

Python Networking
Solutions Guide

Leverage the Power of Python to Automate
and Maintain your Network Environment

Tolga Koca

www.bpbonline.com

http://www.bpbonline.com/

Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor BPB Online or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, BPB Online cannot
guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork
119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN: 978-93-5551-361-8

www.bpbonline.com

http://www.bpbonline.com/

Dedicated to
My Lovely Family:
Merve Aydin Koca

Ali Seydi Koca
Guluzar Koca (R.I.P.)

Duygu Koca
Yesim Eren

About the Author
Tolga Koca has 10+ years of experience as a Network, Cloud, and DevOps
Engineer. He has worked with Internet Service Providers (ISPs) and
Enterprise Companies and also created an online learning platform focused
on Network Automation, Cloud, and DevOps training
(networksautomation.com). He believes in sharing his knowledge with
others, and he practices this by giving live webinars.

About the Reviewer
Pravesh Kumar Sharma, a long-time cybersecurity practitioner, Cyber
Security Specialist in the Indian Air Force. Enrolled just after completing
10+2, he graduated in Electronics and Communication Engineering from
the Institution of Engineers Kolkata. After having 10+ years in web
programming and networking, he switched over to offensive security as a
pentester.
He is the winner of many capture the flags hackathons, an honorable
mention of the SANS hacking challenge. He is an avid learner and stood
top 1% in Indian Institute of Technology Madras-driven NPTEL courses.
A Certified Information Systems Security Professional(CISSP) and Red Hat
Certified Engineer(RHCE) person, he has an interest in solving problems at
its grassroots levels. Python and Powershell are his favorite scripting
languages. Besides this, he is MTech Software Systems from Birla Institute
of Science and Technology(BITS) Pilani Rajasthan.
His name appears in TryHackMe top 1% worldwide. You can connect with
him on https://www.linkedin.com/in/pravesh-kumar-sharma-infosec/

Acknowledgement
There are a few people I want to thank for their support during the writing
of this book. First, I would like to thank my lovely wife, Merve, for always
supporting me when I was stuck technically and mostly emotionally. And
thanks to all my family members who supported me from the beginning to
the end of the book.
I also want to thank Ozgur Kok for his outstanding mentorship and for
always encouraging me.
Finally, I would like to thank Serina Haratoka for guiding me to unleash the
power in myself and lightening my way during this period.
Also, special thanks to my cute cats, Mango and Kiwi, who always
supported me from their boxes next to me while I was writing.
I want to thank BPB Publications, for their positive and encouraging
support made this book to become true.

Preface
This book shows the Python programming language's importance and
power to automate network devices such as routers, switches, firewalls,
system devices like Linux servers, and cloud devices like the AWS
platform. It shows to manage and configure thousands of devices with a
single script, saving time and preventing faults.
This book covers network automation with Python specifically for
Network, System, and DevOps engineers. It explains the Python basics
from scratch with various features and modules. It covers the most helpful
connection methods to login to multiple devices concurrently and manages
them with scripts. It explains creating a customized network automation
tool with many scripts.
This book is divided into 11 chapters. It covers network automation and
Python basics, connecting devices with Python, managing devices by
scripts, creating a network automation tool, etc. The detailed chapter
information is listed below.
Chapter 1 covers the fundamentals of network automation and Python
programming language basics. You will learn to install all the tools and
packages for different operating systems. Then, you write a basic Python
script and execute it.
Chapter 2 covers the essential Python functions for beginners and data
types that will be used in later scripts. There are many data types in Python,
focusing on the most used ones, including their methods for network
automation. Then, it continues with the Python statements and conditions to
create the main structure of the scripts.
Chapter 3 explains various built-in and 3rd party Python modules. File
handling modules will be shown to create, modify and delete text, word, or
excel files. One of the most important modules of the manipulation, which
is the RE module, is explained in this chapter. It deeply presents the RE
module with its functions, sets, and other features. The last part explains
some advanced features of Object Oriented Programming (OOP) of Python
to use in the more complex scripts.

Chapter 4 focuses on the Python connection modules and script examples.
It explains the netmiko, paramiko, and telnetlib modules to connect to the
network devices. There are various examples of collecting logs from
devices and creating customized tools explaining each script code line-by-
line. These examples are focused on connecting Cisco network devices, but
these scripts can also be used with other vendor products.
Chapter 5 focuses on configuring network devices with some automation
modules such as Jinja2, NAPALM, and nornir modules. These modules
make configuring devices a more advanced and automated way. They create
YAML files to create simple scripting files to make network automation
easy.
Chapter 6 explains the file transfer protocols with the necessary 3rd party
modules. You can login to devices with SSH, FTP, SFP, and SCP protocols
and upload or download multiple files from network devices with scripts. It
also focuses on plotting module the network data, such as device CPU
values and the interface bandwidth utilization to the plot.
Chapter 7 focuses on upgrading and rebooting devices, collecting alarms,
communicating with devices by the SNMP protocol, sending email
notifications, and making reachability tests such as ping and traceroute for
network and system devices.
Chapter 8 covers the system device management. It explains to create a
Linux server environment step-by-step. It focuses on maintaining these
servers by collecting server data such as CPU, memory, interface, and file
information. It also explains configuring multiple servers by installing
software packages, user management, rebooting servers, and managing the
server processes.
Chapter 9 covers the security features and services for the network and
system devices. It has various example scripts with explanations. Examples
of scripts are to manage security services in Linux servers, manipulate
network packets, check security logs, and capture network packets.
Chapter 10 explains to create a network automation tool. It's a command-
line interface (CLI) based tool that combines several scripts to automate,
maintain, and configure devices.
Chapter 11 focuses on network automation in Amazon's AWS Cloud
Platform. It explains the Boto3, an AWS management module that manages

EC2 instances, S3 buckets, and IAM user management.

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/33ehv8a
The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Python-Networking-Solutions-
Guide. In case there's an update to the code, it will be updated on the
existing GitHub repository.
We have code bundles from our rich catalogue of books and videos
available at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :
errata@bpbonline.com
Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to
the eBook version at www.bpbonline.com and as a print book

https://rebrand.ly/33ehv8a
https://github.com/bpbpublications/Python-Networking-Solutions-Guide
https://github.com/bpbpublications
mailto:errata@bpbonline.com
http://www.bpbonline.com/

customer, you are entitled to a discount on the eBook copy. Get in
touch with us at: business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on BPB books and eBooks.

mailto:business@bpbonline.com
http://www.bpbonline.com/

Piracy
If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an
author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit
www.bpbonline.com. We have worked with thousands of developers
and tech professionals, just like you, to help them share their insights
with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why
not leave a review on the site that you purchased it from? Potential
readers can then see and use your unbiased opinion to make purchase
decisions. We at BPB can understand what you think about our
products, and our authors can see your feedback on their book.
Thank you!
For more information about BPB, please visit www.bpbonline.com.

mailto:business@bpbonline.com
http://www.bpbonline.com/
http://www.bpbonline.com/

Table of Contents
1. Introduction to Network Automation

Structure
Objectives
Introduction to network automation

Benefits of network automation
Future of networking

Introduction to Python
Python usage area

Python installation
Python for Windows
Python for Linux
Python for MAC

Running Python codes
Pycharm installation for Windows
Install and import Python modules
Conclusion
Multiple choice questions

Answer
Questions

2. Python Basics
Structure
Objectives
Print and ınput functions

Print()
Input ()

Data types
String and integer
String methods
List
List methods
Dictionary

Dictionary methods
Statements and conditions

If condition
For statement
While statement
Break and continue statement
Range statement
For else statement and nested loops
Try…except statement

Conclusion
Multiple choice questions

Answers
Questions

3. Python Networking Modules
Structure
Objectives
File handling

Open function
OS module
Word files
Excel files

RE modules
RE module functions
Special sequences
Sets in the RE module

Advanced topics of Python
Functions

Functions with parameters
Functions with default parameters
Call variables from functions

Creating modules
Classes

Conclusion
Multiple choice questions

Answers
Questions

4. Collecting and Monitoring Logs
Structure
Objectives
Connection modules

SSH connection
Paramiko module For SSH
Connect 1 device with Paramiko
Running configuration commands with Paramiko
Connect to multiple devices with Paramiko
Netmiko module for SSH
Connect a single device with Netmiko
Connect to multiple devices with Netmiko

Telnet connection
Telnetlib module for telnet
Connect to multiple devices with telnetlib
Netmiko module for telnet

Collecting logs
Collecting version and device information
Collecting CPU levels
Finding duplicated IP address
Collecting logs with multithreading

Tools and calculators
IP address validator
Subnet calculator

Conclusion
Multiple choice questions

Answers
Questions

5. Deploy Configurations in Network Devices
Structure
Objectives
Configure network devices

Configuration of interfaces
Replacing configurations on files

Configure devices with Jinja2 template
Introduction to Jinja2 template

Introduction to YAML language
Rendering Jinja template with a YAML file
Configure devices with Jinja
If statement in Jinja

Configure devices with Napalm module
Collect logs from devices with NAPALM
Configure devices with NAPALM

Configure devices with Nornir module
Configure inventory in Nornir
Connection to devices with Nornir-Netmiko
Connection to devices with Nornir-NAPALM
Configure devices by Nornir and Jinja template

Conclusion
Multiple choice questions

Answers
Questions

6. File Transfer and Plotting
Structure
Objectives
File transfers

Backup configuration file with SSH
File transfer with FTP connection
File transfer with SFTP connection
File transfer with Netmiko SCP connection
Netmiko SCP connection with concurrent module
File transfer with Nornir SCP connection
Backup configuration file with SCP

Plotting data
Plotting CPU levels
Plotting interface bandwidth

Conclusion
Multiple choice questions

Answers
Questions

7. Maintain and Troubleshoot Network Issues

Structure
Objectives
Upgrade network devices
Alert alarms in devices
Collect logs with SNMP
Send logs via email
Reachability test to network devices

Ping test script
Traceroute test script

Conclusion
Multiple choice questions

Answers
Questions

8. Monitor and Manage Servers
Structure
Objectives
Implement server environment

Download VMware player and Ubuntu
Install Ubuntu on VMware
Activate SSH connection

Maintain Linux servers
Collect logs via syslog
Login servers with secure password
Collect CPU and memory levels
Collect interface information
Collect type and permission of files

Server configurations
Create users in servers
Install packages
Transfer files with Paramiko
Reboot servers concurrently
Stop running processes by script

Conclusion
Multiple choice questions

Answers
Questions

9. Network Security with Python
Structure
Objectives
Activate security services

Install and activate the “Firewalld” service on servers
Configure firewall settings on servers
Create access lists in network devices

Manipulate network packets with scapy
Check logs and configurations

Check CPU levels periodically with Crontab
Check router configuration for insecure passwords
Check port security configuration in routers

Collect packets from ports with Pyshark
Conclusion
Multiple choice questions

Answers
Questions

10. Deploying Automation Software
Structure
Objectives
Introduction to InquirerPy module
Automation tool design
Create main tool script
Create subtask scripts

Network device scripts
Server scripts
Other remaining scripts

Conclusion
Multiple choice questions

Answers
Questions

11. Automate Cloud Infrastructures with Python
Structure
Objectives
Cloud environment deployment

Introduction to AWS
Installation of Boto3 and AWS CLI

EC2 instance management
Manage EC2 instances with Python
Connection to EC2 instances

S3 bucket management
EBS volume management

Manage EBS volumes
Create snapshots of EBS volumes
Attach EBS volume to EC2 instance

IAM user management
Conclusion
Multiple choice questions

Answers
Questions

Index

T

CHAPTER 1
Introduction to Network Automation
his chapter will focus on the basics of network automation and
understanding the current and future of networking in the industry. It

will explain the benefits of using automation in network environments for
companies and engineers. We will learn the basics of Python programming
and the usage areas of the language. We will install the necessary packages
and tools for the network automation.

Structure
In this chapter, we will cover the following topics:

Introduction to network automation

Benefits of network automation
Future of networking

Introduction to Python

Python usage area

Python installation

Python for Windows
Python for Linux
Python for Mac

Running Python codes
Pycharm installation for Windows
Install and import Python modules

Objectives

This chapter aims to introduce network automation and Python
programming language. We will download and then install the Python
package for each OS as Windows, Linux, and macOS. We will also look at
how to install the Pycharm tool, which is an Integrated Development
Environment (IDE). We will write our first Python code, and finally,
install third-party modules and import them into our Python codes.

Introduction to network automation
Before explaining network automation, we should start with what
automation is. In simple terms, automation is the use of technology to
perform tasks automatically. It has been rising since the 1950s. Many
companies were using automation in different fields.
We can say that network automation is performing tasks automatically by
reducing human interaction with network devices. With network
automation, there will be no more manual steps, like making command line
interface (CLI) connections and running commands manually to manage
network devices. Network automation scripts are pre-programmed for
specific purposes like software upgrades, collecting device logs, file
transfers, and comparing configurations.
Python, Perl, Bash or Go scripting languages that can be used for network
automation. These scripting languages are all open-source and free. A
network engineer must learn one of these languages to write scripts in
network automation.
There are also open-source network automation tools like Ansible, Puppet,
and Chef. These are network automation frameworks with libraries for
specific demands or vendors, which make network automation simpler.
Network automation is also known as network orchestration. We can
organize, manage, and troubleshoot our whole network structure or
orchestrate with network automation scripts and tools.
So, why do we need network automation? In recent years, the internet has
been growing exponentially, and it will continue. Business demands are
always changing, and maintenance has become harder. You can think that if
a mobile app does not open for 5 to 10 seconds, you may directly delete it.
The delay even in milliseconds can make big problems in many businesses.

But we are human; we can always make mistakes, and manual maintenance
is very slow. This is where automation enters our life. Network automation
is still in the early stages, but tech pioneers like Amazon, Google, and
Facebook are using it very efficiently.

Benefits of network automation
So, what will change after we use automation in our network environment?
Is it necessary for each environment? First, we need to check the details of
the current network environments. For almost 20 years, network
configurations have not changed dramatically, and a network engineer’s
role has also stayed the same for a decade. There are Network
Management Systems (NMS) tools that make monitoring and
configuration more automated, but those are mostly vendor-specific tools.
They are not flexible to the new requirements of customers. Additionally,
acceptance of new technologies in networking has come only slowly
because even small mistakes get us in big trouble.
With Software Defined Networks (SDN), all network infrastructures are
evolving. And with SDN and machine learning, networks are becoming
more flexible and easier to maintain. Network automation will be more
important in the near future.
Network automation has many benefits for engineers and companies, and it
improves engineering quality with Python language.

Reduce the number of human errors: With network automation, we
can reduce the frequency of human mistakes in operations. Operations
are done within a limited time. One command mistake can affect many
things in the network and can also cause service interruption. We can
use scripting to eliminate it. There will be no more mistakes in
command entrance in devices. The idea is not to reduce network
engineers in IT teams but to reduce human mistakes; we still need
network engineers to make the network automation work.
Improved efficiency: We can ensure faster operations and
troubleshooting. Collecting logs is often painful, and it takes a long
time if there are multiple devices to collect. All tasks are done
manually via SSH tools like SecureCRT or Putty. But with the
prepared Python scripts, we can collect any logs from any device with

just a couple of clicks. That means no more copy/paste work.
Machines are much better than us at repetitive things, so the workload
of network engineers is reduced for repeatable actions.
Create your own automation tool: We can create our automation tool
for specific expectations. For example, we need to check the CPU
levels of 500 devices. If we have an NMS tool, we can collect CPU
data of all devices. Otherwise, it’s almost impossible to enter devices
by CLI one by one and collect CPU data. Even if we have an NMS
tool, it has a limitation: we cannot run every log or feature in that tool.
If our NMS tool has no feature to collect CPU levels, we cannot
perform this task.
But with Python, we can write scripts for any of the logs or statistics
to collect from devices. We can collect any logs we require. We can
write one time, modify for new purposes and use it numerous times.
Manage logs: We can manage logs efficiently. Because the logs are
dummy when we collect them, we need to specify them, like filtering,
sorting, or checking specific values or lines. With Python scripting, we
can preset all of them, and then just run scripts to convert logs to
readable data for us.
For example, we need to upgrade core routers, so we can collect logs
before and after the upgrade as pre-checks and post-checks. But the
logs are dummies. If we run the show version command in a cisco
router, only one line is important for us: the one that has the software
version information. Then, we must get the backup of the device
configuration. That’s a lot of work to do, and it’s painful if we have
many devices.
But on the other hand, we can create a script that logs in to devices;
collect logs; gets the necessary information like device version, CPU
level, BGP neighborship summary, and interface status; and puts all
the information in Excel and compares it for us. This way, we can
determine what changed after the upgrade in just seconds. By scripting
a couple of lines, we can get the important parts from the collected
logs and make them easy to read for us.

Future of networking

As technology is growing and changing all over the world in all sectors,
telecommunication, data center and cloud companies are also evolving. So,
the role of network engineers is changing. In the near future, network
engineers must know at least one scripting language and automation tool.
The change starts with SDN and virtualization. Network devices or systems
will find the issue and take the responsibility to solve the issues by
themselves with machine learning. New vendors and companies will be
involved, and network structures will be smarter. BGP, MPLS or any other
network knowledge will not be enough for a network engineer because
software and scripting will enter daily life rapidly.

Introduction to Python
According to Python official (www.python.org), Python is an interpreted,
object-oriented, high-level programming language with dynamic semantics.
It’s an open-source programming language that’s free of cost; here are its
characteristics:

Interpreted: Python is an interpreted language. It means that the code
that is written with this high-level programming language is converted
to machine code and runs each task line-by-line. Python converts each
line to the machine’s readable code. It is also easy to compile; Python
does not need any compiler like C++ or Java. So, we can develop code
much faster than other languages.
Easy syntax: Python uses indentations. It’s easier to read instead of
other programming languages.
Increasing community: Python has a very good community. You can
find anything on GitHub or StackOverflow.
Platform independent: It is also platform-independent, so you can
use it for different operating systems.

Python usage area
Python has a big usage area. In many sectors, we can see Python
programming. We can develop desktop mobile apps, back-end servers,
games, audio, video apps and more, but Python is mainly used for data
science, automation, and web development.

http://www.python.org/

The most popular usage of Python is for data science. In data science, there
are many sub-areas like data analysis, data visualization, machine learning,
and artificial intelligence. Data science is one of the hottest trends in recent
years. And in the future, it will be much more important in the tech world,
which means the popularity of Python will increase all the more.
And in automation, Python is the most popular language. Here, we are
interested in Python. With scripts, we can do network automation easily.
Ansible, a network automation tool, is also written in Python.
Figure 1.1 shows questions asked each month as a percentage, based on
Stack Overflow, which is one of the biggest QA platforms for software
developers. You can easily see how Python is becoming the most popular
programming language in the future:

Figure 1.1: Stack Overflow questions by month - insights.stackoverflow.com/trends

Python installation
Note that Python 3.9+ cannot be used on Windows 7 or earlier. Python 2.7
is the end of the Python 2.x series and is succeeded by Python 3. End-of-
support of the Python 2 version expired on 01-01-2020.

Python for Windows
To use the Python programming language, we need to install the Python
tool first. We can download Python by clicking on the following link from
Python’s official website:
https://www.Python.org/downloads/
When we enter the website, there is a Download the latest version for
section on the top, as shown in Figure 1.2. If you enter this site using a
Windows machine, you see it as a Windows download. If you enter it using
a Linux or MAC system, you can see the specific OS download button:

Figure 1.2: Download Python for Windows

We can download the latest stable version of Python by clicking on the
Download Python button; the latest release is currently 3.10.4.
You can also download other OS installations of Python below the
Download button. If you want to download older versions of Python, you
can scroll down on the same website to see all active Python releases. There
are two main versions active as Python version 2 and version 3. Both

https://www.python.org/downloads/

versions have many releases. We will focus on Python version 3 in this
book.
After the download is finished, when we open the installer, we need to
check the Add Python 3.10 to PATH box. By default, it’s unchecked.
When we install Python, it has not been added to Environment Variables
in Windows Systems. So, the command prompt will not recognize the
Python commands. By checking that box as shown in Figure 1.3, we can
enter the Python command in the command prompt:

Figure 1.3: Installation of Python

After checking the box, we can install Python with the default settings by
clicking on the Install Now button. If you need to install Python with
custom settings, you can click on the Customize installation button.
When the installation finishes, we can close the installation screen and open
the command prompt (cmd) by clicking on the Windows start button and
writing command prompt. Alternatively, as a shortcut, we can click on the
Windows button on the keyboard and the R key at the same time, and we
will see the Run tool of windows will be opened. We can just write cmd and
click on Enter.

We can write Python --version to verify the installation of Python in cmd.
If you get Python word with the version information as an output, as shown
here, it means that you installed Python successfully:
C:\> Python --version
Python 3.10.4

We can also start a Python session for simple lines of code by writing
Python in cmd. There are three bigger signs in the last line of output. It
means that we are inside a new Python session. We can write our code line
by line here and can easily see the output without using any compilers:
C:\> Python
Python 3.10.4 (tags/v3.10.4:9d38120, Mar 23 2022, 23:13:41)
[MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more
information.
>>>

Python for Linux
For many Linux systems, Python is an already installed package by default
in the OS. For Ubuntu OS, Python version 3 is installed with Ubuntu OS.
When we enter Python3 --version in the terminal and press Enter, you
can see the current Python package version:
$ Python3 --version
Python 3.8.10

If we need to install Python from the package installer, we need to write the
following command in the terminal:
$ sudo apt-get install Python3

Or we can update the Python3 package that is already installed with the
following command:
$ sudo apt-get update

We can enter a new Python session with the Python3 command in the
terminal. For basic usage of Python, we can use this CLI or terminal. But
for complex structures, it’s better to use IDE tools like Pycharm or any text
editor:
$ Python3
Python 3.8.10 (default, Mar 15 2022, 12:22:08)

[GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more
information.
>>>

Only Python version 3 is covered in this book, but if you need to use
Python version 2, you can download it via the terminal. It will download the
latest stable version 2 release:
$ sudo apt-get install Python

We can check the version with the Python version command and enter
Python version 2 with the Python command in the terminal if necessary:
$ Python --version
Python 2.7.18
$ Python
Python 2.7.18 (default, Mar 8 2021, 13:02:45)
[GCC 9.3.0] on linux2
Type "help", "copyright", "credits" or "license" for more
information.
>>>

Python for MAC
We can download Python for MAC devices from Python’s official website,
by clicking on the following link:
https://www.Python.org/downloads/
When we enter the website, there is a Download the latest version for
section on the top. If you enter this site using your MAC device, you can
see it as a MacOS download:

https://www.python.org/downloads/

Figure 1.4: Download Python for MAC

After we download the package file, we can start the installation by double-
clicking on the installer icon. And we can install Python3 by continuing the
process on the installation window.
After the installation is finished, we can enter the "Python3 –version"
command in the terminal to verify the installation.
% Python3 –version
Python 3.10.4

We can create a new Python CLI session by entering the Python3 command
in the terminal:
% Python3
Python 3.8.5 (default, Jul 21 2020, 10:48:26)
[Clang 11.0.3 (clang-1103.0.32.62)] on arwin
Type "help", "copyright", "credits" or "license" for more
information.

Running Python codes

We have a couple of options to run Python codes:

We can create a new Python session from cmd (for Windows) and
terminal (for Linux or Mac). We can write the Python code line-by-
line. In each line, we enter a piece of code. For basic usage of Python,
we can use it this way. But if we try to write scripts, this way is not
sustainable. Each code proceeds in the same line. So, if we write the
following example, in the first line, 5 assigns to a, in the second line,
10 assigns to b, and in the last line, we write a plus b, which is a
calculation of 2 variables. And the result was 15. So, the program
shows the output after this line:
C:\> Python
>>> a = 5
>>> b = 10
>>> a + b
15

If we write a variable and enter it, it will show the value of the a
variable:
>>> a
5

We can create Python files with text editors, like in notepad. We write
the piece of code and save it as a .py example. The file extensions in
Microsoft OS are hidden by default. If you create a file as
example.py, it will be created as example.py.txt, which has a file
type of a text document. So, you can follow these steps:
Click on File Explorer | View | Options. Click on the drop-down
arrow and click change folder and search options. Then, click on the
View tab and uncheck hide extensions for known file types. You can
also do it by typing one line in the CLI:
reg add C:\>
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Adv
anced /v HideFileExt /t REG_DWORD /d 0 /f
0 = false, 1 = true

If the HideFileExt value is set as 0, it means the file extension is
visible. If the HideFileExt value is set as 1, the file extension is not
visible, which is the default value:

Example 1.1: Simple Python File
example.py
a = 5
b = 10
print (a + b)

After that, we can write the Python command with the filename to see
the output of the code. Remember that you must be in the same
directory with the Python file that you run or write the full path of the
file.
C:\> Python Users/YOUR_USERNAME/Desktop/example.py
15
C:\Users\ YOUR_USERNAME \Desktop> Python example.py
15

There is no Python session here. Python directly starts and finishes the
full code. This way is more convenient according to the first solution.
This is because if we have many lines with multiple Python codes
connected with different files, we can use them this way. But there are
some missing parts here. We cannot debug or troubleshoot the coding
issues with text editors.
We have the best solution to eliminate the issues in the first three
ways. There are many IDE tools for all programming languages. We
can create projects and directories inside those projects, monitor the
running code line-by-line, and debug or troubleshoot the issues inside
our code with IDEs. Writing code is much easier with these tools. One
of the most popular ones is the Pycharm IDE tool, which will be
covered in this book.

Pycharm installation for Windows
Pycharm is an open-source tool owned by JetBrains Company. It’s a code
editor. We can download the Pycharm tool from the following link to the
official website:
https://www.jetbrains.com/pycharm/download
We can use Pycharm on Windows, Linux and macOS devices. We can
download it for specific OS. There are two download options, professional
and community versions of Pycharm. Professional as paid version is used

https://www.jetbrains.com/pycharm/download

for scientific and web development of Python, including HTML,
JavaScript, and SQL support.
The community version is totally free. This version is fairly enough for
network automation:

Figure 1.5: Download Pycharm for Windows

After we download the Pycharm community version as shown in Figure
1.5, we can start the installer just like installing a regular tool in Windows.
After the installation is complete, we can open Pycharm. When we open
Pycharm, it asks us to create a new project or open an old project. After we
create a new project, on the project files tab, we can see all the files and
directories inside our project.
We can create a new Python file on the project files tab by right-clicking on
New/Python File. We create an example.py file and write three lines of
code, as shown in Figure 1.6:

Figure 1.6: Pycharm Code Example

If we want to run this Python code, we have two options. We can press Shift
+ 10 on the keyboard, or we can right-click on the code area and click on
Run example.py.

When we run the code, a section will be opened: the Run section. We can
see the output of the code here. Our simple code is the sum of the a and b
variables. So, it’s 5 plus 10, and the result must be 15. So, the output of our
code is 15. We can see the output in Figure 1.7:

Figure 1.7: Pycharm Code Output Example

Install and import Python modules
In Python, we use libraries or modules to write our codes. There are
standard built-in libraries and third-party libraries in Python.
Standard libraries are installed when we install Python to our PC. We don’t
need to install these libraries again. For example, the re module is one of
the standard libraries in Python. It’s used to check a set of strings that
matches. This module will be covered in the next chapter. We don’t need to
install this module on our PC. We only need to import this module when we
need to use it.
Third-party libraries or non-built-in libraries are additional libraries that we
need to install on our PC if we need to use them. For example, the paramiko
module is a third-party library. It’s used to make an SSH connection to
network and system devices. It’s not installed during Python tool
installation. If we need to use this module, we must install it, and then we
can import our code to use. This module will be also covered in the next
chapter.
To install a third-party library, we have two options in the Pycharm tool. We
can click on the terminal tab in the following section of tools, as shown in
Figure 1.8:

Figure 1.8: Terminal in Pycharm

In the terminal, we need to install modules with the pip command. We can
write the command as pip install by writing the module name. In the
following example, we try to install the paramiko module. If the module
has not been installed yet, it will be downloaded and installed automatically.
If the module is already installed, but a newer version is released, the pip
command will download and install the latest version of that module:
C:\Sample_Project > pip install paramiko

If you write the mentioned command in the Pycharm terminal and get an
error, you need to download the pip installation package to your PC. If your
Python version is higher than v3.4 (released in 2014), you already have the
pip package on your PC. If not, you must manually install the package. We
can check whether the pip package is installed on our PC with the pip -V
command. We can also check the package version.
C:\Users\USERNAME> pip -V
pip 22.2.2 from
C:\Users\USERNAME\AppData\Local\Programs\Python\Python310\lib\s
ite-packages\pip (Python 3.10)

You can run the following commands to install or update the pip package to
the latest version on Windows and Linux:
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
Python get-pip.py

Another way to install a third-party module in Pycharm is to install it via
Pycharm GUI. To do that, go to File/Settings on tabs. Inside the
Project/Project Interpreter section in the opening window, you can

see all the modules that are installed under the current project, as shown in
Figure 1.9.
We can also see the difference between the currently installed version and
the latest version. So, if any of the modules have an update, we can see it in
the same window. For example, we can see that the paramiko module is
already installed in our project as a 2.7.2 version, which is an older version,
as shown in Figure 1.9:

Figure 1.9: Pycharm Module List

In the Python interpreter section, labeled in yellow in Figure 1.9, we can
change the Python interpreter. It means that we can use any interpreter in
our current project. For example, we use many third-party modules in a
project. And after that, we will create a new Python project. We can choose
an interpreter for the old project when we create the new one, or we can
change the interpreter in Figure 1.9.
We can install third-party modules by clicking on the plus character in the
same window as the one shown in Figure 1.9. In the opening window, we

can search for any of the modules to install. After we choose a specific
module, we can click on the Install Package button, as shown in Figure
1.10:

Figure 1.10: Installation of 3rd Party Modules

The installation of modules is complete. Even if it is a standard or third-
party library, we need to import each script that we use as a function from
that library. For example, if we need to log in to a device with SSH
protocol, we need to import the paramiko module at the beginning of our
script. And if we need to use the RE module, we need to import it:
import paramiko
import re

After we import the modules, we can call any functions. Modules and
functions will be covered in the next chapter in detail.

Conclusion
In this chapter, we learned what network automation is and how companies
evolve according to network automation. We understood the benefits of
automation, like reducing human mistakes and decreasing the workload for
engineers. We introduced the basics of the Python language and looked at
how to install the Python package and Pycharm tools to start network
automation in our own environment. The version difference is an important
topic in Python, and it is strongly recommended to start or continue with
Python version 3. At the end, we learned the difference between built-in and
third-party modules. We downloaded and installed these third-party
modules and imported them into our code.
In the next chapter, we will start with the basics of Python programming
language, like print and input functions, and data types and their methods,
and also statements and conditions.

