

Python Web
Development
with Sanic

An in-depth guide for Python web developers
to improve the speed and scalability of web
applications

Adam Hopkins

SANIC IS AN IMPRINT OF PACKT PUBLISHING

Python Web Development with Sanic
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Managers: Richa Tripathi
Publishing Product Manager: Sathyanarayanan Ellapulli
Senior Editor: Nisha Cleetus
Content Development Editor: Nithya Sadanandan
Technical Editor: Pradeep Sahu
Copy Editor: Safis Editing
Project Coordinator: Ajesh Devavaram
Proofreader: Safis Editing
Indexer: Hemangini Bari
Production Designer: Shankar Kalbhor
Marketing Coordinator: Teny Thomas

First published: February 2022

Production reference: 1240222

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80181-441-6

www.packt.com

http://www.packt.com

This book is for everyone who has inspired me on my journey, but in
particular, to my sister, who has always believed in me, to my parents for

giving me the confidence to become who I am, to my children for reminding
me what it is that I am working toward, and to my wife, Rachel, without

whom I wouldn't achieve anything. She is my partner who provides me with
the daily drive and joy of life, and the one who ultimately sanctioned the

writing of this book.

– Adam Hopkins

Contributors

About the author
Adam Hopkins is a self-taught programmer. He started programming in high school
and has been using Python and building websites for more than 25 years. He is a
licensed attorney and practiced law before transitioning into software engineering
as a second career.

Adam is the core developer and project maintainer of Sanic, a popular asynchronous
Python framework and web server. Currently, he is a software engineering manager at
PacketFabric, where he leads a team building backend web services. He is passionate about
open source contributions and helping other developers to grow and learn. Adam lives in
his desert home in the south of Israel with his wife and five children.

About the reviewers
Stephen Sadowski is a core developer and steering council member for the Sanic project.
He has been involved with Sanic since 2017, first as an early adopter, and subsequently
helping Adam Hopkins revitalize the project in 2018.

Outside of the Sanic community, Stephen is the vice president of professional services and
DevOps and modernization practice lead for Uturn Data Solutions. He enjoys cooking,
reading, and spending time with his wife, Jamie, and their two Portuguese Water Dogs,
King and Prince.

Josha Inglis is a data architect at PacketFabric. He has worked extensively with
Python and PostgreSQL for more than a decade, starting his career in data science and
bioinformatics, analyzing large protein interaction networks involved in metastatic breast
cancer, and has published papers in the fields of bioinformatics and archaeology.

He has since worked for data center and NaaS start-ups and commercial mathematics
consulting, building web apps for business process optimization. Josha now focuses on
architecting safe and low-friction data storage and access patterns.

He lives and works by the beach in Byron Bay, Australia.

Preface

Part 1: Getting Started with Sanic

1
Introduction to Sanic and Async Frameworks

Technical requirements� 5
What is Sanic?� 5
Leveling up� 10
Framework versus server� 13
Web server� 13
Web framework� 15

Why we use Sanic—build fast,
run fast� 16

Simple and lightweight� 17
Unopinionated and flexible� 17
Performant and scalable� 17
Production-ready� 18
Trusted by millions� 18
Community-driven� 18
What drives code decisions?� 19

Summary� 20

2
Organizing a Project

Technical requirements� 22
Setting up an environment
and directory� 22
Environment� 23
Sanic CLI� 25
Directory structure� 28

Using blueprints effectively� 31
Blueprint registration� 33
Blueprint versioning� 34

Grouping blueprints� 34

Wiring it all up� 36
Controlled imports� 37
Factory pattern� 38
Autodiscovery� 40

Running our application� 42
Summary� 44

Table of Contents

viii Table of Contents

Part 2: Hands-On Sanic

3
Routing and Intaking HTTP Requests

Technical requirements� 49
Understanding HTTP methods� 49
Using HTTP methods on route handlers� 50
Advanced method routing� 54
Method safety and request body� 55
RESTful API design� 57
Simplifying your endpoints with CBVs� 59
Blanket support for OPTIONS and HEAD� 62

Paths, slashes, and why they
matter� 67
Strict slashes� 68
Extracting information from the path� 70

Advanced path parameters� 71

Custom parameter matching� 72
Modifying matched parameter values� 76

API versioning� 79
Should all of my routes bump versions?� 82
Version prefixing� 84

Virtual hosts� 85
Serving static content� 88
Serving static content from Sanic� 88
Serving static content with Nginx� 89
Streaming static content� 92

Summary� 93

4
Ingesting HTTP Data

Technical requirements� 96
Reading cookies and headers� 97
Headers are flexible� 97
Authentication headers� 103
Context headers� 108
Sanic extracts header data for us� 109
Headers as multi-dict� 110
Getting information from cookies
(yum!)� 112

Reading forms, query
arguments, files, JSON,
and more� 113
Query arguments� 113

Forms and files� 116
Consuming JSON data� 117

Getting streaming data� 118
Validating data� 124
Step 1—getting started and making
a decorator� 125
Step 2—reading the handler signature� 126
Step 3—modeling� 128
Step 4—model hydration� 130
Step 5—performing validations� 132
Taking it to the next level with
third-party packages� 133

Summary� 137

Table of Contents ix

5
Building Response Handlers

Technical requirements� 140
Examining the HTTP response
structure� 140
The HTTP response status� 141
Response groupings� 142
A response through exceptions� 143
Custom status� 144
Headers� 145
The response body� 147

Rendering HTML content� 147
Delivering HTML files� 148
Basic templating� 150
Using a templating engine� 152

Serializing JSON content� 155
Choosing a serializer� 155
Serializing custom objects� 157

Best practices� 159

Streaming data� 162
File streaming� 163

Server-sent events for push
communication� 164
Starting with the basics� 165
Building some SSE objects� 166

Websockets for two-way
communication� 172
Setting response headers
and cookies� 176
Responding with a request ID� 177
Setting response cookies� 178

Summary� 181

6
Operating Outside the Response Handler

Technical requirements� 184
Making use of ctx� 184
Altering requests and
responses with middleware� 187
Request middleware� 187
Response middleware� 191
Responding early (or late) with
middleware� 195
Middleware and streaming responses� 196

Leveraging signals for
intra-worker communication� 198
Signal definitions� 199
Using built-in signals� 201

Custom signals� 205
Waiting on events� 210

Mastering HTTP connections� 213
Keep-Alive within Sanic� 214
Caching data per connection� 216
Handling exceptions like a pro� 217

Implementing proper
exception handling� 218
Bad exception messages� 218
Misusing statuses� 219
Responses through raising
an exception� 220

x Table of Contents

Fallback handling� 223
Catching exceptions� 226

Background task processing� 229

Adding tasks to the loop� 229
Integrating with an outside service� 231
Designing an in-process task queue� 232

Summary� 237

7
Dealing with Security Concerns

Technical requirements� 240
Setting up an effective
CORS policy� 240
What is the security issue with
ineffective CORS?� 240

Protecting applications from
CSRF� 255
Solutions that do not work� 256
Solutions that do work� 256

Samesite cookies� 265

Protecting your Sanic app with
authentication� 268
Using API keys� 271
Understanding session-based versus
non-session-based authentication� 275
Using sessions� 278
JSON Web Tokens (JWTs)� 280

Summary� 288

8
Running a Sanic Server

Technical requirements� 292
Handling the server life cycle� 293
Server listeners� 293

Configuring an application� 296
What is the Sanic configuration object?� 297
How can an application's configuration
object be accessed?� 298
How can the configuration
object be set?� 299
Some general rules about
configuration� 301

Running Sanic locally� 302
How does running Sanic locally differ
from production?� 302

Deploying to production� 304
Choosing the right server option� 305
How to choose a deployment strategy?� 307

Securing your application with
TLS� 311
Setting up TLS in Sanic� 312
Getting and renewing a certificate
from Let's Encrypt� 314

Deployment examples� 315
PaaS� 315
Kubernetes (as-a-service)� 317

Summary� 324

Table of Contents xi

Part 3: Putting It All together

9
Best Practices to Improve Your Web Applications

Technical requirements� 328
Implementing practical
real-world exception handlers� 328
Catching errors with middleware� 330
Catching errors with signals� 331
Catching the error and responding
manually� 332
Modifying ErrorHandler� 334

Setting up a testable
application� 335
Getting started with sanic-testing� 336
A more practical test client
implementation� 339
Using ReusableClient for testing� 354

Gaining insight from logging
and tracing� 357

Types of Sanic loggers� 358
Creating your own loggers, my first
step in application development� 359
Configuring logging� 362
Adding color context� 364
Adding some basic tracing with
request IDs� 366
Using X-Request-ID� 369

Managing database
connections� 370
To ORM or not to ORM,
that is the question� 371
Creating a custom data access
layer in Sanic� 372
Connecting Sanic to Redis� 376

Summary� 380

10
Implementing Common Use Cases with Sanic

Technical requirements� 382
Synchronizing and scaling
websocket feeds� 383
Powering a progressive web
application� 389
Dealing with subdomains and CORS� 390
Running a development server� 391

Designing a GraphQL API� 396
Why would I want to use GraphQL?� 399
Adding GraphQL to Sanic� 401

Building a Discord bot: running
Sanic from another service� 409
Building a simple Discord bot� 410
Running the Discord bot from Sanic� 415

Creating an HTTP to HTTPS
proxy: nesting Sanic inside
Sanic� 416
Summary� 423

xii Table of Contents

11
A Complete Real-World Example

Technical requirements� 427
The process of building a web
application� 427
Step 1—Define the functionality and
workflow� 428
Step 2—Decide on the technology stack�432
Step 3—Architect the data structures� 435
Step 4—Plan and build the user
interface� 437
Step 5—Build the application
infrastructure� 438
Step 6—Prototype the minimally
viable backend features� 440

Step 7—Create continuous integration,
deployment, and automation tools� 443
Step 8—Iterate, iterate, iterate� 444

Highlighting select features of
the Booktracker� 448
Development environment� 449
Creating a better factory pattern with
setup functions� 454
The data access layer� 461
Authentication flow� 465

Summary� 469
Putting it all together� 470

Index
Other Books You May Enjoy

Preface
"What do you want to do when you graduate college?" asked a family friend. "I'm not sure.
I really like building web applications," I said. "Maybe I can do that." The response: "No,
there's no future in that. Pick something else." Wow, was he wrong!

That was a conversation I had about 20 years ago. It was truly a demoralizing comment.
I had begun experimenting with the web and programming in high school in the late
90s. However, burdened with this defeat, I naively accepted it as truth and kept web
development as a hobby. Ultimately, I went on to law school and launched a career
as a lawyer. Don't get me wrong, I loved being a lawyer and I loved the work that I did.
But my years as an attorney drove me back to software development, ultimately turning
my hobby into a career. This quite unusual career path was made possible by the open
source community. Through the help and guidance of the community at large, I taught
myself the skills I would need to become a professional. It is now my turn to help others.

I share this story because it highlights something that I think is applicable not only to my
life but also to web application development in general. This bad advice is a reminder that
not all guidance is good, and that the best course of action is the one that fits my needs, not
those of someone else. This book is devoted to that concept.

To become better at what we do, we must constantly be moving forward on our journey,
learning new things and polishing existing skills. We must take the advice, the design
patterns, and the code snippets that others provide us and internalize them. Some of it
will be good, and some of it will be bad. By knowing this, we can carefully select the good
to build something that meets our challenges and is truly extraordinary.

Shortly, we will start a journey together learning about web development. By the end of
this book, I hope that you feel empowered to build what you want and need, and not be
constrained by bad advice. And maybe—just maybe—you might walk away with just a
little more passion and respect for Sanic, for Python, and for open source software. I truly
wish you the best of luck on your own personal journey.

xiv Preface

Who this book is for
This book is for Python web developers who have basic- to intermediate-level knowledge
of how web technologies work and are looking to enhance their skills by taking their
applications to the next level using the power of the Sanic framework. Working knowledge
of Python web development with frameworks such as Django and/or Flask may be helpful,
but is not required.

A basic- to intermediate-level understanding of Python 3, HTTP, RESTful API patterns,
and modern development practices and tools, such as type annotations, pytest, and virtual
environments, is also helpful.

What this book covers
Chapter 1, Introduction to Sanic and Async Frameworks, covers the background
information on why Sanic was built, how it is developed, where it is headed, and who
should use it. Important takeaways include the difference between WSGI, Async, and
ASGI servers; what is a framework versus a server; and what developers should do to set
up their project for success.

Chapter 2, Organizing a Project, takes you through the common approaches to organizing
a project, and ideas to help decide an appropriate solution that fits the needs of what you
are building.

Chapter 3, Routing and Intaking HTTP Requests, focuses upon the first interactions
that the server has with an incoming web request. You'll learn about: how requests are
structured; what choices Sanic makes for us and what choices it leaves to us; and other
issues involved in turning an HTTP request into actionable code.

Chapter 4, Ingesting HTTP Data, focuses on the types of data that can be received and
some effective tools for handling them. You will learn how to extract (and use) data from
headers, cookies, paths, body, and query arguments; and also some useful tools to make it
easier to build good applications with the data.

Chapter 5, Building Response Handlers, explores different techniques for sending
content back to the clients. Modern applications often need several techniques to
provide high-quality experiences and dynamic content. You will learn about when to
apply each technique and how to optimize Sanic for each use case.

Preface xv

Chapter 6, Operating Outside the Response Handler, goes through all of the other stuff
that Sanic can do besides just simple response handlers. You will learn about how to use
listeners, middleware, signals, and background tasks to customize web applications. The
goal is to learn to recognize patterns that can be applied in a variety of use cases.

Chapter 7, Dealing with Security Concerns, focuses upon common security concerns and
how to deal with them in Sanic. Since this topic alone is quite extensive, the approach will
be to introduce the concern and explain the issue as it relates to Sanic. Then we will look
at common mitigation strategies and what they would look like in Sanic.

Chapter 8, Running a Sanic Server, focuses upon setting up a server for both local
development and production-ready environments. Again, this topic can be extremely
lengthy by itself. Therefore, the goal is not to be a tutorial on how to use tools such as
Docker and Kubernetes. After the introduction, this chapter assumes some working
knowledge, provides other materials for reference, and focuses on what these tools mean
for Sanic. You will learn about some common deployment patterns and when/how you
should decide to use them.

Chapter 9, Best Practices to Improve Your Web Applications, covers some practical tips on
how to make your web applications better. The areas covered are the sorts of finishing
touches that make an application feel "professional," and most importantly easier to
maintain for future iterations.

Chapter 10, Implementing Common Use Cases with Sanic, analyzes common to slightly
advanced use cases in depth and how to implement them in Sanic. We will start each
section with a description of the problems encountered. After providing solutions,
we will do a review of the implementations and try to draw some conclusions and
generalizations that can be taken by you to other applications.

Chapter 11, A Complete Real-World Example, provides you with a complete web
application that you can learn from. The source code is available for you to review,
and the application itself is hosted online so that you can interact with it while trying
to learn from it. You are encouraged to check it out at https://sanicbook.com.

To get the most out of this book
The code examples in this book assume that you are running the latest long-term support
(LTS) release. As of the time of writing, that is Sanic v21.12. We assume that you have
a modern installation of Python available. While most of the examples will work fine in
Python 3.7, to be able to run all of the code, you will need at least Python 3.8.

https://sanicbook.com

xvi Preface

You are highly encouraged to follow along and run the code examples in this book. In
addition, there are additional patterns and snippets that will only be available in the
GitHub repository (see the next section for the link). You are highly encouraged to review
these as well.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

The project is fast-moving and adopts new patterns all the time. Where possible, the
GitHub repo will be kept up to date. If you encounter any problems while following the
examples, you are encouraged to seek help at https://sanic.dev/help.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Python-Web-Development-with-Sanic.
If there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801814416_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "When an exception is raised, Sanic stops the regular route handling
process and moves it over to an ErrorHandler instance."

https://sanic.dev/help
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801814416_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801814416_ColorImages.pdf

Preface xvii

A block of code is set as follows:

@app.exception(PinkElephantError)

async def handle_pink_elephants(request: Request, exception:
Exception):

 ...

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

@app.exception(PinkElephantError)

async def handle_pink_elephants(request: Request, exception:
Exception):

 ...

Any command-line input or output is written as follows:

$ pip install sanic-testing pytest

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "Log in to
the web portal, click on Kubernetes on the main dashboard, and set up a cluster."

Tips or important notes	
Appear like this.

Get in touch
Feedback from our readers is always welcome.

Sanic help: If you run into any problems with your web applications or have questions
about Sanic, you should turn to https://sanic.dev/help.

Author: To get in touch with the author, please contact him via Twitter @admhpkns or
visit his web page at https://amhopkins.com.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of your
message.

https://sanic.dev/help
https://amhopkins.com
mailto:customercare@packtpub.com

xviii Preface

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful
if you would report this to us. Please visit www.packtpub.com/support/errata
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Share Your Thoughts
Once you've read Full-Stack Development with Angular and GraphQL, we'd love to hear
your thoughts! Please select https://www.amazon.in/review/create-review/
error?asin=1800202466 for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://www.amazon.in/review/create-review/error?asin=1800202466
https://www.amazon.in/review/create-review/error?asin=1800202466

Part 1:
Getting Started

with Sanic

Our journey begins. This first part will provide an understanding of why Sanic is different,
why you would use it, and how to set yourself and your project up for success.

This part contains the following chapters:

•	 Chapter 1, Introduction to Sanic and Async Frameworks

•	 Chapter 2, Organizing a Project

1
Introduction to

Sanic and Async
Frameworks

There should be one—and preferably only one—obvious way to do it.

– Tim Peters, The Zen of Python
Too often, this maxim of Python is taken to mean that there must be only one way to do
something. Any Python web developer can simply look at the number of web frameworks
that exist and tell you that the choice is not so simple. There are dozens of web frameworks
on PyPI, and within the ecosystem of any single framework, you will find even more
options to solve a single problem. Go ahead and type authentication into the search
bar at https://pypi.org. Looking at the number of results, stating that there is only
"[one] obvious way to do it" does not seem so obvious. Maybe this sentence needs to be
changed. Perhaps it could read, "There should be one … obvious way for you to do it."
Why? Because adding to the context that we are talking about your specific application
brings us to the next level.

This is Sanic, and this is the goal of this book.

https://pypi.org

4 Introduction to Sanic and Async Frameworks

What may be obvious for someone building a stock portfolio tracker will not be obvious
to someone building a streaming media player. So, to figure out what the obvious solution
is, we must first understand the problem. And to understand the problem, we must be
hyper-aware of our specific use case.

When we're trying to find a solution to a problem, many other tools and frameworks
respond by saying: here is how you should do it. Do you want to read data from your
web request? Here's how to validate it. Do you need cross-site request forgery (CSRF)
protection? Here's the snippet you need to add. This approach fails to make you a better
developer and fails to find the optimal solution for your use case.

Why should I validate my data this way? Why do I need this snippet to protect myself?
Because someone else decided for you. You cannot answer these questions. All you know
is that the framework documentation—or some blog on the internet—told you to do this,
so you did it.

And this is why Sanic—and indeed, this book—takes a different approach. By the end of
this book, we want you to know how to spot peculiar use cases, as well as how to bend
the tooling to meet your needs. You should be able to think through different types of
implementations and select one that is most meaningful for your needs. This will be the
obvious solution.

Sanic prides itself on being unopinionated. That is not to say that the maintainers of
the project do not have strong opinions. I welcome you to engage me or anyone in the
community in a discussion about proxy forwarding, deployment strategies, authentication
schemes, and more. You will certainly find passionate opinions. By "unopinionated,"
we mean to say that Sanic's job is to take care of the plumbing so that all you need to
do is build the logic. The decision of how to tackle problems is not the domain of the
framework.

You will find that Sanic developers are mostly keen to find solutions that are
hyper-focused on solving the particular challenges that they face. Developers use
Sanic because it is fast and simple. However, you will also find that using Sanic means
the obvious solution to a problem is not based upon Sanic but upon your unique
application requirements.

The other side of the story is that sometimes, your use case doesn't need a hyper-focused
solution. This is also fine. For this reason, you will find several plugins (many of which
are supported by active members of the Sanic core developer team) or off-the-shelf
solutions. We wholly support your adoption of them and their patterns. Throughout this
book, our examples will steer away from implementations that require plugins. However,
where there are popular solutions that include plugins, we will also point them out to you
for reference.

Technical requirements 5

Our goal in this book is to help you learn how to identify your unique application
requirements and match them with the tools at your disposal. This will help make your
applications better and make you a better developer.

In this chapter, we will begin by building the foundational understanding that's needed to
read this book. To do this, we will cover the following topics:

•	 What is Sanic?

•	 Leveling up

•	 Framework versus server

•	 Why we use Sanic—build fast, run fast

Technical requirements
This chapter will include some basic Python and Terminal usage. To follow along with
the examples, make sure that your computer is setup with at least Python version 3.7,
but Python version 3.8 or newer is recommended. You will also need to have curl, or a
similar program, installed so that you can easily make and inspect HTTP requests. If
you are unfamiliar with curl, it is a program that's executed from a Terminal session that
allows you to make HTTP requests. It should be available on most macOS and Linux
installations by default and can be installed on Windows machines.

What is Sanic?
Since you're reading this book, you're probably familiar with Python and may even know
about some of the popular tools that are used to build web applications using Python.
As for Sanic, you've either heard of it or have used it and want to improve your skills and
understanding of it. You may know that Sanic is unlike traditional tools. Built 100% from
the ground up, it's been developed with the idea of asynchronous Python in mind. From
the very beginning, Sanic set out to be fast. It is one of the critical decisions that drives
much of its development.

To truly understand the Sanic project, we'd benefit from a history lesson. Sanic was the
first legitimate attempt to bring asynchronous Python to a web framework. It started
as a proof-of-concept, as a hobby project. So, let's set the stage.

The most fundamental building block of Sanic is the asyncio module from Python's
standard library. The Sanic project was born during the early stages of the module's
release and has matured alongside the module.

6 Introduction to Sanic and Async Frameworks

Python 3.4—released in early 2014—was the first step to introduce the concept of
coroutines into the standard library in the newly added asyncio module. Using standard
Python generators, a function's execution can be halted while something else happens,
and then data can be injected back into that function to allow it to resume execution. If
there was an object that "looped" through a list of tasks that needed work, we could duck
in and out of the execution of multiple functions at the same time. This could achieve
"concurrency" in a single thread and is the basis of the idea of asyncio.

In the early days, this was mainly a toy and there was no widespread adoption of
coroutines. Of course, legitimate application needs were being solved, but the concept was
still very early in its development and not fully developed. The concept was refined over
the next several Python releases to give us the asyncio module we know today.

Here's a quick look at what asynchronous programming looked like in Python 3.4:

import asyncio

@asyncio.coroutine

def get_value():

 yield from asyncio.sleep(1)

 return 123

@asyncio.coroutine

def slow_operation():

 value = yield from get_value()

 print(">>", value)

loop = asyncio.get_event_loop()

loop.run_until_complete(slow_operation())

loop.close()

While we will not delve into how this works, it is worth mentioning that asynchronous
Python is built on the premise of generators. The idea is that a generator function can
yield back to some "loop" to allow it to duck in and out of execution.

What is Sanic? 7

Important Note
Sanic can be run with the standard library asyncio loop. However, out of the
box, it uses an alternative loop called uvloop that operates significantly faster.

The language and syntax from the new asyncio module were both extremely powerful and
a bit clunky. Generators are usually a bit mysterious and difficult for less seasoned Python
developers. What exactly is yield from? This stuff looked alien to many people; Python
needed a better syntax.

Before continuing, it is worth providing a quick side note if you are unfamiliar with
generators. Python has a special type of function that returns a generator. That generator
can be used to partially execute a function and suspend its operation by yielding a value
until it is needed again. Generators can also be bi-directional, in that data can be sent back
into them during execution. Again, the specifics of this are beyond the scope of this book
since it is not entirely pertinent, but it is helpful to know that this is what yield from
helps us achieve. Using the bidirectional functionality of generators, Python was able to
build the capability for asynchronous coroutines.

Because this implementation was complex and slightly more difficult for newcomers when
Python 3.5 was released, it included a much simpler and cleaner version:

async def get_value():

 await asyncio.sleep(1)

 return 123

async def slow_operation():

 value = await get_value()

 print(">>", value)

One of the main benefits of this style of programming is that it helps you block code due
to input and output. This is known as I/O-bound. A classical example of an I/O-bound
application is a web server. So, it was a natural fit for this new asyncio module to be built
with the idea of creating protocols for interacting with networking traffic.

At the time, however, there were no frameworks or web servers that adopted this
approach. The Python web ecosystem was built upon a premise that is fundamentally
at odds with asynchronous Python.

8 Introduction to Sanic and Async Frameworks

Important Note
The classical Python pattern for integrating an application with a Python
web server is known as the Web Server Gateway Interface (WSGI). This is
not within the scope of this book. While it is possible to shoehorn Sanic into
WSGI, it is generally frowned upon. The problem with WSGI is that the entire
premise of it is blocking. A web server receives a request, processes it, and
sends a response all within a single execution. This means that the server can
only process one request at a time. Using Sanic with a WSGI server destroys the
asynchronous ability to efficiently handle multiple requests concurrently.

Classical Django and Flask could not adopt this pattern. Looking back after 6 years, those
projects eventually did find ways to introduce async/await. However, it is not the natural
use pattern for these frameworks and came at the expense of an extraordinary effort over
many years.

As the asyncio module was being released, there was a lack of web frameworks to fill
this new use case. Even the concept that eventually came to be known as Asynchronous
Server Gateway Interface (ASGI) did not exist.

Important Note
The ASGI is the corollary to WSGI, except for asynchronous Python. It is
possible—although not required—to use it for Sanic, and we will discuss it
further in Chapter 8, Running a Sanic Server.

In the summer of 2016, Sanic was built to explore the gap. The idea was simple: could we
take an application with a simplistic-looking API from Flask and make it async/await?

Somehow, the idea took off and gained traction. It was not a project that was initially
set out with the goal of redoing how Python applications handled web requests. It very
much was a case of accidental exposure. The project exploded and created excitement
very quickly. There was a lot of appeal in making Flask adopt this new pattern; but, since
Flask was incapable of doing so itself, many people thought that Sanic could be the async
version of Flask.

Developers were excited for this new opportunity to use the latest in Python to bring a
whole new level of performance to their applications. Early benchmarks showed Sanic
running circles around Flask and Django.

Like so many projects, however, the initial burst of energy died off. The original project
was meant to answer the question, "could a Flask-like framework exist?" The answer was
a resounding yes. However, being a one-person project that had no intention of handling
the level of support and attention that it received, the project started to gather dust. Pull
requests started piling up. Issues went unanswered.

What is Sanic? 9

Through 2017 and 2018, the ecosystem for asynchronous Python was still very immature.
It lacked production-worthy platforms that would be supported, maintained, and viable
for both personal and professional web applications. Furthermore, there was still a bit of
an identity question about Sanic. Some people felt that it should be a very niche piece of
software, while others felt it could have broad applicability.

The result of the months of frustration and lack of responses from the maintainers of
the project resulted in the Sanic Task Force. This precursor to the Sanic Community
Organization (SCO) was a loose collective of developers that were interested in finding a
future for the project, which was on the verge of failing. There was a desire to stabilize the
API and answer all of the outstanding identity questions. For several months in mid-2018,
a debate brewed about how to move the project forward, and how to make sure the project
would not suffer the same fate again.

One of the most fundamental questions was whether the project should be forked. Since
no one on the Sanic Task Force had admin access to the repository or other assets—and
the only person who did was non-responsive—the only option was to fork and rebrand
the project. However, Sanic had already existed for 2 years at that time and was known
within the Python community as a viable (and fast) option for building asynchronous
web applications. Dropping the existing project name would have been a huge blow
toward ever getting the new project back up off the ground. Nonetheless, this was the only
remaining solution. On the eve of forking the project to a new GitHub repository, the
original maintainer offered up access to the repository and the SCO was born. The team
worked to reorganize the operation of the community with the following goals:

•	 Regular and predictable releases, as well as deprecations

•	 Accountability and responsibility for responding to issues and support

•	 Structure for reviewing code and making decisions

In December 2018, the SCO released its first community version of Sanic: 18.12 LTS.

With this new structure in place, the SCO turned to its next question: what is Sanic?
Ultimately, the decision was to break with any attempt at Flask parity. While it may be
said that the original project was a "Flask clone," this is no longer true. You will still hear
it being called "Flask-like," but that is a fair comparison, only because they look similar
on the surface. Their features and behaviors are fundamentally different, and the likeness
stops there. I try to steer away from this comparison because it diminishes the effort
and improvements that hundreds of contributors have made to let Sanic stand on its own.
Now that you know some of the history behind Sanic, we turn to one of the goals of this
book: making you a better developer.

10 Introduction to Sanic and Async Frameworks

Leveling up
Sanic encourages experimentation, customization, and, most of all, curiosity.

It is probably not the best tool for Python beginners since it assumes that they have
some knowledge of both Python and web development. That is not to say that the project
discourages newcomers, or people just getting into web development. Indeed, Sanic is
a wonderful place to start learning about web development for those that truly want to
understand the practice. Much of web development is learning to balance competing
decisions. Sanic development often includes learning about these decision points.

This touches upon the goal of this book: answering the question, "what is the obvious
path to building my Sanic application?" This book intends to explore different patterns
that could be used in Sanic. While we will learn about the concepts that relate to Sanic,
the principles can be abstracted and applied to building an application with any other
framework or language. It is critical to remember that there is no "right" or "wrong" way.
Online forums are filled with "what is the right way?" questions that assume that there is
standard practice. The answers to these questions point to the implication that if they are
not following a particular pattern, then their application is wrong.

For example, someone may ask the following questions:

•	 What is the right way to serve internationalized content?

•	 What is the right way to deploy my web app?

•	 What is the right way to handle long-running operations?

These "right way" questions suffer from a critical flaw: the belief that there is only a
single obvious solution. Structuring a question like this is the domain of opinionated
frameworks that do not teach developers to think on their own. Ask these same questions
on the Sanic forums, and you'll probably receive an "it depends" as your answer.
Opinionated frameworks hinder creativity and design. They ultimately drive the developer
into making choices based upon the constraints provided by the framework and not the
constraints of the application's needs.

Instead, Sanic provides a set of tools to help developers craft the solutions that work for
their use cases without mandating certain practices. This is why the built-in features of
Sanic focus on functionality and the request/response cycle, and not on implementation
details such as validation, cross-origin resource sharing (CORS), CSRF, and database
management. All of that other stuff is, of course, important, and we will explore this in
later chapters. But this book intends to look at the issues and see how you might solve
the problem. Web applications and web APIs have differing needs, so you, as a developer,
should be allowed to make the choices that are best suited (and obvious) to solving your
problems.

Leveling up 11

Revisiting the previous questions, a better way to phrase them would be as follows:

•	 How can I serve internationalized content?

•	 Which deployment strategy will work for me, considering my constraints?

•	 What are the trade-offs to consider for handling long-running operations?

By the end of this book, you will be able to spot these questions and use your creativity to
come up with appropriate solutions. You will learn about some of the powerful strategies
that Sanic has to offer. But by no means think that any given solution is the only way to do
something. Just because it is outlined here does not mean that it is the right way, or that
the tools being used only apply to one particular situation.

The right way is to use the tools that Sanic and Python provide to solve your problems.
If you were tasked with making soup, you would find that there is no single way to do
it. You could look up some recipes and try to learn some basic patterns: boil water, add
ingredients, and so on. Ultimately, to master the art of soup-making, you need to cook
within the constraints of your kitchen, equipment, ingredients, and the people you are
serving. This is what I want you to learn about web development: master your tools,
environment, and requirements to build what you need for your specific users.

While reading this book, you should both be learning and analyzing the patterns and
code. Try to generalize the concepts and think about how to use similar ideas down the
road in your code. We encourage you to read this book in its entirety or duck in and out
of chapters if they apply to you. Both are valid approaches.

Let's take a closer look at the question about internationalization to see how framing the
question differently impacts our application and our knowledge:

•	 BAD: What is the right way to serve internationalized content?

•	 GOOD: How can I serve internationalized content?

The answer to the first question would likely include a snippet of code from someone
who has had this problem in the past. The developer would copy/paste and move on, not
learning anything in the process (and therefore will be unable to generalize and apply
knowledge to similar problems in the future). At best, the solution is passably acceptable.
At worst, the solution is harmful to the overall design of the application and the developer
doesn't even know it.

12 Introduction to Sanic and Async Frameworks

Framing the question as "How can I…" leaves open the idea that there may be multiple
avenues to the same destination. The bad question style is narrow and drives our attention
to a single approach. The good style opens up the possibilities to explore different
solutions and weigh them against their merits. After asking the question, our job now is to
figure out those possible solutions, determine the potential trade-offs, and then come to a
conclusion. In this process, we can draw upon our own past experiences, examples from
other developers, and resource materials such as this book.

We may think about possible solutions involving the following:

•	 Middleware (catch the headers or path and reroute the request to a different
handler)

•	 Routing (embed the language code in the URL path and extract the language from
the route)

•	 Functional programming (use different functional handlers to generate separate
responses)

•	 Decorators (execute some logic before [or after] the actual handler is run)

But which solution should be used? We need to know about the specifics of our
application. Here are some important questions to keep in mind:

•	 Who is developing it? What is their experience level? How many developers are on
the team? What tools will they be working with? Who will be maintaining it?

•	 Who will be using the application? Will it be consumed from a frontend JavaScript
(JS) framework? A mobile app? Third-party integrations?

•	 How big will it scale? What sort of content needs to be delivered?

These questions are the domain of this book. We intend to ask these questions and
determine the reasons behind making particular design pattern decisions. Of course, we
cannot be exhaustive. Instead, we hope to inspire your journey to use as many tools and
creative solutions as you can.

Few projects can match the amount of literature that has been written about Django.
But precisely because Sanic does not require specific patterns, there is no need for such
expansive amounts of documentation. The only prerequisite is knowing Python. The
depth of API-specific knowledge that's needed to be successful with Sanic is not large.
Do you know how to instantiate objects, pass values, and access properties? Of course,
you do—it's just Python!

Framework versus server 13

Two obvious valuable Sanic-specific resources are the User Guide (https://sanic.
dev) and the API documentation (https://sanic.readthedocs.io). We will refer
to both of these heavily in this book. But equally important is any other source on the web
or in print that you have used up to this point to learn Python.

Coming back to the question of the obvious way to handle some tasks within Sanic: use
the resources and tools that exist. There is a wealth of information on StackOverflow and
the Sanic Community Forums. The Discord server is an active live discussion channel.
Make yourself known, make your voice heard.

Don't ask the right way questions. Instead, ask the how can I questions. Next, we will learn
a little bit about where Sanic falls in the web ecosystem, and its unusual place as both a
framework and server.

Framework versus server
Sanic calls itself both a web framework and a web server. What does this mean? And more
importantly, why is this important? Before we can explore this, we must understand what
these terms mean, and why they exist.

Web server
A web server is a piece of software that is designed to deliver documents and data via the
HTTP protocol. Its function is to accept an incoming HTTP request, decode the message
to understand what the request is trying to accomplish, and deliver an appropriate
response. The language of web servers is the HTTP protocol.

We will get into the specifics later, but for now, we will set up a simple Sanic server, issue
a request from curl, and look at the message:

1.	 Create a file called server.py and run it in your Terminal:

from sanic import Sanic, text, Request

app = Sanic(__name__)

@app.post("/")

async def handler(request: Request):

 message = (

 request.head + b"\n\n" + request.body

).decode("utf-8")

 print(message)

https://sanic.dev
https://sanic.dev
https://sanic.readthedocs.io

14 Introduction to Sanic and Async Frameworks

 return text("Done")

app.run(port=9999, debug=True)

2.	 Now, we will send a request to our API:

$ curl localhost:9999 -d '{"foo": "bar"}'

In our console, we should see the following HTTP request message:

POST / HTTP/1.1

Host: localhost:9999

User-Agent: curl/7.76.1

Accept: */*

Content-Length: 14

Content-Type: application/x-www-form-urlencoded

{"foo": "bar"}

What we can see here is three components:

•	 The first line contains the HTTP method, the path, and the HTTP protocol that's
being used.

•	 Next is a list of HTTP headers, one per line in key: value format.

•	 Last is the HTTP body, preceded by a blank line.

HTTP responses are very similar:

HTTP/1.1 200 OK

content-length: 4

connection: keep-alive

content-type: text/plain; charset=utf-8

Done

The three components are now as follows:

•	 The first line contains the HTTP protocol, followed by the HTTP status, and then
a status description.

Framework versus server 15

•	 Next is a list of HTTP headers, one per line in key: value format.

•	 Last is the HTTP body (if there is one), preceded by a blank line.

Though this is the language of web servers, it is very cumbersome to write all of that.
This is why tools such as web browsers and HTTP client libraries were created—to build
and parse these messages for us. Next we will explore how servers deal with this same
problem, and how web frameworks solve it.

Web framework
We could, of course, write a program in Python that receives these raw HTTP messages,
decodes them, and returns an appropriate HTTP response message. However, this would
require a lot of boilerplate, be difficult to scale, and be prone to mistakes.

Certain tools do this for us: web frameworks. The job of a web framework is to build the
HTTP message and handle the request appropriately. Many frameworks go further by
providing conveniences and utilities to make the process simpler.

There are many web frameworks in the Python ecosystem that do this work to varying
degrees. Some provide a huge number of features, while some are very sparse in terms
of what they offer. Some are very strict, while some are more open. Sanic tries to fall on
the continuum of being feature-rich, but only so far as what's required to not get in the
way of the developer.

One of the features that Sanic provides is that it is both a web framework and a web server.

If you survey the web frameworks on PyPI, you will find that most of them require a
separate web server to be installed. When it comes to deploying most Python applications,
there is a hard line between the persistent operation that runs on the machine and the
tooling that's used to develop response handlers. We will not delve too deeply into WSGI
since it doesn't apply to Sanic. However, the paradigm that there is a server that calls a
single input function, passes information about the request, and then expects a response
is important to understand. Everything that happens in-between is the framework.

Narrowing our focus to projects that support async/await style coroutine handlers,
the vast majority require you to run an ASGI server. It follows a similar pattern: an
ASGI-ready server calls into an ASGI ready framework. These two components operate
with one another using a specific protocol. There are currently three popular ASGI
servers: uvicorn, hypercorn, and daphne.

16 Introduction to Sanic and Async Frameworks

Precisely because Sanic was born during the era that predated ASGI, it needed a
server. Over time, this has become one of its greatest assets and is in large part why it
outperforms most other Python frameworks. Development of the Sanic server is
hyper-focused on performance and minimizing the request/response cycle. However,
in recent years, Sanic has also adopted an ASGI interface to allow it to be run by an
ASGI web server.

However, for the majority of this book, you can assume that when we are talking about
running Sanic, we mean using the internal web server. It is production-ready and remains
one of the best methods for deploying Sanic. Later, in Chapter 8, Running a Sanic Server,
we will discuss all of the potential choices and help you come up with the questions to ask
when you're deciding which solution is obvious for your needs. Now that you know the
what of Sanic, we turn to the why.

Why we use Sanic—build fast, run fast
Let's begin by looking at Sanic's goal:

To provide a simple way to get a highly performant HTTP server up and
running that is easy to build, expand, and, ultimately, scale.

Source: https://sanic.dev/en/guide/#goal.

Most people who are familiar with the Sanic project will tell you that its defining feature
is its performance. While this is important, it is only a single part of the core philosophies
of the Sanic project.

The Sanic tagline is: "Build fast. Run fast." This highlights the performance orientation of
the project. It also speaks to the goal that building an application in Sanic is meant to be
intuitive. Getting an application up and running should not mean learning a complex set
of APIs and having a near-constant second browser window open to the documentation.
While other tools make heavy usage of "black box" type features such as global variables,
"magic" imports, and monkey patching, Sanic generally prefers to head in the direction of
well-written, clean, and idiomatic Python (that is, Pythonic code). If you know Python,
you can build a web API with Sanic.

If performance alone is not the defining feature, then what is? The front page of the Sanic
project's website gives six reasons for us to explore:

•	 Simple and lightweight

•	 Unopinionated and flexible

•	 Performant and scalable

https://sanic.dev/en/guide/#goal

Why we use Sanic—build fast, run fast 17

•	 Production-ready

•	 Trusted by millions

•	 Community-driven

Simple and lightweight
The API is intentionally lightweight. This means that the most common properties and
methods are easily accessible and that you do not need to spend a long time memorizing
a particular call stack. Early on in the history of the project, there were discussions about
adding certain features. But often, adding features can lead to bloat. The SCO decided
that it was more important to focus on the specifics of providing a quality developer
experience than on providing "bells and whistles" features.

For example, if my application is meant to be consumed by third-party applications,
then why does it need CORS? There are so many differing needs for web applications
that it was decided that these features are better left to plugins and developers. This leads
to the next reason.

Unopinionated and flexible
Being unopinionated is a huge asset. It means that the developer decides if they want
sessions or token authentication and if they want an ORM, raw SQL queries, a NoSQL
database, a combination, or even no data store at all. That is not to say that these things
can't be achieved in other frameworks. But there are certain design decisions to take
into account. Rather than focusing on all these features, Sanic would rather provide
you with the tools to implement the features you need, and nothing more. Tooling beats
features. Borrowing from a popular proverb: Sanic does not give you the fish, it teaches
you how to fish.

Performant and scalable
This is what Sanic is well-known for. With a performance-first approach toward
development and implementations that include tools such as uvloop and ujson, Sanic
tends to outperform other asynchronous Python frameworks. We will not spend too
much time on benchmarks because I tend to feel they have limited use when it comes to
comparing frameworks. Something more important regarding performance is the ability
to build fast and scale fast. Sanic makes it simple to run multiple server instances from
a single deployment. Chapter 8, Running a Sanic Server, will talk more about scaling. It's
also important to note that Sanic is very well suited to building monolithic applications,
microservices, and everything in-between because of the intentional flexibility of the API.

18 Introduction to Sanic and Async Frameworks

Production-ready
It is common for frameworks to ship with a development server. These development
servers make the process of building simpler by including features such as auto-reload
while you are working on a project. However, these servers don't tend to be ready for
production environments. Sanic's web server is intentionally built to be the primary
strategy for deployment in production systems. This leads to the next reason.

Trusted by millions
Sanic is installed in and powers many applications, both large and small. It is used in
corporate-built web applications and personal web projects. It tends to be one of the
most downloaded frameworks from PyPI. Between April 2019 and April 2020, there
were 48 million downloads of Django. Sanic, in that same period, had about 44 million
downloads. It is a project with high visibility and widespread adoption in a variety of
use cases.

Community-driven
Since its move from an individual repository to a community organization in 2018,
decision-making has become shared across the members of the community in what
they call "lazy consensus." Here's what the SCO's website says:

In general, so long as nobody explicitly opposes a proposal or patch, it is
recognized as having the support of the community. This is called lazy

consensus; that is, those who have not stated their opinion explicitly have
implicitly agreed to the implementation of the proposal.

Source: https://sanic.dev/en/org/scope.html#lazy-consensus

Another important factor of the community is the ability of all members (whether a
regular contributor or a first-time user) to enter the conversation and input valuable
information into the conversation. As much as possible, Sanic attempts to be "of the
community, by the community" to ensure its stability, feature set, and future.

The insistence on a community-first organization is meant to create a level of stability.
All the work on the project is done by volunteers. It is a labor of love. With that said,
projects driven by passion alone are at risk of becoming unmaintained if it rests upon the
shoulders of a single person. This is exactly the scenario Sanic was trying to escape when
the SCO was created. Being a project "of the community" means that multiple people are
willing and capable to help carry the torch forward. Sanic achieves this with a rotating set
of developers and balances long-term stability with staggered terms.

https://sanic.dev/en/org/scope.html#lazy-consensus

Why we use Sanic—build fast, run fast 19

More on the SCO
If you want to learn more about the structure of the SCO and how you can get
involved, check out the Sanic Community Organization Policy E-manual
(SCOPE): https://sanic.dev/en/org/scope.html#lazy-
consensus.

What drives code decisions?
Although not exactly formalized, there is an underlying set of principles that the architects
and engineers of Sanic use when making coding decisions. Keeping in mind that this
project is built by the hands of many people, from many backgrounds and experience
levels, it is no surprise to learn that maintaining a set of consistent coding practices is
itself a challenge.

I am not specifically talking about things such as formatting—tools such as black, isort,
flake8, and mypy have abstracted that away. Rather, what should the code look like, how
should it be organized, and what patterns should be followed?

The principles behind developing Sanic's code base are as follows:

•	 Performance

•	 Usability (unopinionated)

•	 Simplicity

Any line of code that is going to run during the execution of the request/response cycle
will be highly scrutinized for its performance impacts. When faced with a question that
puts two or more of these core philosophies in opposition, the performance consideration
will almost always win. However, there are times when a slower alternative must be used.
This will help not force developers into an awkward development pattern or add an undue
level of complexity for developers. Part of the "speed" of Sanic is not just application
performance, but also development performance.

When using Sanic, we can feel confident that there is a team of developers scrutinizing
every line of code and its impact on performance, usability, and simplicity.

Let's imagine you are being asked to build an API by a project manager, who has a
deadline in mind. To meet that goal, you want to get up and running as quickly as
possible. However, you also want to make sure that you will have the freedom to iterate on
the problems that face you without fear of being boxed into making bad decisions. One of
the goals of this book is to help you identify useful patterns to adapt to help you get there.

https://sanic.dev/en/org/scope.html#lazy-consensus
https://sanic.dev/en/org/scope.html#lazy-consensus

20 Introduction to Sanic and Async Frameworks

Summary
It is helpful to understand the history and decisions behind Sanic to understand its
feature set and implementation. Often, Sanic will be seen as an attempt to bring
async/await style programming to a Flask app. While this may be a fair point of the
original proof-of-concept, Sanic has developed upon a very divergent path, with the
goal and impact of becoming a powerful tool designed for performance applications.

Due to this, Sanic is typically used by developers and teams that are looking to build
a rich environment that addresses the unique—and obvious—design patterns that are
required by their application's needs. The project intends to take away the difficult or
cumbersome parts of building a web server and provide the tools to create performant
and scalable web applications.

Now that we have learned about the background of Sanic, we should understand and
appreciate the flexibility of using Sanic as a web framework. It is helpful to know the
context in which Sanic was developed so that we can learn how to use it in our projects.
The next step—beginning with Chapter 2, Organizing a Project—is to start learning about
some of the foundational decisions we should make we're when starting any new web
development project.

2
Organizing a Project

It is Day 0. You have a project in hand. You are fired up and ready to build a new web
application. Ideas are swirling in your head, and your fingers are itching to start punching
the keyboard. Time to sit down and start coding!

Or is it? It is tempting to start building an application as soon as the ideas about what we
want to build begin to formulate in our heads. Before doing that, we should think about
setting ourselves up for success. Having a solid foundation for the building will make the
process much easier, reduce bugs, and result in a cleaner application.

The three foundations for beginning any Python web application project are as follows:

•	 Your IDE/coding editor

•	 An environment for running your development application

•	 A project application structure

These three elements take into account a lot of personal tastes. There are so many good
tools and approaches. There is no way a single book could cover them all. If you are a
more seasoned developer and already have a set of preferences, great, run with that and
skip ahead to the next chapter.

22 Organizing a Project

In this chapter, we will explore a couple of modern options to get you up and running.
The focus will be on foundation #2 (the environment) and foundation #3 (the application
structure). We skip #1 and assume you are using a modern IDE of your own choosing.
Popular choices in the Python world include VS Code, PyCharm, and Sublime Text. If you
are not using one of these or something similar, go look them up and find one that works
for you.

After we have set up our environment, we will explore some patterns to be
implemented in Sanic that will help define your application architecture. This is
not a software architecture book. I highly recommend you learn about approaches
such as "Domain-Driven Design" and "Clean Architecture." This book is focused
much more on the practical aspects and decisions of building a web application in Sanic,
so feel free to adjust the patterns as you feel necessary.

In this chapter, we'll go through the following topics:

•	 Setting up an environment and directory

•	 Using blueprints effectively

•	 Wiring it all up

•	 Running our application

Technical requirements
Before we begin, we will assume that you have the following already set up on your
computer:

•	 A modern Python installation (Python 3.8 or newer)

•	 A terminal (and basic knowledge of how to execute programs)

•	 An IDE (as discussed above)

Setting up an environment and directory
The first few steps that you take when starting any project have a monumental impact
on the entirety of the project. Whether you are embarking on a multi-year project—or
one that will be complete in a couple of hours—these early decisions will shape how you
and others work on the project. But, even though these are important choices, do not
fall into the trap of thinking that you need to find the perfect solution. There is no single
"right way" to set up an environment or project directory. Remember our discussion from
the previous chapter: we want to make the choices that fit the project at hand.

Setting up an environment and directory 23

Environment
A good practice for Python development is to isolate its running environment from
other projects. This is typically accomplished with virtual environments. In its most
basic understanding, a virtual environment is a tool that allows you to install Python
dependencies in isolation. This is important so that when we begin to develop our
application, we have control of the requirements and dependencies in use. In its absence,
we might mistakenly run our application and have requirements from other projects bleed
into the application, thereby causing bugs and unintended behaviors.

The use of a virtual environment is so foundational in the Python development world
that it has become the expected "norm" when creating a Python script or application.
The first step you should always take when starting a new project is making a new virtual
environment for it. The alternative to them is to run your application with your operating
system's installation of Python. Do not do this. It may be fine for a while, but eventually,
you will come across conflicting requirements, naming collisions, or other difficulties that
all stem from a lack of isolation. The first step to becoming a better Python developer is to
use virtual environments, if you are not doing so already.

It is also extremely helpful to acquaint yourself with the different tools that IDEs provide
in hooking up to your virtual environment. These tools will often include things such as
code completion and guide you as you start using features of your dependencies.

We do eventually want to run our application using containers. Being able to run our
application inside a Docker container will greatly reduce the complexity associated with
deploying our application down the road. This will be discussed further in Chapter 9, Best
Practices to Improve Your Web Applications. However, I also believe that our application
should be runnable (and therefore testable) from multiple environments. Even if we
intend to use Docker down the road, we first need our application running locally without
it. Debugging becomes much easier when our application does not rely upon an overly
complex set of requirements just to run. Therefore, let's spend some time thinking about
how to set up a virtual environment.

Many great tutorials and resources are available regarding how to use virtual
environments. There are also many tools out there that are created to help manage the
process. While I am a fan of the simple, tried and tested method of virtualenv, plus
virtuanenvwrapper, many people are fans of pipenv, or poetry. These latter tools
are meant to be a more "complete" encapsulation of your running environment. If they
work for you, great. You are encouraged to spend some time to see what strikes a chord
and resonates with your development pattern and needs.

24 Organizing a Project

We will leave virtual environments aside for now and briefly explore the usage of a
relatively new pattern in Python. In Python 3.8, Python adopted a new pattern in
PEP 582 that formalizes the inclusion of requirements in an isolated environment in
a special __pypackages__ directory that lives inside the project. While the concept
is similar to virtual environments, it works a little differently.

In order to implement __pypackages__, we are making it mandatory for our fictitious
development team to use pdm. This is a relatively new tool that makes it super simple to
adhere to some of the latest practices in modern Python development. If this approach
interests you, take some time to read PEP 582 (https://www.python.org/dev/
peps/pep-0582/) and look at pdm (https://pdm.fming.dev/).

You can get started by installing it with pip:

$ pip install --user pdm

Refer to the installation instructions on their website for more details: https://pdm.
fming.dev/#installation. Pay particular attention to useful features such as shell
completion and IDE integrations.

Now, let's proceed with setting up:

1.	 To get started, we create a new directory for our application and, from that
directory, run the following and follow the prompts to set up a basic structure:

$ mkdir booktracker

$ cd booktracker

$ pdm init

2.	 Now we will install Sanic:

$ pdm add sanic

3.	 We now have access to Sanic. Just to confirm in our heads that we are indeed in
an isolated environment, let's quickly jump into the Python REPL and check the
location of Sanic using sanic.__file__:

$ python

>>> import sanic

>>> sanic.__file__

'/path/to/booktracker/__pypackages__/3.9/lib/sanic/__
init__.py'

https://www.python.org/dev/peps/pep-0582/
https://www.python.org/dev/peps/pep-0582/
https://pdm.fming.dev/
https://pdm.fming.dev/#installation
https://pdm.fming.dev/#installation

Setting up an environment and directory 25

Sanic CLI
As discussed in Chapter 8, Running a Sanic Server, many considerations go into how to
deploy and run Sanic. Unless we are specifically looking into one of these alternatives, you
can assume in this book that we are running Sanic using the Sanic CLI. This will stand up
our application using the integrated Sanic web server.

First, we will check to see what version we are running:

$ sanic -v

Sanic 21.3.4

And then we will check to see what options we can use with the CLI:

$ sanic -h

usage: sanic [-h] [-H HOST] [-p PORT] [-u UNIX] [--cert
CERT] [--key KEY] [-w WORKERS] [--debug] [--access-logs |
--no-access-logs] [-v] module

 Sanic

 Build Fast. Run Fast.

positional arguments:

 module path to your Sanic app. Example: path.
to.server:app

optional arguments:

 -h, --help show this help message and exit

 -H HOST, --host HOST host address [default 127.0.0.1]

 -p PORT, --port PORT port to serve on [default 8000]

 -u UNIX, --unix UNIX location of unix socket

 --cert CERT location of certificate for SSL

 --key KEY location of keyfile for SSL.

 -w WORKERS, --workers WORKERS

 number of worker processes [default 1]

 --debug

 --access-logs display access logs

 --no-access-logs no display access logs

 -v, --version show program's version number and exit

26 Organizing a Project

Our standard form for running our applications right now will be as follows:

$ sanic src.server:app -p 7777 --debug --workers=2

What thought went into the decision behind using this command? Let's take a look.

Why src.server:app?
First, we are going to run this from the ./booktracker directory. All of our code will
be nested in an src directory.

Second, it is somewhat standard practice that our application creates a single Sanic()
instance and assigns it to a variable called app:

app = Sanic("BookTracker")

If we were to place that in a file called app.py, then our module and variable would start
to get confused:

from app import app

The preceding import statement is, well, ugly. It is beneficial to avoid naming conflicts
between modules and the contents of that module as much as possible.

A bad example of this exists in the standard library. Have you ever done this one by
accident?

>>> import datetime

>>> datetime(2021, 1, 1)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'module' object is not callable

Oops, we should have used from datetime import datetime. We want to
minimize the replication of module names and properties, and to make our imports easy
to remember and intuitive to look at.

Therefore, we will place our global app variable in a file called server.py. Sanic will
look for our app instance when you pass in the <module>:<variable> form.

Setting up an environment and directory 27

Why -p 7777?
We, of course, could choose any arbitrary port here. Many web servers will use port 8000
and that is the Sanic default if we just left it out completely. However, precisely because it
is standard, we want to choose something else. Often, it is beneficial to choose a port that
is less likely to collide with other ports that might be running on your machine. The more
we can preserve common ports, the less likely we will run into collisions.

Why --debug?
While developing, having DEBUG mode enabled provides a more verbose output from
Sanic, and an auto-reloading server. It can be helpful to see more logs, but make sure you
turn this off in production.

The auto-reloading feature is particularly beneficial because you can start writing your app
in one window, and have it running in a separate terminal session. Then, every time that
you make a change and save the application, Sanic will restart the server, and your new
code is immediately available for testing.

If you want auto-reloading but not all the extra verbosity, consider using --auto-
reload instead.

Why --workers=2?
It is not an uncommon problem where someone begins to build an application and then
realizes down the road that they have made a mistake by not preparing for horizontal
scaling. Perhaps they added a global state that cannot be accessed outside of a single
process:

sessions = set()

@app.route("/login")

async def login(request):

 new_session = await create_session(request)

 sessions.add(new_session)

Oops, now that person needs to go back and re-engineer the solution if they want to scale
up the application. This could be a costly endeavor. Luckily, we are smarter than that.

28 Organizing a Project

By forcing our development pattern to include multiple workers from the beginning,
it will help remind us as we are solving problems that our application must account for
scaling. Even if our ultimate deployment does not use multiple Sanic workers per instance
(and instead, for example, uses multiple Kubernetes pods with single worker instances; see
Chapter 9, Best Practices to Improve Your Web Applications), this constant safeguard is a
helpful way to keep the ultimate goal integral to the design process.

Directory structure
There are many different patterns you can follow for organizing a web application. Perhaps
the simplest would be the single server.py file, where all of your logic exists together.
For obvious reasons, this is not a practical solution for larger, real-world projects. So we
will ignore that one.

What types of solutions are there? Perhaps we could use the "apps" structure that Django
prefers, where discrete portions of our application are grouped into a single module. Or,
perhaps you prefer to group by type, for example, by keeping all of your view controllers
together. We make no judgments here about what is better for your needs, but we need to
understand some consequences of our decisions.

When making a decision, you might want to learn some common practices. This might be
a good opportunity to go and look up some of the following patterns:

•	 Model View Controller (MVC)

•	 Model View ViewModel (MVVM)

•	 Domain-Driven Design (DDD)

•	 Clean Architecture (CA)

Just to give you a flavor of the differences (or at least my interpretation of them), you
might structure your project in one of the following ways:

You might use MVC:

./booktracker

├── controllers

│ ├── book.py

│ └── author.py

├── models

│ ├── book.py

│ └── author.py

├── views

Setting up an environment and directory 29

│ ├── static

│ └── templates

└── services

Or you might use DDD:

./booktracker

└── domains

 ├── author

 │ ├── view.py

 │ └── model.py

 ├── book

 │ ├── view.py

 │ └── model.py

 └── universal

 └── middleware.py

In this book, we are going to adopt something that approximates to a hybrid approach.
There is a time and place for applying these theoretical constructs. I urge you to learn
them. The information is useful. But we are here to learn how to practically go about
building an application with Sanic.

Here's the modified structure:

./booktracker

├── blueprints

│ ├── author

│ │ ├── view.py

│ │ └── model.py

│ └── book

│ ├── view.py

│ └── model.py

├── middleware

│ └── thing.py

├── common

│ ├── utilities

│ └── base

└── server.py

30 Organizing a Project

Let's break down each of these to see what they might look like and understand the
thought process behind this application design.

./blueprints
This might strike you as odd since ultimately, this directory looks like it contains
more than just blueprints. And, you would be right. Looking at the tree, you see that
"blueprints" include both view.py and model.py. The goal of this directory is to
separate your application into logical components, or domains. It functions much the
same way as an apps directory might in a Django application. If you can isolate some
construct or portion of your application as being a distinct entity, it should probably have
a subfolder here.

A single module in this directory might contain models for validating incoming requests,
utilities for fetching data from a database, and blueprints with attached route handlers.
This keeps related code close together.

But why call it blueprints? Each subdirectory will contain much more than a single
Blueprint object. The point is to reinforce the idea that everything in this directory
resolves around one of these discrete components. The standard method for organization
a so-called component in Sanic is the Blueprint method (which we will learn more
about in the next section). Therefore, each subdirectory will have one, and only one,
Blueprint object.

Another important rule is as follows: nothing inside the ./bluprints directory will
reference our Sanic application. This means that both Sanic.get_app() and from
server import app are forbidden inside this directory.

It is generally helpful to think of a blueprint as corresponding to a portion of your API
design pattern:

•	 example.com/auth -> ./blueprints/auth

•	 example.com/cake -> ./blueprints/cake

•	 example.com/pie -> ./blueprints/pie

•	 example.com/user -> ./blueprints/user

./middleware
This directory should contain any middleware that is meant to be global in scope:

@app.on_request

async def extract_user(request):

Using blueprints effectively 31

 user = await get_user_from_request(request)

 request.ctx.user = user

As discussed later in this chapter and in Chapter 6, Operating Outside the Response
Handler, as well as in the Sanic user guide (https://sanic.dev/en/guide/
best-practices/blueprints.html#middleware), middleware can be global
or attached to blueprints. If you need to apply middleware to specific routes, perhaps
blueprint-based middleware makes sense. In this case, you should nest them in the
appropriate ./blueprints directory and not here.

./common
This module is meant to be a place for storing class definitions and functions that will be
used to build your application. It is for everything that will span your blueprints and be
pervasive within your application.

Tip
Try to expand upon the directory structure here to meet your needs.
However, try not to add too many top-level directories. If you start cluttering
up your folders, think about how you might be able to nest directories inside
one another. Usually, you will find that this leads to a cleaner architecture.
There is also such a thing as going too far with nesting. For example, if you
need to navigate ten levels deep in your application code, perhaps you should
dial it back.

It's still Day 0. You still have a lot of great ideas in your head about what you want to build.
And thanks to some thoughtful pre-planning, we now have an effective setup for building
application locally. At this point, we should know how the application will run locally, and
generally how the project will be organized. What we will learn next is the transition step
from application structure to business logic.

Using blueprints effectively
If you already know what a blueprint is, imagine for a moment that you do not. As we
are building out our application and trying to structure our code base in a logical and
maintainable pattern, we realize that we need to constantly pass around our app object:

from some.location import app

@app.route("/my/stuff")

async def stuff_handler(...):

https://sanic.dev/en/guide/best-practices/blueprints.html#middleware
https://sanic.dev/en/guide/best-practices/blueprints.html#middleware

32 Organizing a Project

 ...

@app.route("/my/profile")

async def profile_handler(...):

 ...

This can become very tedious if we need to make changes to our endpoints. You can
imagine a scenario where we would need to update a bunch of separate files to duplicate
the same change over and over again.

Perhaps more frustratingly, we might end up in a scenario where we have circular imports:

server.py

from user import *

app = Sanic(...)

user.py

from server import app

@app.route("/user")

...

Blueprints solve both of these problems and allow us to abstract away some content so
that the component can stand on its own. Returning to the preceding example, we take
the common part of the endpoints (/my) and add it to the Blueprint definition:

from sanic import Blueprint

bp = Blueprint("MyInfo", url_prefix="/my")

@bp.route("/stuff")

async def stuff_handler(...):

 ...

@bp.route("/profile")

async def profile_handler(...):

 ...

Using blueprints effectively 33

In this example, we were able to group these routes together into a single blueprint.
Importantly, this allows us to pull common parts of the URL path (/my) to the
Blueprint, which gives us the flexibility to make changes in the future.

No matter how you decide to organize your file structure, you probably should always use
blueprints. They make organization easier, and can even be nested. Personally, I will only
ever use @app.route in the most simple of web applications. For any real projects, I
always attach routes to blueprints.

Blueprint registration
Just creating our blueprints is not enough. Python would have no way to know they
exist. We need to import our blueprints and attach them to our application. This is done
through a simple registration method: app.blueprint():

server.py

from user import bp as user_bp

app = Sanic(...)

app.blueprint(user_bp)

A common "gotcha" is misunderstanding what blueprint is doing. Something like this
will not work as expected:

from sanic import Sanic, Blueprint

app = Sanic("MyApp")

bp = Blueprint("MyBrokenBp")

app.blueprint(bp)

@bp.route("/oops")

At the instant that we register a blueprint, everything that was attached to it will
reattach to the application. This means that anything added to the blueprint after
the call to app.blueprint() will not be applied. In the preceding example, /oops
will not exist on the application. Therefore, you should try and register your blueprints
as late as possible.

34 Organizing a Project

Tip
I think it is super convenient to always name blueprint variables bp. When
I open a file, I automatically know what bp means. Some people may find it
helpful to give their variable a more meaningful name: user_bp or auth_
bp. For me, I would rather keep them consistent in the files I am always
looking at, and just rename them at import: from user import bp as
user_bp.

Blueprint versioning
A very powerful and common construct in API design is versioning. Let's imagine
that we are developing our book API that will be consumed by customers. They have
already created their integrations, and perhaps they have been using the API for some
time already.

You have some new business requirements, or new features you want to support. The only
way to accomplish that is to change how a particular endpoint works. However, this will
break backward compatibility for users. This is a dilemma.

API designers often solve this problem by versioning their routes. Sanic makes this easy by
adding a keyword argument to a route definition, or (perhaps more usefully) a blueprint.

You can learn more about versioning in the user guide (https://sanic.dev/en/
guide/advanced/versioning.html) and we will discuss it in more depth in
Chapter 3, Routing and Intaking HTTP Requests. For now, we will have to be content with
knowing that our original API design needs a modification, and we will see how we can
achieve that in the next section.

Grouping blueprints
As you begin to develop your applications, you might start to see similarities between
blueprints. Just like we saw that we could pull common parts of routes out to Blueprint,
we can pull common parts of Blueprint out into BlueprintGroup. This serves the
same purpose:

from myinfo import bp as myinfo_bp

from somethingelse import bp as somethingelse_bp

from sanic import Blueprint

bp = Blueprint.group(myinfo_bp, somethingelse_bp, url_prefix="/
api")

https://sanic.dev/en/guide/advanced/versioning.html
https://sanic.dev/en/guide/advanced/versioning.html

Using blueprints effectively 35

We have now added /api to the beginning of every route path defined inside myinfo
and somethingelse.

By grouping blueprints, we are condensing our logic and becoming less repetitive. In
the above example, by adding a prefix to the whole group, we no longer need to manage
individual endpoints or even blueprints. We really need to keep the nesting possibilities in
mind as we design the layout of our endpoints and our project structure.

In the last section, we mentioned using versions to provide an easy path to flexibly
upgrade our API. Let's go back to our book tracking application and see what this might
look like. If you recall, our application looked like this:

./booktracker

└── blueprints

 ├── author

 │ └── view.py

 └── book

 └── view.py

And we also have the view.py files:

./blueprints/book/view.py

bp = Blueprint("book", url_prefix="/book")

./blueprints/author/view.py

bp = Blueprint("author", url_prefix="/author")

Let's imagine the scenario where this API is already deployed and in use by customers
when our new business requirements come in for a /v2/books route.

We add it to our existing architecture, and immediately it is starting to look ugly and
messy:

└── blueprints

 ├── author

 │ └── view.py

 ├── book

 │ └── view.py

 └── book_v2

 └── view.py

36 Organizing a Project

Let's refactor this. We will not change ./blueprints/author or ./blueprints/
book, just nest them a little deeper. That part of the application is already built and we do
not want to touch it. However, now that we have learned from our mistake, we want to
revise our strategy for /v2 endpoints to look like this:

└── blueprints

 ├── v1

 │ ├── author

 │ │ └── view.py

 │ ├── book

 │ │ └── view.py

 │ └── group.py

 └── v2

 ├── book

 │ └── view.py

 └── group.py

We just created a new file, group.py:

./blueprints/v2/group.py

from .book.view import bp as book_bp

from sanic import Blueprint

group = Blueprint.group(book_bp, version=2)

Grouping blueprints is a powerful concept when building complex APIs. It allows
us to nest blueprints as deep as we need to while providing us with both routing and
organizational control. In this example, notice how we were able to assign version=2
to the group. This means now that every route attached to a blueprint in this group will
have a /v2 path prefix.

Wiring it all up
As we have learned, creating a pragmatic directory structure leads to predictable and
easy-to-navigate source code. Because it is predictable to us as developers, it is also
predictable for computers to run. Perhaps we can use this to our advantage.

Wiring it all up 37

Earlier, we discussed one of the problems we often encounter when trying to expand
our application from the single file structure: circular imports. We can solve this well
with our blueprints, but it still leaves us wondering about what to do with things that we
might want to attach at the application level (such as middleware, listeners, and signals).
Let's take a look at those use cases now.

Controlled imports
It is generally preferred to break code up into modules using nested directories and files
that help us both logically think about our code, but also navigate to it. This does not
come without a cost. What happens when two modules are interdependent? This will
cause a circular import exception, and our Python application will crash. We need to not
only think about how to logically organize our code but also how different parts of the
code can be imported and used in other locations.

Consider the following example. First, create a file called ./server.py like this:

app = Sanic(__file__)

Second, create a second file called ./services/db.py:

app = Sanic.get_app()

@app.before_server_start

async def setup_db_pool(app, _):

 ...

This example illustrates the problem. When we run our application, we need
Sanic(__file__) to run before Sanic.get_app(). But, we need to import
.services.db so that it can attach to our application. Which file evaluates first?
Since the Python interpreter will run instructions sequentially, we need to make sure
that we instantiate the Sanic() object before importing the db module.

This will work:

app = Sanic(__file__)

from .services.db import *

38 Organizing a Project

However, it sort of looks ugly and non-Pythonic. Indeed, if you run tools such as
flake8, you will start to notice that your environment does not really like this pattern
so much either. It breaks the normal practice of placing imports at the top of the file.
Learn more about this anti-pattern here: https://www.flake8rules.com/rules/
E402.html.

You may decide that you do not care, and that is perfectly okay. Remember, we are in this
to find the solution that works for your application. Before we make a decision, however,
let's look at some other alternatives.

We could have a single startup file that will be a controlled set of import ordering:

./startup.py

from .server import app

from .services.db import *

Now, instead of running sanic server:app, we want to point our server to the new
startup.py file:

sanic startup:app

Let's keep looking for an alternative.

Tip
The Sanic.get_app() construct is a very useful pattern for gaining
access to your app instance without having to pass it around by import. This
is a very helpful step in the right direction, and you can learn more about it in
the user guide: https://sanic.dev/en/guide/basics/app.
html#app-registry.

Factory pattern
We are going to move our application creation into a factory pattern. You may be
familiar with this if you come from Flask as many examples and tutorials use a similar
construct. The main reason for doing this here is that we want to set up our application
for good development practices in the future. It will also ultimately solve the circular
import problem. Later on down the line in Chapter 9, Best Practices to Improve Your
Web Applications, we will talk about testing. In the absence of a nice factory, testing will
become much more difficult.

https://www.flake8rules.com/rules/E402.html
https://www.flake8rules.com/rules/E402.html
https://sanic.dev/en/guide/basics/app.html#app-registry
https://sanic.dev/en/guide/basics/app.html#app-registry

Wiring it all up 39

We need to create a new file, ./utilities/app_factory.py, and redo our
./server.py file:

./utilities/app_factory.py

from typing import Optional, Sequence

from sanic import Sanic

from importlib import import_module

DEFAULT_BLUEPRINTS = [

 "src.blueprints.v1.book.view",

 "src.blueprints.v1.author.view",

 "src.blueprints.v2.group",

]

def create_app(

 init_blueprints: Optional[Sequence[str]] = None,

) -> Sanic:

 app = Sanic("BookTracker")

 if not init_blueprints:

 init_blueprints = DEFAULT_BLUEPRINTS

 for module_name in init_blueprints:

 module = import_module(module_name)

 app.blueprint(getattr(module, "bp"))

 return app

from .utilities.app_factory import create_app

app = create_app()

40 Organizing a Project

As you can see, our new factory will create the app instance, and attach some blueprints
to it. We specifically are allowing for the factory to override the blueprints that it will use.
Perhaps this is unnecessary and we could instead hardcode them all the time. However, I
like the flexibility that this provides us, and find it helpful later on down the road when I
want to start testing my application.

One problem that might jump out at you is that it requires our modules to have a global
bp variable. While I mentioned that this is standard practice for me, it might not work in
all scenarios.

Autodiscovery
The Sanic user guide gives us another idea in the How to… section. See https://
sanic.dev/en/guide/how-to/autodiscovery.html. It suggests that we
create an autodiscover utility that will handle some of the importing for us, and
also have the benefit of automatically attaching blueprints. Remember how I said I like
predictable folder structures? We are about to take advantage of this pattern.

Let's create ./utilities/autodiscovery.py:

./utilities/autodiscovery.py

from importlib import import_module

from inspect import getmembers

from types import ModuleType

from typing import Union

from sanic.blueprints import Blueprint

def autodiscover(app, *module_names: Union[str, ModuleType]) ->
None:

 mod = app.__module__

 blueprints = set()

 def _find_bps(module: ModuleType) -> None:

 nonlocal blueprints

 for _, member in getmembers(module):

 if isinstance(member, Blueprint):

 blueprints.add(member)

https://sanic.dev/en/guide/how-to/autodiscovery.html
https://sanic.dev/en/guide/how-to/autodiscovery.html

Wiring it all up 41

 for module in module_names:

 if isinstance(module, str):

 module = import_module(module, mod)

 _find_bps(module)

 for bp in blueprints:

 app.blueprint(bp)

This file closely matches what the user guide suggests (https://sanic.dev/en/
guide/how-to/autodiscovery.html#utility.py). Noticeably absent from
the code presented there is the idea of recursion. If you look up the function in the user
guide, you will see that it includes the ability to recursively search through our source
code looking for Blueprint instances. While convenient, in the application that we
are building, we want the express control provided by having to declare every blueprint's
location. Quoting Tim Peters, The Zen of Python, again:

Explicit is better than implicit.
What the autodiscover tool does is allow us to pass locations to modules and hands the
task of importing them over to the application. After loading the module, it will inspect
any blueprints. The last thing it will handle is automatically registering the discovered
blueprints to our application instance.

Now, our server.py file looks like this:

from typing import Optional, Sequence

from sanic import Sanic

from .autodiscovery import autodiscover

DEFAULT_BLUEPRINTS = [

 "src.blueprints.v1.book.view",

 "src.blueprints.v1.author.view",

 "src.blueprints.v2.group",

]

def create_app(

 init_blueprints: Optional[Sequence[str]] = None,

https://sanic.dev/en/guide/how-to/autodiscovery.html#utility.py
https://sanic.dev/en/guide/how-to/autodiscovery.html#utility.py

42 Organizing a Project

) -> Sanic:

 app = Sanic("BookTracker")

 if not init_blueprints:

 init_blueprints = DEFAULT_BLUEPRINTS

 autodiscover(app, *init_blueprints)

 return app

Tip
In this example, we are using the import paths as strings. We could just as easily
import the modules here and pass those objects since the autodiscover
utility works with both module objects and strings. We prefer strings though
since it will keep the annoying circular import exceptions away.

Another thing to keep in mind is that this autodiscover tool could be used for a module
containing middleware or listeners. The given example is still fairly simplistic, and will not
cover all use cases. How, for example, should we handle deeply nested blueprint groups?
This is a great opportunity for you to experiment, and I highly encourage you to spend
some time playing with the application structure and the autodiscover tool to figure out
what works best for you.

Running our application
Now that we have laid our application foundations, we are almost ready to run our server.
We are going to make one small change to server.py to include a small little utility to
run at startup to show us what routes are registered:

from .utilities.app_factory import create_app

from sanic.log import logger

app = create_app()

@app.main_process_start

def display_routes(app, _):

Running our application 43

 logger.info("Registered routes:")

 for route in app.router.routes:

 logger.info(f"> /{route.path}")

You can head over to the GitHub repository, https://github.com/
PacktPublishing/Python-Web-Development-with-Sanic/tree/main/
Chapter02, to see the full source code.

We can now start our application for the first time. Remember, this is going to be our
pattern:

$ sanic src.server:app -p 7777 --debug --workers=2

We should see something like this:

[2021-05-30 11:34:54 +0300] [36571] [INFO] Goin' Fast @
http://127.0.0.1:7777

[2021-05-30 11:34:54 +0300] [36571] [INFO] Registered routes:

[2021-05-30 11:34:54 +0300] [36571] [INFO] > /v2/book

[2021-05-30 11:34:54 +0300] [36571] [INFO] > /book

[2021-05-30 11:34:54 +0300] [36571] [INFO] > /author

[2021-05-30 11:34:54 +0300] [36572] [INFO] Starting worker
[36572]

[2021-05-30 11:34:54 +0300] [36573] [INFO] Starting worker
[36573]

Hooray!

And now, for the tempting part. What does our code actually do? Head over to your
favorite web browser and open http://127.0.0.1:7777/book. It might not be
much to look at yet, but you should see some JSON data. Next, try going to /author
and /v2/book. You should now see the content that we created above. Feel free to play
around with these routes by adding to them. Every time you do, you should see your
changes reflected in the web browser.

Our journey into web application development has officially begun.

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter02
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter02
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter02

44 Organizing a Project

Summary
We have looked at the important impact of some of the early decisions we make about
setting up our environment and project organization. We can—and should—constantly
adapt our environment and application to meet changing needs. We used pdm to leverage
some of the newest tools to run our server in a well-defined and isolated environment.

In our example, we then started to build our application. Perhaps we were too hasty when
we added our /book route because we quickly realized that we needed the endpoint to
perform differently. Rather than breaking the application for existing users, we simply
created a new group of blueprints that will be the beginning of /v2 of our API. By nesting
and grouping blueprints, we are setting the application up for future flexibility and
development maintainability. Going forward, let's stick to this pattern as much as possible.

We also examined a few alternative approaches for organizing our application logic. These
early decisions will impact the import ordering and shape the look of the application. We
decided to adopt a factory method that will help us in the future when we start to test the
application.

With the basic application structure decided, in the next chapter, we will begin to explore
the most important aspect of a web server and framework: handling the request/response
cycle. We know that we will use blueprints, but it is time to dive in and look more closely
at what we can do with Sanic routing and handlers. In this chapter, there was a taste of it
with API versioning. In the next chapter, we will also look at routing more generally and
try to understand some strategies for designing application logic within a web API.

Part 2:
Hands-On Sanic

This Part conducts a close inspection of the issues at play when building a web application
and lays out potential approaches to take to solve the problems you may face. The goal
is to not just identify issues and provide solutions but provide insight to help you make
your own solutions. We will get our hands dirty learning how to use the tools that Sanic
provides to meet your specific needs.

This Part contains the following chapters:

•	 Chapter 3, Routing and Intaking HTTP Requests

•	 Chapter 4, Ingesting HTTP Data

•	 Chapter 5, Building Response Handlers

•	 Chapter 6, Operating Outside the Response Handler

•	 Chapter 7, Dealing with Security Concerns

•	 Chapter 8, Running a Sanic Server

3
Routing and

Intaking HTTP
Requests

Back in Chapter 1, Introduction to Sanic and Async Frameworks, we looked at a raw HTTP
request to see what kind of information it includes. In this chapter, we are going to take
a closer look at the first line, which contains the HTTP method and the URI path. As we
learned, the most basic function of a web framework is to translate a raw HTTP request
into an actionable handler. Before we see how we can implement this, it is good to keep in
mind what raw requests look like:

POST /path/to/endpoint HTTP/1.1

Host: localhost:7777

User-Agent: curl/7.76.1

Accept: */*

Content-Length: 14

Content-Type: application/json

{"foo": "bar"}

48 Routing and Intaking HTTP Requests

Looking at the request, we see the following:

•	 The first line (sometimes called the start line) contains three parts: the HTTP
method, request target, and HTTP protocol.

•	 The second section contains zero or more lines of HTTP headers in key: value
form, with each pair separated by a line break.

•	 Then, we have a blank line separating the head from the body.

•	 Lastly, we have the optional body.

The exact specification is covered by RFC 7230, 3: https://datatracker.ietf.
org/doc/html/rfc7230#section-3

One of the goals of this book is to learn strategies to design API endpoints that will be
easily consumable, keeping in mind the needs and limitations of the application we
are building. The goal is to understand the first interactions that the server has with an
incoming web request, and how to design our application around that. We will learn
about how requests are structured, what choices Sanic makes for us and what choices it
leaves to us, and other issues involved in turning an HTTP request into actionable code.
Remember, the purpose of this book is not just to learn how to use a fancy new tool,
but also to level up web development skills and knowledge. To become more informed
developers, we seek to not only understand how to build with Sanic, but why we might
build something in a particular way. We will learn to ask better questions and to make
better decisions by understanding some of the mechanics. This does not mean we need
to be experts on the HTTP protocol and specification. By being familiar, however, with
what Sanic is doing with the raw request, we will ultimately be armed with a greater set of
knowledge for building web applications.

In particular, we'll cover these topics:

•	 Understanding HTTP methods

•	 Paths, slashes, and why they matter

•	 Advanced path parameters

•	 API versioning

•	 Virtual hosts

•	 Serving static content

https://datatracker.ietf.org/doc/html/rfc7230#section-3

https://datatracker.ietf.org/doc/html/rfc7230#section-3

Technical requirements 49

Technical requirements
In addition to what we have been building before, in this chapter, you should have the
following tools at your disposal in order to be able to follow along with the examples:

•	 Docker Compose

•	 Curl

•	 You can access the source code for this chapter on GitHub: https://github.
com/PacktPublishing/Python-Web-Development-with-Sanic/
tree/main/Chapter03

Understanding HTTP methods
If you have built any kind of a website before, you probably have an understanding of the
concept of HTTP methods, or at least the basic GET and POST methods. However, did
you know that there are nine standard HTTP methods? In this section, we will learn about
these different methods and how we can take advantage of them.

In the same way that an IP address or a web domain is a place on the internet, an HTTP
method is an action on the internet. They are a collection of verbs in the language of the
web. These HTTP methods have a shared understanding and meaning. Web applications
will commonly use these methods in similar use cases. That does not mean that you must
follow the conventions, or that your application will break if you venture away from the
standards. We should learn the rules so that we know when it may be appropriate to
break them. These standards exist to create a common language that web developers and
consumers can use to communicate:

Table 3.1 – HTTP methods overview

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter03
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter03
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter03

50 Routing and Intaking HTTP Requests

When we talk about a method being safe, what we mean is that it should not be
state-changing. That is not to say that a GET method cannot have side-effects.
Of course, they can. For example, someone hitting the endpoint will trigger logs or
some sort of a resource counter. These are technically what the industry might refer
to as side-effects. The important distinction here is that the user did not request the
side-effects, so therefore cannot be held accountable for them. RFC Section 2616, 9.1.1
(https://datatracker.ietf.org/doc/html/rfc2616#section-9). This
means that from the perspective of the user accessing the resource, the determination
of whether an endpoint is safe is a matter of intent. If the user intends to retrieve profile
information, it is safe. If the user intends to update profile information, it is not safe.

While it is certainly helpful to try and stick to the descriptions of the methods in Table
3.1, undoubtedly you will come across use cases that do not fit nicely into these categories.
When that happens, I encourage you to re-examine your application design. Sometimes
the problem can be solved with new endpoint paths. Sometimes we need to create our
own definitions. This is okay. I would, however, caution against changing a safe method
to unsafe. Performing stateful changes with a GET request is considered poor form, and
a rookie mistake.

After deciding what our HTTP methods should be, we will venture into the next section
to learn about how we can implement them and attach them to routes.

Using HTTP methods on route handlers
We are finally ready to see what frameworks are all about! If you have used Flask in
the past, this will look familiar. If not, what we are about to do is create a route definition
that is a set of instructions to tell Sanic to send any incoming HTTP requests to our
route handler. A route definition must have two parts: a URI path and one or more
HTTP methods.

Matching on the URI path alone is not enough. HTTP methods are also used by Sanic to
get your incoming request to the correct handler. Even when we implement the most basic
form of a route definition, both parts must exist. Let's look at the simplest use case and see
what default choices Sanic will make:

@app.route("/my/stuff")

async def stuff_handler(...):

 ...

https://datatracker.ietf.org/doc/html/rfc2616#section-9

Understanding HTTP methods 51

In this example, we defined a route at /my/stuff. Usually, we inject the route() call
with an optional methods argument to tell it what HTTP methods we want that handler
to respond to. We have not here, so it will default to just GET. We have the option of telling
the route that it should also handle other HTTP methods:

@app.route("/my/stuff", methods=["GET", "HEAD"])

async def stuff_handler(...):

 return text("Hello")

Important Note
We will look at the HEAD method a little later in this chapter. But it is
important to know that a HEAD request should not have any response body.
This is enforced by Sanic for us. Even though, technically, this endpoint is
responding with the text Hello, Sanic removes the body from the response
and only sends the metadata.

Now that we have a single endpoint set up with multiple methods, we can access it with
both methods.

First, let's do so with a GET request (it should be noted that when using curl, if you do
not specify a method, it will default to GET):

$ curl localhost:7777/my/stuff -i

HTTP/1.1 200 OK

content-length: 5

connection: keep-alive

content-type: text/plain; charset=utf-8

Hello

Then, with a HEAD request. You should take note that in the HEAD request, there is no
body in the response. It is only headers that are returned:

$ curl localhost:7777/my/stuff -i --head

HTTP/1.1 200 OK

content-length: 5

connection: keep-alive

content-type: text/plain; charset=utf-8

52 Routing and Intaking HTTP Requests

For convenience, Sanic provides shortcut decorators to all of its supported HTTP methods
on both the app instance and any blueprint instance:

@app.get("/")

def get_handler(...):

 ...

