
本书版权归Packt Publishing所有

Python Real-World Projects

Craft your Python portfolio with deployable

applications

Steven F. Lott

BIRMINGHAM—MUMBAI

“Python” and the Python logo are trademarks of the Python Software Foundation.

Python Real-World Projects

Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Associate Group Product Manager: Kunal Sawant
Publishing Product Manager: Akash Sharma
Senior Editor: Kinnari Chohan
Senior Content Development Editor: Rosal Colaco
Technical Editor: Maran Fernandes
Copy Editor: Safis Editing
Associate Project Manager: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Shyam Sundar Korumilli
Business Development Executive: Debadrita Chatterjee
Developer Relations Marketing Executive: Sonia Chauhan

First published: September 2023

Production reference: 1010923

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB

ISBN 978-1-80324-676-5

www.packtpub.com

www.packtpub.com

Contributors

About the author
Steven F. Lott has been programming since computers were large, expensive, and rare.

Working for decades in high tech has given him exposure to a lot of ideas and techniques;

some are bad, but most are useful and helpful to others.

Steven has been working with Python since the ‘90s, building a variety of tools and

applications. He’s written a number of titles for Packt Publishing, including Mastering

Object-Oriented Python, Modern Python Cookbook, and Functional Python Programming.

He’s a tech nomad and lives on a boat that’s usually located on the east coast of the US. He

tries to live by the words, “Don’t come home until you have a story.”

About the reviewer
Chris Griffith is a Lead Software Engineer with twelve years of experience with Python.

His open-source Python projects have been downloaded over a million times, and he is the

primary writer for the Code Calamity blog. Chris enjoys studio photography in his free

time as well as digitizing vintage magazines and 8mm films.

Join our community Discord space
Join our Python Discord workspace to discuss and learn more about the book:

https://packt.link/dHrHU

https://packt.link/dHrHU

Table of Contents

Preface xix

A note on skills required . xxiii

Chapter 1: Project Zero: A Template for Other Projects 1

On quality . 2

More Reading on Quality • 6

Suggested project sprints . 6

Inception • 8

Elaboration, part 1: define done • 10

Elaboration, part 2: define components and tests • 12

Construction • 14

Transition • 14

List of deliverables . 15

Development tool installation . 17

Project 0 – Hello World with test cases . 18

Description • 19

Approach • 20

Deliverables • 20

The pyproject.toml project file • 21

The docs directory • 24

The tests/features/hello_world.feature file • 24

The tests/steps/hw_cli.py module • 25

The tests/environment.py file • 27

The tests/test_hw.py unit tests • 27

The src/tox.ini file • 28

The src/hello_world.py file • 29

Definition of done • 29

Summary . 30

Extras . 30

Static analysis - mypy, flake8 • 31

CLI features • 31

Logging • 32

Cookiecutter • 32

Chapter 2: Overview of the Projects 33

General data acquisition . 36

Acquisition via Extract . 37

Inspection . 38

Clean, validate, standardize, and persist . 40

Summarize and analyze . 41

Statistical modeling . 41

Data contracts . 42

Summary . 43

Chapter 3: Project 1.1: Data Acquisition Base Application 45

Description . 46

User experience • 47

About the source data • 47

About the output data • 49

Architectural approach . 50

Class design • 52

Design principles • 54

Functional design • 57

Deliverables . 59

Acceptance tests • 59

Additional acceptance scenarios • 61

Unit tests • 63

Unit testing the model • 63

Unit testing the PairBuilder class hierarchy • 64

Unit testing the remaining components • 65

Summary . 66

Extras . 66

Logging enhancements • 66

Configuration extensions • 67

Data subsets • 69

Another example data source • 70

Chapter 4: Data Acquisition Features: Web APIs and Scraping 71

Project 1.2: Acquire data from a web service . 72

Description • 73

The Kaggle API • 74

About the source data • 75

Approach • 76

Making API requests • 78

Downloading a ZIP archive • 79

Getting the data set list • 80

Rate limiting • 83

The main() function • 84

Deliverables • 86

Unit tests for the RestAccess class • 87

Acceptance tests • 89

The feature file • 89

Injecting a mock for the requests package • 92

Creating a mock service • 93

Behave fixture • 96

Kaggle access module and refactored main application • 98

Project 1.3: Scrape data from a web page . 99

Description • 99

About the source data • 100

Approach • 101

Making an HTML request with urllib.request • 102

HTML scraping and Beautiful Soup • 103

Deliverables • 104

Unit test for the html_extract module • 105

Acceptance tests • 107

HTML extract module and refactored main application • 109

Summary . 110

Extras . 111

Locate more JSON-format data • 111

Other data sets to extract • 112

Handling schema variations • 112

CLI enhancements • 114

Logging • 114

Chapter 5: Data Acquisition Features: SQL Database 117

Project 1.4: A local SQL database . 118

Description • 119

Database design • 119

Data loading • 121

Approach • 121

SQL Data Definitions • 122

SQL Data Manipulations • 124

SQL Execution • 124

Loading the SERIES table • 126

Loading the SERIES_VALUE table • 127

Deliverables • 129

Project 1.5: Acquire data from a SQL extract . 130

Description • 130

The Object-Relational Mapping (ORM) problem • 132

About the source data • 134

Approach • 137

Extract from a SQL DB • 138

SQL-related processing distinct from CSV processing • 142

Deliverables • 143

Mock database connection and cursor objects for testing • 144

Unit test for a new acquisition module • 147

Acceptance tests using a SQLite database • 148

The feature file • 149

The sqlite fixture • 150

The step definitions • 153

The Database extract module, and refactoring • 154

Summary . 155

Extras . 156

Consider using another database • 156

Consider using a NoSQL database • 157

Consider using SQLAlchemy to define an ORM layer • 158

Chapter 6: Project 2.1: Data Inspection Notebook 159

Description . 160

About the source data • 161

Approach . 164

Notebook test cases for the functions • 168

Common code in a separate module • 170

Deliverables . 171

Notebook .ipynb file • 172

Cells and functions to analyze data • 173

Cells with Markdown to explain things • 174

Cells with test cases • 175

Executing a notebook’s test suite • 176

Summary . 177

Extras . 177

Use pandas to examine data • 177

Chapter 7: Data Inspection Features 179

Project 2.2: Validating cardinal domains — measures, counts, and durations 180

Description • 181

Approach • 182

Dealing with currency and related values • 187

Dealing with intervals or durations • 188

Extract notebook functions • 190

Deliverables • 192

Inspection module • 193

Unit test cases for the module • 193

Project 2.3: Validating text and codes — nominal data and ordinal numbers 194

Description • 194

Dates and times • 195

Time values, local time, and UTC time • 197

Approach • 197

Nominal data • 199

Extend the data inspection module • 199

Deliverables • 200

Revised inspection module • 201

Unit test cases • 201

Project 2.4: Finding reference domains . 202

Description • 203

Approach • 206

Collect and compare keys • 206

Summarize keys counts • 208

Deliverables • 209

Revised inspection module • 210

Unit test cases • 210

Revised notebook to use the refactored inspection model • 210

Summary . 211

Extras . 212

Markdown cells with dates and data source information • 212

Presentation materials • 212

JupyterBook or Quarto for even more sophisticated output • 213

Chapter 8: Project 2.5: Schema and Metadata 215

Description . 216

Approach . 217

Define Pydantic classes and emit the JSON Schema • 219

Define expected data domains in JSON Schema notation • 222

Use JSON Schema to validate intermediate files • 224

Deliverables . 226

Schema acceptance tests • 226

Extended acceptance testing • 227

Summary . 228

Extras . 229

Revise all previous chapter models to use Pydantic • 229

Use the ORM layer • 230

Chapter 9: Project 3.1: Data Cleaning Base Application 231

Description . 232

User experience • 233

Source data • 235

Result data • 236

Conversions and processing • 237

Error reports • 239

Approach . 241

Model module refactoring • 244

Pydantic V2 validation • 248

Validation function design • 250

Incremental design • 251

CLI application • 252

Redirecting stdout • 253

Deliverables . 254

Acceptance tests • 254

Unit tests for the model features • 255

Application to clean data and create an NDJSON interim file • 256

Summary . 257

Extras . 257

Create an output file with rejected samples • 257

Chapter 10: Data Cleaning Features 259

Project 3.2: Validate and convert source fields . 260

Description • 260

Approach • 263

Deliverables • 267

Unit tests for validation functions • 267

Project 3.3: Validate text fields (and numeric coded fields) . 268

Description • 268

Approach • 269

Deliverables • 270

Unit tests for validation functions • 271

Project 3.4: Validate references among separate data sources . 271

Description • 272

Approach • 273

Deliverables • 278

Unit tests for data gathering and validation • 279

Project 3.5: Standardize data to common codes and ranges . 279

Description • 280

Approach • 281

Deliverables • 285

Unit tests for standardizing functions • 285

Acceptance test • 286

Project 3.6: Integration to create an acquisition pipeline . 287

Description • 287

Multiple extractions • 287

Approach • 288

Consider packages to help create a pipeline • 289

Deliverables • 290

Acceptance test • 290

Summary . 291

Extras . 291

Hypothesis testing • 291

Rejecting bad data via filtering (instead of logging) • 292

Disjoint subentities • 292

Create a fan-out cleaning pipeline • 295

Chapter 11: Project 3.7: Interim Data Persistence 301

Description . 301

Overall approach . 305

Designing idempotent operations • 308

Deliverables . 310

Unit test • 310

Acceptance test • 311

Cleaned up re-runnable application design • 312

Summary . 312

Extras . 313

Using a SQL database • 313

Persistence with NoSQL databases • 313

Chapter 12: Project 3.8: Integrated Data Acquisition Web Service 317

Description . 318

The data series resources • 319

Creating data for download • 320

Overall approach . 321

OpenAPI 3 specification • 324

RESTful API to be queried from a notebook • 328

A POST request starts processing • 329

The GET request for processing status • 330

The GET request for the results • 331

Security considerations • 331

Deliverables . 333

Acceptance test cases • 334

RESTful API app • 337

Unit test cases • 340

Summary . 342

Extras . 343

Add filtering criteria to the POST request • 343

Split the OpenAPI specification into two parts to use $REF for the output

schema • 344

Use Celery instead of concurrent.futures • 345

Call external processing directly instead of running a subprocess • 346

Chapter 13: Project 4.1: Visual Analysis Techniques 349

Description . 350

Overall approach . 351

General notebook organization • 354

Python modules for summarizing • 355

PyPlot graphics • 356

Data frequency histograms • 357

X-Y scatter plot • 359

Iteration and evolution • 360

Deliverables . 360

Unit test • 361

Acceptance test • 363

Summary . 363

Extras . 364

Use Seaborn for plotting • 364

Adjust color palettes to emphasize key points about the data • 365

Chapter 14: Project 4.2: Creating Reports 367

Description . 367

Slide decks and presentations • 368

Reports • 369

Overall approach . 371

Preparing slides • 371

Preparing a report • 373

Creating technical diagrams • 375

Deliverables . 376

Summary . 376

Extras . 377

Written reports with UML diagrams • 377

Chapter 15: Project 5.1: Modeling Base Application 379

Description . 381

Approach . 383

Designing a summary app • 384

Describing the distribution • 385

Use cleaned data model • 387

Rethink the data inspection functions • 387

Create new results model • 389

Deliverables . 391

Acceptance testing • 392

Unit testing • 393

Application secondary feature • 395

Summary . 399

Extras . 400

Measures of shape • 400

Creating PDF reports • 401

Serving the HTML report from the data API • 401

Chapter 16: Project 5.2: Simple Multivariate Statistics 405

Description . 406

Correlation coefficient • 406

Linear regression • 407

Diagrams • 408

Approach . 409

Statistical computations • 409

Analysis diagrams • 412

Including diagrams in the final document • 413

Deliverables . 414

Acceptance tests • 415

Unit tests • 416

Summary . 418

Extras . 418

Use pandas to compute basic statistics • 418

Use the dask version of pandas • 419

Use numpy for statistics • 420

Use scikit-learn for modeling • 421

Compute the correlation and regression using functional programming • 423

Chapter 17: Next Steps 425

Overall data wrangling . 426

The concept of “decision support” . 428

Concept of metadata and provenance . 428

Next steps toward machine learning . 430

Other Books You Might Enjoy 434

Index 440

Preface

How do we improve our knowledge of Python? Perhaps a more important question is

“How do we show others how well we can write software in Python?”

Both of these questions have the same answer. We build our skills and demonstrate those

skills by completing projects. More specifically, we need to complete projects that meet

some widely-accepted standards for professional development. To be seen as professionals,

we need to step beyond apprentice-level exercises, and demonstrate our ability to work

without the hand-holding of a master crafter.

I think of it as sailing a boat alone for the first time, without a more experienced skipper or

teacher on board. I think of it as completing a pair of hand-knitted socks that can be worn

until the socks have worn out so completely, they can no longer be repaired.

Completing a project entails meeting a number of objectives. One of the most important is

posting it to a public repository like SourceForge (https://sourceforge.net) or GitHub

(https://github.com) so it can be seen by potential employers, funding sources, or

business partners.

We’ll distinguish between three audiences for a completed project:

• A personal project, possibly suitable for a work group or a few peers.

• A project suitable for use throughout an enterprise (e.g., a business, organization, or

government agency)

• A project that can be published on the Python Package Index, PyPI

(https://pypi.org).

https://sourceforge.net
https://github.com
https://pypi.org

xx Preface

We’re drawing a fine line between creating a PyPI package and creating a package usable

within an enterprise. For PyPI, the software package must be installable with the PIP tool;

this often adds requirements for a great deal of testing to confirm the package will work in

the widest variety of contexts. This can be an onerous burden.

For this book, we suggest following practices often used for “Enterprise” software. In an

Enterprise context, it’s often acceptable to create packages that are not installed by PIP.

Instead, users can install the package by cloning the repository. When people work for a

common enterprise, cloning packages permits users to make pull requests with suggested

changes or bug fixes. The number of distinct environments in which the software is used

may be very small. This reduces the burden of comprehensive testing; the community

of potential users for enterprise software is smaller than a package offered to the world

via PyPI.

Who this book is for
This book is for experienced programmers who want to improve their skills by completing

professional-level Python projects. It’s also for developers who need to display their skills

by demonstrating a portfolio of work.

This is not intended as a tutorial on Python. This book assumes some familiarity with the

language and the standard library. For a foundational introduction to Python, consider

Learn Python Programming, Third Edition: https://www.packtpub.com/product/learn-p

ython-programming-third-edition/9781801815093.

The projects in this book are described in broad strokes, requiring you to fill in the design

details and complete the programming. Each chapter focuses more time on the desired

approach and deliverables than the code you’ll need to write. The book will detail test cases

and acceptance criteria, leaving you free to complete the working example that passes the

suggested tests.

What this book covers
We can decompose this book into five general topics:

https://www.packtpub.com/product/learn-python-programming-third-edition/9781801815093
https://www.packtpub.com/product/learn-python-programming-third-edition/9781801815093

Preface xxi

• We’ll start with Acquiring Data From Sources. The first six projects will cover

projects to acquire data for analytic processing from a variety of sources.

• Once we have data, we often need to Inspect and Survey. The next five projects look

at some ways to inspect data to make sure it’s usable, and diagnose odd problems,

outliers, and exceptions.

• The general analytics pipeline moves on to Cleaning, Converting, and

Normalizing. There are eight projects that tackle these closely-related problems.

• The useful results begin with Presenting Summaries. There’s a lot of variability

here, so we’ll only present two project ideas. In many cases, you will want to provide

their own, unique solutions to presenting the data they’ve gathered.

• This book winds up with two small projects covering some basics of Statistical

Modeling. In some organizations, this may be the start of more sophisticated data

science and machine learning applications. We encourage you to continue your

study of Python applications in the data science realm.

The first part has two preliminary chapters to help define what the deliverables are and

what the broad sweep of the projects will include. Chapter 1, Project Zero: A Template

for Other Projects is a baseline project. The functionality is a “Hello, World!” application.

However, the additional infrastructure of unit tests, acceptance tests, and the use of a tool

like tox or nox to execute the tests is the focus.

The next chapter, Chapter 2, Overview of the Projects, shows the general approach this

book will follow. This will present the flow of data from acquisition through cleaning to

analysis and reporting. This chapter decomposes the large problem of “data analytics” into

a number of smaller problems that can be solved in isolation.

The sequence of chapters starting with Chapter 3, Project 1.1: Data Acquisition Base

Application, builds a number of distinct data acquisition applications. This sequence

starts with acquiring data from CSV files. The first variation, in Chapter 4, Data Acquisition

Features: Web APIs and Scraping, looks at ways to get data from web pages.

xxii Preface

The next two projects are combined into Chapter 5, Data Acquisition Features: SQL Database.

This chapter builds an example SQL database, and then extracts data from it. The example

database lets us explore enterprise database management concepts to more fully understand

some of the complexities of working with relational data.

Once data has been acquired, the projects transition to data inspection. Chapter 6, Project

2.1: Data Inspection Notebook creates an initial inspection notebook. In Chapter 7, Data

Inspection Features, a series of projects add features to the basic inspection notebook for

different categories of data.

This topic finishes with the Chapter 8, Project 2.5: Schema and Metadata project to create

a formal schema for a data source and for the acquired data. The JSON Schema standard

is used because it seems to be easily adapted to enterprise data processing. This schema

formalization will become part of later projects.

The third topic — cleaning — starts with Chapter 9, Project 3.1: Data Cleaning Base Application.

This is the base application to clean the acquired data. This introduces the Pydantic package

as a way to provide explicit data validation rules.

Chapter 10, Data Cleaning Features has a number of projects to add features to the core

data cleaning application. Many of the example datasets in the previous chapters provide

very clean data; this makes the chapter seem like needless over-engineering. It can help if

you extract sample data and then manually corrupt it so that you have examples of invalid

and valid data.

In Chapter 11, Project 3.7: Interim Data Persistence, we’ll look at saving the cleaned data for

further use.

The acquire-and-clean pipeline is often packaged as a web service. In Chapter 12, Project

3.8: Integrated Data Acquisition Web Service, we’ll create a web server to offer the cleaned

data for subsequent processing. This kind of web services wrapper around a long-running

acquire-and-clean process presents a number of interesting design problems.

The next topic is the analysis of the data. In Chapter 13, Project 4.1: Visual Analysis Techniques

Preface xxiii

we’ll look at ways to produce reports, charts, and graphs using the power of JupyterLab.

In many organizations, data analysis may lead to a formal document, or report, showing the

results. This may have a large audience of stakeholders and decision-makers. In Chapter 14,

Project 4.2: Creating Reports we’ll look at ways to produce elegant reports from the raw

data using computations in a JupyterLab notebook.

The final topic is statistical modeling. This starts with Chapter 15, Project 5.1: Modeling

Base Application to create an application that embodies lessons learned in the Inspection

Notebook and Analysis Notebook projects. Sometimes we can share Python

programming among these projects. In other cases, however, we can only share the

lessons learned; as our understanding evolves, we often change data structures and apply

other optimizations making it difficult to simply share a function or class definition.

In Chapter 16, Project 5.2: Simple Multivariate Statistics, we expand on univariate modeling

to add multivariate statistics. This modeling is kept simple to emphasize foundational

design and architectural details. If you’re interested in more advanced statistics, we suggest

building the basic application project, getting it to work, and then adding more sophisticated

modeling to an already-working baseline project.

The final chapter, Chapter 17, Next Steps, provides some pointers for more sophisticated

applications. In many cases, a project evolves from exploration to monitoring and

maintenance. There will be a long tail where the model continues to be confirmed and

refined. In some cases, the long tail ends when a model is replaced. Seeing this long tail can

help an analyst understand the value of time invested in creating robust, reliable software

at each stage of their journey.

A note on skills required
These projects demand a wide variety of skills, including software and data architecture,

design, Python programming, test design, and even documentation writing. This breadth of

skills reflects the author’s experience in enterprise software development. Developers are

expected to be generalists, able to follow technology changes and adapt to new technology.

xxiv Preface

In some of the earlier chapters, we’ll offer some guidance on software design and

construction. The guidance will assume a working knowledge of Python. It will point you

toward the documentation for various Python packages for more information.

We’ll also offer some details on how best to construct unit tests and acceptance tests. These

topics can be challenging because testing is often under-emphasized. Developers fresh

out of school often lament that modern computer science education doesn’t seem to cover

testing and test design very thoroughly.

This book will emphasize using pytest for unit tests and behave for acceptance tests.

Using behave means writing test scenarios in the Gherkin language. This is the language

used by the cucumber tool and sometimes the language is also called Cucumber. This may

be new, and we’ll emphasize this with more detailed examples, particularly in the first five

chapters.

Some of the projects will implement statistical algorithms. We’ll use notation like 𝑥̄ to

represent the mean of the variable 𝑥 . For more information on basic statistics for data

analytics, see Statistics for Data Science:

https://www.packtpub.com/product/statistics-for-data-science/9781788290678

To get the most out of this book
This book presumes some familiarity with Python 3 and the general concept of application

development. Because a project is a complete unit of work, it will go beyond the Python

programming language. This book will often challenge you to learn more about specific

Python tools and packages, including pytest, mypy, tox, and many others.

Most of these projects use exploratory data analysis (EDA) as a problem domain to

show the value of functional programming. Some familiarity with basic probability and

statistics will help with this. There are only a few examples that move into more serious

data science.

Python 3.11 is expected. For data science purposes, it’s often helpful to start with the

conda tool to create and manage virtual environments. It’s not required, however, and

https://www.packtpub.com/product/statistics-for-data-science/9781788290678

Preface xxv

you should be able to use any available Python.

Additional packages are generally installed with pip. The command looks like this:

% python -m pip install pytext mypy tox beautifulsoup4

Complete the extras
Each chapter includes a number of “extras” that help you to extend the concepts in the

chapter. The extra projects often explore design alternatives and generally lead you to

create additional, more complete solutions to the given problem.

In many cases, the extras section will need even more unit test cases to confirm they

actually solve the problem. Expanding the core test cases of the chapter to include the

extra features is an important software development skill.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPubl

ishing/Python-Real-World-Projects. We also have other code bundles from our rich

catalog of books and videos available at https://github.com/PacktPublishing/. Check

them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in the text, database table names, folder names, filenames,

file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example:

“Python has other statements, such as global or nonlocal, which modify the rules for

variables in a particular namespace.”

Bold: Indicates a new term, an important word, or words you see on the screen, such as in

menus or dialog boxes. For example: “The base case states that the sum of a zero-length

sequence is 0. The recursive case states that the sum of a sequence is the first value plus

https://github.com/PacktPublishing/Python-Real-World-Projects
https://github.com/PacktPublishing/Python-Real-World-Projects
https://github.com/PacktPublishing/

xxvi Preface

the sum of the rest of the sequence.”

A block of code is set as follows:

print("Hello, World!")

Any command-line input or output is written as follows:

% conda create -n functional3 python=3.10

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book’s title in the

subject of your message. If you have questions about any aspect of this book, please email

us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you have found a mistake in this book we would be grateful if you would

report this to us. Please visit https://subscription.packtpub.com/help, click on the

Submit Errata button, search for your book, and enter the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,

we would be grateful if you would provide us with the location address or website name.

Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in

mailto:feedback@packtpub.com
mailto:questions@packtpub.com
https://subscription.
mailto:copyright@packtpub.com

Preface xxvii

and you are interested in either writing or contributing to a book, please visit

http://authors.packtpub.com.

Share your thoughts
Once you’ve read Python Real-World Projects, we’d love to hear your thoughts! Please click

here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re

delivering excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1803246766
https://packt.link/r/1803246766

xxviii Preface

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your

eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book, you get a DRM-free PDF version of that book at

no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite

technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and

great free content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803246765

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803246765

1
Project Zero: A Template for
Other Projects

This is a book of projects. To make each project a good portfolio piece, we’ll treat each

project as an enterprise software product. You can build something that could be posted to

a company’s (or organization’s) internal repository.

For this book, we’ll define some standards that will apply to all of these projects. The

standards will identify deliverables as a combination of files, modules, applications,

notebooks, and documentation files. While each enterprise is unique, the standards

described here are consistent with my experience as a consultant with a variety of

enterprises.

We want to draw an informal boundary to avoid some of the steps required to post to the

PyPI website. Our emphasis is on a product with test cases and enough documentation to

explain what it does. We don’t want to go all the way to creating a project in PyPI. This

allows us to avoid the complications of a build system and the associated pyproject.toml

2 Project Zero: A Template for Other Projects

file.

These projects are not intended to produce generic, reusable modules. They’re applications

specific to a problem domain and a dataset. While these are specific solutions, we don’t

want to discourage anyone who feels motivated to generalize a project into something

generic and reusable.

This chapter will show the general outline of each project. Then we’ll look at the set of

deliverables. This chapter ends with project zero – an initial project that will serve as a

template for others. We’ll cover the following topics:

• An overview of the software quality principles that we’ll try to emphasize.

• A suggested approach to completing the project as a sequence of project sprints.

• A general overview of the list of deliverables for each project.

• Some suggested tools. These aren’t required, and some readers may have other

choices.

• A sample project to act as a template for subsequent projects.

We’ll start with an overview of some characteristics of high-quality software. The idea is

to establish some standards for the deliverables of each project.

On quality
It helps to have a clear definition of expectations. For these expectations, we’ll rely on

the ISO 25010 standard to define quality goals for each project. For more details, see

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010.

The ISO/IEC 25010:2011 standard describes Systems and software Quality Requirements

and Evaluation (SQuaRE). This standard provides eight characteristics of software. These

characteristics are as follows:

• Functional suitability. Does it do what we need? It is complete, correct, and

appropriate for the user’s expressed (and implied) needs? This is the focus of each

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Chapter 1 3

project’s description.

• Performance efficiency. Does it work quickly? Does it use the minimum resources?

Does it have enough capacity to meet the user’s needs? We won’t address this

deeply in this book. We’ll talk about writing performance tests and ways to address

performance concerns.

• Compatibility. Does it co-exist with other software? Does it properly interoperate

with other applications? To an extent, Python can help assure an application

interoperates politely with other applications. We’ll emphasize this compatibility

issue in our choices of file formats and communication protocols.

• Usability. There are a number of sub-characteristics that help us understand usability.

Many of the projects in this book focus on the command-line interface (CLI) to

assure a bare minimum of learnability, operability, error protection, and accessibility.

A few projects will include a web services API, and others will make use of the GUI

interface of JupyterLab to provide interactive processing.

• Reliability. Is it available when the users want it? Can we detect and repair

problems? We need to make sure we have all of the parts and pieces so we can use

the software. We also need to make sure we have a complete set of tests to confirm

that it will work.

• Security. As with usability, this is a deep topic. We’ll address some aspects of

security in one of the projects. The remaining projects will use a CLI permitting us

to rely on the operating system’s security model.

• Maintainability. Can we diagnose problems? Can we extend it? We’ll look at

documentation and test cases as essential for maintainability. We’ll also leverage a

few additional project files to make sure our project can be downloaded and extended

by others.

• Portability. Can we move to a new Python version? New hardware? This is very

important. The Python ecosystem is rapidly evolving. Since all of the libraries and

4 Project Zero: A Template for Other Projects

packages are in a constant state of change, we need to be able to define precisely what

packages our project depends on, and confirm that it works with a new candidate

set of packages.

Two of these characteristics (Compatibility and Portability) are features of Python. A

wise choice of interfaces assures that these characteristics are met. These are sometimes

described as architectural decisions since they influence how multiple applications work

together.

For Security, we will rely on the operating system. Similarly, for Usability, we’ll limit

ourselves to CLI applications, relying on long-standing design principles.

The idea of Performance is something we won’t emphasize here. We will point out places

where large data sets will require some careful design. The choice of data structure and

algorithm is a separate subject area. Our objective in this book is to expose you to projects

that can provide the stimulus for a deeper study of performance issues.

Three of these quality characteristics — Functional suitability, Reliability, and Maintainability

— are the real focus of these projects. These seem to be essential elements of good software

design. These are the places where you can demonstrate your Python programming skills.

Another view is available from The Twelve-Factor App (https://12factor.net). This

is narrowly focused on web applications. The concepts provide deeper insights and more

concrete technical guidance into the quality characteristics shown above:

I. Codebase. “One codebase tracked in revision control, many deploys.” We’ll use Git

and GitHub or perhaps one of the other version managers supported by sourceforge.

II. Dependencies. “Explicitly declare and isolate dependencies.” Traditionally, a Python

requirements.txt file was used for this. In this book, we’ll move forward to using

a pyproject.toml file.

III. Config. “Store config in the environment.” We won’t emphasize this, but Python

offers numerous ways to handle configuration files.

IV. Backing services. “Treat backing services as attached resources.” We touch on this in

https://12factor.net

Chapter 1 5

a few places. How storage, messages, mail, or caching work isn’t something we’ll

examine deeply.

V. Build, release, run. “Strictly separate build and run stages.” For command-line

applications, this means we should deploy the application into a “production”

environment to use the high-value data and produce the results that the enterprise

needs. We want to avoid running things in our desktop development environment.

VI. Processes. “Execute the app as one or more stateless processes.” CLI applications

tend to be structured this way without making any additional effort.

VII. Port binding. “Export services via port binding.” We won’t emphasize this; it’s very

specific to web services.

VIII. Concurrency. “Scale out via the process model.” This is a subject for the interested

reader who wants to process very large data sets. We won’t emphasize it in the main

text. We will suggest some of these topics in the “Extras” section of some chapters.

IX. Disposability. “Maximize robustness with fast startup and graceful shutdown.” CLI

applications tend to be structured this way, also.

X. Dev/prod parity. “Keep development, staging, and production as similar as possible.”

While we won’t emphasize this deeply, our intent with CLI applications is to expose

the distinctions between development and production with command-line arguments,

shell environment variables, and configuration files.

XI. Logs. “Treat logs as event streams.” We will suggest applications write logs, but we

won’t provide more detailed guidance in this book.

XII. Admin processes. “Run admin/management tasks as one-off processes.” A few of the

projects will require some additional administrative programming. These will be

built as deliverable CLI applications, complete with an acceptance test suite.

Our objective is to provide project descriptions and lists of deliverables that try to conform

to these quality standards. As we noted earlier, each enterprise is unique, and some

organizations will fall short of these standards, while some will exceed them.

6 Project Zero: A Template for Other Projects

More Reading on Quality
In addition to the ISO standard, the IEEE 1061 standard also covers software quality. While

it has been inactive since 2020, it contains some good ideas. The standard is focused on

quality metrics, which dives deeply into the idea of analyzing software for quality factors.

It can also help to read https://en.wikipedia.org/wiki/ISO/IEC_9126 for some

background on the origins of the ISO standard.

When doing more reading on this topic, it can help to recognize the following three terms:

• Factors are an external view of the software. They reflect the user’s

understanding. Some of the underlying quality characteristics are not directly visible

to users. Maintainability, for example, may appear to users as a reliability or usability

problem because the software is difficult to repair or extend.

• Criteria come from an internal view of the software. Quality criteria are the

focus of the project’s deliverables. Our project code should reflect the eight quality

characteristics listed above.

• Metrics are how we can control the factors that are seen by the user. We won’t

emphasize quality metrics. In some cases, tools like pylint provide tangible

measurements of static code quality. This isn’t a comprehensive tool for software

quality in general, but it provides an easy starting point for a few key metrics related

to complexity and maintainability.

Given these standards for high-quality software, we can turn our attention to the sequence

of steps for building these files. We’ll suggest a sequence of stages you can follow.

Suggested project sprints
We hesitate to provide a detailed step-by-step process for building software. For more

experienced developers, our sequence of steps may not match their current practices. For

less experienced developers, the suggested process can help by providing a rational order

in which the deliverables can be built.

https://en.wikipedia.org/wiki/ISO/IEC_9126

Chapter 1 7

There was a time when a “statement of work” with a detailed list of specific tasks was

a central part of a software development effort. This was often part of a “waterfall”

methodology where requirements flowed to analysts who wrote specifications that flowed

down to designers who wrote high-level designs that flowed down to coders. This wasn’t a

great way to build software, and has been largely supplanted by Agile methods. For more

information on Agility, see https://agilemanifesto.org.

The Agile approach lets us examine a project both as a series of steps to be completed, as

well as a collection of deliverables that need to be created. We’ll describe the steps first,

avoiding too much emphasis on details. We’ll revisit the deliverables, and in those sections,

dive a little more deeply into what the final product needs to be.

The suggested approach follows the “Agile Unified Process” (https://www.methodsandto

ols.com/archive/archive.php?id=21), which has four general phases. We’ll subdivide

one of the phases to distinguish two important kinds of deliverables.

We suggest tackling each project in the following five phases:

1. Inception. Ready the tools. Organize the project directory and virtual environment.

2. Elaboration, part 1: Define done. This is implemented as acceptance test cases.

3. Elaboration, part 2: Define components and some tests. This is implemented as unit

test cases for components that need to be built.

4. Construction. Build the software.

5. Transition. Final cleanup: make sure all tests pass and the documentation is readable.

These efforts don’t proceed in a simple linear fashion. It’s often necessary to iterate between

elaboration and construction to create features separately.

It often works as shown in Figure 1.1.

This figure provides a very coarse overview of the kinds of activities we’ll discuss below.

The important concept is iterating between the elaboration and construction phases. It’s

difficult to fully design a project before constructing all of the code. It’s easier to design a

little, construct a little, and refactor as needed.

https://agilemanifesto.org
https://www.methodsandtools.com/archive/archive.php?id=21
https://www.methodsandtools.com/archive/archive.php?id=21

8 Project Zero: A Template for Other Projects

inception

elaboration acceptance tests

construction

elaboration unit tests

more to design

add details

transition

Figure 1.1: Development Phases and Cycles

For a complex project, there may be a series of transitions to production. Often a “minimally

viable product” will be created to demonstrate some of the concepts. This will be followed

by products with more features or features better focused on the user. Ideally, it will have

both kinds of enhancements: more features and a better focus on the user’s needs.

We’ll look at each of these four phases in a little more detail, starting with the inception

phases.

Inception
Start the inception phase by creating the parent directory for the project, then some

commonly-used sub-directories (docs, notebooks, src, tests). There will be some top-level

Chapter 1 9

files (README.md, pyproject.toml, and tox.ini). The list of expected directories and files

is described in more detail in List of deliverables, later in this chapter. We’ll look at the

contents of each of these files and directories in the Deliverables section.

It helps to capture any initial ideas in the README.md file. Later, this will be refactored into

more formal documentation. Initially, it’s the perfect place to keep notes and reminders.

Build a fresh, new virtual environment for the project. Each project should have its own

virtual environment. Environments are essentially free: it’s best to build them to reflect

any unique aspects of each project.

Here’s a conda command that can be used to build an environment.

% conda create -n project0 --channel=conda-forge python=3.10

An important part of inception is to start the documentation for the project. This can be

done using the Sphinx tool.

While Sphinx is available from the Conda Forge, this version lags behind the version

available from the PyPI repository. Because of this lag, it’s best to install Sphinx using

PIP:

% python -m pip install sphinx

After installing Sphinx, it helps to initialize and publish the documentation for the project.

Starting this permits publishing and sharing the design ideas as the work progresses. In

the docs directory, do the following steps:

1. Run the sphinx-quickstart command to populate the documentation. See https:

//www.sphinx-doc.org/en/master/usage/quickstart.html#setting-up-the-d

ocumentation-sources.

2. Update the index.rst table of contents (TOC) with two entries: “overview” and

“API”. These are sections that will be in separate files.

https://www.sphinx-doc.org/en/master/usage/quickstart.html#setting-up-the-documentation-sources
https://www.sphinx-doc.org/en/master/usage/quickstart.html#setting-up-the-documentation-sources
https://www.sphinx-doc.org/en/master/usage/quickstart.html#setting-up-the-documentation-sources

10 Project Zero: A Template for Other Projects

3. Write an overview.rst document with the definition of done: what will be

accomplished. This should cover the core “Who-What-When-Where-Why” of the

project.

4. Put a title in the API document, and a .. todo:: note to yourself. You’ll add to this

document as you add modules to your project.

5. During Elaboration, you’ll update the the index.rst to add sections for architecture

and design decisions.

6. During Construction, as you create code, you’ll add to the API section.

7. During Transition, you’ll add to the index.rst with some “How” sections: How to

test it, and how to use it.

With this as the starting point, the make html command will build a documentation

set in HTML. This can be shared with stakeholders to assure there’s a clear, common

understanding of the project.

With a skeleton directory and some initial places to record ideas and decisions, it makes

sense to start elaborating on the initial goal to and decide what will be built, and how it

will work.

Elaboration, part 1: define done
It helps to have a clear definition of “done.” This guides the construction effort toward a

well-defined goal. It helps to have the definition of done written out as a formal, automated

test suite. For this, the Gherkin language is helpful. The behave tool can execute the

Gherkin feature to evaluate the application software. An alternative to Gherkin is using

the pytest tool with the pytest-bdd plug-in to run the acceptance tests.

The two big advantages of Gherkin are the ability to structure the feature descriptions into

scenarios and write the descriptions in English (or any other natural language). Framing

the expected behavior into discrete operating scenarios forces us to think clearly about

how the application or module is used. Writing in English (or other natural languages)

Chapter 1 11

makes it easier to share definitions with other people to confirm our understanding. It also

helps to keep the definition of done focused on the problem domain without devolving

into technical considerations and programming.

Each scenario can have three steps: Given, When, and Then. The Given step defines a

context. The When step defines an action or a request of the software. The Then step

defines the expected results. These step definitions can be as complex as needed, often

involving multiple clauses joined with And. Examples can be provided in tables to avoid

copying and pasting a scenario with a different set of values. A separate module provides

Python implementations for the English-language step text.

See https://behave.readthedocs.io/en/stable/gherkin.html#gherkin-feature-tes

ting-language for numerous examples of scenarios written in Gherkin.

Start this part of elaboration by creating a tests/features/project.feature file based

on the overview description. Don’t use a boring name like project. A complex project

may have multiple features, so the feature file names should reflect the features.

To use pytest, write one (or more) acceptance test scripts in the tests directory.

The features are supported by steps. These steps are in modules in the tests/steps

directory. A tests/steps/hw_cli.py module provides the necessary Python definitions

for the steps in the feature file. The names of the modules don’t matter; we suggest

something like hw_cli because it implements the steps for a hello-world command-line

interface.

The underlying mechanism is used by the Behave tool are function decorators. These

match text from the feature file to define the function that implements that step. These can

have wildcard-matching to permit flexibility in wording. The decorator can also parse out

parameter values from the text.

A tests/environment.py file is required, but it can be empty for simple tests. This file

provides a testing context, and is where some functions used by the Behave tool to control

test setup and teardown are defined.

https://behave.readthedocs.io/en/stable/gherkin.html#gherkin-feature-testing-language
https://behave.readthedocs.io/en/stable/gherkin.html#gherkin-feature-testing-language

12 Project Zero: A Template for Other Projects

As soon as scenarios have been written, it makes sense to run the Behave tool to see the

acceptance test fail. Initially, this lets you debug the step definitions.

For this application, the steps must properly execute the application program and capture

the output file. Because the application doesn’t exist yet, a test failure at this point is

expected.

The feature files with the application scenarios are a working definition of done. When the

test suite runs, it will show whether or not the software works. Starting with features that

fail to work means the rest of the construction phase will be debugging the failures and

fixing the software until the application passes the acceptance test suite.

In Project 0 – Hello World with test cases we’ll look at an example of a Gherkin-language

feature, the matching step definitions, and a tox.ini to run the test suite.

Elaboration, part 2: define components and tests
The acceptance test suite is often relatively “coarse” – the tests exercise the application

as a whole, and avoid internal error conditions or subtle edge cases. The acceptance test

suite rarely exercises all of the individual software components. Because of this, it can be

difficult to debug problems in complex applications without detailed unit tests for each

unit — each package, module, class, and function.

After writing the general acceptance test suite, it helps to do two things. First, start writing

some skeleton code that’s likely to solve the problem. The class or function will contain a

docstring explaining the idea. Optionally, it can have a body of the pass statement. After

writing this skeleton, the second step is to expand on the docstring ideas by writing unit

tests for the components.

Let’s assume we’ve written a scenario with a step that will execute an application named

src/hello_world.py. We can create this file and include a skeleton class definition like

this:

class Greeting:

"""

Chapter 1 13

Created with a greeting text.

Writes the text to stdout.

.. todo:: Finish this

"""

pass

This example shows a class with a design idea. This needs to be expanded with a clear

statement of expected behaviors. Those expectations should take the form of unit tests for

this class.

Once some skeletons and tests are written, the pytest tool can be used to execute those

tests.

The unit tests will likely fail because the skeleton code is incomplete or doesn’t work.

In the cases where tests are complete, but classes don’t work, you’re ready to start the

construction phase.

In the cases where the design isn’t complete, or the tests are fragmentary, it makes sense

to remain in the elaboration phase for those classes, modules, or functions. Once the tests

are understood, construction has a clear and achievable goal.

We don’t always get the test cases right the first time, we must change them as we learn.

We rarely get the working code right the first time. If the test cases come first, they make

sure we have a clear goal.

In some cases, the design may not be easy to articulate without first writing some “spike

solution” to explore an alternative. Once the spike works, it makes sense to write tests to

demonstrate the code works.

See http://www.extremeprogramming.org/rules/spike.html for more on creating spike

solutions.

At this point, you have an idea of how the software will be designed. The test cases are a

way to formalize the design into a goal. It’s time to begin construction.

http://www.extremeprogramming.org/rules/spike.html

14 Project Zero: A Template for Other Projects

Construction
The construction phase finishes the class and function (and module and package) definitions

started in the elaboration phase. In some cases, test cases will need to be added as the

definitions expand.

As we get closer to solving the problem, the number of tests passed will grow.

The number of tests may also grow. It’s common to realize the sketch of a class definition

is incomplete and requires additional classes to implement the State or Strategy design

pattern. As another example, we may realize subclasses are required to handle special

cases. This new understanding will change the test suite.

When we look at our progress over several days, we should see that the number of tests

pass approaches the total number of tests.

How many tests do we need? There are strong opinions here. For the purposes of showing

high-quality work, tests that exercise 100% of the code are a good starting point. For

some industries, a more strict rule is to cover 100% of the logic paths through the code.

This higher standard is often used for applications like robotics and health care where the

consequences of a software failure may involve injury or death.

Transition
For enterprise applications, there is a transition from the development team to formal

operations. This usually means a deployment into a production environment with the real

user community and their data.

In organizations with good Continuous Integration/Continuous Deployment (CI/CD)

practices, there will be a formalized execution of the tox command to make sure everything

works: all the tests pass.

In some enterprises, the make html command will also be run to create the documentation.

Often, the technical operations team will need specific topics in the documentation and

the README.md file. Operations staff may have to diagnose and troubleshoot problems with

Chapter 1 15

hundreds of applications, and they will need very specific advice in places where they can

find it immediately. We won’t emphasize this in this book, but as we complete our projects,

it’s important to think that our colleagues will be using this software, and we want their

work life to be pleasant and productive.

The final step is to post your project to your public repository of choice.

You have completed part of your portfolio. You’ll want potential business partners or hiring

managers or investors to see this and recognize your level of skill.

We can view a project as a sequence of steps. We can also view a project as a deliverable

set of files created by those steps. In the next section, we’ll look over the deliverables in a

little more detail.

List of deliverables
We’ll take another look at the project, this time from the view of what files will be created.

This will parallel the outline of the activities shown in the previous section.

The following outline shows many of the files in a completed project:

• The documentation in the docs directory. There will be other files in there, but you’ll

be focused on the following files:

– The Sphinx index.rst starter file with references to overview and API sections.

– An overview.rst section with a summary of the project.

– An api.rst section with .. automodule:: commands to pull in documentation

from the application.

• A set of test cases in the tests directory.

– Acceptance tests aimed at Behave (or the pytest-bdd plug-in for Gherkin).

When using Behave, there will be two sub-directories: a features directory

and a steps directory. Additionally, there will be an environment.py file.

– Unit test modules written with the pytest framework. These all have a name

16 Project Zero: A Template for Other Projects

that starts with test_ to make them easy for pytest to find. Ideally, the

Coverage tool is used to assure 100% of the code is exercised.

• The final code in the src directory. For some of the projects, a single module will be

sufficient. Other projects will involve a few modules. (Developers familiar with Java

or C++ often create too many modules here. The Python concept of module is more

akin to the Java concept of package. It’s not common Python practice to put each

class definition into a separate module file.)

• Any JupyterLab notebooks can be in the notebooks folder. Not all projects use

JupyterLab notebooks, so this folder can be omitted if there are no notebooks.

• A few other project files are in the top-level directory.

– A tox.ini file should be used to run the pytest and behave test suites.

– The pyproject.toml provides a number of pieces of information about the

project. This includes a detailed list of packages and version numbers to be

installed to run the project, as well as the packages required for development

and testing. With this in place, the tox tool can then build virtual environments

using the requirements.txt or the pip-tools tool to test the project. As a

practical matter, this will also be used by other developers to create their

working desktop environment.

– An environment.yml can help other developers use conda to create their

environment. This will repeat the contents of requirements-dev.txt. For

a small team, it isn’t helpful. In larger enterprise work groups, however, this

can help others join your project.

– Also, a README.md (or README.rst) with a summary is essential. In many cases,

this is the first thing people look at; it needs to provide an “elevator pitch” for

the project (see https://www.atlassian.com/team-playbook/plays/elevat

or-pitch).

See https://github.com/cmawer/reproducible-model for additional advice on

https://www.atlassian.com/team-playbook/plays/elevator-pitch
https://www.atlassian.com/team-playbook/plays/elevator-pitch
https://github.com/cmawer/reproducible-model

Chapter 1 17

structuring complex projects.

We’ve presented the files in this order to encourage following an approach of writing

documentation first. This is followed by creating test cases to assure the documentation

will be satisfied by the programming.

We’ve looked at the development activities and a review of the products to be created. In

the next section, we’ll look at some suggested development tools.

Development tool installation
Many of the projects in this book are focused on data analysis. The tooling for data analysis

is often easiest to install with the conda tool. This isn’t a requirement, and readers familiar

with the PIP tool will often be able to build their working environments without the help

of the conda tool.

We suggest the following tools:

• Conda for installing and configuring each project’s unique virtual environment.

• Sphinx for writing documentation.

• Behave for acceptance tests.

• Pytest for unit tests. The pytest-cov plug-in can help to compute test coverage.

• Pip-Tool for building a few working files from the pyproject.toml project definition.

• Tox for running the suite of tests.

• Mypy for static analysis of the type annotations.

• Flake8 for static analysis of code, in general, to make sure it follows a consistent

style.

One of the deliverables is the pyproject.toml file. This has all of the metadata about the

project in a single place. It lists packages required by the application, as well as the tools

used for development and testing. It helps to pin exact version numbers, making it easier

for someone to rebuild the virtual environment.

18 Project Zero: A Template for Other Projects

Some Python tools — like PIP — work with files derived from the pyproject.toml file. The

pip-tools creates these derived files from the source information in the TOML file.

For example, we might use the following output to extract the development tools information

from pyproject.toml and write it to requirements-dev.txt.

% conda install -c conda-forge pip-tools
% pip-compile --extra=dev --output-file=requirements-dev.txt

It’s common practice to then use the requirements-dev.txt to install packages like this:

% conda install --file requirements-dev.txt --channel=conda-forge

This will try to install all of the named packages, pulled from the community conda-forge

channel.

Another alternative is to use PIP like this:

% python -m pip install --r requirements-dev.txt

This environment preparation is an essential ingredient in each project’s inception phase.

This means the pyproject.toml is often the first deliverable created. From this, the

requirements-dev.txt is extracted to build environments.

To make the preceding steps and deliverables more specific, we’ll walk through an initial

project. This project will help show how the remaining projects should be completed.

Project 0 – Hello World with test cases
This is our first project. This project will demonstrate the pattern for all of the book’s

projects. It will include these three elements.

• Description: The description section will set out a problem, and why a user needs

software to solve it. In some projects, the description will have very specific details.

Other projects will require more imagination to create a solution.

Chapter 1 19

• Approach: The approach section will offer some guidance on architectural and

design choices. For some projects there are trade-offs, and an Extras section will

explore some of the other choices.

• Deliverables: The deliverables section lists the expectations for the final application

or module. It will often provide a few Gherkin feature definitions.

For this initial project, the description isn’t going to be very complicated. Similarly, the

approach part of this first project will be brief. We’ll dwell on the deliverables with some

additional technical discussion.

Description
The problem the users need to solve is how best to bring new developers on board. A good

onboarding process helps our users by making new members of the team as productive as

quickly as possible. Additionally, a project like this can be used for experienced members

to introduce them to new tools.

We need to guide our team members in installing the core set of development tools, creating

a working module, and then displaying their completed work at the end of a sprint. This

first project will use the most important tools and assure that everyone has a common

understanding of the tools and the deliverables.

Each developer will build a project to create a small application. This application will have

a command-line interface (CLI) to write a cheerful greeting.

The expectations are shown in the following example:

% python src/hello_world.py --who "World"
Hello, World!

This example shows how running the application with a command-line parameter of

--who "world" produces a response on the console.

20 Project Zero: A Template for Other Projects

Approach
For this project, the objective is to create a Python application module. The module will

need several internal functions. The functions can be combined into a class, if that seems

more appropriate. The functions are these:

• A function to parse the command-line options. This will use the argparse module.

The default command-line argument values are available in sys.argv.

• A function to write a cheerful greeting. This is, perhaps, only a single line of code.

• An overall function with an obvious name like main() to get the options and write

the greeting.

The module, as a whole, will have the function (or class) definitions. It will also have an

if __name__ == "__main__": block. This block will guard the evaluation of the expression

main() to make the module easier to unit test.

This is quite a bit of engineering for a simple problem. Some might call it

over-engineering. The idea is to create something with enough complexity

that more than one unit test case is required.

Deliverables
As noted above in List of deliverables, there are a number of deliverable files for projects in

general. Here are the suggested files for this project:

• README.md summarizes the project.

• pyproject.toml defines the project, including development tools, test tools, and

other dependencies.

• docs contains the documentation. As described above, this should be built by the

sphinx-quickstart tool and should contain at least an overview and an API section.

• tests contains test cases; the files include the following:

– test_hw.py contains unit tests for the module’s functions or classes.

Chapter 1 21

– features/hello_world.feature has an overall acceptance test as a collection

of scenarios.

– steps/hw_cli.py has Python definitions for the steps in the scenarios.

– environment.py contains functions to control behave’s test setup and teardown.

For simple projects, it may be empty.

• tox.ini configuration for the tox tool to run the complete test suite.

• src contains the hello_world.py module.

We’ll look at a few of these files in detail in the following sub-sections.

The pyproject.toml project file

The pyproject.toml file contains a great deal of project metadata in a single location. The

minimal content of this file is a description of the “build-system” used to build and install

the package.

For the purposes of this book, we can use the following two lines to define the build system:

[build-system]

requires = ["setuptools", "wheel"] # PEP 508 specifications.

This specifies the use of the setuptools module to create a “wheel” with the project’s code.

The pyproject.toml doesn’t need to define the distribution package in any more detail.

This book doesn’t emphasize the creation of a distribution package or the management of

packages with the Python Package Index, PyPI.

The rest of this file should have information about the project. You can include a section

like the following:

[project]

name = "project_0"

version = "1.0.0"

authors = [

22 Project Zero: A Template for Other Projects

{name = "Author", email = "author@email.com"},

]

description = "Real-World Python Projects -- Project 0."

readme = "README.md"

requires-python = ">=3.10"

Clearly, you’ll want to update the authors section with your information. You may be

using a newer version of Python and may need to change the requires-python string to

specify the minimum version required for your unique solution.

The [project] section needs three other pieces of information:

• The packages required to execute your application.

• Any packages or tools required to test your application.

• Any packages or tools required to develop your application.

These three dependencies are organized as follows:

dependencies = [

Packages required -- None for Project Zero.

]

[project.optional-dependencies]

dev = [

Development tools to work on this project

"sphinx==7.0.1",

"sphinxcontrib-plantuml==0.25",

"pip-tools==6.13.0"

]

test = [

Testing tools to test this project

"pytest==7.2.0",

"tox==4.0.8",

Chapter 1 23

"behave==1.2.6"

]

The dependencies line lists the dependencies required to execute the application. Some

projects — like this one — rely on the standard library, and nothing more needs to be added.

The [project.optional-dependencies] section contains two lists of additional packages:

those required for development, and those required for testing.

Note that we’ve put specific version numbers in this file so that we can be absolutely certain

what packages will be used. As these packages evolve, we’ll need to test newer versions

and upgrade the dependencies.

If you see the version numbers in this book are behind the current state of the art on PyPI

or Conda-Forge, feel free to use up-to-date versions.

It helps to use the pip-compile command. This is installed as part of pip-tools. This

command create extract files from the pyproject.toml file for use by pip or conda.

For developers, we often want to install all of the “extras.” This usually means executing

the following command to create a requirements-dev.txt file that can be used to build a

development environment.

% pip-compile --all-extras -o requirements-dev.txt

In order to run the tox tool, it’s common to also create a testing-only subset of the required

packages and tools. Use the following command:

% pip-compile --extra test -o requirements.txt

This creates the requirements.txt to be used to detect manage virtual environments used

by tox for testing.

24 Project Zero: A Template for Other Projects

The docs directory

As noted above in Suggested project sprints this directory should be built with

sphinx-quickstart. After the initial set of files is created, make the following changes:

• Add a api.rst file as a placeholder for the Sphinx-generated API documentation.

This will use the .. automodule:: directive to extract documentation from your

application.

• Add a overview.rst file with an overview of the project.

• Update the index.rst to include these two new files in the table of contents.

• Update the conf.py to append the src directory to sys.path. Also, the

sphinx.ext.autodoc extension needs to be added to the extensions setting in this

file.

The make html command in the docs directory can be used to build the documentation.

The tests/features/hello_world.feature file

The features directory will have Gherkin-language definitions of the features. Each feature

file will contain one or more scenarios. For larger projects, these files often start with

statements lifted from problem descriptions or architectural overviews that are later refined

into more detailed steps to describe an application’s behavior.

For this project, one of the feature files should be features/hello_world.feature. The

contents of this file should include a description of the feature and at least one scenario. It

would look like the following example:

Feature: The Cheerful Greeting CLI interface provides a greeting

to a specific name.

Scenario: When requested, the application writes the greeting message.

When we run command "python src/hello_world.py"

Then output has "Hello, World!"

Chapter 1 25

There’s no Given step in this scenario; there’s no initialization or preparation required.

Each of the steps has only a single clause, so there are no And steps, either.

This example doesn’t precisely match the example in the description. There

are two possible reasons for this: one of the two examples is wrong, or,

more charitably, this example hints at a second feature.

The idea implied by this example is there’s a default behavior when no --who

command-line option is provided. This suggests that a second scenario —

one with the --who option should be added for this feature.

The tests/steps/hw_cli.py module

The steps directory contains modules that define the natural-language phrases in the

feature files. In the hello_world.feature file the When and Then steps had phrases written

out in plain English:

• We run the command “python src/hello_world.py”

• Output has “Hello, World!”

The steps/hw_cli.py module will map the step’s phrases to Python functions. It works

by using decorators and pattern-matching to specify the type of step (@given, @when, or

@then) and the text to match. The presence of {parameter} in the text will match the text

and provide the value matched to the step function as an argument. The function names

are irrelevant and are often step_impl().

Generally, the @given steps will accumulate parameter values in the test context object.

Best practices suggest there should be only one @when step; this will perform the required

operation. For this project, it will run the application and gather the output files. The @then

steps can use assert statements to compare actual results against the expected results

shown in the feature file.

Here’s how the steps/hw_cli.py module might look:

import subprocess

26 Project Zero: A Template for Other Projects

import shlex

from pathlib import Path

@when(u'we run command "{command}"')

def step_impl(context, command):

output_path = Path("output.log")

with output_path.open('w') as target:

status = subprocess.run(

shlex.split(command),

check=True, text=True, stdout=target, stderr=subprocess.STDOUT)

context.status = status

context.output = output_path.read_text()

output_path.unlink()

@then(u'output has "{expected_output}"')

def step_impl(context, expected_output):

assert context.status.returncode == 0

assert expected_output in context.output

This assumes a relatively small output file that can be collected in memory. For a larger file,

it would make sense for the @when step to create a temporary file and save the file object in

the context. The @then step can read and close this file. The tempfile module is handy for

creating files that will be deleted when closed.

An alternative is to create a Path object and save this object in the context. The @when step

can write output to this path. The @then step can read and examine the contents of the file

named by the Path object.

When a test step detects a problem with an assert statement, it may not finish completely.

The approach of using a Path object requires some care to be sure the temporary files are

deleted. The environment.py module can define an after_scenario(context, scenario)

function to remove temporary files.

Chapter 1 27

The tests/environment.py file

This module will contain some function definitions used by behave. For this project, it

will be empty. The module must be present; a module docstring is appropriate to explain

that it’s empty.

The tests/steps module for this example will have examples that can be refactored into

two potentially reusable functions for executing an application and checking the output

from an application for specific text. This additional design effort isn’t part of this project.

You may find it helpful to do this refactoring after completing several of these projects.

Once the features, steps, and environment are in place, the behave program can be used to

test the application. If there’s no application module, the tests will fail. Creating a skeleton

application module in the src directory will allow the test case to execute and fail because

the output isn’t what was expected.

The tests/test_hw.py unit tests

A unit test can be implemented as a pytest function that uses a fixture, capsys, to capture

the system output. The unit test case expects the application to have a main() function

that parses the command-line options.

Here’s one suggested unit test function:

import hello_world

def test_hw(capsys):

hello_world.main([])

out, err = capsys.readouterr()

assert "Hello, World!" in out

Note the test for the main() function provides an explicit empty list of argument values.

It is essential to override any value for sys.argv that might be present when pytest is

running.

The hello_world module is imported by this test. There are two important consequences

28 Project Zero: A Template for Other Projects

of this import:

• The src/hello_world.py module must have an if __name__ == "__main__":

section. A simple Python script (without this section) will execute completely when

imported. This can make testing difficult.

• The src directory must be part of the PYTHONPATH environment variable. This is

handled by the tox.ini file.

This test will tolerate additional output in addition to the required cheerful greeting. It

might make sense to use something like "Hello, World!" == out.strip().

The implementation details of the main() function are opaque to this test. This main()

function could create an instance of a class; it could use a static method of a class, also.

The src/tox.ini file

Now that the tests exist, we can run them. The tox (and nox) tools are ideal for running a

suite of tests.

Here’s an example tox.ini file:

[tox]

min_version = 4.0

skipsdist = true

[testenv]

deps = pip-tools

pytest

behave

commands_pre = pip-sync requirements.txt

setenv =

PYTHONPATH=src

commands =

pytest tests

Chapter 1 29

behave tests

This file lists the tools used for testing: pip-tools, pytest, and behave. It provides the

setting for the PYTHONPATH. The commands_pre will prepare the the virtual environment

using the pip-sync command that is part of the pip-tools package. The given sequence of

commands defines the test suite.

The src/hello_world.py file

This is the desired application module. The test framework is helpful to confirm that it

really does work, and — more importantly — it meets the definition of done provided in

the *.feature files.

As we noted above, the unit tests will import this app as a module. The acceptance test,

in contrast, will run the app. This means the if __name__ == "__main__": section is

essential.

For a small application like this, the real work of the application should be encapsulated in

a main() function. This allows the main module to end with the following snippet:

if __name__ == "__main__":

main()

This assures that the module will not take off and start running when imported. It will

only do useful work when invoked from the command line.

Definition of done
This project is tested by running the tox command.

When all of the tests execute, the output will look like this:

(projectbook) slott@MacBookPro-SLott project_0 % tox

py: commands[0]> pytest tests

...

py: commands[1]> behave tests

...

30 Project Zero: A Template for Other Projects

py: OK (0.96=setup[0.13]+cmd[0.53,0.30] seconds)

congratulations :) (1.55 seconds)

This output has elided the details from pytest and behave. The output from the tox tool

is the important summary py: OK. This tells us all the tests passed.

Once this is complete, we can run the following to create the API documentation:

% (cd docs; make html)

It can help to wrap the two commands with () so the cd docs command doesn’t leave the

console session in the docs directory. Some developers prefer to have two windows open:

one in the top-level directory to run the tox tool and one in the docs subdirectory to run

the make commands for the sphinx tool.

Summary
In this chapter, we’ve looked at the following topics:

• An overview of the software quality principles that we’ll try to emphasize.

• A suggested approach to completing the project as a sequence of project sprints.

• A general overview of the list of deliverables for each project.

• The tools suggested for creating these examples.

• A sample project to act as a template for subsequent projects.

After creating this initial project, the next chapter will look at the general collection

of projects. The idea is to create a complete data analysis tool set with a number of

closely-related projects.

Extras
Here are some ideas for you to add to this project.

Chapter 1 31

Static analysis - mypy, flake8
There are several common static analysis tools that are as essential as automated testing:

• mypy checks type annotations to be sure the functions and classes will interact

properly.

• flake8 does other syntax checks to make sure the code avoids some of the more

common Python mistakes.

• black can be used to check the formatting to make sure it follows the recommended

style. The black application can also be used to reformat a new file.

• isort can be used to put a long collection of import statements into a consistent

order.

Once the application passes the functional tests in the *.feature files, these additional

non-functional tests can be applied. These additional tests are often helpful for spotting

more nuanced problems that can make a program difficult to adapt or maintain.

CLI features
The command-language interface permits a single option, the --who option, to provide a

name.

It makes sense to add a scenario to exercise this option.

What should happen with the --who is provided without a value? Is the following

appropriate?

(projectbook) slott@MacBookPro-SLott project_0 % python src/hello_world.py

--who

usage: hello_world.py [-h] [--who WHO]

hello_world.py: error: argument --who/-w: expected one argument

Should the help be extended to clarify what’s required?

32 Project Zero: A Template for Other Projects

Consider adding the following scenarios (and the implementing code):

• Add a scenario for the --help option, which is provided automatically by the

argparse module.

• Add a scenario for the --who with no value error.

Logging
Consider a more complex application where additional debugging output might be helpful.

For this, it’s common to add a --verbose option to set the logging level to logging.DEBUG

instead of a default level of logging.INFO.

Adding this option requires adding logging capabilities. Consider making the following

changes to this module:

• Import the logging module and create a global logger for the application.

• Update the main() function to set the logger’s level based on the options.

• Update the __name__ == "__main__": block to have two lines:

logging.basicConfig() and main(). It’s best to keep logging configuration isolated

from the rest of the application processing.

Cookiecutter
The cookiecutter project (see https://cookiecutter.readthedocs.io/en/stable/) is

a way to build a template project. This can help team members get started by sharing a

single template. As tool versions or solution architectures change, additional cookie-cutter

templates can be developed and used.

There are thousands of cookie-cutter templates available. It can be difficult to locate one

that’s suitably simple. It may be better to create your own and add to it as new concepts

are introduced in later chapters.

https://cookiecutter.readthedocs.io/en/stable/

2
Overview of the Projects

Our general plan is to craft analytic, decision support modules and applications. These

applications support decision-making by providing summaries of available data to the

stakeholders. Decision-making spans a spectrum from uncovering new relationships

among variables to confirming that data variation is random noise within narrow limits.

The processing will start with acquiring data and moving it through several stages until

statistical summaries can be presented.

The processing will be decomposed into several stages. Each stage will be built as a

core concept application. There will be subsequent projects to add features to the core

application. In some cases, a number of features will be added to several projects all

combined into a single chapter.

The stages are inspired by the Extract-Transform-Load (ETL) architectural pattern. The

design in this book expands on the ETL design with a number of additional steps. The words

have been changed because the legacy terminology can be misleading. These features –

often required for real-world pragmatic applications — will be inserted as additional stages

34 Overview of the Projects

in a pipeline.

Once the data is cleaned and standardized, then the book will describe some simple statistical

models. The analysis will stop there. You are urged to move to more advanced books that

cover AI and machine learning.

There are 22 distinct projects, many of which build on previous results. It’s not required to

do all of the projects in order. When skipping a project, however, it’s important to read

the description and deliverables for the project being skipped. This can help to more fully

understand the context for the later projects.

This chapter will cover our overall architectural approach to creating a complete sequence

of data analysis programs. We’ll use the following multi-stage approach:

• Data acquisition

• Inspection of data

• Cleaning data; this includes validating, converting, standardizing, and saving

intermediate results

• Summarizing, and modeling data

• Creating more sophisticated statistical models

Chapter 2 35

The stages fit together as shown in Figure 2.1.

acquisition

data is useful? question or problem

validate

clean and convert

normalize

save

statistical model

inspect

fix software

summary reporting

Application Notebook

Figure 2.1: Data Analysis Pipeline

A central idea behind this is separation of concerns. Each stage is a distinct operation, and

each stage may evolve independently of the others. For example, there may be multiple

sources of data, leading to several distinct data acquisition implementations, each of which

creates a common internal representation to permit a single, uniform inspection tool.

Similarly, data cleansing problems seem to arise almost randomly in organizations, leading

to a need to add distinct validation and standardization operations. The idea is to allocate

36 Overview of the Projects

responsibility for semantic special cases and exceptions in this stage of the pipeline.

One of the architectural ideas is to mix automated applications and a few manual JupyterLab

notebooks into an integrated whole. The notebooks are essential for troubleshooting

questions or problems. For elegant reports and presentations, notebooks are also very

useful. While Python applications can produce tidy PDF files with polished reporting, it

seems a bit easier to publish a notebook with analysis and findings.

We’ll start with the acquisition stage of processing.

General data acquisition
All data analysis processing starts with the essential step of acquiring the data from a

source.

The above statement seems almost silly, but failures in this effort often lead to complicated

rework later. It’s essential to recognize that data exists in these two essential forms:

• Python objects, usable in analytic programs. While the obvious candidates are

numbers and strings, this includes using packages like Pillow to operate on images

as Python objects. A package like librosa can create objects representing audio data.

• A serialization of a Python object. There are many choices here:

– Text. Some kind of string. There are numerous syntax variants, including CSV,

JSON, TOML, YAML, HTML, XML, etc.

– Pickled Python Objects. These are created by the pickle module.

– Binary Formats. Tools like Protobuf can serialize native Python objects into a

stream of bytes. Some YAML extensions, similarly, can serialize an object in

a binary format that isn’t text. Images and audio samples are often stored in

compressed binary formats.

The format for the source data is — almost universally — not fixed by any rules or

conventions. Writing an application based on the assumption that source data is always a

CSV-format file can lead to problems when a new format is required.

Chapter 2 37

It’s best to treat all input formats as subject to change. The data — once acquired — can be

saved in a common format used by the analysis pipeline, and independent of the source

format (we’ll get to the persistence in Clean, validate, standardize, and persist).

We’ll start with Project 1.1: “Acquire Data”. This will build the Data Acquisition Base

Application. It will acquire CSV-format data and serve as the basis for adding formats in

later projects.

There are a number of variants on how data is acquired. In the next few chapters, we’ll

look at some alternative data extraction approaches.

Acquisition via Extract
Since data formats are in a constant state of flux, it’s helpful to understand how to add and

modify data formats. These projects will all build on Project 1.1 by adding features to the

base application. The following projects are designed around alternative sources for data:

• Project 1.2: “Acquire Web Data from an API”. This project will acquire data from

web services using JSON format.

• Project 1.3: “Acquire Web Data from HTML”. This project will acquire data from a

web page by scraping the HTML.

• Two separate projects are part of gathering data from a SQL database:

– Project 1.4: “Build a Local Database”. This is a necessary sidebar project to build

a local SQL database. This is necessary because SQL databases accessible by the

public are a rarity. It’s more secure to build our own demonstration database.

– Project 1.5: “Acquire Data from a Local Database”. Once a database is available,

we can acquire data from a SQL extract.

These projects will focus on data represented as text. For CSV files, the data is text; an

application must convert it to a more useful Python type. HTML pages, also, are pure text.

Sometimes, additional attributes are provided to suggest the text should be treated as a

number. A SQL database is often populated with non-text data. To be consistent, the SQL

38 Overview of the Projects

data should be serialized as text. The acquisition applications all share a common approach

of working with text.

These applications will also minimize the transformations applied to the source data. To

process the data consistently, it’s helpful to make a shift to a common format. As we’ll see

in Chapter 3, Project 1.1: Data Acquisition Base Application the NDJSON format provides a

useful structure that can often be mapped back to source files.

After acquiring new data, it’s prudent to do a manual inspection. This is often done a

few times at the start of application development. After that, inspection is only done to

diagnose problems with the source data. The next few chapters will cover projects to

inspect data.

Inspection
Data inspection needs to be done when starting development. It’s essential to survey

new data to be sure it really is what’s needed to solve the user’s problems. A common

frustration is incomplete or inconsistent data, and these problems need to be exposed as

soon as possible to avoid wasting time and effort creating software to process data that

doesn’t really exist.

Additionally, data is inspected manually to uncover problems. It’s important to recognize

that data sources are in a constant state of flux. As applications evolve and mature, the

data provided for analysis will change. In many cases, data analytics applications discover

other enterprise changes after the fact via invalid data. It’s important to understand the

evolution via good data inspection tools.

Inspection is an inherently manual process. Therefore, we’re going to use JupyterLab to

create notebooks to look at the data and determine some basic features.

In rare cases where privacy is important, developers may not be allowed to do data

inspection. More privileged people — with permission to see payment card or healthcare

details — may be part of data inspection. This means an inspection notebook may be

something created by a developer for use by stakeholders.

Chapter 2 39

In many cases, a data inspection notebook can be the start of a fully-automated data

cleansing application. A developer can extract notebook cells as functions, building a

module that’s usable from both notebook and application. The cell results can be used to

create unit test cases.

The stage in the pipeline requires a number of inspection projects:

• Project 2.1: “Inspect Data”. This will build a core data inspection notebook with

enough features to confirm that some of the acquired data is likely to be valid.

• Project 2.2: “Inspect Data: Cardinal Domains”. This project will add analysis features

for measurements, dates, and times. These are cardinal domains that reflect measures

and counts.

• Project 2.3: “Inspect Data: Nominal and Ordinary Domains”. This project will add

analysis features for text or coded numeric data. This includes nominal data and

ordinal numeric domains. It’s important to recognize that US Zip Codes are digit

strings, not numbers.

• Project 2.4: “Inspect Data: Reference Data”. This notebook will include features

to find reference domains when working with data that has been normalized and

decomposed into subsets with references via coded “key” values.

• Project 2.5: “Define a Reusable Schema”. As a final step, it can help define a formal

schema, and related metadata, using the JSON Schema standard.