Multiple choice questions
1. What are the advantages of using network automation?

a. Fewer human errors
b. Faster operations and troubleshooting
c. Reduced workload
d. All of the above

2. Which of the following is not a feature of the Python language?

a. Interpreted
b. Open-source
c. Object-oriented language
d. Only works in Linux systems

3. What is the extension of a Python file?

a. .Python
b. .pyt
c. .py
d. .pyth

4. How to write a string in print function with Python version 3?

a. print Welcome to Network Automation
b. print "Welcome to Network Automation"
c. print ("Welcome to Network Automation")
d. print "(Welcome to Network Automation)"

5. Which command is used to download and install third-party modules?

a. pip install netmiko
b. pip download netmiko
c. pip add netmiko
d. pip configure netmiko

Answer
1. d
2. d
3. c
4. c
5. a

Questions
1. What is the benefit of using network automation for a company and

for an engineer?
2. How is Python different from other high-level programming

languages?
3. What is the process of importing third-party modules in Python?

T

CHAPTER 2
Python Basics

his chapter will focus on the basics of the Python programming
language. This chapter will explain how to write simple Python scripts.

We will write our first script examples and learn basic functions, data types,
statements, and conditions in this chapter. We will build network
automation scripts with the data types and statements that we will learn
about in this chapter.

Structure
In this chapter, we will cover the following topics:

Print and input functions
Data types

String and integer
String methods
List
List methods
Set, tuple, and range
Dictionary
Dictionary methods

Statements and conditions

If condition
For statement
While statement
Break and continue statement
Range statement
For else statement and nested loops

Try – except statement

Objectives
This chapter aims to introduce basic Python functions that we use in many
Python scripts. The chapter starts with print and input functions. It
continues with the most important data types in network automation: string,
integer, list, and dictionary and the methods that are used to manipulate the
data. We compare the difference between other data types. Finally, we focus
on conditions and statements like if, for, while, break, continue, range
function, for…else, nested loops and try…except statements. We will write
and explain several examples of these statements in detail.

Print and ınput functions
Before starting the Python basics, we can check two major and basic
functions in Python: the print function and the input function. We will
always use the print function to see the result of our codes. It’s kind of an
output of the result. Codes are written by functions in Python like in other
programming languages.
Functions are shortcuts to codes. Function is a block of code. When we
write a function to call, it runs the source code of a specific function.
For example, we have a print function, which is used to give the output
when we run a code. It’s just one word to call, but in the background,
Python runs the full code of the print function. The developer only writes
the function name, so the source code can be complex, but the usage is
quite simple for functions. We just call to use them. Our code will be much
simpler.
Another advantage of functions is that we can use them in repeatable things.
So, there is no need to write the full code of function many times. It’s
enough to just call the function with its name.

Print()
The print function is one of the simplest and most useful functions in
Python. It’s used to display or show the value that we want as output. Its

usage is also simple. After writing print as a word, we need to write an
object inside a set of parentheses; this object can be a variable or a value.
For example, we can write code for calculation of variables like a and b,
where a equals 10 and b equals 20. And c equals a plus b. If we write the
code like that, Python calculates c as 30. But we cannot see any output
because we didn’t call the c variable with the print function. So, at each
step of the script, we use the print function to see the result or even for
troubleshooting and debugging the issues in our code. We can call the print
function as many times as we need. As in example 2.1, we can call the c
variable and then the a variable, so the output is 30 and 10.
Example 2.1: Print function usage
a = 10
b = 20
c = a + b
print (c)
print (a)

Output:
30
10

There are many options to use the print function. We can write any
character as letters, digits or special characters under the parenthesis. To do
that, we must write all of them inside quotes:
print ("Hello World")

Output: Hello World
We can write multiple values by dividing them with commas. We still use
quotes in the beginning and at the end of the value:
print ("Hello", "World")

Output: Hello World
We can assign a value to a variable and call it inside a print function, like
in Example 2.1:
x = "Hello World"
print (x)

Output: Hello World

We can write some values and variables with a dividing comma. As in the
following example, values must be inside quotes, but if we call a variable,
we cannot use quotes. We just write the full name of a variable:
y = "World"
print ("Hello", y)

Output: Hello World
Another way is to use the + character instead of a comma. If we use a
comma, code adds space between the values automatically, but if we use
plus, it doesn’t add any space, like in the following example:
print ("Hello" + "World")

Output: HelloWorld
We write the Hello World value to display as output, like in all preceding
examples. And we have many options to do that. In the print function, we
can use characters with percentages and letters. This method is an old-style
usage in Python, but it’s still supported in Python v3. For example, in the
first print function, we write the value as This apple is red. So, output is
the same as the value. Alternatively, we can divide the red value and assign
it to a variable.
print ("This apple is red")
x = "red"
print ("This apple is", x)

Output: This apple is red
We can also call a variable with print function in Python inside a string or
value in quotes. To do that, we must use a special method. Since we cannot
use variables directly inside quotes, we write a percentage character and the
s letter to solve it for strings or letters as values. So, when Python sees %s as
a special character, it understands that it is the value of the x variable which
is red. The usage is also simple. We write %s inside quotes, and after that,
we write percentage with the variable. We can also write values instead of
variables. To do that, we can write the percentage with value as in the
second print function:
x = "red"
print ("This apple is %s" %x)
print ("This apple is %s" %"red")

Output:

This apple is red
This apple is red

We can also write %d for integers. We will focus on strings, integers and
other data types later in this chapter. We can call variables or integers, like
in the following examples. When we call an integer, we cannot use quotes.
We must write the values like variables:
x = 30
print ("10 plus 20 equals to %d" %x)
print ("10 plus 20 equals to %d" %30)

Output:
10 plus minus 20 equals to 30
10 plus minus 20 equals to 30

With Python version 3, we have a new method than percentage sign. We use
a curly bracket inside the print function, then we write .format after
quotes with dot and write the values inside parentheses. We can also use
multiple variables to call in a string. So, each curly bracket identifies the
value in the parenthesis of the format method by order. So, in the second
print function, after This, curly brackets call for the x variable, and after
is, curly brackets call for the y variable. The usage of this method is
different but easier than that of the percentage sign. The result is the same.
x = "apple"
y = "red"
print (" This {} is red " .format (x))
print (" This {} is {} " .format (x,y))

Output:
This apple is red
This apple is red

Another usage of the format method is to write the f letter at the beginning
of the quote and write the variable in quotes inside curly brackets. This
usage makes it easier to write and handle an issue. The result is still the
same as the other examples:
x = "apple"
y = "red"
print (f"This {x} is red")
print (f"This {x} is {y}")

Output:
This apple is red
This apple is red

In old usage, we must mention if it’s string or integer as %s or %d or other
data type. But with this usage, we don’t need to mention the data type.
Python understands it by itself. So, for integers, we directly write .format
at the end of the quote or write f at the beginning of the quote:
x = 30
print ("10 plus 20 equals to {}" .format(x))
print (f"10 plus 20 equals to {x}")

Output:
10 plus 20 equals to 30
10 plus 20 equals to 30

Input ()
The input function is also a basic Python function that we use. The print
function displays the output of a value. So, data written in the code, shown
to the user. The input function reads the data that is entered by the user via
the keyboard and saves it to a variable. So, it’s the opposite of the print
function. The input function is used when a user needs to add any data to a
program. This could be an IP address or password to log in to a device for
network engineers.
The usage of the input function is also similar to that of print. We input
function names in parentheses, and we can assign this function to a
variable. Here, we assign the input function to the x variable:
x = input ()

We can also write something that can be understandable for us. As shown in
Figure 2.1, when we run the code, it asks for user input in the Run section in
Pycharm. If we write the code in cmd or terminal, the program goes to the
following line to wait for the input that you will enter.
x = input() indicates that a simple cursor blinks on the interactive
command console when the program is executed. Whatever we enter here is
assigned to x. We write Hello World and press the Enter button on the
keyboard. So, the input value is set to the x variable because we assign an x
value to the output of the input function. We get the value of the x variable,
and it’s time to display the x variable to see the output of the code. So, we

write a print function to call the x variable. Output is Hello World as the
value of the x variable:
x = input ("Enter the value: ")
print (x)

Figure 2.1: Input Function Example

In Example 2.2, we write an example to get the IP address, username and
password data from users. When we run the code, the program asks for
three entries for those variables input. Each time we enter data and press
Enter on the keyboard, the program saves them to variables as IP, user and
password. And finally, we can write a print function to display all these
values. In the print function line, we use \n 2 times. \n creates a new line
in Python; it’s similar to the Enter key on the keyboard. So, we can see the
output clearly in Figure 2.2 with three lines of output.
Example 2.2: Getting IP address, username and password information with
input function
ip = input ("Enter IP Address: ")
user = input ("Enter Username: ")
password = input ("Enter Password: ")
print (f"IP Address: {ip} \nUsername: {user} \nPassword:
{password}")

Figure 2.2: Input Function Output of example 2.2

Data types
In programming, one of the basic and most important sections are data
types. Each value or data has its own type. All data types have different
purposes and features, so we need to know each of them to use in our
scripts in the correct definition.
Anything written in a single quote, like 'hi'; double quotes, like "hi";
triple quotes, like '''hi''’; or """hi""" is a string.
x = "5" # the value stored in x is string
x = 5 # the value stored in x is integer
y = x # here x is a letter but not a string. It's a variable

In Python, we create variables, and those variables store values in one of the
data types in Python. It can be anything. The easiest way to find the data
type of a variable is to write the type() function. We need to write a type of
function with the variable or value that we want to know the data type of
inside parentheses. We can display the output of type with the print
function:
a= 10

b= "Hello World"
print (type(a))
print (type(b))

Output:
<class 'int'>
<class 'str'>

The most common data types that we use in network automation are string,
integer, list, dictionary, and range. In addition to these data types, we have
float, complex, tuple, set, and frozenset data types and more. These are also
used in Python programming, but we rarely used them in our network
automation scripts:

Text sequence: String
Numeric types: Integer, Float, Complex
Sequence types: List, Tuple and Range
Mapping type: Dictionary
Set types: Set, Frozenset
Boolean operations: And, Or, Not
Binary sequence types: Bytes, Bytearray, Memoryview

All of these data types have special features to use in coding. We check the
basics of some important ones with examples.

String: It’s a simple text data type. x = "Hello World"
Integer: It’s used for positive and negative integer numbers (…, -1,
-2, 0, 1, 2, …) x = 52

Float: It’s used for float numbers. x = 3.6
List: It’s used to store multiple values or data in a single variable.
Each item can be any kind of data type. Strings and numeric data types
can only store one value inside a variable.
x = ["cat", "dog", "bird"]

Tuple: It’s similar to a list. We will check the difference in the
comparison chart later in this chapter. Instead of square brackets in the
list, we use parentheses for tuples.
x = ("cat", "dog", "bird")

Dictionary: We can store multiple items in a dictionary as mapping
data types. We have keys and values that are attached together in an
item.
x = { "Animal" : "Bird", "type" : "Parrot", "color" : "Red"
}

Set: It has features similar to those of lists. They are created with
unordered items and immutable data types.
x = { "cat", "dog", "bird" }

In Table 2.1, we make the comparison table for list, tuple, set and
dictionary.

Comparison List Tuple Set Dictionary

Can change
value

Mutable Immutable Mutable Mutable

Usage [items] (items) { items } { items }

Keep duplicated
values

YES YES NO NO

Orderliness Ordered Ordered Unordered Unordered

Parameters Values Values Values Keys and Values

Table 2.1: Comparison of List, Tuple, Set and Dictionary Data Types

We can change values in a list, set and dictionary, but we cannot chage them
in tuples. We use square brackets for lists, parentheses for tuples, and curly
brackets for set and dictionary.
We can store duplicate or the same items in a list and tuple, but in set and
dictionary, they must be unique. List and tuple are ordered, while set and
dictionary are unordered. So, in lists, we can call the second or third item,
but we cannot do it in dictionary. We can call according to the keys.
In list, tuple and set, we have values, and in dictionary, we have keys and
values.

String and integer
String is a sequence of characters. It’s a text base data type. String variables
can store characters as alphabetic characters, numbers, spaces and also

special characters or signs. There are a couple of usages of the string data
type.
We can use strings inside double or single quotes. Their usage is the same
and output is also the same for Python. If we print the following two
variables and run: the code, the output of the x variable and the y variable is
same.
x = "Hello World"
y = 'Hello World'

We can use double quotes in a double qouted string, but we must add a \
(backslash) before the double quote. It’s also same for single quotes:
x = "Writing codes with \"Python\" is so easy"
x = 'Writing codes with \'Python\' is so easy'

We can use strings inside three times single quotes or three times double
quotes. If we have a multiline string, we cannot write it in single or double
quotes. In this situation, we must write three times single or double quotes,
and we can write multiple lines inside them. If we write the following
example with only a single qoute or double quotes, the program throws an
error.
x = """
Hello World
This is a simple Python code.
Thank you !!!
"""

The integer data type is used for positive and negative integer numbers (…,
-1, -2, 0, 1, 2, …). For integers, we directly write the integer number wihout
any quotes. For example, if we write the x variable and set a value as 10, x
automatically becomes an integer. But if we write the value in quotes, it
becomes string.
Example 2.3: Find the data type of a variable
x = 10
y = "10"
print ("Data type of x = ", type (x))
print ("Data type of y = ",type (y))

Output:
Data type of x = <class 'int'>

Data type of y = <class 'str'>

String methods
For each data type, Python has different methods or functions to modify or
manipulate the data. In the string data type, we have too many methods over
40. We can use them to manipulate the strings. In this chapter, we will focus
on the most used methods that can help us with writing automation scripts:

len (string): The len method is used to find the length of a script. It
counts the quantity of all characters. It could be alphabetical
characters, digits, space or any special character. To use this method,
we need to write len and then, inside parentheses, we need to write a
string or variable that is also a string. As in the following example, x is
a string variable. We understand that the value is inside double quotes.
When we write len(x), it returns the value of the x variable, which is
Hello World. This string has 10 letters and 1 space, so the length of
this string is 11. If we print len(x), we can display the output of the
returned value as 11, or we can write a string directly inside the len
method. Both usages have the same result:
x = "Hello World"
print (len (x))
print (len ("Hello World"))

Output:
11
11

string.upper (): Upper methods are used to replace all capital
letters. To use this method, we first write the string or the string
variable and after the dot, we write the upper method in parentheses. If
we use the x variable as Hello World, only H and W are capital letters.
This method changes all the letters to capital letters, but the x variable
is still the same. There is no change in it because all these methods
return new values. They don’t change anything in the original variable
or string. In the following example, we assign the method output to the
y variable. So, if we display x and y with the print function, we can
see that the value of the x variable is still unchanged, but the value of
the y variable has a value that the upper method returns.

x = "Hello World"
y = x.upper()
print (x)
print (y)

Output:
Hello World
HELLO WORLD

string.lower (): This has the exact opposite function of the upper
method. It is used to change all letters from capital to small. In the x
variable, we have H and W in capital letters, so the new value must be
all small letters. If we use the same code as earlier, only replace upper
with the lower method, the value of y is hello world.
x = "Hello World"
y = x.lower()
print (x)
print (y)

Output:
Hello World
hello world

string.strip (): The usage of the strip method is the same as that
of the upper and lower methods. We write string or string variable and
then dot and strip in parentheses. This method deletes spaces at the
beginning and ending of a string and returns the new value. In the
following example, we have spaces at the beginning and end of x
variable’s value. We assign the returned value to y, so if we print y, we
can see that there is no space at the beginning and at the end, but we
still have space between words, such as “Hello” and “World”.
x = " Hello World "
y = x.strip()
print (x)
print (y)

Output:
Hello World
Hello World

string.replace (): The replace() function replaces the first
argument in the string with the second argument. To use it, we need to

write a string or string variable and replace the method with
parentheses, and we need to divide both with a dot. Finally, we need to
write old values and new values inside parentheses by dividing them
with commas.
In Example 2.4, we replace the first argument, He, with the second
argument, Te, in the x variable and assign the output to the y variable.
The program checks whether the H and e characters are inside the
target string, which is x. However, these letters must be there together
with the order.
Example 2.4: Replace characters in a string with the replace method
x = "Hello World"
y = x.replace("He", "Te") #'He' is replaced with 'Te'
print (y)

Output:
Tello World

If we write the following example and try to find “Wl” together, we
will have no match in the x variable even though we have “W” and “l”
in different places. So the replace method cannot change anything on
the x variable, and the result of y is equal to x.
x = "Hello World"
y = x.replace("Wl", "Te")
print (y)

Output:
Hello World

string.split (): The split method is used to split the string into a
specific character. After that, it returns an output as a list data type. So,
the input is a string, but the output is a list. We again have the x
variable. The target character must be written inside parentheses after
split. This could be a string or a string variable.
In the following example, we write the o character, but this could be a
word or multiple characters. So, each time the program matches the o
character in the source value, it splits from there, and each part is
written with different items in the list. And the o character is removed.
In the following example, we have two of the o characters. The
program matches, and it removes the o character and divides it into the

items in a list. The output is ['Hell', ' w', 'rld'], which is a list
of three items:
x = "Hello world"
y = x.split("o")
print(y)

Output:
['Hell', ' w', 'rld']

List
One of the most important sequence data types for network automation is a
list data type. We will use it in almost every automation script, so it’s quite
important to understand the logic of this data type. Some basic features of
the list data type are mentioned here:

Lists are sequences of arbitrary objects. Each object is an item.
Items are ordered and changeable in a list.
The list allows duplicate items, so there could be multiple same items
in a list.
All the items in the list are divided by commas.
Each item has a unique index number in a list. Index numbers start
from 0.
Lists are created in square brackets, and all items are added inside
these square brackets.
We can also create lists inside a list.

x = [item1, item2, item3, item4, …]

In the previous example, we have the x variable as a list. There are items
divided with commas, and all items are inside square brackets:
x = ["Lion", 42, "Panda", "42", "snake", ["1", " 2 ", " 3 "]
]

Our first item is Lion as a string. Then, we have 42, which is an integer.
Then we have panda as a string, and then we again have 42, this time as a
string. Since we use it inside double quotes, we have characters as 4 and 2.
Then, there is a string as snake. Finally, there is another list inside of this
list.

We print x square brackets and 0. Code gets the first item in the list. The
item index starts from 0. Our first item is Lion, so the output is Lion. In the
second example, we print the third item as x[2], which is Panda. In the
third example, we want to print the second item from right to left or from
the end of the list. So, if we write minus 1, the code gets the last item from
the list. It receives the item in reverse ordering, from right to left. The minus
2 is a snake item, so we can search for an item in the list from the
beginning or end.
print (x [0]) Output: Lion
print (x [2]) Output: Panda
print (x [-2]) Output: snake

This time, we check the data type of items in a list. For that, we use the
type function. Here, we print the data type of the second item in the x list as
x[1]. It’s an integer. If we check the fourth item with x[3], it’s a string. If
we check the last item in the list, we can write x[-1] or x[5], and the result
is the same. It’s a list.
print (type (x [1])) Output: <class 'int'>
print (type (x [3])) Output: <class 'str'>
print (type (x [-1])) Output: <class 'list'>

Now, we print x[0:3]. It means that print items from first to fourth item
(but the fourth item is not included), so from the first item to the third. The
output is ["Lion", "42" and "Panda"]:
print (x [0 : 3]) Output: ['Lion', 42, 'Panda']

We can change all items of a list in reverse ordering. To do that, we write
double colon and minus 1 as x[::-1] inside square brackets:
print (x [::-1]) Output: [['1', ' 2 ', ' 3 '], 'snake',
'42', 'Panda', 42, 'Lion']

Replacing items: Suppose we have a list as x variable with three
items, which are “elephant, turtle, hamster”. We can change or
replace any of the items on the list. To do that, we write list variables
with square brackets. Inside square brackets, we write the index
number of the item that we want to change. In the following example,
we write 1. So it’s the second item in the list: turtle. The second item
is replaced with fish as a string, so the new value of the x variable is
["elephant", "fish" and "hamster"].

x= ["elephant", "turtle", "hamster"]
x [1] = "fish"

Output: ["elephant", "fish", "hamster"]
Check item existence: We can also check whether or not an item
exists in a list. We can check its existence with the if condition. In
this code, we said that if there is a hamster item inside the x variable,
print Yes. Because the hamster item is included in the x variable, the
output is Yes. If we write fish instead of hamster, there is no output
because the condition does not match. In the following code, after the
if condition, there is a space in the following line. It’s an indentation
in Python. The following line of the statements or functions starts with
spaces in Python. If we don’t add space, the code understands that we
exited from the statement. We will check the indentation mechanism
in this chapter’s Statements and conditions section.
x= ["elephant", "turtle", "hamster"]
if "hamster" in x:
print("Yes")

Output: Yes
Create an empty list: We can create empty lists. There are two
options to do that, and both have the same result. We can write a list
with empty parentheses and assign it to a variable, like the x variable
in the following example. Alternatively, we can write empty square
brackets and assign it to a variable. If we print the variable, the output
is an empty list.
x = list()
y = []
print (x)
print (y)

Output:
[]

[]

Merge lists together: We can merge or join different lists. We create x
and y variables as lists. To merge two list variables together, we just
add them with a plus sign. In the following example, we create a new

variable z for the calculation. If we print z, the result is a list with two
items that come from x and y.
x = ["Lion"]
y = ["Elephant"]
z = x + y
print(z)

Output: ['Lion', 'Elephant']

List methods
There are many methods in list data type to manipulate it. We will focus on
the most commonly used ones that we need in network automation:

list.append (item): Append method is used to add an item at the
end of the list. To use it, firstly, we write the list variable, and after the
dot, we write the append method. Then, we write the new item inside
parentheses that we want to add at the end of the list. In the following
example, we have three items: fruit, vegetable, water. We want
to add coffee string to the end of the list, so we write
x.append("coffee") string inside parentheses. We add a new item
with this method. We will use the append method often for our scripts
in loops to add new items at the end of the lists later in this chapter.
Example 2.5: Add new items end of the list with the append method
x= ["fruit", "vegetable", "water"]
x.append ("coffee")
print(x)

Output: ['fruit', 'vegetable', 'water', 'coffee']
list.insert (index, item): The insert method inserts an item at
a particular index. In the following example, fruit is currently at
index 0, and vegetable is at index 1. When we insert tea as index 1,
all items after index 0 are shifted. So, in the output, tea” is at index 1,
and vegetable is at index 2.
x= ["fruit", "vegetable", "water"]
x.insert (1, "tea")
print(x)

Output: ['fruit', 'tea', 'vegetable', 'water']

list.remove (item): Remove method is used to remove the first
match item in the list. In the following example, we have four items:
fruit, coffee, water, fruit. We write the x.remove method and
fruit as the target string match. In the list, the fruit item is used
twice, so there are two matches of this string. However, the remove
method removes only the first match item in the list; so, the output of
x variable is coffee, water, fruit.
x = ["fruit", "coffee", "water", "fruit"]
x.remove("fruit")
print(x)

Output: ['coffee', 'water', 'fruit']
list.pop (index): This method is used to remove a specific index
in the list. Instead of the remove method, the pop method uses the
index number to delete an item. In the following example, we write
x.pop with 0 inside parentheses. It means remove item 0, which is the
first item in the list, so cat item is removed from the list.
x = ["cat", "dog", "monkey"]
x.pop (0)
print(x)

Output: ['dog', 'monkey']
If we don’t write any index inside parentheses, the code deletes the
last item in the list. In this example, it’s monkey.
x = ["cat", "dog", "monkey"]
x.pop ()
print(x)

Output: ['cat', 'dog']
del list [index :]: The del method is used to delete the specific
items in the list. Unlike the pop method, del can delete a bunch of
items. It deletes the specific item. If we add a colon after item, it
deletes all the items starting from the specific index. In the following
example, we write 1: inside square brackets. The code deletes all
items from the second item to the last one. So, the output of this code
is only the first item, which is the dog string. We can also use the del
method with writing the index without a colon; it deletes the specific
item in the list, like the pop method.
x = ["dog", "monkey", "cat"]

del x [1 :]
print(x)

Output: ['dog']
list.clear (): The clear method is used to delete all the items in a
list so that the new value of the list is an empty list. In the following
example, code deletes all items inside the x variable, so the result of
print(x) is an empty list.
x = ["dog", "monkey", "cat"]
x.clear ()
print(x)

Output: []
list.copy (): The copy method is used to copy a list into a new list.
To copy a list to another, we write x.copy(). In the example, we copy
the x variable to the y variable. So the output of y is dog, monkey,
cat as a list.
x= ["dog", "monkey", "cat"]
y= x.copy ()
print (y)

Output: ["dog", "monkey", "cat"]
We cannot just write the equal sign to copy a list to another list, like a
= b. If we write this, it assigns a to b. If any changes happen in a or b,
it also changes in the other list, so it’s not an independent copy. In the
following example, if we delete item-1 in the x variable by the pop
method, the y variable is also changed, as shown in the output. So, to
copy a list as independent, the copy method must be used.
x= ["dog", "monkey", "cat"]
y= x
x.pop(1)
print (x)
print (y)

Output:
['dog', 'cat']
['dog', 'cat']

sum (list): The sum method is used to calculate the sum of items
in a list. The important thing is that all the items must be numeric data

type like integer or float. Otherwise, the program throws an error. In
the following example, we have a list including integers and float
items. We use the sum method with variable name as x inside
parentheses. The sum of the x variable is 50.1.
x= [4, 5, 7, 9, 10.1, 15]
y = sum (x)
print(y)

Output: 50.1
len (list): The len method is used to count the item quantity in a
list. It’s similar to the len method in string. In the following example,
we have three items, so we write len (x). The result is 3.
x= ["cat", "monkey", "elephant"]
y= len (x)
print (y)

Output: 3
list.count (item): The count method is used to count the items
inside a list. In the following example, we write x.count ("bird") to
count the bird string item in the x variable. The result is 2 because we
have duplicated items added twice in the list. We must write the exact
same item in the count method. For example, this method cannot find
anything if we write bir instead of bird. If we don’t write exact
characters in the item, the count result is 0.
x= ["bird", "horse", "elephant","bird", "monkey"]
y = x.count ("bird")
print(y)

Output: 2

Dictionary
Another important data type for network automation is a dictionary. We can
store multiple items in a dictionary as mapping data types. We have keys
and values that are attached to an item.

Dictionary is an unordered data type.
Dictionary is a changeable and indexed data type.
Dictionary has items, and each item has keys and values.

Dictionary items are written inside curly brackets.
Each key is separated from its value by a colon, and items are
separated by commas.
Keys are unique within a dictionary, but values can be duplicated. So,
we cannot create the same key in a dictionary, but we can create the
same value.
Values can be of any data type, but keys must be immutable data like
string, number or tuple.

{ key1 : value1, key2 : value2, key3 : value4 }

In the following example, we can see an x variable that is a dictionary. We
can understand that all data is inside curly brackets, and each item has two
sets of data, as keys and values, which are divided by a colon. From the
following example, animal and color are keys and must be unique. Lion
and Yellow are values.
x = { "animal" : "Lion", "color" : "Yellow" }

To find any value in a dictionary we can call the key of the value. In the
following example, after the x variable, we write the key animal inside
square brackets. This means finding the value that belongs to the animal as
a key. So, the result is Lion.
print(x ["animal"])

Output: Lion
We can also change values in a dictionary. Like in the list data type, we
write the key inside square brackets and equal to the new value. So, the
value of the color key is replaced with White.
x ["color"] = "White"
print (x)

Output: { "animal" : "Lion", "color" : "White"}
To change keys under a dictionary, we don’t have a one-line solution or
method, but we have a trick to solve it. If we want to replace the color key
with a key as type, we can write the variable with the new key and equal it
to the old key inside the square brackets. However, this code creates another
item with the same value. Here, the new key is type and the value is still
Yellow. And if we use the del method in the dictionary for the old key as
color, we can reach what we want as a result. As you can see from the

following code, there are two print functions. In the first print function, we
can see that the key type is added to the dictionary. And in the second, we
can see that the key color is removed from the dictionary.
x ["type"] = x ["color"]
print (x)
del x ["color"]
print (x)

Output:
{'animal': 'Lion', 'color': 'Yellow', 'type': 'Yellow'}
{'animal': 'Lion', 'type': 'Yellow'}

We can also add items in a dictionary. We just write a unique key and assign
it to a value. In the following example, we create an item with a key as an
age, and value as an integer 10. So, the program adds a new item with a key
and its value. Dictionaries are unordered. So, we cannot say that the item
was added at the end. There is no beginning and end of dictionary items.
x ["age"] = 10
print (x)

Output: {"animal":"Lion", "color":"Yellow", "age" : 10 }

Dictionary methods
Similar to list data type, in the dictionary, we have a different method for
every purpose:

dict.copy (): The copy method is used to copy a dictionary to
another dictionary:
x = {"animal" : "Lion", "color" : "Yellow", "age" : 7}
y = x.copy ()
print(y)

Output: {'animal': 'Lion', 'color': 'Yellow', 'age': 7}
del dict [key]: The del method is used to delete an item. In the
following example, we want to delete item with key as color. So, we
use the del method and write the target key inside square brackets in
the x variable. In the output, the item with the color key and the
Yellow value is deleted:
x = {"animal" : "Lion", "color" : "Yellow", "age" : 7}

del x ["color"]
print(x)

Output: {'animal': 'Lion', 'age': 7}
dict.pop (key): The pop method is used to delete items with
specified keys. It has the same function as the del method.
x = {"animal" : "Lion", "color" : "Yellow", "age" : 7}
x.pop ("age")
print(x)

Output: {'animal': 'Lion', 'color': 'Yellow'}
dict.clear(): The clear method is used to clear or empty a
dictionary. In the following example, we clear the x variable with
x.clear(). The output is an empty dictionary.
Example 2.6: Delete all items inside a dictionary with clear method:
x = {"animal" : "Lion", "color" : "Yellow", "age" : 7}
x.clear ()
print(x)

Output: { }

Dictionaries in “for” loop: We can call dictionary items with for loops.
We will learn about for loops later in the chapter. Now let’s check the items
in the dictionary for loop statements. For example, we have 5 values from
1 to 5. To loop these values, the output should be from 1, 2, 3, 4, and finally,
5. So each value is looped from beginning to end.
In the following example, we have a dictionary with three items. We can
print keys inside the dictionary with the for loop. The code finds keys in
the x variable and prints them. So, from the beginning, we have three prints
because we have three items, which are animals, color, and age.
for i in x:
print (i)

Output:
animal
color
age

In the second example, we want to collect only values. To do that, we must
write x.values () to call values. In the output, only values are shown:

for i in x.values () :
print (i)

Output:
Lion
Yellow
7

To find keys and values together, we use x.items(). And in the loop, we
have two items as a for keys and b for values. Results are shown as items.
Each item is listed with its key and value in order:
for a, b in x.items () :
print (a, b)

Output:
animal Lion
color Yellow
age 7

Statements and conditions
One of the key topics in programming is conditions and statements. We will
focus on if, for, while, break, continue, range function, for…else,
nested loops and try…except statements in this book. All of these will be
necessary for our scripts in network automation.

