12.17: Legend with updated settings

You have set your defaults for your legend and set a default setting for legend items that will be

added. You can now add items to your legend and rename the layer names and labels through

ArcPy. It is important to set as many of these settings as possible when creating your layout tem-

plate, as you cannot change many of them through ArcPy.

Scale bar and north arrow elements
The scale bar and north arrow settings that are accessible through ArcPy are both MAPSURROUND_

ELEMENTS. You can only change the height, width, X and Y position, map frame the element is

associated with, name, and visibility. You will set the scale bar and north arrow details within

ArcGIS Pro.

Scale bar
You will check the scale bar element to see the settings for the layout. You will also set the anchor

point from within the scale bar element.

1.	 Click on Scale Bar to bring up the element pane, where you will format the scale bar

element. It should look like this:

Make sure that the text formatting for your legend layer names, headings, labels,

and description are all set before working on your automation script, as you cannot

change those in the script.

Chapter 12 477

Figure 12.18: Scale Bar element Options tab

2.	 The Options tab shows you the General, Scale Bar, Map Units, and Style settings. None

of these settings can be modified with ArcPy and need to be set here.

Case Study: Advanced Map Automation478

3.	 The Properties tab should look like the figure below. This is where you have many options

available to you for styling your scale bar:

Figure 12.19: Scale Bar element Properties tab

None of these settings can be modified with ArcPy and must be set here. These settings

play an important part in the look of your scale bar.

Note that the Fitting Strategy is set to Adjust division value. This will ensure

that the scale bar stays the same size and the division values are what will

change as your scale changes. This is a good setting to use when creating

map automations where the scale may change a great deal. It allows you to

make sure that your scale bar will always be the same size no matter what

scale it is showing.

Chapter 12 479

4.	 The other two tabs are the Display and Placement tabs, which are similar to the display

and placement tabs in the other layout elements. The Display tab will set the border,

background, and shadow display settings. The Placement tab will show you the size,

position, and anchor points. Click the Placement tab and make sure the anchor point is

the bottom left.

A lot of details in the scale bar can be set in the element pane. In addition to what was discussed,

you can click the drop-down arrow next to Scale Bar to access the following graphic elements

and their settings: Background, Border, Shadow, Numbers, Unit, Symbol 1, Symbol 2, Division

Marks, Subdivision Marks, and Midpoint Marks. You can also click on the Text Symbol tab to

access the same text formatting options available to all text elements.

These settings allow for a sizeable number of cartographic options for creating rich maps. However,

none of them can be accessed and changed in map automation. Because of that, it is important

that you set them before you begin your automation and make sure that they will work with all

the different scales and map views your automation will create.

North arrow
The north arrow is similar to the scale bar in that most of its settings can only be set in the Element

tab in ArcGIS Pro. You will check the settings on the north arrow to see what has been set before

creating your automation.

The background, border, and shadow graphic elements can be set from either the

dropdown next to Scale Bar or in the Display tab.

Case Study: Advanced Map Automation480

1.	 Click on North Arrow to bring up the element pane to format the north arrow element.

Figure 12.20: North Arrow

The first tab is the Options tab and shows you the name of the element, its visibility, the

map frame it is associated with, the type of north arrow, the calibration angle, and the

symbol. Of these, only the Name and Visible settings can be changed with ArcPy in your

map automation.

2.	 The north arrow also has the same Display and Placement tabs as the other layout ele-

ments. Click in the Placement tab to see the height, width, and position settings. These

can all be changed in your automation. Check to make sure the anchor point is the bottom

middle.

In addition to those settings, you can also access more details by clicking the drop-down arrow

next to North Arrow. This will give you access to display settings available in Point Symbol, Back-

ground, Border, and Shadow. All of these can add rich details to your map. Like with the scale

bar, though, they must be set here and cannot be modified in your automation. So, it is important

that whatever settings you choose are acceptable for all maps you will export in your automation.

Chapter 12 481

Title text element
The Title text element is a text element that is being used for the map title. Since it is a text box

like the Source element, it has the same settings. You should check the anchor point to make sure

it is in the correct location.

1.	 Click on Title to bring up the element pane to format the Title text box.

2.	 Click on the Placement tab under the Text tab to show the placement settings. Check to

make sure that the anchor point is the top-right corner.

You can further explore the settings for the Title text element in your own time. Like with all text

elements, you are limited in what you can control in ArcPy. It is important to set any specific text

fonts and formatting now, as they cannot be changed in the map automation process.

Map Frame element
The Map Frame element is a map frame element like the Inset map frame, so it will have the same

settings available; refer to that section above for more details. As this is the main map frame, you

will be keeping all the settings as they are currently set.

You have now set up a layout that you can add new layers to and then iterate through different

views to create a series of maps. Often, when setting up your layout, you will need to experiment

with the settings to make sure they work for the data you are adding and changing through the

automation. This part of map automation is not any different from creating layouts and following

the principles of cartography. The only difference is you are looking to ensure your settings work

not just on the template map but also on the tens, hundreds, or even thousands of pages you will

be creating and exporting.

Creating and adding data to your map
You now have a layout that is ready for creating your map automation. It contains:

•	 The existing Transbay bus routes

•	 The Transbay bus routes that were suspended

•	 The race data by block group displayed using dot density symbology

Always pay attention to what you can and cannot change through ArcPy. Spend

time creating a template that sets all of the elements that cannot be changed before

starting your automation.

Case Study: Advanced Map Automation482

The legend is set up to add in the new layers you will be creating using ArcPy in an ArcGIS Pro

Notebook.

The final product will be a map series for a suspended bus line that highlights each block group

within a 0.5-mile study area of the route with a minority population larger than that of a reference

community. The reference community is the minority percentage of all the block groups within

0.5 miles of the routes that were not suspended. This will allow you to understand how many

block groups in the suspended line have a higher percentage of minority population than the

population along the bus routes that remained.

Each block group with a minority percentage higher than the reference community will be high-

lighted by being the only one on the page displaying the dot density map. Any surrounding block

groups in the bus route’s study area will be symbolized by whether they have a minority popu-

lation above or below the reference community. Each page will utilize the DetailsBox element

to display the percentage of each race group in the block group. From this, you can identify areas

of potential disproportionate impact on minorities by the suspension of this bus line. This will

help your team identify the impact on minority communities if the bus line were to be resumed.

1.	 Open the Catalog pane if it is not already open and select the Project tab.

2.	 Within the Chapter12 project folder, right-click and select New > Notebook.

3.	 Right-click on New Notebook.ipyb and select Rename. Rename the Notebook to

CreateMapSeriesForOneBusLine.

4.	 In the first cell, you import the modules you need and set an environment setting. You will

import the os module to help you work with filenames and paths. You will also need the

glob and PyPDF2 modules, which will be used together to combine the individual PDFs

in a later step. The glob module is used to find files in a workspace based on a file pattern.

The PyPDF2 module will be used to merge the PDFs into a single PDF. You will also set the

overwriteOutput environment setting to True, so that any output that has the same name

as an existing file will overwrite that existing file. This is useful when working through

and testing map automation scripts. Type in the following:

import os, glob

from PyPDF2 import PdfFileMerger, PdfFileReader

arcpy.env.overwriteOutput = True

Run the cell.

Chapter 12 483

5.	 In the next cell, you will define all of the variables that you will need throughout the script.

There will be a lot of variables, as you will be creating feature layers and new layers. The

first two variables are the project geodatabase and project folder. They may be different

from what you see below, depending on where you downloaded the data to. In addition,

you need to define the feature classes that you are starting with. This is also the place

where you will create your variables for your map and layout elements. You will also

create a variable to hold the bus route name from the suspended bus route dataset. Type

in the following:

Project gdb and folder locations
projectGDB = r"C:\PythonBook\Chapter12\Chapter12.gdb"
projectFolder = "\\".join(projectGDB.split("\\")[:-1])

Bus and census data that already exists in the project gdb
busLines = os.path.join(projectGDB,"Summer21RouteShape")
censusPoly = os.path.join(
 projectGDB,"AlamedaContraCostaCounty_RaceHispanic_BlockGroup"
)
newBusLines = os.path.join(
 projectGDB,"AC_Transit_AdditionalTransbay"
)

Summary stat table to be created for the reference community
calculations
sumStatTable = os.path.join(projectGDB,"SummStat_RaceHispanic_
StudyArea")

Feature layers created for selections
studyAreaFL = "SelectedCensus_FL"
busLinesFL = "SelectedBusLines_FL"
newBusCBGs = "NewBusCBGsRefComm"

Suspended bus route and data created for suspended bus route
busRoute = "C"
newBusLinesSel = os.path.join(projectGDB,"NewTransbayLine_{0}".
format(busRoute))
cbgStudyArea = os.path.join(projectGDB,"CBG_StudyArea_Bus_{0}".
format(busRoute))

Case Study: Advanced Map Automation484

Project and map and layout object for the map, inset map, and map
frames for map and inset map
project = arcpy.mp.ArcGISProject("CURRENT")
m = project.listMaps("Map")[0]
inset = project.listMaps("Inset")[0]
layout = project.listLayouts("Layout")[0]
mf = layout.listElements("mapframe_element","Map Frame")[0]
mfInset = layout.listElements("mapframe_element","Inset")[0]

Table header, table box, title text elements, and legend element
tableHeader = layout.listElements("TEXT_ELEMENT","DetailsHeader")[0]
tableBox = layout.listElements("TEXT_ELEMENT","DetailsBox")[0]
title = layout.listElements("TEXT_ELEMENT","Title")[0]
legend = layout.listElements("LEGEND_ELEMENT","Legend")[0]

Run the cell.

6.	 In the next cell, you will create a summary statistics table of the total population for each

race in the block groups that are within 0.5 miles of a bus route. This summary statistics

table is how you will find the minority percentage for your reference community. The

entire process will be wrapped in a with statement that will change the environment

settings so any output feature layers or feature classes will not be added to the map. This

will prevent you from having to remove layers you only created for analysis later. Within

the with code block, you will create a feature layer containing the existing Transbay bus

lines and a feature layer containing the race block group. You will then use the Select By

Location option to select the block groups in the race block group feature layer that are

within 0.5 miles of the existing Transbay bus route feature layer. Type in the following:

with arcpy.EnvManager(addOutputsToMap=False):

 arcpy.management.MakeFeatureLayer(censusPoly,studyAreaFL)

 arcpy.management.MakeFeatureLayer(

 busLines,busLinesFL,

 "PUB_RTE IN ('W', 'V', 'U', 'P', 'O', 'NX', 'NL', 'LA', 'L',

 'J', 'G', 'F', 'DB1', 'DB')"

)

 arcpy.management.SelectLayerByLocation(studyAreaFL,"INTERSECT",

 busLinesFL,"0.5 Miles")

7.	 Continuing in the same cell, read in the fields to be used in the summary statistic calculation

from the AlamedaContraCostaCounty_RaceHispanic_BlockGroup feature class.

Chapter 12 485

This is done by looping through the fields in the feature class and adding a field to a

summStat list only if the field is an integer. In addition, you need to add the summary

statistic to be applied to that field. It will be "SUM", as you want to sum up the totals of

each race group for all the selected block groups. The summary statistic tool will then take

that list of summary statistic fields as a parameter. Within the loop, you will add a print

statement to ensure you are getting the correct fields. Type in the following:

 summStats = []

 for field in arcpy.ListFields(studyAreaFL):

 if field.type == "Integer":

 print("Added {0} field name to summary stat list"

 .format(field.name))

 summStats.append([field.name,"SUM"])

 arcpy.analysis.Statistics(studyAreaFL,sumStatTable,summStats)

Run the cell. You will see the following output for each field that is added to your summStats

list, confirming the creation of the summary statistics table:

Added total_pop field name to summary stat list

Added white field name to summary stat list

Added black field name to summary stat list

. . .

Added total_minority field name to summary stat list

8.	 In the next cell, you will add a field for the minority reference community, calculate the

percentage minority in that reference community, and assign it to a variable to be used

for finding and symbolizing census block groups. To do this, you will use the field name

and the .find() function to find the total population and minority fields.

How do you know what field types you have in your attribute field?

Right-click on the AlamedaContraCostaCounty_RaceHispanic_

BlockGroup feature class in the Contents pane and select Attribute

Table. Within the attribute table, right-click one of the fields and se-

lect Fields. The Data Type column is the type. You can see that for the

AlamedaContraCostaCounty_RaceHispanic_BlockGroup feature class,

the only Long values are the population counts.

Case Study: Advanced Map Automation486

Once you have those field names, you will use them to calculate the percentage minori-

ty of all the block groups within 0.5 miles of existing Transbay lines. You will use the

CalculateField tool to add the percent minority you just calculated to the minority

reference community field you added to the summary statistics table. Next, you need to

extract that minority percentage from the summary statistics table and store it in a variable

for later use in comparing each block group’s minority percentage. To do that, you create

a search cursor on the summary statistic table and the MinorityRefCom_Prct column and

use row = next(cursor) to extract the first row and stop the cursor. You can do this here

because the summary statistic table is just one row. But the row is a list of values, so you

need to take the first value as that is the minority percentage of the reference community.

Finally, a print statement at the end will verify that you have extracted the reference

community percentage. Type in the following:

arcpy.management.AddField(sumStatTable,"MinorityRefComm_
Prct","FLOAT")

for f in arcpy.ListFields(sumStatTable):

 print(f.name)

 if f.name.find("minority") != -1:

 print("Minority find value is {0} for field {1}"

 .format(str(f.name.find("minority")),f.name))

 numerField = f.name

 if f.name.find("pop") != -1:

 print("Pop find value is {0} for field {1}"

 .format(str(f.name.find("pop")),f.name))

 denomField = f.name

arcpy.management.CalculateField(sumStatTable,"MinorityRefComm_
Prct","(!{0}!/!{1}!)*100".format(numerField,denomField))

The variable.find() function looks for the exact string value provided

within the () in the variable. If it finds it, it returns the position in the

string where it starts. If it doesn’t find anything, it returns -1.