While some of these projects seem to be one-time efforts, they often need to be written

with some care. In many cases, a notebook will need to be reused when there’s a problem.

It helps to provide adequate explanations and test cases to help refresh someone’s memory

on details of the data and what are known problem areas. Additionally, notebooks may

serve as examples for test cases and the design of Python classes or functions to automate

cleaning, validating, or standardizing data.

After a detailed inspection, we can then build applications to automate cleaning, validating,

and normalizing the values. The next batch of projects will address this stage of the pipeline.

40 Overview of the Projects

Clean, validate, standardize, and persist
Once the data is understood in a general sense, it makes sense to write applications to

clean up any serialization problems, and perform more formal tests to be sure the data

really is valid. One frustratingly common problem is receiving duplicate files of data; this

can happen when scheduled processing was disrupted somewhere else in the enterprise,

and a previous period’s files were reused for analysis.

The validation testing is sometimes part of cleaning. If the data contains any unexpected

invalid values, it may be necessary to reject it. In other cases, known problems can be

resolved as part of analytics by replacing invalid data with valid data. An example of this

is US Postal Codes, which are (sometimes) translated into numbers, and the leading zeros

are lost.

These stages in the data analysis pipeline are described by a number of projects:

• Project 3.1: “Clean Data”. This builds the data cleaning base application. The design

details can come from the data inspection notebooks.

• Project 3.2: “Clean and Validate”. These features will validate and convert numeric

fields.

• Project 3.3: “Clean and Validate Text and Codes”. The validation of text fields and

numeric coded fields requires somewhat more complex designs.

• Project 3.4: “Clean and Validate References”. When data arrives from separate sources,

it is essential to validate references among those sources.

• Project 3.5: “Standardize Data”. Some data sources require standardizing to create

common codes and ranges.

• Project 3.6: “Acquire and Clean Pipeline”. It’s often helpful to integrate the acquisition,

cleaning, validating, and standardizing into a single pipeline.

• Project 3.7: “Acquire, Clean, and Save”. One key architectural feature of this pipeline

is saving intermediate files in a common format, distinct from the data sources.

Chapter 2 41

• Project 3.8: “Data Provider Web Service”. In many enterprises, an internal web

service and API are expected as sources for analytic data. This project will wrap the

data acquisition pipeline into a RESTful web service.

In these projects, we’ll transform the text values from the acquisition applications into more

useful Python objects like integers, floating-point values, decimal values, and date-time

values.

Once the data is cleaned and validated, the exploration can continue. The first step is to

summarize the data, again, using a Jupyter notebook to create readable, publishable reports

and presentations. The next chapters will explore the work of summarizing data.

Summarize and analyze
Summarizing data in a useful form is more art than technology. It can be difficult to know

how best to present information to people to help them make more valuable, or helpful

decisions.

There are a few projects to capture the essence of summaries and initial analysis:

• Project 4.1: “A Data Dashboard”. This notebook will show a number of visual analysis

techniques.

• Project 4.2: “A Published Report”. A notebook can be saved as a PDF file, creating a

report that’s easily shared.

The initial work of summarizing and creating shared, published reports sets the stage for

more formal, automated reporting. The next set of projects builds modules that provide

deeper and more sophisticated statistical models.

Statistical modeling
The point of data analysis is to digest raw data and present information to people to support

their decision-making. The previous stages of the pipeline have prepared two important

things:

42 Overview of the Projects

• Raw data has been cleaned and standardized to provide data that are relatively easy

to analyze.

• The process of inspecting and summarizing the data has helped analysts, developers,

and, ultimately, users understand what the information means.

The confluence of data and deeper meaning creates significant value for an enterprise. The

analysis process can continue as more formalized statistical modeling. This, in turn, may

lead to artificial intelligence (AI) and machine learning (ML) applications.

The processing pipeline includes these projects to gather summaries of individual variables

as well as combinations of variables:

• Project 5.1: “Statistical Model: Core Processing”. This project builds the base

application for applying statistical models and saving parameters about the data.

This will focus on summaries like mean, median, mode, and variance.

• Project 5.2: “Statistical Model: Relationships”. It’s common to want to know the

relationships among variables. This includes measures like correlation among

variables.

This sequence of stages produces high-quality data and provides ways to diagnose and

debug problems with data sources. The sequence of projects will illustrate how automated

solutions and interactive inspection can be used to create useful, timely, insightful reporting

and analysis.

Data contracts
We will touch on data contracts at various stages in this pipeline. This application’s data

acquisition, for example, may have a formalized contract with a data provider. It’s also

possible that an informal data contract, in the form of a schema definition, or an API is all

that’s available.

In Chapter 8, Project 2.5: Schema and Metadata we’ll consider some schema publication

concerns. In Chapter 11, Project 3.7: Interim Data Persistence we’ll consider the schema

Chapter 2 43

provided to downstream applications. These two topics are related to a formal data contract,

but this book won’t delve deeply into data contracts, how they’re created, or how they

might be used.

Summary
This data analysis pipeline moves data from sources through a series of stages to create

clean, valid, standardized data. The general flow supports a variety of needs and permits a

great deal of customization and extension.

For developers with an interest in data science or machine learning, these projects cover

what is sometimes called the “data wrangling” part of data science or machine learning. It

can be a significant complication as data is understood and differences among data sources

are resolved and explored. These are the — sometimes difficult — preparatory steps prior

to building a model that can be used for AI decision-making.

For readers with an interest in the web, this kind of data processing and extraction is part of

presenting data via a web application API or website. Project 3.7 creates a web server, and

will be of particular interest. Because the web service requires clean data, the preceding

projects are helpful for creating data that can be published.

For folks with an automation or IoT interest, Part 2 explains how to use Jupyter Notebooks

to gather and inspect data. This is a common need, and the various steps to clean, validate,

and standardize data become all the more important when dealing with real-world devices

subject to the vagaries of temperature and voltage.

We’ve looked at the following multi-stage approach to doing data analysis:

• Data Acquisition

• Inspection of Data

• Clean, Validate, Standardize, and Persist

• Summarize and Analyze

• Create a Statistical Model

44 Overview of the Projects

This pipeline follows the Extract-Transform-Load (ETL) concept. The terms have been

changed because the legacy words are sometimes misleading. Our acquisition stage overlaps

with what is understood as the “Extract” operation. For some developers, Extract is

limited to database extracts; we’d like to go beyond that to include other data source

transformations. Our cleaning, validating, and standardizing stages are usually combined

into the “Transform” operation. Saving the clean data is generally the objective of “Load”;

we’re not emphasizing a database load, but instead, we’ll use files.

Throughout the book, we’ll describe each project’s objective and provide the foundation

of a sound technical approach. The details of the implementation are up to you. We’ll

enumerate the deliverables; this may repeat some of the information from Chapter 1, Project

Zero: A Template for Other Projects. The book provides a great deal of information on

acceptance test cases and unit test cases — the definition of done. By covering the approach,

we’ve left room for you to design and implement the needed application software.

In the next chapter, we’ll build the first data acquisition project. This will work with

CSV-format files. Later projects will work with database extracts and web services.

3
Project 1.1: Data Acquisition
Base Application

The beginning of the data pipeline is acquiring the raw data from various sources. This

chapter has a single project to create a command-line application (CLI) that extracts

relevant data from files in CSV format. This initial application will restructure the raw data

into a more useful form. Later projects (starting in Chapter 9, Project 3.1: Data Cleaning

Base Application) will add features for cleaning and validating the data.

This chapter’s project covers the following essential skills:

• Application design in general. This includes an object-oriented design and the SOLID

design principles, as well as functional design.

• A few CSV file processing techniques. This is a large subject area, and the project

focuses on restructuring source data into a more usable form.

• CLI application construction.

46 Project 1.1: Data Acquisition Base Application

• Creating acceptance tests using the Gherkin language and behave step definitions.

• Creating unit tests with mock objects.

We’ll start with a description of the application, and then move on to talk about the

architecture and construction. This will be followed by a detailed list of deliverables.

Description
Analysts and decision-makers need to acquire data for further analysis. In many cases,

the data is available in CSV-formatted files. These files may be extracts from databases or

downloads from web services.

For testing purposes, it’s helpful to start with something relatively small. Some of the

Kaggle data sets are very, very large, and require sophisticated application design. One of

the most fun small data sets to work with is Anscombe’s Quartet. This can serve as a test

case to understand the issues and concerns in acquiring raw data.

We’re interested in a few key features of an application to acquire data:

• When gathering data from multiple sources, it’s imperative to convert it to a common

format. Data sources vary, and will often change with software upgrades. The

acquisition process needs to be flexible with respect to data sources and avoid

assumptions about formats.

• A CLI application permits a variety of automation possibilities. For example, a

CLI application can be “wrapped” to create a web service. It can be run from the

command line manually, and it can be automated through enterprise job scheduling

applications.

• The application must be extensible to reflect source changes. In many cases, enterprise

changes are not communicated widely enough, and data analysis applications discover

changes “the hard way” — a source of data suddenly includes unexpected or seemingly

invalid values.

Chapter 3 47

User experience
The User Experience (UX) will be a command-line application with options to fine-tune

the data being gathered. This essential UX pattern will be used for many of this book’s

projects. It’s flexible and can be made to run almost anywhere.

Our expected command line should look something like the following:

% python src/acquire.py -o quartet Anscombe_quartet_data.csv

The -o quartet argument specifies a directory into which the resulting extracts are written.

The source file contains four separate series of data. Each of the series can be given an

unimaginative name like quartet/series_1.json.

The positional argument, Anscombe_quartet_data.csv, is the name of the downloaded

source file.

While there’s only one file – at the present time – a good design will work with multiple

input files and multiple source file formats.

In some cases, a more sophisticated “dashboard” or “control panel” application might be

desirable as a way to oversee the operation of the data acquisition process. The use of a

web-based API can provide a very rich interactive experience. An alternative is to use tools

like rich or Textual to build a small text-based display. Either of these choices should be

built as a wrapper that executes the essential CLI application as a subprocess.

Now that we’ve seen an overview of the application’s purpose and UX, let’s take a look at

the source data.

About the source data
Here’s the link to the dataset we’ll be using:

https://www.kaggle.com/datasets/carlmcbrideellis/data-anscombes-quartet

You’ll need to register with Kaggle to download this data.

https://www.kaggle.com/datasets/carlmcbrideellis/data-anscombes-quartet

48 Project 1.1: Data Acquisition Base Application

The Kaggle URL presents a page with information about the CSV-formatted file. Clicking

the Download button will download the small file of data to your local computer.

The data is available in this book’s GitHub repository’s data folder, also.

Once the data is downloaded, you can open the Anscombe_quartet_data.csv file to inspect

the raw data.

The file contains four series of (𝑥, 𝑦) pairs in each row. We can imagine each row as having

[(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), (𝑥4, 𝑦4)]. It is, however, compressed, as we’ll see below.

We might depict the idea behind this data with an entity-relationship diagram as shown in

Figure 3.1.

E Series1

x : float
y : float

E Series2

x : float
y : float

E Series3

x : float
y : float

E Series4

x : float
y : float

Figure 3.1: Notional entity-relationship diagram

Interestingly, the data is not organized as four separate (𝑥, 𝑦) pairs. The downloaded file is

organized as follows:

[𝑥1,2,3, 𝑦1, 𝑦2, 𝑦3, 𝑥4, 𝑦4]

Chapter 3 49

We can depict the actual source entity type in an ERD, as shown in Figure 3.2.

E Series

x_123 : float
y1 : float
y2 : float
y3 : float
x_4 : float
y4 : float

Figure 3.2: Source entity-relationship diagram

One part of this application’s purpose is to disentangle the four series into separate files.

This forces us to write some transformational processing to rearrange each row’s data

elements into four separate data sets.

The separate series can then be saved into four separate files. We’ll look more deeply at the

details of creating the separate files for a separate project in Chapter 11, Project 3.7: Interim

Data Persistence. For this project, any file format for the four output files will do nicely;

ND JSON serialization is often ideal.

We encourage you to take a look at the file before moving on to consider how it needs to

be transformed into distinct output files.

Given this compressed file of source data, the next section will look at the expanded output

files. These will separate each series to make them easier to work with.

About the output data
The ND JSON file format is described in http://ndjson.org and https://jsonlines.org.

The idea is to put each individual entity into a JSON document written as a single physical

line. This fits with the way the Python json.dumps() function works: if no value is provided

for the indent parameter (or if the value is indent=None), the text will be as compact as

possible.

http://ndjson.org
https://jsonlines.org

50 Project 1.1: Data Acquisition Base Application

The series_1.json output file should start like this:

{"x": "10.0", "y": "8.04"}

{"x": "8.0", "y": "6.95"}

{"x": "13.0", "y": "7.58"}

...

Each row is a distinct, small JSON document. The row is built from a subset of fields in

the input file. The values are strings: we won’t be attempting any conversions until the

cleaning and validating projects in Chapter 9, Project 3.1: Data Cleaning Base Application.

We’ll require the user who runs this application to create a directory for the output and

provide the name of the directory on the command line. This means the application needs

to present useful error messages if the directory doesn’t actually exist. The pathlib.Path

class is very helpful for confirming a directory exists.

Further, the application should be cautious about overwriting any existing files. The

pathlib.Path class is very helpful for confirming a file already exists.

This section has looked at the input, processing, and output of this application. In the next

section, we’ll look at the overall architecture of the software.

Architectural approach
We’ll take some guidance from the C4 model (https://c4model.com) when looking at our

approach.

• Context: For this project, a context diagram would show a user extracting data from

a source. You may find it helpful to draw this diagram.

• Containers: This project will run on the user’s personal computer. As with the

context, the diagram is small, but some readers may find it helpful to take the time

to draw it.

• Components: We’ll address these below.

• Code: We’ll touch on this to provide some suggested directions.

https://c4model.com

Chapter 3 51

We can decompose the software architecture into these two important components:

• model: This module has definitions of target objects. In this project, there’s only a

single class here.

• extract: This module will read the source document and creates model objects.

Additionally, there will need to be these additional functions:

• A function for parsing the command-line options.

• A main() function to parse options and do the file processing.

As suggested in Chapter 1, Project Zero: A Template for Other Projects, the initialization of

logging will often look like the following example:

if __name__ == "__main__":

logging.basicConfig(level=logging.INFO)

main()

The idea is to write the main() function in a way that maximizes reuse. Avoiding logging

initialization means other applications can more easily import this application’s main()

function to reuse the data acquisition features.

Initializing logging within the main() function can undo previous logging initialization.

While there are ways to have a composite application tolerate each main() function doing

yet another initialization of logging, it seems simpler to refactor this functionality outside

the important processing.

For this project, we’ll look at two general design approaches for the model and extract

components. We’ll utilize this opportunity to highlight the importance of adhering to

SOLID design principles.

First, we’ll show an object-oriented design using class definitions. After that, we’ll show a

functional design, using only functions and stateless objects.

52 Project 1.1: Data Acquisition Base Application

Class design
One possible structure for the classes and functions of this application is shown in Figure 3.3.

modelcsv_extract

acquire

C «dataclass»
XYPair

x: str
y: str

C Extract

__init__(PairBuilder)
build_pairs()

A PairBuilder

from_row(list[str]) ->XYPair

C Series1Pair

from_row(list[str]) ->XYPair

F main F get_options

Series2Pair, Series3Pair, and Series4Pair, also.

creates

uses

evaluates

createscreates

Figure 3.3: Acquisition Application Model

The model module contains a single class definition for the raw XYPair. Later, this is likely

to expand and change. For now, it can seem like over-engineering.

The acquisition module contains a number of classes that collaborate to build XYPair

objects for any of the four series. The abstract PairBuilder class defines the general

features of creating an XYPair object.

Each subclass of the PairBuilder class has a slightly different implementation. Specifically,

Chapter 3 53

the Series1Pair class has a from_row() method that assembles a pair from the 𝑥1,2,3 and

𝑦1 values. Not shown in the diagram are the three other subclasses that use distinct pairs

of columns to create XYPair objects from the four series.

The diagram and most of the examples here use list[str] as the type for

a row from a CSV reader.

If a csv.DictReader is used, the source changes from list[str] to

dict[str, str]. This small, but important, change will ripple throughout

the examples.

In many cases, it seems like a csv.DictReader is a better choice. Column

names can be provided if the CSV file does not have names in the first row.

We’ve left the revisions needed for this change as part of the design work

for you.

The overall Extract class embodies the various algorithms for using an instance of the

PairBuilder class and a row of source data to build XYPair instances.

The build_pair(list[str]) -> XYPair method makes a single item from a row parsed

from a CSV file.

The job of the main() function is to create instances of each of the four PairBuilder

subclasses. These instances are then used to create four instances of the Extract class.

These four Extract objects can then build four XYPair objects from each source row.

The dataclass.asdict() function can be used to convert an XYPair object into a

dict[str, str] object. This can be serialized by json.dumps() and written to an

appropriate output file. This conversion operation seems like a good choice for a method in

the abstract PairBuilder class. This can be used to write an XYPair object to an open file.

The top-level functions, main() and get_options(), can be placed in a separate module,

named acquisition. This module will import the various class definitions from the model

and csv_extract modules.

54 Project 1.1: Data Acquisition Base Application

It’s often helpful to review the SOLID design principles. In particular, we’ll look closely at

the Dependency Inversion principle.

Design principles
We can look at the SOLID design principles to be sure that the object-oriented design

follows those principles.

• Single Responsibility: Each of the classes seems to have a single responsibility.

• Open-Closed: Each class seems open to extension by adding subclasses.

• Liskov Substitution: The PairBuilder class hierarchy follows this principle since

each subclass is identical to the parent class.

• Interface Segregation: The interfaces for each class are minimized.

• Dependency Inversion: There’s a subtle issue regarding dependencies among

classes. We’ll look at this in some detail.

One of the SOLID design principles suggests avoiding tight coupling between the

PairBuilder subclasses and the XYPair class. The idea would be to provide a protocol (or

interface) for the XYPair class. Using the protocol in type annotations would permit any

type that implemented the protocol to be provided to the class. Using a protocol would

break a direct dependency between the PairBuilder subclasses and the XYPair class.

This object-oriented design issue surfaces often, and generally leads to drawn-out, careful

thinking about the relationships among classes and the SOLID design principles.

We have the following choices:

• Have a direct reference to the XYPair class inside the PairBuilder class. This would

be def from_row(row: list[str]) -> XYPair:. This breaks the Dependency

Inversion principle.

• Use Any as the type annotation. This would be

def from_row(row: list[str]) -> Any:. This makes the type hints less

informative.

Chapter 3 55

• Attempt to create a protocol for the resulting type, and use this in the type hints.

• Introduce a type alias that (for now) only has one value. In future expansions of the

model module, additional types might be introduced.

The fourth alternative gives us the flexibility we need for type annotation checking. The

idea is to include a type alias like the following in the model module:

from dataclasses import dataclass

from typing import TypeAlias

@dataclass

class XYPair:

Definition goes here

RawData: TypeAlias = XYPair

As alternative classes are introduced, the definition of RawData can be expanded to include

the alternatives. This might evolve to look like the following:

from dataclasses import dataclass

from typing import TypeAlias

@dataclass

class XYPair:

Definition goes here

pass

@dataclass

class SomeOtherStructure:

Some other definition, here

pass

56 Project 1.1: Data Acquisition Base Application

RawData: TypeAlias = XYPair | SomeOtherStructure

This permits extension to the PairBuilder subclasses as the model module evolves. The

RawData definition needs to be changed as new classes are introduced. Annotation-checking

tools like mypy cannot spot the invalid use of any of the classes that comprise the alternative

definitions of the RawData type alias.

Throughout the rest of the application, classes and functions can use RawData as an abstract

class definition. This name represents a number of alternative definitions, any one of which

might be used at run-time.

With this definition of RawData, the PairBuilder subclasses can use a definition of the

following form:

from model import RawData, XYPair

from abc import ABC, abstractmethod

class PairBuilder(ABC):

target_class: type[RawData]

@abstractmethod

def from_row(self, row: list[str]) -> RawData:

...

class Series1Pair(PairBuilder):

target_class = XYPair

def from_row(self, row: list[str]) -> RawData:

cls = self.target_class

the rest of the implementation...

return cls(arguments based on the value of row)

A similar analysis holds for the main() function. This can be directly tied to the Extract

Chapter 3 57

class and the various subclasses of the PairBuilder class. It’s very important for these

classes to be injected at run time, generally based on command-line arguments.

For now, it’s easiest to provide the class names as default values. A function like the

following might be used to get options and configuration parameters:

def get_options(argv: list[str]) -> argparse.Namespace:

defaults = argparse.Namespace(

extract_class=Extract,

series_classes=[Series1Pair, Series2Pair, Series3Pair, Series4Pair],

)

The defaults namespace is provided as an argument value to the

ArgumentParser.parse_args() method. This set of defaults serves as a kind of dependency

injection throughout the application. The main function can use these class names to build

an instance of the given extract class, and then process the given source files.

A more advanced CLI could provide options and arguments to tailor the class names. For

more complex applications, these class names would be read from a configuration file.

An alternative to the object-oriented design is a functional design. We’ll look at that

alternative in the next section.

Functional design
The general module structure shown in Class design applies to a functional design also.

The model module with a single class definition is also a part of a functional design; this

kind of module with a collection of dataclass definitions is often ideal.

As noted above in the Design principles section, the model module is best served by using a

type variable, RawData, as a placeholder for any additional types that may be developed.

The csv_extract module will use a collection of independent functions to build XYPair

objects. Each function will be similar in design.

Here are some example functions with type annotations:

58 Project 1.1: Data Acquisition Base Application

def series_1_pair(row: list[str]) -> RawData:

...

def series_2_pair(row: list[str]) -> RawData:

...

def series_3_pair(row: list[str]) -> RawData:

...

def series_4_pair(row: list[str]) -> RawData:

...

These functions can then be used by an extract() function to create the XYPair objects

for each of the four series represented by a single row of the source file.

One possibility is to use the following kind of definition:

SeriesBuilder: TypeVar = Callable[[list[str]], RawData]

def extract(row: list[str], builders: list[SeriesBuilder]) -> list[RawData]:

...

This extract() function can then apply all of the given builder functions (series_1_pair()

to series_4_pair()) to the given row to create XYPair objects for each of the series.

This design will also require a function to apply dataclass.asdict() and json.dumps()

to convert XYPair objects into strings that can be written to an NDJSON file.

Because the functions used are provided as argument values, there is little possibility

of a dependency issue among the various functions that make up the application. The

point throughout the design is to avoid binding specific functions in arbitrary places. The

main() function should provide the row-building functions to the extract function. These

functions can be provided via command-line arguments, a configuration file, or be default

values if no overrides are given.

Chapter 3 59

We’ve looked at the overall objective of the project, and two suggested architectural

approaches. We can now turn to the concrete list of deliverables.

Deliverables
This project has the following deliverables:

• Documentation in the docs folder.

• Acceptance tests in the tests/features and tests/steps folders.

• Unit tests for model module classes in the tests folder.

• Mock objects for the csv_extract module tests will be part of the unit tests.

• Unit tests for the csv_extract module components in the tests folder.

• Application to acquire data from a CSV file in the src folder.

An easy way to start is by cloning the project zero directory to start this project. Be sure

to update the pyproject.toml and README.md when cloning; the author has often been

confused by out-of-date copies of old projects’ metadata.

We’ll look at a few of these deliverables in a little more detail. We’ll start with some

suggestions for creating the acceptance tests.

Acceptance tests
The acceptance tests need to describe the overall application’s behavior from the user’s

point of view. The scenarios will follow the UX concept of a command-line application

that acquires data and writes output files. This includes success as well as useful output in

the event of failure.

The features will look something like the following:

Feature: Extract four data series from a file with

the peculiar Anscombe Quartet format.

60 Project 1.1: Data Acquisition Base Application

Scenario: When requested, the application extracts all four series.

Given the "Anscombe_quartet_data.csv" source file exists

And the "quartet" directory exists

When we run

command "python src/acquire.py -o quartet Anscombe_quartet_data.csv"

Then the "quartet/series_1.json" file exists

And the "quartet/series_2.json" file exists

And the "quartet/series_3.json" file exists

And the "quartet/series_3.json" file exists

And the "quartet/series_1.json" file starts with

'{"x": "10.0", "y": "8.04"}'

This more complex feature will require several step definitions. These include the following:

• @given('The "{name}" source file exists'). This function should copy the

example file from a source data directory to the temporary directory used to run the

test.

• @given('the "{name}" directory exists'). This function can create the named

directory under the directory used to run the test.

• @then('the "{name}" file exists'). This function can check for the presence of

the named file in the output directory.

• @then('the "quartet/series_1.json" file starts with ...'). This function

will examine the first line of the output file. In the event the test fails, it will be

helpful to display the contents of the file to help debug the problem. A simple assert

statement might not be ideal; a more elaborate if statement is needed to write

debugging output and raise an AssertionError exception.

Because the application under test consumes and produces files, it is best to make use of

the behave tool’s environment.py module to define two functions to create (and destroy)

a temporary directory used when running the test. The following two functions are used

by behave to do this:

Chapter 3 61

• before_scenario(context, scenario): This function can create a directory. The

tempfile module has a mkdtemp() function that handles this. The directory needs

to be placed into the context so it can be removed.

• after_scenario(context, scenario): This function can remove the temporary

directory.

The format for one of the Then clauses has a tiny internal inconsistency. The following

uses a mixture of " and ' to make it clear where values are inserted into the text:

And the "quartet/series_1.json" file starts with'{"x": "10.0", "y": "8.04"}'

Some people may be bothered by the inconsistency. One choice is to use ' consistently.

When there aren’t too many feature files, this pervasive change is easy to make. Throughout

the book, we’ll be inconsistent, leaving the decision to make changes for consistency up to

you.

Also, note the When clause command is rather long and complicated. The general advice

when writing tests like this is to use a summary of the command and push the details into

the step implementation function. We’ll address this in a later chapter when the command

becomes even longer and more complicated.

In addition to the scenario where the application works correctly, we also need to consider

how the application behaves when there are problems. In the next section, we’ll touch on

the various ways things might go badly, and how the application should behave.

Additional acceptance scenarios
The suggested acceptance test covers only one scenario. This single scenario — where

everything works — can be called the “happy path”. It would be wise to include scenarios

in which various kinds of errors occur, to be sure the application is reliable and robust in

the face of problems. Here are some suggested error scenarios:

• Given the Anscombe_quartet_data.csv source file does not exist.

• Given the quartet directory does not exist.

62 Project 1.1: Data Acquisition Base Application

• When we run the command python src/acquire.py --unknown option

• Given an Anscombe_quartet_data.csv source file exists, and the file is in the

wrong format. There are numerous kinds of formatting problems.

– The file is empty.

– The file is not a proper CSV file, but is in some other format.

– The file’s contents are in valid CSV format, but the column names do not match

the expected column names.

Each of the unhappy paths will require examining the log file to be sure it has the expected

error messages. The behave tool can capture logging information. The context available

in each step function has attributes that include captured logging output. Specifically,

context.log_capture contains a LogCapture object that can be searched for an error

message.

See https://behave.readthedocs.io/en/stable/api.html#behave.runner.Context

for the content of the context.

These unhappy path scenarios will be similar to the following:

Scenario: When the file does not exist, the log has the expected

error message.

Given the "Anscombe_quartet_data.csv" source file does not exist

And the "quartet" directory exists

When we run command "python src/acquire.py -o quartet

Anscombe_quartet_data.csv"

Then the log contains "File not found: Anscombe_quartet_data.csv"

This will also require some new step definitions to handle the new Given and Then steps.

When working with Gherkin, it’s helpful to establish clear language and

consistent terminology. This can permit a few step definitions to work

https://behave.readthedocs.io/en/stable/api.html#behave.runner.Context

Chapter 3 63

for a large number of scenarios. It’s a common experience to recognize

similarities after writing several scenarios, and then choose to alter scenarios

to simplify and normalize steps.

The behave tool will extract missing function definitions. The code snippets

can be copied and pasted into a steps module.

Acceptance tests cover the application’s overall behavior. We also need to test the individual

components as separate units of code. In the next section, we’ll look at unit tests and the

mock objects required for those tests.

Unit tests
There are two suggested application architectures in Architectural approach. Class-based

design includes two functions and a number of classes. Each of these classes and functions

should be tested in isolation.

Functional design includes a number of functions. These need to be tested in isolation.

Some developers find it easier to isolate function definitions for unit testing. This often

happens because class definitions may have explicit dependencies that are hard to break.

We’ll look at a number of the test modules in detail. We’ll start with tests for the model

module.

Unit testing the model

The model module only has one class, and that class doesn’t really do very much. This

makes it relatively easy to test. A test function something like the following should be

adequate:

from unittest.mock import sentinel

from dataclasses import asdict

def test_xypair():

pair = XYPair(x=sentinel.X, y=sentinel.Y)

64 Project 1.1: Data Acquisition Base Application

assert pair.x == sentinel.X

assert pair.y == sentinel.Y

assert asdict(pair) == {"x": sentinel.X, "y": sentinel.Y}

This test uses the sentinel object from the unittest.mock module. Each sentinel

attribute — for example, sentinel.X — is a unique object. They’re easy to provide as

argument values and easy to spot in results.

In addition to testing the model module, we also need to test the csv_extract module, and

the overall acquire application. In the next section, we’ll look at the extract unit test cases.

Unit testing the PairBuilder class hierarchy

When following an object-oriented design, the suggested approach is to create a PairBuilder

class hierarchy. Each subclass will perform slightly different operations to build an instance

of the XYPair class.

Ideally, the implementation of the PairBuilder subclasses is not tightly coupled to the

XYPair class. There is some advice in the Design principles section on how to support

dependency injection via type annotations. Specifically, the model module is best served

by using a type variable, RawData, as a placeholder for any additional types that may be

developed.

When testing, we want to replace this class with a mock class to assure that the interface

for the family of RawData classes — currently only a single class, XYPair — is honored.

A Mock object (built with the unittest.mock module) works out well as a replacement

class. It can be used for the XYPair class in the subclasses of the PairBuilder class.

The tests will look like the following example:

from unittest.mock import Mock, sentinel, call

def test_series1pair():

mock_raw_class = Mock()

p1 = Series1Pair()

Chapter 3 65

p1.target_class = mock_raw_class

xypair = p1.from_row([sentinel.X, sentinel.Y])

assert mock_raw_class.mock_calls == [

call(sentinel.X, sentinel.Y)

]

The idea is to use a Mock object to replace the specific class defined in the Series1Pair

class. After the from_row() method is evaluated, the test case confirms that the mock class

was called exactly once with the expected two sentinel objects. A further check would

confirm that the value of xypair was also a mock object.

This use of Mock objects guarantees that no additional, unexpected processing was done

on the objects. The interface for creating a new XYPair was performed correctly by the

Series1Pair class.

Similar tests are required for the other pair-building classes.

In addition to testing the model and csv_extract modules, we also need to test the overall

acquire application. In the next section, we’ll look at the acquire application unit test

cases.

Unit testing the remaining components

The test cases for the overall Extract class will also need to use Mock objects to replace

components like a csv.reader and instances of the PairBuilder subclasses.

As noted above in the Functional design section, the main() function needs to avoid having

explicitly named classes or functions. The names need to be provided via command-line

arguments, a configuration file, or as default values.

The unit tests should exercise the main() function with Mock objects to be sure that it is

defined with flexibility and extensions in mind.

66 Project 1.1: Data Acquisition Base Application

Summary
This chapter introduced the first project, the Data Acquisition Base Application. This

application extracts data from a CSV file with a complex structure, creating four separate

series of data points from a single file.

To make the application complete, we included a command-line interface and logging. This

will make sure the application behaves well in a controlled production environment.

An important part of the process is designing an application that can be extended to handle

data from a variety of sources and in a variety of formats. The base application contains

modules with very small implementations that serve as a foundation for making subsequent

extensions.

Perhaps the most difficult part of this project is creating a suite of acceptance tests to

describe the proper behavior. It’s common for developers to compare the volume of test

code with the application code and claim testing is taking up “too much” of their time.

Pragmatically, a program without automated tests cannot be trusted. The tests are every

bit as important as the code they’re exercising.

The unit tests are — superficially — simpler. The use of mock objects makes sure each class

is tested in isolation.

This base application acts as a foundation for the next few chapters. The next chapter will

add RESTful API requests. After that, we’ll have database access to this foundation.

Extras
Here are some ideas for you to add to this project.

Logging enhancements
We skimmed over logging, suggesting only that it’s important and that the initialization

for logging should be kept separate from the processing within the main() function.

The logging module has a great deal of sophistication, however, and it can help to explore

Chapter 3 67

this. We’ll start with logging “levels”.

Many of our logging messages will be created with the INFO level of logging. For example:

logger.info("%d rows processed", input_count)

This application has a number of possible error situations that are best reflected with

error-level logging.

Additionally, there is a tree of named loggers. The root logger, named "", has settings that

apply to all the lower-level loggers. This tree tends to parallel the way object inheritance

is often used to create classes and subclasses. This can make it advantageous to create

loggers for each class. This permits setting the logging level to debug for one of many

classes, allowing for more focused messages.

This is often handled through a logging configuration file. This file provides the configuration

for logging, and avoids the potential complications of setting logging features through

command-line options.

There are three extras to add to this project:

• Create loggers for each individual class.

• Add debug-level information. For example, the from_row() function is a place where

debugging might be helpful for understanding why an output file is incorrect.

• Get the logging configuration from an initialization file. Consider using a file in

TOML format as an alternative to the INI format, which is a first-class part of the

logging module.

Configuration extensions
We’ve described a little of the CLI for this application. This chapter has provided a few

examples of the expected behavior. In addition to command-line parameters, it can help to

have a configuration file that provides the slowly changing details of how the application

works.

68 Project 1.1: Data Acquisition Base Application

In the discussion in the Design principles section, we looked closely at dependency inversion.

The intent is to avoid an explicit dependency among classes. We want to “invert” the

relationship, making it indirect. The idea is to inject the class name at run time, via

parameters.

Initially, we can do something like the following:

EXTRACT_CLASS: type[Extract] = Extract

BUILDER_CLASSES: list[type[PairBuilder]] = [

Series1Pair, Series2Pair, Series3Pair, Series4Pair]

def main(argv: list[str]) -> None:

builders = [cls() for vls in BUILDER_CLASSES]

extractor = EXTRACT_CLASS(builders)

etc.

This provides a base level of parameterization. Some global variables are used to “inject”

the run-time classes. These initializations can be moved to the argparse.Namespace

initialization value for the ArgumentParser.parse_args() method.

The initial values for this argparse.Namespace object can be literal values, essentially the

same as shown in the global variable parameterization shown in the previous example.

It is more flexible to have the initial values come from a parameter file that’s separate

from the application code. This permits changing the configuration without touching the

application and introducing bugs through inadvertent typing mistakes.

There are two popular alternatives for a configuration file that can be used to fine-tune the

application. These are:

• A separate Python module that’s imported by the application. A module name like

config.py is popular for this.

• A non-Python text file that’s read by the application. The TOML file format, parsed

by the tomllib module, is ideal.

Chapter 3 69

Starting with Python 3.11, the tomllib module is directly available as part of the standard

library. Older versions of Python should be upgraded to 3.11 or later.

When working with a TOML file, the class name will be a string. The simple and reliable

way to translate the class name from string to class object is to use the eval() function.

An alternative is to provide a small dictionary with class name strings and class objects.

Class names can be resolved through this mapping.

Some developers worry that the eval() function allows a class of Evil

Super Geniuses to tweak the configuration file in a way that will crash the

application.

What these developers fail to notice is that the entire Python application is

plain text. The Evil Super Genius can more easily edit the application and

doesn’t need to do complicated, nefarious things to the parameter file.

Further, ordinary OS-level ownership and permissions can restrict access to

the parameter file to a few trustworthy individuals.

Don’t forget to include unit test cases for parsing the parameter file. Also, an acceptance

test case with an invalid parameter file will be an important part of this project.

Data subsets
To work with large files it will be necessary to extract a subset of the data. This involves

adding features like the following:

• Create a subclass of the Extract class that has an upper limit on the number of rows

created. This involves a number of unit tests.

• Update the CLI options to include an optional upper limit. This, too, will involve

some additional unit test cases.

• Update the acceptance test cases to show operation with the upper limit.

Note that switching from the Extract class to the SubsetExtract class is something that

70 Project 1.1: Data Acquisition Base Application

should be based on an optional command-line parameter. If the --limit option is not

given, then the Extract class is used. If the --limit option is given (and is a valid integer),

then the SubsetExtract class is used. This will lead to an interesting set of unit test cases

to make sure the command-line parsing works properly.

Another example data source
Perhaps the most important extra for this application is to locate another data source that’s

of interest to you.

See the CO2 PPM — Trends in Atmospheric Carbon Dioxide data set, available at

https://datahub.io/core/co2-ppm, for some data that’s somewhat larger. This has a

number of odd special-case values that we’ll explore in Chapter 6, Project 2.1: Data Inspection

Notebook.

This project will require you to manually download and unzip the file. In later chapters,

we’ll look at automating these two steps. See Chapter 4, Data Acquisition Features: Web

APIs and Scraping specifically, for projects that will expand on this base project to properly

acquire the raw data from a CSV file.

What’s important is locating a source of data that’s in CSV format and small enough that it

can be processed in a few seconds. For large files, it will be necessary to extract a subset of

the data. See Data subsets for advice on handling large sets of data.

https://datahub.io/core/co2-ppm

4
Data Acquisition Features:
Web APIs and Scraping

Data analysis often works with data from numerous sources, including databases, web

services, and files prepared by other applications. In this chapter, you will be guided

through two projects to add additional data sources to the baseline application from the

previous chapter. These new sources include a web service query, and scraping data from

a web page.

This chapter’s projects cover the following essential skills:

• Using the requests package for Web API integration. We’ll look at the Kaggle API,

which requires signing up to create an API token.

• Using the Beautiful Soup package to parse an HTML web page.

• Adding features to an existing application and extending the test suite to cover these

new alternative data sources.

72 Data Acquisition Features: Web APIs and Scraping

It’s important to recognize this application has a narrow focus on data acquisition. In

later chapters, we’ll validate the data and convert it to a more useful form. This reflects a

separation of the following distinct concerns:

• Downloading and extracting data from the source are the foci of this chapter and

the next.

• Inspection begins in Chapter 6, Project 2.1: Data Inspection Notebook.

• Validating and cleaning the data starts in Chapter 9, Project 3.1: Data Cleaning Base

Application.

Each stage in the processing pipeline is allocated to separate projects. For more background,

see Chapter 2, Overview of the Projects.

We’ll start by looking at getting data using an API and a RESTful web service. This will

focus on the Kaggle site, which means you will need to sign up with Kaggle to get your

own, unique API key. The second project will scrape HTML content from a website that

doesn’t offer a useful API.

Project 1.2: Acquire data from a web service
It’s common to need data provided by a Web API. One common design approach for web

services is called RESTful; it’s based on a number of concepts related to using the HTTP

protocol to transfer a representation of an object’s state.

For more information on RESTful services, see Building RESTful Python Web Services

(https://www.packtpub.com/product/building-restful-python-web-services/9781

786462251).

A RESTful service generally involves using the HTTP protocol to respond to requests from

client applications. The spectrum of request types includes a number of verbs like get, post,

put, patch, and delete. In many cases, the service responds with a JSON document. It’s also

possible to receive a file that’s a stream of NDJSON documents, or even a file that’s a ZIP

archive of data.

(https://www.packtpub.com/product/building-restful-python-web-services/9781786462251
(https://www.packtpub.com/product/building-restful-python-web-services/9781786462251

Chapter 4 73

We’ll start with a description of the application, and then move on to talk about the

architectural approach. This will be followed with a detailed list of deliverables.

Description
Analysts and decision-makers need to acquire data for further analysis. In this case, the

data is available from a RESTful web service. One of the most fun small data sets to work

with is Anscombe’s Quartet – https://www.kaggle.com/datasets/carlmcbrideellis/d

ata-anscombes-quartet

Parts of this application are an extension to the project in Chapter 9, Project 3.1: Data

Cleaning Base Application. The essential behavior of this application will be similar to the

previous project. This project will use a CLI application to grab data from a source.

The User Experience (UX) will also be a command-line application with options to

fine-tune the data being gathered. Our expected command line should like something like

the following:

% python src/acquire.py -o quartet -k ~/Downloads/kaggle.json \
--zip carlmcbrideellis/data-anscombes-quartet

The -o quartet argument specifies a directory into which four results are written. These

will have names like quartet/series_1.json.

The -k kaggle.json argument is the name of a file with the username and Kaggle API

token. This file is kept separate from the application software. In the example, the file was

in the author’s Downloads folder.

The --zip argument provides the “reference” — the owner and data set name — to open

and extract. This information is found by examining the details of the Kaggle interface.

An additional feature is to get a filtered list of Kaggle data sets. This should be a separate

--search operation that can be bundled into a single application program.

https://www.kaggle.com/datasets/carlmcbrideellis/data-anscombes-quartet
https://www.kaggle.com/datasets/carlmcbrideellis/data-anscombes-quartet

74 Data Acquisition Features: Web APIs and Scraping

% python src/acquire.py --search -k ~/Downloads/kaggle.json

This will apply some search criteria to emit a list of data sets that match the requirements.

The lists tend to be quite large, so this needs to be used with care.

The credentials in the file are used to make the Kaggle API request. In the next sections,

we’ll look at the Kaggle API in general. After that, we’ll look at the specific requests

required to locate the reference to the target data set.

The Kaggle API

See https://www.kaggle.com/docs/api for information on the Kaggle API. This document

describes some command-line code (in Python) that uses the API.

The technical details of the RESTful API requests are at https://github.com/Kaggle/ka

ggle-api/blob/master/KaggleSwagger.yaml. This document describes the requests and

responses from the Kaggle API server.

To make use of the RESTful API or the command-line applications, you should register

with Kaggle. First, sign up with Kaggle.com. Next, navigate to the public profile page. On

this page, there’s an API section. This section has the buttons you will use to generate a

unique API token for your registered username.

The third step is to click the Create New Token button to create the token file. This

will download a small JSON file with your registered username and unique key. These

credentials are required by the Kaggle REST API.

The ownership of this file can be changed to read-only by the owner. In Linux and macOS,

this is done with the following command:

% chmod 400 ~/Downloads/kaggle.json

https://www.kaggle.com/docs/api
https://github.com/Kaggle/kaggle-api/blob/master/KaggleSwagger.yaml
https://github.com/Kaggle/kaggle-api/blob/master/KaggleSwagger.yaml

Chapter 4 75

Do not move the Kaggle credentials file named kaggle.json into a directory

where your code is also located. It’s tempting, but it’s a terrible security

mistake because the file could get saved to a code repository and become

visible to anyone browsing your code. In some enterprises, posting keys in

code repositories — even internal repositories — is a security lapse and a

good reason for an employee to be terminated.

Because Git keeps a very complete history, it’s challenging to remove a

commit that contains keys.

Keep the credentials file separate from your code.

It’s also a good idea to add kaggle.json to a .gitignore file to make extra

sure that it won’t be uploaded as part of a commit and push.

About the source data

This project will explore two separate kinds of source data. Both sources have the same

base path of https://www.kaggle.com/api/v1/. Trying to query this base path won’t

provide a useful response; it’s only the starting point for the paths that are built to locate

specific resources.

• JSON documents with summaries of data sets or metadata about data sets. These

come from appending datasets/list to the base path.

• A ZIP archive that contains the data we’ll use as an example. This comes from

appending datasets/download/{ownerSlug}/{datasetSlug} to the base path. The

ownerSlug value is “carlmcbrideellis”. The datasetSlug value is

“data-anscombes-quartet”. A given data set has a ref value as a reference string with

the required “ownerSlug/datasetSlug” format.

The JSON documents require a function to extract a few relevant fields like title, ref,

url, and totalBytes. This subset of the available metadata can make it easier to locate

useful, interesting data sets. There are numerous other properties available for search,

https://www.kaggle.com/api/v1/

76 Data Acquisition Features: Web APIs and Scraping

like usabilityRating; these attributes can distinguish good data sets from experiments or

classroom work.

The suggested data set — the Anscombe Quartet — is available as a ZIP-compressed archive

with a single item inside it. This means the application must handle ZIP archives and

expand a file contained within the archive. Python offers the zipfile package to handle

locating the CSV file within the archive. Once this file is found, the existing programming

from the previous chapter (Chapter 3, Project 1.1: Data Acquisition Base Application) can be

used.

There are thousands of Kaggle data sets. We’ll suggest some alternatives to the Anscombe

Quartet in the Extras.

This section has looked at the input, processing, and output of this application. In the next

section, we’ll look at the overall architecture of the software.

Approach
We’ll take some guidance from the C4 model (https://c4model.com) when looking at our

approach:

• Context: For this project, a context diagram would show a user extracting data from

a source. You may find it helpful to draw this diagram.

• Containers: One container is the user’s personal computer. The other container is

the Kaggle website, which provides the data.

• Components: We’ll address the components below.

• Code: We’ll touch on this to provide some suggested directions.

It’s important to consider this application as an extension to the project in Chapter 3, Project

1.1: Data Acquisition Base Application. The base level of architectural design is provided in

that chapter.

In this project, we’ll be adding a new kaggle_client module to download the data. The

https://c4model.com

Chapter 4 77

overall application in the acquire module will change to make use of this new module.

The other modules should remain unchanged.

The legacy component diagram is shown in Figure 4.1.

modelcsv_extract

acquire

C «dataclass»
XYPair

x: str
y: str

C Extract

__init__(PairBuilder)
build_pairs()

A PairBuilder

from_row(list[str]) ->XYPair

C Series1Pair

from_row(list[str]) ->XYPair

F main F get_options

Series2Pair, Series3Pair, and Series4Pair, also.

creates

uses

evaluates

createscreates

Figure 4.1: Legacy Components

A new architecture can handle both the examination of the JSON data set listing, as well as

the download of a single ZIP file. This is shown in Figure 4.2.

The new module here is the kaggle_client module. This has a class, RestAccess, that

provides methods to access Kaggle data. It can reach into the Kaggle data set collection

and retrieve a desired ZIP file. Additional methods can be added to examine the list of data

78 Data Acquisition Features: Web APIs and Scraping

model

csv_extract

acquire

requests

auth

kaggle_client

zipfile

C «dataclass»
XYPair

x: str
y: str

C ExtractA PairBuilder

F main F get_options

F get C HTTPBasicAuth

C RestAccess

__init__(credentials)
get_zip(url)
dataset_iter(url, query)

C ZipFile

infolist()
open()

evaluates

uses

auth

createsreadscreates

Figure 4.2: Revised Component Design

sets or get data set metadata.

The RestAccess class is initialized with the contents of the kaggle.json file. As part of

initialization, it can create the required authentication object for use in all subsequent calls.

In the following sections, we’ll look at these features of the RestAccess class:

• Making API requests in general.

• Getting the ZIP archive.

• Getting the list of data sets.

• Handling the rate-limiting response.

We’ll start with the most important feature, making API requests in a general way.

Making API requests

The component diagram shows the requests package as the preferred way to access

RESTful APIs. This package should be added to the project’s pyproject.toml and installed

as part of the project’s virtual environment.

Chapter 4 79

It’s also sensible to make RESTful API requests with the urllib package. This is part of

the standard library. It works nicely and requires no additional installation. The code can

become rather complicated-looking, however, so it’s not as highly recommended as the

requests package.

The essential benefit of using requests is creating an authentication object and providing

it in each request. We often use code like the following example:

import json

from pathlib import Path

import requests.auth

keypath = Path.home() / "Downloads" / "kaggle.json"

with keypath.open() as keyfile:

credentials = json.load(keyfile)

auth = requests.auth.HTTPBasicAuth(

credentials['username'], credentials['key']

)

This can be part of the __init__() method of the RestAccess class.

The auth object created here can be used to make all subsequent requests. This will provide

the necessary username and API token to validate the user. This means other methods can,

for example, use requests.get() with a keyword parameter value of auth=self.auth.

This will correctly build the needed Authorization headers in each request.

Once the class is initialized properly, we can look at the method for downloading a ZIP

archive

Downloading a ZIP archive

The RestAccess class needs a get_zip() method to download the ZIP file. The parameter

is the URL for downloading the requested data set.

The best approach to building this URL for this data set is to combine three strings:

80 Data Acquisition Features: Web APIs and Scraping

• The base address for the APIs, https://www.kaggle.com/api/v1.

• The path for downloads, /datasets/download/.

• The reference is a string with the form: {ownerSlug}/{datasetSlug}.

This is an ideal place for a Python f-string to replace the reference in the URL pattern.

The output from the get_zip() method should be a Path object. In some cases, the ZIP

archives are gigantic and can’t be processed entirely in memory. In these extreme cases,

a more complicated, chunked download is required. For these smaller files used by this

project, the download can be handled entirely in memory. Once the ZIP file has been

written, the client of this RestAccess class can then open it and extract the useful member.

A separate client function or class will process the content of the ZIP archive file. The

following is not part of the RestAccess class but is part of some client class or function

that uses the RestAccess class.

Processing an element of an archive can be done with two nested with contexts. They

would work like this:

• An outer with statement uses the zipfile module to open the archive, creating a

ZipFile instance.

• An inner with statement can open the specific member with the Anscombe quartet

CSV file. Inside this context, the application can create a csv.DictReader and use

the existing Extract class to read and process the data.

What’s important here is we don’t need to unpack the ZIP archive and litter our storage with

unzipped files. An application can open and process the elements using the ZipFile.open()

method.

In addition to downloading the ZIP archive, we may also want to survey the available data

sets. For this, a special iterator method is helpful. We’ll look at that next.

Getting the data set list

The catalog of data sets is found by using the following path:

Chapter 4 81

https://www.kaggle.com/api/v1/datasets/list

The RestAccess class can have a dataset_iter() method to iterate through the collection

of data sets. This is helpful for locating other data sets. It’s not required for finding

the Anscombe’s Quartet, since the ownerSlug and datasetSlug reference information is

already known.

This method can make a GET request via the requests.get() function to this URL. The

response will be on the first page of available Kaggle data sets. The results are provided in

pages, and each request needs to provide a page number as a parameter to get subsequent

pages.

Each page of results will be a JSON document that contains a sequence of dictionary objects.

It has the following kind of structure:

[

{"id": some_number, "ref": "username/dataset", "title": ...},

{"id": another_number, "ref": "username/dataset", "title": ...},

etc.

]

This kind of two-tiered structure — with pages and items within each page — is the ideal

place to use a generator function to iterate through the pages. Within an outer cycle, an

inner iteration can yield the individual data set rows from each page.

This nested iteration can look something like the following code snippet:

def dataset_iter(url: str, query: dict[str, str]) ->

Iterator[dict[str, str]]:

page = 1

while True:

response = requests.get(url, params=quert | {"page": str(page)})

if response.status_code == 200:

details = response.json()

https://www.kaggle.com/api/v1/datasets/list

82 Data Acquisition Features: Web APIs and Scraping

if details:

yield from iter(details)

page += 1

else:

break

elif response.status_code == 429:

Too Many Requests

Pause and try again processing goes here...

pass

else:

Unexpected response

Error processing goes here...

break

This shows the nested processing of the while statement ends when a response contains

a page of results with zero entries in it. The processing to handle too many requests is

omitted. Similarly, the logging of unexpected responses is also omitted.

A client function would use the RestAccess class to scan data sets and would look like the

following example:

keypath = Path.home()/"Downloads"/"kaggle.json"

with keypath.open() as keyfile:

credentials = json.load(keyfile)

reader = Access(credentials)

for row in reader.dataset_iter(list_url):

print(row['title'], row['ref'], row['url'], row['totalBytes'])

This will process all of the data set descriptions returned by the RestReader object, reader.

The dataset_iter() method needs to accept a query parameter that can limit the scope

of the search. We encourage you to read the OpenAPI specification to see what options are

Chapter 4 83

possible for the query parameter. These values will become part of the query string in the

HTTP GET request.

Here’s the formal definition of the interface:

https://github.com/Kaggle/kaggle-api/blob/master/KaggleSwagger.yaml

Some of the query parameters include the following:

• The filetype query is helpful in locating data in JSON or CSV formats.

• The maxSize query can constrain the data sets to a reasonable size. For initial

exploration, 1MB is a good upper limit.

Initial spike solutions — without regard to the rate limiting — will turn up at least 80 pages

of possible data sets. Handling the rate-limiting response will produce more extensive

results, at the cost of some time spent waiting. In the next section, we’ll expand this method

to handle the error response.

Rate limiting

As with many APIs, the Kaggle API imposes rate-limiting to avoid a Denial-of-Service

(DoS) attack. For more information see https://cheatsheetseries.owasp.org/cheatsh

eets/Denial_of_Service_Cheat_Sheet.html.

Each user has a limited number of requests per second. While the limit is generous for

most purposes, it will tend to prevent a simple scan of all data sets.

A status code of 429 in a Kaggle response tells the client application that too many requests

were made. This “too many requests” error response will have a header with the key

Retry-After. This header’s value is the timeout interval (in seconds) before the next

request can be made.

A reliable application will have a structure that handles the 429 vs. 200 responses gracefully.

The example in the previous section has a simple if statement to check the

condition if response.status_code == 200. This needs to be expanded to handle these

three alternatives:

https://github.com/Kaggle/kaggle-api/blob/master/KaggleSwagger.yaml
https://cheatsheetseries.owasp.org/cheatsheets/Denial_of_Service_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Denial_of_Service_Cheat_Sheet.html

84 Data Acquisition Features: Web APIs and Scraping

• A status code of 200 is a good response. If the page has any details, these can be

processed; the value of page can be incremented. Otherwise, there’s no more data

making it appropriate to break from the containing while statement.

• A status code of 429 means too many requests were made. Get the value of the

Retry-After and sleep for this period of time.

• Any other status code indicates a problem and should be logged or raised as an

exception.

One possible algorithm for return rows and handling rate limiting delays is shown in

Figure 4.3.

Handling rate limiting will make the application much easier to use. It will also produce

more complete results. Using an effective search filter to reduce the number of rows to a

sensible level will save a lot of waiting for the retry-after delays.

The main() function

The current application design has these distinct features:

1. Extract data from a local CSV file.

2. Download a ZIP archive and extract data from a CSV member of the archive.

3. (Optionally) Survey the data set list to find other interesting data sets to process.

This suggests that our main() function should be a container for three distinct functions

that implement each separate feature. The main() function can parse the command-line

arguments, and then make a number of decisions:

• Local Extract: If the -o option is present (without the -k option), then this is a local

file extract. This was the solution from an earlier chapter.

• Download and Extract: If the -k and -o options are present, then this will be a

download and extract. It will use the RestAccess object to get the ZIP archive. Once

the archive is opened, the member processing is the solution from an earlier chapter.

Chapter 4 85

page = 1

response = requests.get(url, page)

yield row

row in response JSON

non-zero rows
len rows in response JSON

0

page = page + 1

delay = Retry-After header value

sleep delay

status code
200

status code
429

other status

Figure 4.3: Kaggle rate-limited paging

86 Data Acquisition Features: Web APIs and Scraping

• Survey: If the -k and -s (or --search) options are present, then this is a search for

interesting data sets. You are encouraged to work out the argument design to provide

the needed query parameters to the application.

• Otherwise: If none of the above patterns match the options, this is incoherent, and

an exception should be raised.

Each of these features requires a distinct function. A common alternative design is to use

the Command pattern and create a class hierarchy with each of the features as a distinct

subclass of some parent class.

One central idea is to keep the main() function small, and dispatch the detailed work to

other functions or objects.

The other central idea is Don’t Repeat Yourself (DRY). This principle makes it imperative

to never copy and paste code between the “Download-and-Extract” feature and the

“Local-Extract” feature. The “Download-and-Extract” processing must reuse the

“Local-Extract” processing either through subclass inheritance or calling one function

from another.

Now that we have a technical approach, it’s time to look at the deliverables for this project.

Deliverables
This project has the following deliverables:

• Documentation in the docs folder.

• Acceptance tests in the tests/features and tests/steps folders.

• A miniature RESTful web service that provides test responses will be part of the

acceptance test.

• Unit tests for the application modules in the tests folder.

• Mock objects for the requests module will be part of the unit tests.

• Application to download and acquire data from a RESTful web service.

Chapter 4 87

Be sure to include additional packages like requests and beautifulsoup4 in the

pyproject.toml file. The pip-compile command can be used to create a requirements.txt

usable by the tox tool for testing.

We’ll look at a few of these deliverables in a little more detail.

Unit tests for the RestAccess class

For unit testing, we don’t want to involve the requests module. Instead, we need to make

a mock interface for the requests module to confirm the application RestAccess module

uses the requests classes properly.

There are two strategies for plugging in mock objects:

• Implement a dependency injection technique, where the target class is named at run

time.

• Use Monkey Patching to inject a mock class at test time.

When working with external modules — modules where we don’t control the design —

monkey patching is often easier than trying to work out a dependency injection technique.

When we’re building the classes in a module, we often have a need to extend the definitions

via subclasses. One of the reasons for creating unique, customized software is to implement

change in the unique features of an application rapidly. The non-unique features (RESTful

API requests, in this case) change very slowly and don’t benefit from flexibility.

We want to create two mock classes, one to replace the requests.auth.HTTPBasicAuth

class, and one to replace the requests.get() function. The mock for the HTTPBasicAuth

class doesn’t do anything; we want to examine the mock object to be sure it was called

once with the proper parameters. The mock for the requests.get() function needs to

create mock Response objects for various test scenarios.

We’ll need to use the monkeypatch fixture of the pytest module to replace the real objects

with the mock objects for unit testing.

The idea is to create unit tests that have a structure similar to the following example:

88 Data Acquisition Features: Web APIs and Scraping

from unittest.mock import Mock, sentinel, call

def test_rest_access(monkeypatch):

mock_auth_class = Mock(

name="Mocked HTTPBasicAuth class",

return_value=sentinel.AUTH

)

monkeypatch.setattr('requests.auth.HTTPBasicAuth', mock_auth_class)

mock_kaggle_json = {"username": sentinel.USERNAME, "key": sentinel.KEY}

access = RestAccess(mock_kaggle_json)

assert access.credentials == sentinel.AUTH

assert mock_auth_class.mock_calls == [

call(sentinel.USERNAME, sentinel.KEY)

]

This test case creates a mock for the HTTPBasicAuth class. When the class is called to create

an instance, it returns a sentinel object that can be verified by a test case.

The monkeypatch fixture replaces the requests.auth.HTTPBasicAuth class with the mock

object. After this patch is applied, when the RestAccess class initialization attempts to

create an instance of the HTTPBasicAuth class, it will invoke the mock, and will get a

sentinel object instead.

The case confirms the sentinel object is used by the RestAccess instance. The test case

also confirms the mock class was called exactly once with the expected values taken from

the mocked value loaded from the kaggle.json file.

This test case relies on looking inside the RestAccess instance. This isn’t the best strategy

for writing unit tests. A better approach is to provide a mock object for requests.get().

The test case should confirm the requests.get() is called with a keyword parameter, auth,

with an argument value of the sentinel.AUTH object. The idea of this test strategy is to

examine the external interfaces of the RestAccess class instead of looking at internal state

Chapter 4 89

changes.

Acceptance tests

The acceptance tests need to rely on a fixture that mocks the Kaggle web service. The mock

will be a process on your local computer, making it easy to stop and start the mock service

to test the application. Using an address of 127.0.0.1:8080 instead of www.kaggle.com will

direct RESTful API requests back to your own computer. The name localhost:8080 can be

used instead of the numeric address 127.0.0.1:8080. (This address is called the Loopback

Address because the requests loop back to the same host that created them, allowing testing

to proceed without any external network traffic.)

Note that the URL scheme will change to http: from https:, also. We don’t want to

implement the full Socket Security Layer (SSL) for acceptance testing. For our purposes,

we can trust those components work.

This change to the URLs suggests the application should be designed in such a way

to have the https://www.kaggle.com portion of each URL provided by a configuration

parameter. Then acceptance tests can use http://127.0.0.1:8080 without having to make

any changes to the code.

The mock service must offer a few features of the Kaggle service. The local service needs

to respond to dataset/download requests properly, providing a reply with the expected

status code and the content with bytes that are a proper ZIP archive.

This mock service will run as a separate application. It will be started (and stopped) by

behave for a scenario that needs the fixture.

We’ll start by looking at the way this service is described in a feature file. This will lead us

to look at how to build the mock service. After that, we can look at how this is implemented

using behave step definitions.

The feature file

The downloading feature is clearly separate from the data acquisition feature. This suggests

a new .feature file to provide scenarios to describe this feature.

90 Data Acquisition Features: Web APIs and Scraping

Within this new feature file, we can have scenarios that specifically name the required

fixture. A scenario might look like the following example:

@fixture.kaggle_server

Scenario: Request for carlmcbrideellis/data-anscombes-quartet

extracts file from ZIP archive.

A typical download command might be

"python src/acquire.py -k kaggle.json -o quartet \

--zip carlmcbrideellis/data-anscombes-quartet"

Given proper keys are in "kaggle.json"

When we run the kaggle download command

Then log has INFO line with "header: ['mock', 'data']"

And log has INFO line with "count: 1"

The @fixture. tag follows the common tagging convention for associating specific fixtures

with scenarios. There are many other purposes for tagging scenarios in addition to

specifying the fixture to use.

In previous projects, a command to run the application was provided in the When step.

For this scenario (and many others), the command text became too long to be usefully

presented in the Gherkin text. This means the actual command needs to be provided by

the function that implements this step.

This scenario’s Then steps look at the log created by the application to confirm the contents

of the file.

A test scenario is part of the overall application’s requirements and design.

In the description provided in Description there isn’t any mention of a

log. This kind of gap is common. The test scenario provided additional

definitions of the feature omitted from the plain test description.

Some people like to update the documentation to be complete and fully

Chapter 4 91

consistent. We encourage flexibility when working on enterprise applications

where there are numerous stakeholders. It can be difficult to get everyone’s

input into the initial presentation or document. Sometimes, requirements

appear later in the process when more concrete issues, like expected operating

scenarios, are discussed in detail.

The tag information will be used by the behave tool. We’ll look at how to write a

before_tag() function to start (and stop) the special mock server for any scenario that

needs it.

Before we look at the behave integration via a step definition, we’ll look at two approaches

to testing the client application. The core concept is to create a mock-up of the few elements

of the Kaggle API used by the data acquisition application. This mock-up must return

responses used by test scenarios. There are two approaches:

• Create a web service application. For acceptance tests, this service must be started and

stopped. The acquire application can be configured with a http://localhost:8080

URL to connect to the test server instead of the Kaggle server. (There are a few

common variations on the “localhost” address including 127.0.0.1 and 0.0.0.0.)

• The other approach is to provide a way to replace the requests module with a

mocked version of the module. This mocked module returns responses appropriate

to the test scenario. This can be done by manipulating the sys.path variable

to include the directory containing the mocked version of requests in front of

the site-packages directory, which has the real version. It can also be done by

providing some application configuration settings that can be replaced with the

mocked package.

One approach to creating a complete service that will implement the fixture.

92 Data Acquisition Features: Web APIs and Scraping

Injecting a mock for the requests package

Replacing the requests package requires using dependency injection techniques in the

acquire application. A static dependency arises from code like the following:

import requests

import requests.auth

Later in the module, there may be code like requests.get(...) or

requests.auth.HTTPBasicAuth(...). The binding to the requests module is fixed by

both the import statement and the references to requests and requests.auth.

The importlib module permits more dynamic binding of modules names, allowing some

run-time flexibility. The following, for example, can be used to tailor imports.

if __name__ == "__main__":

Read from a configuration file

requests_name = "requests"

requests = importlib.import_module(requests_name)

main(sys.argv[1:])

The global variable, requests, has the imported module assigned to it. This module

variable must be global; it’s an easy requirement to overlook when trying to configure the

application for acceptance testing.

Note that the import of the requests module (or the mock version) is separated from the

remaining import statements. This can be the source of some confusion for folks reading

this code later, and suitable comments are important for clarifying the way this dependency

injection works.

When we looked at unit testing in Unit tests for the RestAccess class, we used the pytest

fixture named monkeypatch to properly isolate modules for testing.

Monkey patching isn’t a great technique for acceptance testing because the code being

tested is not exactly the code that will be used. While monkey patching and dependency

injection are popular, there are always questions about testing patched software instead of

Chapter 4 93

the actual software. In some industries — particularly those where human lives might be at

risk from computer-controlled machinery — the presence of a patch for testing may not be

allowed. In the next section, we’ll look at building a mock service to create and test the

acquire application without any patching or changes.

Creating a mock service

A mock service can be built with any web services framework. There are two that are part

of the standard library: the http.server package and the wsgiref package. Either of these

can respond to HTTP requests, and can be used to create local services that can mock the

Kaggle web service to permit testing our client.

Additionally, any of the well-known web service frameworks can be used to create the

mock service. Using a tool like flask or bottle can make it slightly easier to build a suitable

mock service.

To keep the server as simple as possible, we’ll use the bottle framework. This means adding

bottle==0.12.23 to the pyproject.toml file in the [project.optional-dependencies]

section. This tool is only needed by developers.

The Bottle implementation of a RESTful API might look like this:

import csv

import io

import json

import zipfile

from bottle import route, run, request, HTTPResponse

@route('/api/v1/datasets/list')

def datasets_list(name):

Provide mock JSON documents and Rate throttling

@route('/api/v1/datasets/download/<ownerSlug>/<datasetSlug>')

def datasets_download(ownerSlug, datasetSlug):

94 Data Acquisition Features: Web APIs and Scraping

Provide mock ZIP archive

if __name__ == "__main__":

run(host='127.0.0.1', port=8080)

While the Kaggle service has numerous paths and methods, this data acquisition project

application doesn’t use all of them. The mock server only needs to provide routes for the

paths the application will actually use.

The datasets_list function might include the following example response:

@route('/api/v1/datasets/list')

def datasets_list(name):

page = request.query.page or '1'

if page == '1':

mock_body = [

Provide attributes as needed by the application under test

{'title': 'example1'},

{'title': 'example2'},

]

response = HTTPResponse(

body=json.dumps(mock_body),

status=200,

headers={'Content-Type': 'application/json'}

)

else:

For error-recovery scenarios, this response may change.

response = HTTPResponse(

body=json.dumps([]),

status=200,

headers={'Content-Type': 'application/json'}

)

Chapter 4 95

return response

The HTTPResponse object contains the essential features of the responses as seen by the

acquisition application’s download requests. Each response has content, a status code, and

a header that is used to confirm the type of response.

For more comprehensive testing, it makes sense to add another kind of response with the

status code of 429 and a header dictionary with {'Retry-After': '30'}. For this case, the

two values of response will be more dramatically distinct.

The download needs to provide a mocked ZIP archive. This can be done as shown in the

following example:

@route('/api/v1/datasets/download/<ownerSlug>/<datasetSlug>')

def datasets_download(ownerSlug, datasetSlug):

if ownerSlug == "carlmcbrideellis" and datasetSlug ==

"data-anscombes-quartet":

zip_content = io.BytesIO()

with zipfile.ZipFile(zip_content, 'w') as archive:

target_path = zipfile.Path(archive, 'Anscombe_quartet_data.csv')

with target_path.open('w') as member_file:

writer = csv.writer(member_file)

writer.writerow(['mock', 'data'])

writer.writerow(['line', 'two'])

response = HTTPResponse(

body=zip_content.getvalue(),

status=200,

headers={"Content-Type": "application/zip"}

)

return response

All other requests...

response = HTTPResponse(

96 Data Acquisition Features: Web APIs and Scraping

status=404

)

return response

This function will only respond to one specifically requested combination of ownerSlug and

datasetSlug. Other combinations will get a 404 response, the status code for a resource

that can’t be found.

The io.BytesIO object is an in-memory buffer that can be processed like a file. It is used

by the zipfile.ZipFile class to create a ZIP archive. A single member is written to this

archive. The member has a header row and a single row of data, making it easy to describe

in a Gherkin scenario. The response is built from the bytes in this file, a status code of 200,

and a header telling the client the content is a ZIP archive.

This service can be run on the desktop. You can use a browser to interact with this server

and confirm it works well enough to test our application.

Now that we’ve seen the mock service that stands in for Kaggle.com, we can look at how

to make the behave tool run this service when testing a specific scenario.

Behave fixture

We’ve added a fixture.kaggle_server to the scenario. There are two steps to make this

tag start the server process running for a given scenario. These steps are:

1. Define a generator function. This will start a subprocess, yield something, and then

kill the subprocess.

2. Define a before_tag() function to inject the generator function into the step

processing.

Here’s a generator function that will update the context, and start the mock Kaggle service.

from collections.abc import Iterator

from typing import Any

import subprocess

Chapter 4 97

import time

import os

import sys

from behave import fixture, use_fixture

from behave.runner import Context

@fixture

def kaggle_server(context: Context) -> Iterator[Any]:

if "environment" not in context:

context.environment = os.environ

context.environment["ACQUIRE_BASE_URL"] = "http://127.0.0.1:8080"

Save server-side log for debugging

server = subprocess.Popen(

[sys.executable, "tests/mock_kaggle_bottle.py"],

)

time.sleep(0.5) # 500 ms delay to allow the service to open a socket

yield server

server.kill()

The portion of the function before the yield statement is used during the scenario setup.

This will add value to the context that will be used to start the application under test. After

the yielded value has been consumed by the Behave runner, the scenario executes. When

the scenario is finished, one more value is requested from this generator; this request will

execute the statements after the yield statement. There’s no subsequent yield statement;

the StopIteration is the expected behavior of this function.

This kaggle_server() function must be used in a scenario when the @fixture tag is

present. The following function will do this:

from behave import use_fixture

from behave.runner import Context

98 Data Acquisition Features: Web APIs and Scraping

def before_tag(context: Context, tag: str) -> None:

if tag == "fixture.kaggle_server":

This will invoke the definition generator.

It consumes a value before and after the tagged scenario.

use_fixture(kaggle_server, context)

When the @fixture.kaggle_server tag is present, this function will inject the

kaggle_server() generator function into the overall flow of processing by the runner. The

runner will make appropriate requests of the kaggle_server() generator function to start

and stop the service.

These two functions are placed into the environment.py module where the behave tool

can find and use them.

Now that we have an acceptance test suite, we can turn to implement the required features

of the acquire application.

Kaggle access module and refactored main application

The goal, of course, is two-fold:

• Add a kaggle_client.py module. The unit tests will confirm this works.

• Rewrite the acquire.py module from Chapter 3, Project 1.1: Data Acquisition Base

Application to add the download feature.