@app.post("/")

def post_handler(...):

 ...

@app.put("/")

def put_handler(...):

 ...

@app.patch("/")

def patch_handler(...):

 ...

@app.delete("/")

def delete_handler(...):

 ...

@app.head("/")

def head_handler(...):

 ...

@app.options("/")

def options_handler(...):

 ...

These decorators can also be stacked. The last example that we saw could also be written
like this:

@app.head("/my/stuff")

@app.get("/my/stuff")

async def stuff_handler(...):

 return text("Hello")

Understanding HTTP methods 53

This is the standard way routes are defined in Sanic, but not the only. Using decorators
is convenient and highly encouraged, but you can also define the exact same endpoint
like this:

async def stuff_handler(...):

 return text("Hello")

app.add_route(stuff_handler, "/my/stuff", methods=["GET",
"HEAD"])

Using the add_route method, we can define a new endpoint by passing the handler,
along with all of the other arguments. It also becomes the basis for the third style:
Class-Based Views (CBV), which we will review in detail in the later section called
Simplifying your endpoints with class-based views. Here is a sneak peek of how the same
endpoint would be written as a CBV:

from sanic.views import HTTPMethodView

class StuffHandler(HTTPMethodView):

 async def get(self, request):

 return text("Hello")

 async def head(self, request):

 return await self.get(request)

app.add_route(StuffHandler.as_view(), "/")

One more fundamental thing to know about HTTP methods is that you can access the
incoming method on the HTTP request object. This is very helpful if you are handling
multiple HTTP methods on the same handler, but need to treat them differently. Here is
an example where we look at the HTTP method to change the behavior of the handler:

from sanic.response import text, empty

from sanic.constants import HTTPMethod

@app.options("/do/stuff")

@app.post("/do/stuff")

async def stuff_handler(request: Request):

 if request.method == HTTPMethod.OPTIONS:

54 Routing and Intaking HTTP Requests

 return empty()

 else:

 return text("Hello")

Before moving on to advanced method routing, there is some Sanic syntax we should
mention. All of the examples here use the decorator syntax to define routes. This is by
far the most common way to achieve this because of its convenience. There is, however,
an alternative. All route definitions could be converted to functional definitions, as
shown here:

@app.get("/foo")

async def handler_1(request: Request):

 ...

async def handler_2(request: Request):

 ...

app.add_route(handler_2, "/bar")

In some circumstances, this may be a more attractive pattern to use. We will see it again
when we encounter CBVs later in this chapter.

Advanced method routing
Sanic does not support CONNECT and TRACE out of the box, two standard HTTP
methods. But let's imagine that you want to build an HTTP proxy or some other system
that needs to have the CONNECT method available in your route handler. Even though
Sanic does not allow it out of the box, you have two potential approaches.

First, we could create a piece of middleware that is on the lookout for CONNECT
and hijacks the request to provide a custom response. This trick of responding from
middleware is a feature that allows you to halt the execution of the request/response
lifecycle before the handlers take over and otherwise fail as a 404 Not Found:

async def connect_handler(request: Request):

 return text("connecting...")

@app.on_request

async def method_hijack(request: Request):

Understanding HTTP methods 55

 if request.method == "CONNECT":

 return await connect_handler(request)

You can see that a potential downside to this approach is that we need to implement our
own routing system if we want to send different endpoints to different handlers.

A second approach might be to tell the Sanic router that CONNECT is a valid HTTP
method. Once we do this, we can add it to a normal request handler:

app.router.ALLOWED_METHODS = [*app.router.ALLOWED_METHODS,
"CONNECT"]

@app.route("/", methods=["CONNECT"])

async def connect_handler(request: Request):

 return text("connecting...")

One important consideration for this strategy is that you will need to redefine app.
router.ALLOWED_METHODS as early as possible before registering the new handlers.
For this reason, it might be best for it to come directly after app = Sanic(...).

A side benefit that this strategy provides is the ability to create your own ecosystem
of HTTP methods with your own definitions. This may not necessarily be advisable if
you intend for your API to be used for public consumption. However, it may be useful,
practical, or just plain fun for your own purposes. There may only be nine standard
methods, but there are infinite possibilities. Do you want to create your own verbs? You
are certainly free to do so:

ATTACK /path/to/the/dragon HTTP/1.1

Method safety and request body
As we have learned, there are generally two types of HTTP methods: safe and unsafe.
The unsafe methods are POST, PUT, PATCH, and DELETE. These methods are generally
understood to mean that they are state-changing. That is to say that by hitting these
endpoints, the user is intending to change or alter the resource in some way.

The converse of this is safe methods: GET, HEAD, and OPTIONS. The purpose of these
endpoints is to request information from the application, not to change state.

It is considered good practice to follow this practice: if an endpoint will make a change
on the server, do not use GET.

56 Routing and Intaking HTTP Requests

Lining up with this division is the concept of the request body. Let's revisit the raw HTTP
request one more time:

POST /path/to/endpoint HTTP/1.1

Host: localhost:7777

User-Agent: curl/7.76.1

Accept: */*

Content-Length: 14

Content-Type: application/json

{"foo": "bar"}

An HTTP request can optionally include a body. In the preceding example, the request
body is the last line: {"foo": "bar"}.

It is important to note that Sanic will only take the time to read the message body
for POST, PUT, and PATCH requests. It will stop reading the HTTP message after the
headers if it is an HTTP request using any other HTTP method. This is a performance
optimization since we generally do not expect there to be a message body on the safe
HTTP requests.

You may have noticed this list did not include DELETE. Why? In general, the HTTP
specification says that there may be a request body (https://datatracker.ietf.
org/doc/html/rfc7231#section-4.3.5). Sanic assumes that it will not have one
unless you tell it that it does. To do this, we simply set ignore_body=False:

@app.delete("/", ignore_body=False)

async delete_something(request: Request):

 await delete_something_using_request(request.body)

If we do not set ignore_body=False, and we send a body with our DELETE requests,
Sanic will raise a warning in the logs to let us know that part of the HTTP message was
not consumed. If you intend to use DELETE methods, you should be on the lookout for
this since Sanic makes the assumption. It should also be noted that if you are in the habit
of receiving GET requests with a body, you will also need to use ignore_body=False.
However, I hope you have a very good reason for doing that since it breaks most web
standards.

https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.5
https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.5

Understanding HTTP methods 57

One helpful takeaway from this is that, out of the box, the following two endpoints are
not equal:

@app.route("/one", methods=["GET"])

async def one(request: Request):

 return text("one")

@app.get("/two")

async def two(request: Request):

 return text("two")

Both /one and /two will behave similarly. Without further customization, however,
the first request will spend time trying to read the request body even if it does not
exist, while the second just assumes that it is the case that there is no body. While
the performance difference will be small, it is generally preferred to use @app.get
("/two") over @app.route("/one", methods=["GET"]). The reason that
these two endpoints differ is that they have different default values for ignore_body.

Important Note
If you are building a GraphQL application, then usually POST is used by
the endpoint even for informational requests. This is because it is generally
much more acceptable to pass a body on a POST request than a GET request.
However, it is worth mentioning that we could consume a message body from a
GET request if we really wanted to by setting ignore_body=False.

When deciding what method you should use, another factor to consider is idempotency.
In short, idempotence means that you can perform the same action over and over again,
and the result should be the same every time. The HTTP methods that are considered
idempotent are GET, HEAD, PUT, DELETE, OPTIONS, and TRACE. Keep this in mind
when designing your API.

RESTful API design
HTTP methods are often used in RESTful API design. There is a wealth of literature
already written on building RESTful APIs, so we will not dive deeply into what it is, but
more how we can practically implement it. We shall, however, first have a quick refresher
of the basic premise.

58 Routing and Intaking HTTP Requests

Web API endpoints have a target. That target is something that either the user would like
to fetch information about or manipulate by adding or changing it. Based upon a shared
understanding, the HTTP method tells the server how you would like to interact with that
target. The target is often called a resource, and we may use the terms interchangeably here.

To explain this concept, I like to think back to the adventure computer games I played
as a child. My swashbuckling character would happen upon an object—let's say a rubber
chicken. When I clicked on that object, a menu would appear with different verbs that told
me what I could do with that object: pick up, look at, use, talk to, and so on. There was a
target (the rubber chicken), and methods (the verbs or actions).

Putting this together with the HTTP methods we defined earlier, let's look at a concrete
example. In our hypothetical situation, we will be building an API to manage a social
media platform for people that love adventure computer games. Users need to be able to
create a profile, view other profiles, and update their own. We might design the following
endpoints:

Table 3.2 – Example HTTP methods and endpoints

Before we go further, if you are unfamiliar with how routing works in Sanic (and what
the <username> syntax means), you can get more information in the user guide at
https://sanic.dev/en/guide/basics/routing.html, and we will also look
at it more closely later in this chapter, in the section titled Extracting information from the
path. Feel free to skip ahead and come back.

As you can see, there really are only two URI paths: /profiles and
/profiles/<username>. Using the HTTP methods, however, we have been able to
define six different interactions with our API! What might the profile blueprint look like?

from sanic import Blueprint, Request

bp = Blueprint("MemberProfiles", url_prefix="/profile")

@bp.get("")

https://sanic.dev/en/guide/basics/routing.html

Understanding HTTP methods 59

async def fetch_all_profiles(request: Request):

 ...

@bp.post("")

async def create_new_profile(request: Request):

 ...

@bp.get("/<username>")

async def fetch_single_profile(request: Request, username:
str):

 ...

@bp.put("/<username>")

async def replace_profile(request: Request, username: str):

 ...

@bp.patch("/<username>")

async def update_profile(request: Request, username: str):

 ...

@bp.delete("/<username>")

async def delete_profile(request: Request, username: str):

 ...

Using HTTP methods to define our use cases seems helpful and having decorators that
map them seems convenient. But, it seems like there is a lot of boilerplate there, and
repetition. We will next look at CBVs and how we can simplify our code.

Simplifying your endpoints with CBVs
The previous example exposes a weakness with using functions and decorators
alone to design your API. What happens when we want to add endpoint handlers
for /profile/<user_id:uuid>? Or when we want to make some other change
to the existing endpoint? We now have multiple places to make the same change,
leading to a higher chance that we do not maintain parity among all our route definitions.
This is a violation of the don't repeat yourself (DRY) principle and could lead to bugs.
Maintaining these endpoints over the long term therefore might be more difficult than
necessary.

60 Routing and Intaking HTTP Requests

This is one of the compelling reasons to use CBVs. This pattern will give us the
opportunity to link together the first two endpoints and the last four endpoints so they
become easier to manage. They are being grouped together because they share the same
URI path. Instead of standalone functions, each HTTP method will be a functional
method on a class and that class will be assigned a common URI path. A bit of code
should make this easy to understand:

from sanic import Blueprint, Request, HttpMethodView

bp = Blueprint("MemberProfiles", url_prefix="/profile")

class AllProfilesView(HttpMethodView):

 async def get(request: Request):

 """same as fetch_all_profiles() from before"""

 async def post(request: Request):

 """same as create_new_profile() from before"""

class SingleProfileView(HttpMethodView):

 async def get(request: Request, username: str):

 """same as fetch_single_profile() from before"""

 async def put(request: Request, username: str):

 """same as replace_profile() from before"""

 async def patch(request: Request, username: str):

 """same as update_profile() from before"""

 async def delete(request: Request, username: str):

 """same as delete_profile() from before"""

app.add_route (AllProfilesView.as_view(), "")

app.add_route(SingleProfileView.as_view(), "/<username>")

Understanding HTTP methods 61

Important Note
Later in this book, we may see custom decorators used more and more often
to add shared functionality. It is worth mentioning that we can also add
them easily to CBVs, and I highly suggest you take a moment to refer to the
user guide to see it in action: https://sanic.dev/en/guide/
advanced/class-based-views.html#path-parameters.

One thing to be on the lookout for when adding decorators to CBV methods
is the self argument on instance methods. You may need to adjust your
decorator or use staticmethod to get it to work as expected. The above-
mentioned documentation explains how to do that.

Earlier, we saw how add_route could be used as an alternative approach to attaching
a single function as a handler to a route definition. It looked like this:

async def handler(request: Request):

 ...

app.add_route(handler, "/path")

This pattern is one of the main ways to attach a CBV to a Sanic or blueprint instance.
The caveat is that you need to call it using the class method as_view(). In our previous
example, we saw what this looked like:

app.add_route(SingleProfileView.as_view(), "/<username>")

This could also be achieved by attaching the CBV when it is declared. This option will
only work if you already have a known blueprint or application instance. We will rewrite
SingleProfileView to take advantage of this alternative syntax:

from sanic import Sanic

app = Sanic.get_app()

class SingleProfileView(HttpMethodView, attach=app,
uri="/<username>"):

 async def get(request: Request, username: str):

https://sanic.dev/en/guide/advanced/class-based-views.html#path-parameters
https://sanic.dev/en/guide/advanced/class-based-views.html#path-parameters

62 Routing and Intaking HTTP Requests

 """same as fetch_single_profile() from before"""

 async def put(request: Request, username: str):

 """same as replace_profile() from before"""

 async def patch(request: Request, username: str):

 """same as update_profile() from before"""

 async def delete(request: Request, username: str):

 """same as delete_profile() from before"""

In this example, instead of using add_route, we can attach the CBV directly to the
app instance and define the path in the class definition. How should you decide which
style to use? Personally, I find this second version to be easier and cleaner. This is what
most of my projects use. The big downside is that you cannot lazily create the CBV and
attach it later since the application or blueprint needs to be known upfront. This can
lead to issues with the ordering of your imports. But this is easily avoided using the
create_app factory pattern introduced in Chapter 9, Best Practices to Improve Your Web
Applications, in the Testing a full application section, and used throughout the examples
in Chapter 10, Implementing Common Use Cases with Sanic, and Chapter 11, A Complete
Real-World Example.

Blanket support for OPTIONS and HEAD
It is generally best practice to support the OPTIONS and HEAD methods on all of your
endpoints, where it is appropriate. This could become tedious and include a lot of
repetitive boilerplate. To achieve this with standard route definitions alone would require
a lot of code duplication as seen in the following snippet. Here, we see that we need four
route definitions where two would be sufficient. Now imagine if every endpoint needed to
also have OPTIONS and HEAD!

@app.get("/path/to/something")

async def do_something(request: Request):

 ...

@app.post("/path/to/something")

async def do_something(request: Request):

 ...

Understanding HTTP methods 63

@app.options("/path/to/something")

async def do_something_options(request: Request):

 ...

@app.head("/path/to/something")

async def do_something_head(request: Request):

 ...

We can use Sanic's router to our advantage to add on a handler for these requests to
each and every route. The idea will be to loop over all of the routes defined in our
application and dynamically add handlers for OPTIONS and HEAD if needed. Later on,
in Chapter 7, Dealing with Security Concerns, we will use this strategy for creating our
customized CORS policy. For now, however, all we need to keep in mind is that we want
to be able to handle any request to a valid endpoint using one of these HTTP methods:

async def options_handler(request: Request):

 ...

async def head_handler(request: Request):

 ...

@app.before_server_start

def add_info_handlers(app: Sanic, _):

 app.router.reset()

 for group in app.router.groups.values():

 if "OPTIONS" not in group.methods:

 app.add_route(

 handler=options_handler,

 uri=group.uri,

 methods=["OPTIONS"],

 strict_slashes=group.strict,

)

 app.router.finalize()

Let's take a closer look at this code.

64 Routing and Intaking HTTP Requests

First, we create route handlers: the functions that will do the work when the endpoint
is hit. For now, they do not do anything. If you want to know what this endpoint could
do, jump ahead to the CORS discussion in Setting up an effective CORS policy located in
Chapter 7, Dealing with Security Concerns:

async def options_handler(request: Request):

 ...

async def head_handler(request: Request):

 ...

The next part needs to be done after we register all of our endpoints. In Chapter 11,
A Complete Real-World Example, we accomplish this by running the code inside of a
factory. Feel free to take a look ahead to the example there to be able to compare it with
our current implementation.

In our current example, we do not have a factory and are adding the routes inside an
event listener. Normally, this would not be possible since we cannot change our routes
after the application is running. When a Sanic application starts up, one of the first things
it does internally is to call app.router.finalize(). But, it will not let us call that
method twice. Therefore, we need to run app.router.reset(), add our routes, and
finally call app.router.finalize() after all of our dynamic route generation is
complete. You can use this same strategy anywhere that you might want to dynamically
add routes. Is this a good idea? In general, I would say that dynamically adding routes
is a bad idea. Having changing endpoints might lead to unpredictability or weird bugs
across a distributed application. However, the benefit we are gaining through dynamic
route generation in this instance is great, and the risk is very low.

There are a few different properties that the Sanic router provides us with that we could
loop over to see what routes are registered. The two most commonly used for public
consumption are app.router.routes and app.router.groups. It is helpful to
understand what they are and how they differ. We will put our discussion on OPTIONS
and HEAD on pause for a brief moment to look at these two properties:

@app.before_server_start

def display(app: Sanic, _):

 for route in app.router.routes:

 print(route)

 for group in app.router.groups.values():

Understanding HTTP methods 65

 print(group)

@app.patch("/two")

@app.post("/two")

def two_groups(request: Request):

 return text("index")

@app.route("/one", methods=["PATCH", "POST"])

def one_groups(request: Request):

 return text("index")

The first thing to notice is that one of them is producing Route objects and the other
RouteGroup objects. The second obvious takeaway is that one is a list and the other a
dictionary. But what are Route and RouteGroup?

In our console, we will see that there are three Route objects, but only two RouteGroup
objects. This is because Sanic has grouped together similar-looking routes to more
efficiently match them later. A Route is a single definition. Every time we call @app.
route, we are creating a new Route. Here, we can see that they have been grouped by
the URI path:

<Route: name=__main__.two_groups path=two>

<Route: name=__main__.two_groups path=two>

<Route: name=__main__.one_groups path=one>

<RouteGroup: path=two len=2>

<RouteGroup: path=one len=1>

Getting back to our discussion of automation, we are going to use app.router.
groups. This is because we want to know which methods have and have not been
assigned to a given path. The quickest way to figure that out is to look at the groups that
Sanic has already provided for us. All we need to do is check if the group already includes
a handler for the HTTP method (so we do not overwrite anything that already exists) and
call add_route:

for group in app.router.groups.values():

 if "OPTIONS" not in group.methods:

 app.add_route(

 handler=options_handler,

66 Routing and Intaking HTTP Requests

 uri=group.uri,

 methods=["OPTIONS"],

 strict_slashes=group.strict,

)

 if "GET" in group.methods and "HEAD" not in group.methods:

 app.add_route(

 handler=head_handler,

 uri=group.uri,

 methods=["HEAD"],

 strict_slashes=group.strict,

)

Although we will not look at options_handler right now, we can look more closely at
head_handler. A HEAD request is defined in RFC Section 7231 as being identical to a
GET request: The HEAD method is identical to GET except that the server MUST NOT send
a message body in the response (https://datatracker.ietf.org/doc/html/
rfc7231#section-4.3.2).

This is pretty easy to implement in Sanic. Really, what we want to do is retrieve the
response from the GET handler for the same endpoint, but only return the metadata,
not the request body. We will use functools.partial to pass the GET handler to
head_handler. Then, all it needs to do is run get_handler and return the response.
As we saw earlier in the chapter, Sanic will do the work for us of removing the body before
it sends the response to the client:

from functools import partial

for group in app.router.groups.values():

 if "GET" in group.methods and "HEAD" not in group.methods:

 get_route = group.methods_index["GET"]

 app.add_route(

 handler=partial(

 head_handler,

 get_handler=get_route.handler

),

 uri=group.uri,

 methods=["HEAD"],

 strict_slashes=group.strict,

 name=f"{get_route.name}_head",

https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.2
https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.2

Paths, slashes, and why they matter 67

)

async def head_handler(request: Request, get_handler, *args,
**kwargs):

 return await get_handler(request: Request, *args, **kwargs)

Important Note
In the preceding example, we added name=f"{get_route.name}_
head" to our add_route method. This is because all routes in Sanic
get a name. If you do not manually supply one, then Sanic will attempt
to generate a name for you using handler.__name__. In this case,
we are passing a partial function as a route handler, and Sanic does not
know how to generate a name for that since partial functions in Python have
no __name__ property.

Now that we know how to use HTTP methods to our advantage, we will look at the next
big area in routing: paths.

Paths, slashes, and why they matter
Way back in the stone age when the internet was invented, if you navigated to a URL,
you were literally being delivered a file that existed on a computer somewhere. If you
asked for /path/to/something.html, the server would look in the /path/to
directory for a file called something.html. If that file existed, it would send it to you.

While this does still exist, times have certainly changed for many applications. The
internet is still largely based upon this premise, but often a generated document is sent
instead of a static document. It is helpful to still keep this mental model in your head
though. Thinking that a path on your API should lead to a resource of some kind will
keep you away from certain API design flaws. Let's look at an example:

/path/to/create_something << BAD

/path/to/something << GOOD

Your URI paths should use nouns, not verbs. If we want to perform an action and tell
the server to do something, we should manipulate the HTTP method as we learned, not
the path of the URI. Going down this path—believe me, I've done it—will lead to some
messy-looking applications. Very likely you will wake up one day and look at a mess of
disjointed and incoherent paths and ask yourself: what have I done? There might, however,
be a time and place for this, so we will revisit it shortly.

68 Routing and Intaking HTTP Requests

Knowing that our paths should contain nouns, the obvious next question is whether
they should be singular or plural. I do not think there is consensus on the internet about
what is right here. Many people always use plurals, many people always use the singular
form, and some wild hooligans decide to mix and match. While the decision may seem
small, it is nevertheless important to establish consistency. Picking a system and applying
consistency is more important than the actual decision.

With that out of the way, I will give you my opinion. Use plural nouns. Why? It makes for
very nice nesting of paths, which could translate nicely to the nesting of blueprints:

/users << to get all users

/users/123 << to get user ID 123

I do encourage you to use singular nouns if it makes sense to you. But if you do, you must
do it everywhere. As long as you stay consistent and logical about your choice, your API
will feel polished. Mixing plural and singular paths will make your API feel haphazard and
amateurish. A really nice resource that explains how to consistently break the two rules
I just laid out (use nouns, use plurals) is found here: https://restfulapi.net/
resource-naming/. Again, it is important and helpful for us to not only learn the rules
or the right way to do something but to also learn when to break them, or when to make
our own set of rules. Sometimes following standards makes sense, sometimes not. This is
how we go from someone that merely is capable of making a web application, to someone
that knows how to design and build one. The difference is expertise.

It is also encouraged when designing paths to favor hyphens (-) over spaces,
capitalization, or underscores. This increases the human readability of your API. Consider
the difference between these:

/users/AdamHopkins << BAD

/users/adam_hopkins << BAD

/users/adam%20hopkins << BAD

/users/adam-hopkins << GOOD

Most people would consider the last option to be the easiest to read.

Strict slashes
Because of the legacy paradigm where endpoints were equivalent to the file structure of
a server, the trailing slash in a path took on a specific meaning. It is widely accepted that
paths with and without trailing slashes are not the same and are not interchangeable.

https://restfulapi.net/resource-naming/
https://restfulapi.net/resource-naming/

Paths, slashes, and why they matter 69

If you navigated to /characters, you might expect to receive a list of all the characters
in our fictitious social media application. However, /characters/ technically means
show me a list of everything that is in the characters directory. Because this could be
confusing, you are encouraged to avoid using trailing slashes.

On the other hand, it is also widely accepted that these are the same thing. In fact, a lot
of browsers (and websites) treat them the same. I'll show you how you can test this for
yourself.

Open your web browser and go to https://sanic.readthedocs.io/en/
stable/.

Now open a second tab and go to https://sanic.readthedocs.io/en/stable.

It is the same page. In fact, it seems that this web server breaks the rule that I just
mentioned and prefers the trailing slash to not having it at all. So, where does this leave us,
and what should we implement? It is really up to you to determine, so let's see how we can
control it in Sanic.

If you do nothing, Sanic will drop the trailing slash for you. Sanic does, however, provide
you with the ability to control whether that trailing slash should have meaning or not
by setting the strict_slashes argument. Consider an application set up with and
without trailing slashes, and with and without strict_slashes:

@app.route("/characters")

@app.route("/characters/")

@app.route("/characters", strict_slashes=True)

@app.route("/characters/", strict_slashes=True)

async def handler(request: Request):

 ...

These definitions will fail. Why? When Sanic sees a trailing slash on a path definition it
will remove it, unless strict_slashes=True. Therefore, the first and second routes
are considered identical. Furthermore, the third route is also the same, therefore causing
a conflict.

While the generally accepted rule is that a trailing slash should have meaning,
this is not the case for a trailing slash that is the only part of a path. RFC 7230,
Section 2.7.3 states that an empty path ("") is the same thing as a single slash path ("/")
(https://datatracker.ietf.org/doc/html/rfc7230#section-2.7.3).

https://sanic.readthedocs.io/en/stable/
https://sanic.readthedocs.io/en/stable/
https://sanic.readthedocs.io/en/stable
https://datatracker.ietf.org/doc/html/rfc7230#section-2.7.3

70 Routing and Intaking HTTP Requests

I put together a deeper discussion about how Sanic handles the possible scenarios of
trailing slashes. If this is something you are considering using, I suggest you take a look
here: https://community.sanicframework.org/t/route-paths-how-do-
they-work/825.

If you were to ask me my opinion, I would say do not use them. It is much more forgiving
to allow /characters and /characters/ to have the same meaning. Therefore, I
personally would define the route as follows:

@app.route("/characters")

async def handler(request: Request):

 ...

One of the purposes of crafting good endpoint paths is to properly convey information
from the user to the server. It is therefore natural that you will need to access certain
information in the path in your route handlers. Next, we will look at the methodology
provided by Sanic for extracting information from the path.

Extracting information from the path
The last thing we need to consider in this section is extracting usable information from
our request. The first place we often look is the URI path. Sanic provides a simple syntax
for extracting parameters from the path:

@app.get("/characters/<name>")

async def profile(request: Request, name: str):

 print text(f"Hello {name}")

We have declared the second segment in our path to contain a variable. The Sanic router
extracts that and injects it as an argument in our handler. It is important to note that if we
do nothing else, that injection will be a str type value.

Sanic also provides an easy mechanism for converting the type. Suppose we want to
retrieve a single message from a message feed, query it in the database, and return the
message. In this case, our call to the database requires message_id to be an int:

@app.get("/messages/<message_id:int>")

async def message_details(request: Request, message_id: int):

 ...

https://community.sanicframework.org/t/route-paths-how-do-they-work/825
https://community.sanicframework.org/t/route-paths-how-do-they-work/825

Advanced path parameters 71

This route definition will tell Sanic to convert the second segment into an int before
injecting it. It is also important to note that if the value is something that cannot be cast as
an int, it will raise a 404 Not Found. Therefore, the parameter type does more than
just typecasting. It is also involved in route handling.

You can refer to the next section and the user guide to learn what all of the allowed
parameter types are: https://sanic.dev/en/guide/basics/routing.
html#path-parameters.

Besides extracting information from the path itself, the two other places we may want to
look for user data are the query parameters and the request body. Query parameters are
the part of the URL that comes after a ?:

/characters?count=10&name=george

How should we decide whether information should be passed in the path, the query
arguments, or as a part of form data or JSON body? Best practices dictate that information
should be accessed as follows:

•	 Path parameters: Information to describe what the resource is we are looking for

•	 Query parameters: Information that can be used to filter, search, or sort the
response

•	 Request body: Everything else

It is a good habit to get into very early on in your application development to learn where
different usable bits of information can come from. Chapter 4, Ingesting HTTP Data, dives
much further into passing data through query parameters and the request body. Just
as valuable is of course the HTTP path itself. We just looked at how important crafting
purposeful paths might be. Next, we will take a deeper look at extracting data from the
HTTP path.

Advanced path parameters
In the last section, we learned the basics of extracting information from a
dynamic URL path to something we can code with. This is truly a fundamental
feature of all web frameworks. It is also extremely common among many frameworks
to allow you to specify what that path parameter should be. We learned that
/messages/<message_id:int> would match /messages/123 but not
/messages/abc. We also learned about the convenience that Sanic provides in
converting the match path segment to an integer.

https://sanic.dev/en/guide/basics/routing.html#path-parameters
https://sanic.dev/en/guide/basics/routing.html#path-parameters

72 Routing and Intaking HTTP Requests

But what about more complex types? Or what if we need to modify the matched value
before using it in our application? In this section, we will explore a couple of helpful
patterns to achieve these goals.

Custom parameter matching
Out of the box, Sanic provides eight path parameter types that can be matched:

•	 str: Matches any valid string

•	 slug: Matches standard path slugs

•	 int: Matches any integer

•	 float: Matches any number

•	 alpha: Matches only alphabet characters

•	 path: Matches any expandable path

•	 ymd: Matches YYYY-MM-DD

•	 uuid: Matches a UUID

Each of these provides a type that corresponds to the matched parameter. For example, if
you have the path /report/<report_date:ymd>, the date object in your handler
will be a datetime.date instance:

from datetime import date

@app.get("/report/<report_date:ymd>")

async def get_report(request: Request, report_date: date):

 assert isinstance(report_date, date)

This is a very helpful pattern because it accomplishes two things for us. First, it makes sure
that the incoming request is in the correct format. A request that is /report/20210101
would receive a 404 Not Found response. Second, when we go to work with that
report_date instance in our handler, it has already been cast into a usable data
type: date.

What happens when we need routing for types outside of the standard types? Sanic does
of course allow us to achieve the first part by defining a custom regular expression for a
path segment. Let's imagine that we have an endpoint that we want to match on a valid
IPv4 address: /ip/1.2.3.4.

Advanced path parameters 73

The simplest approach here would be to find a relevant regular expression and add it to
our path segment definition:

IP_ADDRESS_PATTERN = (

 r"(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}"

 r"(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)"

)

@app.get(f"/<ip:{IP_ADDRESS_PATTERN}>")

async def get_ip_details(request: Request, ip: str):

 return text(f"type={type(ip)} {ip=}")

Now, when we access our endpoint, we should have a valid match:

$ curl localhost:7777/1.2.3.4

type=<class 'str'> ip='1.2.3.4'

Using regular expression matching also allows us to narrowly define an endpoint between
a limited number of options:

@app.get("/icecream/<flavor:vanilla|chocolate>")

async def get_flavor(request: Request, flavor: str):

 return text(f"You chose {flavor}")

We now have routing based upon our two available choices:

$ curl localhost:7777/icecream/mint
 404 — Not Found

==================

Requested URL /icecream/mint not found

$ curl localhost:7777/icecream/vanilla

You chose vanilla

While regular expression matching is incredibly helpful sometimes, the problem is that
the output is still str. Going back to our first IPv4 example, we would need to manually
cast the matched value into ipaddress.IPv4Address if we wanted an instance of that
class to work with.

74 Routing and Intaking HTTP Requests

While this might not seem like a big deal if you have one or two handlers, if you have
a dozen endpoints that need a dynamic IP address as a path parameter, it could become
cumbersome. Sanic's solution to this is custom pattern matching. We can tell Sanic that
we want to create our own parameter type. To do this we need three things:

•	 A short descriptor that we will use to name our type

•	 A function that will return the value we want or raise ValueError if there is
no match

•	 A fallback regular expression that also matches our value

In the IP address example, we will do the following:

1.	 We will name the parameter ipv4.
2.	 We can use the standard library's ipaddress.ip_address constructor.
3.	 We already have our fallback regular expression from earlier. We can proceed to

register the custom parameter type:

import ipaddress

app.router.register_pattern(

 "ipv4",

 ipaddress.ip_address,

 IP_ADDRESS_PATTERN,

)

@app.get("/<ip:ipv4>")

async def get_ip_details(request: Request, ip: ipaddress.
IPv4Address):

 return text(f"type={type(ip)} {ip=}")

Now, we have a more usable object in the handler (ipaddress.IPv4Address), and we
also have a very easy to reuse path parameter (<ip:ipv4>).

Advanced path parameters 75

What about our second example with ice cream flavors? Instead of having a str type,
what if we wanted to have an Enum or some other custom model? There is, unfortunately,
no function in Python's standard library for parsing ice cream flavors (maybe someone
should build that), so we will need to create our own:

1.	 To start, we will create our model using an Enum. Why an Enum? It is a fantastic
tool to keep our code nice and consistent. If our environment is set up right—which
it is because we took care in Chapter 2, Organizing a Project, to use good tools—we
have a single place where we can maintain our flavors with code completion:

from enum import Enum, auto

class Flavor(Enum):

 VANILLA = auto()

 CHOCOLATE = auto()

2.	 Next, we need a regular expression that we can later use in our route definition for
matching incoming requests:

flavor_pattern = "|".join(

 f.lower() for f in Flavor.__members__.keys()

)

The resulting pattern should be vanilla|chocolate.
3.	 We also need to create a function that will act as our parser. Its job is to either return

our target type or raise ValueError:

def parse_flavor(flavor: str) -> Flavor:

try:

 return Flavor[flavor.upper()]

except KeyError:

 raise ValueError(f"Invalid ice cream flavor:
{flavor}")

4.	 We can now proceed to register that pattern with Sanic. Just like the IP address
example before, we have the name of our parameter type, a function to check the
match, and a fallback regular expression:

app.router.register_pattern(

 "ice_cream_flavor",

 parse_flavor,

76 Routing and Intaking HTTP Requests

 flavor_pattern,

)

5.	 With our pattern now registered, we can proceed to use it in all of our ice cream
endpoints:

@app.get("/icecream/<flavor:ice_cream_flavor>")

async def get_flavor(request: Request, flavor: Flavor):

 return text(f"You chose {flavor}")

When we access the endpoint now, we should have an Enum instance, but still only
accept requests that match one of our two defined flavors. Yum!

$ curl localhost:7777/icecream/mint

404 — Not Found

===============

Requested URL /icecream/mint not found

$ curl localhost:7777/icecream/vanilla

You chose Flavor.VANILLA

The key to this example is having a good parse function. In our example, we know that if a
bad flavor is entered into the Enum constructor, it will raise KeyError. This is a problem.
If our application cannot match mint, it will throw KeyError and the application will
respond with 500 Internal Server Error. This is not what we want. By catching
the exception and casting it to ValueError, Sanic is able to understand that this is
expected, and it should respond with 404 Not Found.

Modifying matched parameter values
As we have learned, using path parameter types is extremely helpful in building our API
to respond to intended requests and ignoring bad paths. As much as possible, it is best
practice to be as specific as your endpoint needs to get the right data in. We just explored
how we might also use parameter types to recast the matched value to a more useful data
type. But what if we are not concerned about changing the type of the value, but the actual
value itself?

Returning to our character profile application example, imagine that we have some URLs
that include slugs. If you are not familiar with a slug, it is basically a string that uses
lower case letters and hyphens to make human-friendly content in URL paths. We saw an
example of this earlier: /users/adam-hopkins.

Advanced path parameters 77

In our hypothetical application, we need to build an endpoint that returns details about
a character instance:

1.	 First, we will create a model for what the character object will look like:

@dataclass

class Character:

 name: str

 super_powers: List[str]

 favorite_foods: List[str]

2.	 We want to be able to return specific details about our character. For example, the
endpoint /characters/george/name should return George. So, our next task
is to define our route:

@app.get("/characters/<name:alpha>/<attr:slug>")

async def character_property(request: Request, name: str,
attr: str):

 character = await get_character(name)

 return json(getattr(character, attr))

3.	 It is a fairly simple route. It searches for the character and then returns the requested
attribute. Let's check it out in action:

$ curl localhost:7777/characters/george/name

"George"

4.	 Now, let's try getting George's superpowers:

$ curl localhost:7777/characters/george/super-powers

500 — Internal Server Error

==============================

'Character' object has no attribute 'super-powers'

Uh oh, what happened? The property we are trying to access is Character.
super_powers. But our endpoint accepts slugs (because they are easier for people
to read). So we need to convert the attribute. Just like in the previous section, where
we could cast our value inside of the handler, it becomes more difficult to scale that
solution. We could run attr.replace("-", "_") inside of our handler, and
perhaps this is a viable solution. It does make for extra code inside the handlers.

78 Routing and Intaking HTTP Requests

Luckily, we have an alternative. This is a good use case for middleware where
we need to convert all slugs (for example, this-is-a-slug) to snake case
(for example, this_is_snake_case) so that they can be used programmatically
down the road. By converting the slugs, we can look for super_powers instead of
super-powers.

5.	 Let's make that middleware:

@app.on_request

def convert_slugs(request: Request):

 request.match_info = {

 key: value.replace("-", "_")

 for key, value in request.match_info.items()

 }

What this will do is modify the Request instance before it gets executed by the
route handler. For our use case, this means that every value that is matched will be
converted from a slug to snake case. Note that we are not returning anything in this
function. If we do, Sanic will think that we are trying to halt the request/response
cycle by providing an early return. This is not the intention. All we want to do is
modify Request.

6.	 Let's test that endpoint again:

$ curl localhost:7777/characters/george/super-powers

["whistling","hand stands"]

7.	 Middleware is not the only solution to this problem though. Sanic makes use
of signals to dispatch events that your application can listen to. Instead of the
preceding middleware, we could do something similar to this with signals:

@app.signal("http.routing.after")

def convert_slugs(request: Request, route: Route,
handler, kwargs):

 request.match_info = {

 key: value.replace("-", "_")

 for key, value in kwargs.items()

 }

API versioning 79

As you can see, it is a very similar implementation. Perhaps the biggest difference to us
as developers is that the signal provides us with some more arguments to work with.
Although, to be honest, route, handler, and kwargs are all properties that could be
accessed from the Request instance. Middleware and signals are discussed in greater
depth in Chapter 6, Operating Outside the Response Handler. For now, just know that
these are two methods for altering the request/response cycle outside of the route handler.
Later on, we will learn more about the differences between them and when it might be
preferable to choose one or the other.

In the next section we will learn about a common practice of prepending paths with a
version number, and how Sanic makes this practice easy.

API versioning
Back in Chapter 2, Organizing a Project, we discussed how you could implement API
versioning using blueprints. If you recall, it was simply a matter of adding a keyword
value to the blueprint definition.

Given the following blueprint definition, we get the URL path /v1/characters:

bp = Blueprint("characters", version=1, url_prefix="/
characters")

@bp.get("")

async def get_all_characters(...):

 ...

That version keyword argument is available at the route level as well. If the version is
defined in multiple places (for example, on the route and also the blueprint), priority is
given to the narrowest scope. Let's look at an example of different places where the version
can be defined, and see what the result is. We will define it at the route level, the blueprint
level, and the blueprint group level:

bp = Blueprint("Characters")

bp_v2 = Blueprint("CharactersV2", version=2)

group = Blueprint.group(bp, bp_v2, version=3)

@bp.get("", version=1)

async def version_1(...):

 ...

80 Routing and Intaking HTTP Requests

@bp_v2.get("")

async def version_2(...):

 ...

@bp.get("")

async def version_3(...):

 ...

app.blueprint(group, url_prefix="/characters")

We now have the following routes. Take a closer look at the example to see how we
manipulate the blueprints and the version argument to control the handler that each
path is delivered to:

•	 /v1/characters <Route: name=main.Characters.version_1
path=v1/characters>

•	 /v3/characters <Route: name=main.Characters.version_3
path=v3/characters>

•	 /v2/characters <Route: name=main.CharactersV2.version_2
path=v2/characters>

Adding versions to endpoint paths is fairly simple. But why should we do it? It is a good
practice because it keeps your API flexible but also consistent and stable for your users.
By allowing endpoints to be versioned, you maintain the ability to make changes to them
and still allow legacy requests to not be denied. It is incredibly beneficial as, over time, you
transition your API to add, remove, or enhance features.

Even if the only consumer of your API is your own website, it is still a good practice to
version your API so that you have an easier path towards upgrades without potentially
causing application regressions.

It is a common practice to "lock in" features with a version. This is a form of creating what
is known as an API contract. Think of an API contract as a promise by the developer
that the API will continue to work. In other words, once you put an API into usage—and
especially if you publish documentation—you are creating a promise to the user that the
API will continue to function as is. You are free to add new features, but any breaking
changes that are not backwards compatible violate that contract. Therefore, when you
do need to add breaking changes, versions might be the right trick in your tool bag to
accomplish your goal.

API versioning 81

Here is an example. We're building out our database of character profiles. The first version
of our API has an endpoint to create a new profile and it looks something like this:

@bp.post("")

async def create_character_profile(request: Request):

 async create_character(name=request.json["name"], ...)

 ...

This endpoint is built upon the assumption that the incoming JSON body will be fairly
simple like this:

{

 "name": "Alice"

}

What happens when we want to handle some more complex use cases?

{

 "meta": {

 "pseudonuym": "The Fantastic Coder",

 "real_name": "Alice"

 },

 "superpowers": [

 {

 "skill": "Blazing fast typing skills"

 }

]

}

It might start getting complicated, messy, and overall difficult to maintain our route
handler if we put too much logic into it. As a general practice, I like to keep my route
handlers very concise. If I see my code creeping up to 50 lines of code inside a view
handler, I know there is probably some refactoring that needs to be done. Ideally, I like to
keep them to about 20 lines or less.

One way we can keep our code clean is to split these use cases. Version 1 of the API will
still be able to create characters using the simpler data structure, and version 2 has the
capability of the more complex structure.

82 Routing and Intaking HTTP Requests

Should all of my routes bump versions?
Often, you will have a need to increase a version on a single endpoint, but not all of them.
This raises the question: what version do I use on the unchanged endpoints? Ultimately,
this is going to be a question that can only be dictated by the application. It might be
helpful to keep in mind how the API is being used.

Very often, you will see APIs bumping versions when there is a complete break or some
major overhaul in the API structure. This could accompany a new technology stack, or a
new API structure or design pattern. An example of this is when GitHub changed its API
from v3 to v4. The older version of their API (v3) is RESTful, similar to what we discussed
earlier in this chapter. The newer version (v4) is based upon GraphQL (see Chapter 10,
Implementing Common Use Cases with Sanic, for more on GraphQL). This is a complete
redesign of the API. Because v3 and v4 are completely incompatible, they changed the
version number.

In GitHub's case, it was clear all endpoints needed to change as it was effectively a brand
new API. Drastic changes like this are not the only catalyst for version changing, however.
What if we are only changing compatibility on a smaller portion of our API and keeping
the rest intact?

Some people may find that it makes sense to implement the new version number on all
of their endpoints. One way to accomplish this is to add multiple route definitions to an
endpoint:

v1 = Blueprint("v1", version=1)

v2 = Blueprint("v2", version=2)

@v1.route(...)

@v2.route(...)

async def unchanged_route(...):

 ...

The downside of this approach is that could become very cumbersome to maintain. If
you needed to add a new route definition to every handler when you want to change a
version, you might be discouraged from adding versions in the first place. Take this into
consideration.

How about nesting blueprints? How about a function that dynamically adds routes at
startup? Can you think of a solution? We have already seen various tools and strategies
earlier in this book that might help us out. This might be a good time to put the book
down and jump into your code editor on your computer. I encourage you to play around
with versions and nesting to see what is and is not possible.

API versioning 83

Remember app.router.routes and app.router.groups? Try adding a single
handler to multiple blueprints. Or try adding the same blueprints to different groups. I
challenge you to come up with a pattern to have the same handler on different versions
without multiple definitions like the preceding example. Start with this, and see what you
can come up with, without doubling up the route definition as before:

v1 = Blueprint("v1", version=1)

v2 = Blueprint("v2", version=2)

@v1.route(...)

async def unchanged_route(...):

 ...

Here is a handy snippet you can use while developing to see which paths are defined:

from sanic.log import logger

@app.before_server_start

def display(app: Sanic, _):

 routes = sorted(app.router.routes, key=lambda route: route.
uri)

 for route in routes:

 logger.debug(f"{route.uri} [{route.name}]")

Getting back to our question: should all of my routes bump versions? Some people will say
yes, but it seems artificially complex to bump the version of all routes when only one has
changed. By all means, if it makes sense, bump everything simultaneously.

If we only want to bump the routes that are changing, it causes another problem. What
should we bump it to? Many people will tell you that versions should only ever be integers:
v1, v2, v99, and so on. I find this limiting, and it really makes the following set of
endpoints feel unnatural:

•	 /v1/characters

•	 /v1/characters/puppets

•	 /v1/characters/super_heroes

•	 /v1/characters/historical

•	 /v2/characters

84 Routing and Intaking HTTP Requests

While I am not discounting this approach, it does seem like there should be a v2 for all
of the routes, even if they did not change. We are trying to avoid that. Why not use minor
versions like semantic versioning? It seems more natural and accepting to have a single
/v1.1 endpoint than a single /v2. Again, this is going to be a matter of what works
for your application needs, and what is reasonable given the types of users that will be
consuming your API. Should you decide that semantic versioning style will work for your
application needs, you can add it by using a float for the version argument as seen here:

@bp.post("", version=1.1)

async def create_character_profile_enhanced(request: Request):

 async create_character_enhanced(data=request.json)

Important Note
Semantic versioning is an important concept in software development, but
beyond the scope here. In brief, the concept is to create a version by declaring
a major, minor, and patch number, which are connected by a period, for
example, 1.2.3. Generally speaking, semantic versioning states that an
increment of the major version corresponds to a backwards-incompatible
change, the minor version to a new feature, and the patch version to a bug fix.
If you are unfamiliar with it, I suggest taking some time to read through the
documentation for it since it is widely used throughout software development:
https://semver.org/.

Tip
It is highly recommended that you use version with your endpoints if
you intend for there to be third-party integration with your API. If the API is
only meant to be used by your own application, perhaps this is less important.
Nevertheless, it may still be a useful pattern. Therefore, I recommend using
version=1 for new projects or version=2 for projects that are replacing
an existing API even if the legacy application did not have a version scheme.

Version prefixing
The standard way to use versions in Sanic is version=<int> or version=<float>.
The version will always be inserted into your path at the very beginning. It does not
matter how deeply nested and how many layers of url_prefix you have. Even a deeply
nested route definition can have a single version and it will be the first segment in the
path: /v1/some/deeply/nested/path/to/handler.

https://semver.org/

Virtual hosts 85

This does, however, impose a problem when you are trying to build multiple layers on
your application. What if you want to have some HTML pages and an API and keep them
separate based upon their path? Consider the following paths that we might like to have in
our application:

•	 /page/profile.html

•	 /api/v1/characters/<name>

Notice how the versioned API route starts with /api? This is impossible to control only
with URIs and blueprint URI prefixes since Sanic always puts the version before the rest
of the path. However, Sanic provides a version_prefix argument in all of the same
places that version can be used. The default value is /v, but feel free to update it as
needed. In the following example, we can nest our entire API design in a single blueprint
group to automatically add /api to the front of every endpoint:

group = Blueprint.group(bp1, bp2, bp3, version_prefix="/api/v")

Tip
The same path parameters are available here. You could, for example, do
something like this: version_prefix=/<section>/v. Just make sure
you remember that section will now be an injected keyword argument in
every route handler.

You should now have a good grasp of how and when to use versions. They are a powerful
tool in making your API more professional and maintainable since they allow for more
flexible development patterns. Next, we will explore another tool for creating flexibility
and reusability in your application code: virtual hosts.

Virtual hosts
Some applications can be accessed from multiple domains. This gives the benefit of having
a single application deployment to manage, but the ability to service multiple domains.
In our example, we will imagine that we completed the computer adventure game social
media site. The API is truly amazing.

86 Routing and Intaking HTTP Requests

It is so incredible in fact that both Alice and Bob have approached us about the
opportunity to be resellers and to white label our application, or reuse the API for their
own social media sites. This is a somewhat common practice in the internet world where
one provider builds an application and other providers simply point their domain to
the same application and operate as if it is their own. To achieve this, we need to have
distinct URLs:

•	 mine.com

•	 alice.com

•	 bob.com

All of these domains will be set up with their DNS records pointing to our application.
This can work without any further changes inside the application. But what if we need to
know which domain a request is serving, and do something slightly different for each one?
This information should be available to us in the request headers. It should simply be a
matter of checking the headers:

@bp.route("")

async def do_something(request: Request):

 if request.headers["host"] == "alice.com":

 await do_something_for_alice(request)

 elif request.headers["host"] == "bob.com":

 await do_something_for_bob(request)

 else:

 await do_something_for_me(request)

This example may seem small and simple, but you can probably imagine how the
complexity could increase. Remember earlier I stated how I like to keep the lines of
code per handler to a minimum? This is certainly a use case where you can imagine the
handlers could get very lengthy.

Essentially, what we are doing in this endpoint is host-based routing. Depending upon the
incoming request host, we are routing the endpoint to a different location.

Sanic already does that for us. All we need to do is break the logic into separate route
handlers and give each one a host argument. This achieves the routing that we need but
keeps it out of our response handlers:

@bp.route("", host="alice.com")

async def do_something_for_alice(request: Request):

 await do_something_for_alice(request: Request)

Virtual hosts 87

@bp.route("", host="bob.com")

async def do_something_for_bob(request: Request):

 await do_something_for_bob(request: Request)

@bp.route("", host="mine.com")

async def do_something_for_me(request: Request):

 await do_something_for_me(request: Request)

If you find yourself in this situation, you do not need to define a host for every endpoint,
only the endpoints where you would want to have host-based routing. Following this
pattern, we can reuse the same application across multiple domains, and still have some
endpoints capable of distinguishing between them, and others ignorant to the fact that
multiple domains are reaching them.

One thing that is important to keep in mind: if you create an endpoint that has host-level
routing, then all routes on that same path must also have it. You cannot, for example, do
the following. Notice how the third route does not define the host argument.

The following example will not work, and will raise an exception at startup:

@bp.route("", host="alice.com")

async def do_something_for_alice(request: Request)::

 await do_something_for_alice(request: Request)

@bp.route("", host="bob.com")

async def do_something_for_bob(request: Request):

 await do_something_for_bob(request: Request)

@bp.route("")

async def do_something_for_me(request: Request):

 await do_something_for_me(request: Request)

To solve this, make sure that all routes that could be grouped together have a host value.
This way they can be distinguished. If one of them has a host, they all need to have one.

We have generally now discussed all of the considerations to make when routing web
requests to our response handlers. But, we have not yet looked at how Sanic delivers
requests to static content (that is, actual files on your web server that you want to send
such as images and style sheets). Next, we will discuss some options both with and
without using Sanic.

88 Routing and Intaking HTTP Requests

Serving static content
So far, all of our discussion in this chapter has been about dynamically generating content
for responses. We did, however, discuss that passing files that exist inside of a directory
structure is a valid use case that Sanic supports. This is because most web applications
have the need to serve some static content. The most common use cases would be for
delivering JavaScript files, images, and style sheets to be rendered by the browser. Now,
we are going to dive into static content to see how that works, and we can deliver this type
of content. After learning how Sanic does it, we will see another very common pattern to
serve the content outside of Sanic with a proxy.

Serving static content from Sanic
Our app instance has a method on it called app.static(). That method requires two
arguments:

•	 A URI path for our application

•	 A path to tell Sanic where it can access that resource

That second argument can either be a single file or a directory. If it is a directory,
everything inside of it will be accessible, like the old school web servers we talked about at
the beginning of the chapter.

This is very helpful if you plan to serve all of your web assets. What if you have a folder
structure like this?

.

├── server.py

└── assets

 ├── index.html

 ├── css

 │ └── styles.css

 ├── img

 │ └── logo.png

 └── js

 └── bundle.js

We can use Sanic to serve all of those assets and make them accessible like this:

app.static("/static", "./assets")

Serving static content 89

Those assets are now accessible:

$ curl localhost:7777/static/css/styles.css

Serving static content with Nginx
Now that we have seen how to serve static files with Sanic, a good next question is: should
you?

Sanic is very fast at creating the sort of dynamic endpoints that are required by most web
APIs. It even does a pretty good job serving static content, keeps all of your endpoint logic
in one application, and allows for manipulating those endpoints or renaming files. As we
discussed in Chapter 1, Introduction to Sanic and Async Frameworks, Sanic applications
are also meant to be fast to build.

There is however a potentially faster method for delivering static content. For a
single-page application that is meant to be consumed by a browser that requests
data through your API, one of your biggest stumbling blocks will be reducing the time
to your first page render. This means that you must package up all of your JavaScript, CSS,
image, or other files as quickly as possible in the browser to reduce rendering latency.

For this reason, you might want to consider using a proxy layer such as Nginx in front of
Sanic. The purpose of the proxy would be to:

1.	 Send any requests to the API through toSanic
2.	 Handle serving static content itself.

You may want to consider this option especially if you intend to serve a lot of static
content. Nginx has a caching engine built in to be able to deliver static content much faster
than any Python application could.

Chapter 8, Running a Sanic Server, discusses deployment strategies and considerations to
make when deciding whether to use tools such as Nginx and Docker. For now, we will use
Docker Compose to really quickly and easily stand up Nginx:

1.	 We need to make our docker-compose.yml manifest:

version: "3"

services:

 client:

 image: nginx:alpine

 ports:

90 Routing and Intaking HTTP Requests

 - 8888:80

 volumes:

 - ./nginx/default.conf:/etc/nginx/conf.d/default.
conf

 - ./static:/var/www

If you are not familiar with Docker Compose or how to install and run it, you
should be able to find a wealth of tutorials and information online.

This simple setup we are going for in our example will require that you set the path
for ./static in our docker-compose.yml file to whatever directory you have
your static assets in.

Tip
This is intentionally a super simple implementation. You should make sure
that a real Nginx deployment includes things such as TLS encryption and
proxy secrets. Check out the user guide for more details and a helpful walk-
through: https://sanic.dev/en/guide/deployment/nginx.
html#nginx-configuration.

2.	 Next, we will create the ./nginx/default.conf file needed to control Nginx:

upstream example.com {

 keepalive 100;

 server 1.2.3.4:8000;

}

server {

 server_name example.com;

 root /var/www;

 location / {

 try_files $uri @sanic;

 }

 location @sanic {

 proxy_pass http://$server_name;

 proxy_set_header Host $host;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_set_header X-Real-IP $remote_addr;

https://sanic.dev/en/guide/deployment/nginx.html#nginx-configuration
https://sanic.dev/en/guide/deployment/nginx.html#nginx-configuration

Serving static content 91

 proxy_set_header X-Forwarded-For $proxy_add_x_
forwarded_for;

 }

 location ~* \.(jpg|jpeg|png|gif|ico|css|js|txt)$ {

 expires max;

 log_not_found off;

 access_log off;

 }

}

We start it using the following command:
$ docker-compose up

The most important thing to change here is the server address. You should change
1.2.3.4:8000 to whatever address and port your application can be accessed
at. Keep in mind that this will NOT be 127.0.0.1 or localhost. Since Nginx
will be running inside of a Docker container, that local address will point to
the container itself, and not your computer's local network address. Instead, for
development purposes, you should consider setting it to your local IP address.

3.	 You will need to make sure that Sanic knows to serve on that network address. Do
you remember how we said we are running Sanic back in Chapter 2, Organizing a
Project? It looked like this:

$ sanic server:app -p 7777 --debug --workers=2

For this example, we will change that to this:
$ sanic server:app -H 0.0.0.0 -p 7777 --debug --workers=2

My local IP address is 192.168.1.7, therefore I will set the upstream block in
my Nginx configuration to server 192.168.1.7:7777;.

4.	 You should now be able to access any static files in your ./static directory. I
have a file called foo.txt. I am using the -i flag with curl to be able to see the
headers. The important headers to see are Expires and Cache-Control. These
help your browser to cache the file instead of re-requesting it:

$ curl localhost:8888/foo.txt -i

HTTP/1.1 200 OK

Server: nginx/1.21.0

Date: Tue, 15 Jun 2021 18:42:20 GMT

Content-Type: text/plain

92 Routing and Intaking HTTP Requests

Content-Length: 9

Last-Modified: Tue, 15 Jun 2021 18:39:01 GMT

Connection: keep-alive

ETag: "60c8f3c5-9"

Expires: Thu, 31 Dec 2037 23:55:55 GMT

Cache-Control: max-age=315360000

Accept-Ranges: bytes

hello...

If you try to send a request to a file that does not exist, Nginx will send that route on to
your Sanic application. This setup is just the tip of the iceberg when it comes to proxying
and Nginx. It is, however, very common for Python web applications to use a strategy like
this. As mentioned earlier, we will dig deeper into this topic when we discuss deployment
options in Chapter 8, Running a Sanic Server.

Streaming static content
It is also worth reiterating that the Sanic server is built and intended to be a frontline
server. That means that it can certainly stand as your point of ingress without a proxy
server in front of it, including serving static content. The decision about whether to proxy
or not—at least as it relates to delivering static files—is likely a question of how much
traffic and how many files your application may need to deliver.

Another important factor to consider is whether your application needs to stream files.
Streaming will be discussed in depth in Chapter 5, Building Response Handlers. Let's create
a really simple web page to stream a video and see what that might look like:

1.	 First, the HTML. Store this as index.html:

<html>

 <head>

 <title>Sample Stream</title>

 </head>

 <body>

 <video width="1280" height="720" controls>

 <source src="/mp4" type="video/mp4" />

 </video>

 </body>

</html>

Summary 93

2.	 Next, find an mp4 file that you want to stream. It can be any video file. If you do
not have one, you can download a sample file for free from a website such as this:
https://samplelib.com/sample-mp4.html.

3.	 We will now create a small Sanic app to stream that video:

from sanic import Sanic, response

@app.route("/mp4")

async def handler_file_stream(request: Request):

 return await response.file_stream("/path/to/sample.
mp4")

app.static("/index.html", "/path/to/index.html")

@app.route("/")

def redirect(request: Request):

 return response.redirect("/index.html")

4.	 Run the server as normal and visit it in your web browser: http://
localhost:7777.

You should notice that the root URI (/) redirected you to /index.html. Using app.
static, the application tells Sanic that it should accept any requests to /index.html
and serve back the static content that is located on the server at /path/to/index.
html. This should be your delivered content from above. Hopefully, you have a play
button, and you can now stream your video to your browser. Enjoy!

Summary
This chapter covered a lot of material on taking an HTTP request and turning it into
something usable. At the core of a web framework is its ability to translate a raw request
into an actionable handler. We learned about how Sanic does this and how we can use
HTTP methods, good API design principles, paths, path parameter extraction, and
static content to build useful applications. As we learned earlier in this book, a little bit
of upfront planning goes a long way. Before putting too much code together, it is really
helpful to think about the tools HTTP offers, and how Sanic allows us to take advantage
of those features.

https://samplelib.com/sample-mp4.html

94 Routing and Intaking HTTP Requests

If we did a good job in Chapter 2, Organizing a Project, of setting up directories, it should
be very easy for us to loosely mirror that structure and nest blueprints to match our
intended API design.

There are some key takeaways from this chapter. You should purposely, and thoughtfully,
design your API endpoint paths—using nouns—that point to an intended target or
resource. Then, HTTP methods should be used as the verbs that tell your application
and users what to do with that target or resource. Finally, you should extract helpful
information from those paths to be used in your handlers.

We mainly focused our attention on the first line of the raw HTTP request: the HTTP
method and URI path. In the next chapter, we will dive into extracting more data from the
request, including the headers and the request body.

4
Ingesting HTTP Data

The next building block in application development involves data. Without data, the web
has little utility. I do not mean to get too philosophical here, but it is axiomatic that the
purpose of the internet is the facilitation of the transfer of data and knowledge from one
location to another. Therefore, it is critical to our development as web professionals to
learn how data can be transferred not just from our applications (which we deal with in
Chapter 5, Building Response Handlers), but also to our applications (which is the purpose
of this chapter). The simplest applications we can build simply provide data. However, to
become interactive web applications participating in the global exchange of knowledge,
even simple applications must be capable of extracting data from web requests.

A web application that receives no data is like a screencast. Viewers can come to watch the
presentation, but the presenter has no personal connection to the people watching. During
the COVID-19 global pandemic, I was fortunate enough to still be able to participate in
several Python conventions. Much applause is due to the volunteers who pushed forward
to present the community with a continuation of the sharing and learning atmosphere
that exists with technology conferences. However, I would be remiss to point out that, as
a presenter, I had zero connection to my audience. It was not until after the presentation
was done that I even knew how many people watched my content.

96 Ingesting HTTP Data

This model can be useful to disperse information to those who need to intake information
from it. However, the transaction is entirely one-sided. My presentations could not be
adjusted based upon cues from the audience, and even during chat or question and
answer sessions, there was an interpersonal experience that was missing. In much the
same way, a web application that receives no data operates under a similar principle. The
server has no knowledge about who is listening and cannot alter its behavior or content
based upon user input. These types of applications are purely for the dissemination of data
and resources only.

Generally, web APIs of this kind only have GET methods since they exist entirely to
spit back information. They can be useful for relaying information about the weather,
flight details, or other centralized repositories of information that many people might
want to access.

To build a truly interactive API, we need it to operate not like a screencast, but more
like a video chat. Both sides of the conversation will participate in the passing of
information back and forth. And it is this bidirectional communication that we will
explore in this chapter.

If you recall from our earlier discussions, there are three main sections in the raw HTTP
request: the first line, the HTTP headers, and the body. So far, we have focused on
intaking HTTP requests as they relate to the HTTP method and the path: that is, the
information that appears on the first line of the HTTP request.

In this chapter, we will learn how to get data from the client from all three sections. Data
can be passed to a web server in query arguments, headers, and, of course, the body itself.
Therefore, in this chapter, we will explore the following:

•	 Reading cookies and headers

•	 Reading forms, query arguments, files, JSON, and more

•	 Validating data

Technical requirements
In this chapter, you should have, at your disposal, the same tools available as in the
previous chapters in order to follow along with the examples (such as an IDE, modern
Python, and curl). You can access the source code for this chapter on GitHub at
https://github.com/PacktPublishing/Python-Web-Development-
with-Sanic/tree/main/Chapter04.

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter04
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter04

Reading cookies and headers 97

Reading cookies and headers
As we have learned from the earlier chapters of this book, when an HTTP client sends
a request to a web server, it includes one or more headers that are in a key/value pair.
These headers are meant to be part of a meta-conversation between the client and the
server. And since an HTTP connection is a two-sided transaction with both a request
and a response, we must bear in mind that there is a distinction between request headers
and response headers.

This chapter focuses only on HTTP requests. Therefore, we will only be covering material
related to request headers. This is worth pointing out because there are some headers
that are commonly found in both the request and the response. One such example is
Content-Type, which can be used by both HTTP requests and HTTP responses. So, keep
this in mind when we talk about Content-Type in this section it relates to HTTP requests
only. There is a time and a place for discussing response headers. Feel free to skip ahead,
or read this section in conjunction with Chapter 5, Building Response Handlers, where we
will discuss the other side of the same coin.

Headers are flexible
HTTP headers are not magic. There is no predefined, finite list of header names.
Furthermore, deviating from what is considered standard will have no impact on your
application. Remember when we discussed HTTP methods, and we said that you could
invent your own methods? Well, you have that control and ability to create your own
headers as well.

This practice is both commonplace and encouraged. Are you familiar with Cloudflare? In
short, Cloudflare is a popular tool used as a proxy for web applications. We will discuss
proxies further in Chapter 8, Running a Sanic Server. The idea is simple: Cloudflare runs
a web server, a request comes into their server, they do something to it, and then bundle
that up and send the request on to your server. When they do that, they include their
own set of non-standard headers. For example, they will forward the request to you
with CF-Connection-IP and CF-IPCountry headers to give you some helpful
information about the IP address and the location of its origin.

Let's imagine that we are building an API to be used by a farmer's market. They want to
set up a web API that will help coordinate among the various participants in the market:
farmers, restaurant owners, and consumers. The first endpoint we build will be used to
provide information about the market stalls for a given day:

@app.get("/stalls/<market_date:ymd>")

async def market_stalls(request: Request, market_date: date):

98 Ingesting HTTP Data

 info = await fetch_stall_info(market_date)

 return json({"stalls": info})

The response content from this endpoint does not require authentication (we will discuss
this further later), but it really ought to be tailored to each of the types of users. A farmer
might want to know how many stalls are available. Consumers and restaurant owners
might be more interested in knowing the kinds of products that will be available instead.
Therefore, we have identified at least two different use cases for the same endpoint.

One option might be to split this single endpoint into two: /stalls/<market_ date:ymd>/
availability and /stalls/<market_date:ymd>/products.

However, this does add some complexity to the overall API design. Furthermore,
availability and products, as used in this context, are not really resources in and
of themselves. Giving them their own endpoint sort of muddies the water of the current
structure of our API.

What we are really saying is that we have a single resource—the collection of market stalls
for a given day of the year—and we simply want to present those resources in different
ways based upon the participant type. It really is only one endpoint with two different
ways of displaying the same information.

Perhaps instead of two different endpoints, a second option might be to use query
parameters (more on those later in the Query arguments section). That would look
like this: /stalls/<market_date:ymd>?participant=farmer, and /
stalls/<market_date:ymd>?participant=consumer. This also sort of breaks
the paradigm of query parameters—or at least the way I like to use them—which are,
typically, meant to be used for filtering and sorting results.

Instead, we will opt for creating a custom header for our use case: Participant-
Type: farmer. We will also create an Enum to help us validate and limit the acceptable
participants:

from enum import Enum, auto

class ParticipantType(Enum):

 UNKNOWN = auto()

 FARMER = auto()

 RESTAURANT = auto()

 CONSUMER = auto()

@app.get("/stalls/<market_date:ymd>")

Reading cookies and headers 99

async def market_stalls(request: Request, market_date: date):

 header = request.headers.get("participant-type", "unknown")

 try:

 paticipant_type = ParticipantType[header.upper()]

 except KeyError:

 paticipant_type = ParticipantType.UNKNOWN

 info = await fetch_stall_info(market_date, paticipant_type)

 return json(

 {

 "meta": {

 "market_date": market_date.isoformat(),

 "paticipant_type": paticipant_type.name.
lower(),

 },

 "stalls": info,

 }

)

When the request comes in, the handler will try and read the header, expecting
there to be a valid ParticipantType object. If there is no Participant-Type
header, or if the passed value is of an unknown type, we will simply fall back to
ParticipantType.UNKNOWN.

Important Note
As you can see in the preceding example, request.headers.
get("participant-type") is in lowercase. This really does not
matter. It could be uppercase, lowercase, or a mix. All headers will be read as
case-insensitive keys. So, even though the request.headers object is a
dict, it is a special kind of dictionary that does not care about the case. It is
only a convention to use lowercase letters when retrieving headers from Sanic.
Feel free to do what makes sense to you. However, I would caution you to try
and stay consistent throughout a project. It can be confusing if, sometimes,
you see headers.get("Content-Type"), and other times, you see
headers.get("content-type").

100 Ingesting HTTP Data

Tip
Enums are great. You should really use them everywhere you can. While using
them for validation, as we are doing here, might not be their most obvious
use case, they are super helpful when needing to pass around some types
of constants. Imagine having to remember deep inside the bowels of your
application: is it restaurant-owner, restaurant_owner, or restaurant? Using
enums can help reduce bugs, can provide a single place to maintain and update,
and can provide you with code completion if your IDE supports it. In this
book, you will see me use enums in a variety of ways. Next to asyncio, the
standard library enum package might just be one of my favorites.

Getting back to our example, we will now try and hit our endpoint with a few different
examples to see how it responds with different headers:

1.	 We will access the information with a known type pretending to be a farmer:

$ curl localhost:7777/stalls/2021-06-24 -H "Participant-
Type: farmer"

{

 "meta": {

 "market_date": "2021-06-24",

 "paticipant_type": "farmer"

 },

 "stalls": [...]

}

2.	 Now, we will leave out the header to see how the endpoint will respond to the
absence of any type:

$ curl localhost:7777/stalls/2021-06-24

{

 "meta": {

 "market_date": "2021-06-24",

 "paticipant_type": "unknown"

 },

 "stalls": [...]

}

Reading cookies and headers 101

3.	 Finally, we will hit the endpoint with a type we have not anticipated:

$ curl localhost:7777/stalls/2021-06-24 -H "Participant-
Type: organizer"

{

 "meta": {

 "market_date": "2021-06-24",

 "paticipant_type": "unknown"

 },

 "stalls": [...]

}

We have successfully implemented a custom HTTP header that can be used by our
endpoint to decide how it will display and customize the output. We might be getting
ahead of ourselves since we will cover middleware in Chapter 6, Operating Outside the
Response Handler, but what if we want to reuse the Participant-Type header on other
endpoints? Here is a quick demonstration to make this universal to our entire application:

@app.on_request

async def determine_participant_type(request: Request):

 header = request.headers.get("participant-type", "unknown")

 try:

 paticipant_type = ParticipantType[header.upper()]

 except KeyError:

 paticipant_type = ParticipantType.UNKNOWN

 request.ctx.paticipant_type = paticipant_type

@app.get("/stalls/<market_date:ymd>")

async def market_stalls(request: Request, market_date: date):

 info = await fetch_stall_info(market_date, request.ctx.
paticipant_type)

 return json(

 {

 "meta": {

 "market_date": market_date.isoformat(),

102 Ingesting HTTP Data

 "paticipant_type": request.ctx.paticipant_type.
name.lower(),

 },

 "stalls": info,

 }

)

By evaluating the header inside middleware, we can now place participant_type
inside the request object for easy access.

The last thing that I would like to point out about this development example is the
mindset toward testability. Notice how we identified three different potential uses of the
endpoint: a known type, a lack of a type, and an unknown type. We will talk about testing
in Chapter 9, Best Practices to Improve Your Web Applications. However, as we continue
working through this book, it is good to be reminded not only of how to work with
Sanic, but the types of things we should be thinking about when we uncover a problem.
Thinking ahead about how the application could be used will help us to understand the
types of use cases we might want to test for and, therefore, the types of use cases that our
application needs to handle.

Tip
Also, it is worth pointing out that the request.ctx object is there for
you to attach any information you want to it. This is really powerful to help
pass information around and to abstract some logic to middleware, as shown
earlier. Keep in mind that this only lasts as long as the request lasts. After there
is a response, anything on that request.ctx object will be disposed of.
There is also a similar context for the entire lifespan of the application and the
lifespan of a single client connection. These are app.ctx and request.
conn_info.ctx, respectively. Please refer to Chapter 6, Operating Outside
the Response Handler, for more information regarding these ctx objects.

Even though it is entirely possible to create your own set of headers—and indeed, I highly
encourage it—there does exist a set of common headers that are standard among clients
and servers. In the next sections, we will explore what some of those are.

Reading cookies and headers 103

Common headers
There is a set of predefined standard headers in section 5 of RFC 7231: https://
datatracker.ietf.org/doc/html/rfc7231#section-5. If you are so inclined,
put this book down and go read that section. We'll be waiting for you. If not, let's try
and pull out some highlights and several of the more important request headers that you
should probably know about.

Authentication headers
One of the primary mechanisms for authenticating web requests is through the use
of headers. The other basic method is with cookies (which, technically, is also a header,
but more on that later, in the Getting information from cookies (yum!) section). While
there are certainly different types of authentication schemes (such as basic auth, JWT,
and session tokens, to name a few), generally, they share the same construct: the use
of the Authorization header.

You might have just noticed something peculiar. We are talking about authentication—
at least, that's what the title of this section is called. But we just said that the primary
authentication header is called Authorization. How can this be?

We will cover this in more detail in Chapter 7, Dealing with Security Concerns, when
we discuss access control more thoroughly, but it is worth mentioning the distinction
and the fundamental questions that these two related concepts are trying to answer:

•	 Authentication: Do I know who this person is?

•	 Authorization: Should I let them in?

I like to keep these two concepts of authentication and authorization straight in my
head by imagining a gatekeeper at a medieval castle. The gatekeeper's job is to protect
access to the castle and is one of the first lines of defense. This is done in two phases.
The first function of the gatekeeper is to identify a person approaching the castle and
seeking access to enter. In medieval Europe, they might have used colorful flags or
banners for this purpose.

The gatekeeper must decide whether the identity of the person approaching is authentic:
do they believe that the person is who they claim to be? If their identity does not appear
to be authentic, this means that they are Unauthorized to even move on to the second
phase. After positively identifying the person—which means that their identity has been
authenticated—the gatekeeper's next task is to determine whether this person should be
allowed entry. If not, their entry to the castle is Forbidden.

https://datatracker.ietf.org/doc/html/rfc7231#section-5
https://datatracker.ietf.org/doc/html/rfc7231#section-5

104 Ingesting HTTP Data

A failure to authenticate results in a 401 Unauthorized error message, and a failure of
authorization is a 403 Forbidden error message. It is an unfortunate quirk in the history
of the internet that these terms have been muddled up and that they developed as they
did. They are confusing and inconsistent. But if you think of both authentication and
authorization as a consecutive, linear process, it might be easier to consider the resulting
error message as it relates to the subsequent step of the process. Therefore, a failure of
authentication means that the user is unauthorized to even present itself for authorization
consideration.

So, even though the HTTP header used for authentication is called Authorization, and
even though its failure should lead to an Unauthorized response, we are still exclusively
talking about authentication and answering the question of do I know who this person
is? Or, as the medieval gatekeeper might ask, does this person's flag and identity appear
authentic?

Because Sanic does not take a stance in terms of how you should build your application,
we have a lot of freedom in choosing how we want to consume the Authorization request
header. Three main strategies come to mind here:

•	 Decorators

•	 Middleware

•	 Blueprints

Let's look at each of these individually.

Decorators
First, let's look at an example using decorators:

from functools import wraps

from sanic.exceptions import Unauthorized

def authenticated(handler=None):

 def decorator(f):

 @wraps(f)

 async def decorated_function(request, *args, **kwargs):

 auth_header = request.headers.get("authorization")

 is_authenticated = await check_authentication(auth_
header)

 if is_authenticated:

Reading cookies and headers 105

 return await f(request, *args, **kwargs)

 else:

 raise Unauthorized("who are you?")

 return decorated_function

 return decorator(handler) if handler else decorator

@app.route("/")

@authenticated

async def handler(request):

 return json({"status": "authenticated"})

The core of this example is inner decorated_function. Essentially, this is saying that
before running our actual handler (which is f), run check_authentication. This
allows us the opportunity to execute code inside the route but before we get to the actual
defined handler.

This decorator pattern is extremely common in Sanic—not only for running checks
but also for injecting arguments into our handler. If you are not using some form of
decorator in your application, you are leaving some real power on the table. It is a useful
way to duplicate logic across endpoints, and I highly recommend you get familiar and
comfortable with using them. There is a very helpful starter example that can be found
in the Sanic User Guide at https://sanic.dev/en/guide/best-practices/
decorators.html.

Tip
Notice handler=None and the last return line:

def authenticated(handler=None):

 ...

 return decorator(handler) if handler else
decorator

The reason we do this is because we are allowing our decorator to be used in
one of two ways: either via @authenticated or @authenticated().
You will have to decide which one is (or whether both are) appropriate for
your needs.

https://sanic.dev/en/guide/best-practices/decorators.html
https://sanic.dev/en/guide/best-practices/decorators.html

106 Ingesting HTTP Data

Middleware
Now that we have seen how this works with decorators, how can we achieve the same logic
with middleware? In the next example, we will try and achieve the same functionality that
the decorator example provided, except we will be using middleware:

@app.on_request

async def do_check_authentication(request: Request):

 is_authenticated = await check_authentication(auth_header)

 if not is_authenticated:

 raise Unauthorized("who are you?")

The downside of this method is that we have just locked up our entire API! What about
our /stalls/<market_date:ymd> endpoint or even the endpoints that are meant
for logging in? One way to fix this is to check whether the request has a matched Route
instance (it should unless we are responding to a 404 Not Found error), and if it does,
make sure it is not one of the exempt routes. Here, we can see an example of how to do
that by cross-referencing the name of the matched route with an express list of exempt
endpoints:

@app.on_request

async def do_check_authentication(request: Request):

 if request.route and request.route.name not in (

 "MyApp.login",

 "MyApp.market_stalls",

):

 is_authenticated = await check_authentication(auth_
header)

 if not is_authenticated:

 raise Unauthorized("who are you?")

This time, in the middleware, we are taking a look at the route's name to check whether it
is one of the routes that we know should be safe.

Reading cookies and headers 107

Important Note
As a quick aside—since we have not seen it before—all routes will have a name.
You can, of course, name them manually:

@app.route(..., name="hello_world")

More likely than not, we can just let Sanic name our routes. By default, it will
use the handler function's name, and then append it to our application name
(and any blueprints) with dot notation. That is why we see MyApp.login
and MyApp.market_stalls. They are presuming that our application
is called MyApp, and the handlers for our exempt endpoints are login and
market_stalls, respectively.

Hang on a minute?! Do you want me to keep a list of names of exempt endpoints? That
sounds like a nightmare to maintain! True. If you are only handling two items, such as this
simple use case, it is probably manageable enough. But once we begin really building out
an application, this might start to get super unwieldy. Feel free to decide which of the two
patterns makes more sense. Using decorators is clearer and far more explicit.

However, it does lead to more code repetition. The middleware alternative is simpler to
implement and easier to audit to ensure that we are not forgetting to protect any routes.
Its downside is that it hides some functionality and would be harder to maintain if the list
of safe endpoints grows. If you are in any doubt about which makes sense for your needs,
I would suggest more explicit authentication decorators. However, this does indicate that
there are usually different ways to tackle the same problems. Coming back to the point of
Chapter 1, Introduction to Sanic and Async Frameworks, if one of these solutions appears
more obviously correct to you, then that is likely to be the one that you should use.

Blueprints
And this is where our third solution comes in: our friend blueprints again. This time,
we are going to continue using middleware, but we are only going to apply middleware
to the blueprints that contain the protected endpoints:

protected = Blueprint("Protected")

@protected.route("/")

async def handler(request):

 return json({"status": "authenticated"})

@protected.on_request

async def do_check_authentication(request: Request):

108 Ingesting HTTP Data

 auth_header = request.headers.get("authorization")

 is_authenticated = await check_authentication(auth_header)

 if not is_authenticated:

 raise Unauthorized("who are you?")

Since we are placing the middleware on the protected blueprint, it will only run on the
routes that are attached to it. This leaves everything else open.

Context headers
These headers provide you with some information about the web browser where the
request originated. Generally, they are useful in analytics and logging to provide some
information about how your application is being used. Let's examine some of the more
common contextual headers:

•	 Referer: This header contains the name of the page that directed the user to the
current request. It is really helpful if you want to know from which page on your
application an API request came from. If your API is not meant to be used by a
browser, perhaps it is less important. Yes, it is misspelled. The internet is not perfect.

And now for a bit of trivia knowledge: RFC 1945 was published in 1996 as a
specification of the HTTP/1.0 protocol. The team that published it included none
other than Tim Berners-Lee (that is, the inventor of the World Wide Web). Section
10.13 introduced the Referer header, but it was inadvertently misspelled in the
specification! Subsequent specifications and implementations have adopted this
misspelling, and it has stuck with us for almost 30 years. If nothing else, it is a
certain warning about the use of spellcheck: https://datatracker.ietf.
org/doc/html/rfc1945#section-10.13.

•	 Origin: This header is similar to Referer. While the Referer header will
generally include the full path of where the request originated, the Origin header
is just a URL in the form of <scheme>://<hostname>:<port> without the
path. We will look at how we can use it to protect our application from CORS
attacks in Chapter 7, Dealing with Security Concerns.

•	 User-Agent: This header is almost always sent by every HTTP client. It identifies
the type of application that is accessing your API. Commonly, it is a browser, but it
could also be curl, a Python library, or a tool such as Postman or Insomnia.

https://datatracker.ietf.org/doc/html/rfc1945#section-10.13
https://datatracker.ietf.org/doc/html/rfc1945#section-10.13

Reading cookies and headers 109

•	 Host: Back in Chapter 3, Routing and Intaking HTTP Requests, we learned how to
do host-based routing with virtual hosts. This is accomplished by reading the Host
header. While Origin is the domain where the request is coming from, Host
is where it is going to. Usually, we know this information ahead of time. Except,
sometimes, we either have a dynamic host (such as a wildcard subdomain) or
multiple domains pointing to one application.

•	 Forwarded headers: This encompasses both Forwarded headers and a bunch
of X-Forwarded-* headers. Generally, when you see a header that starts with
X-, it means it is a header that has come into common practice and usage, but its
implementation is not necessarily standard.

What are these headers? They contain details about the web request and are used by
intermediary proxies (such as Nginx or Cloudflare) to pass along relevant details about the
request. The most common is X-Forwarded-For. This is a list of all of the IP addresses
from the originating request to the current server that handled the request (this is not the
same as a traceroute). This is incredibly helpful and important when trying to identify a
request by an IP address.

Important Note
As with all headers and input data, you should never assume that incoming
user data is accurate and harmless. It is very simple for someone to spoof
headers. As always, we need to be cautious when reading headers and not just
take them at face value.

Sanic extracts header data for us
Sanic will automatically extract information about the request from headers and place
them onto easily accessible attributes in the Request object. This makes them very useful
to access when needed. Here is a reference for some of the common attributes that you
might encounter:

Table 4.1 – Extracted header data

110 Ingesting HTTP Data

Tip
Sometimes, it might be confusing to know when to use request.ip and
when to use request.remote_addr. The former property will always be
set and will always return the IP address of the client that is connecting to it.
This might not actually be what you want. If your application is behind a proxy
server, and you need to rely on X-Forwarded-For, then, most likely, the
attribute you want is request.remote_addr.

Headers as multi-dict
Headers are stored in Sanic as a multi-dict. This is a special data type that will operate
both as a one-to-one key-to-value dictionary and a one-to-many key-to-value dictionary.
To illustrate the point, here is what both of these dictionaries will typically look like:

one_to_one = {

 "fruit": "apples"

}

one_to_many = {

 "Fruit": ["apples", "bananas"]

}

The header object in Sanic functions as both of these simultaneously. Moreover, it regards
the keys as case-insensitive. Did you notice, in the last example, that the keys are different
cases? Using standard dictionaries, the following would be false:

"fruit" in one_to_one and "fruit" in one_to_many

However, because the HTTP specification allows for HTTP headers to be case-insensitive,
the Sanic header object is also case-insensitive. But how does it handle the issue between
one-to-one and one-to-many?

Again, the HTTP specification allows for multiple identical headers to be concatenated
without overriding one another. Sanic opts for this special data type to be standards-
compliant. If you do nothing special and merely treat the header object as a regular
Python dict in your application, it will work just fine. You might not ever even notice
that it is not a regular dictionary. However, you will only ever access the first value passed
to it for each header. If you need to support multiple values for the same header, you can
access the full list of values.

Reading cookies and headers 111

Consider the following example:

@app.route("/")

async def handler(request):

 return json(

 {

 "fruit_brackets": request.headers["fruit"],

 "fruit_get": request.headers.get("fruit"),

 "fruit_getone": request.headers.getone("fruit"),

 "fruit_getall": request.headers.getall("fruit"),

 }

)

Now, let's hit this endpoint with multiple Fruit headers:

$ curl localhost:7777/ -H "Fruit: apples" -H "Fruit: Bananas"

{

 "fruit_brackets": "apples",

 "fruit_get": "apples",

 "fruit_getone": "apples",

 "fruit_getall": [

 "apples",

 "Bananas"

]

}

Using either square brackets or the .get() method provides us with apples because
that was the first Fruit header that was sent. A more explicit usage would be to use
.getone(). Alternatively, we can use .getall() to return the full list of Fruit
header values. Again, the case does not matter for header keys. For values, however, it
does. Notice how, in our example, Fruit became fruit, but Bananas did not change
its case at all.

112 Ingesting HTTP Data

Getting information from cookies (yum!)
Building a web application without cookies is like ending a meal without cookies. Sure, it
could be done. But why would you want to? Given a choice, pick the cookies.

Jokes aside, cookies are, of course, an extremely important topic to consider. They are the
backbone of many of the rich user experiences of web applications. Additionally, cookies
are inherently full of potential security pitfalls. Generally, the security issues are more of a
concern when we talk about setting cookies (Chapter 5, Building Response Handlers) and
securing our web applications (Chapter 7, Dealing with Security Concerns). Here, we are
mainly interested in how to access cookies so that we can read the data from them.