Refer to Chapter 4, The Data Access Module and Cursors, for a refresher on the

search cursor.

Chapter 12 487

with arcpy.da.SearchCursor(sumStatTable,["MinorityRefComm_Prct"]) as
cursor:

 row = next(cursor)

 refCommPrct = row[0]

print("Reference Community Number is {0}".format(str(refCommPrct)))

Run the cell. You will see the following output:

Reference Community Number is 65.56812286376953

9.	 In the next cell, you will create a new feature class for the selected suspended bus route,

make a feature layer of the block groups within 0.5 miles of that route, and remove any

GEOID that has a population of 0. You now have a feature layer that contains all of the

block groups with a population greater than 0 that are within 0.5 miles of the selected

suspended bus route. This feature layer is your study area for the suspended bus route.

You will take this study area feature class and use a search cursor to create a list of all the

GEOIDs, and a list of just the GEOIDs that have a percent minority population greater

than the reference community.

Then, you will convert the list of all the block groups to a tuple, creating a list surrounded

by parentheses that can be inserted directly into a SQL in query. This SQL statement will

be used to create a feature class of the census block groups study area. You will include

some print statements to track your process and review the results.

All of this will again be wrapped in a with statement, to set the environment settings so

outputs are not added to the map. You will add and style the layers you need later. Type

in the following:

with arcpy.EnvManager(addOutputsToMap=False):

 arcpy.analysis.Select(

 newBusLines, newBusLinesSel,

 "route_s_nm = '{0}'".format(busRoute)

)

 arcpy.management.MakeFeatureLayer(censusPoly,newBusCBGs)

 arcpy.management.SelectLayerByLocation(

 newBusCBGs,"INTERSECT", newBusLinesSel, "0.5 Miles"

)

 arcpy.management.SelectLayerByAttribute(

Case Study: Advanced Map Automation488

 newBusCBGs,"REMOVE_FROM_SELECTION","total_pop = 0"

)

 minorityGEOIDs = []

 allGEOIDs = []

 with arcpy.da.SearchCursor(

 newBusCBGs,["GEOID","percent_minority"]) as cursor:

 for row in cursor:

 allGEOIDs.append(row[0])

 if row[1] >= refCommPrct:

 minorityGEOIDs.append(row[0])

 print("Added {0} to minority GEOID list"

 .format(row[0]))

 cbgStudyAreaTuple = tuple(allGEOIDs)

 cgbStudyAreaSQL = "GEOID in {0}".format(cbgStudyAreaTuple)

 print(cgbStudyAreaSQL)

 arcpy.analysis.Select(censusPoly,cbgStudyArea,cgbStudyAreaSQL)

Run the cell. You will see the following output (truncated here):

Added 060014036001 to minority GEOID list

Added 060014013001 to minority GEOID list

...

Added 060014251023 to minority GEOID list

GEOID in ('060014036001', '060014012003', ..., '060014007004')

10.	 In the next cell, you are going to add in the census block group study area you created

above and style it. You will add the study area block group to the map, create a layer

object for its layer in the map, and create a symbology object from that layer object. You

will also update the renderer to a graduated colors renderer with a classification field

of percent_minority, a break count of 2, and a break value of the reference community

variable. This will create the study area layer of block groups surrounding your highlighted

minority block group. It will help put the surrounding area of the highlighted block group

into context and allow readers to see if there are large areas of connected block groups

with high minority populations.

Chapter 12 489

Once those are set, you will loop through the class breaks in the renderer and set the label,

symbol color, and outline color for the block groups with a minority population below

the reference community, and for those with a minority population above the reference

community. All block groups will be set with a symbol color that is 70% transparent with

an outline that is 50% transparent. The block groups above the reference community will

be red, and those below will be green.

The last step is setting the new layer symbology equal to the new symbology object. Type

in the following:

m.addDataFromPath(cbgStudyArea)

cbgStudyAreaLyr = m.listLayers("CBG_StudyArea_Bus_{0}".
format(busRoute))[0]

cbgStudyAreaLyrSym = cbgStudyAreaLyr.symbology

cbgStudyAreaLyrSym.updateRenderer('GraduatedColorsRenderer')

cbgStudyAreaLyrSym.renderer.classificationField = "percent_minority"

cbgStudyAreaLyrSym.renderer.breakCount = 2

breakValue = refCommPrct

firstVal = 0

for brk in cbgStudyAreaLyrSym.renderer.classBreaks:

 brk.upperBound = breakValue

 if firstVal == 0:

 brk.label = "Minority Population > Reference Community"

 brk.symbol.color = {'RGB' : [255, 0, 0, 30]}

 brk.symbol.outlineColor = {'RGB' : [255, 0, 0, 50]}

 else:

 brk.label = "Minority Population < Reference Community"

 brk.symbol.color = {'RGB' : [0, 255, 0, 30]}

 brk.symbol.outlineColor = {'RGB' : [0, 255, 0, 50]}

 breakValue = 100

 firstVal += 1

cbgStudyAreaLyr.symbology = cbgStudyAreaLyrSym

Run the cell.

For more information on using break counts and break values with the grad-

uated colors renderer, refer to Chapter 7.

Case Study: Advanced Map Automation490

There will be no output, but the layer CBG_StudyArea_Bus_C will be added to the map and

symbolized with a red polygon for the Minority Population > Reference Community and

a green polygon for Minority Population < Reference Community:

Figure 12.21: Study area census block groups in the map

11.	 In the next cell, you will add the selected suspended Transbay bus line you created in step 9

and symbolize it. You will add the data to the map, create a layer object from it, and create

a symbology object from the layer object. You will leave the Transbay bus line renderer as

a simple renderer, only changing the line color to purple and increasing the line size to

1.5 points. You will also change the layer name to something that will look better in the

legend. Type in the following:

m.addDataFromPath(newBusLinesSel)

newBusLyr = m.listLayers("NewTransbayLine_{0}".format(busRoute))[0]

newBusLyrSym = newBusLyr.symbology

newBusLyrSym.renderer.symbol.color = {"RGB" : [169, 0, 230, 100]}

newBusLyrSym.renderer.symbol.size = 1.5

newBusLyr.symbology = newBusLyrSym

newBusLyr.name = "Transbay Bus Route"

Run the cell. There will be no output, but the layer NewTransbayLine_C will be added to

the map, the symbol will change to a purple 1.5-point line, and the name will be Transbay

Bus Route:

Figure 12.22: New Transbay Bus Route layer

Chapter 12 491

12.	 In the next cell, you will add the selected suspended Transbay bus route and the block

group study area to the inset map. This will help the reader place the highlighted block

group and the surrounding study area along the full route. Before adding the layers to

the inset map, you need to check if they are already there. If there are already layers in the

inset with the same name, you need to remove them and add in these layers. You should

make sure the layers being displayed in the inset are the current ones in the main map.

To start, you use a list comprehension to build a list of layers in the inset map. You will

then use conditionals to check if the Transbay bus route layer and census block group study

areas are in the inset. If they are, you will delete that layer and then add in the new layer

from the map. If they are not, you will add in the new layer. You will add print statements

to track your progress and print out results. Type in the following:

curInsetLayers = [l.name for l in inset.listLayers()]

if cbgStudyAreaLyr.name in curInsetLayers:

 insetCBGLyr = inset.listLayers(cbgStudyAreaLyr.name)[0]

 inset.removeLayer(insetCBGLyr)

 print("Removing old CBG Study Area Layer to Inset")

 inset.addLayer(cbgStudyAreaLyr)

 print("Adding new CBG Study Area Layer to Inset")

else:

 inset.addLayer(cbgStudyAreaLyr)

 print("Adding new CBG Study Area Layer to Inset")

if newBusLyr.name in curInsetLayers:

 insetBusLyr = inset.listLayers(newBusLyr.name)[0]

 inset.removeLayer(insetBusLyr)

 print("Removing old Transbay Bus Route to Inset")

 inset.addLayer(newBusLyr)

 print("Adding new Transbay Bus Route to Inset")

else:

 inset.addLayer(newBusLyr)

 print("Adding new Transbay Bus Route to Inset")

Run the cell. If your inset does not have any old layers, you will see the following printed

out:

Adding new CBG Study Area Layer to Inset

Adding new Transbay Bus Route to Inset

Case Study: Advanced Map Automation492

The study area layer and the Transbay bus routes layers have now been added to the inset.

13.	 In the next cell, you will get the extent of the study area, set the inset extent to that extent,

and then increase the scale to add some buffer between the study area and the edge of

the inset map. You will use the Camera object, which allows you to control the scale and

extent on 2D maps and the camera position on 3D maps.

You will first create a layer object for the study area layer. You will then get the extent of

that layer. You will use the camera object to set the extent of the inset frame to the extent

of that layer. Next, you will update the scale by using the camera object to set the scale

to the current scale plus 2,000, and round it to a whole number. You will include print

statements to track your progress and results. Type in the following:

insetStudyAreaLayer = inset.listLayers("CBG_StudyArea_Bus_{0}".
format(busRoute))[0]

insetExtent = mfInset.getLayerExtent(insetStudyAreaLayer,False,True)

print(insetExtent)

mfInset.camera.setExtent(insetExtent)

mfInset.camera.scale = round((mfInset.camera.scale + 2000),0)

print(mfInset.camera.scale)

A list comprehension is just a shorter way to create a list of values. Above,

you wrote:

 curInsetLayers = [l.name for l in inset.listLayers()]

That is the same as writing the following:

curInsetLayers = []

for l in inset.listLayers():

 curInsetLayers.append(l.name)

By using a list comprehension, you have condensed three lines of code into

one.

Chapter 12 493

Run the cell. You should see the following printed out:

-122.347072470221 37.8072665294239 -122.211846529491
37.8503534704394 NaN NaN NaN NaN

441507.0

The inset map now displays the selected bus route and its study area, at an extent and

scale where you can see the entire study area.

Figure 12.23: Inset map with study area layers

14.	 In the next cell, you need to turn on the labels for the study area in the map. Labeling the

surrounding study area block groups will allow readers to identify any of the surrounding

block groups that also have a minority population percentage larger than the reference

community and find its map in the map series. This can help people to see any patterns

and groupings of minority communities that may have been disproportionately impacted

by this bus line suspension. You are limited to changing the label’s expression, visibility,

SQL query, and name of the label class when using the LabelClass.

What are the NaNs that are returned in the layer extent?

The getLayerExtent method returns the XMin, YMin, XMin, YMin, ZMin,

ZMax, MMin, and MMax extent values of the layer. If your layer is not Z- or

M-enabled, those values will be NaN for Null.

Case Study: Advanced Map Automation494

You will create a label class and set its expression. The label expression is what you would

write in the expression window of the labeling pane when labeling feature classes man-

ually.

Figure 12.24: Label expression

When labeling using a field, you wrap the field in quotation marks and add $feature. be-

fore the field name. You will set the label class to Visible and the layer property showLabels

for the census block group study area to True, to display the labels. You will be labeling

using the GEOID field.

Type in the following

cbgLayerLabels = cbgStudyAreaLyr.listLabelClasses()[0]

cbgLayerLabels.expression = "$feature.GEOID"

cbgLayerLabels.visible = True

cbgStudyAreaLyr.showLabels = True

Run the cell. You will not see any output, but if you select the Map you will see that the

census block group study area polygons are now labeled:

This needs to be done after having added this layer to the inset map, or the

labels will be displayed on the inset map, which is too small for labeling

each block group in the study area.

Chapter 12 495

Figure 12.25: Study area block groups labeled

You now have all of your data created and added to the map. The next section will update the

legend and work on setting up the data for the table box and table header.

Working with legend and text elements in the layout
Now that you have all of your layers on your map, you need to make sure those layers are prop-

erly called out in your legend. In this section, you will take layers you just added to the map and

add them to your legend. They will be added using the default legend style you set above in the

Legend Item elements section.

In addition, you also want to add some details about each highlighted block group. Your map

would be much more useful to readers if you included a table that contained the percentage of

each race group in the highlighted block group on your map. This will allow them not only to

see the race groups in the dot density map but also to reference the percentage each occupies in

the block group.

You will do this by creating a list and data dictionary that will be used to extract data from the

attribute table of the AlamedaContraCostaCounty_RaceHispanic_BlockGroup. This data will be

extracted in the next section to insert into the table box text element.

1.	 If you do not have the CreateMapSeriesForOneBusLine Notebook open, open it back up.

2.	 In the cell at the bottom after the last cell, you will add the selected Transbay bus route

and the census block group study area to the legend.

Case Study: Advanced Map Automation496

You do not want to add a layer if it is already in the legend, so you will use the same process

from above when adding layers to the inset map: creating a list comprehension of all the

layer names in the legend and checking them against the names of the Transbay bus route

and census block group study area layers. If they are not in the legend, they will be added in.

You will add the census block group study area first and put it on top, then the Transbay

bus line, also putting it on top. Type in the following:

legendItemNames = [item.name for item in legend.items]

if cbgStudyAreaLyr.name not in legendItemNames:

 legend.addItem(cbgStudyAreaLyr,"TOP")

if newBusLyr.name not in legendItemNames:

 legend.addItem(newBusLyr,"TOP")

Run the cell. There will be no output results. Select the Layout, and observe that those

layers have been added to the legend:

Figure 12.26: Legend with new layers

3.	 In the next cell, you are going to make sure that only the three layers you want to be

displayed in the legend are being displayed. At this point, you should have only the two

items you just added and the dot density layer of the race by block group, but it is still a

good idea to make sure that nothing unexpected is being displayed.