If condition
There are some characters to be used in an if condition. Table 2.2 lists all
the options for if statement equality:

Condition Sign Usage

Equal to = = a = = b

Not equal to ! = a ! = b

Greater than > a > b

Greater than or equal to > = a > = b

Less than < a < b

Less than or equal to < = a < = b

Table 2.2: If condition sign and usage

To write an if condition, we must write if followed by the condition. After
that, the line must be finished with a colon. If the if condition is matched,
we continue with the body of the condition, which is the statement in the
next line. In the following usage, there are some spaces before the
statement. It means we are inside an if condition. If we write without
space, the code gives an indentation error. So, indentation is very important
in Python. For if or any other statement, we must carefully write the code
with indentations if it’s necessary. For general use, it’s simpler to create
space with a tab. So, the code is clearer to understand:
If Condition :
Statement

In the following example, we create two integer variables: a is 33 and b is
200. We write that if b is greater than a, print b is greater than a. We
write if, then the condition with a greater sign. After that, we finish the line
with a colon. In the next line, we enter the statement with indentation. So,
when we run the code, because b is greater than a, the condition is matched,
and the statement starts. The statement is to print b is greater than a. It
prints this as an output. If the b greater than a condition is not matched,
there is no output because the statement doesn’t start as it is passed.
a = 33
b = 200
if b > a :
print("b is greater than a")

Output: b is greater than a
When the if condition is matched, it continues with its statement, but when
the if condition is not matched, we need to check another condition. In
Python, we have elif and else statements inside the if condition. elif is
similar to else if in other programming languages. We can write multiple
elif statements. It means that if the upper condition is not matched, the
elif condition will be checked. If it is not matched again, it continues with
the next condition.
The usage of if and elif is the same. In the first condition, we write if,
and for later conditions related to the if condition, we write elif. At the
end of the if condition, we can use the else condition. This means that if
all upper conditions are not matched, that statement will continue before

exiting the if condition. elif and else are optional conditions in the if
statement. In the following structure, if any of the conditions is matched, its
statement runs, and after that, it exits from the loop. It doesn’t continue to
check whether other conditions are matched.
if condition :
Statement

elif condition :
Statement
…

else :
Statement

In Example 2.7, there are two integer variables: a is 200 and b is 33. If b is
greater than a, it prints b is greater than a, else, if a is equal to b, it
prints a and b are equal, else, it prints a is greater than b. When we
checked the values of a and b, a is greater than b in the example. The first
condition fails, so the program checks the second condition, which also
fails; the program continues until the else condition. There is no condition
in else. So, in any way, it performs the action for else condition. Instead of
else, we can write the elif a > b : condition and write the print
function inside it. Because a is greater than b, this condition would match.
Example 2.7: Compare 2 integers with if condition
a = 200
b = 33
if b > a :
print("b is greater than a")

elif a == b :
print("a and b are equal")

else:
print("a is greater than b")

Output: a is greater than b
In this example, we have two scripts. The content of these scripts is similar;
only the if conditions are different. In the first script, we use the if
condition each time. So, there are four different if conditions that are all
independent. If we enter the value of the x variable as -1, the first and
fourth conditions will match. These conditions are connected, so we have
two different results in the output:

x = -1
if x < 10:
print("x is less than 10")

if x == 10:
print("x is equal to 10")

if x > 10:
print("x is greater than 10")

if x < 0:
print("x is less than 0")

Output:
x is less than 10
x is less than 0

But in the second code, we use the if and elif conditions. So, there is only
one if condition in the following code, and each elif statement is
dependent on the upper condition. When we enter the x variable as -1
again, this time only one match happens. The first condition is matched. So,
after the print function runs, the code exits from the if condition. So, the
output is different from the previous example; we can see the difference in
using the if condition.
x = -1
if x < 10:
print("x is less than 10")

elif x == 10:
print("x is equal to 10")

elif x > 10:
print("x is greater than 10")

elif x < 0:
print("x is less than 0")

Output: x is less than 10

For statement
We use for loops in repeatable actions. For example, suppose we want to
call all the items in a list, and we have 100 items inside a list. We need to
write the same code 100 times. But with the for loop, the code needs to be
written only once and can be put into a for loop. It makes the program
simpler with less code. We use for loops in many scripts for automation.

We always use for loops to connect many devices and several different
commands. It is a very important section for automation.
The for loop is a sequence statement. Each item in the loop runs in order,
and the loop continues until it reaches the last item. It returns with the next
value till the end. After the last item is proceeded, the loop is finished, and
control exits from the loop. In the next line, we enter the statements. This is
the body of a for loop:
for Variable in Iterable :
Statement(s)

There are three things to check in the for loop: variable, iterable, and
statement.

Iterable is a collection of objects like a list.
Variable is used to get the items from the iterable. In each loop, it gets
the next item until it gets all items in iterable.
Statement is the body of the loop. It is written inside the for loop, so
there is an indentation for the statement. It is executed for each item
inside of the iterable.

In the following example, we have three values in the animals list. The for
loop says that in the animals list, check the x variable and print in the body
of for loop as a statement. So, from the beginning, the for function prints
elephant and finishes the first round; in the next iteration, it gets monkey as
a new variable and prints monkey; in the last iteration, it gets cat as a new
variable and prints cat in the statement. After that, the loop is finished, and
control exits from the loop because there is no more values to check in the
animals list.
If we have hundreds of items in a loop, the code checks all of them one by
one. So, the for loop is checked from the first item to the last, with the x
variable. In each iteration or loop, the next item in the list is assigned to the
x variable until it reaches the last item in the iteration or list in the following
example. As a result, in the first iteration, x is elephant; in the second
iteration, x is monkey; and in the next iteration, x is cat. Statement is
print(x), so it prints those three values as output.
animals= ["elephant", "monkey", "cat"]
for x in animals :
print(x)

Output:
elephant
monkey
cat

The following example shows the sum of all items in the numbers list.
Instead of adding each item one-by-one, we can use the for statement:
numbers = [6, 5, 3, 8, 4, 2]
sum = 0
for x in numbers:
sum = sum + x

print(f"The sum is {sum}")

Output: The sum is 28
When we execute the script, the sum variable changes in each iteration of
the for statement:
sum=0 # Initially sum is 0 as an integer
1st Iteration:
x=6
sum=0+6 #sum is 6

2nd Iteration:
x=5
sum=6+5 #sum is 11

3rd Iteration:
x=3
sum=11+3 #sum is 14

4th Iteration:
x=8
sum=14+8 #sum is 22

5th Iteration:
x=4
sum=22+4 #sum is 26

6th Iteration:
x=2
sum=26+2 #sum is 28

While statement
Another statement is the while loop. The code finishes or exits from the
loop if the while condition is not matched. But if the condition is matched,
it continues with the body of the while loop. In each iteration or loop, it
returns to the beginning to check the while condition. It checks until the
condition is not matched. The program creates a loop with this statement.
The usage of the while loop is similar to that of the if condition. We have a
while loop and test expression, and the line is finished with a colon. In the
next line, we write the statements of the loop with indentation:
while Test_expression :
Body_of_while

In the following example, we create an integer x that equals 0. In the while
condition, we write that x is less than 6 and finished the line with a colon. It
means that the while loop will continue until the x less than 6 condition
is false or not matched.
In the body of while, we print out the x variable, and then add 1 to x. There
are two options to write that. We can write x = x + 1 or x += 1. So, we
add 1 to the x variable in each iteration:
x = 0
while x < 6 :
print(x)
x += 1

Output:
0
1
2
3
4
5

When we run the code, x assigns 0 an integer. The While loop checks
whether x is smaller than 6. If it’s true or matches the condition, it continues
with the body of the while. In this case, it’s true.
In the body of the while loop, the code prints x, which is 0. In the output,
we can see that first output is 0. Then, it adds 1 to x. So, the value of x is 1
now. The body of while is finished for the first loop.

Then, it checks the condition again. x is 1, so it’s still lower than 6. Now it
prints x as 1 and then adds 1 to x. This continues until x reaches 6. When it
reaches 6, the condition is not true or does not match anymore, so the code
exits from the loop.
We need to be careful while writing a while loop in the script. We can
mistakenly write a while loop for infinitive times, and it may never end. If
we delete the last line in the body of while, which is adding 1 to x, the value
of the x variable is 0 every time. So, the while loop never ends because the
condition always matches, i.e., x is less than 6.
x = 0
while x < 6 :
print(x)

Output:
0
0
…

We can write the print function out of the while loop without indentation.
This time, the code writes the final value of x, which is 5. After the code
exits from the loop, the print function can be executed like in the
following example. And the value of x is 5 when the while loop is finished:
x = 0
while x < 6 :
x += 1

print(x)

Output:
6

We can also write the print function after adding 1 to x. So, in the body of
a while, the code adds 1 to x and then prints x. The result starts from 1 to 6
because we change the order in the body of the while loop.
x = 0
while x < 6 :
x += 1
print(x)

Output:
1

2
3
4
5
6

Break and continue statement
Break statement: The break statement is used to exit the loop. For
example, we enter the loop, code checks the condition or the statement of
the loop, and if it’s false or not matched, it exits the loop. But if it’s true or
matched, we have another option to exit from the loop. In this situation, we
can use the break statement. So, in any part of the loop, if the code executes
the break statement, the code does not continue to the loop and exits
immediately.
We mostly use break statements with for and while loops. We put a break
statement inside the body of the loop, and we use them for a purpose. For
example, when we want the code to exit from the loop if something
matches our expectation inside the loop. We can use the if condition, i.e., if
the condition is matched, execute the break statement and exit from the
loop.

for variable in iterable :
body_of_for
if condition :
break

while Test_expression :
body_of_while
if condition :
break

Table 2.3: Break statement usage in for and while loop

In the following example, we have an animals list with three items: lion,
dog, monkey. We create a for loop and print each item with an x variable. If
we finished the line here, the result is lion, dog, monkey. But we want to
finish or exit the loop when the code matches a value as dog in the list, we
write the if statement that if x variable equals dog, break the loop.
In the second iteration, where the value of the x variable is dog, the code
exits from the loop. Because the if condition is matched, which is if x
equals to dog string, the condition is matched, and the break command is
executed.
animals = ["lion", "dog", "monkey"]

for x in animals:
print(x)
if x == "dog":
break

Output:
lion
dog

If we write if x equals to bird, then the break, the code doesn’t match
the if statement, so the for loop continues without breaking. The result is
lion, dog, monkey because there is no item named bird in the animals list.
Continue statement: The continue statement is used to skip the rest of the
code inside a loop for only the current iteration. Loop does not terminate
like a break statement but continues with the next iteration. So, with the
continue statement, we can stop the current iteration of the loop and
continue with the next iteration. The usage of the continue statement is the
same as that of the break statement. The break statement exits from the
loop, but the continue statement exits only from the current iterable loop.

for variable in iterable :
body_of_for
if condition :
continue

while Test_expression :
body_of_while
if condition :
continue

Table 2.4: Continue statement usage in for and while loops

In the following example, we use the continue statement instead of the
break statement. With using a break statement, the loop finishes when the
dog item is matched. But we use the continue statement. It only passes
when the if condition is matched with dog. In the for loop, x assigns the
first item in the animals list as lion. In the body of the loop, it checks the
if statement, and x is lion. So, it passes the if condition and prints the x
function. So, the code prints lion.
Then, x gets the dog item. It checks the if condition, which matches. So, it
checks the body of the if condition, which has a continue statement. So,
this section of the loop is finished, not continue to print function. Then, x
gets the third item, which is monkey. It does not match the condition of the
if statement, so it prints monkey like lion. As a result, we have the output
lion and monkey:

animals = ["lion", "dog", "monkey"]
for x in animals :
if x == "dog" :
continue

print(x)

Output:
lion
monkey

Finally, the break statement finishes all the loops and exits, but the
continue statement only finishes the current iteration and continues with
the next iteration.

Range statement
We often use the range function in the for loop in network automation to
loop integers with specific numbers. It returns a sequence of numbers. It
starts from 0, increments by 1 by default, and ends at a specific number.
There are three options to use the range function.
We can write range and write the stop value range (stop) as an integer
inside parentheses. In the following example, we enter 5 for the range
value. So, the for statement is executed from the first item of the range
function, which is 0 and continues until it reaches the first item, which is 4.
As a result, the output is 0, 1, 2, 3 and 4.
for x in range(5):
print(x)

Output:
0
1
2
3
4

We can write range with start and stop values range (start, stop) as
integers inside parentheses. The values are divided by a comma. In the
following example, we enter 2 as a start value and 5 as a stop value. So,
the output is 2, 3, and 4.
for x in range(2, 5):

print(x)

Output:
2
3
4

We can write range with start, stop and step values range (start,
stop, step) as integers inside parentheses. The range statement starts
from the start value to the stop value, incrementing by 1 by default. But
we can modify the incrementing value with the step parameter. In the
following example, it starts with 2 and finishes at 10, incrementing by 3. So,
the code gets 2, 5 and 8.
for x in range(2, 10, 3):
print(x)

Output:
2
5
8

For else statement and nested loops
The for…else statement: There is an option to use the else statement in
for loop. Normally, the else statement is used in if conditions to state that
if all conditions are not matched, the loop should continue with the body of
the else statement. But in the for loop, the else statement is used when the
for loop finishes. After the last item in iterable is used in the loop, the code
passes to the else statement. It’s an optional feature in the Python
language:
for Variable in Iterable :
Statement

else:
Statement

In the following example, we have a for loop with the range as 3. In the
body of the loop, we print the x variable. Then, we have the else statement
to print Finally finished. After the loop is finished, the code prints x as 2,
continues with the else statement, and prints “finally finished”.
for x in range(3) :

print(x)
else:
print("Finally finished!")

Output:
0
1
2
Finally finished!

Nested loops: Nested loop is a loop inside another loop. The first for loop
is called the outer loop, and the second for loop is called the inner loop.
We just use a for loop inside another for loop. From the first line, for
loop, or outer loop, we assign an item to variable-1 and continue with the
body of the first for loop. The body of the first loop has another for loop,
which is the second for loop or inner loop.
In the inner loop, it finds all items in iterable-2 and continues with the
inner loop statement. After the inner loop finishes, the code continues to
choose the next item in the outer loop. Then, it again checks for all loop
statements in the inner loop.
for variable-1 in iterable-1 : #Outer Loop
for variable-2 in iterable-2 : #Inner Loop
Statement(s)

In Example 2.8, we have two lists: types and tools. Both of them have
three items. We write the first loop or the outer loop. It returns all items in
the types list. In the body of the outer loop, we have another loop, which is
the inner loop. The inner loop returns all items in the tools list. And the
statement prints both variables in inner and outer loops as x and y. If we run
this code, it acts like this:
Example 2.8. Nested loops with outer and inner loop
types= ["beautiful", "yellow", "small"]
tools= ["pen", "book", "rubber"]
for x in types:
for y in tools:
print(x, y)

Output:
beautiful pen

beautiful book
beautiful rubber
yellow pen
yellow book
yellow rubber
small pen
small book
small rubber

In the outer loop, x gets the first item as beautiful. Then it continues to the
second line, which is the inner loop. y gets the first item of the inner loop,
which is the pen. In the next line or the inner loop’s body, the code prints x
and y, so the output is beautiful pen. The first iteration of the inner for
loop finishes, but in the outer loop, the statement hasn’t finished yet. y gets
the second item in the inner loop as the book and prints beautiful book.
Finally, y gets the third item as rubber and prints beautiful rubber.
Now the inner loop finishes. It means that the outer loop’s first iteration is
finished, where it had the item as beautiful. So, the outer loop continues
with the second item. So, in the outer loop x gets the second item as yellow.
And in the inner loop, from the beginning, y gets the first item as pen and
prints yellow pen. This continues until all the items are executed in the
outer loop.
In the final iteration of the outer loop, the item gets a small value and
continues the same way with all inner loops. Finally, we have ninw lines of
output combining the inner and outer loops.
We use these nested loops many times in our network automation scripts. In
the outer loop, we write a list for the device IP addresses, and in the inner
loop, we write a list for the command list. The code gets one device IP and
connects it to the outer loop; then, it executes all the commands in the inner
loop and continues with the second device IP to execute all the commands.

Try…except statement
The try…except statement is generally used to catch errors in code, debug,
to catch exceptions. For example, we write a code and get an error
somewhere in our script that we cannot find. We can add a specific part of
the code inside this statement to catch the issue. We can write anything

understandable for us, like a print function that runs There is an error
in these lines. So if the code gives an output, we understand that there is
an error in that line.
In another example, we have a script that logs in five devices with SSH in
the for loop. And we cannot reach the third device in the loop because that
device has an SSH connection issue. If we run this code, we get an error
because the script cannot be finished; it fails. But if we write all statements
inside the try…except statement, we can continue the code until it is
finished and can print the issue device with its IP address that cannot be
reachable.
When the loop starts with the third device, it fails, so the except statement
is run. And it prints the IP address and says it is not reachable. Then, it
continues with the fourth device. So, we have two achievements here: our
code is finished successfully, and we can catch the third device that cannot
be reachable with SSH. So, in real-life scenarios, we can always use a try…
except statement. The try…except statement is similar to if statements in
some ways. We can also catch failures with the if statement, but it has
limits.
If the try statement fails, it continues with the except statement. If it’s
successful, it continues the code by passing the except statement. The usage
of the try…except statement is easy. We write try with a colon and then
write the body of the try statement. After that, we write the except
statement with a colon and write the body of the except statement.
Optionally, we can add another statement, which explains that the try
statement is successful.
try:
Body_of_try

except:
Body_of_except

else:
Body_of_else

In the following example, we create a string variable, Network Automation
with Python. In the try statement, we print a variable that we already
created in the upper line. Then, we write the except statement and print the
string Failed. In the try statement, the code runs without a problem, so the
output of this code is Network Automation with Python.

a = "Network Automation with Python"
try:
print(a)

except:
print ("Failed")

Output: Network Automation with Python
In the next example, we change the print function in the try statement.
This time, we print b as a variable, but there is no b variable in this code. If
we don’t write a try…except statement in this code, the code gives an error,
like name 'b' is not defined, and even if we have some other codes
after print b, the program doesn’t continue to execute them because of the
failure. But, if we write it with the try…except statement, the code still fails
in the try statement, so it continues with the except statement. This time, it
is not passed in the except statement. So, the output prints the function of a
string, which is Failed.
a = "Network Automation with Python"
try:
print(b)

except:
print ("Failed")

Output: Failed
In the Example 2.9, we write two print functions: print (a) and print
(b). When we run this code, the code processes the first line in the try
statement, which is print (a). There is a value of the a variable above the
code, so it gives the output Network Automation with Python. Then, it
continues to the next line. Now, it’s print b. It continues with an except
statement, which has only one line of code, that is, the print function of the
Failed string.
Example 2.9. Finding the issue code with try…except statement
a = "Network Automation with Python"
try:
print(a)
print(b)

except:
print ("Failed")

Output:
Network Automation with Python
Failed

In this example, we change the order of the body in the try statement. The
code starts executing the first line. There is no b variable in the code, so it
catches an error and then continues with the except statement. It doesn’t
check the next lines in the try statement. So, the output of this example is
different from that of the previous example:
a = "Network Automation with Python"
try:
print(b)
print(a)

except:
print ("Failed")

Output: Failed
In the final example, we use the else statement additionally. We write the
body of the else statement after the except statement. When we run this
code in a try statement, it prints a variable, and then it continues with the
else statement. It bypasses the except statement because there is no issue
in the try statement.
If the try statement is successful, it continues with the else statement. In
the example, we write the print function as a Successful string in the
body of else. As a result, the output has two lines, which are Network
Automation with Python and Successful.
a = "Network Automation with Python"
try:
print(a)

except:
print ("Failed")

else:
print ("Successful")

Output:
Network Automation with Python
Successful

Conclusion
In this chapter, we learned about the basic functions of Python: print and
input We compared the list, set, tuple, and dictionary data types, and we
introduced the basics and methods of string, integer, list and dictionary data
types. We also wrote several example scripts for these methods. We
introduced statements and conditions deeply and wrote example scripts for
if, for, while, break, continue, range, for…else, nested loops and try…
except statements. We learned the usage of these statements and learned
their syntax. We focused on the tricks and the important parts to use these
statements.
In the next chapter, we will continue with file handling, RE module, and
some advanced topics of Python, like functions and classes. After that, we
will introduce the connection modules with SSH and telnet protocols to log
in to real network devices. So, we will be ready to collect logs from
network and system devices and modify them for our purposes.

Multiple choice questions
1. What will be the output of the following code?

x = 4
for i in range(x):
x += 1
print (x)

a. 5 6 7 8
b. 1 2 3 4
c. 4 5 6 7
d. 2 3 4 5

2. Which of the following is not a dictionary feature?

a. Ordered
b. Changeable
c. Indexed
d. Each item has keys and values

3. What will be the output of the following code?

x = "3 + 5"
print (x)

a. 8
b. “8”
c. 3+5
d. “3+5”

4. What will be the output of the following code?
x = "In google search, Python is the best for in all
scripting"
x = x.replace ("in", "X")
print (x)

a. google search, Python is the best for X all scriptXg
b. In google search, Python is the best for X all scripting
c. In google search, Python is the best for X all scriptXg
d. google search, Python is the best for in all scriptXg

5. What will be the output of the following code?
x = [2, 33, 222, 14, 25]
print (x[-2])

a. Error
b. 25
c. 14
d. 222

Answers
1. a
2. a
3. c
4. c
5. c

Questions
1. Write a script to calculate the perimeter of the rectangle from length

and width parameters.
2. Write a script to convert degrees Fahrenheit to degrees Celsius.

Formula: Celsius = (5 / 9) * (Fahrenheit - 32)
3. Write a script to find the grade of a student according to input, like 70,

90, and 50 scores.

a. If the score is between 90 and 100, grade “AA”
b. If the score is between 70 and 90, grade “BB”
c. If the score is between 60 and 70, grade “CC”
d. If the score is below 60, grade “FF” (It can also same as

otherwise it’s “FF”; else statement can be used.)

CHAPTER 3
Python Networking Modules

This chapter will focus on file handling in Python language. We will use
new modules, like the OS module to modify files and directories, the RE
module to manipulate logs, and netmiko, paramiko, and telnetlib modules to
connect devices. We will focus on object-oriented programming in Python
language as functions, classes, and modules.

Structure
In this chapter, we will cover the following topics:

File handling

Open function
OS module
Word files
Excel files

RE modules

RE module functions
Special sequences
Sets in RE module

Advanced topics of Python

Functions
Creating modules
Classes

Objectives

We will explore Word, Excel, and text files in this chapter. We will also
open, close, and modify files with the OS module. We will learn about the
RE module so that we can manipulate logs of network devices and get the
specific data needed in network automation. Further on, we will move on to
advanced topics in Python, which are functions and classes. And we will
create custom modules to import to the scripts.

File handling
We always display outputs with the print function, but in a more advanced
way of showing results, we will use Word, Excel, and even text files. We
will create, modify, and delete files according to our expectations in
network automation scripts.

Open function
In Python, the open function is used for file handling. With this function,
we can open, read, append, write, create, and close files. We can change the
mode with some parameters to handle a file with our expectations. The files
can be in text or log format. Refer to Table 3.1:

Mode Description

"r" Opens a file for reading, gives error if the file does not exist, (default value)

"w" Opens for writing, truncating the file first

"x" Creates the specified file, returns an error if the file exists

"a" Opens a file for appending at the end, creates the file if it does not exist

"b" Change the mode of the file from text to binary mode

Table 3.1: The Open function parameters

Read mode: We use the “r” parameter in the open function to read a
file. This is the default mode of the open function. In the next
example, we try to open a “test.txt” file, which is in the same
directory as our script. We read the file and display the file as output
with a print function.
First, we assign an open function to the files variable. We write the
target file with its extension and the mode parameter inside the

parentheses of the open function. In this case, even if we don’t write
the r parameter, the code works fine because the default mode of the
open function is read mode as r. The target file can be in any text file
format that the open function supports.
In the first line, we open the file in reading mode. In the next line, we
read the opened file with the files.read() function and assign it to
another variable file_read. In this files.read() code, we call the
files variable. This variable equals open("test.txt", "r"). In the
last line, we print the file_read variable. So, we can display a text
file with this script.
files = open("test.txt", "r") #Open a file, same as,
files = open ("test.txt")
file_read = files.read() #Read a file
print(file_read) #Print file that we read

Before running the previous code, make sure to create a test.txt file
in the same directory as the code and fill the file with some strings:
test.txt
Hello World
This is Python Script

When we run the code, it shows the string of the test.txt file. The
output will be as follows:
Hello World
This is Python Script

We called the files variable with the read function. Instead of
writing the previous code, we directly wrote open(test.txt),
'r').read(), like in the given example. So, we didn’t call any
variable; we directly wrote the code that works with the read function.
But the following code is more complicated to write and understand.
So, we always assign some codes to variables and call those variables
with other functions. When we write the preceding code, the code
translates it by itself as the example following. So, both the codes are
the same. As we said, the earlier version is much better.
file_read = open("test.txt", "r").read()
print(file_read)

Append mode: We can append or add new entries to the current file.
If there is no file, it creates a file. For the append feature, we use the a

parameter. Its usage is similar to that of the read mode. We open a file
with the a parameter with the open function, and then we add the
write function with the new value. In the following example, after we
add strings to the file, we also read the file and print it. We write the
read function to read it after appending a string to display the final
content of the test.txt file. The write function doesn’t change
anything in the original file. It only adds new entries after the last
character in the original content. It doesn’t go to the next line, as
shown in the following output:
files = open("test.txt", "a")
files.write("Hello World")
files = open("test.txt", "r")
print(files.read())

Output:
Hello World
This is Python ScriptHello World

Write mode: We can also overwrite a file. Append doesn’t change
anything in the original content, it only adds new lines. But the w
parameter, which is also the write mode, deletes all the original
content and writes its new value. The usage of overwriting is similar
to that of append. We use the write function on both of them. Only
the open function parameter is changed. In append, we use a and in
overwrite, we use w as the write mode.
files = open("test.txt", "w")
files.write("This is new content !!!")
files = open("test.txt", "r")
print(files.read())

Output: This is new content !!!
Read by characters: If we run the read function with empty
parentheses, it reads the entire file content, as in the following
examples. If we write a number, like 10 in the following example, it
only reads the first 10 characters instead of all the characters in the
file. So, we can read some parts of the content in the target file.
files = open("test.txt")
print(files.read(10))

Close function: The close function is used to close a file. To use it,
we call a close function with empty parentheses with the variable
which we open the target file as files.
files = open("test.txt")
print(files.readline())
files.close()

Output:
Hello World

Create mode: Create mode is to create a file. We use the x parameter
in the open function to create a new file. When we run the following
example, we must see a new file as test2.txt created in the same
directory as our script running.
files = open("test2.txt", "x")

OS module
Python consists of modules and functions. One of the basic modules is the
os module. It’s generally used for operating system work, like deleting files
and folders, changing the name of a file, or changing the directory of a file.
There are also other features of this module:

Delete a file: We can delete files on our PC by Python scripting. To do
that, we can use the os module. To use the os module, we must import
it as import os. After that, we need to call the remove function from
the os module to delete a file. To call a function from its module, we
use module_name.function_name. So, in our example, it’s os.remove.
Inside the remove function, we write the target file with its extension.
When we run the code, we can see that the file is deleted in the current
directory.
import os
os.remove("test.txt")

Create a folder: We can create a directory or folder with the mkdir
function. We need to import the os module before using this function.
import os
os.mkdir("testfolder")

Delete a folder: We can delete a directory or folder with the rmdir
function. We need to import the os module before using this function.

import os
os.rmdir("testfolder")

Getcwd function: The getcwd function is used to find the full path of
the script running.
import os
print(os.getcwd())

Output:
D:\Examples\test

Listdir function: The listdir function is used to find all the content,
including files and directories, in the current path of the script. We can
specify the path inside parentheses if it’s different from the current
path. The code returns a list with all content. It’s working as a dir
command on Windows or ls command on Linux.
import os
print(os.listdir())

Output: ['example.py', 'test2.txt']

Word files
Python-docx module is used to create and modify word files in Python. It’s
a third-party module that is not built-in. So, to use this module, we need to
install it with the pip install Python-docx command. We can create
word documents, add headings, add paragraphs, change styles like bold or
italic, add pictures and tables, and add rows in the table. We can save all
these changes to a word file. We can do it without even opening a word file,
only with Python code.
To call a document, we use the document function from the docx module
docx.document(). To call each function, firstly, we must call the
document() function. Instead of writing this function each time, we assign
this function to the document variable. So each time we write document, it
means docx.document().
There are also other docx module functions, as shown in table 3.2. If you
need more functions to check for a specific purpose, you can check their
official website with the following link:
https://Python-docx.readthedocs.io/

https://python-docx.readthedocs.io/

Function Description

docx.Document () Call document function to use for other docx functions

add_heading Add a new header in the document with the option to change the
size from 0 to 9

add_paragraph Add a new paragraph

add_run Append characters (words, sentences) in a paragraph, with the
osption to change the style to bold or italics

add_picture Add a picture (JPEG or PNG format) in a document, with the option
to change the size

add_table Add table in a document in any size

cell () Add text inside a table

add_row Add a row in the table

save (file_name) Save all changes in the code to word with a file name

Table 3.2: Python-docx Module Functions

We can create word files, like in Example 3.1. For adding images, we need
to add a JPG file to the same directory with our script. When we execute the
code in Example 3.1, Python creates a word file named test.docx as we
save with this name in the last line of our code. When we open the word
file, we can see the following output. It starts with a big size header,
followed by a paragraph including default, bold and italic styles. Then, we
have a bullet list and a numbered list. Finally, we have a table where some
cells are filled with the inputs. Figure 3.1 is created by our script. In later
projects, we can create any kind of Word file by writing Python scripts
according to our demands.
Example 3.1: Create a Word file and modify with Python
import docx # Import Python-docx module
document = docx.Document() # Call document function to call
other functions

document.add_heading('PYTHON COURSE V1.0', 0) # Add
heading to word document

p = document.add_paragraph('We are learning ') # Create a
new paragraph

p.add_run('Python. ').bold = True # Add characters
in bold

p.add_run('for ') # Add characters in
default style
p.add_run('Network Automation.').italic = True # Add
characters in italic
Add 2 lines of bullet style text
document.add_paragraph('Lesson-1 Introduction', style='List
Bullet')
document.add_paragraph('Lesson-2 Installation', style='List
Bullet')
Add 2 lines of Numbered list
document.add_paragraph("What is Python?", style='List Number')
document.add_paragraph("How to install Python?", style='List
Number')
document.add_picture('logo.jpg', width=docx.shared.Inches(2))
Add Picture
document.add_heading('TABLE-1', 2) # Add Heading
with size "2"
table = document.add_table(rows=2, cols=2) # Add Table with
2 rows and 2 columns

table.style = document.styles['Table Grid']
cell = table.cell(0, 0) # Fill Table by cells
cell.text = "Python"
cell = table.cell(0, 1)
cell.text = "automation"
row = table.rows[1] # Fill Table by cells in
alternative way

row.cells[0].text = 'network'
row.cells[1].text = 'engineers'
row = table.add_row() # Add new row to table
document.save('test.docx') # Save all changes to
docx file