The Approach section provides some design guidance for building the application.

Additionally, the previous chapter, Chapter 3, Project 1.1: Data Acquisition Base Application

provides the baseline application into which the new acquisition features should be added.

The acceptance tests will confirm the application works correctly.

Given this extended capability, you are encouraged to hunt for additional, interesting data

sets. The new application can be revised and extended to acquire new, interesting data in

other formats.

Now that we have data acquired from the web in a tidy, easy-to-use format, we can look at

Chapter 4 99

acquiring data that isn’t quite so tidy. In the next section, we’ll look at how to scrape data

out of an HTML page.

Project 1.3: Scrape data from a web page
In some cases, we want data that’s provided by a website that doesn’t have a tidy API. The

data is available via an HTML page. This means the data is surrounded by HTML markup,

text that describes the semantics or structure of the data.

We’ll start with a description of the application, and then move on to talk about the

architectural approach. This will be followed with a detailed list of deliverables.

Description
We’ll continue to describe projects designed to acquire some data for further analysis.

In this case, we’ll look at data that is available from a website, but is embedded into the

surrounding HTML markup. We’ll continue to focus on Anscombe’s Quartet data set

because it’s small and diagnosing problems is relatively simple. A larger data set introduces

additional problems with time and storage.

Parts of this application are an extension to the project in Project 1.2: Acquire data from

a web service. The essential behavior of this application will be similar to the previous

project. This project will use a CLI application to grab data from a source.

The User Experience (UX) will also be a command-line application with options to fine-tune

the data being gathered. Our expected command line should like something like the

following:

% python src/acquire.py -o quartet --page
"https://en.wikipedia.org/wiki/Anscombe's_quartet" --caption
"Anscombe's quartet"

The -o quartet argument specifies a directory into which four results are written. These

will have names like quartet/series_1.json.

100 Data Acquisition Features: Web APIs and Scraping

The table is buried in the HTML of the URL given by the --page argument. Within this

HTML, the target table has a unique <caption> tag:

<caption>Anscombe's quartet</caption>.

About the source data
This data embedded in HTML markup is generally marked up with the <table> tag. A

table will often have the following markup:

<table class="wikitable" style="text-align: center; margin-left:auto;

margin-right:auto;" border="1">

<caption>Anscombe's quartet</caption>

<tbody>

<tr>

<th colspan="2">I</th>

etc.

</tr>

<tr>

<td><i>x</i></td>

<td><i>y</i></td>

etc.

</tr>

<tr>

<td>10.0</td>

<td>8.04</td>

etc.

</tr>

</tbody>

</table>

In this example, the overall <table> tag will have two child tags, a <caption> and a

<tbody>.

Chapter 4 101

The table’s body, within <tbody>, has a number of rows wrapped in <tr> tags. The first

row has headings in <th> tags. The second row also has headings, but they use the <td>

tags. The remaining rows have data, also in <td> tags.

This structure has a great deal of regularity, making it possible to use a parser like Beautiful

Soup to locate the content.

The output will match the extraction processing done for the previous projects. See

Chapter 3, Project 1.1: Data Acquisition Base Application, for the essence of the data

acquisition application.

This section has looked at the input and processing for this application. The output will

match earlier projects. In the next section, we’ll look at the overall architecture of the

software.

Approach
We’ll take some guidance from the C4 model (https://c4model.com) when looking at our

approach:

• Context: For this project, a context diagram would show a user extracting data from

a source. You may find it helpful to draw this diagram.

• Containers: One container is the user’s personal computer. The other container is

the Wikipedia website, which provides the data.

• Components: We’ll address the components below.

• Code: We’ll touch on this to provide some suggested directions.

It’s important to consider this application as an extension to the project in Chapter 3, Project

1.1: Data Acquisition Base Application. The base level of architectural design is provided in

that chapter.

In this project, we’ll be adding a new html_extract module to capture and parse the data.

The overall application in the acquire module will change to use the new features. The

other modules should remain unchanged.

https://c4model.com

102 Data Acquisition Features: Web APIs and Scraping

A new architecture that handles the download of HTML data and the extraction of a table

from the source data is shown in Figure 4.4.

model

html_extract

bs4

acquire

kaggle_client csv_extract

C «dataclass»
XYPair

x: str
y: str

C Download

get_page(url)
find_table_caption(caption)
table_row_data_iter(tag)

C PairBuilder

from_html_tr(Tag) ->XYPair

C BeautifulSoup

F main F get_options

C RestAccess C Extract

uses

evaluates

uses

uses uses

creates

Figure 4.4: Revised Component Design

This diagram suggested classes for the new html_extract module. The Download class

uses urllib.request to open the given URL and read the contents. It also uses the bs4

module (Beautiful Soup) to parse the HTML, locate the table with the desired caption,

and extract the body of the table.

The PairBuilder class hierarchy has four implementations, each appropriate for one of the

four data series. Looking back at Chapter 3, Project 1.1: Data Acquisition Base Application,

there’s a profound difference between the table of data shown on the Wikipedia page,

and the CSV source file shown in that earlier project. This difference in data organization

requires slightly different pair-building functions.

Making an HTML request with urllib.request

The process of reading a web page is directly supported by the urllib.request module.

The url_open() function will perform a GET request for a given URL. The return value is

a file-like object — with a read() method — that can be used to acquire the content.

Chapter 4 103

This is considerably simpler than making a general RESTful API request where there are a

variety of pieces of information to be uploaded and a variety of kinds of results that might

be downloaded. When working with common GET requests, this standard library module

handles the ordinary processing elegantly.

A suggested design for the first step in the operation is the following function:

from urllib.request import urlopen

from bs4 import BeautifulSoup, Tag

def get_page(url: str) -> BeautifulSoup:

return BeautifulSoup(

urlopen(url), "html.parser"

)

The urlopen() function will open the URL as a file-like object, and provide that file to the

BeautifulSoup class to parse the resulting HTML.

A try: statement to handle potential problems is not shown. There are innumerable

potential issues when reaching out to a web service, and trying to parse the resulting

content. You are encouraged to add some simple error reporting.

In the next section, we’ll look at extracting the relevant table from the parsed HTML.

HTML scraping and Beautiful Soup

The Beautiful Soup data structure has a find_all() method to traverse the structure. This

will look for tags with specific kinds of properties. This can examine the tag, the attributes,

and even the text content of the tag.

See https://www.crummy.com/software/BeautifulSoup/bs4/doc/#find-all.

In this case, we need to find a <table> tag with a caption tag embedded within it. That

caption tag must have the desired text. This search leads to a bit more complex investigation

of the structure. The following function can locate the desired table.

def find_table_caption(

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#find-all

104 Data Acquisition Features: Web APIs and Scraping

soup: BeautifulSoup,

caption_text: str = "Anscombe's quartet"

) -> Tag:

for table in soup.find_all('table'):

if table.caption:

if table.caption.text.strip() == caption_text.strip():

return table

raise RuntimeError(f"<table> with caption {caption_text!r} not found")

Some of the tables lack captions. This means the expression table.caption.text won’t

work for string comparison because it may have a None value for table.caption. This leads

to a nested cascade of if statements to be sure there’s a <caption> tag before checking the

text value of the tag.

The strip() functions are used to remove leading and trailing whitespace from the text

because blocks of text in HTML can be surrounded by whitespace that’s not displayed,

making it surprising when it surfaces as part of the content. Stripping the leading and

trailing whitespace makes it easier to match.

The rest of the processing is left for you to design. This processing involves finding all of

the <tr> tags, representing rows of the table. Within each row (except the first) there will

be a sequence of <td> tags representing the cell values within the row.

Once the text has been extracted, it’s very similar to the results from a csv.reader.

After considering the technical approach, it’s time to look at the deliverables for this project.

Deliverables
This project has the following deliverables:

• Documentation in the docs folder.

• Acceptance tests in the tests/features and tests/steps folders.

• Unit tests for the application modules in the tests folder.

Chapter 4 105

• Mock HTML pages for unit testing will be part of the unit tests.

• Application to acquire data from an HTML page.

We’ll look at a few of these deliverables in a little more detail.

Unit test for the html_extract module

The urlopen() function supports the http: and https: schemes. It also supports the file:

protocol. This allows a test case to use a URL of the form file:///path/to/a/file.html

to read a local HTML file. This facilitates testing by avoiding the complications of accessing

data over the internet.

For testing, it makes sense to prepare files with the expected HTML structure, as well as

invalid structures. With some local files as examples, a developer can run test cases quickly.

Generally, it’s considered a best practice to mock the BeautifulSoup class.

A fixture would respond to the various find_all() requests with mock tag

objects.

When working with HTML, however, it seems better to provide mock HTML.

The wide variety of HTML seen in the wild suggests that time spent with

real HTML is immensely valuable for debugging.

Creating BeautifulSoup objects means the unit testing is more like

integration testing. The benefits of being able to test a wide variety of

odd and unusual HTML seems to be more valuable than the cost of breaking

the ideal context for a unit test.

Having example HTML files plays well with the way pytest fixtures work. A fixture can

create a file and return the path to the file in the form of a URL. After the test, the fixture

can remove the file.

A fixture with a test HTML page might look like this:

from pytest import fixture

106 Data Acquisition Features: Web APIs and Scraping

from textwrap import dedent

@fixture

def example_1(tmp_path):

html_page = tmp_path / "works.html"

html_page.write_text(

dedent("""\

<!DOCTYPE html>

<html>

etc.

</html>

"""

)

)

yield f"file://{str(html_page)}"

html_page.unlink()

This fixture uses the tmp_path fixture to provide access to a temporary directory used only

for this test. The file, works.html, is created, and filled with an HTML page. The test case

should include multiple <table> tags, only one of which was the expected <caption> tag.

The dedent() function is a handy way to provide a long string that matches the prevailing

Python indent. The function removes the indenting whitespace from each line; the resulting

text object is not indented.

The return value from this fixture is a URL that can be used by the urlopen() function to

open and read this file. After the test is completed, the final step (after the yield statement)

will remove the file.

A test case might look something like the following:

def test_steps(example_1):

soup = html_extract.get_page(example_1)

Chapter 4 107

table_tag = html_extract.find_table_caption(soup, "Anscombe's quartet")

rows = list(html_extract.table_row_data_iter(table_tag))

assert rows == [

[],

['Keep this', 'Data'],

['And this', 'Data'],

]

The test case uses the example_1 fixture to create a file and return a URL referring to the file.

The URL is provided to a function being tested. The functions within the html_extract

module are used to parse the HTML, locate the target table, and extract the individual rows.

The return value tells us the functions work properly together to locate and extract data.

You are encouraged to work out the necessary HTML for good — and bad — examples.

Acceptance tests

As noted above in Unit test for the html_extract module, the acceptance test case HTML

pages can be local files. A scenario can provide a local file:// URL to the application and

confirm the output includes properly parsed data.

The Gherkin language permits including large blocks of text as part of a scenario.

We can imagine writing the following kinds of scenarios in a feature file:

Scenario: Finds captioned table and extracts data

Given an HTML page "example_1.html"

"""

<!DOCTYPE html>

<html>

etc. with multiple tables.

</html>

"""

When we run the html extract command

108 Data Acquisition Features: Web APIs and Scraping

Then log has INFO line with "header: ['Keep this', 'Data']"

And log has INFO line with "count: 1"

The HTML extract command is quite long. The content is available as the context.text

parameter of the step definition function. Here’s what the step definition for this given

step looks like:

from textwrap import dedent

@given(u'an HTML page "{filename}"')

def step_impl(context, filename):

context.path = Path(filename)

context.path.write_text(dedent(context.text))

context.add_cleanup(context.path.unlink)

The step definition puts the path into the context and then writes the HTML page to the

given path. The dedent() function removes any leading spaces that may have been left

in place by the behave tool. Since the path information is available in the context, it can

be used by the When step. The context.add_cleanup() function will add a function that

can be used to clean up the file when the scenario is finished. An alternative is to use the

environment module’s after_scenario() function to clean up.

This scenario requires an actual path name for the supplied HTML page to be injected

into the text. For this to work out well, the step definition needs to build a command from

pieces. Here’s one approach:

@when(u'we run the html extract command')

def step_impl(context):

command = [

'python', 'src/acquire.py',

'-o', 'quartet',

'--page', '$URL',

'--caption', "Anscombe's quartet"

Chapter 4 109

]

url = f"file://{str(context.path.absolute())}"

command[command.index('$URL')] = url

print(shlex.join(command))

etc. with subprocess.run() to execute the command

In this example, the command is broken down into individual parameter strings. One of

the strings must be replaced with the actual file name. This works out nicely because the

subprocess.run() function works well with a parsed shell command. The shlex.split()

function can be used to decompose a line, honoring the complex quoting rules of the shell,

into individual parameter strings.

Now that we have an acceptance test suite, we may find the acquire application doesn’t

pass all of the tests. It’s helpful to define done via an acceptance test and then develop the

required HTML extract module and refactor the main application. We’ll look at these two

components next.

HTML extract module and refactored main application

The goal for this project is two-fold:

• Add an html_extract.py module. The unit tests will confirm this module works.

• Rewrite the acquire.py module from Chapter 3, Project 1.1: Data Acquisition Base

Application to add the HTML download and extract the feature.

The Approach section provides some design guidance for building the application.

Additionally, the previous chapter, Chapter 3, Project 1.1: Data Acquisition Base Application,

provides the baseline application into which the new acquisition features should be added.

The acceptance tests will confirm the application works correctly to gather data from the

Kaggle API.

Given this extended capability, you can hunt for data sets that are presented in web pages.

Because of the consistency of Wikipedia, it is a good source of data. Many other sites

provide relatively consistent HTML tables with interesting data.

110 Data Acquisition Features: Web APIs and Scraping

In these two projects, we’ve extended our ability to acquire data from a wide variety of

sources.

Summary
This chapter’s projects have shown examples of the following features of a data acquisition

application:

• Web API integration via the requests package. We’ve used the Kaggle API as an

example of a RESTful API that provides data for download and analysis.

• Parsing an HTML web page using the Beautiful Soup package.

• Adding features to an existing application and extending the test suite to cover these

new alternative data sources.

A challenging part of both of these projects is creating a suite of acceptance tests to describe

the proper behavior. Pragmatically, a program without automated tests cannot be trusted.

The tests are every bit as important as the code they’re exercising.

In some enterprises, the definition of done is breezy and informal. There may be a

presentation or an internal memo or a whitepaper that describes the desired software.

Formalizing these concepts into tangible test cases is often a significant effort. Achieving

agreements can become a source of turmoil as stakeholders slowly refine their understanding

of how the software will behave.

Creating mock web services is fraught with difficulty. Some API’s permit downloading an

openapi.json file with the definition of the API complete with examples. Having concrete

examples, provided by the host of the API, makes it much easier to create a mock service.

A mock server can load the JSON specification, navigate to the example, and provide the

official response.

Lacking an OpenAPI specification with examples, developers need to write spike solutions

that download detailed responses. These responses can then be used to build mock objects.

You are strongly encouraged to write side-bar applications to explore the Kaggle API to

Chapter 4 111

see how it works.

In the next chapter, we’ll continue this data extraction journey to include extracting data

from SQL databases. Once we’ve acquired data, we’ll want to inspect it. Chapter 6, Project

2.1: Data Inspection Notebook, will introduce an inspection step.

Extras
Here are some ideas for you to add to these projects.

Locate more JSON-format data
A search of Kaggle will turn up some other interesting data sets in JSON format.

• https://www.kaggle.com/datasets/rtatman/iris-dataset-json-version: This

data set is famous and available in a number of distinct formats.

• https://www.kaggle.com/datasets/conoor/stack-overflow-tags-usage

• https://www.kaggle.com/datasets/queyrusi/the-warship-dataset

One of these is a JSON download. The other two are ZIP archives that contain JSON-format

content.

This will require revising the application’s architecture to extract the JSON format data

instead of CSV format data.

An interesting complication here is the distinction between CSV data and JSON data:

• CSV data is pure text, and later conversions are required to make useful Python

objects.

• Some JSON data is converted to Python objects by the parser. Some data (like

datestamps) will be left as text.

At acquisition time, this doesn’t have a significant impact. However, when we get to

Chapter 9, Project 3.1: Data Cleaning Base Application, we’ll have to account for data in a

text-only form distinct from data with some conversions applied.

https://www.kaggle.com/datasets/rtatman/iris-dataset-json-version
https://www.kaggle.com/datasets/conoor/stack-overflow-tags-usage
https://www.kaggle.com/datasets/queyrusi/the-warship-dataset

112 Data Acquisition Features: Web APIs and Scraping

The Iris data set is quite famous. You can expand on the designs in this chapter to acquire

Iris data from a variety of sources. The following steps could be followed:

1. Start with the Kaggle data set in JSON format. Build the needed model, and extract

modules to work with this format.

2. Locate other versions of this data set in other formats. Build the needed extract

modules to work with these alternative formats.

Once a core acquisition project is complete, you can leverage this other famous data set as

an implementation choice for later projects.

Other data sets to extract
See the CO2 PPM — Trends in Atmospheric Carbon Dioxide data set, available at

https://datahub.io/core/co2-ppm, for some data that is somewhat larger. This page

has a link to an HTML table with the data.

See https://datahub.io/core/co2-ppm/r/0.html for a page with the complete data set

as an HTML table. This data set is larger and more complicated than Anscombe’s Quartet.

In Chapter 6, Project 2.1: Data Inspection Notebook, we’ll address some of the special cases

in this data set.

Handling schema variations
The two projects in this chapter each reflect a distinct schema for the source data.

One CSV format can be depicted via an Entity-Relationship Diagram (ERD), shown in

Figure 4.5.

https://datahub.io/core/co2-ppm
https://datahub.io/core/co2-ppm/r/0.html

Chapter 4 113

E Series

x_123 : float
y1 : float
y2 : float
y3 : float
x_4 : float
y4 : float

Figure 4.5: Source entity-relationship diagram

One column, x_123, is the x-value of three distinct series. Another column, x_4, is the

x-value for one series.

A depiction of the HTML format as an ERD is shown in Figure 4.6.

E Series1

x : float
y : float

E Series2

x : float
y : float

E Series3

x : float
y : float

E Series4

x : float
y : float

Figure 4.6: Notional entity-relationship diagram

The x-values are repeated as needed.

This difference requires several distinct approaches to extracting the source data.

In these projects, we’ve implemented this distinction as distinct subclasses of a PairBuilder

superclass.

114 Data Acquisition Features: Web APIs and Scraping

An alternative design is to create distinct functions with a common type signature:

PairBuilder: TypeVar = Callable[[list[str]], XYPair]

Making each conversion a function eliminates the overhead of the class definition.

This rewrite can be a large simplification. It will not change any acceptance tests. It will,

however, require numerous changes to unit tests.

The functional design offers some simplification over class-based design. You are encouraged

to perform the functional redesign of the suggestions in this book.

CLI enhancements
The CLI for these two projects is left wide open, permitting a great deal of design flexibility

and alternatives. Because the CLI is part of externally visible behavior, it becomes necessary

to write acceptance tests for the various CLI options and arguments.

As noted in Additional acceptance scenarios, there are a number of acceptance test scenarios

that are not on the “happy path” where the application works. These additional scenarios

serve to catalog a number of erroneous uses of the application.

This becomes more important as more features are added and the CLI becomes more

complicated. You are encouraged to write acceptance tests for invalid CLI use.

Logging
Logging is an important part of data acquisition. There are a number of potential problems

exposed by these two projects. A website might be unresponsive, or the API may have

changed. The HTML may have been reformatted in some subtle way.

A debug or verbose mode should be available to expose the interactions with external

services to be sure of the HTTP status codes and headers.

Additionally, count values should be displayed to summarize the bytes downloaded, the

lines of text examined, and the number of XYPair objects created. The idea is to characterize

the inputs, the various processing steps, and the outputs.

Chapter 4 115

These counts are essential for confirming that data is processed and filtered correctly.

They’re an important tool for making parts of the processing more observable. A user

wants to confirm that all of the downloaded data is either part of the results or filtered and

discarded for a good reason.

You are encouraged to include counts for input, processing, and output in the log.

5
Data Acquisition Features:
SQL Database

In this chapter, you will be guided through two projects that demonstrate how to work

with SQL databases as a source of data for analysis. This will build on the foundational

application built in the previous two chapters.

This chapter will focus on SQL extracts. Since enterprise SQL databases tend to be very

private, we’ll guide the reader through creating an SQLite database first. This database will

be a stand-in for a private enterprise database. Once there’s a database available, we will

look at extracting data from the database.

This chapter’s projects cover the following essential skills:

• Building SQL databases.

• Extracting data from SQL databases.

118 Data Acquisition Features: SQL Database

The first project will build a SQL database for use by the second project.

In an enterprise environment, the source databases will already exist.

On our own personal computers, these databases don’t exist. For this reason,

we’ll build a database in the first project, and extract from the database in

the second project.

We’ll start by looking at getting data into a SQL database. This will be a very small

and simple database; the project will steer clear of the numerous sophisticated design

complications for SQL data.

The second project will use SQL queries to extract data from the database. The objective is

to produce data that is consistent with the projects in the previous chapters.

Project 1.4: A local SQL database
We’ll often need data stored in a database that’s accessed via the SQL query language. Use a

search string like “SQL is the lingua franca” to find numerous articles offering more insight

into the ubiquity of SQL. This seems to be one of the primary ways to acquire enterprise

data for further analysis.

In the previous chapter, Chapter 4, Data Acquisition Features: Web APIs and Scraping, the

projects acquired data from publicly available APIs and web pages. There aren’t many

publicly available SQL data sources. In many cases, there are dumps (or exports) of SQLite

databases that can be used to build a local copy of the database. Direct access to a remote

SQL database is not widely available. Rather than try to find access to a remote SQL

database, it’s simpler to create a local SQL database. The SQLite database is provided with

Python as part of the standard library, making it an easy choice.

You may want to examine other databases and compare their features with SQLite. While

some databases offer numerous capabilities, doing SQL extracts rarely seems to rely on

anything more sophisticated than a basic SELECT statement. Using another database may

Chapter 5 119

require some changes to reflect that database’s connections and SQL statement execution.

For the most part, the DB-API interface in Python is widely used; there may be unique

features for databases other than SQLite.

We’ll start with a project to populate the database. Once a database is available, you can

then move on to a more interesting project to extract the data using SQL statements.

Description
The first project for this chapter will prepare a SQL database with data to analyze. This is a

necessary preparation step for readers working outside an enterprise environment with

accessible SQL databases.

One of the most fun small data sets to work with is Anscombe’s Quartet.

https://www.kaggle.com/datasets/carlmcbrideellis/data-anscombes-quartet

The URL given above presents a page with information about the CSV format file. Clicking

the Download button will download the small file of data to your local computer.

The data is available in this book’s GitHub repository’s data folder, also.

In order to load a database, the first step is designing the database. We’ll start with a look

at some table definitions.

Database design

A SQL database is organized as tables of data. Each table has a fixed set of columns, defined

as part of the overall database schema. A table can have an indefinite number of rows of

data.

For more information on SQL databases, see https://www.packtpub.com/product/learn

-sql-database-programming/9781838984762 and https://courses.packtpub.com/cou

rses/sql.

Anscombe’s Quartet consists of four series of (𝑥, 𝑦) pairs. In one commonly used source

file, three of the series share common 𝑥 values, whereas the fourth series has distinct 𝑥

values.

https://www.kaggle.com/datasets/carlmcbrideellis/data-anscombes-quartet
https://www.packtpub.com/product/learn-sql-database-programming/9781838984762
https://www.packtpub.com/product/learn-sql-database-programming/9781838984762
https://courses.packtpub.com/courses/sql
https://courses.packtpub.com/courses/sql

120 Data Acquisition Features: SQL Database

A relational database often decomposes complicated entities into a collection of simpler

entities. The objective is to minimize the repetitions of association types. The Anscombe’s

Quartet information has four distinct series of data values, which can be represented as

the following two types of entities:

• The series is composed of a number of individual values. A table named series_value

can store the individual values that are part of a series.

• A separate entity has identifying information for the series as a whole. A table named

sources can store identifying information.

This design requires the introduction of key values to uniquely identify the series, and

connect each value of a series with the summary information for the series.

For Anscombe’s Quartet data, the summary information for a series is little

more than a name.

This design pattern of an overall summary and supporting details is so

common that it is essential for this project to reflect that common pattern.

See Figure 5.1 for an ERD that shows the two tables that implement these entities and their

relationships.

C SERIES_SAMPLE

series_id: integer
sequence: integer
x: text
y: text

C SERIES

series_id: integer
name: text

contains

1

m

Figure 5.1: The Database Schema

Chapter 5 121

This project will create a small application to build this schema of two tables. This

application will can then load data into these tables.

Data loading

The process of loading data involves three separate operations:

• Reading the source data from a CSV (or other format) file.

• Executing SQL INSERT statements to create rows in tables.

• Executing a COMMIT to finalize the transaction and write data to the underlying

database files.

Prior to any of these steps, the schema must be defined using CREATE TABLE statements.

In a practical application, it’s also common to offer a composite operation to drop the

tables, recreate the schema, and then load the data. The rebuilding often happens when

exploring or experimenting with database designs. Many times, an initial design will prove

unsatisfactory, and changes are needed. Additionally, the idea of building (and rebuilding)

a small database will also be part of the acceptance test for any data acquisition application.

In the next section, we’ll look at how to create a SQL database that can serve as a surrogate

for a production database in a large enterprise.

Approach
There are two general approaches to working with SQL databases for this kind of test or

demonstration application:

• Create a small application to build and populate a database.

• Create a SQL script via text formatting and run this through the database’s CLI

application. See https://sqlite.org/cli.html.

The small application will make use of the database client connection to execute SQL

statements. In this case, a single, generic INSERT statement template with placeholders

can be used. The client connection can provide values for the placeholders. While the

https://sqlite.org/cli.html

122 Data Acquisition Features: SQL Database

application isn’t complex, it will require unit and acceptance test cases.

The SQL script alternative uses a small application to transform data rows into valid INSERT

statements. In many cases, a text editor search-and-replace can transform data text into

INSERT statements. For more complex cases, Python f-strings can be used. The f-string

might look like the following:

print(

f"INSERT INTO SSAMPLES(SERIES, SEQUENCE, X, Y)"

f"VALUES({series}, {sequence}, '{x}', '{y}')"

)

This is often successful but suffers from a potentially severe problem: a SQL injection exploit.

The SQL injection exploit works by including an end-of-string-literal apostrophe ' in a

data value. This can lead to an invalid SQL statement. In extreme cases, it can allow

injecting additional SQL statements to transform the INSERT statement into a script. For

more information, see https://owasp.org/www-community/attacks/SQL_Injection.

Also, see https://xkcd.com/327/ for another example of a SQL injection exploit.

While SQL injection can be used maliciously, it can also be a distressingly common accident.

If a text data value happens to have ' in it, then this can create a statement in the SQL

script file that has invalid syntax. SQL cleansing only defers the problem to the potentially

complicated SQL cleansing function.

It’s simpler to avoid building SQL text in the first place. A small application can be free

from the complications of building SQL text.

We’ll start by looking at the data definition for this small schema. Then we’ll look at the

data manipulation statements. This will set the stage for designing the small application to

build the schema and load the data.

SQL Data Definitions

The essential data definition in SQL is a table with a number of columns (also called

attributes). This is defined by a CREATE TABLE statement. The list of columns is provided

https://owasp.org/www-community/attacks/SQL_Injection
https://xkcd.com/327/

Chapter 5 123

in this statement. In addition to the columns, the language permits table constraints to

further refine how a table may be used. For our purposes, the two tables can be defined as

follows:

CREATE TABLE IF NOT EXISTS series(

series_id INTEGER,

name TEXT,

PRIMARY KEY (series_id)

);

CREATE TABLE IF NOT EXISTS series_sample(

series_id INTEGER,

sequence INTEGER,

x TEXT,

y TEXT,

PRIMARY KEY (series_id, sequence),

FOREIGN KEY (series_id) REFERENCES series(series_id)

);

To remove a schema, the DROP TABLE IF EXISTS series_sample and DROP TABLE

IF EXISTS series statements will do what’s needed. Because of the foreign key reference,

some databases make it necessary to remove all of the related series_sample rows before

a series row can be removed.

The IF EXISTS and IF NOT EXISTS clauses are handy when debugging. We may, for

example, change the SQL and introduce a syntax error into one of the CREATE TABLE

statements. This can leave an incomplete schema. After fixing the problem, simply

rerunning the entire sequence of CREATE TABLE statements will create only the tables

that were missing.

124 Data Acquisition Features: SQL Database

An essential feature of this example SQL data model is a simplification of the data types

involved. Two columns of data in the series_sample table are both defined as TEXT. This

is a rarity; most SQL databases will use one of the available numeric types.

While SQL data has a variety of useful types, the raw data from other applications, however,

isn’t numeric. CSV files and HTML pages only provide text. For this reason, the results

from this application need to be text, also. Once the tables are defined, an application can

insert rows.

SQL Data Manipulations

New rows are created with the INSERT statement. While SQLite allows some details to be

omitted, we’ll stick with a slightly wordier but more explicit statement. Rows are created

in the two tables as follows:

INSERT INTO series(series_id, name) VALUES(:series_id, :name)

INSERT INTO series_sample(series_id, sequence, x, y)

VALUES(:series_id, :sequence, :x, :y)

The identifiers with a colon prefix, :x, :y, :series_id, etc., are parameters that will be

replaced when the statement is executed. Since these replacements don’t rely on SQL text

rules — like the use of apostrophes to end a string — any value can be used.

It’s rare to need to delete rows from these tables. It’s easier (and sometimes faster) to drop

and recreate the tables when replacing the data.

SQL Execution

Python’s SQLite interface is the sqlite3 module. This conforms to the PEP-249 standard

(https://peps.python.org/pep-0249/) for database access. An application will create a

database connection in general. It will use the connection to create a cursor, which can

query or update the database.

The connection is made with a connection string. For many databases, the connection

string will include the server hosting the database, and the database name; it may also

https://peps.python.org/pep-0249/

Chapter 5 125

include security credentials or other options. For SQLite, the connection string can be a

complete URI with the form file:filename.db. This has a scheme, file: and a path to

the database file.

It’s not required by this application, but a common practice is to sequester the SQL

statements into a configuration file. Using a TOML format can be a handy way to separate

the processing from the SQL statements that implement the processing. This separation

permits small SQL changes without having to change the source files. For compiled

languages, this is essential. For Python, it’s a helpful way to make SQL easier to find when

making database changes.

A function to create the schema might look like this:

CREATE_SERIES = """

CREATE TABLE IF NOT EXISTS series(

-- rest of the SQL shown above...

"""

CREATE_VALUES = """

CREATE TABLE IF NOT EXISTS series_sample(

-- rest of the SQL shown above...

"""

CREATE_SCHEMA = [

CREATE_SERIES,

CREATE_VALUES

]

def execute_statements(

connection: sqlite3.Connection,

statements: list[str]

) -> None:

126 Data Acquisition Features: SQL Database

for statement in statements:

connection.execute(statement)

connection.commit()

The CREATE_SCHEMA is the sequence of statements required to build the schema. A similar

sequence of statements can be defined to drop the schema. The two sequences can

be combined to drop and recreate the schema as part of ordinary database design and

experimentation.

A main program can create the database with code similar to the following:

with sqlite3.connect("file:example.db", uri=True) as connection:

schema_build_load(connection, config, data_path)

This requires a function, schema_build_load(), to drop and recreate the schema and then

load the individual rows of data.

We’ll turn to the next step, loading the data. This begins with loading the series definitions,

then follows this with populating the data values for each series.

Loading the SERIES table

The values in the SERIES table are essentially fixed. There are four rows to define the four

series.

Executing a SQL data manipulation statement requires two things: the statement and a

dictionary of values for the placeholders in the statement.

In the following code sample, we’ll define the statement, as well as four dictionaries with

values for placeholders:

INSERT_SERIES = """

INSERT INTO series(series_id, name)

VALUES(:series_id, :name)

"""

Chapter 5 127

SERIES_ROWS = [

{"series_id": 1, "name": "Series I"},

{"series_id": 2, "name": "Series II"},

{"series_id": 3, "name": "Series III"},

{"series_id": 4, "name": "Series IV"},

]

def load_series(connection: sqlite3.Connection) -> None:

for series in SERIES_ROWS:

connection.execute(INSERT_SERIES, series)

connection.commit()

The execute() method of a connection object is given the SQL statement with placeholders

and a dictionary of values to use for the placeholders. The SQL template and the values are

provided to the database to insert rows into the table.

For the individual data values, however, something more is required. In the next section,

we’ll look at a transformation from source CSV data into a dictionary of parameter values

for a SQL statement.

Loading the SERIES_VALUE table

It can help to refer back to the project in Chapter 3, Project 1.1: Data Acquisition Base

Application. In this chapter, we defined a dataclass for the (𝑥, 𝑦) pairs, and called it XYPair.

We also defined a class hierarchy of PairBuilder to create XYPair objects from the CSV

row objects.

It can be confusing to load data using application software that is suspiciously

similar to the software for extracting data.

This confusion often arises in cases like this where we’re forced to build a

demonstration database.

128 Data Acquisition Features: SQL Database

It can also arise in cases where a test database is needed for complex analytic

applications.

In most enterprise environments, the databases already exist and are already

full of data. Test databases are still needed to confirm that analytic applications

work.

The INSERT statement, shown above in SQL Data Manipulations has four placeholders.

This means a dictionary with four parameters is required by the execute() method of a

connection.

The dataclasses module includes a function, asdict(), to transform the object of the

XYPair into a dictionary. This has two of the parameters required, :x and :y.

We can use the | operator to merge two dictionaries together. One dictionary has the

essential attributes of the object, created by asdict(). The other dictionary is the SQL

overheads, including a value for :series_id, and a value for :sequence.

Here’s a fragment of code that shows how this might work:

for sequence, row in enumerate(reader):

for series_id, extractor in SERIES_BUILDERS:

param_values = (

asdict(extractor(row)) |

{"series_id": series_id, "sequence": sequence}

)

connection.execute(insert_values_SQL, param_values)

The reader object is a csv.DictReader for the source CSV data. The SERIES_BUILDERS

object is a sequence of two-tuples with the series number and a function (or callable object)

to extract the appropriate columns and build an instance of XYPair.

For completeness, here’s the value of the SERIES_BUILDERS object:

SERIES_BUILDERS = [

Chapter 5 129

(1, series_1),

(2, series_2),

(3, series_3),

(4, series_4)

]

In this case, individual functions have been defined to extract the required columns from

the CSV source dictionary and build an instance of XYPair.

The above code snippets need to be built as proper functions and used by an overall main()

function to drop the schema, build the schema, insert the values for the SERIES table, and

then insert the SERIES_VALUE rows.

A helpful final step is a query to confirm the data was loaded. Consider something like this:

SELECT s.name, COUNT(*)

FROM series s JOIN series_sample sv

ON s.series_id = sv.series_id

GROUP BY s.series_id

This should report the names of the four series and the presence of 11 rows of data.

Deliverables
There are two deliverables for this mini-project:

• A database for use in the next project. The primary goal is to create a database that

is a surrogate for a production database in use by an enterprise.

• An application that can build (and rebuild) this database. This secondary goal is the

means to achieve the primary goal.

Additionally, of course, unit tests are strongly encouraged. This works out well when the

application is designed for testability. This means two features are essential:

• The database connection object is created in the main() function.

130 Data Acquisition Features: SQL Database

• The connection object is passed as an argument value to all the other functions that

interact with the database.

Providing the connection as a parameter value makes it possible to test the various functions

isolated from the overhead of a database connection. The tests for each application function

that interacts with the database are given a mock connection object. Most mock connection

objects have a mock execute() method, which returns a mock cursor with no rows. For

queries, the mock execute() method can return mocked data rows, often something as

simple as a sentinel object.

After exercising a function, the mock execute() method can then be examined to be sure

the statement and parameters were provided to the database by the application.

A formal acceptance test for this kind of one-use-only application seems excessive. It seems

easier to run the application and look at the results with a SQL SELECT query. Since the

application drops and recreates the schema, it can be re-run until the results are acceptable.

Project 1.5: Acquire data from a SQL extract
At this point, you now have a useful SQL database with schema and data. The next step is

to write applications to extract data from this database into a useful format.

Description
It can be difficult to use an operational database for analytic processing. During normal

operations, locking is used to assure that database changes don’t conflict with or overwrite

each other. This locking can interfere with gathering data from the database for analytic

purposes.

There are a number of strategies for extracting data from an operational database. One

technique is to make a backup of the operational database and restore it into a temporary

clone database for analytic purposes. Another technique is to use any replication features

and do analytical work in the replicated database.

The strategy we’ll pursue here is the “table-scan” approach. It’s often possible to do rapid

Chapter 5 131

queries without taking out any database locks. The data may be inconsistent because of

in-process transactions taking place at the time the query was running. In most cases, the

number of inconsistent entities is a tiny fraction of the available data.

If it’s necessary to have a complete and consistent snapshot at a specific point in time, the

applications need to have been designed with this idea in mind. It can be very difficult to

establish the state of a busy database with updates being performed by poorly designed

applications. In some cases, the definitions of complete and consistent may be difficult to

articulate because the domain of state changes isn’t known in enough detail.

It can be frustrating to work with poorly designed databases.

It’s often important to educate potential users of analytic software on the

complexities of acquiring the data. This education needs to translate the

database complications into the effect on the decisions they’re trying to

make and the data that supports those decisions.

The User Experience (UX) will be a command-line application. Our expected command

line should look something like the following:

% python src/acquire.py -o quartet --schema extract.toml \
--db_uri file:example.db -u username

Enter your password:

The -o quartet argument specifies a directory into which four results are written. These

will have names like quartet/series_1.json.

The --schema extract.toml argument is the name of a file with the SQL statements that

form the basis for the database queries. These are kept separate from the application to

make it slightly easier to respond to the database structure changes without rewriting the

application program.

The --db_uri file:example.db argument provides the URI for the database. For SQLite,

132 Data Acquisition Features: SQL Database

the URIs have a scheme of file: and a path to the database file. For other database engines,

the URI may be more complicated.

The -u argument provides a username for connecting to the database. The password is

requested by an interactive prompt. This keeps the password hidden.

The UX shown above includes a username and password.

While it won’t actually be needed for SQLite, it will be needed for other

databases.

The Object-Relational Mapping (ORM) problem
A relational database design decomposes complicated data structures into a number of

simpler entity types, which are represented as tables. The process of decomposing a data

structure into entities is called normalization. Many database designs fit a pattern called

Third Normal Form; but there are additional normalization forms. Additionally, there are

compelling reasons to break some of the normalization rules to improve performance.

The relational normalization leads to a consistent representation of data via simple tables

and columns. Each column will have an atomic value that cannot be further decomposed.

Data of arbitrary complexity can be represented in related collections of flat, normalized

tables.

See https://www.packtpub.com/product/basic-relational-database-design-video

/9781838557201 for some more insights into the database design activity.

The process of retrieving a complex structure is done via a relational join operation. Rows

from different tables and joined into a result set from which Plain Old Python Objects can

be constructed. This join operation is part of the SELECT statement. It appears in the FROM

clause as a rule that states how to match rows in one table with rows from another table.

This distinction between relational design and object-oriented design is sometimes called

the Object-Relational Impedance Mismatch. For more background, see https://wiki.c2.

com/?ObjectRelationalImpedanceMismatch.

https://www.packtpub.com/product/basic-relational-database-design-video/9781838557201
https://www.packtpub.com/product/basic-relational-database-design-video/9781838557201
https://wiki.c2.com/?ObjectRelationalImpedanceMismatch
https://wiki.c2.com/?ObjectRelationalImpedanceMismatch

Chapter 5 133

One general approach to reading complex data from a relational database is to create to an

ORM layer. This layer uses SQL SELECT statements to extract data from multiple tables to

build a useful object instance. The ORM layer may use a separate package, or it may be part

of the application. While an ORM design can be designed poorly — i.e. the ORM-related

operations may be scattered around haphazardly — the layer is always present in any

application.

There are many packages in the Python Package Index(PyPI) that offer elegant,

generalized ORM solutions. The SQLAlchemy (https://www.sqlalchemy.org) package

is very popular. This provides a comprehensive approach to the entire suite of Create,

Retrieve, Update, and Delete(CRUD) operations.

There are two conditions that suggest creating the ORM layer manually:

• Read-only access to a database. A full ORM will include features for operations that

won’t be used.

• An oddly designed schema. It can sometimes be difficult to work out an ORM

definition for an existing schema with a design that doesn’t fit the ORM’s built-in

assumptions.

There’s a fine line between a bad database design and a confusing database design. A bad

design has quirky features that cannot be successfully described through an ORM layer.

A confusing design can be described, but it may require using “advanced” features of the

ORM package. In many cases, building the ORM mapping requires learning enough about

the ORM’s capabilities to see the difference between bad and confusing.

In many cases, a relational schema may involve a vast number of interrelated tables,

sometimes from a wide variety of subject areas. For example, there may be products and

a product catalog, sales records for products, and inventory information about products.

What is the proper boundary for a “product” class? Should it include everything in the

database related to a product? Or should it be limited by some bounded context or problem

domain?

https://www.sqlalchemy.org

134 Data Acquisition Features: SQL Database

Considerations of existing databases should lead to extensive conversations with users on

the problem domain and context. It also leads to further conversations with the owners

of the applications creating the data. All of the conversations are aimed at understanding

how a user’s concept may overlap with existing data sources.

Acquiring data from relational databases can be a challenge.

The relational normalization will lead to complications. The presence of

overlapping contexts can lead to further complications.

What seems to be helpful is providing a clear translation from the technical

world of the database to the kinds of information and decisions users want

to make.

About the source data
See Figure 5.2 for an ERD that shows the two tables that provide the desired entities:

C SERIES_SAMPLE

series_id: integer
sequence: integer
x: text
y: text

C SERIES

series_id: integer
name: text

contains

1

m

Figure 5.2: The Database Schema

In the design shown above, two tables decompose instances of the Series class. Here are

the Python class definitions:

from dataclasses import dataclass

Chapter 5 135

@dataclass

class SeriesSample:

x: str

y: str

@dataclass

class Series:

name: str

samples: list[SeriesSample]

The idea here is that a collection of SeriesSample objects are part of a single composite

Series object. The SeriesSample objects, separated from the containing Series, aren’t

useful in isolation. A number of SeriesSample instances depend on a Series object.

There are three general approaches to retrieving information from a normalized collection

of tables:

• A single SQL query. This forces the database server to join rows from multiple tables,

providing a single result set.

• A series of queries to extract data from separate tables and then do lookups using

Python dictionaries.

• Nested SQL queries. These use simpler SQL but can make for a large number of

database requests.

Neither alternative is a perfect solution in all cases. Many database designers will insist

that database join operations are magically the fastest. Some actual timing information

suggests that Python dictionary lookups can be much faster. Numerous factors impact

query performance and the prudent design is to implement alternatives and compare

performance.

136 Data Acquisition Features: SQL Database

The number of factors influencing performance is large. No simple “best

practice” exists. Only actual measurements can help to make a design

decision.

The join query to retrieve the data might look this:

SELECT s.name, sv.x, sv.y

FROM series s JOIN series_sample sv ON s.series_id = sv.series_id

Each distinct value of s.name will lead to the creation of a distinct Series object. Each row

of sv.x, and sv.y values becomes a SeriesSample instance within the Series object.

Building objects with two separate SELECT statements involves two simpler queries. Here’s

the “outer loop” query to get the individual series:

SELECT s.name, s.series_id

FROM series s

Here’s the “inner loop” query to get rows from a specific series:

SELECT sv.x, sv.y

FROM series_sample sv

WHERE sv.series_id = :series_id

ORDER BY sv.sequence

The second SELECT statement has a placeholder that depends on the results of the first

query. The application must provide this parameter when making a nested request for a

series-specific subset of rows from the series_sample table.

It’s also important to note the output is expected to be pure text, which will be saved in

ND JSON files. This means the sophisticated structure of the SQL database will be erased.

This will also make the interim results consistent with CSV files and HTML pages, where

the data is only text. The output should be similar to the output from the CSV extract in

Chapter 3, Project 1.1: Data Acquisition Base Application: a file of small JSON documents

Chapter 5 137

that have the keys "x" and "y". The goal is to strip away structure that may have been

imposed by the data persistence mechanism — a SQL database for this project. The data is

reduced into a common base of text.

In the next section, we’ll look more closely at the technical approach to acquiring data

from a SQL database.

Approach
We’ll take some guidance from the C4 model (https://c4model.com) when looking at our

approach.

• Context: For this project, a context diagram would show a user extracting data from

a source. The reader may find it helpful to draw this diagram.

• Containers: One container is the user’s personal computer. The other container is

the database server, which is running on the same computer.

• Components: We’ll address the components below.

• Code: We’ll touch on this to provide some suggested directions.

This project adds a new db_client module to extract the data from a database. The overall

application in the acquire module will change to make use of this new module. The other

modules — for the most part — will remain unchanged.

The component diagram in Figure 5.3 shows an approach to this project.

This diagram shows a revision to the underlying model. This diagram extends the model

module to make the distinction between the composite series object and the individual

samples within the overall series. It also renames the old XYPair class to a more informative

SeriesSample class.

This distinction between series has been an implicit part of the project in the previous

chapters. At this point, it seems potentially helpful to distinguish a collection of samples

from an individual sample.

https://c4model.com

138 Data Acquisition Features: SQL Database

model db_extract

acquire

kaggle_client csv_extract html_extract

C «dataclass»
Series

name: str

C «dataclass»
SeriesSample

x: str
y: str

C Extract

series_iter()
build_samples()

F main F get_options

C RestAccess C Extract C Download

1 *

evaluates

uses uses uses

uses

Figure 5.3: Component Diagram

Some readers may object to renaming a class partway through a series of closely related

projects. This kind of change is — in the author’s experience — very common. We start

with an understanding that evolves and grows the more we work the problem domain, the

users, and the technology. It’s very difficult to pick a great name for a concept. It’s more

prudent to fix names as we learn.

The new module will make use of two SQL queries to perform the extract. We’ll look at

these nested requests in the next section.

Extract from a SQL DB

The extraction from the database constructs a series of two parts. The first part is to get the

attributes of the Series class. The second part is to get each of the individual SeriesSample

instances.

Here’s the overview of a potential class design:

import model

import sqlite3

from typing import Any

from collections.abc import Iterator

Chapter 5 139

class Extract:

def build_samples(

self,

connection: sqlite3.Connection,

config: dict[str, Any],

name: str

) -> model.Series:

...

def series_iter(

self,

connection: sqlite3.Connection,

config: dict[str, Any]

) -> Iterator[model.Series]:

...

The series_iter() method iterates over the Series instances that can be created from

the database. The build_samples() method creates the individual samples that belong to

a series.

Here’s a first draft of an implementation of the build_samples() method:

def build_samples(

self,

connection: sqlite3.Connection,

config: dict[str, Any],

name: str

) -> list[model.SeriesSample]:

samples_cursor = connection.execute(

config['query']['samples'],

{"name": name}

140 Data Acquisition Features: SQL Database

)

samples = [

model.SeriesSample(

x=row[0],

y=row[1])

for row in samples_cursor

]

return samples

This method will extract the collection of samples for a series given the name. It relies

on the SQL query in the config object. The list of samples is built from the results of the

query using a list comprehension.

This first draft implementation has a dependency on the SeriesSample class

name. This is another SOLID design issue, similar to the one in Class design

of Chapter 3, Project 1.1: Data Acquisition Base Application.

A better implementation would replace this direct dependency with a

dependency that can be injected at runtime, permitting better isolation

for unit testing.

Here’s an implementation of the series_iter() method:

def series_iter(

self,

connection: sqlite3.Connection,

config: dict[str, Any]

) -> Iterator[model.Series]:

print(config['query']['names'])

names_cursor = connection.execute(config['query']['names'])

for row in names_cursor:

name=row[0]

Chapter 5 141

yield model.Series(

name=name,

samples=self.build_samples(connection, config, name)

)

This method will extract each of the series from the database. It, too, gets the SQL statements

from a configuration object, config. A configuration object is a dictionary of dictionaries.

This structure is common for TOML files.

The idea is to have a configuration file in TOML notation that looks like this:

[query]

summary = """

SELECT s.name, COUNT(*)

FROM series s JOIN series_sample sv ON s.series_id = sv.series_id

GROUP BY s.series_id

"""

detail = """

SELECT s.name, s.series_id, sv.sequence, sv.x, sv.y

FROM series s JOIN series_value sv ON s.series_id = sv.series_id

"""

names = """

SELECT s.name FROM series s

"""

samples = """

SELECT sv.x, sv.y

FROM series_sample sv JOIN series s ON s.series_id = sv.series_id

WHERE s.name = :name

ORDER BY sv.sequence

142 Data Acquisition Features: SQL Database

"""

This configuration has a [query] section, with several individual SQL statements used to

query the database. Because the SQL statements are often quite large, triple quotes are

used to delimit them.

In cases where the SQL statements are very large, it’s can seem helpful to put them in

separate files. This leads to a more complicated configuration with a number of files, each

with a separate SQL statement.

Before we look at the deliverables, we’ll talk a bit about why this data acquisition application

is different from the previous projects.

SQL-related processing distinct from CSV processing

It’s helpful to note some important distinctions between working with CSV data and

working with SQL data.

First, CSV data is always text. When working with a SQL database, the underlying data

often has a data type that maps pleasantly to a native Python type. SQL databases often have

a few numeric types, including integers and floating-point numbers. Some databases will

handle decimal values that map to Python’s decimal.Decimal class; this isn’t a universal

capability, and some databases force the application to convert between decimal.Decimal

and text to avoid the truncation problems inherent with floating-point values.

The second important distinction is the tempo of change. A SQL database schema tends to

change slowly, and change often involves a review of the impact of the change. In some

cases, CSV files are built by interactive spreadsheet software, and manual operations are

used to create and save the data. Unsurprisingly, the interactive use of spreadsheets leads

to small changes and inconsistencies over short periods of time. While some CSV files are

produced by highly automated tools, there may be less scrutiny applied to the order or

names of columns.

A third important distinction relates to the design of spreadsheets contrasted with the

design of a database. A relational database is often highly normalized; this is an attempt to

Chapter 5 143

avoid redundancy. Rather than repeat a group of related values, an entity is assigned to a

separate table with a primary key. References to the group of values via the primary key are

used to avoid repetition of the values themselves. It’s less common to apply normalization

rules to a spreadsheet.

Because spreadsheet data may not be fully normalized, extracting meaningful data from a

spreadsheet often becomes a rather complicated problem. This can be exacerbated when

spreadsheets are tweaked manually or the design of the spreadsheet changes suddenly. To

reflect this, the designs in this book suggest using a hierarchy of classes — or collection

of related functions — to build a useful Python object from a spreadsheet row. It is often

necessary to keep a large pool of builders available to handle variant spreadsheet data as

part of historical analysis.

The designs shown earlier had a PairBuilder subclass to create individual sample objects.

These designs used an Extract class to manage the overall construction of samples from

the source file. This provided flexibility to handle spreadsheet data.

A database extract is somewhat less likely to need a flexible hierarchy of objects to create

useful Python objects. Instead, the needed flexibility is often implemented by changing

SQL statements to reflect schema changes or a deeper understanding of the available data.

For this reason, we encourage the use of a TOML-format file to keep the SQL statements,

permitting some changes without having to add more subclasses to the Python application.

The TOML-format configuration files can have version numbers in the file name (and in

the comments) to make it clear which database schema they are designed against.

Now that we have a design approach, it’s important to make sure we have a list of

deliverables that serve as a definition of “Done.”

Deliverables
This project has the following deliverables:

• Documentation in the docs folder.

• Acceptance tests in the tests/features and tests/steps folders.

144 Data Acquisition Features: SQL Database

• The acceptance tests will involve creating and destroying example databases as test

fixtures.

• Unit tests for application modules in the tests folder.

• Mock objects for the database connection will be part of the unit tests.

• Application to acquire data from a SQL database.

We’ll look at a few of these deliverables in a little more detail.

Mock database connection and cursor objects for testing

For the data acquisition application, it’s essential to provide a mock connection object to

expose the SQL and the parameters that are being provided to the database. This mock

object can also provide a mock cursor as a query result.

As noted earlier in Deliverables, this means the connection object should be created only

in the main() function. It also means the connection object should be a parameter to any

other functions or methods that perform database operations. If the connection object is

referenced consistently, it becomes easier to test by providing a mock connection object.

We’ll look at this in two parts: first, the conceptual Given and When steps; after that, we’ll

look at the Then steps. This is sometimes called “arrange-act-assert”. Here’s the start of

the PyTest test case:

import sqlite3

from typing import Any, cast

from unittest.mock import Mock, call, sentinel

from pytest import fixture

import db_extract

import model

def test_build_sample(

mock_connection: sqlite3.Connection,

mock_config: dict[str, Any]

Chapter 5 145

):

extract = db_extract.Extract()

results = list(

extract.series_iter(mock_connection, mock_config)

)

The assertions confirm the results come from the mock objects without being transformed,

dropped, or corrupted by some error in the code under test. The assertions look like this

example:

assert results == [

model.Series(

name=sentinel.Name,

samples=[

model.SeriesSample(sentinel.X, sentinel.Y)

]

)

]

assert cast(Mock, mock_connection).execute.mock_calls == [

call(sentinel.Names_Query),

call(sentinel.Samples_Query, {'name': sentinel.Name})

]

A mock connection object must provide results with sentinel objects that have the proper

structure to look like the iterable Cursor object that is returned by SQLite3 when executing

a database query.

The mock connection seems rather complicated because it involves two separate mock

cursors and a mock connection. Here’s some typical code for a mock connection:

@fixture

def mock_connection() -> sqlite3.Connection:

names_cursor: list[tuple[Any, ...]] = [

146 Data Acquisition Features: SQL Database

(sentinel.Name,)

]

samples_cursor: list[tuple[Any, ...]] = [

(sentinel.X, sentinel.Y)

]

query_to_cursor: dict[sentinel, list[tuple[Any, ...]]] = {

sentinel.Names_Query: names_cursor,

sentinel.Samples_Query: samples_cursor

}

connection = Mock(

execute=Mock(

side_effect=lambda query, param=None: query_to_cursor[query]

)

)

return cast(sqlite3.Connection, connection)

The mocked cursors are provided as simple lists. If the code under test used other features of

a cursor, a more elaborate Mock object would be required. The query_to_cursor mapping

associates a result with a particular query. The idea here is the queries will be sentinel

objects, not long SQL strings.

The connection object uses the side-effect feature of Mock objects. When the execute()

method is evaluated, the call is recorded, and the result comes from the side-effect function.

In this case, it’s a lambda object that uses the query_to_cursor mapping to locate an

appropriate cursor result.

This use of the side-effect feature avoids making too many assumptions about the internal

workings of the unit under test. The SQL will be a sentinel object and the results will

contain sentinel objects.

In this case, we’re insisting the unit under test does no additional processing on the values

Chapter 5 147

retrieved from the database. In other applications, where additional processing is being

done, more sophisticated mock objects or test literals may be required.

It’s not unusual to use something like (11, 13) instead of (sentinel.X, sentinel.Y) to

check that a computation is being performed correctly. However, it’s more desirable to

isolate the computations performed on SQL results into separate functions. This allows

testing these functions as separate units. The SQL retrieval processing can be tested using

mock functions for these additional computations.

Also, note the use of the cast() function from the typing module to tell tools like mypy

this object can be used like a Connection object.

Unit test for a new acquisition module

Throughout this sequence of chapters, the overall acquisition module has grown more

flexible. The idea is to permit a wide variety of data sources for an analysis project.

Pragmatically, it is more likely to modify an application to work with a number of distinct

CSV formats, or a number of distinct database schemas. When a RESTful API changes,

it’s often a good strategy to introduce new classes for the changed API as an alternatives

to existing classes. Simply modifying or replacing the old definition — in a way — erases

useful history on why and how an API is expected to work. This is the Open/Closed

principle from the SOLID design principles: the design is open to extension but closed to

modification.

Acquiring data from a wide variety of data sources — as shown in these projects — is less

likely than variations in a single source. As an enterprise moves from spreadsheets to

central databases and APIs, then the analytical tools should follow the data sources.

The need for flexible data acquisition drives the need to write unit tests for the acquisition

module to both cover the expected cases and cover the potential domain of errors and

mistakes in use.

148 Data Acquisition Features: SQL Database

Acceptance tests using a SQLite database

The acceptance tests need to create (and destroy) a test database. The tests often need to

create, retrieve, update, and delete data in the test database to arrange data for the given

step or assert the results in the Then step.

In the context of this book, we started with the Project 1.4: A local SQL database project

to build a test database. There aren’t many readily accessible, public, relational databases

with extractable data. In most cases, these databases are wrapped with a RESTful API.

The database built in the previous project has two opposing use cases:

• It is for test purposes and can be deleted and rebuilt freely.

• This database must be treated as if it’s precious enterprise data, and should not be

deleted or updated.

When we think of the database created in Project 1.4: A local SQL database as

if it were production data, we need to protect it from unexpected changes.

This means our acceptance tests must build a separate, small, test database,

separate from the “production” database created by the previous project.

The test database must not collide with precious enterprise data.

There are two common strategies to avoid collisions between test databases and enterprise

databases:

1. Use OS-level security in the file system to make it difficult to damage the files that

comprise a shared database. Also, using strict naming conventions can put a test

database into a separate namespace that won’t collide with production databases.

2. Run the tests in a Docker container to create a virtual environment in which

production data cannot be touched.

As we noted above in Approach, the idea behind a database involves two containers:

• A container for the application components that extract the data.

Chapter 5 149

• A container for the database components that provide the data. An acceptance test

can create an ephemeral database service.

With SQLite, however, there is no distinct database service container. The database

components become part of the application’s components and run in the application’s

container. The lack of a separate service container means SQLite breaks the conceptual

two-container model that applies to large, enterprise databases. We can’t create a temporary,

mock database service for testing purposes.

Because the SQLite database is nothing more than a file, we must focus on OS-level

permissions, file-system paths, and naming conventions to keep our test database separate

from the production database created in an earlier project. We emphasize this because

working with a more complicated database engine (like MySQL or PostgreSQL) will also

involve the same consideration of permissions, file paths, and naming conventions. Larger

databases will add more considerations, but the foundations will be similar.

It’s imperative to avoid disrupting production operations while creating

data analytic applications.

Building and destroying a temporary SQLite database file suggests the use of a @fixture to

create a database and populate the needed schema of tables, views, indexes, etc. The Given

steps of individual scenarios can provide a summary of the data arrangement required by

the test.

We’ll look at how to define this as a feature. Then, we can look at the steps required for

the implementation of the fixture, and the step definitions.

The feature file

Here’s the kind of scenario that seems to capture the essence of a SQL extract application:

@fixture.sqlite

Scenario: Extract data from the enterprise database

150 Data Acquisition Features: SQL Database

Given a series named "test1"

And sample values "[(11, 13), (17, 19)]"

When we run the database extract command with the test fixture database

Then log has INFO line with "series: test1"

And log has INFO line with "count: 2"

And output directory has file named "quartet/test1.csv"

The @fixture. tag follows the common naming convention for associating specific, reusable

fixtures with scenarios. There are many other purposes for tagging scenarios in addition to

specifying the fixture to use. In this case, the fixture information is used to build an SQLite

database with an empty schema.

The Given steps provide some data to load into the database. For this acceptance test, a

single series with only a few samples is used.

The tag information can be used by the behave tool. We’ll look at how to write a

before_tag() function to create (and destroy) the temporary database for any scenario

that needs it.

The sqlite fixture

The fixture is generally defined in the environment.py module that the behave tool uses.

The before_tag() function is used to process the tags for a feature or a scenario within a

feature. This function lets us then associate a specific feature function with the scenario:

from behave import fixture, use_fixture

from behave.runner import Context

def before_tag(context: Context, tag: str) -> None:

if tag == "fixture.sqlite":

use_fixture(sqlite_database, context)

The use_fixture() function tells the behave runner to invoke the given function,

sqlite_database(), with a given argument value – in this case, the context object. The

Chapter 5 151

sqlite_database() function should be a generator: it can prepare the database, execute

a yield statement, and then destroy the database. The behave runner will consume the

yielded value as part of setting up the test, and the consume one more value when it’s time

to tear down the test.

The function to create (and destroy) the database has the following outline:

from collections.abc import Iterator

from pathlib import Path

import shutil

import sqlite3

from tempfile import mkdtemp

import tomllib

from behave import fixture, use_fixture

from behave.runner import Context

@fixture

def sqlite_database(context: Context) -> Iterator[str]:

Setup: Build the database files (shown later).

yield context.db_uri

Teardown: Delete the database files (shown later).

We’ve decomposed this function into three parts: the setup, the yield to allow the test

scenario to proceed, and the teardown. We’ll look at the Set up: Build the database files and

the Teardown: Delete the database files sections separately.

The setup processing of the sqlite_database() function is shown in the following snippet:

Get Config with SQL to build schema.

config_path = Path.cwd() / "schema.toml"

152 Data Acquisition Features: SQL Database

with config_path.open() as config_file:

config = tomllib.load(config_file)

create_sql = config['definition']['create']

context.manipulation_sql = config['manipulation']

Build database file.

context.working_path = Path(mkdtemp())

context.db_path = context.working_path / "test_example.db"

context.db_uri = f"file:{context.db_path}"

context.connection = sqlite3.connect(context.db_uri, uri=True)

for stmt in create_sql:

context.connection.execute(stmt)

context.connection.commit()

The configuration file is read from the current working directory. The SQL statements to

create the database and perform data manipulations are extracted from the schema. The

database creation SQL will be executed during the tag discovery. The manipulation SQL

will be put into the context for use by the Given steps executed later.

Additionally, the context is loaded up with a working path, which will be used for the

database file as well as the output files. The context will have a db_uri string, which can

be used by the data extract application to locate the test database.

Once the context has been filled, the individual SQL statements can be executed to build

the empty database.

After the yield statement, the teardown processing of the sqlite_database() function is

shown in the following snippet:

context.connection.close()

shutil.rmtree(context.working_path)

The SQLite3 database must be closed before the files can be removed. The shutil package

includes functions that work at a higher level on files and directories. The rmtree()

function removes the entire directory tree and all of the files within the tree.

Chapter 5 153

This fixture creates a working database. We can now write step definitions that depend on

this fixture.

The step definitions

We’ll show two-step definitions to insert series and samples into the database. The following

example shows the implementation of one of the Given steps:

@given(u'a series named "{name}"')

def step_impl(context, name):

insert_series = context.manipulation_sql['insert_series']

cursor = context.connection.execute(

insert_series,

{'series_id': 99, 'name': name}

)

context.connection.commit()

The step definition shown above uses SQL to create a new row in the series table. It uses

the connection from the context; this was created by the sqlite_database() function that

was made part of the testing sequence by the before_tag() function.

The following example shows the implementation of the other Given step:

@given(u'sample values "{list_of_pairs}"')

def step_impl(context, list_of_pairs):

pairs = literal_eval(list_of_pairs)

insert_values = context.manipulation_sql['insert_values']

for seq, row in enumerate(pairs):

cursor = context.connection.execute(

insert_values,

{'series_id': 99, 'sequence': seq, 'x': row[0], 'y': row[1]}

)

context.connection.commit()

154 Data Acquisition Features: SQL Database

The step definition shown above uses SQL to create a new row in the series_sample table.

It uses the connection from the context, also.

Once the series and samples have been inserted into the database, the When step can run

the data acquisition application using the database URI information from the context.

The Then steps can confirm the results from running the application match the database

seeded by the fixture and the Given steps.

With this testing framework in place, you can run the acceptance test suite. It’s common

to run the acceptance tests before making any of the programming changes; this reveals

the acquire application doesn’t pass all of the tests.

In the next section, we’ll look at the database extract module and rewrite the main

application.

The Database extract module, and refactoring

This project suggests three kinds of changes to the code written for the previous projects:

• Revise the model module to expand on what a “series” is: it’s a parent object with a

name and a list of subsidiary objects.

• Add the db_extract module to grab data from a SQL database.

• Update the acquire module to gather data from any of the available sources and

create CSV files.

Refactoring the model module has a ripple effect on other projects, requiring changes to

those modules to alter the data structure names.

As we noted in Approach, it’s common to start a project with an understanding that evolves

and grows. More exposure to the problem domain, the users, and the technology shifts our

understanding. This project reflects a shift in understanding and leads to a need to change

the implementation of previously completed projects.

One consequence of this is exposing the series’ name. In projects from previous chapters,

Chapter 5 155

the four series had names that were arbitrarily imposed by the application program. Perhaps

a file name might have been "series_1.csv" or something similar.

Working with the SQL data exposed a new attribute, the name of a series. This leads to

two profound choices for dealing with this new attribute:

1. Ignore the new attribute.

2. Alter the previous projects to introduce a series name.

Should the series name be the file name? This seems to be a bad idea because the series

name may have spaces or other awkward punctuation.

It seems as though some additional metadata is required to preserve the series name and

associate series names with file names. This would be an extra file, perhaps in JSON or

TOML format, created as part of the extract operation.

Summary
This chapter’s projects covered two following essential skills:

• Building SQL databases. This includes building a representative of a production

database, as well as building a test database.

• Extracting data from SQL databases.

This requires learning some SQL, of course. SQL is sometimes called the lingua franca of

data processing. Many organizations have SQL databases, and the data must be extracted

for analysis.

Also important is learning to work in the presence of precious production data. It’s

important to consider the naming conventions, file system paths, and permissions associated

with database servers and the files in use. Attempting to extract analytic data is not a good

reason for colliding with production operations.

The effort required to write an acceptance test that uses an ephemeral database is an

important additional skill. Being able to create databases for test purposes permits debugging

156 Data Acquisition Features: SQL Database

by identifying problematic data, creating a test case around it, and then working in an

isolated development environment. Further, having ephemeral databases permits examining

changes to a production database that might facilitate analysis or resolve uncertainty in

production data.

In the next chapter, we’ll transition from the bulk acquisition of data to understanding the

relative completeness and usefulness of the data. We’ll build some tools to inspect the raw

data that we’ve acquired.

Extras
Here are some ideas for the reader to add to this project.

Consider using another database
For example, MySQL or PostgreSQL are good choices. These can be downloaded and

installed on a personal computer for non-commercial purposes. The administrative

overheads are not overly burdensome.

It is essential to recognize these are rather large, complex tools. For readers new to SQL,

there is a lot to learn when trying to install, configure, and use one of these databases.

See https://dev.mysql.com/doc/mysql-getting-started/en/ for some advice on

installing and using MySQL.

See https://www.postgresql.org/docs/current/tutorial-start.html for advice on

installing and using PostgreSQL.

In some cases, it makes sense to explore using a Docker container to run a database server

on a virtual machine. See https://www.packtpub.com/product/docker-for-develop

ers/9781789536058 for more about using Docker as a way to run complex services in

isolated environments.

See https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-getting-started.htm

l for ways to use MySQL in a Docker container.

See https://www.docker.com/blog/how-to-use-the-postgres-docker-official-ima

https://dev.mysql.com/doc/mysql-getting-started/en/
https://www.postgresql.org/docs/current/tutorial-start.html
https://www.packtpub.com/product/docker-for-developers/9781789536058
https://www.packtpub.com/product/docker-for-developers/9781789536058
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-getting-started.html
https://dev.mysql.com/doc/refman/8.0/en/docker-mysql-getting-started.html
https://www.docker.com/blog/how-to-use-the-postgres-docker-official-image/
https://www.docker.com/blog/how-to-use-the-postgres-docker-official-image/

Chapter 5 157

ge/ for information on running PostgreSQL in a Docker container.

Consider using a NoSQL database
A NoSQL database offers many database features — including reliably persistent data and

shared access — but avoids (or extends) the relational data model and replaces the SQL

language.

This leads to data acquisition applications that are somewhat like the examples in this

chapter. There’s a connection to a server and requests to extract data from the server. The

requests aren’t SQL SELECT statements. Nor is the result necessarily rows of data in a

completely normalized structure.

For example, MongoDB. Instead of rows and tables, the data structure is JSON documents.

See https://www.packtpub.com/product/mastering-mongodb-4x-second-edition/9

781789617870.

The use of MongoDB changes data acquisition to a matter of locating the JSON documents

and then building the desired document from the source data in the database.

This would lead to two projects, similar to the two described in this chapter, to populate the

“production” Mongo database with some data to extract, and then writing the acquisition

program to extract the data from the database.

Another alternative is to use the PostgreSQL database with JSON objects for the data

column values. This provides a MongoDB-like capability using the PostgreSQL engine. See

https://www.postgresql.org/docs/9.3/functions-json.html for more information

on this approach.

Here are some common categories of NoSQL databases:

• Document databases

• Key-value stores

• Column-oriented databases

https://www.docker.com/blog/how-to-use-the-postgres-docker-official-image/
https://www.docker.com/blog/how-to-use-the-postgres-docker-official-image/
https://www.docker.com/blog/how-to-use-the-postgres-docker-official-image/
https://www.packtpub.com/product/mastering-mongodb-4x-second-edition/9781789617870
https://www.packtpub.com/product/mastering-mongodb-4x-second-edition/9781789617870
https://www.postgresql.org/docs/9.3/functions-json.html

158 Data Acquisition Features: SQL Database

• Graph databases

The reader is encouraged to search for representative products in these categories and

consider the two parts of this chapter: loading a database and acquiring data from the

database.

Consider using SQLAlchemy to define an ORM layer
In The Object-Relational Mapping (ORM) problem we talked about the ORM problem. In that

section, we made the case that using a tool to configure an ORM package for an existing

database can sometimes turn out badly.

This database, however, is very small. It’s an ideal candidate for learning about simple

ORM configuration.

We suggest starting with the SQLAlchemy ORM layer. See https://docs.sqlalchemy.

org/en/20/orm/quickstart.html for advice on configuring class definitions that can be

mapped to tables. This will eliminate the need to write SQL when doing extracts from the

database.

There are other ORM packages available for Python, also. The reader should feel free to

locate an ORM package and build the extraction project in this chapter using the ORM

data model.

https://docs.sqlalchemy.org/en/20/orm/quickstart.html
https://docs.sqlalchemy.org/en/20/orm/quickstart.html

6
Project 2.1: Data Inspection
Notebook

We often need to do an ad hoc inspection of source data. In particular, the very first time

we acquire new data, we need to see the file to be sure it meets expectations. Additionally,

debugging and problem-solving also benefit from ad hoc data inspections. This chapter

will guide you through using a Jupyter notebook to survey data and find the structure and

domains of the attributes.