You will loop through the legend items to find item names matching those of the layers

you want to display, setting their visible property to True if matching and False oth-

erwise. Type in the following:

for item in legend.items:

 if item.name in (

 cbgStudyAreaLyr.name,

 newBusLyr.name,

Chapter 12 497

 "AlamedaContraCostaCounty_RaceHispanic_BlockGroup"

):

 print('{0} is displayed in the legend'.format(item.name))

 item.visible = True

 else:

 item.visible = False

Run the cell. You should see the following print statements:

Transbay Bus Route is displayed in the legend

CBG_StudyArea_Bus_C is displayed in the legend

AlamedaContraCostaCounty_RaceHispanic_BlockGroup is displayed in the
legend

4.	 Select the Layout and observe that the correct layers are displayed.

5.	 In the next cell, you will use the field type information in the AlamedaContraCostaCounty_

RaceHispanic_BlockGroup to create a list of the fields with the percentage of each race

group. Along with this, you will create a data dictionary containing the percentage of

each race group field name as the key and the field alias as the value. You will start by

creating an empty list and an empty data dictionary. You will then loop through the fields

in AlamedaContraCostaCounty_RaceHispanic_BlockGroup and check for the field type

"Single".

When you look at the attribute table for this layer, you will see that the only Float fields

are all of the percentage fields, so only those fields will pass this test. You will add those

field names to that list, also adding the field name as the key and the field alias as the

value to the data dictionary. Outside the loop, you will set the text of the tableHeader

text element to "Percent Race/Hispanic". You will add a print statement to track your

results. Type in the following:

prcField = []

prcDataDict = {}

for field in arcpy.ListFields(censusPoly):

 if field.type == "Single":

 print("Added {0} field name to prcField list"

 .format(field.name))

 prcDataDict[field.name] = field.aliasName

 prcField.append(field.name)

tableHeader.text = "Percent Race/Hispanic"

Case Study: Advanced Map Automation498

Run the cell. You will see the following results (truncated here):

Added prct_white field name to prcField list

Added prct_black field name to prcField list

...

Added percent_minority field name to prcField list

Select the Layout; the header for the text box will now be Percent Race/ Hispanic.

Figure 12.27: Updated details box header

You have now added the data to your legend that you will display in the final layouts you will

export. You have also created a list and data dictionary that will be used in the next step to extract

the percent race for each selected block group. In the next section, you will export the individual

pages for the block groups that have a higher percentage minority than the reference community.

Changing the map view and exporting
At this point, you have added all the elements you need to your map and your legend.

You also have:

•	 A list of the GEOIDs within your study area of all the census block groups that have a

minority percentage that is greater than the reference community

•	 A list and data dictionary that will be used to create the text box containing the specific

race population percentages within the selected census block group

In this section, you will use all of the above to export to PDF a map for each of the census block

groups with a minority percentage greater than the reference community. All the code in this

section is going to be written into two cells, and will contain many print statements so you

can track the progress of your code. The first cell is the largest, as it contains the code to loop

through the block groups, make all the changes to the map, and export it.

Chapter 12 499

The code for this cell will be split into multiple steps.

1.	 If you do not have the CreateMapSeriesForOneBusLine Notebook open, open it back up.

2.	 In a new cell at the bottom, after the last cell from the section above, you will start by

creating a layer object for the AlamedaContraCostaCounty_RaceHispanic_BlockGroup

layer and a counter that will be used for figure numbers. Type in the following:

cbgLayer = m.listLayers("AlamedaContraCostaCounty_RaceHispanic_
BlockGroup")[0]

i = 1

3.	 Continue on the next line and start a for loop through all the values in the minorityGEOIDs

list you created above. You will create a definition query on the census block study area

layer to remove the highlighted GEIOD from its display. You will also create a definition

query on the AlamedaContraCostaCounty_RaceHispanic_BlockGroup to select just the

highlighted GEOID. This will make it so your map only shows the dot density map for the

selected block group and does not cover it with the red or green of the study area block

groups. Finally, you will create an empty list for the text box that you will add data to as

you extract it from the AlamedaContraCostaCounty_RaceHispanic_BlockGroup. Type

in the following:

for geoid in minorityGEOIDs:

 print(i)

 print(geoid)

 cbgStudyAreaLyr.definitionQuery = "GEOID <> '{0}'".format(geoid)

 cbgLayer.definitionQuery = "GEOID = '{0}'".format(geoid)

 textBox = []

4.	 Now you are going to collect the different race group percentages for display for the se-

lected block group and store them in a list. Continuing on the next line, create a with

statement for a SearchCursor, which will search through the AlamedaContraCostaCounty_

RaceHispanic_BlockGroup feature class. It will use the fields list created in the step above,

and a where clause to limit the results to just the highlighted GEOID. Since your where

clause is for a specific block group, the search cursor only contains one row and you can

use the next() function to get that single row. Next, you set a variable to 0 as your counter

and start a while loop to loop through each of the rows returned to the cursor.

Case Study: Advanced Map Automation500

Inside the while loop, you will write a conditional statement that formats the last row

differently from all other rows. You will read in field names using the cursor.fields[]

method to give you the field name associated with the row of data. That field name is used

to look up the field’s alias in the data dictionary prcDataDict you created in the previous

cell. Using .format(), you will write to a temporary string variable the field name and the

percent minority row value associated with it. This string variable will have the return

(\r) and new line (\n) characters at the end for all rows except the last row, and will be

appended to the text box list for each row. Finally, you will increment your counter by 1.

Type in the following:

 with arcpy.da.SearchCursor(

 censusPoly,prcField,"GEOID = '{0}'".format(geoid)

) as cursor2:

 row = next(cursor2)

 j=0

 while j < len(row):

 print(cursor2.fields[j])

 print(row[j])

 if j != (len(row)-1):

 tempVal = "{0}: {1}\r\n".format(

 prcDataDict[cursor2.fields[j]],round(row[j],2)

)

 print(tempVal)

 else:

 print("the last value")

 tempVal = "{0}: {1}".format(

 prcDataDict[cursor2.fields[j]],round(row[j],2)

)

 print(tempVal)

 textBox.append(tempVal)

 j+=1

5.	 You can now take that list and iterate through it, adding each value to the text box. This

will create your table of race percentages on your map. Continuing on the next line, you

will use the textBox list to set the data in your table box. After clearing the text of the

table box to make sure it is empty, you will loop through the data in the textBox variable.

Chapter 12 501

Remember that this is a list of strings where each string is the percentage of the minority

population in the highlighted block group. Back in the original for loop, with the same

indentation as the with statement, you will add each string to the table box. After all the

text has been added, you will ensure the table box height fills the space available and

the Y position is in the correct location, as sometimes these may change when the text is

changed. Type in the following:

 tableBox.text = ""

 for text in textBox:

 tableBox.text += text

 print(text)

 tableBox.height = 1.23

 tableBox.elementPositionY = 2.2813

6.	 You need to change the title of your map to include the bus line and the block group, along

with a figure number, and update the layer name in the legend to include the block group.

The title will include the figure number that comes from your counter, the i variable set

at the beginning, and the GEOID. You will also change the AlamedaContraCostaCounty_

RaceHispanic_BlockGroup name to include the block group and be more descriptive for

the legend. Continuing on the next line, type in the following:

 title.text = "Figure 2.{0}\r\nBus Route: {1}\r\nBlock Group: {2}" \

 .format(str(i),busRoute,str(geoid))

 print(title.text)

 cbgLayer.name = "Population in Block Group {0}".format(geoid)

How do you determine the correct location for the text box X and Y po-

sitions?

The X and Y locations for the text boxes are determined when you set your

layout view. It is important to spend time carefully setting up your template

and noting where the anchor point is and what the X and Y locations are.

This can be used to reset any of your layout elements as elements are added

or removed from them.

Case Study: Advanced Map Automation502

7.	 You have not actually moved the extent of the map to the selected block group yet. Now

you will find the extent of your selected layer and use that to set your layout’s extent. Con-

tinuing on the next line, you will first get the layer extent of the highlighted block group.

Then you will use the Camera object to set the extent of the map frame to that extent.

Since you want to see some of areas around the block groups, the scale needs changing.

As this is an urban area with smaller block groups, you will check to see if the scale is less

than 10,000 and, if so, set it to 10,000. If it is greater than 10,000, you will add 2,000 to

the scale, round it to a whole number, and set the scale to that. Type in the following:

 # If scale is less than 10000 set to 10000,

 # otherwise add 2000 and round to a whole number

 extent = mf.getLayerExtent(cbgLayer,False,True)

 print(extent)

 mf.camera.setExtent(extent)

 print(mf.camera.scale)

 if mf.camera.scale < 10000:

 mf.camera.scale = 10000

 else:

 mf.camera.scale = round((mf.camera.scale + 2000),0)

 print(mf.camera.scale)

8.	 You now have everything set for your map and it is time to export it to PDF. Continuing

on the next line, you will start by creating a string of the figure number, using if state-

ment to check if the figure number has only 1 digit. If it does, you will add a leading 0 to it.

How to pick the scale(s) on a map series

The choice of 1:10,000 came from manually selecting block groups in the

map and seeing what they looked like at different scales. Even though the

final creation of all the maps is an automated process, determining things

like the different scales to use requires you to check what the options look

like. In some cases, a single minimum scale will work. In others, you may

want more than one scale option. It will depend on your data, and how your

scale bar is set up. You need to make sure that your scale bar will still look

appropriate based on all of your scales, as you cannot change the scale bar

settings other than location and length.

Chapter 12 503

You will then call the exportToPDF method and name the figure with the figure num-

ber, bus route, and GEOID. The last step is to reset the census block layer name to

AlamedaContraCostaCounty_RaceHispanic_BlockGroup and increment the counter by

1. Type in the following:

 pdfFigNum = str(i)

 if len(pdfFigNum) == 1:

 pdfFigNum = "0"+pdfFigNum

 layout.exportToPDF(

 os.path.join(

 projectFolder,

 "Figure_2_{0}_BusRoute_{1}_GEOID_{2}.pdf"

 .format(pdfFigNum,busRoute,geoid)

)

)

 cbgLayer.name = "AlamedaContraCostaCounty_RaceHispanic_BlockGroup"

 i+=1

You have finished with the cell and can now run it, using the print statements to track

your progress as the script moves through the list and exports the different figures. You

will also see the figures appear in the folder you are exporting them to.

9.	 In the next cell, you will be using the glob module to find all of the PDFs for a given bus

route and the Py2PDF module to combine them into a single PDF. First, you will create a

PDF merge object using the PdfFileMerger() function, then use the glob.glob method

to search for all the PDFs for a bus line.

You need to add the leading 0 to ensure that the PDFs are in the correct order

when they are read in in the next step. When ordering a string, 10 comes

before 1 through 9.

The glob.glob method takes one argument that, in most cases, is the path

you want to search for, combined with what you are searching for surround-

ed by an asterisk (*) for a wildcard. The wildcard can be used to match

anything before or after it.

Case Study: Advanced Map Automation504

Within the glob.glob method, you will use os.path.join() to set the path of the PDFs

and the wildcard to find the PDFs for your bus route. Once you have the list of PDFs, you

will loop through all of them using the PdfFileReader() function from the Py2PDF mod-

ule to open, read, and append them to the PDF merge object. PdfFileReader() needs the

path of the PDF and how to open them; 'rb' tells it to read them. Once all of the PDFs

have been opened, read, and appended to the PDF merge object, you will write that to a

new file that contains all the PDFs. Type in the following:

pdfMergeObj = PdfFileMerger()

pdfFiles = glob.glob(

 os.path.join(

 projectFolder,

 "*BusRoute_{0}*.pdf".format(busRoute)

)

)

for pdf in pdfFiles:

 print(pdf)

 pdfMergeObj.append(PdfFileReader(pdf,"rb"))

pdfMergeObj.write(

 os.path.join(

 projectFolder,

 "Figure_2_BusRoute_{0}_MinorityRace_Greater_RefComm.pdf"

 .format(busRoute)

)

)

Run the cell. Since you added a print statement, you can track the cell’s progress. When it

is finished, you will have a new PDF that contains all the pages of the highlighted census

block groups.

10.	 The final step is resetting everything in the map and layout to the way it was when you

started. You should do this so your map and inset template are ready for any future au-

tomations. You will remove the study area layer and the selected bus route layer. Type

in the following:

m.removeLayer(newBusLyr)

m.removeLayer(cbgStudyAreaLyr)

Chapter 12 505

Run the cell. There will be no output in the Notebook, but the two layers will be removed

from the map.

You now have a single PDF that highlights all the block groups along the selected bus route that

have a higher minority percentage than that of the population for existing bus routes. These maps

can be used in community meetings or in an environmental justice section to show how removing

this bus line impacted minority communities and the effect restarting it will have.

In addition, this Notebook can easily be modified to run additional bus lines by changing the

busRoute variable in the second cell. With maps for those additional bus lines, you can compare

which suspended bus lines had a larger impact on minority communities.

Summary
In this chapter, you have created a map book that highlights block groups along a suspended

bus route with a high-percentage minority population. This information can be used to identify

potential disproportionate impacts on minority communities that can be an environmental jus-

tice issue. It can also be used to give guidance on reopening bus routes by identifying the most

impactful routes to reopen.

First, the layout template was created, with special attention paid to the settings that cannot be

changed with ArcPy. Then you created a Notebook, in which you defined a reference community,

selected a bus route, created a study area, and added it to the map. You selected block groups

within your study area with a minority percentage greater than the reference community, added

the study area and selected bus route to an inset map, ensured a readable legend, selected a block

group and set the extent to it, and created a table on the map of the percentages of races in the

block group. Finally, you exported the maps to PDF and merged them into one file. It is a long

process, but still much more efficient than creating a new layout in ArcGIS Pro for each selected

block group.

Now that you have this code, you can modify it for other projects where complex map books are

required.

In the next and final chapter, you will see how to use ArcPy, ArcGIS API for Python, and ArcGIS

Online to gather data from various sources and create a complete web mapping application for

a crop yield case study.