Refer to Figure 3.1:

Figure 3.1: Output of Example 3.1

Excel files
The openpyxl module is used to create and modify an Excel file. It’s also a
third-party module, like the Python-docx module. So, we need to install the
openpyxl module using pip install openpyxl. After the installation, we
can import the openpyxl module. Another option is that instead of
importing all the modules, we can only import specific functions of a
module. In the following example, we import the Workbook function from
the openpyxl module:
from openpyxl import Workbook

When we call the workbook function, we don’t write openpyxl.Workbook()
because we already called it in the previous line. If we only write import

Workbook, we must write openpyxl.Workbook () instead of writing
Workbook().
We assign the workbook() function to the workbook variable. Then, we
assign the workbook variable with active function to the sheet variable.
This two-function assignment is required to write codes more clearly in the
later sections. As the official document of the openpyxl module
(https://openpyxl.readthedocs.io/) says; there is no need to create a file on
the filesystem to get started with openpyxl. We just import the Workbook
class and start work. So, with a workbook, we create an Excel file.
workbook = Workbook ()
sheet = workbook.active
After that, we add values in Excel blocks. In the following example, we
choose A1 block and assign its value as Python, B1 is assigned Scripting,
A2 is assigned For Network, and B2 is assigned Automation.
sheet ["A1"] = "Python"
sheet["B1"] = "Scripting"
sheet["A2"] = "For Network"
sheet["B2"] = "Automation"

We can also change the sheet name with the title function. In the following
example, we change it to Test Page:
sheet.title = "Test Page"

We create our Excel file and modify it. Finally, we can save it to a file, like
in the Python-docx module. We use the save function with the workbook
variable that we created in the beginning. Inside the save function, we write
the filename with its extension.
workbook.save (filename="test.xlsx")

When we execute the code, Python creates a file with the mentioned
features and saves it in the same directory as our script. In Example 3.2, you
can find the full code of the preceding example.
Example 3.2: Create an Excel file and modify it with Python
from openpyxl import Workbook

workbook = Workbook ()
sheet = workbook.active
sheet ["A1"] = "Python"
sheet["B1"] = "Scripting"

https://openpyxl.readthedocs.io/

sheet["A2"] = "For Network"
sheet["B2"] = "Automation"

sheet.title = "Test Page"

workbook.save (filename="test.xlsx")

We can also read values from an existing Excel file. This time, we import
the load_workbook function from the openpyxl module.
from openpyxl import load_workbook

Then, we create a variable as test.xlsx string, which is an Excel file name
and extension that we created in Example 3.2. Then, we call the load-
workbook function with the filename:
filename="test.xlsx"
wb=load_workbook (filename)

Like in Example 3.2, we use the activate function and assign it to the
sheet variable.
sheet=wb.active

We create two variables: b1 and b2. In the first line, we directly write sheet
with A1 inside square brackets. A1 is the block name and number in the
Excel file. In the second line, we call the cell function with writing row
and column by numbers as row=1 and column=1. In both instances of usage,
we find the same block in the Excel file. The usage is different, but the
result is the same.
b1=sheet['A1']
b2=sheet.cell (row=1, column=1)

After we got the values, we printed the b1 and b2 variables. If we can
directly write the variable, we cannot see the value in the block. We see
<Cell 'Test Page' .A1> in the output, so we must write b1.value to get
the value in the specific block. The output is Python as string, which is the
A1 block value of the Excel file that we created in Example 3.2.
print(b1.value)
print(b2.value)
print(b2)

Example 3.3: Read data from the Excel file
from openpyxl import load_workbook

filename="test.xlsx"
wb=load_workbook (filename)

sheet=wb.active

b1=sheet['A1']
b2=sheet.cell (row=1, column=1)

print(b1.value)
print(b2.value)
print(b2)

Output:
Python
Python
<Cell 'Test Page'.A1>

RE modules
The RE module is one of the most important modules in network automation
for filtering data and logs. We can also find specific characters in files. Re
means regular expression. RE module is a third-party module, so we need to
install the module with pip install regex.

RE module functions
There are many re module functions. As listed in Table 3.3, we will focus
on four main functions of the re module in this book. They will be the most
useful ones for network automation. We must import re module to use all
functions in the re module:

Function Description

findall() Returns all matches in a list

search() Searches the string for a match, and returns the first match

split() Splits the string with a specific character

sub() Replaces the matched character with new values

Table 3.3: RE module functions

findall(): The findall function is used to find all matches in a
specific variable. When we use the findall function, we first write
the characters or variables that we are searching for inside the
parentheses. After a comma, we write the source string. So with the

findall function, we can find the specific values and return them in a
list. If no match is found, it returns an empty list as an output. So, the
input or source must be a string or byte data type. The result is always
a list data type.
import re
re.findall (Find_the_Characters , Source_String)

In the following example, we import the re module. We create a
string variable as a test. Then, we write re.findall in parentheses.
We write o and n characters as search parameters and test as the source
string inside parentheses. We assign this function to the x variable and
print it.
In this example, we try to find o and n characters together. The test
variable is a string, which is On Friday, I will study Python for
Network Automation. In this string, we have 3 of o and n together.
But in the first letter, O and n, O is capital. It cannot match our
condition. Since the Re module functions are case sensitive, the
condition must match the same characters. There are two on in the
string with the condition, so the function finds two of o and n in the
test string. It returns an output as a list. If it doesn’t find any matches,
it creates an empty list.
import re
test = "On Friday, I will study Python for Network
Automation."
x = re.findall ("on" , test)
print(x)
print(type(x))

Output:
['on', 'on']
<class 'list'>

search(): The search function is used to check for the first match in
the source string.
import re
re.search (Find_the_Characters , String_Name)

We have a test variable, which is I am learning Python for
network automation. We write the re.search() function with o and
n to find the target and test as a source variable. If we execute this

code, the result will be <re.Match object; span=(18, 20),
match='on'>.
We have o and n two times, but the search function only gets the first
match, which is in Python word.
import re
test = "I am learning Python for network automation"
x = re.search ("on" , test)
print(x)

Output: <re.Match object; span=(18, 20), match='on'>
In the preceding output, match is the value that we are searching for,
and span shows where the first matched value is. In this example, span
is 18 and 20. It’s the character index in the source string. The matched
characters are between the 18th and 20th characters. Finally, the
matched value is on.
If we print the x.start() function, it shows the matched value in the
first place, which is the 18th character. So, the result is 18:
print(x.start()) Output: 18
If we print the x.end() function, it shows the match value end place,
which is the 20th character. So, the result is 20:
print(x.end()) Output: 20
If we want to know how many characters are there in total in the
source string, we can use the x.endpos() function:
print(x.endpos) Output: 43
If we want to check only the span value, we can write x.span(). The
output shows it:
print(x.span()) Output: (18, 20)
Split(): The split function is used to split the string input into a list
by dividing with specific characters. We write the re.split()
function. Inside the parentheses, we write the target characters to
divide by, and the string or string variable as input or source. There is
an optional parameter to choose how many times the split function
splits the matched value with the condition. By default, it divides for
each match.
import re

re.split (Find_characters, String_name, (optional)
Number_of_times)

In the following example, we have a test variable as a string, which is
Network Automation. We write the re.split("o","test") function.
Inside the parentheses, we write the o string to match and the test
variable as a string value. If we print x, the output of the code returns
a list. So, we divide the string each time by a split function that finds
the o character. We have three instances of o in the test variable, so
three times divided, finally, we get 4 different items in a list.
import re
test= "Network Automation"
x = re.split ("o", test)
print(x)

Output: ['Netw', 'rk Aut', 'mati', 'n']
In the following example, we have the same split function, but this
time we provide the number of times optional value as 1. So, the
code finds all matches, but it only divides from the first match. Even
though we have three matches, only one of them is split. We have two
items in the output list instead of four. If we write a higher value than
the matched count, like in the example, we have three matches but
write five in the function, the optional value will make no sense. It is
eventually divided thrice.
import re
test= "Network Automation"
x = re.split ("o", test, 1)
print(x)

Output: ['Netw', 'rk Automation']
Sub(): The sub function is used to replace the matches with the new
values. We write the re.sub() function; inside the parentheses, we
write the original or current value, then the new value, and finally, the
source or input string or a variable that needs to be used for the sub
function. There is also an option to choose the number of times to
replace matches, like in the split function, as an optional parameter.
Instead of other functions like findall or split in the re module, the
sub function’s output is in string data type.
import re

re.sub (Find_characters, Replace_characters, String_name,
(optional) Number_of_times)

In the first example, we have the same test variable Network
Automation. Inside the re.sub() function, we write the current value
as o, then we write x as a new value, and finally, we write the source
variable. In the output, o is replaced with x thrice in the test variable,
and the output is a string data type.
import re
test= "Network Automation"
x = re.sub ("o" , "x" , test)
print(x)

Output: Netwxrk Autxmatixn
In the second example, we use the same parameters and add the
optional parameter as 2. So, the sub function only replaces the first
two matches of o with x.
import re
test= "Network Automation"
x = re.sub ("o" , "x" , test, 2)
print(x)

Output: Netwxrk Autxmation

Special sequences
In the RE module, there are special characters called the “RE Special
Sequences”. They can find all spaces or digits or only get the target
characters. So, they are very powerful to manipulate strings or find the
exact part from any kind of log. All these special sequences are used with
the backslash sign.

Special sequences Description

\A Returns a match if the specified characters are at the beginning of
the string

\d Only returns the digits in the string

\D Only returns non-digit values in the string

\s Only returns spaces in the string

\S Only returns characters except spaces in the string

\w Returns a match where the string contains any word characters
(characters from “a to z”, “A to Z”, digits from “0 to 9”, and
underscore)

\W Returns a match where the string does not contain any word
characters

\Z Returns a match if the specified characters are at the end of the
string

Table 3.4: Re module special sequences

From Table 3.4, there are lower case and capital letters with backslash
signs; these are opposites of one another. For example, lower d is used to
find digits, but capital D is used to find non-digits.
import re
test = "You can learn Python Scripting in 10 Weeks."

We have a string variable test, which is You can learn Python
Scripting in 10 Weeks. In the first example, we write \d. It finds all the
digits in the test string. We have 1 and 0 as digits in the string variable,
so it creates a list with items for each match. There are two items on that
list.
x = re.findall("\d", test)
print(x)

Output: ['1', '0']
In the second example, we write \D. It finds and returns anything like
characters from a to Z, spaces, and signs instead of digits. \D is opposite of
the \d.
x = re.findall("\D", test)
print(x)

Output: ['Y', 'o', 'u', ' ', 'c', 'a', 'n', ' ', 'l', 'e', 'a',
'r', 'n', ' ', 'P', 'y', 't', 'h', 'o', 'n', ' ', 'S', 'c',
'r', 'i', 'p', 't', 'i', 'n', 'g', ' ', 'i', 'n', ' ', ' ',
'W', 'e', 'e', 'k', 's', '.']

In the next example, we use \s. It finds all the spaces in the string and
writes each of them in a list with different items. We have seven spaces in
the string, so we have seven space items in output:
x = re.findall("\s", test)

print(x)

Output: [' ', ' ', ' ', ' ', ' ', ' ', ' ']
In this example, we use \w, which finds any characters from a to z, A to
Z, digits, or underscore.
x = re.findall("\w", test)
print(x)

Output: ['Y', 'o', 'u', 'c', 'a', 'n', 'l', 'e', 'a', 'r', 'n',
'P', 'y', 't', 'h', 'o', 'n', 'S', 'c', 'r', 'i', 'p', 't',
'i', 'n', 'g', 'i', 'n', '1', '0', 'W', 'e', 'e', 'k', 's']

In the next example, we write S\w. It finds a character starting with S, then
any characters a to z, A to Z, 0 to 9, or underscore, so the output is Sc.
Test = "You can learn Python Scripting in 10 Weeks."
X = re.findall("S\w", test)
print(x)

Output: ['Sc']
In the next example, we use \D to find anything except digits. In the
example, we said the match must start with S, and the result must include
the S character.
x = re.findall("S\D", test)
print(x)

Output: ['Sc']
This time, we use \D with a plus sign. The function matches until it reaches
a digit and stops. So the result of S\D+ is Scripting in until the first digit
match.
This time, in the first line, we use S\w+ with a plus sign for the x variable.
The plus sign means that it continues until the match condition fails. In this
example, after S, we have c. After that, we have r. It’s also a letter
character. \w matches characters from a to z, A to Z, digits, and underscore.
This continues with i,p,t,i,n,g. There is a space after g, so this does not
match the condition of \w. The result will be Scripting, starting with S and
finishing with g.
x = re.findall("S\D+", test)
print(x)

Output: ['Scripting in ']

In the second line, we write S(\w+) as the y variable and put \w+ inside
parentheses. So, we said that the match starts with S and continues if the
next character is a to z, A to Z, digits, or underscore. If it fails to match the
condition, finish the function. It is the same as the first line until now. Here,
we find a match for Scripting, but we write parentheses for \w+ matches.
The function only gets the part inside the parentheses, so it doesn’t get the S
character because it’s outside the parentheses. The output is cripting,
without the S character. So the function catches all the matches but only
returns the values inside the parentheses:
x = re.findall("S\w+", test)
y = re.findall("S(\w+)", test)
print(x)
print (y)

Output:
x => ['Scripting']
y => ['cripting ']

Sets in the RE module
In addition to special sequences, we have the sets in the RE module. Similar
to special sequences, sets can match specific predefined characters to
manipulate strings easier. RE module sets return a value for the match
condition.
Sets are used by parameters. Without sets, it will only match the exact
match together with the order. For example, if we write a match o,n, it will
check all the o,n characters in a string together by order. If we write o,n in
a set, it will check all strings with o or n. So, we can say that sets are the or
parameters to check the strings.

All RE module sets are always written with square brackets. We can
write any of the alphabetic characters for sets.
We can write any of the characters inside the square brackets. If we try
to match values from a to p, we don’t need to write all characters
between a and p. Instead of this, we add hyphens between the
characters and write them inside parentheses. We can also use hyphen
signs in digits.

We can use double sets. So, in the first set, we check digits from 0 to
5, and in the second, we check 0 to 9. So, this match starts from “0”,
“0” to “5”, “9”.
If we try to find the matches with the except statement, we use ^
characters.

There are some example usages of sets in Table 3.5:

Sample sets Description

[abc] Returns the value that matches of “a”, “b” or “c” in the string

[a-p] Returns the value that matches characters in the alphabetic order
from “a” to “p”

[^abc] Returns the value that matches anything except “a”,”b” or “c”

[012] Returns the value that matches 0, 1 or 2 as the digits

[0-9] Returns the value that matches all digits from 0 to 9

[0-5][0-9] Returns the value that matches all digits from 00 to 59

[a-zA-Z] Returns the value that matches any alphabetical character from “a to
Z”

Table 3.5: Re module sets examples

In the following example, we have the same string as the test variable. If
we write the findall function with o and n, it checks o and n together in the
string.
test = "You can learn Python Scripting in 10 Weeks."
x = re.findall("on", test)
print(x)

Output: ['on']
In the second example, we write the same match with square bracket, which
is a set. It checks o or n in target variable. If there is no square bracket, it
checks o and n. But in this example, it’s o or n. So we have two of o and
five of n in the string. The result has seven items:
x = re.findall("[on]", test)
print(x)

Output: ['o', 'n', 'n', 'o', 'n', 'n', 'n']

In the third example, we check digits from 0 to 9 with hyphen sign with
sets. We have two items: 1 and 0.
x = re.findall("[0-9]", test)
print(x)

Output: ['1', '0']

Advanced topics of Python
We can write our automation scripts in a basic or more advanced way. If we
use advanced features of Python in our scripts, they are more stable, require
less code, and are easy to troubleshoot. Functions and classes are essential
for advanced usage of the Python programming language, so we add these
in the following scripts. We can also create custom-designed modules to
call them anywhere in our code.

Functions
Functions are one of the most important parts of Python. They make our
scripts simple and clean. For example, we have some scripts with many
lines. We can write these codes each time we must use them, but it’s not
effective and not clear coding. So we create a function for that code once,
and each time we need that code, we call the function. We used many
functions. For example, we use the split function in the regular expression
module. Like in the remodule functions, let’s create a function. Remember
that functions are reusable anytime and anywhere.
To define a function, we write def and we write the function name in
parentheses. The line finishes with a colon. We write the body of the
function in the following lines with indentation. When we write a function
name with parentheses anywhere in the same code, we can call it:
def Function_Name () :
Body_of_Function

function_Name ()

In the following example, we create a test function in parentheses. Inside
the function, we just write the print function with the value of the Network
Automation string. After that, we write test in parentheses. We call this
function in a different part of the code. When we call the test function, in
that part of the code, it runs the test function and prints Network

Automation as the output. If the later lines are not in function indentation,
we can understand that the body of the function is already finished:
def test () :
print("Network Automation")

test ()

Output: Network Automation

Functions with parameters
We create functions with parentheses. When we define a function, we can
write variables inside parentheses. Then, in any part of the code, we call the
function with the value of the variable.
def Function_Name (Variable) :
Body_of_Function

function_Name (Value_of_Variable)

We define the test function with parentheses. Inside parentheses, we enter
a variable as platform. Inside the test function, we have only one line as a
print function. There is a string I am learning Python for plus a
platform variable. Then, outside of the test function, we write the test
function with the platform variable. In the first line, we write Network
Automation. So when we call this test function, it prints a function and
writes Network Automation when it sees the platform variable. In the
second line, we change the variable to myself. So we call the test function
twice, and we have two different outputs.
def test (platform) :
print("I am learning Python for " + platform)

test ("Network Automation")
test ("myself")

Output:
I am learning Python for Network Automation
I am learning Python for myself

Suppose we call this function 10 times. We write the function once, and we
call it 10 times in the code. If we don’t write a function, we need to write
this information again and again when we need it. It will create
maintenance problems and need too much coding. It’s not good coding. So
in our codes, we try to create functions for repeatable codes.

In the second example, we define the test function and the variable of this
function as x. Inside the function, we print the value for x multiplied by 2.
Outside the function, we call the test function with the value of x as 10. So
when we run this code, the output will be 20 because we have a print
function for 10 multiplied by 2, which is 20.
def test (x) :
print(x*2)

test(10)

Output: 20

Functions with default parameters
In the previous example, we added a parameter but didn’t set any default
value on it. In the next example, we can add a default value to the platform
parameter. If we call the test function without any values, it gets the
default value. But if we call it with a value, it uses the new value.
def test (platform = "Network Automation") :
print("I am learning Python for " + platform)

test ()
test ("myself")

Output:
I am learning Python for Network Automation
I am learning Python for myself

Call variables from functions
We can call variables outside of functions.

Example 3.4: Different usage of function variables

Case-1:
def test():
a=10
b=20
c= a+b
print (c)

Output:
print (c)
NameError: name 'c' is not
defined

Case-2:
def test():
a=10
b=20
c= a+b
return c
print (c)

Output:
print (c)
NameError: name 'c' is not
defined

Case-3:
def test():
a=10
b=20
c= a+b
return c
x= test()
print (x)

Output: 30

In Example 3.4, case-1, we have three variables: a equals 10, b equals 20,
and c equals a+b, which is 30. When we try to print the c variable outside of
the test function, we get an error that c is not defined. This is because we
called the c variable outside of the test function.
In Example 3.4, case-2, c is inside a function. Any variable in a function
has a local scope. Therefore, when c is printed outside, it says c is not
defined.
In Example 3.4, case-3, we call the test function outside the function, and
we need to assign it to a variable, which is x here. If we print the x variable,
the code calls the test function and prints the return value. We can reach
any variable from a function in this way. In this example, we can also write
print("test()"), and we will get the same result.

Example 3.5: Global and local variables of functions

Case-4:
def test():
a=10
b=20
c= a+b
return c
return b #Code is not
reachable
x= test()
print (x)
Output: 30

Case-5:
def test():
a=10
b=20
c= a+b
all = [a,b,c]
return all
x= test()
print (x[1]) #Call "b"
print (x[2]) #Call "c"
Output:
20
30

Case-6:
def test():
global c
a=10
b=20
c= a+b
test()
print(c)
Output: 30

In Example 3.5, case-4, if we try to reach multiple variables from the
function, we cannot write multiple returns. This is because when the
execution comes to the first return, it understands that there is an exit from
the function. So, the function finishes after the first return line. Any code
after the return is not executed. In this example, the return b line is not
executed.
In Example 3.5, case-5, to solve this issue, we can create a list inside a
function and add all the variables that we try to reach outside the function.
Then, we can write return the list variable. Outside the function, we can
call the test function and assign it to x. If we try to reach the b variable, we
can call x[1], which is the second item of the all list.

In Example 3.5, case-6, as an alternative to using return, we can call
variables outside the function with global variables. Inside the function, we
can write global with the target variable so that we can call this variable
from outside of the function. After we call the test function, we can call a
global variable in this code.

Creating modules
When we create a function, we can only use it in the same Python file by
default. We can create customized modules with functions, so we can
import those modules and call our functions.
In the following example, the testmodule.py file, we create a function as
test. We have the body of the function as one line of the print function.
We save the file with the .py file extension, which is a Python file format.
When we create another Python file for example.py, we cannot directly call
the test function from the test module Python file. We must import the
module or file first. After that, we can call a function from that module with
module_name.function_name. The test function has one parameter, so we
can write one parameter to call the test function Network Automation, like
in the example. We can call a function from another file, so we create a
module.
Example 3.6: Create a module and call a function from that module
testmodule.py
def test (platform) :
print("Hello " + platform)

example.py
import testmodule
testmodule.test ("World")

Output: Hello World
In this example, we have two different ways to call modules. We always
used the first example until now. In the second example, we import the test
function again. We don’t write testmodule.test to call it; we directly write
the test function. For example, if we need a single or a couple of functions
from the module, we can only call those functions. We can use from
module_name import function. When we call a function, we only write

the function name, as in the following example, without the module name.
Both usages are the same.
example.py
import testmodule
testmodule.test ("World")

Output: Hello World
example.py
from testmodule import test
test ("World")

Output: Hello World

Classes
Programming language has a philosophy of writing codes once and reusing
them efficiently. Object-Oriented Programming (OOPs) is a very
important section in programming. We use classes in almost all our Python
scripts. Classes are code templates for creating objects. To create a class, we
just write class class_name. We can write class names with or without
parentheses. The line is finished with a colon. In the next line, it starts for
the body of the class with indentation. We use classes in network
automation to make the code simpler, understandable for other engineers,
easy to troubleshoot and reusable.
Class Class_name():
Body_of_class

In the following example, we have a test function, inside which we run the
print function. If we run this code, there will be no output. We must call
the function to execute it:
def test () :
print("This is a function")

test ()

Output: This is a function
We write a test class that is a format similar to functions. Inside the class,
we run the print function. If this is a function, we need to call this function
in the code. But for class, we don’t need to call it. If we run the following
code, the result is the This is a class string. In classes, we don’t need to
call class instead of functions:

class test () :
print ("This is a class")

Output: This is a class

Conclusion
In this chapter, we learned file handling and RE modules to manipulate the
logs we collect from network devices. We can divide logs or find specific
keywords from the logs with the RE module. We learned to create custom
functions, classes, and modules for more advanced usage of Python
language. In later scripts, we always use those scripts. We created Word and
Excel files without opening them and made them with scripts.
In the next chapter, we will log in to network devices with SSH and telnet
protocols. We will collect logs from network devices and modify the data
we receive into a more readable format, like collecting CPU levels, version,
and model information.

Multiple choice questions
1. How can you delete the ‘test’ folder with the OS module?

a. os.remove ("test.txt")
b. os.remove ("test")
c. os.rmdir ("test.txt")
d. os.rmdir ("test")

2. How can you read five lines from a text file?

a. x = open("test.txt")
print (x.read(5))

b. x = open("test.txt")
print (x.readline(5))

c. x = open("test.txt")
print (x(5))

d. x = open("test.txt")
print (x.readline())

3. How can you find all the digits in x variable?

a. re.findall("0123456789", x)
b. re.findall("[09]",x)
c. re.findall("[0-9]", x)
d. re.findall("\s", x)

4. How can you import a function from a module?

a. import FUNCTION_NAME from MODULE_NAME
b. import MODULE_NAME
c. from FUNCTION_NAME import MODULE_NAME
d. from MODULE_NAME import FUNCTION_NAME

Answers
1. d
2. b
3. c
4. d

Questions
1. Find the phone numbers of the string given, including country codes:

x = "+44-1234567 (AA TELEKOM)/+33-7654321(BB TELEKOM)/+11-
1111111(CC TELEKOM)"
Output: ['+44-1234567', '+33-7654321', '+1-1111111']

2. Find all the small letters of the following string:w
x = "This is a Network Automation Example created by
Python."

CHAPTER 4
Collecting and Monitoring Logs

This chapter will focus on connection modules and script examples. We will
use netmiko, paramiko, and telnetlib modules to log in to network and system
devices by SSH (Secure Shell) and telnet protocols. We will use these
modules to collect data from multiple devices and modify it after logging in.
We will also create a custom IP address validation tool and subnet calculator.

Structure
In this chapter, we will cover the following topics:

Connection modules

SSH connection
Telnet connection

Collecting logs

Collecting version and device information
Collecting CPU levels
Finding duplicated IP address
Collecting logs with multithreading

Tools and calculators

IP address validator
Subnet calculator

Objectives
We must log in to the network and system devices to make automation by SSH
and telnet protocol. We often use paramiko, netmiko, and telnetlib modules to
connect devices with these protocols. We can connect one or more devices by
the for loop and execute many commands in one script, and we can also create
custom scripts to collect data from devices or create custom tools like a subnet

calculator. Additionally, we can use the parallelism feature of Python with the
multithreading module to log in to many devices simultaneously.

Connection modules
To simulate connection scripts in the next part of this book, we can use real
devices and network simulators like GNS3, which is a free tool. It’s
recommended to use test devices or simulators to test the scripts. Real network
devices have traffic, so it could be risky at the beginning of learning
automation. For Cisco or Juniper devices and more vendors, GNS3 can run
properly, and we can use the eNSP simulator for Huawei.
For later scripts, at least one network device is necessary, but it’s better to test
on multiple devices and improve yourself more deeply.
There are many options for networking modules in Python. Some of the most
popular and powerful ones are paramiko, netmiko, NAPALM, nornir, and
socket. There are plenty of options available for networking. You can choose
any of them for network automation; each has its own advantages and
disadvantages. During the course of the book, we will mainly focus on
paramiko and netmiko modules.
There are also automation softwares that can be installed on a PC or server to
make automation easier. Some of the most popular automation tools are Red
Hat’s Ansible, or Python modules such as Paramiko, RE, and threading.
There are other popular tools as well, like Puppet, Saltstack, and Chef.
We can download and install GNS3 and VM Tool by following these steps:

1. We can download the free GNS3 tool from its official website. We must
create a free account to download the tool, and we can install the tool on
Windows, MAC, or Linux.
https://www.gns3.com/software/download

2. After downloading and installing the tool on a PC, we need to download
the GNS3 VM from the following link. You need to choose the specific
VM to use. In this book, we use VMware Workstation Player, free for
non-commercial use. So, we download the GNS3 VM for VMware
Workstation and Fusion.
https://gns3.com/software/download-vm

3. Finally, we must download and install the VMware Player tool from its
official website.

https://www.gns3.com/software/download
https://gns3.com/software/download-vm

https://www.vmware.com/products/workstation-player.html
4. After all installations are finished, we must open the VMware player and

import the GNS3 VM from our PC in Figure 4.1 by clicking on Open a
Virtual Machine.

Figure 4.1: Importing GNS3 VM to VMware Tool

5. After we open the GNS3, from the Edit tab, we must open Preferences.
In Figure 4.2, we must click on Enable the GNS3 VM and choose the VM
engine to correct the VM tool. In the Settings tab, we must see GNS3 VM
as the VM name. Remember that the VMware tool must be opened. We
can apply the changes and close the window:

https://www.vmware.com/products/workstation-player.html

Figure 4.2: GNS3 Configuration

6. To verify whether the previous step is successful, we can check whether
the LED indicator of the GNS3 VM turns green, as shown in Figure 4.3.
If it’s not displayed or the LED indicator is red, the GNS3 VM
installation has failed.

Figure 4.3: Validation of GNS3 VM Installation

7. If the LED indicator of the GNS3 VM is green, we can add appliances.
We can enter the File tab and the Import Appliance button, and then we
can import the GNS3 appliance file from our PC. We can download the
appliance file from the following links. Each router model has a different
appliance file, so you must download the correct appliance file according
to your Cisco device file.
https://gns3.com/marketplace/appliances

8. You must have the Cisco router ISO file to combine the appliance file.
You can download the Cisco ISO files from Cisco’s official website with
your account.
http://www.cisco.com

9. After we install the correct appliance with the ISO file, the router is
added to the router list in the GNS3. We can create a new project and add
the new router. Then, we can start the router and log in to configure it.

SSH connection
One of the most used protocols to log in to network and system devices is the
SSH protocol. It’s a secure connection protocol with many encryption options
and protocol versions, such as version 1 and version 2, and SSH is much more

https://gns3.com/marketplace/appliances
http://www.cisco.com/

secure than the telnet protocol. We often use the paramiko and netmiko
modules to log in to the devices by the SSH protocol.