The previous chapters have focused on a simple dataset where the data types look like

obvious floating-point values. For such a trivial dataset, the inspection isn’t going to be

very complicated.

It can help to start with a trivial dataset and focus on the tools and how they work together.

For this reason, we’ll continue using relatively small datasets to let you learn about the

tools without having the burden of also trying to understand the data.

This chapter’s projects cover how to create and use a Jupyter notebook for data inspection.

160 Project 2.1: Data Inspection Notebook

This permits tremendous flexibility, something often required when looking at new data

for the first time. It’s also essential when diagnosing problems with data that has —

unexpectedly — changed.

A Jupyter notebook is inherently interactive and saves us from having to design and build

an interactive application. Instead, we need to be disciplined in using a notebook only to

examine data, never to apply changes.

This chapter has one project, to build an inspection notebook. We’ll start with a description

of the notebook’s purpose.

Description
When confronted with raw data acquired from a source application, database, or web API,

it’s prudent to inspect the data to be sure it really can be used for the desired analysis. It’s

common to find that data doesn’t precisely match the given descriptions. It’s also possible

to discover that the metadata is out of date or incomplete.

The foundational principle behind this project is the following:

We don’t always know what the actual data looks like.

Data may have errors because source applications have bugs. There could be “undocumented

features,” which are similar to bugs but have better explanations. There may have been

actions made by users that have introduced new codes or status flags. For example, an

application may have a “comments” field on an accounts-payable record, and accounting

clerks may have invented their own set of coded values, which they put in the last few

characters of this field. This defines a manual process outside the enterprise software. It’s

an essential business process that contains valuable data; it’s not part of any software.

The general process for building a useful Jupyter notebook often proceeds through the

following phases:

1. Start with a simple display of selected rows.

2. Then, show ranges for what appear to be numerical fields.

Chapter 6 161

3. Later, in a separate analysis notebook, we can find central tendency (mean, median,

and standard deviation) values after they’ve been cleaned.

Using a notebook moves us away from the previous chapters’ focus on CLI applications.

This is necessary because a notebook is interactive. It is designed to allow exploration with

few constraints.

The User Experience (UX) has two general steps to it:

1. Run a data acquisition application. This is one of the CLI commands for projects in

any of the previous chapters.

2. Start a Jupyter Lab server. This is a second CLI command to start the server. The

jupyter lab command will launch a browser session. The rest of the work is done

through the browser:

(a) Create a notebook by clicking the notebook icon.

(b) Load data by entering some Python code into a cell.

(c) Determine if the data is useful by creating cells to show the data and show

properties of the data.

For more information on Jupyter, see https://www.packtpub.com/product/learning-j

upyter/9781785884870.

About the source data
An essential ingredient here is that all of the data acquisition projects must produce output

in a consistent format. We’ve suggested using NDJSON (sometimes called JSON NL) as

a format for preserving the raw data. See Chapter 3, Project 1.1: Data Acquisition Base

Application, for more information on the file format.

It’s imperative to review the previous projects’ acceptance test suites to be sure there is a

test to confirm the output files have the correct, consistent format.

https://www.packtpub.com/product/learning-jupyter/9781785884870
https://www.packtpub.com/product/learning-jupyter/9781785884870

162 Project 2.1: Data Inspection Notebook

To recap the data flow, we’ve done the following:

• Read from some source. This includes files, RESTful APIs, HTML pages, and SQL

databases.

• Preserved the raw data in an essentially textual form, stripping away any data

type information that may have been imposed by a SQL database or RESTful JSON

document.

The inspection step will look at the text versions of values in these files. Later projects,

starting with Chapter 9, Project 3.1: Data Cleaning Base Application, will look at converting

data from text into something more useful for analytic work.

An inspection notebook will often be required to do some data cleanup in order to show

data problems. This will be enough cleanup to understand the data and no more. Later

projects will expand the cleanup to cover all of the data problems.

In many data acquisition projects, it’s unwise to attempt any data conversion before an

initial inspection. This is because the data is highly variable and poorly documented. A

disciplined, three-step approach separates acquisition and inspection from attempts at data

conversion and processing.

We may find a wide variety of unexpected things in a data source. For example, a CSV

file may have an unexpected header, leading to a row of bad data. Or, a CSV file may —

sometimes — lack headers, forcing the acquire application to supply default headers. A

file that’s described as CSV may not have delimiters, but may have fixed-size text fields

padded with spaces. There may be empty rows that can be ignored. There may be empty

rows that delimit the useful data and separate it from footnotes or other non-data in the

file. A ZIP archive may contain a surprising collection of irrelevant files in addition to the

desired data file.

Perhaps one of the worst problems is trying to process files that are not prepared using

a widely used character encoding such as UTF-8. Files encoded with CP-1252 encoding

may have a few odd-looking characters when the decoder assumes it’s UTF-8 encoding.

Chapter 6 163

Python’s codecs module provides a number of forms of alternative file encoding to handle

this kind of problem. This problem seems rare; some organizations will note the encoding

for text to prevent problems.

Inspection notebooks often start as print() functions in the data acquisition process to

show what the data is. The idea here is to extend this concept a little and use an interactive

notebook instead of print() to get a look at the data and see that it meets expectations.

Not all managers agree with taking time to build an inspection notebook.

Often, this is a conflict between assumptions and reality with the following

potential outcomes:

• A manager can assume there will be no surprises in the data; the

data will be entirely as specified in a data contract or other schema

definition.

– When the data doesn’t match expectations, a data inspection

notebook will be a helpful part of the debugging effort.

– In the unlikely event the data does match expectations, the data

inspection notebook can be used to show that the data is valid.

• A manager can assume the data is unlikely to be correct. In this case,

the data inspection notebook will be seen as useful for uncovering

the inevitable problems.

Notebooks often start as print() or logger output to confirm the data is

useful. This debugging output can be migrated to an informal notebook —

at a low cost — and evolve into something more complete and focused on

inspection and data quality assurance.

This initial project won’t build a complicated notebook. The intent is to provide an

interactive display of data, allowing exploration and investigation. In the next section,

we’ll outline an approach to this project, and to working with notebooks in general.

164 Project 2.1: Data Inspection Notebook

Approach
We’ll take some guidance from the C4 model (https://c4model.com) when looking at our

approach.

• Context: For this project, the context diagram has two use cases: acquire and inspect

• Containers: There’s one container for the various applications: the user’s personal

computer

• Components: There are two significantly different collections of software

components: the acquisition program and inspection notebooks

• Code: We’ll touch on this to provide some suggested directions

A context diagram for this application is shown in Figure 6.1.

Analytical Workspace

Acquire Data

Start Lab;
Inspect Data

Data Analyst

Figure 6.1: Context Diagram

The data analyst will use the CLI to run the data acquisition program. Then, the analyst

will use the CLI to start a Jupyter Lab server. Using a browser, the analyst can then use

Jupyter Lab to inspect the data.

The components fall into two overall categories. The component diagram is shown in

Figure 6.2.

https://c4model.com

Chapter 6 165

Acquisition

Storage

Inspection

acquire

model

csv_extract

db_extract

api_download

data files

Jupyter Lab

notebook

terminal

SQL DB

RESTful API

terminal

browser

creates

inspects

Figure 6.2: Component diagram

The diagram shows the interfaces seen by the data analyst, the terminal and the browser.

166 Project 2.1: Data Inspection Notebook

These are shown with the boundary icon from the Unified Modeling Language (UML).

The Acquisition group of components contains the various modules and the overall

acquire application. This is run from the command line to acquire the raw data from an

appropriate source. The db_extract module is associated with an external SQL database.

The api_download module is associated with an external RESTful API. Additional sources

and processing modules could be added to this part of the diagram.

The processing performed by the Acquisition group of components creates the data files

shown in the Storage group. This group depicts the raw data files acquired by the acquire

application. These files will be refined and processed by further analytic applications.

The Inspection group shows the jupyter component. This is the entire Jupyter Lab

application, summarized as a single icon. The notebook component is the notebook we’ll

build in this application. This notebook depends on Jupyter Lab.

The browser is shown with the boundary icon. The intention is to characterize the notebook

interaction via the browser as the user experience.

The notebook component will use a number of built-in Python modules. This notebook’s

cells can be decomposed into two smaller kinds of components:

• Functions to gather data from acquisition files.

• Functions to show the raw data. The collections.Counter class is very handy for

this.

You will need to locate (and install) a version of Jupyter Lab for this project. This needs to

be added to the requirements-dev.txt file so other developers know to install it.

When using conda to manage virtual environments, the command might look like the

following:

% conda install jupyterlab

When using other tools to manage virtual environments, the command might look like the

Chapter 6 167

following:

% python -m pip install jupyterlab

Once the jupyter products are installed, it must be started from the command line. This

command will start the server and launch a browser window:

% jupyter lab

For information on using Jupyter Lab, see https://jupyterlab.readthedocs.io/en/lat

est/.

If you’re not familiar with Jupyter, now is the time to use tutorials and learn the basics

before moving on with this project.

Many of the notebook examples will include import statements.

Developers new to working with a Jupyter notebook should not take this as

advice to repeat import statements in multiple cells throughout a notebook.

In a practical notebook, the imports can be collected together, often in a

separate cell to introduce all of the needed packages.

In some enterprises, a startup script is used to provide a common set of

imports for a number of closely related notebooks.

We’ll return to more flexible ways to handle Python libraries from notebooks

in Chapter 13, Project 4.1: Visual Analysis Techniques.

There are two other important considerations for this project: the ability to write automated

tests for a notebook and the interaction of Python modules and notebooks. We’ll look at

these topics in separate sections.

https://jupyterlab.readthedocs.io/en/latest/
https://jupyterlab.readthedocs.io/en/latest/

168 Project 2.1: Data Inspection Notebook

Notebook test cases for the functions
It’s common to require unit test cases for a Python package. To be sure the test cases are

meaningful, some enterprises insist the test cases exercise 100% of the lines of code in the

module. For some industries, all logic paths must be tested. For more information, see

Chapter 1, Project Zero: A Template for Other Projects.

For notebooks, automated testing can be a shade more complicated than it is for a Python

module or package. The complication is that notebooks can contain arbitrary code that is

not designed with testability in mind.

In order to have a disciplined, repeatable approach to creating notebooks, it’s helpful

to develop a notebook in a series of stages, evolving toward a notebook that supports

automated testing.

A notebook is software, and without test cases, any software is untrustworthy. In rare

cases, the notebook’s code is simple enough that we can inspect it to develop some sense

of its overall fitness for purpose. In most cases, complex computations, functions, and class

definitions require a test case to demonstrate the code can be trusted to work properly.

The stages of notebook evolution often work as follows:

0 At stage zero, a notebook is often started with arbitrary Python code in cells and few

or no function or class definitions. This is a great way to start development because

the interactive nature of the notebook provides immediate results. Some cells will

have errors or bad ideas in them. The order for processing the cells is not simply

top to bottom. This code is difficult (or impossible) to validate with any automated

testing.

1 Stage one will transform cell expressions into function and class definitions. This

version of the notebook can also have cells with examples using the functions and

classes. The order is closer to strictly top-to-bottom; there are fewer cells with known

errors. The presence of examples serves as a basis for validating the notebook’s

processing, but an automated test isn’t available.

Chapter 6 169

2 Stage two has more robust tests, using formal assert statements or doctest comments

to define a repeatable test procedure. Rerunning the notebook from the beginning

after any change will validate the notebook by executing the assert statements. All

the cells are valid and the notebook processing is strictly top to bottom.

3 When there is more complicated or reusable processing, it may be helpful to refactor

the function and class definitions out of the notebook and into a module. The module

will have a unit test module or may be tested via doctest examples. This new module

will be imported by the notebook; the notebook is used more for the presentation of

results than the development of new ideas.

One easy road to automated testing is to include doctest examples inside function and

class definitions. For example, we might have a notebook cell that contains something like

the following function definition:

def min_x(series: Series) -> float:

"""

>>> s = [

... {'x': '3', 'y': '4'},

... {'x': '2', 'y': '3'},

... {'x': '5', 'y': '6'}]

>>> min_x(s)

2

"""

return min(int(s['x']) for s in series.samples)

The lines in the function’s docstring marked with >>> are spotted by the doctest tool. The

lines are evaluated and the results are compared with the example from the docstring.

The last cell in the notebook can execute the doctest.testmod() function. This will

examine all of the class and function definitions in the notebook, locate their doctest

examples, and confirm the actual results match the expectations.

For additional tools to help with notebook testing, see https://testbook.readthedocs.i

https://testbook.readthedocs.io/en/latest/
https://testbook.readthedocs.io/en/latest/

170 Project 2.1: Data Inspection Notebook

o/en/latest/.

This evolution from a place for recording good ideas to an engineered solution is not

trivially linear. There are often exploration and learning opportunities that lead to changes

and shifts in focus. Using a notebook as a tool for tracking ideas, both good and bad, is

common.

A notebook is also a tool for presenting a final, clear picture of whether or not the data is

what the users expect. In this second use case, separating function and class definitions

becomes more important. We’ll look at this briefly in the next section.

Common code in a separate module
As we noted earlier, a notebook lets an idea evolve through several forms.

We might have a cell with the following

x_values = []

for s in source_data[1:]:

x_values.append(float(s['x']))

min(x_values)

Note that this computation skips the first value in the series. This is because the source data

has a header line that’s read by the csv.reader() function. Switching to csv.DictReader()

can politely skip this line, but also changes the result structure from a list of strings into a

dictionary.

This computation of the minimum value can be restated as a function definition. Since it

does three things — drops the first line, extracts the 'x' attribute, and converts it into a

float — it might be better to decompose it into three functions. It can be refactored again to

include doctest examples in each function. See Notebook test cases for the functions for the

example.

Later, this function can be cut from the notebook cell and pasted into a separate module.

We’ll assume the overall function was named min_x(). We might add this to a module

https://testbook.readthedocs.io/en/latest/
https://testbook.readthedocs.io/en/latest/
https://testbook.readthedocs.io/en/latest/

Chapter 6 171

named series_stats.py. The notebook can then import and use the function, leaving the

definition as a sidebar detail:

from series_stats import min_x

When refactoring a notebook to a reusable module, it’s important to use cut and paste,

not copy and paste. A copy of the function will lead to questions if one of the copies is

changed to improve performance or fix a problem and the other copy is left untouched.

This is sometimes called the Don’t Repeat Yourself (DRY) principle.

When working with external modules that are still under development, any changes to a

module will require stopping the notebook kernel and rerunning the notebook from the very

beginning to remove and reload the function definitions. This can become awkward. There

are some extensions to iPython that can be used to reload modules, or even auto-reload

modules when the source module changes.

An alternative is to wait until a function or class seems mature and unlikely to change

before refactoring the notebook to create a separate module. Often, this decision is made

as part of creating a final presentation notebook to display useful results.

We can now look at the specific list of deliverables for this project.

Deliverables
This project has the following deliverables:

• A pyproject.toml file that identifies the tools used. For this book, we used

jupyterlab==3.5.3. Note that while the book was being prepared for publication,

version 4.0 was released. This ongoing evolution of components makes it important

for you to find the latest version, not the version quoted here.

• Documentation in the docs folder.

• Unit tests for any new application modules in the tests folder.

• Any new application modules in the src folder with code to be used by the inspection

notebook.

172 Project 2.1: Data Inspection Notebook

• A notebook to inspect the raw data acquired from any of the sources.

The project directory structure suggested in Chapter 1, Project Zero: A Template for Other

Projects mentions a notebooks directory. See List of deliverables for more information.

Previous chapters haven’t used any notebooks, so this directory might not have been

created in the first place. For this project, the snotebooks directory is needed.

Let’s look at a few of these deliverables in a little more detail.

Notebook .ipynb file
The notebook can (and should) be a mixture of Markdown cells providing notes and context,

and computation cells showing the data.

Readers who have followed the projects up to this point will likely have a directory with

NDJSON files that need to be read to construct useful Python objects. One good approach

is to define a function to read lines from a file, and use json.loads() to transform the line

of text into a small dictionary of useful data.

There’s no compelling reason to use the model module’s class definitions for this inspection.

The class definitions can help to make the data somewhat more accessible.

The inspection process starts with cells that name the files, creating Path objects.

A function code like the following example might be helpful:

import csv

from collections.abc import Iterator

import json

from typing import TextIO

def samples_iter(source: TextIO) -> Iterator[dict[str, str]]:

yield from (json.loads(line) for line in source)

This function will iterate over the acquired data. In many cases, we can use the iterator

to scan through a large collection of samples, picking individual attribute values or some

Chapter 6 173

subset of the samples.

We can use the following statement to create a list-of-dictionary structure from the given

path:

from pathlib import Path

source_path = Path("/path/to/quartet/Series_1.ndjson")

with source_path.open() as source_file:

source_data = list(samples_iter(source_file))

We can start with these basics in a few cells of the notebook. Given this foundation, further

cells can explore the available data.

Cells and functions to analyze data

For this initial inspection project, the analysis requirements are small. The example datasets

from the previous chapters are artificial data, designed to demonstrate the need to use

graphical techniques for exploratory data analysis.

For other datasets, however, there may be a variety of odd or unusual problems.

For example, the CO2 PPM — Trends in Atmospheric Carbon Dioxide dataset, available

at https://datahub.io/core/co2-ppm, has a number of “missing value” codes in the data.

Here are two examples:

• The CO2 average values sometimes have values of −99.99 as a placeholder for a time

when a measurement wasn’t available. In these cases, a statistical process used data

from adjacent months to interpolate the missing value.

• Additionally, the number of days of valid data for a month’s summary wasn’t recorded,

and a −1 value is used.

This dataset requires a bit more care to be sure of the values in each column and what the

columns mean.

Capturing the domain of values in a given column is helpful here. The collections module

has a Counter object that’s ideal for understanding the data in a specific column.

https://datahub.io/core/co2-ppm

174 Project 2.1: Data Inspection Notebook

A cell can use a three-step computation to see the domain of values:

1. Use the samples_iter() function to yield the source documents.

2. Create a generator with sample attribute values.

3. Create a Counter to summarize the values.

This can lead to a cell in the notebook with the following statements:

from collections import Counter

values_x = (sample['x'] for sample in source_data)

domain_x = Counter(values_x)

The next cell in the notebook can display the value of the domain_x value. If the

csv.reader() function is used, it will reveal the header along with the domain of values.

If the csv.DictReader() class is used, this collection will not include the header. This

permits a tidy exploration of the various attributes in the collection of samples.

An inspection notebook is not the place to attempt more sophisticated data analysis.

Computing means or medians should only be done on cleaned data. We’ll return to this in

Chapter 15, Project 5.1: Modeling Base Application.

Cells with Markdown to explain things

It’s very helpful to include cells using Markdown to provide information, insights, and

lessons learned about the data.

For information on the markdown language, see the Daring Fireball website: https:

//daringfireball.net/projects/markdown/basics.

As noted earlier in this chapter, there are two general flavors of notebooks:

• Exploratory: These notebooks are a series of blog posts about the data and the

process of exploring and inspecting the data. Cells may not all work because they’re

works in process.

https://daringfireball.net/projects/markdown/basics
https://daringfireball.net/projects/markdown/basics

Chapter 6 175

• Presentation: These notebooks are a more polished, final report on data or problems.

The paths that lead to dead ends should be pruned into summaries of the lessons

learned.

A bright line separates these two flavors of notebooks. The distinguishing factor is the

reproducibility of the notebook. A notebook that’s useful for presentations can be run

from beginning to end without manual intervention to fix problems or skip over cells with

syntax errors or other problems. Otherwise, the notebook is part of an exploration. It’s

often necessary to copy and edit an exploratory notebook to create a derived notebook

focused on presentation.

Generally, a notebook designed for a presentation uses Markdown cells to create a narrative

flow that looks like any chapter of a book or article in a journal. We’ll return to more

formal reporting in Chapter 14, Project 4.2: Creating Reports.

Cells with test cases

Earlier, we introduced a samples_iter() function that lacked any unit tests or examples.

It’s considerably more helpful to provide a doctest string within a notebook:

def samples_iter(source: TextIO) -> Iterator[dict[str, str]]:

"""

Build NDJSON file with two lines

>>> import json

>>> from io import StringIO

>>> source_data = [

... {'x': 0, 'y': 42},

... {'x': 1, 'y': 99},

...]

>>> source_text = [json.dumps(sample) for sample in source_data]

>>> ndjson_file = StringIO('\\n'.join(source_text))

Parse the file

176 Project 2.1: Data Inspection Notebook

>>> list(samples_iter(ndjson_file))

[{'x': 0, 'y': 42}, {'x': 1, 'y': 99}]

"""

yield from (json.loads(line) for line in source)

This function’s docstrings include an extensive test case. The test case builds an NDJSON

document from a list of two dictionaries. The test case then applies the samples_iter()

function to parse the NDJSON file and recover the original two samples.

To execute this test, the notebook needs a cell to examine the docstrings in all of the

functions and classes defined in the notebook:

import doctest

doctest.testmod()

This works because the global context for a notebook is treated like a module with a

default name of __main__. This module will be examined by the textmod() function to

find docstrings that look like they contain doc test examples.

Having the last cell run the doctest tool makes it easy to run the notebook, scroll to the

end, and confirm the tests have all passed. This is an excellent form of validation.

Executing a notebook’s test suite
A Jupyter notebook is inherently interactive. This makes an automated acceptance test of

a notebook potentially challenging.

Fortunately, there’s a command that executes a notebook to confirm it works all the way

through without problems.

We can use the following command to execute a notebook to confirm that all the cells will

execute without any errors:

% jupyter execute notebooks/example_2.ipynb

A notebook may ingest a great deal of data, making it very time-consuming to test the

Chapter 6 177

notebook as a whole. This can lead to using a cell to read a configuration file and using

this information to use a subset of data for test purposes.

Summary
This chapter’s project covered the basics of creating and using a Jupyter Lab notebook

for data inspection. This permits tremendous flexibility, something often required when

looking at new data for the first time.

We also looked at adding doctest examples to functions and running the doctest tool in

the last cell of a notebook. This lets us validate that the code in the notebook is very likely

to work properly.

Now that we’ve got an initial inspection notebook, we can start to consider the specific

kinds of data being acquired. In the next chapter, we’ll add features to this notebook.

Extras
Here are some ideas for you to add to this project.

Use pandas to examine data
A common tool for interactive data exploration is the pandas package.

See https://pandas.pydata.org for more information.

Also, see https://www.packtpub.com/product/learning-pandas/9781783985128 for

resources for learning more about pandas.

The value of using pandas for examining text may be limited. The real value of pandas is

for doing more sophisticated statistical and graphical analysis of the data.

We encourage you to load NDJSON documents using pandas and do some preliminary

investigation of the data values.

https://pandas.pydata.org
https://www.packtpub.com/product/learning-pandas/9781783985128

7
Data Inspection Features

There are three broad kinds of data domains: cardinal, ordinal, and nominal. The first

project in this chapter will guide you through the inspection of cardinal data; values like

weights, measures, and durations where the data is continuous, as well as counts where

the data is discrete. The second project will guide reasoners through the inspection of

ordinal data involving things like dates, where order matters, but the data isn’t a proper

measurement; it’s more of a code or designator. The nominal data is a code that happens

to use digits but doesn’t represent numeric values. The third project will cover the more

complex case of matching keys between separate data sources.

An inspection notebook is required when looking at new data. It’s a great place to keep

notes and lessons learned. It’s helpful when diagnosing problems that arise in a more

mature analysis pipeline.

This chapter will cover a number of skills related to data inspection techniques:

• Essential notebook data inspection features using Python expressions, extended from

the previous chapter.

180 Data Inspection Features

• The statistics module for examining cardinal data.

• The collections.Counter class for examining ordinal and nominal data.

• Some additional collections.Counter for matching primary and foreign keys.

For the Ancombe’s Quartet example data set used in Chapters 3, 4, and 5, both of the

attribute values are cardinal data. It’s a helpful data set for some of the inspections, but

we’ll need to look at some other data sets for later projects in this chapter. We’ll start by

looking at some inspection techniques for cardinal data. Readers who are focused on other

data sets will need to discern which attributes represent cardinal data.

Project 2.2: Validating cardinal domains —
measures, counts, and durations
A great deal of data is cardinal in nature. Cardinal numbers are used to count things, like

elements of a set. The concept can be generalized to include real numbers representing a

weight or a measure.

A very interesting data set is available here: https://www.kaggle.com/datasets/rtatma

n/iris-dataset-json-version. This contains samples with numerous measurements of

the pistils and stamen of different species of flowers. The measurements are identifiable

because the unit, mm, is provided.

Another interesting data set is available here: https://datahub.io/core/co2-ppm. This

contains data with measurements of CO2 levels measured with units of ppm, parts per

million.

We need to distinguish counts and measures from numbers that are only used to rank or

order things, which are called ordinal numbers. Also, number-like data is sometimes only a

code. US postal codes, for example, are merely strings of digits; they aren’t proper numeric

values. We’ll look at these numeric values in Project 2.3: Validating text and codes — nominal

data and ordinal numbers.

https://www.kaggle.com/datasets/rtatman/iris-dataset-json-version
https://www.kaggle.com/datasets/rtatman/iris-dataset-json-version
https://datahub.io/core/co2-ppm

Chapter 7 181

Since this is an inspection notebook, the primary purpose is only to understand the range of

values for cardinal data. A deeper analysis will come later. For now, we want a notebook that

demonstrates the data is complete and consistent, and can be used for further processing.

In the event an enterprise is using data contracts, this notebook will demonstrate compliance

with the data contract. With data contracts, the focus may shift slightly from showing

“some data that is not usable” to showing “data found to be non-compliant with the contract.”

In cases where the contract is inadequate for the analytical consumer, the notebook may

shift further to show “compliant data that’s not useful.”

We’ll start with a description of the kinds of cells to add to an inspection notebook. After

that, we’ll about the architectural approach and wrap up with a detailed list of deliverables.

Description
This project’s intent is to inspect raw data to understand if it is actually cardinal data. In

some cases, floating-point values may have been used to represent nominal data; the data

appears to be a measurement but is actually a code.

Spreadsheet software tends to transform all data into floating-point numbers;

many data items may look like cardinal data.

One example is US Postal Codes, which are strings of digits, but may be

transformed into numeric values by a spreadsheet.

Another example is bank account numbers, which — while very long — can

be converted into floating-point numbers. A floating-point value uses 8

bytes of storage, but will comfortably represent about 15 decimal digits.

While this is a net saving in storage, it is a potential confusion of data types

and there is a (small) possibility of having an account number altered by

floating-point truncation rules.

The user experience is a Jupyter Lab notebook that can be used to examine the data, show

some essential features of the raw data values, and confirm that the data really does appear

182 Data Inspection Features

to be cardinal.

There are several common sub-varieties of cardinal data:

• Counts; represented by integer values.

• Currency and other money-related values. These are often decimal values, and the

float type is likely to be a bad idea.

• Duration values. These are often measured in days, hours, and minutes, but represent

a time interval or a “delta” applied to a point in time. These can be normalized to

seconds or days and represented by a float value.

• More general measures are not in any of the previous categories. These are often

represented by floating-point values.

What’s important for this project is to have an overview of the data. Later projects will

look at cleaning and converting the data for further use. This notebook is only designed to

preview and inspect the data.

We’ll look at general measures first since the principles apply to counts and durations.

Currency, as well as duration, values are a bit more complicated and we’ll look at them

separately. Date-time stamps are something we’ll look at in the next project since they’re

often thought of as ordinal data, not cardinal.

Approach
This project is based on the initial inspection notebook from Chapter 6, Project 2.1: Data

Inspection Notebook. Some of the essential cell content will be reused in this notebook.

We’ll add components to the components shown in the earlier chapter – specifically, the

samples_iter() function to iterate over samples in an open file. This feature will be central

to working with the raw data.

In the previous chapter, we suggested avoiding conversion functions. When starting down

the path of inspecting data, it’s best to assume nothing and look at the text values first.

There are some common patterns in the source data values:

Chapter 7 183

• The values appear to be all numeric values. The int() or float() function works

on all of the values. There are two sub-cases here:

– All of the values seem to be proper counts or measures in some expected range.

This is ideal.

– A few “outlier” values are present. These are values that seem to be outside the

expected range of values.

• Some of the values are not valid numbers. They may be empty strings, or a code line

“NULL”, “None”, or “N/A”.

Numeric outlier values can be measurement errors or an interesting phenomenon buried

in the data. Outlier values can also be numeric code values indicating a known missing or

otherwise unusable value for a sample. In the example of the CO2 data, there are outlier

values of −99.99 parts per million, which encode a specific kind of missing data situation.

Many data sets will be accompanied by metadata to explain the domain of values, including

non-numeric values, as well as the numeric codes in use. Some enterprise data sources will

not have complete or carefully explained metadata. This means an analyst needs to ask

questions to locate the root cause for non-numeric values or special codes that appear in

cardinal data.

The first question — are all the values numeric? — can be handled with code like the

following:

from collections import defaultdict

from collections.abc import Iterable, Callable

from typing import TypeAlias

Conversion: TypeAlias = Callable[[str], int | float]

def non_numeric(test: Conversion, samples: Iterable[str]) -> dict[str, int]:

bad_data = defaultdict(int)

184 Data Inspection Features

for s in samples:

try:

test(s)

except ValueError:

bad_data[s] += 1

return bad_data

The idea is to apply a conversion function, commonly int() or float(), but

decimal.Decimal() may be useful for currency data or other data with a fixed number

of decimal places. If the conversion function fails, the exceptional data is preserved in a

mapping showing the counts.

You’re encouraged to try this with a sequence of strings like the following:

data = ["2", "3.14", "42", "Nope", None, ""]

non_numeroc(int, data)

This kind of test case will let you see how this function works with good (and bad) data. It

can help to transform the test case into a docstring, and include it in the function definition.

If the result of the non_numeric() function is an empty dictionary, then the lack of

non-numeric data means all of the data is numeric.

The test function is provided first to follow the pattern of higher-order functions like map()

and filter().

A variation on this function can be used as a numeric filter to pass the numeric values and

reject the non-numeric values. This would look like the following:

from collections.abc import Iterable, Iterator, Callable

from typing import TypeVar

Num = TypeVar('Num')

Chapter 7 185

def numeric_filter(

conversion: Callable[[str], Num],

samples: Iterable[str]

) -> Iterator[Num]:

for s in samples:

try:

yield conversion(s)

except ValueError:

pass

This function will silently reject the values that cannot be converted. The net effect of

omitting the data is to create a NULL that does not participate in further computations. An

alternative may be to replace invalid values with default values. An even more complicated

choice is to interpolate a replacement value using adjacent values. Omitting samples may

have a significant impact on the statistical measures used in later stages of processing. This

numeric_filter() function permits the use of other statistical functions to locate outliers.

For data with good documentation or a data contract, outlier values like −99.99 are easy to

spot. For data without good documentation, a statistical test might be more appropriate.

See https://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm for

details on approaches to locating outliers.

One approach suitable for small data sets is to use a median-based Z-score. We’ll dive into

an algorithm that is built on a number of common statistical measures. This will involve

computing the median using a function available in the built-in statistics package.

For more information on basic statistics for data analytics, see Statistics for Data Science.

https://www.packtpub.com/product/statistics-for-data-science/9781788290678.

The conventional Z-score for a sample, 𝑍𝑖, is based on the mean, 𝑌 , and the standard

deviation, 𝜎𝑌 . It’s computed as 𝑍𝑖 =
𝑌𝑖−𝑌

𝜎𝑌
. It measures how many standard deviations a

value lies from the mean. Parallel with this is the idea of a median-based Z-score, 𝑀𝑖. The

median-based Z-score uses the median, 𝑌 , and the median absolute deviation, MAD𝑌 .

https://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
https://www.packtpub.com/product/statistics-for-data-science/9781788290678

186 Data Inspection Features

This is computed as 𝑀𝑖 =
𝑌𝑖−𝑌

MAD𝑌
. This measures how many “MAD” units a value lies from

the median of the samples.

The MAD is the median of the absolute values of deviations from the median. It requires

computing an overall median, 𝑌 , then computing all the deviations from the overall median,

𝑌𝑖 − 𝑌 . From this sequence of deviations from the median, the median value is selected

to locate a central value for all of the median absolute deviations. This is computed as

MAD𝑌 = median(|𝑌𝑖 − 𝑌 |).

The filter based on 𝑀𝑖 looks for any absolute value of the deviation from MAD𝑌 that’s

greater than 3.5, |𝑀𝑖| > 3.5. These samples are possible outliers because their absolute

deviation from the median is suspiciously large.

To be complete, here’s a cell to read the source data:

with series_4_path.open() as source_file:

series_4_data = list(samples_iter(source_file))

This can be followed with a cell to compute the median and the median absolute deviation.

The median computation can be done with the statistics module. The deviations can

then be computed with a generator, and the median absolute deviation computed from the

generator. The cell looks like the following:

from statistics import median

y_text = (s['y'] for s in series_4_data)

y = list(numeric_filter(float, y_text))

m_y = median(y)

mad_y = median(abs(y_i - m_y) for y_i in y)

outliers_y = list(

filter(lambda m_i: m_i > 3.5, ((y_i - m_y)/mad_y for y_i in y))

)

The value of y_text is a generator that will extract the values mapped to the 'y' key in

Chapter 7 187

each of the raw data samples in the NDJSON file. From these text values, the value of y is

computed by applying the numeric_filter() function.

It’s sometimes helpful to show that len(y) == len(y_text) to demonstrate that all values

are numeric. In some data sets, the presence of non-numeric data might be a warning that

there are deeper problems.

The value of m_y is the median of the y values. This is used to compute the MAD value as

the median of the absolute deviations from the median. This median absolute deviation

provides an expected range around the median.

The outliers_y computation uses a generator expression to compute the median-based

Z-score, and then keep only those scores that are more than 3.5 MADs from the median.

The data in Series IV of Anscombe’s Quartet seems to suffer from an even more complicated

outlier problem. While the “x” attribute has a potential outlier, the “y” attribute’s MAD is

zero. This means more than half the “y” attribute values are the same. This single value is

the median, and the difference from the median will be zero for most of the samples.

This anomaly would become an interesting part of the notebook.

Dealing with currency and related values

Most currencies around the world use a fixed number of decimal places. The United States,

for example, uses exactly two decimal places for money. These are decimal values; the

float type is almost always the wrong type for these values.

Python has a decimal module with a Decimal type, which must be used for

currency.

Do not use float for currency or anything used in currency-related

computations.

Tax rates, discount rates, interest rates, and other money-related fields are also decimal

values. They’re often used with currency values, and computations must be done using

decimal arithmetic rules.

188 Data Inspection Features

When we multiply Decimal values together, the results may have additional digits to the

right of the decimal place. This requires applying rounding rules to determine how to

round or truncate the extra digits. The rules are essential to getting the correct results. The

float type round() function may not do this properly. The decimal module includes a

wide variety of rounding and truncating algorithms.

Consider an item with a price of $12.99 in a locale that charges a sales tax of 6.25% on

each purchase. This is not a tax amount of $0.811875. The tax amount must be rounded;

there are many, many rounding rules in common use by accountants. It’s essential to know

which rule is required to compute the correct result.

Because the underlying assumption behind currency is decimal computation, the float

should never be used for currency amounts.

This can be a problem when spreadsheet data is involved. Spreadsheet software generally

uses float values with complex formatting rules to produce correct-looking answers. This

can lead to odd-looking values in a CSV extract like 12.999999997 for an attribute that

should have currency values.

Additionally, currency may be decorated with currency symbols like $, £, or e. There may

also be separator characters thrown in, depending on the locale. For the US locale, this can

mean stray “,” characters may be present in large numbers.

The ways currency values may have text decoration suggest the conversion function

used by a non_numeric() or numeric_filter() function will have to be somewhat more

sophisticated than the simple use of the Decimal class.

Because of these kinds of anomalies, data inspection is a critical step in data acquisition

and analysis.

Dealing with intervals or durations

Some date will include duration data in the form "12:34", meaning 12 hours and 34 minutes.

This looks exactly like a time of day. In some cases, it might have the form 12h 34m, which

is a bit easier to parse. Without metadata to explain if an attribute is a duration or a time

Chapter 7 189

of day, this may be impossible to understand.

For durations, it’s helpful to represent the values as a single, common time unit. Seconds

are a popular choice. Days are another common choice.

We can create a cell with a given string, for example:

time_text = "12:34"

Given this string, we can create a cell to compute the duration in seconds as follows:

import re

m = re.match(r"(\d+):(\d+)", time_text)

h, m = map(int, m.groups())

sec = (h*60 + m) * 60

sec

This will compute a duration, sec, of 45,240 seconds from the source time as text, time_text.

The final expression sec in a Jupyter notebook cell will display this variable’s value to

confirm the computation worked. This cardinal value computation works out elegantly.

For formatting purposes, the inverse computation can be helpful. A floating-point value

like 45,240 can be converted back into a sequence of integers, like (12, 34, 0), which can be

formatted as “12:34” or “12h 34m 0s”.

It might look like this:

h_m, s = divmod(sec, 60)

h, m = divmod(h_m, 60)

text = f"{h:02d}:{m:02d}"

text

This will produce the string 12:34 from the value of seconds given in the sec variable. The

final expression text in a cell will display the computed value to help confirm the cell

works.

190 Data Inspection Features

It’s important to normalize duration strings and complex-looking times into a single float

value.

Now that we’ve looked at some of the tricky cardinal data fields, we can look at the notebook

as a whole. In the next section, we’ll look at refactoring the notebook to create a useful

module.

Extract notebook functions

The computation of ordinary Z-scores and median-based Z-scores are similar in several

ways. Here are some common features we might want to extract:

• Extracting the center and variance. This might be the mean and standard deviation,

using the statistics module. Or it might be the median and MAD.

• Creating a function to compute Z-scores from the mean or median.

• Applying the filter() function to locate outliers.

When looking at data with a large number of attributes, or looking at a large number of

related data sets, it’s helpful to write these functions first in the notebook. Once they’ve

been debugged, they can be cut from the notebook and collected into a separate module.

The notebook can then be modified to import the functions, making it easier to reuse these

functions.

Because the source data is pushed into a dictionary with string keys, it becomes possible to

consider functions that work across a sequence of key values. We might have cells that

look like the following example:

for column in ('x', 'y'):

values = list(

numeric_filter(float, (s[column] for s in series_4_data))

)

m = median(values)

print(column, len(series_4_data), len(values), m)

This will analyze all of the columns named in the surrounding for statement. In this

Chapter 7 191

example, the x and y column names are provided as the collection of columns to analyze.

The result is a small table of values with the column name, the raw data size, the filtered

data size, and the median of the filtered data.

The idea of a collection of descriptive statistics suggests a class to hold these. We might

add the following dataclass:

from dataclasses import dataclass

@dataclass

class AttrSummary:

name: str

raw_count: int

valid_count: int

median: float

@classmethod

def from_raw(

cls: Type["AttrSummary"],

column: str,

text_values: list[str]

) -> "AttrSummary":

values = list(numeric_filter(float, text_values))

return cls(

name=column,

raw_count=len(text_values),

valid_count=len(values),

median=median(values)

)

192 Data Inspection Features

The class definition includes a class method to build instances of this class from a collection

of raw values. Putting the instance builder into the class definition makes it slightly easier

to add additional inspection attributes and the functions needed to compute those attributes.

A function that builds AttrSummary instances can be used to summarize the attributes of a

data set. This function might look like the following:

from collections.abc import Iterator

from typing import TypeAlias

Samples: TypeAlias = list[dict[str, str]]

def summary_iter(

samples: Samples,

columns: list[str]

) -> Iterator[AttrSummary]:

for column in columns:

text = [s[column] for s in samples]

yield AttrSummary.from_raw(column, text)

This kind of function makes it possible to reuse inspection code for a number of attributes

in a complicated data set. After looking at the suggested technical approach, we’ll turn to

the deliverables for this project.

Deliverables
This project has the following deliverables:

• A requirements-dev.txt file that identifies the tools used, usually

jupyterlab==3.5.3.

• Documentation in the docs folder.

• Unit tests for any new changes to the modules in use.

• Any new application modules with code to be used by the inspection notebook.

Chapter 7 193

• A notebook to inspect the attributes that appear to have cardinal data.

This project will require a notebooks directory. See List of deliverables for some more

information on this structure.

We’ll look at a few of these deliverables in a little more detail.

Inspection module

You are encouraged to refactor functions like samples_iter(), non_numeric(), and

numeric_filter() into a separate module. Additionally, the AttrSummary class and the

closely related summary_iter() function are also good candidates for being moved to a

separate module with useful inspection classes and functions.

Notebooks can be refactored to import these classes and functions from a separate module.

It’s easiest to throw this module into the notebooks folder to make it easier to access. An

alternative is to include the src directory on the PYTHONPATH environment variable, making

it available to the Jupyter Lab session.

Another alternative is to create an IPython profile with the ipython profile create

command at the terminal prompt. This will create a ~/.ipython/profile_default directory

with the default configuration files in it. Adding a startup folder permits including scripts

that will add the src directory to the sys.path list of places to look for modules.

See https://ipython.readthedocs.io/en/stable/interactive/tutorial.html#start

up-files.

Unit test cases for the module

The various functions were refactored from a notebook to create a separate module need

unit tests. In many cases, the functions will have doctest examples; the notebook as a

whole will have a doctest cell.

In this case, an extra option in the pytest command will execute these tests, as well.

% pytest --doctest-modules notebooks/*.py

https://ipython.readthedocs.io/en/stable/interactive/tutorial.html#startup-files
https://ipython.readthedocs.io/en/stable/interactive/tutorial.html#startup-files

194 Data Inspection Features

The --doctest-modules option will look for the doctest examples and execute them.

An alternative is to use the Python doctest command directly.

% python -m doctest notebooks/*.py

It is, of course, essential to test the code extracted from the notebook to be sure it works

properly and can be trusted.

This revised and expanded inspection notebook lets an analyst inspect unknown data

sources to confirm values are likely to be cardinal numbers, for example, measures or

counts. Using a filter function can help locate invalid or other anomalous text. Some

statistical techniques can help to locate outlying values.

In the next project, we’ll look at non-cardinal data. This includes nominal data (i.e., strings of

digits that aren’t numbers), and ordinal values that represent ranking or ordering positions.

Project 2.3: Validating text and codes — nominal
data and ordinal numbers
Description
In the previous project (Project 2.2: Validating cardinal domains — measures, counts, and

durations), we looked at attributes that contained cardinal data – measures and counts. We

also need to look at ordinal and nominal data. Ordinal data is generally used to provide

ranks and ordering. Nominal data is best thought of as codes made up of strings of digits.

Values like US postal codes and bank account numbers are nominal data.

When we look at the CO2 PPM — Trends in Atmospheric Carbon Dioxide data set,

available at https://datahub.io/core/co2-ppm, it has dates that are provided in two

forms: as a year-month-day string and as a decimal number. The decimal number positions

the first day of the month within the year as a whole.

It’s instructive to use ordinal day numbers to compute unique values for each date and

compare these with the supplied “Decimal Date” value. An integer day number may be

https://datahub.io/core/co2-ppm

Chapter 7 195

more useful than the decimal date value because it avoids truncation to three decimal

places.

Similarly, many of the data sets available from https://berkeleyearth.org/data/

contain complicated date and time values. Looking at the source data, https://berk

eleyearth.org/archive/source-files/ has data sets with nominal values to encode

precipitation types or other details of historical weather. For even more data, see https:

//www.ncdc.noaa.gov/cdo-web/. All of these datasets have dates in a variety of formats.

What’s important for this project is to get an overview of the data that involves dates

and nominal code values. Later projects will look at cleaning and converting the data for

further use. This notebook is only designed to preview and inspect the data. It is used to

demonstrate the data is complete and consistent and can be used for further processing.

Dates and times

A date, time, and the combined date-time value represent a specific point in time, sometimes

called a timestamp. Generally, these are modeled by Python datetime objects.

A date in isolation can generally be treated as a datetime with a time of midnight. A time

in isolation is often part of a date stated elsewhere in the data or assumed from context.

Ideally, a date-time value has been broken into separate columns of data for no good reason

and can be combined. In other cases, the data might be a bit more difficult to track down.

For example, a log file as a whole might have an implied date — because each log file starts

at midnight UTC — and the time values must be combined with the (implied) log’s date.

Date-time values are quite complex and rich with strange quirks. To keep the Gregorian

calendar aligned with the positions of stars, and the Moon, leap days are added periodically.

The datetime library in Python is the best way to work with the calendar.

It’s generally a bad idea to do any date-time computation outside the

datetime package.

Home-brewed date computations are difficult to implement correctly.

https://berkeleyearth.org/data/
https://berkeleyearth.org/archive/source-files/
https://berkeleyearth.org/archive/source-files/
https://www.ncdc.noaa.gov/cdo-web/
https://www.ncdc.noaa.gov/cdo-web/

196 Data Inspection Features

The toordinal() function of a datetime.datetime object provides a clear relationship

between dates and an ordinal number that can be used to put dates into order.

Because months are irregular, there are several common kinds of date computations:

• A date plus or minus a duration given in months. The day of the month is generally

preserved, except in the unusual case of February 29, 30, or 31, where ad hoc rules

will apply.

• A date plus or minus a duration given in days or weeks.

These kinds of computations can result in dates in a different year. For month-based

computations, an ordinal month value needs to be computed from the date. Given a date,

𝑑, with a year, 𝑑.𝑦, and a month 𝑑.𝑚, the ordinal month, 𝑚𝑜, is 𝑑.𝑦 × 12 + 𝑑.𝑚 − 1. After a

computation, the divmod() function will recover the year and month of the result. Note

that months are generally numbered from 1, but the ordinal month computation numbers

months from zero. This leads to a −1 when creating an ordinal month from a date, and

a +1 when creating a date from an ordinal month. As noted above, when the resulting

month is February, something needs to be done to handle the exceptional case of trying to

build a possibly invalid date with a day number that’s invalid in February of the given year.

For day- or week-based computations, the toordinal() function and fromordinal()

functions will work correctly to order and compute differences between dates.

All calendar computations must be done using ordinal values.

Here are the three steps:

1. Either use the built-in toordinal() method of a datetime object, or

compute an ordinal month number.

2. Apply duration offsets to the ordinal value.

3. Either use the built-in fromordinal() class method of the datetime

class, or use the divmod() function to compute the year and month

of the ordinal month number.

Chapter 7 197

For some developers, the use of ordinal numbers for dates can feel complicated.

Using if statements to decide if an offset from a date is in a different year is

less reliable and requires more extensive edge-case testing. Using an expression like

year, month = divmod(date, 12) is much easier to test.

In the next section, we’ll look at time and the problem of local time.

Time values, local time, and UTC time

Local time is subject to a great deal of complex-seeming rules, particularly in the US.

Some countries have a single time zone, simplifying what constitutes local time. In the

US, however, each county decides which timezone it belongs to, leading to very complex

situations that don’t necessarily follow US state borders.

Some countries (the US and Europe, as well as a scattering of other places) offset the

time (generally, but not universally by one hour) for part of the year. The rules are not

necessarily nationwide; Canada, Mexico, Australia, and Chile have regions that don’t have

daylight savings time offsets. The Navajo nation — surrounded by the state of Arizona in

the US — doesn’t switch its clocks.

The rules are here: https://data.iana.org/time-zones/tz-link.html. This is part of

the Python datetime library and is already available in Python.

This complexity makes use of the universal coordinated time (UTC) imperative.

Local times should be converted into UTC for analysis purposes.

See https://www.rfc-editor.org/rfc/rfc3339 for time formats that can

include a local-time offset.

UTC can be converted back into local time to be displayed to users.

Approach
Dates and times often have bewildering formats. This is particularly true in the US, where

dates are often written as numbers in month/day/year format. Using year/month/day

https://data.iana.org/time-zones/tz-link.html
https://www.rfc-editor.org/rfc/rfc3339

198 Data Inspection Features

puts the values in order of significance. Using day/month/year is the reverse order of

significance. The US ordering is simply strange.

This makes it difficult to do inspections on completely unknown data without any metadata

to explain the serialization format. A date like 01/02/03 could mean almost anything.

In some cases, a survey of many date-like values will reveal a field with a range of 1-12 and

another field with a range of 1-31, permitting analysts to distinguish between the month

and day. The remaining field can be taken as a truncated year.

In cases where there is not enough data to make a positive identification of month or day,

other clues will be needed. Ideally, there’s metadata to define the date format.

The datetime.strptime() function can be used to parse dates when the format(s) are

known. Until the date format is known, the data must be used cautiously.

Here are two Python modules that can help parse dates:

• https://pypi.org/project/dateparser/

• https://pypi.org/project/python-dateutil/

It’s important to carefully inspect the results of date parsing to be sure the results are

sensible. There are some confounding factors.

Years, for example, can be provided as two or four digits. For example, when dealing with

old data, it’s important to note the use of two-digit encoding schemes. For a few years prior

to 2000, the year of date might have been given as a complicated two-digit transformation.

In one scheme, values from 0 to 29 meant years 2000 to 2029. Values from 30 to 99 meant

years 1930 to 1999. These rules were generally ad hoc, and different enterprises may have

used different year encodings.

Additionally, leap seconds have been added to the calendar a few times as a way to keep

the clocks aligned with planetary motion. Unlike leap years, these are the result of ongoing

research by astronomers, and are not defined by the way leap years are defined.

See https://www.timeanddate.com/time/leapseconds.html for more information.

https://pypi.org/project/dateparser/
https://pypi.org/project/python-dateutil/
https://www.timeanddate.com/time/leapseconds.html

Chapter 7 199

The presence of a leap second means that a timestamp like 1972-06-30T23:59:60 is valid.

The 60 value for seconds represents the additional leap second. As of this book’s initial

publication, there were 26 leap seconds, all added on June 30 or December 31 of a given

year. These values are rare but valid.

Nominal data

Nominal data is not numeric but may consist of strings of digits, leading to possible sources

of confusion and — in some cases — useless data conversions. While nominal data should

be treated as text, it’s possible for a spreadsheet to treat US Postal ZIP codes as numbers

and truncate the leading zeroes. For example, North Adams, MA, has a ZIP code of 01247.

A spreadsheet might lose the leading zero, making the code 1247.

While it’s generally best to treat nominal data as text, it may be necessary to reformat ZIP

codes, account numbers, or part numbers to restore the leading zeroes. This can be done in

a number of ways; perhaps the best is to use f-strings to pad values on the left with leading

“0” characters. An expression like f"{zip:0>5s}" creates a string from the zip value using

a format of 0>5s. This format has a padding character, 0, a padding rule of >, and a target

size of 5. The final character s is the type of data expected; in this case, a string.

An alternative is something like (5*"0" + zip)[-5:] to pad a given zip value to 5 positions.

This prepends zeroes and then takes the right-most five characters. It doesn’t seem as

elegant as an f-string but can be more flexible.

Extend the data inspection module

In the previous project, Project 2.2: Validating cardinal domains — measures, counts, and

durations, we considered adding a module with some useful functions to examine cardinal

data. We can also add functions for ordinal and nominal data.

For a given problem domain, the date parsing can be defined as a separate, small function.

This can help to avoid the complicated-looking strptime() function. In many cases, there

are only a few date formats, and a parsing function can try the alternatives. It might look

like this:

200 Data Inspection Features

import datetime

def parse_date(source: str) -> datetime.datetime:

formats = "%Y-%m-%d", "%y-%m-%d", "%Y-%b-%d"

for fmt in formats:

try:

return datetime.datetime.strptime(source, fmt)

except ValueError:

pass

raise ValueError(f"datetime data {source!r} not in any of {formats}

format")

This function has three date formats that it attempts to use to convert the data. If none of

the formats match the data, a ValueError exception is raised.

For rank ordering data and codes, a notebook cell can rely on a collections.Counter

instance to get the domain of values. More sophisticated processing is not required for

simple numbers and nominal codes.

Deliverables
This project has the following deliverables:

• A requirements-dev.txt file that identifies the tools used, usually

jupyterlab==3.5.3.

• Documentation in the docs folder.

• Unit tests for any new changes to the modules in use.

• Any new application modules with code to be used by the inspection notebook.

• A notebook to inspect the attributes that appear to have ordinal or nominal data.

The project directory structure suggested in Chapter 1, Project Zero: A Template for Other

Projects mentions a notebooks directory. See List of deliverables for some more information.

Chapter 7 201

For this project, the notebook directory is needed.

We’ll look at a few of these deliverables in a little more detail.

Revised inspection module

Functions for date conversions and cleaning up nominal data can be written in a separate

module. Or they can be developed in a notebook, and then moved to the inspection module.

As we noted in the Description section, this project’s objective is to support the inspection

of the data and the identification of special cases, data anomalies, and outlier values.

Later, we can look at refactoring these functions into a more formal and complete data

cleansing module. This project’s goal is to inspect the data and write some useful functions

for the inspection process. This will create seeds to grow a more complete solution.

Unit test cases

Date parsing is — perhaps — one of the more awkwardly complicated problems. While

we often think we’ve seen all of the source data formats, some small changes to upstream

applications can lead to unexpected changes for data analysis purposes.

Every time there’s a new date format, it becomes necessary to expand the unit tests with the

bad data, and then adjust the parser to handle the bad data. This can lead to a surprisingly

large number of date-time examples.

When confronted with a number of very similar cases, the pytest parameterized fixtures

are very handy. These fixtures provide a number of examples of a test case.

The fixture might look like the following:

import pytest

EXAMPLES = [

('2021-01-18', datetime.datetime(2021, 1, 18, 0, 0)),

('21-01-18', datetime.datetime(2021, 1, 18, 0, 0)),

('2021-jan-18', datetime.datetime(2021, 1, 18, 0, 0)),

]

202 Data Inspection Features

@pytest.fixture(params=EXAMPLES)

def date_example(request):

return request.param

Each of the example values is a two-tuple with input text and the expected datetime object.

This pair of values can be decomposed by the test case.

A test that uses this fixture full of examples might look like the following:

def test_date(date_example):

text, expected = date_example

assert parse_date(text) == expected

This kind of test structure permits us to add new formats as they are discovered. The test

cases in the EXAMPLES variable are easy to expand with additional formats and special cases.

Now that we’ve looked at inspecting cardinal, ordinal, and nominal data, we can turn to

a more specialized form of nominal data: key values used to follow references between

separate data sets.

Project 2.4: Finding reference domains
In many cases, data is decomposed to avoid repetition. In Chapter 5, Data Acquisition

Features: SQL Database, we touched on the idea of normalization to decompose data.

As an example, consider the data sets in this directory: https://www.ncei.noaa.gov/pu

b/data/paleo/historical/northamerica/usa/new-england/

There are three separate files. Here’s what we see when we visit the web page.

Here’s the index of the /pub/data/paleo/historical/northamerica/usa/new-england

file:

https://www.ncei.noaa.gov/pub/data/paleo/historical/northamerica/usa/new-england/
https://www.ncei.noaa.gov/pub/data/paleo/historical/northamerica/usa/new-england/

Chapter 7 203

Name Last modified Size Description

Parent Directory -

new-england-oldweather-data.txt 2014-01-30 13:02 21M

readme-new-england-oldweather.txt 2014-01-29 19:22 9.6K

town-summary.txt 2014-01-29 18:51 34K

The readme-new-england-oldweather.txt file has descriptions of a number of codes and

their meanings used in the main data set. The “readme” file provides a number of mappings

from keys to values. The keys are used in the massive “oldweather-data” file to reduce the

repetition of data.

These mappings include the following:

• The Temperature Code Key

• The Precipitation Type Key

• The Precipitation Amount key

• The Snowfall Amount key

• The Like Values Code key

• The Pressure Code Key

• The Sky Cover Key

• The Sky Classification Key

• The Location Code Key

This is a rather complex decomposition of primary data into coded values.

Description
In cases where data is decomposed or normalized, we need to confirm that references

between items are valid. Relationships are often one-way — a sample will have a reference

to an item in another collection of data. For example, a climate record may have a reference

204 Data Inspection Features

to “Town Id” (TWID) with a value like NY26. A second data set with the “location code key”

provides detailed information on the definition of the NY26 town ID. There’s no reverse

reference from the location code data set to all of the climate records for that location.

We often depict this relationship as an ERD. For example, Figure 7.1.

C WeatherData

ID: text

date: text
time: text
temp: text

C Location

TWID: text
town: text

records: text
period: text
state: text

refers to

1

m

Figure 7.1: A Normalized Relationship

A number of weather data records refer to a single location definition.

The database designers will call the Location’s “TWID” attribute a primary key. The

WeatherData’s ID attribute is called a foreign key; it’s a primary key for a different class

of entities. These are often abbreviated as PK and FK.

There are two closely related questions about the relationship between entities:

• What is the cardinality of the relationship? This must be viewed from both directions.

How many primary key entities have relationships with foreign key entities? How

many foreign key entities have a relationship with a primary key entity?

• What is the optionality of the relationship? Again, we must ask this in both directions.

Chapter 7 205

Must a primary entity have any foreign key references? Must the foreign key item

have a primary key reference?

While a large number of combinations are possible, there are a few common patterns.

• The mandatory many-to-one relationship. This is exemplified by the historical

weather data. Many weather data records must refer to a single location definition.

There are two common variants. In one case, a location must have one or more

weather records. The other common variant may have locations without any weather

data that refers to the location.

• An optional one-to-one relationship. This isn’t in the weather data example, but we

may have invoices with payments and invoices without payments. The relationship

is one-to-one, but a payment may not exist yet.

• A many-to-many relationship. An example of a many-to-many relationship is a

product entity that has a number of features. Features are reused between products.

This requires a separate many-to-many association table to track the relationship

links.

This leads to the following two detailed inspections:

1. The domain of primary key values. For example, the “TWID” attribute of each

location.

2. The domain of the foreign key values. For example, the ID attribute of each weather

data record.

If these two sets are identical, we can be sure the foreign keys all have matching primary

keys. We can count the number of rows that share a foreign key to work out the cardinality

(and the optionality) of the relationship.

If the two sets are not identical, we have to determine which set has the extra rows. Let’s

call the two sets 𝑃 and 𝐹 . Further, we know that 𝑃 ≠ 𝐹 . There are a number of scenarios:

• 𝑃 ⊃ 𝐹 : This means there are some primary keys without any foreign keys. If the

206 Data Inspection Features

relationship is optional, then, there’s no problem. The 𝑃 ⧵ 𝐹 is the set of unused

entities.

• 𝐹 ⊂ 𝑃 : This means there are foreign keys that do not have an associated primary key.

This situation may be a misunderstanding of the key attributes, or it may mean data

is missing.

What’s important for this project is to have an overview of key values and their relationship.

This notebook is only designed to preview and inspect the data. It is used to demonstrate

the data is complete and consistent, and can be used for further processing.

In the next section, we’ll look at how we can build cells in a notebook to compare the keys

and determine the cardinality of the relationships.

Approach
To work with data sets like https://www.ncei.noaa.gov/pub/data/paleo/historical/

northamerica/usa/new-england/ we’ll need to compare keys.

This will lead to two kinds of data summarization cells in an inspection notebook:

• Summarizing primary keys in a Counter object.

• Summarizing foreign key references to those primary keys, also using a Counter.

Once the Counter summaries are available, then the .keys() method will have the distinct

primary or foreign key values. This can be transformed into a Python set object, permitting

elegant comparison, subset checking, and set subtraction operations.

We’ll look at the programming to collect key values and references to keys first. Then,

we’ll look at summaries that are helpful.

Collect and compare keys

The core inspection tool is the collections.Counter class. Let’s assume we have done

two separate data acquisition steps. The first extracted the location definitions from the

readme-new-england-oldweather.txt file.

https://www.ncei.noaa.gov/pub/data/paleo/historical/northamerica/usa/new-england/
https://www.ncei.noaa.gov/pub/data/paleo/historical/northamerica/usa/new-england/

Chapter 7 207

The second converted all of the new-england-oldweather-data.txt weather data records

into a separate file.

The inspection notebook can load the location definitions and gather the values of the TWID

attribute.

One cell for loading the key definitions might look like this:

from pathlib import Path

from inspection import samples_iter

location_path = Path("/path/to/location.ndjson")

with location_path.open() as data_file:

locations = list(samples_iter(data_file))

A cell for inspecting the definitions of the town keys might look like this:

import collections

town_id_count = collections.Counter(

row['TWID'] for row in locations

)

town_id_set = set(town_id_count.keys())

This creates the town_id_set variable with a set of IDs in use. The values of the

town_id_counts variable are the number of location definitions for each ID. Since this is

supposed to be a primary key, it should have only a single instance of each value.

The data with references to the town keys may be much larger than the definitions of the

keys. In some cases, it’s not practical to load all the data into memory, and instead, the

inspection needs to work with summaries of selected columns.

For this example, that means a list object is not created with the weather data. Instead, a

generator expression is used to extract a relevant column, and this generator is then used

to build the final summary Counter object.

208 Data Inspection Features

The rows of data with references to the foreign keys might look like this:

weather_data_path = Path("/path/to/weather-data.ndjson")

with weather_data_path.open() as data_file:

weather_reports = samples_iter(data_file)

weather_id_count = collections.Counter(

row['ID'] for row in weather_reports

Once the weather_id_count summary has been created, the following cell can compute

the domain of key references like this:

weather_id_set = set(weather_id_count.keys())

It’s important to note that this example emphatically does not create a list of individual

weather report samples. That would be a lot of data jammed into memory at one time.

Instead, this example uses a generator expression to extract the 'ID' attribute from each

row. These values are used to populate the weather_id_count variable. This is used to

extract the set of IDs in use in the weather reports.

Since we have two sets, we can use Python’s set operations to compare the two. Ideally, a

cell can assert that weather_id_set == town_id_set. If the two are not equal, then the

set subtraction operation can be used to locate anomalous data.

Summarize keys counts

The first summary is the comparison of primary keys to foreign keys. If the two sets don’t

match, the list of missing foreign keys may be helpful for locating the root cause of the

problem.

Additionally, the range of counts for a foreign key provides some hints as to its cardinality

and optionality. When a primary key has no foreign key values referring to it, the

relationship appears optional. This should be confirmed by reading the metadata

descriptions. The lower and upper bounds on the foreign key counts provide the range of

the cardinality. Does this range make sense? Are there any hints in the metadata about the

cardinality?

Chapter 7 209

The example data source for this project includes a file with summary counts. The

town-summary.txt file has four columns: “STID”, “TWID”, “YEAR”, and “Records”. The

“STID” is from the location definitions; it’s the US state. The “TWID” is the town ID. The

“YEAR” is from the weather data; it’s the year of the report. Finally, the “Records” attribute

is the count of weather reports for a given location and year.

The Town ID and Year form a logical pair of values that can be used to build a

collections.Counter object. To fully reproduce this table, though, the location definitions

are needed to map a Town ID, “TWID,” to the associated state, “STID.”

While it’s also possible to decompose the “TWID” key to extract the state information from

the first two characters, this is not a good design alternative. This composite key is an

uncommon kind of key design. It’s considerably more common for primary keys to be

atomic with no internal information available. A good design treats the key as an opaque

identifier and looks up the state information in the associated location definition table from

the readme file.

Deliverables
This project has the following deliverables:

• A requirements-dev.txt file that identifies the tools used, usually

jupyterlab==3.5.3.

• Documentation in the docs folder.

• Unit tests for any new changes to the modules in use.

• Any new application modules with code to be used by the inspection notebook.

• A notebook to inspect the attributes that appear to have foreign or primary keys.

The project directory structure suggested in Chapter 1, Project Zero: A Template for Other

Projects mentions a notebooks directory. See List of deliverables for some more information.

For this project, the notebook directory is needed.

We’ll look at a few of these deliverables in a little more detail.

210 Data Inspection Features

Revised inspection module

The functions for examining primary and foreign keys can be written in a separate module.

It’s often easiest to develop these in a notebook first. There can be odd discrepancies that

arise because of misunderstandings. Once the key examination works, it can be moved to

the inspection module. As we noted in the Description, this project’s objective is to support

the inspection of the data and the identification of special cases, data anomalies, and outlier

values.

Unit test cases

It’s often helpful to create test cases for the most common varieties of key problems: primary

keys with no foreign keys and foreign keys with no primary keys. These complications don’t

often arise with readily available, well-curated data sets; they often arise with enterprise

data with incomplete documentation.

This can lead to rather lengthy fixtures that contain two collections of source objects. It

doesn’t take many rows of data to reveal a missing key; two rows of data are enough to

show a key that’s present and a row with a missing key.

It’s also essential to keep these test cases separate from test cases for cardinal data

processing, and ordinal data conversions. Since keys are a kind of nominal data, a key

cardinality check may be dependent on a separate function to clean damaged key values.

For example, real data may require a step to add leading zeroes to account numbers before

they can be checked against a list of transactions to find transactions for the account.

These two operations on account number keys need to be built — and tested — in isolation.

The data cleanup application can combine the two functions. For now, they are separate

concerns with separate test cases.

Revised notebook to use the refactored inspection model

A failure to resolve foreign keys is a chronic problem in data acquisition applications. This

is often due to a wide variety of circumstances, and there’s no single process for data

inspection. This means a notebook can have a spectrum of information in it. We might see

Chapter 7 211

any of the following kinds of cells:

• A cell explaining the sets of keys match, and the data is likely usable.

• A cell explaining some primary keys have no foreign key data. This may include

a summary of this subset of samples, separate from samples that have foreign key

references.

• A cell explaining some foreign keys that have no primary key. These may may reflect

errors in the data. It may reflect a more complex relationship between keys. It may

reflect a more complicated data model. It may reflect missing data.

In all cases, an extra cell with some markdown explaining the results is necessary. In the

future, you will be grateful because in the past, you left an explanation of an anomaly in

your notebook.

Summary
This chapter expanded on the core features of the inspection notebook. We looked at

handling cardinal data (measures and counts), ordinal data (dates and ranks), and nominal

data (codes like account numbers).

Our primary objective was to get a complete view of the data, prior to formalizing our

analysis pipeline. A secondary objective was to leave notes for ourselves on outliers,

anomalies, data formatting problems and other complications. A pleasant consequence of

this effort is to be able to write some functions that can be used downstream to clean and

normalize the data we’ve found.

Starting in Chapter 9, Project 3.1: Data Cleaning Base Application, we’ll look at refactoring

these inspection functions to create a complete and automated data cleaning and

normalization application. That application will be based on the lessons learned while

creating inspection notebooks.

In the next chapter, we’ll look at one more lesson that’s often learned from the initial

inspection. We often discover the underlying schema behind multiple, diverse sources

212 Data Inspection Features

of data. We’ll look at formalizing the schema definition via JSONSchema, and using the

schema to validate data.

Extras
Here are some ideas for you to add to the projects in this chapter.

Markdown cells with dates and data source information
A minor feature of an inspection notebook is some identification of the date, time, and

source of the data. It’s sometimes clear from the context what the data source is; there may,

for example, be an obvious path to the data.

However, in many cases, it’s not perfectly clear what file is being inspected or how it was

acquired. As a general solution, any processing application should produce a log. In some

cases, a metadata file can include the details of the processing steps.

This additional metadata on the source and processing steps can be helpful when reviewing

a data inspection notebook or sharing a preliminary inspection of data with others. In

many cases, this extra data is pasted into ordinary markdown cells. In other cases, this

data may be the result of scanning a log file for key INFO lines that summarize processing.

Presentation materials
A common request is to tailor a presentation to users or peers to explain a new source of

data, or explain anomalies found in existing data sources. These presentations often involve

an online meeting or in-person meeting with some kind of “slide deck” that emphasizes

the speaker’s points.

Proprietary tools like Keynote or PowerPoint are common for these slide decks.

A better choice is to organize a notebook carefully and export it as reveal.js slides.

The RISE extension for Jupyter is popular for this. See https://rise.readthedocs.io/en

/stable/.

Having a notebook that is also the slide presentation for business owners and users provide

https://rise.readthedocs.io/en/stable/
https://rise.readthedocs.io/en/stable/

Chapter 7 213

a great deal of flexibility. Rather than copying and pasting to move data from an inspection

notebook to PowerPoint (or Keynote), we only need to make sure each slide has a few key

points about the data. If the slide has a data sample, it’s only a few rows, which provide

supporting evidence for the speaker’s remarks.

In many enterprises, these presentations are shared widely. It can be beneficial to make sure

the data in the presentation comes directly from the source and is immune to copy-paste

errors and omissions.

JupyterBook or Quarto for even more sophisticated output
In some cases, a preliminary inspection of data may involve learning a lot of lessons about

the data sources, encoding schemes, missing data, and relationships between data sets.

This information often needs to be organized and published.

There are a number of ways to disseminate lessons learned about data:

• Share the notebooks. For some communities of users, the interactive nature of a

notebook invites further exploration.

• Export the notebook for publication. One choice is to create a PDF that can be shared.

Another choice is to create RST, Markdown, or LaTeX and use a publishing pipeline

to build a final, shareable document.

• Use a tool like Jupyter{Book} to formalize the publication of a shareable document.

• Use Quarto to publish a final, shareable document.

For Jupyter{Book}, see https://jupyterbook.org/en/stable/intro.html. The larger

“Executable{Books}” project (https://executablebooks.org/en/latest/tools.html)

describes the collection of Python-related tools, including Myst-NB, Sphinx, and some

related Sphinx themes. The essential ingredient is using Sphinx to control the final

publication.

For Quarto, see https://quarto.org. This is somewhat more tightly integrated: it requires

a single download of the Quarto CLI. The Quarto tool leverages Pandoc to produce a final,

https://jupyterbook.org/en/stable/intro.html
https://executablebooks.org/en/latest/tools.html
https://quarto.org

214 Data Inspection Features

elegant, ready-to-publish file.

You are encouraged to look at ways to elevate the shared notebook to an elegant report

that can be widely shared.

8
Project 2.5: Schema and
Metadata

It helps to keep the data schema separate from the various applications that share the

schema. One way to do this is to have a separate module with class definitions that all of the

applications in a suite can share. While this is helpful for a simple project, it can be awkward

when sharing data schema more widely. A Python language module is particularly difficult

for sharing data outside the Python environment.

This project will define a schema in JSON Schema Notation, first by building pydantic class

definitions, then by extracting the JSON from the class definition. This will allow you to

publish a formal definition of the data being created. The schema can be used by a variety

of tools to validate data files and assure that the data is suitable for further analytical use.

The schema is also useful for diagnosing problems with data sources. Validator tools like

jsonschema can provide detailed error reports that can help identify changes in source

data from bug fixes or software updates.