13
Case Study: Predicting Crop
Yields

In our final case study, we will explore the real-world problem of crop yields. To do this, we will

demonstrate an Extract, Transform, Load (ETL) workflow that uses many of the Python methods

explained in previous chapters – ArcPy, ArcGIS API for Python, Pandas, and scikit-learn – as well

as some of the web tools that Python allows you to use. The ETL process combines worldwide

agricultural data into a format that can be used to predict crop yields using machine learning

and loads it into ArcGIS Online. The resulting combined dataset is geographically enabled and

can be updated with the latest data at any time using code.

To top it all off, we will display the final combined data in a simple web app built with HTML, CSS,

and JavaScript, to illustrate the kinds of tooling that Python makes possible.

The following topics are covered in this chapter:

•	 Introducing the problem, data, and study area

•	 Downloading the data using Requests, World Bank API, and ArcGIS Online

•	 Cleaning up and combining the data

•	 Fitting the random forest model

•	 Loading the result into ArcGIS Online

•	 Generating an HTML file using ArcGIS API for JavaScript

Case Study: Predicting Crop Yields508

Case study introduction
Despite the vast agricultural land expansion and technical advancements around the world, crop

yields will need to increase exponentially to meet the needs of our growing global population.

Crop monitoring and yield estimation will be crucial to ensuring food security, especially as cli-

mate change continues to intensify and our natural resources are depleted. Crop yield prediction

can be time-consuming and complex, so creating a GIS-enabled data pipeline can improve the

efficiency of the prediction process.

Researchers working on food- and agriculture-related topics want readily available data that they

can download and study. They require a resource that can be used to extract agricultural data

from various sources, clean it, and use it to predict crop yields for countries around the world.

This will save them time and money, and result in more informed and timely decisions regarding

aid for the countries involved.

You will create the ETL workflow to do this using Python in a Notebook, so that detailed expla-

nations and visualizations can be provided throughout. Following the creation and testing of the

workflow, the data will be displayed in a simple web application built with HTML, CSS, and JavaS-

cript, so stakeholders and decision makers can easily and quickly understand the data gathered.

Data and study area
We will restrict the workflow and subsequent tools to the years 1960 through 2019 and only to

the countries around the world that have data available from the Food and Agriculture Organi-

zation (FAO) and the World Bank. Figure 13.1 below shows the countries around the globe that

have data available:

For the code used in this chapter, please download and unzip the Chapter13.zip fold-

er in the GitHub repository for this book: https://github.com/PacktPublishing/

Python-for-ArcGIS-Pro/tree/main/Chapter13.

https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter13
https://github.com/PacktPublishing/Python-for-ArcGIS-Pro/tree/main/Chapter13

Chapter 13 509

Figure 13.1: Data is available for these countries

There are seven primary datasets that we will utilize for this project: world country boundaries,

population, rainfall, agricultural land, crop yields, pesticide and fertilizer use, and temperature

change. All the datasets are either from the World Bank, Food and Agriculture Organization, or

ArcGIS Online.

Crop data will be gathered from the FAO for some of the most important crops produced around the

world. These include maize, cassava, rice, soybeans, wheat, potatoes, yams, and sorghum. Other

data collected will include the country producing the crop (FAO), crop yield (FAO), agricultural

land (World Bank), rainfall (World Bank), temperature change (FAO), pesticide and fertilizer use

(FAO), and population (World Bank).

Case Study: Predicting Crop Yields510

Data concepts
We will clean the data based on the principles and techniques described in Tidy Data (Wickham,

2014), and then feed it into a random forest machine learning model described in Random Forests

for Global and Regional Crop Yield Predictions (Jeong, Resop, Mueller, et al., 2016).

The Tidy Data paper discusses an important part of data cleaning, which is data tidying, or the

structuring of datasets to facilitate analysis. Within data that is tidy, each variable forms a col-

umn, each observation forms a row, and each type of observational unit forms a table. Ordering

variables and observations is key to making your data even easier to understand and analyze.

Wickham’s assessment of the five most common issues with unorganized datasets and the broad

solutions are listed below:

1.	 Column headers are values, not variable names.

•	 Solution: Melt the data, by converting the data frame so that it contains one row

for every observed value.

2.	 Multiple variables are stored in one column.

•	 Solution: Melt the data and then split string values into their own columns.

3.	 Variables are stored in both rows and columns.

•	 Solution: Cast or unstack the data, which is the opposite of melting the data.

4.	 Multiple types of observational units are stored in the same table. For example, this could

be a data frame holding both weekly crime data as well as weather data.

•	 Solution: Normalize the data, which we looked at how to do in Chapter 8.

5.	 A single observational unit is stored in multiple tables.

•	 Solution: Combine the tables and add a new column for each table.

Read the paper on data cleaning by Hadley Wickham here: https://vita.had.
co.nz/papers/tidy-data.pdf

Read the random forests paper here: https://dash.harvard.edu/bitstream/
handle/1/27662263/4892571.pdf?sequence=1

https://vita.had.co.nz/papers/tidy-data.pdf
https://vita.had.co.nz/papers/tidy-data.pdf
https://dash.harvard.edu/bitstream/handle/1/27662263/4892571.pdf?sequence=1

https://dash.harvard.edu/bitstream/handle/1/27662263/4892571.pdf?sequence=1

Chapter 13 511

Once the data has been cleaned following the principles above, we will split it into a training and

testing set to be used as input for a random forest machine learning model.

Random forests are a method used for regression and classification, which involve predicting the

outcome of an experiment based on training data from previous experiments.

A random forest is a group of decision trees, which are, in the simplest form, flowcharts that show

a clear pathway to a decision. The decision tree below demonstrates how we might start off with

a crop (on the left) and follow the branches to determine the expected yield from the crop type

and the amount of rainfall it receives:

Figure 13.2: An example decision tree

The training data we gather will be used to create the group of decision trees by splitting the

data into random subsets, generating the decision trees for each subset, and finally putting them

together. Random forests are good when working with large datasets that might contain missing

data. However, they are much less interpretable than an individual decision tree because they

cannot be visualized as a singular sequence of decisions. It is best to use them when a significant

amount of memory is available for storage because all of the information from the individual

trees needs to be retained.

Case Study: Predicting Crop Yields512

The data will need to be engineered to include the qualitative values in the model by changing

them to quantitative values.

The data will also be split into a features section, containing all the columns except for the column

we want to predict – crop yield – and the target section, containing only the crop yield column. This

will allow us to understand the importance of each feature when it comes to predicting our target.

In terms of splitting the data, Random Forests for Global and Regional Crop Yield Predictions sug-

gests a split of around 70% training and 30% testing or 80% training and 20% testing, stating

that “including more data for model training is likely to improve the predictability of random

forest regression.”

Downloading datasets
In this section, we will start building the ETL in our Notebook by downloading the following

datasets:

•	 World countries

•	 Population

•	 Rainfall

•	 Agricultural land

•	 Crop yields

•	 Pesticide and fertilizer use

•	 Temperature change

Let’s get started. Create a new Notebook in ArcGIS Pro named CropYieldETL using the New

Notebook option under the Insert tab:

Figure 13.3: New empty Notebook named “CropYieldETL”

Chapter 13 513

World countries
First, you will search for and download a country boundary dataset from ArcGIS Online using

the ArcGIS API for Python.

1.	 In the first cell, you will import the API with the following code:

from arcgis.gis import GIS

Run the cell.

2.	 Once imported, you will connect to two separate instances. The first one is anonymous

and will be used for searching for datasets; the second takes your ArcGIS Pro login cre-

dentials for download purposes:

gis_search = GIS()

gis = GIS('pro')

Run the cell.

3.	 Now you can search for the world boundary feature layer and return the first result:

items = gis_search.content.search(query='title:World
Countries(Generalized)', item_type='Feature Layer')

items[0]

Run the cell. You should see the following output:

Figure 13.4: World Countries (Generalized) thumbnail during an ArcGIS Online search

4.	 After confirming that the returned item is correct, it can be downloaded using the ArcGIS

Online instance associated with your personal account. Access the item via the item’s id

and the gis.content.get() method, as shown:

world_get = gis.content.get(items[0].id)

Run the cell.

Case Study: Predicting Crop Yields514

5.	 In this cell, you will export the item to your ArcGIS Online account, specifying the title and

format that you want. First, you will export the item as a shapefile named appropriately,

and then download that shapefile to your current project folder. Type in the following code,

which uses the built-in zipfile module to unzip the data and place it in your project folder:

from zipfile import ZipFile

world_export = world_get.export(title='world', export_
format='Shapefile')

world_path = world_export.download('world')

with ZipFile(world_path, 'r') as zipObj:

 zipObj.extractall()

Run the cell.

6.	 There is now a shapefile in the local project folder. A Spatially Enabled DataFrame (SEDF)

can be created from the shapefile, and visualized using sdf.spatial.plot():

import pandas as pd

sdf = pd.DataFrame.spatial.from_featureclass('World_Countries_
(Generalized).shp')

m = sdf.spatial.plot()

m

Run the cell. The output should look like this:

Figure 13.5: World Countries shapefile downloaded from ArcGIS Online

Chapter 13 515

Population
There are many sources you could collect population from, but it is convenient to obtain the pop-

ulation for each country from 1960 to 2020 from the World Bank API. There is a Python module,

world_bank_data, that makes it easier to explore the World Bank Indicators published by the

World Bank.

To obtain this dataset, the world_bank_data Python module needs to be installed on a clone of

your Python project environment, discussed in Chapter 3, ArcGIS API for Python:

7.	 Install and import the API with the following code:

pip install world_bank_data

import world_bank_data as wb

Run the cell.

Once installed, there is a function, wb.get_indicators(), that shows all the datasets that are avail-

able. The population dataset is called SP.POP.TOTL. There is another function, wb.get_series(),

which puts the dataset into a Pandas Series. As we saw in Chapter 8, a Series is a one-dimensional

array that holds data. To continue to process the data and eventually join this dataset to others,

we will turn this Series into a Pandas DataFrame, using the to_frame function.

8.	 In the next cell, you will read the population dataset into your Notebook as a Series and

turn it into a DataFrame using wb.get_series().to_frame(). id_or_value is set to 'id'

to ensure that the full names of each country are not returned, and simplify_index is set

to True so that only the country ID and year are returned in the index:

population = wb.get_series('SP.POP.TOTL', id_or_value='id',

 simplify_index=True).to_frame()

Run the cell.

This data frame will be used to collect the rest of the datasets from the World Bank. The last step

for this data is to change the name of the column from "SP.POP.TOTL" to "population" to repre-

sent all 16,226 rows of data. Population is considered the count of all residents within a country,

whether they are a citizen or not, and all the values are mid-year estimates. All other series will

be added to this data frame.

Case Study: Predicting Crop Yields516

9.	 In the next cell, you will change the name of the column using the Pandas rename function

and display the top five rows using the head function:

df_wb = population.rename(columns={'SP.POP.TOTL':'population'})

df_wb.head()

Run the cell. The output should look like this:

Figure 13.6: Population data

Rainfall
We will also collect a rainfall dataset, called AG.LND.PRCP.MM, from the World Bank API using

the same technique as above to return the data as a series. We will place it directly in the previously

created data frame above, df_wb, in a new column titled "rainfall(mm/year)".

10.	 Read the dataset as a series and place the result directly in a new column in the df_wb

data frame:

df_wb['rainfall(mm/year)'] = wb.get_series('AG.LND.PRCP.MM',

 id_or_value='id', simplify_index=True)

Run the cell.

There are a total of 16,226 rows in the AG.LND.PRCP.MM dataset, representing the total millime-

ters of rain per year from 1960 to 2020 for every country. This data is measured as the long-term

average depth over space and time of annual precipitation in the country.

Agricultural land
We will collect agricultural land data, AG.LND.AGRI.K2, from the World Bank API using the

same technique as above and add it to the df_wb data frame. Agricultural land is measured in sq.

km and there are 16,226 rows of data from 1960 to 2020 for every country that the World Bank

keeps data about.

Chapter 13 517

11.	 Read the dataset as a series and place the result directly in a new column in the df_wb

data frame:

df_wb['agland(sq/km)'] = wb.get_series('AG.LND.AGRI.K2',

 id_or_value='id', simplify_index=True)

Run the cell.

Agricultural land is considered land that is either arable, under permanent crops, or under per-

manent pastures. Arable land is any land that is under temporary crops, temporary meadows for

mowing or pastures, land under market or kitchen gardens, and land that is temporarily fallow.

Land under permanent crops is any land that is cultivated with crops that occupy the land for

long periods of time and do not need to be replanted after harvest. Lastly, permanent pasture is

land used for 5 or more years for forage, including natural and cultivated crops.

Crop yields
Crop yield data was obtained from the FAO. The FAO does not have an active API, where the data

can be easily accessed using a Python module like the World Bank. This data is gathered by using a

URL that points to the web page containing the data. The URL points to a JSON object containing

a breakdown of all the information.

12.	 You will first create a variable holding the FAO datasets URL. In the next cell, type in the

following:

fao_url = 'http://fenixservices.fao.org/faostat/static/
bulkdownloads/datasets_E.json'

Run the cell.

This data is accessible in Python using the Requests module, which sends HTTP requests and

receives responses from a specified URL. Several requests can be made using the module, in-

cluding get, post, put, patch, or head requests. These also serve as the module’s methods. Once

a response object is returned, several methods can be used to explore the returned object. This

instance calls for a get request to return a response object containing all the information on the

FAO URL. Since the returned object was written in JSON format, the json() response method is

used to further explore the information.

If the returned object was not written in JSON, the next best option is using the

content() or text() response methods for exploration.

Case Study: Predicting Crop Yields518

13.	 You will import the requests module, send a get request, and create a variable to hold

the JSON object.

Type the following in the next cell:

import requests

response = requests.get(fao_url)

data = response.json()

Run the cell. Once the JSON object is obtained, all the datasets within the FAO URL can

be explored by indexing.