A web cookie is a specialized HTTP header: Cookie. This header contains a structured
set of data defined by RFC 6265, Section 5.4: https://tools.ietf.org/html/
rfc6265#section-5.4. The incoming cookie from a request is treated, in Sanic,
like a regular dictionary:

1.	 In order to get an explicit look at how cookies are structured, set up a debug handler
as follows:

@app.route("/cookies")

async def cookies(request):

 return json(request.cookies)

2.	 Now, we will send some cookies using curl:

$ curl localhost:7777/cookie -H "Cookie: name=value;
name2=value2; name3=value3"

{

 "name": "value",

 "name2": "value2",

 "name3": "value3"

}

As you can see, the data is just a simple key/value dictionary. Therefore, accessing cookies
should be very straightforward. Like other forms of data, it is, of course, advisable to
treat them with suspicion. These values are not immune to tampering and can easily be
spoofed. Nonetheless, they are an important part of the web, especially if your application
needs to support a frontend UI.

While using cookies will be an invaluable source of data for your applications, the primary
method for users to pass information will come in other forms. Next up, we look at the
other methods of passing data from a web client to a web server.

https://tools.ietf.org/html/rfc6265#section-5.4
https://tools.ietf.org/html/rfc6265#section-5.4

Reading forms, query arguments, files, JSON, and more 113

Reading forms, query arguments, files, JSON,
and more
Now that we know about pulling input from the path and the headers, we will turn our
attention to more classic types of passing input values. Typically, we think of request data
as being those bits of information that come from the request body. However, before we
turn to the request body, we still have one more item in the first line of the HTTP request
to examine: Query arguments.

Query arguments
As a reminder, the first line of an HTTP request looks like this:

GET /stalls/2021-07-01?type=fruit HTTP/1.1

If you have previous web experience, you might know that a URL can have a section of
arbitrary parameters separated from the rest of the path by a question mark (?). These
are known as query arguments (or parameters), follow in the form of key=value, and
are concatenated with an ampersand (&). Sometimes, they are called parameters, and
sometimes, they are called arguments. Here, we will call them arguments since this is what
Sanic opts for to be able to distinguish them from path parameters.

Query arguments are very simple to use, and we can gain access to them on our request
instance:

@app.route("/")

async def handler(request: Request):

 print(request.args)

 return text(request.args.get("fruit"))

We can send query arguments to our endpoint using curl, as follows:

$ curl localhost:7777\?fruit=apples

apples

Important Note
You might have noticed that my curl command included \? instead of just
?. This is a necessary pattern in some command-line applications since ?, by
itself, could have a different meaning. It just as well could have been wrapped
in quotes: curl "localhost:7777?fruit=apples", but I prefer to
remove the quotes and opt for character escaping.

114 Ingesting HTTP Data

The usage seems simple enough, right? Well, not so fast. The obvious next question is what
happens when the key is repeated? Or, what happens when we want to pass an array of data?

There is no single standard way to pass array data on the internet inside query arguments.
Several methods do exist:

•	 ?fruit[]=apples&fruit[]=bananas

•	 ?fruit=apples,bananas

•	 ?fruit=[apples,bananas]

•	 ?fruit=apples&fruit=bananas

The first three approaches were rejected by Sanic, which has, instead, opted to implement
the fourth option. A quick look at the three rejected models will explain why the chosen
model makes sense, and how we can use it going forward:

•	 First, fruit[] is a strange construct that is not obvious to newcomers. In fact,
it is a hijacking and alteration of the key. Yuck, no thank you.

•	 Second, fruit=apples,bananas seems nice, but what if we wanted to just pass
an apples,bananas string and not actually separate them? Hmm, this does not
seem possible. Pass.

•	 Third, fruit=[apples,bananas] seems better, but it is again somewhat
awkward and nonintuitive. Additionally, it suffers the same ambiguity problem.
Is apples,bananas a single string or two items?

Furthermore, the second and third options suffer another problem in terms of how to
handle duplicate keys. Should they take the first? The last? Merge? Error? Again, there is
no consensus and different servers will handle this differently.

The most reasonable approach seems to be the fourth, which can handle all of these
problems. Keep it simple: we have a key and a value, nothing more. If there are duplicate
keys, we treat them as a list append. There are no surprising losses of data, no errors, and
data integrity is maintained.

In our last example, we printed the value of request.args to the console. Here is the
output:

{'fruit': ['apples']}

[INFO][127.0.0.1:53842]: GET http://
localhost:7777/?fruit=apples 200 6

Reading forms, query arguments, files, JSON, and more 115

Wait?! A list? I thought it was a single value: apples. At least that is what the response
gave us. Query arguments are a special dictionary that contains lists. They have a unique
.get() method that will only fetch the first value from that list. If you want all of the
elements, use .getlist():

@app.route("/")

async def handler(request: Request):

 return json(

 {

 "fruit_brackets": request.args["fruit"],

 "fruit_get": request.args.get("fruit"),

 "fruit_getlist": request.args.getlist("fruit"),

 }

)

Now, when we hit this endpoint, we can see what the values are:

$ curl localhost:7777\?fruit=apples\&fruit=bananas

{

 "fruit_brackets": ["apples","bananas"],

 "fruit_get": "apples",

 "fruit_getlist": ["apples","bananas"]

}

Another point worth mentioning is that request.args is not the only way to look at
these key/value pairs. Additionally, we have request.query_args, which is just a list
of tuples of all the pairs that were passed. The preceding request would look something
like this:

request.query_args == [('fruit', 'apples'), ('fruit',
'bananas')]

Of course, a data structure such as this can easily be turned into a standard dictionary
if desired. Just be careful because you will lose out on duplicate key data and be left only
with the last of each duplicated key:

>>> dict([('fruit', 'apples'), ('fruit', 'bananas')])

{'fruit': 'bananas'}

Next, we will look at the forms and files that can be accessed and used in a similar way to
query arguments.

116 Ingesting HTTP Data

Forms and files
By learning how we can pull data from the query arguments, we have also, inadvertently,
learned how to get both form data and uploaded file data! That is because query
arguments, forms, and files all operate identically. To prove this, we will set up a couple of
endpoints, just as we have done before, and see what happens:

@app.post("/form")

async def form_handler(request: Request):

 return json(request.form)

@app.post("/files")

async def file_handler(request: Request):

 return json(request.files)

Next, we will test the form handler:

$ curl localhost:7777/form -F 'fruit=apples'

{"fruit":["apples"]}

$ curl localhost:7777/form -F 'fruit=apples' -F 'fruit=bananas'

{"fruit":["apples","bananas"]}

Just like before, we can see that it looks like a dict object with a list. Well, that's
because it is. However, it will still behave in the same way as request.args. We can use
the .get() method for the first item, and .getlist() for all of them in a list:

assert request.form.get("fruit") == "apples"

assert request.form.getlist("fruit") == ["apples","bananas"]

And, of course, we will see the same result with files:

$ curl localhost:7777/files -F 'po=@/tmp/purchase_order.txt'

{

 "po": [

 ["text\/plain","product,qty\napples,99\n","purchase_order.
txt"]

]

}

Reading forms, query arguments, files, JSON, and more 117

We might want to take a closer look at this one to see what it is doing.

When you upload a file to Sanic, it will convert the file into a File object. The File
object is really just a named tuple containing the basic information about the file. If we
execute print(request.files.get("po")), we should see an object that looks
like this:

File(

 type='text/plain',

 body=b'product,qty\napples,99\n',

 name='purchase_order.txt'

)

Tip
Are you familiar with named tuples? They are a really great tool for modeling
concise objects. I highly recommend using them since they behave as tuples
but with the convenience of having dot notation to access specific properties.
They are great to use instead of dictionaries, as long as you do not need to
modify their contents. This is why Sanic uses them here as file objects. It is a
convenient small structure that is easy for us, as developers, to work with while
keeping some safety around the data so that it is not accidentally corrupted.

Consuming JSON data
Arguably, the most important type of request data is JSON. Modern web applications
have embraced and clung to serializing and transmitting data with JSON because of its
simplicity. It supports basic types of scalar values, is easy for humans to read, and is easy
to implement and widely supported in many programming languages. It is no wonder that
it is the default methodology.

Therefore, it should come as no surprise that Sanic makes it very easy:

@app.post("/")

async def handler(request: Request):

 return json(request.json)

Our request JSON is converted into a Python dictionary:

$ curl localhost:7777 -d '{"foo": "bar"}'

{"foo":"bar"}

118 Ingesting HTTP Data

Now we have seen all of the typical ways to access data in a single request. Next, we will
learn about how data can alternatively be streamed to Sanic in multiple chunks.

Getting streaming data
The term streaming has become somewhat of a buzzword. Many people, even outside
the tech industry, use it all the time. The word—and, more specifically, the actual
technological concept that it represents—has become an important part of society as
the consumption of media content continues its march to the cloud. What exactly is
streaming? For those who are not entirely clear about what this term means, we will spend
a brief moment attempting to understand it before moving on.

Streaming is the act of sending data in multiple, consecutive chunks from one side of
an open connection to the other. One of the core foundations of the HTTP model is that
there is a request followed by a response after a connection has been established between
the client and the server. The client sends a complete HTTP request message and then
waits for the server to send back a complete HTTP response message. It looks like this:

Figure 4.1 – A normal HTTP request/response cycle

Getting streaming data 119

I like to think of these as finite transactions. Both the request and the response have
definite and known endpoints. Up until now, these finite requests are what we have been
looking at. A request comes in, the server does something to process it, and a response
goes out. It is important to note that both the request and the response are sent as a whole
within a single block.

One header that we did not discuss earlier is the Content-Length header. This header
can be found on both requests and responses. The actual specification regarding when it
should be sent versus when it must be sent is really beyond the scope of this discussion.
Sanic will take care of providing this for us when necessary. I bring it up here because this
header is exactly what it purports to be: the length of the content in an HTTP message.
This tells the recipient that there is a message of a certain length that is being transmitted.
And it is important here because the known length of a message cannot necessarily be
computed when the request headers are sent.

What happens if there is a large amount of data to be sent that might overwhelm a single
connection or if the data being sent is not 100% available when the connection opens?
Streaming is a methodology for one side of the connection to tell the other side it is
transmitting some bytes but that it is not yet complete. The connection should be held
open so that more data can be sent. The way that this interaction happens is by replacing
the Content-Length header with a Transfer-Encoding: chunked header. In
this way, one side of the connection can tell the other that it should continue to receive
data until notified that the stream of data is closed.

When most laypeople hear the term streaming, their immediate thought goes to streaming
media, such as movies or music. They might describe the concept as the consumption of
the media before it is fully downloaded. And this is correct. Streaming is the sending of
data in multiple chunks instead of sending it all at once. This is extremely efficient and can
reduce the overall resource overhead. When supported, it allows the receiving side to start
processing that data if it desires instead of blocking and waiting for it to be completed. So,
when you go to watch your favorite movie, you can start watching it without having to
wait for the entire file to download.

120 Ingesting HTTP Data

However, streaming does not only apply to media, and it is not only done by a server.
There are two basic flavors we are concerned with: request streaming and response
streaming. Here is what those flows look like:

Figure 4.2 – The HTTP streaming request

In Figure 4.2, we can see what a streaming request looks like. Once the HTTP connection
is opened, the client starts sending data. But it does not send the message all at once.
Instead, it breaks the message up into chunks, sending each chunk of bytes on its own:

Getting streaming data 121

Figure 4.3 – The HTTP streaming response

Essentially, the streaming response in Figure 4.3 is the reverse of the streaming request.
The request is sent in its entirety, but the server decides to send the response in chunks
until it is complete. When someone talks about streaming media, they are referring to the
response stream. We will discuss this option in more detail in Chapter 5, Building Response
Handlers, when we talk about different types of responses.

Currently, we are concerned with learning about request streaming, as depicted in
Figure 4.2. It should definitely be noted that between the two, this is by far the lesser
utilized feature. When you search for streaming HTTP on the internet, you are likely to
find less information on it. Nonetheless, it can be a powerful tool in the right situation.

So, first, we will ask: when should we think about using request streaming? One potential
use case is if a client wants to warm up the HTTP connection. Let's say you are building
a stock trading platform. The latency between the frontend UI and the backend server is
critically important. The difference in milliseconds has potential financial impacts. Your
task is to get the data from the frontend as quickly as possible. The solution is to initiate
the POST request as soon as the user clicks on the input box. Simultaneously, the frontend
UI opens the HTTP connection with a Transfer-Encoding: chunked header,
signaling that more data is coming.

122 Ingesting HTTP Data

So, while the user is typing in their values, we have already performed the operations and
suffered any overhead that is related to the opening of a connection. Now the server is on
alert waiting for data to come as soon as the user hits the Enter button.

What might this endpoint look like? Take a look at the following:

async def read_full_body(request: Request):

 result = ""

 while True:

 body = await request.stream.read()

 if body is None:

 break

 result += body.decode("utf-8")

 return result

@app.post("/transaction", stream=True)

async def transaction(request: Request):

 body = await read_full_body(request)

 data = ujson.loads(body)

 await do_transaction(data)

 return text("Transaction recorded", status=201)

Let's point out a few important parts, one at a time:

1.	 We need to tell Sanic that we are going to be streaming the request here. There are
two options: passing stream=True in the route definition or using the @stream
decorator. They work in the same way, so it is more a matter of personal choice:

from sanic.views import stream

@app.post("/transaction", stream=True)

async def transaction(request: Request):

 ...

OR

@app.post("/transaction")

@stream

Getting streaming data 123

async def transaction(request: Request):

 ...

2.	 There should be some sort of a loop that continues to read from the stream until it
is complete. How do we know it is complete? There will be an empty read from the
stream. If you skip the if body is None line, you could end up crashing your
server as it gets stuck in an infinite loop.

The data when read is a bytes string, so you might want to convert that into a
regular str value, as we do here:

result = ""

while True:

 body = await request.stream.read()

 if body is None:

 break

 result += body.decode("utf-8")

It is important to note that, in this example, we are reading the body by completely
draining it before continuing with processing the request. Another alternative might
be to take those bytes and write them to something else that can consume and act
upon them immediately. In just a moment, we will see an example that does this.

3.	 You need to decode the body yourself. In regular requests, if you send JSON data,
Sanic will decode it for you. However, here, all we have are the raw bytes (converted
into a string). If we need further processing, we should do it ourselves. In our
example, we use ujson.loads, which ships with Sanic as a speedy way to convert
the JSON into a Python dict type.

Our example works because we are expecting a single delayed input from the client.
Another important place where you might use this is with file uploads. If you are
expecting large file uploads, you might want to start reading and writing the bytes as soon
as they are received.

The following shows an example of how to do that:

@app.post("/upload")

@stream

async def upload(request: Request):

 filename = await request.stream.read()

 async with aiofiles.open(filename.decode("utf-8"),
mode="w") as f:

 while True:

124 Ingesting HTTP Data

 body = await request.stream.read()

 if body is None:

 break

 await f.write(body.decode("utf-8"))

 return text("Done", status=201)

Notice that the loop here looks very similar to the last one. The concept is the same:
loop until there is nothing left to read. The difference is that instead of writing the data
to a local variable, we are using the aiofiles library to asynchronously write bytes to
the file.

Why would you want to do this? Well, the biggest reason would be efficiency and memory
utilization. If you use the regular request.files accessor to read file data, then you are
effectively reading the entire contents before doing anything with them. This could be a lot
of memory usage if there are large files at play. By reading and writing in chunks, we keep
the buffers small.

This chapter has focused entirely upon different methods of reading data. We know we
can access it from the body, files, form data, streams, and query arguments. All of these
mechanisms on their own lack one critical component: validation.

Validating data
Next, we are going to take our first glimpse at the security-related topics in this book. We
cover additional concepts later, in Chapter 7, Dealing with Security Concerns. However,
this is not a security book. Unfortunately, there is too much material to be able to cover it
all in this book. There are too many risks and too many potential mitigation measures for
our one chapter dedicated to security. Therefore, instead, we will touch upon the concepts
generally for those who are unfamiliar with them, and then show several ways to combat
the issues in Sanic.

The first of those topics is data validation. If you have been around the web, you will
understand what I am saying, and the why will be obvious to you. You are concerned with
SQL injection attacks or XSS attacks. You know the potential threats posed by blindly
accepting data and acting upon it. I trust that you already know this is a big no-no and
are here to learn how to implement standard practices in Sanic. If the concept of data
validation is completely foreign to you, I suggest you spend time searching other online
materials regarding the security issues posed by attacks such as those mentioned earlier.

Validating data 125

Web API security is not a singular approach. Data validation is only a small part of a
much larger plan that you will need to protect your applications, resources, and users.
In this section, our primary focus will be on the most common scenario in modern web
applications: making sure that JSON data conforms to expectations. These techniques
alone will not make your application secure from attacks. Please refer to Chapter 7,
Dealing with Security Concerns, for more on this. Here, our goal is far more modest: when
we expect a number, we get a number, and when we expect a UUID, we get a UUID.

If you recall in Chapter 3, Routing and Intaking HTTP Requests, we actually had our first
brush with data validation. We were trying to make sure that the data received was from a
known list of ice cream flavors. We are going to expand this concept here. There are many
libraries out there that can do this for us. Some popular choices include marshmallow,
attrs, and pydantic. Before we try and leverage an existing package, we are going to
try to build our own validation library using Python's dataclasses.

It is good to remember why we are doing this. As we know, Sanic tries hard to not make
decisions for developers. Data validation is one of the most critical components of an
application, and it can vary wildly from one use case to the next. Therefore, the core
Sanic project does not have a single method for doing this and leaves the choice to you:
the developer.

Of course, there are a number of plugins out there that add validation, but we are going
to take a crack at building one ourselves that will fit our needs. Ultimately, I hope this
inspires some ideas in your own projects for you to take these principles and apply them
to your own unique situations. This next section will deviate from Sanic and is more
about Python programming in general. Ultimately, however, I think it is illustrative to see
how Sanic tries to get out of your way to allow you to implement your own solutions and
business logic, and only involve itself where needed.

With that said, let's get started.

Step 1—getting started and making a decorator
The first thing we need to do is create the framework that we are going to work in. To
accomplish our goals, we are going to rely heavily upon decorators. This is a fantastic
approach because it allows us to create per route definitions but also easily repeat our
logic across the application, as needed. What we are after is something that looks like this:

@app.post("/stalls")

@validate

async def book_a_stall(request: Request, body: BookStallBody):

 ...

126 Ingesting HTTP Data

This looks like a super-clean interface. What will this achieve? Take a look at the following:

•	 No repetition: Rather than explicitly telling the validate function what to do,
we are going to use some Python tricks to read body: BookStallBody from the
handler signature.

•	 Dependency injection: Our validate function will need to inject a body
argument. This means that we should have a clean data structure with exactly
the information that we want and cast the types of data we expect them to be. If
something is missing, it should raise an exception and cause a failure response.

•	 Type annotations: By annotating the body argument, we will have helpful features
from mypy and our IDE to make sure our code is clean, consistent, and bug-free.

To begin, we want to create a decorator that will be capable of being callable or not
callable. This will give us both @validate and @validate(), which will make
our experience more flexible and easier as we expand our usage. We already saw an
example of this in Chapter 3, Routing and Intaking HTTP Requests. Let's see what a
minimal decorator looks like:

def validate(wrapped=None):

 def decorator(handler):

 @wraps(handler)

 async def decorated_function(request, *args, **kwargs):

 return await handler(request, *args, **kwargs)

 return decorated_function

 return decorator if wrapped is None else decorator(wrapped)

With this in place, we have a minimally viable decorator. Of course, it does not do
anything useful yet, but we can begin to build our validation logic on top of this.

Step 2—reading the handler signature
The next thing we want to do is determine which parts of the request we want to validate.
We are going to start with the JSON body. In our target implementation, we want to
control this using the handler signature. However, we do have an alternative approach.
For example, we could try for this:

@app.post("/stalls")

@validate(model=BookStallBody, location="body")

Validating data 127

async def book_a_stall(request: Request, body: BookStallBody):

 ...

Arguably, this is a much easier decorator to build. In this version, we are explicitly telling
the validate function that we want it to look in the Request body and validate against
a model called BookStallBody. However, if we also want type annotations, we end up
with duplicated code since we need to put the model in a typed function argument. We
are not going to let the difficulty scare us away! After all, we know this decorator will be
used all over our application. Building a better version upfront will help us down the road
as we reuse and expand the implementation.

So, how do we get the model and the location information? We are going to use Python's
typing module that comes with the standard library. We need to be very careful here.
When dealing with decorators, we need to remember that different layers get executed at
different times. Since we are evaluating the handler, we only want to do this once. If we set
this up wrong, we might end up executing the setup code on every single request! We will
try to avoid that.

This is where we are at now:

import typing

def validate(wrapped=None):

 def decorator(handler):

 annotations = typing.get_type_hints(handler)

 body_model = None

 for param_name, annotation in annotations.items():

 if param_name == "body":

 body_model = annotation

 # Remainder of decorator skipped

We inspect the handler and loop over the parameters that are defined inside it. If there
is a parameter that is called body, then we grab its annotation and save it for later use.

128 Ingesting HTTP Data

One potential downside to this approach is that we are boxing ourselves in by only
allowing our validations to be on a parameter called body. What if we have a URL that
has a dynamic path variable such as /path/to/<body>? Or do we just simply want
to call the variable something else? Let's make the decorator slightly more flexible by
introducing body_arg:

def validate(wrapped=None, body_arg="body"):

 def decorator(handler):

 annotations = typing.get_type_hints(handler)

 body_model = None

 for param_name, annotation in annotations.items():

 if param_name == body_arg:

 body_model = annotation

 @wraps(handler)

 async def decorated_function(request, *args, **kwargs):

 nonlocal body_model

 return await handler(request, *args, **kwargs)

 return decorated_function

 return decorator if wrapped is None else decorator(wrapped)

So, by moving the name of the body argument to body_arg, we have the flexibility to
rename it if we want to.

Step 3—modeling
The next critical piece is our model. This could be a place where we add in a prebuilt
library—for example, one of the packages mentioned earlier. Of course, I suggest you
take a look at them.

There are many devoted contributors that have spent a lot of time building, testing, and
supporting these packages who will cover far more use cases than our simple example.
However, since we are still learning here, we will continue building our own validation
logic on top of the data classes.

Validating data 129

Let's create a basic payload that we might expect in our endpoint:

from dataclasses import dataclass

from enum import Enum, auto

class ProductType(Enum):

 def _generate_next_value_(name, *_):

 return name.lower()

 FRUIT = auto()

 VEGETABLES = auto()

 FISH = auto()

 MEAT = auto()

class ValidatorModel:

 def __post_init__(self):

 ...

@dataclass

class Product(ValidatorModel):

 name: str

 product_type: ProductType

@dataclass

class BookStallBody(ValidatorModel):

 name: str

 vendor_id: UUID

 description: str

 employees: int

 products: List[Product]

Okay, so there is not too much new here. We are defining some models using Python's
data classes. I encourage you to go look them up if you are unfamiliar with them. In brief,
they are type-annotated data structures that will be super easy for us to work with.

130 Ingesting HTTP Data

One problem with them is that the type annotations are not enforced at runtime. Even
though we say that BookStallBody.vendor_id is a UUID type, Python will happily
inject a Boolean or another kind of value there. This is where the ValidatorModel
class comes in. We are going to add some simple logic to dataclass to make sure it is
populating with the correct data type.

Another nice trick added to this simple structure is that we are defining ProductType
as Enum. By defining _generate_next_value_, we are forcing the values of each
Enum value to be a lowercase string value of the key. For example, consider the following:

assert ProductType.FRUIT.value == "fruit"

Tip
Whenever your application is dealing with an ID of any kind, you should try
and avoid passing the sequential ID record to it from your database. Many
common databases increment the row number every time you insert a record.
If your API relies on that ID, you are inadvertently broadcasting information
about the state of your application to the world. Stick with UUIDs or another
form that will add some obscurity for client-facing applications. Do not let
your database IDs leave your server.

Step 4—model hydration
Ultimately, we want to be able to send a JSON request to our endpoint that looks like this:

{

 "name": "Adam's Fruit Stand",

 "vendor_id": "b716337f-98a9-4426-8809-2b52fbb807b3",

 "employees": 1,

 "description": "The best fruit you've ever tasted",

 "products": [

 {

 "name": "bananas",

 "product_type": "fruit"

 }

]

}

Validating data 131

Therefore, our goal is to turn this nested structure into Python objects. Data classes can
get us part of the way there. What is missing is the specific typecasting and nesting. The
following is what our ValidatorModel class will provide for us:

class ValidatorModel:

 def __post_init__(self):

 for fld in fields(self.__class__):

 existing = getattr(self, fld.name)

 hydrated = self._hydrate(fld.type, existing)

 if hydrated:

 setattr(self, fld.name, hydrated)

 elif type(existing) is not fld.type:

 setattr(self, fld.name, fld.type(existing))

 def _hydrate(self, field_type, value):

 args = get_args(field_type)

 check_type = field_type

 if args:

 check_type = args[0]

 if is_dataclass(check_type):

 if isinstance(value, list):

 return [self._hydrate(check_type, item) for
item in value]

 elif isinstance(value, dict):

 return field_type(**value)

 return None

It might appear as though there is a lot going on here, but it is really quite simple. After
a model instance is created, we loop through all of its fields. There are now two options:
either the field annotation is another dataclass, or it's something else. If it is something
else, then we just want to ensure that we cast it to the new type.

132 Ingesting HTTP Data

If we are dealing with a dataclass, then we have two more options we need to determine.
Either it is a single item or a list of items. If it is a list, then we simply need to make sure
we loop over all of the values and try to hydrate each individual item.

Admittedly, this will not cover all use cases. However, since we are creating our own
solution, we only care that it covers the cases we need and that it is relatively simple to
maintain if we need to add more complexity in the future.

This solution will do that for us.

Step 5—performing validations
Now that our models are capable of handling nested logic and converting all of our values
into their desired types, we need to hook it back up to our decorator.

This is where we currently stand:

def validate(wrapped=None, body_arg="body"):

 def decorator(handler):

 annotations = get_type_hints(handler)

 body_model = None

 for param_name, annotation in annotations.items():

 if param_name == body_arg:

 body_model = annotation

 @wraps(handler)

 async def decorated_function(request, *args, **kwargs):

 if body_model:

 kwargs[body_arg] = do_validation(body_model,
request.json)

 return await handler(request, *args, **kwargs)

 return decorated_function

 return decorator if wrapped is None else decorator(wrapped)

Validating data 133

The important changes are the following lines:

if body_model:

 kwargs[body_arg] = do_validation(body_model, request.json)

This will convert our raw JSON request data into usable (and well-annotated) data
structures. If there is a failure within a data type, an exception should be raised. So, what
would that look like? Take a look at the following:

from sanic.exceptions import SanicException

class ValidationError(SanicException):

 status_code = 400

def do_validation(model, data):

 try:

 instance = model(**data)

 except (ValueError, TypeError) as e:

 raise ValidationError(

 f"There was a problem validating {model} "

 f"with the raw data: {data}.\n"

 f"The encountered exception: {e}"

) from e

 return instance

If our data class models cannot cast a value into the expected type, then it should raise
ValueError or TypeError. We want to catch either one of them and convert it into
our own ValidationError for two reasons. First, by subclassing SanicException,
we can give the status_code exception, and when that exception is raised, Sanic will
automatically know to return a 400 response. In Chapter 9, Best Practices to Improve Your
Web Applications, we will discuss exception handling in more detail, which is another
important consideration. For now, just know that Sanic will give us some exception
handling out of the box in both debug mode and regular mode.

Taking it to the next level with third-party packages
The input validation from the preceding section was admittedly a bit thin. It works well
for our very limited use cases, but lacks some of the richness that can be achieved from a
proper package. In the future, if your projects require some customized validation logic,
then, by all means, use what was started to launch your project.

134 Ingesting HTTP Data

However, we are going to switch our mode here. Instead of using plain vanilla data classes
and our custom ValidatorModel class, we are going to use a third-party package.
We will keep the rest of what we built, so we are not entirely grabbing an off-the-shelf
solution.

Let's see what it would be like if we used pydantic.

Validation with pydantic
pydantic is a popular package for creating models in Python. Generally, it plays
very nicely with type annotations and even has a drop-in replacement for dataclasses.
Therefore, we can take our previous example, change the dataclass import line, and
remove ValidatorModel, and we have upgraded our capabilities:

1.	 We change our models to use the pydantic dataclass:

from pydantic.dataclasses import dataclass

2.	 Remove the ValidatorModel class since it is no longer required:

@dataclass

class Product:

 name: str

 product_type: ProductType

@dataclass

class BookStallBody:

 name: str

 vendor_id: UUID

 description: str

 employees: int

 products: List[Product]

@dataclass

class PaginationQuery:

 limit: int = field(default=0)

 offset: int = field(default=0)

Validating data 135

3.	 The only other change is to make sure that do_validation will raise the
appropriate error message (there is more on exception handling in Chapter 6,
Operating Outside the Response Handler):

def do_validation(model, data):

 try:

 instance = model(**data)

 except PydanticValidationError as e:

 raise ValidationError(

 f"There was a problem validating {model} "

 f"with the raw data: {data}.\n"

 f"The encountered exception: {e}"

) from e

 return instance

It is an almost identical solution. Please take a look at the full example in the GitHub
repository. Now we have the full power of a proper library to handle much more
complicated validation logic. Perhaps we should build out our decorator just a bit more to
handle other types of input validation:

1.	 First, here is a model of what our expected query parameters will look like:

from dataclasses import field

@dataclass

class PaginationQuery:

 limit: int = field(default=0)

 offset: int = field(default=0)

2.	 Then, we extend the decorator to handle both the body and query parameters:

def validate(

 wrapped=None,

 body_arg="body",

 query_arg="query",

):

 def decorator(handler):

 annotations = get_type_hints(handler)

 body_model = None

136 Ingesting HTTP Data

 query_model = None

 for param_name, annotation in annotations.
items():

 if param_name == body_arg:

 body_model = annotation

 elif param_name == query_arg:

 query_model = annotation

3.	 Now that the variable models and argument names have been defined, we can put
them to use when the request is executed:

 @wraps(handler)

 async def decorated_function(request: Request,
*args, **kwargs):

 if body_model:

 kwargs[body_arg] = do_validation(body_
model, request.json)

 if query_model:

 kwargs[query_arg] = do_validation(query_
model, dict(request.query_args))

 return await handler(request, *args,
**kwargs)

 return decorated_function

 return decorator if wrapped is None else
decorator(wrapped)

4.	 With this decorator, we can act on both the body argument and the query
argument. The implementation between them looks remarkably similar. Now we
can reuse our decorator in other situations:

@app.get("/stalls/<market_date:ymd>")

@validate

async def check_stalls(

 request: Request,

 query: PaginationQuery,

 market_date: date,

Summary 137

):

 ...

Now it is time for a little experiment. We started by validating against the request JSON.
This was validated and injected as the body argument. Then, we saw that it was super easy
to extend this to the query arguments with the query argument.

Your challenge now is to put the book down and see whether you can make a similar
implementation for both regular forms and file upload validation. Take a look at the
previous approaches, and also reference the request.files and request.form
objects we talked about earlier in the book.

Summary
It is a fairly safe assumption that all web APIs require some input from users at some
point. Even APIs that are read-only often might allow for filtering, searching, or
paginating data. Therefore, to become proficient at building web applications in general,
and Sanic applications specifically, you must learn the data tools at your disposal.

In this chapter, we covered a great deal of material. We learned how to pull data from
headers, cookies, and the request body. When using headers, form data, query arguments,
and file data, we discovered that these objects could operate as regular dictionaries or
dictionaries of lists to be both compliant with HTTP standards and also usable for most
regular use cases. Additionally, we saw that the request body itself could be sent as a single
chunk or in multiple chunks.

However, perhaps the biggest takeaway is that reading data cannot and does not take
a single path. As a reminder, Sanic provides the tools to build the most obvious solution
for your needs. While many other projects could fill a similar discussion with the minutiae
of how to implement form data retrieval in their specific API, much of our focus was on
how to build solutions with Sanic, not from Sanic. It is a framework that tries not to get in
the way.

For example, we learned that it was super simple to add both custom and off-the-shelf
validation logic. Sanic did not tell us how to do it. Instead, it provided some conveniences
to help make our business logic easier to build. Decorator logic gave us the flexibility to
have reusable code across the application. Exception definitions can automatically catch
and handle responses. Building applications with Sanic is much more about building
well-structured Python applications.

Once the information has been gathered and validated, it is time to do something with it.
This is the purpose of the next chapter, where we explore how to handle and, ultimately,
respond to web requests.

5
Building

Response Handlers
Up until this point, our applications have largely been reactive. We have worked on
different parts of web applications to learn how to manage the incoming HTTP request. If
we imagine the HTTP request/response cycle as a conversation, so far, we have been only
listening. Our applications have been built to hear what the incoming client has to say.

Now, it is our turn to talk. In this chapter, we will begin to explore different facets of the
HTTP response. Just as we began our learning of the HTTP request by looking at a raw
request object, we will look at the raw response. It looks nearly identical and, by now,
should be familiar. We will go on to explore some of the powerful tools that Sanic has
to offer. Of course, there are mechanisms for JSON and HTML responses, which are
probably the most popular types of content to be delivered on the web today. However,
Sanic has an advantage by being an async framework: it is super easy to implement
server-driven responses such as websockets, Server-Sent Events (SSE), and streaming
responses. In this chapter, we will also explore these main topics:

•	 Examining the HTTP response structure

•	 Rendering HTML content

•	 Serializing JSON content

•	 Streaming data

140 Building Response Handlers

•	 Server-sent events for push communication

•	 Websockets for two-way communication

•	 Setting up response headers and cookies

Technical requirements
Some of our examples are going to start getting a little longer than what we have
previously seen. For the sake of convenience, you might want to keep the GitHub
repository handy as you read through this chapter. You can find it at https://github.
com/PacktPublishing/Web-Development-with-Sanic/tree/main/
chapters/05.

Examining the HTTP response structure
Back in Chapter 3, Routing and Intaking HTTP Requests, we looked at the structure of the
HTTP request. When a web server is ready to send back a response, the format is very
similar to what we have already seen. The HTTP response will look something like this:

HTTP 1.1 200 OK

Content-Length: 13

Connection: keep-alive

Content-Type: text/plain; charset=utf-8

Hello, world.

What we see is the following:

•	 The first line contains the HTTP protocol used, a status code, and a status
description.

•	 Response headers are in the key: value format and are separated by a line break.

•	 There is a blank row.

•	 There is a response body.

We are not looking at this here because we need to know to build a web application.
After all, building these response objects to a valid HTTP specification is precisely one
of the reasons that we use web frameworks. Without them, building these blobs would
be tedious and error-prone. Instead, it is helpful for us to review and understand what is
happening so that we can increase our grasp of HTTP and web application development.

https://github.com/PacktPublishing/Web-Development-with-Sanic/tree/main/chapters/05
https://github.com/PacktPublishing/Web-Development-with-Sanic/tree/main/chapters/05
https://github.com/PacktPublishing/Web-Development-with-Sanic/tree/main/chapters/05

Examining the HTTP response structure 141

A lot of the structure is duplicative of what we have already learned.

The HTTP response status
If you compare the HTTP request and response objects, perhaps the most identifying
difference is the first line. While the first request line had three distinct parts, it is easier
to think of the response as only having two: the HTTP protocol in use and the response
status.

Earlier in this book, we discussed the HTTP protocol (please refer to Chapter 3, Routing
and Intaking HTTP Requests), so we will skip it here and focus on the response status. The
response status is meant to be both a computer-friendly and human-friendly tool to let the
client know what happened to the request. Did it succeed? Was the request wrong? Did the
server make a mistake? These questions, and more, are answered by the HTTP response
status.

If you have built a website in the past, you likely have a basic understanding of different
response codes. Even people who have never built an application have surely, at some
point, landed on a web page that said 404 Not Found or 500 Internal Server
Error. These are response statuses. HTTP response statuses consist of a number and a
description. The meanings of these numbers and the specific descriptions associated with
them are defined in Section 6 of RFC 7231: https://datatracker.ietf.org/
doc/html/rfc7231#section-6.

To clarify, if you see the terms response status, status code, or response code, they are all
describing the same thing. In general, I prefer to use response status to describe the general
concept and status code when talking about the numeric value of the status. However, they
are fairly interchangeable, and this book uses the terms interchangeably as well.

The three most common statuses are as follows:

•	 200 OK

•	 404 Not Found

•	 500 Internal Server Error

In general, Sanic will attempt to respond with the most appropriate status. If there is
an unhandled error, you will likely get a 500 status. If the path does not exist, it will be
a 404 status. And, if the server can respond properly, Sanic defaults to using 200. Let's
dig a little deeper to see how the statuses are organized.

https://datatracker.ietf.org/doc/html/rfc7231#section-6
https://datatracker.ietf.org/doc/html/rfc7231#section-6

142 Building Response Handlers

Response groupings
The standard responses are grouped in series of 100s, as follows:

•	 100s: Informational – these are provisional responses with information about how
the client should proceed.

•	 200s: Successful – these are responses that indicate the request was processed as
expected.

•	 300s: Redirection – these are responses that indicate the client must take further
action.

•	 400s: Client error – there are responses where it appears the client made a mistake
in trying to access or proceed with some resource.

•	 500s: Server error – these are responses where the server made a mistake, and
a response, as expected, could not be generated.

Beyond the big three responses, there are some other important responses that you
should be familiar with:

Table 5.1 – Common status codes

Examining the HTTP response structure 143

Important Note
Another important error code that you should be familiar with is 502. This is
particularly important if you are running a proxy server of some kind in front
of Sanic. If you receive a 502 Bade Gateway error, the likely problem
is that your Sanic server has crashed and is no longer serving requests. You
should check your logs to check why it is not running any longer.

A response through exceptions
Many of Sanic's built-in exceptions are associated with a specific status code. This
means that we can raise an exception, and Sanic will automatically catch that exception
and provide an appropriate response with the proper status code. This makes it super
convenient and simple to respond to.

For example, let's imagine that we are building a music player application. One of our
endpoints allows users that are logged in to view their playlist. However, it is protected
behind authentication, and only users with whom the playlist has been shared are able to
access it. It looks something like this:

from sanic.exceptions import NotFound

@app.get("/playlist/<playlist_name:str>")

async def show_playlist(request, playlist_name: str):

 can_view = async check_if_current_user_can_see_playlist(

 request,

 playlist_name

)

 if not can_view:

 raise NotFound("Oops, that page does not exist")

 ...

By raising NotFound, Sanic will automatically know that it should return a 404 Not
Found response:

$ curl localhost:7777/playlist/adams-awesome-music -i

HTTP/1.1 404 Not Found

content-length: 83

connection: keep-alive

content-type: application/json

144 Building Response Handlers

{"description":"Not Found","status":404,"message":"Oops, that
page does not exist"}

Additionally, we could extend this concept with our own custom exception handlers:

from sanic.exceptions import SanicException

class NotAcceptable(SanicException):

 status_code = 406

 quiet = True

@app.post("/")

async def handler(request):

 if "foobar" not in request.headers:

 raise NotAcceptable("You must supply a Foobar header")

 return text("OK")

In this example, by subclassing SanicException, we can associate the exception with
a status code. Additionally, we set a class property of quiet=True. This is not necessary
but might be desirable. What it means is that the exception and its traceback (the details
about the type and location of an exception) will not appear in your logging. This is
a particular feature of SanicException. It is helpful for exceptions that might be
expected (but otherwise uncaught) in the regular course of your application.

Custom status
Just as we saw with HTTP methods, it is possible to make up your own status codes as
long as they have three digits. I am not suggesting this is a good idea—merely pointing
out that it is possible—and Sanic will let you do it, even though you probably should not.
Creating your own status codes might confuse browsers or clients that are using your
application. Throwing caution to the wind, we will try it by performing the following steps
anyway, just to demonstrate that Sanic allows us to do it:

1.	 Add a new status type to an otherwise private variable (remember, it's just Python,
so we can hack it if we want):

from sanic.headers import _HTTP1_STATUSLINES

_HTTP1_STATUSLINES[999] = b"HTTP/1.1 999 ROCK ON\r\n"

Examining the HTTP response structure 145

@app.get("/rockon")

async def handler(request):

 return empty(status=999)

Nice! Now let's see what happens.
2.	 Check the HTTP return, making sure to use -i so that we see the raw response:

$ curl localhost:7777/rockon -i

HTTP/1.1 999 ROCK ON

content-length: 0

connection: keep-alive

content-type: None

3.	 To wrap up, here is a fun little experiment and a quirk of the HTTP specification.
Enter the following route into your application:

@app.get("/coffee")

async def handler(request):

 return text("Coffee?", status=418)

4.	 Now, query it using curl so that you can see the response (don't forget -i):

$ curl localhost:7777/coffee -i

Did you observe the output? To see that it is actually a part of the real HTTP
specification, take a look at https://datatracker.ietf.org/doc/html/
rfc2324#section-2.3.2 and https://datatracker.ietf.org/doc/html/
rfc7168#section-2.3.3. For more RFC humor, I would also suggest taking a look at
the protocol specification for IP over Avian Carriers: https://datatracker.ietf.
org/doc/html/rfc2549. These documents are a reminder that programming should
be fun.

Headers
The second part of the HTTP response is the same as the second part of the HTTP
request: headers are arranged, one per line, in a key: value format. As before,
the keys are case-insensitive and can be repeated more than once in the response.

https://datatracker.ietf.org/doc/html/rfc2324#section-2.3.2
https://datatracker.ietf.org/doc/html/rfc2324#section-2.3.2
https://datatracker.ietf.org/doc/html/rfc7168#section-2.3.3
https://datatracker.ietf.org/doc/html/rfc7168#section-2.3.3
https://datatracker.ietf.org/doc/html/rfc2549
https://datatracker.ietf.org/doc/html/rfc2549

146 Building Response Handlers

One interesting thing to bear in mind is that when a web server responds with an
informational status (series 100), it does not include headers. These responses are
generally used only in the context of upgrading an HTTP connection to a websocket
connection. Since this is a responsibility of the framework, we can safely ignore this, and
just file it away as good information to have.

Generally, headers are pretty simple to use in Sanic. We will dig into them deeper later on,
but for now, we need to keep in mind that we can simply pass a dictionary with values:

1.	 Add a headers argument with a dictionary of values into any response function.
Here, we use empty because we are not sending a body response, just the headers:

@app.get("/")

async def handler(request):

 return empty(headers={"the-square-root-of-four":
"two"})

2.	 Let's see what the response looks like using curl. Make sure that you use -i so that
we can see the headers:

$ curl localhost:7777/ -i

HTTP/1.1 204 No Content

the-square-root-of-four: two

connection: keep-alive

The astute mathematician looking at my example will notice that I got it only
partially correct: two is not the only value. How can we have duplicate header keys?
Since Python's regular dictionaries will not allow us to duplicate keys, we can use
a special data type that Sanic offers us to do the job.

3.	 Using the same response as before, insert a Header object with two of the same
keys, as shown in the following snippet:

from sanic.compat import Header

@app.get("/")

async def handler(request):

 return empty(

 headers=Header(

 [

 ("the-square-root-of-four", "positive
two"),

 ("the-square-root-of-four", "negative

Rendering HTML content 147

two"),

]

)

)

4.	 Hopefully, we will now see our more mathematically correct response headers; the
same key appears twice but with a different value each time:

$ curl localhost:7777/ -i

HTTP/1.1 204 No Content

the-square-root-of-four: positive two

the-square-root-of-four: negative two

connection: keep-alive

Usually, it will suffice to just use a regular dict object for assigning headers. Often, the
need will not arise where you require two duplicate keys in the headers. However, since it
is allowed by the HTTP protocol, you should know that it is possible if the need arose in
the course of your application development.

The response body
The last part of the HTTP response is the body. It is arguably the most important part of
this whole business we call HTTP. We can realistically state that the HTTP response body
is what the whole driving force of the web is after: the sharing of content.

The remainder of this chapter will focus on some of the different and more popular ways
that we can structure data in the HTTP response body. Whether it is HTML, JSON, or
raw bytes, what we are about to dive into will be part of the cornerstone of every web
application you build. First up is HTML content; here, we will explore methodologies for
sending static HTML content and generating dynamic HTML content.

Rendering HTML content
The foundation of the web is HTML. It is the media that enables browsers to function;
therefore, it is fundamental that a web server is capable of delivering HTML content.
Whether building a traditional page-based application or a single-page application,
HTML delivery will be necessary. In Chapter 3, Routing and Intaking HTTP Requests,
we discussed how we could route web requests to our static files. If you have static
HTML files, then this is a great option. But what if you need to generate dynamic HTML
for your application?

148 Building Response Handlers

Since there are numerous ways that this could be accomplished, we will take a look at
some of the general patterns that could be used with Sanic.

Delivering HTML files
Generally, serving HTML content is a simple operation. We need to send back a response
to the client with HTML text and a header that tells the recipient that the document
should be treated as HTML. Ultimately, the raw HTTP response is going to look like this:

HTTP/1.1 200 OK

content-length: 70

connection: keep-alive

content-type: text/html; charset=utf-8

<!DOCTYPE html><html lang="en"><meta charset="UTF-
8"><title>Hello</title><div>Hi!</div>

Notice the critical HTTP response header: content-type: text/html;
charset=utf-8. Sanic has a convenient response function that will appropriately set
the response headers for HTML content:

from sanic import html, HTTPResponse

@app.route("/")

async def handler(request) -> HTTPResponse:

 return html(

 '<!DOCTYPE html><html lang="en"><meta charset="UTF-
8"><title>Hello</title><div>Hi!</div>'

)

Note
As a quick side note, while the preceding example might be valid HTML, not
all the following examples will be. Getting 100% accurate HTML semantics is
not the aim of this book, so we might break a few rules.

Rendering HTML content 149

Now let's imagine that we are building a music player application. The first thing that
needs to happen when someone lands on our website is to log in. If that person already
has an active session, we want them to navigate to the What's new page. In Chapter 6,
Operating Outside the Response Handler, and Chapter 7, Dealing with Security Concerns,
we will look at how to use middleware and integrate it with authentication. For now, we
will assume our application has already dealt with authentication and authorization. It has
stored those values as request.ctx.user:

@app.route("/")

async def handler(request) -> HTTPResponse:

 path = "/path/to/whatsnew.html" if request.ctx.user else "/
path/to/login.html"

 with open(path, "r") as f:

 doc = f.read()

 return html(doc)

Have you noticed a pattern so far? All we really need to do to generate HTML content
with Sanic is basic string building! So, if we can inject values into a string with string
interpolation, then we have dynamic HTML. Here's a simple demonstration:

@app.route("/<name:str>")

async def handler(request, name: str) -> HTTPResponse:

 return html(f"<div>Hi {name}</div>")

Instead of using curl, let's see what it looks like in a browser this time:

Figure 5.1 – A browser screenshot of the interpolated HTML

String interpolation of HTML is just a fancy way of saying templating.

150 Building Response Handlers

Basic templating
In the past, I have presented at a couple of Python web conferences. While preparing my
talks, I looked for tools that would make it super simple to generate a slide presentation.
Since I am most comfortable working in my text editor, I was particularly interested in
solutions that would translate markdown into slides. I found a tool called remark.js. If
you want to learn more about remark, please visit https://remarkjs.com/.

In order to render slides from markdown, all I needed was an HTML file and some
markdown text:

<!-- Boilerplate HTML here -->

 <textarea id="source">

class: center, middle

Title

Agenda

1. Introduction

2. Deep-dive

3. ...

Introduction

 </textarea>

 <script src="https://remarkjs.com/downloads/remark-latest.
min.js">

<!-- Boilerplate HTML and here -->

This was super simple and exactly what I was looking for. However, there was a problem
because my IDE did not know that the text inside <textarea> was markdown.
Therefore, I had no syntax highlighting. Bummer!

The solution was quite simple really. I just needed a way to inject my markdown into the
HTML file and serve that.

https://remarkjs.com/

Rendering HTML content 151

Here is a quick fix for the HTML:

<!-- Boilerplate HTML here -->

 <textarea id="source">

__SLIDES__

 </textarea>

 <script src="https://remarkjs.com/downloads/remark-latest.
min.js">

<!-- Boilerplate HTML and here -->

Voila! An HTML template. Now, let's render it:

from pathlib import Path

PRESENTATION = Path(__file__).parent / "presentation"

@app.get("/")

def index(_):

 with open(PRESENTATION / "index.html", "r") as f:

 doc = f.read()

 with open(PRESENTATION / "slides.md", "r") as f:

 slides = f.read()

 return html(doc.replace("__SLIDES__", slides))

Just like that, we have built a templating engine. The basic idea of any templating
engine is that there is some protocol for telling the application how to convert and
inject dynamic content. Python does this with its multiple forms of string interpolations.
In my super-simple solution engine, all I needed to do was replace the __SLIDES__
value. I am sure you can start to formulate ideas regarding how you could build your own
simple engine.

In fact, maybe you should try that now. Here is an HTML template:

<p>

 Hi, my name is __NAME__.

</p>

<p>

152 Building Response Handlers

 I am __AGE__ years old.

</p>

Let's get started:

def render(template: str, context: Dict[str, Any]) -> str:

 ...

@app.get("/hello")

async def hello(request) -> HTTPResponse:

 return html(

 render("hello.html", {"name": "Adam", "age": 38})

)

Now it is your turn to fill in the rest by building the rendering agent. Try to build a
render function to work with any variable names, not just name and age. We want
this to be reusable in more than just one location.

Using a templating engine
Of course, you do not always need to make your own templating engine. There are many
great choices that have already been built. Some popular template engines in Python are
Genshi, Mako, and Jinja2. But remember, all we really need to do is build a string. So, any
tools that you have that can do this will work. These packages can be thought of as fancy
versions of the Python format function.

They take strings and inject data into them to generate a bigger string. Any Python
templating tool that you pick up will work with Sanic. Specifically, regarding Jinja2,
there are some Sanic plugins already out there that make the interactions between Sanic
and Jinja2 super simple. Feel free to check them out in your own time. On a basic level,
templating with Jinja2 can be as lightweight as follows:

from jinja2 import Template

template = Template("Hello {{name}}")

@app.get("/<name>")

async def handler(request, name):

 return html(template.render(name=name))

Rendering HTML content 153

And now you can see the result:

$ curl localhost:7777/Adam

Hello Adam

To move our templates out of Python and into their own HTML files, we can use Jinja2's
Environment construct:

1.	 Create some HTML using the Jinja2 syntax. This will be saved as index.html
in a templates directory. You can see the structure that we have used in the
GitHub repository:

<!DOCTYPE html>

<html>

 <head>

 <title>Adam's Top Songs</title>

 </head>

 <body>

 <h1>Adam's Top Songs</h1>

 {% for song in songs %}

 {{song}}

 {% endfor %}

 </body>

</html>

2.	 Now, set up Environment and attach it to our application context so that it is
easily available throughout our application:

from pathlib import Path

from jinja2.loaders import FileSystemLoader

from jinja2 import Environment

@app.before_server_start

def setup_template_env(app, _):

 app.ctx.env = Environment(

 loader=FileSystemLoader(Path(__file__).parent /
"templates"),

154 Building Response Handlers

 autoescape=True,

)

3.	 Finally, grab the template by its filename in our route handler, and inject some
content into it:

@app.get("/")

async def handler(request):

 template = request.app.ctx.env.get_template("index.
html")

 output = template.render(

 songs=[

 "Stairway to Heaven",

 "Kashmir",

 "All along the Watchtower",

 "Black Hole Sun",

 "Under the Bridge",

]

)

 return html(output)

With that all done, we should be able to visit our application in a web browser and see the
rendered HTML.

Tip
When building with Sanic, you might have noticed how handy it is to have
auto_reload enabled. Every time you hit the Save button, the application
restarts and is available for you to test immediately. Wouldn't it be great if the
same were true when building HTML files? There is a tool that does this, called
LiveReload. Essentially, it injects some JavaScript into your HTML to make it
listen to commands to refresh the page. When building that slide presentation,
which I mentioned earlier, I made a LiveReload server so that I could keep
the browser open alongside my IDE while I typed. Every time I hit Save, my
browser refreshed, and I could see the rendered content without having to lift
my fingers off the keyboard. If you are interested in more details regarding this
topic, check out Chapter 11, A Complete Real-World Example.

Serializing JSON content 155

Serializing JSON content
Next to HTML content, JSON is one of the most common forms of data transferred on the
web. If you are building a Single-Page Application (SPA), (also known as a Progressive
Web Application or PWA), it is likely that your backend server only or mostly returns
JSON content. A common build pattern for a modern web application is to build a
frontend user interface with a JavaScript framework powered by a backend server that
feeds the frontend with dynamic JSON documents.

Choosing a serializer
Of course, the Python standard library ships with a JSON package that makes serializing
Python objects to JSON strings (and the reverse) very simple. However, it is not the most
performant implementation. In fact, it is quite slow. Many third-party packages have
popped up to attempt to fix this problem. We will explore two of the common packages
that are often used with Sanic.

When talking about response serialization, what we care about is the operation of the
dumps() method. Each of these projects provides an interface with this method. To select
a serializer, what we need to do is to set the dumps() method in one of two locations: at
the response level or application-wide. We will learn how to do both shortly.

UJSON
UltraJSON (also known as ujson) is an alternative JSON implementation that is written
in C. Because of its emphasis on performance, it was adopted as the default JSON tool for
Sanic. If you do nothing else, this is the package that Sanic will use.

It includes some helpful encoder options such as encode_html_chars, ensure_
ascii, and escape_forward_slashes. Consider the following example:

 return json(

 {

 "homepage": request.app.url_for(

 "index",

 _external=True,

 _server="example.com",

)

 },

)

156 Building Response Handlers

When we access this endpoint, ujson will, by default, escape our slashes:

$ curl localhost:7777

{"homepage":"http:\/\/example.com\/index.html"}

We can use functools.partial to change the behavior:

dumps = partial(ujson.dumps, escape_forward_slashes=False)

@app.get("/")

async def handler(request):

 return json(

 {

 "homepage": request.app.url_for(

 "index",

 _external=True,

 _server="example.com",

)

 },

 dumps=dumps,

)

By using the dumps keyword argument, we have told Sanic to use a different serializer.
The result should be what we want:

$ curl localhost:7777

{"homepage":"http://example.com/index.html"}

If you do not want to use ujson in your projects, then you can force Sanic to skip the
installation of ujson:

$ export SANIC_NO_UJSON=true

$ pip install --no-binary :all: sanic

While ujson is a great project that adds some much-needed performance to JSON string
manipulation in Python, it might not actually be the fastest. Next, we will look at another
relatively new package that attempts to bring performance to JSON manipulation.

Serializing JSON content 157

orjson
A newer player to the game is orjson. It is written in Rust and claims to be the fastest
alternative according to benchmarks. For this reason, many people like to swap out
ujson for orjson.

An interesting thing to note about orjson is that it has built-in support for serializing
common Python objects such as datetime.datetime and uuid.UUID. Since these
are both very common when building web applications, it is very convenient to not have
to think about how to handle these object types. Also, it should be noted that while the
standard library and ujson return an str value, orjson returns a bytes string.

We can easily tell Sanic to use orjson everywhere:

import orjson

app = Sanic(__name__, dumps=orjson.dumps)

Using the dumps argument across an entire application can be very convenient. It is
especially helpful when you realize that you might need to handle the serialization of
more complicated custom objects. In the next section, we will learn how this sort of
serialization can be accomplished.

Serializing custom objects
In the last two sections, you might have noticed there are two ways to override the default
dumps method. The first is by changing a single response:

return json(..., dumps=orjson.dumps)

The second will apply to all routes globally:

Sanic(..., dumps=orjson.dumps)

Feel free to mix and match both the handler-specific method and the application-wide
method to meet your application needs.

We briefly looked at two alternative packages. Of course, there are others. So, how should
you decide which package to use? When deciding on an implementation, often, one of
the biggest considerations is how to handle custom non-scalar objects. That is to say,
how do we want objects that do not have an obvious and built-in mapping to JSON types
(such as strings, integers, floats, Booleans, lists, and dictionaries) to behave when rendered
to JSON? To make this point clear, consider the following example.

158 Building Response Handlers

Let's say we have a Thing object. It looks like this:

class Thing:

 ...

data = {"thing": Thing()}

If we do nothing, serializing a Thing object will not be so straightforward, and JSON
tools will usually throw an error because they do not know what to do with it. Without
resorting to manual intervention, we can rely upon each of the tools' methodology to
explicitly provide instructions when coming across a Thing object. We will consider
each alternative to see how we can reduce Thing to a JSON-accessible object.

Perhaps, the simplest is ujson. Besides its performance, this happens to be one of
my favorite features. If an object has a __json__ method, ujson will call it when
converting the object into JSON:

class Thing:

 def __json__(self):

 return json.dumps("something")

ujson.dumps(data)

Because of this functionality, when I am working on a project, one of the things that I
often do is identify some base models for my objects and include a __json__ method.
But what about the other tools?

orjson allows us to pass a default function to the serializer. If it does not know how
to render an object, it will call this. While ujson opts to handle this on the object/model,
orjson opts to handle it in each individual serializer. Also, it should be noted that as
of version 4.2, ujson supports the default keyword approach like orjson. The sky
is really the limit in terms of the complexity you want to add. Since I am a fan of using
__json__ methods on my custom objects, we can achieve the same functionality with
orjson as follows:

def default(obj):

 if hasattr(obj, "__json__"):

 return json.loads(obj.__json__())

 raise TypeError

orjson.dumps(data, default=default)

Serializing JSON content 159

This might get a bit repetitive if you are constantly redefining the serializer method in the
response handlers. Instead, maybe it is worth using the standard library to help. We can
create a partial function with the default argument already populated:

from functools import partial

odumps = partial(orjson.dumps, default=default)

odumps(data)

The most cumbersome implementation is the standard library that requires you to pass
a custom encoder (CustomEncoder) class. It is very similar to the orjson method,
albeit with a little more boilerplate needed:

class CustomEncoder(json.JSONEncoder):

 def default(self, obj):

 return default(obj)

json.dumps(data, cls=CustomEncoder)

On seeing the preceding example, you should now be able to add the __json__
approach to CustomEncoder.

No matter the project, you are very likely to come up against this issue. Having a standard
and consistent way to handle non-scalar objects is important. Assess how you plan to
build and look for meaningful patterns. Generally, I find this to be more of an important
decision than raw performance. The incremental performance changes from one package
to the next are likely not going to be as impactful as making a decision based upon how
your application will be built and maintained.

For example, what if you need to render an integer that is larger than 64 bits? Both ujson
and orjson have limitations where they will raise exceptions and not be capable of
handling your data. However, the standard library implementation does have this capacity.
As we stated earlier, make the right decisions that are the most obvious for your needs. But
let's turn to some common practices and see what we might be able to learn from them.

Best practices
There are a number of common practices for what typical JSON responses look like. Of
course, the content and your organization are something that will be determined by your
application's needs. However, there is one common question you will find that is often
discussed on developer forums: How should I format an array of objects?

160 Building Response Handlers

Coming back to our earlier example, let's imagine that we are still building our music app.
Now, we want to build an endpoint that lists out all of the available songs. Each individual
song object will look something like this:

{

 "name": "Kashmir",

 "song_uid": "75b723e3-1132-4f73-931b-78bbaf2a7c04",

 "released": "1975-02-24",

 "runtime": 581

}

How should we organize an array of songs? There are two schools of thought: only using
top-level objects and using whatever structure fits your data best. What we are talking
about is the difference between the following code snippets:

{

 "songs": [

 {...},

 {...}

]

}

Consider this second snippet:

[

 {...},

 {...}

]

Why is there even a debate? And why do some people only strictly use top-level objects?
There was a JSON security flaw in browsers uncovered in 2006 that would allow attackers
to execute code based upon the second option, the top-level JSON array. For this reason,
many people suggested that using the first structure was more secure.

While this is no longer a concern since the impacted browsers are long out of date, I
still like the top-level object pattern. It still provides one critical benefit over the second
option: flexibility without compromising on compatibility.

Serializing JSON content 161

If our array of objects is nested inside a top-level object, then we can easily modify our
endpoints in the future to add new keys to the top level without impacting anyone using
that endpoint. One pattern that I like to include is having a meta object that includes
some of the details of the query and contains pagination information:

{

 "meta": {

 "search_term": "Led Zeppelin",

 "results": 74,

 "limit": 2,

 "offset": 0

 },

 "songs": [

 {...},

 {...}

]

}

Therefore, I suggest that when given the choice, you should nest your objects like this.
Some people also like to nest single objects:

{

 "song": {

 "name": "Kashmir",

 "song_uid": "75b723e3-1132-4f73-931b-78bbaf2a7c04",

 "released": "1975-02-24",

 "runtime": 581

 }

}

The argument goes that the same principle applies. The endpoint is more easily extensible
if the objects are nested. However, this argument seems less convincing and practical
when dealing with single objects. Generally, any change in the endpoint would be related
to the object itself. So, perhaps this is a use case for versioning, which we explored in
Chapter 3, Routing and Intaking HTTP Requests.

No matter your decision on how to structure the data, sending information about
our songs in JSON format is still just a structural decision that will be dictated by the
constraints of the application being built. Now, we want to move on to the next step:
actually sending the song itself. Let's see how we can do that next.

162 Building Response Handlers

Streaming data
When introducing the concept of streaming in Chapter 4, Ingesting HTTP Data, I said
that request streaming was probably the less popular of the two types. I do not have any
empirical data to confirm this, but it seems readily apparent to me that when most people
hear the term streaming—whether they are a developer or a layperson—the implication is
that there is a consumption of some form of media from the cloud.

In this section, what we are looking to achieve is to learn how we can accomplish this.
How exactly does this work? When building a streaming response, Sanic will add the same
Transfer Encoding: chunked header that we saw with streaming requests. This is
the indication to the client that the server is about to send incomplete data. Therefore, it
should leave the connection open.

Once this happens, it is time for the server to send data at its discretion. What is a chunk
of data? It follows a protocol whereby the server sends the number of bytes it is about to
send (in hexadecimal format), followed by a \r\n line break, followed by some bytes, and
then followed by another \r\n line break:

1a\r\n

Now I'm free, free-falling\r\n"

When the server is done, it needs to send a 0 length chunk:

0\r\n

\r\n

As you can probably guess, Sanic will take care of much of the plumbing in setting up the
headers, determining chunk sizes, and adding the appropriate line breaks. Our job is to
control the business logic. Let's see what a super simple implementation looks like, and
then we can build from there:

@app.get("/")

async def handler(request: Request):

 resp = await request.respond()

 await resp.send(b"Now I'm free, free-falling")

 await resp.eof()

When we were consuming streaming requests, we needed to use the stream keyword
argument or decorator. For responses, the simplest method is to generate the response
upfront: resp = await request.respond(). In our example, resp is a <class
'sanic.response.HTTPResponse'> type object.

Streaming data 163

Once we have a response object, we can write to it whenever we want using either
regular strings ("hello"), or bytes strings (b"hello"). When there is no more
data to be transferred, we tell the client using resp.eof(), and we are done.

This asynchronous behavior of sending data at will does bring up an interesting question
about the life cycle of the request. Since we are slightly getting ahead of ourselves, if you
are interested to see how middleware behaves with streaming responses, jump ahead to
Chapter 6, Operating Outside the Response Handler.

As I am sure you can probably imagine from our simple example, by having the resp.
send() method available to us, we now have the freedom to execute asynchronous calls
as desired. Of course, a silly example to illustrate our point would be to add a loop with
some time delays:

@app.get("/")

async def handler(request: Request):

 resp = await request.respond()

 for _ in range(4):

 await resp.send(b"Now I'm free, free-falling")

 await asyncio.sleep(1)

 await resp.eof()

In the next section, we will see a more useful and complex example when we start sending
SSE. But first, let's get back to our goal. We wanted to send the actual song. Not just
metadata, not just the lyrics, but the actual music file so that we can listen to it through
our web application.

File streaming
The simplest method by which to do this is with the file_stream convenience wrapper.
This method takes care of all the work for us. It will asynchronously read the file contents,
send the data in chunks to the client, and wrap up the response:

from sanic.response import file_stream

@app.route("/herecomesthesun")

async def handler(request):

 return await file_stream("/path/to/herecomesthesun.mp4")

Now it is time to open the browser, turn up the volume, hit our web page, and enjoy.

164 Building Response Handlers

Okay, so perhaps relying upon the browser to be our media player is not the best UI. What
if we want to embed the song content and have an actual player UI inside our frontend?
Of course, HTML and design are outside the scope of the book. But you can at least get
started using the following:

<audio controls src="http://localhost:7777/herecomesthesun" />

Sanic will default to sending chunks of 4,096 bytes using this method. You might find it
desirable to increase or decrease that number:

return await file_stream("/path/to/herecomesthesun.mp4", chunk_
size=8192)

Also, it is worth mentioning that Sanic does some work under the hood to attempt to
figure out what kind of file you are sending. This is so that it can properly set up the
content-type header. If it is unable to figure it out, then it will fall back to text/
plain. Sanic will look at the file extension and try and match it against the operating
system's MIME type definitions.

Server-sent events for push communication
Now that we know we can control the flow of information from the server, we are entering
the territory of being able to build some great features for our web applications.

In the old days, when our application wanted to check the state of something, it would
need to poll the web server by repeatedly sending the same request over and over again.
We talked about building a music web application. We learned how we could display
content, get information, and even stream some content to listen to music. Of course, the
next step is to make the application social because we want to share our music with our
friends. We want to add a feature that will list who is online and the name of the song
they are listening to. Refreshing the page constantly would work but is a bad experience.
Polling constantly by sending the same request over and over again also works, but this
eats up resources and is also not a great experience.

What would be better is if our server simply notified the browser when someone comes
online or when their music player changes. This is what SSE provides: a simple set of
instructions for our server to send push notifications to the browser.

The basic unit of the SSE protocol is the event, which is a single line of text that contains
a field and some body:

data: foo

Server-sent events for push communication 165

In this case, the field is data, and the body is foo. A message can consist of one or more
events separated by a single newline character: \n. Here is an example:

data: foo

data: bar

When a browser receives this message, it will be decoded as foo\nbar. A message
should be terminated by the server by sending two newline characters: \n\n.

The SSE protocol has five basic fields:

Table 5.2 – An overview of the allowed SSE fields

When creating an endpoint for SSE, I would suggest that you keep this table handy. In
the following section, we will learn how we can craft messages to be sent by our server to
comply with the SSE protocol utilizing these field types.

Starting with the basics
Before diving into how we can implement SSE from Sanic, we need a frontend application
that can understand how to process these events. We are not too concerned about
how to build the SSE client. There is a prebuilt frontend HTML client that you can
find in the GitHub repository at https://github.com/PacktPublishing/
Web-Development-with-Sanic/blob/main/Chapter05/sse/index.html.
Just grab the code to follow along.

To deliver the client, we will store the prebuilt HTML client as index.html and use the
existing tools we know to serve that file. To make sure that we cover the blank root path
(/), we will also redirect it to our index.html file:

app.static("/index.html", "./index.html", name="index")

@app.route("/")

https://github.com/PacktPublishing/Web-Development-with-Sanic/blob/main/Chapter05/sse/index.html
https://github.com/PacktPublishing/Web-Development-with-Sanic/blob/main/Chapter05/sse/index.html

166 Building Response Handlers

def home(request: Request):

 return redirect(request.app.url_for("index"))

With the preceding code in place, you should be able to serve your application and
navigate to http://localhost:7777/. There, you should see the simple SSE
frontend. Now that we have a client, let's build the SSE server endpoint to go along with it:

@app.get("/sse")

async def simple_sse(request: Request):

 headers = {"Cache-Control": "no-cache"}

 resp = await request.respond(

 headers=headers,

 content_type="text/event-stream"

)

 await resp.send("data: hello\n\n")

 await asyncio.sleep(1)

 await resp.send("event: bye\ndata: goodbye\n\n")

 await resp.eof()

Most of this should look familiar. We already saw how we can control the sending of
chunks to the client; here, we are just doing it in a more structured pattern. We start by
creating a response object with our required headers using request.respond. Then,
at periodic intervals, we will dispatch data to the frontend using resp.send.

Note that we are doing this in a very deliberate pattern using the SSE requirements for
how data and events should be sent and making sure to add line breaks (\n), as required
by the SSE specification. Of course, this simple proof-of-concept is far from being a
feature-complete build that can be used for our music application. Let's examine how we
can make it a bit better by creating a mini framework to make our job of formatting these
SSE messages easier.

Building some SSE objects
To create our SSE framework, we will start by building some basic objects to help in
creating our messages. SSE messages are indeed simple, so perhaps this is a bit overkill.
On the other hand, making sure we use line breaks and field names appropriately sounds
like a recipe for disaster. So, a few thoughtful steps upfront should go a long way for us.

Server-sent events for push communication 167

The first thing we will build are some objects to create properly formatted fields:

class BaseField(str):

 name: str

 def __str__(self) -> str:

 return f"{self.name}: {super().__str__()}\n"

class Event(BaseField):

 name = "event"

class Data(BaseField):

 name = "data"

class ID(BaseField):

 name = "id"

class Retry(BaseField):

 name = "retry"

class Heartbeat(BaseField):

 name = ""

Notice how we are starting our inheritance with str. This will make our objects operate
as strings, with some auto-formatting involved:

>>> print(Event("foo"))

event: foo

Moving on, we need a convenient way to compose fields together into a single message. It
also would need to have proper string formatting, which means an additional \n at the end:

def message(*fields: BaseField):

 return "".join(map(str, fields)) + "\n"

168 Building Response Handlers

Now, looking at this, we should see a properly formatted SSE message:

>>> print(f"{message(Event('foo'), Data('thing'))}".encode())

b'event: foo\ndata: thing\n\n'

The next step is to try out our new building blocks and see if they send messages, as
expected, to the frontend:

@app.get("/sse")

async def simple_sse(request: Request):

 headers = {"Cache-Control": "no-cache"}

 resp = await request.respond(headers=headers, content_
type="text/event-stream")

 await resp.send(message(Data("hello!")))

 for i in range(4):

 await resp.send(message(Data(f"{i=}")))

 await asyncio.sleep(1)

 await resp.send(message(Event("bye"), Data("goodbye!")))

 await resp.eof()

Let's pause for a moment and recap what it is we are trying to achieve. The goal is to send
notifications to the browser when a certain event happens. So far, we have identified
two events: another user logs into (or out of) the system, and a user starts (or stops)
listening to a song. When one of these events is triggered, our stream should broadcast the
notification back to the browser. To achieve this, we will build a pubsub.

A pubsub is a design paradigm where you have two actors: a publisher and a subscriber.
It is the job of the publisher to send messages and the job of the subscriber to listen
for messages. In our scenario, we want the stream to be the subscriber. It will listen for
incoming messages, and when it receives one, it will know that it should dispatch the SSE.

Since we are still working out exactly how we want our notification system to work, we
are going to keep it simple. The mechanism for our pubsub will be a simple asyncio.
Queue implementation. Messages can come in, and messages can be consumed.

It should be noted that this design pattern will be limited. Remember when we decided that
we were going to run our development server with two workers? The reason for doing that
was to keep horizontal scaling in mind. What we are about to do will absolutely break this
and will not work on a distributed system.

Server-sent events for push communication 169

Therefore, to make this production worthy, we will need a new plan for how to distribute
messages across a cluster. We will get there in Chapter 11, A Complete Real-World
Example, which has our complete example.

1.	 First, we need to set up a single queue. We will do this with a listener:

@app.after_server_start

async def setup_notification_queue(app: Sanic, _):

 app.ctx.notification_queue = asyncio.Queue()

Now, when our application starts, anywhere we have access to the application
instance, we can also access the notification queue.

Important Note
As we start building more complex applications, we are going to see more
usage of ctx objects. These are convenient locations that Sanic provides for
us—the developers—to do with as necessary. It is a storage location for stuff.
Sanic almost never makes use of them directly. Therefore, we are free to set any
properties we want on the object.

2.	 Next, we will create our subscriber. This instance will listen to the queue, and send
messages when it finds a message on the queue that has not been dispatched:

class Notifier:

 def __init__(

 self,

 send: Callable[..., Coroutine[None, None, None]],

 queue: asyncio.Queue,

):

 self.send = send

 self.queue = queue

 async def run(self):

 await self.send(message(Heartbeat()))

 while True:

 fields = await self.queue.get()

 if fields:

 if not isinstance(fields, (list, tuple)):

 fields = [fields]

 await self.send(message(*fields))

170 Building Response Handlers

As you can see, our run operation consists of an infinite loop. Inside that loop,
Notifier will pause and wait until there is something inside the queue. When
there is, it removes the item from the queue and continues through the current
iteration of the loop, which is to send that item. However, before we send our loop,
we are going to send a single heartbeat message. This will flush out any startup
events so that our client will clear out its queue. This is not necessary, but I think it
is a helpful practice to get into.

3.	 To implement this in our endpoint, it should look like this:

@app.get("/sse")

async def simple_sse(request: Request):

 headers = {"Cache-Control": "no-cache"}

 resp = await request.respond(

 headers=headers,

 content_type="text/event-stream"

)

 notifier = Notifier(resp.send, request.app.ctx.
notification_queue)

 await notifier.run()

 await resp.eof()

A response object is created using request.respond. Then, we create
Notifier and let it run. At the very end, eof is called to close the connection.

Important Note
To be entirely upfront, the previous code sample is somewhat flawed. I
intentionally left it simple for the sake of making a point. However, since there
is no way to break out of the infinite loop, there is really no way the server
would ever close the connection itself. This makes the inclusion of eof a bit of
a moot point. It is nice to have it there as an example, but as written, this code
will only ever be stopped client-side by navigating away from the endpoint.

4.	 The easy part should now be to push messages into the queue. We can do this on
a separate endpoint, as follows:

@app.post("login")

async def login(request: Request):

 request.app.ctx.notification_queue.put_nowait(

Server-sent events for push communication 171

 [Event("login"), Data("So-and-so just logged
in")]

)

 return text("Logged in. Imagine we did something
here.")

5.	 We can now test this out! Open your browser and navigate to http://
localhost:7777/index.html.

You should see something like this:

Figure 5.2 – The HTML to test out SSE

6.	 Once we start the stream by clicking on the start button, switch back to a terminal,
and hit our fake login endpoint:

$ curl localhost:7777/login -X POST

Logged in. Imagine we did something here.

Did you see what just happened in the browser? Go ahead and do it again. Feel free to play
around with this example to get a feel for how the different components are working.

Do you think you can build the fake "start playing music" endpoint? Just make sure
that if you are going to use Event, your frontend application knows about it by using
eventSource.addEventListener. Take a look at the index.html file and you
will see the login event. I suggest you pause and take some time to dig into this code to
see how the different components are working together to facilitate the exchange of data.
What kinds of amazing things could you build using this?

In Chapter 6, Operating Outside the Response Handler, we will come back to this same
example and explore another way we could achieve it through the use of signals. Also,
I should probably point out that using asyncio.Queue in this instance has another
disadvantage: it will really only work in a single browser. Since our consumer (Notifier)
drains down the queue, what happens when multiple browsers are running simultaneously?

172 Building Response Handlers

Well, only the first one gets the message. Again, this solution is far too simplistic for
real-world usage, but hopefully, it has gotten the ideas flowing in terms of how you could
build something more robust. To be entirely transparent, in situations like this, I really
like to fall back to Redis. If you are familiar with Redis, you might know that it has a
pubsub built into it. With the right Python library interface, you can easily solve both
of the problems that the asyncio.Queue implementation gave us: it can be used to
push messages to multiple subscribers at once, and it can be used in a distributed system
where multiple publishers are pushing into it. Maybe before continuing to Chapter 11,
A Complete Real-World Example, try to see whether you can make it work in our current
example.

If nothing else, I hope you got excited when you saw the message pop up in your browser.
For me, it is still really interesting and fun to see messages being pushed into a browser
session. SSE is a super simple solution that can solve some potentially complex problems,
which, ultimately, lead to a powerful feature set. Being able to push data into a web
browser truly helps an application feel like it is transforming from a web page into a web
application.

The downside of this implementation is that they are still only one-sided. To get two-way
asynchronous communication, we need websockets.

Websockets for two-way communication
You have almost definitely experienced websockets on your favorite web applications
before. They are a tool that helps to create a super-rich layer of user experience and
can be used in a wide variety of contexts. While SSEs are, essentially, just an open stream
that has not yet been terminated, websockets are something completely different.

Plain vanilla HTTP is just a specification (or protocol) for how messages can be formatted
and transmitted over a TCP connection between machines. Websockets are a separate
protocol complete with directions on how messages should be formatted, sent, received,
and more. The specification for them is really quite involved, and we could probably
devote an entire book to just discussing websockets. Instead, we will simply focus on
their implementation within Sanic. The one technical detail about websockets that is
worth mentioning is that they begin their life as a normal HTTP connection. The request
comes in and asks the server for permission to upgrade its connection to a websocket.
Then, the client and server do a bit of a dance together to iron out the details. When the
negotiations are all done, we have an open socket where messages can be passed back and
forth. Think of it as a two-lane highway where messages can pass by each other on their
way to either end.

Websockets for two-way communication 173

Perhaps the easiest way to conceptualize a websocket is to think of a chat application.
We have a single endpoint on the backend server. Two separate web browsers connect
to the server, and each is somehow connected so that when one pushes a message in, the
server pushes that message out the other side. In this way, both clients are able to send and
receive messages irrespective of what else is happening.

This is true asynchronous web behavior. Sanic uses async/await to leverage and
optimize server efficiency for performance. However, the side benefit is that it also allows
Sanic to offer an almost effortless mechanism to implement websockets. While we will
not get into the details of how this works, you should be aware that Sanic makes use of
the Python websockets package under the hood. It is a fantastic project, and it will be
helpful to look at their documentation when building your own websocket endpoint in
Sanic: https://websockets.readthedocs.io.

In the last section, we started to make our music player application social by sharing
information about who was logged in. Let's turn up the social aspect by adding in a chat
feature. Here, our goal is to have two different users access the web application through
their web browser and to be able to communicate with one another. Since the applications
we are developing right now are only available on the local network, we will simulate this
by opening two browsers side by side. We should still be able to pass text messages back
and forth between the two web browsers.

Just like with the SSE example, you can grab the frontend code from the GitHub
repository, so we do not have to worry about those implementation details: https://
github.com/PacktPublishing/Python-Web-Development-with-Sanic/
tree/main/Chapter05/websockets. You should copy that code and place it into an
index.html file just like we did with our last example. Once that has been done, make
sure you have created both the static route and the bare-root (/) endpoint. Once this
is complete, you can access the websocket frontend in the browser, and we can begin to
create the backend for our websocket chatroom:

1.	 The first thing we are going to create is a Client class. When someone enters the
application, the frontend will immediately open the websocket. The Client class
will be a holding place for us to be able to keep track of who is in the application
and how we can send them messages. Therefore, we need a unique identifier and
a callable in which to send messages:

class Client:

 def __init__(self, send) -> None:

 self.uid = uuid4()

 self.send = send

https://websockets.readthedocs.io
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter05/websockets
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter05/websockets
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter05/websockets

174 Building Response Handlers

 def __hash__(self) -> int:

 return self.uid.int

As you can see, we are going to keep track of the incoming session by assigning each
client a UUID.

2.	 Instantiate this Client object inside the websocket handler:

@app.websocket("/chat")

async def feed(request, ws):

 client = Client(ws.send)

3.	 Next, we need to create our ChatRoom instance. This will be a global instance that
exists during the lifetime of the application. Its role will be to keep track of all of the
clients that have entered or exited. When someone tries to send a message, it will be
responsible for publishing that message to the remaining clients.

Similar to our SSE example, the implementation I am about to show you is
limited in that it cannot be run across a distributed cluster. It will function
great in just a single instance. This is because we are registering the clients
on a single instance in memory. To build a more scalable application to be
used in a production environment, we should use something such as Redis or
RabbitMQ to distribute the message across multiple Sanic instances. If you are
interested in seeing what this distributed feed would look like, please take a
look at a GitHub Gist that I have created (https://gist.github.com/
ahopkins/5b6d380560d8e9d49e25281ff964ed81) as a demonstration.
For now, we will stick with the simpler single-server implementation that looks
like this:

class ChatRoom:

 def __init__(self) -> None:

 self.clients: Set[Client] = set()

 def enter(self, client: Client):

 self.clients.add(client)

 def exit(self, client: Client):

 self.clients.remove(client)

 async def push(self, message: str, sender: UUID):

 recipients = (client for client in self.clients

https://gist.github.com/ahopkins/5b6d380560d8e9d49e25281ff964ed81
https://gist.github.com/ahopkins/5b6d380560d8e9d49e25281ff964ed81

Websockets for two-way communication 175

if client.uid != sender)

 await asyncio.gather(*[client.send(message) for
client in recipients])

This interface has a mechanism to add and remove clients, along with a method to
push events to registered clients. One thing that is important to point out is that
we do not want to send the message back to the person that sent it. That would be
a little bit awkward and slightly annoying for the user to constantly have their own
messages fed back to them. Therefore, we will filter out the sending client.

4.	 Remember that the ChatRoom instance is a single object that lives for the lifetime
of the application instance. So, where do you think it should be instantiated? That's
right, a listener:

@app.before_server_start

async def setup_chatroom(app, _):

 app.ctx.chatroom = ChatRoom()

5.	 Now, all we need to do is wire it up:

@app.websocket("/chat")

async def feed(request, ws):

 try:

 client = Client(ws.send)

 request.app.ctx.chatroom.enter(client)

 while True:

 message = await ws.recv()

 if not message:

 break

 await request.app.ctx.chatroom.push(message,
client.uid)

 finally:

 request.app.ctx.chatroom.exit(client)

When the user enters, we add them to the chatroom. Then, the request enters an infinite
loop and waits for a message to be received from the websocket. This is very similar, in
concept, to the SSE implementation that we saw in the last section. When a message
is received on the current websocket, it is passed to the ChatRoom object, which is
responsible for sending it to all of the other registered clients. It seems too easy, right?

176 Building Response Handlers

Now to test it out: open two web browsers. Navigate each of the web browsers to the
frontend web application that you created earlier. They should connect to the websocket
backend, and they should be all set up and ready to begin chatting. When you type a
message in one browser, it should appear in the other. Take some time to send messages
back and forth, and dissect how this is operating under the hood. Have fun chatting with
yourself:

Figure 5.3 – Two side-by-side HTML websocket-enabled applications (me talking to myself)

The code that you need to run the preceding websocket HTML application (and the
backend chatroom code that we just looked at) is available on GitHub at https://
github.com/PacktPublishing/Web-Development-with-Sanic/blob/
main/Chapter05/websockets/index.html.

In the next section we will discuss adding headers and cookies to responses.

Setting response headers and cookies
We have talked a lot about headers. They are super important when building web
applications and are, generally, a fundamental part of application design. When building
your application responses, you will likely find reasons to add handlers to your response
objects. This could be for security purposes such as Cross-Origin Resource Sharing
(CORS) headers, a Content-Security-Policy, or informational and tracking purposes.
And, of course, there are cookies, which are their own special kind of headers that receive
special treatment in Sanic.

https://github.com/PacktPublishing/Web-Development-with-Sanic/blob/main/Chapter05/websockets/index.html
https://github.com/PacktPublishing/Web-Development-with-Sanic/blob/main/Chapter05/websockets/index.html
https://github.com/PacktPublishing/Web-Development-with-Sanic/blob/main/Chapter05/websockets/index.html

Setting response headers and cookies 177

Recall some of the earlier examples (such as the SSE example) where we actually set
the headers. It is such an easy and intuitive process, so perhaps you did not even notice.
Whenever we build a response object, all we need to do is pass a dictionary with
key/value pairs:

text("some message", headers={

 "X-Foobar": "Hello"

})

That's really all there is to it! Bear in mind that you will not be required to set your own
headers all of the time. Sanic takes care of some of them for you, including the following:

•	 content-length

•	 content-type

•	 connection

•	 transfer-encoding

Responding with a request ID
One pattern that is particularly helpful is to set an x-request-id header on every
response. It then makes a habit of using request.id to log or trace a request through
your application, so it becomes easier to track what is happening when you inevitability
need to debug something.

We want to ensure our response includes the header:

@app.route("/")

async def handler(request):

 ...

 return text("...", headers={"x-request-id": request.id})

That is a simple example. As you have probably come to realize by now, that simple
example might get tedious if we want to do it on all of our requests. Do you want to try to
come up with a solution for adding that to all responses? Again, decorators and middleware
are potential tools. We will come back to this, and you will see some implementations for
setting this globally, in the full example, in Chapter 11, A Complete Real-World Example.