Paramiko module For SSH
There are options to make SSH and Secure File Transfer Protocol (SFTP)
connections to any network or system devices with the paramiko module. This
module has no support for telnet and File Transfer Protocol (FTP)
connections. We can log in to any device with a username, password, and port
number. We can execute show or display commands to monitor network
devices and collect logs and can also execute configuration commands to
change the configuration. Paramiko has some codes to connect a network
device and execute commands as it is a third-party module. Hence, we need to
install the paramiko module to project with pip install paramiko.
After the installation, we must import the paramiko module to our code.
import paramiko

We need to call the SSHClient function from the paramiko module for the SSH
connection. This function is a high-level representation of a session with an
SSH server. We assign this function to the client variable in the following
code. When we write the client variable in the code, we understand that we
call the SSHClient function.
client = paramiko.SSHClient()

When we try to log in to a network device for the first time, the our PC sends a
message to the network device to trust or not. This is an SSH protocol security
step. Once we click on the option to trust this device, it will never ask that
question again. In paramiko, we push to change the SSH authentication key
to Trust ALL with the set missing host key policy function and insert the
AutoAddPolicy function from the paramiko module. So, we can add untrusted
hosts and write the following code to pass that step with paramiko.
client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

We write the IP address, port number, username, and password by order with
the connect function. Thus, the code generates the connect information with
the connect function.
client.connect (IP ADDRESS, PORT, USERNAME, PASSWORD)

We write another paramiko module with the client variable as the
invoke_shell function. With this function, we request an interactive shell
session on this channel and assign this function to the commands variable.
Later, we will use this variable to execute commands on the network devices.

commands = client.invoke_shell ()

SSH connection to any network or system device is ready. Since we are inside
the device, it’s time to send or execute commands. These can be show or
display commands or any configuration commands in CLI according to
vendor or OS type. So we send commands to the device with the send
function, and then we use the invoke shell function to do that. After that, we
write the commands.send() function. Thus, the commands variable is assigned
to the invoke_shell function.
Inside of the send function, we write the command to run on the device. It
sends the command but does not push the Enter button. So, after the command,
we must write \n, which goes to the next line in Python programming.
Go to the next line means pushing the Enter button. So we send and run the
commands on the devices:
commands.send ("COMMAND \n")

Finally, after we send the command to the device, we need to receive some
output. We collect the outputs with the Recv() function. This function gets the
data from the currently active channel. If we write 20 as a nbytes value, the
code contains only the first 20 characters in the output. But, when we run show
running-configuration in a Cisco device, the output is very long, so we need
to enter high values to receive the output the device displays. Hence, we can
enter commands.recv(1.000.000) as a 1 million value or much higher.
output = commands.recv (NBYTES)

However, the received data format is in nbytes, so we need to change it to a
human-readable format as UTF-8 with the decode function. In the next
example, we will execute the decode function with UTF-8 format and assign it
to the output variable. If we print output, we can see all the output sent to the
network devices. The basic log collection or sending command of the
paramiko module is finished with this line:
output = output.decode ("utf-8")

We use seven different functions to log in to a device with SSH, which is a
little bit complicated, but we only change a few parts of these lines in the later
scripts, like the connect and send functions; the others remain the same. You
don’t need to understand at the beginning which function is used for what
purposes. Rather, it’s better to copy them and write the remaining part of your
code. When you write many scripts repeatedly, you will easily understand what
happens when we try to log in to a device in the background with the paramiko
module. If you want more details about the paramiko module, you can check

out the website www.paramiko.org, which is the official paramiko module web
page.

Connect 1 device with Paramiko
We can log in to a device with SSH and collect logs. Before writing the code in
pycharm, in this basic Example 4.1, we try to log in to a Cisco device and
collect version information with the show version command. After that, we
try to display the output of that command in Pycharm:

1. We start by importing the paramiko module and the time module. Time
module creates delays in seconds in the code:
import paramiko
import time

2. We write an SSHClient function for SSH connection:
client = paramiko.SSHClient()

3. We write set_missing_host_key_policy to pass the first login
authentication process:
client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

4. We enter the IP address, port number 22, the default port number of SSH
protocol, username as root, and password as a test:
client.connect("10.10.10.1", 22, "admin", "cisco")

5. We write an invoke_shell function to request an interactive shell session
on this channel:
commands = client.invoke_shell()

6. It’s time to send commands to the device and send the show version
command with \n:
commands.send("show version \n").

7. We call the sleep function from the time module. When we run a piece
of code, it executes the whole code very fast. We send commands to the
device and get the data with the receive function. For example, when we
execute the show run command in a Cisco device, it takes time to display
the output; it’s not instant.

8. So, we should add a delay after the line that we send the command to the
device. We can collect the entire output with this delay. If we did not add
any time delays, some parts of the logs might not have been collected.
That’s why we write some delays after the send command. In this
example, it is one second as 1.

http://www.paramiko.org/

9. After the send function, the program waits for 1 second and then
continues with the receive function. So we can get all the output
correctly. We can change the sleep function value at any time:
time.sleep(1)

10. We send the command and wait for a second. Now it’s time to receive the
data. We write the nbytes value as 1000000, so this code will receive
outputs with these nbytes. The value is quite enough to receive all the
output correctly.

11. Then, we decode the nbyte format to UTF-8, which is the human-readable
format. Finally, we can print the output as a string. Code displays the
output of the show version command of one device:
output = commands.recv(1000000)
output = output.decode("utf-8")
print (output)

In Example 4.1, we can log in to a single network or system device by the
paramiko module and execute any commands in the device.
Example 4.1: Connect to a single device with Paramiko
import paramiko
import time
client = paramiko.SSHClient()
client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
client.connect("10.10.10.1", 22, "admin", "cisco")
commands = client.invoke_shell()
commands.send("show version \n")
time.sleep(1)
output = commands.recv(1000000)
output = output.decode("utf-8")
print (output)

Running configuration commands with Paramiko
We can also execute configuration commands in the network devices with the
paramiko module:

1. To do that, we use the send function, like in the previous example. In
example 4.2, we try to configure a description of an interface in Cisco
Router.

2. Then we show the configuration of this interface: whether or not a
description is created. The beginning, until the send function, is the same
as in Example 4.1. After that, we run the configure terminal command
to enter configuration mode.

3. Then we run interface gigabitethernet 0/1 to enter interface mode
and run a description command to add or change the description of this
interface.
commands.send("configure terminal \n")
commands.send("interface gigabitethernet 0/1 \n")
commands.send("description TEST\n")
commands.send("do show run interface gigabitethernet 0/1
\n")

4. After that, we run the “show” command to check the related interface
configuration, and we run the sleep function and get the output.
time.sleep(.5)
output = commands.recv(1000000)
output = output.decode("utf-8")
print (output)

5. We didn’t enter the sleep function after each command. If you are
experienced in the CLI, many configuration commands are set instantly,
but some of them are set gradually. However, the show command displays
some outputs, so it always takes time.

6. It’s recommended to put some delays between commands. We will
discuss an alternative to using the sleep function in the later chapters.
We will write a script that checks whether output is finished, and the
program waits if not. We use it in a for loop. In this example, we will
keep this as simple as as we can.

7. You may think that we had to write a multiline code just to run one
command in a device. Running a command in CLI instead of a run script
is much faster in this situation.

8. However, if we run 10 commands in 100 devices and get some specific
data from them, doing this task in CLI is a waste of time. That’s why we
use network automation as network engineers.

Example 4.2: Running configuration commands in a single device with
Paramiko
Configuration change:

conf t
interface g0/1
description TEST
do show run interface gigabitethernet 0/1

Python code:
import paramiko
import time
client = paramiko.SSHClient()
client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
client.connect("10.10.10.1", 22, "admin", "cisco")
commands = client.invoke_shell()
commands.send("configure terminal \n")
commands.send("interface gigabitethernet 0/1 \n")
commands.send("description TEST\n")
commands.send("do show run interface gigabitethernet 0/1 \n")
time.sleep(1)
output = commands.recv(1000000)
output = output.decode("utf-8")
print (output)

Connect to multiple devices with Paramiko
In Example 4.1 and Example 4.2, we could log a device in with SSH and
collect many logs. But we have not tried to log in multiple devices yet; if we
try with those examples, we must write the same paramiko functions and send
the same commands multiple times. It’s not a good way to write code, and it
may introduce more errors in the code.
If we have 100 devices and 20 commands to run, or even a single command to
run, we must create 100 sessions in Secure CRT or in another SSH connection
tool. If you have a much larger network, over 1,000 devices, it’s almost
impossible. In this situation, we can use Python scripting to make things easier
for us.
We will just modify some parts in our last example to automate the code and
use loops for repeatable actions in the programming. Connecting and running
multiple commands in devices are repeatable actions, and computers are much
better than us for repeatable things. By using a for loop, we can connect many
devices.

In Example 4.3, we will use two loops as nested loops, i.e., inner and outer
loops. One of the loops is used for IP addresses to log devices in to each loop,
and the other one is used for the commands that we run in a single device each
time. So if we check the connection timeline, we must log in to a device, and
then we must run the commands. So, the first loop, which is the outer loop, is
used to connect to the device, and the second loop, which is the inner loop, is
used to send commands.

1. Import paramiko and time modules.
import paramiko
import time

2. Create a list of hosts for IP addresses of the devices. In the following
code, we have three IP addresses. For commands, we also create another
list as command_list for the commands that run in each device:
hosts = ["10.10.10.1","10.10.10.2","10.10.10.3"]
command_list = ["conf t","int g0/0","description NEW-TEST"]

3. Enter the outer loop and check the IP address from the hosts list and
make the connection. Then, continue with the body of the for loop,
which includes the inner loop. In the outer loop, write the function to
connect the device by executing the invoke_shell function. In the inner
loop, we get commands from command_list.

4. It chooses the first item in command_list and runs the body of the for
loop. After it finishes, it gets to the second iteration or item from the
inner loop. The inner loop continues until all items are chosen.

5. After all inner loop iteration is finished, the first statement of the outer
loop is finished. So, we collect and execute all these commands in the
first device. After that, outer loop gets the second item or iteration and
continues with the body of the for loop. This continues until all items in
the outer loop are completed. When we print output, we can see all
outputs for each loop.
#Outer Loop
for ip in hosts:
client = paramiko.SSHClient()
client.set_missing_host_key_policy(paramiko.AutoAddPolicy()
)
client.connect (ip,22,"admin","cisco")
commands = client.invoke_shell()
#Inner Loop

for command in command_list:
commands.send("{} \n".format(command))
time.sleep(1)
output = commands.recv(1000000)
output = output.decode("utf-8")
print (output)

Example 4.3: Connect to multiple devices with Paramiko
import paramiko
import time

hosts = ["10.10.10.1","10.10.10.2","10.10.10.3"]
command_list = ["conf t","int g0/0","description NEW-TEST"]

for ip in hosts:
client = paramiko.SSHClient()
client.set_missing_host_key_policy(paramiko.AutoAddPolicy()
)
client.connect (ip,22,"admin","cisco")
commands = client.invoke_shell()

for command in command_list:
commands.send("{} \n".format(command))
time.sleep(1)
output = commands.recv(1000000)
output = output.decode("utf-8")
print (output)

Netmiko module for SSH
Netmiko is another third-party connection module like paramiko. The official
project document (www.github.com/ktbyers/netmiko) says that netmiko is a
multi-vendor library that simplifies paramiko SSH connections to network
devices.
The netmiko module has numerous features that are better to use than the
paramiko module, such as:

It can support more than 40 vendors like Cisco, Juniper, Huawei, and
Nokia. Netmiko is created on top of the paramiko module.
It is based on paramiko and supports SSH, telnet, and SCP connections.
Instead of paramiko, we can log in to many vendor network devices by
telnet in the netmiko module.

http://www.github.com/ktbyers/netmiko

Netmiko has simplified code. The paramiko module had many functions
to run in the code, code lines are fewer in netmiko, making it easier to
understand.

Netmiko module supports almost all the network devices. As the official page
says, there are three categories for support: regularly tested, limited tested, and
experimental. However, major network vendors are supported by the netmiko
module. For a full and updated list, you can visit the following link:
www.ktbyers.github.io/netmiko/PLATFORMS.html

Connect a single device with Netmiko
In Example 4.4, we will write a basic netmiko module to log in to a single
Cisco router. For other vendors, only some parameters change:

1. First, we must install and import the netmiko module. Instead of
importing the whole module, we can import the “Netmiko” function from
the netmiko module.
from netmiko import Netmiko

2. Then, we must write device information inside the device variable as a
dictionary. We write host as IP address, username, password, and device
type as vendor type. Optionally, we can choose timer delay between
commands as a global_delay_factor, in seconds, as we did with the
time module in the paramiko examples. These keys are predefined in the
netmiko module, and we add values to specific keys. There are also
many keys to this part, which you can check on the netmiko module
official website.

3. For the IP address, we enter the host key. We add the password and
username keys for password and username. We must enter the device
type with the device_type key. For other devices, you can check device
type usage. We will use juniper_junos as the value for Juniper and
huawei as the value for Huawei.
device = {
"host": "10.10.10.1",
"username": "admin",
"password": "cisco",
"device_type": "cisco_ios",
"global_delay_factor": 0.1,

}

http://www.ktbyers.github.io/netmiko/PLATFORMS.html

4. Then, we must call the netmiko function with the device list as the device
variable. We write two stars before the dictionary variable.
net_connect = Netmiko(**device)

5. Now, it’s time to send configuration commands to the Cisco device. We
create a list as a command variable and enter the commands by order. First,
we enter the interface and change the description of that interface. You
can see that there is no configure terminal in the list. Netmiko
understands the device type we write in the dictionary as Cisco, so it
automatically enters configuration mode.
config= ["interface GigabitEthernet0/0", "description TEST"]
command = "show run interface GigabitEthernet0/0"

6. Then, we create a config_output variable and call the send_config_set
function to send the configuration commands. Inside parentheses, we
write the command variable as a list of commands, and the code enters the
configuration mode automatically. We cannot run the show commands
inside this function. If we want to do that for Cisco, we must enter do
before the show letter. Otherwise, we can run show commands directly
with the send_command function.

7. Usage is also the same with the send_config_set commands. We cannot
run show commands in Cisco configuration mode or we must write do
before the show command.
config_output = net_connect.send_config_set(config)
show_output = net_connect.send_command(command)

8. Finally, we call the disconnect function to close the SSH session and
print the output. Netmiko has clear code to run according to the paramiko
module. It automatically does many things in the background, and we
almost write only the device information and command lists.

9. In the netmiko module, commands are automatically run with the
send_config_set function one-by-one in order. So if we try to connect
multiple devices, we don’t need to create nested loops. Only one for loop
is enough for the device list. For the command list, netmiko does the loop
action for us.
net_connect.disconnect()
print(config_output)
print(show_output)

Example 4.4: Connect to a single device with Netmiko
from netmiko import Netmiko

device = {
"host": "10.10.10.1",
"username": "admin",
"password": "cisco",
"device_type": "cisco_ios",
"global_delay_factor": 0.1,

}

net_connect = Netmiko(**device)

config= ["interface GigabitEthernet0/0", "description TEST"]
command = "show run interface GigabitEthernet0/0"

config_output = net_connect.send_config_set(config)
show_output = net_connect.send_command(command)

net_connect.disconnect()
print(config_output)
print(show_output)

Output:
configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router-1(config)#interface GigabitEthernet0/0
Router-1(config-if)#description TEST
Router-1(config-if)#end
Router-1#

Building configuration…

Current configuration : 148 bytes
!
interface GigabitEthernet0/0
description TEST
ip address 10.10.10.1 255.255.255.0
duplex auto
speed auto
media-type rj45
no cdp enable

end

Connect to multiple devices with Netmiko

In Example 4.5, we will log in to multiple devices with the netmiko module.
There are three devices, and all of them are added to a list called device_list.
We create a for loop to call all devices one by one and write the same netmiko
functions inside the loop.
Example 4.5: Connect to multiple devices with Netmiko
from netmiko import Netmiko

device1 = {"host": "10.10.10.1", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global_delay_factor": 0.1}
device2 = {"host": "10.10.10.2", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global_delay_factor": 0.1}
device3 = {"host": "10.10.10.3", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global_delay_factor": 0.1}
device_list = [device1, device2, device3]

for host in device_list:
net_connect = Netmiko(**host)

config = ["interface g0/0", "description TEST-NETMIKO"]
command = "show version"

config_output = net_connect.send_config_set(config)
show_output = net_connect.send_command(command)

net_connect.disconnect()
print("Config is starting from here:", config_output)
print("Logs are starting from here:", show_output)

Telnet connection
There are some options for telnet connections. We are focusing on telnetlib and
netmiko modules to log in to network devices with the telnet protocol in this
book. As netmiko is more stable in SSH connections, netmiko is also better for
telnet connections.

Telnetlib module for telnet
We can make SSH connections with paramiko and netmiko modules. Almost
all network devices use SSH to make connections, and it’s more secure, but we
also have a telnet connection protocol. So if we need some devices to connect
with telnet, we have the telnetlib module in Python.

In Example 4.6, we will write a telnet connection script to log in a single
device with the telnetlib module. We can connect many devices with a for
loop:

1. First, we must install and import the telnetlib module into the code.
import telnetlib

2. Then, like paramiko, we will assign IP address, username and password
to new variables.
ip = "10.10.10.1"
user = "admin"
password = "cisco"

3. Then, we will make the telnet connection and send the username and
password. After that, we can send any command. We will use the telnet
function from the telnetlib module and enter the IP address and port
name. Optionally, we will have a timeout count in the telnet function,
and the code will never end if we don’t set it before running the read_all
function. Even though timeout is optional, we must enter the value.
In SSH protocol, we set a username and password, and then directly log
in to a device; the authentication process takes place in the background.
But in telnet, we must enter username first, and then the password in CLI.
So, we send username and password values as a command. When the
code match to Username: string, it sends the username. When the code
match to Password: string, it sends the password.
We write the read_until function and the string. Inside parentheses,
there is a b letter and a string. b is for the byte data type. We cannot use
these functions directly with string; we must use the byte data type. We
write b before the string, so it is a byte. The output gives an error if we
remove b in these functions. It says argument should be integer or
bytes-like object, not string'.
With the read_until function, we can wait for the code until we see the
output. We wait until the code matches the Username: value. If the code
catches it, it continues with the following line. The next line sends a
command with the write function. We send the username as a variable,
but the user variable is a string. We must convert it to byte data type. To
convert the variable, we write variable.encode and ASCII mode inside
parentheses. Then, we write the username. After that, we must push the
enter button (or go to the next line) with \n. We use it as bytes

again. We wait for Password: output. We use the same read_until
function. Then, we send command with the write function.
tel = telnetlib.Telnet(ip, 23, timeout=1)
tel.read_until(b"Username:")
tel.write(user.encode('ascii') + b"\n")
tel.read_until(b"Password:")
tel.write(password.encode('ascii') + b"\n")

4. We use the write function to send commands and an exit command to
close the telnet session.
tel.write(b"show ip interface brief\n")
tel.write(b"exit\n")

5. Finally, we can read the output and print it. To read all results, we run the
read_all function. We use the decode function with ASCII inside
parentheses to translate the output to string.
print(tel.read_all().decode('ascii'))

When we run the telnet connection script, the code may give an error or never
finish, so we need to add the try…except statement in the while statement to
avoid any problems. The issue code is in the telnetlib.py Python file, the
path to which is given as follows. We need to change the telnetlib.py file as
in Table 4.1:
C:/Users/USER_NAME/AppData/Local/Programs/Python/Python310/Lib/tel
netlib.py

BEFORE:
def read_all(self):
"""Read all data until EOF; block until
connection closed."""
self.process_rawq()
while not self.eof:
self.fill_rawq()
self.process_rawq()
buf = self.cookedq
self.cookedq = b''
return buf

AFTER:
def read_all(self):
"""Read all data until EOF; block until
connection closed."""
self.process_rawq()
while not self.eof:
try:
self.fill_rawq()
self.process_rawq()
except:
break

buf = self.cookedq
self.cookedq = b''
return buf

Table 4.1: Changing telnetlib module

In Example 4.6, we can log in to a network device with the telnetlib module.
We can also log in to multiple devices by sending multiple commands by

adding the for loop in Example 4.6.
Example 4.6: Connect to a single device with the telnetlib module
import telnetlib
ip = "10.10.10.1"
user = "admin"
password = "cisco"
tel = telnetlib.Telnet(ip, 23, timeout=1)
tel.read_until(b"Username:")
tel.write(user.encode('ascii') + b"\n")
tel.read_until(b"Password:")
tel.write(password.encode('ascii') + b"\n")
tel.write(b"show ip interface brief\n")
tel.write(b"exit\n")
print(tel.read_all().decode('ascii'))

Connect to multiple devices with telnetlib
In Example 4.7, we will write a script to log in to multiple devices and execute
various commands with the telnetlib module. It’s similar to the paramiko
module. We will create nested loops. In the first loop, we will log in to the
devices, and in the second loop, we will execute the commands in the devices.
Example 4.7: Connect to mutiple devices with telnetlib module
import telnetlib

host = ["10.10.10.1","10.10.10.2","10.10.10.3"]
user = "admin"
password = "cisco"
command = ["terminal length 0","show ip interface brief","show
clock","exit"]

for ip in host:
tel = telnetlib.Telnet(ip, 23, timeout=1)
tel.read_until(b"Username:")
tel.write(user.encode('ascii') + b"\n")
tel.read_until(b"Password:")
tel.write(password.encode('ascii') + b"\n")

for config in command:
tel.write(config.encode("ascii") + b"\n")
print(tel.read_all().decode('ascii'))

Netmiko module for telnet
We can make telnet connection with netmiko module. Not all brands support
telnet connection in netmiko, but netmiko supports major vendors like Cisco,
Juniper, and Huawei.

1. We write almost the same code for the SSH connection. First, we import
the netmiko module.
from netmiko import Netmiko

2. Then, we enter the device information. As a device type, we add _telnet
for each device type to connect by telnet. Normally, to connect a Cisco
device, the SSH device type is cisco_ios. For telnet connection, we
write cisco_ios_telnet. There is one more thing here: we add the
global delay factor in SSH connections, and it’s an optional parameter to
add delay for connections. If we don’t set this parameter for telnet
connection, we can also log in to the device. However, there is a
possibility not to send the username and password to the device during
connection because the device connection is slow and the program can
create an error. It’s better to set a global delay factor for telnet connection
min to half a second.
device = {
"host": "10.10.10.1",
"username": "admin",
"password": "cisco",
"device_type": "cisco_ios_telnet",
"global_delay_factor": 0.5

}

3. We call the netmiko function. Then, we create a list of commands by
order. We send configurations with the sending_config_set function.
net_connect = Netmiko(**device)
command = ["interface g0/0", "description TEST"]
output = net_connect.send_config_set(command)
print(output)

Example 4.8: Connect to devices with netmiko module with telnet protocol
from netmiko import Netmiko

device = {
"host": "10.10.10.1",
"username": "admin",

"password": "cisco",
"device_type": "cisco_ios_telnet",
"global_delay_factor": 0.5

}

net_connect = Netmiko(**device)

command = ["interface g0/0", "description TEST"]
output = net_connect.send_config_set(command)
print(output)

Output:
configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router-1(config)#interface g0/0
Router-1(config-if)#description TEST
Router-1(config-if)#end
Router-1#

Collecting logs
In this section, we collect logs from network devices. Examples are based on
the Cisco devices, but they can be used by any vendor to replace the
commands to execute on a device. We collect the device’s software version,
model information, and CPU levels. We can also search for data in devices and
try to find the duplicated IP addresses in the network. Additionally, we can use
the advanced feature of Python language, called multithreading. Thus, we use
this module to log in to multiple devices simultaneously as it saves time.

Collecting version and device information
In Example 4.9, we try to collect IP address, software version, model
information, vendor type, and hostname information from the Cisco routers
and save them to an Excel file. To do that, we log in to the three Cisco routers
with the netmiko module and execute the show version command. We match
the specific data with the findall function from the RE module and add it to
the different lists. In the final part, we save all the information in an Excel file.

1. First, we import the required modules. We call the Netmiko function from
the netmiko module and import the RE module. And finally, we call the
DataFrame function from the pandas module. The pandas module is

often used for data analysis and science. We use the DataFrame function
to create an Excel file from a list.
from netmiko import Netmiko
import re
from pandas import DataFrame

2. We add three devices as Cisco routers with the following information.
And we create a list of those three devices as host variable. After that,
we create a string variable as command that we run in the devices as show
version.
device1 = {"host": "10.10.10.1", "username": "admin",
"password": "cisco", "device_type": "cisco_ios",
"global_delay_factor": 0.1}
device2 = {"host": "10.10.10.2", "username": "admin",
"password": "cisco", "device_type": "cisco_ios",
"global_delay_factor": 0.1}
device3 = {"host": "10.10.10.3", "username": "admin",
"password": "cisco", "device_type": "cisco_ios",
"global_delay_factor": 0.1}
host = [device1, device2, device3]
command = "show version"

3. In the following code, we write a single-line for loop. This is another
usage of the for loop. In this example, we used it to create five different
lists for each variable name. After that, we created the main for loop of
the code:
ip_list, version_list, model_list, vendor_list,
hostname_list=([] for i in range(5))
for ip in host:

4. We write the try…except statement to match whether we can log in to the
device. If we cannot log in to the device, the except statement is
executed, and it continues with the next iteration in the loop. If we can
log in to the device, the code executes the lines in the try statement.
try:
……
except:
print(f"***Cannot login to {ip['host']}")

5. In the try statement, we connect the device with the Netmiko function
and execute the command; we save all logs to the output variable. So
before connecting to the device, we add a print function as Try to

Login with the IP address of the current iteration. Hence, we can see the
process in the output, and if we have multiple devices to log in, it’s better
to give this information in order to track the process.
print(f"\n---Try to Login:{ip['host']}---\n")
net_connect = Netmiko(**ip)
output = net_connect.send_command(command)
print(output)

6. After connecting the device and running the commands, we are still
inside the try statement. We collect the version, model, vendor, and
hostname information from the output variable and use the findall
function from the RE module. Then, we create four different variables and
assign them to the target match.
For example, one of Cisco ASR router’s show version outputs is shown
in Table 4.2 (www.ciscolive.com). For the version information, we must
match 5.3.3[Default], so we write the findall function with Version
(.*), and it reaches our target. For the model information, we write
Cisco (.*)\(revision, for which the result is ASR9K Series. We write
Cisco to match the vendor data. And finally, for the hostname, we write
(.*) uptime is in the following output. The result is Router-1.

Router-1#show version
Cisco IOS XR Software, Version 5.3.3[Default]
Copyright (c) 2016 by Cisco Systems, Inc.
ROM: System Bootstrap, Version 10.45(c) 1994-2014 by
Cisco Systems, Inc.
Router-1 uptime is 0 weeks, 3 days, 7 hours, 38 minutes
System image file is "XXXX.vm"
Cisco ASR9K Series (revision …) processor with

Table 4.2: Example output of the show version command in Cisco Device

version = re.findall("Version (.*),", output)
model = re.findall("Cisco (.*)\(revision", output)
vendor = re.findall("Cisco", output)
hostname = re.findall("(.*) uptime is", output)

7. We collected the specific data in the previous code, and we can add it to a
list. We already created five lists at the beginning of the code, so we use
the append function in list variables to get the first item in the list as item
0.
ip_list.append(ip['host'])
version_list.append(version[0])

http://www.ciscolive.com/

model_list.append(model[0])
vendor_list.append(vendor[0])
hostname_list.append(hostname[0])

8. Finally, we need to save these lists into an Excel file where we use the
DataFrame function from the pandas module. We write a dictionary with
keys as the strings and values as the lists we created; this dictionary is
written inside the DataFrame function. After we assign this to the df
variable, we call the to_excel function to write the collected list
variables to the Excel file. We can set the Excel file name and sheet name
and also the index with this function, but we don’t use it in this example
df = DataFrame({"IP Address": ip_list, "Hostname":
hostname_list, "Vendor Type": vendor_list, "Model":

model_list, "Version": version_list})

df.to_excel("Version List.xlsx", sheet_name="Vendors",
index=False)

Example 4.9: Collecting device information and saving it in an Excel file
from netmiko import Netmiko
import re
from pandas import DataFrame

device1 = {"host": "10.10.10.1", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global_delay_factor": 0.1}
device2 = {"host": "10.10.10.2", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global_delay_factor": 0.1}
device3 = {"host": "10.10.10.3", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global_delay_factor": 0.1}
host = [device1, device2, device3]
command = "show version"

ip_list, version_list, model_list, vendor_list, hostname_list =
([] for i in range(5))

for ip in host:

try:
print(f"\n---Try to Login:{ip['host']}---\n")
net_connect = Netmiko(**ip)
output = net_connect.send_command(command)
print(output)
version = re.findall("Version (.*),", output)

model = re.findall("Cisco (.*)\(revision", output)
vendor = re.findall("Cisco", output)
hostname = re.findall("(.*) uptime is", output)

ip_list.append(ip['host'])
version_list.append(version[0])
model_list.append(model[0])
vendor_list.append(vendor[0])
hostname_list.append(hostname[0])

except:
print(f"***Cannot login to {ip['host']}")

df = DataFrame({"IP Address": ip_list, "Hostname": hostname_list,
"Vendor Type": vendor_list, "Model": model_list, "Version":
version_list})
df.to_excel("Version List.xlsx", sheet_name="Vendors",
index=False)

When we execute Example 4.9, the code creates an Excel file. When we open
it, we see that all device information is filled in the Excel file, as illustrated in
Figure 4.4:

Figure 4.4: Output of Example 4.9

Collecting CPU levels
In Example 4.10, we will try to find the CPU levels of the Cisco devices in 5-
second, in 1-minute, and in 5-minute values. When we run show processes
CPU in the Cisco command line, there is a line in the output: CPU utilization
for five seconds: 19%/0%; one minute: 20%; five minutes: 16%. It
shows all the CPU values as we try to collect them. So in this code, we will try
to find CPU data from the output.