14.	 In the next cell, print the contents of the JSON file:

for x in range(len(data['Datasets']['Dataset'])):

 print(f"{x}. {data['Datasets']['Dataset'][x]['DatasetName']}")

Run the cell and examine the output, which should look like the following:

Figure 13.7: Contents of the JSON file from the FAO URL

Each dataset above contains a URL that points to a ZIP file containing all the data. To

obtain the correct URL for crop yields, the returned list above should be searched to find

the corresponding keys to supply to the dictionary. In this case, the crop yield corresponds

to the number 47 above.

15.	 In this step, you will obtain the URL that holds the crop yield data. Type in the following:

crop_yield = data['Datasets']['Dataset'][47]['FileLocation']

crop_yield

Chapter 13 519

Run the cell and check the URL. Once the dataset needed is found, the URL is put into a

variable, crop_yield. The Requests module is used yet again to send out a get request

for data in the URL.

16.	 Next, you will send a get request for the URL obtained above, with the parameter stream

set to True to ensure that the data is not downloaded right away:

yield_response = requests.get(crop_yield, stream=True)

Run the cell.

17.	 You will now generate the name of the output file by using Python’s string.split()

method and indexing to get the last value in the resulting list, which is the name of the

file as the FAO keeps it. Type in the following:

local_file_name = crop_yield.split("/")[-1]

Run the cell.

18.	 In this step, the file will be written to your computer using built-in Python file writing

capabilities. Setting the wb argument to open allows the file to be written in binary, which

will return the data as byte objects, not strings. The data is chunked, meaning that the

code pulls down only a certain amount of data (a chunk, measured in bytes) at a time;

this avoids you having to load the entire response into memory at once.

Download the ZIP file and name it based on the local_file_name you created in the

previous step:

with open(local_file_name, 'wb') as fd:

 for chunk in yield_response.iter_content(chunk_size=128):

 fd.write(chunk)

Run the cell.

19.	 You now need to unzip the content with ZipFile and extract it to a local folder. Type in

the following:

with ZipFile(local_file_name, 'r') as zipObj:

 zipObj.extractall()

Run the cell.

Case Study: Predicting Crop Yields520

20.	 Lastly, you will use the unzipped file path in a Pandas function that creates a data frame.

Read the downloaded CSV with the encoding latin1 to preserve the bytes and create a

Pandas DataFrame using read_csv():

df_yield = pd.read_csv(local_file_name.split(".")[0] +".csv",
encoding = 'latin1')

Run the cell.

This dataset returns a list of crops and the specific yields. However, only rice, potatoes, yams, soy-

beans, wheat, maize, sorghum, and cassava were used for this analysis. This list was selected as

they are some of the most highly produced crops around the world. Lastly, we reduce the dataset

to only those crops listed above, as well as some other cleanup tasks.

21.	 In the next cell, you will reduce the DataFrame so that it only includes certain crops. You

will also drop unnecessary columns and finally rename the column containing the yields.

Type in the following:

df_yield = df_yield.loc[df_yield["Item"].isin(['Rice, paddy',
'Potatoes', 'Yams', 'Soybeans', 'Wheat', 'Maize', 'Sorghum',
'Cassava'])]

df_yield = df_yield.drop(['Area Code', 'Item Code', 'Element Code',
'Year Code', 'Flag', 'Element', 'Unit'], axis=1)

df_yield.rename(columns={'Value':'yield(tonnes)'}, inplace=True)

df_yield.head()

Run the cell. The output should look similar to this:

Figure 13.8: Preview of the crop yield data frame

Chapter 13 521

Pesticide and fertilizer use
The pesticide and fertilizer use dataset is obtained in the same way as the crop yield data from the

FAO. Pesticide and fertilizer use corresponds to the number 7 in the JSON object and is measured

in kilograms per hectare (kg/ha).

22.	 Take the code in steps 16-20 above and fill in the information for the pesticide and fertil-

izer dataset:

pest = data['Datasets']['Dataset'][7]['FileLocation']

pest_response = requests.get(pest, stream=True)

local_file_name = pest.split("/")[-1]

with open(local_file_name, 'wb') as fd:

 for chunk in pest_response.iter_content(chunk_size=128):

 fd.write(chunk)

with ZipFile(local_file_name, 'r') as zipObj:

 zipObj.extractall()

df_pest = pd.read_csv(local_file_name.split(".")[0] + ".csv",
encoding = 'latin1')

Run the cell.

This dataset contains around 30,740 records, and for each country and year, it contains the kg/

ha of three different fertilizers and pesticides, including nitrogen- (N), phosphorus- (P2O5), and

potassium- (K2O) based.

This is a time series dataset from 1961 to the present day. For ease of merging and manipulating

the future dataset, you will aggregate all the pesticides and fertilizers based on their year and

country, along with performing some other cleanup tasks.

23.	 In the next cell, you will remove unnecessary columns and use the Pandas groupby and

agg functions to find the total amount of pesticide and fertilizer used each year in each

country. Type in the following:

df_pest = df_pest.drop(['Area Code', 'Item Code', 'Element Code',
'Year Code', 'Flag', 'Element', 'Unit'], axis=1)

df_pest = df_pest.groupby(['Area', 'Year']).agg({'Value':'sum'})

Run the cell.

Case Study: Predicting Crop Yields522

24.	 In the next cell, reset the index following the summation and rename the summed column

to 'pestUse(kg/ha)':

df_pest.reset_index(inplace=True)

df_pest.rename(columns={'Value':'pestUse(kg/ha)'}, inplace=True)

df_pest.head()

Run the cell. The output should look similar to this:

Figure 13.9: Preview of the pesticide and fertilizer use data frame

This results in a dataset that only has one total number of pesticides and fertilizers used every

year for each country, resembling the crop yield dataset.

Temperature change
Temperature change is also gathered in the same way as the pesticide and fertilizer use and crop

yield data from the FAO. Temperature change is the 15th dataset in the JSON object and is measured

as the mean surface temperature change by country, for each month from 1961 to the present year:

25.	 Take the code in steps 16-20 above and fill in the information for the temperature change

dataset:

temp = data['Datasets']['Dataset'][15]['FileLocation']

temp_response = requests.get(temp, stream=True)

local_file_name = temp.split("/")[-1]

with open(local_file_name, 'wb') as fd:

 for chunk in temp_response.iter_content(chunk_size=128):

 fd.write(chunk)

Chapter 13 523

with ZipFile(local_file_name, 'r') as zipObj:

 zipObj.extractall()

df_temp = pd.read_csv(local_file_name.split(".")[0] +".csv",
encoding = 'latin1')

Run the cell.

This temperature data is collected by the FAO from the National Aeronautics and Space Admin-

istration Goddard Institute for Space Studies.

The data includes around 537,370 records and includes a record for each month, which we will

change to only contain one record for every year for each country.

This will be completed by using the same groupby and agg Pandas functions used for the pesticide

and fertilizer use dataset. To receive the average temperature change format, we will divide that

column by 12 and finish up with some simple cleanup tasks.

26.	 In the next cell, you will remove unnecessary columns and use the Pandas groupby and agg

functions to find the average temperature change for each year in each country. Dividing

that number by 12 will give you the average. Type in the following:

df_temp = df_temp.drop(['Area Code', 'Element Code', 'Year Code',
'Flag', 'Element', 'Unit'], axis=1)

df_temp = df_temp.groupby(['Area', 'Year']).agg({'Value':'sum'})

df_temp['Value'] = df_temp['Value']/12

Run the cell.

27.	 In the next cell, you will reset the index following the summation and rename the summed

column to 'tempChange(C)':

df_temp.reset_index(inplace=True)

df_temp.rename(columns={'Value':'tempChange(C)'}, inplace=True)

df_temp.head()

Case Study: Predicting Crop Yields524

Run the cell. The output should look similar to this:

Figure 13.10: Preview of the Temperature Change data frame

Now you have successfully obtained all the datasets using the Requests module, ArcGIS Online,

and the World Bank API. You have also completed some minor fixes to each individual dataset.

Next, we will look at further cleaning up and ultimately combining these datasets to create our

final data frame.

Cleaning up and combining the data
Before merging all the data into one dataset, some cleanup needs to take place to ensure the merge

is viable. In order to merge datasets, there needs to be a column or multiple columns that match

in both data frames. In this case, the merge will occur on the year and the country name columns.

The year columns have no variations, but the name of the country columns may differ slightly

in spelling or if abbreviations are used. The data frame from the World Bank data, df_wb, only

has an abbreviation to represent countries and contains data for regions, in addition to country

names. The actual country names will need to be added and the rows containing region data will

need to be removed.

Luckily, the world_bank_data API has a readily available dataset containing all the IDs, country

names, and information about region data; specifically, the column 'region', which specifies

whether an entry is a combination of countries.

1.	 First, you need to obtain a list of all the values that appear in the country column for the

World Bank data:

countries = wb.get_countries()

Run the cell.

Chapter 13 525

2.	 The next step is to remove all the region data using the Pandas loc function, which allows

you to access a specified group of rows and columns. Mentioned above, 'region' contains

a value that specifies whether a row is for a single country or multiple countries. In this

case, you only want single countries, so you don’t want any rows that have the value

'Aggregates' in the 'region' column.

Access all the rows that don’t have the value 'Aggregates' in the 'region' column:

df_key = countries.loc[countries.region != 'Aggregates']

Run the cell.

3.	 You want to easily obtain the 'id' index in the next few steps, so you will reset the index,

which moves the 'id' index into a column. The Pandas loc function can be used to reduce

the DataFrame to just the ID and the name of the country. The merge can then take place

after resetting the index of df_wb and then removing redundant columns.

Type in the following to reset the index, and use the loc function again to only return the

'id' and 'name' columns:

df_key.reset_index(inplace=True)

df_key = df_key.loc[:,['id', 'name']]

df_key.head()

Run the cell. The output should look similar to this:

Figure 13.11: Preview of the ID and country name data frame

4.	 You will now merge df_key to df_wb so that df_wb can then be more easily merged on the

country name with the data collected from the FAO. First, you need to reset the index on

df_wb to remove the 'id' column from the index.

Case Study: Predicting Crop Yields526

Then, you will use the Pandas merge function to combine the data frames on the abbre-

viations, 'id' in df_key and 'Country' in df_wb. Once the long-form name is in df_wb,

we can drop the redundant columns, 'Country' and 'id'.

Type in the following to reset the index, merge the data frames, and remove redundant

columns:

df_wb.reset_index(inplace=True)

df_wb = pd.merge(df_wb, df_key, left_on='Country', right_on='id')

df_wb = df_wb.drop(['Country', 'id'], axis=1)

Run the cell.

At the moment, there is one data frame containing all the World Bank data, df_wb, and three

separate FAO data frames, df_temp, df_pest, and df_yield. Let’s merge those three FAO datasets

using the Pandas merge function.

5.	 First, merge df_temp and df_pest and then merge in df_yield:

df_fao = pd.merge(df_temp, df_pest, left_on=['Area', 'Year'],

 right_on=['Area', 'Year'], how='outer')

df_fao = pd.merge(df_fao, df_yield, how='right', on=['Area', 'Year'])

df_fao.head()

Run the cell. The output should be similar to the following:

Figure 13.12: Preview of the merged FAO datasets

There are now two datasets, df_wb and df_fao. Before merging data frames from different sources,

it is important to make sure the columns that the merge will take place on are the same data type;

this can be completed using the Pandas astype function.

Chapter 13 527

6.	 In the next cell, make sure all the columns that the merge will take place on are the same

data type, in this case, string:

df_wb['name'] = df_wb['name'].astype(str)

df_wb['Year'] = df_wb['Year'].astype(str)

df_fao['Area'] = df_fao['Area'].astype(str)

df_fao['Year'] = df_fao['Year'].astype(str)

Run the cell.

After checking 'name' and 'year' from the df_wb data frame and 'Area' and 'Year' from the

df_fao data frame, there is only one more step. This is to reduce both data frames down to only

those countries that show up in both data frames. This is done to avoid a large number of null

values in our data frame. The first step of this process is to collect a list of all the unique countries

in each data frame by using the Pandas unique function on both data frames.

7.	 Create two lists of the unique country values in each dataset:

fao_list = df_fao['Area'].unique()

wb_list = df_wb['name'].unique()

Run the cell.

8.	 You will now use a list comprehension to compile a list of countries in both data frames.

This loops through the countries in the fao_list; if that country is in the wb_list, then

it will be added to a list called both_list. Run the list comprehension to obtain a list of

the countries in both data frames:

both_list = [x for x in fao_list if x in wb_list]

Run the cell. You will use the resulting list to reduce both the df_fao and df_wb data

frames using the loc and isin Pandas functions.

9.	 In the following cell, reduce the data frames to only contain rows that have a country in

both_list:

df_wb = df_wb.loc[df_wb['name'].isin(both_list)]

df_fao = df_fao.loc[df_fao['Area'].isin(both_list)]

Run the cell.

Case Study: Predicting Crop Yields528

10.	 Using the Pandas merge function, you will now combine df_wb and df_fao. Once combined,

remove all the rows that have no yield associated with them. Type in the following code

to run the final merge, remove a redundant column, remove any rows that don’t have a

yield, and remove unnecessary columns. Return a random sample of the final dataset

using the sample function:

df_master = pd.merge(df_wb, df_fao, left_on=['name', 'Year'],

 right_on=['Area', 'Year'], how='outer')

df_master = df_master.drop(['Area'], axis=1)

df_master = df_master.loc[df_master['yield(tonnes)'].notna()]

df_master.sample(5)

Run the cell. The output should be similar to the following:

Figure 13.13: Preview of all the datasets merged

You now have one data frame consisting of all the datasets gathered earlier. This was achieved by

first updating the country names in the World Bank data frame and reducing the countries within

each data frame to only contain those that appear in both data frames. Lastly, you merged all

the data into one final data frame. This data frame will now be used to fit a random forest model,

added to ArcGIS Online, and finally, be displayed in a web app.

Fitting a random forest model
We will use the combined dataset we now have to perform preliminary tests and fit the model.