216 Project 2.5: Schema and Metadata

This chapter will cover a number of skills related to data inspection techniques:

• Using the Pydantic module for crisp, complete definitions

• Using JSON Schema to create an exportable language-independent definition that

anyone can use

• Creating test scenarios to use the formal schema definition

We’ll start by looking at the reasons why a formal schema is helpful.

Description
Data validation is a common requirement when moving data between applications. It is

extremely helpful to have a clear definition of what constitutes valid data. It helps even

more when the definition exists outside a particular programming language or platform.

We can use the JSON Schema (https://json-schema.org) to define a schema that applies

to the intermediate documents created by the acquisition process. Using JSON Schema

enables the confident and reliable use of the JSON data format.

The JSON Schema definition can be shared and reused within separate Python projects

and with non-Python environments, as well. It allows us to build data quality checks into

the acquisition pipeline to positively affirm the data really fit the requirements for analysis

and processing.

Additional metadata provided with a schema often includes the provenance of the data

and details on how attribute values are derived. This isn’t a formal part of a JSON Schema,

but we can add some details to the JSON Schema document that includes provenance and

processing descriptions.

The subsequent data cleaning projects should validate the input documents using a source

schema. Starting with Chapter 9, Project 3.1: Data Cleaning Base Application, the applications

should validate their output using the target analytic schema. It can seem silly to have an

application both create sample records and also validate those records against a schema.

What’s important is the schema will be shared, and evolve with the needs of consumers of

(https://json-schema.org)

Chapter 8 217

the data. The data acquisition and cleaning operations, on the other hand, evolve with the

data sources. It is all too common for an ad hoc solution to a data problem to seem good

but create invalid data.

It rarely creates new problems to validate inputs as well as outputs against a visible,

agreed-upon schema. There will be some overhead to the validation operation, but much

of the processing cost is dominated by the time to perform input and output, not data

validation.

Looking forward to Chapter 12, Project 3.8: Integrated Data Acquisition Web Service, we’ll

see additional uses for a formally-defined schema. We’ll also uncover a small problem with

using JSON Schema to describe ND JSON documents. For now, we’ll focus on the need to

use JSON Schema to describe data.

We’ll start by adding some modules to make it easier to create JSON Schema documents.

Approach
First, we’ll need some additional modules. The jsonschema module defines a validator that

can be used to confirm a document matches the defined schema.

Additionally, the Pydantic module provides a way to create class definitions that can emit

JSON Schema definitions, saving us from having to create the schema manually. In most

cases, manual schema creation is not terribly difficult. For some cases, though, the schema

and the validation rules might be challenging to write directly, and having Python class

definitions available can simplify the process.

This needs to be added to the requirements-dev.txt file so other developers know to

install it.

When using conda to manage virtual environments, the command might look like the

following:

% conda install jsonschema pydantic

218 Project 2.5: Schema and Metadata

When using other tools to manage virtual environments, the command might look like the

following:

% python -m pip install jsonschema pydantic

The JSON Schema package requires some supplemental type stubs. These are used by

the mypy tool to confirm the application is using types consistently. Use the following

command to add stubs:

% mypy --install-types

Additionally, the pydantic package includes a mypy plug-in that will extend the

type-checking capabilities of mypy. This will spot more nuanced potential problems

with classes defined using pydantic.

To enable the plugin, add pydantic.mypy to the list of plugins in the mypy configuration

file, mypy.ini. The mypy.ini file should look like this:

[mypy]
plugins = pydantic.mypy

(This file goes in the root of the project directory.)

This plugin is part of the pydantic download, and is compatible with mypy versions

starting with 0.910.

With these two packages, we can define classes with details that can be used to create

JSON Schema files. Once we have a JSON Schema file, we can use the schema definition to

confirm that sample data is valid.

For more information on Pydantic, see https://docs.pydantic.dev.

The core concept is to use Pydantic to define dataclasses with detailed field definitions.

These definitions can be used for data validation in Python. The definition can also be used

https://docs.pydantic.dev

Chapter 8 219

to emit a JSON Schema document to share with other projects.

The schema definitions are also useful for defining an OpenAPI specification. In Chapter 12,

Project 3.8: Integrated Data Acquisition Web Service, we’ll turn to creating a web service

that provides data. The OpenAPI specification for this service will include the schema

definitions from this project.

The use of Pydantic isn’t required. It is, however, very convenient for creating a schema

that can be described via JSON Schema. It saves a great deal of fussing with details in JSON

syntax.

We’ll start with using Pydantic to create a useful data model module. This will extend the

data models built for projects in earlier chapters.

Define Pydantic classes and emit the JSON Schema
We’ll start with two profound modifications to the data model definitions used in

earlier chapters. One change is to switch from the dataclasses module to the

pydantic.dataclasses module. Doing this creates the need to explicitly use

dataclasses.field for individual field definitions. This is generally a small change to an

import statement to use from pydantic.dataclasses import dataclass. The dataclasses

field() function will need some changes, also, to add additional details used by pydantic.

The changes should be completely transparent to the existing application; all tests will

pass after these changes.

The second change is to add some important metadata to the classes. Where the

dataclasses.field(...) definition is used, the metadata={} attribute can be added to

include a dictionary with JSON Schema attributes like the description, title, examples, valid

ranges of values, etc. For other fields, the pydantic.Field() function must be used to

provide a title, description, and other constraints on the field. This will generate a great

deal of metadata for us.

See https://docs.pydantic.dev/usage/schema/#field-customization for the wide

variety of field definition details available.

https://docs.pydantic.dev/usage/schema/#field-customization

220 Project 2.5: Schema and Metadata

from pydantic import Field

from pydantic.dataclasses import dataclass

@dataclass

class SeriesSample:

"""

An individual sample value.

"""

x: float = Field(title="The x attribute", ge=0.0)

y: float = Field(title="The y attribute", ge=0.0)

@dataclass

class Series:

"""

A named series with a collection of values.

"""

name: str = Field(title="Series name")

samples: list[SeriesSample] = Field(title="Sequence of samples

in this series")

We’ve provided several additional details in this model definition module. The details

include:

• Docstrings on each class. These will become descriptions in the JSON Schema.

• Fields for each attribute. These, too, become descriptions in the JSON Schema.

• For the x and y attributes of the SeriesSample class definition, we added a ge value.

This is a range specification, requiring the values to be greater than or equal to zero.

We’ve also made extremely profound changes to the model: we’ve moved from the source

data description — which was a number of str values — to the target data description,

using float values.

Chapter 8 221

What’s central here is that we have two variations on each model:

• Acquisition: This is the data as we find it “in the wild.” In the examples in this book,

some variations of source data are text-only, forcing us to use str as a common type.

Some data sources will have data in more useful Python objects, permitting types

other than str.

• Analysis: This is the data used for further analysis. These data sets can use native

Python objects. For the most part, we’ll focus on objects that are easily serialized to

JSON. The exception will be date-time values, which don’t readily serialize to JSON,

but require some additional conversion from a standard ISO text format.

The class examples shown above do not replace the model module in our applications. They

form a second model of more useful data. The recommended approach is to change the

initial acquisition model’s module name from model to acquisition_model (or perhaps

the shorter source_model). This property describes the model with mostly string values as

the source. This second model is the analysis_model.

The results of the initial investigation into the data can provide narrower and more strict

constraints for the analysis model class definitions. See Chapter 7, Data Inspection Features

for a number of inspections that can help to reveal expected minima and maxima for

attribute values.

The Pydantic library comes with a large number of customized data types that can be

used to describe data values. See https://docs.pydantic.dev/usage/types/ for

documentation. Using the pydantic types can be simpler than defining an attribute as a

string, and trying to create a regular expression for valid values.

Note that validation of source values isn’t central to Pydantic. When Python objects

are provided, it’s entirely possible for the Pydantic module to perform a successful data

conversion where we might have hoped for an exception to be raised. A concrete example

is providing a Python float object to a field that requires an int value. The float object

will be converted; an exception will not be raised. If this kind of very strict validation of

Python objects is required, some additional programming is needed.

https://docs.pydantic.dev/usage/types/

222 Project 2.5: Schema and Metadata

In the next section, we’ll create a JSON Schema definition of our model. We can either

export the definition from the class definition, or we can craft the JSON manually.

Define expected data domains in JSON Schema notation
Once we have the class definition, we can then export a schema that describes the class.

Note that the Pydantic dataclass is a wrapper around an underlying pydantic.BaseModel

subclass definition.

We can create a JSON Schema document by adding the following lines to the bottom of the

module:

from pydantic import schema_of

import json

if __name__ == "__main__":

schema = schema_of(Series)

print(json.dumps(schema, indent=2))

These lines turn the data definition module into a script that writes the JSON Schema

definition to the standard output file.

The schema_of() function will extract a schema from the dataclass created in the previous

section. (See Define Pydantic classes and emit the JSON Schema.) The underlying

pydantic.BaseModel subclass also has a schema() method that will transform the class

definition into a richly-detailed JSON Schema definition. When working with pydantic

dataclasses, the pydantic.BaseModel isn’t directly available, and the schema_of() function

must be used.

When executing the terminal command python src/analysis_model.py, the schema is

displayed.

The output begins as follows:

{

"title": "Series",

Chapter 8 223

"description": "A named series with a collection of values.",

"type": "object",

"properties": {

"name": {

"title": "Series name",

"type": "string"

},

"samples": {

"title": "Sequence of samples in this series",

"type": "array",

"items": {

"\$ref": "#/definitions/SeriesSample"

}

}

},

"required": [

"name",

"samples"

],

...

}

We can see that the title matches the class name. The description matches the docstring.

The collection of properties matches the attributes’ names in the class. Each of the property

definitions provides the type information from the dataclass.

The $ref item is a reference to another definition provided later in the JSON Schema. This

use of references makes sure the other class definition is separately visible, and is available

to support this schema definition.

A very complex model may have a number of definitions that are shared in multiple

places. This $ref technique normalizes the structure so only a single definition is provided.

224 Project 2.5: Schema and Metadata

Multiple references to the single definition assure proper reuse of the class definition.

The JSON structure may look unusual at first glance, but it’s not frighteningly complex.

Reviewing https://json-schema.org will provide information on how best to create

JSON Schema definitions without using the Pydantic module.

Use JSON Schema to validate intermediate files
Once we have a JSON Schema definition, we can provide it to other stakeholders to be sure

they understand the data required or the data provided. We can also use the JSON Schema

to create a validator that can examine a JSON document and determine if the document

really does match the schema.

We can do this with a pydantic class definition. There’s a parse_obj() method that will

examine a dictionary to create an instance of the given pydantic class could be built. The

parse_raw() method can parse a string or bytes object to create an instance of the given

class.

We can also do this with the jsonschema module. We’ll look at this as an alternative to

pydantic to show how sharing the JSON Schema allows other applications to work with a

formal definition of the analysis model.

First, we need to create a validator from the schema. We can dump the JSON into a file

and then load the JSON back from the file. We can also save a step by creating a validator

directly from the Pydantic-created JSON Schema. Here’s the short version:

from pydantic import schema_of

from jsonschema.validators import Draft202012Validator

from analysis_model import *

schema = schema_of(SeriesSample)

validator = Draft202012Validator(schema)

This creates a validator using the latest version of JSON Schema, the 2020 draft. (The

project is on track to become a standard, and has gone through a number of drafts as it

https://json-schema.org

Chapter 8 225

matures.)

Here’s how we might write a function to scan a file to be sure the NDJSON documents all

properly fit the defined schema:

def validate_ndjson_file(

validator: Draft202012Validator,

source_file: TextIO

) -> Counter[str]:

counts: Counter[str] = Counter()

for row in source_file:

document = json.loads(row)

if not validator.is_valid(document):

errors = list(validator.iter_errors(document))

print(document, errors)

counts['faulty'] += 1

else:

counts['good'] += 1

return counts

This function will read each NDJSON document from the given source file. It will use

the given validator to see if the document has problems or is otherwise valid. For faulty

documents, it will print the document and the entire list of validation errors.

This kind of function can be embedded into a separate script to check files.

We can, similarly, create the schema for the source model, and use JSON Schema (or

Pydantic) to validate source files before attempting to process them.

We’ll turn to the more complete validation and cleaning solution in Chapter 9, Project 3.1:

Data Cleaning Base Application. This project is one of the foundational components of the

more complete solution.

We’ll look at the deliverables for this project in the next section.

226 Project 2.5: Schema and Metadata

Deliverables
This project has the following deliverables:

• A requirements.txt file that identifies the tools used, usually pydantic==1.10.2

and jsonschema==4.16.0.

• Documentation in the docs folder.

• The JSON-format files with the source and analysis schemas. A separate schema

directory is the suggested location for these files.

• An acceptance test for the schemas.

We’ll look at the schema acceptance test in some detail. Then we’ll look at using schema to

extend other acceptance tests.

Schema acceptance tests
To know if the schema is useful, it is essential to have acceptance test cases. As new sources

of data are integrated into an application, and old sources of data mutate through ordinary

bug fixes and upgrades, files will change. The new files will often cause problems, and the

root cause of the problem will be the unexpected file format change.

Once a file format change is identified, the smallest relevant example needs to be transformed

into an acceptance test. The test will — of course — fail. Now, the data acquisition pipeline

can be fixed knowing there is a precise definition of done.

To start with, the acceptance test suite should have an example file that’s valid and an

example file that’s invalid.

As we noted in Chapter 4, Data Acquisition Features: Web APIs and Scraping, we can provide

a large block of text as part of a Gherkin scenario. We can consider something like the

following scenario:

Scenario: Valid file is recognized.

Given a file "example_1.ndjson" with the following content

Chapter 8 227

"""

{"x": 1.2, "y": 3.4}

{"x": 5.6, "y": 7.8}

"""

When the schema validation tool is run with the analysis schema

Then the output shows 2 good records

And the output shows 0 faulty records

This allows us to provide the contents for an NDJSON file. The HTML extract command is

quite long. The content is available as the context.text parameter of the step definition

function. See Acceptance tests for more examples of how to write the step definitions to

create a temporary file to be used for this test case.

Scenarios for faulty records are also essential, of course. It’s important to be sure the

schema definition will reject invalid data.

Extended acceptance testing
In Chapters 3, 4, and 5, we wrote acceptance tests that — generally — looked at log summaries

of the application’s activity to be sure it properly acquired source data. We did not write

acceptance tests that specifically looked at the data.

Testing with a schema definition permits a complete analysis of each and every field and

record in a file. The completeness of this check is of tremendous value.

This means that we can add some additional Then steps to existing scenarios. They might

look like the following:

Given (shown earlier)...

When (shown earlier)...

Then the log has an INFO line with "header: ['x', 'y']"

And log has INFO line with "Series_1 count: 11"

And log has INFO line with "Series_2 count: 11"

And log has INFO line with "Series_3 count: 11"

228 Project 2.5: Schema and Metadata

And log has INFO line with "Series_4 count: 11"

And the output directory files are valid

using the "schema/Anscombe_Source.json" schema

The additional “Then the output directory files are valid...” line requires a step definition

that must do the following things:

1. Load the named JSON Schema file and build a Validator.

2. Use the Validator object to examine each line of the ND JSON file to be sure they’re

valid.

This use of the schema as part of the acceptance test suite will parallel the way data

suppliers and data consumers can use the schema to assure the data files are valid.

It’s important to note the schema definition given earlier in this chapter (in Define Pydantic

classes and emit the JSON Schema) was the output from a future project’s data cleaning step.

The schema shown in that example is not the output from the previous data acquisition

applications.

To validate the output from data acquisition, you will need to use the model for the various

data acquisition projects in Chapters 3, 4, and 5. This will be very similar to the example

shown earlier in this chapter. While similar, it will differ in a profound way: it will use str

instead of float for the series sample attribute values.

Summary
This chapter’s projects have shown examples of the following features of a data acquisition

application:

• Using the Pydantic module for crisp, complete definitions

• Using JSON Schema to create an exportable language-independent definition that

anyone can use

• Creating test scenarios to use the formal schema definition

Chapter 8 229

Having formalized schema definitions permits recording additional details about the data

processing applications and the transformations applied to the data.

The docstrings for the class definitions become the descriptions in the schema. This permits

writing details on data provenance and transformation that are exposed to all users of

the data.

The JSON Schema standard permits recording examples of values. The Pydantic package

has ways to include this metadata in field definitions, and class configuration objects. This

can be helpful when explaining odd or unusual data encodings.

Further, for text fields, JSONSchema permits including a format attribute that can provide a

regular expression used to validate the text. The Pydantic package has first-class support

for this additional validation of text fields.

We’ll return to the details of data validation in Chapter 9, Project 3.1: Data Cleaning Base

Application and Chapter 10, Data Cleaning Features. In those chapters, we’ll delve more

deeply into the various Pydantic validation features.

Extras
Here are some ideas for you to add to this project.

Revise all previous chapter models to use Pydantic
The previous chapters used dataclass definitions from the dataclasses module. These

can be shifted to use the pydantic.dataclasses module. This should have minimal impact

on the previous projects.

We can also shift all of the previous acceptance test suites to use a formal schema definition

for the source data.

230 Project 2.5: Schema and Metadata

Use the ORM layer
For SQL extracts, an ORM can be helpful. The pydantic module lets an application create

Python objects from intermediate ORM objects. This two-layer processing seems complex

but permits detailed validation in the Pydantic objects that aren’t handled by the database.

For example, a database may have a numeric column without any range provided. A

Pydantic class definition can provide a field definition with ge and le attributes to define

a range. Further, Pydantic permits the definition of a unique data type with unique

validation rules that can be applied to database extract values.

First, see https://docs.sqlalchemy.org/en/20/orm/ for information on the SQLAlchemy

ORM layer. This provides a class definition from which SQL statements like CREATE TABLE,

SELECT, and INSERT can be derived.

Then, see the https://docs.pydantic.dev/usage/models/#orm-mode-aka-arbitrary

-class-instances “ORM Mode (aka Arbitrary Class Instances)” section of the Pydantic

documentation for ways to map a more useful class to the intermediate ORM class.

For legacy data in a quirky, poorly-designed database, this can become a problem. For

databases designed from the beginning with an ORM layer, on the other hand, this can be

a simplification to the SQL.

https://docs.sqlalchemy.org/en/20/orm/
https://docs.pydantic.dev/usage/models/#orm-mode-aka-arbitrary-class-instances
https://docs.pydantic.dev/usage/models/#orm-mode-aka-arbitrary-class-instances

9
Project 3.1: Data Cleaning
Base Application

Data validation, cleaning, converting, and standardizing are steps required to transform

raw data acquired from source applications into something that can be used for analytical

purposes. Since we started using a small data set of very clean data, we may need to

improvise a bit to create some “dirty” raw data. A good alternative is to search for more

complicated, raw data.

This chapter will guide you through the design of a data cleaning application, separate

from the raw data acquisition. Many details of cleaning, converting, and standardizing

will be left for subsequent projects. This initial project creates a foundation that will be

extended by adding features. The idea is to prepare for the goal of a complete data pipeline

that starts with acquisition and passes the data through a separate cleaning stage. We want

to exploit the Linux principle of having applications connected by a shared buffer, often

referred to as a shell pipeline.

232 Project 3.1: Data Cleaning Base Application

This chapter will cover a number of skills related to the design of data validation and

cleaning applications:

• CLI architecture and how to design a pipeline of processes

• The core concepts of validating, cleaning, converting, and standardizing raw data

We won’t address all the aspects of converting and standardizing data in this chapter.

Projects in Chapter 10, Data Cleaning Features will expand on many conversion topics. The

project in Chapter 12, Project 3.8: Integrated Data Acquisition Web Service will address the

integrated pipeline idea. For now, we want to build an adaptable base application that can

be extended to add features.

We’ll start with a description of an idealized data cleaning application.

Description
We need to build a data validating, cleaning, and standardizing application. A data

inspection notebook is a handy starting point for this design work. The goal is a

fully-automated application to reflect the lessons learned from inspecting the data.

A data preparation pipeline has the following conceptual tasks:

• Validate the acquired source text to be sure it’s usable and to mark invalid data for

remediation.

• Clean any invalid raw data where necessary; this expands the available data in those

cases where sensible cleaning can be defined.

• Convert the validated and cleaned source data from text (or bytes) to usable Python

objects.

• Where necessary, standardize the code or ranges of source data. The requirements

here vary with the problem domain.

The goal is to create clean, standardized data for subsequent analysis. Surprises occur all

the time. There are several sources:

Chapter 9 233

• Technical problems with file formats of the upstream software. The intent of the

acquisition program is to isolate physical format issues.

• Data representation problems with the source data. The intent of this project is to

isolate the validity and standardization of the values.

Once cleaned, the data itself may still contain surprising relationships, trends, or

distributions. This is discovered with later projects that create analytic notebooks and

reports. Sometimes a surprise comes from finding the Null Hypothesis is true and the data

only shows insignificant random variation.

In many practical cases, the first three steps — validate, clean, and convert — are often

combined into a single function call. For example, when dealing with numeric values,

the int() or float() functions will validate and convert a value, raising an exception for

invalid numbers.

In a few edge cases, these steps need to be considered in isolation – often because there’s a

tangled interaction between validation and cleaning. For example, some data is plagued by

dropping the leading zeros from US postal codes. This can be a tangled problem where the

data is superficially invalid but can be reliably cleaned before attempting validation. In

this case, validating the postal code against an official list of codes comes after cleaning,

not before. Since the data will remain as text, there’s no actual conversion step after the

clean-and-validate composite step.

User experience
The overall User Experience (UX) will be two command-line applications. The first

application will acquire the raw data, and the second will clean the data. Each has options

to fine-tune the acquire and cleanse steps.

There are several variations on the acquire command, shown in earlier chapters. Most

notably, Chapter 3, Project 1.1: Data Acquisition Base Application, Chapter 4, Data Acquisition

Features: Web APIs and Scraping, and Chapter 5, Data Acquisition Features: SQL Database.

For the clean application, the expected command-line should like something like this:

234 Project 3.1: Data Cleaning Base Application

% python src/clean.py -o analysis -i quartet/Series_1.ndjson

The -o analysis specifies a directory into which the resulting clean data is written.

The -i quartet/Series_1.ndjson specifies the path to the source data file. This is a file

written by the acquisition application.

Note that we’re not using a positional argument to name the input file. The use of a

positional argument for a filename is a common provision in many — but not all — Linux

commands. The reason to avoid positional arguments is to make it easier to adapt this to

become part of a pipeline of processing stages.

Specifically, we’d like the following to work, also:

% python src/acquire.py -s Series_1Pair --csv source.csv | \
python src/clean.py -o analysis/Series_1.ndjson

This shell line has two commands, one to do the raw data acquisition, and the other to

perform the validation and cleaning. The acquisition command uses the -s Series_1Pair

argument to name a specific series extraction class. This class will be used to create a single

series as output. The --csv source.csv argument names the input file to process. Other

options could name RESTful APIs or provide a database connection string.

The second command reads the output from the first command and writes this to a file.

The file is named by the -o argument value in the second command.

This pipeline concept, made available with the shell’s | operator, means these two processes

will run concurrently. This means data is passed from one process to the other as it

becomes available. For very large source files, cleaning data as it’s being acquired can

reduce processing time dramatically.

In Project 3.6: Integration to create an acquisition pipeline we’ll expand on this design to

include some ideas for concurrent processing.

Chapter 9 235

Now that we’ve seen an overview of the application’s purpose, let’s take a look at the

source data.

Source data
The earlier projects produced source data in an approximately consistent format. These

projects focused on acquiring data that is text. The individual samples were transformed

into small JSON-friendly dictionaries, using the NDJSON format. This can simplify the

validation and cleaning operation.

The NDJSON file format is described at http://ndjson.org and https://jsonlines.org.

There are two design principles behind the acquire application:

• Preserve the original source data as much as possible.

• Perform the fewest text transformations needed during acquisition.

Preserving the source data makes it slightly easier to locate problems when there are

unexpected changes to source applications. Minimizing the text transformations, similarly,

keeps the data closer to the source. Moving from a variety of representations to a single

representation simplifies the data cleaning and transformation steps.

All of the data acquisition projects involve some kind of textual transformation from a

source representation to ND JSON.

Chapter Section Source

3 Chapter 3, Project 1.1: Data Acquisition Base Application CSV parsing

4 Project 1.2: Acquire data from a web service Zipped CSV or JSON

4 Project 1.3: Scrape data from a web page HTML

5 Project 1.5: Acquire data from a SQL extract SQL Extract

In some cases — i.e., extracting HTML — the textual changes to peel the markup away from

the data is profound. The SQL database extract involves undoing the database’s internal

representation of numbers or dates and writing the values as text. In some cases, the text

transformations are minor.

http://ndjson.org
https://jsonlines.org

236 Project 3.1: Data Cleaning Base Application

Result data
The cleaned output files will be ND JSON; similar to the raw input files. We’ll address

this output file format in detail in Chapter 11, Project 3.7: Interim Data Persistence. For this

project, it’s easiest to stick with writing the JSON representation of a Pydantic dataclass.

For Python’s native dataclasses, the dataclasses.asdict() function will produce a

dictionary from a dataclass instance. The json.dumps() function will convert this to text

in JSON syntax.

For Pydantic dataclasses, however, the asdict() function can’t be used. There’s no built-in

method for emitting the JSON representation of a pydantic dataclass instance.

For version 1 of Pydantic, a slight change is required to write ND JSON. An expression

like the following will emit a JSON serialization of a pydantic dataclass:

import json

from pydantic.json import pydantic_encoder

from typing import TextIO, Iterable

import analysis_model

def persist_samples(

target_file: TextIO,

analysis_samples: Iterable[analysis_model.SeriesSample | None]

) -> int:

count = 0

for result in filter(None, analysis_samples):

target_file.write(json.dumps(result, default=pydantic_encoder))

target_file.write("\n")

count += 1

return count

Chapter 9 237

This central feature is the default=pydantic_encoder argument value for the

json.dumps() function. This will handle the proper decoding of the dataclass structure

into JSON notation.

For version 2 of pydantic, there will be a slightly different approach. This makes use of a

RootModel[classname](object) construct to extract the root model for a given class from

an object. In this case, RootModel[SeriesSample](result).model_dump() will create a

root model that can emit a nested dictionary structure. No special pydantic_encoder will

be required for version 2.

Now that we’ve looked at the inputs and outputs, we can survey the processing concepts.

Additional processing details will wait for later projects.

Conversions and processing
For this project, we’re trying to minimize the processing complications. In the next

chapter, Chapter 10, Data Cleaning Features, we’ll look at a number of additional processing

requirements that will add complications. As a teaser for the projects in the next chapter,

we’ll describe some of the kinds of field-level validation, cleaning, and conversion that may

be required.

One example we’ve focused on, Anscombe’s Quartet data, needs to be converted to a

series of floating-point values. While this is painfully obvious, we’ve held off on the

conversion from the text to the Python float object to illustrate the more general principle

of separating the complications of acquiring data from analyzing the data. The output from

this application will have each resulting ND JSON document with float values instead of

string values.

The distinction in the JSON documents will be tiny: the use of " for the raw-data strings.

This will be omitted for the float values.

This tiny detail is important because every data set will have distinct conversion

requirements. The data inspection notebook will reveal data domains like text, integers,

date-time stamps, durations, and a mixture of more specialized domains. It’s essential to

238 Project 3.1: Data Cleaning Base Application

examine the data before trusting any schema definition or documentation about the data.

We’ll look at three common kinds of complications:

• Fields that must be decomposed.

• Fields which must be composed.

• Unions of sample types in a single collection.

• “Opaque” codes used to replace particularly sensitive information.

One complication is when multiple source values are collapsed into a single field. This

single source value will need to be decomposed into multiple values for analysis. With the

very clean data sets available from Kaggle, a need for decomposition is unusual. Enterprise

data sets, on the other hand, will often have fields that are not properly decomposed into

atomic values, reflecting optimizations or legacy processing requirements. For example,

a product ID code may include a line of business and a year of introduction as part of

the code. For example, a boat’s hull ID number might include “421880182,” meaning it’s a

42-foot hull, serial number 188, completed in January 1982. Three disparate items were

all coded as digits. For analytical purposes, it may be necessary to separate the items that

comprise the coded value. In other cases, several source fields will need to be combined.

An example data set where a timestamp is decomposed into three separate fields can be

found when looking at tidal data.

See https://tidesandcurrents.noaa.gov/tide_predictions.html for Tide Predictions

around the US. This site supports downloads in a variety of formats, as well as RESTful

API requests for tide predictions.

Each of the tidal events in an annual tide table has a timestamp. The timestamp is

decomposed into three separate fields: the date, the day of the week, and the local time.

The day of the week is helpful, but it is entirely derived from the date. The date and time

need to be combined into a single datetime value to make this data useful. It’s common to

use datetime.combine(date, time) to merge separate date and time values into a single

value.

https://tidesandcurrents.noaa.gov/tide_predictions.html

Chapter 9 239

Sometimes a data set will have records of a variety of subtypes merged into a single

collection. The various types are often discriminated from each other by the values of a

field. A financial application might include a mixture of invoices and payments; many

fields overlap, but the meanings of these two transaction types are dramatically different.

A single field with a code value of “I” or “P” may be the only way to distinguish the types

of business records represented.

When multiple subtypes are present, the collection can be called a discriminated union of

subtypes; sometimes simply called a union. The discriminator and the subtypes suggest a

class hierachy is required to describe the variety of sample types. A common base class is

needed to describe the common fields, including the discriminator. Each subclass has a

distinct definition for the fields unique to the subclass.

One additional complication stems from data sources with “opaque” data. These are

string fields that can be used for equality comparison, but nothing else. These values

are often the result of a data analysis approach called masking, deidentification, or

pseudonymization. This is sometimes also called “tokenizing” because an opaque token

has replaced the sensitive data. In banking, for example, it’s common for analytical data to

have account numbers or payment card numbers transformed into opaque values. These

can be used to aggregate behavior, but cannot be used to identify an individual account

holder or payment card. These fields must be treated as strings, and no other processing

can be done.

For now, we’ll defer the implementation details of these complications to a later chapter.

The ideas should inform design decisions for the initial, foundational application.

In addition to clean valid data, the application needs to produce information about the

invalid data. Next, we’ll look at the logs and error reports.

Error reports
The central feature of this application is to output files with valid, useful data for analytic

purposes. We’ve left off some details of what happens when an acquired document isn’t

240 Project 3.1: Data Cleaning Base Application

actually usable.

Here are a number of choices related to the observability of invalid data:

• Raise an overall exception and stop. This is appropriate when working with

carefully-curated data sets like the Anscombe Quartet.

• Make all of the bad data observable, either through the log or by writing bad data to

a separate rejected samples file.

• Silently reject the bad data. This is often used with large data sources where there is

no curation or quality control over the source.

In all cases, the summary counts of acquired data, usable analytic data, and cleaned, and

rejected data are essential. It’s imperative to be sure the number of raw records read is

accounted for, and the provenance of cleaned and rejected data is clear. The summary

counts, in many cases, are the primary way to observe changes in data sources. A non-zero

error count, may be so important that it’s used as the final exit status code for the cleaning

application.

In addition to the observability of bad data, we may be able to clean the source data. There

are several choices here, also:

• Log the details of each object where cleaning is done. This is often used with data

coming from a spreadsheet where the unexpected data may be rows that need to be

corrected manually.

• Count the number of items cleaned without the supporting details. This is often used

with large data sources where changes are frequent.

• Quietly clean the bad data as an expected, normal operational step. This is often used

when raw data comes directly from measurement devices in unreliable environments,

perhaps in space, or at the bottom of the ocean.

Further, each field may have distinct rules for whether or not cleaning bad data is a

significant concern or a common, expected operation. The intersection of observability

Chapter 9 241

and automated cleaning has a large number of alternatives.

The solutions to data cleaning and standardization are often a matter of deep, ongoing

conversations with users. Each data acquisition pipeline is unique with regard to error

reporting and data cleaning.

It’s sometimes necessary to have a command-line option to choose between logging

each error or simply summarizing the number of errors. Additionally, the application

might return a non-zero exit code when any bad records are found; this permits a parent

application (e.g., a shell script) to stop processing in the presence of errors.

We’ve looked at the overall processing, the source files, the result files, and some of the

error-reporting alternatives that might be used. In the next section, we’ll look at some

design approaches we can use to implement this application.

Approach
We’ll take some guidance from the C4 model (https://c4model.com) when looking at our

approach.

• Context: For this project, the context diagram has expanded to three use cases:

acquire, inspect, and clean.

• Containers: There’s one container for the various applications: the user’s personal

computer.

• Components: There are two significantly different collections of software

components: the acquisition program and the cleaning program.

• Code: We’ll touch on this to provide some suggested directions.

A context diagram for this application is shown in Figure 9.1.

A component diagram for the conversion application isn’t going to be as complicated as

the component diagrams for acquisition applications. One reason for this is there are no

choices for reading, extracting, or downloading raw data files. The source files are the ND

JSON files created by the acquisition application.

https://c4model.com

242 Project 3.1: Data Cleaning Base Application

Analytical Workspace

Acquire Data

Inspect Data

Clean Data

Data Analyst

Figure 9.1: Context Diagram

The second reason the conversion programs tend to be simpler is they often rely on built-in

Python-type definitions, and packages like pydantic to provide the needed conversion

processing. The complications of parsing HTML or XML sources were isolated in the

acquisition layer, permitting this application to focus on the problem domain data types

and relationships.

The components for this application are shown in Figure 9.2.

Note that we’ve used a dotted “depends on” arrow. This does not show the data flow from

acquire to clean. It shows how the clean application depends on the acquire application’s

output.

The design for the clean application often involves an almost purely functional design.

Class definitions — of course — can be used. Classes don’t seem to be helpful when the

application processing involves stateless, immutable objects.

In rare cases, a cleaning application will be required to perform dramatic reorganizations of

data. It may be necessary to accumulate details from a variety of transactions, updating the

state of a composite object. For example, there may be multiple payments for an invoice

that must be combined for reconciliation purposes. In this kind of application, associating

payments and invoices may require working through sophisticated matching rules.

Note that the clean application and the acquire application will both share a common

Chapter 9 243

Source

Working

API

Service

SQL DB
CSV File

HTML

acquired data cleaned data

terminal

acquire clean

Figure 9.2: Component Diagram

set of dataclasses. These classes represent the source data, the output from the acquire

application. They also define the input to the clean application. A separate set of dataclasses

represent the working values used for later analysis applications.

Our goal is to create three modules:

• clean.py: The main application.

• analytical_model.py: A module with dataclass definitions for the pure-Python

objects that we’ll be working with. These classes will — generally — be created from

JSON-friendly dictionaries with string values.

• conversions.py: A module with any specialized validation, cleaning, and conversion

functions.

244 Project 3.1: Data Cleaning Base Application

If needed, any application-specific conversion functions may be required to transform

source values to “clean,” usable Python objects. If this can’t be done, the function can

instead raise ValueError exceptions for invalid data, following the established pattern for

functions like Python’s built-in float() function. Additionally, TypeError exceptions may

be helpful when the object — as a whole — is invalid. In some cases, the assert statement

is used, and an AssertionError may be raised to indicate invalid data.

For this baseline application, we’ll stick to the simpler and more common design pattern.

We’ll look at individual functions that combine validation and cleaning.

Model module refactoring
We appear to have two distinct models: the “as-acquired” model with text fields, and the

“to-be-analyzed” model with proper Python types, like float and int. The presence of

multiple variations on the model means we either need a lot of distinct class names, or two

distinct modules as namespaces to keep the classes organized.

The cleaning application is the only application where the acquire and analysis models are

both used. All other applications either acquire raw data or work with clean analysis data.

The previous examples had a single model.py module with dataclasses for the acquired

data. At this point, it has become more clear that this was not a great long-term decision.

Because there are two distinct variations on the data model, the generic model module

name needs to be refactored. To distinguish the acquired data model from the analytic

data model, a prefix should be adequate: the module names can be acquire_model and

analysis_model.

(The English parts of speech don’t match exactly. We’d rather not have to type

“acquisition_model”. The slightly shorter name seems easier to work with and clear enough.)

Within these two model files, the class names can be the same. We might have

names acquire_model.SeriesSample and analysis_model.SeriesSample as

distinct classes.

To an extent, we can sometimes copy the acquired model module to create the analysis model

Chapter 9 245

module. We’d need to change from dataclasses import dataclass to the Pydantic

version, from pydantic import dataclass. This is a very small change, which makes it

easy to start with. In some older versions of Pydantic and mypy, the Pydantic version

of dataclass doesn’t expose the attribute types in a way that is transparent to the mypy

tool.

In many cases, it can work out well to import BaseModel and use this as the parent class

for the analytic models. Using the pydantic.BaseModel parent class often has a better

coexistence with the mypy tool. This requires a larger change when upgrading from

dataclasses to leverage the pydantic package. Since it’s beneficial when using the mypy

tool, it’s the path we recommend following.

This Pydantic version of dataclass introduces a separate validator method that will be

used (automatically) to process fields. For simple class definitions with a relatively clear

mapping from the acquire class to the analysis class, a small change is required to the class

definition.

One common design pattern for this new analysis model class is shown in the following

example for Pydantic version 1:

from pydantic import validator, BaseModel, Field

class SeriesSample(BaseModel):

"""

An individual sample value.

"""

x: float = Field(title="The x attribute", ge=0.0)

y: float = Field(title="The y attribute", ge=0.0)

@validator('x', 'y', pre=True)

def clean_value(cls, value: str | float) -> str:

match value:

246 Project 3.1: Data Cleaning Base Application

case str():

for char in "\N{ZERO WIDTH SPACE}":

value = value.replace(char, "")

return value

case float():

return value

This design defines a class-level method, clean_value(), to handle cleaning the source

data when it’s a string. The validator has the @validator() decorator to provide the

attribute names to which this function applies, as well as the specific stage in the sequence

of operations. In this case, pre=True means this validation applies before the individual

fields are validated and converted to useful types.

This will be replaced by a number of much more flexible alternatives in Pydantic version

2. The newer release will step away from the pre=True syntax used to assure this is done

prior to the built-in handler accessing the field.

The Pydantic 2 release will introduce a radically new approach using annotations to specify

validation rules. It will also retain a decorator that’s very similar to the old version 1

validation.

One migration path is to replace validator with field_validator. This will require

changing the pre=True or post=True with a more universal mode='before' or

mode='after'. This new approach permits writing field validators that “wrap” the

conversion handler with both before and after processing.

To use Pydantic version two, use @field_validator('x', 'y', mode='before') to

replace the @validator decorator in the example. The import must also change to reflect

the new name of the decorator.

This validator function handles the case where the string version of source data can include

Unicode U+200B, a special character called the zero-width space. In Python, we can use

"\N{ZERO WIDTH SPACE}" to make this character visible. While lengthy, this name seems

better than the obscure "\u200b".

Chapter 9 247

(See https://www.fileformat.info/info/unicode/char/200b/index.htm for details of

this character.)

When a function works in the pre=True or mode='before' phase, then pydantic will

automatically apply the final conversion function to complete the essential work of

validation and conversion. This additional validator function can be designed, then, to

focus narrowly only on cleaning the raw data.

The idea of a validator function must reflect two separate use cases for this class:

1. Cleaning and converting acquired data, generally strings, to more useful analytical

data types.

2. Loading already cleaned analytical data, where type conversion is not required.

Our primary interest at this time is in the first use case, cleaning and conversion.

Later, starting in chapter Chapter 13, Project 4.1: Visual Analysis Techniques we’ll switch

over to the second case, loading clean data.

These two use cases are reflected in the type hint for the validator function. The parameter

is defined as value: str | float. The first use case, conversion, expects a value of type

str. The second use case, loading cleaned data, expects a cleaned value of type float. This

kind of type of union is helpful with validator functions.

Instances of the analytic model will be built from acquire_model objects. Because the

acquired model uses dataclasses, we can leverage the dataclasses.asdict() function to

transform a source object into a dictionary. This can be used to perform Pydantic validation

and conversion to create the analytic model objects.

We can add the following method in the dataclass definition:

@classmethod

def from_acquire_dataclass(

cls,

acquired: acquire_model.SeriesSample

https://www.fileformat.info/info/unicode/char/200b/index.htm

248 Project 3.1: Data Cleaning Base Application

) -> "SeriesSample":

return SeriesSample(**asdict(acquired))

This method extracts a dictionary from the acquired data model’s version of the

SeriesSample class and uses it to create an instance of the analytic model’s variation

of this class. This method pushes all of the validation and conversion work to the Pydantic

declarations. This method also requires from dataclasses import asdict to introduce

the needed asdict() function.

In cases where the field names don’t match, or some other transformation is required, a

more complicated dictionary builder can replace the asdict(acquired) processing. We’ll

see examples of this in Chapter 10, Data Cleaning Features, where acquired fields need to

be combined before they can be converted.

We’ll revisit some aspects of this design decision in Chapter 11, Project 3.7: Interim Data

Persistence. First, however, we’ll look at pydantic version 2 validation, which offers a

somewhat more explict path to validation functions.

Pydantic V2 validation
While pydantic version 2 will offer a @field_validator decorator that’s very similar to

the legacy @validator decorator, this approach suffers from an irksome problem. It can

be confusing to have the decorator listing the fields to which the validation rule applies.

Some confusion can arise because of the separation between the field definition and the

function that validates the values for the field. In our example class, the validator applies

to the x and y fields, a detail that might be difficult to spot when first looking at the class.

The newer design pattern for the analysis model class is shown in the following example

for Pydantic version 2:

from pydantic import BaseModel

from pydantic.functional_validators import field_validator, BeforeValidator

from typing import Annotated

Chapter 9 249

def clean_value(value: str | float) -> str | float:

match value:

case str():

for char in "\N{ZERO WIDTH SPACE}":

value = value.replace(char, "")

return value

case float():

return value

class SeriesSample(BaseModel):

x: Annotated[float, BeforeValidator(clean_value)]

y: Annotated[float, BeforeValidator(clean_value)]

We’ve omitted the from_acquire_dataclass() method definition, since it doesn’t change.

The cleaning function is defined outside the class, making it more easily reused in a

complicated application where a number of rules may be widely reused in several models.

The Annotated[] type hint combines the base type with a sequence of validator objects. In

this example, the base type is float and the validator objects are BeforeValidator objects

that contain the function to apply.

To reduce the obvious duplication, a TypeAlias can be used. For example,

from typing import Annotated, TypeAlias

CleanFloat: TypeAlias = Annotated[float, BeforeValidator(clean_value)]

Using an alias permits the model to use the type hint CleanFloat.

For example x: CleanFloat.

Further, the Annotated hints are composable. An annotation can add features to a

previously-defined annotation. This ability to build more sophisticated annotations on top

250 Project 3.1: Data Cleaning Base Application

of foundational annotations offers a great deal of promise for defining classes in a succinct

and expressive fashion.

Now that we’ve seen how to implement a single validation, we need to consider the

alternatives, and how many different kinds of validation functions an application might

need.

Validation function design
The pydantic package offers a vast number of built-in conversions based entirely on

annotations. While these can cover a large number of common cases, there are still some

situations that require special validators, and perhaps even special type definitions.

In Conversions and processing, we considered some of the kinds of processing that might be

required. These included the following kinds of conversions:

• Decomposing source fields into their atomic components.

• Merging separated source fields to create proper value. This is common with dates

and times, for example.

• Multiple subentities may be present in a feed of samples. This can be called a

discriminated union: the feed as a whole is a unique of disjoint types, and a

discriminator value (or values) distinguishes the various subtypes.

• A field may be a “token” used to deidentify something about the original source. For

example, a replacement token for a driver’s license number may replace the real

government-issued number to make the individual anonymous.

Additionally, we may have observability considerations that lead us to write our own a

unique validator that can write needed log entries or update counters showing how many

times a particular validation found problems. This enhanced visibility can help pinpoint

problems with data that is often irregular or suffers from poor quality control.

We’ll dive into these concepts more deeply in Chapter 10, Data Cleaning Features. In

Chapter 10, Data Cleaning Features, we’ll also look at features for handling primary and

Chapter 9 251

foreign keys. For now, we’ll focus on the built-in type conversion functions that are part of

Python’s built-in functions, and the standard library. But we need to recognize that there

are going to be extensions and exceptions.

We’ll look at the overall design approach in the next section.

Incremental design
The design of the cleaning application is difficult to finalize without detailed knowledge

of the source data. This means the cleaning application depends on lessons learned by

making a data inspection notebook. One idealized workflow begins with “understand the

requirements” and proceeds to “write the code,” treating these two activities as separate,

isolated steps. This conceptual workflow is a bit of a fallacy. It’s often difficult to understand

the requirements without a detailed examination of the actual source data to reveal the

quirks and oddities that are present. The examination of the data often leads to the first

drafts of data validation functions. In this case, the requirements will take the form of draft

versions of the code, not a carefully-crafted document.

This leads to a kind of back-and-forth between ad-hoc inspection and a formal data cleaning

application. This iterative work often leads to a module of functions to handle the problem

domain’s data. This module can be shared by inspection notebooks as well as automated

applications. Proper engineering follows the DRY (Don’t Repeat Yourself) principle:

code should not be copied and pasted between modules. It should be put into a shared

module so it can be reused properly.

In some cases, two data cleaning functions will be similar. Finding this suggests some kind

of decomposition is appropriate to separate the common parts from the unique parts. The

redesign and refactoring are made easier by having a suite of unit tests to confirm that no

old functionality was broken when the functions were transformed to remove duplicated

code.

The work of creating cleaning applications is iterative and incremental. Rare special cases

are — well — rare, and won’t show up until well after the processing pipeline seems finished.

252 Project 3.1: Data Cleaning Base Application

The unexpected arrival special case data is something like birders seeing a bird outside

its expected habitat. It helps to think of a data inspection notebook like a bird watcher’s

immense spotting scope, used to look closely at one unexpected, rare bird, often in a flock of

birds with similar feeding and roosting preferences. The presence of the rare bird becomes

a new datapoint for ornithologists (and amateur enthusiasts). In the case of unexpected

data, the inspection notebook’s lessons become a new code for the conversions module.

The overall main module in the data cleaning application will implement the command-line

interface (CLI). We’ll look at this in the next section.

CLI application
The UX for this application suggests that it operates in the following distinct contexts:

• As a standalone application. The user runs the src/acquire.py program. Then, the

user runs the src/clean.py program.

• As a stage in a processing pipeline. The user runs a shell command that pipes the

output from the src/acquire.py program into the src/clean.py program. This is

the subject of Project 3.6: Integration to create an acquisition pipeline.

This leads to the following two runtime contexts:

• When the application is provided an input path, it’s being used as a stand-alone

application.

• When no input path is provided, the application reads from sys.stdin.

A similar analysis can apply to the acquire application. If an output path is provided, the

application creates and writes the named file. If no output path is provided, the application

writes to sys.stdout.

One essential consequence of this is all logging must be written to sys.stderr.

Chapter 9 253

Use stdin and stdout exclusively for application data, nothing else.

Use a consistent, easy-to-parse text format like ND JSON for application

data.

Use stderr as the destination for all control and error messages.

This means print() may require the file=sys.stderr to direct debugging

output to stderr. Or, avoid simple print() and use logger.debug() instead.

For this project, the stand-alone option is all that’s needed. However, it’s important to

understand the alternatives that will be added in later projects. See Project 3.6: Integration

to create an acquisition pipeline for this more tightly-integrated alternative.

Redirecting stdout

Python provides a handy tool for managing the choice between “write to an open file” and

“write to stdout”. It involves the following essential design principle.

Always provide file-like objects to functions and methods processing data.

This suggests a data-cleaning function like the following:

from typing import TextIO

def clean_all(acquire_file: TextIO, analysis_file: TextIO) -> None:

...

This function can use json.loads() to parse each document from the acquire_file. It uses

json.dumps() to save each document to the analysis_file to be used for later analytics.

The overall application can then make a choice among four possible ways to use this

clean_all() function:

254 Project 3.1: Data Cleaning Base Application

• Stand-alone: This means with statements manage the open files created from the

Path names provided as argument values.

• Head of a pipeline: A with statement can manage an open file passed to

acquire_file. The value of analysis_file is sys.stdout.

• Tail of a pipeline: The acquired input file is sys.stdin. A with statement manages

an open file (in write mode) for the analysis_file.

• Middle of a pipeline: The acquire_file is sys.stdin; the analysis_file is

sys.stdout.

Now that we’ve looked at a number of technical approaches, we’ll turn to the list of

deliverables for this project in the next section.

Deliverables
This project has the following deliverables:

• Documentation in the docs folder.

• Acceptance tests in the tests/features and tests/steps folders.

• Unit tests for the application modules in the tests folder.

• Application to clean some acquired data and apply simple conversions to a few fields.

Later projects will add more complex validation rules.

We’ll look at a few of these deliverables in a little more detail.

When starting a new kind of application, it often makes sense to start with acceptance tests.

Later, when adding features, the new acceptance tests may be less important than new unit

tests for the features. We’ll start by looking at a new scenario for this new application.

Acceptance tests
As we noted in Chapter 4, Data Acquisition Features: Web APIs and Scraping, we can provide

a large block of text as part of a Gherkin scenario. This can be the contents of an input file.

We can consider something like the following scenario.

Chapter 9 255

Scenario: Valid file is recognized.

Given a file "example_1.ndjson" with the following content

"""

{"x": "1.2", "y": "3.4"}

{"x": "five", "z": null}

"""

When the clean tool is run

Then the output shows 1 good records

And the output shows 1 faulty records

This kind of scenario lets us define source documents with valid data. We can also define

source documents with invalid data.

We can use the Then steps to confirm additional details of the output. For example, if we’ve

decided to make all of the cleaning operations visible, the test scenario can confirm the

output contains all of the cleanup operations that were applied.

The variety of bad data examples and the number of combinations of good and bad data

suggest there can be a lot of scenarios for this kind of application. Each time new data

shows up that is acquired, but cannot be cleaned, new examples will be added to these

acceptance test cases.

It can, in some cases, be very helpful to publish the scenarios widely so all of the stakeholders

can understand the data cleaning operations. The Gherkin language is designed to make it

possible for people with limited technical skills to contribute to the test cases.

We also need scenarios to run the application from the command-line. The When step

definition for these scenarios will be subprocess.run() to invoke the clean application,

or to invoke a shell command that includes the clean application.

Unit tests for the model features
It’s important to have automated unit tests for the model definition classes.

It’s also important to not test the pydantic components. We don’t, for example, need to

256 Project 3.1: Data Cleaning Base Application

test the ordinary string-to-float conversions the pydantic module already does; we can

trust this works perfectly.

We must test the validator functions we’ve written. This means providing test cases to

exercise the various features of the validators. Additionally, any overall

from_acquire_dataclass() method needs to have test cases.

Each of these test scenarios works with a given acquired document with the raw data. When

the from_acquire_dataclass() method is evaluated, then there may be an exception or a

resulting analytic model document is created.

The exception testing can make use of the pytest.raises() context manager. The test is

written using a with statement to capture the exception.

See https://docs.pytest.org/en/7.2.x/how-to/assert.html#assertions-about-exp

ected-exceptions for examples.

Of course, we also need to test the processing that’s being done. By design, there isn’t

very much processing involved in this kind of application. The bulk of the processing can

be only a few lines of code to consume the raw model objects and produce the analytical

objects. Most of the work will be delegated to modules like json and pydantic.

Application to clean data and create an NDJSON interim
file
Now that we have acceptance and unit test suites, we’ll need to create the clean application.

Initially, we can create a place-holder application, just to see the test suite fail. Then we

can fill in the various pieces until the application – as a whole – works.

Flexibility is paramount in this application. In the next chapter, Chapter 10, Data Cleaning

Features, we will introduce a large number of data validation scenarios. In Chapter 11,

Project 3.7: Interim Data Persistence we’ll revisit the idea of saving the cleaned data. For

now, it’s imperative to create clean data; later, we can consider what format might be best.

https://docs.pytest.org/en/7.2.x/how-to/assert.html#assertions-about-expected-exceptions
https://docs.pytest.org/en/7.2.x/how-to/assert.html#assertions-about-expected-exceptions

Chapter 9 257

Summary
This chapter has covered a number of aspects of data validation and cleaning applications:

• CLI architecture and how to design a simple pipeline of processes.

• The core concepts of validating, cleaning, converting, and standardizing raw data.

In the next chapter, we’ll dive more deeply into a number of data cleaning and standardizing

features. Those projects will all build on this base application framework. After those

projects, the next two chapters will look a little more closely at the analytical data persistence

choices, and provide an integrated web service for providing cleaned data to other

stakeholders.

Extras
Here are some ideas for you to add to this project.

Create an output file with rejected samples
In Error reports we suggested there are times when it’s appropriate to create a file of rejected

samples. For the examples in this book — many of which are drawn from well-curated,

carefully managed data sets — it can feel a bit odd to design an application that will reject

data.

For enterprise applications, data rejection is a common need.

It can help to look at a data set like this: https://datahub.io/core/co2-ppm. This

contains data same with measurements of CO2 levels measures with units of ppm, parts

per million.

This has some samples with an invalid number of days in the month. It has some samples

where a monthly CO2 level wasn’t recorded.

It can be insightful to use a rejection file to divide this data set into clearly usable records,

and records that are not as clearly usable.

The output will not reflect the analysis model. These objects will reflect the acquire model;

https://datahub.io/core/co2-ppm

258 Project 3.1: Data Cleaning Base Application

they are the items that would not convert properly from the acquired structure to the

desired analysis structure.

10
Data Cleaning Features

There are a number of techniques for validating and converting data to native Python objects

for subsequent analysis. This chapter guides you through three of these techniques, each

appropriate for different kinds of data. The chapter moves on to the idea of standardization

to transform unusual or atypical values into a more useful form. The chapter concludes

with the integration of acquisition and cleansing into a composite pipeline.

This chapter will expand on the project in Chapter 9, Project 3.1: Data Cleaning Base

Application. The following additional skills will be emphasized:

• CLI application extension and refactoring to add features.

• Pythonic approaches to validation and conversion.

• Techniques for uncovering key relationships.

• Pipeline architectures. This can be seen as a first step toward a processing DAG

(Directed Acyclic Graph) in which various stages are connected.

260 Data Cleaning Features

We’ll start with a description of the first project to expand on the previous chapters on

processing. This will include some new Pydantic features to work with more complex

data source fields.

Project 3.2: Validate and convert source fields
In Chapter 9, Project 3.1: Data Cleaning Base Application we relied on the foundational

behavior of the Pydantic package to convert numeric fields from the source text to Python

types like int, float, and Decimal. In this chapter, we’ll use a dataset that includes date

strings so we can explore some more complex conversion rules.

This will follow the design pattern from the earlier project. It will use a distinct data set,

however, and some unique data model definitions.

Description
This project’s intent is to perform data validation, cleaning, and standardization. This

project will expand on the features of the pydantic package to do somewhat more

sophisticated data validations and conversions.

This new data cleaning application can be designed around a data set like https://tide

sandcurrents.noaa.gov/tide_predictions.html. The tide predictions around the US

include dates, but the fields are decomposed, and our data cleaning application needs to

combine them.

For a specific example, see https://tidesandcurrents.noaa.gov/noaatideannual.htm

l?id=8725769. Note that the downloaded .txt file is a tab-delimited CSV file with a very

complicated multi-line header. This will require some sophisticated acquisition processing

similar to the examples shown in Chapter 3, Project 1.1: Data Acquisition Base Application.

An alternative example is the CO2 PPM — Trends in Atmospheric Carbon Dioxide data set,

available at https://datahub.io/core/co2-ppm. This has dates that are provided in two

forms: as a year-month-day string and as a decimal number. We can better understand

this data if we can reproduce the decimal number value.

https://tidesandcurrents.noaa.gov/tide_predictions.html
https://tidesandcurrents.noaa.gov/tide_predictions.html
https://tidesandcurrents.noaa.gov/noaatideannual.html?id=8725769
https://tidesandcurrents.noaa.gov/noaatideannual.html?id=8725769
https://datahub.io/core/co2-ppm

Chapter 10 261

The second example data set is https://datahub.io/core/co2-ppm/r/0.html This is an

HTML file, requiring some acquisition processing similar to the examples from Chapter 4,

Data Acquisition Features: Web APIs and Scraping.

The use case for this cleaning application is identical to the description shown in Chapter 9,

Project 3.1: Data Cleaning Base Application. The acquired data — pure text, extracted from

the source files — will be cleaned to create Pydantic models with fields of useful Python

internal types.

We’ll take a quick look at the tide table data on the https://tidesandcurrents.noaa.gov

website.

NOAA/NOS/CO-OPS

Disclaimer: These data are based upon the latest information available ...

Annual Tide Predictions

StationName: EL JOBEAN, MYAKKA RIVER

State: FL

Stationid: 8725769

ReferencedToStationName: St. Petersburg, Tampa Bay

ReferencedToStationId: 8726520

HeightOffsetLow: * 0.83

HeightOffsetHigh: * 0.83

TimeOffsetLow: 116

TimeOffsetHigh: 98

Prediction Type: Subordinate

From: 20230101 06:35 - 20231231 19:47

Units: Feet and Centimeters

Time Zone: LST_LDT

Datum: MLLW

Interval Type: High/Low

Date Day Time Pred(Ft) Pred(cm) High/Low

https://datahub.io/core/co2-ppm/r/0.html
https://tidesandcurrents.noaa.gov

262 Data Cleaning Features

2023/01/01 Sun 06:35 AM -0.13 -4 L

2023/01/01 Sun 01:17 PM 0.87 27 H

etc.

The data to be acquired has two interesting structural problems:

1. There’s a 19-line preamble containing some useful metadata. Lines 2 to 18 have a

format of a label and a value, for example, State: FL.

2. The data is tab-delimited CSV data. There appear to be six column titles. However,

looking at the tab characters, there are eight columns of header data followed by

nine columns of data.

The acquired data should fit the dataclass definition shown in the following fragment of a

class definition:

from dataclasses import dataclass

@dataclass

class TidePrediction:

date: str

day: str

time: str

pred_ft: str

pred_cm: str

high_low: str

@classmethod

def from_row(

cls: type["TidePrediction"],

row: list[str]

) -> "TidePrediction":

...

Chapter 10 263

The example omits the details of the from_row() method. If a CSV reader is used, this

method needs to pick out columns from the CSV-format file, skipping over the generally

empty columns. If regular expressions are used to parse the source lines, this method will

use the groups from the match object.

Since this looks like many previous projects, we’ll look at the distinct

technical approach next.

Approach
The core processing of the data cleaning application should be — except for a few module

changes — very similar to the earlier examples. For reference, see Chapter 9, Project 3.1:

Data Cleaning Base Application, specifically Approach. This suggests that the clean module

should have minimal changes from the earlier version.

The principle differences should be two different implementations of the acquire_model

and the analysis_model. For the tide data example, a class is shown in the Description

section that can be used for the acquire model.

It’s important to maintain a clear distinction between the acquired data,

which is often text, and the data that will be used for later analysis, which

can be a mixture of more useful Python object types.

The two-step conversion from source data to the interim acquired data

format, and from the acquired data format to the clean data format can —

sometimes — be optimized to a single conversion.

An optimization to combine processing into a single step can also make

debugging more difficult.

We’ll show one approach to defining the enumerated set of values for the state of the tide.

In the source data, codes of 'H' and 'L' are used. The following class will define this

enumeration of values:

from enum import StrEnum

264 Data Cleaning Features

class HighLow(StrEnum):

high = 'H'

low = 'L'

We’ll rely on the enumerated type and two other annotated types to define a complete

record. We’ll return to the annotated types after showing the record as a whole first.

A complete tide prediction record looks as follows:

import datetime

from typing import Annotated, TypeAlias

from pydantic import BaseModel

from pydantic.functional_validators import AfterValidator, BeforeValidator

See below for the type aliases.

class TidePrediction(BaseModel):

date: TideCleanDateTime

pred_ft: float

pred_cm: float

high_low: TideCleanHighLow

@classmethod

def from_acquire_dataclass(

cls,

acquired: acquire_model.TidePrediction

) -> "TidePrediction":

source_timestamp = f"{acquired.date} {acquired.time}"

return TidePrediction(

date=source_timestamp,

Chapter 10 265

pred_ft=acquired.pred_ft,

pred_cm=acquired.pred_cm,

high_low=acquired.high_low

)

This shows how the source columns’ date and time are combined into a single text value

prior to validation. This is done by the from_acquire_dataclass() method, so it happens

before invoking the TidePrediction constructor.

The TideCleanDateTime and TideCleanHighLow type hints will leverage annotated types

to define validation rules for each of these attributes. Here are the two definitions:

TideCleanDateTime: TypeAlias = Annotated[

datetime.datetime, BeforeValidator(clean_date)]

TideCleanHighLow: TypeAlias = Annotated[

HighLow, BeforeValidator(lambda text: text.upper())]

The TideCleanDateTime type uses the clean_date() function to clean up the date string

prior to any attempt at conversion. Similarly, the TideCleanHighLow type uses a lambda to

transform the value to upper case before validation against the HighLow enumerated type.

The clean_date() function works by applying the one (and only) expected date format to

the string value. This is not designed to be flexible or permissive. It’s designed to confirm

the data is an exact match against expectations.

The function looks like this:

def clean_date(v: str | datetime.datetime) -> datetime.datetime:

match v:

case str():

return datetime.datetime.strptime(v, "%Y/%m/%d %I:%M %p")

case _:

return v

If the data doesn’t match the expected format, the strptime() function will raise a

266 Data Cleaning Features

ValueError exception. This will be incorporated into a pydantic.ValidationError

exception that enumerates all of the errors encountered. The match statement will pass

non-string values through to the pydantic handler for validation; we don’t need to handle

any other types.

This model can also be used for analysis of clean data. (See Chapter 13, Project 4.1: Visual

Analysis Techniques.) In this case, the data will already be a valid datetime.datetime object,

and no conversion will need to be performed. The use of a type hint of

str | datetime.datetime emphasizes the two types of values this method will be applied

to.

This two-part “combine and convert” operation is broken into two steps to fit into the

Pydantic design pattern. The separation follows the principle of minimizing complex

initialization processing and creating class definitions that are more declarative and less

active.

It’s often helpful to keep the conversion steps small and separate.

Premature optimization to create a single, composite function is often a

nightmare when changes are required.

For display purposes, the date, day-of-week, and time-of-day can be extracted from a single

datetime instance. There’s no need to keep many date-related fields around as part of the

TidePrediction object.

The tide prediction is provided in two separate units of measure. For the purposes of this

example, we retained the two separate values. Pragmatically, the height in feet is the height

in cm multiplied by 1
30.48

.

For some applications, where the value for height in feet is rarely used, a property might

make more sense than a computed value. For other applications, where the two heights

are both used widely, having both values computed may improve performance.

Chapter 10 267

Deliverables
This project has the following deliverables:

• Documentation in the docs folder.

• Acceptance tests in the tests/features and tests/steps folders.

• Unit tests for the application modules in the tests folder.

• Application to clean some acquired data and apply simple conversions to a few fields.

Later projects will add more complex validation rules.

Many of these deliverables are described in previous chapters. Specifically, Chapter 9,

Project 3.1: Data Cleaning Base Application covers the basics of the deliverables for this

project.

Unit tests for validation functions

The unique validators used by a Pydantic class need test cases. For the example shown, the

validator function is used to convert two strings into a date.

Boundary Value Analysis suggests there are three equivalence classes for date conversions:

• Syntactically invalid dates. The punctuation or the number of digits is wrong.

• Syntactically valid, but calendrical invalid dates. The 30th of February, for example,

is invalid, even when formatted properly.

• Valid dates.

The above list of classes leads to a minimum of three test cases.

Some developers like to explore each of the fields within a date, providing 5 distinct values:

the lower limit (usually 1), the upper limit (e.g., 12 or 31), just below the limit (e.g., 0),

just above the upper limit (e.g., 13 or 32), and a value that’s in the range and otherwise

valid. These additional test cases, however, are really testing the strptime() method of the

datetime class. These cases are duplicate tests of the datetime module. These cases are

not needed, since the datetime module already has plenty of test cases for calendrically

268 Data Cleaning Features

invalid date strings.

Don’t test the behavior of modules outside the application. Those modules

have their own test cases.

In the next section, we’ll look at a project to validate nominal data. This can be more

complicated than validating ordinal or cardinal data.

Project 3.3: Validate text fields (and numeric
coded fields)
For nominal data, we’ll use pydantic’s technique of applying a validator function to the

value of a field. In cases where the field contains a code consisting only of digits, there can

be some ambiguity as to whether or not the value is a cardinal number. Some software

may treat any sequence of digits as a number, dropping leading zeroes. This can lead to a

need to use a validator to recover a sensible value for fields that are strings of digits, but

not cardinal values.

Description
This project’s intent is to perform data validation, cleaning, and standardization. This

project will expand on the features of the Pydantic package to do somewhat more

sophisticated data validation and conversion.

We’ll continue working with a data set like https://tidesandcurrents.noaa.gov/ti

de_predictions.html. The tide predictions around the US include dates, but the date is

decomposed into three fields, and our data cleaning application needs to combine them.

For a specific example, see https://tidesandcurrents.noaa.gov/noaatideannual.htm

l?id=8725769. Note that the downloaded .txt file is really a tab-delimited CSV file with a

complex header. This will require some sophisticated acquisition processing similar to the

examples shown in Chapter 3, Project 1.1: Data Acquisition Base Application.

For data with a relatively small domain of unique values, a Python enum class is a very

https://tidesandcurrents.noaa.gov/tide_predictions.html
https://tidesandcurrents.noaa.gov/tide_predictions.html
https://tidesandcurrents.noaa.gov/noaatideannual.html?id=8725769
https://tidesandcurrents.noaa.gov/noaatideannual.html?id=8725769

Chapter 10 269

handy way to define the allowed collection of values. Using an enumeration permits simple,

strict validation by pydantic.

Some data — like account numbers, as one example — have a large domain of values that

may be in a state of flux. Using an enum class would mean transforming the valid set of

account numbers into an enumerated type before attempting to work with any data. This

may not be particularly helpful, since there’s rarely a compelling need to confirm that an

account number is valid; this is often a stipulation that is made about the data.

For fields like account numbers, there can be a need to validate potential values without an

enumeration of all allowed values. This means the application must rely on patterns of

the text to determine if the value is valid, or if the value needs to be cleaned to make it

valid. For example, there may be a required number of digits, or check digits embedded

within the code. In the case of credit card numbers, the last digit of a credit card number is

used as part of confirmation that the overall number is valid. For more information, see

https://www.creditcardvalidator.org/articles/luhn-algorithm.

After considering some of the additional validations that need to be performed, we’ll

take a look at a design approach for adding more complicated validations to the cleaning

application.

Approach
For reference to the general approach to this application, see Chapter 9, Project 3.1: Data

Cleaning Base Application, specifically Approach.

The model can be defined using the pydantic package. This package offers two paths to

validating string values against a domain of valid values. These alternatives are:

• Define an enumeration with all valid values.

• Define a regular expression for the string field. This has the advantage of defining

very large domains of valid values, including potentially infinite domains of values.

Enumeration is an elegant solution that defines the list of values as a class. As shown

earlier, it might look like this:

https://www.creditcardvalidator.org/articles/luhn-algorithm

270 Data Cleaning Features

import enum

class HighLow(StrEnum):

high = 'H'

low = 'L'

This will define a domain of two string values, “L” and “H”. This map provides

easier-to-understand names, Low and High. This class can be used by pydantic to validate

a string value.

An example of a case when we need to apply a BeforeValidator annotated type might be

some tide data with lower-case “h” and “l” instead of proper upper-case “H” or “L”. This

allows the validator to clean the data prior to the built-in data conversion.

We might use an annotated type. It looked like this in the preceding example:

TideCleanHighLow: TypeAlias = Annotated[

HighLow, BeforeValidator(lambda text: text.upper())]

The annotated type hint describes the base type, HighLow, and a validation rule to be applied

before the pydantic conversion. In this case, it’s a lambda to convert the text to upper

case. We’ve emphasized the validation of enumerated values using an explicit enumeration

because it is an important technique for establishing the complete set of allowed codes for

a given attribute. The enumerated type’s class definition is often a handy place to record

notes and other information about the coded values.

Now that we’ve looked at the various aspects of the approach, we can turn our attention to

the deliverables for this project.

Deliverables
This project has the following deliverables:

• Documentation in the docs folder.

• Acceptance tests in the tests/features and tests/steps folders.

Chapter 10 271

• Unit tests for the application modules in the tests folder.

• Application to clean source data in a number of fields.

Many of these deliverables are described in previous chapters. Specifically, Chapter 9,

Project 3.1: Data Cleaning Base Application covers the basics of the deliverables for this

project.

Unit tests for validation functions

The unique validators used by a pydantic class need test cases. For the example shown,

the validator function is used to validate the state of the tide. This is a small domain of

enumerated values. There are three core kinds of test cases:

• Valid codes like 'H' or 'L'.

• Codes that can be reliably cleaned. For example, lower-case codes 'h' and 'l' are

unambiguous. A data inspection notebook may reveal non-code values like 'High'

or 'Low', also. These can be reliably cleaned.

• Invalid codes like '', or '9'.

The domain of values that can be cleaned properly is something that is subject to a great

deal of change. It’s common to find problems and use an inspection notebook to uncover a

new encoding when upstream applications change. This will lead to additional test cases,

and then additional validation processing to make the test cases pass.

In the next project, we’ll look at the situation where data must be validated against an

externally defined set of values.

Project 3.4: Validate references among separate
data sources
In Chapter 9, Project 3.1: Data Cleaning Base Application we relied on the foundational

behavior of Pydantic to convert fields from source text to Python types. This next project

will look at a more complicated validation rule.

272 Data Cleaning Features

Description
This project’s intent is to perform data validation, cleaning, and standardization. This

project will expand on the features of the pydantic package to do somewhat more

sophisticated data validations and conversions.

Data sets in https://data.census.gov have ZIP Code Tabulation Areas (ZCTAs).

For certain regions, these US postal codes can (and should) have leading zeroes. In some

variations on this data, however, the ZIP codes get treated as numbers and the leading

zeroes get lost.

Data sets at https://data.census.gov have information about the city of Boston,

Massachusets, which has numerous US postal codes with leading zeroes. The Food

Establishment Inspections available at https://data.boston.gov/group/permitting

provides insight into Boston-area restaurants. In addition to postal codes (which are

nominal data), this data involves numerous fields that contain nominal data as well as

ordinal data.

For data with a relatively small domain of unique values, a Python enum class is a very

handy way to define the allowed collection of values. Using an enumeration permits simple,

strict validation by Pydantic.