178 Building Response Handlers

To truly make this useful, we should set up our logging to include the request ID. We have
not discussed this much yet, but Sanic includes a default logger for you to use. It might be
helpful for you to use that logger and override the default logging format to include the
request ID. If you want to know more about how to set this up, jump ahead to Chapter 6,
Operating Outside the Response Handler.

Setting response cookies
One of the most important types of headers you can set on an individual response would
be the cookie headers. Since they are so prominent, and they could require a bit of
complexity to set up, you can avoid having to use Set-Cookie directly.

Essentially, response cookies are a key/value pair that gets concatenated into a single
string in the response but then is interpreted by the browser. It is yet another shared
language in the conversation of the web. So, while a single cookie could be as simple as
flavor=chocolatechip, that shared language allows us to set a whole bunch of
metadata on top of the simple example.

Before we get to the metadata, let's look at the simple example:

@app.get("/ilikecookies")

async def cookie_setter(request):

 resp = text("Yum!")

 resp.cookies["flavor"] = "chocolatechip"

 return resp

It seems fairly straightforward. Let's see what it does to our response:

$ curl localhost:7777/ilikecookies -i

HTTP/1.1 200 OK

Set-Cookie: flavor=chocolatechip; Path=/

content-length: 4

connection: keep-alive

content-type: text/plain; charset=utf-8

Yum!

Setting response headers and cookies 179

Our response headers now have this additional line that instructs the browser to create
and store a cookie:

Set-Cookie: flavor=chocolatechip; Path=/

So, what's the deal with that Path? That is the cookie metadata at play. Cookies can have
several different types of metadata attached to them, including Path, which is added by
default. Here are some of the meta-values that we can add:

Table 5.3 – Cookie meta-fields

When we set up our flavor cookie, it seemed like we were just adding a string value to a
dictionary that looked like this:

{

 "flavor": "chocolatechip"

}

That is not really the case. The response.cookies object is, in fact, a CookieJar
object, which is itself a special kind of dict. When we set up a new key/value on that
CookieJar object, it is, in fact, creating a Cookie object. Huh?

Let's see what happens when we do the following:

resp.cookies["flavor"] = "chocolatechip"

This code looks like you are just adding a string value to a regular dictionary. It is more
like you are creating Cookie("flavor", "chocolatechip") and then putting it
into CookieJar(). To clean up some of the complexity involved with managing these
instances, Sanic lets us just work with strings. We should keep this in mind when we go to
set the metadata, which is what we will do next.

180 Building Response Handlers

Let's imagine we have a cookie that should time out. After a while, we want the browser
session to forget it existed. This might—for example—be useful with a session cookie. We
set a value that identifies a browser session with a particular user. Storing it in a cookie
means that, on subsequent requests, we can identify who the person is. However, by
setting Max-Age, we can control the length of time that person can use the application
before they need to log in again:

resp.cookies["session"] = "somesessiontoken"

resp.cookies["session"]["max-age"] = 3600

The same applies for all the other meta fields:

resp.cookies["session"]["secure"] = True

resp.cookies["session"]["httponly"] = True

resp.cookies["session"]["samesite"] = "Strict"

If we put this all together, our cookie headers will ultimately look like this:

Set-Cookie: flavor=chocolatechip; Path=/

Set-Cookie: session=somesessiontoken; Path=/; Max-Age=3600;
Secure; HttpOnly; SameSite=Strict

The last thing we should look at is how we should delete cookies. When you want to
remove a cookie, it is tempting to just use del, as you might do with any other dictionary
object. The problem is that this only works so far. Usually, what you want to do instead
is tell the browser that it needs to remove the cookie so that the browser does not send it
back in future requests. The easiest method to accomplish this is by setting the maximum
age of the cookie to 0:

resp.cookies["session"]["max-age"] = 0

Now you should feel comfortable adding and deleting cookies to and from responses. It
might be a good opportunity to create a response handler and use your browser's cookie
inspection tools to see how cookies can be set, manipulated, and deleted from your server.

Summary 181

Summary
Now that we have learned how to manipulate both the request and the response, we
can build some really powerful applications. Whether we are building an HTML-based
website, a JSON-powered web API, a streaming content application, or a combination of
them all, Sanic provides us with the tools we need.

One of the first things we discussed is that Sanic tries hard to not obstruct the build of an
application. We, as developers, have the freedom to build with different tools and layer
them together to build a truly unique platform. This is very much prevalent when we
realize the freedom given to the developer regarding the response object. Do you need to
write bytes directly? Sure. Do you want to use a specific templating engine? Not a problem!

Now that we have a basic understanding of how to handle the life cycle of an HTTP
connection from a request through to a response, we can start to see what else we have
at our disposal. In the next chapter, we will take a deeper dive into some of the concepts
that have already been introduced, such as middleware, background tasks, and signals.
Combining these basic building blocks will help us build not only a powerful application,
but also one that is easy to maintain, update, and expand.

6
Operating

Outside the
Response Handler

The basic building block of application development within Sanic is the response handler,
which is sometimes known as a route handler. Those terms can be used interchangeably
and mean the same thing. It is the function that Sanic runs when a request has been
routed to your application to be handled and responded to. This is where business logic
and HyperText Transfer Protocol (HTTP) logic combine to allow the developer to
dictate how responses should be delivered back to the client. It is the obvious place to start
when learning how to build with Sanic.

However, response handlers alone do not provide enough power to create a polished
application experience. To build out an application that is polished and professional,
we must break outside the handler to see which other tools Sanic has to offer. It is time to
think about the HTTP request/response cycle as not being confined to a single function.
We will broaden our scope so that responding to a request is not the responsibility of just
the handler, but the entire application. We already got a taste of this when we caught
a glimpse of middleware.

184 Operating Outside the Response Handler

In this chapter, we are going to cover the following topics:

•	 Making use of ctx

•	 Altering requests and responses with middleware

•	 Leveraging signals for intra-worker communication

•	 Mastering HTTP connections

•	 Implementing proper exception handling

•	 Background task processing

Of course, not all projects will need features such as these, but when used in the right
place, they can be extremely powerful. Have you ever worked on a Do It Yourself (DIY)
project around your home and not quite had the right tools for the job? It can be super
frustrating and inefficient when you need a Phillips head screwdriver, but all you have
are flat head screwdrivers. Not having the right tool for the job can make your task harder,
but it also sometimes decreases the quality of the work that you can perform.

Think of the features that we explore in this chapter as tools. There is a common saying
you may have heard: "If you are holding a hammer, then every problem looks like a nail."
Luckily for us, we have a bunch of tools, and our job now is to learn how to use them.
We are about to go explore the Sanic tool belt and see what kinds of problems we can solve.

Technical requirements
In this chapter, you should have at your disposal the same tools available as in the previous
chapters in order to be able to follow along with the examples (integrated development
environment (IDE), modern Python, and curl).

You can access the source code for this chapter on GitHub at https://github.com/
PacktPublishing/Python-Web-Development-with-Sanic/tree/main/
Chapter06.

Making use of ctx
Before we begin with the tool belt, there is one more concept that we must become
familiar with. It is fairly ubiquitous in Sanic, and you will see it in a lot of places. I am
talking about: ctx. What is it?

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter06
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter06
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter06

Making use of ctx 185

It stands for context. These ctx objects can be found in several places, and it is impractical
to build a professional-grade Sanic web application without making good use of them.
What they enable is the passing of state from one location in your application to another.
They exist for your own usage as a developer, and you should feel free to use them
however you wish. That is to say that the ctx objects are yours to add information to
without worrying about name collisions or otherwise impacting the operation of Sanic.

The most common example that comes to mind is your database connection object. You
create it once, but you want to have access to it in many places. How does this work? Have
a look at the following code snippet:

@app.before_server_start

async def setup_db(app, loop):

 app.ctx.db = await setup_my_db()

Now, anywhere you can access the application instance, you can access the db instance.
For example, you can access it inside a function somewhere, like this:

from sanic import Sanic

async def some_function_somewhere():

 app = Sanic.get_app()

 await app.ctx.db.execute(...)

Or, perhaps you need it in your route handler, as illustrated here:

bp = Blueprint("auth")

@bp.post("/login")

async def login(request: Request):

 session_id = await request.app.ctx.db.execute(...)

 ...

186 Operating Outside the Response Handler

Here is a list of all locations that have a ctx object:

Table 6.1 – Sanic features with a ctx object

We will continue to come back to ctx objects often. They are a very important concept in
Sanic to allow the passing of arbitrary data and objects. Not all of them are created equal,
and you will likely find yourself using app.ctx and request.ctx much more often
than any of the others.

Altering requests and responses with middleware 187

Now that we have this basic building block behind us, we will see what it actually looks
like to pass these objects around. In the next section regarding middleware, we will
see how the Request object—and therefore also request.ctx—can be accessed in
multiple places from your application.

Altering requests and responses with
middleware
If you have been following along with the book up until now, the concept of middleware
should be familiar. This is the first tool in the tool belt that you should become familiar
with.

Middleware is snippets of code that can be run before and after route handlers.
Middleware comes in two varieties: request and response.

Request middleware
The request middleware executes in the order in which it was declared, before the route
handler, as shown here:

@app.on_request

async def one(request):

 print("one")

@app.on_request

async def two(request):

 print("two")

@app.get("/")

async def handler(request):

 print("three")

 return text("done")

When we try to reach this endpoint, we should see the following in the Terminal:

one

two

three

(sanic.access)[INFO][127.0.0.1:47194]: GET http://
localhost:7777/ 200 4

188 Operating Outside the Response Handler

But this only tells a part of the story. Sometimes, we may need to add some additional
logic to only some parts of our application. Let's pretend we are working on building an
e-commerce application. As with other online stores, we will need to build a shopping cart
that holds products that are going to be purchased. For the sake of our example, we will
imagine that when the user logs in, we create a cart in our database and store a reference
to it in a cookie. We discussed how to add a cookie to a Sanic response object in Chapter 5,
Building Response Handlers, in the Setting response headers and cookies section. To achieve
the goal of setting the cookie on login, it could look something like this:

@app.post("/login")

async def login(request):

 user = await do_some_fancy_login_stuff(request)

 cart = await generate_shopping_cart(request)

 response = text(f"Hello {user.name}")

 response.cookies["cart"] = cart.uid

 return responses

Don't get too tied up in the details here. The point is that on every subsequent request,
there will be a cookie called cart that we can use to fetch data from our database.

Now, suppose that we want all endpoints on our /cart path to have access to the
shopping cart. We might have endpoints for adding items, removing items, changing
quantities, and so on. However, we will always need access to the cart. Rather than
repeating the logic in every handler, we can do it once on the blueprint. Adding
middleware to all the routes on a single blueprint looks and functions similarly to
application-wide middleware, as the following code snippet illustrates:

bp = Blueprint("ShoppingCart", url_prefix="/cart")

@bp.on_request

async def fetch_cart(request):

 cart_id = request.cookies.get("cart")

 request.ctx.cart = await fetch_shopping_cart(cart_id)

@bp.get("/")

async def get_cart(request):

 print(request.ctx.cart)

 ...

Altering requests and responses with middleware 189

As we would expect, every endpoint that is attached to the ShoppingCart blueprint will
fetch the cart before it runs the handler and stores it in the local request context. I am sure
you can see the value in this sort of pattern. Where you can identify a group of routes that
need similar functionality, sometimes it is best to pull that out into middleware. Doing
this will make solving bugs or adding new features much easier, as you only have a single
function to update and not all of the individual route handlers. This is a good time to also
point out that this works also with blueprint groups. We could change the middleware to
the following and have the same impact:

group = Blueprint.group(bp)

@group.on_request

async def fetch_cart(request):

 cart_id = request.cookies.get("cart")

 request.ctx.cart = await fetch_shopping_cart(cart_id)

Just as we would expect, endpoints that are within that blueprint group will now have the
shopping cart accessible to them.

Knowing that we can execute middleware that is both application-wide and
blueprint-specific leads to an interesting question: in what order is it applied? No
matter the order in which it is declared, all application-wide middleware will always
run before blueprint-specific middleware. To illustrate this point, we will use an example
here that mixes the two types:

bp = Blueprint("Six", url_prefix="/six")

@app.on_request

async def one(request):

 request.ctx.numbers = []

 request.ctx.numbers.append(1)

@bp.on_request

async def two(request):

 request.ctx.numbers.append(2)

@app.on_request

async def three(request):

 request.ctx.numbers.append(3)

190 Operating Outside the Response Handler

@bp.on_request

async def four(request):

 request.ctx.numbers.append(4)

@app.on_request

async def five(request):

 request.ctx.numbers.append(5)

@bp.on_request

async def six(request):

 request.ctx.numbers.append(6)

@app.get("/")

async def app_handler(request):

 return json(request.ctx.numbers)

@bp.get("/")

async def bp_handler(request):

 return json(request.ctx.numbers)

app.blueprint(bp)

As you can see in this example, we interspersed declaring application and blueprint
middleware by alternating between them: first, application middleware, then blueprint
middleware, and so on. While the code lists the functions in sequential order (1, 2, 3,
4, 5, 6), our output will not be in sequence. You should be able to anticipate how our
endpoints will respond, with the application numbers appended before the blueprint
numbers. Sure enough, that is the case, as we can see here:

$ curl localhost:7777

[1,3,5]

$ curl localhost:7777/six

[1,3,5,2,4,6]

It is also really helpful to point out that since middleware is just passing along the
Request object, subsequent middleware has access to whatever changes earlier
middleware performed. In this example, we created a list of numbers in one function,
which was then available to all of the middleware.

Altering requests and responses with middleware 191

Response middleware
On the other side of the HTTP life cycle, we have response middleware. The same rules
for request middleware apply, as outlined here:

•	 It is executed based upon the order of declaration, although it is reverse order!

•	 Response middleware can be both application-wide or blueprint-specific.

•	 All application-wide middleware will run before any blueprint-specific middleware.

In the last section, we counted from 1 through 6 using middleware. We will take the exact
same code (order is important!), but change from request to response, as follows:

bp = Blueprint("Six", url_prefix="/six")

@app.on_response

async def one(request, response):

 request.ctx.numbers = []

 request.ctx.numbers.append(1)

@bp.on_response

async def two(request, response):

 request.ctx.numbers.append(2)

@app.on_response

async def three(request, response):

 request.ctx.numbers.append(3)

@bp.on_response

async def four(request, response):

 request.ctx.numbers.append(4)

@app.on_response

async def five(request, response):

 request.ctx.numbers.append(5)

@bp.on_response

async def six(request, response):

 request.ctx.numbers.append(6)

192 Operating Outside the Response Handler

@app.get("/")

async def app_handler(request):

 return json(request.ctx.numbers)

@bp.get("/")

async def bp_handler(request):

 return json(request.ctx.numbers)

Now, when we hit our endpoint, we will see a different order, as illustrated here:

$ curl localhost:7777

500 — Internal Server Error

===========================

'types.SimpleNamespace' object has no attribute 'numbers'

AttributeError: 'types.SimpleNamespace' object has no attribute
'numbers' while handling path /

Traceback of __main__ (most recent call last):

 AttributeError: 'types.SimpleNamespace' object has no
attribute 'numbers'

 File /path/to/sanic/app.py, line 777, in handle_request

 response = await response

 File /path/to/server.py, line 48, in app_handler

 return json(request.ctx.numbers)

Uh oh—what happened? Well, since we did not define our ctx.numbers container
until the response middleware, it was not available inside the handlers. Let's make a quick
change. We will create that object inside of a request middleware. For the sake of our
example, we will create our response from our last middleware and ignore the response
from the handler. In the following example, the last middleware to respond will be the first
blueprint response middleware declared:

@bp.on_response

async def complete(request, response):

 return json(request.ctx.numbers)

Altering requests and responses with middleware 193

@app.on_request

async def zero(request):

request.ctx.numbers = []

@app.on_response

async def one(request, response):

 request.ctx.numbers.append(1)

@bp.on_response

async def two(request, response):

 request.ctx.numbers.append(2)

@app.on_response

async def three(request, response):

 request.ctx.numbers.append(3)

@bp.on_response

async def four(request, response):

 request.ctx.numbers.append(4)

@app.on_response

async def five(request, response):

 request.ctx.numbers.append(5)

@bp.on_response

async def six(request, response):

 request.ctx.numbers.append(6)

@bp.get("/")

async def bp_handler(request):

 request.ctx.numbers = []

 return json("blah blah blah")

194 Operating Outside the Response Handler

Take a close look at the preceding code. We still have a mixture of application and blueprint
middleware. We create a numbers container inside of the handler. Also, it is important to
note that we are using the exact same ordering that we used for the request middleware
that yielded 1, 3, 5, 2, 4, 6. The changes here merely show us how the response middleware
reverses its order. Can you guess what order our numbers will be in? Let's check here:

$ curl localhost:7777/six

[5,3,1,6,4,2]

First, all of the application-wide response middleware runs (in reverse order of
declaration). Second, all of the blueprint-specific middleware runs (in reverse order
of declaration). Keep this distinction in mind when you are creating your response
middleware if it is connected with blueprint-specific middleware.

Whereas a common use case for request middleware is to add some data to the request
object for further processing, this is not so practical for response middleware. Our
preceding example is a bit odd and impractical. What, then, is response middleware good
for? Probably the most common use case is setting headers and cookies.

Here is a simple (and very common) use case:

@app.on_response

async def add_correlation_id(request: Request, response:
HTTPResponse):

 header_name = request.app.config.REQUEST_ID_HEADER

 response.headers[header_name] = request.id

Why would you want to do this? Many web application programming interfaces (APIs)
use what is known as a correlation ID to help identify individual requests. This is helpful
for logging purposes, for tracking a request as it trickles through various systems in your
stack, and also for clients that are consuming your API to keep track of what is happening.
Sanic latches onto this principle and will set the request.id value automatically for
you. This value will either be the incoming correlation ID from the incoming request
headers or a unique value generated per request. By default, Sanic will generate a
universally unique ID (UUID) for this value. You usually need not worry about this
unless you want to use something other than a UUID for correlating web requests. If
you are interested in how you can override Sanic's logic for generating these, check out
Chapter 11, A Complete Real-World Example.

Altering requests and responses with middleware 195

Coming back to our aforementioned example, we see that we are simply grabbing that
value and appending it to our response headers. We can now see it in action here:

$ curl localhost:7777 -i

HTTP/1.1 200 OK

X-Request-ID: 1e3f9c46-1b92-4d33-80ce-cca532e2b93c

content-length: 9

connection: keep-alive

content-type: text/plain; charset=utf-8

Hello, world.

This small snippet is something I would highly encourage you to add to all of your
applications. It is extremely beneficial when you pair it with request ID logging. This is also
something we will add to our application in Chapter 11, A Complete Real-World Example.

Responding early (or late) with middleware
When we explored the response middleware-ordering example from the last section, did
you notice something peculiar happening with our responses? You may have seen this:

@bp.on_response

async def complete(request, response):

 return json(request.ctx.numbers)

...

@bp.get("/")

async def bp_handler(request):

 request.ctx.numbers = []

 return json("blah blah blah")

We had a nonsensical response from the handler, but it was not returned. That is because
in our middleware we returned an HTTPResponse object. Whenever you return a value
from middleware—whether request or response—Sanic will assume that you are trying
to end the HTTP life cycle and return immediately. Therefore, you should never return
anything from middleware that meets the following criteria:

•	 Is not an HTTPResponse object

•	 Is not intended to interrupt the HTTP life cycle

196 Operating Outside the Response Handler

This rule, however, does not apply to None values. You can still return None if you simply
want to halt the execution of the middleware, as follows:

@app.on_request

async def check_for_politeness(request: Request):

 if "please" in request.headers:

 return None

 return text("You must say please")

Tip
A good thing to know about HTTP headers is that they are case-insensitive.
Even though we did a check for the please header, we could just as well have
received the same result using the following code:

 if "Please" in request.headers:

Let's see how this middleware plays out now when we access the endpoint, as follows:

$ curl localhost:7777/show-me-the-money

You must say please

$ curl localhost:7777/show-me-the-money -H
"Please: With a cherry on top"

The second request, it was allowed to proceed because it had the correct header. Therefore,
we can see that returning None is also acceptable from middleware. If you are familiar
with using continue inside of a Python loop, it has roughly the same impact: halt the
execution and move onto the next step.

Important Note
Even though we were looking for the please value in the request headers,
we were able to pass Please and for it to still work since headers are always
case-insensitive.

Middleware and streaming responses
There is one more gotcha that you should know about middleware. Remember how we
simply said that the middleware basically wraps before and after the route handler? This is
not entirely true.

Altering requests and responses with middleware 197

In truth, the middleware wraps the generation of the response. Since this usually happens
in the return statement of a handler, that is why we take the simplistic approach.

This point can be easily seen if we revisit the Chapter 5, Building Response Handlers
example with our streaming handler. Here is where we started:

@app.get("/")

async def handler(request: Request):

 resp = await request.respond()

 for _ in range(4):

 await resp.send(b"Now I'm free, free-falling")

 await asyncio.sleep(1)

 await resp.eof()

Let's add some print statements and some middleware so that we can examine the order
of execution, as follows:

@app.get("/")

async def handler(request: Request):

 print("before respond()")

 resp = await request.respond()

 print("after respond()")

 for _ in range(4):

 print("sending")

 await resp.send(b"Now I'm free, free-falling")

 await asyncio.sleep(1)

 print("cleanup")

 await resp.eof()

 print("done")

@app.on_request

async def req_middleware(request):

 print("request middleware")

@app.on_response

async def resp_middleware(request, response):

 print("response middleware")

198 Operating Outside the Response Handler

Now, we will hit the endpoint and look at our Terminal logs, as follows:

request middleware

before respond()

response middleware

after respond()

sending

(sanic.access)[INFO][127.0.0.1:49480]: GET http://
localhost:7777/ 200 26

sending

sending

sending

cleanup

done

As we would expect, the request middleware runs first, and then we begin the route
handler. But the response middleware runs immediately after we call request.
respond(). For most use cases of response middleware (such as adding headers), this
should not matter. It will, however, pose a problem if you absolutely must execute some
bit of code after the route handler is complete. If this is the case, then your solution is to
use signals, which we will explore in the next section. Specifically, we will see in the Using
built-in signals section that the http.lifecycle.response signal will help us to
execute the code after the handler in this situation.

Signals are sometimes a great replacement for middleware. While middleware is
essentially a tool that allows us to extend business logic outside the confines of the route
handler and to share it among different endpoints, we will learn that signals are more like
breakpoints that allow us to inject code into the Sanic life cycle.

Leveraging signals for intra-worker
communication
In general, Sanic tries to make it possible for developers to extend its capabilities to create
custom solutions. This is the reason that when interfacing with Sanic, there are several
options to inject custom classes to overtake, change, or otherwise extend its functionality.
For example, did you know that you could swap out its HTTP protocol to essentially turn
Sanic into a File Transfer Protocol (FTP) server (or any other Transmission Control
Protocol (TCP)-based protocol)? Or, maybe you want to extend the router capabilities?

Leveraging signals for intra-worker communication 199

These sorts of customizations are rather advanced. We will not cover them in this book
since for most use cases, it is the equivalent of hanging a picture nail on your wall with a
sledgehammer.

The Sanic team introduced signals as a method to extend the functionality of the platform
in a more user-friendly format. Very intentionally, setting up a signal handler looks and
feels like a route handler, as illustrated in the following code snippet:

@app.signal("http.lifecycle.begin")

async def connection_begin(conn_info):

 print("Hello from http.lifecycle.begin")

You may be asking: What exactly is this, and how can I use it? In this example, we
learn that http.lifecycle.begin is an event name. When Sanic opens an HTTP
connection to a client, it dispatches this signal. Sanic will then look to see if any handlers
are waiting for it and run them. Therefore, all we did was set up a handler to attach to that
event. We will dig a little more into pre-defined events in this chapter, but first, let's have a
closer examination of the structure and operation of signals.

Signal definitions
All signals are defined by their event name, which is composed of three segments. We just
saw a signal event called http.lifecycle.begin. Obviously, the three segments are
http, lifecycle, and begin. An event will only ever have three segments.

This is important to know because even though Sanic ships with a bunch of signals out of
the box, it also allows us to create our own signals along the way. Therefore, we will need
to follow the pattern. It is helpful to think of the first segment as a namespace, the middle
as a reference, and the last as an action, sort of like this:

namespace.reference.action

Thinking in these terms helps me conceptualize them. I like to think of them as routes. In
fact, they actually are! Under the hood, Sanic deals with signal handlers the same way as it
does with route handlers because they inherit from the same base class.

If a signal is essentially a route, does that mean it can look for dynamic path parameters
too? Yes! Check this out:

@app.signal("http.lifecycle.<foo>")

async def handler(**kwargs):

 print("Hello!!!")

200 Operating Outside the Response Handler

Go hit any route in your application now, and we should see the following in our
Terminal:

[DEBUG] Dispatching signal: http.lifecycle.begin

Hello!!!

[DEBUG] Dispatching signal: http.lifecycle.read_head

Hello!!!

[DEBUG] Dispatching signal: http.lifecycle.request

Hello!!!

[DEBUG] Dispatching signal: http.lifecycle.handle

Hello!!!

Request middleware

response middleware

[DEBUG] Dispatching signal: http.lifecycle.response

Hello!!!

[INFO][127.0.0.1:39580]: GET http://localhost:7777/ 200 20

[DEBUG] Dispatching signal: http.lifecycle.send

Hello!!!

[DEBUG] Dispatching signal: http.lifecycle.complete

Hello!!!

Before continuing on to see what kinds of signals are available, there is one more thing
we need to be aware of: the condition. The app.signal() method accepts a keyword
argument called condition that can help in limiting events that match on it. Only an
event that is dispatched with the same condition will be executed.

We will look at a concrete example here:

1.	 Start by adding some request middleware, like this:

@app.on_request

async def req_middleware(request):

 print("request middleware")

2.	 Then, add a signal to attach to our middleware (this is a built-in, as we will see
later), as follows:

@app.signal("http.middleware.before")

async def handler(**kwargs):

 print("Hello!!!")

Leveraging signals for intra-worker communication 201

3.	 Now, let's go take a look at our Terminal after we hit an endpoint, as follows:

[DEBUG] Dispatching signal: http.middleware.before

request middleware

Hmmm—we see that the signal was dispatched and that our middleware ran, but
our signal handlers did not. Why? http.middleware.* events are special in that
they will only run when a specific condition is met. Therefore, we need to amend
our signal definition to include the required condition.

4.	 Change your signal to add the condition, like this:

@app.signal("http.middleware.before", condition={"attach_
to": "request"})

async def handler(**kwargs):

 print("Hello!!!")

5.	 Hit the endpoint again. We should now see the text as anticipated, as illustrated
here:

[DEBUG] Dispatching signal: http.middleware.before

Hello!!!

request middleware

Conditions are something that you can also add to your custom signal dispatches (keep
reading ahead to the Custom signals section to learn more). It would look like this:

app.dispatch("custom.signal.event", condition={"foo": "bar"})

Most signal use cases will not need this approach. However, if you find the need for
additional control on signal dispatching, it might just be the right tool for the job. Let's
turn our attention back to Sanic's built-in signals and see what other kinds of events we
can attach signals to.

Using built-in signals
There are many built-in signals that we can use. Take a look at the following tables and
dog-ear this page in the book. I highly encourage you to come back to these tables often
and look at your options when trying to solve a problem. While the implementations and
usages we come up with in this book may be small, it is your job to learn the process so
that you can more effectively solve your own application needs.

202 Operating Outside the Response Handler

First are the signals related to routing that will execute on every request. You can see
these here:

Table 6.2 – Available built-in routing signals

Second, we have the signals that are specifically related to the request/response life cycle,
listed here:

Table 6.3 – Available built-in request/response life cycle signals

Leveraging signals for intra-worker communication 203

Third, we have the events that wrap around each middleware handler. These are not likely
signals that you will use often. Instead, they primarily exist for the benefit of Sanic plugin
developers. You can see them listed here:

Table 6.4 – Available built-in middleware signals

Finally, we have the server events. These signals are a one-to-one match with the listener
events. Although you can call them as any other signal, there is a convenient decorator for
each of them, as indicated in the descriptions in the following table:

Table 6.5 – Available built-in server life cycle signals

I want to share an anecdote that exemplifies the power of signals. I do a lot of support
for Sanic users. If you have spent any time looking over the community resources (either
the forums or the Discord server), you likely have seen me helping developers solve their
problems. I really do enjoy this aspect of being involved in open source software (OSS).

204 Operating Outside the Response Handler

On one occasion, I was contacted by someone who was having trouble with middleware.
The goal was to use response middleware to log out helpful information about responses
as they were being delivered from the server. The problem is that when an exception is
raised in the middleware, it will halt the rest of the middleware from running. Therefore,
this individual was not able to log every response. The requests that raised an exception
in other response middleware never made it to the logger. The solution—as you have
probably guessed—was to use signals. In particular, the http.lifecycle.response
event worked perfectly for this use case.

To illustrate the point, here is some code:

1.	 Set up two middleware, one for logging and one for causing an exception.
Remember—they need to be in reverse order from how you want them to run.
Here's how to do this:

@app.on_response

async def log_response(request, response):

 logger.info("some information for your logs")

@app.on_response

async def something_bad_happens_here(request, response):

 raise InvalidUsage("Uh oh")

2.	 When we hit any endpoint, log_response will never be run.
3.	 To solve this, change log_response from middleware into a signal (which is as

easy as changing the decorator), as follows:

@app.signal("http.lifecycle.response")

async def log_response(request, response):

 logger.info("some information for your logs")

4.	 Now, when we access the endpoint and experience the exception, we still get our
logs as expected, as illustrated here:

[ERROR] Exception occurred in one of response middleware
handlers

Traceback (most recent call last):

 File "/home/adam/Projects/Sanic/sanic/sanic/request.
py", line 183, in respond

 response = await self.app._run_response_middleware(

 File "_run_response_middleware", line 22, in _run_

Leveraging signals for intra-worker communication 205

response_middleware

 from ssl import Purpose, SSLContext, create_default_
context

 File "/tmp/p.py", line 23, in something_bad_happens_
here

 raise InvalidUsage("Uh oh")

sanic.exceptions.InvalidUsage: Uh oh

[DEBUG] Dispatching signal: http.lifecycle.response

[INFO] some information for your logs

[INFO][127.0.0.1:40466]: GET http://localhost:7777/ 200 3

We can also use this exact same signal to solve one of our earlier problems. Remember
when we were examining response middleware and had somewhat surprising results with
a streaming handler? Earlier in the chapter, in the Middleware and streaming responses
section, we noticed that the response middleware was actually called when the response
object was created, not after the handler completed. We could use http.lifecycle.
response to wrap up after our lyrics are done streaming, as follows:

@app.signal("http.lifecycle.response")

async def http_lifecycle_response(request, response):

 print("Finally... the route handler is over")

This might be another good time for you to put the book down and do some exploration.
Go back to that earlier example with the streaming handler and play around with some of
these signals. Take a look at the arguments they receive and think about how you might
make use of them. It is also, of course, important to understand the order in which they
are dispatched.

After you complete that, we will take a look at creating custom signals and events.

Custom signals
So far, we have been looking specifically at built-in signals, but they are sort of a narrow
implementation of what Sanic signals have to offer. While it is helpful to think of them as
breakpoints that allow us to insert functionality into Sanic itself, in truth, there is a more
general concept at play.

Signals allow for intra-application communication. Because they can be dispatched
asynchronously as background tasks, it can become a convenient method for one part of
your application to inform another that something has happened. This introduces another
important concept of signals: they can be dispatched as inline or as tasks.

206 Operating Outside the Response Handler

So far, every single example we have seen with built-in signals is inline—that is to say that
Sanic will halt the processing of a request until the signals are complete. This is how we
can add functionality into the lifecycle while maintaining a consistent flow.

This might not always be desirable. In fact, often, when you want to implement your own
solution with custom signals, having them run as a background task gives the application
the ability to continue responding to the request while it goes and does something else.

Let's take logging, for example. Imagine that we are back in our example where we are
building an e-commerce application. We want to augment our access logs to include
information about the authenticated use (if any) and the number of items they have in
their shopping cart. Let's take our earlier middleware example and convert it to signals,
as follows:

1.	 We need to create a signal to pull the user and shopping cart information onto
our request object. Again, we just need to change the first line so that the code
looks like this:

@app.signal("http.lifecycle.handle")

async def fetch_user_and_cart(request):

 cart_id = request.cookies.get("cart")

 session_id = request.cookies.get("session")

 request.ctx.cart = await fetch_shopping_cart(cart_id)

 request.ctx.user = await fetch_user(session_id)

2.	 For the sake of our example, we want to throw together some quick models and fake
getters, like this:

@dataclass

class Cart:

 items: List[str]

@dataclass

class User:

 name: str

async def fetch_shopping_cart(cart_id):

 return Cart(["chocolate bar", "gummy bears"])

async def fetch_user(session_id):

 return User("Adam")

Leveraging signals for intra-worker communication 207

3.	 This will be enough to get our example operational, but we want to be able to see it.
For now, we will add a route handler that just outputs our request.ctx object,
as follows:

@app.get("/")

async def route_handler(request: Request):

 return json(request.ctx.__dict__)

4.	 We should now see that our fake user and cart are available, as expected. The
following snippet confirms this is the case:

$ curl localhost:7777 -H 'Cookie: cart=123&session_
id=456'

{

 "cart": {

 "items": [

 "chocolate bar",

 "gummy bears"

]

 },

 "user": {

 "name": "Adam"

 }

}

5.	 Since we want to use our own access logs, we should turn off Sanic's access logs.
Back in Chapter 2, Organizing a Project, we decided we were going to run all of
our examples like this:

$ sanic server:app -p 7777 --debug --workers=2

We are going to change that now. Add --no-access-logs, as follows:
$ sanic server:app -p 7777 --debug --workers=2
--no-access-logs

6.	 Now, we are going to add our own request logger. But to illustrate the point we are
trying to make, we will manually make our signal take a while to respond, as shown
in the following code snippet:

@app.signal("http.lifecycle.handle")

async def access_log(request):

 await asyncio.sleep(3)

208 Operating Outside the Response Handler

 name = request.ctx.user.name

 count = len(request.ctx.cart.items)

 logger.info(f"Request from {name}, who has a cart
with {count} items")

7.	 When you access the endpoint, you will see the following output in your logs. You
should also experience a delay before the logging appears and before your response
is delivered:

[DEBUG] Dispatching signal: http.lifecycle.request

[DEBUG] Dispatching signal: http.lifecycle.handle

[INFO] Request from Adam, who has a cart with 2 items

8.	 To fix this, we will create a custom signal for our logger and dispatch the event from
fetch_user_and_cart. Let's make the following changes:

@app.signal("http.lifecycle.request")

async def fetch_user_and_cart(request):

 cart_id = request.cookies.get("cart")

 session_id = request.cookies.get("session")

 request.ctx.cart = await fetch_shopping_cart(cart_id)

 request.ctx.user = await fetch_user(session_id)

 await request.app.dispatch(

 "olives.request.incoming",

 context={"request": request},

 inline=True,

)

@app.signal("olives.request.incoming")

async def access_log(request):

 await asyncio.sleep(3)

 name = request.ctx.user.name

 count = len(request.ctx.cart.items)

 logger.info(f"Request from {name}, who has a cart
with {count} items")

9.	 This time, when we go and access the endpoint, there are two things you need to
pay attention to. First, your response should return almost immediately. The delayed
response we experienced earlier should be gone. Second, the delay in the access log
should remain.

Leveraging signals for intra-worker communication 209

What we have effectively done here is take any input/output (I/O) wait time in the
logging away from the request cycle. To do this, we created a custom signal. That signal
was called olives.request.incoming. There is nothing special about this—it is
entirely arbitrary. The only requirement, as we discussed, is that it has three parts.

To execute the signal, we just need to call app.dispatch with the same name, as
follows:

await app.dispatch("olives.request.incoming")

Because we wanted to have access to the Request object in access_log, we used the
optional argument context to pass the object.

So, why did the http.lifecycle.handle signal delay the response but olives.
request.incoming did not? Because the former was executed inline and the latter as
a background task. Under the hood, Sanic calls dispatch with inline=True. Go ahead
and add that to the custom dispatch to see how that impacts the response. Once again,
both the logging and the response are now delayed. You should use this when you want
your application to pause on the dispatch until all signals attached to it are done running.
If that order is not important, you will achieve more performance if you leave it out.

There are a few more arguments that dispatch takes that might be helpful for you. Here
is the function signature:

def dispatch(

 event: str,

 *,

 condition: Optional[Dict[str, str]] = None,

 context: Optional[Dict[str, Any]] = None,

 fail_not_found: bool = True,

 inline: bool = False,

 reverse: bool = False,

):

The arguments that this function accepts are outlined here:

•	 condition: Used as seen with the middleware signals to control additional
matching (we saw this used by the http.middleware.* signals).

•	 context: Arguments that should be passed to the signal.

•	 fail_not_found: What if you dispatch an event that does not exist? Should it
raise an exception or fail silently?

210 Operating Outside the Response Handler

•	 inline: Run in a task or not, as discussed already.

•	 reverse: When there are multiple signals on an event, what order should they
run in?

Signals are not the only way that you can take action on an event in Sanic. There are also
tools that will allow you to wait for an event in arbitrary locations in your code. In the
next section, we will look at how this can be accomplished.

Waiting on events
The last helpful thing about dispatching a signal event is that it can also be used like
asyncio events to block until it is dispatched. The use case for this is different than
with dispatching. When you dispatch a signal, you are causing some other operation to
occur, usually in a background task. You should wait on a signal event when you want to
pause an existing task until that event happens. This means that it will block the currently
existing task, whether that is a background task or the actual request that is being handled.
If this is used inside of a request/response life cycle—for example, if it were inside of
a route handler or middleware—then the entire request would be blocked until the event
is resolved. This may or may not be your desired behavior, so you should understand
its impact.

The easiest way to show this is with a super simple loop that runs constantly in your
application. Follow these next steps:

1.	 Set up your loop as shown in the following code snippet. Notice that we are using
app.event with our event name. For simplicity, we are using a built-in signal
event, but it could also be a custom one. For this to work, we would just need an
app.signal method to be registered with the same name:

async def wait_for_event(app: Sanic):

 while True:

 print("> waiting")

 await app.event("http.lifecycle.request")

 print("> event found")

@app.after_server_start

async def after_server_start(app, loop):

 app.add_task(wait_for_event(app))

Leveraging signals for intra-worker communication 211

2.	 Now, when we hit our endpoint, we should see this in the logs:

> waiting

[INFO] Starting worker [165193]

[DEBUG] Dispatching signal: http.lifecycle.request

> event found

> waiting

This might be a helpful tool especially if your application uses WebSockets. You might,
for example, want to keep track of the number of open sockets. Feel free to turn back to
the WebSockets example and see if you can integrate some events and signals into your
implementation.

One more helpful use case is where you have a number of things that need to happen
in your endpoint before you respond. You want to push off some work to a signal, but
ultimately, it does need to be complete before responding.

We could do something like this. Set up the following handlers and signals:

@app.signal("registration.email.send")

async def send_registration_email(email, request):

 await asyncio.sleep(3)

 await request.app.dispatch("registration.email.done")

@app.post("/register")

async def handle_registration(request):

 await do_registration()

 await request.app.dispatch(

 "registration.email.send",

 context={

 "email": "alice@bob.co",

 "request": request,

 },

)

 await do_something_else_while_email_is_sent()

 print("Waiting for email send to complete")

212 Operating Outside the Response Handler

 await request.app.event("registration.email.done")

 print("Done.")

 return text("Registration email sent")

Now, when we look at the Terminal, we should see this:

do_registration

Sending email

do_something_else_while_email_is_sent

Waiting for email send to complete

Done.

Since we know that sending the email will be an expensive operation, we send that off to
the background while continuing with processing the request. By using app.event, we
were able to wait for the registration.email.done event to be dispatched before
responding that the email had in fact been sent.

One thing that you should make note of is that in this example, there is not actually a
signal attached to registration.email.done. Out of the box, Sanic will complain
and raise an exception. If you would like to use this pattern, you have three options, as
outlined here:

1.	 Register a signal, like this:

@app.signal("registration.email.done")

async def noop():

 ...

2.	 Since we do not need to actually execute anything, we do not need a handler, so we
can execute the following code:

app.add_signal(None, "registration.email.done")

3.	 Tell Sanic to automatically create all events when there is a dispatch, regardless of
whether there is a registered signal. Here's how to do this:

app.config.EVENT_AUTOREGISTER = True

Now that we know there are several ways to control the execution of business logic within
an HTTP life cycle, we will next explore some other things we can do to exploit our
newfound tools.

Mastering HTTP connections 213

Mastering HTTP connections
Earlier, in Chapter 4, Ingesting HTTP Data, we discussed how the HTTP life cycle
represents a conversation between a client and a server. The client requests information,
and the server responds. In particular, we likened it to a video chat with bi-directional
communication. Let's dig into this analogy a little deeper to expand our understanding of
HTTP and Sanic.

Rather than thinking about an HTTP request as the video chat, it is better to think of it
as an individual conversation or—better yet—a single question and answer. It could go
something like this:

Client: Hi, my session ID is 123456, and my shopping cart ID is 987654. Can you
tell me what other items I can buy?

Server: Hi, Adam—you have pure olive oil and extra virgin olive oil in your cart
already. You can add balsamic vinegar or red wine vinegar.

Sanic is a "performant" web framework because it is capable of having these conversations
with multiple clients at the same time. While it is fetching the results for one client, it can
begin conversations with other clients, like this:

Client 1: What products do you sell?

Client 2: How much does a barrel of olive oil cost?

Client 3: What is the meaning of life?
By being capable of corresponding within multiple video chat sessions simultaneously, the
server has become more efficient at responding. But what happens when one client has
multiple questions? Starting and stopping the video chat for each conversation would be
time-consuming and costly, as illustrated here:

Start video chat

Client: Here are my credentials—can I log in?

Server: Hi, Adam—nice to see you again. Here is a session ID: 123456. Goodbye.

Stop video chat

Start video chat

Client: Hi, my session ID is 123456. Can I update my profile information?

Server: Oops, bad request. Looks like you did not send me the right data. Goodbye.

Stop video chat

214 Operating Outside the Response Handler

Every time that the video chat starts and stops, we are wasting time and resources.
HTTP/1.1 sought to solve this problem by introducing persistent connections. This is
accomplished with the Keep-Alive header. We do not need to worry specifically about
how this header works from the client or server, as Sanic will take care of responding
appropriately.

What we do need to understand is that it exists and that it includes a timeout. This means
that Sanic will not close the connection to the client if another request comes within some
timeout period. Here's an illustration of this:

Start video chat

Client: Here are my credentials—can I log in?

Server: Hi, Adam—nice to see you again. Here is a session ID: 123456.

Server: waiting…

Server: waiting…

Server: waiting…

Server: Goodbye.

Stop video chat
We have now created efficiency within a single video chat to allow for multiple
conversations.

There are two practical concerns we need to think about here, as follows:

•	 How long should the server wait?

•	 Can we make the connection more efficient?

Keep-Alive within Sanic
Sanic will keep HTTP connections alive by default. This makes operations more
performant, as we saw earlier. There may, however, be instances where this is undesirable.
Perhaps you never want to keep these connections open. If you know that your application
will never handle more than one request per client, then perhaps it is wasteful to use
precious memory to keep open a connection that will never be reused. To turn it off, just
set a configuration value on your application instance, like this:

app.config.KEEP_ALIVE = False

As you can probably guess, even the most basic web applications will never fall into
this category. Therefore, even though we have the ability to turn off KEEP_ALIVE, you
probably should not.

Mastering HTTP connections 215

What you are more likely going to want to change is the timeout. By default, Sanic will
keep connections open for 5 seconds. This may not seem long, but it should be long
enough for most use cases without being wasteful. This is, however, Sanic just making
a complete guess. You are more likely to know and understand the needs of your
application, and you should feel free to tune this number to your needs. How? Again,
with a simple configuration value, as illustrated here:

app.config.KEEP_ALIVE_TIMEOUT = 60

To give you some context, here is a snippet from the Sanic user guide that provides some
insight into how other systems operate:

Apache httpd server default keepalive timeout = 5 seconds

Nginx server default keepalive timeout = 75 seconds

Nginx performance tuning guidelines uses keepalive = 15 seconds

IE (5-9) client hard keepalive limit = 60 seconds

Firefox client hard keepalive limit = 115 seconds

Opera 11 client hard keepalive limit = 120 seconds

Chrome 13+ client keepalive limit > 300+ seconds

Source: https://sanic.dev/en/guide/deployment/configuration.
html#keep-alive-timeout

How do you know if you should increase the timeout? If you are building a single-page
application (SPA) where your API is meant to power a JavaScript frontend, there is a high
likelihood that your browser will make a lot of requests. This is generally the nature of
how these frontend applications work. This would be especially true if you expect users
to click a button, browse through some content, and click some more. The first thing that
comes to my mind would be a web portal-type application where a single user might need
to make dozens of calls within a minute, but they might be spaced out by some interval
of browsing time. In this case, increasing the timeout to reflect the expected usage might
make sense.

This does not mean that you should increase it too far. First, as we have seen previously,
browsers generally have a limit on the maximum amount of time they will hold a
connection open. Second, going too far with connection length can be wasteful and
harmful to your memory performance. It is a balance that you are after. There is no one
good answer, so you may need to experiment to see what works.

https://sanic.dev/en/guide/deployment/configuration.html#keep-alive-timeout
https://sanic.dev/en/guide/deployment/configuration.html#keep-alive-timeout

216 Operating Outside the Response Handler

Caching data per connection
If you are thinking about ways you might exploit some of these tools for your application's
needs, you might have noticed a potential efficiency you can create. Back at the beginning
of this chapter, there is a table that lists all of the context (ctx) objects that are available to
you in Sanic. One of them is connection-specific.

This means that not only are you able to create stateful requests, but you can also add state
into a single connection. Our simple example will be a counter. Follow these next steps:

1.	 Start by creating a counter when the connection is established. We will use a signal
for this, as follows:

from itertools import count

@app.signal("http.lifecycle.begin")

async def setup_counter(conn_info):

 conn_info.ctx._counter = count()

2.	 Next, we will increment the counter on every request using middleware, like this:

@app.on_request

async def increment(request):

 request.conn_info.ctx.count = next(

 request.conn_info.ctx._counter

)

3.	 Then, we will output that in our request body so that we can see what this looks like.
Here's the code to do this:

@app.get("/")

async def handler(request):

 return json({"request_number": request.conn_info.ctx.
count})

4.	 Now, we will issue multiple requests using curl. To do that, we just give it the
Uniform Resource Locator (URL) multiple times, like this:

$ curl localhost:7777 localhost:7777

{"request_number":0}

{"request_number":1}

Mastering HTTP connections 217

This is, of course, a trivial example, and we could get that information from Sanic easily
enough by executing the following code:

@app.get("/")

async def handler(request):

 return json(

 {

 "request_number": request.conn_info.ctx.count,

 "sanic_count": request.protocol.state["requests_
count"],

 },

)

This could be extremely useful if you have some data that might be expensive to obtain
but want it available for all requests. Coming back to our earlier roleplay model, it would
be as if your server fetched some details when the video chat started. Now, every time the
client asks a question, the server already has the details on hand in the cache.

Important Note
This does come with a warning. If your application is exposed through a proxy,
it could be connection pooling. That is to say that the proxy could be taking
requests from differing clients and bundling them together in one connection.
Think of this as if your video chat session were not in someone's private
home, but instead in the foyer of a large university dormitory. Anyone could
walk up to the single video chat session and ask a question. You might not be
guaranteed to have the same person all the time. Therefore, before you expose
any sort of sensitive details on this object, you must know that it will be safe. A
best practice might just be to keep the sensitive details on request.ctx.

Handling exceptions like a pro
In an ideal world, our applications would never fail, and users would never submit bad
information. All endpoints would return a 200 OK response all the time. This is, of
course, pure fantasy, and no web application would be complete if it did not address
the possibility of failures. In real life, our code will have bugs, there will be edge cases
not addressed, and users will send us bad data and misuse the application. In short: our
application will fail. Therefore, we must think about this constantly.

218 Operating Outside the Response Handler

Sanic does, of course, provide some default handling for us. It includes a few different
styles of exception handlers (HyperText Markup Language (HTML), JavaScript Object
Notation (JSON), and text), and can be used both in production and development. It is of
course unopinionated, and therefore likely inadequate for a decently sized application. We
will talk more about fallback error handling in the Fallback handling section later. As we
just learned, handling exceptions in an application is critical to the quality (and ultimately
security) of a web application. We will now learn more about how to do that in Sanic.

Implementing proper exception handling
Before we look at how to handle exceptions with Sanic, it is important to consider that a
failure to properly address this could become a security problem. The obvious way would
be through inadvertent disclosure of sensitive information, which is known as leaking.
This occurs when an exception is raised (by mistake or on purpose by the user) and your
application reports back, exposing details about how the application is built or the
data stored.

In a real-world worst-case scenario, I once had an old forgotten endpoint that no longer
worked in one of my web applications. No one used it anymore, and I simply forgot that
it existed or was even still live. The problem was that the endpoint did not have proper
exception handling and errors were directly reported as they occurred. That means even
Failure to connect to database XYZ using username ABC and password EFG messages were
flowing right to anyone that accessed the endpoint. Oops!

Therefore, even though we do not discuss security concerns in general until Chapter 7,
Dealing with Security Concerns, it does extend into the current exploration of exception
handling. There are two main concerns here: providing exception messages with
tracebacks or other implementation details, and incorrectly using 400 series responses.

Bad exception messages
While developing, it is super helpful to have as much information about your request as
possible. This is why it would be desirable to have exception messages and tracebacks in
your responses. When you are building your applications in debug mode, you will get all
of these details, but make sure you turn it off in production! Just as I wish my applications
only served a 200 OK response all the time, I wish I never stumbled onto a website that
accidentally leaked debug information to me. It happens out there in the wild, so be
careful not to fall into that mistake.

Implementing proper exception handling 219

What is perhaps more common is failing to properly consider the content of errors when
responding. When writing messages that will reach the end user, keep in mind that you do
not want to accidentally disclose implementation details.

Misusing statuses
Closely related to bad exceptions are exceptions that leak information about your
application. Imagine that your bank website has an endpoint of /accounts/
id/123456789. They do their due diligence and properly protect the endpoint so that
only you can access it. That is not a problem. But what happens to someone that cannot
access it? What happens when I try to access your bank account? Obviously, I would get a
401 Unauthorized error because it is not my account. However, as soon as you do that,
the bank is now acknowledging that 123456789 is a legitimate account number. Therefore,
I highly encourage you to use the following information and commit it to memory:

Table 6.6 – Sanic exceptions for common 400 series HTTP responses

Perhaps the biggest failure here is when people inadvertently expose the existence of a
hidden resource with a 401 or 403 error code. Your bank should have instead sent me
a 404 error code and directed me to a page not found response. This is not to say
that you should always favor a 404 error code, but it is to your benefit from a security
perspective to think about who could be accessing the information, and what they should
or should not know about it. Then, you can decide which error response is appropriate.

220 Operating Outside the Response Handler

Responses through raising an exception
One of the most convenient things about exception handling in Sanic is that it is relatively
trivial to get started. Remember—we are just coding a Python script here, and you should
treat it like you might anything else. What should you do when something goes wrong?
Raise an exception! Here is an example:

1.	 Make a simple handler—we will ignore the return value here since we do not need it
to prove our point. Use your imagination for what could be beyond the ... shown
here:

@app.post("/cart)

async def add_to_cart(request):

 if "name" not in request.json:

 raise InvalidUsage("You forgot to send a product
name")

 ...

2.	 Next, we will submit some JSON to the endpoint, leaving out the name property.
Make sure to use -i so that we can inspect the response headers, as illustrated in
the following code snippet:

$ curl localhost:7777/cart -X POST -d '{}' -i

HTTP/1.1 400 Bad Request

content-length: 83

connection: keep-alive

content-type: text/plain; charset=utf-8

400 — Bad Request

=================

You forgot to send a product name

Take note of how we received a 400 response but did not actually return a
response from the handler. This is because if you raise any exception from sanic.
exceptions, it could be used to return an appropriate status code. Furthermore,
you will find that many of the exceptions in that module (such as InvalidUsage)
have a default status_code value. This is why when you raise InvalidUsage,
Sanic will respond with a 400 error code. You could, of course, override the status
code by passing a different value. Let's see how that would work.

Implementing proper exception handling 221

3.	 Set up this endpoint and change status_code to something other than 400, as
illustrated here:

@app.post("/coffee")

async def teapot(request):

 raise InvalidUsage("Hmm...", status_code=418)

4.	 Now, let's access it as follows:

$ curl localhost:777/coffee -X POST -i

HTTP/1.1 418 I'm a teapot

content-length: 58

connection: keep-alive

content-type: text/plain; charset=utf-8

418 — I'm a teapot

==================

Hmm...

As you can see, we passed the 418 status code to the exception. Sanic took that
code and properly converted it to the appropriate HTTP response: 418 I'm
a teapot. If you did not catch the HTTP humor when we discussed it earlier,
you can look it up in Request for Comments (RFC) 7168, § 2.3.3 (https://
datatracker.ietf.org/doc/html/rfc7168#section-2.3.3).

Here is a reference of all of the built-in exceptions and their associated response
codes:

https://datatracker.ietf.org/doc/html/rfc7168#section-2.3.3
https://datatracker.ietf.org/doc/html/rfc7168#section-2.3.3

222 Operating Outside the Response Handler

Table 6.7 – Sanic exceptions with built-in HTTP responses
It is, therefore, a really good practice to make usage of these status codes. An
obvious example might be when you are looking up something in your database
that does not exist, as illustrated in the following code snippet:

@app.get("/product/<product_id:uuid>")

async def product_details(request, product_id):

 try:

 product = await Product.query(product_id=product_
id)

 except DoesNotExist:

 raise NotFound("No product found")

Using Sanic exceptions is perhaps one of the easiest solutions to getting appropriate
responses back to the users.

We could, of course, go one step further. We can make our own custom exceptions
that subclass from the Sanic exceptions to leverage the same capability.

5.	 Create an exception that subclasses one of the existing Sanic exceptions, as follows:

from sanic.exceptions import InvalidUsage

class MinQuantityError(InvalidUsage):

 ...

6.	 Raise it when appropriate, like this:

@app.post("/cart")

async def add_to_cart(request):

 if request.json["qty"] < 5:

 raise MinQuantityError(

Implementing proper exception handling 223

 "Sorry, you must purchase at least 5 of this
item"

)

7.	 Here, see the error when we have a bad request (fewer than 5 items):

$ curl localhost:777/cart -X POST -d '{"qty": 1}' -i

HTTP/1.1 400 Bad Request

content-length: 98

connection: keep-alive

content-type: text/plain; charset=utf-8

400 — Bad Request

=================

Sorry, you must purchase at least 5 of this item

Using and reusing exceptions that inherit from SanicException is highly encouraged.
It not only is a good practice because it provides a consistent and clean mechanism
for organizing your code, but it also makes it easy to provide the appropriate HTTP
responses.

So far throughout this book, when we have hit an exception with our client (such as in
the last example), we have received a nice textual representation of that error. In the next
section, we will learn about the other types of exception output and how we can control
this.

Fallback handling
Let's face it: formatting exceptions is mundane. There is little doubt that using the skills
we have learned so far, we could build our own set of exception handlers. We know how
to use templates, catch exceptions, and return HTTP responses with an error status. But
creating those takes time and a lot of boilerplate code.

This is why it is nice that Sanic offers three different exception handlers: HTML, JSON,
and plain text. For the most part, the examples in this book have used the plain text
handlers only because this has been a more suitable form for presenting information in
a book. Let's go back to our example where we raised a NotFound error and see what it
might look like with each of the three types of handlers.

224 Operating Outside the Response Handler

HTML
1.	 Let's set up our endpoint to raise an exception, as follows:

@app.get("/product/<product_name:slug>")

async def product_details(request, product_name):

 raise NotFound("No product found")

2.	 Tell Sanic to use HTML formatting. We will look into configurations in more detail
in Chapter 8, Running a Sanic Server. For now, we will just set the value right after
our Sanic instance, like this:

app = Sanic(__name__)

app.config.FALLBACK_ERROR_FORMAT = "html"

3.	 Open up a web browser and go to our endpoint. You should see something like this:

Figure 6.1 – Example 404 HTML page in Sanic

JSON
1.	 Use the same setup as before, as shown here, but change the fallback format to

json:

app.config.FALLBACK_ERROR_FORMAT = "json"

2.	 This time, we will access the endpoint with curl, as follows:

$ curl localhost:7777/product/missing-product

{

Implementing proper exception handling 225

 "description": "Not Found",

 "status": 404,

 "message": "No product found"

}

Instead of the nicely formatted HTML that we saw with the previous example, our
exception has been formatted into JSON. This is more appropriate if your endpoint
will—for example—be used by a JavaScript browser application.

Text
1.	 Again using the same setup, we will change the fallback format to text, as follows:

app.config.FALLBACK_ERROR_FORMAT = "text"

2.	 We will again use curl to access the endpoint, like this:

$ curl localhost:7777/product/missing-product

404 — Not Found

===============

No product found

As you can see, there are three convenient formatters for our exceptions that may be
appropriate in different circumstances.

Auto
The previous three examples used FALLBACK_ERROR_FORMAT to show that
there are three types of built-in error formats. There is a fourth option for setting
FALLBACK_ERROR_FORMAT: auto. It would look like this:

app.config.FALLBACK_ERROR_FORMAT = "auto"

When the format is set to auto, Sanic will look at the routing handler and the incoming
request to determine what is likely to be the most appropriate handler to use. For example,
if a route handler always uses the text() response object, then Sanic will assume that
you want the exceptions to also be formatted in text format. The same applies to html()
and json() responses.

Sanic will even go one step further than that when in auto mode. It will analyze the
incoming request to look at the headers to make sure that what it thinks is correct matches
with what the client said that it wants to receive.

226 Operating Outside the Response Handler

Manual override per route
The last option we have is to set the error format on an individual route inside of the
route definition. This would allow us to be specific and deviate from the fallback option if
needed. Follow these steps:

1.	 Consider the example where we set the fallback to html, as shown here:

app.config.FALLBACK_ERROR_FORMAT = "html"

2.	 Let's now change our route definition from the beginning of this section to look like
the following with a specific defined error_format value:

@app.get("/product/<product_name:slug>", error_
format="text")

async def product_details(request, product_name):

 raise NotFound("No product found")

3.	 As you might already be able to guess, we will not see a formatted HTML page, but
instead will see the plain text from earlier, as illustrated here:

$ curl localhost:7777/product/missing-product

404 — Not Found

===============

No product found

If you are using Sanic to develop an API to power a browser-based or mobile user
interface (UI), then you likely will not need to have route-level overrides. In this instance,
you would usually want to see the FALLBACK_ERROR_FORMAT value for the entire
application. This pattern, however, could be helpful if you have some endpoints that will
be returning HTML content. In the next section, we will take exceptions one step further
to see how we can intercept them to provide appropriate responses to our end users.

Catching exceptions
Although Sanic conveniently handles a lot of exceptions for us, it goes without saying that
it cannot anticipate every error that could be raised in an application. We thus need to
think about how we want to handle exceptions that come from outside of Sanic or, rather,
how to handle exceptions that are not manually raised by our application using one of the
Sanic exceptions that conveniently adds a response code.

Implementing proper exception handling 227

Returning to our e-commerce example, let's imagine that we are using a third-party
vendor for handling our credit card transactions. They have conveniently provided us
with a module that we can use to process credit cards. When something goes wrong, their
module will raise a CreditCardError response. Our job now is to make sure that our
application is ready to handle this error.

Before we do that, however, let's see why this is important, as follows:

1.	 Imagine that this is our endpoint:

@app.post("/cart/complete")

async def complete_transaction(request):

 ...

 await submit_payment(...)

 ...

2.	 Now, we access the endpoint, and if there is an error, we get this response:

$ curl localhost:7777/cart/complete -X POST

500 — Internal Server Error

============================

The server encountered an internal error and cannot
complete your request.

That is not a very helpful message. If we look at our logs, however, we might see this:
[ERROR] Exception occurred while handling uri: 'http://
localhost:7777/cart/complete'

Traceback (most recent call last):

 File "handle_request", line 83, in handle_request

 """

 File "/path/to/server.py", line 19, in complete_
transaction

 await submit_payment(...)

 File "/path/to/server.py", line 13, in submit_payment

 raise CreditCardError("Expiration date must be in
format: MMYY")

CreditCardError: Expiration date must be in format: MMYY

[INFO][127.0.0.1:58334]: POST http://localhost:7777/cart/
complete 500 144

228 Operating Outside the Response Handler

That error looks potentially far more helpful to our users. It specifically has information
that might be pertinent to return to the user.

One solution could, of course, just be to catch the exception and return the response that
we want, like this:

@app.post("/cart/complete")

async def complete_transaction(request):

 ...

 try:

 await submit_payment(...)

 except CreditCardError as e:

 return text(str(e), status=400)

 ...

This pattern is not ideal, however. It would require a lot of extra code when we need to
catch every potential exception in various locations in the application to cast them to
responses. This also would turn our code into a giant mess of try/except blocks and
make things harder to read and, ultimately, maintain. In short, it would go against some of
the development principles we established early on in this book.

A better solution would be to add an application-wide exception handler. This tells Sanic
that anytime this exception bubbles up, it should catch it and respond in a certain way. It
looks very much like a route handler, as we can see here:

@app.exception(CreditCardError)

async def handle_credit_card_errors(request, exception):

 return text(str(exception), status=400)

Sanic has now registered this as an exception handler and will use it anytime that a
CreditCardError response is raised. Of course, this handler is super simplistic, but
you might imagine that it could be used for the following: extra logging, providing request
context, sending out an emergency alert notification to your development-operations
(DevOps) team at 3 a.m., and so on.

Tip
Error handlers are not limited to your application instance. Just as with other
regular route handlers, they can be registered on your blueprint instances to be
able to customize error handling for a specific subset of your application.

Background task processing 229

Exception handling is an incredibly important part of application development. It is an
immediate differentiator between amateur applications and professional applications.
We now know how we can use exceptions to provide not only helpful messages to our
users but also to provide proper HTTP response codes. We now move on to another topic
(background processing) that can really help to take your applications to the next level.

Background task processing
There comes a time in the development of most applications where the developers or
users start to notice the application is feeling a bit slow. Some operations seem to take
a long time and it is harming the usability of the rest of the application. It could be
computationally expensive, or it could be because of a network operation reaching out to
another system.

Let's imagine that you are in this scenario. You have built a great application and an
endpoint that allows users to generate a Portable Document Format (PDF) report with
the click of a button, showing all kinds of fancy data and graphs. The problem is that to
retrieve all the data and then crunch the numbers seems to take 20 seconds. That's an
eternity for an HTTP request! After spending time squeezing as much performance out
of the report generator as you can, you are finally at the conclusion that it runs as fast as it
can. What can you do?

Push it to the background.

When we say background processing, what we really mean is a solution that allows the
current request to complete without having finalized whatever needs to be done. In this
example, it would mean completing the request that starts the report generation before
it is actually finished. Whenever and wherever you can, I recommend pushing work to
the background. Earlier, in the Waiting on events section of this chapter, we saw a use
case for sending out registration emails in the background. Indeed, the usage of signals
(as described earlier) is a form of background processing. It is, however, not the only tool
Sanic provides.

Adding tasks to the loop
As you may already know, one of the cornerstones of the asyncio library is tasks. They
are essentially the unit of processing that is responsible for running asynchronous work on
the loop. If the concept of a task or task loop is still foreign to you, it might be a good time
to do a little research on the internet before continuing.

230 Operating Outside the Response Handler

In a typical scenario, you can generate a task by getting access to the event loop and then
calling create_task, as seen here:

import asyncio

async def something():

 ...

async def main():

loop = asyncio.get_running_loop()

loop.create_task(something())

This is probably not new to you, but what this does is start running something in a task
outside of the current one.

Sanic adds a simple interface for creating tasks, as shown here:

async def something():

 ...

app.add_task(something)

This is probably the simplest form of background processing and is a pattern that you
should get comfortable using. Why use this over create_task? For these three reasons:

•	 It is easier since you do not need to fetch the loop.

•	 It can be used in the global scope before the loop has started.

•	 It can be called or not called, and also with or without the application instance as an
argument.

To illustrate the flexibility, contrast the previous example with this:

from sanic import Sanic

from my_app import something

app = Sanic("MyAwesomeApp")

app.add_task(something(app))

Tip
If the task is not called, as in the first example, Sanic will introspect the
function to see if it expects the app instance as an argument and inject it.

Background task processing 231

asyncio tasks are very helpful, but sometimes you need a more robust solution. Let's see
what our other options are.

Integrating with an outside service
If there is work to be done by your application, but it is outside of the scope of your API
for whatever reason, you might want to turn to an off-the-shelf solution. This comes in the
form of another service that is running somewhere else. The job of your web API now is
to feed work into that service.

In the Python world, the classic framework for this kind of work is Celery. It is of
course not the only option, but since this book is not about deciding what to use, we will
show Celery as an example because it is widely used and known. In short, Celery is
a platform with workers that read messages from a queue. Some client is responsible for
pushing work to the queue, and when a worker receives the message, it executes the work.

For Celery to operate, it runs a process on a machine somewhere. It has a set of known
operations that it can perform (that are also called tasks). To initiate a task, an outside
client needs to connect to it through a broker and send instructions to run the task. A
basic implementation might look like this:

1.	 We set up a client to be able to communicate with the process. A common place to
put this is on the application.ctx object to make it usable anywhere in the
application, as illustrated in the following code snippet:

from celery import Celery

@app.before_server_start

def setup_celery(app, _):

 app.ctx.celery = Celery(...)

2.	 To use it, we simply call the client from the route handler to push some work to
Celery, like this:

@app.post("/start_task")

async def start_task(request):

 task = request.app.ctx.celery.send_task(

 "execute_slow_stuff",

 kwargs=request.json

)

 return text(f"Started task with {task.id=}",
status=202)

232 Operating Outside the Response Handler

An important thing to point out here is that we are using a 202 Accepted status to tell
whoever requested it that the operation has been accepted for processing. No guarantee is
being made that it is done or will be done.

After examining Celery, you may be thinking that it is overkill for your needs, but
app.add_task does not seem to be enough. Next, we look at how you could develop
your own in-process queue system.

Designing an in-process task queue
Sometimes, the obvious goldilocks solution for your needs is to build something entirely
confined to Sanic. It will be easier to manage if you have only one service to worry about
instead of multiples. You may still want to keep the idea of workers and a task queue
without the overhead required in implementing a service such as Celery. So, let's build
something that you can hopefully use as a launching point for something even more
amazing in your applications.

Before we go any further, let's change the name from task queue to job queue. We do not
want to confuse ourselves with asyncio tasks, for example. For the rest of this section,
the word task will relate to an asyncio task.

To begin, we will develop a set of needs for our job queue, as follows:

•	 There should be one or more workers that are capable of executing jobs outside of
the request/response cycle.

•	 They should execute jobs in a first-in, first-out (FIFO) order.

•	 The completion order of jobs is not important (for example, job A starts before job
B, but it does not matter which one finishes first).

•	 We should be able to check on the state of a job.

Our strategy to achieve this will be to build out a framework where we have a worker that
is itself a background task. Its job will be to look for jobs inside of a common queue and
execute them. The concept is very similar to Celery, except we are handling it all within
our Sanic application with asyncio tasks. We are going to walk through the source code
to accomplish this, but not all of it. Implementation details not relevant to this discussion
will be skipped here. For full details, please refer to the source code in the GitHub
repository at https://github.com/PacktPublishing/Web-Development-
with-Sanic/tree/main/Chapter06/inprocess-queue.

Background task processing 233

Follow these next steps:

1.	 To begin, let's set up a very simple application with a single blueprint, as follows:

from sanic import Sanic

from job.blueprint import bp

app = Sanic(__name__)

app.config.NUM_TASK_WORKERS = 3

app.blueprint(bp)

2.	 That blueprint will be the location where we will attach some listeners and our
endpoints, as illustrated here:

from sanic import Blueprint

from job.startup import (

 setup_task_executor,

 setup_job_fetch,

 register_operations,

)

from job.view import JobListView, JobDetailView

bp = Blueprint("JobQueue", url_prefix="/job")

bp.after_server_start(setup_job_fetch)

bp.after_server_start(setup_task_executor)

bp.after_server_start(register_operations)

bp.add_route(JobListView.as_view(), "")

bp.add_route(JobDetailView.as_view(), "/<uid:uuid>")

As you can see, we have three listeners that we need to run: setup_job fetch,
setup_task_executor, and register_operations. We also have two views: one
is a list view and the other a detail view. Let's take each of these items in turn to see what
they are, as follows:

1.	 Since we want to store the state of our tasks, we need some sort of a datastore. To
keep things really simple, I created a file-based database called FileBackend, as
illustrated in the following code snippet:

async def setup_job_fetch(app, _):

 app.ctx.jobs = FileBackend("./db")

234 Operating Outside the Response Handler

2.	 The functionality of this job management system will be driven from our job queue,
which will be implemented with asyncio.Queue. So, we next need to set up our
queue and workers. Here's the code we need to accomplish this:

async def setup_task_executor(app, _):

 app.ctx.queue = asyncio.Queue(maxsize=64)

 for x in range(app.config.NUM_TASK_WORKERS):

 name = f"Worker-{x}"

 print(f"Starting up executor: {name}")

app.add_task(worker(name, app.ctx.queue, app.ctx.jobs))

After creating our queue, we create one or more background tasks. As you can see,
we are simply using Sanic's add_task method to create a task from the worker
function. We will see that function in just a moment.

3.	 The last listener we need will set up an object that will be used to hold all of our
potential operations, as illustrated in the following code snippet:

async def register_operations(app, _):

app.ctx.registry = OperationRegistry(Hello)

To remind you, an Operation is something that we want to run in the
background. In this example, we have one operation: Hello. Before looking at the
operation, let's look at the two views.

4.	 The list view will have a POST call that is responsible for pushing a new job into
the queue. You can also imagine that this would be an appropriate place to make an
endpoint that lists all of the existing jobs (paginated, of course). First, it will need to
get some data from the request, with the following code:

class JobListView(HTTPMethodView):

 async def post(self, request):

 operation = request.json.get("operation")

 kwargs = request.json.get("kwargs", {})

 if not operation:

 raise InvalidUsage("Missing operation")

Here, we perform some very simple data validation. In a real-world scenario, you
might want to do some more to make sure that the request JSON conforms to what
you are expecting.

Background task processing 235

5.	 After validating the data, we can push information about the job to the queue, like
this:

 uid = uuid.uuid4()

 await request.app.ctx.queue.put(

 {

 "operation": operation,

 "uid": uid,

 "kwargs": kwargs,

 }

)

 return json({"uid": str(uid)}, status=202)

We created a UUID. This unique ID will be used both in storing the job in
our database and retrieving information about it later. Also, it is important to
point out that we are using the 202 Accepted response since it is the most
appropriate form.

6.	 The detail view is very simple. Using the unique ID, we simply look it up in the
database and return it, like this:

class JobDetailView(HTTPMethodView):

 async def get(self, request, uid: uuid.UUID):

 data = await request.app.ctx.jobs.fetch(uid)

 return json(data)

7.	 Coming back to our Hello operation, we will build it now, like this:

import asyncio

from .base import Operation

class Hello(Operation):

 async def run(self, name="world"):

 message = f"Hello, {name}"

 print(message)

 await asyncio.sleep(10)

 print("Done.")

 return message

As you can see, it is a simple object that has a run method. That method will be
called by the worker when running a job.

236 Operating Outside the Response Handler

8.	 The worker is really nothing more than an async function. Its job will be to run a
never-ending loop. Inside that loop, it will wait until there is a job in the queue, as
illustrated in the following code snippet:

async def worker(name, queue, backend):

 while True:

 job = await queue.get()

 if not job:

 break

 size = queue.qsize()

 print(f"[{name}] Running {job}. {size} in queue.")

9.	 Once it has the information about how to run a job, it needs to create a job instance
and execute it, as follows:

 job_instance = await Job.create(job, backend)

 async with job_instance as operation:

 await job_instance.execute(operation)

Once this is complete, we can finally start to interact with the API. Now is your chance to
play with the server that we just created. Here are a few helpful curl commands you can
try on your own:

$ curl localhost:7777/job -X POST -d '{"operation": "hello"}'

$ curl localhost:7777/job -X POST -d '{"operation": "hello",
"kwargs": {"name": "Adam"}}'

$ curl localhost:7777/job/<UID FROM PREVIOUS COMMANDS>

A couple of final things to say about this solution: one of its biggest faults is that it has no
recovery. If your application crashes or restarts, there is no way to continue processing
a job that had already begun. In a true task management process, this is usually an
important feature. Therefore, in the GitHub repository, in addition to the source used
to build this solution, you will find source code for a subprocess task queue. I will not
walk you through the steps to build it since it is largely a similar exercise, with a lot of
the same code. However, it differs from this solution in two important ways: it does have
the ability to recover and restart an unfinished job, and instead of running in asyncio
tasks, it leverages Sanic's process management listeners to create a subprocess using
multiprocessing techniques. Please take some time to look through the source code there
as you continue to learn and work your way through this book.

Summary 237

Summary
In my opinion, one of the biggest leaps that you can make as an application developer is
devising strategies to abstract a solution to a problem and reusing that solution in multiple
places. If you have ever heard of the Don't Repeat Yourself (DRY) principle, this is what
I mean. Applications are seldom ever complete. We develop them, maintain them, and
change them. If we have too much repetitive code or code that is too tightly coupled to
a single use case, then it becomes more difficult to change it or adapt it to different use
cases. Learning to generalize our solutions mitigates this problem.

In Sanic, this means taking logic out of the route handlers. It is best if we can minimize
the amount of code in individual handlers, and instead place that code in other locations
where it can be reused by other endpoints. Did you notice how the route handlers in the
final example in the Designing an in-process task queue section had no more than a dozen
lines? While the exact length is not important, it is helpful to keep these clean and short
and place your logic somewhere else.

Perhaps one of the biggest takeaways from this chapter should be that there is usually not
a single way to do something. Often, we can use a mixture of methodologies to achieve
our goal. It is then the job of the application developer to look at the tool belt and decide
which tool is best for any given situation.

For this reason, as a Sanic developer, you should learn how to devise strategies to
respond to web requests outside of the route handler. In this chapter, we learned about
some tools to help you accomplish this using middleware, built-in and custom signals,
connection management, exception handling, and background processing. Again, think
of these as your core tools in your tool belt. Got a screw that needs tightening? Pull out
your middleware. Need to drill a hole in some wood? Time to grab for signals. The more
familiar you become with basic building blocks such as these in Sanic, the greater your
understanding will be of how to piece together a professional-grade application.

It is your job now to play with these and internalize them on your way to becoming a
better developer.

We have scratched the surface of security-related issues. In the next chapter, we will take
a closer look at how we can protect our Sanic applications.

7
Dealing with

Security Concerns
When you're building a web application, it may be very tempting to sit down, plan out
your functionality, build it, test it, and only then come back to think about security.
For example, when you're building a single-page application (SPA), you may not even
consider CORS until the first time you see this message in the browser while testing:

Cross-Origin Request Blocked: The Same Origin Policy disallows reading the remote
resource at $somesite.

To a large extent, this is how we have been building in this book. We see a feature and
build it. Anytime we have come across a potential security issue in this book, we have
pushed it to a later date. Finally, we are at the point where we will learn how to deal with
security issues in Sanic. The topic of web security is, of course, extremely broad, and it is
beyond the scope of this book to provide an exhaustive study.

Instead, in this chapter, we will cover the following topics:

•	 Setting up an effective CORS policy

•	 Protecting applications from CSRF

•	 Protecting your Sanic app with authentication

240 Dealing with Security Concerns

In particular, we want to gain a basic understanding of the security issues so that we can
build Sanic solutions to solve them. The bigger takeaway from this chapter will be to make
you feel comfortable enough with these topics that they do not become afterthoughts.
When these issues are broken down, we will see that building them into application design
from the beginning will make them more effective and less burdensome to implement.

Technical requirements
The requirements for this chapter will, once again, build upon what we used in the
previous chapters. Since web security often includes interaction between frontend
JavaScript applications and backend Python applications, we will look at some examples
that use JavaScript that are widely available in major web browsers. You can find all of
the source code for this chapter at https://github.com/PacktPublishing/
Python-Web-Development-with-Sanic/tree/main/Chapter07.

In addition, we are going to use three common (and battle-tested) security libraries:
cryptography, bcrypt, and pyjwt. If you do not already have them installed in
your virtual environment, you can add them now by running the following code:

$ pip install cryptography bcrypt pyjwt

Let's begin with setting up a CORS policy.

Setting up an effective CORS policy
If you are building a web application where the server exclusively responds to requests
on a single computer, and that computer is physically disconnected from the internet,
perhaps this section is not as relevant to you. For anyone else, pay attention! To be clear,
you are part of "anyone else." This is important stuff.

In simple terms, cross-origin resource sharing (CORS) is a fancy way of saying accessing
one domain from another domain with a browser. Without an effective strategy to handle
this, your application could open up a security risk for your users.

What is the security issue with ineffective CORS?
The modern web uses a lot of JavaScript in web browsers. This enables all kinds of
interactive and quality user experiences. One of those capabilities is to issue requests
for data on behalf of the user without them knowing about it. This feature is one of the
biggest differentiators between web applications today and web applications from the late
1990s. Requesting data while the user is on a website is what makes web pages feel like
applications; that is, it makes them interactive and engaging.

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter07
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter07

Setting up an effective CORS policy 241

So, imagine that you have a hypothetical application that appears to the user as
https://superawesomecatvideos.com. It is a super successful website, and
lots of people like to come to visit it to see their favorite cat videos. If it starts requesting
information in the background (because of a hacker attack, or otherwise) from
https://mybank.com, well, we do not want to allow that to succeed. There is no
reason that the Super Awesome Cat Videos website should be able to access anything from
My Bank, especially if I have an authenticated web session on My Bank's website.

For this reason, web browsers will not allow this by default because of the same-origin
policy. This means that web applications may only interact with resources that are of the
same origin. An origin is comprised of the following components:

•	 The HTTP scheme

•	 The domain

•	 The port

Let's look at some examples of URLs that are and are not considered to be same-origin:

Table 7.1 – Comparison of URLs and their same-origin status

We'll assume that our Super Awesome Cat Video website also has sacv.com as
its domain. For example, if https://superawesomecatvideos.com wants
to load https://superawesomecatvideos.com/catvid1234.mp4, then
that is fine. When the only difference is the path or resource being loaded, the URLs
are considered same-origin. In our example, both URLs contain the same HTTP
scheme, domain, and port designation. However, when the same website, https://
superawesomecatvideos.com, tries to fetch data from https://api.
superawesomecatvideos.com/videos, uh oh—error time. These are the sorts of
potential attack vectors that the same-origin policy is meant to protect you from. So, the
question becomes: how can we allow legitimate cross-origin requests without allowing all
cross-origin requests? The answer is that we essentially need to create a whitelist and let
the browser know which origins our server will accept requests from.

https://superawesomecatvideos.com
https://superawesomecatvideos.com

242 Dealing with Security Concerns

Let's build a super simple example that will show us the problem. We are going to build
two web servers here. One will be a stand-in for the frontend application, while the other
will be the backend, which is meant to feed data to the frontend:

1.	 We will begin by building and running a simple API endpoint that looks no
different from anything we have seen previously. Stand up the application using the
same method we have already used. Here is what your endpoint should look like:

@app.get("/<name>")

async def handler(request, name):

 return text(f"Hi {name}")

You should now have a Sanic server running on port 7777 using what we have
already learned. You can test it out by accessing http://localhost:7777/
Adam.

2.	 Create a directory somewhere and add a file called index.html to it. For my
example, it will be /path/to/directory:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8" />

 <meta name="viewport" content="width=device-
width, initial-scale=1">

 <title>CORS issue</title>

 <body>

 <h1>Loading…</h1>

 <script>

 const element = document.querySelector("h1")

 fetch("http://localhost:7777/Adam")

 .then(async response => {

 const text = await response.text()

 element.innerHTML = text

 })

 </script>

 </body>

Setting up an effective CORS policy 243

As you can see, this application will run a background request to our application
that is running on http://localhost:7777. After it gets the necessary content,
it will dump it on the screen in place of the Loading ... text.

3.	 To run this application, we are going to use a neat little trick that Sanic includes
called Sanic Simple Server. Instead of building a Sanic application, we will point the
Sanic CLI at a directory and it will serve that for us as a website:

$ sanic -s /path/to/directory

Tip
This is a super helpful tool to keep in your back pocket, even when you're not
building a Sanic application. While developing, I often find a need to quickly
stand up a web application to view static content in a browser. This could be
useful when you're building an application that only uses static content, or
when you're building a JavaScript application and you need a development
server.

4.	 Open a web browser and go to this application, which should be running at
http://localhost:8000. You should see something like this:

Figure 7.1 – The web application with a CORS issue

Uh oh—something went wrong. Our application is throwing an error:

Cross-Origin Request Blocked: The Same Origin Policy disallows reading the
remote resource at http://localhost:7777/Adam. (Reason: CORS header
'Access-Control-Allow-Origin' missing).

244 Dealing with Security Concerns

For those of you getting into web development, this experience will be your first with
CORS. What on Earth does this mean? What is a Cross-Origin Request, and why is it
blocked? What is a CORS header? And, most importantly, how do I make this go away?!
This last question is the one that bothers me. We are not going to make it go away—we are
going to understand what this means, why the browser decided to throw up a roadblock,
and then move on to creating a solution.

The naive web developer, upon seeing this error, will immediately go online to search for
how to deal with this, find a mess of partial or way-too-in-depth information, and then
move on without ever understanding the actual issue. Making it go away will get you back
to developing since the error is no longer blocking your progress, but it will not solve the
problem. By doing this, you have just created a new one. To become a better developer,
you are not going to just implement an off-the-shelf solution without understanding it.
Instead, you will pause to learn what is happening and why. Maybe you have found this
issue yourself; if not, you surely will at some point. Whether you have or have not "solved"
this problem in the past, we are going to take some time to learn the rationale behind this
error before coming up with an appropriate—or rather, obvious—solution. Once you peel
back the layers of CORS, you will see that it starts to make a lot of sense and can become
simple to master.

I was one such naive person that searched for this error, clicked the first link, copied and
pasted a solution that made the error go away, and then moved on with life, not giving it
another thought. The browser no longer complained: problem solved. At least that is what
I thought. I did not think about the consequences of my action and the security hole I had
introduced. What was that security hole masquerading as a fix? The solution I found was
to add a simple header, and I gave it no further thought: Access-Control-Allow-
Origin: *. DO NOT DO THIS! I did not know any better and I moved on, never
thinking twice about CORS, except that it was the pesky thing in browsers that seemed to
cause me problems.

The issue here is that the frontend application is trying to access details from another
origin: hence, cross-origin. When I added that header, I was effectively disabling the
same-origin protection that the browser was creating. The * symbol means to allow this
application to request any cross-origin information it wants.

My browser had created a castle for protection. Rather than learn about how to effectively
handle CORS, I decided to drop the drawbridge, open all of the gates, and send the guards
home to their beds.

What should I have done? Let's find out.

Setting up an effective CORS policy 245

Developing a strategy for effectively dealing with CORS
My strategy to completely disable the browser's defenses was not the best approach. It
was the easy way out, the lazy way out, and the irresponsible way out. What I should have
done is go to a resource such as the one that Mozilla provides and read up on the issue
(https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS). If I did,
then this would have caught my attention:

Who should read this article?

Everyone, really.
Oh, everyone should read it? If you have not read it, you have the opportunity to take a
different path than me and read it now. I'm not kidding. Please do yourself a favor: put a
bookmark in this book and go read that web page. Then, come back here. I promise we
will wait for you. It is fairly easy to understand and is an authoritative resource to keep in
your back pocket.