To run these tests and eventually the model, the sklearn module will need to be installed using

pip via the command prompt (or within the Notebook):

1.	 In the next cell, install the sklearn module and import the following (note that the sklearn

module may already be installed):

pip install sklearn

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestRegressor

from sklearn.metrics import r2_score

Chapter 13 529

Run the cell.

Before running any tests, note that the random forest model only accepts numeric variables,

meaning all the categorical variables – specifically the 'Item' field – will need to be changed

to numeric. Essentially, each value will be represented by a number. Some cleanup needs to be

completed as well, removing null values and dropping columns that are redundant.

2.	 In the next cell, you will drop redundant columns, turn the 'Item' column into quanti-

tative values, and lastly drop null values:

df_ml = df_master.drop(['name'], axis=1)

df_ml = pd.get_dummies(df_ml, columns=['Item'], prefix = ['Item'])

df_ml = df_ml.dropna()

Run the cell.

3.	 Now we want to split the data frame into a features section, containing all the columns

except for the crop yields, and the target section, containing only the crop yield column.

Split the data frame by getting a list of all the columns, removing 'yield(tonnes)', and

then simply indexing based on that list and 'yield(tonnes)':

col_ind = list(df_ml.columns)

col_ind.remove('yield(tonnes)')

X = df_ml[col_ind]

y = df_ml['yield(tonnes)']

Run the cell.

4.	 Now, we will take the features and target sections and split them each into one training

set and one testing set. This will be a 70/30 split, as discussed earlier, which will be ex-

pressed in the test_size parameter in the train_test_split function. Then, we can

run RandomForestRegressor, which will be fitted based on the training data. Type in the

following code to split the features and target sections, run RandomForestRegressor, and

fit the model based on the training data using fit:

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.3, random_state=42)

rf = RandomForestRegressor(n_estimators=200, random_state=42,

n_jobs=-1, verbose=1)

rf.fit(X_train, y_train)

Run the cell.

Case Study: Predicting Crop Yields530

We now have a model, rf, that has been fitted based on our training data. We will use the predict

function on the model, rf, with the training data as our parameter to make predictions on. We

will then be able to receive an R squared score, letting us know how well our model can predict

yields. We can look at the columns in the features section to rank them by their importance in

predicting the yields.

5.	 In the next cell, you will predict using our model, return an R squared score, and sort and

return the most important columns that are used to predict crop yields:

y_pred = rf.predict(X_train)

r2_score(y_pred=y_pred,y_true=y_train)

plot_list = df_master.columns

features = X.columns

importances = rf.feature_importances_

feat_imp = pd.Series(importances, features).sort_
values(ascending=False)

feat_imp[:9]

Run the cell. The output should be similar to this:

Figure 13.14: Features ranked by importance in predicting crop yields

In this section, you imported the necessary Python modules to complete the fitting of the ran-

dom forest model. You then took the final merged data frame and completed the fitting of that

model. Figure 13.14 shows that the most important feature within our data frame for predicting

crop yields is population. The R squared score lets you know how well your model was able to

predict the yields.

In the next section, you will take the data frame you created in the previous section and upload

it to ArcGIS Online.

Chapter 13 531

Loading the result into ArcGIS Online
The final merge involves combining the shapefile we collected from ArcGIS Online and the data

frame from the FAO and World Bank to give our data frame geometry for visualization. The

df_master 'name' column needs to be renamed to match the shapefiles’ 'COUNTRY' column. Then,

the two datasets will be merged on that column:

1.	 In the next cell, you will rename the column containing the country name in df_master

to match the country name column in the SEDF. Then, you will merge the columns on

that column and remove unnecessary columns:

df_master.rename(columns={'name':'COUNTRY'}, inplace=True)

sdf_master = sdf.merge(df_master, on='COUNTRY')

sdf_master = sdf_master.drop(['ISO', 'COUNTRYAFF', 'AFF_ISO',
'FID'], axis=1)

Run the cell.

2.	 The data frame merged above, sdf_master, will be exported to a shapefile and then added

to ArcGIS Online for use in the web app to be created below. This is completed in a similar

way to how the world boundaries shapefile was downloaded and read into a data frame.

In the next cell, convert the data frame to a shapefile using the spatial.to_featureclass

method:

shp = sdf_master.spatial.to_featureclass('FoodandAgData.shp')

Run the cell.

3.	 A shapefile is made up of multiple files. Before we can upload the shapefile created above,

those files need to be placed in a ZIP file. We will utilize the ListFiles ArcPy function to

find all the necessary files related to our shapefile. First, we need to change the current

workspace, which can be found in arcpy.env.workspace, to where we just wrote the

shapefile in step 2. We use the os module to do this. After changing the workspace, we can

utilize the ZipFile module again to write the shapefile to a ZIP file. We call the ListFiles

function with the shapefile name followed by a wildcard, which can represent zero or

several characters. For example, if you were searching for states and input Te*, it would

return Texas and Tennessee. We also want to check that we are not grabbing any files

that have locks on them, so we add an if statement to make sure the filename does not

contain the word 'lock'.

Case Study: Predicting Crop Yields532

The next cell will contain this whole process explained above:

arcpy.env.workspace = os.path.dirname(os.path.abspath(shp))

file_list = arcpy.ListFiles('FoodandAgData.*')

with ZipFile('FoodandAgData.zip', 'w') as zipObj2:

 for x in file_list:

 if 'lock' not in x:

 zipObj2.write(x)

Run the cell.

4.	 Once the ZIP file that contains all the data collected has been created, it can be uploaded

to ArcGIS Online. This is similar to how the world boundaries dataset was grabbed from

ArcGIS Online, except we use the add() function and specify the shapefile in the data

parameter. You can also write in some metadata under the item_properties parameter

such as the title, type, and tags. Using the gis variable created earlier, the content can be

added to your account.

In the next cell, add the content to your ArcGIS Online account, creating some metadata,

and then look at the thumbnail of the content you just added:

arc_shape = gis.content.add(item_properties={'title': 'CropYields',
'type': 'Shapefile', 'tags':['Food', 'Agriculture']},
data='FoodandAgData.zip')

arc_shape

Run the cell. The output should be similar to this:

Figure 13.15: ArcGIS Online thumbnail of CropYields

5.	 Once added, the last step in the notebook is to publish the shapefile as a feature service

using the publish() function and obtain the ID. This ID will be used to add the shapefile

to the web app:

published_service = arc_shape.publish()

published_service.id

Chapter 13 533

Run the cell.

Within this section, you did some final cleanup tasks on the data frame and merged it with the

world countries’ data frame to ensure that our data has a geometry for visualization purposes. You

also saved the merged data frame as a shapefile for it to be added to ArcGIS Online and zipped it.

Lastly, you obtained the ID of the uploaded shapefile so that it can be added to the web app that

you will create in the following section.

Generating an HTML file using ArcGIS API for
JavaScript
You now have a shapefile with all of the data collected hosted via ArcGIS Online. This can be used

to create a web app using HTML, CSS, and JavaScript, the final stage of this chapter’s case study.

It’s a bit different from what we’ve been doing so far, but will make for a pretty and interactive

web map based on the data you just created.

We will not be writing any Python code in this section, but by using the ArcGIS API for JavaScript

and some HTML tags, it will demonstrate how we can extend what we have done so far to create

an interface that is very useful to an end user:

1.	 Create an HTML file in a text editor of your choice.

2.	 Add in HTML tags, <html></html>. Everything will occur between these two tags.

3.	 Following those tags, add in the head tags, <head></head>, which serve as a container

for the metadata.

4.	 Within the head tags, add a title between title tags, add a link to reference a CSS style sheet

maintained on the ArcGIS website, and lastly, add in a source link to ArcGIS JavaScript

functionality, which is used to bring in all the functionality and tools used below. This is

the equivalent of importing arcpy in Python:

<html>

 <head>

 <title>Agricultural Crop Yields</title>

 <link

You can look at the completed HTML file in the code folders for the final result if you

encounter any issues.

Case Study: Predicting Crop Yields534

 rel="stylesheet"

 href="https://js.arcgis.com/4.21/esri/themes/light/main.css"

 />

 <script src="https://js.arcgis.com/4.21/"></script>

 </head>

</html>

5.	 Following the closing head tag, add in a pair of body tags, <body></body>, which will

contain all the information in the document body. Within the body tags, add in a div tag

with an id labeled as "viewDiv", which will hold the view of the map:

 <body>

 <div id="viewDiv"></div>

 </body>

6.	 Following that div, add another with an id labeled as "titleDiv" and class labeled "esri-

widget" so that we can reference the information later and place it within its own widget.

Within that div tag, add another div element with an id labeled "titleText"; between

the tags, add a title, such as Agricultural Crop Yields. Now, the text between the body

tags should appear as follows:

 <body>

 <div id="viewDiv"></div>

 <div id="titleDiv" class="esri-widget">

 <div id="titleText">Agricultural Crop Yields</div>

 </div>

 </body>

7.	 Since we now have some tags in the document’s body that also contain IDs, some CSS

styling can be added. Between the final head tag and the first body tag, add in a pair of

style tags. Within these tags is where the div elements created above can be referenced,

using a # followed by the name of the ID. The code below shows the process explained

above on the div elements, adding simple styling that makes sure our map, or "viewDiv",

fills up the whole page and our title, or "titleDiv", is placed 10 pixels off its given position

to make sure it is visible:

 <style>

 #viewDiv {

 padding: 0;

 margin: 0;

Chapter 13 535

 height: 100%;

 width: 100%;

 }

 #titleDiv {

 padding: 10px;

 }

 </style>

8.	 The only thing left to include is the JavaScript functionality. The final tags that need to

be added are a pair of script tags, <script></script>, that should go in-between the

closing style tag and the first body tag. Specific functions, MapView, Map, FeatureLayer,

and Basemap, need to be added.

MapView is used to display the map, Map stores, and manages the layers to be displayed,

FeatureLayer is used to create our shapefile created in this chapter, and Basemap is used

to create the basemap object to be displayed:

 <script>

 require([

 "esri/views/MapView",

 "esri/Map",

 "esri/layers/FeatureLayer",

 "esri/Basemap",

], (MapView, Map, FeatureLayer, Basemap) => {

 });

 </script>

Within those curly brackets right after the arrow is where those functions will be used.

There are four steps to adding our ArcGIS Online hosted data to our web map, which will

all occur within those curly brackets.

9.	 First, add in a basemap using the Basemap function and specify the following ID, associ-

ated with the dark human geography basemap found on ArcGIS Online, "4f2e99ba65e3

4bb8af49733d9778fb8e":

 const basemap = new Basemap({

 portalItem: {

 id: "4f2e99ba65e34bb8af49733d9778fb8e"

 }

 });

Case Study: Predicting Crop Yields536

10.	 Second, add in our hosted data by using the ID we gathered earlier using the FeatureLayer

function in step 5 of the Loading the result into ArcGIS Online section. Optionally, you can

reduce the data using the definitionExpression property:

 // agricultural crop yield layer queried at start

 const layer = new FeatureLayer({

 portalItem: {

 id: "3252811b3f3047298024a8047bcc3b57"

 },

 definitionExpression: "Item = 'Maize' AND Year = '2019'"

 });

11.	 Next, we need to add both the basemap and feature layer to our map using the Map function:

 // map

 const map = new Map({

 basemap: basemap,

 layers: [layer]

 });

12.	 Lastly, using the MapView function, display the map and place it in the div element with

the ID labeled "viewDiv":

 // view containing starting extent

 const view = new MapView({

 map: map,

 container: "viewDiv"

 });

13.	 In order to place the title, we have to take the view element and add in the title div element,

choosing where to put the element, which, in this case, is the top right:

 view.ui.add("titleDiv", "top-right");

14.	 To add more interaction between the user and the web app, a pop-up template can be

added so that when the user clicks on a country, information about that country will

appear. The createPopupTemplate() function can be added to include the information

that will be shown in the popup. The example will return the name of the country and the

year. This function should be added into the FeatureLayer created in step 10:

Chapter 13 537

 // agricultural crop yield layer queried at start

 const layer = new FeatureLayer({

 portalItem: {

 id: "3252811b3f3047298024a8047bcc3b57"

 },

 definitionExpression: "Item = 'Maize' AND Year = '2019'",

 popupTemplate: createPopupTemplate()

 });

 //popup template

 function createPopupTemplate(){

 return {

 title: "{country}, {Year}"

 };

 };

The HTML file should now look like this:

<html>
 <head>
 <title>Agricultural Crop Yields</title>
 <link
 rel="stylesheet"
 href="https://js.arcgis.com/4.21/esri/themes/light/main.css"
 />
 <script src="https://js.arcgis.com/4.21/"></script>
 </head>
 <style>
 #viewDiv {
 padding: 0;
 margin: 0;
 height: 100%;
 width: 100%;
 }
 #titleDiv {
 padding: 10px;
 }
 </style>
 <script>

Case Study: Predicting Crop Yields538

 require([
 "esri/views/MapView",
 "esri/Map",
 "esri/layers/FeatureLayer",
 "esri/Basemap",
], (MapView, Map, FeatureLayer, Basemap) => {
 const basemap = new Basemap({
 portalItem: {
 id: "4f2e99ba65e34bb8af49733d9778fb8e"
 }
 });
 // agricultural crop yield layer queried at start
 const layer = new FeatureLayer({
 portalItem: {
 id: "3252811b3f3047298024a8047bcc3b57"
 },
 definitionExpression: "Item = 'Maize' AND Year = '2019'",
 popupTemplate: createPopupTemplate()
 });

 //popup template
 function createPopupTemplate(){
 return {
 title: "{country}, {Year}",
 content: [{
 type: "fields",
 fieldInfos: [{
 fieldName: "Item",
 label: "Crop",

Chapter 13 539

 }, {
 fieldName: "yield_tonn",
 label: "Yield",
 format: {
 places: 2,
 digitSeparator: true
 }
 }]
 }]
 };
 };

 const map = new Map({
 basemap: basemap,
 layers: [layer]
 });
 const view = new MapView({
 map: map,
 container: "viewDiv"
 });
 view.ui.add("titleDiv", "top-right");

 });
 </script>
 <body>
 <div id="viewDiv"></div>
 <div id="titleDiv" class="esri-widget">
 <div id="titleText">Agricultural Crop Yields</div>
 </div>
 </body>
</html>

Case Study: Predicting Crop Yields540

15.	 Lastly, save the HTML file. To view the web map, just double-click on the filename or

right-click on the file and choose which browser to open the file with.