Some data — like account numbers, as one example — have a large domain of values that

may be in a state of flux. Using an enum class would mean transforming the valid set of

account numbers into an enum before attempting to work with any data. This may not

be particularly helpful, since there’s rarely a compelling need to confirm that an account

number is valid; this is often a simple stipulation that is made about the data.

This leads to a need to validate potential values without an enumeration of the allowed

values. This means the application must rely on patterns of the text to determine if the

value is valid, or if the value needs to be cleaned to make it valid.

When an application cleans postal code data, there are two distinct parts to the cleaning:

1. Clean the postal code to have the proper format. For US ZIP codes, it’s generally 5

https://data.census.gov
https://data.census.gov
https://data.boston.gov/group/permitting

Chapter 10 273

digits. Some codes are 5 digits, a hyphen, and 4 more digits.

2. Compare the code with some master list to be sure it’s a meaningful code that

references an actual post office or location.

It’s important to keep these separate since the first step is covered by the previous

project, and doesn’t involve anything terribly complicated. The second step involves

some additional processing to compare a given record against a master list of allowed

values.

Approach
For reference to the general approach to this application, see Chapter 9, Project 3.1: Data

Cleaning Base Application, specifically Approach.

When we have nominal values that must refer to external data, we can call these “foreign

keys.” They’re references to an external collection of entities for which the values are

primary keys. An example of this is a postal code. There is a defined list of valid postal

codes; the code is a primary key in this collection. In our sample data, the postal code is a

foreign key reference to the defining collection of postal codes.

Other examples include country codes, US state codes, and US phone system area codes.

We can write a regular expression to describe the potential domain of key values. For

US state codes, for example, we can use the regular expression r'\w\w' to describe state

codes as having two letters. We could narrow this domain slightly using r'[A-Z]{2}' to

require the state code use upper-case letters only. There are only 50 state codes, plus a few

territories and districts; limiting this further would make for a very long regular expression.

The confounding factor here is when the primary keys need to be loaded from an external

source — for example, a database. In this case, the simple @validator method has a

dependency on external data. Further, this data must be loaded prior to any data cleaning

activities.

We have two choices for gathering the set of valid key values:

• Create an Enum class with a list of valid values.

274 Data Cleaning Features

• Define a @classmethod to initialize the pydantic class with valid values.

For example, https://data.opendatasoft.com has a useful list of US zip codes. See the

URL https://data.opendatasoft.com/api/explore/v2.1/catalog/datasets/georef

-united-states-of-america-zc-point@public/exports/csv for US Zip Codes Points,

United States of America. This is a file that can be downloaded and transformed into an

enum or used to initialize a class. The Enum class creation is a matter of creating a list of

two tuples with the label and the value for the enumeration. The Enum definition can be

built with code like the following example:

import csv

import enum

from pathlib import Path

def zip_code_values() -> list[tuple[str, str]]:

source_path = Path.home() / "Downloads" / "georef-united-states-of-

america-zc-point@public.csv"

with source_path.open(encoding='utf_8_sig') as source:

reader = csv.DictReader(source, delimiter=';')

values = [

(f"ZIP_{zip['Zip Code']:0>5s}", f"{zip['Zip Code']:0>5s}")

for zip in reader

]

return values

ZipCode = enum.Enum("ZipCode", zip_code_values())

This will create an enumerated class, ZipCode, from the approximately 33,000 ZIP codes in

the downloaded source file. The enumerated labels will be Python attribute names similar

to ZIP_75846. The values for these labels will be the US postal codes, for example, '75846'.

The ":0>5s" string format will force in leading zeroes where needed.

https://data.opendatasoft.com
https://data.opendatasoft.com/api/explore/v2.1/catalog/datasets/georef-united-states-of-america-zc-point@public/exports/csv
https://data.opendatasoft.com/api/explore/v2.1/catalog/datasets/georef-united-states-of-america-zc-point@public/exports/csv

Chapter 10 275

The zip_code_values() function saves us from writing 30,000 lines of code to define the

enumeration class, ZipCode. Instead, this function reads 30,000 values, creating a list of

pairs used to create an Enum subclass.

The odd encoding of utf_8_sig is necessary because the source file has a leading byte-order

mark (BOM). This is unusual butpermitted by Unicode standards. Other data sources for

ZIP codes may not include this odd artifact. The encoding gracefully ignores the BOM

bytes.

The unusual encoding of utf_8_sig is a special case because this file

happens to be in an odd format.

There are a large number of encodings for text. While UTF-8 is popular, it

is not universal.

When unusual characters appear, it’s important to find the source of the

data and ask what encoding they used.

In general, it’s impossible to uncover the encoding given a sample file. There

are a large number of valid byte code mappings that overlap between ASCII,

CP1252, and UTF-8.

This design requires the associated data file. One potential improvement is to create a

Python module from the source data.

Using the Pydantic functional validators uses a similar algorithm to the one shown above.

The validation initialization is used to build an object that retains a set of valid values. We’ll

start with the goal of a small model using annotated types. The model looks like this:

import csv

from pathlib import Path

import re

from typing import TextIO, TypeAlias, Annotated

276 Data Cleaning Features

from pydantic import BaseModel, Field

from pydantic.functional_validators import BeforeValidator, AfterValidator

See below for the type aliases.

ValidZip: TypeAlias = Annotated[

str,

BeforeValidator(zip_format_valid),

AfterValidator(zip_lookup_valid)]

class SomethingWithZip(BaseModel):

Some other fields

zip: ValidZip

The model relies on the ValidZip type. This type has two validation rules: before any

conversion, a zip_format_valid() function is applied, and after conversion, a

zip_lookup_valid() function is used.

We’ve only defined a single field, zip, in this Pydantic class. This will let us focus on the

validation-by-lookup design. A more robust example, perhaps based on the Boston health

inspections shown above, would have a number of additional fields reflecting the source

data to be analyzed.

The before validator function, zip_format_valid(), compares the ZIP code to a regular

expression to ensure that it is valid:

def zip_format_valid(zip: str) -> str:

assert re.match(r'\d{5}|\d{5}-d{4}', zip) is not None,

f"ZIP invalid format {zip!r}"

return zip

The zip_format_valid() can be expanded to use an f-string like f"{zip:0>5s} to reformat

a ZIP code that’s missing the leading zeroes. We’ll leave this for you to integrate into this

Chapter 10 277

function.

The after validator function is a callable object. It’s an instance of a class that defines the

__call__() method.

Here’s the core class definition, and the creation of the instance:

class ZipLookupValidator:

"""Compare a code against a list."""

def __init__(self) -> None:

self.zip_set: set[str] = set()

def load(self, source: TextIO) -> None:

reader = csv.DictReader(source, delimiter=';')

self.zip_set = {

f"{zip['Zip Code']:0>5s}"

for zip in reader

}

def __call__(self, zip: str) -> str:

if zip in self.zip_set:

return zip

raise ValueError(f"invalid ZIP code {zip}")

zip_lookup_valid = ZipLookupValidator()

This will define the zip_lookup_valid callable object. Initially, there’s new value for

the internal self.zip_set attribute. This must be built using a function that evaluates

zip_lookup_valid.load(source). This will populate the set of valid values.

We’ve called this function prepare_validator() and it looks like this:

def prepare_validator() -> None:

source_path = (

278 Data Cleaning Features

Path.home() / "Downloads" /

"georef-united-states-of-america-zc-point@public.csv"

)

with source_path.open(encoding='utf_8_sig') as source:

zip_lookup_valid.load(source)

This idea of a complex validation follows the SOLID design principle. It separates the

essential work of the SomethingWithZip class from the ValidZip type definition.

Further, the ValidZip type depends on a separate class, ZipLookupValidator, which

handles the complications of loading data. This separation makes it somewhat easier

to change validation files, or change the format of the data used for validation without

breaking the SomethingWithZip class and the applications that use it. Further, it provides

a reusable type, ValidZip. This can be used for multiple fields of a model, or multiple

models.

Having looked at the technical approach, we’ll shift to looking at the deliverables for this

project.

Deliverables
This project has the following deliverables:

• Documentation in the docs folder.

• Acceptance tests in the tests/features and tests/steps folders.

• Unit tests for the application modules in the tests folder.

• Application to clean and validate data against external sources.

Many of these deliverables are described in previous chapters. Specifically, Chapter 9,

Project 3.1: Data Cleaning Base Application covers the basics of the deliverables for this

project.

Chapter 10 279

Unit tests for data gathering and validation

The unique validators used by a Pydantic class need test cases. For the example shown,

the validator function is used to validate US ZIP codes. There are three core kinds of test

cases:

• Valid ZIP codes with five digits that are found in the ZIP code database.

• Syntactically valid ZIP codes with five digits that are not found in the ZIP code

database.

• Syntactically invalid ZIP that don’t have five digits, or can’t — with the addition of

leading zeroes — be made into valid codes.

Project 3.5: Standardize data to common codes
and ranges
Another aspect of cleaning data is the transformation of raw data values into standardized

values. For example, codes in use have evolved over time, and older data codes should

be standardized to match new data codes. The notion of standardizing values can be a

sensitive topic if critical information is treated as an outlier and rejected or improperly

standardized.

We can also consider imputing new values to fill in for missing values as a kind of

standardization technique. This can be a necessary step when dealing with missing data or

data that’s likely to represent some measurement error, not the underlying phenomenon

being analyzed.

This kind of transformation often requires careful, thoughtful justification. We’ll show

some programming examples. The deeper questions of handling missing data, imputing

values, handling outliers, and other standardization operations are outside the scope of

this book.

See https://towardsdatascience.com/6-different-ways-to-compensate-for-missi

ng-values-data-imputation-with-examples-6022d9ca0779 for an overview of some

https://towardsdatascience.com/6-different-ways-to-compensate-for-missing-values-data-imputation-with-examples-6022d9ca0779
https://towardsdatascience.com/6-different-ways-to-compensate-for-missing-values-data-imputation-with-examples-6022d9ca0779

280 Data Cleaning Features

ways to deal with missing or invalid data.

Description
Creating standardized values is at the edge of data cleaning and validation. These values

can be described as “derived” values, computed from existing values.

There are numerous kinds of standardizations; we’ll look at two:

1. Compute a standardized value, or Z-score, for cardinal data. For a normal distribution,

the Z-scores have a mean of 0, and a standard deviation of 1. It permits comparing

values measured on different scales.

2. Collapse nominal values into a single standardized value. For example, replacing a

number of historical product codes with a single, current product code.

The first of these, computing a Z-score, rarely raises questions about the statistical validity

of the standardized value. The computation, 𝑍 =
𝑥−𝜇

𝜎
, is well understood and has known

statistical properties.

The second standardization, replacing nominal values with a standardized code, can be

troubling. This kind of substitution may simply correct errors in the historical record. It

may also obscure an important relationship. It’s not unusual for a data inspection notebook

to reveal outliers or erroneous values in a data set that needs to be standardized.

Enterprise software may have unrepaired bugs. Some business records can

have unusual code values that map to other code values.

Of course, the codes in use may shift over time.

Some records may have values that reflect two eras: pre-repair and post-repair.

Worse, of course, there may have been several attempts at a repair, leading

to more nuanced timelines.

For this project, we need some relatively simple data. The Ancombe’s Quartet data will do

nicely as examples from which derived Z-scores can be computed. For more information,

Chapter 10 281

see Chapter 3, Project 1.1: Data Acquisition Base Application.

The objective is to compute standardized values for the two values that comprise the

samples in the Anscombe’s Quartet series. When the data has a normal distribution, these

derived, standardized Z-scores will have a mean of zero and a standard deviation of one.

When the data does not have a normal distribution, these values will diverge from the

expected values.

Approach
For reference to the general approach to this application, see Chapter 9, Project 3.1: Data

Cleaning Base Application, specifically Approach.

To replace values with preferred standardized values, we’ve seen how to clean bad data

in previous projects. See, for example, Project 3.3: Validate text fields (and numeric coded

fields).

For Z-score standardization, we’ll be computing a derived value. This requires knowing the

mean, 𝜇, and standard deviation, 𝜎, for a variable from which the Z-score can be computed.

This computation of a derived value suggests there are the following two variations on the

analytical data model class definitions:

• An “initial” version, which lacks the Z-score values. These objects are incomplete

and require further computation.

• A “final” version, where the Z-score values have been computed. These objects are

complete.

There are two common approaches to handling this distinction between incomplete and

complete objects:

• The two classes are distinct. The complete version is a subclass of the incomplete

version, with additional fields defined.

• The derived values are marked as optional. The incomplete version starts with None

values.

282 Data Cleaning Features

The first design is a more conventional object-oriented approach. The formality of a

distinct type to clearly mark the state of the data is a significant advantage. The extra class

definition, however, can be seen as clutter, since the incomplete version is transient data

that doesn’t create enduring value. The incomplete records live long enough to compute

the complete version, and the file can then be deleted.

The second design is sometimes used for functional programming. It saves the subclass

definition, which can be seen as a slight simplification.

from pydantic import BaseModel

class InitialSample(BaseModel):

x: float

y: float

class SeriesSample(InitialSample):

z_x: float

z_y: float

@classmethod

def build_sample(cls, m_x: float, s_x: float,

m_y: float, s_y: float, init:

InitialSample)-> "SeriesSample":

return SeriesSample(

x=init.x, y=init.y,

z_x=(init.x - m_x) / s_x,

z_y=(init.y - m_y) / s_y

)

These two class definitions show one way to formalize the distinction between the initially

cleaned, validated, and converted data, and the complete sample with the standardized

Z-scores present for both of the variables.

Chapter 10 283

This can be handled as three separate operations:

1. Clean and convert the initial data, writing a temporary file of the InitialSample

instances.

2. Read the temporary file, computing the means and standard deviations of the

variables.

3. Read the temporary file again, building the final samples from the InitialSample

instances and the computed intermediate values.

A sensible optimization is to combine the first two steps: clean and convert the data,

accumulating values that can be used to compute the mean and standard deviation. This is

helpful because the statistics module expects a sequence of objects that might not fit in

memory. The mean, which involves a sum and a count, is relatively simple. The standard

deviation requires accumulating a sum and a sum of squares.

𝑚𝑥 =
∑𝑥

𝑛

The mean of 𝑥 , 𝑚𝑥 , is the sum of the 𝑥 values divided by the count of 𝑥 values, shown as 𝑛.

𝑠𝑥 =

√

∑𝑥2 −
(∑𝑥)2

𝑛

𝑛 − 1

The standard deviation of 𝑥 , 𝑠𝑥 , uses the sum of 𝑥2, the sum of 𝑥 , and the number of values,

𝑛.

This formula for the standard deviation has some numeric stability issues, and there are

variations that are better designs. See https://en.wikipedia.org/wiki/Algorithms_for

_calculating_variance.

We’ll define a class that accumulates the values for mean and variance. From this, we can

compute the standard deviation.

import math

https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance

284 Data Cleaning Features

class Variance:

def __init__(self):

self.k: float | None = None

self.e_x = 0.0

self.e_x2 = 0.0

self.n = 0

def add(self, x: float) -> None:

if self.k is None:

self.k = x

self.n += 1

self.e_x += x - self.k

self.e_x2 += (x - self.k) ** 2

@property

def mean(self) -> float:

return self.k + self.e_x / self.n

@property

def variance(self) -> float:

return (self.e_x2 - self.e_x ** 2 / self.n) / (self.n - 1)

@property

def stdev(self) -> float:

return math.sqrt(self.variance)

This variance class performs an incremental computation of mean, standard deviation,

and variance. Each individual value is presented by the add() method. After all of the data

has been presented, the properties can be used to return the summary statistics.

Chapter 10 285

It’s used as shown in the following snippet:

var_compute = Variance()

for d in data:

var_compute.add(d)

print(f"Mean = {var_compute.mean}")

print(f"Standard Deviation = {var_compute.stdev}")

This provides a way to compute the summary statistics without using a lot of memory. It

permits the optimization of computing the statistics the first time the data is seen. And, it

reflects a well-designed algorithm that is numerically stable.

Now that we’ve explored the technical approach, it’s time to look at the deliverables that

must be created for this project.

Deliverables
This project has the following deliverables:

• Documentation in the docs folder.

• Acceptance tests in the tests/features and tests/steps folders.

• Unit tests for the application modules in the tests folder.

• Application to clean the acquired data and compute derived standardized Z-scores.

Many of these deliverables are described in previous chapters. Specifically, Chapter 9,

Project 3.1: Data Cleaning Base Application covers the basics of the deliverables for this

project.

Unit tests for standardizing functions

There are two parts of the standardizing process that require unit tests. The first is the

incremental computation of mean, variance, and standard deviation. This must be compared

against results computed by the statistics module to assure that the results are correct.

286 Data Cleaning Features

The pytest.approx object (or the math.isclose() function) are useful for asserting the

incremental computation matches the expected values from the standard library module.

Additionally, of course, the construction of the final sample, including the standardized

Z-scores, needs to be tested. The test case is generally quite simple: a single value with a

given x, y, mean of x, mean of y, the standard deviation of x, and the standard deviation of

y need to be converted from the incomplete form to the complete form. The computation

of the derived values is simple enough that the expected results can be computed by hand

to check the results.

It’s important to test this class, even though it seems very simple. Experience suggests that

these seemingly simple classes are places where a + replaces a - and the distinction isn’t

noticed by people inspecting the code. This kind of small mistake is best found with a unit

test.

Acceptance test

The acceptance test suite for this standardization processing will involve a main program

that creates two output files. This suggests the after-scenario cleanup needs to ensure the

intermediate file is properly removed by the application.

The cleaning application could use the tempfile module to create a file that will be deleted

when closed. This is quite reliable, but it can be difficult to debug very obscure problems

if the file that reveals the problems is automatically deleted. This doesn’t require any

additional acceptance test Then step to be sure the file is removed, since we don’t need to

test the tempfile module.

The cleaning application can also create a temporary file in the current working directory.

This can be unlinked for normal operation, but left in place for debugging purposes. This

will require at least two scenarios to be sure the file is removed normally, and be sure the

file is retained to support debugging.

The final choice of implementation — and the related test scenarios — is left to you.

Chapter 10 287

Project 3.6: Integration to create an acquisition
pipeline
In User experience, we looked at the two-step user experience. One command is used to

acquire data. After this, a second command is used to clean the data. An alternative user

experience is a single shell pipeline.

Description
The previous projects in this chapter have decomposed the cleaning operation into two

distinct steps. There’s another, very desirable user experience alternative.

Specifically, we’d like the following to work, also:

% python src/acquire.py -s Series_1Pair --csv source.csv | python
src/clean.py -o analysis/Series_1.ndjson

The idea is to have the acquire application write a sequence of NDJSON objects to standard

output. The clean application will read the sequence of NDJSON objects from standard

input. The two applications will run concurrently, passing data from process to process.

For very large data sets, this can reduce the processing time. Because of the overhead in

serializing Python objects to JSON text and deserializing Python objects from the text, the

pipeline will not run in half the time of the two steps executed serially.

Multiple extractions

In the case of CSV extraction of Anscombe Quartet data, we have an acquire application

that’s capable of creating four files concurrently. This doesn’t fit well with the shell pipeline.

We have two architectural choices for handling this.

One choice is to implement a “fan-out” operation: the acquire program fans out data to

four separate clean applications. This is difficult to express as a collection of shell pipelines.

To implement this, a parent application uses concurrent.futures, queues, and processing

pools. Additionally, the acquire program would need to write to shared queue objects, and

288 Data Cleaning Features

the clean program would read from a shared queue.

The alternative is to process only one of the Anscombe series at a time. Introducing a

-s Series_1Pair argument lets the user name a class that can extract a single series from

the source data. Processing a single series at a time permits a pipeline that can be readily

described as a shell command.

This concept is often necessary to disentangle enterprise data. It’s common for enterprise

applications — which often evolve organically — to have values from distinct problem

domains as parts of a common record.

We’ll turn to the technical approach in the next section.

Approach
For reference to the general approach to this application, see Chapter 9, Project 3.1: Data

Cleaning Base Application, specifically Approach.

Writing the standard output (and reading from standard input) suggests that these

applications will have two distinct operating modes:

• Opening a named file for output or input.

• Using an existing, open, unnamed file — often a pipe created by the shell — for output

or input.

This suggests that the bulk of the design for an application needs to focus on open file-like

objects. These are often described by the type hint of TextIO: they are files

that can read (or write) text.

The top-level main() function must be designed either to open a named file, or to provide

sys.stdout or sys.stdin as argument values. The various combinations of files are

provided to a function that will do the more useful work.

This pattern looks like the following snippet:

if options.output:

with options.output.open('w') as output:

Chapter 10 289

process(options.source, output)

else:

process(options.source, sys.stdout)

The process() function is either given a file opened by a context manager, or the function

is given the already open sys.stdout.

The ability for a Python application to be part of a shell pipeline is a

significant help in creating larger, more sophisticated composite processes.

This higher-level design effort is sometimes called “Programming In The

Large.”

Being able to read and write from pipelines was a core design feature of

the Unix operating system and continues to be central to all of the various

GNU/Linux variants.

This pipeline-aware design has the advantage of being slightly easier to unit test. The

process() function’s output argument value can be an io.StringIO object. When using a

StringIO object, the file processing is simulated entirely in memory, leading to faster, and

possibly simpler, tests.

This project sets the stage for a future project. See Chapter 12, Project 3.8: Integrated Data

Acquisition Web Service for a web service that can leverage this pipeline.

Consider packages to help create a pipeline

A Python application to create a shell pipeline can involve a fair amount of programming

to create two subprocesses that share a common buffer. This is handled elegantly by the

shell.

An alternative is https://cgarciae.github.io/pypeln/. The PypeLn package is an

example of a package that wraps the subprocess module to make it easier for a parent

application to create a pipeline that executes the two child applications: acquire and clean.

Using a higher-level Python application to start the acquire-to-clean pipeline avoids the

https://cgarciae.github.io/pypeln/

290 Data Cleaning Features

potential pitfalls of shell programming. It permits Python programs with excellent logging

and debugging capabilities.

Now that we’ve seen the technical approach, it’s appropriate to review the deliverables.

Deliverables
This project has the following deliverables:

• Documentation in the docs folder.

• Acceptance tests in the tests/features and tests/steps folders.

• Unit tests for the application modules in the tests folder.

• Revised applications that can be processed as a pipeline of two concurrent processes.

Many of these deliverables are described in previous chapters. Specifically, Chapter 9,

Project 3.1: Data Cleaning Base Application covers the basics of the deliverables for this

project.

Acceptance test

The acceptance test suite needs to confirm the two applications can be used as stand-alone

commands, as well as used in a pipeline. One technique for confirming the pipeline

behavior is to use shell programs like cat to provide input that mocks the input from

another application.

For example, the When step may execute the following kind of command:

cat some_mock_file.ndj | python src/clean.py -o analysis/some_file.ndj

The clean application is executed in a context where it is part of an overall pipeline. The

head of the pipeline is not the acquire application; we’ve used the cat some_mock_file.ndj

command as a useful mock for the other application’s output. This technique permits a lot

of flexibility to test applications in a variety of shell contexts.

Using a pipeline can permit some helpful debugging because it disentangles two complicated

Chapter 10 291

programs into two smaller programs. The programs can be built, tested, and debugged in

isolation.

Summary
This chapter expanded in several ways on the project in Chapter 9, Project 3.1: Data Cleaning

Base Application. The following additional processing features were added:

• Pythonic approaches to validation and conversion of cardinal values.

• Approaches to validation and conversion of nominal and ordinal values.

• Techniques for uncovering key relationships and validating data that must properly

reference a foreign key.

• Pipeline architectures using the shell pipeline.

Extras
Here are some ideas for you to add to these projects.

Hypothesis testing
The computations for mean, variance, standard deviation, and standardized Z-scores involve

floating-point values. In some cases, the ordinary truncation errors of float values can

introduce significant numeric instability. For the most part, the choice of a proper algorithm

can ensure results are useful.

In addition to basic algorithm design, additional testing is sometimes helpful. For numeric

algorithms, the Hypothesis package is particularly helpful. See https://hypothesis.r

eadthedocs.io/en/latest/.

Looking specifically at Project 3.5: Standardize data to common codes and ranges, the

Approach section suggests a way to compute the variance. This class definition is an

excellent example of a design that can be tested effectively by the Hypothesis module

to confirm that the results of providing a sequence of three known values produces the

expected results for the count, sum, mean, variance, and standard deviation.

https://hypothesis.readthedocs.io/en/latest/
https://hypothesis.readthedocs.io/en/latest/

292 Data Cleaning Features

Rejecting bad data via filtering (instead of logging)
In the examples throughout this chapter, there’s been no in-depth mention of what to do

with data that raises an exception because it cannot be processed. There are three common

choices:

1. Allow the exception to stop processing.

2. Log each problem row as it is encountered, discarding it from the output.

3. Write the faulty data to a separate output file so it can be examined with a data

inspection notebook.

The first option is rather drastic. This is useful in some data cleaning applications where

there’s a reasonable expectation of very clean, properly curated data. In some enterprise

applications, this is a sensible assumption, and invalid data is the cause for crashing the

application and sorting out the problems.

The second option has the advantage of simplicity. A try:/except: block can be used

to write log entries for faulty data. If the volume of problems is small, then locating the

problems in the log and resolving them may be appropriate.

The third option is often used when there is a large volume of questionable or bad data.

The rows are written to a file for further study.

You are encouraged to implement this third strategy: create a separate output file for rejected

samples. This means creating acceptance tests for files that will lead to the rejection of at

least one faulty row.

Disjoint subentities
An even more complicated data validation problem occurs when the source documents

don’t reflect a single resulting dataclass. This often happens when disjoint subtypes are

merged into a single data set. This kind of data is a union of the disjoint types. The data

must involve a “discriminator” field that shows which type of object is being described.

For example, we may have a few fields with date, time, and document ID that are common

Chapter 10 293

to all samples. In addition to those fields, a document_type field provides a set of codes to

discriminate between the different kinds of invoices and different kinds of payments.

In this case, a conversion function involves two stages of conversions:

• Identify the subtype. This may involve converting the common fields and the

discriminator field. The work will be delegated to a subtype-specific conversion for

the rest of the work.

• Convert each subtype. This may involve a family of functions associated with each

of the discriminator values.

294 Data Cleaning Features

This leads to a function design as shown in the activity diagram in Figure 10.1.

validate common fields

log an error

exception raised

invalid?

convert common fields

validate discriminator field

log an error

exception raised

invalid?

convert discriminator field

invoice

subtype?

create invoice document

payment

subtype? other subtype

create payment document

log a runtime error

Figure 10.1: Subentity validation

Chapter 10 295

Create a fan-out cleaning pipeline
There are two common alternatives for concurrent processing of a acquire and clean

application:

• A shell pipeline that connects the acquire application to the clean application. These

two subprocesses run concurrently. Each ND JSON line written by the acquire

application is immediately available for processing by the clean application.

• A pool of workers, managed by concurrent.futures. Each ND JSON line created

by the acquire application is placed in a queue for one of the workers to consume.

The shell pipeline is shown in Figure 10.2.

shell parent process

acquire child process

clean child process

python

acquire.py

python

clean.py

source

target

Figure 10.2: Components of a shell pipeline

The shell creates two child process with a shared buffer between them. For the acquire

child process, the shared buffer is sys.stdout. For the clean child process, the shared buffer

296 Data Cleaning Features

is sys.stdin. As the two applications run, each byte written is available to be read.

We’ve included explicit references to the Python runtime in these diagrams. This can help

clarify how our application is part of the overall Python environment.

The pipeline creation is an elegant feature of the shell, and can be used to create complex

sequences of concurrent processing. This is a handy way to think of decomposing a large

collection of transformations into a number of concurrent transformations.

In some cases, the pipeline model isn’t ideal. This is often the case when we need asymmetric

collections of workers. For example, when one process is dramatically faster than another,

it helps to have multiple copies of the slow processes to keep up with the faster process.

This is handled politely by the concurrent.futures package, which lets an application

create a “pool” of workers.

The pool can be threads or processes, depending on the nature of the work. For the

most part, CPU cores tend to be used better by process pools, because OS scheduling

is often process-focused. The Python Global Interpreter Lock (GIL) often prohibits

compute-intensive thread pools from making effective use of CPU resources.

For huge data sets, worker-pool architecture can provide some performance improvements.

There is overhead in serializing and deserializing the Python objects to pass the values

from process to process. This overhead imposes some limitations on the benefits of

multiprocessing.

The components that implement a worker process pool are shown in Figure 10.3.

Chapter 10 297

acquire parent process

process pool

Futures python

acquire.py

clean.pyclean.pyclean.pyclean.py

source

target

Figure 10.3: Components of a worker pool

This design is a significant alteration to the relationship between the acquire.py and

clean.py applications. When the acquire.py application creates the process pool, it uses

class and function definitions available within the same parent process.

This suggests the clean.py module needs to have a function that processes exactly one

source document. This function may be as simple as the following:

from multiprocessing import get_logger

import acquire_model

import analysis_model

298 Data Cleaning Features

def clean_sample(

acquired: acquire_model.SeriesSample

) -> analysis_model.SeriesSample:

try:

return analysis_model.SeriesSample.from_acquire_dataclass(acquired)

except ValueError as ex:

logger = get_logger()

logger.error("Bad sample: %r\n%r\n", acquired, ex)

return None

This function uses the analysis model definition, SeriesSample, to perform the validation,

cleaning, and conversion of the acquired data. This can raise exceptions, which need to be

logged.

The child processes are created with copies of the parent application’s logging configuration.

The multiprocessing.get_logger() function will retrieve the logger that was initialized

into the process when the pool of worker processes was created.

The acquire.py application can use a higher-order map() function to allocate requests

to the workers in an executor pool. The general approach is shown in the following

incomplete code snippet:

with target_path.open('w') as target_file:

with concurrent.futures.ProcessPoolExecutor() as executor:

with source_path.open() as source:

acquire_document_iter = get_series(

source, builder

)

clean_samples = executor.map(

clean.clean_sample,

acquire_document_iter

Chapter 10 299

)

count = clean.persist_samples(target_file, clean_samples)

This works by allocating a number of resources, starting with the target file to be written,

then the pool of processes to write clean data records to the file, and finally, the source

for the original, raw data samples. Each of these has a context manager to be sure the

resources are properly released when all of the processing has finished.

We use the ProcessPoolExecutor object as a context manager to make sure the subprocesses

are properly cleaned up when the source data has been fully consumed by the map()

function, and all of the results retrieved from the Future objects that were created.

The get_series() function is an iterator that provides the builds the acquire version of

each SeriesSample object. This will use an appropriately configured Extractor object to

read a source and extract a series from it.

Since generators are lazy, nothing really happens until the values of the

acquire_document_iter variable are consumed. The executor.map() will consume the

source, providing each document to the pool of workers to create a Future object that

reflects the work being done by a separate subprocess. When the work by the subprocess

finishes, the Future object will have the result and be ready for another request.

When the persist_samples() functions consume the values from the clean_samples

iterator, each of the Future objects will yield their result. These result objects are the values

computed by the clean.clean_sample() function. The sequence of results is written to

the target file.

The concurrent.futures process pool map() algorithm will preserve the original order.

The process pool offers alternative methods that can make results ready as soon as they’re

computed. This can reorder the results; something that may or may not be relevant for

subsequent processing.

11
Project 3.7: Interim Data
Persistence

Our goal is to create files of clean, converted data we can then use for further analysis.

To an extent, the goal of creating a file of clean data has been a part of all of the previous

chapters. We’ve avoided looking deeply at the interim results of acquisition and cleaning.

This chapter formalizes some of the processing that was quietly assumed in those earlier

chapters. In this chapter, we’ll look more closely at two topics:

• File formats and data persistence

• The architecture of applications

Description
In the previous chapters, particularly those starting with Chapter 9, Project 3.1: Data

Cleaning Base Application, the question of “persistence” was dealt with casually. The

previous chapters all wrote the cleaned samples into a file in ND JSON format. This saved

302 Project 3.7: Interim Data Persistence

delving into the alternatives and the various choices available. It’s time to review the

previous projects and consider the choice of file format for persistence.

What’s important is the overall flow of data from acquisition to analysis. The conceptual

flow of data is shown in Figure 11.1.

acquire

acquire

Shell pipeline? save raw

clean

validate

clean and convert

standardize

Format? JSON? CSV? save clean

analyze

statistical model

Figure 11.1: Data Analysis Pipeline

Chapter 11 303

This differs from the diagram shown in Chapter 2, Overview of the Projects, where the stages

were not quite as well defined. Some experience with acquiring and cleaning data helps to

clarify the considerations around saving and working with data.

The diagram shows a few of the many choices for persisting interim data. A more complete

list of format choices includes the following:

• CSV

• TOML

• JSON

• Pickle

• A SQL database

• YAML

There are others, but this list contains formats that enjoy a direct implementation in

Python. Note that YAML is popular but isn’t a built-in feature of the Python standard

library. Additional formats include protocol buffers (https://protobuf.dev) and Parquet

(https://parquet.apache.org). These two formats require a bit more work to define

the structure before serializing and deserializing Python data; we’ll leave them out of this

discussion.

The CSV format has two disadvantages. The most notable of these problems is the

representation of all data types as simple strings. This means any type of conversion

information must be offered in metadata outside the CSV file. The Pydantic package

provides the needed metadata in the form of a class definition, making this format tolerable.

The secondary problem is the lack of a deeper structure to the data. This forces the files to

have a flat sequence of primitive attributes.

The JSON format doesn’t—directly—serialize datetime or timedelta objects. To make this

work reliably, additional metadata is required to deserialize these types from supported

JSON values like text or numbers. This missing feature is provided by the Pydantic

https://protobuf.dev
https://parquet.apache.org

304 Project 3.7: Interim Data Persistence

package and works elegantly. A datetime.datetime object will serialize as a string, and

the type information in the class definition is used to properly parse the string. Similarly,

a datetime.timedelta is serialized as a float number but converted — correctly — into a

datetime.timedelta based on the type information in the class definition.

The TOML format has one advantage over the JSON format. Specifically, the TOML format

has a tidy way to serialize datetime objects, a capability the JSON library lacks. The TOML

format has the disadvantage of not offering a direct way to put multiple TOML documents

into a single file. This limits TOML’s ability to handle vast datasets. Using a TOML file

with a simple array of values limits the application to the amount of data that can fit

into memory.

The pickle format can be used with the Pydantic package. This format has the advantage

of preserving all of the Python-type information and is also very compact. Unlike JSON,

CSV, or TOML, it’s not human-friendly and can be difficult to read. The shelve module

permits the building of a handy database file with multiple pickled objects that can be

saved and reused. While it’s technically possible to execute arbitrary code when reading

a pickle file, the pipeline of acquisition and cleansing applications does not involve any

unknown agencies providing data of unknown provenance.

A SQL database is also supported by the Pydantic package by using an ORM model.

This means defining two models in parallel. One model is for the ORM layer (for example,

SQLAlchemy) to create table definitions. The other model, a subclass of

pydantic.BaseModel, uses native Pydantic features. The Pydantic class will have a

from_orm() method to create native objects from the ORM layer, performing validation

and cleaning.

The YAML format offers the ability to serialize arbitrary Python objects, a capability that

makes it easy to persist native Python objects. It also raises security questions. If care is

taken to avoid working with uploaded YAML files from insecure sources, the ability to

serialize arbitrary Python code is less of a potential security problem.

Of these file formats, the richest set of capabilities seems to be available via JSON. Since

Chapter 11 305

we’ll often want to record many individual samples in a single file, newline-delimited

(ND) JSON seems to be ideal.

In some situations — particularly where spreadsheets will be used for analysis purposes

— the CSV format offers some value. The idea of moving from a sophisticated Jupyter

Notebook to a spreadsheet is not something we endorse. The lack of automated test

capabilities for spreadsheets suggests they are not suitable for automated data processing.

Overall approach
For reference see Chapter 9, Project 3.1: Data Cleaning Base Application, specifically Approach.

This suggests that the clean module should have minimal changes from the earlier version.

A cleaning application will have several separate views of the data. There are at least four

viewpoints:

• The source data. This is the original data as managed by the upstream applications. In

an enterprise context, this may be a transactional database with business records that

are precious and part of day-to-day operations. The data model reflects considerations

of those day-to-day operations.

• Data acquisition interim data, usually in a text-centric format. We’ve suggested using

ND JSON for this because it allows a tidy dictionary-like collection of name-value

pairs, and supports quite complex Python data structures. In some cases, we may

perform some summarization of this raw data to standardize scores. This data may

be used to diagnose and debug problems with upstream sources. It’s also possible

that this data only exists in a shared buffer as part of a pipeline between an acquire

and a cleaning application.

• Cleaned analysis data, using native Python data types including datetime, timedelta,

int, float, and boolean. These are supplemented with Pydantic class definitions

that act as metadata for proper interpretation of the values. These will be used by

people to support decision-making. They may be used to train AI models used to

automate some decision-making.

306 Project 3.7: Interim Data Persistence

• The decision-maker’s understanding of the available information. This viewpoint

tends to dominate discussions with users when trying to gather, organize, and present

data. In many cases, the user’s understanding grows and adapts quickly as data is

presented, leading to a shifting landscape of needs. This requires a great deal of

flexibility to provide the right data to the right person at the right time.

The acquire application overlaps with two of these models: it consumes the source data

and produces an interim representation. The clean application also overlaps two of these

models: it consumes the interim representation and produces the analysis model objects.

It’s essential to distinguish these models and to use explicit, formal mappings between

them.

This need for a clear separation and obvious mappings is the primary reason why we

suggest including a “builder” method in a model class. Often we’ve called it something like

from_row() or from_dict() or something that suggests the model instance is built from

some other source of data via explicit assignment of individual attributes.

Conceptually, each model has a pattern similar to the one shown in the following snippet:

class Example:

field_1: SomeElementType

field_2: AnotherType

@classmethod

def from_source(cls, source: SomeRowType) -> "Example":

return Example(

field_1=transform_1(source),

field_2=transform_2(source),

)

The transformation functions, transform1() and transform2(), are often implicit when

using pydantic.BaseModel. This is a helpful simplification of this design pattern. The

essential idea, however, doesn’t change, since we’re often rearranging, combining, and

Chapter 11 307

splitting source fields to create useful data.

When the final output format is either CSV or JSON, there are two helpful methods of

pydantic.BaseModel. These methods are dict() and json(). The dict() method creates

a native Python dictionary that can be used by a csv.DictWriter instance to write CSV

output. The json() method can be used directly to write data in ND JSON format. It’s

imperative for ND JSON to make sure the indent value used by the json.dump() function

is None. Any other value for the indent parameter will create multi-line JSON objects,

breaking the ND JSON file format.

The acquire application often has to wrestle with the complication of data sources that

are unreliable. The application should save some history from each attempt to acquire data

and acquire only the “missing” data, avoiding the overhead of rereading perfectly good

data. This can become complicated if there’s no easy way to make a request for a subset

of data.

When working with APIs, for example, there’s a Last-Modified header that can help

identify new data. The If-Modified-Since header on a request can avoid reading data

that’s unchanged. Similarly, the Range header might be supported by an API to permit

retrieving parts of a document after a connection is dropped.

When working with SQL databases, some variants of the SELECT statement permit LIMIT

and OFFSET clauses to retrieve data on separate pages. Tracking the pages of data can

simplify restarting a long-running query.

Similarly, the clean application needs to avoid re-processing data in the unlikely event

that it doesn’t finish and needs to be restarted. For very large datasets, this might mean

scanning the previous, incomplete output to determine where to begin cleaning raw data

to avoid re-processing rows.

We can think of these operations as being “idempotent” in the cases when they have run

completely and correctly. We want to be able to run (and re-run) the acquire application

without damaging intermediate result files. We also want an additional feature of adding to

the file until it’s correct and complete. (This isn’t precisely the definition of “idempotent”;

308 Project 3.7: Interim Data Persistence

we should limit the term to illustrate that correct and complete files are not damaged by

re-running an application.) Similarly, the clean application should be designed so it can be

run — and re-run — until all problems are resolved without overwriting or reprocessing

useful results.

Designing idempotent operations
Ideally, our applications present a UX that can be summarized as “pick up where they left

off.” The application will check for output files, and avoid destroying previously acquired

or cleaned data.

For many of the carefully curated Kaggle data sets, there will be no change to the source

data. A time-consuming download can be avoided by examining metadata via the Kaggle

API to decide if a file previously downloaded is complete and still valid.

For enterprise data, in a constant state of flux, the processing must have an explicit “as-of

date” or “operational date” provided as a run-time parameter. A common way to make

this date (or date-and-time) evident is to make it part of a file’s metadata. The most visible

location is the file’s name. We might have a file named

2023-12-31-manufacturing-orders.ndj, where the as-of date is clearly part of the file

name.

Idempotency requires programs in the data acquisition and cleaning pipeline to check for

existing output files and avoid overwriting them unless an explicit command-line option

permits overwriting. It also requires an application to read through the output file to find

out how many rows it contains. This number of existing rows can be used to tailor the

processing to avoid re-processing existing rows.

Consider an application that reads from a database to acquire raw data. The “as-of-date”

is 2022-01-18, for example. When the application runs and something goes wrong in the

network, the database connection could be lost after processing a subset of rows. We’ll

imagine the output file has 42 rows written before the network failure caused the application

to crash.

Chapter 11 309

When the log is checked and it’s clear the application failed, it can be re-run. The program

can check the output directory and find the file with 42 rows, meaning the application is

being run in recovery mode. There should be two important changes to behavior:

• Add a LIMIT -1 OFFSET 42 clause to the SELECT statement to skip the 42 rows

already retrieved. (For many databases, LIMIT -1 OFFSET 0 will retrieve all rows;

this can be used as a default value.)

• Open the output file in “append” mode to add new records to the end of the

existing file.

These two changes permit the application to be restarted as many times as required to

query all of the required data.

For other data sources, there may not be a simple “limit-offset” parameter in the query.

This may lead to an application that reads and ignores some number of records before

processing the remaining records. When the output file doesn’t exist, the offset before

processing has a value of zero.

It’s important to handle date-time ranges correctly.

It’s imperative to make sure date and date-time ranges are properly half-open

intervals. The starting date and time are included. The ending date and

time are excluded.

Consider a weekly extract of data.

One range is 2023-01-14 to 2023-01-21. The 14th is included. The 21st is not

included. The next week, the range is 2023-01-21 to 2023-01-28. The 21st is

included in this extract.

Using half-open intervals makes it easier to be sure no date is accidentally

omitted or duplicated.

Now that we’ve considered the approach to writing the interim data, we can look at the

310 Project 3.7: Interim Data Persistence

deliverables for this project.

Deliverables
The refactoring of existing applications to formalize the interim file formats leads to changes

in existing projects. These changes will ripple through to unit test changes. There should

not be any acceptance test changes when refactoring the data model modules.

Adding a “pick up where you left off” feature, on the other hand, will lead to changes in the

application behavior. This will be reflected in the acceptance test suite, as well as unit tests.

The deliverables depend on which projects you’ve completed, and which modules need

revision. We’ll look at some of the considerations for these deliverables.

Unit test
A function that creates an output file will need to have test cases with two distinct fixtures.

One fixture will have a version of the output file, and the other fixture will have no

output file. These fixtures can be built on top of the pytest.tmp_path fixture. This fixture

provides a unique temporary directory that can be populated with files needed to confirm

that existing files are appended to instead of overwritten.

Some test cases will need to confirm that existing files were properly extended. Other test

cases will confirm that the file is properly created when it didn’t exist. An edge case is the

presence of a file of length zero — it was created, but no data was written. This can be

challenging when there is no previous data to read to discover the previous state.

Another edge case is the presence of a damaged, incomplete row of data at the end of the

file. This requires some clever use of the seek() and tell() methods of an open file to

selectively overwrite the incomplete final record of the file. One approach is to use the

tell() method before reading each sample. If an exception is raised by the file’s parser,

seek to the last reported tell() position, and start writing there.

Chapter 11 311

Acceptance test
The acceptance test scenarios will require an unreliable source of data. Looking back at

Chapter 4, Data Acquisition Features: Web APIs and Scraping, specifically Acceptance tests,

we can see the acceptance test suite involves using the bottle project to create a very

small web service.

There are two aspects to the scenarios, each with different outcomes. The two aspects are:

1. The service or database provides all results or it fails to provide a complete set

of results.

2. The working files are not present — we could call this the “clean start” mode — or

partial files exist and the application is working in recovery mode.

Since each aspect has two alternatives, there are four combinations of scenarios for this

feature:

1. The existing scenario is where the working directory is empty and the API or database

works correctly. All rows are properly saved.

2. A new scenario where the working directory is empty and the service or database

returns a partial result. The returned rows are saved, but the results are marked as

incomplete, perhaps with an error entry in the log.

3. A new scenario where the given working directory has partial results and the API or

database works correctly. The new rows are appended to existing rows, leading to a

complete result.

4. A new scenario where the given working directory has partial results and the service

or database returns a partial result. The cumulative collection of rows are usable, but

the results are still marked as incomplete.

A version of the mock RESTful process can return some rows and even after that return

502 status codes. The database version of the incomplete results scenarios is challenging

because SQLite is quite difficult to crash at run-time. Rather than try to create a version of

312 Project 3.7: Interim Data Persistence

SQLite that times out or crashes, it’s better to rely on unit testing with a mock database to

be sure crashes are handled properly. The four acceptance test scenarios will demonstrate

that working files are extended without being overwritten.

Cleaned up re-runnable application design
The final application with the “pick-up-where-you-left-off” feature can be very handy for

creating robust, reliable analytic tools. The question of “what do we do to recover?” should

involve little (or no) thought.

Creating “idempotent” applications, in general, permits rugged and reliable processing.

When an application doesn’t work, the root cause must be found and fixed, and the

application can be run again to finish the otherwise unfinished work from the failed

attempt. This lets analysts focus on what went wrong — and fixing that — instead of having

to figure out how to finish the processing.

Summary
In this chapter, we looked at two important parts of the data acquisition pipeline:

• File formats and data persistence

• The architecture of applications

There are many file formats available for Python data. It seems like newline delimited

(ND) JSON is, perhaps, the best way to handle large files of complex records. It fits well

with Pydantic’s capabilities, and the data can be processed readily by Jupyter Notebook

applications.

The capability to retry a failed operation without losing existing data can be helpful when

working with large data extractions and slow processing. It can be very helpful to be able

to re-run the data acquisition without having to wait while previously processed data is

processed again.

Chapter 11 313

Extras
Here are some ideas for you to add to these projects.

Using a SQL database
Using a SQL database for cleaned analytical data can be part of a comprehensive

database-centric data warehouse. The implementation, when based on Pydantic, requires

the native Python classes as well as the ORM classes that map to the database.

It also requires some care in handling repeated queries for enterprise data. In the ordinary

file system, file names can have processing dates. In the database, this is more commonly

assigned to an attribute of the data. This means multiple time periods of data occupy a

single table, distinguished by the “as-of” date for the rows.

A common database optimization is to provide a “time dimension” table. For each date,

the associated date of the week, fiscal weeks, month, quarter, and year is provided as an

attribute. Using this table saves computing any attributes of a date. It also allows the

enterprise fiscal calendar to be used to make sure that 13-week quarters are used properly,

instead of the fairly arbitrary calendar month boundaries.

This kind of additional processing isn’t required but must be considered when thinking

about using a relational database for analysis data.

This extra project can use SQLAlchemy to define an ORM layer for a SQLite database. The

ORM layer can be used to create tables and write rows of analysis data to those tables.

This permits using SQL queries to examine the analysis data, and possibly use complex

SELECT-GROUP BY queries to perform some analytic processing.

Persistence with NoSQL databases
There are many NoSQL databases available. A number of products like MongoDB use

a JSON-based document store. Database engines like PostgreSQL and SQLite3 have the

capability of storing JSON text in a column of a database table. We’ll narrow our focus onto

JSON-based databases as a way to avoid looking at the vast number of databases available.

314 Project 3.7: Interim Data Persistence

We can use SQLite3 BLOB columns to store JSON text, creating a NoSQL database using

the SQLite3 storage engine.

A small table with two columns: doc_id, and doc_text, can create a NoSQL-like database.

The SQL definition would look like this:

CREATE TABLE IF NOT EXISTS document(

doc_id INTEGER PRIMARY KEY,

doc_text BLOB

)

This table will have a primary key column that’s populated automatically with integer

values. It has a text field that can hold the serialized text of a JSON document.

The SQLite3 function json() should be used when inserting JSON documents:

INSERT INTO document(doc_text) VALUES(json(:json_text))

This will confirm the supplied value of json_text is valid JSON, and will also minimize

the storage, removing needless whitespace. This statement is generally executed with the

parameter {"json_text": json.dumps(document) to convert a native Python document

into JSON text so it can then be persisted into the database.

The attributes of a JSON object can be interrogated using the SQLite ->> operator to extract

a field from a JSON document. A query for a document with a named field that has a

specific value will look like this:

SELECT doc_text FROM document WHERE doc_text ->> 'field' = :value

In the above SQL, the field’s name, field, is fixed as part of the SQL. This can be done

when the schema is designed to support only a few queries. In the more general case, the

field name might be provided as a parameter value, leading to a query like the following:

SELECT doc_text FROM document WHERE doc_text ->> :name = :value

This query requires a small dictionary with the keys “name” and “value”, which will provide

the field name and field value used to locate matching documents.

Chapter 11 315

This kind of database design lets us write processing that’s similar to some of the capabilities

of a document store without the overhead of installing a document store database. The

JSON documents can be inserted into this document store. The query syntax uses a few

SQL keywords as overhead, but the bulk of the processing can be JSON-based interrogation

of documents to locate the desired subset of available documents.

The idea here is to use a JSON-based document store instead of a file in ND JSON format.

The Document Store interface to SQLite3 should be a module that can be reused in a

JupyterLab Notebook to acquire and analyze data. While unit tests are required for the

database interface, there are a few changes to the acceptance test suite required to confirm

this changed design.

12
Project 3.8: Integrated Data
Acquisition Web Service

In many enterprise applications, data is provided to several consumers. One way to do

this is to define an API that provides data (and the metadata) for subsequent use. In this

chapter, we guide you through the transformation of Project 2.5 schema information into a

larger OpenAPI specification. We will also build a small Flask application that provides the

core acquire-cleanse-convert process as a web service.

We’ll cover a number of skills in the chapter:

• Creating an OpenAPI specification for a service to acquire and download data

• Writing a web service application to implement the OpenAPI specification

• Using a processing pool to delegate long-running background tasks

This is a bit of a deviation from a straight path of acquiring and cleaning data. In some

enterprises, this deviation is needed to publish useful data to a wider audience.

318 Project 3.8: Integrated Data Acquisition Web Service

We’ll begin with a description of the behavior of this RESTful API server.

Description
In Chapter 8, Project 2.5: Schema and Metadata, we used Pydantic to generate a schema for

the analysis data model. This schema provides a formal, language-independent definition

of the available data. This can then be shared widely to describe the data and resolve

questions or ambiguities about the data, the processing provenance, the meaning of coded

values, internal relationships, and other topics.

This specification for the schema can be extended to create a complete specification for

a RESTful API that provides the data that meets the schema. The purpose of this API is

to allow multiple users — via the requests module — to query the API for the analytical

data as well as the results of the analysis. This can help users to avoid working with

out-of-date data. An organization creates large JupyterLab servers to facilitate doing

analysis processing on machines far larger than an ordinary laptop.

Further, an API provides a handy wrapper around the entire acquire-and-clean process.

When a user requests data for the first time, the processing steps can be started and the

results cached. Each subsequent request can download available data from a filesystem

cache, providing rapid access. In the case of a failure, the logs can be provided as an

alternative to the final data.

We won’t dive deeply into REST design concepts. For more information on RESTful design,

see https://hub.packtpub.com/creating-restful-api/.

Generally, a RESTful API defines a number of paths to resources. A given path can be

accessed by a number of methods, some of which will get the resource. Other methods may

post, patch, put, or delete the resource. The defined HTTP methods offer handy mapping

to the common Create-Retrieve-Update-Delete (CRUD) conceptual operations.

Here are the common cases:

• A path without a final identifier, for example, /series/. There are two common

cases here:

https://hub.packtpub.com/creating-restful-api/

Chapter 12 319

– The GET method will retrieve the list of available resources of the given type.

– The POST method can be used to create a new instance of this type. This is the

conceptual “Create” operation.

• A path with an identifier. For example, /series/Series_4. This is a specific resource.

There are several methods that might be implemented:

– The GET method will retrieve the resource. This is the “Retrieve” conceptual

operation.

– The PUT and PATCH methods can be used to replace or update the resource.

These are two forms of the conceptual “Update” operation.

– The DELETE method can be used to remove the resource. This is the “Delete”

conceptual operation.

It becomes imperative to consider a RESTful web service as a collection of resources.

Talking about resources can make it difficult to talk about a RESTful request that initiates

processing. It raises the question of what resource describes an activity such as

processing samples. We’ll start by considering the data series as the most important

resource provided by this service.

The data series resources
The primary resource for this API is the data series. As shown in the previous section,

OpenAPI 3 specification, a path with /2023.02/series/<id> can be used to extract the data

for a named series. The 2023.02 prefix allows the API to evolve to a newer version while

leaving older paths in place for compatibility purposes.

The use of semantic versioning (semver) is common, and many APIs have something

like “v1” in the path. Yet another alternative is to include the version information in the

Accept header. This means the URIs never change, but the schema for the response can

change based on the version information provided in the header.

The various “series” routes provide direct access to the data resources. This seems

320 Project 3.8: Integrated Data Acquisition Web Service

appropriate since this is the primary purpose of the service.

There is an additional class of resources that might be of interest: the background processing

used to create the data. As noted above, projects like Chapter 11, Project 3.7: Interim Data

Persistence, are the essential foundation for processing done by this RESTful API. The

acquire and clean applications can be run in the background to create data for download.

A focus on resources is essential for making useful RESTful APIs.

Even when describing processing or state changes, the focus must be on

the resource that undergoes the state change.

The methods available in HTTP (GET, POST, PUT, PATCH, and DELETE, for

example) are effectively the verbs of the API’s language. The resources are

nouns.

Creating data for download
The primary purpose of the RESTful API is to store and download clean data for analysis

work. This can be a relatively straightforward application that offers data files from a

well-known directory. The work involves matching RESTful requests against available files,

and returning appropriate status codes when requests are made for files that don’t exist.

A secondary purpose is to automate the creation of the data for download. The RESTful

API can be a wrapper around the complete acquire, clean, and persist pipeline. To do this,

the API will have two distinct kinds of requests:

• Requests to download existing, cached data. The resource type is clear here.

• Requests to start the creation of new data; this will lead to cached data available for

download. The resource type for processing isn’t as clear.

An operation or action does have some static resources that can be used with a RESTful

API. Here are two common resource types for activities:

• A “current status” resource that reflects the work being done right now

Chapter 12 321

• A “processing history” resource that reflects work completed: this is often the log

file for the acquisition processing

The control of processing by a RESTful API can work by creating and examining processing

status or history as a distinct resource type:

• A path with a POST request will start an asynchronous, background process. This

will also create a new processing history resource. The response body provides a

transaction identifier referring to this new processing history.

• A path with a transaction identifier and a GET request will return the background

processing details; this should include the current or final status as well as the log.

For sophisticated frontend processing, a web socket can be created to receive ongoing

status reports from the background process. For a less sophisticated frontend, polling

every few seconds can be done to see whether the processing has finished and the data is

available for download.

With both processing history resources and data resources, the following two sets of paths

are necessary:

• /series/<id> paths that refer to specific series, already available in the cache. These

resources are accessed exclusively with the GET method to download data.

• /creation/<id> paths that refer to background processing jobs to create a new series

of data. These resources will use the POST method to start a background job, and

the GET method to check the status of a job.

This set of paths (and the associated methods) allows a user to control processing and

check the results of processing. The user can ask for available datasets and download a

specific dataset for analysis.

Overall approach
We’ll take some guidance from the C4 model (https://c4model.com) when looking at our

approach.

https://c4model.com

322 Project 3.8: Integrated Data Acquisition Web Service

• Context For this project, the context diagram has several use cases: listing available

data, downloading available data, starting a process to acquire data, and checking

the status of a process acquiring data.

• Containers Ideally, this runs on a single container that hosts the web service as well

as the processing. In some cases, multiple containers will be required because the

processing demands are so huge.

• Components There are two significantly different collections of software

components: the web service, and the application programs that run in the background

to acquire and clean the data.

• Code The acquiring and cleaning applications have already been described as

separate projects. We’ll focus on the web service.

We’ll decompose the web service application into several components. The following

diagram shows the relationship between the RESTful API service and the applications that

are run to acquire and clean data.

Chapter 12 323

The component diagram is shown in Figure 12.1.

analysis_model

Background

acquire clean

RESTful API

Worker Pool

C «dataclass»
XYPair

x: str
y: str

acquireclean

F acquire F clean

C App

series_get()
creation_post()
creation_get()

F acquire_series

Source

acquires

feeds

creates

Starts

subprocess.run

future

downloads

Figure 12.1: Application components

This diagram shows three separate processes:

• The RESTful API process that handles HTTP requests from clients.

• The Worker Pool collection of processes that are managed by the

concurrent.futures module. Each worker will be running a single function, shown

as acquire_series, that’s defined in the same module as the RESTful API service.

• The Background process that is executed by a worker in the worker pool. This uses

the subprocess module to run an existing CLI application.

When the API service starts, it uses concurrent.futures to create a pool of workers.

A request to acquire and clean data will use the submit() method of the pool to create

a future. This future is a reference to a subprocess that will — eventually — return the

final status of the acquire and clean job. The subprocess that implements the future will

324 Project 3.8: Integrated Data Acquisition Web Service

evaluate the acquire_series() function defined in the same module as the RESTful API

application to do the work.

When the acquire_series() function finishes the processing, it will have created a file

that can be downloaded. Via the future object, it will also provide some status information

to the RESTful API service to indicate the processing is done.

One suggested implementation for the acquire_series() function is to use

subprocess.run() to execute the acquire and clean applications to gather and cleanse

source data. There are some other choices available. The most important alternative is

to import these two other modules, and execute them directly, rather than creating a

subprocess. This direct execution has the advantage of being slightly faster than spawning

a subprocess. It has the disadvantage of making it more complicated to create a separate

log file each time the acquire and clean application is executed.

We’ll take a look at the OpenAPI specification for the RESTful API first. This helps to

characterize the overall UX.

OpenAPI 3 specification
A RESTful API requires a clear description of the requests and responses. The OpenAPI

specification is a formal definition of RESTful web services. See https://www.openapis

.org. This document has a version identifier and some information about the service as

a whole. For this project, the most important part is the paths section, which lists the

various resource types and the paths used to locate those resources. The components

section provides the needed schema definitions.

An OpenAPI document often has an outline like this:

{

"openapi": "3.0.3",

"info": {

"title": "The name of this service",

"description": "Some details.",

https://www.openapis.org
https://www.openapis.org

Chapter 12 325

"version": "2023.02"

}

"paths": {

"..."

}

"components": {

"parameters": {"..."},

"schemas": {"..."}

}

}

The details of the paths and components have been elided from this overview. (We’ve used

"..." in place of the details.) The idea is to show the general structure of an OpenAPI

specification. While JSON is the underlying format commonly used for these specifications,

it can be hard to read. For this reason, it’s common to use YAML notation for OpenAPI

specifications.

Think of the OpenAPI specification as a binding contract.

The acceptance test suite should be Gherkin scenarios with a very direct

mapping to the OpenAPI specification.

For more on the idea of OpenAPI to Gherkin, see https://medium.com/c

apital-one-tech/spec-to-gherkin-to-code-902e346bb9aa.

The OpenAPI paths define the resources made available by a RESTful API. In this case, the

resources are cleaned files, ready for analysis.

We’ll often see entries in the paths section that look like the following YAML snippet:

"/2023.02/series":

get:

responses:

https://medium.com/capital-one-tech/spec-to-gherkin-to-code-902e346bb9aa
https://medium.com/capital-one-tech/spec-to-gherkin-to-code-902e346bb9aa

326 Project 3.8: Integrated Data Acquisition Web Service

"200":

description: All of the available data series.

content:

application/json:

schema:

$ref: "#/components/schemas/series_list"

This shows a path that starts with an API version number (in this example, calendar

versioning, “calver”, is used) and a resource-type, series. Any given path can be accessed

by a variety of methods; in this example, only the get method is defined.

One kind of response is defined for requests to this path and method combination. The

response will have a status code of 200, meaning normal, successful completion. The

description is there to explain what this resource will be. A response can define a variety

of content types; in this example, only application/json is defined. The schema for this

is provided elsewhere in the OpenAPI specification, in the components/schemas section of

the document.

The use of a $ref tag within the specification permits common definitions, such as schemas

and parameters, to be collected under the components section, permitting reuse. This

follows the DRY (Don’t Repeat Yourself) principle of software design.

It can be difficult to get the syntax correct in an OpenAPI specification. It’s helpful to

have an editor that validates the specification. For example, https://editor.swagger.io

provides an editor that helps confirm the specification is internally consistent. For readers

using tools such as JetBrains’ PyCharm, there’s a plug-in editor: https://plugins.jetb

rains.com/plugin/14837-openapi-swagger-editor.

When a path has an identifier in it, then this is shown with the path name of the form

"/2023.02/series/<series_id>". The <series_id> is defined in the parameters section

of this request. Since parameters are sometimes reused, it’s helpful to have a reference to a

component with the common definition.

The whole request might start like this:

https://editor.swagger.io
https://plugins.jetbrains.com/plugin/14837-openapi-swagger-editor
https://plugins.jetbrains.com/plugin/14837-openapi-swagger-editor

Chapter 12 327

"/2023.02/series/<series_id>":

get:

description:

Get series data as text ND JSON.

parameters:

- $ref:

"#/components/parameters/series_id"

responses:

...

The details of the responses section have been omitted from this example. The parameter

definition — in the components section — might look like this:

series_id:

name: series_id

in: path

required: true

description: Series name.

schema:

type: string

This provides a wealth of details about the series_id parameter, including the description

and a formal schema definition. For simple APIs, the name of the parameter and the

reference label under components are often the same. In more complex cases, a parameter

name might be reused, but have distinct semantics in distinct contexts. A generic word

such as id might be used in several different paths, leading to the reference label being

something more descriptive than id.

The content for ND JSON is considered an extension to standard MIME types. Therefore

the content definition for a response that includes data might look like this:

content:

application/x-ndjson:

328 Project 3.8: Integrated Data Acquisition Web Service

schema:

$ref: "#/components/schemas/samples"

The schema is a challenge because it pushes the boundaries of what JSON Schema can

describe. It looks as follows:

samples:

description: >

Acquired data for a series in ND JSON format.

See http://ndjson.org and https://jsonlines.org.

type: string

format: "(\\{.*?\\}\\n)+"

The format information describes the physical organization of ND JSON data, but doesn’t

provide any details on the structure of the schema for each individual row. The additional

schema details can either be added to the description, or a separate label, distinct from

other JSON schema labels, can be used, for example, “ndjson-schema:”.

RESTful API to be queried from a notebook
The RESTful API service must be a wrapper around application programming that can

perform the required processing. The idea is to put as little processing as possible into the

RESTful API. It serves as a very thin — almost transparent — interface to the “real work”

of the application. For this reason, projects such as Chapter 11, Project 3.7: Interim Data

Persistence are the essential foundation of this RESTful API.

As noted in Figure 12.1, the Background processing is completely outside the RESTful API.

This separation of concerns is absolutely essential. The general processing of samples can

be performed with a CLI or through the RESTful API and create identical results.

If additional processing — for example, additional cleaning — is done by the RESTful service,

then there are results that can’t be reproduced from the CLI. This means the acceptance

test suites have distinct results. This will lead to problems when a change is made to the

underlying acquire or clean application and the “extra” processing that was jammed into

Chapter 12 329

the RESTful service now appears to be broken.

A common source of problems in enterprise software is the failure to honor the Interface

Segregation design principle. A complex application may be supported by several

collaborating organizations. When one organization is slow to respond to requests for

changes, another organization may step in and make a bad design decision, implementing

processing in the API interface that should have been part of a background module with a

proper CLI interface. The urge to be responsive to customers can often overshadow the

importance of the separation of concerns.

For this project, the server can be built as a single process, avoiding the need for the

distributed cache. Further, because the data series and the processing logs are all simple

files, a database is not required; the local filesystem is perfectly suited to this service.

To create a more scalable solution, a library such as celery can be used to create a more

robust distributed worker pool. This isn’t needed for a small server, however.

In the next section, we’ll review how processing can be started by a RESTful API.

A POST request starts processing
The general approach to creating a new resource is to make a POST request to a path. This

will either return a 400 error status or it will issue a redirect (301) to a new path to retrieve

the status of the background processing. This pattern is called the Post-Redirect-Get

design pattern. It permits a user interacting with a browser to use the back button to

perform the GET method again; it prevents the back button from submitting a duplicate

request.

For a client application making a request via requests the redirect is essentially invisible.

The request history will reveal the redirection. Also, the full URL recorded in the response

will reflect the redirection.

The general processing for this route, then, is as follows:

1. Validate all of the parameters to make sure they describe the series and the source of

the data. If there is anything amiss, a JSON response with the details of the problem

330 Project 3.8: Integrated Data Acquisition Web Service

must be returned, with a status code of 400 to indicate the request is invalid and

must be changed.

2. Use the worker pool submit() method to create a Future object. This object can

be saved in a local cache by the RESTful API. This cache of Future objects can be

queried to see the background processing currently being performed. The future’s

result is usually something indicative of success or failure; for example, the return

code from the subprocess – usually a zero indicates success.

3. Use the redirect() function in the Bottle framework to return the status code

to direct a client to another URL for the status of the just-created Future object.

Separately, a GET request will prepare a JSON document with the status of the job

creating the data.

When using a framework like Bottle, this function is marked with a

@post("/2023.02/creation") decorator. This names the POST method and the path that

will be handled by the function.

The log files from processing can be the longer-term repository of processing history. The

GET request for status will return a log and possibly the state of an active Future object.

We’ll look at this request next.

The GET request for processing status
The initial POST request to start processing will redirect to a GET request that reveals the

status of the processing. The initial response may have almost no other details beyond the

fact that the processing job has started.

This status path should return one of two things:

• A 404 status if the process ID is unknown. This would mean no previous request had

been made with this identifier and no current request has this identifier, either.

• A 200 status with JSON content that includes some combination of two things: the

state of a future object and the log file.

Chapter 12 331

Most users will only care about the state of the Future object. In the case of developers,

however, who are adding features to data acquire or data cleaning applications, then the

log might be important support for observability.

When using a framework like Bottle, this function is marked with a

@get("/2023.02/creation/<job_id>") decorator. This provides the method and the path

that will be handled by the function. The use of <job_id> parses this section of the path

and provides the value as a separate parameter to the function that implements this route.

Once the processing is complete, a subsequent request can provide the data. We’ll look at

this next.

The GET request for the results
This path should return one of two things:

• A 404 status if the series identifier is unknown.

• A 200 status with the ND JSON content. This has a MIME type of

application/x-ndjson to indicate it’s an extension to the standard collection of

MIME types.

When using a framework like Bottle, this function is marked with a

@get("/2023.02/series/<series_id>") decorator. The use of <series_id> parses this

section of the path and provides the value as a separate parameter to the function that

implements this route.

A more sophisticated implementation can check for an Accept header in the request.

This header will state the preferred MIME type, and might have text/csv instead of

application/x-ndjson. The use of this header permits a client to make requests for data

in a format the application finds most useful.

Security considerations
A RESTful API requires some care to be sure the requests fit with the overall enterprise

information access policies. In some cases, this might mean individual access controls to

332 Project 3.8: Integrated Data Acquisition Web Service

be sure each person can access permitted data. There are numerous Single Sign-On (SSO)

products that can handle the identity of individuals.

Another common approach is to have an API work with assigned API keys. The team

supporting the API can provide unique API key values to known users or teams. Within

most enterprises, there’s little need for automating the assignment of API keys for

internal-facing APIs. The set of valid API keys may be reduced or expanded to reflect

organizational merges and splits.

API key values are sent from the client to the server to authenticate the user

making a request. They are never sent from the server to a client. The API

keys can be kept in a simple text file; the file’s permissions should restrict it

to read-only access by the account handling the service as a whole. This

requires administrators to take steps to manage the file of API keys to avoid

damaging it or revealing it to unauthorized users.

When working with API keys, there are a number of ways the client can provide the key

with each API request. One of the more popular techniques is to use these complementary

security features:

• The HTTPS protocol, where all of the communication between client and server

application is encrypted.

• The HTTP Authorization header with Basic authorization. This header will have a

username and the API key as the password.

The use of the Authorization header is often very simple for a client tool. Many libraries

— for example, the requests library — offer an object class that contains the username

and API key. Using the auth= parameter on a request function will build the appropriate

header.

The use of HTTPS includes Transport Layer Security (TLS) to keep the content of the

Authorization header secret. The requests package handles this politely.

Chapter 12 333

On the server side, each of these must be handled by our RESTful API application. Using

HTTPS is best done by running the Bottle application inside another server. We could,

for example, create an NGINX and uWSGI configuration that would run our RESTful app

inside a containing server. Another choice is to use a Python-based server such as Paste

or GUnicorn to contain the Bottle application. It’s essential to have a container server to

handle the details of HTTPS negotiation.

Processing the Authorization header is something best done within the RESTful API.

Some routes (i.e., the openapi.yaml) should not include any security considerations. Other

routes — specifically those that cause state changes — may be limited to a subset of

all users.

This suggests the list of users includes some permissions as well as their API key. Each

route needs to confirm the Authorization header has a known user and the correct key.

The request.auth property of the request object is a two-tuple with the username and

API key value. This can be used to decide whether the request is generally acceptable, and

also to decide whether a state-changing Post operation is permitted for the given user.

This kind of processing is often implemented as a decorator.

We won’t dig deeply into the design of this decorator. For this project, with so few resources,

a repeated if statement inside each function is acceptable.

Deliverables
This project has the following deliverables:

• Documentation in the docs folder

• Acceptance tests in the tests/features and tests/steps folders

• Unit tests for the application modules in the tests folder

• An application for the RESTful API processing

We’ll start by looking at the acceptance test cases, first. They’ll be rather complex because

we need to start the RESTful API service before we can access it with a client request.

334 Project 3.8: Integrated Data Acquisition Web Service

Acceptance test cases
Back in Chapter 4, Data Acquisition Features: Web APIs and Scraping, specifically Acceptance

tests using a SQLite database, we looked at ways to describe a scenario that involved a

database service.

For this project, we’ll need to write scenarios that will lead to step definitions that start the

RESTful API service.