1. After we import the modules, we create a command variable, assign the
show processes CPU string, and create five empty lists to use in the
following code:

from netmiko import Netmiko
import re
from pandas import DataFrame
device1 = {"host": "10.10.10.1", "username": "admin",
"password": "cisco", "device_type": "cisco_ios",
"global_delay_factor": 0.1}
device2 = {"host": "10.10.10.2", "username": "admin",
"password": "cisco", "device_type": "cisco_ios",
"global_delay_factor": 0.1}
device3 = {"host": "10.10.10.3", "username": "admin",
"password": "cisco", "device_type": "cisco_ios",
"global_delay_factor": 0.1}
host = [device1, device2, device3]
command = "show processes cpu"
ip_list, cpu_list_5s, cpu_list_1m, cpu_list_5m, cpu_list_risk
= ([] for x in range(5))

2. We create a for loop again, write the try…except statement, and write
the following codes inside the try statement:
for ip in host:
try:
…..
except:
print(f"***Cannot Login to {ip['host']}")

3. We log in to the device and execute the command. After that, we assign
all device logs to the output variable as a string:

print(f"\n---Try to Login:{ip['host']}---\n")
net_connect = Netmiko(**ip)
output = net_connect.send_command(command)

4. We try to find 5 seconds, 1 minute, and 5 minutes of CPU levels of the
device with the findall function in the following code:

cpu_5s = re.findall("CPU utilization for five seconds:
(\d+)",output)
cpu_1m = re.findall("one minute: (\d+)",output)
cpu_5m = re.findall("five minutes: (\d+)",output)

5. After we find the specific data, we need to append it to the empty lists,
which we created at the beginning of the code. We will collect the data as
digits, so it’s better to add the % character at the end of the CPU level, like

in the following code. We will also append the IP address of each device.
So in Excel, we can see which device has which CPU level.
ip_list.append(ip['host'])
cpu_list_5s.append(cpu_5s[0]+"%")
cpu_list_1m.append(cpu_1m[0] + "%")
cpu_list_5m.append(cpu_5m[0] + "%")

6. Additionally, we can add the if condition to the code and alert the user if
the CPU usage is higher than 90% with the message Fatal CPU Level. If
it’s between 70 and 90, we can alert them with the message High CPU
Level, or we can inform them with the message No Risk. So we use the
if condition and convert the string to an integer with the int(). We can
add the risk value to the cpu_list_risk variable.
if int(cpu_5m[0]) > 90:
cpu_risk = "Fatal CPU Level"
elif 70< int(cpu_5m[0]) <90:
cpu_risk = "High CPU Level"
else:
cpu_risk = "No Risk"
cpu_list_risk.append(cpu_risk)

7. Finally, as we did in Example 4.9, we will create a dictionary with the
DataFrame function and save all the output to the Excel file.
df=DataFrame({"IP Address":ip_list,"CPU Levels for 5
Seconds": cpu_list_5s,"CPU Levels for 1 Minute":cpu_list_1m,
"CPU Levels for 5 Minutes":cpu_list_5m,"CPU
Risk":cpu_list_risk})
df.to_excel("CPU Levels.xlsx",index=False)

Example 4.10: Collecting CPU levels
from netmiko import Netmiko
import re
from pandas import DataFrame
device1 = {"host": "10.10.10.1", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global_delay_factor": 0.1}
device2 = {"host": "10.10.10.2", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global_delay_factor": 0.1}
device3 = {"host": "10.10.10.3", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global_delay_factor": 0.1}
host = [device1, device2, device3]

command = "show processes cpu"
ip_list, cpu_list_5s, cpu_list_1m, cpu_list_5m, cpu_list_risk =
([] for x in range(5))

for ip in host:
try:
print(f"\n---Try to Login:{ip['host']}---\n")
net_connect = Netmiko(**ip)
output = net_connect.send_command(command)

cpu_5s = re.findall("CPU utilization for five seconds:
(\d+)",output)
cpu_1m = re.findall("one minute: (\d+)",output)
cpu_5m = re.findall("five minutes: (\d+)",output)

ip_list.append(ip['host'])
cpu_list_5s.append(cpu_5s[0]+"%")
cpu_list_1m.append(cpu_1m[0] + "%")
cpu_list_5m.append(cpu_5m[0] + "%")

if int(cpu_5m[0]) > 90:
cpu_risk = "Fatal CPU Level"

elif 70< int(cpu_5m[0]) <90:
cpu_risk = "High CPU Level"

else:
cpu_risk = "No Risk"

cpu_list_risk.append(cpu_risk)
df=DataFrame({"IP Address":ip_list,"CPU Levels for 5 Seconds":
cpu_list_5s, "CPU Levels for 1 Minute":cpu_list_1m, "CPU
Levels for 5 Minutes":cpu_list_5m,"CPU Risk":cpu_list_risk})
df.to_excel("CPU Levels.xlsx",index=False)

except:
print(f"***Cannot Login to {ip['host']}")

When we execute Example 4.10, the code creates an Excel file. When we open
it, we can see that all the device CPU information in 5 seconds, 1 minute, and
5 minutes is filled in the Excel file illustrated in Figure 4.5:

Figure 4.5: Output of Example 4.10

Finding duplicated IP address
In Example 4.11, we will try to find the duplicated IP addresses in our network.
We have three devices to check an IP address, and we log in to each one to
search for the target IP address. If we find a duplicated IP address, the code
gives the output of the duplicated IP, duplicated host IP, and the interface
information of the duplicated IP address.

1. We import netmiko and re modules. After that, we add three devices’
information as a host list. We create a variable called check_ip. We add
the target IP address that we are looking for in the network, and we create
an empty list that we will use later in the code. Finally, we create the
command variable./p>
from netmiko import Netmiko
import re
device1 = {"host": "10.10.10.1", "username": "admin",
"password": "cisco", "device_type": "cisco_ios",
"global_delay_factor": 0.1}
device2 = {"host": "10.10.10.2", "username": "admin",
"password": "cisco", "device_type": "cisco_ios",
"global_delay_factor": 0.1}
device3 = {"host": "10.10.10.3", "username": "admin",
"password": "cisco", "device_type": "cisco_ios",
"global_delay_factor": 0.1}
host = [device1, device2, device3]
check_ip = "10.10.10.2"
duplicated_list = []
command = "show ip interface brief"

2. We create a for loop for all devices in the network. After that, we write
our code inside the try statement. We will continue with the following
code if we can log in to the device./p>
for ip in host:

print(f"\n---Try to Login: {ip['host']} ---\n")
try:
………
except:
print(f"***Cannot login to {ip['host']}")

3. We connect to the device and collect the logs. We search for the target IP
address inside the logs with the findall function and assign it to the
duplicate_ip variable.

net_connect = Netmiko(**ip)
output =net_connect.send_command(command)
duplicate_ip = re.findall(check_ip,output)

4. If the duplicate_ip variable is empty, we have no duplicate IP address
in the network. Otherwise, we have a duplicated IP address. We use the
while statement in the following code. If the duplicate_ip variable is
not empty, continue with the while statement.

5. So, if we have a match of the IP address in the network, the while
statement is accurate, and the code executes the following codes. First, it
tries to find the interface information with the (.*){check_ip} match.
Afterward, it appends the target IP address to the duplicated_list
variable. Finally, it assigns the duplicated device IP address to the
duplicate_device variable and finishes the while loop with the break
statement.

while duplicate_ip:
interface = re.findall(f"(.*){check_ip}",output)
duplicated_list.append(check_ip)
duplicate_device = ip["host"]
break

6. Finally, if the duplicated_list variable is not empty or has an item
inside, continue with the print function by writing the duplicated IP, the
duplicated device’s IP address, and the interface of the duplicated IP
address. Otherwise, it prints that the target IP address is not duplicated in
the network and can be used in the network without a problem.
if duplicated_list:
print(f"---------\nDuplicated IP: {check_ip} \nDuplicated
Device IP Address: {duplicate_device} \nInterface:
{interface[0]} \n -----------")

else:
print(f"{check_ip} IP address is suitable for use")

Example 4.11: Finding duplicated IP address
from netmiko import Netmiko
import re

device1 = {"host": "10.10.10.1", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global_delay_factor": 0.1}
device2 = {"host": "10.10.10.2", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global_delay_factor": 0.1}
device3 = {"host": "10.10.10.3", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global_delay_factor": 0.1}
host = [device1, device2, device3]
check_ip = "10.10.10.2"
duplicated_list = []
command = "show ip interface brief"

for ip in host:
print(f"\n---Try to Login: {ip['host']} ---\n")
try:
net_connect = Netmiko(**ip)
output =net_connect.send_command(command)
duplicate_ip = re.findall(check_ip,output)

while duplicate_ip:
interface = re.findall(f"(.*){check_ip}",output)
duplicated_list.append(check_ip)
duplicate_device = ip["host"]
break

except:
print(f"***Cannot login to {ip['host']}")

if duplicated_list:
print(f"---------\nDuplicated IP: {check_ip} \nDuplicated Device
IP Address: {duplicate_device} \nInterface: {interface[0]} \n --
---------")

else:
print(f"{check_ip} IP address is suitable for use")

Collecting logs with multithreading
When we log in to devices, we always use the for loops. Code connects to the
devices in each for loop one by one. If we have 100 devices, the loop executes

100 times by order, and if one device connection and collect log takes 30
seconds, the total time to collect all devices’ data is 3000 seconds or 50
minutes.
It’s too much time to collect data from many devices. We need a solution to
connect all devices at the same time and collect the data simultaneously.
We can use several options to solve this issue. In Example 4.12, we use the
multithreading module of the Python language. So, if we have 100 devices, we
can collect data on all devices in 30 seconds instead of 50 minutes.
Multithreading is a powerful feature of Python that executes the code on all
devices simultaneously. In the programming language, multithreading can also
be called parallelism.
In Example 4.12, we will use the paramiko module to connect devices. We
create two text files to get the device’s IP addresses and the command lists.

1. We import the paramiko, time, re, and threading modules to execute
our code:/p>
import paramiko
from time import sleep
import re
import threading

2. We create two functions: SSH_Thread() and ssh_conn().We open the
ip_list.txt file in Table 4.3 to read it. We divide each IP address with
lines and create a host variable as a list. Each item on that list is an IP
address, so we have a list that includes IP addresses.

ip_list.txt
10.10.10.1
10.10.10.2
10.10.10.3

Table 4.3: Content of the “ip_list.txt” file

def SSH_Thread():
with open("ip_list.txt") as r:
host = r.read()

host = re.split("\n", host)

3. Inside the for loop, we call the Thread function from the threading
module and assign it to the trd variable. Inside this function, we have
two parameters: target and args. The target parameter is the callable
object to be invoked.

In this example, we call the ssh_conn function, and args is the argument
tuple for the target invocation. In this example, we write ip as the for
loop variable. We must write args=(ip,) the variable and comma after,
otherwise the program gives an error. We need to call the start function
to start the thread’s activity.
for ip in host:
trd = threading.Thread(target=ssh_conn, args=(ip,))
trd.start()

4. The first function is finished, and threading is done in that function. Now,
we can execute the commands inside the devices and save them to text
files. We create a command_list text file in Table 4.4 and read it. We split
each command by line.

command_list.txt
show ip interface brief
show clock
show arp
show ip route

Table 4.4: Content of the “command_list.txt” file

def ssh_conn(ip):
with open("command_list.txt") as c:
command_list = c.read()

command_list = re.split("\n", command_list)

5. We write the paramiko connection functions: IP as the ip variable, and
username and password. We call the ssh_conn function with a parameter
as the ip, so threading connects each device at the same time with this
parameter. As we use the ip parameter in the connect function of
paramiko to connect to the devices with the IP address, we create an
empty result string variable to use later in the code./p>
client = paramiko.SSHClient()
client.set_missing_host_key_policy(paramiko.AutoAddPolicy()
)
client.connect(ip, 22, "admin", "cisco")
commands = client.invoke_shell()
result = ""

6. We create a for loop to execute all the commands in the device. After
that, we add some delays by the sleep function delays to get all the

output of the command. As there is no mechanism to wait until the output
is finished in paramiko, we save it to the result variable.
for comm in command_list:
commands.send(f"{comm} \n")
sleep(1.5)
output = commands.recv(1000000).decode("utf-8").replace
("\r", "")
result += str(output)
print(output)

7. We save the output of the result variable in a log file by naming the
device’s IP address.
with open(f"{ip}.log", "a") as wr:
wr.write(result)

8. We must call a function to execute in the code. So, we call the
SSH_Thread function to execute the code.
SSH_Thread()

Example 4.12: Collecting logs with multithreading
import paramiko
from time import sleep
import re
import threading

def SSH_Thread():
with open("ip_list.txt") as r:
host = r.read()

host = re.split("\n", host)

for ip in host:
trd = threading.Thread(target=ssh_conn, args=(ip,))
trd.start()

def ssh_conn(ip):
with open("command_list.txt") as c:
command_list = c.read()

command_list = re.split("\n", command_list)

client = paramiko.SSHClient()
client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
client.connect(ip, 22, "admin", "cisco")
commands = client.invoke_shell()

result = ""

for comm in command_list:
commands.send(f"{comm} \n")
sleep(1.5)
output = commands.recv(1000000).decode("utf-8").replace("\r",
"")
result += str(output)
print(output)

with open(f"{ip}.log", "a") as wr:
wr.write(result)

SSH_Thread()

Tools and calculators
We can create custom tools with Python scripts. We will write two examples in
this section: IP address validator and Subnet calculator. We can check whether
an IP address is a valid IPv4 address. We can also calculate parameters such as
the subnet, network and broadcast address, and all available hosts in the subnet
that the user enters.

IP address validator
In Example 4.13, we create a simple tool to verify or validate an IPv4 address.
In this script, we ask the user to enter an IP address and check whether it is
valid or invalid.

1. We ask the user to enter an input with input function.
enter_ip = input("\nEnter an IP address: ")

2. We split the input string with dividing dots. It creates a new list variable
as the ip. We create an integer variable as valid that we use in the for
loop.
Ip = enter_ip.split(".")
valid = 0

3. The structure of an IPv4 address is X.X.X.X, with four numbers from 0
to 255 and 3 dots between each number. So, the input cannot have any
alphabetic characters or special characters, and all inputs must be digits
with three dots. Otherwise, it cannot be a valid IPv4 address.

We create an if statement to find whether the input has four numbers
divided by commas. If it doesn’t match the condition, the code gives an
output saying it’s an invalid IP address. If it matches, we continue with
the body of the if statement.
if len(ip) == 4:
…..
else:
print ("This is NOT a VALID IP Address")

4. If we have four items in the list and can fill the if statement. We write a
for loop. So, we can check all four items one-by-one. Each item must be
between 0 and 256, including 0, but a user can enter a non-digit character.
To check it, we can write int(x).
This code automatically converts a string to an integer if all the
characters are digits. Otherwise, it throws an error.
So with this code, we can catch digits. However, when the user enters a
non-digit character, we try to continue without error, so we use the try…
except statement. If the code gives an error in the try statement, the
code directly continues with the except statement. In the except
statement, an error message is shown because the user input has a non-
digit character.
Inside the if condition, we add the valid variable as 1. If the integer of
the current iteration or x is not between 0 and 256, the code gives an
error. If all four items match the condition, the valid value equals four
after the loop finishes, code continue. It displays the IPv4 address as a
valid IP address.
We also use the break statement in the for loop. If one of the x values is
invalid, the code exits from the for loop after giving the not valid error
message.
try:
for x in ip:
if 0 <= int(x) < 256:
valid = valid + 1

else:
print("This is NOT a VALID IP Address")
break

if valid == 4:
print(f"{enter_ip} is a VALID IP Address")

except:
print ("This is NOT a VALID IP Address")

Example 4.13: Creating an IP address validator
enter_ip = input("\nEnter an IP address: ")

ip = enter_ip.split(".")
valid = 0

if len(ip) == 4:
try:
for x in ip:
if 0 <= int(x) < 256:
valid = valid + 1

else:
print("This is NOT a VALID IP Address")
break

if valid == 4:
print(f"{enter_ip} is a VALID IP Address")

except:
print ("This is NOT a VALID IP Address")

else:
print ("This is NOT a VALID IP Address")

Subnet calculator
In Example 4.14, we try to create our subnet calculator. We input the IP
address and the subnet mask, and the code gives the subnet, wildcard, total
available host in that subnet, network and broadcast address, and finally, the IP
address range of this subnet.

1. We enter the IP address and create an empty list. Code divides the string
with dots and adds each string to the ip variable.
enter_ip = input("\nEnter an IP address: ")
octet_list = []
ip = enter_ip.split(".")

2. We create a for loop to check all octets, regardless of whether or not they
are digits. We must be sure that there are no non-digit characters inside
all items in the ip variable. Code converts each item from string to an
integer, then adds to the octet_list. If it fails, it executes the continue

statement, and the following code gives an error as the Invalid IP
Address.
for octet in ip:
try:
octet_list.append(int(octet))

except:
continue

3. An IPv4 address must have four parts and all the parts must be between 0
and 255. For example, 192.168.1.1 is a valid IPv4 address, but
192.260.2.3 is not, because the second part is bigger than 255. If the
condition is not matched, the code throws an eror saying invalid IP
address.
if len(octet_list) == 4 and 0 < octet_list[0] < 255 and 0 <=
octet_list[1] <= 255 and 0 <= octet_list[2] <= 255 and 0
<= octet_list[3] <= 255 :
….
else:
print("ERROR: INVALID IP ADDRESS")

4. Inside the if condition, we ask for second input as the subnet mask. The
subnet mask must be from 1 to 32. Otherwise, the code gives an error. We
use the try…except statement to check it./p>
mask = input("\nEnter a Subnet Mask (1 to 32): address: ")
try:
…….
except:
print("ERROR: INVALID IP ADDRESS")

5. Inside the try statement, we convert the input to an integer. If the
condition does not match, the code finishes and gives an invalid IP
address.

number = int(mask)
if 0 < number <= 32:
……
else:
print("ERROR: INVALID IP ADDRESS")

6. We are inside the main code of calculation of the parameters. First, we
need to find the main subnet classes of the input mask 0, 8, 16, and 24.

a = int(int(mask) / 8)

7. After that, we need to find the subclasses of the input mask, like 18, 25,
and 26.

b = int(mask) % 8
octet1 = 2 ** 8 - 2 ** (8 - b)

8. We need to find the network and broadcast addresses with the following
calculation. After that, we can find the minimum available host by adding
1 to a network address, and we can find the maximum available host by
deleting 1 from the broadcast address.

z = octet_list[a] #Find the octet to change
k = int(z / 2 ** (8 - b))
net = ((2 ** (8 - b)) * k) #network address calculation
brod = ((2 ** (8 - b)) * (k + 1)) - 1 #Broadcast address
calculation
min_host = net + 1 #Min avaliable host
max_host = brod - 1 #Max avaliable host

9. After that, we need to find the subclass value. We had the if condition in
the following part. We check the a variable value from 0 to 3. If a equals
0, the subnet is X.0.0.0. X must be an integer between 0 and 255. If a
equals 1, the subnet is 255.X.0.0. We also write the wildcard with the y
string. When we find the subnet, we can find other parameters easily. The
calculation is related to network address calculation.

if a == 0:
subnet = "x.0.0.0"
wildcard = "y.255.255.255"
total_host = ((256-octet1)*(256**3))-2
network = "{}.{}.{}.{}".format(net,0,0,1)
broadcast = "{}.{}.{}.{}".format(brod,255,255,255)
min_host = "{}.{}.{}.{}".format(net,0,0,2)
max_host = "{}.{}.{}.{}".format(brod,255,255,254)

elif a == 1:
subnet = "255.x.0.0"
wildcard = "0.y.255.255"
total_host = ((256-octet1)*(256**2))-2

network = "{}.{}.{}.{}".format(octet_list[0], net,0,1)
broadcast = "{}.{}.{}.{}".format(octet_list[0],
brod,255,255)
min_host = "{}.{}.{}.{}".format(octet_list[0], net,0,2)

max_host = "{}.{}.{}.{}".format(octet_list[0],
brod,255,254)
elif a == 2:
subnet = "255.255.x.0"
wildcard = "0.0.y.255"
total_host = ((256-octet1)*256)-2

network = "{}.{}.{}.{}".format(octet_list[0],
octet_list[1],net,1)
broadcast = "{}.{}.{}.{}".format(octet_list[0],
octet_list[1],brod,255)
min_host = "{}.{}.{}.{}".format(octet_list[0],
octet_list[1],net,2)
max_host = "{}.{}.{}.{}".format(octet_list[0],
octet_list[1],brod,254)
elif a == 3:
subnet = "255.255.255.x"
wildcard = "0.0.0.y"
total_host = (256-octet1)-2

network = "{}.{}.{}.{}".format(octet_list[0],
octet_list[1], octet_list[2],net)
broadcast = "{}.{}.{}.{}".format(octet_list[0],
octet_list[1], octet_list[2],brod)
min_host = "{}.{}.{}.{}".format(octet_list[0],
octet_list[1], octet_list[2],min_host)
max_host = "{}.{}.{}.{}".format(octet_list[0],
octet_list[1], octet_list[2],max_host)

10. Then, we replace x and y with octet1 and 255-octet1 in which the value
is subclass value.

subnet_new = subnet.replace("x", str(octet1))
wildcard = wildcard.replace("y", str(255 - octet1))

11. After finding all the information, we print it, as shown in the following
code:

print("-------------\nIP Address: {}".format(enter_ip))
print("Subnet Mask: {}".format(mask))
print("Subnet: {}".format(subnet_new))
print("Wildcard: {}".format(wildcard))
print("Total Host: {}".format(total_host))
print("Network Address: {}".format(network))

print("Broadcast Address: {}".format(broadcast))
print("IP Address Range: {} - {}".format(min_host,
max_host))

Example 4.14: Subnet calculator
enter_ip = input("\nEnter an IP address: ")
octet_list = []
ip = enter_ip.split(".") #Divide ip address to octets by
"." dot character
for octet in ip: #Check all octets are digits (not
contain any non-digit character)
try:
octet_list.append(int(octet)) #Convert each item in list to
integer, if fail, continue

except: #So if fail,octet list will not be 4
anymore.
continue #And below if condition will not be matched

if len(octet_list) == 4 and 0 < octet_list[0] < 255 and 0 <=
octet_list[1] <= 255 and 0 <= octet_list[2] <= 255 and 0 <=
octet_list[3] <= 255 :
mask = input("\nEnter a Subnet Mask (1 to 32): address: ")
try:
number = int(mask) #Convert input to integer, if fail, continue
if 0 < number <= 32:
Find 0/8/16/24 main classes
a = int(int(mask) / 8)

Find sub-class like 18,25,26, etc.
b = int(mask) % 8

octet1 = 2 ** 8 - 2 ** (8 - b) #Find subclass value
z = octet_list[a] #Find the octet to change
k = int(z / 2 ** (8 - b))

net = ((2 ** (8 - b)) * k) #network address calculation
brod = ((2 ** (8 - b)) * (k + 1)) - 1 #Broadcast address
calculation

min_host = net + 1 #Min avaliable host
max_host = brod - 1 #Max avaliable host
Find subclass value
if a == 0:
subnet = "x.0.0.0"

wildcard = "y.255.255.255"
total_host = ((256-octet1)*(256**3))-2
network = "{}.{}.{}.{}".format(net,0,0,1)
broadcast = "{}.{}.{}.{}".format(brod,255,255,255)
min_host = "{}.{}.{}.{}".format(net,0,0,2)
max_host = "{}.{}.{}.{}".format(brod,255,255,254)

elif a == 1:
subnet = "255.x.0.0"
wildcard = "0.y.255.255"
total_host = ((256-octet1)*(256**2))-2
network = "{}.{}.{}.{}".format(octet_list[0],net,0,1)
broadcast = "{}.{}.{}.{}".format(octet_list[0],brod,255,255)
min_host = "{}.{}.{}.{}".format(octet_list[0],net,0,2)
max_host = "{}.{}.{}.{}".format(octet_list[0],brod,255,254)

elif a == 2:
subnet = "255.255.x.0"
wildcard = "0.0.y.255"
total_host = ((256-octet1)*256)-2
network = "{}.{}.{}.
{}".format(octet_list[0],octet_list[1],net,1)
broadcast = "{}.{}.{}.
{}".format(octet_list[0],octet_list[1],brod,255)
min_host = "{}.{}.{}.
{}".format(octet_list[0],octet_list[1],net,2)
max_host = "{}.{}.{}.
{}".format(octet_list[0],octet_list[1],brod,254)

elif a == 3:
subnet = "255.255.255.x"
wildcard = "0.0.0.y"
total_host = (256-octet1)-2
network = "{}.{}.{}.
{}".format(octet_list[0],octet_list[1],octet_list[2],net)
broadcast = "{}.{}.{}.
{}".format(octet_list[0],octet_list[1],octet_list[2],brod)
min_host = "{}.{}.{}.
{}".format(octet_list[0],octet_list[1],octet_list[2],min_h
ost)
max_host = "{}.{}.{}.
{}".format(octet_list[0],octet_list[1],octet_list[2],max_h

ost)
subnet_new = subnet.replace("x", str(octet1)) #Replace x
value in subnet with octet1
wildcard = wildcard.replace("y", str(255 - octet1))
print("-------------\nIP Address: {}".format(enter_ip))
print("Subnet Mask: {}".format(mask))
print("Subnet: {}".format(subnet_new))
print("Wildcard: {}".format(wildcard))
print("Total Host: {}".format(total_host))
print("Network Address: {}".format(network))
print("Broadcast Address: {}".format(broadcast))
print("IP Address Range: {} - {}".format(min_host,max_host))

else:
print("ERROR: INVALID IP ADDRESS")

except: # So if fail,octet list will not be 4
anymore.
print("ERROR: INVALID IP ADDRESS")

else:
print("ERROR: INVALID IP ADDRESS")

Conclusion
In this chapter, we learnt about connection modules. For SSH, we use netmiko
and paramiko, and for telnet, we use the telnetlib and netmiko modules. We
connected network devices and collected logs for specific purposes like
collecting software versions and CPU levels of devices, logged in to multiple
devices simultaneously with multithreading and created an IP validation tool
and a subnet calculator.
In the next chapter, we will focus on configuring network devices. We will be
configuring interfaces, SNMP, and OSPF protocols, and we will replace the old
configuration with the new configuration parameters. We will be saving the
multiple devices’ configuration with a single script.

Multiple choice questions
1. Which module can log in with telnet protocol?

a. netmiko module
b. paramiko module

c. os module
d. re module

2. What is the device_type parameter to log in to Cisco devices by the
netmiko module?

a. cisco
b. csc_ios
c. cisco_ios
d. cisco_systems

3. Which module is used to connect to multiple devices simultaneously?

a. Import os
b. Import telnetlib
c. Import multithreading
d. Import threading

Answers
1. a
2. c
3. d

Questions
1. Write a script to collect the ARP table from the Cisco device and write it

to different text files for each device with the show arp command.
2. Write a script to collect logs from the Cisco device using multithreading

and netmiko module.

CHAPTER 5
Deploy Configurations in Network

Devices
This chapter will focus on the configuration of network devices with
different modules and functions. We will use the jinja2 template, YAML
files, NAPALM module, and nornir automation framework. As advanced
usage, we will use these modules and templates to configure multiple
devices in a more automated way.

Structure
In this chapter, we will cover the following topics:

Configure network devices

Configuration of interfaces
Replacing configurations on files

Configure devices with Jinja2 template

Introduction to Jinja2 template
Introduction to YAML language
Rendering Jinja template with the YAML file
Configure devices with Jinja
If statement in Jinja

Configure devices with Napalm module

Collect logs from devices with NAPALM
Configure devices with NAPALM

Configure devices with Nornir module

Configure inventory in Nornir

Connection to devices with Nornir-Netmiko
Connection to devices with Nornir-NAPALM
Configure devices by Nornir and Jinja Template

Objectives
With the knowledge of previous chapters, we can easily log in to devices
and configure them with the netmiko and paramiko modules. In basic
usage, we can handle easy tasks. When we need to take up more complex
tasks, we must use some modules or frameworks to handle these by adding
automation. We use configuration templates like Jinja to configure multiple
devices with fewer lines of code. We use the NAPALM module to connect
devices in a more straightforward mode. We create a nornir automation
platform to develop our automation scripts with faster connection types.

Configure network devices
As we did in the previous chapter, we can create automation scripts for
collecting data from any network or system device. We can also modify,
implement and configure those devices with Python scripts. We can deploy
10 or even 100 devices with a simple script. We use the netmiko module,
which performs better than the paramiko module, to deploy configurations
in network devices. As we did in the previous chapter, there is always an
option to use multithreading to configure devices in parallel.
There are different options to create data for configuration. We can directly
write the command set inside the script, which is the basic usage of
scripting. But for advanced use, scripts must be more flexible. To do that,
we can write the commands in another text file and get all the commands
from that file. So, our code will be much more apparent. We can also create
an Excel file and get the data from there. We have the option to get different
data for different devices. For example, we can configure each interface
with the different IP addresses on different devices. IP addresses cannot be
identical in the network, so they must be unique. For different purposes, we
will create various kinds of scripts.

1. In Example 5.1, we try to log in to devices with the netmiko module
again. For netmiko, we have a format to add devices, and we need to

add a unique IP address. However, the username, password, delay, or
device models can be identical or unique. We enter too many
parameters and many lines in the examples. We can create a for loop
for those parameters to avoid too many repeatable codes.
We import the netmiko module and then write our code. In the
previous examples of the netmiko module, we always added devices
with different variables: device1, device2 and device3. In those
examples, it seemed to be no problem. But if we have 100 devices,
adding each variable is not good. So, we can create a loop for this
repeatable code. We create a variable named ip_list and fill it with
the device IP addresses.
from netmiko import Netmiko
ip_list = ["10.10.10.1", "10.10.10.2", "10.10.10.3",
"10.10.10.4"]

2. We create a for loop to get the IP addresses from the ip_list
variable. We add the ip variable as the value of the host key. So, in
each iteration, the value of the host key changes according to the
ip_list items. It means that, in each loop, we have a different device
to log in.
for ip in ip_list:
ip = {
"host": f"{ip}",
"username":"admin",
"password":"cisco",
"device_type": "cisco_ios",
"global_delay_factor": 0.1

}

We can also change other parameters. For example, if we have Cisco,
Juniper and Huawei devices in our network, we need to change the
device_type parameter for different vendors. So, we can create
another variable by adding the vendor names and creating an if
condition in the loop to choose the specific vendor. We can use the
same logic for the username and password.