According to the official HTTP specification, the OPTIONS method allows a client to
determine the options and/or requirements associated with a resource, or the capabilities
of a server, without implying a resource action (https://datatracker.ietf.org/
doc/html/rfc7231#section-4.3.7). In other words, it gives an HTTP client the
ability to check what an endpoint may require from it before sending an actual request.
If you have ever built a browser-based web application, or if you intend to, this method is
extremely important. So, as we dive into what CORS headers are, we will also revisit and
heavily make use of our OPTIONS handler from Chapter 3, Routing and Intaking HTTP
Requests. Go back to that section to reacquaint yourself with how we will automatically
attach OPTIONS handlers to all of our routes.

Understanding CORS headers
Solving these cross-origin access issues can be accomplished by applying response
headers. So, we will need to learn what some of these headers are and when they should
be applied and used. Our job in this section will be to build HTTP responses with some
basic CORS headers that we can use in our applications. We could take the easy way
out and install one of the third-party packages on PyPI that will automatically add the
headers for us.

However, I only suggest that you do this for a production application. CORS issues can
be complex, and implementing a trusted solution should bring some level of comfort and
peace of mind. However, relying upon one of these packages without knowing the basics is
only slightly better than my first solution of disabling the same-origin policy completely.

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.7
https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.7

246 Dealing with Security Concerns

Here are some of the common CORS response headers we should know about:

•	 Access-Control-Allow-Origin: This is used by the server to tell the client which
origins it will and will not accept cross-origin requests from.

•	 Access-Control-Expose-Headers: This is used by the server to tell the browser
which HTTP headers it can allow JavaScript to access safely (meaning they do not
contain sensitive data).

•	 Access-Control-Max-Age: This is used by the server to tell the client how long it
can cache the results of a preflight request (see the next section to learn what a
preflight request is).

•	 Access-Control-Allow-Credentials: This is used by the server to tell the client
whether it can or cannot include credentials when sending in requests.

•	 Access-Control-Allow-Methods: This is used by the server in preflight requests to
tell the client what HTTP methods it will accept on a given endpoint.

•	 Access-Control-Allow-Headers: This is used by the server in preflight requests to
tell the client which HTTP headers it will allow it to add.

Understanding preflight requests
In certain scenarios, before a browser tries to dispatch a cross-origin request, it will issue
what is known as a preflight request. This is a request to the same domain and endpoint
as the intended resource that happens before the actual call, except with an OPTIONS
HTTP method. The goal of this request is to get access to the CORS headers to learn what
the server will and will not allow. If the browser determines that the response is not "safe,"
it will not allow the cross-origin request.

When will a browser decide to issue a preflight request? Mozilla provides a great overview
on their CORS page (https://developer.mozilla.org/en-US/docs/Web/
HTTP/CORS#simple_requests). In summary, a preflight request will not be issued by
the browser when the following is true:

•	 It is a GET, HEAD, or POST method.

•	 It does not contain any manually set headers, except for Accept, Accept-
Language, Content-Language, or Content-Type.

•	 The request headers include Content-Type, and it is set to one of
application/x-www-form-urlencoded, multipart/form-data, or
text/plain.

•	 There are no JavaScript event listeners on the request.

•	 The response is not going to be streamed by the client.

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS#simple_requests
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS#simple_requests

Setting up an effective CORS policy 247

These requests are generally meant to cover the scenarios that are encountered by
normal web traffic: navigating to a page, submitting an HTML form, and basic AJAX
requests. As soon as your application starts adding functionality that is typical of most
single-page web applications, you will begin to notice your browser issuing preflight
requests. In this context, the two most common types of requests that trigger preflight
requests are as follows:

•	 JavaScript applications that inject custom headers (Authorization,
X-XSRF-Token, Foobar, and so on)

•	 JavaScript applications that submit JSON data using Content-Type:
application/json

You may be wondering: why does this matter? It is important to understand this so that
we know when we need to respond with each of the six CORS response headers we saw in
the previous section.

Solving CORS with Sanic
So far, we have entirely avoided using any third-party plugins; that is, we have steered
away from any implementation that would require us to pip install a solution. This
has been a conscious decision so that we learn the principles that are needed to build
our web applications before we just outsource the solution to someone else. While this is
still valid here and is the reason we are about to handle CORS requests by hand, it is also
important to point out that this is a problem that has been solved already. The officially
supported sanic-ext package and the community-supported sanic-cors package
are both reputable options for implementing CORS protection.

With that said, let's think about each of the six response headers and when and how we
will need to implement them. We have some headers we want to add regardless of the
type of request, and some that will only be added to preflight requests. We will need
a standard and repeatable method for adding response headers in these two scenarios.
What is our go-to strategy for that? Middleware.

Let's start with the following basic piece of middleware and add some code to it:

def is_preflight(request: Request) -> bool:

 return (

 request.method == "OPTIONS"

 and "access-control-request-method" in request.headers

)

248 Dealing with Security Concerns

@app.on_response

async def add_cors_headers(request: Request, response:
HTTPResponse) -> None:

 # Add headers here on all requests

 if is_preflight(request):

 # Add headers here for preflight requests

 …

We are doing two things to determine that a request is indeed a preflight request:

1.	 First, we know that the browser will always issue it as an OPTIONS request.
2.	 Second, the browser will always attach a request header called Access-Control-

Request-Method with the value of the type of HTTP request that it is about
to send.

To simulate a preflight request, we will use the following curl request, which adds the
two headers we need to trigger the preflight request response (the Origin header and
the Access-Control-Request-Method header):

$ curl localhost:7777 -X OPTIONS -H "Origin: http://mysite.com"
-H "Access-Control-Request-Method: GET" -i

The last thing we need is some ability to add OPTIONS as a viable HTTP method for
every existing route in our application. This is something that sanic-ext adds, and we
will learn about an easy way to accomplish this in Chapter 11, A Complete Real-World
Example, using that package. But first, you may recall that this is something that we built
way back in Chapter 3, Routing and Intaking HTTP Requests. We will reuse the code that
looped through all of our defined routes and added an OPTIONS endpoint. You can find
it in that chapter in the Blanket support for OPTIONS and HEAD section.

With this established, we will look at each response header to understand them more
completely.

Access-Control-Allow-Origin
This header alone is arguably the most important one to add. It is also the one that is
most tempting to be the nuclear option that just disables CORS protection completely,
as discussed earlier. Unless you have a specific reason to accept requests from any
browser origin, you should avoid *.

Setting up an effective CORS policy 249

Instead, the value should be the address that you anticipate requests to be coming from.
You should NOT just recycle the incoming request's Origin header and apply that.
This is effectively the same as *. Instead, it is a good practice to have a predefined list
of allowed origins and cross-reference the incoming Origin with those. If there is
not a match, simply do not add any CORS headers.

Here is the first snippet we will add to our middleware to do that:

origin = request.headers.get("origin")

if not origin or origin not in request.app.config.ALLOWED_
ORIGINS:

 return

response.headers["access-control-allow-origin"] = origin

Make sure that you set the configuration ALLOWED_ORIGINS value as well. You can do
this wherever you create your app instance:

app = Sanic(__name__)

app.config.ALLOWED_ORIGINS = ["http://mysite.com"]

As you can see, we will add this to all the responses that are coming from the browser.
How do we know it is a browser request? Because we can expect that browsers will add
the Origin header.

Access-Control-Expose-Headers
The Access-Control-Expose-Headers header lets the server control which
headers are exposed to JavaScript access. It is a security measure that provides whitelist
control over what information is available to the in-browser application.

Let's start by adding some tests to the browser. For these examples, we will use a basic
HTML structure that's similar to the one we used previously:

1.	 We will start by setting up our HTML. The goal here is to read the foobar header
in JavaScript and output it on the screen. Save the following HTML as test.html:

<body>

 <h1>CORS Testing</h1>

 <h2 id="foobar">Loading...</h2>

 <script>

 const element = document.querySelector("#foobar")

 fetch("http://localhost:7777/").then(async

250 Dealing with Security Concerns

response => {

 const text = await response.text()

 element.innerHTML = 'foobar='${response.
headers.get("foobar")}''

 })

 </script>

</body>

2.	 You can now start this as a simple server using the following command in the
directory where the test.html file is located:

$ sanic -s ./

You should now be able to open your web browser to http://
localhost:8000/test.html. It is fine if it appears to not be working yet.

3.	 We need to set an endpoint on a web application to add the header. Set up a new
server with this endpoint:

@app.get("/")

async def handler(request: Request):

 response = text("Hi")

 response.headers["foobar"] = "hello, 123"

 return response

4.	 Next, we should add a simple configuration to allow CORS:

app.config.ALLOWED_ORIGINS = ["http://localhost:8000"]

@app.on_response

async def add_cors_headers(request: Request, response:
HTTPResponse) -> None:

 # Add headers here on all requests

 origin = request.headers.get("origin")

 if not origin or origin not in request.app.config.
ALLOWED_ORIGINS:

 return

 response.headers["access-control-allow-origin"] =
origin

Setting up an effective CORS policy 251

You should now be able to start this server as normal.
5.	 To verify our curiosity, we will double-check the response with curl to make sure

the header is being sent:

$ curl localhost:7777 -i

HTTP/1.1 200 OK

foobar: hello, 123

content-length: 2

connection: keep-alive

content-type: text/plain; charset=utf-8

Hi

6.	 Now, open your browser to http://127.0.0.1:8000/test.html again. You
should see the following output:

CORS Testing

foobar='null'

Here, the browser was able to make a CORS request but was blocked from accessing
the header. If we want to allow it, then we need to be explicit.

7.	 So, let's head back to the add_cors_headers middleware that we were building
and add the following snippet:

response.headers["access-control-expose-headers"] =
"foobar"

Do not forget that since we are testing this on a browser, we need to set the
ALLOWED_ORIGINS configuration value appropriately:

app.config.ALLOWED_ORIGINS = ["http://127.0.0.1:7777"]

This time, when you access the browser, you should see that the JavaScript was able
to reach in and get the value from the foobar header:

CORS Testing

foobar='hello, 123'

So, if you intend to use any sort of metadata on the client side of your application, you
will need to use access-control-expose-headers. The code for this example
can be found at https://github.com/PacktPublishing/Python-Web-
Development-with-Sanic/tree/main/Chapter07/corsresponse/
access-control-expose-headers.

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter07/corsresponse/access-control-expose-headers
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter07/corsresponse/access-control-expose-headers
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter07/corsresponse/access-control-expose-headers

252 Dealing with Security Concerns

Access-Control-Max-Age
When a browser does issue a preflight request, it can cache that response so that
the next time it makes the same request, it does not need to hit the server. This
performance improvement can be controlled (to some extent) by the server using
Access-Control-Max-Age, which specifies the length of time (in seconds) that
the preflight request can be cached.

Typically, web browsers will set a maximum value for this. If you try to set it to some
absurdly large number, they will drop it down to their predefined maximum value.
For this reason, I usually recommend going with a value that is around 10 minutes.
Some browsers will allow you to go up to 24 hours, but that is probably about the
maximum allowed.

We will see this now in our middleware:

response.headers["access-control-max-age"] = 60 * 10

Access-Control-Allow-Credentials
This header is for preflight requests only. So, the snippet we will add here needs to go
inside our is_preflight(request) block.

When a JavaScript application makes a request, it must explicitly make a call that allows
credentials to be sent. If not, then the browser will not include them in the request. The
server can then play its part and tell the browser that the request that includes credentials
is—or is not—safe to expose to the JavaScript application.

To allow it, we can set the header like this:

response.headers["access-control-allow-credentials"] = "true"

Access-Control-Allow-Methods
So far, there hasn't been a need for any plugins. Adding these CORS headers has been
fairly straightforward. The next part, however, is something that could become a little
more tricky.

The Access-Control-Allow-Methods header is meant to be a warning to the
browser during the preflight request about what HTTP methods the browser is allowed
to send to the endpoint cross-origin. A lot of applications disable this protection by
allowing everything:

response.headers[

 "access-control-allow-methods"

] = "get,post,delete,head,patch,put,options"

Setting up an effective CORS policy 253

This is a simple solution. It is less harmful than that first CORS solution I came across that
allowed any origin. But we can still do better.

To have dynamic methods that match the actual endpoint possibilities, we are going to
change some things around in our code:

1.	 Remember how we are defining a request as a preflight one? Let's do that upfront in
the request middleware:

@app.on_request

async def check_preflight(request: Request) -> None:

 request.ctx.preflight = is_preflight(request)

2.	 Next, when we generate the handlers for our OPTIONS requests, we will inject a list
of all of the allowed methods, like this:

from functools import partial

@app.before_server_start

def add_info_handlers(app: Sanic, _):

 app.router.reset()

 for group in app.router.groups.values():

 if "OPTIONS" not in group.methods:

 app.add_route(

 handler=partial(

 options_handler,

 methods=group.methods

),

 uri=group.uri,

 methods=["OPTIONS"],

 strict_slashes=group.strict,

 name="options_handler",

)

 app.router.finalize()

254 Dealing with Security Concerns

3.	 Now that we have access to the preflight check in our options handler, we can do
our check and add the headers there. We can also take the list of methods that were
passed in and concatenate them into a comma-delimited list. This should now
provide an automated set of OPTIONS endpoints with the HTTP methods that
will be used:

async def options_handler(request, methods):

 resp = response.empty()

 if request.ctx.preflight:

 resp.headers["access-control-allow-credentials"]
= "true"

 resp.headers["access-control-allow-methods"] =
",".join(methods)

 resp.headers["vary"] = "origin"

 origin = request.headers.get("origin")

 if not origin or origin not in request.app.config.
ALLOWED_ORIGINS:

 return

 resp.headers["access-control-allow-origin"] = origin

 return resp

4.	 We will look at the preflight response using curl to see all of our headers:

$ curl localhost:7777 -X OPTIONS -H "Origin: http://
mysite.com" -H "Access-Control-Request-Method: GET" -i

HTTP/1.1 204 No Content

access-control-allow-credentials: true

access-control-allow-methods: GET

vary: origin

access-control-allow-origin: http://mysite.com

connection: keep-alive

You can access a working version of this code by going to this book's GitHub repository
at https://github.com/PacktPublishing/Python-Web-Development-
with-Sanic/tree/main/Chapter07/corsresponse/access-control-
allow-methods.

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter07/corsresponse/access-control-allow-methods
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter07/corsresponse/access-control-allow-methods
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter07/corsresponse/access-control-allow-methods

Protecting applications from CSRF 255

Access-Control-Request-Headers
The final header we are concerned with here is Access-Control-Request-
Headers, and it is also one that should be sent in preflight responses. It tells the browser
which non-standard headers can be sent in the cross-origin request.

If the JavaScript wanted to send a header called counting, then it would do this:

fetch("http://localhost:7777/", {

 headers: {counting: "1 2 3"}

})

However, because this would trigger a preflight request, the browser will fail with a CORS
error because the server has not explicitly allowed counting as an acceptable header.

To do this, we can enable it in our preflight block:

resp.headers["access-control-allow-headers"] = "counting"

Our review of CORS headers has added a lot of code. To see the completed version,
please check out this book's GitHub repository: https://github.com/
PacktPublishing/Python-Web-Development-with-Sanic/tree/main/
Chapter07/corsresponse. Now that we have completed our CORS review, we will
continue by looking at a related topic: CSRF.

Protecting applications from CSRF
The next step in our journey is handling cross-site request forgery (CSRF). It should also
be noted that this often also carries the acronym XSRF. If you see these two on the web,
they refer to the same issue. So, what is the issue?

Do you remember that suspiciously awkward email that you received that says Click
here to claim your $500 prize? That link likely brings you to a malicious website that's
controlled by someone that is trying to hack you. They may have placed some links
or caused you to do something on their site that sends off a background request to a
legitimate website to do something bad. If your application is not protected from CSRF
attacks like this, it could be possible for that bad actor to make your users change their
passwords without them even knowing!

Thwarting these attacks can be done on both sides. Your users could, of course, take better
care not to open the email in their spam box. But you, as a responsible web application
developer, also have a responsibility to protect your users.

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter07/corsresponse
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter07/corsresponse
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter07/corsresponse

256 Dealing with Security Concerns

Solutions that do not work
Cookies. You may be surprised if you skipped ahead to peak at the solution that I have
offered, as you will see that it does include cookies. Indeed, cookies can play a part in
solving the problem. However, they are a flawed security measure and cannot be the
answer to the CSRF problem by themselves.

How would this even work? Imagine that you set a session ID in a cookie. It is a decently
good mixture of random characters, so it would be impractical for someone to guess
it correctly. The problem is that cookies are sent with every request and based not on
where the request is initiated, but where it is headed. So, if your browser sees that it has a
cookie in storage for yourapplication.com, then even if the request was initiated at
h4ck3rsp4r4d1se.com, the browser would send the cookies.

It should also be noted that introducing TLS and reading the Origin header are not
sufficient solutions either. Of course, these are useful and valid things your application
should do, but they alone do not add protection from CSRF. The Origin header, for
example, could easily be spoofed.

Solutions that do work
Now that we know what will not protect us from CSRF attacks, we can look into a few
solutions that will work and help protect our web applications. These are not mutually
exclusive, and I suggest that you consider implementing them all in one form or another.
Your decision will be contextual, of course, but here are some good practices to keep in
mind while protecting your application from CSRF attacks.

Do not change state on GET
This is incredibly important. We discussed this issue back in Chapter 3, Routing and
Intaking HTTP Requests, but GET requests should not be state-changing. This means that
the application should not take any direction from a GET request to go do something.
These should be for information purposes only. By removing GET from the hackers'
arsenal, we are forcing them into using JavaScript exploits on their malicious websites.

The reason that we want to allow this is because the browser has some built-in security
measures we know about and can use to our advantage. First, from within the browser,
the Origin header cannot be spoofed.

Let's say our bad website had the following code in it:

fetch("http://localhost:7777/", {

 headers: {origin: "http://localhost:7777"}

})

Protecting applications from CSRF 257

If you went to somebadwebsite.com, the origin would still be http://
somebadwebsite.com. That is why CORS protection works. By disallowing stateful
changes from GET requests, we make it so that a hack such as this will not work:

<img src="http://yourapplication.com/
changepassword?password=kittens123">

Forcing the hacker into JavaScript—especially JavaScript requests that are forced into
issuing preflight requests—gives us some more control, as we are about to see.

Cookies
The next helpful solution involves cookies.

Wait, what? Cookies were in the do not work solution category; what gives?

We just said that we want to force malicious attackers to use JavaScript in their exploits.
This is because we also know that browser cookies have a feature that we can control:
HttpOnly. When a server creates a cookie, it can decide whether or not JavaScript
should be able to access that cookie. This means that the cookie will continue to be sent
on every web request when enabled, but it will be inaccessible to any JavaScript code. This
makes it an ideal location for storing secure credentials such as session tokens. Besides
this, cookies are subject to what is known as cross-site scripting (XSS) attacks. This is an
attack where a hacker can extract secure details from a frontend browser using JavaScript.

Important Note
If your browser application can access some piece of information with
JavaScript, so can a hacker.

We also mentioned that there was a problem that cookies for yourapplication.com
can still be sent unknowingly from h4ck3rsp4r4d1se.com. Since JavaScript, when it
is allowed to access cookies, can only do so on the current domain, we have another tool
in our belt we can use while building our solution.

When a user logs in, if we set two cookies (one for the session and one for the CSRF
protection) we can set the HttpOnly value based on the intended usage. The session
cookie remains inaccessible, and the cookie that is set aside for CSRF protection could
be JavaScript accessible. We could then require that the JavaScript uses that cookie's
value when sending in a request. This will work because the JavaScript that is running
on h4ck3rsp4r4d1se.com will not be able to access cookies that are marked for
another domain.

258 Dealing with Security Concerns

What should the value of this cookie be? Well, anything that could be impossible to guess.
It is best to keep that value user-specific so that you can verify its contents and be assured
that the token is authentic. Also, the value should change and not be static. This will help
make it more difficult for any would-be attackers. This dual cookie method is not 100%
fault-proof. However, it should be reasonably secure for most applications' needs. The
problem is when your users start accidentally downloading malware that is capable of
circumventing the browser's protection. We'll leave that issue aside as it is an issue that
we cannot control, and it requires a much more in-depth conversation that's beyond the
scope of this book.

It should be noted that we do not necessarily care that the CSRF token could be
compromised and used by a bad actor. That's fine—even if they could access it, they have
no way to then send it with both the correct origin and the correct session token.

Form fields
There is another form of CSRF protection that other frameworks use. For example,
Django made the idea of injecting some hidden HTML into the page popular:

<input type="hidden" name="csrftoken" value="SOMETOKEN" />

This value would then be included in form responses or read into the request in some
expected way. This is essentially the same idea that I am proposing here. The only
difference is that instead of injecting the value into a hidden—although JavaScript-
accessible location—input, we are storing it in a cookie. Both solutions will ultimately
depend on what happens when that value is sent back to the server. We will look at this in
the next section.

Putting a solution into practice
Now that we have a general idea of our approach, let's recap to be clear. We want to
allow stateful changes to be made in our application for authenticated users. To achieve
confidence that the changes are coming from our users and not hackers, we will allow
these changes when the following is true:

•	 The HTTP method is POST, PATCH, PUT, or DELETE.

•	 The origin of the incoming request matches what we would expect.

•	 The incoming request has a cookie that was stored with HttpOnly.

•	 The incoming request has a valid CSRF token.

Protecting applications from CSRF 259

To accomplish our goal, we need to decide where we will put the code that is going to
accomplish this goal. Here, we come back to the debate we have discussed a few times
already: decorators or middleware. There is not a correct choice, and the answer will, of
course, depend on what you are building.

For our example, we will build it as a decorator. When we come to authentication in
the next section, it will become more clear why we are using the decorator pattern here.
If you think middleware works for you, go ahead and try to rebuild this as middleware.
Both options are legitimate patterns and may serve your needs in different circumstances.
To be honest, however, I usually find the decorator pattern to be more easily adoptable
and that it has a broader set of use cases. Here are the steps:

1.	 To start, we will make a barebones decorator. To make this job easier, you can grab
a decorator template from the Sanic User Guide at https://sanic.dev/en/
guide/best-practices/decorators.html#templates:

def csrf_protected(func):

 def decorator(f):

 @wraps(f)

 async def decorated_function(request, *args,
**kwargs):

 response = f(request, *args, **kwargs)

 if isawaitable(response):

 response = await response

 return response

 return decorated_function

 return decorator(func)

When there is a CSRF failure, the correct response should be 403 Forbidden.
We will make a custom exception that we can raise whenever this happens:

from sanic.exceptions import Forbidden

class CSRFFailure(Forbidden):

 message = "CSRF Failure. Missing or invalid CSRF
token."

https://sanic.dev/en/guide/best-practices/decorators.html#templates
https://sanic.dev/en/guide/best-practices/decorators.html#templates

260 Dealing with Security Concerns

2.	 Thinking about our goals and our requirements, we want a way to determine that
the request is coming from a browser. This is because a browser request will be
subject to CSRF protection. There is no need to implement it on direct access API
requests. I like to do this by adding an HttpOnly cookie to every request if it does
not exist. The value is completely irrelevant. The only thing we care about is that the
value was sent. The same goes for the origin header. If an Origin header was sent,
we will assume it is a browser request and subject it to the stiffer requirements we
will impose next. This is a belt and suspenders approach since it is a bit duplicative.
However, it does give you an idea of the types of strategies you should be thinking
about when you're designing your solutions:

@app.on_request

async def check_request(request: Request):

 request.ctx.from_browser = (

 "origin" in request.headers or

 "browser_check" in request.cookies

)

@app.on_response

async def mark_browser(_, response: HTTPResponse):

 response.cookies["browser_check"] = "1"

 response.cookies["browser_check"]["domain"] =
"mydomain.com"

 response.cookies["browser_check"]["httponly"] = True

Tip
Marking the browser_check cookie on every request is overkill. I
generally recommend doing this on a landing page or somehow catching
the case when there is an Origin and no cookie to set it. I will leave this to
your discretion to determine an appropriate place and method for setting this
cookie. If you control the frontend application, you may even consider setting
it there. The point of this cookie is just to give us an additional indication that
this is not a direct access API request.

Protecting applications from CSRF 261

3.	 Looking at our list of requirements again, let's add some code to decorated_
function of our decorator to ensure that the origin matches. This is necessary
because since we already know that when the request is coming from the browser's
JavaScript, this value cannot be spoofed:

origin = request.headers.get("origin")

if request.ctx.from_browser and origin not in app.config.
ALLOWED_ORIGINS:

 raise CSRFFailure

4.	 The next requirement that we have is to make sure that an HttpOnly token is
present. For now, we will just use our browser_check cookie. This could also be
satisfied with a session cookie if you have one:

origin = request.headers.get("origin")

if request.ctx.from_browser and (

 origin not in app.config.ALLOWED_ORIGINS

 or "browser_check" not in request.cookies

):

 raise CSRFFailure

5.	 Lastly, we need to verify our CSRF token. I know we have not discussed what one is
or how to generate one, so we haven't gotten to the verification bit yet. We will get
there soon. Until then, let's simply add a function to round out our decorator:

origin = request.headers.get("origin")

if request.ctx.from_browser and (

 origin not in app.config.ALLOWED_ORIGINS

 or "browser_check" not in request.cookies

 or not csrf_check(request)

):

 raise CSRFFailure

262 Dealing with Security Concerns

Finally, let's turn to CSRF tokens. For our implementation, we are going to use a Fernet
token. This is a method of encrypting some bit of text with a secret key so that it cannot
be changed or read without that key. We are going to set this token in a cookie that will
explicitly not be HttpOnly. We want the frontend JavaScript application to read this
value and send it back to the application via the headers. When the potentially harmful
state-changing request comes in, we will verify that the header and the cookie match. We
will also extract the payload of the Fernet token and validate its contents. The actual value
of that token will be stored in a second cookie that will be HttpOnly. The purpose of this
dual cookie and dual submit verification is to protect our applications from various types
of attacks that may otherwise compromise our strategy. The solution may sound much
more complicated than it is, so let's look at some code to start piecing this together:

1.	 We will begin by setting up some configuration values that we will need:

app.config.CSRF_REF_PADDING = 12

app.config.CSRF_REF_LENGTH = 18

app.config.CSRF_SECRET =
"DZsM9KOs6YAGluhGrEo9oWw4JKTjdiOot9Z4gZ0dGqg="

Important Note
It should come as no surprise that you should never, never, NEVER hardcode a
secret like this in your applications. This is for example purposes only. Instead,
you should be injecting secret values via environment variables or some other,
more secure, method than this.

2.	 We need a function that will generate our CSRF reference value and token. To
accomplish this, we will use the cryptography library that we mentioned at the
beginning of this chapter. It is battle-tested and reliable. It should be the first place
that you turn to for all your cryptographic needs in Python. Here's the code:

from base64 import b64encode

from cryptography.fernet import Fernet

def generate_csrf(secret, ref_length, padding) ->
Tuple[str, str]:

 cipher = Fernet(secret)

 ref = os.urandom(ref_length)

 pad = os.urandom(padding)

Protecting applications from CSRF 263

 pretoken = cipher.encrypt(ref)

 return ref.hex(), b64encode(pad + pretoken).
decode("utf-8")

As you can see, this is fairly simple. We create the cipher object using our secret.
Then, as per the recommendation from the cryptography library, we use the
operating system's random generator logic with os.urandom to make our
reference value, plus some extra fluff. The reference is encrypted, and our token is
then padded and returned, along with the reference value.

3.	 Creating the reverse to verify our token is a matter of performing these steps in
reverse, and then comparing the encrypted value to the passed referenced value:

def verify_csrf(secret, padding, ref, token):

 if not ref or not token:

 raise InvalidToken("Token is incorrect")

 cipher = Fernet(secret)

 raw = b64decode(token.encode("utf-8"))

 pretoken = raw[padding:]

 encoded_ref = cipher.decrypt(pretoken)

 if ref != encoded_ref.hex():

 raise InvalidToken("Token is incorrect")

4.	 We will need a way to make sure these values exist as cookies. So, we will generate
them in middleware for this example. However, it may be logical to perform this
function on a login endpoint instead:

@app.on_response

async def inject_csrf_token(request: Request, response:
HTTPResponse):

 if (

 "csrf_token" not in request.cookies

 or "ref_token" not in request.cookies

):

 ref, token = generate_csrf(

 request.app.config.CSRF_SECRET,

 request.app.config.CSRF_REF_LENGTH,

264 Dealing with Security Concerns

 request.app.config.CSRF_REF_PADDING,

)

 response.cookies["ref_token"] = ref

 response.cookies["ref_token"]["domain"] =
"localhost"

 response.cookies["ref_token"]["httponly"] = True

 response.cookies["csrf_token"] = token

 response.cookies["csrf_token"]["domain"] =
"localhost"

Remember, the plan is for csrf_token to be JavaScript-accessible. We want the
incoming request to not only include this in a cookie value but also have this value
injected into the HTTP headers. This can only be done by JavaScript running on
our applications because of the same-origin policy. CORS to the rescue! So, do not
forget to whitelabel the request header, which we will see next: X-XSRF-Token.

Remember that, back in our @csrf_protected decorator, one of the checks was
csrf_check(request). Let's finally uncover what that function is:

def csrf_check(request: Request):

 csrf_header = request.headers.get("x-xsrf-token")

 csrf_cookie = request.cookies.get("csrf_token")

 ref_token = request.cookies.get("ref_token")

 if csrf_header != csrf_cookie:

 raise CSRFFailure

 try:

 verify_csrf(

 request.app.config.CSRF_SECRET,

 request.app.config.CSRF_REF_PADDING,

 ref_token,

 csrf_cookie,

)

 except InvalidToken as e:

Protecting applications from CSRF 265

 raise CSRFFailure from e

 return True

There should be three values that we care about: the two cookies we just set, and the
incoming X-XSRF-Token header. This header, as we already know, will be generated on
the client side by extracting the cookie and injecting the value into the header. It should
now be simply a matter of verifying the following:

•	 That the cookie and the header match

•	 That the protected HttpOnly reference value is the same as the encrypted value

If that all checks out, we can be confident that the request is genuine.

Tip
You may be wondering why I chose XSRF here instead of X-CSRF-Token,
or even just CSRF-Token for the header name. The reason is that some
frontend frameworks automatically add this header injection for your client
side. Since it is not important what the header is called from our perspective,
we may as well play nice with some other tooling that likes it named this way.

Samesite cookies
You may be familiar with a newer concept in CSRF protection known as samesite cookies.
This is a value that can be appended to the cookie that provides extra directions to the
browser about how to treat that cookie. In short, by setting this value on the cookies
on the server, we allow the application to dictate to the browser when it is and is not
acceptable to send the cookie. This alone nearly mitigates the issues with CSRF, but it
should NOT be used by itself as the solution.

The Open Web Application Security Project (OWASP)—a nonprofit foundation that
promotes the enhancement of security practices online—specifically states that the
samesite attribute "should not replace having a CSRF token. Instead, it should co-exist with
that token to protect the user more robustly." (https://cheatsheetseries.owasp.
org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_
Sheet.html#samesite-cookie-attribute)

We will now learn about samesite cookie protection and how to integrate it into our
solution. Three values are allowed: None, Lax, and Strict.

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#samesite-cookie-attribute
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#samesite-cookie-attribute
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#samesite-cookie-attribute

266 Dealing with Security Concerns

Samesite=None
Cookies that use Samesite=None should only be considered for non-security-related
cookies. This is because they will be sent with every request, no matter what site they are
originating from. So, if you are on the hacker's website, that hacker will be able to submit
requests on your behalf to other sites that you have visited and make use of the cookies
you have on your computer. Not cool.

But for the right kind of cookies, this is not an issue. So long as the value has nothing to
do with security or sessions, this is acceptable. It should be noted, however, that for this
to work, it will also only be allowed when the cookie is marked as Secure; that is, it is
only allowed to be passed across https requests. In your production-level code, you
should be doing this regardless. You are using TLS encryption, right? If not, we will see
a super simple solution to this in Chapter 8, Running a Sanic Server, and Chapter 10,
Implementing Common Use Cases with Sanic.

Setting Samesite=None is as simple as doing the following:

response.cookies["myfavorite"] = "chocolatechip"

response.cookies["myfavorite"]["domain"] = "mydomain.com"

response.cookies["myfavorite"]["samesite"] = None

response.cookies["myfavorite"]["secure"] = True

This will result in the following cookie:

Set-Cookie: myfavorite=chocolatechip; Path=/; Domain=mydomain.
com; SameSite=None; Secure

Samesite=Lax
This is the default in most modern web browsers now. You should not, however, rely upon
that fact, and it is certainly still a best practice to do so explicitly.

What does this value mean? It means that the cross-site POST requests we have been
worried about will not include the cookies (which is a big part of CSRF protection).
However, it will allow them in some contexts. To be sent in a cross-site request, the request
must provide top-level navigation (think of this as the address bar in the browser), and the
HTTP method must be GET or HEAD.

This boils down to protection from AJAX requests but allowing the cookie to be sent
when someone navigates to the site from a third-party link. This makes a lot of sense
and is probably what you want to use for a lot of your cookies.

Protecting applications from CSRF 267

For example, if your session cookies were not set to Lax (and instead were Strict) when
someone clicked a link from another website that brought them to your site, they would
not appear as logged in. However, once they started clicking around, their session would
suddenly appear. This might be an awkward experience for the user. So, it is suggested
that session management and authentication cookies should be Lax for most typical
applications. If you are building a secured banking application, you probably have no use
for someone to link to a secured banking page, so maybe Lax is not the right answer.
However, it is generally acceptable to use Lax for authentication.

As we mentioned previously, you do not need to explicitly state the samesite attribute
anymore, but being explicit is better than being implicit:

response.cookies["session_token"] = session_token

response.cookies["session_token"]["domain"] = "localhost"

response.cookies["session_token"]["httponly"] = True

response.cookies["session_token"]["samesite"] = "lax"

response.cookies["session_token"]["secure"] = True

This will generate a cookie that looks like this:

Set-Cookie: session_token=<TOKEN>; Path=/; Domain=localhost;
HttpOnly; SameSite=lax; Secure

Samesite=Strict
As we alluded to in the previous section, a Strict cookie will only be sent when the
request originated from the correct site. This means that the user must be on your
application, and then submit the request. In my opinion, this sounds like the type of
request that is state-changing. Do you see where I am heading with this?

In my opinion (and you will undoubtedly come across different opinions), CSRF
protection cookies should be Samesite=Strict. There is no legitimate use case
(at least not in my applications) where I can think that I would not want my user to be
on my application first before initiating the types of requests that I am trying to protect.
You may have different needs, so this may not work for you. If Lax makes sense, then go
with it. I'll stick to this:

response.cookies["ref_token"] = ref

response.cookies["ref_token"]["domain"] = "localhost"

response.cookies["ref_token"]["httponly"] = True

response.cookies["ref_token"]["samesite"] = "strict"

268 Dealing with Security Concerns

response.cookies["ref_token"]["secure"] = True

response.cookies["csrf_token"] = token

response.cookies["csrf_token"]["domain"] = "localhost"

response.cookies["csrf_token"]["samesite"] = "strict"

response.cookies["csrf_token"]["secure"] = True

As you can probably guess, our cookies now look like this:

Set-Cookie: ref_token=<TOKEN>; Path=/; Domain=localhost;
HttpOnly; SameSite=strict; Secure

Set-Cookie: csrf_token="<TOKEN>"; Path=/; Domain=localhost;
SameSite=strict; Secure

Important Note
As we mentioned previously, support for samesite cookies is not universal.
You should check a website such as CanIUse to see if any browsers you are
targeting do not implement it: https://caniuse.com/same-site-
cookie-attribute. Also, a "same" site in this context does include
subdomains. There is a public list of addresses that are considered "top-level"
for this context, which does not completely line up with .com, .org, .io, and so
on. For example, two websites on github.io are not considered samesites. For
the full list, go to https://publicsuffix.org.

In our review of CSRF, we mentioned session tokens and authentication a lot, but we have
not looked at them yet. Although this is an incredibly deep topic in itself, we will explore
how you can implement authentication in your applications using Sanic.

Protecting your Sanic app with authentication
When many people think about a web application, what comes to mind is some type of
platform on the web where they log in to do… something. The activity is not what we care
about here. When you are done reading this book, you are going to go off and build some
amazing applications. What we care about are the journey and the process. The part of the
process that we care about right now is logging in.

To be more specific and correct, what we are about to look at is authentication, not
authorization. While these two ideas are very closely related, they are not the same
and are not interchangeable. Authorization usually presumes that authentication has
already happened.

https://caniuse.com/same-site-cookie-attribute
https://caniuse.com/same-site-cookie-attribute
https://publicsuffix.org

Protecting your Sanic app with authentication 269

So, what's the difference?

•	 Authentication: This answers the question: who are you?

•	 Authorization: This answers the question: what are you allowed to do?

To confuse matters even more, when authentication fails, a 401 Unauthorized
response occurs. This is super unfortunate naming from the early days of the internet.
Am authorization failure returns a 403 Forbidden response.

In 2020, I spoke at EuroPython about access control issues. The slides and a link to the
YouTube presentation are on my GitHub page: https://github.com/ahopkins/
europython2020-overcoming-access-control. If you have about 30 minutes
to watch a riveting presentation about this thrilling topic, it's a "don't miss" opportunity.

The presentation covers this authentication/authorization topic, but also largely tries to
answer the question, what are the different methods for protecting my API?

It answers this by comparing session-based authentication with non-session-based
authentication (that is, stateless authentication). We will review both of these strategies
here, but we will also specify how to implement API keys (which is not covered in the
aforementioned presentation).

To do this, a set of questions need to be answered. Before we dive into how to implement
some of the most common strategies with Sanic, we will review some of the questions that
you should ask yourself before deciding on a strategy:

1.	 Who will consume the API?

You should think about whether the API is going to be used by other applications
or scripts, or by actual people. Will it be used by programmers who are integrating
it into their applications? Or will it be used to power a mobile application? Does a
frontend JavaScript application need to access it?

The reason you should care is that you must have an understanding of the technical
abilities, but also the weaknesses, of your intended use case. If your API will only
ever be consumed by other backend scripts and applications, then you will have
an easier time securing it. Most of that stuff we talked about cookies is highly
irrelevant, and CORS is a non-issue.

On the other hand, if you intend to power a browser-based SPA, then you will likely
need a more robust authentication strategy than simple API keys.

https://github.com/ahopkins/europython2020-overcoming-access-control
https://github.com/ahopkins/europython2020-overcoming-access-control

270 Dealing with Security Concerns

2.	 Do you have control over the client?

The core of this question is whether you (or your organization) will be the consumer
of the API. Contrast this with an API that is meant to be consumed by integrations
and other applications, and you should see that this can have a difference on how
you control access. For example, if you are building a microservice that is not
exposed to the internet, but only exists within a highly controlled network, you have
a different set of security concerns than the API that powers your bank's website.

3.	 Will this power a web browser frontend application?

This is a bit of a subset of the first question, but it is important enough to think
about on its own. The reason that this is so much of an issue is that the browser
is flawed. When the internet was first created and web browsers were first being
released, no one could quite predict the direction and level of importance that
the internet would have. The security concerns—and the solutions to mitigate
them—were born out of years of hackers attempting to exploit a system that was
never really designed with a security-first mindset.

For example, the fact that non-encrypted http:// websites even exist in today's
world is mind-boggling. This chapter has devoted a lot of energy to how to deal
with certain security concerns that only exist because the web browser is broken.
Therefore, knowing that there is even a possibility of frontend usage for your
application should trigger warning bells early on that you must dedicate time and
attention to this topic.

With those three questions in our mind, we will now look at three potential schemes
for authenticating users. But first, I will provide another reminder that just because
I do something some way here does not mean you should as well. Use your skills
to take what is provided to build the solutions you need for your application. We are
talking security, so maybe you should be careful before you stray too far. If you ever
have a question about a strategy, feel free to bring the question to the community on
Discord or in the forums.

Next, we will explore some of the strategies you may find.

Protecting your Sanic app with authentication 271

Using API keys
By far, API keys are the simplest authentication scheme. They are easy to set up and easy
for the end user to implement. This also means that they offer less security. However, this
does not mean they should be overlooked. In the right context, API keys can be the right
tool to get the job done, provided you take measures to mitigate any security concerns.

API keys go by many names, but they boil down to a simple concept: your application
provides a secure persistent token. When the request is accompanied by that token,
it works. If not, it fails. It is as simple as that. One of the main benefits—besides
simplicity—is that the keys are easy to invalidate. Since you are storing the keys
somewhere, all you need to do is change the stored value or remove it and that key
will no longer work.

The reason that API keys are more susceptible to attacks is that they are single, persistent
values. This means that it is, in theory, easier for the value to be brute-force attacked.
A hacker could set up a machine and try every single combination until one works.
Therefore, the first step in making sure that your API scheme is secure is to use strong
keys. This means a high amount of entropy.

Once a sufficiently complex API key has been generated, it should be hashed before
storing. Do not encrypt your keys. What is the difference between hashing and encrypting?
When you "encrypt" data, it can be reversed. As we saw with Fernet encryption, we were
able to reverse the process and decrypt the original value. This is a no-no for API keys.
Hashing, on the other hand, is a one-way street. Once an API key has been hashed,
there is no way to recover the original value. Therefore, to validate a value against it, you
need to hash the incoming value using the same strategy and compare the result to the
stored hash.

This may sound like password management, right? That is because you should treat an
API key exactly as you would a password. This brings up the second potential security
pitfall when using API keys: storage. Never store them in plain text, never store them
in a format where the original value can be retrieved, and never store them so that the
hashed value can easily be predicted.

Once you have the value of a newly generated key, you will add a "salt" before storing
it. A password salt is a random bit of text that is added to a password so that when
the password is hashed, it is done so in an unpredictable format. If you do not salt the
password, then the hashed value can be cracked by comparing it to known hashes for
common passwords.

272 Dealing with Security Concerns

Hackers keep databases of the hashed values of common passwords for this reason. Even
though they may not be able to decrypt a hashed value, if you fail
to salt it, then it is super simple for them to backward engineer the value by simply
looking at known values. Luckily, the bcrypt module makes this easy. Let's dive into
some code:

1.	 We will begin by creating a function to generate an API key. To do this, we will use
the secrets module that comes from the Python standard library. In our example,
we will use secrets.token_urlsafe to generate the value. You could also use
secrets.token_hex, but it will produce a slightly longer string to represent the
same value. The reason I suggest using this library with its default settings is that the
maintainers of Python will change the amount of entropy that's needed based on the
current best practices. At the time of writing, the default is 32 bytes. If you feel more
is required, feel free to increase that value:

from secrets import token_urlsafe

from bcrypt import hashpw, gensalt

def generate_token():

 api_key = token_urlsafe()

 hashed_key = hashpw(api_key.encode("utf-8"),
gensalt())

 return api_key, hashed_key

We also used the bcrypt module to generate a salt. What this does is add random
text, create a hash, and then repeat the cycle several times. By folding the hashed
value with multiple rounds of salting, it becomes more difficult to compare it
against a known value (it also becomes computationally more expensive, so setting
the value too high may be super time-consuming). We will use gensalt with the
default value of 12 rounds here.

2.	 You will need an endpoint that generates and stores these values. A typical
implementation will have a frontend UI where the user clicks a button to generate
the API key. The value is returned on screen just long enough for them to copy
it. Once they navigate away, that value is gone and cannot be recovered. In the
backend, this means that we need an endpoint that uses generate_token, sends
the API key to the user, and stores the hashed key in the database:

@app.post("/apikey")

async def gen_handler(request: Request):

 api_key, hashed_key = generate_token()

Protecting your Sanic app with authentication 273

 user = await get_user_from_request(request)

 await store_hashed_key(user, hashed_key)

 return json({"api_key": api_key})

As a reminder, you can look back to Chapter 4, Ingesting HTTP Data, for strategies
on how to extract data from the request to get the user. For example, in the
preceding code, get_user_from_request is a stand-in to show that you would
be pulling the user information based on the incoming request. Similarly, since we
have not looked at how to interact with databases yet, store_hashed_key is
just a stand-in to show that you would need to use the user and the hashed key to
somehow store the value. If you would like to look at a functioning version of this
endpoint that gets around this issue for demonstration purposes, check out the
GitHub repository at https://github.com/PacktPublishing/Python-
Web-Development-with-Sanic/tree/main/Chapter07/apitoken.

3.	 Now, we will create a new decorator to protect the endpoints with our API key.
In this decorator, we will extract the user from the request and compare the
hashed key to whatever the user has sent:

from bcrypt import checkpw

from sanic.exceptions import Unauthorized

def api_key_required(

 maybe_func=None,

 *,

 exception=Unauthorized,

 message="Invalid or unknown API key"

):

 def decorator(f):

 @wraps(f)

 async def decorated_function(request: Request,
*args, **kwargs):

 try:

 user = await get_user_from_
request(request)

 is_valid = checkpw(request.token.
encode("utf-8"), user.hashed_key)

 if not is_valid:

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter07/apitoken
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter07/apitoken

274 Dealing with Security Concerns

 raise ValueError("Bad token")

 except ValueError as e

 raise exception(message) from e

 response = f(request, *args, **kwargs)

 if isawaitable(response):

 response = await response

 return response

 return decorated_function

 return decorator(maybe_func) if maybe_func else
decorator

One thing that is helpful to point out here is that Sanic will extract a token from
the Authorization header for us. It is a very common scheme to send tokens
in headers as so-called bearer tokens. They look like this:

Authorization: Bearer <token_here>

They can also look like this:
Authorization: Token <token_here>

So, to get access to that token value, all you need to use is request.token and
Sanic will find it from either location.

4.	 Now, to implement this, all we need to do is wrap our endpoints:

@app.get("/protected")

@api_key_required

async def protected_handler(request):

 return text("hi")

Another thing to point out is the inherent security leak in failing to use the correct status
codes and exception messages when something goes wrong. We mentioned this back
in Chapter 6, Operating Outside the Response Handler, and it is worth knowing how to
address that concern here. You may have noticed that we are allowing our decorator
to pass in an Exception class and message. This is so that we have control over what
information is sent to the end user. Providing this level of customization in the decorator
can become a powerful tool when you're building out your application.

Protecting your Sanic app with authentication 275

Now that we have seen how easy it is to implement proper API keys, the only remaining
question is, when is it appropriate to use them?

Never use an API key to secure a browser-based UI.

The security that's afforded by the API key is not sufficient to handle all of the issues that
the browser raises by storing credentials. This is only appropriate for integrations that are
coming from outside scripts or applications. I like to refer to this as direct access since the
API is being used directly by the client and not a web browser.

Because of this, I like to use the check_request middleware we created earlier in this
chapter in conjunction with my authorization decorator. Since @api_key_required
should never be valid for a request from the browser, I like to change the following code:

if not is_valid:

 raise exception(message)

I replace the preceding code with the following:

if request.ctx.from_browser or not is_valid:

 raise exception(message)

Now that we know how and when to use API keys, let's look at approaches to handling
authentication in a scenario that is appropriate for web applications.

Understanding session-based versus
non-session-based authentication
User sessions are perhaps the most common approach to handling authentication
in web applications. A more recent strategy employs tokens known as JSON Web
Tokens (JWTs). In most other contexts, these are referred to as stateful versus stateless.
User sessions are stateful, while JWTs are stateless. This is all true, but I like to refer to
them as session-based and non-session-based. Call me a rebel, but I think that this more
clearly describes what we are trying to achieve.

First, what is a session? If a user logs into your application, and you record that login
in your database so that it can be invalidated at will, then you are creating a session.
This means that so long as that record exists in your database, there is an active session
that can be authenticated against that particular user.

276 Dealing with Security Concerns

Session-based authentication is very simple to implement on both the frontend and
the backend. And, because it offers a high degree of security, it is the reason that it has
become a default approach for many web applications. One of its huge benefits is that any
active session can be inactivated at any time. Have you ever been on a web application
(perhaps your email provider) that lists everywhere you are logged in? With a click
of a button, you can log out of the other locations. This is helpful in case a session is
compromised or hacked.

On the other hand, non-session-based authentication provides a great deal more
flexibility. The typical example of a non-session-based token is a JWT. So, even though I
am talking specifically about JWTs, they are not the only way to handle non-session-based
authentication. The most critical component that is offered by this strategy is that the
token itself is self-authentication. This means that a server only needs to look at the token
to determine if it is genuine and if it has been tampered with.

Because of this, authenticating a JWT becomes highly portable. You can have one
microservice that handles authentication and generating tokens, and then other services
can verify them without having to involve the authentication service at all! This allows for
very scalable architectures. This also highlights another benefit. Every time a session token
is received, to authenticate it, you must make a round-trip to your storage engine. This
means that every single API call includes at least one more network call to the database.
This is completely avoided with self-authenticating tokens and can lead to overall
performance benefits.

JWTs also have the benefit that they can be embedded with non-secret payloads. This
often means that you can include a list of permissions or meta-information about a user
that the frontend application can make use of.

This all sounds great, but the downside to JWTs is that, once issued, they cannot be
invalidated. When they are created, they are given an expiration time. The token will
remain valid until that time expires. This is the reason why these expiration times are
usually quite short and usually measured in minutes (not hours or days, as may be typical
of sessions). If a token expires every 10 minutes, it would be super inconvenient for a
web application user to need to log in again so frequently. Therefore, JWTs are often
accompanied by a refresh token. This token is a value that allows a user to exchange an
expired JWT for a fresh new one.

Protecting your Sanic app with authentication 277

Furthermore, session-based tokens are generally easier to protect from XSS attacks using
the HttpOnly cookies that we saw earlier. Since JWTs are usually sent as bearer tokens,
such as API keys, implementing them also means revisiting how we are going to protect
them inside the browser. If your head is starting to spin thinking about all of the concerns
that exist with trying to implement JWTs as both a secure and user-friendly approach,
then you are not alone. Adding JWTs to an application is certainly much more involved
than sessions. So, you must think about your specific application needs when deciding
which strategy to use.

"Hold up!", you may be saying to yourself. "If JWTs have so many benefits, why not just
treat them like session tokens and store them as cookies? Also, we can get around invalidating
tokens by comparing them against a black list! Then, we can make them longer and just add
them to the blacklist when we want to log out or invalidate them. Both problems solved."

Yes, that is true. Let's look at both of those proposals in turn.

First, storing JWTs as cookie-like session tokens does work. However, you lose out on
one of its big benefits: the authenticated payload. Remember that one of their benefits is
that they can carry meta details that your frontend application could use. If they are stuck
inside of an HttpOnly cookie, then that information is not available. (We will look at a
way to address this when we look at JWT implementations.)

Second, if you are maintaining a blacklist of tokens to allow a token to be revoked or
invalidated, then you are no longer using non-session-based authentication. Instead, you
are using JWTs in a session-based scheme. This is acceptable and people do it. However, it
makes your tokens less portable since they require a centralized store to be validated, and
also include additional network calls. Implement this at your own risk.

We now turn to implementation strategies within Sanic. Because we have not looked
at database implementation, we will still use some stand-in functions to get and store
information when needed. Try to look over those details for now since we are focusing
more on how to handle authentication, not persisting data. If you look at these examples
on this book's GitHub repository, you will see some dummy versions of these functions,
just to make the examples operational. Try not to get hung up on those details right now.

278 Dealing with Security Concerns

Using sessions
After reading the Understanding session-based versus non-session-based authentication
section, you have decided that stateful sessions are the right option for your application.
Super—you already know just about everything you need.

We have already learned how to handle passwords (the same as API keys). Therefore,
implementing a login route should be simple.

We already know that the session token doesn't need to be accessible from JavaScript to
combat XSS. Therefore, we will use HttpOnly cookies.

We also know that using an HttpOnly cookie by itself leaves an application vulnerable
to CSRF attacks. Therefore, we will couple our implementation with the CSRF protection
scheme we came up with earlier.

What's left? Not much. We need endpoints for the following purposes:

•	 Registering a user (who will be responsible for storing the password securely)

•	 Logging in (which takes a username and password and verifies it, just like in the
API key example, then creates a session key, stores it, and sets it as a cookie)

•	 Logging out (which deletes the session from the database)

This is a great opportunity for you to take these requirements and try and build a solution.
Put this book down and build these three endpoints. If you get stuck, don't worry—there
is an example solution in this book's GitHub repository.

To protect your endpoints, you can use a similar approach but with a decorator. Do
you remember the @csrf_protected decorator we built earlier? If you are using
session-based authentication, then I suggest combining that decorator with the one
we are building here. They compliment each other nicely and make it easier for you to
protect your endpoints.

Here is how we will rebuild it:

1.	 First, we must add a block to our decorator that's similar to the API key decorator.
This will raise an exception if session verification fails:

def session_protected(

 maybe_func=None,

 *,

 exception=Unauthorized,

 message="Invalid or unknown API key"

):

Protecting your Sanic app with authentication 279

 def decorator(f):

 @wraps(f)

 async def decorated_function(request, *args,
**kwargs):

 origin = request.headers.get("origin")

 if request.ctx.from_browser and (

 origin not in app.config.ALLOWED_ORIGINS

 or "browser_check" not in request.cookies

 or not csrf_check(request)

):

 raise CSRFFailure

 session_token = request.cookies.get("session_
token")

 if not session_token or not await verify_
session(session_token):

 raise exception(message)

 response = f(request, *args, **kwargs)

 if isawaitable(response):

 response = await response

 return response

 return decorated_function

 return decorator(maybe_func) if maybe_func else
decorator

2.	 The session's verification does depend on your database implementation. But, in
general, it should look something like this:

async def verify_session(session_token):

 try:

 await get_session_from_database(session_token):

 except NotFound:

280 Dealing with Security Concerns

 return False

 return True

If the session token exists, then we can proceed. If it does not, then return False.

As you can see, sessions tend to be easy to implement once you have the basic
functionality for storing and retrieving data from a database. We will now turn to the
more complicated alternative.

JSON Web Tokens (JWTs)
So, you have read the Understanding session-based versus non-session-based authentication
section and decided to implement JWTs. Now what? The problem that we need to solve is
that using them to their full capacity within a frontend application poses two problems:

•	 How to store and send them to not compromise on functionality or security

•	 How to maintain a reasonable user experience without sacrificing security

We will address these issues in turn, and then develop a solution that gives us satisfaction
in terms of both.

To cookie, or not to cookie?
There are two competing interests when you're deciding how to send the access token
(please note that from here on out, the term access token is synonymous with JWT):
usability and security. If we send the token via the headers, it would look like this:

Authentication: Bearer <JWT>

To accomplish this, we need some client-side JavaScript to read the value and inject it into
our request:

const accessToken = document.cookie

 .split('; ')

 .find(row => row.startsWith('access_token='))

 .split('=')[1]

fetch(url, {headers: {Authorization: 'Bearer ${accessToken}'}})

Protecting your Sanic app with authentication 281

You should (by now) already be suspecting the problem with this: an XSS vulnerability! If
our frontend application can access the token from JavaScript, then that means that any
bad script can as well. Bummer.

Important Note
You may be thinking to yourself, why is the JWT being stored on the
client side in a cookie and not in web storage (either localStorage or
sessionStorage)? The reason is that both of those solutions are great for
handling non-sensitive details. They are subject to the XSS attacks we are trying
to prevent. You may see a lot of advice online suggesting that you use these for
JWTs. Don't do it! The solution that is offered here will be much more secure
and still not sacrifice usability. All it takes is a little extra work on the server
side, so please be patient and do not rush off to this sub-standard alternative.

To fix this problem, we can use HttpOnly and let our application just send the cookie
back by itself. In this situation, we will rely on the server to write and read the cookie as
needed. But, in doing this, we cannot access the JWT payload. There is also the problem
of CSRF that we have seen a few times already, but by now, you should already understand
how to solve that problem. If not, please go back to the Protecting applications from CSRF
section of this chapter.

One option may be to return the payload of the access token when you first log in. You
could store these details in web storage safely and use them whenever you want. This may
look something like this on the server:

@app.post("/login")

async def login(request):

 user = await authenticate_login_credentials(

 request.json["username"],

 request.json["password"],

)

 access_token = generate_access_token(user)

 response = json({"payload": access_token.payload})

 response.cookies["access_token"] = access_token

 response.cookies["access_token"]["domain"] = "localhost"

 response.cookies["access_token"]["httponly"] = True

 response.cookies["access_token"]["samesite"] = "lax"

 response.cookies["access_token"]["secure"] = True

 return response

282 Dealing with Security Concerns

I support this approach, and it will certainly work. You can gain access to the payload, and
you have a secure way to transport and store the access token.

A second option would be to use split cookies. More on that in just a bit. Feel free to skip
ahead, or go back and reference that EuroPython talk I mentioned at the beginning of this
chapter, where I discussed this approach.

"Your session expired after 10 minutes, please log in again"
Have you ever been on a website that does this? Usually, it is banking or financial
applications because they are concerned about a user standing up from their computer
and walking away to leave a logged-in session. Maybe this is your need, so great! You can
rest comfortably with JWTs as a solution and expire your tokens often with no concern.

For most applications, however, this would lead to a terrible user experience.

Remember, the reason we are expiring our access tokens at such a short interval is to
reduce the potential attack surface. If a token were to fall into the wrong hands, it can only
be used for a very small window. The shorter the expiration, the more secure the token.

The solution to this problem requires a little bit of frontend complexity. But, I think it is
worth the protection it affords. There are two solutions that you can choose from:

•	 Use JavaScript's setInterval to periodically send a request to refresh the token
in the background that's unknown to the user.

•	 Wrap your JavaScript fetch call with a proper exception handler. It will catch the
scenario where an expired token was submitted, send a request to refresh the token,
and then retry the original request with the new token.

Feel free to choose the approach that works for you. This book's GitHub repository
contains some sample JavaScript for implementing each strategy: https://github.
com/PacktPublishing/Python-Web-Development-with-Sanic/tree/
main/Chapter07/accesstoken.

To implement a refresh token, we will borrow some of the concepts we used earlier for
making the API token. When a user logs in, we will continue to generate the access token,
but we will also generate and store a refresh token by reusing the API token logic:

1.	 Create a login endpoint that also generates and stores a refresh token:

@app.post("/login")

async def login(request):

 user = await authenticate_login_credentials(

 request.json["username"],

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter07/accesstoken
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter07/accesstoken
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter07/accesstoken

Protecting your Sanic app with authentication 283

 request.json["password"],

)

 access_token = generate_access_token(user)

 refresh_token, hashed_key = generate_token()

 await store_refresh_token(user, hashed_key)

 response = json({"payload": access_token.payload})

 response.cookies["access_token"] = access_token

 response.cookies["access_token"]["domain"] =
"localhost"

 response.cookies["access_token"]["httponly"] = True

 response.cookies["access_token"]["samesite"] = "lax"

 response.cookies["access_token"]["secure"] = True

 response.cookies["refresh_token"] = refresh_token

 response.cookies["refresh_token"]["domain"] =
"localhost"

 response.cookies["refresh_token"]["httponly"] = True

 response.cookies["refresh_token"]["samesite"] =
"strict"

 response.cookies["refresh_token"]["secure"] = True

 return response

Go back to the Using API keys section to see the generate_token function.
2.	 To issue a new access token, we need to create a new endpoint that will validate

the refresh token (like we did for the API token). As an added level of security
(since a single point of authentication from the browser is not a good idea),
we also will require a previously issued access token, even if it has already expired:

from bcrypt import checkpw

from sanic.exceptions import Forbidden

from sanic.response import empty

@app.post("/refresh")

async def refresh_access_token(request: Request) ->
HTTPResponse:

 user = await get_user_from_request(request)

284 Dealing with Security Concerns

 access_token = request.cookies["access_token"]

 refresh_token = request.cookies["refresh_token"]

 if not user.refresh_hash:

 raise Forbidden("Invalid request")

 is_valid_refresh = checkpw(

 refresh_token.encode("utf-8"),

 user.refresh_hash

)

 is_valid_access = check_access_token(access_token,
allow_expired=True)

 if not is_valid_refresh or not is_valid_access:

 raise Forbidden("Invalid request")

 generated_access_token = generate_access_token(user)

 response = empty()

 response.cookies["access_token"] = generated_access_
token

 response.cookies["access_token"]["domain"] =
"localhost"

 response.cookies["access_token"]["httponly"] = True

 response.cookies["access_token"]["samesite"] = "lax"

 response.cookies["access_token"]["secure"] = True

 return response

We have not learned how to validate JWT yet, so do not worry if you are not sure how to
implement check_access_token. We will do that next.

Solving JWTs in browser-based applications
At this point, we should have an understanding of what we want to achieve. What we need
to look at now is the following:

•	 How to generate the access token

Protecting your Sanic app with authentication 285

•	 How to verify the access token (both with and without expiration)

•	 How to "split" the token to make it usable and secure

To generate the token, we will use pyjwt. The first thing we will need to do is create an
application with a secret. Just like I did previously, I will hardcode it in my example, but
you will get the value from an environment variable or an other secure method:

1.	 Set the secret and some other configuration values that we will need:

from datetime import timedelta

app.config.JWT_SECRET = "somesecret"

app.config.JWT_EXPIRATION = timedelta(minutes=10)

app.config.REFRESH_EXPIRATION = timedelta(hours=24)

app.config.COOKIE_DOMAIN = "127.0.0.1"

2.	 Create a model that will hold our JWT details:

from dataclasses import dataclass

@dataclass

class AccessToken:

 payload: Dict[str, Any]

 token: str

 def __str__(self) -> str:

 return self.token

 @property

 def header_payload(self):

 return self._parts[0]

 @property

 def signature(self):

 return self._parts[0]

 @property

 def _parts(self):

 return self.token.rsplit(".", maxsplit=1)

286 Dealing with Security Concerns

3.	 Generate the token with some payload. In JWT speak, a payload is essentially just
a dictionary of values. It can contain a "claim," which is a special key-value pair
that can be used to authenticate a token. If you get into JWT, I suggest that you dig
deeper into some of the standard claims. In our example, the only one we are using
is the expiration claim; that is, exp. Other than that, feel free to add whatever you
want to the payload:

import jwt

def generate_access_token(user: User, secret: str, exp:
int) -> AccessToken:

 payload = {

 "whatever": "youwant",

 "exp": exp,

 }

 raw_token = jwt.encode(payload, secret,
algorithm="HS256")

 access_token = AccessToken(payload, raw_token)

 return access_token

To verify the token, we can do the reverse. We have a use case for when we will
accept an expired token (when using the refresh token). Therefore, we need
a flag to allow us to skip the check for the exp claim:

def check_access_token(

 access_token: str, secret: str, allow_expired: bool =
False

) -> bool:

 try:

 jwt.decode(

 access_token,

 secret,

 algorithms=["HS256"],

 require=["exp"],

 verify_exp=(not allow_expired),

)

 except jwt.exceptions.InvalidTokenError as e:

 error_logger.exception(e)

 return False

Protecting your Sanic app with authentication 287

4.	 Once you have generated the AccessToken object, it will be super easy to split it
into two cookies. One of them will be JavaScript accessible, while the other will be
HttpOnly. We also want the refresh token to be HttpOnly. Your login handler
will look something like this:

access_token_exp = datetime.now() + request.app.config.
JWT_EXPIRATION

refresh_token_exp = datetime.now() + request.app.config.
REFRESH_EXPIRATION

access_token = generate_access_token(

 user,

 request.app.config.JWT_SECRET,

 int(access_token_exp.timestamp()),

)

refresh_token, hashed_key = generate_token()

await store_refresh_token(user, hashed_key)

response = json({"payload": access_token.payload})

5.	 Then, we must set all of our cookies with a convenience function. Pay attention to
how these cookies are set with respect to httponly and samesite:

set_cookie(

 response,

 "access_token",

 access_token.header_payload,

 httponly=False,

 domain=request.app.config.COOKIE_DOMAIN,

 exp=access_token_exp,

)

set_cookie(

 response,

 "access_token",

 access_token.signature,

 httponly=True,

 domain=request.app.config.COOKIE_DOMAIN,

 exp=access_token_exp,

)

set_cookie(

 response,

288 Dealing with Security Concerns

 "refresh_token",

 refresh_token,

 httponly=True,

 samesite="strict",

 domain=request.app.config.COOKIE_DOMAIN,

 exp=refresh_token_exp,

)

We now have all the building blocks needed to build out our endpoints and our decorator.
It is time for you to put your skills to the test and try and piece together the endpoints
from the knowledge provided in this chapter. Don't worry—there is a full solution in this
book's GitHub repository, including the set_cookie convenience function that we used
in the aforementioned code: https://github.com/PacktPublishing/Python-
Web-Development-with-Sanic/tree/main/Chapter07/accesstoken.

A bit of self-promotion here: one of the first libraries I built for Sanic was a package to
handle authentication and authorization for Sanic using JWTs. It allows you to handle
this split token approach and includes all other sorts of goodies and protection. If you do
not want to roll out a solution, then this is a good place to start as it has become widely
adopted within the community. Check out my personal GitHub page for more details:
https://github.com/ahopkins/sanic-jwt.

Summary
This chapter has covered a lot of material. Still, it has only scratched the surface of web
security. To truly raise the security bar, you should continue to do some research. There
are some other common headers such as Content-Security-Policy, X-Content-
Type-Options, and X-Frame-Options that we did not have a chance to cover.
Nonetheless, with the information you have gathered here, and with your self-ingenuity,
you should be able to implement, for example, a Content-Security-Policy header
that works for your application. The first place I look for this kind of material is Mozilla's
MDN website: https://developer.mozilla.org/en-US/. I highly recommend
that you visit it to learn about web standards and practices.

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter07/accesstoken
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter07/accesstoken
https://github.com/ahopkins/sanic-jwt

Summary 289

So, what did we cover?

You should now be familiar with the concept of same-origin and how to develop a CORS
policy to defeat both CSRF and XSS attacks. We also looked at three common schemes
for authenticating users: API keys, session tokens, and JWT. And, of course, by looking
through all of the examples, you should have learned how to use the Sanic toolbelt to craft
your own unique and obvious patterns to serve your applications' needs. At this point in
this book, we have covered most of what you will need to build a web application. You
should be familiar with all of the basic building blocks and start to have some ideas on
how to piece them together to build solutions.

What we are missing now is knowledge on how to deploy our applications and run them.
This is what we will cover in the next chapter.

8
Running a

Sanic Server
In the time that I have been involved with the Sanic project—and specifically, in trying
to assist other developers by answering their support questions—there is one topic that
perhaps comes up more than any other: deployment. That one word is often bundled with
a mixture of confusion and dread.

Building a web application can be a lot of fun. I suspect that I am not alone in finding a
tremendous amount of satisfaction in the build process itself. One of the reasons that I
love software development in general—and web development in particular—is that I enjoy
the almost puzzle-like atmosphere of fitting solutions to a given problem. When the build
is done and it is time to launch, that is where the anxiety kicks in.

I cannot overemphasize this next point enough. One of Sanic's biggest assets is its bundled
web server. This is not just a gimmick or some side feature to be ignored. The fact that
Sanic comes bundled with its own web server truly does simplify the build process.
Think about traditional Python web frameworks such as Django or Flask, or about some
of the newer Asynchronous Server Gateway Interface (ASGI) frameworks. For them
to become operational and connected to the web, you need a production-grade web
server. Building the application is only one step—deploying it requires knowledge and
proficiency in another tool. Typically, the web server used to deploy your application built
with one of those frameworks is not the same web server that you develop upon. For that,
you have a development server.

292 Running a Sanic Server

Not only is this an added complexity and dependency, but it also means you are not
developing against the actual server that will be running your code in production. Is
anyone else thinking what I am thinking? Bugs.

In this chapter, we will look at what is required to run Sanic. We will explore different
ways to run Sanic both in development and production to make the deployment process
as easy as possible. We will start by looking at the server life cycle. Then, we will discuss
setting up both a local and a production-grade scalable service. We will cover the
following topics:

•	 Handling the server life cycle

•	 Configuring an application

•	 Running Sanic locally

•	 Deploying to production

•	 Securing your application with Transport Layer Security (TLS)

•	 Deployment examples

When we are done, your days of deployment-induced anxiety should be a thing of
the past.

Technical requirements
We will, of course, continue to build upon the tools and knowledge from previous
chapters. Earlier, in Chapter 3, Routing and Intaking HTTP Requests, we saw some
implementations that used Docker. Specifically, we were using Docker to run an Nginx
server for static content. While it is not required for deploying Sanic, knowledge of
Docker and (to a lesser extent) Kubernetes will be helpful. In this chapter, we will be
exploring the usage of Docker with Sanic deployments. If you are not a black-belt Docker
or Kubernetes expert, don't worry. There will be examples on the GitHub repository
at https://github.com/PacktPublishing/Python-Web-Development-
with-Sanic/tree/main/Chapter08. All that we hope and expect is some basic
understanding of and familiarity with these tools.

If you do not have these listed tools installed, you will need them to follow along with
this chapter:

•	 git

•	 docker

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter08
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter08

Handling the server life cycle 293

•	 doctl

•	 kubectl

Handling the server life cycle
Throughout this book, we have spent a lot of time talking about the life cycle of an
incoming HyperText Transfer Protocol (HTTP) request. In that time, we have seen
how we can run code at different points in that cycle. Well, the life cycle of the application
server as a whole is no different.

Whereas we had middleware and signals, the server life cycle has what are called
"listeners". In fact, listeners are in effect (with one small exception) signals themselves.
Before we look at how to use them, we will take a look at which listeners are available.

Server listeners
The basic premise of a listener is that you are attaching some function to an event
in the server's life cycle. As the server progresses through the startup and shutdown
process, Sanic will trigger these events and therefore allow you to easily plug in your
own functionality. Sanic triggers events at both the startup and shutdown phases. For any
other event during the life of your server, you should refer to the Leveraging signals for
intra-worker communication section of Chapter 6, Operating Outside the Response Handler.

The order of events goes like this:

1.	 before_server_start: This event naturally begins runs before the server is
started. It is a great place to connect to a database or perform any other operations
that need to happen at the beginning of your application life cycle. Anything that
you might be inclined to do in the global scope would almost always be better off
done here. The only caveat worth knowing about is that if you are running in ASGI
mode, the server is already running by the time Sanic is even triggered. In that case,
there is no difference between before_server_start and after_server_
start.

2.	 after_server_start: A common misconception about this event is that it
could encounter a race condition where the event runs while your server begins
responding to HTTP requests. That is not the case. What this event means is that
there was an HTTP server created and attached to the operating system (OS). The
infrastructure is in place to begin accepting requests, but it has not happened yet.
Only once all of your listeners for after_server_start are complete will Sanic
begin to accept HTTP traffic.

294 Running a Sanic Server

3.	 before_server_stop: This is a good place to start any cleanup you need to
do. While you are in this location, Sanic is still able to accept incoming traffic, so
anything that you might need to handle should still be available (such as database
connections).

4.	 after_server_stop: Once the server has been closed, it is now safe to start any
cleanup that is remaining. If you are in ASGI mode, as with before_server_
start, this event is not actually triggered after the server is off because Sanic does
not control that. It will instead immediately follow any before_server_stop
listeners to preserve their ordering.

Two more listeners are available to you—however, these additional listeners are only
available with the Sanic server since they are specific to the Sanic server life cycle. This is
due to how the server works. When you run Sanic with multiple workers, what happens
is that there is the main process that acts as an orchestrator, spinning up multiple
subprocesses for each of the workers that you have requested. If you want to tap into
the life cycle of each of those worker processes, then you already have the tools at your
disposal with the four listeners we just saw.

However, what if you wanted to run some bit of code not on each worker process, but
once in the main process: that orchestrator? The answer is the Sanic server's main process
events—main_process_start and main_process_stop. Apart from the fact
that they run inside the main process and not the workers, they otherwise work like
the other listeners. Remember how I said that the listeners are themselves signals, with
an exception? This is that exception. These listeners are not signals in disguise. For all
practical purposes, this distinction is not important.

It is also worth mentioning that even though these events are meant to allow code to
be run in the main process and not the worker process when in multi-worker mode,
they are still triggered when you are running with a single worker process. When this is
the case, it will be run at the extreme beginning and extreme end of your life cycle.

This raises an interesting and often-seen mistake: double execution. Before continuing
with listeners, we will turn our attention to mistakenly running code multiple times.

Running code in the global scope
When you are preparing your application to run, it is not uncommon to initialize various
services, clients, interfaces, and so on. You likely will need to perform some operations on
your application very early in the process before the server even begins to run.

Handling the server life cycle 295

For example, let's imagine that you are looking for a solution to help you better track your
exceptions. You find a third-party service where you can report all of your exceptions and
tracebacks to help you to better analyze, debug, and repair your application. To get started,
the service provides some documentation to use its software development kit (SDK),
as follows:

from third_party_sdk import init_error_reporting

init_error_reporting(app)

You get this set up and running in your multi-worker application, and you immediately
start noticing that it is running multiple times and not in your worker processes as
expected. What is going on?

Likely, the issue is that you ran your initialization code in the global scope. By global
scope in Python, we mean something that is executing outside of a function or method.
It runs on the outermost level in a Python file. In the preceding example, init_error_
reporting runs in the global scope because it is not wrapped inside another function.
The problem is that when multiple workers are running, you need to be aware of where
and when that code is running. Since multiple workers mean multiple processes and
each process is likely to run in your global scope, you need to be careful about what you
put there.

As a very general rule, stick to putting any operable code inside a listener. This allows you
to control the where and when, enabling the listener to operate in a more consistent and
easily predictable manner.

Setting up listeners
Using listeners should look very familiar since they follow a similar pattern found
elsewhere in Sanic. You create a listener handler (which is just a function) and then wrap
it with a decorator. It should look like this:

@app.before_server_start

async def setup_db(app, loop):

 app.ctx.db = await db_setup()

What we see here is something incredibly important in Sanic development. This pattern
should be committed to memory because attaching elements to your application ctx
object increases your overall flexibility in development. In this example, we set up our
database client so that it can be accessed from anywhere that our application can be
(which is literally anywhere in the code).

296 Running a Sanic Server

One important thing to know is that you can control the order in which the listeners
execute depending upon when they are defined. For the "start" time listeners (before_
server_start, after_server_start, and main_process_start), they are
executed in the order in which they are declared.

For the stop time listeners (before_server_stop, after_server_stop, and
main_process_stop), the opposite is true. They are run in the reverse order of
declaration.

How to decide to use a before listener or an after listener
As stated previously, there persists a common misconception that logic must be added to
before_server_start in cases where you want to perform some operation before
requests start. The fear is that using after_server_start might cause some kind of
a race condition where some requests might hit the server moments before that event is
triggered.

This is incorrect. Both before_server_start and after_server_start run to
completion before any requests are allowed to come in.

So, then the question becomes: When should you favor one over the other? There are,
of course, some personal and application-specific preferences that could be involved.
Generally, however, I like to use the before_server_start event to set up my
application context. If I need to initialize some object and persist it to app.ctx, then I
will reach for before_server_start. For any other use case (such as performing any
other types of external calls or configuration, I like to use after_server_start. This
is by no means a hard and fast rule, and I often break it myself.

Now that we understand the life cycle of the server, there is one more missing bit of
information that we need before we can run the application: configuration.

Configuring an application
Sanic tries to make some reasonable assumptions out of the box about your application.
With this in mind, you can certainly spin up an application, and it should already have some
reasonable default settings in place. While this may be acceptable for a simple prototype,
as soon as you start to build your application, you will realize that you need to configure it.

And this is where Sanic's configuration system comes into play.

Configuring an application 297

Configuration comes in two main flavors: tweaking the Sanic runtime operation,
and declaring a state of global constants to be used across your application. Both
types of configuration are important, and both follow the same general principles for
applying values.

We will take a closer look at what the configuration object is, how we can access it, and
how it can be updated or changed.

What is the Sanic configuration object?
When you create a Sanic application instance, it will create a configuration object.
That object is really just a fancy dict type. As you will see, it does have some special
properties. Do not let that fool you. You should remember: it is a dict object, and you
can work with it like you would any other dict object. This will come in handy shortly
when we explore how we can use the object.

If you do not believe me, then pop the following code into your application:

app = Sanic(__name__)

assert isinstance(app.config, dict)

This means that getting a configuration value with a default is no different than any other
dict in Python, as illustrated in the following snippet:

environment = app.config.get("ENVIRONMENT", "local")

The configuration object is—however—much more important than any other dict
object. It contains a lot of settings that are critical to the operation of your application.
We have, of course, already seen in Chapter 6, Operating Outside the Response Handler,
that we can use it to modify our default error handling, as illustrated here:

app.config.FALLBACK_ERROR_FORMAT = "text"

To understand the full scope of settings that you can tweak, you should take a look at
the Sanic documentation at https://sanic.dev/en/guide/deployment/
configuration.html#builtin-values.

https://sanic.dev/en/guide/deployment/configuration.html#builtin-values
https://sanic.dev/en/guide/deployment/configuration.html#builtin-values

298 Running a Sanic Server

How can an application's configuration object be
accessed?
The best way to access the configuration object is to first get access to the application
instance. Depending upon the scenario you are tackling at the moment, there are three
main ways to get access to an application instance, as outlined here:

•	 Accessing the application instance using a request object (request.app)

•	 Accessing applications from a Blueprint instance (bp.apps)

•	 Retrieving an application instance from the application registry (Sanic.get_
app())

Perhaps the most common way to obtain the application instance (and, therefore, the
configuration object by extension) is to grab it from the request object inside of a handler,
as illustrated in the following code snippet:

@bp.route("")

async def handler(request):

 environment = request.app.config.ENVIRONMENT

If you are outside of a route handler (or middleware) where the request object is easily
accessible, then the next best choice is probably to use the application registry. Rarely
will it make sense to use the Blueprint apps property which is a set of applications that
the Blueprint has been applied to. However, because it only exists after registration and it
could be ambiguous as to which application you need, I usually will not reach for that as a
solution. It is, nonetheless, good to know that it exists.

You may have seen us using the third option already. As soon as an application is
instantiated, it is part of a global registry that can be looked up using the following code:

from sanic import Sanic

app = Sanic.get_app()

Whenever I am not in a handler, this is the solution I usually reach for. The two caveats
that you need to be aware of are these:

1.	 Make sure that the application instance has already been instantiated. Using app =
Sanic.get_app() in the global scope can be tricky if you are not careful with
your import ordering. Later on, in Chapter 11, A Complete Real-World Example,
when we build out a complete application, I will show you a trick I use to get
around this.

Configuring an application 299

2.	 If you are building a runtime with multiple application instances, then you will need
to differentiate them using the application name, as follows:

main_app = Sanic("main")

side_app = Sanic("side")

assert Sanic.get_app("main") is main_app

Once you have the object, you will usually just access the configuration value as a
property—for example, app.config.FOOBAR. As shown previously, you can also use
a variety of Python accessors, as illustrated here:

app.config.FOOBAR

app.config.get("FOOBAR")

app.config["FOOBAR"]

getattr(app.config, "FOOBAR")

How can the configuration object be set?
If you go to the Sanic documentation, you will see that there are a bunch of default values
already set. These values can be updated in a variety of methods as well. Of course, you
can use the object and dict setters, like this:

app.config.FOOBAR = 123

setattr(app.config, "FOOBAR", 123)

app.config["FOOBAR"] = 123

app.config.update({"FOOBAR": 123})

You will usually set values like this right after creating your application instance. For
example, throughout this book, I have repeatedly used curl to access endpoints that I
created. The easiest method to see an exception is to use the text-based exception renderer.
Therefore, in most cases, I have used the following pattern to make sure that when there is
an exception, it is easily formatted for display in this book:

app = Sanic(__name__)

app.config.FALLBACK_ERROR_FORMAT = "text"

300 Running a Sanic Server

This is not usually ideal for a fully built application. If you have been involved in
web application development before, then you probably do not need me to tell you
that configuration should be easily changeable depending upon your deployment
environment. Therefore, Sanic will load environment variables as configuration values if
they are prefixed with SANIC_.

This means that the preceding FALLBACK_ERROR_FORMAT value could also be set
outside of the application with an environment variable, like this:

$ export SANIC_FALLBACK_ERROR_FORMAT=text

The best method to do this will obviously depend upon your deployment strategy. We
go deeper into those strategies later in this chapter, but the specifics of how to set those
variables will differ and are outside the scope of this book.

Another option that you may be familiar with is centralizing all of your configurations
in a single location. Django does this with settings.py. While I am personally not
a fan of this pattern, you might be. You can easily duplicate it, like this:

1.	 Create a settings.py file by running the following code:

FOO = "bar"

2.	 Apply the configuration to the application instance, like this:

import settings

app.update_config(settings)

3.	 Access the values as needed, as follows:

print(app.config.FOO)

There is nothing special about the settings.py filename. You just need a module
with a whole bunch of properties that are uppercased. In fact, you could replicate
this with an object.

4.	 Put all of your constants into an object now, like this:

class MyConfig:

FOO = "bar"

5.	 Apply the configuration from that object, as follows:

app.update_config(MyConfig)

The result will be the same.

Configuring an application 301

Some general rules about configuration
I have some general rules that I like to follow regarding configuration and reproduce
these here. I encourage you to adopt them since they have evolved from years of making
mistakes, but I just as strongly encourage you to break them when necessary:

•	 Use simple values: If you have some sort of a complex object such as a datetime
object, perhaps configuration is not the best location for it. Part of the flexibility of
configuration is that it can be set in many different ways, including outside of your
application in environment variables. While Sanic will be able to convert things
such as Booleans and integers, everything else will be a string. Therefore, for the
sake of consistency and flexibility, try to avoid anything but simple value types.

•	 Treat them as constants: Yes, this is Python. That means everything is an object and
everything is subject to runtime changes. But do not do this. If you have a value that
needs to be changed during the running of your application, use app.ctx instead.
In my opinion, once before_server_start has completed, your configuration
object should be considered locked in stone.

•	 Don't hardcode values: Or, at least try really hard not to. When building out
your application, you will undoubtedly encounter the need to create some sort of
constant value. It is hard to guess a scenario that this might come up in without
knowing your specific application, but when you realize that you are about to
create a constant or some value, ask yourself whether the configuration is more
appropriate. Perhaps the most concrete example of this is the settings that you might
use to connect to a database, a vendor integration, or any other third-party service.

Configuring your application is almost certainly something that will change over
the lifetime of your application. As you build it, run it, and add new features (or fix
broken features), it is not uncommon to return to configuration often. One marker of
a professional-grade application is that it relies heavily upon this type of configuration.
This is to provide you with the flexibility to run the application in different environments.
You may, for example, have some features that are only beneficial in local development,
but not in production. It may also be the other way around. Configuration is, therefore,
almost always tightly coupled with the environment where you will be deploying your
application.

We now turn our attention to those deployment options to see how Sanic will behave
when running in development and production environments.

302 Running a Sanic Server

Running Sanic locally
We finally are at the point where it is time to run Sanic—well, locally, that is. However,
we also know we have been doing that all along since Chapter 2, Organizing a Project.
The Sanic command-line interface (CLI) is already probably a fairly comfortable
and familiar tool, but there are some things that you should know about it. Other
frameworks have only development servers. Since we know that Sanic's server is meant
for both development and production environments, we need to understand how these
environments differ.

How does running Sanic locally differ from
production?
The most common configuration change for local production is turning on debug mode.
This can be accomplished in three ways, as follows:

1.	 It could be enabled directly on the application instance. You would typically see this
inside of a factory pattern when Sanic is being run programmatically from a script
(as opposed to the CLI). You can directly set the value, as shown here:

def create_app(..., debug: bool = False) -> Sanic:

 app = Sanic(__name__)

 app.debug = debug

 ...

2.	 It is perhaps more common to see it set as an argument of app.run. A common
use case for this might be when reading environment variables to determine how
Sanic should initialize. In the following example, an environment value is read and
applied when the Sanic server begins to run:

from os import environ

from path.to.somewhere import create_app

def main():

 app = create_app()

 debug = environ.get("RUNNING_ENV", "local") !=
"production"

 app.run(..., debug=debug)

Running Sanic locally 303

3.	 The final option is to use the Sanic CLI. This is generally my preferred solution, and
if you have been following along with the book, it is the one that we have been using
all along. This method is straightforward, as shown here:

$ sanic path.to:app --debug

The reason that I prefer this final option is that I like to keep the operational aspects of the
server distinct from other configurations.

Important Note
As of v22.3, the debug argument has changed slightly. Whereas debug used to
both enable debug mode and automatic server reloading, starting in v22.3, you
will need to use the dev argument instead.