There’s an important question about setting the state of the RESTful API server. One

approach to setting a state is by making a sequence of requests as part of the scenario. This

is often appropriate for this application.

If the server’s state is reflected in the file system, then seeding proper files can be a way to

control the state of the API server. Rather than run an acquire and clean process, a test

scenario can inject the appropriate status and log files into a working directory.

Some developers have a feeling that a database (or a distributed cache) is required for

RESTful APIs. In practice, it’s often the case that a shared file system is sufficient.

Using files is not uncommon in practice. A database to share state is not

always required for RESTful APIs.

Using the file system for the state makes acceptance testing work out nicely. The proper

files can be created to initialize the service in the state described by the given steps in the

test scenario.

A complicated scenario could look like the following:

@fixture.REST_server

Scenario: Service starts and finishes acquiring data.

Given initial request is made with path "/api/2023.02/creation" and

method "post" and

Chapter 12 335

body with {"series": "2", "source": "Anscombe_quartet_data.csv"}

And initial response has status "200", content-type "application/json"

And initial response has job-id

When polling every 2 seconds with path "/api/2023.02/creation/job-id" and

method "get" finally has response body with status "Done"

Then response content-type is "application/json"

And response body has log with more than 0 lines

And response body has series "Series_2"

And response body has status "done"

For more background on creating a fixture, see Acceptance tests in Chapter 4, Data Acquisition

Features: Web APIs and Scraping. This scenario references a fixture named REST_server.

This means the environment.py must define this fixture, and provide a before_tag()

function that will make sure the fixture is used.

The given steps specify an initial query and response. This should set the required state in

the API server. This request for processing will initiate the acquire and clean processing.

The When step specifies a sequence of actions that include polling periodically until the

requested processing finishes.

Note the path provided in the When statement. The text job-id is in the scenario’s path.

The step definition function must replace this template string with the actual job identifier.

This identifier will be in response to the initial request in the given step. The Given step’s

definition function must save the value in the context for use in later steps.

The Then step confirms that series data was returned. This example does not show a very

complete check of the result. You are encouraged to expand on this kind of acceptance test

scenario to be more complete in checking the actual results match the expected results.

For some applications, the retrieval of a tiny test case dataset may be a feature that helps

test the application. The ordinary datasets the users want may be quite large, but a special,

exceptionally small dataset may also be made available to confirm all the parts are working

in concert.

336 Project 3.8: Integrated Data Acquisition Web Service

A self-test resource is often essential for health checks, diagnostics, and

general site reliability.

Network load balancers often need to probe a server to be sure it’s capable

of handling requests. A self-test URI can be helpful for this purpose.

A very subtle issue arises when trying to stop this service. It contains a worker pool, and

the parent process needs to use the Linux wait() to properly terminate the children.

One reliable way to do this is to use server.send_signal(signal.SIGINT) in the function

that starts the service to create the fixture for a scenario. This means the fixture function

will have the following outline:

@fixture

def rest_server(context: Context) -> Iterator[Any]:

Create log file, base URI (code omitted)

server = subprocess.Popen([sys.executable, "src/service.py"],

shell=False, stdout=context.log_file, stderr=subprocess.STDOUT)

time.sleep(0.5) # 500 ms delay to allow the service to open a socket

yield server # Scenario can now proceed.

100 ms delay to let server's workers become idle.

time.sleep(0.10)

server.send_signal(signal.SIGINT)

100 ms delay to let API's subprocesses all terminate.

time.sleep(0.10)

The various sleep() timings are generous over-estimations of the time required for the

server subprocess to complete the various startup and shut-down tasks. In some cases,

the OS scheduler will handle this gracefully. In other cases, however, disconnected child

Chapter 12 337

processes can be left in the list of running processes. These “zombie processes” need to be

terminated manually, something we’d like to avoid.

On most Linux-derived OSs, the ps -ef command will show all processes.

The ps -ef | grep python pipeline will show all Python processes.

From this list, any zombie worker pool processes should be apparent.

signal.SIGINT is the control-C interrupt signal. The Python process makes this an

exception that will not be handled. When this exception exits from the with statement that

created the process pool, a complete clean-up will be finished and no zombie processes

will be left running.

Now that we’ve looked at the acceptance test that defines proper behavior, we can look at

the RESTful API server application.

RESTful API app
The RESTful API application can be built with any of the available frameworks. Since a

previous chapter (Chapter 4, Data Acquisition Features: Web APIs and Scraping) used the

Bottle framework, you can continue with this small framework. Because Bottle is very

much like Flask, when additional features are needed, the upgrade to Flask isn’t horribly

complicated.

One of the advantages of using Flask for this application is an integrated client for writing

unit test cases. The Bottle project can do everything that’s required, but it lacks a test client.

When looking at unit testing, we’ll also look at unit test tools for the Bottle framework.

In OpenAPI 3 specification we looked at the OpenAPI specification for a specific path. Here’s

how that specification can be implemented:

from bottle import response, get

@get('/api/2023.02/series')

def series_list():

338 Project 3.8: Integrated Data Acquisition Web Service

series_metadata = [

{"name": series.stem, "elements": series_size(series)}

for series in DATA_PATH.glob("*.ndj")

]

response.status = 200

response.body = json.dumps(series_metadata, indent=2)

response.content_type = "application/json"

return response

This function builds a sequence of metadata dictionaries. Each item has a series name,

which is used in a separate request to get the data. The size is computed by a small function

to read the series and find the number of samples.

The response object is not always manipulated as shown in this example. This is an

extreme case, where the value to be returned is not a Python dictionary. If the return value

is a dictionary, the Bottle framework will convert it to JSON, and the content type will be

set to application/json automatically. In this case, the result is a list of dictionaries; the

Bottle framework will not automatically serialize the object in JSON notation.

An important part of the design is a cache to retain Future objects until the processing

completes, and the data is available. One way to handle this is with a dataclass that keeps

the parameters of the request, the Future object that will produce the results, and the

assigned job identifier.

This structure for each Future object might look like the following example:

from conccurrent import futures

from dataclasses import dataclass, field

from pathlib import Path

import secrets

@dataclass

class AcquireJob:

Chapter 12 339

series: str

source_path: Path

output_path: Path

future: futures.Future = field(init=False)

job_id: str = field(default_factory=lambda:

\secrets.token_urlsafe(nbytes=12))

This keeps the parameters for the request as well as the processing details. The values

for series, source_path, and output_path are built from the parameters provided when

making an initial request. The paths are built from supplied names and include the base

path for the working directory the server is using. In this example, the user’s input is

limited to the series name and the data source. These come from a small domain of valid

values, making it relatively easy to validate these values.

The RESTful API can then create the output path within the appropriate directory of

cleaned data.

The value for the job_id attribute is computed automatically when an instance of the

AcquireJob class is created.

The value for the future attribute is set when the submit() method is used to submit a

processing request to process a pool of waiting workers.

The worker pool needs to be created before any work can be done by the RESTful API. The

startup can look like the following:

from conccurrent import futures

import urllib.parse

WORKERS: futures.ProcessPoolExecutor

Definitions of all of the routes

if __name__ == "__main__":

340 Project 3.8: Integrated Data Acquisition Web Service

Defaults...

acquire_uri = "http://localhost:8080"

Parse a configuration, here; possibly overriding defaults

uri = urllib.parse.urlparse(acquire_uri)

with futures.ProcessPoolExecutor() as WORKERS:

run(host=uri.hostname, port=uri.port)

Each route is handled by a separate function. Because of this, the Bottle (as well as the Flask)

framework expects the worker pool to be a global object shared by all of the route-handling

functions. In the event of a multi-threaded server, a lock must be used before a write access

to the WORKERS global.

Similarly, the cache of AcquireJob instances is also expected to be a global object. This is

updated only by the route-handling function to handle initiating a processing request. This

cache will be queried by a route that shows the status of a processing request. In the event

of a multi-threaded server, a lock must be used before adding a new item to the global

cache of working jobs.

In some cases, where the load is particularly heavy, thread-local storage may be needed

for any processing done by the various functions in the RESTful API implementation. The

request and response objects, in particular, are already in thread-local storage. Ideally,

there is very little processing done by these functions, minimizing the number of objects

that need to be created and kept in an instance of threading.local.

There are a few special considerations for the unit tests for this project. We’ll look at those

in the next section.

Unit test cases
Some frameworks — like Flask — offer a test client that can be used to exercise an application

without the overheads of starting a server and a worker pool.

The Bottle framework doesn’t offer a test client. An associated project, boddle, offers a

way to build a mock request object to support unit testing. See https://github.com/ker

https://github.com/keredson/boddle
https://github.com/keredson/boddle

Chapter 12 341

edson/boddle.

The WebTest project is an alternative for writing unit tests. A WebTest fixture contains the

Bottle application and provides requests and responses through the internal WSGI interface.

This avoids the need to start a complete server. It also permits some monkey-patching of

the Bottle application to mock components. See https://docs.pylonsproject.org/pro

jects/webtest/en/latest/.

It seems best to use the very sophisticated WebTest client that’s part of the Pylons

framework. This client can execute the unit tests.

It’s sometimes helpful to note that functions with decorators are composite objects. This

means the “unit” test isn’t testing the decoration and the function in isolation from each

other. This lack of separate testing can sometimes lead to difficulty in debugging the root

cause of a test case failure. A problem may be in the function, it may be the @route decorator,

or it may be any authorization decorator that’s also part of the composite function

being tested.

It seems easier to test the composite route functions, using appropriate log messages for

debugging. While this doesn’t follow the strict idea of testing each component in isolation,

it does work well for testing each route with appropriate mocks. For example, we can mock

the worker pool, avoiding the overhead of starting a subprocess when testing.

Here’s an example of a test function using WebTest to exercise a Bottle route:

from unittest.mock import sentinel, Mock, call

from pytest import fixture, MonkeyPatch

from webtest import TestApp

import service

def test_test(monkeypatch: MonkeyPatch) -> None:

monkeypatch.setitem(service.ACCESS, "unit-test", "unit-test")

app = TestApp(service.app)

app.authorization = (

https://github.com/keredson/boddle
https://github.com/keredson/boddle
https://github.com/keredson/boddle
https://docs.pylonsproject.org/projects/webtest/en/latest/
https://docs.pylonsproject.org/projects/webtest/en/latest/

342 Project 3.8: Integrated Data Acquisition Web Service

"Basic", ("unit-test", "unit-test")

)

response = app.get("/api/2023.02/test")

assert response.status_code == 200

assert response.json['status'] == "OK"

service.app is the global app object in the RESTful API application. This is an instance of

the Bottle class. service.ACCESS is the global list of usernames and their expected API

keys. This is monkey-patched by the test to force in a specific test username and test API

Key. This initial setup is something that might be used by a number of tests and should be

defined as a reusable fixture.

When the app.get() request is made, the test harness will execute the route function and

collect the response for examination by the test method. This makes a direct function call,

avoiding the overhead of a network request.

One of the reasons for choosing to use Flask instead of Bottle is the availability of a test

client that can simplify some of this test setup.

Summary
This chapter integrated a number of application programs under the cover of a single

RESTful API. To build a proper API, there were several important groups of skills:

• Creating an OpenAPI specification.

• Writing a web service application to implement the OpenAPI specification.

• Using a processing pool to delegate long-running background tasks. In this example,

we used concurrent.futures to create a future promise of results, and then compute

those results.

The number of processes involved can be quite daunting. In addition to the web service,

there is a processing pool, with a number of sub-processes to do the work of acquiring and

cleaning data.

Chapter 12 343

In many cases, additional tools are built to monitor the API to be sure it’s running

properly. Further, it’s also common to allocate dedicated servers to this work, and configure

supervisord to start the overall service and ensure the service continues to run properly.

Extras
Here are some ideas for you to add to these projects.

Add filtering criteria to the POST request
The POST request that initiates acquire processing is quite complicated. See A POST request

starts processing to see the processing it does.

We might name the function for this route creation_job_post() to make it clear that this

creates jobs to acquire data in response to an HTTP POST request.

The list of tasks in this function includes the following:

1. Check the user’s permissions.

2. Validate the parameters.

3. Build an AcquireJob instance with the parameters.

4. Update the AcquireJob instance with the Future object. The future will evaluate the

acquire_series() function that does the work of acquiring and cleaning the data.

5. Return a JSON object with details of the submitted job, as well as headers and a

status code to redirect to a request to get the job’s status.

Some RESTful APIs will have even more complicated parameters. For example, users may

want to filter the data to create a subset before downloading. This improves the UX by

providing only the required data. It also allows analysts to share subsets of data without

having to share the filtering code within the analyst community.

It can also improve the UX by performing filtering on larger, powerful servers. It can

prevent having to download and filter data on a local laptop.

344 Project 3.8: Integrated Data Acquisition Web Service

This is emphatically not a feature of the RESTful API. This must first be built as a feature

of an application that reads and filters the clean data. This new application will create a

new dataset, ready for download. The data set name might be a UUID, and an associated

metadata file would contain the filter parameters.

The implementation requires the creation_job_post() function to now also validate the

filter criteria. It must include the filter criteria in the AcquireJob instance that is built, and

provide the filter criteria to the underlying acquire_series() function.

The acquire_series() function will have the most dramatic changes. It will run the

acquire, clean, and filter applications as subprocesses. You may want to consider an

integrated application that runs the other applications, simplifying the RESTful API.

This will, of course, lead to considerably more complicated acceptance test cases to be sure

the data acquisition works with — and without — these additional filter criteria.

Split the OpenAPI specification into two parts to use $REF
for the output schema
The OpenAPI specification includes a number of schema. In OpenAPI 3 specification, we

showed a few key features of this specification.

It’s not too difficult for an analyst to download the entire specification, and then locate

the components.schemas.seriesList schema. This navigation through a JSON document

doesn’t involve too many challenges.

While this is not burdensome, some users might object. An analyst focused on a business

problem should not be asked to also sort out the structure of the OpenAPI specification.

An alternative is to decompose the specification into pieces and serve the pieces separately.

Specifically, the places where "$ref" references appear generally use a path of the form

#/components/schemas/.... The path is a local URL, omitting the hostname information.

This can be replaced with a full URL that refers to schema details on the RESTful

API server.

Chapter 12 345

We might use http://localhost:8080/api/schemas/... to refer to the various schema

files stored as separate JSON documents. Each individual schema definition would have

a distinct URI, permitting ready access to only the relevant schema, and ignoring other

aspects of the OpenAPI specification.

This decomposes the OpenAPI specification into the overall specification for the service

and separate specifications for a schema that describes downloadable datasets. It also

requires adding a path to the RESTful API service to properly download the schema in

addition to downloading the overall OpenAPI specification.

This leads to a few extra acceptance test cases to extract the schema as well as the overall

OpenAPI specification.

Use Celery instead of concurrent.futures
The suggestion in Overall approach is to use the concurrent.futures module to handle

the long-running data acquisition and cleaning processes. The API requests that initiate

processing create a Future object that reflects the state of a separate subprocess doing the

actual work. The RESTful API is free to respond to additional requests while the work is

being completed.

Another popular package for implementing this kind of background processing is celery.

See https://docs.celeryq.dev/en/stable/getting-started/introduction.html.

This is a bit more complicated than using the concurrent.futures module. It also scales

elegantly to allow a large number of separate computers to comprise the pool of available

workers. This can permit very large processing loads to be controlled by a relatively small

RESTful API application.

Using Celery requires creating tasks, using the @task decorator. It also requires starting

the worker pool separately. This means the overall RESTful API now has two steps to get

started:

• The celery worker pool must be running.

• The RESTful API can then start. Once it’s running, it can delegate work to workers

https://docs.celeryq.dev/en/stable/getting-started/introduction.html

346 Project 3.8: Integrated Data Acquisition Web Service

in the pool.

For very large workloads, where the worker pool is spread across multiple computers, use

of Celery’s sophisticated management tools are required to be sure the pools are starting

and stopping appropriately.

The core work of submitting work to the worker pool changes from pool.submit() to

celery_app.delay(). This is a small programming change that permits using a more

sophisticated and scalable worker pool.

There aren’t any acceptance test changes for this. The features are identical.

The fixture definition required to start the RESTful API will be more complicated: it will

have to start the Celery pool of workers before starting the RESTful API. It will also need

to shut down both services.

Call external processing directly instead of running a
subprocess
In Overall approach, we suggested the work should be done by an acquire_series()

function. This function would be evaluated by the POOL.submit() function. This would

delegate the work to a worker, and return a Future object to track the state of completion.

In that section, we suggested the acquire_series() function could use subprocess.run()

to execute the various components of the processing pipeline. It could run the

src/acquire.py application, and then run the src/clean.py application, using the

subprocess module.

This isn’t the only way it could work. The alternative is to import these application modules,

and evaluate their main() functions directly.

This means replacing the subprocess.run() function with the acquire.main() and

clean.main() functions. This avoids a tiny overhead in Linux. It can be a conceptual

simplification to see how the acquire_series() function creates the data using other

Python modules.

Chapter 12 347

This involves no changes to the acceptance test cases. It does involve some changes to

the unit test cases. When using subprocess.run(), the unit test must monkey-patch

the subprocess module with a mock that captures the argument values and returns a

useful result. When replacing this processing with the acquire.main() and clean.main()

functions, these two modules must be monkey patched with mocks that capture the

argument values and return useful results.

13
Project 4.1: Visual Analysis
Techniques

When doing exploratory data analysis (EDA), one common practice is to use graphical

techniques to help understand the nature of data distribution. The US National Institute

of Standards and Technology (NIST) has an Engineering Statistics Handbook that strongly

emphasizes the need for graphic techniques. See https://doi.org/10.18434/M32189.

This chapter will create some additional Jupyter notebooks to present a few techniques for

displaying univariate and multivariate distributions.

In this chapter, we’ll focus on some important skills for creating diagrams for the cleaned

data:

• Additional Jupyter Notebook techniques

• Using PyPlot to present data

• Unit testing for Jupyter Notebook functions

https://doi.org/10.18434/M32189

350 Project 4.1: Visual Analysis Techniques

This chapter has one project, to build the start of a more complete analysis notebook.

A notebook can be saved and exported as a PDF file, allowing an analyst to share preliminary

results for early conversations. In the next chapter, we’ll expand on the notebook to create

a presentation that can be shared with colleagues.

Looking further down the road, a notebook can help to identify important aspects of the

data that need ongoing monitoring. The computations created here will often become the

basis for more fully automated reporting tools and notifications. This analysis activity is

an important step toward understanding the data and designing a model for the data.

We’ll start with a description of an analysis notebook.

Description
In the previous chapters, the sequence of projects created a pipeline to acquire and then

clean the raw data. The intent is to build automated data gathering as Python applications.

We noted that ad hoc data inspection is best done with a notebook, not an automated CLI

tool. Similarly, creating command-line applications for analysis and presentation can be

challenging. Analytical work seems to be essentially exploratory, making it helpful to have

immediate feedback from looking at results.

Additionally, analytical work transforms raw data into information, and possibly even

insight. Analytical results need to be shared to create significant value. A Jupyter notebook

is an exploratory environment that can create readable, helpful presentations.

One of the first things to do with raw data is to create diagrams to illustrate the distribution

of univariate data and the relationships among variables in multivariate data. We’ll

emphasize the following common kinds of diagrams:

• Histograms A histogram summarizes the distribution of values for a variable in a

dataset. The histogram will have data values on one axis and frequency on the other

axis.

Chapter 13 351

• Scatter Plots A scatter plot summarizes the relationships between values for two

variables in a dataset. The visual clustering can be apparent to the casual observer.

For small datasets, each relationship in a scatter plot can be a single dot. For larger datasets,

where a number of points have similar relationships, it can be helpful to create “bins” that

reflect how many points have the same relationship.

There are a number of ways of showing the size of these bins. This includes using a color

code for more popular combinations. For some datasets, the size of an enclosing circle can

show the relative concentration of similarly-valued data. The reader is encouraged to look

at alternatives to help emphasize the interesting relationships among the attributes of the

various samples.

The use of Seaborn to provide colorful styles is also important when working with diagrams.

You are encouraged to explore various color palettes to help emphasize interesting data.

Overall approach
We’ll take some guidance from the C4 model (https://c4model.com) when looking at our

approach:

• Context: For this project, the context diagram has two use cases: the acquire-to-clean

process and this analysis notebook.

• Containers: There’s one container for analysis application: the user’s personal

computer.

• Components: The software components include the existing analysis models that

provide handy definitions for the Python objects.

• Code: The code is scattered in two places: supporting modules as well as the

notebook itself.

A context diagram for this application is shown in Figure 13.1.

https://c4model.com

352 Project 4.1: Visual Analysis Techniques

Analytical Workspace

Acquire Data;

Clean Data

Start Lab;
Analyze Data

Data Analyst

Stakeholder

Figure 13.1: Context diagram

The analyst will often need to share their analytical results with stakeholders. An initial

notebook might provide confirmation that some data does not conform to the null

hypothesis, suggesting an interesting relationship that deserves deeper exploration. This

could be part of justifying a budget allocation to do more analysis based on preliminary

results. Another possible scenario is sharing a notebook to confirm the null hypothesis is

likely true, and that the variations in the data have a high probability of being some kind of

measurement noise. This could be used to end one investigation and focus on alternatives.

In Chapter 6, Project 2.1: Data Inspection Notebook, the data inspection notebook was

described. The use of a single acquisition model module for the data was mentioned, but

the details of the Python implementation weren’t emphasized. The raw data module often

provides little useful structure to the data when doing inspections.

Moving forward into more complicated projects, we’ll see the relationship between the

notebooks and the modules that define the data model become more important.

For this analysis notebook, the analysis data model, created in Chapter 9, Project 3.1: Data

Cleaning Base Application, will be a central part of the notebook for doing analysis. This

will be imported and used in the analysis notebook. The analysis process may lead to

changes to the analysis model to reflect lessons learned.

Chapter 13 353

A technical complication arises from the directory structure. The data acquisition and

cleaning applications are in the src directory, where the notebooks are kept in a separate

notebooks directory.

When working with a notebook in the notebooks directory, it is difficult to make the Python

import statement look into the adjacent src directory. The import statement scans a list

of directories defined by the sys.path value. This value is seeded from some defined rules,

the current working directory, and the value of the PYTHONPATH environment variable.

There are two ways to make the import statement load modules from the adjacent src

directory:

1. Put ../src into the PYTHONPATH environment variable before starting JupyterLab.

2. Put the absolute path to ../src into the sys.path list after starting JupyterLab.

The two are equivalent. The first can be done by updating one’s ~/.zshrc file to make

sure the PYTHONPATH environment variable is set each time a terminal session starts. There

are other files appropriate for other shells; for example, ~/.bashrc or ./rc for the classic

sh shell. For Windows, there’s a dialog that allows one to edit the system’s environment

variables.

The alternative is to update sys.path with a cell containing code like the following example:

import sys

from pathlib import Path

src_path = Path.cwd().parent / "src"

sys.path.append(str(src_path))

This cell will add the peer ../src directory to the system path. After this is done, the

import statement will bring in modules from the ../src directory as well as bringing in

built-in standard library modules, and modules installed with conda or pip.

An initialization module can be defined as part of the IPython startup. This module can

alter the sys.path value in a consistent way for a number of related notebooks in a project.

354 Project 4.1: Visual Analysis Techniques

While some developers object to tinkering with sys.path in a notebook, it

has the advantage of being explicit.

Setting PYTHONPATH in one’s ~/.zshrc file is a very clean and reliable solution.

It then becomes necessary to put a reminder in a README file so that new

team members can also make this change to their personal home directory.

When sharing notebooks, it becomes imperative to make sure all stakeholders

have access to the entire project the notebook depends on. This can lead to

a need to create a Git repository that contains the notebook being shared

along with reminders, test cases, and needed modules.

Once we have the path defined properly, the notebook can share classes and functions with

the rest of the applications. We’ll move on to looking at one possible organization of an

analysis notebook.

General notebook organization
An analytical notebook is often the primary method for presenting and sharing results.

It differs from a “lab” notebook. It’s common for lab notebooks to contain a number of

experiments, some of which are failures, and some of which have more useful results.

Unlike a lab notebook, an analytical notebook needs to have a tidy organization with

carefully-written Markdown cells interspersed with data processing cells. In effect, an

analysis notebook needs to tell a kind of story. It needs to expose actors and actions and

the consequences of those actions.

It’s essential that the notebook’s cells execute correctly from beginning to end. The

author should be able to restart the kernel and run all of the cells at any time to redo the

computations. While this may be undesirable for a particularly long-running computation,

it still must be true.

A notebook may have preliminary operations that aren’t relevant to most readers of the

report. A specific example is setting the sys.path to import modules from an adjacent

Chapter 13 355

../src directory. It can be helpful to make use of JupyterLab’s ability to collapse a cell as a

way to set some of the computation details aside to help the reader focus on the

key concepts.

It seems sensible to formalize this with Markdown cells to explain the preliminaries. The

remaining cells in this section can be collapsed visually to minimize distractions.

The preliminaries can include technical and somewhat less technical aspects. For example,

setting sys.path is purely technical, and few stakeholders will need to see this. On the

other hand, reading the SeriesSample objects from an ND JSON format file is a preliminary

step that’s somewhat more relevant to the stakeholder’s problems.

After the preliminaries, the bulk of the notebook can focus on two topics:

• Summary statistics

• Visualizations

We’ll look at the summary statistics in the next section.

Python modules for summarizing
For initial reports, Python’s statistics module offers a few handy statistical functions.

This module offers mean(), median(), mode(), stdev(), variance(). There are numerous

other functions here the reader is encouraged to explore.

These functions can be evaluated in a cell, and the results will be displayed below the cell.

In many cases, this is all that’s required.

In a few cases, though, results need to be truncated to remove meaningless trailing digits.

In other cases, it can help to use an f-string to provide a label for a result. A cell might look

like the following:

f"mean = {statistics.mean(data_values): .2f}"

This provides a label, and truncates the output to two places to the right of the decimal

point.

356 Project 4.1: Visual Analysis Techniques

In some cases, we might want to incorporate computed values into markdown cells. The

Python Markdown extension provides a tidy way to incorporate computed values into

markdown content.

See https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensi

ons/python-markdown/readme.html.

The most important part of the notebook is the graphic visualization of the data, we’ll turn

to that in the next section.

PyPlot graphics
The matplotlib package works well for creating images and diagrams. Within this

extensive, sophisticated graphic library is a smaller library, pyplot, that’s narrowly focused

on data visualizations. Using the pyplot library permits a few lines of code to create a

useful display of data.

The module is often renamed to make it easier to type. The common convention is shown

in the following line of code:

import matplotlib.pyplot as plt

This lets us use plt as a namespace to refer to functions defined in the pyplot module of

the matplotlib package.

In some cases, JupyterLab may not have the matplotlib library prepared for interactive

use. (This will be clear when the plotted images are not shown in the notebook.) In these

cases, the interactive use of the matplotlib library needs to be enabled. Use the following

magic commands in a cell of the notebook to enable interactive use:

%matplotlib inline

%config InlineBackend.figure_formats = {'png', 'retina'}

The first command enables the matplotlib library to create graphics immediately in the

notebook. It won’t create separate files or pop-up windows. The second command produces

readily-shared PNG output files. It also helps MAC OS X users to optimize the graphics

https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/python-markdown/readme.html
https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/python-markdown/readme.html

Chapter 13 357

for their high-resolution displays.

This isn’t always required. It’s needed only for those installations that didn’t configure the

matplotlib library for interactive use in a Jupyter notebook.

In many cases, the pyplot library expects simple sequences of values for the various

plotting functions. The 𝑥 and 𝑦 values of a scatter plot, for example, are expected to be

two parallel lists of the same length. This will lead to a few extra cells to restructure data.

The data cleaning applications from previous chapters produced a single sequence of

compound sample objects. Each object was a separate sample, with the related values for

all of the variables. We’ll need to convert from this sample record organization to parallel

sequences of values for the individual variables.

This can involve something like the following:

x = [s.x for s in series_1]

y = [s.y for s in series_1]

An alternative is to use the operator.attrgetter() function. It looks like the following:

from operator import attrgetter

x = list(map(attrgetter('x'), series_1))

y = list(map(attrgetter('y'), series_1))

We’ll start with a histogram to show the distribution of values for a single variable.

Data frequency histograms

Often, a document — like a book — has individual figures. A figure may contain a single

plot. Or, it may contain a number of “subplots” within a single figure. The pyplot library

provides support for creating a single figure that contains many subplots. The idea of a

figure with a single plot can be seen as a special case of this generalized approach.

A figure with a single plot can be prepared with a statement like the following:

fig, ax = plt.subplots()

358 Project 4.1: Visual Analysis Techniques

The fig object is the figure as a whole. The ax object is the set of axes for the subplot

within the figure. While the explicit ax object can seem unnecessary, it’s part of a more

general approach that allows figures with related plots to be built.

The more general case stacks multiple subplots within a figure. The sublots() function

can return axes for each subplot. The call to create a two-plot figure might look like this:

fig, (ax_0, ax_1) = plt.subplots(1, 2)

Here we’ve stated we’ll have 1 row with 2 subplots stacked next to each other. The fig

object is the figure as a whole. The ax_0 and ax_1 objects are the sets of axes for each of

these two subplots within the figure.

Here’s an example of creating a single histogram from the y values of one of the four

Anscombe’s quartet series:

fig, ax = plt.subplots()

Labels and Title

ax.set_xlabel('Y')

ax.set_ylabel('Counts')

ax.set_title('Series I')

Draw Histogram

_ = ax.hist(y, fill=False)

For this example, the y variable must be a list of 𝑦 attribute values from Series I. The series

data must be read from the cleaned source file.

The _ = ax.hist(...) statement assigns the results of the hist() function to the variable

_ as a way to suppress displaying the result value in this cell. Without this assignment

statement, the notebook will show the result of the hist() function, which isn’t very

interesting and clutters up the output. Since each series has both an 𝑥 and a 𝑦 value, it

helps to stack two histograms that shows the distribution of these values. The reader is

Chapter 13 359

encouraged to develop a figure with two stacked subplots.

The number of options for color and borders on the histogram bars are breathtaking in

their complexity. It helps to try several variants in a single notebook and then delete the

ones that aren’t helpful.

The comparison between values is often shown in a scatter plot that shows each (𝑥, 𝑦) pair.

We’ll look at this next.

X-Y scatter plot

A scatter plot is one of many ways to show the relationship between two variables. Here’s

an example of creating a single plot from the x and y values of one of the four Anscombe’s

quartet series:

fig, ax = plt.subplots()

Labels and Title

ax.set_xlabel('X')

ax.set_ylabel('Y')

ax.set_title('Series I')

Draw Scatter

_ = ax.scatter(x, y)

The _ = ax.scatter(...) statement assigns the results of the scatter() function to the

variable _ as a way to suppress displaying the value. This keeps the output focused on the

figure.

The above example presumes the data have been extracted from a sequence of SeriesSample

instances using code like the following:

x = [s.x for s in series_1]

y = [s.y for s in series_1]

This, in turn, presumes the value for series_1 was read from the clean data created by the

360 Project 4.1: Visual Analysis Techniques

acquire and clean applications.

Now that we have an approach to building the notebook, we can address the way notebooks

tend to evolve.

Iteration and evolution
A notebook is often built iteratively. Cells are added, removed, and modified as the data is

understood.

On a purely technical level, the Python programming in the cells needs to evolve from a

good idea to software that’s testable. It’s often easiest to do this by rewriting selected cells

into functions. For example, define a function to acquire the ND JSON data. This can be

supplemented by doctest comments to confirm the function works as expected.

A collection of functions can be refactored into a separate, testable module if needed. This

can permit wider reuse of good ideas in multiple notebooks.

Equally important is to avoid “over-engineering” a notebook. It’s rarely worth the time

and effort to carefully specify the contents of a notebook, and then write code that meets

those specifications. It’s far easier to create — and refine — the notebook.

In some large organizations, a senior analyst may direct the efforts of junior analysts. In

this kind of enterprise, it can be helpful to provide guidance to junior analysts. When

formal methods are needed, the design guidance can take the form of a notebook with

markdown cells to explain the desired goal.

Now that we have an approach to building the notebook, we can enumerate the deliverables

for this project.

Deliverables
This project has the following deliverables:

• A requirements-dev.txt file that identifies the tools used, usually

jupyterlab==3.5.3 and matplotlib==3.7.0.

Chapter 13 361

• Documentation in the docs folder.

• Unit tests for any new application modules in the tests folder.

• Any new application modules in the src folder with code to be used by the inspection

notebook.

• A notebook to summarize the clean data. In the case of Anscombe’s quartet, it’s

essential to show the means and variances are nearly identical, but the scatter plots

are dramatically different.

We’ll look at a few of these deliverables in a little more detail.

Unit test
There are two distinct kinds of modules that can require testing:

• The notebook with any function or class definitions. All of these definitions require

unit tests.

• If functions are factored from the notebook into a supporting module, this module

will need unit tests. Many previous projects have emphasized these tests.

A notebook cell with a computation cell is notoriously difficult to test. The visual output

from the hist() or scatter() functions seems almost impossible to test in a

meaningful way.

In addition, there are numerous usability tests that can’t be automated. Poor choice of colors,

for example, can obscure an important relationship. Consider the following questions:

1. Is it informative?

2. Is it relevant?

3. Is it misleading in any way?

In many cases, these questions are difficult to quantify and difficult to test. As a consequence,

it’s best to focus automated testing on the Python programming.

362 Project 4.1: Visual Analysis Techniques

It’s imperative to avoid testing the internals of matplotlib.pyplot.

What’s left to test?

• The data loading.

• Any ad hoc transformations that are part of the notebook.

The data loading should be reduced to a single function that creates a sequence of

SeriesSample instances from the lines in an ND JSON file of clean data. This loading

function can include a test case.

We might define the function as follows:

def load(source_file):

"""

>>> from io import StringIO

>>> file = StringIO('''{"x": 2.0, "y": 3.0}\\n{"x": 5.0, "y": 7.0}''')

>>> d = load(file)

>>> len(d)

2

>>> d[0]

SeriesSample(x=2.0, y=3.0)

"""

data = [

SeriesSample(**json.loads(line)) for line in source_file if line

]

return data

This permits testing by adding a cell to the notebook that includes the following:

import doctest

doctest.testmod()

This cell will find the functions defined by the notebook, extract any doctest cases from

the docstrings in the function definitions, and confirm the doctest cases pass.

Chapter 13 363

For more complicated numerical processing, the hypothesis library is helpful. See

Hypothesis testing in Chapter 10, Data Cleaning Features for more information.

Acceptance test
An automated acceptance test is difficult to define for a notebook. It’s hard to specify ways

in which a notebook is helpful, meaningful, or insightful in the simple language of Gherkin

scenarios.

The jupyter execute <filename> command will execute an .ipynb notebook file. This

execution is entirely automated, allowing a kind of sanity check to be sure the notebook

runs to completion. If there is a problem, the command will exit with a return code of 1,

and the cell with the error will be displayed in detail. This can be handy for confirming the

notebook isn’t trivially broken.

The .ipynb file is a JSON document. An application (or a step definition for Behave) can

read the file to confirm some of its properties. An acceptance test case might look for error

messages, for example, to see if the notebook failed to work properly.

Cells with "type": "code" will also have "outputs". If one of the outputs has

"output_type": "error"; this cell indicates a problem in the notebook. The notebook did

not run to completion, and the acceptance test should be counted as a failure.

We can use projects like Papermill to automate notebook refresh with new data. This

project can execute a template notebook and save the results as a finalized output notebook

with values available and computations performed.

For more information, see https://papermill.readthedocs.io.

Summary
This project begins the deeper analysis work on clean data. It emphasizes several key skills,

including:

• More advanced Jupyter Notebook techniques. This includes setting the PYTHONPATH

to import modules and creating figures with plots to visualize data.

https://papermill.readthedocs.io

364 Project 4.1: Visual Analysis Techniques

• Using PyPlot to present data. The project uses popular types of visualizations:

histograms and scatter plots.

• Unit testing for Jupyter Notebook functions.

In the next chapter, we’ll formalize the notebook into a presentation “slide deck” that can

be shown to a group of stakeholders.

Extras
Here are some ideas for the reader to add to these projects.

Use Seaborn for plotting
An alternative to the pyplot package is the Seaborn package. This package also provides

statistical plotting functions. It provides a wider variety of styling options, permitting more

colorful (and perhaps more informative) plots.

See https://seaborn.pydata.org for more information.

This module is based on matplotlib, making it compatible with JupyterLab.

Note that the Seaborn package can work directly with a list-of-dictionary structure. This

matches the ND JSON format used for acquiring and cleaning the data.

Using a list-of-dictionary type suggests it might be better to avoid the analysis model

structure, and stick with dictionaries created by the clean application. Doing this might

sacrifice some model-specific processing and validation functionality.

On the other hand, the pydantic package offers a built-in dict() method that covers a

sophisticated analysis model object into a single dictionary, amenable to use with the

Seaborn package. This seems to be an excellent way to combine these packages. We

encourage the reader to explore this technology stack.

https://seaborn.pydata.org

Chapter 13 365

Adjust color palettes to emphasize key points about the
data
Both the pyplot package and the Seaborn package have extensive capabilities for applying

color to the plot. A choice of colors can sometimes help make a distinction visible, or it can

obscure important details.

You can consider alternative styles to see which seems more useful.

In some enterprise contexts, there are enterprise communications standards, with colors

and fonts that are widely used. An important technique when using Seaborn is to create a

style that matches enterprise communication standards.

A number of websites provide website color schemes and design help. Sites like https:

//paletton.com or colordesigner.io provide complementary color palettes. With some

effort, we can take these kinds of designs for color palettes and create Seaborn styles that

permit a consistent and unique presentation style.

https://paletton.com
https://paletton.com
colordesigner.io

14
Project 4.2: Creating Reports

One easy way to share good-looking results is to use a Jupyter notebook’s Markdown

cells to create a presentation. This chapter will create a “slide deck” that can be shared and

presented. We can expand on this to create a PDF report using additional packages like

Jupyter book or Quarto.

In this chapter, we’ll look at two important working results of data analysis:

• Slide decks build directly from a Jupyter Lab notebook.

• PDF reports built from notebook data and analysis.

This chapter’s project will upgrade an analysis notebook created in the previous chapter to

create presentations that can be shared with colleagues. We’ll start by looking at the kinds

of reports an analyst may need to produce.

Description
The first dozen chapters in the book created a pipeline to acquire and clean raw data. Once

the data is available, we can now do more analytical work on the clean data.

368 Project 4.2: Creating Reports

The goal is to transform raw data into information, and possibly even insight to help

stakeholders make properly informed decisions. Analytical results need to be shared to be

valuable. A Jupyter Notebook is a solid basis to create readable, helpful presentations

and reports.

We’ll start by transforming an analysis notebook into a slide deck. You can then use this

slide deck to talk through our key points with stakeholders, providing helpful visuals to

back up the information they need to understand. These are common in an enterprise

environment. (Some would argue they are too common and contain too much of the wrong

kind of details.)

We’ll start by looking at creating slide decks and presentations in Jupyter Lab.

Slide decks and presentations
A Jupyter Notebook can be exported to a presentation file. The underlying presentation

will be an HTML-based repository of individual pages. Reveal.js project is used to control

the navigation between pages. See https://revealjs.com for more details on how this

engine works.

Within the notebook, each cell has properties. The “right sidebar” is the property inspector

window, letting us manage these properties. One of the properties is the slide type. This

allows the analyst to mark cells for inclusion in a presentation. We’ll look at the technical

details in Preparing slides.

There are a huge number of guides and tutorials on creating useful, informative

presentations. The author likes to focus on three key points:

1. Tell them what you’ll tell them. Present a list of topics (or an agenda or an outline).

This will often use Markdown lists.

2. Tell them. This should proceed from general observations to the specific details of

the presentation. This may be a mixture of Markdown text and figures.

https://revealjs.com

Chapter 14 369

3. Tell them what you told them. Present a summary of what your message was and

the actions you’d like them to take in response. This, too, will often use Markdown

lists.

What’s important here is using the slide presentation to contain the keywords and phrases

to help the audience remember the essential points and the call to action. This often means

making use of Markdown text to emphasize words with a bold or italic font. It can also

mean using Markdown lists of various kinds.

Another important part is avoiding visual clutter created when trying to cram too many

points into a single page. When there are a lot of details, a presentation may not be the best

approach to managing all the information. A report document may be more useful than a

presentation. A document can provide supplemental details to support a brief presentation

as well.

Reports
There’s a blurry edge between a presentation and a report. Presentations tend to be shorter

and focus on keywords and phrases. Reports tend to be longer and written in complete

sentences. A well-organized presentation with complete sentences can be viewed as a brief

report. A report with short paragraphs and a lot of figures can look like a presentation.

Markdown formatting provides a lot of capabilities to create publication-quality typeset

documents. The technology stack from Markdown to HTML to a browser or a PDF

rendering engine involves a number of transformation steps to get from simple Unicode

text in a notebook cell to a richly detailed rendering. This stack is a first-class part of

Jupyter Lab and can be exploited by tools like Quarto or Jupyter{Book} to create reports.

Not all of the typesetting conventions used by publications are available through

Markdown source files. For example, some publication style guides will include an abstract

section that has narrower margins, and sometimes a smaller font. This can be challenging

to implement in the Markdown language. Some authors will use a less complex layout

that lacks all the visual cues of margin and font size.

370 Project 4.2: Creating Reports

The power of HTML and CSS is such that a great many typesetting capabilities are available

to the author willing to master the technology stack. The reader is encouraged to explore

the capabilities of Markdown, HTML, and CSS. The reader is also advised to set realistic

goals; a great deal of time can be invested in combining Markdown and CSS to achieve

typesetting effects that don’t enhance a report’s message.

It often works out well to put each paragraph into a separate cell. This is not a strict

rule: sometimes a group of paragraphs should be put into a single cell.

Top-level headings should often be in cells by themselves. This can make it easier to

reorganize content within those headings. Some lower-level headings should be in the cell

with their introductory paragraph since the heading and the cell’s content are unlikely to

be separated.

We might have a cell with a level one heading that looks like this:

Title of our document

This cell has only the title and no following text. There will likely be a subheading in the

next cell with the introduction to the document.

A lower-level cell might look like this:

Conclusion

The various **Anscombe Quartet** series all have consistent

means and standard deviations.

This cell has both a level two title, and the introductory text for this section of the document.

It uses ** Markdown syntax to show that a particular phrase should have strong emphasis,

usually done with a bold font.

In the next sections, we’ll talk about the technical approach to adding tools to the Jupyter

environment so that the analyst can create presentations or reports.

Chapter 14 371

Overall approach
We’ll talk about the general technical steps to creating presentations and reports in a

Jupyter Notebook. For presentations, no additional tools are needed. For some simple

reports, the File menu offers the ability to save and export a notebook as pure Markdown,

as a PDF file, or as a LATEX document. For more complicated reports, it can help to use

supplemental tools that create a more polished final document.

Preparing slides
An HTML-based presentation via Reveal.js is a first-class feature of a Jupyter Notebook.

The File menu offers the ability to save and export a notebook as Reveal.js slides. This will

create an HTML file that will display as a presentation.

Within Jupyter, the property inspector is used to set the type of slide for a cell. There’s an

icon of two meshed gears on the top right side of the page to show the property inspector

in the right sidebar. Under the View menu, the option to show the right sidebar will also

show the property inspector.

There are several choices of Slide Type for each cell. The most important two choices are

“slide” and “skip”.

The “slide” will be displayed as part of the presentation. The “skip” cells will be dropped

from the presentation; this is great for computations and data preparation. The other

options allow combining cells into a single slide and having subsidiary presentation slides.

Creating Markdown content and setting the slide type to “slide” creates the narrative text

portion of a presentation. These slides would include title pages, agenda, and key points:

all of the prompts and takeaway bullet points will be in these kinds of cells.

For data visualizations, we can use Seaborn or PyPlot to create the figure. The cell output

has the slide type set to “slide” in the property inspector to include the visualization.

We can mark the computations, function definitions, and doctest cells with a slide type of

skip. This will omit these details from the presentation.

372 Project 4.2: Creating Reports

The analyst can share the notebook with audience members who want to see the supporting

details.

The Reveal.js has a huge repertoire of capabilities. Many of these features are available

through HTML markup. For example, the auto-animate feature will smoothly transition

between cells. Since HTML markup is part of Markdown, some familiarity with HTML is

required for the use of the most advanced features.

The final step is to use the CLI to convert the notebook to a slide deck. The File menu has

a Save and Export Notebook As... option, but this tends to make all of the code visible.

Having visible code can distract from the essential message of the visualizations.

The following command hides the cell input value — the code — from the presentation:

jupyter nbconvert --to slides --no-input <notebook.ipynb>

Use the name of your notebook in place of <notebook.ipynb>. This will create an HTML

file with the Reveal.js code included.

The overall process has three steps:

1. Edit the notebook.

2. Prepare the presentation. (The terminal tool in Jupyter Lab is ideal

for this.)

3. View the presentation to find problems.

This is distinct from the way products like Keynote and PowerPoint work.

When working with Jupyter Lab, there will a bit of flipping back- and forth

between browser windows and the notebook window. Placing windows on

each side of the display can be helpful.

Be sure to refresh the browser window after each change to the notebook.

Chapter 14 373

Preparing a report
Creating reports is a first-class part of Jupyter Lab. The File menu offers the ability to save

and export a notebook as pure Markdown, as a PDF file, or as a LATEX document.

A tool like pandoc can convert a Markdown file into a wide variety of desired formats.

For output creating using LATEX formatting, a TEX rendering package is required to create

a PDF file from the source. The TeXLive project maintains a number of tools useful for

rendering LATEX. For macOS users, the MacTex project offers the required binaries. An

online tool like Overleaf is also useful for handling LATEX.

In many cases, more sophisticated processing is required than simply saving a notebook

as a pure Markdown file. We can add the Jupyter{Book} tools to our environment. For

more information see https://jupyterbook.org.

The jupyter-book component needs to be added to the requirements-dev.txt file so

other developers know to install it.

When using conda to manage virtual environments, the command might look like the

following:

% conda install --channel conda-forge jupyter-book

When using other tools to manage virtual environments, the command might look like the

following:

% python -m pip install jupyter-book

A Jupyter book can be considerably more complicated than a single notebook file. There

will be configuration and table-of-contents (TOC) files to structure the overall report.

The content can be provided in a mixture of Markdown, reStructuredText, and Notebook

files. Additionally, an extended version of the Markdown language, MyST, is available to

add a wide variety of semantic markup capabilities.

https://jupyterbook.org

374 Project 4.2: Creating Reports

One way to get started is to use the jupyter-book create command to create a template

project. This template includes the required _config.yml and _toc.yml files. It also

includes examples of various other files that might be part of a project.

The _config.yml file has the title and author information. This is the place to start

customizing the content to provide the correct report and author names. Other parts of the

configuration may need to be changed, depending on how the report will be published.

The built-in assumption is an HTML upload to a public repository. For many reports, this

is ideal.

For some enterprise projects, however, reporting to a public repository with links to public

GitHub isn’t acceptable. For these cases, the _config.yml file will have to be changed to

correct the repository options to refer to an in-house repository.

It’s often helpful to immediately edit the _toc.yml file, and start creating the report’s

outline. Generally, the data and notebooks already exist. The audience is often known, and

the key points the audience members need to absorb are clear, permitting the analyst to

create the outline, and placeholder documents, right away.

In some cases, the analyst can fill in the outline with notes extracted from the analysis

notebooks. This refactoring of content can help to trim working notebooks down to the

essential computation and visualization. The narrative text can be segregated into MyST

or Markdown files outside the notebooks.

Once the content is in draft form, a book is created with the jupyter-book build command.

This will use the configuration and TOC file to build the complete document from various

sources. The default document is an HTML page.

As of this book’s publication date, version 0.15.1 includes a warning that direct PDF

production is under development and may have bugs. The more reliable way to create

PDFs is to use Jupyter{Book} to create a LATEX file. The OS-native LaTeX command can

be used to build PDFs. An alternative is to use the sphinx-jupyterbook-latex package to

wrap the TEXtools that transform the LATEX to PDF.

Chapter 14 375

This involves a number of moving parts, and the installation can be daunting. Here are

some of the steps involved:

1. The source Markdown text is converted to LATEX by Jupyter Book.

2. Some intermediate work may be performed by the sphinx-jupyterbook-latex

package.

3. The final PDF is created by an OS latex command; this is either the MacTex or

TexLive installation of the TEX tools.

The CLI build command is the jupyter-book build command with an additional option

--builder pdflatex to specify that Sphinx and the TEX tools are used to render the PDF.

Creating technical diagrams
Technical diagrams, including the wide variety of diagrams defined by the UML, are often

challenging to create. Popular presentation tools like Keynote and PowerPoint have

clever drawing tools with lots of built-in shapes and options for positioning those shapes

on a slide.

There are several choices for creating diagrams for a presentation:

• Use a separate graphics application to create .PNG or .SVG files and incorporate the

graphics into the document. Many of the diagrams in this book were created with

PlantUML, for example. See https://plantuml.com.

• Use matplotlib, and write code to create the image. This can involve a lot of

programming to draw some boxes connected by arrows.

The PlantWEB project provides a Python interface to the PlantUML web service. This

allows an analyst to work as follows:

1. Create a file with text in the domain-specific language (DSL) that describes the

image.

2. Render the image with the PlantUML engine to create an .SVG file.

https://plantuml.com

376 Project 4.2: Creating Reports

3. Import the image into the notebook as an IPython SVG object.

The image rendering uses the PlantUML server; this requires an active internet connection.

In cases where the analyst might be working offline, the PlantWEB documentation suggests

using Docker to run a local service in a local Docker container. This will do diagram

rendering quickly without the requirement to connect to the internet.

Having looked at the various technical considerations to create slides and a report, we can

emphasize the deliverables for this project.

Deliverables
There are two deliverables for this project:

• A presentation

• A report

The presentation should be an HTML document using the Reveal.js slide deck.

The report should be a PDF document from a single notebook. It should contain the

visualization figures and some narrative text explaining the images.

For information on unit testing and acceptance testing of the notebooks, see Chapter 13,

Project 4.1: Visual Analysis Techniques. This project should build on the previous project. It

doesn’t involve dramatic new programming. Instead, it involves the integration of a large

number of components to create meaningful, useful presentations and reports.

Summary
In this chapter, we have built two important working results of data analysis:

• Slide decks that can be used as presentations to interested users and stakeholders

• Reports in PDF format that can be distributed to stakeholders

The line between these two is always hazy. Some presentations have a lot of details and

are essentially reports presented in small pages.

Chapter 14 377

Some reports are filled with figures and bullet points; they often seem to be presentations

written in portrait mode.

Generally, presentations don’t have the depth of detail reports do. Often, reports are

designed for long-term retention and provide background, as well as a bibliography to

help readers fill in missing knowledge. Both are first-class parts of a Jupyter notebook and

creating these should be part of every analyst’s skills.

This chapter has emphasized the additional tools required to create outstanding results. In

the next chapter, we’ll shift gears and look at some of the statistical basics of data modeling.

Extras
Here are some ideas for the reader to add to these projects.

Written reports with UML diagrams
In Creating technical diagrams the process of creating UML diagrams was summarized. The

reader is encouraged to use PlantUML to create C4 diagrams for their data acquisition and

cleaning pipeline. These .SVG files can then be incorporated into a report as Markdown

figures.

For more information on the C4 model, see https://c4model.com.

https://c4model.com

15
Project 5.1: Modeling Base
Application

The next step in the pipeline from acquisition to clean-and-convert is the analysis and

some preliminary modeling of the data. This may lead us to use the data for a more

complex model or perhaps machine learning. This chapter will guide you through creating

another application in the three-stage pipeline to acquire, clean, and model a collection of

data. This first project will create the application with placeholders for more detailed and

application-specific modeling components. This makes it easier to insert small statistical

models that can be replaced with more elaborate processing if needed.

In this chapter, we’ll look at two parts of data analysis:

• CLI architecture and how to design a more complex pipeline of processes for gathering

and analyzing data

• The core concepts of creating a statistical model of the data

380 Project 5.1: Modeling Base Application

Viewed from a distance, all analytical work can be considered to be creating a simplified

model of important features of some complicated processes. Even something as

simple-sounding as computing an average suggests a simple model of the central tendency

of a variable. Adding a standard deviation suggests an expected range for the variable’s

values and – further – assigns a probability to values outside the range.

Models, can, of course, be considerably more detailed. Our purpose is to start down the path

of modeling in a way that builds flexible, extensible application software. Each application

will have unique modeling requirements, depending on the nature of the data, and the

nature of the questions being asked about the data. For some processes, means and standard

deviations are adequate for spotting outliers. For other processes, a richer and more detailed

simulation may be required to estimate the expected distribution of data.

We’ll start the modeling by looking at variables in isolation, sometimes called univariate

statistics. This will examine a variety of commonly recognized distributions of data. These

distributions generally have a few parameters that can be discovered from the given data.

In this chapter, we’ll also look at measures like mean, median, standard deviation, variance,

and standard deviation. These can be used to describe data that has a normal or Gaussian

distribution. The objective is to create create a CLI application separate from an analytic

notebook used to present results. This creates a higher degree of automation for modeling.

The results may then be presented in an analytical notebook.

There is a longer-term aspect to having automated model creation. Once a data model has

been created, an analyst can also look at changes to a model and what implications the

changes should have on the way an enterprise operates. For example, an application may

perform a monthly test to be sure new data matches the established mean, median, and

standard deviation reflecting the expected normal distribution of data. In the event that a

batch of data doesn’t fit the established model, further investigation is required to uncover

the root cause of this change.

Chapter 15 381

Description
This application will create a report on a dataset presenting a number of statistics. This

automates the ongoing monitoring aspect of an Analysis Notebook, reducing the manual

steps and creating reproducible results. The automated computations stem from having

a statistical model for the data, often created in an analysis notebook, where alternative

models are explored. This reflects variables with values in an expected range.

For industrial monitoring, this is part of an activity called Gage repeatability and

reproducibility. The activity seeks to confirm that measurements are repeatable and

reproducible. This is described as looking at a “measurement instrument.” While we often

think of an instrument as being a machine or a device, the definition is actually very broad.

A survey or questionnaire is a measurement instrument focused on people’s responses to

questions.

When these computed statistics deviate from expectations, it suggests something has

changed, and the analyst can use these unexpected values to investigate the root cause

of the deviation. Perhaps some enterprise process has changed, leading to shifts in some

metrics. Or, perhaps some enterprise software has been upgraded, leading to changes to

the source data or encodings used to create the clean data. More complex still, it may

be that the instrument doesn’t actually measure what we thought it measured; this new

discrepancy may expose a gap in our understanding.

The repeatability of the model’s measurements is central to the usability of the

measurements. Consider a ruler that’s so worn down over years of use that it is no longer

square or accurate. This single instrument will produce different results depending on what

part of the worn end is used to make the measurement. This kind of measurement variability

may obscure the variability in manufacturing a part. Understanding the causes of changes

is challenging and can require thinking “outside the box” — challenging assumptions

about the real-world process, the measurements of the process, and the model of those

measurements.

Exploratory data analysis can be challenging and exhilarating precisely because there

382 Project 5.1: Modeling Base Application

aren’t obvious, simple answers to explain why a measurement has changed.

The implementation of this preliminary model is through an application, separate from the

previous stages in the pipeline to acquire and clean the data. With some careful design,

this stage can be combined with those previous stages, creating a combined sequence of

operations to acquire, clean, and create the summary statistics.

This application will overlap with the analysis notebook and the initial inspection notebook.

Some of the observations made during those earlier ad-hoc analysis stages will be turned

into fixed, automated processing.

This is the beginning of creating a more complicated machine-learning model of the data.

In some cases, a statistical model using linear or logistic regression is adequate, and a more

complex artificial intelligence model isn’t needed. In other cases, the inability to create a

simple statistical model can point toward a need to create and tune the hyperparameters of

a more complicated model.

The objective of this application is to save a statistical summary report that can be

aggregated with and compared to other summary reports. The ideal structure will be

a document in an easy-to-parse notation. JSON is suggested, but other easier-to-read

formats like TOML are also sensible.

There are three key questions about data distribution:

1. What is the location or expected value for the output being measured?

2. What is the spread or expected variation for this variable?

3. What is the general shape, e.g., is it symmetric or skewed in some way?

For more background on these questions, see https://www.itl.nist.gov/div898/hand

book/ppc/section1/ppc131.htm

This summary processing will become part of an automated acquire, clean, and summarize

operation. The User Experience (UX) will be a command-line application. Our expected

command line should look something like the following:

https://www.itl.nist.gov/div898/handbook/ppc/section1/ppc131.htm
https://www.itl.nist.gov/div898/handbook/ppc/section1/ppc131.htm

Chapter 15 383

% python src/summarize.py -o summary/series_1/2023/03
data/clean/Series_1.ndj

The -o option specifies the path to an output sub-directory. The output filename added to

this path will be derived from the source file name. The source file name often encodes

information on the applicable date range for the extracted data.

The Anscombe’s Quartet data doesn’t change and wouldn’t really have an

“applicable date” value.

We’ve introduced the idea of periodic enterprise extractions. None of the

projects actually specify a data source subject to periodic change.

Some web services like http://www.yelp.com have health-code data for

food-service businesses; this is subject to periodic change and serves as a

good source of analytic data.

Now that we’ve seen the expectations, we can turn to an approach to the implementation.

Approach
We’ll take some guidance from the C4 model (https://c4model.com) when looking at our

approach:

• Context: For this project, a context diagram would show a user creating analytical

reports. You may find it helpful to draw this diagram.

• Containers: There only seems to be one container: the user’s personal computer.

• Components: We’ll address the components below.

• Code: We’ll touch on this to provide some suggested directions.

The heart of this application is a module to summarize data in a way that lets us test whether

it fits the expectations of a model. The statistical model is a simplified reflection of the

http://www.yelp.com
https://c4model.com

384 Project 5.1: Modeling Base Application

underlying real-world processes that created the source data. The model’s simplifications

include assumptions about events, measurements, internal state changes, and other details

of the processing being observed.

For very simple cases — like Anscombe’s Quartet data — there are only two variables,

which leaves a single relationship in the model. Each of the four sample collections in the

quartet has a distinct relationship. Many of the summary statistics, however, are the same,

making the relationship often surprising.

For other datasets, with more variables and more relationships, there are numerous choices

available to the analyst. The NIST Engineering Statistics Handbook has an approach to

modeling. See https://www.itl.nist.gov/div898/handbook/index.htm for the design

of a model and analysis of the results of the model.

As part of the preliminary work, we will distinguish between two very broad categories of

statistical summaries:

• Univariate statistics: These are variables viewed in isolation.

• Multivariate statistics: These are variables in pairs (or higher-order groupings)

with an emphasis on the relationship between the variable’s values.

For univariate statistics, we need to understand the distribution of the data. This means

measuring the location (the center or expected values), the spread (or scale), and the shape

of the distribution. Each of these measurement areas has several well-known statistical

functions that can be part of the summary application.

We’ll look at the multivariate statistics in the next chapter. We’ll start the univariate

processing by looking at the application in a general way, and then focus on the statistical

measures, the inputs, and finally, the outputs.

Designing a summary app
This application has a command-line interface to create a summary from the cleaned data.

The input file(s) are the samples to be summarized. The summary must be in a form that’s

https://www.itl.nist.gov/div898/handbook/index.htm

Chapter 15 385

easy to process by subsequent software. This can be a JSON- or a TOML-formatted file

with the summary data.

The summaries will be “measures of location,” sometimes called a “central tendency.” See

https://www.itl.nist.gov/div898/handbook/eda/section3/eda351.htm.

The output must include enough context to understand the data source, and the variable

being measured. The output also includes the measured values to a sensible number of

decimal places. It’s important to avoid introducing additional digits into floating-point

values when those digits are little more than noise.

A secondary feature of this application is to create an easy-to-read presentation of the

summary. This can be done by using tools like Docutils to transform a reStructuredText

report into HTML or a PDF. A tool like Pandoc could also be used to convert a source

report into something that isn’t simply text. The technique explored in Chapter 14, Project

4.2: Creating Reports is to use Jupyter{Book} to create a document suitable for publication.

We’ll start by looking at some of the measures of location that need to be computed.

Describing the distribution
As noted above, there are three aspects of the distribution of a variable. The data tends

to scatter around a central tendency value; we’ll call this the location. There will be an

expected limit on the scattering; we’ll call this the spread. There may be a shape that’s

symmetric or skewed in some way. The reasons for scattering may include measurement

variability, as well as variability in the process being measured.

The NIST Handbook defines three commonly-used measures of location:

• mean: The sum of the variable’s values divided by the count of values: 𝑋̄ =
∑𝑋𝑖

𝑁
.

• median: The value of a value that is in the center of the distribution. Half the values

are less than or equal to this value, and half the values are greater than or equal to

this value. First, sort the values into ascending order. If there’s an odd number, it’s

the value in the center. For an even number of values, split the difference between

the two center-most values.

https://www.itl.nist.gov/div898/handbook/eda/section3/eda351.htm

386 Project 5.1: Modeling Base Application

• mode: The most common value. For some of the Anscombe Quartet data series, this

isn’t informative because all of the values are unique.

These functions are first-class parts of the built-in statistics module, making them

relatively easy to compute.

There are some alternatives that may be needed when the data is polluted by outliers.

There are techniques like Mid-Mean and Trimmed Mean to discard data outside some range

of percentiles.

The question of an “outlier” is a sensitive topic. An outlier may reflect a measurement

problem. An outlier may also hint that the processing being measured is quite a bit more

complicated than is revealed in a set of samples. Another, separate set of samples may

reveal a different mean or a larger standard deviation. The presence of outliers may suggest

more study is needed to understand the nature of these values.

There are three commonly-used measures for the scale or spread of the data:

• Variance and standard deviation. The variance is — essentially — the average of the

squared distance of each sample from the mean: 𝑠2 = ∑𝑋𝑖−𝑋̄

(𝑁−1)
. The standard deviation

is the square root of the variance.

• Range is the difference between the largest and smallest values.

• Median absolute deviation is the median of the distance of each sample from the

mean: MAD𝑌 = median(|𝑌𝑖 − 𝑌 |). See Chapter 7, Data Inspection Features.

The variance and standard deviation functions are first-class parts of the built-in statistics

module. The range can be computed using the built-in min() and max() functions. A median

absolute deviation function can be built using functions in the statistics module.

There are also measures for skewness and kurtosis of a distribution. We’ll leave these as

extras to add to the application once the base statistical measures are in place.

Chapter 15 387

Use cleaned data model
It’s essential to use the cleaned, normalized data for this summary processing. There is

some overlap between an inspection notebook and this more detailed analysis. An initial

inspection may also look at some measures of location and range to determine if the data

can be used or contains errors or problems. During the inspection activities, it’s common

to start creating an intuitive model of the data. This leads to formulating hypotheses about

the data and considering experiments to confirm or reject those hypotheses.

This application formalizes hypothesis testing. Some functions from an initial data

inspection notebook may be refactored into a form where those functions can be used on

the cleaned data. The essential algorithm may be similar to the raw data version of the

function. The data being used, however, will be the cleaned data.

This leads to a sidebar design decision. When we look back at the data inspection notebook,

we’ll see some overlaps.

Rethink the data inspection functions
Because Python programming can be generic — independent of any specific data type —

it’s tempting to try to unify the raw data processing and the cleaned data processing. The

desire manifests as an attempt to write exactly one version of some algorithm, like the

Median Absolute Deviation function that’s usable for both raw and cleaned data.

This is not always an achievable goal. In some situations, it may not even be desirable.

A function to process raw data must often do some needed cleaning and filtering. These

overheads are later refactored and implemented in the pipeline to create cleaned data.

To be very specific, the if conditions used to exclude bad data can be helpful during the

inspection. These conditions will become part of the clean-and-convert applications. Once

this is done, they are no longer relevant for working with the cleaned data.

Because the extra data cleanups are required for inspecting raw data, but not required for

analyzing cleaned data, it can be difficult to create a single process that covers both cases.

The complications required to implement this don’t seem to be worth the effort.

388 Project 5.1: Modeling Base Application

There are some additional considerations. One of these is the general design pattern

followed by Python’s statistics module. This module works with sequences of atomic

values. Our applications will read (and write) complicated Sample objects that are not

atomic Python integer or float values. This means our applications will extract sequences

of atomic values from sequences of complicated Sample objects.

The raw data, on the other hand, may not have a very sophisticated class definition. This

means the decomposition of complicated objects isn’t part of the raw data processing.

For some very, very large datasets the decomposition of complicated multivariate objects

to individual values may happen as the data is being read. Rather than ingest millions of

objects, the application may extract a single attribute for processing.

This might lead to input processing that has the following pattern:

from collections.abc import Iterator, Callable

import json

from pathlib import Path

from typing import TypeAlias

from analysis_model import Sample

Extractor: TypeAlias = Callable[[Sample], float]

def attr_iter(some_path: Path, extractor: Extractor) -> Iterator[float]:

with some_path.open() as source:

for line in source:

document = Sample(**json.loads(line))

yield extractor(document)

def x_values(some_path: Path) -> list[float]:

return list(attr_iter(some_path, lambda sample: sample.x))

Chapter 15 389

This example defines a generic function, attr_iter(), to read an ND JSON file to build

instances of some class, Sample. (The details of the Sample class are omitted.)

The x_values() function uses the generic attr_iter() function with a concrete lambda

object to extract a specific variable’s value, and create a list object. This list object can then

be used with various statistical functions.

While a number of individual Sample objects are created, they aren’t retained. Only the

values of the x attribute are saved, reducing the amount of memory used to create summary

statistics from a large collection of complicated values.

Create new results model
The statistical summary contains three broad kinds of data:

• Metadata to specify what source data is used to create the summary.

• Metadata to specify what measures are being used.

• The computed values for location, shape, and spread.

In some enterprise applications, source data is described by a range of dates defining the

earliest and latest samples. In some cases, more details are required to describe the complete

context. For example, the software to acquire raw data may have been upgraded in the

past. This means older data may be incomplete. This means the context for processing

data may require some additional details on software versions or releases in addition to

the range of dates and data sources.

Similarly, the measures being used may shift over time. The computation of skewness, for

example, may switch from the Fisher-Pearson formula to the adjusted Fisher-Pearson

formula. This suggests the version information for the summary program should also be

recorded along with the results computed.

Each of these metadata values provides necessary context and background information

on the data source, the method of collection, and any computations of derived data. This

context may be helpful in uncovering the root cause of changes. In some cases, the context

390 Project 5.1: Modeling Base Application

is a way to catalog underlying assumptions about a process or a measurement instrument;

seeing this context may allow an analyst to challenge assumptions and locate the root

cause of a problem.

The application must create a result document that looks something like the following

example:

[identification]

date = "2023-03-27T10:04:00"

[creator]

title = "Some Summary App"

version = 4.2

[source]

title = "Anscombe's Quartet"

path = "data/clean/Series_1.ndj"

[x.location]

mean = 9.0

[x.spread]

variance = 11.0

[y.location]

mean = 7.5

[y.spread]

variance = 4.125

This file can be parsed by the toml or tomllib module to create a nested collection of

dictionaries. The secondary feature of the summary application is to read this file and

write a report, perhaps using Markdown or ReStructuredText that provides the data in a

readable format suitable for publication.

For Python 3.11 or newer, the tomllib module is built in. For older Python installations,

the toml module needs to be installed.

Now that we’ve seen the overall approach, we can look at the specific deliverable files.

Chapter 15 391

Deliverables
This project has the following deliverables:

• Documentation in the docs folder.

• Acceptance tests in the tests/features and tests/steps folders.

• Unit tests for model module classes in the tests folder.

• Mock objects for the csv_extract module tests will be part of the unit tests.

• Unit tests for the csv_extract module components that are in the tests folder.

• An application to summarize the cleaned data in a TOML file.

• An application secondary feature to transform the TOML file to an HTML page or

PDF file with the summary.

In some cases, especially for particularly complicated applications, the summary statistics

may be best implemented as a separate module. This module can then be expanded and

modified without making significant changes to the overall application.

The idea is to distinguish between these aspects of this application:

• The CLI, which includes argument parsing and sensible handling of input and output

paths.

• The statistical model, which evolves as our understanding of the problem domain

and the data evolve.

• The data classes, which describe the structure of the samples, independent of any

specific purpose.

For some applications, these aspects do not involve a large number of classes or functions.

In a case where the definitions are small, a single Python module will do nicely. For other

applications, particularly those where initial assumptions turned out to be invalid and

significant changes were made, having separate modules can permit more flexibility, and

more agility with respect to future changes.

392 Project 5.1: Modeling Base Application

We’ll look at a few of these deliverables in a little more detail. We’ll start with some

suggestions for creating the acceptance tests.

Acceptance testing
The acceptance tests need to describe the overall application’s behavior from the user’s

point of view. The scenarios will follow the UX concept of a command-line application to

acquire data and write output files. Because the input data has been cleaned and converted,

there are few failure modes for this application; extensive testing of potential problems

isn’t as important as it was in earlier data-cleaning projects.

For relatively simple datasets, the results of the statistical summaries are known in advance.

This leads to features that might look like the following example:

Feature: Summarize an Anscombe Quartet Series.

Scenario: When requested, the application creates a TOML summary of a series.

Given the "clean/series_1.ndj" file exists

When we run command "python src/summarize.py \

-o summary/series_1/2023/03 data/clean/Series_\1.ndj"

Then the "summary/series_1/2023/03/summary.toml" file exists

And the value of "summary['creator']['title']" is "Anscombe Summary App"

And the value of "summary['source']['path']" is "data/clean/Series_1.ndj"

And the value of "summary['x']['location']['mean']" is "9.0"

We could continue the scenario with a number of additional Then steps to validate each of

the locations and the spread and shape the statistical summaries.

The step definitions will be similar to step definitions for a number of previous projects.

Specifically, the When step will use the subprocess.run() function to execute the given

application with the required command-line arguments.

The first of the Then steps will need to read — and parse — the TOML file. The resulting

summary object can be placed in the context object. Subsequent Then steps can examine

Chapter 15 393

the structure to locate the individual values, and confirm the values match the acceptance

test expectations.

It is often helpful to extract a small subset of data to use for acceptance

testing. Instead of processing millions of rows, a few dozen rows are

adequate to confirm the application has read and summarized data. The

data only needs to be representative of the larger set of samples under

consideration.

Because the chosen subset is part of the testing suite; it rarely changes. This

makes the results predictable.

As the data collection process evolves, it’s common to have changes to the data sources.