3. As we did in the previous examples, we write our main code in the
try…except statement. In the example, we have a 10.10.10.4 device
that we cannot log in. So, when we execute the code, it gives an error

that we cannot log in. Inside this statement, we write our netmiko
code, and we send the show command to the device and get the output.
try:
print(f"\n---Try to Login: {ip['host']} ---\n")
net_connect = Netmiko(**ip)
output = net_connect.send_command("show interface
description")
print(output)

except:
print(f"***Cannot login to {ip['host']}")

Example 5.1: Creating device information in the loop
from netmiko import Netmiko
ip_list = ["10.10.10.1", "10.10.10.2", "10.10.10.3",
"10.10.10.4"]
for ip in ip_list:
ip = {
"host": f"{ip}",
"username":"admin",
"password":"cisco",
"device_type": "cisco_ios",
"global_delay_factor": 0.1

}
try:
print(f"\n---Try to Login: {ip['host']} ---\n")
net_connect = Netmiko(**ip)
output = net_connect.send_command("show interface
description")
print(output)

except:
print(f"***Cannot login to {ip['host']}")

Instead of creating a variable and calling it in the loop, we can create a text
file and add all the IP information there. So, we can open the text file and
add all lines as different items in a variable.
In Example 5.2, we import the re module. We open the host_info text file
and read it. After that, we create the ip_list variable and get each line as a
unique item in this variable.

host_info.txt
10.10.10.1
10.10.10.2
10.10.10.3

10.10.10.4
import re
with open("host_info.txt") as r:
host = r.read()

ip_list = re.split("\n", host)

The remaining parts of this example are the same as Example 5.1. So, if we
have many devices, it’s better to use this method to get the IP information.
Example 5.2: Getting device information from text file
from netmiko import Netmiko
import re
with open("host_info.txt") as r:
host = r.read()

ip_list = re.split("\n", host)
for ip in ip_list:
ip = {
"host": f"{ip}",
"username":"admin",
"password":"cisco",
"device_type": "cisco_ios",
"global_delay_factor": 0.1

}
try:
print(f"\n---Try to Login: {ip['host']} ---\n")
net_connect = Netmiko(**ip)
output = net_connect.send_command("show interface
description")
print(output)

except:
print(f"***Cannot login to {ip['host']}")

Configuration of interfaces

In Example 5.3, we create a netmiko script to execute commands to
configure hostnames, OSPF, and interface configurations in Cisco routers.
We collect all three-device data from the Excel file with the xlwings
module. It’s a third-party Python module that must be installed with the pip
install xlwings command in the terminal. This module opens an Excel
file. After that, it reads the data in all columns, writing the range A1:A14
with the range function.
So, we add all Router-1 configurations in the A column, Router-2 is in B,
and Router-3 is in C. We write a for loop to get each column range and
device connection data from the netmiko module simultaneously. So, we
create the for loop with two iterables. After that, we connect to the devices
in each loop and send the configuration variable. The value in the
configuration is a list of data in Excel from A1 to A14.

A B C

1 hostname Test-R1 hostname Test-R2 hostname Test-R3

2 interface
GigabitEthernet0/1

interface
GigabitEthernet0/1

interface
GigabitEthernet0/1

3 ip address 20.20.20.1
255.255.255.0

ip address 20.20.20.2
255.255.255.0

ip address 20.20.20.3
255.255.255.0

4 no shutdown no shutdown no shutdown

5 interface
GigabitEthernet0/2

interface
GigabitEthernet0/2

interface
GigabitEthernet0/2

6 ip address 30.30.30.1
255.255.255.0

ip address 30.30.30.2
255.255.255.0

ip address 30.30.30.3
255.255.255.0

7 no shutdown no shutdown no shutdown

8 interface
GigabitEthernet0/3

interface
GigabitEthernet0/3

interface
GigabitEthernet0/3

9 ip address 40.40.40.1
255.255.255.0

ip address 40.40.40.2
255.255.255.0

ip address 40.40.40.3
255.255.255.0

10 no shutdown no shutdown no shutdown

11 router ospf 10 router ospf 10 router ospf 10

12 network 20.20.20.0
0.0.0.255 area 0

network 20.20.20.0
0.0.0.255 area 0

network 20.20.20.0
0.0.0.255 area 0

13 network 30.30.30.0 network 30.30.30.0 network 30.30.30.0

0.0.0.255 area 0 0.0.0.255 area 0 0.0.0.255 area 0

14 network 40.40.40.40
0.0.0.255 area 0

network 40.40.40.40
0.0.0.255 area 0

network 40.40.40.40
0.0.0.255 area 0

Table 5.1: Configuration template of an Excel file “Config_file.xlsx”

In Table 5.1, all three device configurations are saved in the
Config_file.xlsx Excel file with the same script directory. When we
execute the script in Example 5.3, it configures each device with the
specific template in columns A, B, and C. With an Excel template, we can
configure many devices with the first installation in a simple solution.
Example 5.3: Deploy configuration template from the Excel file
import xlwings
from netmiko import Netmiko
excel = xlwings.Book("Config_file.xlsx").sheets['Sheet1']
column = ["A","B","C"]
host = ["10.10.10.1", "10.10.10.2", "10.10.10.3"]
for x,ip in zip(column,host):
print(f"---Connected to {ip}---")
configuration = excel.range(f"{x}1:{x}14").value
device = {"host": ip, "username": "admin", "password":
"cisco","device_type": "cisco_ios"}
net_connect = Netmiko(**device)
net_connect.send_config_set(configuration)

In the output of Example 5.3, in each connection, we display the IP address
with a print function. So, we can understand which device has a
connection now. So, if we have 100 devices, we can see how many device
configurations are finished and how many of them remain.
Netmiko is designed to connect network devices more smartly. So, when we
send configuration with the send_config_set function, it automatically
enters the configuration mode, and after all commands finish, it
automatically exits to user mode. In this example, it’s Cisco routers, so it
enters configuration mode with the configure terminal and exists with
the end command. We have no need to enter those commands, but if we use
the paramiko module, we need to enter them.
In Example 5.4, we get the IP address and assigned it to the ip_list
variable. This time, we call the commands from a text file. We call the

send_config_from_file function to run all content in the file. We write the
filename with its extension as a string inside parentheses.

output =
net_connect.send_config_from_file("command_list.txt")

So, the code is much clearer to handle, and the script gets all the
information to log the device in and executes commands from files.
Example 5.4: Configuration of interfaces from text files
from netmiko import Netmiko
import re
with open("host_info.txt") as r:
host = r.read()

ip_list = re.split("\n", host)
for ip in ip_list:
ip = {
"host": f"{ip}",
"username":"admin",
"password":"cisco",
"device_type": "cisco_ios",
"global_delay_factor": 0.1 }

try:
print(f"\n---Try to Login: {ip['host']} ---\n")
net_connect = Netmiko(**ip)
output =
net_connect.send_config_from_file("command_list.txt")
print(output)

except:
print(f"***Cannot login to {ip['host']}")

For later usage of this code, we only need to change two files, and we do
not need to change anything in the code.

host_info.txt
10.10.10.1
10.10.10.2
10.10.10.3

command_list.txt
interface GigabitEthernet0/1
description Test
no shutdown
no cdp enable

Replacing configurations on files

In Example 5.5, we have a router’s interface configuration text file. It could
be a complete configuration to modify for further usage. In this scenario,
we change the interface description, port shutdown status, and IP address
information.
We remove the description line in the GigabitEthernet0/0 interface in the
following code. We also replace the no ip address line with the ip
address 192.168.10.10 255.255.255.0 line, and we remove the
shutdown line under the GigabitEthernet0/1.

1. We create an old_config.txt text file with the following content.
After that, we create a command_change variable. We write the old and
new configurations in this variable. command_change[0] is the old
value, and the command_change[1] is the new value. Also,
command_change[2] is the old value, and command_change[3] is the
new value. Even-numbered items represent old values, and odd-
numbered items represent new values.
command_change = [
"""interface GigabitEthernet0/0
description TEST""",
"interface GigabitEthernet0/0",
"""interface GigabitEthernet0/1
no ip address
shutdown""",
"""interface GigabitEthernet0/1
ip address 192.168.10.10 255.255.255.0"""
]

2. We count the command_change lists items with the len function. In this
example, the value of the item_count is four.
item_count = len(command_change)

3. We open the old configuration file with the open function, read it and
assign it to the new_config variable.
with open("old_config.txt") as old_config:
new_config = old_config.read()

4. We create a loop with a range function. X is 0 in the first iteration and
2 in the second iteration because in the range function, we add two in
each loop as we write in the code. After that, we use the replace
function to change the old value with the new one. So, we write the

old value as command_change[x] and the new value as
command_change[x+1]. So in the first loop, it’s "new_config =

new_config.replace(command_change[0],[1])".
for x in range(0, item_count, 2):
new_config = new_config.replace(command_change[x],
command_change[x + 1])

5. We write the output of the new_config variable with the open function
to the new_config.txt file.
with open("new_config.txt", "w") as new:

new.write(new_config)

Example 5.5: Replacing configurations on files
command_change = [
"""interface GigabitEthernet0/0
description TEST""",
"interface GigabitEthernet0/0",
"""interface GigabitEthernet0/1
no ip address
shutdown""",
"""interface GigabitEthernet0/1
ip address 192.168.10.10 255.255.255.0"""
]
item_count = len(command_change)
with open("old_config.txt") as old_config:
new_config = old_config.read()

for x in range(0, item_count, 2):
new_config = new_config.replace(command_change[x],
command_change[x + 1])

with open("new_config.txt", "w") as new:
new.write(new_config)

In the following text files, we replace the configuration with a basic
configuration change script. We can use this script for the migration or
swap project as a network engineer:
old_config.txt
interface GigabitEthernet0/0

description TEST

ip address 10.10.10.1 255.255.255.0

duplex auto
speed auto
media-type rj45
!
interface GigabitEthernet0/1
no ip address
shutdown
duplex auto
speed auto
media-type rj45
!
new_config.txt
interface GigabitEthernet0/0
ip address 10.10.10.1 255.255.255.0
duplex auto
speed auto
media-type rj45
!
interface GigabitEthernet0/1
ip address 192.168.10.10 255.255.255.0
duplex auto
speed auto
media-type rj45
!

Configure devices with Jinja2 template
Jinja2 template is one of the popular Python modules in network
automation. We use this third-party module to create configuration
templates and execute them with YAML format files. With these two
concepts, we can easily configure thousands of network and system devices
with many options.

Introduction to Jinja2 template

We use variables and call them with their values to execute the network
commands. Or we write full configuration command for a device and send
it to network devices. If we configure a couple of lines in network or system
devices, it’s normal to use that, like in the previous examples.
But when we configure many parts and devices, we need to make it more
automated. For example, if we need to configure 10 interfaces in a single
device, as a primary way, we can write all the configurations in a file and
execute all of them. On the other hand, we can create a sample interface,
and with a loop, we can define different values for them. This can be done
with basic Python knowledge, but it’s still more work. Instead of writing
this kind of script, we have another solution: the Jinja template.
Jinja is a template engine for Python. It’s fast, has a syntax similar to
Python, and has many features to use in many areas. It’s a simple and
powerful language for templating usage. As network engineers, we use this
template to create configuration templates to be executed in the network
and system devices. We must download jinja to use in scripts by running the
pip install Jinja2 command in the terminal, as we did for the other
third-party modules in Python.
In the following code template, there is a sample jinja template for network
devices. There is a hostname configuration and two different port
configurations. Hostname, interface IP address and subnet mask are
changeable variables. So, in this template, we can configure many devices
by setting the following variables. Each variable is inside double curly
brackets:
hostname {{name}}
!
interface GigabitEthernet 0/1
ip address {{ip_address}} {{subnet_mask}}
no shutdown
!
interface GigabitEthernet 0/2
ip address {{ip_address}} {{subnet_mask}}
no shutdown
!

Introduction to YAML language

The official website of Yet Another Markup Language (YAML) says
YAML is a human-friendly data serialization language for all programming
languages. So, it’s a programming language, and we need to learn the
basics of this language to use with the jinja template. YAML is a modern
and primary language used in different languages or tools. Ansible, one of
the most popular network automation tools, executes all the scripts in
YAML format. So, it’s essential to understand that clearly.

YAML is easy to use, human-friendly, and easily readable format.
Like in many programming languages such as Python, indentations are
very important in the YAML language.
Unlike in other languages, we cannot use tab characters in the YAML
language. If we use a tab, the script throws an error; so, we use spaces
instead of tab.
In YAML, we use the # character to write a comment, as in Python.
YAML is a case-sensitive language, so characters of lower and upper
case are different values.
YAML files are specified with an extension of .yaml or .yml.

Like in other programming languages, there are several data types in the
YAML language: string, boolean, integer, float, list, and dictionary.
For example, we can create a list with a - character. In the following
example, there are four items: lion, elephant, and dog are strings, and 5 is
an integer. All of them make up a list with four items:
- lion
- elephant
- dog
- 5

Output: ['lion', 'elephant', 'dog', 5]
In this example, we create a block mapping or a dictionary. lion is a
dictionary variable name, age is the key, and 5 is the value of that key. Keys
and values are divided by a colon, and keys and their values create
dictionaries, as in Python language.
- lion:
age: 5
color: yellow

type: wild

Output: lion: {age: 5, color: yellow, type: wild}

Rendering Jinja template with a YAML file
When we write scripts using the jinja template, we use both the jinja and
YAML modules at the same time. We create the jinja template file in text
format and the YAML file in the YAML format. We call or load both
YAML and text files inside the code. Finally, we render the template in the
script to get the data combined with the YAML file.
In Example 5.6, we create a script to execute the jinja template file with the
data in the YAML file and render it in the main script.

1. We use both jinja and YAML modules. Instead of importing all
modules, we only import the necessary functions. For jinja, we use the
Environment and FileSystemLoader functions, and for YAML, we
use the safe_load function.
from jinja2 import Environment, FileSystemLoader
from yaml import safe_load

2. Environment is the core object in the jinja module, and it contains the
variables as configurations. Inside the parentheses, we use the loader
parameter, and it’s a template loader for this environment. The value
of the loader is the FileSystemLoader function, which loads the
template in the file system. We can write a dot to target the current
directory or write the full path. In the following code, we enter the dot
inside the quote, which is in the parentheses. It means ‘load the
current file path in the PC as an environment’. If we need to call the
jinja template file from a different directory, we need to write the
directory name inside the quote. After that, we assign this value to the
env variable to use later in the code.
env = Environment(loader=FileSystemLoader("."))

3. We need to call the jinja file with the env variable.We use the
get_template function to do that. Inside this function, we write the
jinja template file, which is commands.txt in this example. After that,
we assign this value to the template variable.
template = env.get_template("commands.txt")

4. Now, the file is ready to be combined with the data in the YAML file.
So, inside the info.yml file, we write YAML format variables
parameters to assign in the jinja template. First, we need to read the
YAML file in Python. We have already imported the safe_load
function from the pyyaml module. We open the file and read it with
the safe_load function. After that, we assign all the output to the data
variable.
with open("info.yml") as r:
data = safe_load(r)

5. Finally, we combine the template and the YAML data by rendering the
script with the render function. We display the output of this code.
print(template.render(data))

In the following code, we write one line of string in the commands.txt file.
We write double curly brackets and write the variable name inside it as
language. When we execute the code, Python replaces this variable with
the data in the YAML file.
commands.txt
We try to learn {{ language }}

In the following code, we write the key and its value as language: Python
in the info.yml file. So, code uses this data to combine with the jinja
template.
info.yml
language: Python

When we run the code, we see Python instead of {{ language }}. So the
code gets the Python data or value of the language key and replaces it with
the {{ language }} variable in jinja template.
Output: We try to learn Python
This example is the basic usage of the jinja template with the YAML file. In
the following examples, we try to create more features of jinja, like creating
loops inside the template for repeatable actions.
Example 5.6: Rendering jinja template with the YAML file
from jinja2 import Environment, FileSystemLoader
from yaml import safe_load
env = Environment(loader=FileSystemLoader("."))
template = env.get_template("commands.txt")

with open("info.yml") as r:
data = safe_load(r)

print(template.render(data))

Configure devices with Jinja
We already got the data, merged with the jinja template, and rendered it in
the previous example. In Example 5.7, we use the same script as the one in
Example 5.6. This time, we configured a hostname and interface in a Cisco
router.
In Example 5.7, we create two files that are the jinja template and the
YAML file. In the jinja template, we write the whole configuration in the
following code. We write variable names in double curly brackets for the
changeable strings. These are hostname information, interface description,
IP address, and subnet mask. So, we need to create four sets of data for
these variables. After that, we execute the commands on the router with the
netmiko module.
commands.txt
hostname {{name}}
interface GigabitEthernet0/1
description {{description}}
ip address {{ip_address}} {{subnet_mask}}
no shutdown

In the following code, we create four different keys and their values in the
YAML data file. These values replace the specific variables in the jinja
template.
info.yml
name: Router-1
description: Test_Interface
ip_address: 192.168.10.10
subnet_mask: 255.255.255.0

We import the jinja2, yaml, netmiko, and re modules in the main script.
After that, we write the device information to log in.
from jinja2 import Environment, FileSystemLoader
from yaml import safe_load
from netmiko import Netmiko
import re

ip = {"host": "10.10.10.1", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global_delay_factor":
0.1}

We write the jinja template commands as we did in Example 5.6.
env = Environment(loader=FileSystemLoader("."))
template = env.get_template("commands.txt")
with open("info.yml") as r:
data = safe_load(r)

command = template.render(data

When we check the command variable, it’s a string of commands. We need to
change it to a list by each line. So, if we have 10 lines of commands, we
need to change it to a list with 10 items. We use the split function from the
RE module by dividing lines with the \n string.
command = re.split("\n", command)

Finally, we log in to the device and send the configuration commands with
netmiko functions.
print(f"\n---Try to Login: {ip['host']} ---\n")
net_connect = Netmiko(**ip)
output = net_connect.send_config_set(command)
print(output)

When we execute the script in Example 5.7, we can see a simple router
configuration with its parameters.
Output of the Jinja Template:
hostname Router-1
interface GigabitEthernet0/1
description Test_Interface
ip address 192.168.10.10 255.255.255.0
no shutdown

Example 5.7: Configure a single interface with Jinja
from jinja2 import Environment, FileSystemLoader
from yaml import safe_load
from netmiko import Netmiko
import re
ip = {"host": "10.10.10.1", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global_delay_factor":
0.1}

env = Environment(loader=FileSystemLoader("."))
template = env.get_template("commands.txt")
with open("info.yml") as r:
data = safe_load(r)

command = template.render(data)
command = re.split("\n", command)
print(f"\n---Try to Login: {ip['host']} ---\n")
net_connect = Netmiko(**ip)
output = net_connect.send_config_set(command)
print(output)

In the previous example, we execute one interface configuration in a router.
If we have repeatable configurations, such as configuring many interfaces
with the same parameters in routers, we can use for loops in the jinja
template.
To create a for loop in the jinja template, we need to write for loop like in
Python. It must be between % and curly brackets as {% … %}. The loop must
be finished with the {% endfor %} line. Inside the for loop, we write the
string and variables together, like in the jinja templates as in the previous
examples. We call the data from the YAML file as writing {{
ITERABLE["var1"] }}.
Sample Jinja Template:
{% for ITERABLE in OBJECT %}
Hello {{ ITERABLE["var1"] }}, it's{{ ITERABLE["var2"] }}.
{% endfor %}
Sample YAML file:
ITERABLE:
- var1: World
var2: Python

When we execute the code, the output will be Hello World, it's Python.
In Example 5.8, we use the same Python script as in Example 5.7. But we
changed the YAML file and the jinja template. In this scenario, we
configure the hostname of the router and three interfaces with their
description, IP address, and status as no shutdown. Instead of writing three
interfaces configuration in the jinja template and YAML file, we write the
for loop in the jinja template.

In the YAML file, we write the hostname key and value. After that, we
write the interfaces dictionary. There are three lists in this dictionary, and
each list has a dictionary with keys and values, for example, name and
GigabirEthernet0/1. So, we enter the keys and values for each interface.
We write the jinja file with the for loop. We have data for hostnames,
interface name, interface description, IP address, and subnet mask.
Example 5.8: Configure multiple interfaces with Jinja
commands.txt:
hostname {{hostname}}
{% for int in interfaces %}
interface {{ int["name"] }}
description {{ int["description"] }}
ip address {{ int["ip_address"] }} {{ int["subnet_mask"] }}
no shutdown
{% endfor %}
info.yml:
hostname: Router-1
interfaces:
- name: GigabitEthernet0/1
description: Service_Interface
ip_address: 172.16.10.10
subnet_mask: 255.255.255.0

- name: GigabitEthernet0/2
description: MGMT_Interface
ip_address: 10.0.0.10
subnet_mask: 255.255.255.0

- name: GigabitEthernet0/3
description: Dowlink_Interface
ip_address: 1.1.1.1
subnet_mask: 255.255.255.0

When we execute the Python code in Example 5.6, it executes the following
configurations in Router-1. We can configure dozens of interfaces with a
single template; that’s why the jinja template is so powerful for automation.
Output:
R1(config)#hostname Router-1
Router-1(config)#

Router-1(config)#interface GigabitEthernet0/1
Router-1(config-if)# description Service_Interface
Router-1(config-if)# ip address 172.16.10.10 255.255.255.0
Router-1(config-if)# no shutdown
Router-1(config-if)#
Router-1(config-if)#interface GigabitEthernet0/2
Router-1(config-if)# description MGMT_Interface
Router-1(config-if)# ip address 10.0.0.10 255.255.255.0
Router-1(config-if)# no shutdown
Router-1(config-if)#
Router-1(config-if)#interface GigabitEthernet0/3
Router-1(config-if)# description Dowlink_Interface
Router-1(config-if)# ip address 1.1.1.1 255.255.255.0
Router-1(config-if)# no shutdown
Router-1(config-if)#
Router-1(config-if)#end
Router-1#

In Example 5.9, we configure interface information in multiple devices. We
have three Cisco routers, as we did in the previous examples:

1. We import jinja, yaml, netmiko and RE modules and create a list of
IP addresses to log in to the routers.
from jinja2 import Environment, FileSystemLoader
from yaml import safe_load
from netmiko import Netmiko
import re
ip_list = ["10.10.10.1", "10.10.10.2", "10.10.10.3"]

2. We execute the Environment function for the current directory and get
the template from the text file. After that, we get the data from the
YAML file.
env = Environment(loader=FileSystemLoader("."))
template = env.get_template("commands.txt")
with open("info.yml") as r:
data = safe_load(r)

3. We create a for loop with multiple lists. In this example, the x iterable
gets the items from the data list, and the ip iterable receives the items
from the ip_list list. So, we get the data for Router-1 as the first set

of data, that for Router-2 as the second set of data, and the data for
Router-3 as the third set of data. We render the data in each loop and
execute the commands in a specific router with a netmiko module
connection.
for x,ip in zip(data,ip_list):
ip = {
"host": f"{ip}",
"username": "admin",
"password": "cisco",
"device_type": "cisco_ios",
"global_delay_factor": 0.1}

command = template.render(x)
command = re.split("\n", command)
print(f"\n---Try to Login: {ip['host']} ---\n")
net_connect = Netmiko(**ip)
output = net_connect.send_config_set(command)
print(output)

If we use nested loops for the previous examples, the code runs all three
device configurations on each device. So, all three devices would be
configured as third device configuration. It’s the wrong script to run, but in
this example, in the first loop, we get the data for the first router and log in
to the first router simultaneously; then, it continues the same way on other
routers.
Example 5.9: Configure a single interface on multiple devices with jinja
from jinja2 import Environment, FileSystemLoader
from yaml import safe_load
from netmiko import Netmiko
import re
ip_list = ["10.10.10.1", "10.10.10.2", "10.10.10.3"]
env = Environment(loader=FileSystemLoader("."))
template = env.get_template("commands.txt")
with open("info.yml") as r:
data = safe_load(r)

for x,ip in zip(data,ip_list):
ip = {
"host": f"{ip}",

"username": "admin",
"password": "cisco",
"device_type": "cisco_ios",
"global_delay_factor": 0.1}

command = template.render(x)
command = re.split("\n", command)
print(f"\n---Try to Login: {ip['host']} ---\n")
net_connect = Netmiko(**ip)
output = net_connect.send_config_set(command)
print(output)

In the following command, we create two files again: one for the jinja
template and another for the data in the YAML file. We already used this
jinja template in the previous examples, which has different usage in the
YAML file in Example 5.9. It has three items on a list, and each list
includes a dictionary with keys and values. In each for loop, it gets the data
from this file. So, Router-1 gets the first item. Each key has a specific value
for Router-1, and the loop gets other device information in the same way.
commands.txt:
hostname {{hostname}}
interface {{int_name}}
description {{description}}
ip address {{ip_address}} {{subnet_mask}}
no shutdown

info.yml:
- hostname: R1
int_name: GigabitEthernet0/3
description: Test-1
ip_address: 10.1.1.1
subnet_mask: 255.255.255.0

- hostname: R2
int_name: GigabitEthernet0/3
description: Test-2
ip_address: 10.1.1.2
subnet_mask: 255.255.255.0

- hostname: R3
int_name: GigabitEthernet0/3
description: Test-3

ip_address: 10.1.1.3
subnet_mask: 255.255.255.0

In Example 5.10, we write a script in more advanced usage. We created a
for loop to configure three interfaces and did this in three routers; it’s more
complicated according to previous examples. We use the same Python
script in Example 5.9, and we only change the jinja template file and the
YAML file.
We used the same template in the jinja file to create multiple interface
configurations in the previous example, but the YAML file is different in
this example. We make a dictionary with its items, and we create items of
lists again in the interfaces. So, when we run this code, it configures three
routers with hostnames, interface IP addresses with their subnet masks, and
interface descriptions and opens the ports with no shutdown.
Example 5.10: Configure multiple interfaces on multiple routers with jinja
commands.txt:
hostname {{hostname}}
{% for int in interfaces %}
interface {{ int["int_name"] }}
description {{ int["description"] }}
ip address {{ int["ip_address"] }} {{ int["subnet_mask"] }}
no shutdown

{% endfor %}
info.yml:
- hostname: Router-1
interfaces:
- int_name: GigabitEthernet0/1
description: Service_Interface_1
ip_address: 172.16.10.10
subnet_mask: 255.255.255.0

- int_name: GigabitEthernet0/2
description: MGMT_Interface_1
ip_address: 10.0.0.10
subnet_mask: 255.255.255.0

- int_name: GigabitEthernet0/3
description: Dowlink_Interface_1
ip_address: 1.1.1.1

subnet_mask: 255.255.255.0
- hostname: Router-2
interfaces:
- int_name: GigabitEthernet0/1
description: Service_Interface_2
ip_address: 172.16.10.20
subnet_mask: 255.255.255.0

- int_name: GigabitEthernet0/2
description: MGMT_Interface_2
ip_address: 10.0.0.20
subnet_mask: 255.255.255.0

- int_name: GigabitEthernet0/3
description: Dowlink_Interface_2
ip_address: 1.1.1.2
subnet_mask: 255.255.255.0

- hostname: Router-3
interfaces:
- int_name: GigabitEthernet0/1
description: Service_Interface_3
ip_address: 172.16.10.30
subnet_mask: 255.255.255.0

- int_name: GigabitEthernet0/2
description: MGMT_Interface_3
ip_address: 10.0.0.30
subnet_mask: 255.255.255.0

- int_name: GigabitEthernet0/3
description: Dowlink_Interface_3
ip_address: 1.1.1.3
subnet_mask: 255.255.255.0

In the following output, when we execute the script and check the interface
information of three routers, we can see that the interface description and IP
address with subnet mask are configured, and ports are configured with a no
shutdown command.
ROUTER-1:
Router-1#show interfaces description
Interface Status Protocol Description
Gi0/0 up up

Gi0/1 down down Service_Interface_1
Gi0/2 down down MGMT_Interface_1
Gi0/3 down down Dowlink_Interface_1
Router-1#show ip interface brief
Interface IP-Address OK? Method Status Protocol
GigabitEthernet0/0 10.10.10.1 YES NVRAM up up
GigabitEthernet0/1 172.16.10.10 YES manual down down
GigabitEthernet0/2 10.0.0.10 YES manual down down
GigabitEthernet0/3 1.1.1.1 YES manual down down
ROUTER-2:
Router-2#show interfaces description
Interface Status Protocol Description
Gi0/0 up up
Gi0/1 down down Service_Interface_2
Gi0/2 down down MGMT_Interface_2
Gi0/3 down down Dowlink_Interface_2
Router-2#show ip interface brief
Interface IP-Address OK? Method Status Protocol
GigabitEthernet0/0 10.10.10.2 YES NVRAM up up
GigabitEthernet0/1 172.16.10.20 YES manual down down
GigabitEthernet0/2 10.0.0.20 YES manual down down
GigabitEthernet0/3 1.1.1.2 YES manual down down
ROUTER-3:
Router-3#show interfaces description
Interface Status Protocol Description
Gi0/0 up up
Gi0/1 up up Service_Interface_3
Gi0/2 down down MGMT_Interface_3
Gi0/3 down down Dowlink_Interface_3
Router-3#show ip interface brief
Interface IP-Address OK? Method Status Protocol
GigabitEthernet0/0 10.10.10.3 YES NVRAM up up
GigabitEthernet0/1 172.16.10.30 YES manual up up
GigabitEthernet0/2 10.0.0.30 YES manual down down
GigabitEthernet0/3 1.1.1.3 YES manual down down

If statement in Jinja

In Example 5.11, we use the if statement inside the jinja template. We
execute the same Python script as in Example 5.7. We configure Access
List (ACL) and interface information in the following code.
#
access-list 1 permit 10.10.10.0 0.0.0.255
access-list 1 permit 20.20.20.0 0.0.0.255
access-list 1 permit 30.30.30.0 0.0.0.255
#
interface GigabitEthernet0/1
description Service_Interface
ip address 172.16.10.10 255.255.255.0
no shutdown
ip access-group 1 in
#
interface GigabitEthernet0/2
description NOT_USED
ip address
shutdown
#

We send the shutdown or the no shutdown command according to the
interface information, and we add the ACL command in the
GigabitEthernet0/1 interface.
In this example, we have two interfaces: GigabitEthernet0/1 has the IP
address, and GigabitEthernet0/2 has no IP address, and the description is
NOT_USED. Empty ports should be shutdown in network devices, and others
should be configured as no shutdown. So, in the jinja for loop, we can
decide which interface is active or closed.
There is an if statement line in the jinja file before we close the for loop.
Usage of the if statement is also similar to that of the for statement. We
write {% if int['active'] %} no {% endif %} to check if the active
variable is true or false in the related interface on the YAML file. If it’s true,
the no string will be written, and that line will be no shutdown. If it’s false,
the no string will not be written, and that line will be shutdown. So, if the
active key’s value is true, the port is configured as no shutdown; otherwise,
it’s configured as shutdown.