For example, timeouts are configuration values that are closely linked to the operation
of the framework and not the server itself. They impact how the framework responds to
requests. Usually, these values are going to be the same, regardless of where the application
is deployed.

Debug mode, on the other hand, is much more closely linked to the deployment
environment. You will want to set it to True locally but False in production. Therefore,
since we will be controlling how Sanic is deployed with tools such as Docker, controlling
the server's operational capacity outside of the application makes sense.

"Okay," you say, "turning on debug mode is simple, but why should I?" When you run Sanic
in debug mode, it makes a couple of important changes. The most noticeable is that you
begin to see debug logs and access logs dispatched from Sanic. This is, of course, very
helpful to see while developing.

Tip
When I sit down to work on a web application, I always have three windows in
my view at all times, comprising the following:

 - My integrated development environment (IDE)

 - An application programming interface (API) client such as Insomnia or
Postman

 - A Terminal showing me my Sanic logs (in debug mode)

The Terminal with debug level logging is your window into what is happening
with your application as you build it.

304 Running a Sanic Server

Perhaps the biggest change that debug mode brings is that any exception will include its
traceback in the response. In the next chapter, we will look at some examples of how you
can make the most of this exception information.

This is hugely important and useful while you are developing. It is also a huge security
issue to accidentally leave it on in production. DO NOT leave debug mode on in a live web
application. This includes any instance of your application that is not on a local machine.
So, for example, if you have a staging environment that is hosted somewhere on the
internet, it may not be your "production" environment. However, it still MUST NOT run
in debug mode. At best, it will leak details about how your application was built, and at
worst, it will make sensitive information available. Make sure to turn off debug mode in
production.

Speaking of production, let's move on over to what it takes to deploy Sanic into the wild
world of production environments.

Deploying to production
We have finally made it. After working your way through the application development
process, there finally is a product to launch out into the ether of the World Wide Web
(WWW). The obvious question then becomes: What are my options? There are really two
sets of questions that need to be answered, as follows:

•	 First question: Which server should run Sanic?

There are three options: Sanic server, an ASGI server, or Gunicorn.
•	 Second question: Where do you want to run the application?

Some typical choices include a bare-metal virtual machine (VM), a containerized
image, a platform-as-a-service (PaaS), or a self-hosted or fully managed
orchestrated container cluster. Perhaps these choices might make more sense if we
put some of the commonly used product names to them, as follows:

Table 8.1 – Examples of common hosting providers and tools

Deploying to production 305

Choosing the right server option
As we stated, there are three main ways to run Sanic: the built-in server, with an ASGI
compatible server, or with Gunicorn. Before we decide which server to run, we will take a
brief look at the pros and cons for each option, starting with the least performant option.

Gunicorn
If you are coming to Sanic from the Web Server Gateway Interface (WSGI) world, you
may already be familiar with Gunicorn. Indeed, you may even be surprised to learn that
Sanic can be run with Gunicorn since it is built for WSGI applications, not asynchronous
applications such as Sanic. Because of this, the biggest downside to running Sanic with
Gunicorn is the substantial decrease in performance. Gunicorn effectively unravels much
of the work done to leverage concurrency with the asyncio module. It is by far the
slowest way to run Sanic, and in most use cases is not recommended.

It still could be a good choice in certain circumstances. Particularly, if you need a
feature-rich set of configuration options and cannot use something such as Nginx,
then this might be an approach. Gunicorn has a tremendous amount of options that
can be leveraged for fine-tuning server operation. In my experience, however, I typically
see people reaching for it out of habit and not out of necessity. People will use it simply
because it is what they know. People transitioning to Sanic from the Flash/Django world
may be used to a particular deployment pattern that was centered on tools such as
Supervisor and Gunicorn. That's fine, but it is a little old-fashioned and should not be the
go-to pattern for Sanic deployments.

For those people, I urge you to look at another option. You are building with a new
framework, so why not deploy it with a new strategy as well?

If, however, you do find yourself needing some of the more fine-tuned controls offered
by Gunicorn, I would recommend you take a look at Nginx, which has an equally
(if not more) impressive set of features. Whereas Gunicorn would be set up to actually
run Sanic, the Nginx implementation would rely upon Sanic running via one of the other
two strategies and placing an Nginx proxy in front of it (more on Nginx proxying later in
this chapter). This option will allow you to retain a great deal of server control without
sacrificing performance. It does, however, require some more complexity since you need
to essentially run two servers instead of just one.

306 Running a Sanic Server

If, in the end, you still decide to use Gunicorn, then the best way to do so is to use
Uvicorn's worker shim. Uvicorn is an ASGI server, which we will learn more about in
the next section. In this context, however, it also ships with a worker class that allows
Gunicorn to integrate with it. This effectively puts Sanic into ASGI mode. Gunicorn still
runs as the web server, but it will pass traffic off to Uvicorn, which will then reach into
Sanic as if it were an ASGI application. This will retain much of the performance offered
by Sanic and asynchronous programming (although still not as performant as the Sanic
server by itself). You can accomplish this as shown next:

1.	 First, make sure both Gunicorn and Uvicorn are installed by executing the
following command:

$ pip install gunicorn uvicorn

2.	 Next, run the application like this:

$ gunicorn \

 --bind 127.0.0.1:7777 \

 --worker-class=uvicorn.workers.UvicornWorker \

 path.to:app

You should now have the full span of Gunicorn configurations at your fingertips.

ASGI server
We visited ASGI briefly in Chapter 1, Introduction to Sanic and Async Frameworks. ASGI
is a design specification for how servers and frameworks can communicate with each
other asynchronously. It was developed as a replacement methodology for the older WSGI
standard that is incompatible with modern asynchronous Python practices. This standard
has given rise to three popular ASGI web servers: Uvicorn, Hypercorn, and Daphne. All
three of them follow the ASGI protocol and can therefore run any framework that adheres
to that protocol. The goal, therefore, is to create a common language that allows one of
these ASGI servers to run any ASGI framework.

And this is where to discuss Sanic with regard to ASGI, we must have a clear distinction in
our mind of the difference between the server and the framework. Chapter 1, Introduction
to Sanic and Async Frameworks, discussed this difference in detail. As a quick refresher,
the web server is the part of the application that is responsible for connecting to the
OS's socket protocol and handling the translation of bytes into usable web requests. The
framework takes the digested web requests and provides the application developer with
the tools needed to respond and construct an appropriate HTTP response. The server
then takes that response and sends the bytes back to the OS for delivery back to the client.

Deploying to production 307

Sanic handles this whole process, and when it does so, it operates outside the ASGI since
that interface is not needed. However, it also has the ability to speak the language of an
ASGI framework and thus can be used with any ASGI web server.

One of the benefits of running Sanic as an ASGI application is that it standardizes the
runtime environment with a broader set of Python tools. There is, for example, a set of
ASGI middleware that could be implemented to add a layer of functionality between the
server and the application.

However, some of the standardization does come at the expense of performance.

Sanic server
The default mechanism is to run Sanic with its built-in web server. It should come as no
surprise that it is built with performance in mind. Therefore, what the Sanic server gives
up by forfeiting the standardization and interoperability of ASGI, it makes up for in its
ability to optimize itself as a single-purpose server.

We have touched on some of the potential downsides of using the Sanic server, one of
which was static content. No Python server will be able to match the performance of
Nginx in handling static content. If you are already using Nginx as a proxy for Sanic and
you have a known location of static assets, then it might make sense to also use it for
those assets. However, if you are not using it, then you need to determine whether the
performance difference warrants the additional operational expense. In my opinion, if
you can easily add this to your Nginx configuration: great. However, if it would take a lot
of complicated effort, or you are exposing Sanic directly, then the benefit might not be as
great as just leaving it as is and serving that content from Sanic. Sometimes, for example,
the easiest thing to do is to run your entire frontend and backend from a single server.
This is certainly a case where I would suggest learning about the competing interests and
making an appropriate decision instead of trying to make a perfect decision.

With this knowledge, you should now be able to decide which server is the right fit for
your needs. We will assume for the remainder of this book that we are still deploying with
the Sanic server, but since it is mainly a matter of changing the command-line executable,
this should not make a difference.

How to choose a deployment strategy?
The last section laid out three potential web servers to use for Sanic applications, but
that web server needs to run on a web host. But before deciding on which web-hosting
company to use, there is still a very important missing component: how are you going
to get your code from your local machine to the web host? In other words: how are you
going to deploy your application? We will now look through some options for deploying
Sanic applications.

308 Running a Sanic Server

There is some assumed knowledge, so if some of the technologies or terms here are
unfamiliar, please feel free to stop and go look them up.

VM
This is perhaps the easiest option—well, the easiest besides a PaaS. Setting up a VM
is super simple these days. With just a few clicks of a button, you can have a custom
configuration for a VM. The reason this then becomes a simple option is that you just
need to run your Sanic application the same way you might on your local machine.
This is particularly appealing when using the Sanic server since it literally means that
you can run Sanic in production with the same commands that you use locally. However,
getting your code to the VM, maintaining it once it is there, and then ultimately scaling
it will make this option the hardest. To be blunt, I almost would never recommend this
solution. It is appealing to new beginners since it looks so simple from the outside, but
looks can be deceiving.

There may in fact be times when this is an appropriate solution. If that is the case, then
what would deployment look like? Really, not that much different than running it locally.
You run the server and bind it to an address and port. With the proliferation of cloud
computing, service providers (SPs) have made it such a trivial experience to stand up a
VM. I personally find platforms such as DigitalOcean and Linode to be super user-friendly
and excellent choices. Other obvious choices include Amazon Web Services (AWS),
Google Cloud, and Microsoft Azure. In my opinion, however, they are a little less friendly
to someone new to cloud computing. Armed with their good documentation, with
DigitalOcean and Linode it is relatively inexpensive and painless to click a few buttons and
get an instance running. Once they provide you with an Internet Protocol (IP) address, it
is now your responsibility to get your code to the machine and run the application.

You might be thinking the simplest way to move your code to the server would be to
use Git. Then, all you need to do is launch the application, and you are done. But what
happens if you need more instances or redundancy? Yes—Sanic comes with the ability to
spin up multiple worker processes, but what if that is not enough? Now, you need another
VM and some way to manage load-balancing your incoming web traffic between them.
How are you going to handle redeployments of bug patches or new features? What about
changes to environment variables? These complexities could lead to a lot of sleepless
nights if you are not careful.

This is also somewhat ignoring the other fact that not all environments are equal. VMs
could be built with different dependencies, leading to wasteful time maintaining servers
and packages.

Deploying to production 309

That is not to say this cannot or should not be a solution. Indeed, it might be a great
solution if you are creating a simple service for your own use. Perhaps you need a web
server for connecting to a smart home network, but it is certainly a case of developer
beware. Running a web server on a bare-metal VM is rarely as simple as it appears at
first glance.

Containers with Docker
One solution to the previous set of problems is to use a Docker container. For those
that have used Docker, you can probably skip to the next section because you already
understand the power that it provides. If you are new to containers, then I highly
recommend you learn about them.

In brief, you write a simple manifest called a Dockerfile. That manifest describes an
intended OS and some instructions needed to build an ideal environment for running
your application. An example manifest is available in the GitHub repository here:
https://github.com/PacktPublishing/Python-Web-Development-
with-Sanic/blob/main/Chapter08/k8s/Dockerfile.

This might include installing some dependencies (including Sanic), copying source code,
and defining a command that will be used to run your application. With that in place,
Docker then builds a single image with everything needed to run the application. That
image can be uploaded to a repository and used to run irrespective of the environment.
You could, for example, opt to use this instead of managing all those separate VM
environments. It is much simpler to bundle all that together and simply run it.

There is still some complexity involved in building our new versions and deciding where
to run the image, but having consistent builds is a huge gain. This should really become a
focal point of your deployment. So, although containers are part of the solution, there is
still the problem of where to run it and the maintenance costs required to keep it running
and up to date.

I almost always would recommend using Docker as part of your deployment practices,
and if you know about Docker Compose, you might be thinking that is a great choice for
managing deployments. I would agree with you, so long as we are talking about deployments
on your local machine. Using Docker Compose for production is not something I would
usually consider. The reason is simple: horizontal scaling. Just as with the issue when
running Sanic on a VM, or a single container on a VM, running Docker Compose on a
single VM carries the same problem: horizontal scaling. The fix is orchestration.

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/blob/main/Chapter08/k8s/Dockerfile
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/blob/main/Chapter08/k8s/Dockerfile

310 Running a Sanic Server

Container orchestration with Kubernetes
The problem with containers is that they only solve environmental problems by creating
a consistent and repeatable strategy for your application—they still suffer from scalability
problems. What happens when your application needs to scale past the resources that are
available on a single machine? Container orchestrators such as Kubernetes (aka K8s) are
a dream come true for anyone that has done development-operations (DevOps) work
in the past. By creating a set of manifests, you will describe to Kubernetes what your ideal
application will look like: the number of replicas, the number of resources they need,
how traffic should be exposed, and so on. That is it! All you need to do is describe your
application with some YAML Ain't Markup Language (YAML) files. Kubernetes will
handle the rest. It has the added benefit of enabling rolling deployments where you can
roll out new code with zero downtime for your application. It sounds like a dream come
true for application deployments.

The downside, of course, is that this option is the most complex to set up. It is suitable
for more serious applications where the level of complexity is acceptable. It may, however,
be overkill for a lot of projects. This is a go-to deployment strategy for any application
that will have more than a trivial amount of traffic. Of course, the complexity and scale
of a Kubernetes cluster can expand based upon its needs. This dynamic quality is what
makes it increasingly a standard deployment strategy that has been adopted by many
industry professionals.

It is an ideal solution for platforms that consist of multiple services working together or
that require scaling beyond the boundaries of a single machine.

This does bring up an interesting question, however. We know that Sanic has the ability
to scale horizontally on a single host by replicating its workers in multiple processes.
Kubernetes is capable of scaling horizontally by spinning up replica pods. You can
think of a pod as encapsulating a container. Usually—especially to start—you will run
Kubernetes with one container per pod. Let's say you hypothetically have decided that you
need four instances of your application to handle the projected load that your application
will receive. Should you have two pods each running two workers, or four pods each with
one worker?

I have heard both put forth as ideal solutions. Some people say that you should maximize
the resources per container. Other people say that you should have no more than one
process per container. From a performance perspective, it is a dead heat. In all of my
testing and experience, the solutions effectively perform the same. Therefore, it comes
down entirely to the choice of the application builder. There is no right or wrong answer.

Later in this chapter, we will take a closer look at what it takes to launch a Sanic
application with Kubernetes.

Securing your application with TLS 311

PaaS
Heroku is probably one of the most well-known PaaS offerings. It has been around for
a while and has become an industry leader in these low-touch deployment strategies.
Heroku is not the only provider—both Google and AWS have PaaS services in their
respective cloud platforms, and DigitalOcean has also launched its own competing
service. What makes a PaaS super convenient is that all you need to do is write the code.
There is no container management, environment handling, or deployment struggles. It is
intended to be a super easy low-touch solution for deploying code. Usually, deploying an
application is as simple as pushing code to a Git repository.

This simple option is, therefore, ideal for proof-of-concept (POC) applications or other
builds you need to deploy super quickly. I also do know plenty of people that run more
robust and scalable applications through these services, and they really can be a great
alternative. The huge selling point of these services is that by outsourcing the deployment,
scaling, and service maintenance to the SP, you are freed up to focus on the application logic.

Because of this simplicity, and—ultimately—flexibility, we will take a closer look at
launching Sanic with a PaaS vendor later in this chapter in the Deployment examples
section. One of the things that are great about a PaaS is that it handles a lot of details such
as setting up a TLS certificate and enabling an https:// address for your application. In
the next section, however, we will learn what it takes to set up an https:// address for
your application in the absence of convenience from a PaaS.

Securing your application with TLS
If you are not encrypting traffic to your web application, you are doing something wrong.
In order to protect information while it is in transit between the web browser and your
application, it is an absolute necessity to add encryption. The international standard for
doing that is known as TLS, which is a protocol for how data can be encrypted between
two sources. Often, however, it will be referred to as SSL (which stands for Secure
Sockets Layer and is an earlier protocol that TLS replaces) or HTTPS (which stands for
HTTP Secure and is technically an implementation of TLS, not TLS itself). Since it is not
important for us how it works and we only care that it does what it needs to do, we will use
these terms somewhat interchangeably. Therefore, it is safe for you to think about TLS and
HTTPS as the same thing.

So, what is it? The simple answer is that you request a pair of keys from some reputable
source on the internet. Your next step is to make them available to your web server and
expose your application over a secure port—typically, that is port 443. After that, your
web server should handle the rest, and you should now be able to access your application
with an https:// address instead of http://.

312 Running a Sanic Server

Setting up TLS in Sanic
There are two common scenarios you should be familiar with—if you are exposing your
Sanic application directly, or if you are placing Sanic behind a proxy. This will determine
where you want to terminate your TLS connection. This simply means where you should
set up your public-facing certificates. We will assume for now that Sanic is exposed
directly. We will also assume that you already have certificates. If you do not know how to
obtain them, don't worry—we will get to a potential solution for you in the next section.

All we need to do is to tell the Sanic server how to access those certificates. Also, since
Sanic will default to port 8000, we need to make sure to set it to 443. With this in mind,
these are the steps we'll take:

1.	 Our new runtime command (in production) will be this:

$ sanic \

 --host=0.0.0.0 \

 --port=443 \

 --cert=/path/to/cert \

 --key=/path/to/keyfile \

 --workers=4 \

 path.to.server:app

2.	 It is largely the same operation if you are using app.run instead, as illustrated in
the following code snippet:

ssl = {"cert": "/path/to/cert", "key": "/path/to/
keyfile"}

app.run(host="0.0.0.0", port=443, ssl=ssl, workers=4)

When you are exposing your Sanic application directly and therefore terminating your
TLS with Sanic, there is often a desire to add HTTP to HTTPS redirect. For your users'
convenience, you probably want them to always be directed to HTTPS and for this
redirection to happen magically for them without having to think about it.

Securing your application with TLS 313

The Sanic user guide provides us with a simple solution that involves running a second
Sanic application inside our main application. Its only purpose will be to bind to port
80 (which is the default HTTP non-encrypted port) and redirect all traffic. Let's quickly
examine that solution and step through it, as follows:

1.	 First, in addition to our main application, we need a second that will be responsible
for the redirects. So, we will set up two applications and some configuration details,
as follows:

main_app = Sanic("MyApp")

http_app = Sanic("MyHTTPProxy")

main_app.config.SERVER_NAME = "example.com"

http_app.config.SERVER_NAME = "example.com"

2.	 We add only one endpoint to the http_app application that will be responsible for
redirecting all traffic to the main_app application, as follows:

@http_app.get("/<path:path>")

def proxy(request, path):

 url = request.app.url_for(

 "proxy",

 path=path,

 _server=main_app.config.SERVER_NAME,

 _external=True,

 _scheme="https",

)

 return response.redirect(url)

In Chapter 10, Implementing Common Use Cases with Sanic, there is a more
complete working example of how to accomplish HTTP to HTTPS redirection:
https://github.com/PacktPublishing/Python-Web-Development-
with-Sanic/tree/main/Chapter10/httpredirect

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter10/httpredirect
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter10/httpredirect

314 Running a Sanic Server

3.	 To make running the HTTP redirect application easier, we will just piggyback off of
the main application's life cycle so that there is no need to create another executable.
Therefore, when the main application starts up, it will also create and bind the
HTTP application. The code is illustrated in the following snippet:

@main_app.before_server_start

async def start(app, _):

 app.ctx.http_server = await http_app.create_server(

 port=80, return_asyncio_server=True

)

 app.ctx.http_server.app.finalize()

You should note how we are assigning that server to the ctx object for our main
application so that we can use it again.

4.	 Finally, when the main application shuts down, it will also be responsible for
shutting down the HTTP application, as illustrated in the following code snippet:

@main_app.before_server_stop

async def stop(app, _):

 await app.ctx.http_server.close()

With this in place, any request to http://example.com should be automatically
redirected to the https:// version of the same page.

Back in Step 1 and Step 2, this example sort of skipped over the fact that you need to
obtain actual certificate files to be used to encrypt your web traffic. This is largely because
you need to bring your own certificates to the table. If you are not familiar with how to do
that, the next section provides a potential solution.

Getting and renewing a certificate from Let's Encrypt
Back in the olden days of the internet, if you wanted to add HTTPS protection to your
web application, it was going to cost you. Certificates were not cheap, and they were
somewhat cumbersome and complicated to manage. Actually, certificates are still not
cheap if you are to buy one yourself, especially if you want to buy a certificate that covers
your subdomains. However, this is no longer your only option since several players came
together looking for a method to create a safer online experience. The solution: free
TLS certificates. These free (and reputable) certificates are available from Let's Encrypt
and are the reason that every production website should be encrypted. Expense is no
longer an excuse. At this point in time, if I see a website still running http:// in a live
environment, a part of me cringes as I go running for the hills.

Deployment examples 315

If you do not currently have a TLS certificate for your application, head over to
https://letsencrypt.org to get one. The process to obtain a certificate from Let's
Encrypt requires you to follow some basic steps and then prove that you own the domain.
Because there are a lot of platform specifics and it is outside the scope of this book, we
will not really dive into the details of how to obtain one. Later on, this chapter does go
through a step-by-step process to obtain a Let's Encrypt certificate for use in a Kubernetes
deployment in the Kubernetes (as-a-service) section.

I do, however, highly encourage you to use Let's Encrypt if the budget for your project
does not allow for you to go out and purchase a certificate.

With a certificate in hand, it is finally time to look at some actual code and decide which
deployment strategy is right for your project.

Deployment examples
Earlier, when discussing the various choices for deployment strategies, two options rose
above the others: PaaS and Kubernetes. When deploying Sanic into production, I would
almost always recommend one of these solutions. There is no hard and fast rule here,
but I generally think of Kubernetes as being the go-to solution for platforms that will be
running multiple services, have the need for more controlled deployment configurations,
and have more resources and a team of developers. On the other hand, a PaaS is more
appropriate for single developer projects or projects that do not have resources to devote
to maintaining a richer deployment pipeline. We will now explore what it takes to get
Sanic running in these two environments.

PaaS
As we stated before, Heroku is a well-known industry leader in deploying applications via
PaaS. This is for good reason as it has been in business providing these services since 2007
and has played a critical role in popularizing the concept. It has made the process super
simple for both new and experienced developers. However, in this section, we are going to
instead take a look at deploying a Sanic application with DigitalOcean's PaaS offering. The
steps should be nearly identical and applicable to Heroku or any of the other services that
are out there, and we look at them here:

1.	 First, you need to—of course—go to DigitalOcean's website and sign up for an
account if you do not have one. DigitalOcean's PaaS is called Apps, which you can
find on the left-hand side of the main dashboard once you are logged in.

2.	 You will next be taken through a series of steps that will ask you to connect a Git
repository.

316 Running a Sanic Server

3.	 You will next need to configure the app through their user interface (UI). Your
screen will probably look something like this:

Figure 8.1 – Example settings for PaaS setup

Deployment examples 317

A very important thing to note here is that we have set --host=0.0.0.0.
This means that we are telling Sanic that it should bind itself to any IP address
that DigitalOcean provides it. Sanic will bind itself to the 127.0.0.1 address
without this configuration. As anyone who has done web development knows, the
127.0.0.1 address maps to localhost on most computers. This means that
Sanic will be accessible only to web traffic on that specific computer. This is no
good. If you ever deploy an application and cannot access it, one of the first things
to check is that the port and host are set up properly. One of the easiest options is to
just use 0.0.0.0, which is the equivalent of a wildcard IP address.

4.	 Next, you will be asked to select a location for which data center it will live in.
Usually, you want to pick one that will be close to where your intended audience
will be to reduce latency.

5.	 You will then need to select an appropriate package. If you do not know what to
choose, start small and then scale it up as needed.

6.	 The only thing left to do is to set up the files in our repository. There is a sample
in GitHub for you to follow, at https://github.com/PacktPublishing/
Python-Web-Development-with-Sanic/tree/main/Chapter08/paas.

7.	 Finally, we need a requirements.txt file that lists out our dependencies: Sanic
and a server.py file, just as with every other build we have done so far.

Once that is done, every time you push to the repository, your application should be
rebuilt and available to you. One of the nice benefits of this is that you will get a TLS
certificate with HTTPS out of the box. No configuration is needed.

Seems simple enough? Let's look at a more complex setup with Kubernetes.

Kubernetes (as-a-service)
We are going to turn our attention to Kubernetes: one of the most widely adopted and
utilized platforms for orchestrating the deployment of containers. You could, of course,
spin up some VMs, install Kubernetes on them, and manage your own cluster. However,
I find a much more worthwhile solution is to just take one of the Kubernetes-as-a-service
solutions. You still have all of the power of Kubernetes but none of the maintenance
headaches. Most of the major cloud providers offer Kubernetes as a service, so you should
be able to use your provider of choice.

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter08/paas
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter08/paas

318 Running a Sanic Server

We will again look at DigitalOcean and use their Kubernetes platform for our example.
Here are the steps:

1.	 In our local directory, we will need a few files, as follows:

	� Dockerfile to describe our Docker container

	� app.yml, a Kubernetes config file described next

	� ingress.yml, a Kubernetes config file described next

	� load-balancer.yml, a Kubernetes config file described next

	� server.py, which is again a Sanic application

You can follow along with the files in the GitHub repository at https://github.
com/PacktPublishing/Python-Web-Development-with-Sanic/
tree/main/Chapter08/k8s.

2.	 Our Dockerfile is the set of instructions to build our container. We will take a
shortcut and use one of the Sanic community's base images that has both Python
and Sanic pre-installed, as follows:

FROM sanicframework/sanic:3.9-latest

COPY . /srv

WORKDIR /srv

EXPOSE 7777

ENTRYPOINT ["sanic", "server:app", "--port=7777",
"--host=0.0.0.0"]

Just as we saw with the PaaS solution, we are binding to host 0.0.0.0 for the
same reason. We are not adding multiple workers per container here. Again, this is
something you could do if you prefer.

3.	 Next, we will need to build an image, as follows:

$ docker build -t admhpkns/my-sanic-example-app.

4.	 Let's try running it locally to make sure it works. Here's the command to do this:

$ docker run -p 7000:7777 --name=myapp admhpkns/my-sanic-
example-app

Once it is running, you should be able to access the API at http://
localhost:7000.

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter08/k8s
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter08/k8s
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter08/k8s

Deployment examples 319

5.	 Don't forget to clean up your environment, and remove the container when you are
done, like this:

$ docker rm myapp

6.	 And you will, of course, need to push your container to some accessible repository.
For ease of use and demonstration purposes, I will be pushing it to my public
Docker Hub repository, like this:

$ docker push admhpkns/my-sanic-example-app:latest

If you are not familiar with Docker repositories, they are cloud-hosted locations for
storing container images. Docker Hub is a great resource that provides a free tier.
Other popular locations include GitLab, Google, and AWS.

7.	 For this next part, we will interact with DigitalOcean through their CLI tool. If
you do not have it installed, head to https://docs.digitalocean.com/
reference/doctl/how-to/install/. You will want to make sure you log in
by running the following command:

$ doctl auth init

8.	 We next need a DigitalOcean Kubernetes cluster. Log in to their web portal, click
on Kubernetes on the main dashboard, and set up a cluster. For now, the default
settings are fine.

9.	 We next need to enable kubectl (the tool to interact with Kubernetes) to be able
to talk to our DigitalOcean Kubernetes cluster. If kubectl is not installed, check
out the instructions here: https://kubernetes.io/docs/reference/
kubectl/overview/. The command you need will look something like this:

$ doctl kubernetes cluster kubeconfig save afb87d0b-9bbb-
43c6-a711-638bc4930f7a

Once your cluster is available and kubectl is set up, you can verify it is running by
checking the following:

$ kubectl get pods

Since we have not set up any pods yet, there should not be anything to see.
10.	 When configuring Kubernetes, we need to start by running kubectl apply on

our app.yml file.

https://docs.digitalocean.com/reference/doctl/how-to/install/
https://docs.digitalocean.com/reference/doctl/how-to/install/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/

320 Running a Sanic Server

Tip
Before going any further, you will see a lot of online tutorials that use this style
of command:

$ kubectl create ...

I generally try to avoid that in favor of this:

$ kubectl apply ...

They essentially do the same thing, but the convenience is that Kubernetes
resources that are created with apply can be continually modified by
"applying" the same manifest over and over again.

What is in app.yml? Check out the GitHub repository for the full versions. It
is rather lengthy and includes some boilerplate that is not relevant to the current
discussion, so I will show only relevant snippets here. This goes for all of the
Kubernetes manifests in our example.

The file should contain the Kubernetes primitives needed to run the application:
a service and a deployment. A service is a stability layer on top of pods. Because
Kubernetes pods can be easily created and destroyed, services exist to have
a consistent internal IP address to point to those pods. A deployment is an
abstraction that defines how pods are to be created, which containers should they
contain, how many there should be, and so on.

The service should look something like this:
spec:

 ports:

 - port: 80

 targetPort: 7777

 selector:

 app: ch08-k8s-app

Notice how we are mapping port 7777 to 80. This is because we will be terminating
TLS in front of Sanic, and our ingress controller will talk to Sanic over HTTP
unencrypted. Because it is all in a single cluster, this is acceptable. Your needs might
be more sensitive, and then you should look into encrypting that connection as well.

The other thing in app.yml is the deployment, which should look something
like this:

spec:

 selector:

 matchLabels:

Deployment examples 321

 app: ch08-k8s-app

 replicas: 4

 template:

 metadata:

 labels:

 app: ch08-k8s-app

 spec:

 containers:

 - name: ch08-k8s-app

 image: admhpkns/my-sanic-example-app:latest

 ports:

 - containerPort: 7777

Here, we are defining the number of replicas we want, as well as pointing the
container to our Docker image repository.

11.	 After creating that file, we will apply it, and you should see a result similar to this:

$ kubectl apply -f app.yml

service/ch08-k8s-app created

deployment.apps/ch08-k8s-app created

You can now check out to see that it worked, as follows:
$ kubectl get pods

$ kubectl get svc

12.	 We will next use an off-the-shelf solution to create an Nginx ingress. This will be the
proxy layer that terminates our TLS and feeds HTTP requests into Sanic. We will
install it as follows:

$ kubectl apply -f https://raw.githubusercontent.com/
kubernetes/ingress-nginx/controller-v1.0.0/deploy/static/
provider/do/deploy.yaml

Note, at the time of writing, v1.0.0 is the latest. That probably won't be true by
the time you are reading this, so you may need to change that. You can find the
latest version on their GitHub page at https://github.com/kubernetes/
ingress-nginx.

https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-nginx

322 Running a Sanic Server

13.	 Next, we will set up our ingress. Create an ingress.yml file following the pattern
in our GitHub repository example, like this:

$ kubectl apply -f ingress.yml

You will notice there are intentionally some lines commented out. We will get to
that in a minute. Let's just quickly verify that it worked by executing the following
command:

$ kubectl get pods -n ingress-nginx

14.	 We should take a step back and jump over to the DigitalOcean dashboard. On the
left is a tab called Networking. Go there, and then in the tab for Domains, follow
the procedure to add your own domain there. In that example, in ingress.yml
we added example.com as the ingress domain. Whichever domain you add to
DigitalOcean's portal should match your ingress. If you need to go back and update
and re-apply the ingress.yml file with your domain, do that now.

15.	 Once that is all configured, we should be able to see our application working, as in
the following example:

$ curl http://example.com

Hello from 141.226.169.179

This is, of course, not ideal because it is still on http://. We will now get a Let's
Encrypt certificate and set up TLS.

16.	 The easiest method for this is to set up a tool called cert-manager. It will do all
of the interfacing we need with Let's Encrypt. Start by installing it, as follows:

$ kubectl apply --validate=false -f https://github.com/
jetstack/cert-manager/releases/download/v1.5.3/cert-
manager.yaml

Again, please check to see what the most up-to-date version is and update this
command accordingly.

We can verify its installation here:
$ kubectl get pods --namespace cert-manager

17.	 Next, create a load-balancer.yml file following the example in the GitHub
repository. It should look something like this:

apiVersion: v1

kind: Service

metadata:

Deployment examples 323

 annotations:

 service.beta.kubernetes.io/do-loadbalancer-hostname:
example.com

 name: ingress-nginx-controller

 namespace: ingress-nginx

spec:

 type: LoadBalancer

 externalTrafficPolicy: Local

 ports:

 - name: http

 port: 80

 protocol: TCP

 targetPort: http

 - name: https

 port: 443

 protocol: TCP

 targetPort: https

 selector:

 app.kubernetes.io/name: ingress-nginx

 app.kubernetes.io/instance: ingress-nginx

 app.kubernetes.io/component: controller

18.	 Apply that manifest and confirm that it worked, as follows:

$ kubectl apply -f load-balancer.yml

service/ingress-nginx-controller configured

19.	 Your Kubernetes cluster will now start the process of obtaining a certificate.

Tip
One thing that you might encounter is that the process gets stuck while
requesting the certificate. If this happens to you, the solution is to turn on
Proxy Protocol in your DigitalOcean dashboard. Go to the following setting
and turn this on if you need to:

Networking > Load Balancer > Manage Settings > Proxy Protocol > Enabled

324 Running a Sanic Server

20.	 We're almost there! Open up that ingress.yml file and uncomment those few
lines that were previously commented out. Then, apply the file, as follows:

$ kubectl apply -f ingress.yml

Done! You should now automatically have a redirect from http:// to https://, and
your application is fully protected.

Better yet, you now have a deployable Sanic application with all the benefits, flexibility,
and scalability that Kubernetes container orchestration provides.

Summary
Building a great Sanic application is only half of the job. Deploying it to make our
application usable out in the wild is the other half. In this chapter, we explored some
important concepts for you to consider. It is never too early to think about deployment
either. The sooner you know which server you will use and where you will host your
application, the sooner you can plan accordingly.

There are of course many combinations of deployment options, and I only provided you
with a small sample. As always, you will need to learn what works for your project and
team. Take what you have learned here and adapt it.

However, if you were to ask me to boil all of this information down and ask for my
personal advice on how to deploy Sanic, I would tell you this:

•	 Run your applications using the built-in Sanic server.

•	 Terminate TLS outside of your application.

•	 For personal or smaller projects, or if you want a simpler deployment option, use a
PaaS provider.

•	 For larger projects that need to scale and have more developer resources, use a
hosted Kubernetes solution.

There you have it. You should now be able to build a Sanic application and run it on the
internet. Our work is done, right? You should have the skills and knowledge you need now
to go out and build something great, so go ahead and do that now. In the remainder of
this book, we will start to look at some more practical issues that arise while building web
applications and look at some best-practice strategies for how to solve them.

Part 3:
Putting It

All together

After spending time looking at specific issues individually, we start to look at how
some issues relate to one another. This part will include a lot more examples and code
snippets. A lot of the code will only be available online, so you will be highly encouraged
to also flip through the source code repository on GitHub: https://github.com/
PacktPublishing/Python-Web-Development-with-Sanic. The goal is once
again to provide you with knowledge, not snippets.

This Part contains the following chapters:

•	 Chapter 9, Best Practices to Improve Your Web Applications

•	 Chapter 10, Implementing Common Use Cases with Sanic

•	 Chapter 11, A Complete Real-World Example

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic

9
Best Practices

to Improve Your
Web Applications

From Chapter 1, Introduction to Sanic and Async Frameworks, through Chapter 8, Running
a Sanic Server, we learned how to build a web application from conception through
deployment. Pat yourself on the back and give yourself a round of applause. Building and
deploying a web application is not a simple feat. So, what have we learned? We, of course,
spent time learning about all of the fundamental tools that Sanic provides: route handlers,
blueprints, middleware, signals, listeners, decorators, exception handlers, and so on. More
importantly, however, we spent some time thinking about how HTTP works and how we
can use these tools to design and build applications that are secure, scalable, maintainable,
and easily deployable.

There have been a lot of specific patterns in this book for you to use, but also, quite
intentionally, I have left a lot of ambiguity. You have continually read statements such as it
depends upon your application's needs. After all, one of the goals of the Sanic project is to
remain unopinionated.

328 Best Practices to Improve Your Web Applications

That's all well and good, and flexibility is great. But what if you are a developer that has
not yet determined what patterns work and which do not? The difference between writing
a Hello, world application and a production-ready, real-world application is huge. If you
only have limited experience in writing applications, then you also only have had limited
experience in making mistakes. It is through those mistakes (whether made by yourself or
from lessons learned by others who have made them) that I truly believe we become better
developers. Like so many other things in life, failure leads to success.

The purpose of this chapter, therefore, is to include several examples and preferences that
I have learned from my 25+ years of building web applications. That means for every best
practice you will learn in this chapter, there is probably some mistake that I made to go
along with it. These are a set of base-level best practices that I think are critical for any
professional-grade application to include from the beginning.

In this chapter, we are going to look at the following:

•	 Implementing practical real-world exception handlers

•	 Setting up a testable application

•	 Gaining insight from logging and tracing

•	 Managing database connections

Technical requirements
There are no new technical requirements that you have not already seen. By this point,
you should hopefully have a nice environment available for building Sanic, along with all
the tools, such as Docker, Git, Kubernetes, and cURL, that we have been using all along.
You can follow along with the code examples on the GitHub repository: https://
github.com/PacktPublishing/Python-Web-Development-with-Sanic/
tree/main/Chapter09.

Implementing practical real-world exception
handlers
Exception handling is not a new concept at this point. We explored the topic in the
Implementing proper exception handling section in Chapter 6, Operating Outside the
Response Handler. I emphasized the importance of creating our own set of exceptions that
include default status messages and response codes. This useful pattern was meant to get
you up and running very quickly to be able to send useful messages to your users.

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09

Implementing practical real-world exception handlers 329

For example, imagine we are building an application for travel agents to book airline
tickets for customers. You can imagine one of the steps of the operation might be to assist
in matching flights through connecting airports.

Well, what if the customer selected two flights where the time between the flights was too
short? You might do something like this:

from sanic.exceptions import SanicException

class InsufficientConnection(SanicException):

 status_code = 400

 message = "Selected flights do not leave enough time for
connection to be made."

I love this pattern because it makes it super easy for us to now repeatably raise an
InsufficientConnection exception and have a known response for the user. But
responding properly to the user is only half of the battle. When something goes wrong in
our applications in the real world, we want to know about it. Our applications need to be
able to report back so that if there is indeed a problem, then we can fix it.

So, how do we go about solving this problem? Logging is, of course, essential (we will
look at that in the Gaining insight from logging and tracing section later). Having a reliable
way to get to your system logs is an absolute must for a lot of reasons. But do you want to
monitor your logs all day long, every day, looking for a traceback? Of course not!

Somehow, in some way, you need to set up some alerts to notify you that an exception
happened. Creating proper notifications is an important part of maintaining a web
application since they tell you when something is not operating as you intended. However,
receiving a notification on every issue may become very noisy and overwhelming. In some
applications, you easily become lost and stop paying attention to notifications if there are
too many, or if they are difficult to consume. Luckily, not all exceptions are created equal,
and only sometimes will you actually want to be notified. Some errors are fine to just
display to the user and to remain ignorant of their existence. If a customer forgets to input
valid data, you do not need your mobile phone waking you up at 3 a.m. while you are on
call. While setting up system monitoring and alerting tools is outside the scope of this
book, the point that I am trying to make is that your application should be proactive about
warning you when certain things happen and ignoring the issues that you do not care
about. Sometimes bad things will happen, and you want to make sure that you are able to
sift through the noise and not miss out on the issues that really matter. A simple form of
this might be to send an email when something particularly bad happens.

330 Best Practices to Improve Your Web Applications

Knowing what you do about Sanic so far, if I came to you and asked you to build a system
that sent me an email whenever PinkElephantError is raised, how would you do it?

I hope this is not your answer:

if there_is_a_pink_elephant():

 await send_adam_an_email()

 raise PinkElephantError

"Why?" you might ask. For starters, what if this needs to be implemented in a few
locations, and then we need to change the notification from send_adam_an_email()
to build_a_fire_and_send_a_smoke_signal()? You now need to go searching
through all of your code to make sure it is done consistently and hope you did not miss
anything.

What else could you do? How can you simply write the following code in your application
and have it know that it needs to send me an email?

if there_is_a_pink_elephant():

 raise PinkElephantError

Let's learn that next.

Catching errors with middleware
Adding the notification mechanism right next to where we raise the exception, as in
the preceding example, would work, but is not the best solution. The goal is to run
send_adam_an_email() at the same time that we raise PinkElephantError. One
solution would be to catch the exception with response middleware and send out the
alert from there. The problem with this is that the response is not likely to have an easily
parseable exception. If PinkElephantError raises a 400 response, how would you
be able to distinguish it from any other 400 response? You could, of course, have JSON
formatting and check the exception type, or try and read the exception message. But that
will only work in DEBUG mode because in PRODUCTION mode, you may not have that
information available.

One creative solution I have seen is to attach an arbitrary exception code and rewrite it in
the middleware as follows:

class PinkElephantError(SanicException):

 status_code = 4000

 message = "There is a pink elephant in the room"

Implementing practical real-world exception handlers 331

@app.on_response

async def exception_middleware(request: Request, response:
HTTPResponse):

 if response.status == 4000:

 response.status = 400

 await send_adam_an_email()

This solution will likely become very tedious to maintain and it is not at all obvious to
anyone (including your future self) what is happening. It reminds me of the old-school
style of error coding. I am talking about those errors where you need a lookup table to
translate a number to an error description, which undoubtedly will be incomprehensible
because of a lack of standardization or documentation. Just thinking about seeing E19
on my coffee machine as I race around to find the owner's manual to look up what
that means is enough to raise my stress levels. What I am trying to say is: Save yourself
the hassle and try to find a nicer solution for identifying exceptions than attaching some
otherwise hard-to-understand error codes that you later need to translate. We need a
better solution.

Catching errors with signals
Remember our old friend signals from way back in the Leveraging signals for intra-worker
communication section in Chapter 6, Operating Outside the Response Handler? If you
recall, Sanic can dispatch event signals when certain things occur. One of them is when
an exception is raised. Better yet, the signal context includes the exception instance,
making it much easier to identify which exception occurred.

A cleaner and more maintainable solution to the aforementioned code would look
like this:

@app.signal("http.lifecycle.exception")

async def exception_signal(request: Request, exception:
Exception):

 if isinstance(exception, PinkElephantError):

 await send_adam_an_email()

I think you can already see this is a much classier and fitting solution. For a lot of
use cases, this might very well be the best solution for you. Therefore, I suggest you
commit this simple four-line pattern to memory. Now, when we need to change
send_adam_an_email() to build_a_fire_and_send_a_smoke_signal(),
that will be a super-simple change to our code.

332 Best Practices to Improve Your Web Applications

Long-time builders of Sanic applications may be looking at this example and wondering
whether we can just use app.exception. This is certainly an acceptable pattern, but not
without its potential pitfalls. Let's look at that next.

Catching the error and responding manually
When an exception is raised, Sanic stops the regular route handling process and moves
it over to an ErrorHandler instance. This is a single object that exists throughout the
lifespan of your application instance. Its purpose is to act as a sort of mini-router to take
incoming exceptions and make sure they are passed off to the proper exception handler.
If there is none, then it uses the default exception handler. As we have seen already, the
default handler is what we can modify by using the error_format argument.

Here is a quick example of what an exception handler looks like in Sanic:

@app.exception(PinkElephantError)

async def handle_pink_elephants(request: Request, exception:
Exception):

 ...

The problem with this pattern is that because you took over the actual handling of the
exception, it is now your job to respond appropriately. If you build an application with
10, 20, or even more of these exception handlers, keeping their responses consistent
becomes a chore.

It is for this reason that I genuinely try to avoid custom exception handling unless I need
to. In my experience, I get much better results by controlling formatting, as discussed in
the Fallback handling section in Chapter 6, Operating Outside the Response Handler. I try
to avoid one-off response customizations that only target a single use case. While building
an application, we likely need to build error handlers for many types of exceptions and not
just PinkElephantError. Therefore, I tend to disfavor using exception handlers when
I need to do something with the error—such as sending an email—and not just deal with
how it is an output for the user.

Okay, okay, I give in. I will let you in on a secret: you can still use the app.exception
pattern to intercept the error and still use the built-in error formatting. You can even
still trigger some action with it—such as sending an email, lighting a smoke signal, or
triggering your coffee machine—so you can get to work fixing the bug. If you like the
exception handler pattern better than the signal, then it is possible to use it without my
concern of formatting too many custom error responses.

Implementing practical real-world exception handlers 333

Let's see how we can take an action with the error handler and still retain a consistent
error formatting experience:

1.	 First, let's make a simple endpoint to throw our error and report back in text format:

class PinkElephantError(SanicException):

 status_code = 400

 message = "There is a pink elephant in the room"

 quiet = True

@app.get("/", error_format="text")

async def handler(request: Request):

 raise PinkElephantError

I have added quiet = True to the exception because that will suppress the
traceback from being logged. This is a helpful technique when the traceback is not
important to you and it just gets in the way.

2.	 Next, create an exception handler to send the email, but still use the default error
response:

async def send_adam_an_email():

 print("EMAIL ADAM")

@app.exception(PinkElephantError)

async def handle_pink_elephants(request: Request,
exception: Exception):

 await send_adam_an_email()

 return request.app.error_handler.default(request,
exception)

We can access the default ErrorHandler instance using our application instance,
as shown in the preceding code.

I would like you to hit that endpoint using curl so you can see that this works as
expected. You should get the default text response and see that a mock email was sent to
me as faked in the logs.

As you can also see, we are using the error_handler object that exists
application-wide. In our next section, we will look at modifying that object.

334 Best Practices to Improve Your Web Applications

Modifying ErrorHandler
When Sanic starts up, one of the first things that it does is create an ErrorHandler
instance. We saw in the previous example that we can access it from the application
instance. Its purpose is to make sure that when you define an exception handler, the
request is responded to from the proper location.

One of the other benefits of this object is that it is easily customizable and is triggered
on every single exception. Therefore, in the days before Sanic introduced signals, it
was the easiest way to get some arbitrary code to run on every exception, such as our
error-reporting utility.

Modifying the default ErrorHandler instance might have looked something like this:

1.	 Create ErrorHandler and inject the reporting code:

from sanic.handlers import ErrorHandler

class CustomErrorHandler(ErrorHandler):

 def default(self, request: Request, exception:
Exception):

 ...

2.	 Instantiate your application using your new handler:

from sanic import Sanic

app = Sanic(..., error_handler=CustomErrorHandler())

That's it. Personally, I would almost always go for the signals solution when dealing with
alerting or other error reporting. Signals have the benefit of being a much more succinct
and targeted solution. It does not require me to subclass or monkey patch any objects.
However, it is helpful to know how to create a custom ErrorHandler instance, as we
have just seen, as you will see it out there in the wild.

For example, you will see them in third-party error-reporting services. These services
are platforms that you can subscribe to that will aggregate and track exceptions in your
application. They can be incredibly helpful in identifying and debugging problems in
production applications. Usually, they work by hooking into your normal exception
handling process. Since overriding ErrorHandler used to be the best method for
low-level access to all exceptions in Sanic, many of these providers will provide sample
code or libraries that implement this strategy.

Setting up a testable application 335

Whether you use a custom ErrorHandler or signals is still a matter of personal taste.
The biggest benefit, however, of signals is that they are run in a separate asyncio task.
This means that Sanic will efficiently manage the concurrent response to the user with the
reporting (provided you do not introduce other blocking code).

Does this mean that subclassing ErrorHandler is not a worthwhile effort? Of course
not. In fact, if you are unhappy with the default error formats that Sanic uses, I would
recommend that you change it using the previous example with CustomErrorHandler.

With this in mind, you now have the ability to format all of your errors as needed. An
alternative strategy to this would be to manage this with exception handlers like in the
app.exception pattern. The problem with that method is that you potentially lose out
on Sanic's built-in auto-formatting logic. As a reminder, one of the great benefits of the
default ErrorHandler is that it will attempt to respond with an appropriate format,
such as HTML, JSON, or plain text, depending upon the circumstances.

Exception handling is an incredibly important component of any professional-grade web
application. Make sure to put some thought into your application needs when designing
a strategy. You very well may find that you need a mixture of signals, exception handlers,
and a custom ErrorHandler.

We'll now turn our attention to another important aspect of professional-grade
application development that may also not be exciting for some people to build: testing.

Setting up a testable application
Imagine this scenario: inspiration strikes you and you have a great application idea. Your
excitement and creative juices are flowing as you start formulating ideas in your head
about what to build. Of course, you do not rush straight into building it because you
have read all the earlier chapters in this book. You take some time to plan it out, and in a
caffeine-induced marathon, you start hacking away. Slowly, you start to see the application
take shape and it is working beautifully. Hours go by, maybe it's days or weeks—you are
not sure because you are in the zone. Finally, after all that work, you have a minimum
viable product (MVP). You deploy it and go for some much-deserved sleep.

The problem is that you never set up testing. Undoubtedly, when you now come online
and check out the error-handling system that you set up with advice from the previous
section, you notice that it is swamped with errors. Uh oh! Users are doing things in your
application that you did not anticipate. Data is not behaving as you thought it might. Your
application is broken.

336 Best Practices to Improve Your Web Applications

I would venture to guess that most people that have developed a web application or
done any software development can relate to this story. We have all been there before.
For many newcomers and experienced developers alike, testing is not fun. Maybe
you are one of those rare breeds of engineers that completely love setting up a testing
environment. If so, with all honesty, I tip my hat to you. For the rest of us, suffice it to
say that if you want to build a professional application, you need to find the patience in
you to develop a test suite.

Testing is a huge field, and I will not cover it here. There are plenty of testing strategies
out there, including the often-celebrated test-driven design (TDD). If you know what
this is and it works for you, great! If not, I will not judge you. If you are unfamiliar with it,
I do suggest that you take some time and do some internet research on the topic. TDD is
a fundamental part of many professional development workflows and many companies
have adopted it.

Similarly, there are a lot of testing terms, such as unit testing and integration testing.
We will use my simplified definitions of these terms: unit testing is when you test a
single component or endpoint and integration testing is when you test the component or
endpoint interacting with another system (such as a database).

What we care about in this book is how you can test your Sanic application in both unit
and integration tests. Therefore, while I hope the general idea and approaches here are
useful, to truly have a well-tested application, you will need to go beyond the pages of
this book.

The last ground rule that we need to get out of the way is that the tests here will all assume
that you are using pytest. It is one of the most widely used testing frameworks with
many plugins and resources.

Getting started with sanic-testing
The Sanic Community Organization (the community of developers that maintain the
project) also maintains a testing library for Sanic. Although its primary utility is by the
Sanic project itself to achieve a high level of test coverage, it nonetheless has found a
home and use case for developers working with Sanic. We will use it extensively because it
provides a convenient interface for interacting with Sanic.

To start, we will need to install it in your virtual environment. While we are at it, we will
install pytest too:

$ pip install sanic-testing pytest

So, what does sanic-testing do? It provides an HTTP client that you can use to reach
your endpoints.

Setting up a testable application 337

A typical barebones implementation would look like this:

1.	 First, you will have your application defined in some module or factory. For now,
it will be a global-scoped variable, but later in the chapter, in the Testing a full
application section, we will start working with factory pattern applications where
the application instance is defined inside of a function:

server.py

from sanic import Sanic

app = Sanic(__name__)

@app.get("/")

async def handler(request: Request):

 return text("...")

2.	 Then, in your testing environment, you initialize a test client. Since we are using
pytest, let's set that up in a conftest.py file as a fixture so we can easily
access it:

conftest.py

import pytest

from sanic_testing.testing import SanicTestClient

from server import app

@pytest.fixture

def test_client():

 return SanicTestClient(app)

3.	 You will now have access to the HTTP client in your unit tests:

test_sample.py

def test_sample(test_client):

 request, response = test_client.get("/")

 assert response.status == 200

338 Best Practices to Improve Your Web Applications

4.	 Running your tests now is a matter of executing the pytest command. It should
look something like this:

$ pytest

================= test session starts =================

platform linux -- Python 3.9.7, pytest-6.2.5, py-1.11.0,
pluggy-1.0.0

rootdir: /path/to/testing0

plugins: anyio-3.3.4

collected 1 item

test_sample.py . [100%]

================= 1 passed in 0.09s ===================

So, what just happened here? What happened is that the test client took your application
instance and actually ran it locally on your operating system. It initiated the Sanic server,
binding it to a host and port address on your operating system, and ran whatever event
listeners were attached to your application. Then, once the server was running, it used
httpx as an interface to send an actual HTTP request to the server. It then bundled up
both the Request and HTTPResponse objects and provided them as the return value.

The code for this example can be found in the GitHub repository: https://github.
com/PacktPublishing/Python-Web-Development-with-Sanic/tree/
main/Chapter09/testing0.

This is something that I cannot stress enough. Just about every time that someone has
come to me with a question about or problem using sanic-testing, it is because the
person failed to understand that the test client is actually running your application. This
happens on every single call.

For example, consider the following:

request, response = test_client.get("/foo")

request, response = test_client.post("/bar")

When you run this, it will first start up the application and send a GET request to /foo.
The server then goes through the full shutdown. Next, it stands up the application again
and sends a POST request to /bar.

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/testing0
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/testing0
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/testing0

Setting up a testable application 339

For most test cases, this starting and stopping of the server is preferred. It will make sure
that your application runs in a clean environment every time. It happens very quickly,
and you can still whip through a bunch of unit tests without feeling this as a performance
penalty.

There are some other options that we will explore later in the following sections.

A more practical test client implementation
Now that you have seen how the test client works, I am going to let you in on a little secret:
you do not actually need to instantiate the test client. In fact, other than the previous
example, I have never used sanic-testing like this in a real application.

The Sanic application instance has a built-in property that can set up the test client for you
if sanic-testing has been installed. Since we already installed the package, we can just
go ahead and start using it. All that you need is access to your application instance.

Setting up an application fixture
Before going further, we will revisit the pytest fixtures. If you are unfamiliar with them,
they might seem somewhat magical to you. In brief, they are a pattern in pytest to
declare a function that will return a value. That value can then be used to inject an object
into your individual tests.

So, for example, in our last use case, we defined a fixture in a special file called
conftest.py. Any fixtures that are defined there will be available anywhere in your
testing environment. That is why we were able to inject test_client as an argument in
our test case.

I find it almost always beneficial to do this with the application instance. Whether you are
using a globally defined instance or a factory pattern, you will make testing much easier
with fixtures.

Therefore, I will always do something like this in my conftest.py:

import pytest

from server import app as application_instance

@pytest.fixture

def app():

 return application_instance

340 Best Practices to Improve Your Web Applications

I now have access to my application instance everywhere in the test environment without
importing it:

def test_sample(app):

 ...

Tip
There is one more quick trick you should know about fixtures. You can use the
yield syntax here to help you inject code before and after your test. This is
particularly helpful with an application if you need to do any sort of cleanup
after the test runs. To achieve this, do the following:

@pytest.fixture

def app():

 print("Running before the test")

 yield application_instance

 print("Running after the test")

With access to our app instance using fixtures, we can now rewrite the previous unit test
like this:

def test_sample(app: Sanic):

 request, response = app.test_client.get("/")

 assert response.status == 200

To make our lives a little simpler, I added the type annotation for the fixture so that my
integrated development environment (IDE) knows that it is a Sanic instance. Even
though the main purpose of type hinting is to catch mistakes early, I also like to use it in
cases like this to just make my IDE experience nicer.

This example shows that access to the test client is simply a matter of using the
app.test_client property. By doing that, Sanic will automatically instantiate
the client for you as long as the package is installed. This makes it super simple to write
unit tests like this.

Setting up a testable application 341

Testing blueprints
Sometimes, you may run across a scenario where you want to test some
functionality that exists on a blueprint alone. In this case, we are assuming that
any application-wide middleware or listeners that run before the blueprint are not
relevant to our test. This means that we are testing some functionality that is entirely
contained within the boundaries of the Blueprint.

I love situations like this and actively seek them out. The reason is that they are super
easy to test, as we will see in a minute. These types of testing patterns are probably best
understood as they contrast to what we will do in the Testing a full application section.
The main difference is that in these tests, our endpoints do not rely upon the existence of
a third-party system, such as a database. Perhaps more accurately, I should say that they
do not rely upon the impacts that a third-party system might have. The functionality and
business logic are self-contained, and therefore very conducive to unit testing.

When I find a situation like this, the first thing that I do is add a new fixture to my
conftest.py file. It will act as a dummy application that I can use for testing. Each
unit test I create can use this dummy application with my target blueprint attached and
nothing else. This allows my unit test to be more narrowly focused on my single example.
Let's see how that looks next:

1.	 Here, we will create a new fixture that creates a new application instance:

conftest.py

import pytest

from sanic import Sanic

@pytest.fixture

def dummy_app():

 return Sanic("DummyApp")

2.	 We can now stub out a test in our blueprint tests:

test_some_blueprint.py

import pytest

from path.to.some_blueprint import bp

@pytest.fixture

def app_with_bp(dummy_app):

 dummy_app.blueprint(bp)

 return dummy_app

342 Best Practices to Improve Your Web Applications

def test_some_blueprint_foobar(app_with_bp):

 ...

In this example, we see that I created a fixture that is localized to this one module. The
point of this is to create a reusable application instance that has my target blueprint
attached to it.

A simple use case for this kind of testing might be input validation. Let's add a blueprint
that does some input validation. The blueprint will have a simple POST handler that looks
at the incoming JSON body and just checks that the key exists and the type matches the
expectation:

1.	 First, we will create a schema that will be the keys and the value type that we expect
our endpoint to be able to test:

from typing import NamedTuple

class ExpectedTypes(NamedTuple):

 a_string: str

 an_int: int

2.	 Second, we will make a simple type checker that responds with one of three values
depending upon whether the value exists, and is of the expected type:

def _check(

 exists: bool,

 value: Any,

 expected: Type[object],

) -> str:

 if not exists:

 return "missing"

 return "OK" if type(value) is expected else "WRONG"

3.	 Finally, we will create our endpoint that will take the request JSON and respond
with a dictionary about whether the passed data was valid:

from sanic import Blueprint, Request, json

bp = Blueprint("Something", url_prefix="/some")

Setting up a testable application 343

@bp.post("/validation")

async def check_types(request: Request):

 valid = {

 field_name: _check(

 field_name in request.json,

 request.json.get(field_name), field_type

)

 for field_name, field_type in

 ExpectedTypes.__annotations__.items()

 }

 expected_length = len(ExpectedTypes.__annotations__)

 status = (

 200

 if all(value == "OK" for value in valid.values())

 and len(request.json) == expected_length

 else 400

)

 return json(valid, status=status)

As you can see, we have now created a very simplistic data checker. We loop
over the definitions in the schema and check each to see whether it is as expected.
All of the values should be "OK" and the request data should be the same length as
the schema.

We can now test this out in our test suite. The first thing that we could test is to make sure
that all the required fields are present. There are three potential scenarios here: the input
has missing fields, the input has only the correct fields, and the input has extra fields. Let's
take a look at these scenarios and create some tests for them:

1.	 First, we will create a test to check that there are no missing fields:

def test_some_blueprint_no_missing(app_with_bp):

 _, response = app_with_bp.test_client.post(

 "/some/validation",

 json={

 "a_string": "hello",

 "an_int": "999",

 },

344 Best Practices to Improve Your Web Applications

)

 assert not any(

 value == "MISSING"

 for value in response.json.values()

)

 assert len(response.json) == 2

In this test, we sent some bad data. Notice how the an_int value is actually a
string. But we do not care about that right now. What this is meant to test is that
all the proper fields were sent.

2.	 Next up is a test that should contain all of the inputs, of the correct types, but
nothing more:

def test_some_blueprint_correct_data(app_with_bp):

 _, response = app_with_bp.test_client.post(

 "/some/validation",

 json={

 "a_string": "hello",

 "an_int": 999,

 },

)

 assert response.status == 200

Here, all we need to assert is that the response is a 200 since we know that it will be
a 400 if it is bad data.

3.	 Lastly, we will create a test that checks that extraneous information is not sent:

def test_some_blueprint_bad_data(app_with_bp):

 _, response = app_with_bp.test_client.post(

 "/some/validation",

 json={

 "a_string": "hello",

 "an_int": 999,

 "a_bool": True,

 },

Setting up a testable application 345

)

 assert response.status == 400

In this final test, we are sending known bad data since it contains the exact
same payload as the previous test, except for the additional "a_bool": True.
Therefore, we should assert that the response will be 400.

Looking at these tests, it seems very repetitive. While the general rule of don't repeat
yourself (DRY) is often cited as a reason to abstract logic, be careful with this in testing.
I would prefer to see repetitive testing code over some highly abstracted, beautiful,
shiny factory pattern. In my experience—yes, I have been burned by this many times
in the past—adding fancy abstraction layers to testing code is a recipe for disaster.
Some abstraction might be helpful (creating the dummy_app fixture is an example of
good abstraction), but too much will become difficult to maintain and update as your
application needs to change. Testing code should be simple to read and easy to edit. This is
certainly one of those areas where development straddles the line between science and art.
Creating a powerful testing suite with a proper balance of repetition and abstraction will
take some practice and is highly subjective.

With that warning out of the way, there is an abstraction layer that I do really like. It
makes use of pytest.parametrize. This is a super-helpful feature that allows you
to create a test and run it against multiple inputs. We are not abstracting our tests, per se,
but instead are testing the same code with a variety of inputs.

Using pytest.mark.parametrize, we can actually condense those three tests into
a single test:

1.	 We create a decorator that has two arguments: a string containing a
comma-delimited list of argument names and an iterable that contains
values to be injected into the test:

@pytest.mark.parametrize(

"input,has_missing,expected_status",

(

 (

 {

 "a_string": "hello",

 }, True, 400,

),

 (

 {

346 Best Practices to Improve Your Web Applications

 "a_string": "hello",

 "an_int": "999",

 }, False, 400,

),

 (

 {

 "a_string": "hello",

 "an_int": 999,

 }, False, 200,

),

 (

 {

 "a_string": "hello","an_int": 999,

 "a_bool": True,

 }, False, 400,

),

),

)

We have three values that we are going to inject into our test: input, has_
missing, and expected_status. The test is going to run multiple times, and
each time it will pull one of the tuples of arguments to inject into the test function.

2.	 Our test function can now be abstracted to use these arguments:

def test_some_blueprint_data_validation(

 app_with_bp,

 input,

 has_missing,

 expected_status,

):

 _, response = app_with_bp.test_client.post(

 "/some/validation",

 json=input,

)

 assert any(

 value == "MISSING"

Setting up a testable application 347

 for value in response.json.values()

) is has_missing

 assert response.status == expected_status

In this way, it is much easier for us to write multiple unit tests across different use
cases. You may have noticed that I actually just created a fourth test. Since it was so
simple to add more tests using this method, I included one use case that we had not
previously tested. I hope you see the huge benefit that this creates and come to learn
to love testing with @pytest.mark.parametrize.

In this example, we are defining the inputs and what our expected outcome should be. By
parametrizing the single test, it actually turns this into multiple tests inside pytest.

The code for these examples can be found in the GitHub repository: https://github.
com/PacktPublishing/Python-Web-Development-with-Sanic/tree/
main/Chapter09/testing2.

Mocking out services
The sample blueprint that we were testing against is obviously not something we would
ever use in real life. In that example, we were not actually doing anything with the data.
The oversimplified example removed the need to worry about how to handle interactions
with services such as a database access layer. What if we are testing a real endpoint? And,
by a real endpoint, I mean one that is meant to interface with a database. For example,
how about a registration endpoint? How can we test that the registration endpoint actually
does what it is supposed to do and injects data as expected? Mocking is the answer. We
will look at how we can use Python's mocking utilities to pretend we have a real database
layer. We will also still use the dummy_app pattern for testing. Let's see what that will
look like now:

1.	 First, we will need to refactor our blueprint so that it looks like something you
might actually encounter in the wild:

@bp.post("/")

async def check_types(request: Request):

 _validate(request.json, RegistrationSchema)

 connection: FakeDBConnection = request.app.ctx.db

 service = RegistrationService(connection)

 await service.register_user(request.json["username"],
request.json["email"])

 return json(True, status=201)

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/testing2
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/testing2
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/testing2

348 Best Practices to Improve Your Web Applications

We are still doing the input validation. However, instead of simply storing
the registration details to memory, we will send them off to a database for
writing to disk. You can check out the full code at https://github.com/
PacktPublishing/Python-Web-Development-with-Sanic/tree/
main/Chapter09/testing3 to see the input validation. The important
things to note here are that we have RegistrationService, which is calling
a register_user method.

2.	 Since we still have not looked at the usage of object relationship mapping (ORM),
our database storage function will ultimately just call some raw SQL queries. We
will look at ORM in more detail in the Managing database connections section later
in the chapter, but for now, let's create the registration service:

from .some_db_connection import FakeDBConnection

class RegistrationService:

 def __init__(self, connection: FakeDBConnection) ->
None:

 self.connection = connection

 async def register_user(

 self, username: str, email: str

) -> None:

 query = "INSERT INTO users VALUES ($1, $2);"

 await self.connection.execute(query, username,
email)

3.	 The registration service calls into our database to execute some SQL. We will also
need a connection to our database. For the sake of the example, I am using a fake
class, but this would (and should) be the actual object that your application uses to
connect to the database. Therefore, imagine that this is a proper database client:

from typing import Any

class FakeDBConnection:

 async def execute(self, query: str, *params: Any):

 ...

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/testing3
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/testing3
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/testing3

Setting up a testable application 349

4.	 With this in place, we can now create a new fixture that will take the place of our
data access layer. Normally, you would create something like this to instantiate
the client:

from sanic import Sanic

from .some_db_connection import FakeDBConnection

app = Sanic.get_app()

@app.before_server_start

async def setup_db_connection(app, _):

 app.ctx.db = FakeDBConnection()

Imagine that this code exists on our actual application. It initiates the database
connection and allows us to access the client within our endpoints, as shown in
the preceding code, because our connection uses the application ctx object. Since
our unit tests will not have access to a database, we need to create a mock database
instead and attach that to our dummy application.

5.	 To do that, we will create our dummy_app and then import the actual listener used
by the real application to instantiate the fake client:

@pytest.fixture

def dummy_app():

 app = Sanic("DummyApp")

 import_module("testing3.path.to.some_startup")

 return app

6.	 To force our client to use a mocked method instead of actually sending a network
request to a database, we are going to monkeypatch the database client using a
feature of pytest. Set up a fixture like this:

from unittest.mock import AsyncMock

@pytest.fixture

def mocked_execute(monkeypatch):

 execute = AsyncMock()

 monkeypatch.setattr(

350 Best Practices to Improve Your Web Applications

 testing3.path.to.some_db_connection.
FakeDBConnection, "execute", execute

)

 return execute

We now have a mock object in place of the real execute method, and we can
proceed to build out a test on our registration blueprint. One of the great benefits
of using the unittest.mock library is that it allows us to assert that the database
client would have been called. We will see what that looks like next.

7.	 Here, we create a test with some assertions that help us to know that the correct data
will make its way to the data access layer:

@pytest.mark.parametrize(

 "input,expected_status",

 (

 (

 {

 "username": "Alice",

 "email": "alice@bob.com",

 },

 201,

),

),

)

def test_some_blueprint_data_validation(

 app_with_bp,

 mocked_execute,

 input,

 expected_status,

):

 _, response = app_with_bp.test_client.post(

 "/registration",

 json=input,

)

 assert response.status == expected_status

 if expected_status == 201:

Setting up a testable application 351

 mocked_execute.assert_awaited_with(

 "INSERT INTO users VALUES ($1, $2);",
input["username"], input["email"]

)

Just like before, we are using parametrize so that we can run multiple tests with
different inputs. The key takeaway is the usage of the mocked execute method.
We can ask pytest to provide that mocked object to us so that our test can make
assertions upon it and we know that it was executed as expected.

This is certainly helpful for testing isolated issues, but what if there needs to be
application-wide testing? We will look at that next.

Testing a full application
As an application progresses from its infancy, there is likely to be a network of
middleware, listeners, and signals that process requests that are not just limited
to the route handler. In addition, there are likely to be connections to other services
(such as databases) that complicate the entire process. A typical web application cannot
be run in a vacuum. When it starts up, it needs to connect to other services. These
connections are critical to the proper performance of the application, and therefore if they
do not exist, then the applications cannot start. Testing these can be very troublesome.
Do not just throw your hands up and give up. Resist the temptation. In the previous tests,
there was a glimpse of how this can be achieved quite simply. We did in fact successfully
test against our database. But what if that is not enough?

Sometimes testing against dummy_app is not sufficient.

This is why I really like applications that are created by a factory pattern. The GitHub
repository for this chapter provides an example of a factory pattern that I use a lot. It
has some very helpful features in it. Essentially, the end result is a function that returns
a Sanic instance with everything attached to it. Through the implementation of the Sanic
standard library, the function crawls through your source code looking for things to attach
to it (routes, blueprints, middleware, signals, listeners, and much more) and is set up to
avoid circular import issues. We talked about factory patterns and their benefits back in
Chapter 2, Organizing a Project.

What is particularly important right now is that the factory in the GitHub repository can
selectively choose what to instantiate. This means we can use our actual application with
targeted functionality. Let me provide an example.

352 Best Practices to Improve Your Web Applications

Once, I was building an application. It was critical to know exactly how it was performing
in the real world. Therefore, I created middleware that would calculate some performance
metrics and then send them off to a vendor for analysis. Performance was critical—which
was part of my decision to use Sanic to begin with. When I tried to do some testing, I
realized that I could not run the application in my test suite if it did not connect to the
vendor. Yes, I could have mocked it out. However, a better strategy was to just skip the
operation altogether. Sometimes, there really is no need to test every bit of functionality.

To make this concrete, here is a real quick explanation of what I am talking about. Here is
a middleware code snippet that calculates runtime at the beginning and end of the request
and sends it off:

from time import time

from sanic import Sanic

app = Sanic.get_app()

@app.on_request

async def start_timer(request: Request) -> None:

 request.ctx.start_time = time()

@app.on_response

async def stop_timer(request: Request, _) -> None:

 end_time = time()

 total = end_time - request.ctx.start_time

 async send_the_value_somewhere(total)

One solution to my problem of contrasting testing versus production behavior could be to
change the application code to only run in production:

if app.config.ENVIRONMENT == "PRODUCTION":

 ...

But in my opinion, a better solution is to skip this middleware altogether. Using the
factory pattern shown in the repo, I could do this:

from importlib import import_module

from typing import Optional, Sequence

Setting up a testable application 353

from sanic import Sanic

DEFAULT = ("path.to.some_middleware.py",)

def create_app(modules: Optional[Sequence[str]] = None) ->
Sanic:

 app = Sanic("MyApp")

 if modules is None:

 modules = DEFAULT

 for module in modules:

 import_module(module)

 return app

In this factory, we are creating a new application instance and looping through a list of
known modules to import them. In normal usage, we would create an application by
calling create_app(), and the factory would import the DEFAULT known modules.
By importing them, they will attach to our application instance. More importantly,
however, this factory allows us to send an arbitrary list of modules to load. This allows
us the flexibility to create a fixture in our tests that uses the actual factory pattern for our
application but has the control to pick and choose what to load.

In our use case, we decided that we do not want to test the performance middleware. We
can skip it by creating a test fixture that simply ignores that module:

from path.to.factory import create_app

@pytest.fixture

def dummy_app():

 return create_app(modules=[])

354 Best Practices to Improve Your Web Applications

As you can see, this opens up the ability for me to create tests that are specifically targeting
parts of my actual application, and not just a dummy application. Using a factory through
the use of inclusion and exclusion, I can create unit tests with only the functionality that I
need and avoid the unneeded functionality.

I hope your mind is now racing with possibilities that this opens up for you. Testing
becomes so much easier when the application is itself composable. This awesome
trick is one way you can really take your application development to the next level. An
easily composable application becomes an easily testable application. This leads to the
application being well tested and now you are truly on your way to becoming a next-level
developer.

If you have not already begun, I highly suggest that you use a factory like mine. Go ahead
and copy it. Just promise me that you will use it to create some unit tests.

Using ReusableClient for testing
Up until this point, we have been using a test client that starts and stops a service on
every call to it. The sanic-testing package ships with it another test client that can
be manually started and stopped. Therefore, it is possible to reuse it between calls, or even
tests. In the next subsection, we will learn about this reusable test client.

Running a single test server per test
You may sometimes need to have multiple calls to your API running on the same instance.
For example, this could be useful if you were storing some temporary state in between
calls in memory. This is obviously not a good solution in most use cases because storing
the state in memory makes horizontal scaling difficult. Leaving that issue aside, let's take
a quick look at how you might implement this:

1.	 We will first create an endpoint that just spits out a counter:

from sanic import Sanic, Request, json

from itertools import count

app = Sanic("test")

@app.before_server_start

def setup(app, _):

Setting up a testable application 355

 app.ctx.counter = count()

@app.get("")

async def handler(request: Request):

 return json(next(request.app.ctx.counter))

In this simplified example, every time that you hit the endpoint, it will increment a
number.

2.	 We can test this endpoint that maintains an internal state by using a
ReusableClient instance, as follows:

from sanic_testing.reusable import ReusableClient

def test_reusable_context(app):

 client = ReusableClient(app, host="localhost",
port=9999)

 with client:

 _, response = client.get("/")

 assert response.json == 0

 _, response = client.get("/")

 assert response.json == 1

 _, response = client.get("/")

 assert response.json == 2

As long as you are using the client inside that with context manager, then you will
be hitting the exact same instance of your application in each call.

3.	 We can simplify the preceding code by using fixtures:

from sanic_testing.reusable import ReusableClient

import pytest

@pytest.fixture

356 Best Practices to Improve Your Web Applications

def test_client(app):

 client = ReusableClient(app, host="localhost",
port=9999)

 client.run()

 yield client

 client.stop()

Now, when you set up a unit test, it will keep the server running for as long as the
test function is executing.

4.	 This unit test could be written as follows:

def test_reusable_fixture(test_client):

 _, response = test_client.get("/")

 assert response.json == 0

 _, response = test_client.get("/")

 assert response.json == 1

 _, response = test_client.get("/")

 assert response.json == 2

As you can see, this is a potentially powerful strategy if you want to run only a
single server for the duration of your test function.

What if you want to keep the instance running for the entire duration of your
testing? The simplest way would be to change the scope of the fixture to session:

@pytest.fixture(scope="session")

def test_client():

 client = ReusableClient(app, host="localhost",
port=9999)

 client.run()

 yield client

 client.stop()

With this setup, no matter where you are running tests in pytest, it will be using the
same application. While I personally have never felt the need for this pattern, I can
definitely see its utility.

Gaining insight from logging and tracing 357

The code for this example can be found in the GitHub repository: https://github.
com/PacktPublishing/Python-Web-Development-with-Sanic/tree/
main/Chapter09/testing4.

With both proper exception management and testing out of the way, the next critical
addition of any true professional application is logging.

Gaining insight from logging and tracing
When it comes to logging, I think that most Python developers fall into three main
categories:

•	 People that always use print statements

•	 People that have extremely strong opinions and absurdly complex logging setups

•	 People that know they should not use print but do not have the time or energy to
understand Python's logging module

If you fall into the second category, you might as well skip this section. There is nothing in
it for you except if you want to criticize my solutions and tell me there is a better way.

If you fall into the first category, then you really need to learn to change your habits. Don't
get me wrong, print is fantastic. However, it does not have a place in professional-grade
web applications because it does not provide the flexibility that the logging module
offers. "Wait a minute!" I hear the first-category people shouting already. "If I deploy my
application with containers and Kubernetes, it can pick up my print output and redirect it
from there." If you are deadset against using logging, then I suppose I might not be able
to change your mind. But I am still going to try.

I used to fall into the third category and taking the time to learn about the logging
module changed the way I develop. If you are like me, then I hope to finally convince you
to make the switch as we break down the mystery of Python logging.

Leaving aside the configuration complexity, consider that the logging module provides
a rich API to send messages at different levels and with meta context. If you want to take a
giant leap forward from an amateur to a professional, then I suggest that you change from
print to logging.

Let's examine the standard Sanic access logs. The message that the access logger sends out
is actually blank. Take a look for yourself in the Sanic codebase if you want. The access log
is this:

access_logger.info("")

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/testing4
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/testing4
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/testing4

358 Best Practices to Improve Your Web Applications

The message is an empty string. What you actually see is something more like this:

[2021-10-21 09:39:14 +0300] - (sanic.access)[INFO]
[127.0.0.1:58388]: GET http://localhost:9999/ 200 13

How does the logged message have all data from an empty string? Embedded in that line
is a bunch of metadata that is both machine-friendly and human-readable, thanks to
the logging module. In fact, you can store arbitrary data with logs that some logging
configurations will store for you, something like this:

log.info("Some message", extra={"arbitrary": "data"})

If I have convinced you and you want to learn more about how to use logging in Sanic,
let's continue.

Types of Sanic loggers
Sanic ships with three loggers. You can access all of them in the log module:

from sanic.log import access_logger, error_logger, logger

Feel free to use these in your own applications. Especially in smaller projects, I will often
use the Sanic logger object for convenience. These are, of course, actually intended
for use by Sanic itself, but nothing is stopping you from using them. In fact, it might be
convenient as you know that all of your logs are formatted consistently. My only word of
caution is that it's best to leave the access_logger object alone since it has a highly
specific job.

Why would you want to use both error_logger and a regular logger? I think the
answer depends upon what you want to happen to your logs. There are many options to
choose from. The simplest form is obviously just to output to the console. This is not a
great idea for error logs, however, since you have no way to persist the message and review
them when something bad happens. Therefore, you might take the next step and output
your error_logger to a file. This, of course, could become cumbersome, so you might
decide instead to use a third-party system to ship off your logs to another application to
store and make them accessible. Whatever setup you desire, using multiple loggers may
play a particular role in how the logging messages are handled and distributed.

Gaining insight from logging and tracing 359

Creating your own loggers, my first step in application
development
When I approach a new project, one of the things I ask myself is what will happen with my
production logs? This is, of course, a question highly dependent upon your application,
and you will need to decide this for yourself. Asking the question, though, highlights a
very important point: there is a distinction between development logs and production
logs. More often than not, I have no clue what I want to do with them in production yet.
We can defer that question for another day.

Before I even begin writing my application, I will create a logging framework. I know that
the goal is to have two sets of configurations, so I begin with my development logs.

I want to emphasize this again: the very first step in building an application is to make a
super-simple framework for standing up an application with logging. So, let's go through
that setup process now:

1.	 The first thing we are going to do is make a super-basic scaffold following the
patterns that we established in Chapter 2, Organizing a Project:

.

├── Dockerfile

├── myapp

│ ├── common

│ │ ├── __init__.py

│ │ └── log.py

│ ├── __init__.py

│ └── server.py

└── tests

This is the application structure that I like to work with because it makes it very
easy for me to develop on. Using this structure, we can easily create a development
environment focused upon running the application locally, testing the application,
logging, and building images. Here, we obviously are concerned with running the
application locally with logging.

360 Best Practices to Improve Your Web Applications

2.	 The next thing I like to create is my application factory with a dummy route on it
that I will remove later. This is how we can begin server.py. We will continue to
add to it:

from sanic import Sanic, text

from myapp.common.log import setup_logging, app_logger

def create_app():

 app = Sanic(__name__)

 setup_logging()

 @app.route("")

 async def dummy(_):

 app_logger.debug("This is a DEBUG message")

 app_logger.info("This is a INFO message")

 app_logger.warning("This is a WARNING message")

 app_logger.error("This is a ERROR message")

 app_logger.critical("This is a CRITICAL message")

 return text("")

 return app

There is a very important reason that I call setup_logging after creating my
app instance. I want to be able to use the configuration logic from Sanic to load
environment variables that may be used in creating my logging setup.

Here's a quick aside that I want to point out before continuing. There are two
different camps when it comes to creating a Python logger object. One side says
that it is best practice to create a new logger in every module. In this scenario, you
would put the following code at the top of every single Python file:

from logging import getLogger

logger = getLogger(__name__)

Gaining insight from logging and tracing 361

The benefit of this approach is having the module name of where it was created
closely related to the logger name. This is certainly helpful in tracking down where
a log came from. The other camp, however, says that it should be a single global
variable that is imported and reused since that may be easier to configure and
control. Besides, we can specifically target filenames and line numbers quickly with
proper log formatting, so it is unnecessary to include the module name in the logger
name. While I do not discredit the localized, per-module approach, I too prefer the
simplicity of importing a single instance like this:

from logging import getLogger

logger = getLogger("myapplogger")

If you dive really deep into logging, this also provides you with a much greater
ability to control how different logger instances operate. Similar to the conversation
about exception handlers, I would rather limit the number of instances I need to
control. In the example that I just showed for server.py, I chose the second
option to use a single global logging instance. This is a personal choice and
there is no wrong answer in my opinion. There are benefits and detriments of both
strategies, so choose which makes sense to you.

3.	 The next step is to create the basic log.py. For now, let's keep it super simple, and
we will build from there:

import logging

app_logger = logging.getLogger("myapplogger")

def setup_logging():

 ...

4.	 With this in place, we are ready to run the application and test it out. But wait!
Where is the app that we pass to our sanic command?

We previously used this to run our application:
$ sanic src.server:app -p 7777 --debug --workers=2

Instead, we will tell the Sanic CLI the location of the create_app function and let
it run that for us. Change your startup to this:

$ sanic myapp.server:create_app --factory -p 7777 --debug
--workers=2

362 Best Practices to Improve Your Web Applications

You should now be able to hit your endpoint and see some basic messages output to your
terminal. You likely will not have the DEBUG message since the logger is still probably set
to only INFO and above. You should see something basic like this:

This is a WARNING message

This is a ERROR message

This is a CRITICAL message

Awesome, we now have the basics of logging down. Next, we will look to see how we can
inject some more helpful information into our logs.

Configuring logging
The preceding logging messages are exactly what using print could provide. The next
thing that we need to add is some configuration that will output some metadata and
format the messages. It is important to keep in mind that some logging details may need
to be customized to suit the production environment:

1.	 We, therefore, will start by creating a simple configuration:

DEFAULT_LOGGING_FORMAT = "[%(asctime)s] [%(levelname)s]
[%(filename)s:%(lineno)s] %(message)s"

def setup_logging(app: Sanic):

 formatter = logging.Formatter(

 fmt=app.config.get("LOGGING_FORMAT", DEFAULT_
LOGGING_FORMAT),

 datefmt="%Y-%m-%d %H:%M:%S %z",

)

 handler = logging.StreamHandler()

 handler.setFormatter(formatter)

 app_logger.addHandler(handler)

Make sure to note that we changed the signature function of setup_logging to
now take the application instance as an argument. Make sure to go back to update
your server.py file to reflect this change.

Gaining insight from logging and tracing 363

As a side note, sometimes you might want to simplify your logging to force Sanic to
use the same handlers. While you can certainly go through the process of updating
the Sanic logger configuration (see https://sanic.dev/en/guide/best-
practices/logging.html#changing-sanic-loggers), I find that to be
much too tedious. A simpler approach is to set up the logging handlers and then
simply apply them to the Sanic loggers, as follows:

from sanic.log import logger, error_logger

def setup_logging(app: Sanic):

 ...

 logger.handlers = app_logger.handlers

 error_logger.handlers = app_logger.handlers

It is good practice to always have StreamHandler. This will be used to output
your logs to the console. But what if we want to add some additional logging utilities
for production? Since we are not 100% sure yet what our production requirements
will be, we will set up logging to a file for now. This can always be swapped out at
another time.

2.	 Change your log.py to look like this:

def setup_logging(app: Sanic):

 formatter = logging.Formatter(

 fmt=app.config.get("LOGGING_FORMAT", DEFAULT_
LOGGING_FORMAT),

 datefmt="%Y-%m-%d %H:%M:%S %z",

)

 handler = logging.StreamHandler()

 handler.setFormatter(formatter)

 app_logger.addHandler(handler)

 if app.config.get("ENVIRONMENT", "local") ==
"production":

 file_handler = logging.FileHandler("output.log")

 file_handler.setFormatter(formatter)

 app_logger.addHandler(file_handler)

https://sanic.dev/en/guide/best-practices/logging.html#changing-sanic-loggers
https://sanic.dev/en/guide/best-practices/logging.html#changing-sanic-loggers

364 Best Practices to Improve Your Web Applications

You can easily see how this could be configured with a different kind of logging handler or
formatting that might more closely match your needs in different environments.