Figure 13.16: Opening the web map

You should see the final result, a working web map that displays the data and is clickable.

Chapter 13 541

Figure 13.17: Final web mapping application

Summary
In this chapter, you solved a real-world problem by creating an ETL workflow to predict agri-

cultural crop yields using all the concepts and tools you’ve learned about throughout the book.

Firstly, you learned about the problem, understanding the data and tools needed to complete the

tasks at hand. You then downloaded all the data, utilizing the Requests module, ArcGIS Online,

and the World Bank API. You cleaned up all those individual datasets to ensure that a merge was

possible and then completed the merge.

You took the merged data frame and used it to fit the random forest model, demonstrating its

ability to predict yields quickly and efficiently. This Notebook can be used to update all the data

to predict crop yields when needed by simply rerunning the whole Notebook again. Lastly, you

created a web application to display the shapefile created in the Notebook using HTML, CSS, and

JavaScript.

Case Study: Predicting Crop Yields542

This process could form the framework to provide additional workflows to make sure governments,

farmers, policymakers, and many more have the information needed to prevent food insecurity

in a timely manner.

*

In this book, you have gone from an introduction to Python, to using ArcPy for complex ArcGIS

analyses and cartography, to using advanced Python modules such as Pandas and NumPy for cre-

ating custom Python tools to process both vector and raster data. You have even been introduced

to a little bit of the ArcGIS API for JavaScript and HTML to create a web map based on your data.

It has been a long journey from the beginning to the end, but you’ve made it and now you’re

ready for the next step: using these lessons and tools in your daily work. The best way to learn

is to use something over and over in your work; it will give you a great insight into where these

tools are best deployed and how you can create new, custom tools that will make your work more

fun and interesting.

We applaud you for taking the time to work hard and improve your skills and hope that you feel

accomplished and excited for the future: a future full of code.

We wish you the best, and hope you have enjoyed the book!

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

https://www.packt.com
www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learn Python Programming - Third edition

Fabrizio Romano

Heinrich Kruger

ISBN: 9781801815093

•	 Get Python up and running on Windows, Mac, and Linux

•	 Write elegant, reusable, and efficient code in any situation

•	 Avoid common pitfalls like duplication, complicated design, and over-engineering

•	 Understand when to use the functional or object-oriented approach to programming

•	 Build a simple API with FastAPI and program GUI applications with Tkinter

•	 Get an initial overview of more complex topics such as data persistence and cryptography

•	 Fetch, clean, and manipulate data, making efficient use of Python’s built-in data structures

https://www.packtpub.com/product/learn-python-programming-third-edition/9781801815093

Other Books You May Enjoy546

Learning ArcGIS Pro 2 - Second Edition

Tripp Corbin, GISP

ISBN: 9781839210228

•	 Navigate the user interface to create maps, perform analysis, and manage data

•	 Display data based on discrete attribute values or range of values

•	 Label features on a GIS map based on one or more attributes using Arcade

•	 Create map books using the map series functionality

•	 Share ArcGIS Pro maps, projects, and data with other GIS community members

•	 Explore the most used geoprocessing tools for performing spatial analysis

•	 Create Tasks based on common workflows to standardize processes

•	 Automate processes using ModelBuilder and Python scripts

https://www.packtpub.com/product/learning-arcgis-pro-2-second-edition/9781839210228

Other Books You May Enjoy 547

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and

apply today. We have worked with thousands of developers and tech professionals, just like you,

to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Python for ArcGIS Pro, we’d love to hear your thoughts! If you purchased the

book from Amazon, please click here to go straight to the Amazon review page for this

book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://authors.packtpub.com
https://packt.link/r/1803241667

Index

A
application programming interface (API) 96
ArcGIS API for JavaScript 201

HTML file, generating with 533-540
ArcGIS API for Python 96

modules 96
usage 97
working 97

ArcGIS API for Python visualizations and
symbology

reference link 333
ArcGIS Desktop 6, 54
ArcGIS Enterprise

built-in account 112
connecting to 111, 112

ArcGIS Notebook structure 107
cells 107
Cells tab 109
Edit tab 108
Help tab 109
Insert tab 109
toolbar 109, 110
View tab 108

ArcGIS Online
built-in account 112

connecting, as anonymous user 112
connecting to 111, 112
data, publishing to 327-329
results, loading 531-533

ArcGIS Online account
administering 414
licenses and credits, assigning 420-424
reports, creating for item usage 425-436
user data, reassigning 436
users, creating 414-420

ArcGIS Online layer
converting, to DataFrame 329-331

ArcGIS Pro 6, 54
Notebook, creating 105, 106
Python window 63-67
script tools, creating 230-233

ArcGIS Pro 2.7
cells, copying to script 225, 226
cells, pasting to script 225, 226

ArcGIS Pro 2.8
Notebook, exporting to script 223-225

ArcGISProject object 254
ArcGIS Pro Notebooks 104, 105

creating 106, 113-115
ArcGIS Pro projects

maps, referencing 252-255
projects, referencing 252-255

Index550

ArcGIS Pro toolbox 207
ArcGIS Python versions 6
arcgis.raster

histogram, plotting 368, 369
imagery layers, working with 366, 367
raster layers, working with 370
reference link 371
using 365

ArcPy 53
built-in functions 76, 77
environment settings 68
importing 55
install, checking 54, 55
modules 88, 89
tools 69
using, to create custom map series 458

arcpy.da.Walk function 140
files, unzipping with os.walk 141, 142
parameters 144
used, for copying shapefiles to feature

classes 142-145
ArcPy functions

using, to write custom messages 221
ArcPy install

checking 54, 55
ArcPy raster tools 344

Map Algebra 355
Spatial Analyst toolset 344, 345

array 30
concatenating 388-392
creating 376-378
queries 397-399
raster, reading from 378-380
subset, accessing of 385, 386

attachments
downloading 444-454

renaming 444-455

B
backslashes, Windows file path 13
broken links

fixing, in map 255-260
Buffer tool 73
built-in functions, ArcPy 76, 77

Describe 77, 78
List 78-84

C
Camera object 492
cells, Notebook

copying, to script in ArcGIS Pro 2.7 225, 226
pasting, to script in ArcGIS Pro 2.7 225, 226

Charts module 88
classes 40

reference link 41
colorizer 267
color map

options 203
columns, data frame

dropping 318
command mode 110

keyboard shortcuts 111
conda 98, 308
conditional statements 36

reference link 37
Conditional Tool 353

organizing 353-355
configuration keywords, CreateTable tool

reference link 163
connection links 144

Index 551

connectionProperties dictionary
key/value pairs 258

content
sharing, to groups 182, 183

ContentManager
used, for organizing data 171
used, for publishing data 171

Copy Features tool 76
parameters 76

counters 35
crop yields prediction

case study 508
data and study area 508, 509
data concepts 510, 511

CSV
adding and publishing, tips 176, 177
creating 319
data, adding from 172-175
using, Pandas 311-313

cursor 146
insert 160-168
search 146
update 157-159

cursor object 147
custom code

importing, into Python script 47, 48
custom map series

creating, with ArcPy 458
custom messages

adding 240-242
writing, with ArcPy functions 221

D
data

adding, from CSV 172-175

cleaning up 524-528
combining 524-528
finding, by walk through directory 140
obtaining, into Pandas DataFrame 309
organizing 177
organizing, into folder 177-180
organizing, with ContentManager 171
publishing 172
publishing, to ArcGIS Online 327-329
publishing, with ContentManager 171
reading into Pandas DataFrame

from file 309-311
searching 122-126
visualizing, with mapping module 196-204
writing to file 311

Data Access module 88
used, for walking through directory to find

data 140
data classification methods

reference link 276
data cleaning 510
data extraction, from list

using index position 37
using reverse index position 37

data frame 307
joining 315-317
querying 324-326

DataFrame
ArcGIS Online layer, converting to 329-331
Spatially Enabled DataFrame,

 creating from 320-323
DataFrame columns

indexing 331-333
slicing 331-333

DataFrame rows
indexing 331-333
slicing 331-333

Index552

data list functions 78-84
data manipulation with Pandas

reference link 309
data sources

fixing 255
updating 255

data sources, updating and fixing
reference link 258

data structures or containers 28
data retrieval 28
dictionaries 33
lists 30
sets 32
tuples 29
types 28

data type 19
checking 20
conversion 28
floating-point numbers 26
integer 26
string 20

datatype parameter, arcpy.da.Walk 144
defined interval classification scheme 276
definition query 284
Describe function 77, 78
DetailsBox 469
DetailsHeader 469
dictionaries 33

keys 34
reference link 33
values 34
walking, through to find data 140

digital elevation model (DEM) 335
dropna

used, for dropping NaN values 323, 324

E
edit mode 110

keyboard shortcuts 111
elif statements 36
else statements 36

versus if statements 37
enumerators 35
Environment parameter 220
environment settings, ArcPy 68
equal interval classification scheme 276
ExtractByMask tool 89

F
feature layer collection 184
feature layers 184, 267

querying 185-188
reference link 327

features
appending 191-195
editing 188-190

feature set 187
features module

using 184
feature type parameter

combining, with wildcard parameter 86-88
Federal Information Processing Standard

(FIPS) 143
floating-point numbers 26

reference link 27
folder

data, organizing into 177-180
for loop 34
format() string function 22, 23

Index 553

formatted string literals 23
functions 38, 149

examples 39
namespaces 39
reference link 40

functions, components
def keyword 38
docstrings 39
parameters 38
return statement 38

G
GeoAccessor 320
Geocoding module 88
geographic datum transformations

reference link 147
GeoJSON

using, Pandas 311-313
geometric interval classification scheme 276
geometry of feature class

accessing 148-152
geometry tokens 147

reference link 147
gis module, used for managing GIS

data, searching 115
data, searching when connected to

organization 122-126
groups, searching 115
public data, searching as anonymous

user 115-122
users, managing 130
users, searching 115

global namespace 39
greater than operator 354

groups
accessing 180
content, sharing to 182, 183
creating 180-182
managing 177, 180
searching 126-129
users, adding 184
users, inviting 184
users, removing from 184

Group Search
reference link 129

H
Hillshade tool 349

Hillshade object, creating 350-352
histogram 367

creating, with compute_histograms() 367
plotting, with Matplotlib 368, 402

hosted layer 329
HTML Color Picker 281
HTML file

generating, with ArcGIS API,
for JavaScript 533-540

I
IDLE development environment 12
if __name__ == ‘__main__’

reference link 52
if statements 36

versus else statements 37
Image Analysis module 88
immutable tuple 29
indentation 49

reference link 50

Index554

indexing
NumPy array 383
Python list 37, 38

input parameters, script tool
testing 239, 240

insert cursor 160-168
instantiated class 41
integer data type 26
int() function 28
iteration 34

counters 35
enumerators 35
for loop 34
while loop 35

J
Jenks Natural Breaks classification scheme

276
Join Field tool 92
Jupyter notebook 12, 104

K
keyboard shortcuts, ArcGIS Pro

Notebook 110, 111
keys, dictionary 34

L
layers 282-285

adding, to map 260-267
moving, in map 260-267
removing, from map 260-267
working with 260

layer symbology 267-282

layout elements 285-288
LegendElement 288-295
north arrow 295-297
scale bar 295-297
text 295-297

layouts 282
exporting 297-300
reference link 300

layout, setting up for map automation 459-
462

DetailsBox 469
DetailsHeader 469
Inset map frame 465-468
legend element 469-473
Legend Item elements 474-476
source text element 462-465

legend element
working with 495-498

LegendElement
reference link 289

LegendElement class 469
LegendItem class 469
list comprehension 491
list functions 78
lists 30

copied into tuple data type 30
operations for lists 32
operations for only lists 31
operations for tuples 32
reference link 30
slicing 32

local namespace 39
lock, ArcGIS Project 254
loop 34

reference link 35

Index 555

M
Make Feature Layer tool 74
map

data, adding 481-495
data, creating 481-505
referencing, within ArcGIS Pro projects 252-

255
Map Algebra 355

Boolean operators 364, 365
division operators 362-364
negative operator 361
reference link 365
shorthand operators 360, 361
using, in Notebook 355-359

map area 440
map automation

layout, setting up 459-462
Map Frame element 481
Mapping module 88

using, to visualize data 196-204
map view

modifying 498-504
Markdown cell 109
Markdown Guide

URL 109
mathematical operations, NumPy 392-396

reference link 396
Matplotlib

URL 402
used, for creating charts from NumPy arrays

402-408
used, for creating histogram 367-369

Metadata module 88
modules, Arcpy

arcpy.charts (Charts) 88

arcpy.da (Data Access) 56, 88, 139
arcpy.geocoding (Geocoding) 56, 88
arcpy.ia (Image Analysis) 88
arcpy.metadata (Metadata) 88
arcpy.mp (Mapping) 56, 88, 196-201
arcpy.na (Network Analyst) 56, 88
arcpy.sa (Spatial Analyst) 56, 88-93
arcpy.sharing (Sharing) 88
arpcy.wmx (Workflow Manager) 88

modules importing, Python
reference link 46

modules, import methods
import all sub-modules 46
sub-module, importing 46
whole module, importing 46

modules, Python 6
custom code, importing 47, 48
importing 41-46
installing 41, 44
setup.py file 44
site-packages folder 48, 49
wheel files 44