This will lead to changes in the data cleaning. This may, in turn, lead to changes in the

summary application as new codes or new outliers must be handled properly. The evolution

of the data sources implies that the test data suite will also need to evolve to expose any of

the special, edge, or corner cases.

Ideally, the test data suite is a mixture of ordinary — no surprises — data, mixed with

representative examples of each of the special, atypical cases. As this test data suite evolves,

the acceptance test scenario will also evolve.

The TOML file is relatively easy to parse and verify. The secondary feature of this application

— expanding on the TOML output to add extensive Markdown — also works with text files.

This makes it relatively easy to confirm with test scenarios that read and write text files.

The final publication, whether done by Pandoc or a combination of Pandoc and a LATEX

toolchain, isn’t the best subject for automated testing. A good copy editor or trusted

associate needs to make sure the final document meets the stakeholder’s expectations.

Unit testing
It’s important to have unit testing for the various components that are unique to this

application. The clean data class definition, for example, is created by another application,

394 Project 5.1: Modeling Base Application

with its own test suite. The unit tests for this application don’t need to repeat those tests.

Similarly, the statistics module has extensive unit tests; this application’s unit tests do

not need to replicate any of that testing.

This further suggests that the statistics module should be replaced with Mock objects.

Those mock objects can — generally — return sentinel objects that will appear in the

resulting TOML-format summary document.

This suggests test cases structured like the following example:

from pytest import fixture

from unittest.mock import Mock, call, sentinel

import summary_app

@fixture

def mocked_mean(monkeypatch):

mean = Mock(

return_value=sentinel.MEAN

)

monkeypatch.setattr(summary_app, 'mean', mean)

return mean

@fixture

def mocked_variance(monkeypatch):

variance = Mock(

return_value=sentinel.VARIANCE

)

monkeypatch.setattr(summary_app, 'variance', variance)

return variance

def test_var_summary(mocked_mean, mocked_variance):

sample_data = sentinel.SAMPLE

Chapter 15 395

result = summary_app.variable_summary(sample_data)

assert result == {

"location": {"mean": sentinel.MEAN},

"spread": {"variance": sentinel.VARIANCE},

}

assert mocked_mean.mock_calls == [call(sample_data)]

assert mocked_variance.mock_calls == [call(sample_data)]

The two test fixtures provide mock results, using sentinel objects. Using sentinel objects

allows easy comparison to be sure the results of the mocked functions were not manipulated

unexpectedly by the application.

The test case, test_var_summary(), provides a mocked source of data in the form of another

sentinel object. The results have the expected structure and the expected sentinel objects.

The final part of the test confirms the sample data — untouched — was provided to the

mocked statistical functions. This confirms the application doesn’t filter or transform the

data in any way. The results are the expected sentinel objects; this confirms the module

didn’t adulterate the results of the statistics module. And the final check confirms that

the mocked functions were called exactly once with the expected parameters.

This kind of unit test, with numerous mocks, is essential for focusing the testing on the

new application code, and avoiding tests of other modules or packages.

Application secondary feature
A secondary feature of this application transforms the TOML summary into a more readable

HTML or PDF file. This feature is a variation of the kinds of reporting done with Jupyter

Lab (and associated tools like Jupyter {Book}).

There’s an important distinction between these two classes of reports:

• The Jupyter Lab reports involve discovery. The report content is always new.

• The summary application’s reports involve confirmation of expectations. The report

content should not be new or surprising.

396 Project 5.1: Modeling Base Application

In some cases, the report will be used to confirm (or deny) an expected trend is continuing.

The application applies the trend model to the data. If the results don’t match expectations,

this suggests follow-up action is required. Ideally, it means the model is incorrect, and the

trend is changing. The less-than-ideal case is the observation of an unexpected change in

the applications providing the source data.

This application decomposes report writing into three distinct steps:

1. Content: This is the TOML file with the essential statistical measures.

2. Structure: The secondary feature creates an intermediate markup file in Markdown

or the RST format. This has an informative structure around the essential content.

3. Presentation: The final publication document is created from the structured markup

plus any templates or style sheets that are required.

The final presentation is kept separate from the document’s content and structure.

An HTML document’s final presentation is created by a browser. Using a

tool like Pandoc to create HTML from Markdown is — properly — replacing

one markup language with another markup language.

Creating a PDF file is a bit more complicated. We’ll leave this in the extras section at the

end of this chapter.

The first step toward creating a nicely formatted document is to create the initial Markdown

or ReStructuredText document from the summary. In many cases, this is easiest done with

the Jinja package. See https://jinja.palletsprojects.com/en/3.1.x/

One common approach is the following sequence of steps:

1. Write a version of the report using Markdown (or RST).

2. Locate a template and style sheets that produce the desired HTML page when

converted by the Pandoc or Docutils applications.

3. Refactor the source file to replace the content with Jinja placeholders.

https://jinja.palletsprojects.com/en/3.1.x/

Chapter 15 397

This becomes the template report.

4. Write an application to parse the TOML, then apply the TOML details to the

template file.

When using Jinja to enable filling in the template, it must be added to the requirements.txt

file. If ReStructuredText (RST) is used, then the docutils project is also useful and should

be added to the requirements.txt file.

If Markdown is used to create the report, then Pandoc is one way to handle the conversion

from Markdown to HTML. Because Pandoc also converts RST to HTML, the docutils

project is not required.

Because the parsed TOML is a dictionary, fields can be extracted by the Jinja template. We

might have a Markdown template file with a structure like the following:

Summary of {{ summary['source']['name'] }}

Created {{ summary['identification']['date'] }}

Some interesting notes about the project...

X-Variable

Some interesting notes about this variable...

Mean = {{ summary['x']['location']['mean'] }}

etc.

The {{ some-expression }} constructs are placeholders. This is where Jinja will evaluate

the Python expression and replace the placeholders with the resulting value. Because of

Jinja’s clever implementation, a name like summary['x']['location']['mean'] can be

written as summary.x.location.mean, also.

398 Project 5.1: Modeling Base Application

The lines with # and ## are the way Markdown specifies the section headings. For more

information on Markdown, see https://daringfireball.net/projects/markdown/.

Note that there are a large number of Markdown extensions, and it’s important to be sure

the rendering engine (like Pandoc) supports the extensions you’d like to use.

The Jinja template language has numerous options for conditional and repeating document

sections. This includes {% for name in sequence %} and {% if condition %} constructs

to create extremely sophisticated templates. With these constructs, a single template can

be used for a number of closely related situations with optional sections to cover special

situations.

The application program to inject values from the summary object into the template shouldn’t

be much more complicated than the examples shown on the Jinja basics page. See https:

//jinja.palletsprojects.com/en/3.1.x/api/#basics for some applications that load a

template and inject values.

This program’s output is a file with a name like summary_report.md. This file would be

ready for conversion to any of a large number of other formats.

The process of converting a Markdown file to HTML is handled by the Pandoc application.

See https://pandoc.org/demos.html. The command might be as complicated as the

following:

pandoc -s --toc -c pandoc.css summary_report.md -o summary_report.html

The pandoc.css file can provide the CSS styles to create a body that’s narrow enough to

be printed on an ordinary US letter or A4 paper.

The application that creates the summary_report.md file can use subprocess.run() to

execute the Pandoc application and create the desired HTML file. This provides a

command-line UX that results in a readable document, ready to be distributed.

https://daringfireball.net/projects/markdown/
https://jinja.palletsprojects.com/en/3.1.x/api/#basics
https://jinja.palletsprojects.com/en/3.1.x/api/#basics
https://pandoc.org/demos.html

Chapter 15 399

Summary
In this chapter we have created a foundation for building and using a statistical model of

source data. We’ve looked at the following topics:

• Designing and building a more complex pipeline of processes for gathering and

analyzing data.

• Some of the core concepts behind creating a statistical model of some data.

• Use of the built-in statistics library.

• Publishing the results of the statistical measures.

This application tends to be relatively small. The actual computations of the various

statistical values leverage the built-in statistics library and tend to be very small. It often

seems like there’s far more programming involved in parsing the CLI argument values, and

creating the required output file, than doing the “real work” of this application.

This is a consequence of the way we’ve been separating the various concerns in data

acquisition, cleaning, and analysis. We’ve partitioned the work into several, isolated stages

along a pipeline:

1. Acquiring raw data, generally in text form. This can involve database access or

RESTful API access, or complicated file parsing problems.

2. Cleaning and converting the raw data to a more useful, native Python form. This

can involve complications of parsing text and rejecting outlier values.

3. Summarizing and analyzing the cleaned data. This can focus on the data model and

reporting conclusions about the data.

The idea here is the final application can grow and adapt as our understanding of the data

matures. In the next chapter, we’ll add features to the summary program to create deeper

insights into the available data.

400 Project 5.1: Modeling Base Application

Extras
Here are some ideas for you to add to this project.

Measures of shape
The measurements of shape often involve two computations for skewness and kurtosis.

These functions are not part of Python’s built-in statistics library.

It’s important to note that there are a very large number of distinct, well-understood

distributions of data. The normal distribution is one of many different ways data can be

distributed.

See https://www.itl.nist.gov/div898/handbook/eda/section3/eda366.htm.

One measure of skewness is the following:

𝑔1 =

∑(𝑌𝑖−𝑌)
3

𝑁

𝑠3

Where 𝑌 is the mean, and 𝑠 is the standard deviation.

A symmetric distribution will have a skewness, 𝑔1, near zero. Larger numbers indicate a

“long tail” opposite a large concentration of data around the mean.

One measure of kurtosis is the following:

kurtosis =
∑(𝑌𝑖−𝑌)

4

𝑁

𝑠4

The kurtosis for the standard normal distribution is 3. A value larger than 3 suggests more

data is in the tails; it’s “flatter” or “wider” than the standard normal distribution. A value

less than three is “taller” or “narrower” than the standard.

These metrics can be added to the application to compute some additional univariate

descriptive statistics.

https://www.itl.nist.gov/div898/handbook/eda/section3/eda366.htm

Chapter 15 401

Creating PDF reports
In the Application secondary feature section we looked at creating a Markdown or RST

document with the essential content, some additional information, and an organizational

structure. The intent was to use a tool like Pandoc to convert the Markdown to HTML.

The HTML can be rendered by a browser to present an easy-to-read summary report.

Publishing this document as a PDF requires a tool that can create the necessary output file.

There are two common choices:

• Use the ReportLab tool: https://www.reportlab.com/dev/docs/. This is a

commercial product with some open-source components.

• Use the Pandoc tool coupled with a LATEX processing tool.

See Preparing a report of Chapter 14, Project 4.2: Creating Reports for some additional

thoughts on using LATEX to create PDF files. While this involves a large number of separate

components, it has the advantage of having the most capabilities.

It’s often best to learn the LATEX tools separately. The TeXLive project maintains a number

of tools useful for rendering LATEX. For macOS users, the MacTex project offers the required

binaries. An online tool like Overleaf is also useful for handling LATEX. Sort out any problems

by creating small hello_world.tex example documents to see how the LATEX tools work.

Once the basics of the LATEX tools are working, it makes sense to add the Pandoc tool to

the environment.

Neither of these tools are Python-based and don’t use conda or pip installers.

As noted in Chapter 14, Project 4.2: Creating Reports, there are a lot of components to this

tool chain. This is a large number of separate installs that need to be managed. The results,

however, can be very nice when a final PDF is created from a few CLI interactions.

Serving the HTML report from the data API
In Chapter 12, Project 3.8: Integrated Data Acquisition Web Service we created a RESTful

API service to provide cleaned data.

https://www.reportlab.com/dev/docs/

402 Project 5.1: Modeling Base Application

This service can be expanded to provide several other things. The most notable addition is

the HTML summary report.

The process of creating a summary report will look like this:

1. A user makes a request for a summary report for a given time period.

2. The RESTful API creates a “task” to be performed in the background and responds

with the status showing the task has been created.

3. The user checks back periodically to see if the processing has finished. Some clever

JavaScript programming can display an animation while an application program

checks to see if the work is completed.

4. Once the processing is complete, the user can download the final report.

This means two new resources paths will need to be added to the OpenAPI specification.

These two new resources are:

• Requests to create a new summary. A POST request creates the task to build a

summary and a GET request shows the status. A 2023.03/summarize path will

parallel the 2023.02/creation path used to create the series.

• Requests for a summary report. A GET request will download a given statistical

summary report. Perhaps a 2023.03/report path would be appropriate.

As we add features to the RESTful API, we need to consider the resource names more and

more carefully. The first wave of ideas sometimes fails to reflect the growing understanding

of the user’s needs.

Chapter 15 403

In retrospect, the 2023.02/create path, defined in Chapter 12, Project 3.8:

Integrated Data Acquisition Web Service, may not have been the best name.

There’s an interesting tension between requests to create a resource and the

resulting resource. The request to create a series is clearly distinct from the

resulting series. Yet, they can both be meaningfully thought of as instances

of “series.” The creation request is a kind of future: an expectation that will

be fulfilled later.

An alternative naming scheme is to use 2023.02/creation for series, and

use 2023.03/create/series and 2023.03/create/summary as distinct paths

to manage the long-running background that does the work.

The task being performed in the background will execute a number of steps:

1. Determine if the request requires new data or existing data. If new data is needed, it

is acquired, and cleaned. This is the existing process to acquire the series of

data points.

2. Determine if the requested summary does not already exist. (For new data, of course,

it will not exist.) If a summary is needed, it is created.

Once the processing is complete, the raw data, cleaned data, and summary can all be

available as resources on the API server. The user can request to download any of

these resources.

It’s essential to be sure each of the components for the task work in isolation before

attempting to integrate them as part of a web service. It’s far easier to diagnose and debug

problems with summary reporting outside the complicated world of web services.

16
Project 5.2: Simple
Multivariate Statistics

Are variables related? If so what’s the relationship? An analyst tries to answer these

two questions. A negative answer — the null hypothesis — doesn’t require too many

supporting details. A positive answer, on the other hand, suggests that a model can be

defined to describe the relationship. In this chapter, we’ll look at simple correlation and

linear regression as two elements of modeling a relationship between variables.

In this chapter, we’ll expand on some skills of data analysis:

• Use of the built-in statistics library to compute correlation measures and linear

regression coefficients.

• Use of the matplotlib library to create images. This means creating plot images

outside a Jupyter Lab environment.

• Expanding on the base modeling application to add features.

406 Project 5.2: Simple Multivariate Statistics

This chapter’s project will expand on earlier projects. Look back at Chapter 13, Project

4.1: Visual Analysis Techniques for some of the graphical techniques used in a Jupyter Lab

context. These need to be more fully automated. The project will add multivariate statistics

and graphs to illustrate relationships among variables.

Description
In Chapter 15, Project 5.1: Modeling Base Application we created an application to create a

summary document with some core statistics. In that application, we looked at univariate

statistics to characterize the data distributions. These statistics included measurements

of the location, spread, and shape of a distribution. Functions like mean, median, mode,

variance, and standard deviation were emphasized as ways to understand location and

spread. The characterization of shape via skewness and kurtosis was left as an extra exercise

for you.

The base application from the previous chapter needs to be expanded to include the

multivariate statistics and diagrams that are essential for clarifying the relationships among

variables. There are a vast number of possible functions to describe the relationships among

two variables. See https://www.itl.nist.gov/div898/handbook/pmd/section8/pmd8.h

tm for some insight into the number of choices available.

We’ll limit ourselves to linear functions. In the simplest cases, there are two steps to creating

a linear model: identifying a correlation and creating the coefficients for a line that fits the

data. We’ll look at each of these steps in the next two sections.

Correlation coefficient
The coefficient of correlation measures how well the values of two variables correlate

with each other. A value of 1 indicates perfect correlation; a value of zero indicates no

discernable correlation. A value of -1 indicates an “anti-correlation”: when one variable

is at its maximum value, the other variable is at its minimum.

See Figure 16.1 to see how the correlation coefficient describes the distribution of the

two variables.

https://www.itl.nist.gov/div898/handbook/pmd/section8/pmd8.htm
https://www.itl.nist.gov/div898/handbook/pmd/section8/pmd8.htm

Chapter 16 407

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0 correlation = 1.0

0.0 0.2 0.4 0.6 0.8

correlation = 0.0

0.0 0.2 0.4 0.6 0.8

correlation = -1.0

Figure 16.1: Correlation Coefficients

The computation of the coefficient compares individual values of variables, 𝑋𝑖 and 𝑌𝑖, to

the mean values for those variables, 𝑋̄ and 𝑌 . Here’s a formula:

𝑟 =
∑(𝑋𝑖 − 𝑋̄)(𝑌𝑖 − 𝑌)

√
∑(𝑋𝑖 − 𝑋̄)2

√
∑(𝑌𝑖 − 𝑌)2

The computations of the mean values, 𝑋̄ and 𝑌 , can be factored into this, creating a

somewhat more complicated version that’s often used to create the coefficient in a single

pass through the data.

This function is available as statistics.correlation() in the standard library.

If two variables correlate with each other, then a linear function will map one variable to a

value near the other variable. If the correlation is 1.0 or -1.0, the mapping will be exact. For

other correlation values, the mapping will be close, but not exact. In the next section, we’ll

show how to transform the correlation coefficient into the parameters for a line.

Linear regression
One equation for a line is 𝑦 = 𝑚𝑥 + 𝑏. The values of 𝑚 and 𝑏 are parameters that describe

the specific linear relationship between the 𝑥 and 𝑦 variables.

408 Project 5.2: Simple Multivariate Statistics

When fitting a line to data, we’re estimating the parameters for a line. The goal is to

minimize the error between the line and the actual data. The “least squares” technique is

often used.

The two coefficients, 𝑏 and 𝑚, can be computed as follows:

𝑏 =
∑𝑋2

𝑖 ∑ 𝑌 2𝑖 − ∑𝑋𝑖 ∑𝑋𝑖𝑌𝑖

𝑛∑𝑋2
𝑖 − (∑𝑋𝑖)

2

𝑚 =
𝑛∑𝑋𝑖𝑌𝑖 − ∑𝑋𝑖 ∑ 𝑌𝑖

𝑛∑𝑋2
𝑖 − (∑𝑋𝑖)

2

This is available as statistics.linear_regression() in the standard library. This saves

us from having to write these two functions.

The various sums and sums of squares are not terribly difficult values to compute. The

built-in sum() function is the basis for most of this. We can use

sum(map(lambda x: x^2, x_values)) to compute ∑𝑋2
𝑖 .

To clarify these multivariate relationships, diagrams can be very helpful. In the next

sections, we’ll look at the most important type of diagram that needs to be part of the

overall application.

Diagrams
One essential diagram for showing multivariate data is the X-Y “scatter” plot. In Chapter 13,

Project 4.1: Visual Analysis Techniques we looked at ways to create these. In that chapter,

we relied on Jupyter Lab to present the diagram as part of the overall web page. For this

application, we’ll need to embed the diagram into a document.

This generally means there will be a markup document that includes a reference to a

diagram file. The format of the diagram file can be SVG, PNG, or even JPEG. For technical

graphics, the SVG files are often the smallest and scale extremely well.

Chapter 16 409

Each markup language, including Markdown, RST, HTML, and LATEX, have unique ways to

identify the place where an image needs to be inserted. In the case of Markdown, it’s often

necessary to use HTML syntax to properly include frames and captions.

Now that we’ve seen what the application needs to do, we can look at an approach to create

the software.

Approach
As with the previous project, this application works in these two distinct parts:

1. Compute the statistics and create the diagram files.

2. Create a report file in a simplified markup language from a template with the details

interpolated. A tool like Jinja is very helpful for this.

Once the report file in a markup language — like Markdown or RST — is available, then a

tool like Pandoc can be used to create an HTML page or a PDF document from the markup

file. Using a tool like Pandoc permits quite a bit of flexibility in choosing the final format.

It also allows the insertion of style sheets and page templates in a tidy, uniform way.

The LATEX language as markup provides the most comprehensive capabilities.

It is challenging to work with, however. Languages like Markdown and RST

are designed to offer fewer, easier-to-use capabilities.

This book is written with LATEX.

We’ll look at three aspects of this application: the statistical computations, creating the

diagrams, and finally, creating the final markup file to include the diagrams. We’ll start

with a quick review of the statistical computations.

Statistical computations
The statistical summary output file, in TOML notation, has a section for each variable and

the univariate statistics about those variables.

410 Project 5.2: Simple Multivariate Statistics

This section of the file looked like the following snippet of TOML:

[x.location]

mean = 9.0

[x.spread]

variance = 11.0

[y.location]

mean = 7.5

[y.spread]

variance = 4.125

When parsed, the TOML syntax of x.location and x.spread creates a dictionary that

looks like the following fragment of a Python object:

{

some metadata here...

'x': {

'location': {

'mean': 9.0

},

'spread': {

'variance': 11.0

}

},

'y': {

etc.

}

}

This structure can be expanded to include additional locations and spread statistical

measures. It can also be expanded to include multivariate statistics.

Chapter 16 411

The statistics module has correlation() and covariance() functions, making it easy

to include these measures.

For datasets with few variables, it’s common to consider a matrix that includes all the

combinations of covariance between variables. This leads to two alternative representations

of these additional statistics:

• A separate section for a covariance matrix. A section label of [covariance] can be

followed by nested dictionaries that include all combinations of variables. Since the

covariance matrix is symmetric, all 𝑛2 combinations aren’t needed; only 𝑛 × (𝑛 − 1)

values are unique.

• Multivariate sub-sections within each variable’s section. This means we’d have

x.location, x.spread, x.covariance.y, and x.correlation.y sub-sections for the

x variable.

For a dataset with fewer variables, it seems sensible to bundle covariance and correlation

into the details for a given variable. In the case of Anscombe’s Quartet, with only two

variables, the covariance and correlation seem like they belong with the other statistics.

For a dataset with a larger number of variables, the covariance among all the variables can

become bewildering. In these cases, a technique like finding principal components might

be needed to reduce the number of variables to a more manageable population. In this case,

separate sections with covariance and auto-correlation might be more useful.

The resulting model is often the result of some careful thought, based on the covariance

matrix. For this reason, a separate [model] section should be provided with some details

about the model’s structure and the coefficients. In the case of a linear model, there are

two coefficients, sometimes called 𝛽0 and 𝛽1. We’ve called them 𝑏 and 𝑚.

For Python 3.11, the included tomllib module doesn’t create TOML-format files. It’s,

therefore, necessary to properly format a text file that can be parsed by the tomllib

module. It’s helpful to use a Jinja template for this.

412 Project 5.2: Simple Multivariate Statistics

Analysis diagrams
Diagrams must first be created. Once created, they can then be included in a document.

The process of creating a diagram is nearly identical to the approach used in Jupyter Lab.

A few extra steps need to be taken to export the diagram to a file that can be imported into

a document.

When working in Jupyter Lab, some cells to load the data are required to create two

variables, x and y, with the values to be plotted. After these cells, a cell like the following

example will create and display a scatter plot:

import matplotlib.pyplot as plt

fig, ax = plt.subplots()

Labels and Title

ax.set_xlabel('X')

ax.set_ylabel('Y')

ax.set_title('Series I')

Draw Scatter

_ = ax.scatter(x, y)

This presumes previous cells have loaded clean data and extracted two list objects, x and y,

with the values to be plotted.

The above code sample doesn’t save the resulting PNG or SVG file, however. To save the

figure, we need to perform two more steps. Here are the lines of code required to create a

file from the plot:

plt.savefig('scatter_x_y.png')

plt.close(fig)

Chapter 16 413

It helps to transform this cell’s code into a function. This function has proper type

annotations so that a tool like mypy can confirm the types are used properly. It can

also have unit test cases to be sure it really works.

The savefig() function will write a new file in PNG format with the image. If the file path

suffix is '.svg' then an SVG format file will be created.

The size of the figure is defined by the figure() function. There are often design and page

layout considerations that suggest an appropriate size for a figure. This decision can be

deferred, and the size can be provided by the markup used to create a final PDF file or

HTML page. It’s often best, however, to create the figure in the required size and resolution

to avoid any unexpected alterations as part of the final publication.

Once the diagram has been created, the Markdown needs to refer to the diagram’s PNG or

SVG file so it can be included in a document. We’ll look at some examples of this in the

next section.

Including diagrams in the final document
Diagrams are included in the final document by using markup commands to show where

the diagram should be placed, and providing other information about captions and sizing.

The Markdown language has a tidy format for the simplest case of including an image in

a document:

![Alt text to include!](path/to/file.png "Figure caption")

Depending on the style sheet, this may be perfectly acceptable. In some cases, the image

is the wrong size for its role in the document. Markdown permits using HTML directly

instead of the ![image!](path) construct. Including a diagram often looks like this:

<figure>

<img src="path/to/file.png"

alt="Alt text to include"

height="8cm">

414 Project 5.2: Simple Multivariate Statistics

<figcaption>Figure caption</figcaption>

</figure>

Using HTML permits more control over image size and placement via references to CSS.

When using RST, the syntax offers more options without switching to HTML. Including a

diagram would be like this:

.. figure:: path/to/file.png

:height: 8cm

:alt: Alt text to include

Figure caption

Using this kind of markup technique creates considerable freedom. The report’s author

can include content from a variety of sources. This can include boilerplate text that doesn’t

change, the results of computations, some text based on the computations, and important

diagrams.

The formatting of the markup has little impact on the final document. The way a browser

renders HTML depends on the markup and the style sheets, not the formatting of the

source file. Similarly, when creating a PDF document, this is often done by LATEX tools,

which create the final document based on LATEX settings in the document’s preamble.

Now that we have an approach, we can look at the deliverable files that must be built.

Deliverables
This project has the following deliverables:

• Documentation in the docs folder.

• Acceptance tests in the tests/features and tests/steps folders.

• Unit tests for model module classes in the tests folder.

• Mock objects for the csv_extract module tests that will be part of the unit tests.

Chapter 16 415

• Unit tests for the csv_extract module components that are in the tests folder.

• An application to extend the summary written to a TOML file, including figures with

diagrams.

• An application secondary feature to transform the TOML file to an HTML page or

PDF file with the summary.

We’ll look at a few of these deliverables in a little more detail. We’ll start with some

suggestions for creating the acceptance tests.

Acceptance tests
As we noted in the previous chapter’s section on acceptance testing, Acceptance testing,

the output TOML document can be parsed and examined by the Then steps of a scenario.

Because we’re looking at Anscombe’s Quartet data in the examples in this book, a subset

of data for testing doesn’t really make much sense. For any other dataset, a subset should

be extracted and used for acceptance testing.

It is often helpful to extract a small subset that’s used for acceptance testing.

Instead of processing millions of rows, a few dozen rows are adequate to

confirm the application read and summarized data. The data should be

representative of the entire set of samples under consideration.

This subset is part of the testing suite; as such, it rarely changes. This makes

the results predictable.

The secondary feature of this application — expanding on the TOML output to add extensive

Markdown — also works with text files. This makes it relatively easy to create scenarios to

confirm the correct behavior by reading and writing text files. In many cases, the Then steps

will look for a few key features of the resulting document. They may check for specific

section titles or a few important keywords included in boilerplate text. Of course, the test

scenario can check for substitution values that are computed and are part of the TOML

summary.

416 Project 5.2: Simple Multivariate Statistics

The automated testing can’t easily confirm that the document makes sense to prospective

readers. It can’t be sure the colors chosen for the figures make the relationships clear. For

this kind of usability test, a good copy editor or trusted associate is essential.

Unit tests
A unit test for a function to create a figure can’t do very much. It’s limited to confirming

that a PNG or SVG file was created. It’s difficult for an automated test to “look” at the

image to be sure it has a title, labels for the axes, and sensible colors.

It is important not to overlook the unit test cases that confirm output files are created.

A figure that looks great in a Jupyter notebook will not get written to a file unless the CLI

application saves the figure to a file.

For some applications, it makes sense to mock the plt package functions to be sure the

application calls the right functions with the expected argument values. Note that a mocked

version of plt.subplots() may need to return a tuple with several Mock objects.

We’ll need to define a complex collection of mock objects to form the fixture for testing.

The fixture creation can look like the following example:

@fixture

def mocked_plt_module(monkeypatch):

fig_mock = Mock()

ax_mock = Mock(

set_xlabel=Mock(),

set_ylabel=Mock(),

set_tiutle=Mock(),

scatter=Mock(),

)

plt_mock = Mock(

subplots=Mock(

return_value=(fig_mock, ax_mock)

Chapter 16 417

),

savefig=Mock(),

close=Mock()

)

monkeypatch.setattr(summary_app, 'plt', plt_mock)

return plt_mock, fig_mock, ax_mock

This fixture creates three mock objects. The plt_mock is a mock of the overall plt module;

it defines three mock functions that will be used by the application. The fig_mock is a

mock of the figure object returned by the subplots() function. The ax_mock is a mock

of the axes object, which is also returned by the subplots() function. This mocked axes

object is used to provide axis labels, and the title, and perform the scatter plot request.

This three-tuple of mock objects is then used by a test as follows:

def test_scatter(mocked_plt_module):

plt_mock, fig_mock, ax_mock = mocked_plt_module

summary_app.scatter_figure([sentinel.X], [sentinel.Y])

assert plt_mock.subplots.mock_calls == [call()]

assert plt_mock.savefig.mock_calls == [call('scatter_x_y.png')]

assert plt_mock.close.mock_calls == [call(fig_mock)]

This test function evaluates the application’s scatter_figure() function. The test function

then confirms that the various functions from the plt module are called with the expected

argument values.

The test can continue by looking at the calls to the ax_mock object to see if the labels and

title requests were made as expected. This level of detail — looking at the calls to the

axes object — may be a bit too fine-grained. These tests become very brittle as we explore

changing titles or colors to help make a point more clearly.

The overall use of mock objects, however, helps make sure the application will create the

needed file with an image.

418 Project 5.2: Simple Multivariate Statistics

Summary
In this chapter, we’ve extended the automated analysis and reporting to include more use

of the built-in statistics library to compute correlation and linear regression coefficients.

We’ve also made use of the matplotlib library to create images that reveal relationships

among variables.

The objective of automated reporting is designed to reduce the number of manual steps and

avoid places where omissions or errors can lead to unreliable data analysis. Few things are

more embarrassing than a presentation that reuses a diagram from the previous period’s

data. It’s far too easy to fail to rebuild one important notebook in a series of analysis

products.

The level of automation needs to be treated with a great deal of respect. Once a reporting

application is built and deployed, it must be actively monitored to be sure it’s working

and producing useful, informative results. The analysis job shifts from developing an

understanding to monitoring and maintaining the tools that confirm — or reject — that

understanding.

In the next chapter, we’ll review the journey from raw data to a polished suite of applications

that acquires, cleans, and summarizes the data.

Extras
Here are some ideas for you to add to this project.

Use pandas to compute basic statistics
The pandas package offers a robust set of tools for doing data analysis. The core concept

is to create a DataFrame that contains the relevant samples. The pandas package needs to

be installed and added to the requirements.txt file.

There are methods for transforming a sequence of SeriesSample objects into a DataFrame.

The best approach is often to convert each of the pydantic objects into a dictionary, and

build the dataframe from the list of dictionaries.

Chapter 16 419

The idea is something like the following:

import pandas as pd

df = pd.DataFrame([dict(s) for s in series_data])

In this example, the value of series_data is a sequence of SeriesSample instances.

Each column in the resulting dataframe will be one of the variables of the sample. Given

this object, methods of the DataFrame object produce useful statistics.

The corr() function, for example, computes the correlation values among all of the columns

in the dataframe.

The cov() function computes the pairwise covariance among the columns in the dataframe.

Pandas doesn’t compute the linear regression parameters, but it can create a wide variety

of descriptive statistics.

See https://pandas.pydata.org for more information on Pandas.

In addition to a variety of statistics computations, this package is designed for interactive

use. It works particularly well with Juypyter Lab. The interested reader may want to revisit

Chapter 13, Project 4.1: Visual Analysis Techniques using Pandas instead of native Python.

Use the dask version of pandas
The pandas package offers a robust set of tools for doing data analysis. When the volume

of data is vast, it helps to process parts of the dataset concurrently. The Dask project has

an implementation of the pandas package that maximizes opportunities for concurrent

processing.

The dask package needs to be installed and added to the requirements.txt file. This will

include a pandas package that can be used to improve overall application performance.

https://pandas.pydata.org

420 Project 5.2: Simple Multivariate Statistics

Use numpy for statistics
The numpy package offers a collection of tools for doing high-performance processing on

large arrays of data. These basic tools are enhanced with libraries for statistics and linear

algebra among many, many other features. This package needs to be installed and added

to the requirements.txt file.

The numpy package works with its own internal array type. This means the SeriesSample

objects aren’t used directly. Instead, a numpy.array object can be created for each of the

variables in the source series.

The conversion might look like the following:

import numpy as np

x = np.array(s.x for s in series_data)

y = np.array(s.y for s in series_data)

In this example, the value of series_data is a sequence of SeriesSample instances.

It’s also sensible to create a single multi-dimensional array. In this case, axis 0 (i.e. rows)

will be the individual samples, and axis 1 (i.e. columns) will be the values for each variable

of the sample.

An array has methods like mean() to return the mean of the values. When using a

multi-dimensional array, it’s essential to provide the axis=0 parameter to ensure that

the results come from processing the collection of rows:

import numpy as np

a = np.array([[s.x, s.y] for s in series_data])

print(f"means = {a.mean(axis=0)}")

See https://numpy.org/doc/stable/reference/routines.statistics.html#

Using the least squares technique to compute the coefficients for a line can be confusing.

The least squares solver in numpy.linalg is a very general algorithm, which can be applied

https://numpy.org/doc/stable/reference/routines.statistics.html#

Chapter 16 421

to creating a linear model. The numpy.linalg.lstsq() function expects a small matrix

that contains the “x” values. The result will be a vector with the same length as each of the

“x” matrices. The “y” values will also be a vector.

The processing winds up looking something like the following:

import numpy as np

A = np.array([[s.x, 1] for s in series_data])

y = np.array([s.y for s in series_data])

m, b = np.linalg.lstsq(A, y, rcond=None)[0]

print(f"y = {m:.1f}x + {b:.1f}")

The value of A is a small matrix based on the x values. The value of y is a simple array of the

y values. The least-squares algorithm returns a four-tuple with the coefficients, residuals,

the rank of the source matrix, and any singular values. In the above example, we only

wanted the vector of the coefficients, so we used [0] to extract the coefficient values from

the four-tuple with the results.

This is further decomposed to extract the two coefficients for the line that best fits this set

of points. See:

https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html.

This approach has a distinct advantage when working with very large sets of data. The

numpy libraries are very fast and designed to scale to extremely large data volumes.

Use scikit-learn for modeling
The scikit-learn library has a vast number of tools focused on modeling and machine

learning. This library is built on the foundation of numpy, so both packages need to

be installed.

The data needs to be converted into numpy arrays. Because the modeling approach is very

generalized, the assumption is there may be multiple independent variables that predict

the value of a dependent variable.

https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html

422 Project 5.2: Simple Multivariate Statistics

The conversion might look like the following:

import numpy as np

x = np.array([[s.x] for s in series_data])

y = np.array([s.y for s in series_data])

In this example, the value of series_data is a sequence of SeriesSample instances. The

x array uses a very short vector for each sample; in this case, there’s only a single value.

It needs to be a vector to fit the generalized least-squares regression that scikit-learn is

capable of solving.

The scikit-learn library is designed to create models in a very generalized way. The model

isn’t always a simple line with a coefficient and an intercept that define the relationship.

Because of this very general approach to modeling, we’ll create an instance of the

linear_model.LinearRegression class. This object has methods to create coefficients

that fit a given set of data points. We can then examine the coefficients, or use them to

interpolate new values.

The code might look like the following:

from sklearn import linear_model

reg = linear_model.LinearRegression()

reg.fit(x, y)

print(f"y = {reg.coef_[0]:.1f}x + {reg.intercept_:.1f}")

The linear model’s coef_ attribute is a vector of coefficients, the same length as each row

of the x independent variable values. Even when the row length is 1, the result is a vector

with a length of 1.

Because this works with numpy it can work with very large sets of data. Further, the

scikit-learn approach to creating models to fit data generalizes to a number of

machine-learning approaches. This is often the next step in creating richer and more

Chapter 16 423

useful models.

Compute the correlation and regression using functional
programming
The computations for correlation and the coefficients for a line can be summarized as

follows. First, we’ll define a function 𝑀(𝑎; 𝑓 ()) that computes the mean of a transformed

sequence of values. The 𝑓 () function transforms each value, 𝑎𝑖. An identity function,

𝜙(𝑎𝑖) = 𝑎𝑖, does no transformation:

𝑀(𝑎; 𝑓 ()) =
1

𝑁
∑𝑓 (𝑎𝑖)

We’ll also need a function to compute the standard deviation for a variable, 𝑎.

𝑆(𝑎) =

√
∑(𝑎𝑖 − 𝑎̄)2

𝑁

This lets us define a number of related values as mean values after some transformation.

𝑥̄ = 𝑀(𝑥; 𝑓 (𝑎𝑖) = 𝑎𝑖)

𝑦̄ = 𝑀(𝑦; 𝑓 (𝑎𝑖) = 𝑎𝑖)

𝑥2 = 𝑀(𝑥; 𝑓 (𝑎𝑖) = 𝑎
2
𝑖)

𝑦2 = 𝑀(𝑦; 𝑓 (𝑎𝑖) = 𝑎
2
𝑖)

𝑥𝑦 = 𝑀(𝑥, 𝑦; 𝑓 (𝑎𝑖, 𝑏𝑖) = 𝑎𝑖 × 𝑏𝑖)

From these individual values, we can compute the correlation coefficient, 𝑟𝑥𝑦 .

𝑟𝑥𝑦 =
𝑥𝑦 − 𝑥̄𝑦̄

√

(𝑥2 − 𝑥̄2)(𝑦2 − 𝑦̄2)

424 Project 5.2: Simple Multivariate Statistics

In addition to the above values, we need two more values for the standard deviations of

the two variables.

𝑠𝑥 = 𝑆(𝑥)𝑠𝑦 = 𝑆(𝑦)

From the correlation coefficient, and the two standard deviations, we can compute the

coefficient of the line, 𝑚, and the intercept value, 𝑏.

𝑚 = 𝑟𝑥𝑦
𝑠𝑦

𝑠𝑥

𝑏 = 𝑦̄ − 𝑚𝑥̄

This yields the coefficient, 𝑚, and intercept, 𝑏, for the equation 𝑦 = 𝑚𝑥+𝑏, which minimizes

the error between the given samples and the line. This is computed using one higher-order

function, 𝑀(𝑎; 𝑓 ()), and one ordinary function, 𝑆(𝑎). This doesn’t seem to be a significant

improvement over other methods. Because it’s built using standard library functions and

functional programming techniques, it can be applied to any Python data structure. This

can save the step of transforming data into numpy array objects.

17
Next Steps

The journey from raw data to useful information has only begun. There are often many

more steps to getting insights that can be used to support enterprise decision-making.

From here, the reader needs to take the initiative to extend these projects, or consider other

projects. Some readers will want to demonstrate their grasp of Python while others will go

more deeply into the area of exploratory data analysis.

Python is used for so many different things that it seems difficult to even suggest a direction

for deeper understanding of the language, the libraries, and the various ways Python

is used.

In this chapter, we’ll touch on a few more topics related to exploratory data analysis. The

projects in this book are only a tiny fraction of the kinds of problems that need to be solved

on a daily basis.

Every analyst needs to balance the time between understanding the enterprise data being

processed, searching for better ways to model the data, and effective ways to present the

results. Each of these areas is a large domain of knowledge and skills.

426 Next Steps

We’ll start with a review of the architecture underlying the sequence of projects in

this book.

Overall data wrangling
The applications and notebooks are designed around the following multi-stage architecture:

• Data acquisition

• Inspection of data

• Cleaning data; this includes validating, converting, standardizing, and saving

intermediate results

• Summarizing, and the start of modeling data

• Creating deeper analysis and more sophisticated statistical models

The stages fit together as shown in Figure 17.1.

acquisition

data is useful? question or problem

validate

clean and convert

normalize

save

statistical model

inspect

fix software

summary reporting

Application Notebook

Figure 17.1: Data Analysis Pipeline

Chapter 17 427

The last step in this pipeline isn’t — of course — final. In many cases, the project evolves

from exploration to monitoring and maintenance. There will be a long tail where the model

continues to be confirmed. Some enterprise management oversight is an essential part of

this ongoing confirmation.

In some cases, the long tail is interrupted by a change. This may be reflected by a model’s

inaccuracy. There may be a failure to pass basic statistical tests. Uncovering the change

and the reasons for change is why enterprise management oversight is so essential to

data analysis.

This long tail of analysis can last a long time. The responsibility may be passed from analyst

to analyst. Stakeholders may come and go. An analyst often needs to spend precious time

justifying an ongoing study that confirms the enterprise remains on course.

Other changes in enterprise processing or software will lead to outright failure in the

analytical processing tools. The most notable changes are those to “upstream” applications.

Sometimes these changes are new versions of software. Other times, the upstream changes

are organizational in nature, and some of the foundational assumptions about the enterprise

need to change. As the data sources change, the data acquisition part of this pipeline must

also change. In some cases, the cleaning, validating, and standardizing must also change.

Because of the rapid pace of change in the supporting tools — Python, JupyterLab, Matplotlib,

etc. — it becomes essential to rebuild and retest these analytic applications periodically. The

version numbers in requirements.txt files must be checked against Anaconda distributions,

conda-forge, and the PyPI index. The tempo and nature of the changes make this

maintenance task an essential part of any well-engineered solution.

The idea of enterprise oversight and management involvement is sometimes dubbed

‘‘decision support.” We’ll look briefly at how data analysis and modeling is done as a

service to decision-makers.

428 Next Steps

The concept of “decision support”
The core concept behind all data processing, including analytics and modeling, is to help

some person make a decision. Ideally, a good decision will be based on sound data.

In many cases, decisions are made by software. Sometimes the decisions are simple rules

that identify bad data, incomplete processes, or invalid actions. In other cases, the decisions

are more nuanced, and we apply the term “artificial intelligence” to the software making

the decision.

While many kinds of software applications make many automated decisions, a person

is still — ultimately — responsible for those decisions being correct and consistent. This

responsibility may be implemented as a person reviewing a periodic summary of decisions

made.

This responsible stakeholder needs to understand the number and types of decisions being

made by application software. They need to confirm the automated decisions reflect sound

data as well as the stated policy, the governing principles of the enterprise, and any legal

frameworks in which the enterprise operates.

This suggests a need for a meta-analysis and a higher level of decision support. The

operational data is used to create a model that can make decisions. The results of the

decisions become a dataset about the decision-making process; this is subject to analysis

and modeling to confirm the proper behavior of the operational model.

In all cases, the ultimate consumer is the person who needs the data to decide if a process

is working correctly or there are defects that need correction.

This idea of multiple levels of data processing leads to the idea of carefully tracking data

sources to understand the meaning and any transformations applied to that data. We’ll

look at metadata topics, next.

Concept of metadata and provenance
The description of a dataset includes three important aspects:

Chapter 17 429

• The syntax or physical format and logical layout of the data

• The semantics, or meaning, of the data

• The provenance, or the origin and transformations applied to the data

The physical format of a dataset is often summarized using the name of a well-known file

format. For example, the data may be in CSV format. The order of columns in a CSV file

may change, leading to a need to have headings or some metadata describing the logical

layout of the columns within a CSV file.

Much of this information can be enumerated in JSON schema definitions.

In some cases, the metadata might be yet another CSV file that has column numbers,

preferred data types, and column names. We might have a secondary CSV file that looks

like the following example:

1,height,height in inches

2,weight,weight in pounds

3,price,price in dollars

This metadata information describes the contents of a separate CSV file with the relevant

data in it. This can be transformed into a JSON schema to provide a uniform metadata

notation.

The provenance metadata has a more complicated set of relationships. The PROV model

(see https://www.w3.org/TR/prov-overview/) describes a model that includes Entity,

Agent, and Activity, which create or influence the creation of data. Within the PROV

model, there are a number of relationships, including Generation and Derivation, that

have a direct impact on the data being analyzed.

There are several ways to serialize the information. The PROV-N standard provides a

textual representation that’s relatively easy to read. The PROV-O standard defines an OWL

ontology that can be used to describe the provenance of data. Ontology tools can query

the graph of relationships to help an analyst better understand the data being analyzed.

https://www.w3.org/TR/prov-overview/

430 Next Steps

The reader is encouraged to look at https://pypi.org/project/prov/ for a Python

implementation of the PROV standard for describing data provenance.

In the next section, we’ll look at additional data modeling and machine learning applications.

Next steps toward machine learning
We can draw a rough boundary between statistical modeling and machine learning. This is

a hot topic of debate because — viewed from a suitable distance — all statistical modeling

can be described as machine learning.

In this book, we’ve drawn a boundary to distinguish methods based on algorithms that

are finite, definite, and effective. For example, the process of using the linear least squares

technique to find a function that matches data is generally reproducible with an exact

closed-form answer that doesn’t require tuning hyperparameters.

Even within our narrow domain of “statistical modeling,” we can encounter data sets for

which linear least squares don’t behave well. One notable assumption of the least squares

estimates, for example, is that the independent variables are all known exactly. If the 𝑥

values are subject to observational error, a more sophisticated approach is required.

The boundary between “statistical modeling” and “machine learning” isn’t

a crisp, simple distinction.

We’ll note one characteristic feature of machine learning: tuning hyperparameters. The

exploration of hyperparameters can become a complex side topic for building a useful

model. This feature is important because of the jump in the computing cost between a

statistical model and a machine learning model that requires hyperparameter tuning.

Here are two points on a rough spectrum of computational costs:

• A statistical model may be created by a finite algorithm to reduce the data to a few

parameters including the coefficients of a function that fits the data.

• A machine learning model may involve a search through alternative hyperparameter

https://pypi.org/project/prov/

Chapter 17 431

values to locate a combination that produces a model passes some statistical tests for

utility.

The search through hyperparameter values often involves doing substantial computation

to create each variation of a model. Then doing additional substantial computations to

measure the accuracy and general utility of the model. These two steps are iterated for

various hyperparameter values, looking for the best model. This iterative search can make

some machine learning approaches computationally intensive.

This overhead and hyperparameter search is not a universal feature of machine learning.

For the purposes of this book, it’s where the author drew a line to limit the scope, complexity,

and cost of the projects.

You are strongly encouraged to continue your projects by studying the various linear

models available in scikit-learn. See https://scikit-learn.org/stable/modules/line

ar_model.html.

The sequence of projects in this book is the first step toward creating a useful understanding

from raw data.

https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/linear_model.html

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well

as industry leading tools to help you plan your personal development and advance your

career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and

ePub files available? You can upgrade to the eBook version at packt.com and as a print

book customer, you are entitled to a discount on the eBook copy. Get in touch with us at

customercare@packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for

a range of free

www.packtpub.com
mailto:customercare@packtpub.com
www.packtpub.com

Other Books You Might Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Causal Inference and Discovery in Python

Aleksander Molak

ISBN: 9781804612989

• Master the fundamental concepts of causal inference

• Decipher the mysteries of structural causal models

• Unleash the power of the 4-step causal inference process in Python

• Explore advanced uplift modeling techniques

• Unlock the secrets of modern causal discovery using Python

• Use causal inference for social impact and community benefit

https://packt.link/9781804612989

Other Books You Might Enjoy 435

Python for Geeks

Muhammad Asif

ISBN: 9781801070119

• Understand how to design and manage complex Python projects

• Strategize test-driven development (TDD) in Python

• Explore multithreading and multiprogramming in Python

• Use Python for data processing with Apache Spark and Google Cloud Platform (GCP)

• Deploy serverless programs on public clouds such as GCP

• Use Python to build web applications and application programming interfaces

• Apply Python for network automation and serverless functions

• Get to grips with Python for data analysis and machine learning

https://packt.link/9781801070119

436 Other Books You Might Enjoy

Python Data Analysis - Third Edition

Avinash Navlani, Armando Fandango, Ivan Idris

ISBN: 9781789955248

• Explore data science and its various process models

• Perform data manipulation using NumPy and pandas for aggregating, cleaning, and

handling missing values

• Create interactive visualizations using Matplotlib, Seaborn, and Bokeh

• Retrieve, process, and store data in a wide range of formats

• Understand data preprocessing and feature engineering using pandas and scikit-learn

• Perform time series analysis and signal processing using sunspot cycle data

• Analyze textual data and image data to perform advanced analysis

• Get up to speed with parallel computing using Dask

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com

and apply today. We have worked with thousands of developers and tech professionals,

just like you, to help them share their insight with the global tech community. You can

make a general application, apply for a specific hot topic that we are recruiting an author

for, or submit your own idea.

https://packt.link/9781789955248
authors.packtpub.com

Other Books You Might Enjoy 437

Share your thoughts
Now you’ve finished Python Real-World Projects, we’d love to hear your thoughts! If you

purchased the book from Amazon, please click here to go straight to the Amazon review

page for this book and share your feedback or leave a review on the site that you purchased

it from. Your review is important to us and the tech community and will help us make sure

we’re delivering excellent quality content.

https://packt.link/r/1803246766
https://packt.link/r/1803246766

438 Other Books You Might Enjoy

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your

eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book, you get a DRM-free PDF version of that book at

no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite

technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and

great free content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803246765

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803246765

Index

Symbols
–zip argument 73

-k kaggle.json argument 73

-o quartet argument 73

A
acceptance scenarios 61, 63

errors 61

acceptance tests 59, 60, 89,

107–109, 254, 255

features 59

acquire application 306

acquisition

via extract 37

acquisition pipeline

creating 287

describing 287

acquisition pipeline, approach 288,

289

package consideration, to create

pipeline 289

acquisition pipeline, deliverables

290

acceptance test 290

acquisition pipeline, description

multiple extractions 287

Agile approach 7

Agile Unified Process

phases 7

reference link 7

analysis diagrams 412, 413

Anscombe’s Quartet

reference link 73

API requests

making 79

application description 46

key features 46

output data 49, 50

source data 47–49

User Experience (UX) 47

architectural approach 50, 51

class design 52, 53

design principles 54

functional design 57, 58

attributes 122

B
Background process 323

base application

describing 381–383

Index 441

base application, approach 383, 384

cleaned data model, using 387

data inspection function

387–389

distribution, describing 385, 386

multivariate statistics 384

result model, creating 389, 390

summary app, designing 384,

385

univariate statistics 384

base application, deliverables 391

acceptance testing 392, 393

secondary feature 395–398

unit testing 393–395

Beautiful Soup data structure 103,

104

Beautiful Soup package 71

behave tool 10, 60

after_scenario(context, scenario)

61

before_scenario(context, scenario)

61

bottle framework 93

bottle tool 93

byte order mark (BOM) 275

C
C4 model

reference link 50, 76, 241

cardinal data 181

sub-varieties 182

cardinal domain validation

counts 180, 181

durations 180, 181

measures 180, 181

cardinal numbers 180

class design 52, 53

clean application 306

clean_all() function

head of pipeline 254

middle of pipeline 254

stand-alone 254

tail of pipeline 254

CLI application 252

CO2 PPM 194

reference link 173

command-line application (CLI) 45

command-line interface (CLI) 3

compatibility 3

conda 217

construction phase 14

core inspection tool 206

correlation coefficient 406, 407

Create, Retrieve, Update, and Delete

(CRUD) operations 133

currency

dealing with 187

values, dealing with 187, 188

D
data

acquiring from web service 72

acquiring, from SQL extract 130

analyzing 41

summarizing 41

data acquisition 36, 37

442 Index

data analysis pipeline

stages 40

data cleaning application

conversions and processing

237–239

describing 232, 233

error reports 239–241

result data 236, 237

source data 235

tasks 232

User Experience (UX) 233, 234

data cleaning application, approach

241, 242, 244

CLI application 252, 253

incremental design 251, 252

model module refactoring

244–248

Pydantic V2 validation 248, 249

validation function design 250

data cleaning application, deliverables

254

acceptance tests 254, 255

data application, cleaning 256

NDJSON interim file, creating

256

unit tests for model feature 256

data contracts 42

data deliverables

acceptance tests 89

feature file 89, 91

fixture.kaggle_server 96–98

Kaggle access module and

refactored main application

98

mock injection, for request

package 92, 93

mock service, creating 93–96

unit tests, for RestAccess class

87, 88

data domains

defining, in JSON Schema

222–224

data inspection 38, 39, 179

projects 39

data inspection module

extending 199, 200

data loading 121

data persistence 301

approach 305–307

describing 301, 303–305

data persistence, approach

idempotent operations, designing

308, 309

data persistence, deliverables 310

acceptance test 311, 312

re-runnable application design,

cleaning up 312

unit test 310

data scrape approach

Beautiful Soup data structure

103, 104

HTML request, making with

urllib.request 102, 103

HTML scraping 103

data scrape deliverables

acceptance tests 107–109

Index 443

HTML extract module and

refactored main application

109

unit test, for html_extract module

105–107

data set

reference link 180

data set list

obtaining 81, 82

data source references

approach 273–277

deliverables 278

describing 272

data source references, deliverables

unit tests for data gathering 279

unit tests for data validation 279

data validation 216

data wrangling 426, 427

dataclass.asdict() function 53

datetime.strptime() function 198

decision support 428

deidentification 239

deliverables 59

acceptance scenarios 61, 63

acceptance tests 59, 60

listing 15

unit tests 63

Denial-of-Service (DoS) attack 83

design principles 54, 56, 57

Dependency Inversion 54

Interface Segregation 54

Liskov Substitution 54

Open-Closed 54

Single Responsibility 54

diagram 408

Directed Acyclic Graph (DAG) 259

Docker container 148

Docutils tool 385

domain-specific language (DSL) 375

Don’t Repeat Yourself (DRY) principle

171, 251

durations

dealing with 188, 189

E
exploratory data analysis (EDA) 349

extended acceptance testing 227,

228

F
feature file 89, 91

Feature Testing Language

reference link 11

Fisher-Pearson formula 389

fixture.kaggle_server 96–98

Flask 340

flask tool 93

foreign key 204

domain 205

functional design 57

G
get_options() function 53

H
histogram 350

444 Index

HTML request

making, with urllib.request 102,

103

HTML scraping 103, 104

hyperparameter tuning 430

hypothesis library 363

I
idempotent operations

designing 308, 309

IEEE 1061 standard

software quality 6

inception phase 8–10

incremental design 251

initial goal

defining 10–12

inspection module 193

revised 201, 210

unit test cases 193, 194, 201, 202,

210

Interface Segregation design principle

329

intermediate files

validating, with JSON Schema

224, 225

intervals

dealing with 188, 189

ISO 25010 standard 4

compatibility 3

maintainability 3

performance efficiency 3

reliability 3

security 3

usability 3

J
Jinja package

reference link 396

JSON Schema

emitting 219

expected date domains, defining

222–224

for intermediate file validation

224, 225

URL 216

using 216

jsonschema module 217

Jupyter notebook

overview 346

Jupyter notebook for data inspection

approach 164, 166, 167

data source 161–163

deliverables 171

describing 160, 161

function test case 168, 169

separate module code 170, 171

Jupyter notebook for data inspection,

deliverables

Notebook .ipynb file 172

notebook’s test suite, executing

176

Jupyter notebook, approach

352–354

general notebook organization

354, 355

iteration and evolution 360

Index 445

PyPlot graphics 356, 357

Python modules for summarizing

355

Jupyter notebook, approach 351

Jupyter notebook, deliverables 360

acceptance test 363

unit test 361, 362

JupyterBook 213

K
Kaggle access module 98

Kaggle API 74

reference link 74

Kaggle refactored main application

98

keys

collecting 207

comparing 206, 207

counts, summarizing 208

L
leap seconds 198

librosa package 36

linear regression 408

local SQL database 118, 119

approach 121, 122

data loading 121

deliverables 129, 130

describing 119

design 119, 120

series table, loading 126, 127

Series_Value table, loading

127–129

local SQL database approach

SQL data definition 122–124

SQL data manipulation 124

SQL execution 124–126

M
machine learning 430, 431

feature 430

machine learning model 430

MAD 186

main() function 53

maintainability 3

many-to-many relationship 205

many-to-one relationship 205

Markdown 367

markdown cells

with dates and data source

information 212

masking 239

matplotlib library 405

matplotlib package 356

mock

injecting, for request package

92

mock service

creating 93–96

model module 63

multivariate statistics 384

correlation coefficient 406, 407

describing 406

diagram 408

linear regression 407, 408

multivariate statistics, approach 409

446 Index

analysis diagrams 412, 413

diagrams 413, 414

statistical computations

409–411

multivariate statistics, deliverables

414

acceptance tests 415

unit tests 416

unit tests 417

mypy plug-in 218

mypy tool 245, 413

N
National Institute of Standards and

Technology (NIST) 349

ND JSON file format

reference link 49, 235

nominal data 199

normalization 132

notebook

refactored inspection model, for

revised notebook 210

Notebook .ipynb file 172

cells, with markdown 174

cells, with test cases 175, 176

data cells, analyzing 173, 174

data functions, analyzing 173,

174

notebook functions

extracting 190, 192

notebook’s test suite

executing 176

O
Object-Relational Impedance

Mismatch

reference link 132

Object-Relational Mapping (ORM)

problem 132–134

one-to-one relationship 205

ORM layer

conditions 133

using 230

outlier values 183

P
PairBuilder class hierarchy 64, 65

Pandoc tool 385

performance efficiency 3

physical format 429

Pillow package 36

pip-compile command 87

PlantWEB project 375

portability 3

presentation materials 212

primary key 204

domain 205

PROV

reference link 430

PROV-N standard 429

PROV-O standard 429

PROV-Overview

reference link 429

provenance metadata 429

pseudonymization 239

Pydantic class 304

Index 447

Pydantic classes

defining 219–221

Pydantic dataclass 222

Pydantic library 221

Pydantic module 217–219, 221

reference link 218

Pydantic package 229, 303

Pydantic V2 validation 248, 249

pylint tool 6

PyPlot graphics 356, 357

data frequency histogram 357,

358

X-Y scatter plot 359

pytest tool 10, 13

pytest-bdd plug-in 10

Python Markdown extension 356

Python modules 198

Python object

serialization 36

Python Package Index (PyPI) 133

Q
Quarto 213

URL 213

query parameters 83

R
rate limiting 83, 84

refactored inspection model

for revised notebook 210

reference domains

finding 202, 203

relationships

cardinality 204

optionality 205

reliability 3

remaining components 65

reports 369, 370

preparing 373–375

request package

mock, injecting 92, 93

requests package 71

RestAccess class

API requests, making 78, 79

data set list, obtaining 80–82

features 78

main function 84

rate limiting 83, 84

unit tests 87, 88

ZIP archive, downloading 79, 80

RESTful 72

RESTful API process 323

RESTful API server, approach 321,

324

application program, processing

328, 329

GET request for processing status

330, 331

GET request for results 331

OpenAPI 3 specification

324–328

POST request, processing 329,

330

security considerations 331–333

RESTful API server, deliverables 333

448 Index

acceptance test cases 334–337

RESTful API app 337–340

unit test cases 340–342

RESTful API server, describing 318,

319

data for download, creating 320,

321

data series resources 320

ReStructuredText (RST) 397

Reveal.js project 368

Reveal.js slide deck 376

S
scatter plot 351

schema 215, 217

definition 216

schema acceptance tests 226, 227

scikit-learn

reference link 431

security 3

series table

loading 126, 127

Series_Value table

loading 127–129

slide deck

creating 368, 369

describing 368

presenting, in Jupyter Lab 368

slides

preparing 371, 372

software components

defining 12

software tests

defining 12

source data 75, 76

source data values

patterns 182, 183

source fields

approach 263–266

converting 260

deliverables 267

describing 260–262

unit tests for validation function

267

validating 260

spike solution

reference link 13

SQL data definition 123, 124

SQL data manipulation 124

SQL execution 124–126

SQL extract, data

acquiring 130

approach 137, 138

deliverables 143

describing 130–132

Object-Relational Mapping (ORM)

problem 132–134

source 134–136

SQL extract, data approach

SQL DB extraction 138–142

SQL-related processing distinct,

from CSV processing 142,

143

SQL extract, data deliverables

acceptance test, with SQLite

database 148, 149

Index 449

cursor object for testing

144–146

database extract module 154

definition 153

feature file 149, 150

Mock Database connection

144–146

model module, refactoring 154

sqlite fixture 150–152

unit test, for new acquisition

module 147

SQLAlchemy

reference link 133

standardize data 279

acceptance test 286

approach 281–284

deliverables 285

describing 280, 281

unit tests for standardizing

function 286

state design pattern 14

statistical computations 409–411

statistical model 430

statistical modeling 430

stdout

redirecting 253

strategy design pattern 14

suggested process 6

T
table-of-contents (TOC) 373

technical diagrams

creating 375, 376

text and code validation

date and time 195, 196

local time 197

nominal data 194

ordinal numbers 194

time values 197

UTC time 197

text fields

approach 269, 270

deliverables 270

describing 268, 269

unit tests for validation function

271

validating 268

The Twelve-Factor App

characteristics 4, 5

reference link 4

tokenizing 239

top-level() function 53

transition phase 14

Transport Layer Security (TLS) 332

U
Unified Modeling Language (UML)

165

union 239

unit test cases

for inspection module 193, 194

unit tests 63

for RestAccess class 87, 88

model module 63

PairBuilder class hierarchy 64,

65

450 Index

remaining components 65

univariate statistics 380, 384

universal coordinated time (UTC)

imperative 197

urllib.request

used, for making HTML request

102, 103

usability 3

User Experience (UX) 47, 131, 233,

382

V
validation testing 40

W
web page, data scraping 99

approach 101, 102

deliverables 104

describing 99

source 100, 101

web service, data

acquiring 72

approach 76–78

deliverables 86, 87

describing 73, 74

WebTest fixture 341

WebTest project 341

Worker Pool process 323

Z
ZIP archive

downloading 79, 80

ZIP Code Tabulation Areas (ZCTAs)

272

	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	A note on skills required

	Chapter 1: Project Zero: A Template for Other Projects
	On quality
	More Reading on Quality

	Suggested project sprints
	Inception
	Elaboration, part 1: define done
	Elaboration, part 2: define components and tests
	Construction
	Transition

	List of deliverables
	Development tool installation
	Project 0 – Hello World with test cases
	Description
	Approach
	Deliverables
	The pyproject.toml project file
	The docs directory
	The tests/features/hello_world.feature file
	The tests/steps/hw_cli.py module
	The tests/environment.py file
	The tests/test_hw.py unit tests
	The src/tox.ini file
	The src/hello_world.py file

	Definition of done

	Summary
	Extras
	Static analysis - mypy, flake8
	CLI features
	Logging
	Cookiecutter

	Chapter 2: Overview of the Projects
	General data acquisition
	Acquisition via Extract
	Inspection
	Clean, validate, standardize, and persist
	Summarize and analyze
	Statistical modeling
	Data contracts
	Summary

	Chapter 3: Project 1.1: Data Acquisition Base Application
	Description
	User experience
	About the source data
	About the output data

	Architectural approach
	Class design
	Design principles
	Functional design

	Deliverables
	Acceptance tests
	Additional acceptance scenarios
	Unit tests
	Unit testing the model
	Unit testing the PairBuilder class hierarchy
	Unit testing the remaining components

	Summary
	Extras
	Logging enhancements
	Configuration extensions
	Data subsets
	Another example data source

	Chapter 4: Data Acquisition Features: Web APIs and Scraping
	Project 1.2: Acquire data from a web service
	Description
	The Kaggle API
	About the source data

	Approach
	Making API requests
	Downloading a ZIP archive
	Getting the data set list
	Rate limiting
	The main() function

	Deliverables
	Unit tests for the RestAccess class
	Acceptance tests
	The feature file
	Injecting a mock for the requests package
	Creating a mock service
	Behave fixture
	Kaggle access module and refactored main application

	Project 1.3: Scrape data from a web page
	Description
	About the source data
	Approach
	Making an HTML request with urllib.request
	HTML scraping and Beautiful Soup

	Deliverables
	Unit test for the html_extract module
	Acceptance tests
	HTML extract module and refactored main application

	Summary
	Extras
	Locate more JSON-format data
	Other data sets to extract
	Handling schema variations
	CLI enhancements
	Logging

	Chapter 5: Data Acquisition Features: SQL Database
	Project 1.4: A local SQL database
	Description
	Database design
	Data loading

	Approach
	SQL Data Definitions
	SQL Data Manipulations
	SQL Execution
	Loading the SERIES table
	Loading the SERIES_VALUE table

	Deliverables

	Project 1.5: Acquire data from a SQL extract
	Description
	The Object-Relational Mapping (ORM) problem
	About the source data
	Approach
	Extract from a SQL DB
	SQL-related processing distinct from CSV processing

	Deliverables
	Mock database connection and cursor objects for testing
	Unit test for a new acquisition module
	Acceptance tests using a SQLite database
	The feature file
	The sqlite fixture
	The step definitions
	The Database extract module, and refactoring

	Summary
	Extras
	Consider using another database
	Consider using a NoSQL database
	Consider using SQLAlchemy to define an ORM layer

	Chapter 6: Project 2.1: Data Inspection Notebook
	Description
	About the source data

	Approach
	Notebook test cases for the functions
	Common code in a separate module

	Deliverables
	Notebook .ipynb file
	Cells and functions to analyze data
	Cells with Markdown to explain things
	Cells with test cases

	Executing a notebook's test suite

	Summary
	Extras
	Use pandas to examine data

	Chapter 7: Data Inspection Features
	Project 2.2: Validating cardinal domains — measures, counts, and durations
	Description
	Approach
	Dealing with currency and related values
	Dealing with intervals or durations
	Extract notebook functions

	Deliverables
	Inspection module
	Unit test cases for the module

	Project 2.3: Validating text and codes — nominal data and ordinal numbers
	Description
	Dates and times
	Time values, local time, and UTC time

	Approach
	Nominal data
	Extend the data inspection module

	Deliverables
	Revised inspection module
	Unit test cases

	Project 2.4: Finding reference domains
	Description
	Approach
	Collect and compare keys
	Summarize keys counts

	Deliverables
	Revised inspection module
	Unit test cases
	Revised notebook to use the refactored inspection model

	Summary
	Extras
	Markdown cells with dates and data source information
	Presentation materials
	JupyterBook or Quarto for even more sophisticated output

	Chapter 8: Project 2.5: Schema and Metadata
	Description
	Approach
	Define Pydantic classes and emit the JSON Schema
	Define expected data domains in JSON Schema notation
	Use JSON Schema to validate intermediate files

	Deliverables
	Schema acceptance tests
	Extended acceptance testing

	Summary
	Extras
	Revise all previous chapter models to use Pydantic
	Use the ORM layer

	Chapter 9: Project 3.1: Data Cleaning Base Application
	Description
	User experience
	Source data
	Result data
	Conversions and processing
	Error reports

	Approach
	Model module refactoring
	Pydantic V2 validation
	Validation function design
	Incremental design
	CLI application
	Redirecting stdout

	Deliverables
	Acceptance tests
	Unit tests for the model features
	Application to clean data and create an NDJSON interim file

	Summary
	Extras
	Create an output file with rejected samples

	Chapter 10: Data Cleaning Features
	Project 3.2: Validate and convert source fields
	Description
	Approach
	Deliverables
	Unit tests for validation functions

	Project 3.3: Validate text fields (and numeric coded fields)
	Description
	Approach
	Deliverables
	Unit tests for validation functions

	Project 3.4: Validate references among separate data sources
	Description
	Approach
	Deliverables
	Unit tests for data gathering and validation

	Project 3.5: Standardize data to common codes and ranges
	Description
	Approach
	Deliverables
	Unit tests for standardizing functions
	Acceptance test

	Project 3.6: Integration to create an acquisition pipeline
	Description
	Multiple extractions

	Approach
	Consider packages to help create a pipeline

	Deliverables
	Acceptance test

	Summary
	Extras
	Hypothesis testing
	Rejecting bad data via filtering (instead of logging)
	Disjoint subentities
	Create a fan-out cleaning pipeline

	Chapter 11: Project 3.7: Interim Data Persistence
	Description
	Overall approach
	Designing idempotent operations

	Deliverables
	Unit test
	Acceptance test
	Cleaned up re-runnable application design

	Summary
	Extras
	Using a SQL database
	Persistence with NoSQL databases

	Chapter 12: Project 3.8: Integrated Data Acquisition Web Service
	Description
	The data series resources
	Creating data for download

	Overall approach
	OpenAPI 3 specification
	RESTful API to be queried from a notebook
	A POST request starts processing
	The GET request for processing status
	The GET request for the results
	Security considerations

	Deliverables
	Acceptance test cases
	RESTful API app
	Unit test cases

	Summary
	Extras
	Add filtering criteria to the POST request
	Split the OpenAPI specification into two parts to use $REF for the output schema
	Use Celery instead of concurrent.futures
	Call external processing directly instead of running a subprocess

	Chapter 13: Project 4.1: Visual Analysis Techniques
	Description
	Overall approach
	General notebook organization
	Python modules for summarizing
	PyPlot graphics
	Data frequency histograms
	X-Y scatter plot

	Iteration and evolution

	Deliverables
	Unit test
	Acceptance test

	Summary
	Extras
	Use Seaborn for plotting
	Adjust color palettes to emphasize key points about the data

	Chapter 14: Project 4.2: Creating Reports
	Description
	Slide decks and presentations
	Reports

	Overall approach
	Preparing slides
	Preparing a report
	Creating technical diagrams

	Deliverables
	Summary
	Extras
	Written reports with UML diagrams

	Chapter 15: Project 5.1: Modeling Base Application
	Description
	Approach
	Designing a summary app
	Describing the distribution
	Use cleaned data model
	Rethink the data inspection functions
	Create new results model

	Deliverables
	Acceptance testing
	Unit testing
	Application secondary feature

	Summary
	Extras
	Measures of shape
	Creating PDF reports
	Serving the HTML report from the data API

	Chapter 16: Project 5.2: Simple Multivariate Statistics
	Description
	Correlation coefficient
	Linear regression
	Diagrams

	Approach
	Statistical computations
	Analysis diagrams
	Including diagrams in the final document

	Deliverables
	Acceptance tests
	Unit tests

	Summary
	Extras
	Use pandas to compute basic statistics
	Use the dask version of pandas
	Use numpy for statistics
	Use scikit-learn for modeling
	Compute the correlation and regression using functional programming

	Chapter 17: Next Steps
	Overall data wrangling
	The concept of ``decision support''
	Concept of metadata and provenance
	Next steps toward machine learning

	Other Books You Might Enjoy
	Index