All of the configurations shown used programmatic controls of the logging instance. One
of the great flexibilities of the logging library is that all of this can be controlled with
a single dict configuration object. You, therefore, will find it a very common practice
to keep YAML files containing logging configurations. These files are easy to update and
swap in and out of build environments to control production settings.

Adding color context
The preceding setup is entirely functional, and you could stop there. However, to me, this
is not enough. When I am developing a web application, I always have my terminal open
spitting out logs. In a sea of messages, it might be hard to sift through all of the text. How
can we make this better? We will achieve this through the appropriate use of color.

Because I generally do not need to add color to my production output, we will go through
adding color formatting in my local environment only:

1.	 We will begin by setting up a custom logging formatter that will add colors based
upon the logging level. Any debug messages are blue, warnings are yellow, errors are
red, and a critical message will be red with a white background to help them stand
out (in a dark-colored terminal):

class ColorFormatter(logging.Formatter):

 COLORS = {

 "DEBUG": "\033[34m",

 "WARNING": "\033[01;33m",

 "ERROR": "\033[01;31m",

 "CRITICAL": "\033[02;47m\033[01;31m",

 }

 def format(self, record) -> str:

 prefix = self.COLORS.get(record.levelname)

 message = super().format(record)

 if prefix:

 message = f"{prefix}{message}\033[0m"

 return message

Gaining insight from logging and tracing 365

We are using the standard color escape codes that most terminals understand to
apply the colors. This will color the entire message. You, of course, could get much
fancier by coloring only parts of your messages, and if that interests you, I suggest
you play around with this formatter to see what you can achieve.

2.	 After we create this, we will make a quick internal function to decide which
formatter to use:

import sys

def _get_formatter(is_local, fmt, datefmt):

 formatter_type = logging.Formatter

 if is_local and sys.stdout.isatty():

 formatter_type = ColorFormatter

 return formatter_type(

 fmt=fmt,

 datefmt=datefmt,

)

If we are in a local environment, that is, a TTY terminal, then we use our color
formatter.

3.	 We need to change the start of our setup_logging function to account for these
changes. We will also abstract some more details to our configuration for easy access
to change them per environment:

DEFAULT_LOGGING_FORMAT = "[%(asctime)s] [%(levelname)s]
[%(filename)s:%(lineno)s] %(message)s"

DEFAULT_LOGGING_DATEFORMAT = "%Y-%m-%d %H:%M:%S %z"

def setup_logging(app: Sanic):

 environment = app.config.get("ENVIRONMENT", "local")

 logging_level = app.config.get(

 "LOGGING_LEVEL", logging.DEBUG if environment ==
"local" else logging.INFO

)

 fmt = app.config.get("LOGGING_FORMAT", DEFAULT_
LOGGING_FORMAT)

 datefmt = app.config.get("LOGGING_DATEFORMAT",
DEFAULT_LOGGING_DATEFORMAT)

366 Best Practices to Improve Your Web Applications

 formatter = _get_formatter(environment == "local",
fmt, datefmt)

 ...

Besides dynamically getting a formatter, this example adds another new piece to the
puzzle. It is using a configuration value to determine the logging level of your logger.

Adding some basic tracing with request IDs
A common problem with logs is that they can become noisy. It might be tough to
correlate a specific log with a specific request. For example, you might be handling
multiple requests at the same time. If there is an error, and you want to look back at
earlier messages, how do you know which logs should be grouped together?

There are entire third-party applications that add what is known as tracing. This is
particularly helpful if you are building out a system of inter-related microservices that
work together to respond to incoming requests. While we're not necessarily diving
into microservice architecture, it is worth mentioning here that tracing is an important
concept that should be added to your application. This is true regardless of whether your
application architecture uses microservices or not.

For our purpose, what we want to achieve is to add a request identifier to every
single request. Whenever that request attempts to log something, that identifier will
automatically be injected into our request format. In order to accomplish this goal,
we do the following:

1.	 First, we need a mechanism to inject the request object into every logging
operation.

2.	 Second, we need a way to show the identifier whether it exists or ignore it if it
does not.

Before we get to the code implementation, I would like to point out that the second part
could be handled in a couple of ways. The simplest might be to create a specific logger
that will only be used inside of a request context. This means that you would have one
logger that is used in startup and shutdown operations, and another that is used only for
requests. I have seen this approach used well.

Gaining insight from logging and tracing 367

The problem is that we are again using multiple loggers. To be entirely honest, I really
do prefer the simplicity of having just a single instance that works for all of my use
cases. This way, I do not need to bother thinking about which logger I should reach for.
Therefore, I will show you here how to build option two: an omni-logger that can be
used anywhere in your application. If you instead prefer the more targeted types, then
I challenge you to take my concepts here and build out two loggers instead of one.

We will get started by tackling the issue of passing the request context. Remember,
because Sanic operates asynchronously, there is no way to guarantee which request will
be handled in what order. Luckily, the Python standard library has a utility that works
great with asyncio. It is the contextvars module. What we will do to start is create
a listener that sets up a context that we can use to share our request object and pass it to
the logging framework:

1.	 Create a file called ./middleware/request_context.py. It should look
like this:

from contextvars import ContextVar

from sanic import Request, Sanic

app = Sanic.get_app()

@app.after_server_start

async def setup_request_context(app: Sanic, _):

 app.ctx.request = ContextVar("request")

@app.on_request

async def attach_request(request: Request):

 request.app.ctx.request.set(request)

What is happening here is that we are creating a context object that can be accessed
from anywhere that has access to our app. Then, on every single request, we
will attach the current request to the context variable to make it accessible from
anywhere the application instance is accessible.

368 Best Practices to Improve Your Web Applications

2.	 The next thing that needs to happen is to create a logging filter that will grab the
request (if it exists) and add it to our logging record. In order to do this, we will
actually override Python's function that creates logging records in our log.py file:

old_factory = logging.getLogRecordFactory()

def _record_factory(*args, app, **kwargs):

 record = old_factory(*args, **kwargs)

 record.request_info = ""

 if hasattr(app.ctx, "request"):

 request = app.ctx.request.get(None)

 if request:

 display = " ".join([str(request.id), request.
method, request.path])

 record.request_info = f"[{display}] "

 return record

Make sure you notice that we need to stash the default record factory because
we want to make use of it. Then, when this function is executed, it will check to
see whether there is a current request by looking inside that request context we
just set up.

3.	 We also need to update our format to use this new bit of information. Make sure
to update this value:

DEFAULT_LOGGING_FORMAT = "[%(asctime)s] [%(levelname)s]
[%(filename)s:%(lineno)s] %(request_info)s%(message)s"

4.	 Finally, we can inject the new factory as shown:

from functools import partial

def setup_logging(app: Sanic):

 ...

 logging.setLogRecordFactory(partial(_record_factory,
app=app))

Gaining insight from logging and tracing 369

Feel free to check this book's GitHub repository to make sure that your log.py
looks like mine: https://github.com/PacktPublishing/Python-Web-
Development-with-Sanic/tree/main/Chapter09/tracing/myapp.

5.	 With all of this in place, it is time to hit our endpoint. You should now see some
nice, pretty colors in your terminal, and some request information inserted:

[2021-10-21 12:22:48 +0300] [DEBUG] [server.py:12]
[b5e7da51-68b0-4add-a850-9855c0a16814 GET /] This is a
DEBUG message

[2021-10-21 12:22:48 +0300] [INFO] [server.py:13]
[b5e7da51-68b0-4add-a850-9855c0a16814 GET /] This is a
INFO message

[2021-10-21 12:22:48 +0300] [WARNING] [server.py:14]
[b5e7da51-68b0-4add-a850-9855c0a16814 GET /] This is a
WARNING message

[2021-10-21 12:22:48 +0300] [ERROR] [server.py:15]
[b5e7da51-68b0-4add-a850-9855c0a16814 GET /] This is a
ERROR message

[2021-10-21 12:22:48 +0300] [CRITICAL] [server.py:16]
[b5e7da51-68b0-4add-a850-9855c0a16814 GET /] This is a
CRITICAL message

After running through these examples, one thing you might have noticed and not seen
before is request.id. What is this and where does it come from?

Using X-Request-ID
It is a common practice to use Universally Unique Identifier (UUIDs) to track requests.
This makes it very easy for client applications to also track requests and correlate them to
specific instances. This is why you will often hear them called correlation IDs. If you hear
the term, they are the exact same thing.

As a part of the practice of correlating requests, many client applications will send an
X-Request-ID header. If Sanic sees that header in an incoming request, then it will grab
that ID and use it to identify the request. If not, then it will automatically generate a
UUID for you. Therefore, you should be able to send the following request to our logging
application and see that ID populated in the logs:

$ curl localhost:7777 -H 'x-request-id: abc123'

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/tracing/myapp
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/tracing/myapp

370 Best Practices to Improve Your Web Applications

For the sake of simplicity, I am not using a UUID.

Your logs should now reflect this:

[2021-10-21 12:36:00 +0300] [DEBUG] [server.py:12] [abc123 GET
/] This is a DEBUG message

[2021-10-21 12:36:00 +0300] [INFO] [server.py:13] [abc123 GET
/] This is a INFO message

[2021-10-21 12:36:00 +0300] [WARNING] [server.py:14] [abc123
GET /] This is a WARNING message

[2021-10-21 12:36:00 +0300] [ERROR] [server.py:15] [abc123 GET
/] This is a ERROR message

[2021-10-21 12:36:00 +0300] [CRITICAL] [server.py:16] [abc123
GET /] This is a CRITICAL message

Logging is a critical component of professional-grade web applications. It really does not
need to be that complicated. I have seen super lengthy and overly verbose configurations
that quite honestly scared me away. With a little bit of attention to detail, however, you can
make a truly fantastic logging experience without much effort. I encourage you to grab the
source code for this and hack it until it meets your needs.

We'll next turn our attention to another critical component of web applications: database
management.

Managing database connections
This book above all else is really hoping to provide you with confidence to build
applications your way. This means we are actively looking to stomp out copy/paste
development. You know what I mean. You go to Stack Overflow or some other website,
copy code, paste it, and then move on with your day without thinking twice about it.

This sort of copy/paste mentality is perhaps most prevalent when it comes to database
connections. Time for a challenge. Go start up a new Sanic app and connect it to a
database. Some developers might approach this challenge by heading to some other
codebase (from another project, an article, documentation, or a help website), copying
some basic connection functions, changing the credentials, and calling it a day. They may
never have put much thought into what it means to connect to a database: if it works, then
it must be okay. I know I certainly did that for a long time.

This is not what we are doing here. Instead, we will consider a couple of common
scenarios, think through our concerns, and develop a solution around them.

Managing database connections 371

To ORM or not to ORM, that is the question
For the benefit of anyone that does not know what ORM is, here is a quick definition.

ORM is a framework used to build Python-native objects. Those objects are related
directly to a database schema and are also used to build queries to fetch data from
the database to be used when building the Python objects. In other words, they are
a data access layer that has the capability of two-way translation from Python and to
the database. When people talk about ORM, they are typically referring to one that is
intended to be used with an SQL-based database.

The question about whether to use ORM or not is answered with some strong opinions.
In some contexts, people might think you are living in the Stone Age if instead of using
it you are hand-writing your SQL queries. On the other hand, some people will think
ORM is a nuisance and leads to both overly simplistic yet grotesquely complicated and
inefficient queries. I suppose to an extent both groups are correct.

Ideally, I cannot tell you what you should or should not do. The implementation details
and the use case are highly relevant to any decision. In my projects, I tend to shy away
from it. I like to use the databases project (https://github.com/encode/
databases) to build custom SQL queries, and then map the results to dataclass
objects. After handcrafting my SQL, I use some utilities to hydrate them from raw,
unstructured values into schema-defined Python objects. I have also, in the past, made
extensive use of ORM tools such as peewee (https://github.com/coleifer/
peewee) and SQLAlchemy (https://github.com/sqlalchemy/sqlalchemy).
And, of course, since I developed in Django for many years, I have done a lot of work in
its internal ORM tool.

When should you use ORM? First and foremost, for most projects, using ORM should
probably be the default option. ORM tools are great at adding the required safety and
security to make sure that you do not accidentally introduce a security bug. By enforcing
types, they can be extremely beneficial in maintaining data integrity. And, of course,
there is the benefit of abstracting away a lot of the database knowledge. Where ORM falls
short, perhaps, is in its ability to handle complexity. As a project grows in the number of
tables and interconnected relationships, it may be more difficult to continue using ORM.
There also are a lot of more advanced options in SQL languages, such as PostgreSQL, that
you simply cannot accomplish by using an ORM tool to build your queries. I find them
to really shine in more simplistic create/read/update/delete (CRUD) applications, but
actually get in the way of more complex database schemas.

https://github.com/encode/databases
https://github.com/encode/databases
https://github.com/coleifer/peewee
https://github.com/coleifer/peewee
https://github.com/sqlalchemy/sqlalchemy

372 Best Practices to Improve Your Web Applications

Another potential downside to ORM is that it makes it super easy to sabotage your own
project. A little mistake in building an inefficient query could be the difference between
absurdly long response times and super-fast responses. Speaking from experience as
someone who was bit by this bug, I find that applications that are built with ORM tools
tend to over fetch data and inefficiently run more network calls than are needed. If you
feel comfortable with SQL and know that your data will become fairly complicated, then
perhaps you are better off writing your own SQL queries. The biggest benefit of using
hand-crafted SQL is that it overcomes the complexity-scaling issue of ORM.

Even though this book is not about SQL, after much consideration, I think the best use
of our time is to build a custom data layer and not use an off-the-shelf ORM tool. This
option will force us into making good choices about maintaining our connection pools
and developing secure and practical SQL queries. Moreover, anything that is discussed
here in regard to implementation can easily be swapped out to a more fully featured ORM
tool. If you are more familiar and comfortable with SQLAlchemy (which now has async
support), then feel free to swap out my code accordingly.

Creating a custom data access layer in Sanic
When deciding upon which strategy to use for this book, I explored a lot of the options
out there. I looked at all of the popular ORM tools that I see people using with Sanic.
Some options, such as SQLAlchemy, have so much material out there that I could not
possibly do it justice. Other options encouraged lower-quality patterns. Therefore, we turn
to one of my favorites, the databases package, using asyncpg to connect to Postgres
(my relational database of choice). The goal will be to implement good connection
management, provide a simple and intuitive pattern to query the data, and output a set of
models that will make building applications easier and more consistent.

I highly encourage you to look at the code in the repository at https://github.com/
PacktPublishing/Python-Web-Development-with-Sanic/tree/main/
Chapter09/hikingapp. This is one of the first times that we have created a complete
application. By that, I mean an example of an application that goes out to fetch some data.
Going back to the discussion from Chapter 2, Organizing a Project, about project layout,
you will see an example of how we might structure a real-world application. There is also
a lot going on in there that is somewhat outside of the scope of the discussion here (which
is much more narrowly focused on database connections), so we will not dive too deeply
into it right now. But do not worry, we will come back to the application's patterns again
in Chapter 11, A Complete Real-World Example, when we build out a full application.

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/hikingapp
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/hikingapp
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/hikingapp

Managing database connections 373

In the meantime, it might be a good opportunity for you to review that source code
now. Try to understand how the project is structured, run it, and then test out some
of the endpoints. Instructions are in the repository: https://github.com/
PacktPublishing/Python-Web-Development-with-Sanic/blob/main/
Chapter09/hikingapp/README.md.

I also would like to point out that since our applications are growing with the addition
of another service, I am going to start running the application using docker-compose
and Docker containers locally. All the build materials are in the GitHub repository for you
to copy for your own needs. But, of course, you would not dare to just copy and paste the
code without actually understanding it, so let's make sure that you do.

The application we are talking about is a web API for storing details about hiking. It
connects its database of known hiking trails to users who can keep track of the total
distance they have hiked and when they hiked certain trails. When you spin up the
database, there should be some information prepopulated for you.

The first thing that we must do is make sure that our connection details are coming from
environment variables. Never store them in the project files. Besides the security concerns
associated with this, it is super helpful to make changes by redeploying your application
with different values if you need to change the size of your connection pool or rotate your
passwords. Let's begin:

1.	 Store your connection settings using docker-compose, Kubernetes, or any
other tool you are using to run your containers. If you are not running Sanic
in a container (for example, you plan to deploy to a PaaS solution that offers
environment variables for you through a graphical user interface (GUI)), an
option that I like to use for local development is dotenv (https://github.
com/theskumar/python-dotenv).

The config values that we care about right now are the data source name (DSN)
and the connection pool settings. If you are not familiar with a DSN, it is a string
that contains all of the information needed to connect to a database in a form that
might look familiar to you as a URL.

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/blob/main/Chapter09/hikingapp/README.md
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/blob/main/Chapter09/hikingapp/README.md
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/blob/main/Chapter09/hikingapp/README.md
https://github.com/theskumar/python-dotenv
https://github.com/theskumar/python-dotenv

374 Best Practices to Improve Your Web Applications

A connection pool is an object that holds open a set number of connections to your
database, and then allows your application to make use of those connections as
needed. Imagine a scenario without a connection pool where a web request comes
in and then your application goes and opens a network socket to your database. It
fetches information, serializes it, and sends it back to the client. But it also closes
that connection because there is no common pool to draw from. The next time that
a request comes to your application, it will need to reopen a connection to the same
database. This is hugely inefficient. Instead, your application can warm up several
connections by opening them and holding them in reserve in the common pool.

2.	 Then, when the application needs a connection, instead of opening a new
connection, it can simply connect to your database using a connection pool and
store that object in your application ctx:

./application/hiking/worker/postgres.py

@app.before_server_start

async def setup_postgres(app: Sanic, _):

 app.ctx.postgres = Database(

 app.config.POSTGRES_DSN,

 min_size=app.config.POSTGRES_MIN,

 max_size=app.config.POSTGRES_MAX,

)

@app.after_server_start

async def connect_postgres(app: Sanic, _):

 await app.ctx.postgres.connect()

@app.after_server_stop

async def shutdown_postgres(app: Sanic, _):

 await app.ctx.postgres.disconnect()

As you can see, three main things are happening:
i.	 The first is we are creating the Database object, which stores our connection

pool and acts as the interface for querying. We store it in the app.ctx object
so that it will be easily accessible from anywhere in the application. This was
placed inside of the before_server_start listener since it alters the state
of our application.

Managing database connections 375

ii.	 The second is that the listener actually opens up the connections to the
database and holds them at the ready until they are needed. We are warming
up the connection pool prematurely so that we do not need to spend the
overhead at query time.

iii.	 Lastly, of course, the important step we do is to make sure that our application
properly shuts down its connections.

3.	 The next thing we need to do is create our endpoints. In this example, we will use
class-based views:

from sanic import Blueprint, json, Request

from sanic.views import HTTPMethodView

from .executor import TrailExecutor

bp = Blueprint("Trails", url_prefix="/trails")

class TrailListView(HTTPMethodView, attach=bp):

 async def get(self, request: Request):

 executor = TrailExecutor(request.app.ctx.
postgres)

 trails = await executor.get_all_trails()

 return json({"trails": trails})

Here, the GET endpoint on the root level of the /trails endpoint is meant
to provide a list of all trails in the database (forgetting about pagination).
TrailExecutor is one of those objects that I do not want to dive too deeply
into right now. But, as you can probably guess from this code, it takes the instance
of our database (which we initiated in the last step) and provides methods to fetch
data from the database.

One of the reasons that I really like the databases package is that it makes it
incredibly easy to handle connection pooling and session management. It basically
does it all for you under the hood. But one thing that is a good habit to get into
(regardless of what system you are using) is to wrap multiple consecutive writes to
your database in a transaction.

376 Best Practices to Improve Your Web Applications

Imagine that you needed to do something like this:
executor = FoobarExecutor(app.ctx.postgres)

await executor.update_foo(value=3.141593)

await executor.update_bar(value=1.618034)

Often, when you have multiple database writes in a single function, you want either all
of them to succeed or all of them to fail. Having a mixture of success and failures might,
for example, leave your application in a bad state. When you identify situations like this
it is almost always beneficial to nest your functions inside of a single transaction. To
implement such a transaction within our sample, it would look something like this:

executor = FoobarExecutor(app.ctx.postgres)

async with app.ctx.postgres.transaction():

 await executor.update_foo(value=3.141593)

 await executor.update_bar(value=1.618034)

Now, if one of the queries fails for whatever reason, the database state will be rolled back
to where it was before the change. I highly encourage you to adopt a similar practice no
matter what framework you use for connecting to your database.

Of course, a discussion of databases is not necessarily limited to SQL databases. There are
plenty of NoSQL options out there, and you, of course, should figure out what works for
your needs. We will next take a look at connecting my personal favorite database option to
Sanic: Redis.

Connecting Sanic to Redis
Redis is a blazingly fast and simple database to work with. Many people think of it
simply as a key/value store, which is something that it does extremely well. It also has a
lot of other features that could be thought of as a sort-of shared primitive data type. For
example, Redis has hashes, lists, and sets. These correspond nicely to Python's dict,
list, and set. It is for this reason that I often recommend this as a solution to someone
that needs to share data across a horizontal scale-out.

Managing database connections 377

In our example, we will use Redis as a caching layer. For this, we are relying upon its
hashmap capability to store a dict-like structure with details about a response. We
have an endpoint that might take several seconds to generate a response. Let's simulate
that now:

1.	 First, create a route that will take a while to generate a response:

@app.get("/slow")

async def wow_super_slow(request: Request):

 wait_time = 0

 for _ in range(10):

 t = random.random()

 await asyncio.sleep(t)

 wait_time += t

 return text(f"Wow, that took {wait_time:.2f}s!")

2.	 Check to see that it works:

$ curl localhost:7777/slow

Wow, that took 5.87s!

The response took 5.87 seconds, which is very slow for a response time. To make this
faster on subsequent requests, we will create a decorator that will serve precached
responses if existing:

1.	 First, we will install aioredis:

$ pip install aioredis

2.	 Create a database connection pool similar to what we did in the previous section:

from sanic import Sanic

import aioredis

app = Sanic.get_app()

@app.before_server_start

async def setup_redis(app: Sanic, _):

 app.ctx.redis_pool = aioredis.BlockingConnectionPool.
from_url(

378 Best Practices to Improve Your Web Applications

 app.config.REDIS_DSN, max_connections=app.config.
REDIS_MAX

)

 app.ctx.redis = aioredis.Redis(connection_pool=app.
ctx.redis_pool)

@app.after_server_stop

async def shutdown_redis(app: Sanic, _):

 await app.ctx.redis_pool.disconnect()

3.	 Next, we will create a decorator to use with our endpoints:

def cache_response(build_key, exp: int = 60 * 60 * 72):

 def decorator(f):

 @wraps(f)

 async def decorated_function(request: Request,
*handler_args, **handler_kwargs):

 cache: Redis = request.app.ctx.redis

 key = make_key(build_key, request)

 if cached_response := await get_cached_
response(request, cache, key):

 response = raw(**cached_response)

 else:

 response = await f(request, *handler_
args, **handler_kwargs)

 await set_cached_response(response,
cache, key, exp)

 return response

 return decorated_function

 return decorator

Managing database connections 379

What is happening here is pretty simple. First, we generate some keys that will be
used to look up and store values. Then, we check to see whether anything exists for
that key. If yes, then use that to build a response. If no, then execute the actual route
handler (which we know takes some time).

4.	 Let's see what we have accomplished in action. First, we will hit the endpoint again.
To emphasize my point, I will include some stats from curl:

$ curl localhost:7777/v1/slow

Wow, that took 5.67s!

status=200 size=21 time=5.686937 content-type="text/
plain; charset=utf-8"

5.	 Now, we will try it again:

$ curl localhost:7777/v1/slow

Wow, that took 5.67s!

status=200 size=21 time=0.004090 content-type="text/
plain; charset=utf-8"

Wow! It returned almost instantly! In the first attempt, it took just under 6 seconds to
respond. In the second, because the information has been stored in Redis, we got an
identical response in about 4/1,000 of a second. And, don't forget that in those 4/1,000
of a second, Sanic went to fetch data from Redis. Amazing!

Using Redis as a caching layer is incredibly powerful as it can be used to significantly
boost your performance. The flip side—as anyone that has worked with caching
before knows—is that you need to have an appropriate use case and a mechanism for
invalidating your cache. In this example, it is accomplished in two ways. If you check
the source code at GitHub (https://github.com/PacktPublishing/Python-
Web-Development-with-Sanic/blob/main/Chapter09/hikingapp/
application/hiking/common/cache.py#L43), you will see that we are expiring
the value automatically after 72 hours, or if someone sends a ?refresh=1 query
argument to the endpoint.

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/blob/main/Chapter09/hikingapp/application/hiking/common/cache.py#L43
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/blob/main/Chapter09/hikingapp/application/hiking/common/cache.py#L43
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/blob/main/Chapter09/hikingapp/application/hiking/common/cache.py#L43

380 Best Practices to Improve Your Web Applications

Summary
Since we are past the point of talking about basic concepts in application development,
we have graduated to the level of exploring some best practices that I have learned over
the years of developing web applications. This is clearly just the tip of the iceberg, but
they are some very important foundational practices that I encourage you to adopt. The
examples from this chapter could become a great foundation for starting your next web
application process.

First, we saw how you can use smart and repeatable exception handling to create a
consistent and thoughtful experience for your users. Second, we explored the importance
of creating a testable application, and some techniques to make it easily approachable.
Third, we discussed implementing logging in both development and production
environments, and how you could use those logs to easily debug and trace requests
through your application. Finally, we spent time learning how databases could be
integrated into your application.

In the next chapter, we will continue to expand upon the basic platform that we have built.
You will continue to see a lot of the same patterns (such as logging) in our examples as we
look at some common use cases of Sanic.

10
Implementing
Common Use

Cases with Sanic
Years ago when I was in law school, I set out to build a web application to help me
with my studies. I wanted to create something that would both help me organize my
notes and make it easy for my classmates to share outlines and study materials. I had
been building websites at that point for a number of years, so I thought I knew what I
was doing. I sat down to begin by creating an endpoint to store notes. Next, I created a
database to persist the notes. I realized that I also needed to tie those notes to specific
courses, so I added course management. Little by little I started adding features as I saw
the need for them. The end result was a mess. I failed to establish good basics in my
project, and it snowballed as new features crept into scope. With an idea in my head,
I jumped straight to the implementation, skipped over all of the planning, and created
none of the application infrastructures that set up a project for success. All of my logic
was in the various route handlers, there was no project organization, and no consistency
in things such as logging, exception handling, or access control. Like many amateur web
applications, there was absolutely zero unit testing.

382 Implementing Common Use Cases with Sanic

This book has been thoughtfully organized to build an understanding of HTTP and Sanic
first. We tried to establish patterns of good practices and learn how to wield all of the tools
that Sanic provides us. Only after gaining this knowledge and leveling up our technical
skills along the way can we dig into implementation details. We know that before we can
go ahead and build the next chatbot, we have some infrastructure details to take care of
first. The goal of this chapter is to look at some practical features that you may be asked to
build. With our foundation already established, we want to use what we have learned so
far and see how we could solve these common problems.

While reviewing these use cases, we will look at some implementation details, talk about
some of the considerations that factor into our planning decisions, and describe the
general approach you might take to the problem. I hope to show you some insight into my
own thought process when tasked with a project like this. The insight and the approach to
building are much more important takeaways than the code we use here. Therefore, just
like the previous chapter, there will be a lot of code in the repository that will not be in
the book. It simply is not all relevant to the conversation. I will point out specific design
decisions and include some choice code snippets that are worth mentioning. However, to
have a complete picture of how these applications work, you should follow along with the
full code.

So, what are we going to build?

•	 Synchronizing and scaling websocket feeds

•	 Powering a progressive web application

•	 Designing a GraphQL API

•	 Building a Discord bot and running Sanic from another service

•	 Creating an HTTP to HTTPS proxy and nesting Sanic inside Sanic

Technical requirements
Since this chapter builds upon the previous chapters, you should have all of the technical
needs already fulfilled. We will start using some additional third-party packages, so make
sure you have pip handy.

If you would like to jump ahead to make sure your environment is set up, here are the pip
packages that we plan to use:

$ pip install aioredis ariadne "databases[postgresql]" nextcord

Synchronizing and scaling websocket feeds 383

Furthermore, if you recall, back in Chapter 2, Organizing a Project, we discussed using
factory patterns. Because we are now starting to build what could become the base of a
real-world application, I feel it is much better to use a factory pattern here that can be
expanded. Therefore, for the remainder of this book, you will see more and more usage of
the factory pattern that we already have established and used.

To see the full application code, please follow along with the GitHub repository at
https://github.com/PacktPublishing/Python-Web-Development-
with-Sanic/tree/main/Chapter10.

Synchronizing and scaling websocket feeds
Earlier in this book, we explored websockets in the Websockets for two-way
communication section of Chapter 5, Building Response Handlers. If you have not read
that section yet, I encourage you to do that now. At this time, we are going to take our
websocket implementation and create a horizontally scalable websocket feed. The basic
premise of the code here will be the same as in that section, which is why you should have
an understanding of what we build there before moving on to the example here.

The purpose of the feed we will build is to share events that happen in one browser
across to another browser. Building upon the example from Chapter 5, Building Response
Handlers, we are going to add a third-party broker that will allow us to run multiple
application instances. This means that we can horizontally scale our application. The
previous implementation suffered from the fact that it stored client information in
memory. With no mechanism to share state or broadcast messages across multiple
application instances, there was no way for one websocket connection to guarantee
that it would be able to push messages to every other client. At best it would only be
able to push messages to clients that happened to be routed and connected to the same
application instance. Ultimately, this made it impossible to scale the application with
multiple workers.

The goal now will be to create what is known as a pubsub. This is a term that means
publish and subscribe since the pattern relies upon multiple sources subscribing to a
central broker. When one of those sources publishes a message to the broker, all of the
other sources that are subscribed receive that message. The term pubsub is a simple
description of this push and pull between the broker and the sources. We will use this
concept when building our feed.

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter10
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter10

384 Implementing Common Use Cases with Sanic

The simplest way to handle pubsub in my opinion is with Redis, which has a very simple
built-in pubsub mechanism. The idea is simple: every application instance will be a source.
At startup, the application instance will subscribe to a specific channel on the Redis
instance. With this connection established, it has the ability to push and pull messages
from that broker on a specific channel. By pushing this off to a third-party service, all of
our applications will be able to access the same information through the push and pull of
the pubsub.

In the websockets example in the Websockets for two-way communication section of
Chapter 5, Building Response Handlers, when a message was received, the server would
push that message out to other clients that were connected to the same application
instance. What we are about to build will accomplish something similar. Browser clients
will open a websocket with one of many web servers, which will hold onto that client
connection. This again will be held in memory. When there is an incoming message from
a client instance, it will publish that message not by directly distributing it to the other
clients, but instead, it will push the message to the pubsub broker. Then, all of the other
instances will receive that message since they are subscribed to the same broker and can
push the message to any websocket clients that happen to be connected to that application
instance. In this way, we can build a distributed websocket feed.

To get started, we will spin up a Redis service using docker-compose, as well as
our development application. Take a look in the repository for the details on how to
accomplish that: https://github.com/PacktPublishing/Python-Web-
Development-with-Sanic/tree/main/Chapter10/wsfeed. We will assume
that you have a Redis instance available and running:

1.	 We begin by creating a websocket handler and attaching it to a blueprint:

from sanic import Blueprint

from sanic.log import logger

from .channel import Channel

bp = Blueprint("Feed", url_prefix="/feed")

@bp.websocket("/<channel_name>")

async def feed(request, ws, channel_name):

 logger.info("Incoming WS request")

 channel, is_existing = await Channel.get(

 request.app.ctx.pubsub, request.app.ctx.redis,
channel_name

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter10/wsfeed
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter10/wsfeed

Synchronizing and scaling websocket feeds 385

)

 if not is_existing:

 request.app.add_task(channel.receiver())

 client = await channel.register(ws)

 try:

 await client.receiver()

 finally:

 await channel.unregister(client)

This is the entirety of our Sanic integration in this example. We defined a websocket
endpoint. The endpoint requires us to access a feed by going to channel_name,
which is meant to be a unique listening location. This could be a username, a
chatroom stock ticker, and so on. The point is that channel_name is meant to
represent some location in your application where people will want to continuously
retrieve information from your application as a feed. For example, this also could be
used to build out a sort of shared editing application where multiple users are able
to make changes simultaneously to the same resource.

The handler in this example works by fetching a Channel object. If it created new
Channel, then we send off a receiver task to the background that is responsible
for listening to our pubsub broker. The next thing in the handler is to register our
current websocket connection on the channel, and then create another receiver.
The point of this second client.receiver is to listen to the websocket
connection and take incoming messages to push off to the pubsub broker.

2.	 Let's take a quick look at the Client object:

from dataclasses import dataclass, field

from uuid import UUID, uuid4

from aioredis import Redis

from sanic.server.websockets.impl import
WebsocketImplProtocol

@dataclass

class Client:

 protocol: WebsocketImplProtocol

 redis: Redis

386 Implementing Common Use Cases with Sanic

 channel_name: str

 uid: UUID = field(default_factory=uuid4)

 def __hash__(self) -> int:

 return self.uid.int

 async def receiver(self):

 while True:

 message = await self.protocol.recv()

 if not message:

 break

 await self.redis.publish(self.channel_name,
message)

 async def shutdown(self):

 await self.protocol.close()

As just stated, the purpose of this object is to listen to the current websocket
connection and to send a message to the pubsub broker when available. This is
accomplished by the publish method.

3.	 We now will take a look at the Channel object. This class is a bit longer than
Client, so we will look at the code for it in sections. It might be helpful to open
the GitHub repository to see the class definition in full:

class ChannelCache(dict):

 ...

class Channel:

 cache = ChannelCache()

 def __init__(self, pubsub: PubSub, redis: Redis,
name: str) -> None:

 self.pubsub = pubsub

 self.redis = redis

 self.name = name

 self.clients: Set[Client] = set()

 self.lock = Lock()

Synchronizing and scaling websocket feeds 387

 @classmethod

 async def get(cls, pubsub: PubSub, redis: Redis,
name: str) -> Tuple[Channel, bool]:

 is_existing = False

 if name in cls.cache:

 channel = cls.cache[name]

 await channel.acquire_lock()

 is_existing = True

 else:

 channel = cls(pubsub=pubsub, redis=redis,
name=name)

 await channel.acquire_lock()

 cls.cache[name] = channel

 await pubsub.subscribe(name)

 return channel, is_existing

A channel is created and cached in each application instance in memory. This
means that for every single application instance where an incoming request asks to
join a specific channel, there is only one instance of that channel created. Even if
we have 10 application instances, it does not matter that we have 10 instances of the
channel. What we care about is that on any single application instance, there is never
more than one Channel subscribing to a single Redis pubsub channel. Having
multiple channels on the same application instance could get messy and lead to a
memory leak.

4.	 Therefore, we also want to add a mechanism to clean up the cache when a channel
is no longer needed. It can be done with the following code:

 async def destroy(self) -> None:

 if not self.lock.locked():

 logger.debug(f"Destroying Channel {self.
name}")

 await self.pubsub.reset()

 del self.__class__.cache[self.name]

388 Implementing Common Use Cases with Sanic

 else:

 logger.debug(f"Abort destroying Channel
{self.name}. It is locked")

The reason we are using Lock is to try and avoid race conditions where multiple
requests make an attempt to destroy a channel instance. Without this, you might
end up in a case where concurrent requests try to destroy the channel out of order,
leading to an otherwise very difficult bug to replicate consistently.

If you recall from earlier in our review of this example, after the channel is created
(or fetched from the cache), we register the websocket connection on the Channel
instance, which looks like this:

 async def register(self, protocol: WebsocketImplProtocol)
-> Client:

 client = Client(protocol=protocol, redis=self.redis,
channel_name=self.name)

 self.clients.add(client)

 await self.publish(f"Client {client.uid} has joined")

 return client

We simply create the Client object, add it to the known clients that need to be notified
from this instance of an incoming message, and send off a message to let other clients
know that someone has just joined. The publish message method simply looks like this:

 async def publish(self, message: str) -> None:

 logger.debug(f"Sending message: {message}")

 await self.redis.publish(self.name, message)

Once a client has been registered, it also needs to have the ability to unregister. A method
to unregister is as follows:

 async def unregister(self, client: Client) -> None:

 if client in self.clients:

 await client.shutdown()

 self.clients.remove(client)

 await self.publish(f"Client {client.uid} has left")

 if not self.clients:

Powering a progressive web application 389

 self.lock.release()

 await self.destroy()

Here, we remove the current client from the known clients on Channel. If there are
no longer any more clients listening to this channel, then we can close it and clean up
after ourselves.

This is a super simple pattern that provides an immense amount of flexibility. In fact,
in my course of providing support and helping people with their Sanic applications,
I have provided assistance in building applications using a similar pattern to this
on numerous occasions. I keep a Gist on GitHub that I share with people whenever
they ask about websockets. You can find it here: https://gist.github.com/
ahopkins/5b6d380560d8e9d49e25281ff964ed81. Using this, you could create
some truly incredible frontend applications. Speaking of which, in the next section, we are
going to start looking at the interplay between Sanic and frontend web applications that
run in the browser.

Powering a progressive web application
A lot of use cases for building web APIs are to power a progressive web application
(PWA—also known as a single-page application, or SPA). Like many other web
developers out there, the real draw to web development was for the purpose of building a
usable application or website in the browser. Let's be honest, not many of us are out there
writing curl commands to use our favorite APIs. The real power of a web API is when it
powers something else.

What does a PWA need in order to run? Well, when you build a PWA, the final product
is a bunch of static files. Okay, so we put those files into a directory called ./public and
then we serve them:

app.static("/", "./public")

There you go—we now are running a PWA. We're finished.

Well, not so fast. Being able to serve the static content is important, but it is also not the
only factor you need to consider. Let's look at some considerations when building PWAs.

https://gist.github.com/ahopkins/5b6d380560d8e9d49e25281ff964ed81
https://gist.github.com/ahopkins/5b6d380560d8e9d49e25281ff964ed81

390 Implementing Common Use Cases with Sanic

Dealing with subdomains and CORS
In Chapter 7, Dealing with Security Concerns, we spent a significant amount of time
looking into CORS from a security lens. I would venture a guess that by far the biggest
rationale for requiring CORS protection is the need to serve content to a PWA. These
types of applications are ubiquitous on the internet, and usually have to tackle. The reason
this usually happens is that, oftentimes, the frontend of a PWA and the backend are on
different subdomains. This usually is because they are running on different servers. The
static content might be served with a CDN, and the backend is on a VPS or PaaS offering
(see Chapter 8, Running a Sanic Server, for more on Sanic deployment options).

CORS is a big topic. As we saw in Chapter 7, Dealing with Security Concerns, it is also
something easy to get wrong. I participated in a conversation once with the maintainer of
one of the most widely used pieces of CORS software on the web. Even he joked around
that he does not understand CORS and cannot implement it properly on his own. Luckily,
there is a simple method for getting CORS up and running in your Sanic applications
using Sanic Extensions. If you are not familiar with Sanic Extensions, it is a package
that is developed and maintained by the Sanic team to add extra features to Sanic. Sanic
Extensions focuses on all of the more opinionated and use-case-specific implementations
that are inappropriate for the core project. CORS is one of those features.

So, how do we get going out of the box?

$ pip install "sanic[ext]"

or

$ pip install sanic sanic-ext

That's it. Just install the sanic-ext package in your environment and you will get
CORS protection out of the box. As of version 21.12, if you have sanic-ext in your
environment, Sanic will auto-instantiate it for you.

The only thing we need to do now is to configure it. Usually, to get started with CORS
configuration, we need to set the allowed origins:

app.config.CORS_ORIGINS = "http://foobar.com,http://bar.com"

Powering a progressive web application 391

"Well, hang on a minute," you say, "Can't I just serve the frontend assets from Sanic and
avoid CORS because the front and back are on the same server?" Yes. If that approach works
for you, go for it. Let's see what that might look like (from a development perspective).

Running a development server
What happens when you decide that you want both frontend and backend applications
to run on the same server? Or, when you want to use the app.static method shown
above to serve your project files? Building this locally could be very tricky.

The reason this is the case is, when building a frontend application, you need a frontend
server. Most frameworks have some sort of build requirement. That is to say that you type
some code, hit save, then some package such as webpack or rollup compiles your JS
and serves it to you from a local development web server. Your frontend development
server might run on port 5555, so you go to http://localhost:5555.

But, you want to access your locally running backend from that frontend application
to populate content. The backend is running on http://localhost:7777. Uh oh,
do you see where this is going? We are right back to CORS all over again. As long as
your frontend application is being run by a different server than your backend, you will
continue to run into CORS issues.

Ultimately, we are trying to get a single server to run both the backend and frontend.
Since we are talking about local development, we also want auto-reload capabilities for
both our Python files and our Javascript files. We also need to trigger a rebuild of the
JavaScript, and finally, we need to serve this all from one location. Luckily, Sanic can do all
of this for us. Let's now use Sanic as a local development server for a frontend project.

This will work with any frontend tools you want since we will essentially be calling those
tools from within Python. My frontend development framework of choice is Svelte, but
feel free to try this with React, Vue, or any of the other many alternatives. I will not walk
you through the steps of setting up a frontend project since that is not important here.
Imagine that you have already done it. If you would like to follow along with the code,
please see the GitHub repository: https://github.com/PacktPublishing/
Python-Web-Development-with-Sanic/tree/main/Chapter10/pwa.

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter10/pwa
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter10/pwa

392 Implementing Common Use Cases with Sanic

To accomplish our goals, we will set up the Sanic server to add auto-reload capabilities
to the build directory of the frontend application. For Svelte projects using rollup
(a popular JS build tool), it will put the compiled assets into a ./public directory.
We want to serve that directory as static content, and then tell the Sanic server that it
should auto-reload on the contents of that directory. Let's dive in to see how we can
accomplish that:

1.	 We start by declaring the location of the static files and serving them with static:

app = Sanic("MainApp")

app.config.FRONTEND_DIR = Path(__file__).parent /
"my-svelte-project"

app.static("/", app.config.FRONTEND_DIR / "public")

2.	 When we run Sanic, make sure to add that directory to the auto-reloader like this:

$ sanic server:app -d -p7777 -R ./my-svelte-project/src

3.	 The next thing we want to do is define a custom signal. We are going to use this
later, so all it needs to do now is define it. It just needs to exist so that we can later
await the event:

@app.signal("watchdog.file.reload")

async def file_reloaded():

 ...

4.	 We are now ready to build something that will check the files that were reloaded
and decide whether or not we need to trigger the rollup build process. We
will look at this in two parts. First, we create a startup listener that checks the
file extensions to determine the server start was triggered by a reload from any
.svelte or .js file extensions:

@app.before_server_start

async def check_reloads(app, _):

 do_rebuild = False

 if reloaded := app.config.get("RELOADED_FILES"):

 reloaded = reloaded.split(",")

 do_rebuild = any(

 ext in ("svelte", "js")

Powering a progressive web application 393

 for filename in reloaded

 if (ext := filename.rsplit(".", 1)[-1])

)

As of version 21.12, the files that triggered a reload are stashed in a SANIC_
RELOADED_FILES environment variable. Since any environment variables starting
with the SANIC_ prefix are loaded into our app.config, we can simply read that
value if it exists and check the file extensions.

Assuming there is a rebuild required, we next want to trigger a subprocess call to
our shell to run the build command:

 if do_rebuild:

 rebuild = await create_subprocess_shell(

 "yarn run build",

 stdout=PIPE,

 stderr=PIPE,

 cwd=app.config.FRONTEND_DIR,

)

 while True:

 message = await rebuild.stdout.readline()

 if not message:

 break

 output = message.decode("ascii").rstrip()

 logger.info(f"[reload] {output}")

 await app.dispatch("watchdog.file.reload")

Finally, when this is all done, we are going to dispatch that custom event that we
created earlier.

394 Implementing Common Use Cases with Sanic

Up until now, we have the auto-reload and auto-rebuilding working as expected. The
only thing we are missing now is the ability to trigger the web browser to refresh the
page. This can be accomplished using a tool called livereload.js. You can access
livereload.js by searching for it and installing JavasScript. Essentially, what it will do
is create a websocket connection to a server on port 35729. Then, from that websocket,
you can send messages prompting the browser to perform a refresh:

1.	 To do this from Sanic, we are going to run nested applications. Add a second
application definition:

livereload = Sanic("livereload")

livereload.static("/livereload.js", app.config.FRONTEND_
DIR / "livereload.js")

2.	 We will also need to declare a few more constants. These are mainly to run the two
types of messages that livereload needs to send from the server:

INDEX_HTML = app.config.FRONTEND_DIR / "public" / "index.
html"

HELLO = {

 "command": "hello",

 "protocols": [

 "http://livereload.com/protocols/official-7",

],

 "serverName": app.name,

}

RELOAD = {"command": "reload", "path": str(INDEX_HTML)}

3.	 Next, set up the necessary listeners to run the nested server:

@app.before_server_start

async def start(app, _):

 app.ctx.livereload_server = await livereload.create_
server(

 port=35729, return_asyncio_server=True

)

 app.add_task(runner(livereload, app.ctx.livereload_
server))

@app.before_server_stop

Powering a progressive web application 395

async def stop(app, _):

 await app.ctx.livereload_server.close()

The runner task used in the code above should look like this:
async def runner(app, app_server):

 app.is_running = True

 try:

 app.signalize()

 app.finalize()

 await app_server.serve_forever()

 finally:

 app.is_running = False

 app.is_stopping = True

4.	 It is time to add the websocket handler:

@livereload.websocket("/livereload")

async def livereload_handler(request, ws):

 global app

 logger.info("Connected")

 msg = await ws.recv()

 logger.info(msg)

 await ws.send(ujson.dumps(HELLO))

 while True:

 await app.event("watchdog.file.reload")

 await ws.send(ujson.dumps(RELOAD))

As you can see, the handler accepts an initial message from livereload, and
then sends a HELLO message back. Afterward, we are going to run a loop and wait
until the custom signal we created is triggered. When it is, we send off the RELOAD
message, which triggers the browser to refresh the web page.

396 Implementing Common Use Cases with Sanic

Voila! We now have a full JavaScript development environment running inside of
Sanic. This is a perfect setup for those PWAs where you want to serve the frontend and
backend content from the same location. Visit the site in your browser at http://
localhost:7777. Make sure to make some changes to the Svelte app to see how it
updates the page in the browser for you automatically.

Figure 10.1 – Screenshot showing a Sanic-powered PWA built with JavaScript

Since we are already talking about frontend content, we will next visit another important
topic for frontend developers: GraphQL.

Designing a GraphQL API
In 2015, Facebook released a project meant to rival traditional web APIs and flip the
concept of a RESTful web application on its head. This project is what we now know
as GraphQL. This book has so far assumed that we are building out endpoints using
the traditional method of combining HTTP methods with thoughtful paths to point to
specific resources. In this approach, web servers are responsible for being the interface
between a client and the source of data (for example, a database). The concept of GraphQL
pushes all of that aside and allows the client to directly request what information it wants
to receive. There is a single endpoint (usually /graphql) and a single HTTP method
(usually POST). The single route definition is meant to be used for both retrieving data
and causing state changes in the application. This all happens through a set of queries that
are sent as the body on that single endpoint. GraphQL was meant to revolutionize the way
we build the web and to take over as the standard practice of the future. At least, that is
what many people said was going to happen.

http://localhost:7777
http://localhost:7777

Designing a GraphQL API 397

This has not actually come to pass. At the time of writing, the popularity of GraphQL has
seemingly peaked and is now on the decline. Nevertheless, I do believe that GraphQL
fulfills a necessary niche in the web application world, and it will continue to live on as an
alternative implementation for years to come (just not as a replacement). We, therefore, do
need to know how to integrate it with Sanic for the instances where you may be asked to
deploy one of these servers.

Before we can answer the question of Why use GraphQL?, we must understand what
it is. As the name seemingly implies, GraphQL is a sort of query language. A query is
a JSON-like request for information to be delivered in a specific format. A client looking
to receive information from a web server might send a POST request with a body that
includes a query like this:

{

 countries (limit: 3, offset:2) {

 name

 region

 continent

 capital {

 name

 district

 }

 languages {

 language

 isofficial

 percentage

 }

 }

}

In return, a server would go and fetch whatever data it needed and compile a return JSON
document matching that description:

{

 "data": {

 "countries": [

 {

 "name": "Netherlands Antilles",

 "region": "Caribbean",

398 Implementing Common Use Cases with Sanic

 "continent": "North America",

 "capital": {

 "name": "Willemstad",

 "district": "Curaçao"

 },

 "languages": [

 {

 "language": "Papiamento",

 "isofficial": true,

 "percentage": 86.19999694824219

 },

 {

 "language": "English",

 "isofficial": false,

 "percentage": 7.800000190734863

 },

 {

 "language": "Dutch",

 "isofficial": true,

 "percentage": 0

 }

]

 },

 ...

]

 }

}

As you might be able to tell, this becomes a very powerful tool for the client as it can
bundle what might otherwise be multiple network calls into a single operation. It also
allows a client (for example a PWA) to specifically retrieve the exact data that it needs in
the format that it needs it.

Designing a GraphQL API 399

Why would I want to use GraphQL?
I believe that GraphQL is the best friend of the frontend developer, but the bane of
existence for the backend developer. It is certainly true that web applications using
GraphQL will generally issue fewer HTTP calls to web servers than their counterparts.
It is also certainly true that a frontend developer will have an easier time manipulating
responses from a web server using GraphQL since they get to be the architect of how that
data is structured.

GraphQL provides a very easy method for data retrieval. Because it is a strongly
typed specification, it makes it possible to have tools that make the whole process of
generating a query very elegant. For example, many GraphQL implementations come
with an out-of-the-box web UI that can be used for development. See Figure 10.2 for an
example. The UI usually provides an area on the left for writing queries. Once ready, you
can execute that query and see the results.

Figure 10.2 – Example of a GraphQL UI showing the SCHEMA tab that
displays all of the available information

400 Implementing Common Use Cases with Sanic

One of the most important features that these UIs include is the ability to navigate the
schema. You can see a closeup of that section in Figure 10.3. This SCHEMA display
provides an easy-to-navigate overview of the types of queries that can be made, and what
information is retrievable for different object types. There is certainly a fun factor that
goes into these tools as you play with them to craft exactly the information you want.
Simply put: GraphQL is simple to use and implement. It also has a very satisfying coolness
factor to it when you start building ad hoc custom queries.

Figure 10.3 – Closeup view of the schema navigator of the GraphQL UI

Except, GraphQL is a nightmare in the backend. For all of the simplification from the
client perspective, the web server needs to deal with a much greater level of complexity.
For this reason, when someone tells me that they want to build a GraphQL application,
I usually ask them: why? If they are building it as a public-facing API, then it may be
wonderful. GitHub is a great example of a public-facing GraphQL API that is a treat to
work in. Querying the GitHub API is simple and intuitive. If, however, they are building
the API for their own internal purposes, then there is a set of trade-offs that
must be considered.

GraphQL is not in totality any easier or simpler than REST. Instead, it represents the
shifting of complexity almost entirely to the web server. This may be acceptable, but
it is a trade-off that you must consider. I generally find that the overall increase in
complexity of the backend outweighs any benefits of implementation.

Designing a GraphQL API 401

I know it may sound like I am not a fan of GraphQL. This is not true. I do think
that GraphQL is a great concept, and I think there are some amazing tools out there
(including in the Python world) to help build these applications. If you want to include
GraphQL in your Sanic application, I would highly recommend tools such as Ariadne
(https://ariadnegraphql.org/) and Strawberry (https://strawberry.
rocks/). Even with these tools, a good GraphQL application, in my opinion, is more
difficult to build with a few pitfalls waiting to swallow you up. As we look into how we
can build a Sanic GraphQL application, I will try and point out these issues so that we can
work around them.

Adding GraphQL to Sanic
I have built a small GraphQL application for this section. All of the code is, of course, on
the GitHub repository for this book: https://github.com/PacktPublishing/
Python-Web-Development-with-Sanic/tree/main/Chapter10/graphql.
I highly suggest you have the code available while reading. Quite frankly, the code in its
entirety is much too complex and lengthy to include it all here. So, instead, we will talk
through it in general, and I will refer you back to the repository for specifics. For your
convenience, I have also added a number of comments and further discussion points in
the code base itself.

When we discussed database access in the To ORM or not to ORM section of Chapter
9, Best Practices to Improve Your Web Applications, we talked about whether you should
or should not implement an ORM. The discussion was about whether you should use
a tool to help you build the SQL queries or to build them yourself. There are very good
arguments on both sides: pro-ORM versus anti-ORM. I opted for a somewhat hybrid
approach to build the SQL queries by hand, and then build a lightweight utility to hydrate
the data to a usable model. Let's call it semi-ORM.

A similar question could be posed here: should I build a GraphQL implementation myself
or use a package? My answer is that you should absolutely use a package. I cannot see
any reason to try and build a custom implementation yourself. There are several good
options in Python; my personal preference is Ariadne. I particularly like the schema-first
approach that the package takes. Using it allows me to define the GraphQL parts of my
application in .gql files, therefore enabling my IDE to add syntax highlighting and other
language-specific conveniences.

https://ariadnegraphql.org/
https://strawberry.rocks/
https://strawberry.rocks/
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter10/graphql
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter10/graphql

402 Implementing Common Use Cases with Sanic

Let's begin:

1.	 Since we are using Ariadne in our example here, we begin by installing it in our
virtual environment:

$ pip install ariadne

2.	 To get up and running with Ariadne's hello world application does not take much.
First, we will add our imports and setup Ariadne:

from ariadne import QueryType, graphql, make_executable_
schema

from ariadne.constants import PLAYGROUND_HTML

from graphql.type import GraphQLResolveInfo

from sanic import Request, Sanic, html, json

app = Sanic(__name__)

query = QueryType()

type_defs = """

 type Query {

 hello: String!

 }

"""

@query.field("hello")

async def resolve_hello(_, info: GraphQLResolveInfo):

 user_agent = info.context.headers.get("user-agent",
"guest")

 return "Hello, %s!" % user_agent

3.	 Next, we will add the two endpoints that we need: one to handle the GraphQL
requests, and the other to display the GraphQL UI like the one seen in Figure 10.2:

@app.post("/graphql")

async def graphql_handler(request: Request):

 success, result = await graphql(

 request.app.ctx.schema,

Designing a GraphQL API 403

 request.json,

 context_value=request,

 debug=app.debug,

)

 status_code = 200 if success else 400

 return json(result, status=status_code)

@app.get("/graphql")

async def graphql_playground(request: Request):

 return html(PLAYGROUND_HTML)

As you can see, there are two endpoints:

. A GET that displays the GraphQL query builder

. A POST that is the ingress to the GraphQL backend
4.	 Finally, we bring it all together by executing the schema and making it available in

our application ctx:

@app.before_server_start

async def setup_graphql(app, _):

 app.ctx.schema = make_executable_schema(type_defs,
query)

From this humble beginning, you can build from Sanic and Ariadne to meet the
needs of your application. Let's take a look at a potential strategy you might take.

5.	 Scrapping the above, we begin with an app that looks very similar in structure to
what we have seen before. Create ./blueprints/graphql/query.py and
place your root-level GraphQL object in it as shown:

from ariadne import QueryType

query = QueryType()

404 Implementing Common Use Cases with Sanic

6.	 Now, we create the two endpoints needed inside of a CBV on our GraphQL
Blueprint instance:

from sanic import Blueprint, Request, html, json

from sanic.views import HTTPMethodView

from ariadne.constants import PLAYGROUND_HTML

bp = Blueprint("GraphQL", url_prefix="/graphql")

class GraphQLView(HTTPMethodView, attach=bp, uri=""):

 async def get(self, request: Request):

 return html(PLAYGROUND_HTML)

 async def post(self, request: Request):

 success, result = await graphql(

 request.app.ctx.schema,

 request.json,

 context_value=request,

 debug=request.app.debug,

)

 status_code = 200 if success else 400

 return json(result, status=status_code)

As you can see, this is nearly identical to the simple version from before.
7.	 On this same Blueprint instance, we are going to place all of our startup logic. This

keeps it all in a convenient location and allows us to attach it to our application
instance all at once:

from ariadne import graphql, make_executable_schema

from world.common.dao.integrator import RootIntegrator

from world.blueprints.cities.integrator import
CityIntegrator

from world.blueprints.countries.integrator import
CountryIntegrator

from world.blueprints.languages.integrator import
LanguageIntegrator

Designing a GraphQL API 405

@bp.before_server_start

async def setup_graphql(app, _):

 integrator = RootIntegrator.create(

 CityIntegrator,

 CountryIntegrator,

 LanguageIntegrator,

 query=query,

)

 integrator.load()

 integrator.attach_resolvers()

 defs = integrator.generate_query_defs()

 additional = integrator.generate_additional_schemas()

 app.ctx.schema = make_executable_schema(defs, query,
*additional)

You may be wondering, what is an integrator, and what is all of that code doing? This is
where I am going to refer you to the repository for the specifics, but we will walk through
the concept here.

In my application example, an Integrator is an object that lives inside of a domain and
is the conduit to setting up a GraphQL schema that Ariadne can use.

In the GitHub repository, you will see that the simplest Integrator is for the
languages module. It looks like this:

from world.common.dao.integrator import BaseIntegrator

class LanguageIntegrator(BaseIntegrator):

 name = "language"

Next to it is a file called schema.gql:

type Language {

 countrycode: String

 language: String

 isofficial: Boolean

 percentage: Float

}

406 Implementing Common Use Cases with Sanic

It is then the job of RootIntegrator to marshall all of the various domains together
and generate the schema for Ariadne using both the dynamically generated schema and
the hardcoded schema, as in the preceding snippet.

We also need to create a place for our GraphQL query to start. A query might look
like this:

 async def query_country(

 self, _, info: GraphQLResolveInfo, *, name: str

) -> Country:

 executor = CountryExecutor(info.context.app.ctx.
postgres)

 return await executor.get_country_by_name(name=name)

A user creates a query and we go and fetch it from the database. The Executor here
works exactly as it does in hikingapp. Refer back to Chapter 9, Best Practices to Improve
Your Web Applications, and the code in the GitHub repository: https://github.com/
PacktPublishing/Python-Web-Development-with-Sanic/tree/main/
Chapter09/hikingapp. Therefore, with a query like this, we can now translate the
GraphQL query to an object:

{

 country(name: "Israel") {

 name

 region

 continent

 capital {

 name

 district

 }

 languages {

 language

 isofficial

 percentage

 }

 }

}

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/hikingapp
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/hikingapp
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/hikingapp

Designing a GraphQL API 407

With the power of GraphQL, our response should be this:

{

 "data": {

 "country": {

 "name": "Israel",

 "region": "Middle East",

 "continent": "Asia",

 "capital": {

 "name": "Jerusalem",

 "district": "Jerusalem"

 },

 "languages": [

 {

 "language": "Hebrew",

 "isofficial": true,

 "percentage": 63.099998474121094

 },

 {

 "language": "Arabic",

 "isofficial": true,

 "percentage": 18

 },

 {

 "language": "Russian",

 "isofficial": false,

 "percentage": 8.899999618530273

 }

]

 }

 }

}

408 Implementing Common Use Cases with Sanic

The way that Ariadne (and other GraphQL implementations) works is that you define a
strongly typed schema. With knowledge of that schema, you might end up with nested
objects. For example, the preceding Country schema might look like this:

type Country {

 code: String

 name: String

 continent: String

 region: String

 capital: City

 languages: [Language]

}

The Country type has a field called capital, which is a City type. Since this is
not a simple scalar value that easily serializes to JSON, we need to tell Ariadne how to
translate—or resolve—that field. Given the example on GitHub (https://github.
com/PacktPublishing/Python-Web-Development-with-Sanic/blob/
main/Chapter10/graphql/application/world/blueprints/countries/
integrator.py), it would be to query our database like this:

class CountryIntegrator(BaseIntegrator):

 name = "country"

 async def resolve_capital(

 self,

 country: Country,

 info: GraphQLResolveInfo

) -> City:

 executor = CityExecutor(info.context.app.ctx.postgres)

 return await executor.get_city_by_id(country.capital)

This is how we can follow the path between different objects. It is then the job of Ariadne
to piece all of these different queries and resolvers together to generate a final object to
return. This is the power of GraphQL.

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/blob/main/Chapter10/graphql/application/world/blueprints/countries/integrator.py
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/blob/main/Chapter10/graphql/application/world/blueprints/countries/integrator.py
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/blob/main/Chapter10/graphql/application/world/blueprints/countries/integrator.py
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/blob/main/Chapter10/graphql/application/world/blueprints/countries/integrator.py

Building a Discord bot: running Sanic from another service 409

You may have also noticed a flaw. Because every resolver is meant to operate
independently and to handle the conversion of a single field into a value, you can very
easily overfetch data from the database. This is especially true if you have an array of
objects that all resolve to the same database instance. This is known as the n+1 problem.
While it is not a unique problem to GraphQL, the design of many GraphQL systems
makes it acutely prone to it. If you ignore this problem, while responding to a single
request your server might ask the database for the same information over and over again
even though it should otherwise already have it.

Many applications suffer from this issue. They rely upon many more database queries
than should be needed. All of this overfetching adds up and reduces the performance
and efficiency of web applications. While you should certainly be aware of this issue and
cognizant as you develop any application, I feel it is something you must particularly plan
for with GraphQL implementations since they thrive off of simplified resolvers. Therefore,
the biggest piece of advice I can provide when building one of these applications is to
think about in-memory, request-based caching. That is to say that caching objects on a
request instance might save a ton of SQL queries.

I encourage you to take some time to review the rest of the code in the GitHub repository.
There are some helpful patterns that could be usable in a real-world application. Since
they are not necessarily related to Sanic or implementing GraphQL in Sanic, we will leave
the discussion here for now and turn to another popular use case with Sanic: chatbots.

Building a Discord bot: running Sanic from
another service
At some point early in 2021, I was convinced by a few people in the Sanic community
that we needed to move our primary discussion and community-building tool. We had
a somewhat underutilized chat application and also the community forums, which were
mainly used for longer-style support questions. Discord is a more intimate conversation
than what other options could offer. When it was suggested to me that we use Discord,
I was a little hesitant to add another application to my tool belt. Nevertheless, we went
forward with it. If there are Discord fans out there reading this book, then you do not
need me to explain to you its benefits. For everyone else, Discord is a very easy-to-use
and engaging platform that really facilitates the types of discussion helpful to our corner
of the internet.

410 Implementing Common Use Cases with Sanic

As I learned more about the platform, the biggest thing that stuck out to me was that
chatbots are everywhere. There is an incredible subculture I was unaware of relating to
the building of bots. The vast majority of these bots are built using SDKs, which are open
source projects that wrap much of the client HTTP interactions needed to interface with
Discord's API. There are entire ecosystems and frameworks built up on top of this to help
developers make engaging bots.

Naturally, one of the next questions that gets asked all the time is: how can I integrate
Sanic with my bot application? We are going to try and do that.

But first, I want to point out that while the example we are going to build uses Discord,
the principles are in no way connected to running this on Discord. The core of what we
are about to do is to run some asyncio process and reuse that loop for running Sanic.
This means that you could in fact use this exact same technique to run nested Sanic
applications. We will see what that looks like in the next section.

Building a simple Discord bot
I am not an expert with Discord. There is an entire realm of development that occurs
based upon this platform and I will not pretend to be an authority. Our goal here is to
integrate a bot application with Sanic. To do this, we are going to stand up a basic Discord
bot using nextcord. If you are not familiar with nextcord, as of the time of the writing
this book, it is an actively maintained fork of the abandoned discord.py project. If
you are also not familiar with that, no worries. The simple explanation is that these are
frameworks used to build a bot application on Discord. Similar to how Sanic provides
tools for HTTP communications, these frameworks provide tools to communicate with
Discord.

Let's take a minute to consider the basic hello world application from the documentation:

import nextcord

client = nextcord.Client()

@client.event

async def on_ready():

 print(f'We have logged in as {client.user}')

@client.event

async def on_message(message):

 if message.author == client.user:

Building a Discord bot: running Sanic from another service 411

 return

 if message.content.startswith('$hello'):

 await message.channel.send('Hello!')

client.run('your token here')

To be honest, this looks similar to what we built in Sanic. It starts with an application
instance. Then, there are decorators that wrap handlers. The last thing we see is
client.run.

This is the key to what we want to build. This run method is going to create a loop
and run it until the application is shut down. Our job now is to run Sanic inside of this
application. This means we will not be using the Sanic CLI to stand up our application.
Instead, we will run the application using this:

$ python bot.py

Let's get started:

1.	 Start by copying the minimal bot example from the documentation into bot.py.
You can grab the code here: https://nextcord.readthedocs.io/en/
latest/quickstart.html

2.	 Create a simple Sanic application as a proof of concept:

from sanic import Sanic, Request, json

app = Sanic(__name__)

@app.get("/")

async def handler(request: Request):

 await request.app.ctx.general.send("Someone sent a
message")

 return json({"foo": "bar"})

@app.before_server_start

async def before_server_start(app, _):

https://nextcord.readthedocs.io/en/latest/quickstart.html
https://nextcord.readthedocs.io/en/latest/quickstart.html

412 Implementing Common Use Cases with Sanic

 await app.ctx.general.send("Wadsworth, reporting for
duty")

Nothing fancy is happening so far. We have a single handler that will send off a
message in a listener before the server starts. We also have a single handler that will
also trigger a message to our Discord server when the route endpoint is hit.

3.	 To integrate this with the Discord bot, we will use the on_ready event to run our
Sanic server:

from server import app

@client.event

async def on_ready():

 app.config.GENERAL_CHANNEL_ID = 906651165649928245

 app.ctx.wadsworth = client

 app.ctx.general = client.get_channel(app.config.
GENERAL_CHANNEL_ID)

 if not app.is_running:

 app_server = await app.create_server(port=9999,
return_asyncio_server=True)

 app.ctx.app_server = app_server

 client.loop.create_task(runner(app_server))

Important Note
For the sake of simplicity, I am just importing from the server import app.
That is because it is a super simple implementation. In actuality, if I were
building a proper application, I would not use this pattern. Instead, I would
use the factory pattern discussed repeatedly throughout this book and build
my application from a callable. This is to help with import management and to
avoid passing global scope variables.

A few things are happening here that we need to discuss. This is the syntax used to
tell nextcord to run this handler when the application starts up and is connected
to Discord, and therefore "ready." But, according to their documentation, this event
could be triggered multiple times. That would be a mistake to try and run Sanic
multiple times since it would fail to properly bind to a socket.

Building a Discord bot: running Sanic from another service 413

To avoid this, we look at the app.is_running flag to determine whether we
should run this again.

What happens next is that we are going to manually create a Sanic server. After
that—and this part is critical—we pass that app server instance into a new task.
Why? Because if we ran Sanic from the current task, it would block indefinitely,
and the Discord bot would never actually run. Since we want them both to run
concurrently, it is imperative that we run Sanic from another asyncio task.

4.	 Next, we need to create that runner operation. The job here is to run the created
server. This means that we need to manually trigger all of the listener events. It
also means that we need to perform some shutdown of connections. Because we
are operating at a much lower level than normal, you will be required to be more
hands-on:

async def runner(app_server: AsyncioServer):

 app.is_running = True

 try:

 await app_server.startup()

 await app_server.before_start()

 await app_server.after_start()

 await app_server.serve_forever()

 finally:

 app.is_running = False

 app.is_stopping = True

 await app_server.before_stop()

 await app_server.close()

 for connection in app_server.connections:

 connection.close_if_idle()

 await app_server.after_stop()

 app.is_stopping = False

The job here looks simple. It starts the application, runs some listener events, and then will
listen forever until the application shuts down. Before completely exiting, we need to run
some cleanup operations inside the finally block.

414 Implementing Common Use Cases with Sanic

Once you have all of this implemented, you can run it as we said before by executing
the bot.py script. You should now see this message in your Discord server that was
triggered by Sanic during the application startup life cycle.

Figure 10.4 – Screenshot of our Discord bot sending a message

Next, you should be able to hit your single endpoint and see another message:

Figure 10.5 – Screenshot of our Discord bot sending a message

In this example, we are running Sanic from another service: the Discord bot service. I
generally do not like to recommend this approach. It is easy to mess up by leaving out
critical events, or improperly handling operations. The solution that we just saw has an
incomplete shutdown mechanism because it does not include any sort of handling for the
graceful shutdown of existing connections. Running a web server manually is not trivial,
so I would rarely recommend this. People try it often, so it is important to see some of
the considerations and how it could be done. However, since I have seen even highly
experienced senior developers get tripped up trying this, it might be better to stay away
from this pattern unless it is an absolute requirement.

The complete example is in the GitHub repository: https://github.com/
PacktPublishing/Python-Web-Development-with-Sanic/tree/main/
Chapter10/wdsbot/from_bot.

This leads to the next question: instead of running Sanic inside the Discord bot, can we
run the bot inside Sanic? We will answer this question for you in the following section.

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter10/wdsbot/from_bot
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter10/wdsbot/from_bot
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter10/wdsbot/from_bot

Building a Discord bot: running Sanic from another service 415

Running the Discord bot from Sanic
Before we get started, let's consider what client.run is doing. It does whatever internal
instantiation is needed to run its service, including making a connection to the Discord
server. Then, it enters into a loop to asynchronously receive and send messages to the
Discord server. This sounds very similar to what the Sanic server does. And, therefore, we
can do the exact same thing that we just did, except in reverse:

1.	 Take the code we just built and remove the on_ready event from the bot. Your
./bot.py should now look like this:

import nextcord

client = nextcord.Client()

@client.event

async def on_message(message):

 if message.author == client.user:

 return

 if message.content.startswith("$hello"):

 await message.channel.send("Hello!")

2.	 Add a startup time listener to your Sanic application that starts the bot in a new
background task:

@app.before_server_start

async def startup_wadsworth(app, _):

 app.ctx.wadsworth = client

 app.add_task(client.start(app.config.DISCORD_TOKEN))

 while True:

 if client.is_ready():

 app.ctx.general = client.get_channel(app.
config.GENERAL_CHANNEL_ID)

 await app.ctx.general.send("Wadsworth,
reporting for duty")

 break

 await asyncio.sleep(0.1)

416 Implementing Common Use Cases with Sanic

In this listener, we are also doing the same thing we did in the previous example.
We set up app.ctx.wadsworth and app.ctx.general so that they are
easily accessible for use later on in the build. Also, we want to send a message when
Wadsworth is online and ready to work. Yes, we could do this from the bot using
on_ready as before, but we can also do this from Sanic. In the preceding code,
we create a loop to check for the state of the bot. Once it is ready, we will send the
message and close out the loop.

3.	 The next thing we need to make sure to do is to properly close the bot connection.
We will do that in a shutdown listener:

@app.before_server_stop

async def shutdown(app, _):

 await client.close()

Now, you have full capability to run your bot from Sanic. This should behave exactly as
before, but you have the full power of running your application with the Sanic CLI as we
have throughout the rest of this book. Go ahead and fire it up now:

$ sanic server:app -p 7777 --debug

You can find the source code for this example in the GitHub repository: https://
github.com/PacktPublishing/Python-Web-Development-with-Sanic/
tree/main/Chapter10/wdsbot/from_sanic.

This pattern of nesting other asyncio applications has broader applicability than
just running Discord bots and Sanic together. It also allows us to run multiple Sanic
applications in the same process, albeit on different ports. This is what we are going to
do next.

Creating an HTTP to HTTPS proxy: nesting
Sanic inside Sanic
Running Sanic from within Sanic seems a bit like those Russian nesting dolls. While it
may initially seem like an amazing thought experiment, it does have some real-world
applicability. The most obvious example of running two instances of Sanic together like
this would be to create your own HTTP to HTTPS proxy. That is what we are going to
do now.

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter10/wdsbot/from_sanic
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter10/wdsbot/from_sanic
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter10/wdsbot/from_sanic

Creating an HTTP to HTTPS proxy: nesting Sanic inside Sanic 417

The caveat that I want to add to this is that this example will use a self-signed certificate.
That means that it is not suitable for production use. You should look at the Securing your
application with TLS section in Chapter 8, Running a Sanic Server, for details on how to
properly secure your application using TLS.

To begin, we will create two servers. For the sake of simplicity, one will be server.py
(your main application running HTTPS over port 443) and the other will be redirect.
py (the HTTP to HTTPS proxy running on port 80).

1.	 We will start by creating our self-signed certificate. If you are on a Windows
machine, you might need to look up how to do this on your OS:

$ openssl req -x509 -newkey rsa:4096 -keyout key.pem -out
cert.pem -sha256 -days 365

2.	 Store those files in a ./certs directory.
3.	 Next, we start building our Sanic application in server.py with a simple

factory pattern. The code for this build is available at https://github.com/
PacktPublishing/Python-Web-Development-with-Sanic/tree/
main/Chapter10/httpredirect:

from sanic import Sanic

from wadsworth.blueprints.view import bp

from wadsworth.blueprints.info.view import bp as info_
view

from wadsworth.applications.redirect import attach_
redirect_app

def create_app():

 app = Sanic("MainApp")

 app.config.SERVER_NAME = "localhost:8443"

 app.blueprint(bp)

 app.blueprint(info_view)

 attach_redirect_app(app)

 return app

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter10/httpredirect
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter10/httpredirect
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter10/httpredirect

418 Implementing Common Use Cases with Sanic

Tip
The first thing that I would like to point out is the usage of SERVER_NAME.
This is a configuration value that is unset out of the box in Sanic. It is usually
something that you should use in all of your applications. It is a helpful
value used by Sanic behind the scenes in a few locations. For our purpose in
this example, we want to use it to help us generate URLs further down the
road with app.url_for. The value should be the domain name of your
application, plus the port (if it is not using the standard 80 or 443). You
should not include the http:// or https://.

What is attach_redirect_app? This is another application factory. But it
will work a little bit differently since it will also act to nest the redirect app inside
of MainApp.

The last thing worth pointing out is that there is the Blueprint Group bp that we will
attach all of our Blueprints to. Except, info_view will be separate. More on that in
just a bit.

4.	 We begin the second factory pattern, attach_redirect_app, at redirect.
py:

def attach_redirect_app(main_app: Sanic):

 redirect_app = Sanic("RedirectApp")

 redirect_app.blueprint(info_view)

 redirect_app.blueprint(redirect_view)

 redirect_app.ctx.main_app = main_app

We are attaching two views—the same info_view that we just attached to
MainApp, and the redirect_view that will do our redirection logic. We will
look at that once we are done with the factory and server here in redirect.py.

Also, please notice that we are attaching main_app to redirect_app.ctx for
later retrieval. As we have learned, passing objects through ctx is the preferred
method for handling objects that need to be referenced throughout an application.

5.	 Next, we will add a few listeners to MainApp. This is going to happen inside of the
attach_redirect_app factory. There are some software architects that may
dislike my nesting of logical concerns together. We are going to silence the critics
and do it anyway because what we are after is necessarily tightly coupled logic that
will be easy for us to debug and update in the future:

def attach_redirect_app(main_app: Sanic):

 ...

Creating an HTTP to HTTPS proxy: nesting Sanic inside Sanic 419

 @main_app.before_server_start

 async def startup_redirect_app(main: Sanic, _):

 app_server = await redirect_app.create_server(

 port=8080, return_asyncio_server=True

)

 if not app_server:

 raise ServerError("Failed to create redirect
server")

 main_app.ctx.redirect = app_server

 main_app.add_task(runner(redirect_app, app_
server))

Here, we are dropping down into some lower-level operations of the Sanic server.
We basically need to mimic what the Sanic CLI and app.run do, except inside the
confines of the already existing loop.

When you run a Sanic server instance, it will block the process until shut down. But
we need to have two servers running. Therefore, the RedirectApp server needs
to be run in a background task. We accomplish that by pushing off the work of
running the server by using add_task. We will come back to the runner when we
are done with the factory.

6.	 RedirectApp also needs to be turned down. Therefore, we attach to MainApp
another listener to do that:

def attach_redirect_app(main_app: Sanic):

 …

 @main_app.after_server_stop

 async def shutdown_redirect_app(main: Sanic, _):

 await main.ctx.redirect.before_stop()

 await main.ctx.redirect.close()

 for connection in main.ctx.redirect.connections:

 connection.close_if_idle()

 await main.ctx.redirect.after_stop()

 redirect_app.is_stopping = False

420 Implementing Common Use Cases with Sanic

This includes all of the major elements you need for turning down Sanic. It is a little
bit basic and if you are implementing this in the real world, you might want to take
a look into how the Sanic server performs a graceful shutdown to close out any
existing requests.

7.	 We now turn to runner, the function that we passed off to be run in a background
task to run RedirectApp:

async def runner(app: Sanic, app_server: AsyncioServer):

 app.is_running = True

 try:

 app.signalize()

 app.finalize()

 ErrorHandler.finalize(app.error_handler)

 app_server.init = True

 await app_server.before_start()

 await app_server.after_start()

 await app_server.serve_forever()

 finally:

 app.is_running = False

 app.is_stopping = True

Again, what we are accomplishing are some of the high-level steps that Sanic takes
under the hood to stand up a server. It does run before_start slightly out
of order. Typically, that would happen before create_server. The impact is
minimal. Since our RedirectApp does not even use any of the event listeners,
we could do without before_start and after_start (and the shutdown
events too).

8.	 Now to the important part of the application—the redirection view:

from sanic import Blueprint, Request, response

from sanic.constants import HTTP_METHODS

bp = Blueprint("Redirect")

@bp.route("/<path:path>", methods=HTTP_METHODS)

async def proxy(request: Request, path: str):

Creating an HTTP to HTTPS proxy: nesting Sanic inside Sanic 421

 return response.redirect(

 request.app.url_for(

 "Redirect.proxy",

 path=path,

 _server=request.app.ctx.main_app.config.
SERVER_NAME,

 _external=True,

 _scheme="https",

),

 status=301,

)

This route is going to be fairly all-encompassing. It basically will accept every
endpoint that remains unmatched, irrespective of the request's HTTP method. This
is accomplished using the path parameter type and passing the HTTP_METHODS
constant to the route definition.

The job is to redirect the exact same request to the https version. You could do
this a few ways. For example, the following works:

f"https://{request.app.ctx.main_app.config.SERVER_NAME}
{request.path}"

However, for me and my brain, I like to use url_for. If you prefer the alternative,
you do you. The redirect function is a convenient method for generating the
appropriate redirection response. Since our use case calls for a redirection from
http to https, we use a 301 redirect to indicate that this is a permanent (and not
temporary) redirection. Let's see it in action.

9.	 To run our application, we need to use the TLS certificates that we generated:

$ sanic wadsworth.applications.server:create_app \

 --factory --port=8443 \

 --cert=./wadsworth/certs/cert.pem \

 --key=./wadsworth/certs/key.pem

We are running the application again using the CLI. Make sure to use --factory
since we are passing it a callable. Also, we are telling Sanic where it can find the
certificate and key that were generated for the TLS encryption.

422 Implementing Common Use Cases with Sanic

10.	 Once that is running, we jump into a terminal to test with curl. First, we will make
sure that both applications are accessible:

$ curl http://localhost:8080/info

{"server":"RedirectApp"}

That looks right.
$ curl -k https://localhost:8443/info

{"server":"MainApp"}

This also looks right. Please note that I included -k in the curl command. This
is because of the self-signed certificate we created. Since it is not from an official
trusted certificate authority, curl will not automatically issue the request until you
specifically tell it that the certificate is okay.

Something that is really interesting about this is that the /info endpoint is not
defined twice. If you look in the source code, you will see that it is a single blueprint
that has been applied to both applications.

11.	 And now we come to the final test—the redirection:

$ curl -kiL http://localhost:8080/v1/hello/Adam

HTTP/1.1 301 Moved Permanently

Location: https://localhost:8443/v1/hello/Adam

content-length: 0

connection: keep-alive

content-type: text/html; charset=utf-8

HTTP/1.1 200 OK

content-length: 16

connection: keep-alive

content-type: application/json

{"hello":"Adam"}

Make sure to notice that we are hitting port 8080, which is RedirectApp. We again use
-k to tell curl to not worry about certificate validation. We also use -L to tell curl to
follow forward any redirections. Lastly, we add -i to output the full HTTP responses so
that we can see what is going on.

Summary 423

As you can see from the above response, we generated an appropriate 301 redirection and
sent the user on to the https version, which greeted me so nicely by my first name.

And that's it: a simple HTTP to HTTPS redirection application running Sanic
inside Sanic.

Summary
What I love about building web applications is the chance to build solutions to problems.
For example, earlier in this chapter, we had the problem of wanting to run a JavaScript
development server from Sanic. If you put five different developers on that problem, you
might end up with five different solutions. I believe that building web applications is on
some level an art form. That is to say that it is not a strict field that must be solved in
only one obvious way. Rather, what is obvious can only be determined given the unique
circumstances and parameters surrounding your build.

Of course, what we have built here is just the tip of the iceberg for what is possible with
Sanic. The choices displayed are both some popular use cases and also some use cases that
might not be so straightforward. I hope that you can take some of the ideas and patterns
and put them to good use. By reading this book and internalizing the examples in this
chapter, I hope that I have helped to stimulate the creative ideas of application building
for you.

If we mashed up all of the ideas from this chapter into a single application, you would
end up with a PWA powered by Sanic using distributed websocket feeds and a GraphQL
API that also runs a Discord bot. My point is that creating features to implement in
your application cannot be done in a vacuum. You must consider other parts of your
architecture when deciding on how to build something. This chapter should help you see
some of my thought processes when I tackled these problems.

As we near the conclusion of this book, the last thing we need to do is actually pull
together a lot of what we know into a single deployable application. That is what we'll do
next, in Chapter 11, A Complete Real-World Example, where we'll build a fully functional,
production-grade Sanic application.

11
A Complete

Real-World Example
I remember clearly the feeling I used to get in college and law school when walking into
the classroom on exam day. I do not mean the sense of anguish and panic someone might
feel when they are unprepared. Rather, I mean the build-up of excitement to tackle the
unknown and solve difficult problems. It is the exhilarating feeling after a semester of
learning and studying that I would get as I prepared to face what lies ahead. Armed with
the confidence from my studies and preparations, I clearly remember sitting with a pen in
hand looking forward to the challenge of proving myself. I feel this way every time that I
begin a brand-new web application project.

With the knowledge and practice of the previous chapters, I hope you feel this too. I hope
that you are feeling excited and empowered. You should be confident that the material we
have covered has equipped you with the tools that you need to build, deploy, and maintain
a web application. You indeed are ready to build something awesome.

426 A Complete Real-World Example

Of course, web application development is not truly a test, but if we did want to draw a
comparison, then it would be more like an open-book exam. It is okay to feel anxious or
nervous, or even unsure and underprepared on some topics. Anytime that you need to
reference material, look it up. The most important key to success is knowing how to tackle
a problem and not memorizing the actual code needed to solve it. I urge you to prepare
yourself with tools at the ready: keep this book next to your keyboard, become familiar
with the Sanic User Guide (https://sanic.dev/en/), and join the Sanic community
forums or Discord server to ask questions or float ideas.

In the end, the person scoring your exam is you, so there are no right or wrong answers.
Way back in Chapter 1, Introduction to Sanic and Async Frameworks, we looked at one of
the maxims from the Zen of Python and redefined it: "There should be one … obvious way
for you to do it." This is a very important concept that I hope you can internalize and apply
throughout your own careers.

Although I have been building web applications since the late 1990s, I began my career as
a practicing attorney and only later changed professions to software engineering. When
people learn this about me, their first question will often be, "How?" I agree that it does
not outwardly seem like a standard career path, since it is not an obvious progression.
But for me, it was. What I loved about lawyering is closely aligned with what I love about
web development: problem-solving. My career has been a journey that has admittedly
taken twists and turns that I could not and did not foresee from the beginning. However,
from my perspective, the progression has been entirely logical, consistent, and ongoing. I
encourage you to take a similar feeling and approach with you on your journey. You plan,
you execute, and you adapt to the ever-changing circumstances. Most importantly, you
constantly evaluate your options and choose or invent the path that makes sense for your
individual needs and circumstances.