N
namespaces 39

reference link 39
NaN values

dropping, with dropna 323, 324
Natural Resource Conservation Service

(NRCS)
reference link 143

ndarray 374
nested JSON data

normalizing 314, 315
north arrow element 476-480

Index556

Notebook
creating, in ArcGIS Pro 105, 106
exporting, to script in ArcGIS Pro 2.8 223-

225
NumPy 374

for rasters 375
importing 375
mathematical operations 392-396
specific elements, accessing 383, 384
URL 375
using, for statistical analysis of raster

data 399-401
NumPy arrays

advantages 374
raster, creating from 392
versus Python lists 375

NumPy arrays, properties 380
data type 382, 383
shape 381
size 380

O
offline maps

reference link 440
operators, Map Algebra 335

shorthand operators 360
os module 14, 87

reference link 14
os.walk

used, for unzipping files 141, 142

P
Pandas 306

columns, dropping 318
CSV, creating 319
data frame, querying 324-326

installing 308
reference link 308
used, for CSV 311-313
used, for GeoJSON 311-313
used, for SHP 311-313

Pandas DataFrame 306
data, obtaining into 309
data, reading from file 309-311
data, writing to file 311

Pandas Series 306, 307
reference link 307

PEP8 style guide
reference link 49

Pip Installs Programs (pip)
using 42

plot() method, spatial property
reference link 202

print statements 145
reference link 50
using 50

programming basics 16-18
projects

referencing, within ArcGIS Pro
projects 252-255

prompt, Python window 64
public data

searching, as anonymous user 115-122
PyCharm 12
Python 6, 53

executables included 9
features 4
history 4
IDLE development environment 12
installed location 7
os module 14
sys module 14

Index 557

system path 15
used, for changing symbology

of layers 267-282
versions 5
Windows file path issues 13

Python, adding to PATH variable in Windows
reference link 11

Python distribution 98
Python Enhancement Proposal 8 (PEP8) 49
Python executable 9

calling 10-12
Python, history

reference link 5
Python IDLE Shell

using 56-62
Python Interpreter 8
Python lists

versus NumPy arrays 375
Python Package Index (PyPI) 41, 308
Python Package Manager 41, 98

Python environments, managing 98
Python packages, managing 98
virtual environment, creating 99-104

Python script 9
Python Software Foundation (PSF) 5

URL 7
Python versions

download link 7
Python virtual environment modules

installing 44, 45
reference link 45

pythonw.exe file 9
Python window

in ArcGIS Pro 63-67

Q
quantile classification scheme 276

R
random forest model 511

fitting 528-530
raster

creating, from NumPy array 392
reading, into array 378-380
slicing 387, 388

raster data objects 335, 336
blank raster, creating 336, 337
cell value properties, accessing 341, 342
creating, from existing raster 337, 338
geographic properties, accessing 343
properties, accessing 339, 340
properties, copying 337
properties, reading 337
reference link 337
saving 339

raster layers 268
RasterToNumpyArray function, parameters

reference link 380
raw strings 13
renderer 267
replica geodatabases 439
Requests module 517
reverse index position

data extraction with 37
RGB values

determining 281

Index558

S
sa module 344
scale bar element 476-479
scratch workspace 68

checking 68
script

modifying, to accept user input in
script tool 226-229

testing, with California county
geography 245-247

testing, with space in area name 247-249
turning, into tools 222

script structure
guidelines 51

script tools 207-211
benefits 209
creating, in ArcGIS Pro 230-234
creating, steps 209
custom messages, adding 240-242
custom messages, writing 221, 222
Parameters tab 214-220
running 234-237
settings 211-214
testing 234-237, 243
updating, to take census geography

files 237-239
Validation panel 220

search cursor 146
geometry of feature class, accessing 148-

152
parameters 146, 147
reference link 147
using, with data dictionary as lookup

value 152-157
Select Layer By Location tool 75
Select tool 70, 71

self, class 40
service definition files 439
sets 32

operations 32
shapefiles

copying, to feature classes with arcpy.
da.Walk 143-145

Sharing module 88
SHP

using, Pandas 311-313
slicing 331, 385
Spatial Analyst module 88-92
Spatial Analyst toolset 344

conditionals 348, 349
Conditional Tool 353-355
Hillshade tool 349-352
license, enabling 345
raster object, generating 345, 346
statistical raster creation tool 347

Spatially Enabled DataFrame
(SEDF) 196, 307, 514

creating, from DataFrame 320-323
reference link 308

SQL query
testing, with Contra Costa Tract data 243-

245
standard deviation classification scheme

276
standard library, Python 41
statistical raster creation tool

constant value 347
distributed value 347
random value 347
reference link 348

str() function 28

Index 559

string data type 20
key concepts 21
multiple line strings 21
quotation marks 21
string addition 22
string formatting 22
string indexing 25, 26
string manipulation 24

string formatting 22
format() function 22, 23
key concepts 22
placeholder operators 24
reference link 24
string literal 23

string placeholders
reference link 24

style tips for writing scripts
exploring 49

subset, of array
accessing 385, 386

symbology of layer 267
sys module

reference link 14, 15
system path 15

T
text element

working with 495-498
Title text element 481

Map Frame element 481
tools, ArcPy 69

Buffer 73
Conditional 91, 353
Copy Features 76
Extract by Mask 89

Hillshade 349
Join Field 92
Make Feature Layer 74
Select 70, 71
Select Layer by Location 75

transcript, Python window 64
tuple 29

reference link 29

U
updateConnectionProperties() method

using, on layers class to fix broken
links 255-260

update cursor 157-159
user data

new folder, creating 436-441
reassigning 436
transferring, to different user 436-441
transferring, to different user with existing

folder 442, 443
user input script tool 227
user properties, ArcGIS 130-132
users

adding, in group 184
inviting, in group 184
managing 130, 177
removing, from group 184
searching 132-134

V
values, dictionary 34
variables naming conventions

reference link 18
variables, Python 18

formatting rules 19

Index560

reference link 19
value comparison 19

virtual environments 98
creating 99-104

W
well-known ID (WKID) 187
wheel files 44

reference link 44
while loop 35
wildcard parameter 84, 85

combining, with feature type parameter
86-88

Workflow Manager module 88
workspace 68

checking 68
setting 68

Z
zero-based indexing 37
ZipFile module 141

	Cover
	Copyright
	Forewords
	Contributors
	Table of Contents
	Preface
	Part I: Introduction to Python Modules for ArcGIS Pro
	Chapter 1: Introduction to Python for GIS
	Python: Built different
	Python versions
	ArcGIS Python versions
	What is Python?
	Where is it installed?
	Python interpreter
	What is a Python script?
	Executables included
	How to call the executable
	IDLE development environment
	Windows file path issues
	The operating system and Python system modules

	The basics of programming
	Variables
	Variable formatting rules
	Assigned to vs is equal to (value comparison)

	Data types
	Checking the data type
	Strings
	Integers
	Floating numbers
	Conversion between strings, integers, and floats

	Data structures or containers
	Tuples
	Lists
	Sets
	Dictionaries

	Iteration
	For loops
	While loops
	Counters and enumerators

	Conditionals
	If versus else

	Zero-based indexing
	Data extraction using index position
	Data extraction using reverse index position

	Functions
	Components of a function
	Namespaces
	Function examples

	Classes

	Installing and importing modules
	Using pip
	Installing modules that are not in PyPI
	The setup.py file
	Wheel files

	Installing in virtual environments
	Importing modules
	Three ways to import
	Importing custom code
	The site-packages folder

	Basic style tips for writing scripts
	Indentation
	Using print statements
	Structuring a script

	Summary

	Chapter 2: Basics of ArcPy
	Checking your ArcPy install
	Using the correct Python IDLE Shell
	Using the Python IDLE Shell
	The Python window in ArcGIS Pro

	ArcPy environment settings
	ArcPy tools: Geoprocessing using ArcPy
	Built-in ArcPy functions
	The Describe function
	List functions
	The wildcard parameter
	Combining wildcard and feature type parameters

	Introduction to ArcPy modules
	Spatial Analyst module

	Summary

	Chapter 3: ArcGIS API for Python
	What is the ArcGIS API for Python?
	ArcGIS API modules
	What does it do and why use it?

	The Python Package Manager
	Python environments
	How to create a new virtual environment

	ArcGIS Pro Notebooks
	Creating a Notebook in ArcGIS Pro
	Creating your first Notebook
	ArcGIS Notebook structure
	Keyboard shortcuts

	Connecting to ArcGIS Online or ArcGIS Enterprise
	Anonymous users
	ArcGIS Pro connection
	Built-in users

	Creating a Notebook

	Using the gis module to manage your GIS
	Searching for data, users, or groups
	Searching for public data as an anonymous user
	Searching for data when connected to your organization
	Managing users

	Summary

	Part II: Applying Python modules to Common GIS Tasks
	Chapter 4: The Data Access Module and Cursors
	Walking through a directory to find data
	arcpy.da.Walk
	arcpy.da.Walk exercise
	Unzipping files using os.walk
	Copying shapefiles to feature classes using arcpy.da.Walk

	Cursors
	Search cursor
	Accessing the geometry of a feature class
	Using a search cursor with a data dictionary as a lookup value

	Update cursor
	Insert cursor

	Summary

	Chapter 5: Publishing to ArcGIS Online
	Using ContentManager for publishing and organizing data
	Publishing data
	Adding data from a CSV
	Adding and publishing tips

	Organizing data and managing groups and users
	Organizing data into a folder
	Accessing and managing groups

	Using the features module to work with feature layers
	Querying feature layers
	Editing features
	Appending features

	Using the mapping module to visualize your data
	Summary

	Chapter 6: ArcToolbox Script Tools
	Introduction to script tools
	How to create a script tool
	Script tool General settings
	Script tool Parameters tab
	Script tool Validation
	Writing messages

	Exercise: Turning scripts into tools
	Exporting a Notebook to a script in ArcGIS Pro 2.8
	Copying and pasting cells to a script in ArcGIS Pro 2.7
	Modifying a script to accept user input in the script tool
	Creating your script tool in ArcGIS Pro
	Running and testing the script tool
	Updating the script tool to take census geography files
	Testing input parameters
	Adding custom messages
	Testing the finished script tool
	Testing SQL with Contra Costa Tract data
	Testing the script with California county geography
	Testing the script with a space in the area name

	Summary

	Chapter 7: Automated Map Production
	Referencing projects and maps within projects
	Updating and fixing data sources
	Fixing broken links

	Working with layers
	Adding, moving, and removing layers
	Layer symbology

	Layouts
	Layers
	Layout elements
	Legend
	North arrow, scale bar, and text

	Exporting layouts

	Summary

	Part III: Geospatial Data Analysis
	Chapter 8: Pandas, Data Frames, and Vector Data
	Introduction to Pandas
	Pandas DataFrames
	Pandas Series
	Spatially Enabled DataFrames
	Installing Pandas
	Getting data into (and out of) a Pandas DataFrame
	Reading data from a file
	Writing data to a file

	Exercise: From GeoJSON to CSV to SHP using Pandas
	Normalizing the nested JSON data
	Joining data frames
	Dropping columns
	Creating a CSV
	Creating a Spatially Enabled DataFrame from a DataFrame
	Dropping NaN values using dropna
	Querying the data frame
	Publishing the data to ArcGIS Online
	Converting an ArcGIS Online layer to a DataFrame
	Indexing and slicing DataFrame rows and columns

	Summary

	Chapter 9: Raster Analysis with Python
	Raster data objects
	Creating a new blank raster
	Reading and copying raster properties
	Creating a raster object from an existing raster
	Saving a raster
	Accessing the raster properties
	Accessing raster and cell value properties
	Geographic properties

	ArcPy Raster tools
	The Spatial Analyst toolset and the sa module
	Generating a raster object
	Statistical raster creation tool
	Conditionals
	The Hillshade tool
	The Conditional tool

	Map Algebra
	Shorthand operators for Map Algebra

	Using arcgis.raster
	Working with imagery layers
	Plotting a histogram

	Working with raster layers

	Summary

	Chapter 10: Geospatial Data Processing with NumPy
	Introduction to NumPy
	Advantages of NumPy arrays
	NumPy arrays versus Python lists
	Importing NumPy

	Basics of NumPy for rasters
	Creating an array
	Reading a raster into an array
	Array properties
	Size
	Shape
	Data type

	Accessing specific elements
	Accessing a subset of the array
	Slicing a raster
	Concatenating arrays
	Creating a raster from a NumPy array
	Mathematical operations with NumPy
	Array queries

	Exercise: Statistical analysis of raster data using NumPy
	Creating charts from NumPy arrays using Matplotlib

	Summary

	Part IV: Case Studies
	Chapter 11: Case Study: ArcGIS Online Administration and Data Management
	Case study: Administering your ArcGIS Online account
	Creating users
	Assigning licenses and credits
	Creating reports for item usage
	Reassigning user data
	Transferring data to a different user and creating a new folder
	Transferring data to a different user with an existing folder

	Case study: Downloading and renaming attachments
	Summary

	Chapter 12: Case Study: Advanced Map Automation
	Case study introduction
	Setting up a layout for map automation
	Source text element
	Inset map frame
	DetailsHeader and DetailsBox text elements
	Legend element
	Legend Item elements
	Scale bar and north arrow elements
	Scale bar
	North arrow

	Title text element
	Map Frame element

	Creating and adding data to your map
	Working with legend and text elements in the layout
	Changing the map view and exporting
	Summary

	Chapter 13: Case Study: Predicting Crop Yields
	Case study introduction
	Data and study area
	Data concepts

	Downloading datasets
	World countries
	Population
	Rainfall
	Agricultural land
	Crop yields
	Pesticide and fertilizer use
	Temperature change

	Cleaning up and combining the data
	Fitting a random forest model
	Loading the result into ArcGIS Online
	Generating an HTML file using ArcGIS API for JavaScript
	Summary

	Other Books You May Enjoy
	Index