In this final chapter, I hope to bring together everything learned from the earlier chapters
and present you with a final working web application. The web application presented in
this chapter is not the only way to build, but it is the obvious way for me to build. With my
25 years of experience, I hope that there is some wisdom and useful patterns for you to use
in building out your web applications. But my solutions may not meet your needs. Please
feel free to reuse, improve, and ignore whatever code I have shared with you.

We will discuss the following main topics in this chapter:

•	 The process of building a web application

•	 Highlighting select features of the Booktracker

https://sanic.dev/en/

Technical requirements 427

Technical requirements
This chapter does not introduce any new technologies. All of the source code is available
at https://github.com/PacktPublishing/Web-Development-with-
Sanic/tree/main/Chapter11. More importantly, the final working application is
hosted online and fully functional at https://sanicbook.com. Please feel free to
poke around on the application to see how it works.

The process of building a web application
Now that all of the preparations and learning is complete, it is time to write the final
web application. Just like the big exam at the end of a semester of hard work and study,
it is time to prove what we have been working toward. I always did best in exams when
I entered the classroom with a process in my head. I may not know what challenges or
problems would await me, but I knew the process that I would use to break apart the
issues on my way toward a solution. For me, I found a direct correlation between having
a defined process for approaching the course's subject matter and the ultimate grade that
I received on the exam.

We need a process. Over the years, I have developed a process that I like to take when
building a web application. It is broken down into eight steps:

1.	 Define the functionality and workflow.
2.	 Decide on the technology stack.
3.	 Architect the data structures.
4.	 Plan and build the User Interface (UI).
5.	 Build the application infrastructure.
6.	 Prototype the minimally viable backend features.
7.	 Create continuous integration, deployment, and automation tools.
8.	 Iterate, iterate, iterate.

These steps are a starting point and more of a suggested course of action. You will often
find while completing one of the steps that you may need to revisit an earlier one. This
is okay. For example, in step 2, we need to decide upon the technology stack for our
application. That does not mean that we must foresee every possible component from
the beginning. Of course, if a need arises to add some new technology, then repeat the
step and add the technology. Similarly, I try to build as much of the frontend UI through
mockups or working code as possible. This helps me to evaluate all of the use cases that
may arise. I also know that I will need to come back and revise the work.

https://github.com/PacktPublishing/Web-Development-with-Sanic/tree/main/Chapter11
https://github.com/PacktPublishing/Web-Development-with-Sanic/tree/main/Chapter11
https://sanicbook.com

428 A Complete Real-World Example

Some people might take the approach that their design stage must cover every possible
edge case. They need to plan for all contingencies, and the entire scope of the project
must be defined at the beginning. In my opinion, this is both impossible and entirely
impractical. Even if you can anticipate every feature that you need to build and can,
therefore, predetermine all of the planning needed to account for it, this inflexible
approach is destined for failure. The needs of an application are constantly changing, and
therefore, the design is a living and evolving organism. It must be adaptable, and you must
be flexible enough to realize that, sometimes, your early design decisions will need to be
reevaluated.

Of course, this also means that, sometimes, your early design decisions can have a large
impact on later choices. You will often find that your choices will need to account for
something that could have been decided differently: "If only I had used X instead of Y." My
caution to you is to not second-guess these choices. Instead, embrace them as a challenge
to overcome. Building within the confines of earlier decisions will help you refine your
own decision-making skills for the next web application process.

We will take a walk through each step of my process to see what the major goals and
milestones are that we need to pass on our way toward a completed project. The very first
set of examples in this book in Chapter 2, Organizing a Project, relate to a discussion about
how to organize a project. Our theoretical use case is an application that I am calling the
Booktracker. The remainder of this chapter will focus on the building of this application.
There is a fully developed application with the source code available at https://
github.com/ahopkins/sanicbook. Furthermore, I have gone through and
deployed this application live, meaning that you can interact with it and see how it works.
It can be accessed here: https://sanicbook.com.

Step 1—Define the functionality and workflow
The very first step in building an application seems axiomatic: you must decide what
you want to build. What I suggest that we do is dig in a little deeper to flesh out the idea.
It may be tempting to skip this step, especially if you have a general idea in your head
of what you want to build. You do—after all—know what you want to build, so your
mind is already spinning with the specifics of how you will build your web application. I
personally take a lot of enjoyment from the problem-solving aspect of web development.
Therefore, answering the how does it work? question is one of the most fun parts for me.
My mind likes to jump ahead to crafting solutions, which means I may skip over the part
where I actually define the problem.

https://github.com/ahopkins/sanicbook
https://github.com/ahopkins/sanicbook
https://sanicbook﻿.com

The process of building a web application 429

We will slow down and try to take a methodical approach to define the problem that
our web application might solve. Let's say that you and some friends share a favorite
hobby: extreme ironing (yes, it's a real thing—go search it online). You have decided that
you want to enable fellow extreme-ironers from all over the world to share photos and
experiences. Before we can figure out how we are going to store images, there are two
basic questions that you must answer:

•	 What is my application?

•	 Why do people need or want to use it?

By asking and answering these questions, you can identify the problem that your web
application will solve. It is only by clearly knowing the problem that you can develop a
properly suited solution. It is now your job to stay focused on that problem as you begin
to flesh out the idea with features. I would suggest that you make two lists of features right
now. The first list is the set of features without which your application has no use. The
second list is reserved for everything else. Since this second list is defined as the alternative
to the first, we will focus upon the first list.

At the beginning of your project, you will define a hyper-focused list of features that serve
as a starting point. These features are going to be the first ones that you develop to get the
application off the ground and organized. I am not suggesting that you must go to market
with a minimal product. You may be familiar with the concept of a Minimally Viable
Product (MVP). The features required to get the application off the ground are related
to the MVP but are not the same. An MVP is a concept commonly used in software
development where you launch a product with the least amount of features needed to
attract early users and begin a feedback loop with them. This is important and is, of
course, something you should be working toward. This process helps you work toward
that MVP, but the first list of features that we want to develop is only a small subset of
it. The second list should really be split into two lists: items that belong in the MVP and
wish-list items. There are, therefore, three lists of features that need to be created:

•	 Features that are minimally necessary to make the application functional

•	 Features that fulfill the requirements of an MVP

•	 Features that are for future development (often called the wish list)

430 A Complete Real-World Example

The first list of features that I would like you to create will be narrowly defined and
should be the most basic set of features of the MVP. Your initial feature list is merely
the compilation of the items that you need to make the application operational. If you
remove one feature, then the application cannot even start to run. This is what the first list
should contain. There is an extreme amount of power in being able to build something,
then stand it up, and actually see and interact with it. Once you achieve this level, it
then becomes much easier to iterate over your feature list. After seeing an operational
web server, it becomes much easier to work on it. When we get to building features in
step 6, your first accomplishment will be to build the first list. Only after that will you get
to the second list.

It is also worth mentioning that the second list should itself only be what is needed
to reach your MVP. If you have an idea of something you might like to build, put that
away on a third list. If it does not fulfill the need of the MVP, then you need to actually
have a launched web application to decide whether it is even something worth building.
For example, maybe you think it would be a really awesome feature to allow people to
live-stream their extreme-ironing expeditions. That may sound nice, but it also may be
a lot of work for something that does not meet the community's needs. Focus upon the
simple use cases for the second list before tackling the hard use cases.

Answering questions about the Booktracker application
When building out the Booktracker, I needed to ask myself these two questions so that I
knew what problem I wanted to solve. Let's ask them now and see how we can define the
problem that the Booktracker is meant to solve:

•	 Q: What is my application?

The Booktracker is a web-based portal and API that enables users to keep track of
the books that are in their personal collection, that they would like to read, or that
they have already read. Okay, so we know that the application will center around
books, and the idea of tying book ownership or readership is paramount. I have
also defined that the application should both be usable from a web portal and that
I want users to be able to directly integrate with the API. Let's move on to the next
question, and then we can start to look at some features.

•	 Q: Why do people need or want to use it?

Users will use the Booktracker to maintain digital lists of the books in their personal
library, books that they would like to borrow or purchase to read in the future, and
books that they may have lent to their friends so that they know where all of their
books are.

The process of building a web application 431

Aha! Now, we are starting to see the beginning of some features that we will need. We will
need to have things such as the following:

•	 Login and authentication, perhaps with social media to make it easier.

•	 Adding and updating books.

•	 Tracking the read/unread status.

•	 Tracking the ownership and location of a book, or who has borrowed a book.

•	 Perhaps we also need some social management, since users might be interacting
with other users; this might even include some discussion forums or live chat.

Our list is starting to lose a little focus. I think that it is okay to define a long list of
features, but you should be realistic about what is necessary and what is required. For
example, I cannot launch my application if users cannot register, log in, and add books.
This would be something that is a part of my MVP. Creating a social network does not
seem so critical for the first stage, and this should probably appear on the third list.

So, what is the list of features that should be on the second list? It is common to think
of features within the FRUD system, which stands for function, reliability, usability,
and delightfulness. Features will primarily fall into one of these categories. They can be
arranged in a pyramid, as shown in Figure 11.1:

Figure 11.1 – Features displayed in the FRUD system, with the MVP shown in black

When building an MVP, you must pick features that touch all of the categories. If you
instead focus just on the base layer of the pyramid (functional features), then you will
have a hard time attracting users. The pyramid on the left in Figure 11.1 shows an MVP
where the application only focuses on function. This application would be completely
unusable. Instead, by selecting a small number of features from each of the categories, the
application can be something that attracts users.

432 A Complete Real-World Example

But what are the features that an application needs to start? What are the features that
should be on my first hyper-focused list of to-dos on the first list? I would suggest that
those are a subset of the functional and reliable features of your MVP. They are the items
needed to run the most basic iteration of the web application. Even before login and even
before being able to add a book, I think that the first feature we need to build is to be able
to display a list of books. This is where the development process will begin. I will start by
building a database to store books and a method to display them to the user.

But what about login? A social login does seem like it might be extraneous, and perhaps
that is something that should wait until after the MVP. It clearly is a feature that belongs
in one of the top categories of the pyramid. Oftentimes, it is probably advisable to leave
social sign-on features until after the MVP. However, the reason that I want to have
a social login is so that I do not need to develop a system for registering, storing, and
validating passwords. Therefore, for my application, that will be an item on the second list.
My lists now look like this:

Table 11.1 – The list of features for the Booktracker application

Moving to the next step, it is time for me to decide on my technology stack.

Step 2—Decide on the technology stack
The next step is to decide on the technology stack. You must explore the technologies
that will be used to build the application and loosely how they will function together. A
technology stack is the list of tools that are used to build the application. For example,
deciding that your backend application will be powered with a Python asynchronous web
application called Sanic is part of your stack. What other technologies are needed?

The process of building a web application 433

You will need to decide how users are going to interact with the application. Will there
be a frontend web UI? Will it power a mobile application? Or, perhaps, will it be accessed
by other applications? Think about what you need to use to enable the type of user
interactions you are looking to build. You also need to think about the technologies that
are needed to power the set of features that you want. One of the most critical components
of a web application is, of course, the database or storage engines that will be needed.
Other important parts of the stack are the tools that may be used to monitor and maintain
it. Of course, these features can always be added later. But if you know that you want to
use a specific tool for tracking your logs or performing application tracing, perhaps you
should plan for it upfront.

Building a stack for the Booktracker
I know that the application will be powered by Sanic, so that becomes the first item in
my stack. I also know that I want users to be able to interact via a Web API but also by
accessing a frontend browser-based application. Therefore, my stack should include a web
UI, but it also probably needs an OpenAPI Specification (OAS) that helps anyone who is
interacting directly with the API.

How should I build these two frontend components? My personal favorite framework
for frontend applications is Svelte, so I will use that. As for the OAS, I will use Sanic
extensions, which will help me to easily build and document the API. While thinking
more about the frontend, I also know that I am going to want to make it look attractive
and presentable. There are a lot of great CSS frameworks out there to help jump-start
a platform. The Booktracker uses Bulma (https://bulma.io/) because it is both
attractive and easy to work with.

For storage, I think that most of the data that I need is highly relational—that is to
say that objects in my datastore will relate to each other through ordinary foreign-key
relationships. Since I am most comfortable using PostgreSQL for this type of data, that is
what I will use. However, I also foresee the need to use more transient data for caching, so
I will also include a Redis backend.

I decided that I do not want to handle managing passwords on my own. First of all, it
would be much simpler for the user if they do not need to create and remember yet
another login. That is certainly a more delightful experience. Second, it is also less of a
liability for me if there is a data breach at some point. Of course, I plan to take reasonable
steps to secure the application, but it is one more precaution I can take by not ever
needing to deal with passwords to begin with. Because I need to factor in how users will
interact and log in to my application via GitHub, that should be added to my stack and
flow chart.

https://bulma.io/

434 A Complete Real-World Example

The technology stack so far looks like this:

•	 Bulma (CSS)

•	 Svelte (JS)

•	 Sanic Extensions (OpenAPI)

•	 Sanic (Python)

•	 GitHub (authentication)

•	 PostgreSQL

•	 Redis

It is also helpful at this point to start creating some flow charts. These will serve both
as a visual representation of my application and help to develop the concept of what
needs to be built. Remember, this is an iterative process, so what I create now can always
be revised later.

I might create a flow chart of the Booktracker that looks like this:

Figure 11.2 – A flowchart of the Booktracker stack

One thing to note is the directions of the arrows. These are meant to show the direction in
which requests for information flows. A user requests information from the API, which,
in turn, needs to request information from the database. It's worth noting that GitHub will
both push and pull information from the web application.

The process of building a web application 435

Step 3—Architect the data structures
It is a very helpful step to start thinking about what types of objects your application will
deal with. If you are dealing with extreme ironing, you might need to think about photos
and locations. If you are building a restaurant review system, you will need restaurants,
patrons, and menu items. Oftentimes, these types of data structures will also be some of
the first endpoints that you need to build.

Designing data for the Booktracker
For the Booktracker, the most obvious three entities that I can think of are users, books,
and authors. When I actually look at my physical bookshelf, however, I see that I also have
a lot of books that belong to a similar series of books, and therefore, they are arranged to
sit next to each other. I will need to think of a way to tie books together.

The schema that I have ultimately decided that will work for my application looks like this:

Figure 11.3 – A schema for the Booktracker database

436 A Complete Real-World Example

There is perhaps little that is surprising going on in this simple schema between users,
authors, books, and series. But, there were a few interesting decisions that I needed to
make. For example, what if both you and I are using the Booktracker and we both own the
same book? Let's call that book Python Web Development with Sanic, or PyWDS for short.
How many instances of PyWDS should be in the database—one or two? From a user's
perspective, what is important is that they can control their relationship to the book. As
the operator of the application, it might be helpful to have a single instance of PyWDS
so that I know how many users across the platform have it on their shelves. Therefore, I
need to make a relationship from user to book through a third many-to-many table that
contains information about whether the user loves the book and what state of reading the
book is in.

Another interesting feature of my schema for the Booktracker to note is that I am going
to make an effort to not leak any state about the application to users via object IDs. A
common practice in relational databases is to increment rows with a sequential primary
key. This allows very easy ordering and referencing.

Let's suppose we have an endpoint that looks like this:

@app.get("/book/<book_id:int>)

async def book_details(request, book_id):

 ...

Now, imagine that you have just added two books to the application. You can access
details about that book as /book/1234 and /book/1236. Just by looking at book_id,
you now know that there must be a book with an ID of 1235 and presumably for 1233,
1232, and so on. By allowing access to users to see and interact with sequential primary
keys, information about the state of your application has been leaked to the public. This
is generally considered a bad practice. At best, it is inappropriate for users to have that
information. At worst, it could raise a business or security concern.

To overcome this issue, the frontend will exclusively deal with what I am calling an eid
or external ID. The idea is that an eid is some set of random characters that uniquely
identify an object in the system. Unlike a sequential ID—which is an incremented version
of the last ID in the sequence—an eid does not identify objects in relation to any other
object. To manage eids, I have created a single table in my database. Every record in one
of my object tables will reference a record in this table. This way, when I want to look
something up by eid, it is very simple to join from that table to the object table using the
ref_id sequential. My queries will generally look like this:

SELECT e.eid, b.*

FROM books b

The process of building a web application 437

JOIN eids e ON b.ref_id = e.ref_id

WHERE e.eid = $1;

In the past, I have also solved this problem by creating eids using PostgreSQL itself to
populate columns on every table with an eid. However, for this project, I thought that
might be a little more complex than necessary. It does also make an interesting point in
that I also now know that before I can go much further in building the first list of highly
focused initial stand-up features, I will need a way to generate an eid. I should go back
now to revise my list of features and add eid generation to the first list.

Step 4—Plan and build the user interface
Admittedly, this next step is not something we will spend much time learning about. Since
this book is about building with Sanic, we will leave aside the wealth of discussion points
that you might have about how to create an ideal UI and User Experience (UX). Suffice it
to say that I think this is an incredibly helpful step in building a proper backend. Even if
the UI is not browser-based and the main interaction is only through the API, you must
spend some time planning exactly how users are going to interact with the application.
The main goal of this step (as a backend developer) is to determine what interactions will
need to be supported. Until you know what the frontend UI is going to do, you cannot
realistically make decisions about what endpoints to build.

Designing the Booktracker
I like to think that having built web applications for a number of years, I have learned
some tricks of the trade and that my ability to create a frontend application is pretty good.
That does not mean that I am in any way a UX guru, and therefore, I will not attempt to
claim what does and does not constitute good web design. I also would like to warn any
UX mavens out there that the design of the Booktracker app is admittedly simplistic, since
its function is meant to be very utilitarian. The web UI that I built—which is available at
https://sanicbook.com/—is meant to be helpful as a tool in backend development
learning. Therefore, I admittedly did not spend so much time designing it.

https://sanicbook.com/

438 A Complete Real-World Example

However, I do want to stress that I strongly believe that a decent frontend design—
whether through mockups or wireframes—is critical for backend development. If I had
built my Booktracker backend first and only then begun to work on the frontend, I likely
would have ended up with something rather odd. These sorts of applications often feel
disjointed and lead to a mess of code. They are usually very difficult to maintain, refactor,
and iterate new features upon. The process of building the frontend is meant to shine a
spotlight upon areas where the UI needs help from the backend. If you are not going to be
the person building the web UI, then I highly suggest that you sit down with that person
and get a clear idea of what their needs and expectations are. One of the most frustrating
things as a web developer is when you try to mash together a frontend and backend that
are not compatible.

In many cases, this is a good place for wireframing. Many people like to build out
mockups with images and online wireframing platforms. For the more humble needs of
the Booktracker, I found it far more practical and simple to just build out mockups in
HTML and CSS. With the basic mockups in place, I was able to build out the backend to
power the frontend with specific knowledge of what was needed.

One word of caution here is warranted: be careful not to fall into the trap of tightly
coupling together frontend and backend functionality. Ideally, you should have endpoints
that have no knowledge of the existence of the frontend. Your backend indeed should not
even know that the frontend exists. It should instead present layers of information that
may be needed and can be organized logically.

Step 5—Build the application infrastructure
It is not until step 5 that we begin to write some Python code. By this point, you should
have a pretty good outline of what needs to be built. The first Python code that we need to
write is for all of the infrastructure—that is to say that we need to now build some of the
non-business logic stuff that our application will need. For example, we have talked about
the following topics throughout the book:

•	 The application factory

•	 Logging

•	 Exception handling

•	 Blueprint organization

The process of building a web application 439

These are all topics that you should be thinking about right now. In addition, we need
to set up some basics for creating a connection pool to both of our databases and start
thinking about how to tie our database schema to models. Will there be an Object
Relational Mapping (ORM) involved? If yes, it is time to start setting it up. If not, what
will be used instead?

At this stage, there is a lot to do. Remember, the first goal is to get an application to an
operational stage. That means that the application will start without any exceptions. If
there is a startup time error, fix it.

I usually use this time to start building a HelloWorld endpoint. It is not something
that will likely end up in the final application. Nonetheless, it is something that I can
trigger from curl to see the application working. This is where I will start testing DB
connections to make sure that they perform as I expect them to:

bp = Blueprint("HelloWorld", url_prefix="/hello")

class HelloView(HTTPMethodView, attach=bp):

 async def get(

 request: Request,

):

 return json({"hello": "world"})

This simplistic endpoint will be the beginning of my application but will eventually be
removed.

In regards to the Booktracker application, this stage looks very much like the hiking app
from Chapter 9, Best Practices to Improve Your Web Applications. If you would like a
refresher, the code for it is available in the GitHub repository: https://github.com/
PacktPublishing/Python-Web-Development-with-Sanic/tree/main/
Chapter09/hikingapp. What is important to note is that I use this step to make
sure that all of my services are running. I want all of the databases to be live and for the
backend application to establish connections to them. Largely, this means building out
infrastructure that we have seen through this book. Logging is usually one of the first
items in step 5, as well as structuring a factory pattern. Once that is complete, I can move
on to the feature development of step 6.

https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/hikingapp
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/hikingapp
https://github.com/PacktPublishing/Python-Web-Development-with-Sanic/tree/main/Chapter09/hikingapp

440 A Complete Real-World Example

Step 6—Prototype the minimally viable backend
features
Now that we know the groundwork has been laid, it is time to start building that first
layer of features. Here is where we want to focus on the very first layer of our application
features. Take a look back at Figure 11.1 to remind yourself of what this looks like. When
deciding upon the features that must be a part of your MVP, you need to balance the
needs for function, reliability, usability, and delightfulness. These are all important but
with varying degrees of weight. Right now, the most important (although not the only)
need is for features that are functional. We will start here.

From step 6 through to step 8, we are about to enter into a bit of a loop. This will be an
iterative process to build out our MVP features. The first time through step 6, we will
focus on those features that are in the bottom-most category. In this first sweep through
the loop, we only care about functionality—that is to say, all we want to see are results on
screen with no errors. There likely will be some ugly patterns and some hard-coding of
values here. Beautiful code abstraction is not important right now, since we mainly care
about just getting something on screen. Remember, we are not building a product yet, just
a prototype.

Prototyping the Booktracker
If you look at the Booktracker app, you will see that there are several endpoints. So,
which was the first one that I built, and why? The core of the application is the delivery
of information about books. Therefore, the most fundamental feature is provided by the
GET /v1/books endpoint. It is designed to retrieve a list of books and output them as
JSON. Because of its central importance to the application and its relative simplicity, it is
precisely where I decided to begin building the application.

If we take a look at the code in GitHub, it looks roughly like this:

bp = Blueprint("Books", url_prefix="/books")

class BookListView(HTTPMethodView, attach=bp):

 @staticmethod

 @inject_user()

 async def get(

 request: Request,

 pagination: Optional[Pagination] = None,

 user: Optional[User] = None,

The process of building a web application 441

):

 executor = BookExecutor(request.app.ctx.postgres,
BookHydrator())

 kwargs = {**pagination.to_dict()} if pagination else {}

 getter: Callable[..., Awaitable[List[Book]]] =
executor.get_all_books

 if title := request.args.get("title"):

 kwargs["title"] = title

 getter = executor.get_books_by_title

 elif user:

 payload = await request.app.ctx.auth.extract_
payload(request)

 user_executor = UserExecutor(request.app.ctx.
postgres)

 user = await user_executor.get_by_
eid(eid=payload["eid"])

 kwargs["user_id"] = user.user_id

 getter = executor.get_all_books_for_user

 try:

 books = await getter(**kwargs)

 except NotFound:

 books = []

 output = [book.to_dict(include_null=False) for book in
books]

 return json({"meta": pagination, "books": output})

This request handler may look complicated at first glance, but it is actually very simple.
It is designed to return a list of books in the application. There are a few different filters
to help with different use cases. For example, you can supply a title query argument
to filter for specific book titles. This is helpful for our frontend to be able to have an
autocomplete feature for the user. The endpoint also will filter the books that are linked
to a specific user. This will be used by the frontend to show a user which books they have.
Once the books have been fetched, the handler will serialize them and deliver them as a
JSON response.

442 A Complete Real-World Example

I can assure you that the preceding code is definitely not the first version of this endpoint.
In fact, the version that you see is probably the result of four or five iterations through my
development process. As you will see, the endpoint includes the ability to easily paginate
through results as to not overwhelm the database and response size. The first pass at
developing this endpoint was much simpler and did not include pagination or filtering. It
instead looked like this:

bp = Blueprint("Books", url_prefix="/books")

class BookListView(HTTPMethodView, attach=bp):

 @staticmethod

 async def get(

 request: Request,

):

 executor = BookExecutor(request.app.ctx.postgres,
BookHydrator())

 books = await executor.get_all_books()

 output = [book.to_dict() for book in books]

 return json({"books": output})

This route handler looks somewhat similar to what we saw with the hiking app in
Chapter 9, Best Practices to Improve Your Web Applications. It is meant to be a sort of bare
minimum so that I can see data properly flowing from the database to the frontend.

As we advance through the iterations, there will be a need to add other features. For
example, the next one to work on is the authentication flow. Then, once we have access
to users, we can start to provide only books that are linked to users in the /books
endpoint. And, again down the road, we may have the need to paginate this response
so that responses are more controlled. Hopefully, you can see that just as we created a
pyramid of FRUD for our application, the same could be said to exist at the micro level for
each endpoint. First, we build a minimally functional version to prove the concept, and
only then can we build the full FRUD version that will make it to the MVP.

The process of building a web application 443

It is difficult to determine exactly where to draw the line, and it is easy to get carried away
too soon. Especially when I am in the early iterations of development, I like to ask myself a
simple question: Does this feature make my application better? If the answer is yes and I am
in one of the early iterations, then warning bells are going off in my head that I am headed
in the wrong direction. At the outset of a project, I want the answer to that question to
be, No, this does not make it better; it makes it something. In other words, I try to draw a
distinction between an improvement and something without which the application does
not exist.

Once there is some sort of minimal features in the application, what's next?

Step 7—Create continuous integration, deployment,
and automation tools
Application development often does not exist purely within the confines of the service that
you are working on. Usually, you will need to work on some tooling that helps support the
life cycle of the application. Before we get too far into the development process, I want to
shift gears to focus upon some of the scripts, manifests, and utilities that will be needed to
operationalize and deploy the application.

Therefore, by this stage, you should have decided exactly where you want to run the
application. You also need to decide how you plan to get your application to that location.

I have decided to deploy my application using a Platform as a Service (PaaS) solution,
and a small VPS to run my two databases. This is mainly because this application is meant
to be a Proof of Concept (POC) and will not carry much traffic or demand. This decision
is therefore based upon a desire to keep the hosting costs to a minimum while still keeping
it easy for me to deploy changes. To learn more about deploying a PaaS, please see the
Platform as a service section in Chapter 8, Running a Sanic Server.

444 A Complete Real-World Example

Step 8—Iterate, iterate, iterate
This final step is really the continuation of the process as a whole. More specifically,
however, you should find yourself in a loop that starts in step 6. Once you have a running
version of the application, you should continue to iterate on it with small incremental
changes. Each change should be the addition or correction of a feature that matches your
pyramid. For example, remember the two versions of the GET /v1/books endpoint I
showed? There is the completed version that you can access today online and the simple
version that was my first iteration. To get from one to the other was not a single iteration
through the process; it instead took three passes to get to the final endpoint. Let's examine
the evolution of this endpoint:

1.	 We will begin with a reminder of what it looked like after the first iteration:

class BookListView(HTTPMethodView, attach=bp):

 @staticmethod

 async def get(

 request: Request,

):

 executor = BookExecutor(request.app.ctx.postgres,
BookHydrator())

 books = await executor.get_all_books()

 output = [book.to_dict() for book in books]

 return json({"books": output})

2.	 In the first revision, there was a need to add pagination. I used a really helpful
feature of Sanic extensions to simplify this. I added a setup_pagination(app)
function in my create_app factory. The purpose of this was to automatically read
the request's query parameters looking for limit and offset. When present,
those values should be read into a model and auto-injected into a route handler.
This is very convenient because it now can easily be reproduced on any endpoint
that needs to handle pagination requests:

@dataclass

class Pagination(BaseModel):

 limit: int = field(default=15)

 offset: int = field(default=0)

 @staticmethod

 async def from_request(request: Request):

 args = {

The process of building a web application 445

 key: int(value)

 for key in ("limit", "offset")

 if (value := request.args.get(key))

 }

 return Pagination(**args)

def setup_pagination(app: Sanic):

 app.ext.add_dependency(Pagination, Pagination.from_
request)

What this tells Sanic to do is look for Pagination as a type annotation in
the request handlers. If that exists, then it should call Pagination.from_
request(request) and inject the return value of that method as the argument
that was annotated as Pagination. Adding this to the handler, it now looks like this:

class BookListView(HTTPMethodView, attach=bp):

 @staticmethod

 async def get(

 request: Request,

 pagination: Optional[Pagination] = None,

):

 executor = BookExecutor(request.app.ctx.postgres,
BookHydrator())

 kwargs = {**pagination.to_dict()} if pagination
else {}

 books = await executor.get_all_books(**kwargs)

 output = [book.to_dict() for book in books]

 return json({"books": output})

3.	 In the second revision, I decided that if the user is logged in, then the endpoint
should only return books related to the current user. Because my application uses
Sanic JWT—more on this package later in the Authentication flow section—there
happens to be a convenient decorator that I can use. By wrapping my handler with
@inject_user(), Sanic will now automatically inject the currently authenticated
user into my handler:

class BookListView(HTTPMethodView, attach=bp):

 @staticmethod

 @inject_user()

446 A Complete Real-World Example

 async def get(

 request: Request,

 pagination: Optional[Pagination] = None,

 user: Optional[User] = None,

):

 executor = BookExecutor(request.app.ctx.postgres,
BookHydrator())

 kwargs = {**pagination.to_dict()} if pagination
else {}

 getter = executor.get_all_books

 if user:

 payload = await request.app.ctx.auth.extract_
payload(request)

 user_executor = UserExecutor(request.app.ctx.
postgres)

 user = await user_executor.get_by_
eid(eid=payload["eid"])

 kwargs["user_id"] = user.user_id

 getter = executor.get_all_books_for_user

 try:

 books = await getter(**kwargs)

 except NotFound:

 books = []

 output = [book.to_dict() for book in books]

 return json({"books": output})

With this revision, it is now clear that I needed to add a new SQL statement to be
able to fetch books based upon the user. Therefore, I needed to add a new function
to my executor. That is why I assign the methods to the getter variable: so that the
variable can be changed if needed.

The process of building a web application 447

4.	 On the final revision, I decided that this endpoint should also be able to handle
incoming search queries for looking up books by titles. This means that we need
a third getter. Since I already established the pattern for changing the getter,
this change was simple:

class BookListView(HTTPMethodView, attach=bp):

 @staticmethod

 @inject_user()

 async def get(

 request: Request,

 pagination: Optional[Pagination] = None,

 user: Optional[User] = None,

):

 executor = BookExecutor(request.app.ctx.postgres,
BookHydrator())

 kwargs = {**pagination.to_dict()} if pagination
else {}

 getter = executor.get_all_books

 if title := request.args.get("title"):

 kwargs["title"] = title

 getter = executor.get_books_by_title

 elif user:

 payload = await request.app.ctx.auth.extract_
payload(request)

 user_executor = UserExecutor(request.app.ctx.
postgres)

 user = await user_executor.get_by_
eid(eid=payload["eid"])

 kwargs["user_id"] = user.user_id

 getter = executor.get_all_books_for_user

 try:

 books = await getter(**kwargs)

 except NotFound:

448 A Complete Real-World Example

 books = []

 output = [book.to_dict() for book in books]

 return json({"books": output})

The change in this revision was just to add the check for a title in the query
arguments. There is one very important item worth mentioning here. This one
endpoint is really doing lifting for three things. In many application architectures,
it might actually be easier to split this up into multiple endpoints each with a
much cleaner and narrow focus. It is ideal for a single handler to have a single
responsibility. However, sometimes rules can be broken, and in this instance, I
decided it was a better learning experience to handle all of these responsibilities
together.

Sometimes, while iterating through a step, you will need to revisit a step even earlier
than step 6. And many times, you will find that you are not yet ready to deploy that
code to a production-ready server. Both of these changes to the process are good and
to be expected.

The /v1/books process shows how you can take the concept of an MVP for an
application and apply it to even a single endpoint. The first use case was displaying books.
Features were iteratively added to the endpoint until there was an MVP for how I would
like it to operate on the production application. Try to resist the temptation to overbuild
it too early. The consequence of that is usually a bunch of overly complicated code that
you do not know how to maintain in six months when you need to fix a bug or add a
new feature.

With the basics of the process that I used to build the web application out of the way, let's
next take a look at some of the decisions and features that were actually implemented.

Highlighting select features of the
Booktracker
The Booktracker app attempts to approximate real-world concerns of web application
development. The main goal of the project is to provide a bit of source data that can be
coupled with a backend server to provide a realistic API and frontend web application.
What we will do now is step through parts of the application and discuss some important
challenges and how solutions were developed.

Highlighting select features of the Booktracker 449

Development environment
The obvious place to start is by developing a working development environment. To
determine how to structure the project directory and bring up a working application,
I needed to consider what exactly it was that I needed to build. As a reminder, the
Booktracker is an application built from the following:

•	 A Svelte-based frontend UI

•	 A Sanic-based backend Web API

•	 A PostgreSQL database

•	 A Redis datastore

Let's take a look at how I created a development environment for these services.

Organizing the application
There are four different services that I need to be concerned with. When I need to locally
run a web server and a database, I almost always will reach for Docker Compose. We
will do that here. However, since I intend to serve all of my static content—meaning the
frontend Svelte UI—from Sanic, I only need three services. Let's quickly look at how I am
organizing the project:

./booktracker

├── application

│ ├── booktracker

│ │ └── ...

│ ├── node_modules

│ │ └── ...

│ ├── ui

│ │ └── ...

│ ├── Dockerfile

│ ├── package.json

│ ├── requirements.txt

│ ├── rollup.config.js

│ └── yarn.lock

├── postgres

│ ├── Dockerfile

│ └── initial.sql

450 A Complete Real-World Example

├── docker-compose.yml

└── README.md

As you can see here, in the root of the project, there are two main directories:
./application and ./postgres. This is to clearly define the two Docker images
that will need to be built, and you will see that each of these folders has a Dockerfile in it.
Since Sanic is powering both my frontend and backend, the application directory contains
both a ./booktracker directory (the Web API) and a ./ui directory (the frontend).
All of the configurations live in this directory so that the subdirectories can be devoted to
the application code. Since we do not care too much about the frontend right now, please
feel free to browse the source code at https://github.com/PacktPublishing/
Web-Development-with-Sanic/tree/main/Chapter11 to see more details
about how I accomplished it.

The ./booktracker directory is designed almost exactly the same way that it was built
way back in Chapter 2, Organizing a Project. Here is a general layout:

./booktracker

├── blueprints

│ ├── author

│ │ ├── queries

│ │ │ └── ...sql

│ │ ├── executor.py

│ │ ├── model.py

│ │ └── view.py

│ ├── book

│ │ ├── queries

│ │ │ └── ...sql

│ │ ├── executor.py

│ │ ├── hydrator.py

│ │ ├── model.py

│ │ └── view.py

│ ├── frontend

│ │ ├── reload.py

│ │ └── view.py

│ ├── user

│ │ ├── queries

│ │ │ └── ...sql

│ │ ├── executor.py

https://github.com/PacktPublishing/Web-Development-with-Sanic/tree/main/Chapter11
https://github.com/PacktPublishing/Web-Development-with-Sanic/tree/main/Chapter11

Highlighting select features of the Booktracker 451

│ │ └── model.py

│ └── view.py

├── common

│ ├── auth

│ │ ├── endpoint.py

│ │ ├── handler.py

│ │ ├── model.py

│ │ └── startup.py

│ ├── dao

│ │ ├── decorator.py

│ │ ├── executor.py

│ │ └── hydrator.py

│ ├── base_model.py

│ ├── cache.py

│ ├── cookie.py

│ ├── csrf.py

│ ├── eid.py

│ ├── log.py

│ └── pagination.py

├── middleware

│ └── request_context.py

├── worker

│ ├── module.py

│ ├── postgres.py

│ ├── redis.py

│ └── request.py

└── server.py

There are four main divisions in the application, and I tried to keep them logically
arranged, as follows:

•	 ./blueprints: This directory—contrary to what the name implies—does not
simply contain blueprint objects. The main goal of this is to contain all of my
endpoints and views. Perhaps a better name might be ./views, but I particularly
do not like looking at from booktracker.views.view import bp. It is
where all of my domain-specific logic belongs.

452 A Complete Real-World Example

•	 ./common: For modules that are not domain-specific and may have more general
applicability, I group them into the common module.

•	 ./middleware: Like ./blueprints, this directory name might be a little
confusing because it is not the only location where you will find middleware.
Instead, it contains the middleware that is of general applicability. Where a piece
of middleware is limited to a blueprint, it will be grouped within that domain, or,
if it is closely tied to a specific module, it lives alongside it. A good example is the
middleware used for CSRF protection. That code lives in ./common/csrf.py.

•	 ./worker: The ./worker directory contains the modules that mainly pertain
to the proper setup of a worker instance. This includes things such as setting up
connection pools, but it also contains some utilities that help tie the rest of the
application together.

And just how does the application get tied together? We will look at how I accomplished
that using factory patterns in the Creating a better factory pattern with setup functions
section. Next, we will review how the frontend application is being served from Sanic.

Serving Svelte from Sanic
In Chapter 10, Implementing Common Use Cases with Sanic, we reviewed how it was
possible to use Sanic as a development server for Svelte (or any frontend) applications. If
you recall, this was accomplished by running two Sanic applications side by side. One of
them runs the main application and serves all of the Web API and frontend content, while
the second is a livereload server and sends messages to the browser to refresh the page
every time a file is saved.

In the earlier version, we served all of the frontend files simply using the static handler:

app.static("/", app.config.FRONTEND_DIR / "public")

For this project, I wanted something a little more robust. Particularly, I wanted the ability
to serve the index.html content from a bare directory. I began by setting up a frontend
module inside of the ./blueprints directory. The view module for the frontend looks
like this:

from logging import getLogger

from pathlib import Path

from sanic import Blueprint, Request

from sanic.response import file

Highlighting select features of the Booktracker 453

from .reload import setup_livereload

logger = getLogger("booktracker")

bp = Blueprint("Frontend")

setup_livereload(bp)

@bp.get("/<path:path>")

async def index(request: Request, path: str):

 base: Path = request.app.config.UI_DIR / "public"

 requested_path = base / path

 logger.debug(f"Checking for {requested_path}")

 html = (

 requested_path

 if path and requested_path.exists() and not requested_
path.is_dir()

 else base / "index.html"

)

 return await file(html)

So, what is going on? First, I define my blueprint as usual. I then call a function called
setup_livereload. This function does most of the same work that we saw in the
Powering a progressive web application section in Chapter 10, Implementing Common Use
Cases with Sanic. You can also check the source code of the Booktracker app to remind
yourself how that works.

To achieve the goal of serving index.html from a directory, I set up an endpoint on
the blueprint that will act as a catch-all. Using /<path:path> will allow this handler
to catch any calls to the application that do not have another specified route. This means
I will be relying upon the frontend to catch anything that does not exist in the backend.
This is really important, especially for a PWA. I want all of my routing to be controlled by
the frontend application, and therefore we need to send all non-matched requests to it.

454 A Complete Real-World Example

Creating a better factory pattern with setup functions
We have explored the factory pattern for creating Sanic applications earlier in this book
a few times. If you recall, the idea is that we create a function that generates the Sanic
application instance and then do all of the importing afterward, so that objects such as
routes, middleware, signals, and listeners can attach properly. For example, the hiking app
that we saw in Chapter 10, Implementing Common Use Cases with Sanic, looks like this:

from sanic import Sanic

from hiking.common.log import setup_logging

def create_app():

 app = Sanic(__name__)

 setup_logging(app)

 from hiking.middleware import request_context # noqa

 from hiking.blueprints.view import bp # noqa

 from hiking.worker import postgres # noqa

 from hiking.worker import redis # noqa

 app.blueprint(bp)

 return app

This, of course, does work, but it is kind of ugly to have all those imports inside of the
function. Note how each line has a # noqa comment at the end. That is because without
it, Python linters will throw up errors because your imports are not at the top of the file.
Unfortunately, if you place those imports where they should be (at the top of the file), then
the objects cannot attach, since the Sanic application instance does not exist yet.

One alternative I have seen to overcome this is to not use Sanic's decorators when making
an object. For example, the handler would be a function without a decorator:

async def some_handler(request: Request):

 ...

Highlighting select features of the Booktracker 455

Then, it is attached inside of the factory:

from somewhere import some_handler

def create_app():

 app = Sanic(__name__)

 app.add_route(some_handler, "/something")

Again, this works, but it has two problems in my opinion:

•	 It removes some information that is pertinent to the object (whether it is a route,
middleware, and so on) and places it in a separate location. You can no longer easily
identify what a function is without looking it up inside of the factory as well.

•	 This pattern tends to lead to very lengthy factories that are nothing more than a
bunch of add_route and register_middleware calls, and so on. These long
lists can become very difficult to maintain and even harder to track down a bug
when there is a problem.

I am going to show you my preferred pattern that solves all of these problems. Before
doing that, however, I want to remind you how all of the blueprints are being linked up.

Organizing blueprints
There are three main blueprints in the Booktracker application: Authors, Books, and
Frontend. There could be 50 more, and I still think this pattern works best. Each of the
blueprints is very similar in how they are organized. As shown earlier when reviewing the
folder organization, there is a file called ./view.py that contains the blueprint instance.
Let's take a look at the Authors blueprint as an example.

Inside of ./blueprints/author/view.py, there is the following:

bp = Blueprint("Authors", url_prefix="/authors")

Attached to that, there is a view. I tend to prefer Class-Based Views (CBVs), but regular
functional handlers are perfectly acceptable. In our case, it looks something like this:

class AuthorListView(HTTPMethodView, attach=bp):

 @staticmethod

 async def get(request: Request, pagination: Pagination):

 ...

456 A Complete Real-World Example

Now, each of these blueprints is ultimately loaded into ./blueprints/view.py. That
file looks like this in its entirety:

from sanic import Blueprint

from .author.view import bp as author_bp

from .book.view import bp as book_bp

from .frontend.view import bp as frontend_bp

api = Blueprint.group(author_bp, book_bp, version=1, version_
prefix="/api/v")

bp = Blueprint.group(frontend_bp, api)

As you can see, the idea is that there is a single location where all of the blueprints are
loaded. All of the API endpoints are bundled into a group that gets a version number
and a prefix. This will make it so that all of my API endpoints will begin with /api/v1.
Then, both the API group and my frontend blueprint are loaded into another blueprint
group called bp. I tend to use bp consistently to mean the blueprint that I intend to
import somewhere else. For example, take a look at how I imported all of the blueprints
and renamed them. The single blueprint group called bp in this module will become
important soon.

Attaching objects in the factory
We now turn our attention toward our application factory. It has a couple of key features
to take notice of:

•	 All regular imports take place at the top of the file, where they should be.

•	 No actual Sanic objects (routes, middleware, listeners, signals, and so on) are
actually imported at all.

•	 Instead, there are setup_* functions that do the work of creating and linking
some of the objects.

•	 Alternatively, objects that exist in the global scope will be imported
programmatically.

•	 The factory pattern is highly testable.

Highlighting select features of the Booktracker 457

Here is what it looks like:

from pathlib import Path

from typing import Optional, Sequence, Tuple

from sanic import Sanic

from booktracker.common.auth.startup import setup_auth

from booktracker.common.csrf import setup_csrf

from booktracker.common.log import setup_logging

from booktracker.common.pagination import setup_pagination

from booktracker.worker.module import setup_modules

from booktracker.worker.request import BooktrackerRequest

DEFAULT: Tuple[str, ...] = (

 "booktracker.blueprints.view",

 "booktracker.middleware.request_context",

 "booktracker.worker.postgres",

 "booktracker.worker.redis",

)

def create_app(module_names: Optional[Sequence[str]] = None) ->
Sanic:

 if module_names is None:

 module_names = DEFAULT

 app = Sanic("BooktrackerApp", request_
class=BooktrackerRequest)

 app.config.UI_DIR = Path(__file__).parent.parent / "ui"

 app.config.CSRF_REF_PADDING = 12

 app.config.CSRF_REF_LENGTH = 18

 if not app.config.get("CORS_ORIGINS"):

 app.config.CORS_ORIGINS = "http://localhost:7777"

 setup_logging(app)

458 A Complete Real-World Example

 setup_pagination(app)

 setup_auth(app)

 setup_modules(app, *module_names)

 setup_csrf(app)

 return app

The list of module names is important. When running the application, the server will
just fall back and use the predefined DEFAULT modules. However, allowing for the list of
modules to be imported dynamically by passing them to create_app, I have made it
much simpler to perform very targeted unit tests.

Let's take a quick look at one of these modules, booktracker.middleware.
request_context, to see what is happening:

from contextvars import ContextVar

from sanic import Request, Sanic

app = Sanic.get_app("BooktrackerApp")

@app.after_server_start

async def setup_request_context(app, _):

 app.ctx.request = ContextVar("request")

@app.on_request

async def attach_request(request: Request):

 request.app.ctx.request.set(request)

As you can see, we are using Sanic.get_app("BooktrackerApp") to fetch our
application instance. This will work fine because this module will not be loaded until after
the application instance is created. If you mess up your import ordering, then you will end
up with an exception that looks like this:

Traceback (most recent call last):

 File "/path/to/module.py", line 5, in <module>

 app = Sanic.get_app("BooktrackerApp")

Highlighting select features of the Booktracker 459

 File "/path/to/sanic/app.py", line 1676, in get_app

 raise SanicException(f'Sanic app name "{name}" not found.')

sanic.exceptions.SanicException: Sanic app name
"BooktrackerApp" not found.

The way that this actually gets imported is by loading this module—and all of the other
module strings, including the blueprint view we saw earlier—dynamically with the
setup_modules function. This function is very simple:

from importlib import import_module

from sanic import Sanic

def setup_modules(app: Sanic, *module_names: str) -> None:

 for module_name in module_names:

 module = import_module(module_name)

 if bp := getattr(module, "bp", None):

 app.blueprint(bp)

Its job is to simply import the module from a string. As we already know, Sanic will take
care of linking up the objects, since we have an application instance present to use the
built-in decorators. The one place we need to take an additional step is with blueprints,
since they need to be manually attached to the application instance by calling app.
blueprint(bp). This is why I said earlier that it is important that I chose bp as the
name for all blueprints that I intended to attach directly to the application instance.

I really like this pattern for defining modules and importing them dynamically because
it leads to orderly application organization. I can easily open up a module and see exactly
what is available, and adding new modules is relatively simple. There is, however, another
pattern that I sometimes find useful.

Somewhat similar to setup_modules, there is a setup_csrf function. Take a look at
the factory pattern we are working through now to remind yourself where this function is
being called. I pass the app instance to the function, which means that I can do something
like this:

def setup_csrf(app: Sanic) -> None:

 @app.on_request

 async def check_request(request: Request):

 request.ctx.from_browser = (

460 A Complete Real-World Example

 "origin" in request.headers or "browser_check" in
request.cookies

)

 @app.on_response

 async def mark_browser(_, response: HTTPResponse):

 set_cookie(

 response=response, key="browser_check", value="1",
httponly=True

)

Now, instead of using Sanic.get_app and defining everything in the global scope of
the module, we define it all inside of the local scope of the function. In the Booktracker
application, I used both of these options. Some modules are imported dynamically by
string, and some are set up via functions such as setup_csrf. I would encourage you
to pause reading right now and to head to the factory source at https://github.
com/ahopkins/wds-finalapp/blob/main/application/booktracker/
common/csrf.py. Afterward, I suggest that you look at each of the setup_* functions
and their source code to see what they are doing. In my opinion, both of these are good
options, and I urge you to experiment with them both to see which you prefer in your
own application development.

Just as an example, remember my ./blueprints/view.py? It can just as easily look
like this:

from sanic import Blueprint, Sanic

from .author.view import bp as author_bp

from .book.view import bp as book_bp

from .frontend.view import bp as frontend_bp

api = Blueprint.group(author_bp, book_bp, version=1, version_
prefix="/api/v")

bp = Blueprint.group(frontend_bp, api)

this next part is all new (you will not find it in the repo
source)

def setup_views(app: Sanic):

 app.blueprint(bp)

https://github.com/ahopkins/wds-finalapp/blob/main/application/booktracker/common/csrf.py
https://github.com/ahopkins/wds-finalapp/blob/main/application/booktracker/common/csrf.py
https://github.com/ahopkins/wds-finalapp/blob/main/application/booktracker/common/csrf.py

Highlighting select features of the Booktracker 461

In this case, the module would not need to be imported via string using
setup_modules.

The data access layer
When discussing the database schema, I mentioned that the Booktracker application
attempts to avoid data leakage by not ever showing an incremental object identifier to the
client. This means that the backend API must have some other form of communication
with a client to reference a specific object in the database. There are certainly many forms
that this could take.

A common use case—especially for blogs and news websites—is to concatenate an
article title to a slug. This bit of text is a helpful way to have a human-friendly string that
uniquely identifies a specific article. This usually takes the form of an all-lowercase string,
where all non-characters have been converted to a hyphen—for example, this-is-a-slug.
While this method is great for objects that have titles (especially long ones), it is not
suitable for general applicability.

A widely accepted practice is to use a Universally Unique Identifier (UUID). You have
probably seen (and likely used) them before. They are simple to create and extremely
unlikely to cause a name collision. You can safely assume that if you run the following
code, every single UUID generated will be unique:

from uuid import uuid4

print(uuid4())

You may be wondering, why UUID version 4? What is even the difference between the
UUID versions? A good reference material is this website: https://www.uuidtools.
com/what-is-uuid. If you are interested, please feel free to read up on the other
versions that allow you to add namespaces to them. For our use case, we will use UUID
version 4 because it represents a completely random (so far as any computer is random)
set of characters. But a UUID is not just a set of random characters; it actually represents
a number that has been formatted to meet a very specific specification. If it is a number,
then we know that there are some useful ways that we can represent it.

Given the UUID 06adf00c-0f43-47d7-941a-ce76346f3fb3, we can express that
in a few ways:

•	 As a hexadecimal value: 06adf00c0f4347d7941ace76346f3fb3

•	 As an integer value: 8878504065002459431209101741502971827

https://www.uuidtools.com/what-is-uuid
https://www.uuidtools.com/what-is-uuid

462 A Complete Real-World Example

•	 As a binary value: 011010101101111100000000110000001111010000110
1000111110101111001010000011010110011100111011000110100011
011110011111110110011

We can use this fact to solve what I feel is the most annoying part of UUIDs: they are not
user-friendly. I have three main problems with them:

•	 They are very long.

•	 They are hard to copy and paste.

•	 They are not human-friendly and are difficult to remember.

As a developer who is debugging a platform and using UUIDs to reference objects or
requests, it is harder to copy and paste a value with multiple hyphens than a single value.
Usually, you cannot just double-click a UUID value to select the whole string. A single
value without hyphens usually can be double-clicked to select the whole thing. To make
my life easier, and to save space when sending UUIDs, I decided to use the numeric
property of them to shorten the value by expanding the characters they can use.

In booktracker.common.eid, you will find this function:

import uuid

from string import ascii_letters, digits

REQUEST_ID_ALPHABET = ascii_letters + digits

REQUEST_ID_ALPHABET_LENGTH = len(REQUEST_ID_ALPHABET)

def generate(width: int = 0, fillchar: str = "x") -> str:

 """

 Generate a UUID and make it smaller

 """

 output = ""

 uid = uuid.uuid4()

 num = uid.int

 while num:

 num, pos = divmod(num, REQUEST_ID_ALPHABET_LENGTH)

 output += REQUEST_ID_ALPHABET[pos]

 eid = output[::-1]

 if width:

Highlighting select features of the Booktracker 463

 eid = eid.rjust(width, fillchar)

 return eid

What this does is generate a UUID and then convert it into a shorter string, using
all of the ASCII letters and digits. This will turn 06adf00c-0f43-47d7-941a-
ce76346f3fb3 into mLBFLEq8vnXHPHzbvN7ap. This, in turn, brings a 36-character
string down to 21 characters. It saves space and, in my opinion, is easier to use. The only
problem with this algorithm is that the length of the output might vary in length. For
example, it can generate strings of 19 or 20 characters. I would prefer that all eids have
a constant length in my database. Therefore, I will left-pad them to the desired length if
needed. My database stores eids as 24 characters. The UUID that we have been working
with will be stored in my database as xxxmLBFLEq8vnXHPHzbvN7ap.

Now that you understand how the application passes these eids around, you should be
able to piece together the flow from the endpoint, through the executor, to the database.
Let's take a look at how this happens by getting a book. Here is the endpoint for getting
details about a book from the API:

class BookDetailsView(HTTPMethodView, attach=bp, uri="/<eid>"):

 @staticmethod

 @inject_user()

 async def get(request: Request, eid: str, user:
Optional[User]):

 executor = BookExecutor(request.app.ctx.postgres,
BookHydrator())

 getter: Callable[..., Awaitable[Book]] = executor.get_
book_by_eid

 kwargs: Dict[str, Any] = {"eid": eid}

 if user:

 getter = executor.get_book_by_eid_for_user

 kwargs["user_id"] = user.user_id

 book = await getter(**kwargs)

 return json({"book": book.to_dict(include_null=False)})

464 A Complete Real-World Example

The first thing that we notice is that this is a CBV that is attached to the blueprint instance
stored as the bp variable. We also see that it is capturing the eid from the URL and then
injecting that into the handler arguments. What about the decorators? A CBV can have
its methods defined either as a regular instance method or a static method. Both of the
following solutions are okay:

class SomeView(HTTPMethodView, attach=bp):

 @staticmethod

 async def get(request: Request):

 ...

 async def post(self, request: Request):

 ...

I tend to prefer using a staticmethod if I am not going to need the self argument,
since the CBV is more a tool to encapsulate similar endpoint handlers as opposed to
more traditional object-oriented programming style encapsulation. The @inject_user
decorator comes from another project of mine called Sanic JWT that provides some
helpful utilities around authentication. It is not important for the current discussion, other
than to say that if a request comes in from an authenticated user, it will automatically
query the database and inject the User object.

The next main thing to note is that we are setting up an executor. If you recall from the
Hiking app, the executor is responsible for connecting call methods with raw SQL. It then
executes them and hydrates the data into a model instance.

Tip
We can improve upon this endpoint further with Sanic extensions. One
of the features there allows us to define commonly used items (such as
BookExecutor) upfront in our application and auto-inject them into the
route handler when necessary. That looks something like this:

def getter(request):

 return BookExecutor(request.app.ctx.postgres,
BookHydrator())

app.ext.add_dependency(BookExecutor, getter)

It will be appropriate to set these up in a setup_* function from the factory
pattern previously discussed.

Highlighting select features of the Booktracker 465

For the most part, you will find that the data access layer in the Booktracker app is
nearly identical in implementation to the Hiking app. It is probably not so critical to our
discussion here, but I would suggest taking a look if you are not interested in a full ORM.

Authentication flow
When thinking about user authentication for this application, I knew that I wanted it
to be simple. After all, there is no reason to make someone go through the process of
registering, selecting yet another username and password, validating an email, and so
on. That flow is valid and necessary in some locations but clearly too complicated for this
use case. Implementing a social media sign-on was clearly the best option for me. For the
intended audience of my application (such as you, reading this book), a GitHub account
seems like the perfect prerequisite.

Knowing that GitHub would be used to verify users, I needed to think about how I wanted
to actually handle authentication in the application. In Chapter 7, Dealing with Security
Concerns, there is a lengthy discussion in the Protecting your Sanic app with authentication
section about which authentication systems are good in different situations. For my
use case, I decided a simple JWT would be best. Specifically, I decided to implement
the split-JWT cookie discussed in that chapter's Solving for JWTs in browser-based
applications section. This will be very easy to set up using Sanic JWT. This tool will
create the authentication endpoints and provide me with the tooling (such as decorators)
that I need to implement my authentication scheme.

Because JWTs are best when they expire quickly, I knew that I would need to implement
refresh tokens. The frontend application was going to need to be responsible for keeping
the token fresh. With a basic understanding of what my requirements were, I was ready
to start building the authentication flow. Let's look at the first part, the setup_auth
method:

from sanic_jwt import Initialize

def setup_auth(app: Sanic):

 Initialize(

 app,

 url_prefix="/api/v1/auth",

 authenticate=authenticate,

 retrieve_user=retrieve_user,

 extend_payload=payload_extender,

 store_refresh_token=store_refresh_token,

 retrieve_refresh_token=retrieve_refresh_token,

466 A Complete Real-World Example

 class_views=[("/github", GitHubOAuthLogin)],

 ...

)

Here is only a portion of the configuration. You can see the full thing in the repository.
The point that I want to discuss here is that I needed to create a bunch of handlers that
will be responsible for hooking into Sanic JWT. In addition, I needed to add a new
endpoint: /api/v1/auth/github.

The first step that a user takes is to click a link to /api/v1/auth/github. This new
endpoint sets some CSRF cookies and then forwards the user to the GitHub Single
Sign-On (SSO) page. The user is presented with the option to sign into my application
and provide access to read the user profile. Once they click the button, they are redirected
back to the application, where they are presented with a screen like this:

Figure 11.4 – A screenshot of the Booktracker authentication page

This page provides two options: an authorization code to run directly against the API
or a button that the user can use to follow via the UI. By clicking the Continue button,
the user is doing the same action as running the curl command: sending the code
that GitHub generated to the /api/v1/auth endpoint. That endpoint executes the
authenticate handler. You can see the full source of it here: https://github.com/
ahopkins/wds-finalapp/blob/main/application/booktracker/
common/auth/handler.py.

https://github.com/ahopkins/wds-finalapp/blob/main/application/booktracker/common/auth/handler.py
https://github.com/ahopkins/wds-finalapp/blob/main/application/booktracker/common/auth/handler.py
https://github.com/ahopkins/wds-finalapp/blob/main/application/booktracker/common/auth/handler.py

Highlighting select features of the Booktracker 467

Let's step through that handler to see what is going on:

1.	 First, the handler does some checking to make sure it has the correct context and
the GitHub code:

async def authenticate(request: Request) -> User:

 invalid = Unauthorized("Missing or invalid
authorization code")

 auth_header = request.headers.get("authorization",
"")

 if not auth_header or not auth_header.lower().
startswith("code"):

 raise invalid

 _, code = auth_header.split(" ")

2.	 Once it has that code, it can take the next step in the GitHub authentication flow by
sending that code along with the client_id and client_secret that GitHub
provided. Upon a successful exchange, GitHub will issue an access_token that
can be used to send authenticated requests to the GitHub API:

 # Exchange the authorization code for an access token

 async with httpx.AsyncClient() as session:

 response = await session.post(

 "https://github.com/login/oauth/access_
token",

 json={

 "client_id": request.app.config.GITHUB_
OAUTH_CLIENT_ID,

 "client_secret": request.app.config.
GITHUB_OAUTH_SECRET,

 "code": code,

 },

 headers={"accept": "application/json"},

)

 if b"error" in response.content or response.status_
code != 200:

468 A Complete Real-World Example

 logger.error(response.content)

 raise invalid

3.	 After this request is complete, the application needs to send a request to fetch the
user details from GitHub:

 async with httpx.AsyncClient() as session:

 response = await session.get(

 "https://api.github.com/user",

 headers={

 "Authorization": f"token {response.json()
['access_token']}"

 },

)

 if b"error" in response.content or response.status_
code != 200:

 logger.error(response.content)

 raise invalid

 data = response.json()

4.	 With the user data in hand, the authenticate handler can take its final step—fetch
a user from the database or create a new user:

 executor = UserExecutor(request.app.ctx.postgres)

 try:

 user = await executor.get_by_
login(login=data["login"])

 logger.info(f"Found existing user: {user=}")

 except NotFound:

 user = await executor.create_user(

 login=data["login"],

 name=data["name"],

Summary 469

 avatar=data["avatar_url"],

 profile=data["html_url"],

)

 logger.info(f"Created new user: {user=}")

 return user

When this is complete, we now have the ability to issue tokens from Sanic JWT.
These tokens will provide access to the application, both directly to the API using an
Authorization header and through secure cookies. If you have not yet, I highly
encourage you to follow the example on the live web application. You should then obtain
a working access token and use it to explore the API. I find it incredibly helpful to learn
something when I can both interact with it and take it apart to see its component parts.
This is exactly the reason why I felt it necessary to maintain a live-running version of this
web application. I want you to review the API documentation, play with the application
in the browser, and interact with the API directly. This should be done while you
simultaneously review the relevant source code. In this way, I hope that you will learn
some techniques that will be successful for you throughout your journey.

Summary
The finished web application is available for usage at https://sanicbook.com.
Perhaps most importantly, you can take a look at the OpenAPI documentation at
https://sanicbook.com/docs. You should find some really helpful information
there about how you can interact with the API. I hope that you feel very comfortable
making direct HTTP requests using curl or another tool and will take some time to
explore the API. I highly suggest that you open the GitHub repository, the OpenAPI
documentation, and a terminal to start playing with the API.

The source code will be memorialized at the time of publishing this book in the GitHub
repository. This is for your benefit so that you can always see exactly what the code was
like when this book was written. But as we know, web applications are constantly evolving.
There are bugs to fix, features to implement, upgrades to perform, and other reasons to
change code. Therefore, the actual deployment of the application will be from my personal
GitHub repository: https://github.com/ahopkins/sanicbook. If you want to
see the version of the code that is deployed, you should look there.

https://sanicbook.com
https://sanicbook.com/docs
https://github.com/ahopkins/sanicbook

470 A Complete Real-World Example

Putting it all together
Web development is a journey. That is true on many levels. On the surface, we can say
that developing a web application requires you to journey through a process of iterating
on features and bug fixes. As we just saw, web development is a process that aims to
balance the FRUD demands of functionality, reliability, and usability, and provide a
delightful experience.

On a deeper level, web development is a journey through society. It is an ever-changing
field that has progressed over the last few decades to keep pace with the world around us.
In many ways, the pace at which the world advances is directly tied to the technologies we
are building for the web.

But it is on the personal level that I find web development's journey to be most impactful.
I began building websites in high school, at a completely amateur level. And even though
I embarked upon a career as a lawyer, it was ultimately web development that I journeyed
back to. I can look back at the past 25 years and not only marvel at the advancements we
have made but also the changes that I have made, as a husband, a father, a son, a brother,
and a human being.

And this brings me to my final point that I hope to impart upon you. Web development
is a journey. That means there is no end. There is always more to build, more to improve,
and more to learn. So please, do not stop learning with this book. I urge you to pick up
another book, find some articles or online courses, and attend meetups or conferences,
all so that you can continue to learn. And while you are in that process of learning, take
some time to give back to the community. One of the most worthwhile efforts I ever made
was to have the courage to contribute to open source software. That too has been a wild
and amazing journey. Along the way, I have met good people from all over the globe.
And, once again, the most important thing is that I have learned a lot. To become a great
developer, you must become a great learner.

The Sanic project maintains a Discord server and community forums. If you are not
already a member, come join us. I hope you will introduce yourself to me and the
community, and share your experiences with Sanic and web development. Whether
you have a question, a complaint, need some help, or just want to say hi, please share it.
As the Sanic website makes clear: "The project is maintained and run by the community
for the community."

Index

A

advanced path parameters
about 71
customer parameter matching 72
matched parameter values,

modifying 76-78
Amazon Web Services (AWS) 308
anti-pattern

reference link 38
API keys

using 271-274
API versioning

about 79-81
version prefixing 84, 85
versions, bumping 82, 83

application
compiling 36
running 42, 43

application programming
interface (API) 303

application, protecting from CSRF attacks
about 255
inoperative solutions 256
samesite cookies 265
solutions 256

App Registry
reference link 38

arguments 113
Ariadne

URL 401
ASGI server 306, 307
Asynchronous Server Gateway

Interface (ASGI) 8
asyncio module 5, 8
authentication

about 103
used, for protecting Sanic app 268-270

authentication headers
about 103
blueprints, using 107, 108
decorators, using 104, 105
middleware, using 106, 107

authorization 103
autodiscovery

about 40-42
reference link 40, 41

472 Index

B
background task processing 229
bearer tokens 274
black tool 19
blueprints

grouping 34-36
reference link 34
registration 33, 34
using 31-33
versioning 34

Booktracker application
about 428, 430
authentication flow 465-469
automation tools 443
blueprints, organizing 455, 456
continuous integration, creating 443
data access layer 461-464
data, designing for 435-437
deployment 443
designing 437, 438
development environment 449
factory pattern, creating with

setup functions 454
features 431, 432
flow chart of stack 434
functionality, defining 428-430
functionality, workflow 428-430
infrastructure, building 438, 439
iteration 444-448
objects, attaching in factory 456-460
prototyping 440-442
select features, highlighting 448
technology stack, building 433, 434

built-in signals
using 201-205

C
Celery 231, 232
Class-Based Views (CBV)

about 53, 60, 464
endpoints, simplifying with 60-62

Clean Architecture (CA) 28
Cloudflare 97
code

running, in global scope 295
code developing principles 19
command-line interface (CLI) 302
connection pool 374
Content-Type 97
context headers

about 108
forwarded headers 109
host 109
origin 108
referer 108
user-agent 108

controlled imports 37
cookie headers 178
cookies

about 256, 257
information, extracting 112
reading 97

coroutines 6
correlation ID 194
CORS policy

setting up 240
CORS response headers

Access-Control-Allow-
Credentials 246, 252

Access-Control-Allow-Headers 246
Access-Control-Allow-

Methods 246, 252-254

Index 473

Access-Control-Allow-Origin 246, 248
Access-Control-Expose-

Headers 246, 249-251
Access-Control-Max-Age 246, 252
Access-Control-Request-Headers 255

Cross-Origin Request 244
cross-origin resource sharing (CORS)

about 240
headers 245, 246
reference link 245
security issue 240-244
solving, with Sanic 247, 248
strategy, developing to deal

with issue 245
cross-site request forgery (CSRF)

applications protecting from 255
cross-site scripting (XSS) 257
CRUD applications 371
ctx

using 184-186
custom header

creating 98-102
custom objects, JSON content

serializing 157-159
custom parameter matching 72-76
custom signals 205-209

D
data streaming 162, 163
database connections

custom data access layer, creating
in Sanic 372-376

managing 370
ORM 371, 372

data caching
per connection 216

data source name (DSN) 373
data validation

decorator, creating 125, 126
dependency injection 126
handler signature, reading 126-128
model hydration 130, 131
modeling 128-130
no repetition 126
performing 124-133
type annotations 126
with pydantic 134-137
with third-party packages 133

decorator template
reference link 259

deployment examples, Sanic application
about 315
Kubernetes (as-a-service) 317-324
PaaS 315-317

deployment options, Sanic application
container orchestration, with

Kubernetes 310
Docker container 309
PaaS 311
VM 308

development environment,
Booktracker application

about 449
application, organizing 449-452
./blueprints directory 451
./common directory 452
./middleware directory 452
Svelte, serving from Sanic 452, 453
./worker directory 452

development-operations (DevOps) 310
DigitalOcean

reference link 319

474 Index

directory
setting up 22

directory structure
about 28, 29
./blueprints 30
./common 31
./middleware 30

Discord bot
building 409-414
running, from Sanic 415, 416

Django 8
Domain-Driven Design (DDD) 28
DRY (don't repeat yourself)

principle 59, 345

E
ErrorHandler

modifying 334, 335
events

waiting for 210-212
events, server life cycle

after_server_start 293
after_server_stop 294
before_server_start 293
before_server_stop 294

exception handlers
HTML 224
JSON 224, 225
practical real-world exception

handlers 328-330
text 225

exceptions
bad exception messages 218
catching 226-228
handling 217, 218

F
factory pattern 38-40
fallback error format

auto 225
manual override per route 226

fallback handling 223
file streaming 163, 164
flake tool 19
Flask 8
forms and files

working with 116, 117
FRUD system

about 431
features 431

G
global scope

code, running 295
graphical user interface (GUI) 373
GraphQL

about 397
adding, to Sanic 401-409
benefits 400
features 399-401

GraphQL API
designing 396-398

Gunicorn 305, 306

H
headers

as multi-dict 110, 111
authentication headers 103, 104
common headers 103
context headers 108
custom header, creating 98-102

Index 475

flexible headers 97, 98
HTTP headers 97
information, extracting 109
reading 97

HEAD method
blanket support 62-66

HTML content
basic templating 150, 151
files, delivering 148, 149
rendering 147
templating engine, using 152-154

HTTP connections 213, 214
HTTP methods

about 49
advanced method routing 54, 55
blanket support, for OPTIONS

and HEAD 62-66
endpoints 58
endpoints, simplifying with

Class-Based Views 59-62
overview 50
RESTful API design 57-59
safe methods 55-57
unsafe methods 55-57
using, on route handlers 50-54

HTTP protocol 13
HTTP response

body 147
common status codes 142
custom status 144, 145
headers 145-147
standard responses 142
status 141
structure, examining 140
through exceptions 143, 144

HTTP Secure (HTTPS) 311
HTTP to HTTPS proxy

creating 416-422

HyperText Transfer Protocol (HTTP) 293

I
idempotency 57
in-process task queue

designing 232-236
integrated development environment

(IDE) 303, 340
integration testing 336
Internet Protocol (IP) address 308
intra-worker communication

signals, leveraging for 198, 199
io-bound 7
isort tool 19

J
JSON content

best practices 159-161
custom objects, serializing 157-159
serializer, selecting for 155
serializing 155

JSON data
consuming 117

JSON Web Tokens (JWTs)
about 275, 280
access token, sending 280-282
access token, expiring 282-284
solving, in browser-based

applications 284-288

K
Keep-Alive

within Sanic 214, 215
kubectl

reference link 319

476 Index

Kubernetes (as-a-service) 317-24
Kubernetes (K8s) 310

L
Let's Encrypt

certificate, obtaining from 314
certificate, renewing from 314
URL 315

LiveReload 154
logging module

insight, gaining from 357, 358
logging module, in Sanic

color context, adding 364-366
configuring 362-364
loggers, creating 359-362
Sanic loggers, types 358
tracing, adding with request

IDs 366-369
X-Request-ID, using 369, 370

M
matched parameter values

modifying 76-78
middleware

about 187
request middleware 187-190
responding with 195, 196
response middleware 191-195
streaming responses 196-198

middleware blueprints
reference link 31

Minimally Viable Product (MVP)
about 429
features 429

Model View Controller (MVC) 28

Model View ViewModel (MVVM) 28
multi-dict data type 110
mypy tool 19

N
Nginx

static content, serving with 89-91
non-session-based authentication

versus session-based
authentication 275-277

O
open source software (OSS) 203
Open Web Application Security

Project (OWASP) 265
OPTIONS method

blanket support 62-66
orjson player 157
ORM 371, 372

P
parameters 113
parameter types

reference link 71
path parameters

about 71
alpha 72
float 72
int 72
path 72
slug 72
str 72
uuid 72
ymd 72

Index 477

paths
about 67, 68
information, extracting from 70, 71

PEP 582
reference link 24

platform-as-a-service (PaaS) 304, 311-317
pods 310
practical real-world exception handlers

ErrorHandler, modifying 334, 335
errors, catching and responding

manually 332, 333
errors, catching with

middleware 330, 331
errors, catching with signals 331, 332
implementing 328-330

preflight request 246
progressive web application (PWA)

CORS, dealing with 390
development server, running 391-396
powering 389
subdomains, dealing with 390

Progressive Web Application (PWA) 155
proof-of-concept (POC) 311
Public Suffix List

URL 268
pubsub

about 168, 383
handling 384

pydantic
about 134
data validating, with 134-137

PyPI
URL 3

Python 3.4
about 6
asynchronous programming 6, 7

Python 3.5 7
Python Development Master (PDM)

installation link 24
Python web application

environment, setting up 22-24

Q
query arguments

about 113
sending, to endpoint 113-115

query parameters 71

R
Redis

Sanic, connecting to 376-379
remark.js

URL 150
request body 71
request middleware 187-190
response cookies

setting 178-180
response headers

request ID, responding with 177
setting 176, 177

response middleware 191-195
responses

through raising exceptions 220-223
ReusableClient

using, for testing 354
reusable test client

about 354
single test server, running

per test 354-357
route handler 183

478 Index

S
same-origin policy 241
SameSite Cookie Attribute

reference link 265
samesite cookies

about 265
Samesite=Lax 266, 267
Samesite=None 266
Samesite=Strict 267, 268

Sanic
about 5
connecting, to Redis 376-379
custom data access layer,

creating 372-376
Discord bot, running from 415, 416
features 16
goal 16
GraphQL, adding 401-409
Keep-Alive 214, 215
loggers, types 358
nesting, inside Sanic 416
reference link 16
running, from another service 409, 410
running, locally 302-304
used, for solving CORS 247, 248
web API, building with 16

Sanic application
configuration object, accessing 298
configuration object, creating 297
configuration object, setting 299, 300
configuration rules 301
configuring 296
protecting, with authentication 268-270
securing, with TLS 311

Sanic application deployment
deployment strategy, selecting 307
examples 315
options 307
server option, selecting 305
to production 304

Sanic CLI
about 25, 26
--debug, need for 27
-p 7777, need for 27
src.server:app, need for 26
--workers=2, need for 27

Sanic Community Organization
Policy E-manual (SCOPE)

reference link 19
Sanic Community Organization (SCO) 9
Sanic.get_app() 38
Sanic server 307
Sanic Simple Server 243
sanic-testing

working with 336-338
Sanic User Guide

URL 426
Secure Sockets Layer (SSL) 311
security, Sanic application

API keys, using 271-274
certificate, obtaining from

Let's Encrypt 314
certificate, renewing from

Let's Encrypt 314
session-based, versus non-session-

based authentication 275-277
sessions, using 278-280
TLS, setting up 312-314

self-signed certificate 417
semantic versioning 84

Index 479

server life cycle
events 293
handling 293
listeners 293

server listeners
about 293, 294
before listener, versus after listener 296
setting up 295

server-sent events (SSE)
for push communication 164, 165
objects, building 166-172
working with 165, 166

service providers (SPs) 308
signals

about 198
built-in signals 201-205
custom signals 205-209
defining 199-201
leveraging, for intra-worker

communication 198, 199
simple requests

reference link 246
Single-Page Application (SPA) 155
Single Sign-On (SSO) 466
slugs 76, 461
social login 432
software development kit (SDK) 295
solutions protecting application

from CSRF attacks
GET request state unchanging 256

solutions, protecting application
from CSRF attacks

cookies 257
form fields 258
implementing 258-265

SQL injection attacks 124

stateful sessions 275
stateless sessions 275
static content

serving 88
serving, from Sanic 88
serving, with Nginx 89-92
streaming 92, 93

statuses
misusing 219

Strawberry
URL 401

streaming 118
streaming data

obtaining 118-124
strict slashes 68, 69

T
tasks

adding, to loop 229-231
technology stack 432, 433
templating engine

using 152-154
testable application

sanic-testing 336-338
setting up 335, 336

test client implementation
application fixture, setting up 339, 340
application, testing 351-354
blueprints, testing 341-347
services, mocking out 347-351

test-driven design (TDD) 336
tracing 366
Transport Layer Security (TLS)

setting up, in Sanic 312-314
used, for securing application 311

480 Index

U
UltraJSON (ujson) 17, 155, 156
unit testing 336
Universally Unique Identifier (UUID)

about 194
reference link 461

User Experience (UX) 437
uvloop tool 17

V
virtual hosts 85-87
virtual machine (VM) 304, 308

W
web API, Sanic

building 16
coding decisions 19
community-driven 18
front page 16
lightweight 17
performant 17
production-ready 18
scalable 17
trusted by millions 18
unopinionated 17

web application
building 427, 428
data structures, architecting 435
minimally viable backend

features, prototyping 440
user interface, building 437
user interface, planning 437

web framework
about 15, 16
versus web server 13

web server
about 13
components 14, 15

Web Server Gateway Interface
(WSGI) 8, 305

websocket feed
about 383
building 384-389
scaling 383
synchronizing 383

websockets
for two-way communication 172-175
reference link 173

World Wide Web (WWW) 304

X
X-Request-ID

using 369, 370
XSS attacks 124

Y
YAML Ain't Markup Language

(YAML) 310

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

https://Packt.com

https://packt.com
https://customercare@packtpub.com
https://www.packt.com

482 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Django 3 By Example - Third Edition

Antonio Melé

ISBN: 9781838981952

•	 Build real-world web applications

•	 Learn Django essentials, including models, views, ORM, templates, URLs, forms,
and authentication

•	 Implement advanced features such as custom model fields, custom template tags,
cache, middleware, localization, and more

•	 Create complex functionalities, such as AJAX interactions, social authentication,
a full-text search engine, a payment system, a CMS, a RESTful API, and more

https://packt.link/9781838981952

Other Books You May Enjoy 483

•	 Integrate other technologies, including Redis, Celery, RabbitMQ, PostgreSQL, and
Channels, into your projects

•	 Deploy Django projects in production using NGINX, uWSGI, and Daphne

Angular Projects - Second Edition

Aristeidis Bampakos

ISBN: 9781800205260

•	 Set up Angular applications using Angular CLI and Nx Console

•	 Create a personal blog with Jamstack and SPA techniques

•	 Build desktop applications with Angular and Electron

•	 Enhance user experience (UX) in offline mode with PWA techniques

•	 Make web pages SEO-friendly with server-side rendering

•	 Create a monorepo application using Nx tools and NgRx for state management

•	 Focus on mobile application development using Ionic

•	 Develop custom schematics by extending Angular CLI

https://packt.link/9781800205260

484

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Full-Stack Development with Angular and GraphQL, we'd love to hear
your thoughts! If you purchased the book from Amazon, please select https://www.
amazon.in/review/create-review/error?asin=1800202466 for this book
and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://authors.packtpub.com
https://authors.packtpub.com
https://www.amazon.in/review/create-review/error?asin=1800202466
https://www.amazon.in/review/create-review/error?asin=1800202466

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Part 1:
Getting Started
with Sanic
	Chapter 1: Introduction to Sanic and Async Frameworks
	Technical requirements
	What is Sanic?
	Leveling up
	Framework versus server
	Web server
	Web framework

	Why we use Sanic—build fast, run fast
	Simple and lightweight
	Unopinionated and flexible
	Performant and scalable
	Production-ready
	Trusted by millions
	Community-driven
	What drives code decisions?

	Summary

	Chapter 2: Organizing a Project
	Technical requirements
	Setting up an environment and directory
	Environment
	Sanic CLI
	Directory structure

	Using blueprints effectively
	Blueprint registration
	Blueprint versioning
	Grouping blueprints

	Wiring it all up
	Controlled imports
	Factory pattern
	Autodiscovery

	Running our application
	Summary

	Part 2:
Hands-On Sanic
	Chapter 3: Routing and Intaking HTTP Requests
	Technical requirements
	Understanding HTTP methods
	Using HTTP methods on route handlers
	Advanced method routing
	Method safety and request body
	RESTful API design
	Simplifying your endpoints with CBVs
	Blanket support for OPTIONS and HEAD

	Paths, slashes, and why they matter
	Strict slashes
	Extracting information from the path

	Advanced path parameters
	Custom parameter matching
	Modifying matched parameter values

	API versioning
	Should all of my routes bump versions?
	Version prefixing

	Virtual hosts
	Serving static content
	Serving static content from Sanic
	Serving static content with Nginx
	Streaming static content

	Summary

	Chapter 4: Ingesting HTTP Data
	Technical requirements
	Reading cookies and headers
	Headers are flexible
	Authentication headers
	Context headers
	Sanic extracts header data for us
	Headers as multi-dict
	Getting information from cookies (yum!)

	Reading forms, query arguments, files, JSON, and more
	Query arguments
	Forms and files
	Consuming JSON data

	Getting streaming data
	Validating data
	Step 1—getting started and making a decorator
	Step 2—reading the handler signature
	Step 3—modeling
	Step 4—model hydration
	Step 5—performing validations
	Taking it to the next level with third-party packages

	Summary

	Chapter 5: Building Response Handlers
	Technical requirements
	Examining the HTTP response structure
	The HTTP response status
	Response groupings
	A response through exceptions
	Custom status
	Headers
	The response body

	Rendering HTML content
	Delivering HTML files
	Basic templating
	Using a templating engine

	Serializing JSON content
	Choosing a serializer
	Serializing custom objects
	Best practices

	Streaming data
	File streaming

	Server-sent events for push communication
	Starting with the basics
	Building some SSE objects

	Websockets for two-way communication
	Setting response headers and cookies
	Responding with a request ID
	Setting response cookies

	Summary

	Chapter 6: Operating
Outside the Response Handler
	Technical requirements
	Making use of ctx
	Altering requests and responses with middleware
	Request middleware
	Response middleware
	Responding early (or late) with middleware
	Middleware and streaming responses

	Leveraging signals for intra-worker communication
	Signal definitions
	Using built-in signals
	Custom signals
	Waiting on events

	Mastering HTTP connections
	Keep-Alive within Sanic
	Caching data per connection
	Handling exceptions like a pro

	Implementing proper exception handling
	Bad exception messages
	Misusing statuses
	Responses through raising an exception
	Fallback handling
	Catching exceptions

	Background task processing
	Adding tasks to the loop
	Integrating with an outside service
	Designing an in-process task queue

	Summary

	Chapter 7: Dealing with Security Concerns
	Technical requirements
	Setting up an effective CORS policy
	What is the security issue with ineffective CORS?

	Protecting applications from CSRF
	Solutions that do not work
	Solutions that do work
	Samesite cookies

	Protecting your Sanic app with authentication
	Using API keys
	Understanding session-based versus
non-session-based authentication
	Using sessions
	JSON Web Tokens (JWTs)

	Summary

	Chapter 8: Running a Sanic Server
	Technical requirements
	Handling the server life cycle
	Server listeners

	Configuring an application
	What is the Sanic configuration object?
	How can an application's configuration object be accessed?
	How can the configuration object be set?
	Some general rules about configuration

	Running Sanic locally
	How does running Sanic locally differ from production?

	Deploying to production
	Choosing the right server option
	How to choose a deployment strategy?

	Securing your application with TLS
	Setting up TLS in Sanic
	Getting and renewing a certificate from Let's Encrypt

	Deployment examples
	PaaS
	Kubernetes (as-a-service)

	Summary

	Part 3:
Putting It
All together
	Chapter 9: Best Practices to Improve Your Web Applications
	Technical requirements
	Implementing practical real-world exception handlers
	Catching errors with middleware
	Catching errors with signals
	Catching the error and responding manually
	Modifying ErrorHandler

	Setting up a testable application
	Getting started with sanic-testing
	A more practical test client implementation
	Using ReusableClient for testing

	Gaining insight from logging and tracing
	Types of Sanic loggers
	Creating your own loggers, my first step in application development
	Configuring logging
	Adding color context
	Adding some basic tracing with request IDs
	Using X-Request-ID

	Managing database connections
	To ORM or not to ORM, that is the question
	Creating a custom data access layer in Sanic
	Connecting Sanic to Redis

	Summary

	Chapter 10: Implementing Common Use
Cases with Sanic
	Technical requirements
	Synchronizing and scaling websocket feeds
	Powering a progressive web application
	Dealing with subdomains and CORS
	Running a development server

	Designing a GraphQL API
	Why would I want to use GraphQL?
	Adding GraphQL to Sanic

	Building a Discord bot: running Sanic from another service
	Building a simple Discord bot
	Running the Discord bot from Sanic

	Creating an HTTP to HTTPS proxy: nesting Sanic inside Sanic
	Summary

	Chapter 11: A Complete
Real-World Example
	Technical requirements
	The process of building a web application
	Step 1—Define the functionality and workflow
	Step 2—Decide on the technology stack
	Step 3—Architect the data structures
	Step 4—Plan and build the user interface
	Step 5—Build the application infrastructure
	Step 6—Prototype the minimally viable backend features
	Step 7—Create continuous integration, deployment, and automation tools
	Step 8—Iterate, iterate, iterate

	Highlighting select features of the Booktracker
	Development environment
	Creating a better factory pattern with setup functions
	The data access layer
	Authentication flow

	Summary
	Putting it all together

	Index
	Other Books You May Enjoy