When we check the YAML file, there is an active key in the items, and the
value is true or false. GigabitEthernet0/2 is false, so the port is configured
as shutdown. GigabitEthernet0/1 is true, so the port is configured as no
shutdown.
Example 5.11: Access-list configuration in routers with the if statement
commands.txt:
{% for acl in access_list %}
access-list {{ acl_no }} permit {{ acl["ip_address"] }} {{
acl["wild_card"] }}
{% endfor %}
{% for int in interfaces %}
interface {{ int["name"] }}
description {{ int["description"] }}
ip address {{ int["ip_address"] }} {{ int["subnet_mask"] }}
{% if int['active'] %}no {% endif %}shutdown
{% if int['active'] %}ip access-group {{ acl_no }} in {%
endif %}

{% endfor %}
info.yml:
acl_no: 1
access_list:
- ip_address: 10.10.10.0
wild_card: 0.0.0.255
active: true
- ip_address: 20.20.20.0
wild_card: 0.0.0.255
- ip_address: 30.30.30.0
wild_card: 0.0.0.255

interfaces:
- name: GigabitEthernet0/1
description: Service_Interface
ip_address: 172.16.10.10
subnet_mask: 255.255.255.0
active: true
- name: GigabitEthernet0/2
description: NOT_USED
active: false

When we execute the code, the GigabitEthernet0/2 interface has no IP
address, and the description is NOT_USED, as in the following output. And
it’s also administratively down, which is shutdown.
Router-1#show interface description
Interface Status Protocol Description
Gi0/0 up up
Gi0/1 down down Service_Interface
Gi0/2 admin down down NOT_USED
Gi0/3 down down
Router-1#show ip interface brief
Interface IP-Address OK? Method Status Protocol
GigabitEthernet0/0 10.10.10.1 YES NVRAM up up
GigabitEthernet0/1 172.16.10.10 YES manual down down
GigabitEthernet0/2 unassigned YES unset administratively down
down
GigabitEthernet0/3 unassigned YES unset administratively down
down

In Example 5.11, the GigabitEthernet0/2 interface has no IP address. But,
when we check the output of our script, the ip address command is
executed in the Cisco device. Because there is no IP and subnet mask on the
command, the router returns a % Incomplete command. as a warning.
Router-1(config-if)# ip address
% Incomplete command.

We can create another if statement for the ip address command. So, if
there is no ip_address key in the list item in the YAML file, ip address
{{ int['ip_address'] }} {{ int['subnet_mask'] }} line is not run in
the device. As we see in the YAML file, the GigabitEthernet0/2 has no IP
address key. So, our code doesn’t send the ip address command.
{% if int['ip_address'] -%}
ip address {{ int['ip_address'] }} {{ int['subnet_mask'] }}
{% endif -%}

Configure devices with Napalm module
Network Automation and Programmability Abstraction Layer with
Multivendor (NAPALM) is a Python library that connects network devices
by a unified API.

It’s built on top of the netmiko module.
It currently supports Cisco, Juniper, and Arista devices. It does not
have as wide a range of vendor support as the netmiko module.
It has a feature to manipulate configurations and commit or roll back
the configuration on the network devices.
We can combine NAPALM with the network automation frameworks
such as Ansible and Salt.

We can use NAPALM with multiple platforms simpler than netmiko
because it uses the same syntax for different vendors, and it’s one of the
powerful parts of NAPALM.
There are plenty of getters or the get functions in NAPALM to collect the
logs in a smarter way that can be converted to a JSON format or more
readable for us. We need to enable the Secure Copy Protocol (SCP) server
in Cisco devices with the ip scp server enable command to log in with
NAPALM. Otherwise, the code gives an error and asks to enable the SCP
protocol.
We must run the pip install napalm command in the terminal to install
the NAPALM module. For more details about NAPALM, like supported
network devices, getters, and configurations, you can check the official
website at the following link:
https://napalm.readthedocs.io/en/latest/support/index.html

Collect logs from devices with NAPALM
We will collect logs with the NAPALM module in this section. In Example
5.12, we collect interface information or route information detail. We can
also convert it to the JavaScript Object Notation (JSON) format to make
it more readable for us.

1. We import the napalm and JSON modules. After that, we write the
host variable and add the hostname as IP address, username, and
password information to log in to the device.
import napalm
import json
host = {"hostname": "10.10.10.1", "username": "admin",
"password": "cisco"}

https://napalm.readthedocs.io/en/latest/support/index.html

2. We call the get_network_driver function from the NAPALM module
and assign it to the driver variable. We choose the specific vendor to
get data: for cisco - ios, for arista - eos, and for juniper - junos. We
write (**host) to login a device like in netmiko module.We assign
this value to a variable called connect.
driver = napalm.get_network_driver("ios")
connect = driver(**host)

3. We call the open function with connecting variable to open a
connection session on the device. Now, we can call the getters or the
commands to get the data or log from the device. We use the
get_interfaces function to get the details of the interfaces in the
device and write all the output logs to the output variable. We can
also call other functions for other purposes.
connect.open()
output = connect.get_interfaces()

4. We can display the output with a print function. If we print only the
output function, it displays a very long line of a dictionary, which is
not a good way to read the data. In this situation, we use the JSON
format to read the output variable. We use the dumps function from
the JSON module and add an indentation between the items as one.
Finally, we close the connection session with the close function.
print(json.dumps(output, indent=1))
connect.close()

Example 5.12: Get interface information with NAPALM
import napalm
import json
host = {"hostname": "10.10.10.1", "username": "admin",
"password": "cisco"}
driver = napalm.get_network_driver("ios")
connect = driver(**host)
connect.open()
output = connect.get_interfaces()
print(json.dumps(output, indent=1))
connect.close()

When we execute the script in Example 5.12, it collects detailed interface
data from the routers, as in the following output. We can see the description,

MAC address, MTU size, and more.
{
"GigabitEthernet0/0": {
"is_enabled": true,
"is_up": true,
"description": "aaa",
"mac_address": "0C:70:B7:89:00:00",
"last_flapped": -1.0,
"mtu": 1500,
"speed": 1000.0

},
"GigabitEthernet0/1": {
"is_enabled": false,
"is_up": false,
"description": "11",
"mac_address": "0C:70:B7:89:00:01",
"last_flapped": -1.0,
"mtu": 1500,
"speed": 1000.0

},
"GigabitEthernet0/2": {
"is_enabled": false,
"is_up": false,
"description": "22",
"mac_address": "0C:70:B7:89:00:02",
"last_flapped": -1.0,
"mtu": 1500,
"speed": 1000.0

},
"GigabitEthernet0/3": {
"is_enabled": false,
"is_up": false,
"description": "33",
"mac_address": "0C:70:B7:89:00:03",
"last_flapped": -1.0,
"mtu": 1500,
"speed": 1000.0

}
}

We can also get route information from the device. We call the
get_route_to function to get the data, and we write the destination route IP
address as a string in parentheses.
output = connect.get_route_to("192.168.10.30")

When we execute show ip route with the destination IP address, we can
see the following output From CLI part. If we execute the Python script, we
can see the output as the From Python Code part. From Router-1, we have
an Open Shortest Path First (OSPF) neighbor as 192.168.10.30 in the
router. So, we use this IP address to check the route details.
From CLI:
Router-1#show ip route 192.168.10.30
Routing entry for 192.168.10.30/32
Known via "ospf 1", distance 110, metric 2, type intra area
Last update from 10.10.10.3 on GigabitEthernet0/0, 00:37:50
ago
Routing Descriptor Blocks:
* 10.10.10.3, from 10.10.10.3, 00:37:50 ago, via
GigabitEthernet0/0
Route metric is 2, traffic share count is 1

From Python code:
{ "192.168.10.30/32": [
{
"protocol": "ospf",
"outgoing_interface": "GigabitEthernet0/0",
"age": 2223,
"current_active": true,
"routing_table": "default",
"last_active": true,
"protocol_attributes": {},
"next_hop": "10.10.10.3",
"selected_next_hop": true,
"inactive_reason": "",
"preference": 2 }] }

In Example 5.13, we add an ip_list variable as three IP addresses, and we
create a for loop to log in all three devices and collect the detailed ARP
table information with the get_arp_table function.
Example 5.13: Collect logs from multiple devices with NAPALM
import napalm
import json
ip_list = ["10.10.10.1","10.10.10.2","10.10.10.3"]
for ip in ip_list:
print(f"*** Connecting to {ip} ***")
host = {"hostname": ip, "username": "admin", "password":
"cisco"}
driver = napalm.get_network_driver("ios")
connect = driver(**host)
connect.open()
output = connect.get_arp_table()
print(json.dumps(output, indent=1))
connect.close()

To check the full list of the get functions, you can check the following link
to the NAPALM official website:
https://napalm.readthedocs.io/en/latest/support/index.html

Configure devices with NAPALM
In Example 5.14, we try to configure the Border Gateway Protocol (BGP)
configuration in the router.
Instead of the get functions, we use the load_merge_candidate function to
call the configuration file. We define the filename inside the parentheses.
output =
connect.load_merge_candidate(filename=”command_list.txt”)

We can print the output of the compare_config function to see the
difference when we add configurations on the device as an option. In the
following output, we can see that all configurations are added in order, and
all of them get the + plus character at the beginning of the line. It means that
this command is added to the device. If it’s - minus, it’s deleted from the
device.
print(connect.compare_config())

https://napalm.readthedocs.io/en/latest/support/index.html

+router bgp 100
+ bgp log-neighbor-changes
+ neighbor 10.10.10.2 remote-as 100
+ neighbor 10.10.10.2 description to_Router-2
+ neighbor 10.10.10.2 next-hop-self

Finally, we use the commit_config function to execute all these commands
to the device.
connect.commit_config()

Example 5.14: Configure dynamic routes in devices with NAPALM
import napalm
host = {"hostname": "10.10.10.1", "username": "admin",
"password": "cisco"}
driver = napalm.get_network_driver("ios")
connect = driver(**host)
connect.open()
output =
connect.load_merge_candidate(filename="command_list.txt")
print(connect.compare_config())
connect.commit_config()
connect.close()

Instead of using a file to send the configuration to the device, we can use
the string to load the candidate configuration. We use the config parameter
and write a string to it or a string variable as the command.
output = connect.load_merge_candidate(config=command)

Configure devices with Nornir module
Nornir is one of the most popular and open-source network automation
frameworks that is written in the Python language. The power of nornir is to
use pure Python code when writing automation scripts. So, it has no limits
like other automation tools and can also handle tasks in advanced usage. We
can import and use any Python module and features with nornir module.

Nornir is a framework formed by plugins. We can extend its
capability by using advanced features of plugins.
Nornir has a multithreaded feature that can connect many devices
simultaneously, about which we learned in the previous chapters as

parallelism. It saves time when we make automation in a large-scale
network.
We use the NAPALM or netmiko modules to connect devices in the
nornir framework. It also supports the use of paramiko or scrapli,
which is also the SSH connection module.
Inventories are created by the YAML files like we did in NAPALM
module.

Nornir has similarities with the Ansible automation framework. It has tasks
to execute commands and an inventory system to keep the device
connection information. Ansible has its domain-specific language, but
nornir uses Python in scripts.

Inventory: Inventory stores the device information to connect. It can
be IP address, username, password, platform as vendor type, or more.
Inventory files are written in the YAML language. The inventory
system has three structures in the more advanced usage:

Hosts: It stores unique host information like IP address or
platform data.
Groups: We can group the data about the devices, like platform
information.
Defaults: It stores similar data, which is identical in devices, like
username or password.

We can combine all three files in a single configuration file with the
SimpleInventory plugin.
Tasks: The task is a plugin that is a reusable Python code to execute
functions in a single device. It returns an output at the end of the task.
Functions: The function is a plugin from the nornir_utils module
that executes an action or task. The print_result function is the most
common function to display the output of the tasks.

We need to install two modules in the terminal, i.e., pip install nornir
and pip install nornir-utils, to use the nornir module.
We need to install the additional nornir modules in the terminal for the
connection type. We are using netmiko and napalm with nornir in this book,

so we need to install pip install nornir-napalm and pip install
nornir_netmiko in the terminal.

Configure inventory in Nornir
We can configure inventory with one file, i.e., hosts.yaml, in a simple
solution. It’s the default file for host information in the nornir framework.
In the YAML file, we start with three hyphen characters, ---, at the top of
the file. After that, we write the host information as dictionaries. In the
following output, we have three device information. We write the device
name at the beginning, like Router-1, which is not a hostname on the
device; we can enter any string. Inside the device, we write hostname for
the management IP address, platform as a vendor type, and username and
password as the login information to the device.
hosts.yaml

Router-1:

hostname: 10.10.10.1
platform: ios
username: admin
password: cisco

Router-2:
hostname: 10.10.10.2
platform: ios
username: admin
password: cisco

Router-3:
hostname: 10.10.10.3
platform: ios
username: admin
password: cisco

We can use an advanced feature of inventory systems, and we can divide
the data in hosts.yaml file into different YAML files.
In the following code, we have a groups.yaml file. We can add platforms as
vendor information, like Cisco, Juniper, or Arista. For example, we create
the ios and junos variables, and the value of the platform is ios or junos.
So, in the hosts.yaml file, we can create a key as groups and write an item

as ios for a Cisco device. We can use the groups feature for multi-vendor
automation scripts.
We can also create a defaults.yaml file to enter the same data that can run
in devices, such as username and password. In our example, all three
devices have the same username and password information.
We only write the hostname and groups keys inside the hosts.yaml file
with the router name, like Router-1.
groups.yaml

ios:
platform: "ios"

junos:
platform: "junos"

defaults.yaml

username: admin
password: cisco
hosts.yaml

Router-1:

hostname: 10.10.10.1
groups:
- ios

Router-2:
hostname: 10.10.10.2
groups:
- ios

Router-3:
hostname: 10.10.10.3
groups:
- ios

In the following output, after configuring all three files, we create a
config.yaml file to combine these files in the nornir framework. We
added an inventory dictionary. We use the SimpleInventory plugin to
combine these YAML files. Inside the options, we write host_file,

group_file, defaults_file keys and the YAML files that we create in a
string.
In the second part, we write the runner plugin to use the multithreading
feature of nornir. So, we can run the code on 10 or more devices
concurrently. We use the threaded plugin, and in the options, we use the
num_workers key as three. We can change this parameter to tell our code
how many devices to connect concurrently. In this scenario, it tries to log in
to three devices simultaneously and faster. If we enter 1 as the value of
num_workers, the code logs in to devices one by one, which is slower.
config.yaml

inventory:

plugin: SimpleInventory
options:
host_file: "hosts.yaml"
group_file: "groups.yaml"
defaults_file: "defaults.yaml"

runner:
plugin: threaded
options:
num_workers: 3

Connection to devices with Nornir-Netmiko
In Example 5.15, we collect the show arp command output from Cisco
devices using netmiko over the nornir framework. We use the hosts.yaml
file above.

1. We import nornir for the nornir framework, nornir_utils for
functions, and nornir_netmiko to log in via the netmiko module.
from nornir import InitNornir
from nornir_utils.plugins.functions import print_result
from nornir_netmiko import netmiko_send_command

2. We initialize nornir with the InitNornir() function in the nornir
module and assign it to a connect variable.
connect = InitNornir()

3. We call the run function and assign it to a result variable. Inside this
function, we write the task parameter to call the
netmiko_send_command function from the nornir_netmiko module
and the command_string parameter to execute the command in the
device.
result = connect.run(task=netmiko_send_command,
command_string="show arp")

4. Finally, we have a special print function in the nornir_utils
module. We call this function the result variable.
print_result(result)

Example 5.15: Collect logs with Nornir-Netmiko
from nornir import InitNornir
from nornir_utils.plugins.functions import print_result
from nornir_netmiko import netmiko_send_command
connect = InitNornir()
result = connect.run(task=netmiko_send_command,
command_string="show arp")
print_result(result)

When we execute the code in Example 5.15, it connects to three devices
very fast. This is because the value of the num_workers parameter, which is
used for multithreading, is 20 by default. So, if we don’t set the
num_workers value in the code, the code connects to max 20 device
concurrency.
We can change the num_workers parameter to one in the following code.
We must write it inside the options from the threaded plugin, which we
set in the runner parameter.
connect = InitNornir(runner={"plugin": "threaded", "options":
{"num_workers": 1}},)

In Example 5.16, we can also add the YAML configuration files groups,
defaults, hosts.yaml and config.yaml. To do that, we write the
config_file parameter inside the InitNornir function and the value
config file as a string.
Example 5.16: Collect logs by “config.yaml” with Nornir-Netmiko
from nornir import InitNornir
from nornir_utils.plugins.functions import print_result

from nornir_netmiko import netmiko_send_command
connect = InitNornir(config_file="config.yaml")
result = connect.run(task=netmiko_send_command,
command_string="show arp")
print_result(result)

In Example 5.17, We can execute multiple commands. The command_string
variable must be a string, so we cannot add a list by various commands; we
need to use a loop. That’s why we create a commands variable as a list with
the show commands and create a for loop after executing the InitNornir()
function. We still use multithreading.
Example 5.17: Collect multiple logs with Nornir-Netmiko
from nornir import InitNornir
from nornir_utils.plugins.functions import print_result
import nornir_netmiko
commands = ["show arp", "show ip interface brief", "show
interface description"]
connect = InitNornir()
for comm in commands:
result =
connect.run(task=nornir_netmiko.netmiko_send_command,
command_string=comm)
print_result(result)

In Example 5.18, we use the netmiko_send_config function from the
nornir_netmiko module to execute commands in the devices. We execute
basic SNMP v2 configuration in the Cisco devices. We have the options of
sending commands from a variable or from a file.
To send commands from a variable, we use the config_commands parameter
inside the run function, and to send them from a file, we use the
config_file parameter with a file named string.
result = connect.run(task=netmiko_send_config,

config_commands=commands)
result = connect.run(task=netmiko_send_config,

config_file="command_list.txt")

Example 5.18: SNMP configuration in devices with Nornir-Netmiko
from nornir import InitNornir
from nornir_utils.plugins.functions import print_result

from nornir_netmiko import netmiko_send_config
commands = ["snmp-server community public RO", "snmp-server
community private RW",

"snmp-server enable traps cpu threshold",
"snmp-server host 10.10.10.150 version 2c snmp_user",
"snmp-server source-interface informs GigabitEthernet0/0"]

connect = InitNornir()
result = connect.run(task=netmiko_send_config,
config_commands=commands)
print_result(result)

In Example 5.19, we can also filter devices. So, we can choose nornir to
show only some commands or devices by the filter function. In the
following code, we write the filter function with the hostname parameter
as 10.10.10.2, which is Router-2 in our example. So, the code only
connects this device and executes the show arp command.
Example 5.19: Using the filter function in the Nornir Framework
from nornir import InitNornir
from nornir_utils.plugins.functions import print_result
from nornir_netmiko import netmiko_send_command
connect = InitNornir()
connect = connect.filter(hostname="10.10.10.2")
result = connect.run(task=netmiko_send_command,
command_string="show arp")
print_result(result)

Connection to devices with Nornir-NAPALM
In Example 5.20, we use the NAPALM connection mode with the
nornir_napalm module. Everything is the same with the netmiko
connection; we only change the task and commands parameter. We use the
napalm_cli function for tasks and the commands parameter for sending
commands. We save configuration commands with the write command in
the Cisco devices.
Example 5.20: Save configuration with Nornir-NAPALM
from nornir import InitNornir
from nornir_utils.plugins.functions import print_result
from nornir_napalm.plugins.tasks import napalm_cli

connect = InitNornir()
result = connect.run(task=napalm_cli, commands=["write"])
print_result(result)

In the print_result function, if we write the result variable as [Router-1],
the code collects data from all devices but only shows Router-1 logs.
print_result(result["Router-1"])

If we use only the print function, the output will be different from that of
the print_result function. We write device information with the specific
command, which only displays the a particular log from that device as an
output.
print(result["Router-1"].result["write"])

Instead of running commands, we can use the NAPALM feature of getters.
In the following code, we must import the napalm_get function and add it
to tasks. After that, we need to add a getters parameter and write the get
function.
result = connect.run(tasks=napalm_get, getters=
"get_interfaces_ip")

We can also configure devices with the nornir-napalm module. To do that,
we must import the napalm_configure function and add it to tasks, as
shown in the following code. After that, we write a filename in the
filename parameter.
result = connect.run(task=napalm_configure,
filename="command_list.txt")

Configure devices by Nornir and Jinja template
In Example 5.21, we combine nornir with the jinja2 template. So, the code
has a more advanced usage. In the following code, we combine the jinja2
example and the nornir-netmiko example.
We get the jinja template from the commands.txt file and the data from the
info.yml file, and we create a template as shown in the following code. We
execute the following OSPF configuration commands in routers using the
nornir module and the Jinja template.
router ospf 1
network 10.10.10.0 0.0.0.255 area 0
network 20.20.20.0 0.0.0.255 area 1

network 30.30.30.0 0.0.0.255 area 0
#
interface Loopback0
ip ospf network point-to-point
ip ospf cost 100
commands.txt
router ospf {{ ospf_process }}
{% for net in networks %}
network {{ net["ip_address"] }} {{ net["subnet_mask"] }} area
{{ net["area_id"] }}

{% endfor %}
int loopback {{ loopback_int }}
ip ospf cost {{ lo_cost }}
ip ospf network {{ net_type }}
info.yml
ospf_process: 1
networks:
- ip_address: 10.10.10.0
subnet_mask: 255.255.255.0
area_id: 0
- ip_address: 20.20.20.0
subnet_mask: 255.255.255.0
area_id: 1
- ip_address: 30.30.30.0
subnet_mask: 255.255.255.0
area_id: 0

loopback_int: 0
lo_cost: 100
net_type: point-to-point

After that, we save this configuration template to the conf.txt file in the
current directory. Finally, we call this file with the config_file parameter
using the netmiko_send_config function.
Example 5.21: Configure OSPF with Jinja template in devices by Nornir
from nornir import InitNornir
from nornir_utils.plugins.functions import print_result
from nornir_netmiko import netmiko_send_config
from jinja2 import Environment, FileSystemLoader

from yaml import safe_load
env = Environment(loader=FileSystemLoader("."))
template = env.get_template("commands.txt")
with open("info.yml") as r:
data = safe_load(r)

with open("conf.txt","w") as w:
w.write(template.render(data))

connect = InitNornir()
result = connect.run(task=netmiko_send_config,
config_file="conf.txt")
print_result(result)

Conclusion
In this chapter, we learned about advanced network automation features to
make scripts more flexible with high quality. We use templates, new
connection methods, and an automation framework, which are essential in
high-level automation engineering.
The next chapter will focus on file transfers with SCP, SSH, or SFTP
protocols. We have different modules to complete these tasks in Python, and
we also create plots of data from the devices like, CPU usage or interface
traffic graphics, by plotting modules.

Multiple choice questions
1. How can you use the for loop in the jinja template?

a. {% for X in Y %}
CONTENT

b. {% for X in Y %}
CONTENT
{% end %}

c. {% for X in Y %}
CONTENT
{% endfor %}

d. {% for X in Y %}
CONTENT

{%}

2. Which of the following is not one of the get functions in NAPALM?

a. get_eigrp_neighbors
b. get_facts
c. get_bgp_neighbors
d. get_vlans

3. What is the maximum number of devices that can be connected
simultaneously in the nornir framework?”

a. 1
b. 5
c. 10
d. 20

Answers
1. c
2. a
3. d

Questions
1. Using jinja, write a script to configure three network devices with the

nornir-napalm module.
2. Write a nornir script to get VLAN data and save it to an Excel file in

columns and rows.

CHAPTER 6
File Transfer and Plotting

This chapter will focus on file transfer and plotting data, including example
scripts. We will use network connection modules to log in to devices and
transfer files in upload and download directions. We will use file transfer
protocols like FTP, SFTP, and SCP, and we will back up the device
configuration file to the local PC with the SSH or SCP protocols. We also
use netmiko to collect data and draw a plot in a new window.

Structure
In this chapter, we will cover the following topics:

File transfers

Backup configuration file with SSH
File transfer with FTP connection
File transfer with SFTP connection
File transfer with SCP connection
Netmiko SCP connection with concurrent module
File transfer with Nornir SCP connection
Backup configuration file with SCP

Plotting data

Plotting CPU levels
Plotting interface bandwidth

Objectives
We will use FTP, SFTP, and SCP to log in and transfer files in the network
and system devices. Even if we can do this task in the CLI, we will create
automation scripts and transfer files to many devices concurrently by using

parallelism in Python language. We will use the ftplib, ftpretty,
paramiko, netmiko, and nornir modules to transfer files in different
protocols. We will also collect data periodically from devices with netmiko
and draw a plot to check the graphics. We will use the matplotlib module to
plot any data from the device and customize the drawing window.

File transfers
File transfer is one of the critical topics in the daily work of network
engineering. We transfer a lot of data both ways: upload or download data.
The data can be software or patch file, configuration data, packet captures,
logs, or any other information to transfer.
There are various protocols in file transfer methods, such as File Transfer
Protocol (FTP), Secure File Transfer Protocol (SFTP), and Secure Copy
Protocol (SCP). Many file transfer tools exist, such as FileZilla, WinSCP,
and more. We can transfer files or folders with these tools, but in this
chapter, we will create custom-designed scripts and share files with these
scripts. These are more flexible than the FTP tools because we can
automate the network with our scripts and transfer files to many devices
concurrently. We can see that the transfer success or file size matches the
local file. We can touch on all the transferring processes in the advanced
usage of these scripts.

FTP: It’s a simple file transfer protocol developed as one of the oldest
protocols on the internet and used for over 40 years. It creates a
connection session between two machines to transfer a file from one
to the other. Connections occur over IP addresses, like with the other
file transfer protocols. However, this protocol has no encryption, so
it’s insecure. It uses data channels, which are at risk of being
manipulated by hackers.
SFTP: It’s created as an alternative to File Transfer Protocol (FTP)
to transfer files over the SSH protocol. Instead of FTP, SFTP uses the
SSH protocol more securely. It creates a single connection instead of
FTP and encrypts the data for transfer. So, it’s more secure than FTP.
SCP: It transfers files over an encrypted tunnel based on the SSH
protocol. We can use SCP only to transfer files both ways. Unlike FTP
and SFTP, we cannot delete files, create directories, or list all content

in a directory in the remote host. It uses SSH for authentication, so it’s
also a secure file transfer protocol.

We have various modules in Python to use the file transfer protocols, such
as ftplib, paramiko, netmiko, napalm, and nornir.

Backup configuration file with SSH
Before using the file transfer protocols on network devices, we can start
with Example 1.1 to log in devices with the netmiko SSH protocol and
collect data. In this example, we collect complete device configurations,
such as running configuration in Cisco or configuration in Juniper and
Huawei devices. We can modify this script for other vendors like Nokia or
Arista.

1. We import the netmiko function from the netmiko module. We create
two lists, ip_list and device_list, for netmiko device type and the
IP information for the management of devices. After that, we create a
for loop with the zip feature, allowing us to iterate two lists together
with a for loop. We write the netmiko connection parameters inside
the loop as host, username, password, device_type, and
global_delay_factor. So, in each iteration, the code gets the item in
the ip_list and device_list lists.
In the following code, we have three Cisco devices, a Juniper, and a
Huawei device. So, the device types are different, and it’s
juniper_junos for Juniper and huawei for Huawei. If the loop gets
the IP address as 10.10.20.1, it also brings the juniper_junos item.
So, we have an ip variable with a parameter to log in to a Juniper
device.
from netmiko import Netmiko
ip_list = ["10.10.10.1", "10.10.10.2", "10.10.10.3",
"10.10.20.1", "10.10.30.1"]
device_list =
["cisco_ios","cisco_ios","cisco_ios","juniper_junos","hua
wei"]
for ip,device in zip(ip_list,device_list):
ip = {
"host": f"{ip}",

"username":"admin",
"password":"cisco",
"device_type": f"{device}",
"global_delay_factor": 0.1

}

2. We define the commands to collect the configuration data from each
device. Collecting the configuration commands is different for each
vendor. For Cisco, it’s show running-config; for Juniper, it’s show
configuration or show configuration | display set according to
show in different formats; and for Huawei, it’s display current-
configuration.
We use the if condition to change the value of the command variable.
For each vendor, the value will change. At the end of the if condition,
we use the else statement so that in case the vendor is not Cisco,
Juniper, or Huawei, it displays as a warning that this device is a
different vendor’s product.

if ip["device_type"] == "cisco_ios":
command = "show running-config"

elif ip["device_type"] == "juniper_junos":
command = "show configuration | display set"

elif ip["device_type"] == "huawei":
command = "display current-configuration"

else:
print("This is different vendor (Not Cisco,Huawei or
Juniper)")

3. We create a try…except statement to check whether IP is reachable.
Inside the try statement, we connect to devices and send the
commands with the command variable in the previous code. So, for
each IP or host, we send the specific vendor command to the device.

try:
print(f"\n----Try to login: {ip['host']}---\n")
net_connect = Netmiko(**ip)
output = net_connect.send_command(command)

except:
print(f"***Cannot login to {ip['host']}")

4. After we collect the configuration output from each device, we save it
to different files, and the file name is the device’s IP address. In this
example, if we can log in and run commands on all five devices, we
will get five text files in the same directory as our code.

with open (f"{ip['host']}.txt","w") as w:
w.write(output)

Example 6.1: Backup configuration in a text file by SSH
from netmiko import Netmiko
ip_list = ["10.10.10.1", "10.10.10.2", "10.10.10.3",
"10.10.20.1", "10.10.30.1"]
device_list =
["cisco_ios","cisco_ios","cisco_ios","juniper_junos", "huawei"]
for ip,device in zip(ip_list,device_list):
ip = {
"host": f"{ip}",
"username":"admin",
"password":"cisco",
"device_type": f"{device}",
"global_delay_factor": 0.1

}
if ip["device_type"] == "cisco_ios":
command = "show run"

elif ip["device_type"] == "juniper_junos":
command = "show configuration | display set"

elif ip["device_type"] == "huawei":
command = "display current-configuration"

else:
print("This is different vendor (Not Cisco,Huawei or
Juniper)")

try:
print(f"\n----Try to login: {ip['host']}---\n")
net_connect = Netmiko(**ip)
output = net_connect.send_command(command)

except:
print(f"***Cannot login to {ip['host']}")

with open (f"{ip['host']}.txt","w") as w:
w.write(output)

File transfer with FTP connection
FTPlib module: We can use the ftplib module to log in to network and
system devices by FTP, and we can transfer files both ways: upload and
download. In Cisco and Juniper, the transfer system is different, and there is
a direct connection between the peers to make only copy processes. The
ftplib module is used to connect and run commands on the remote device.
So, we cannot use this module in Cisco and Juniper routers. We can use it in
Huawei, other vendors, or sytem devices.
Table 6.1 contains some functions to use the ftplib module for transferring
files. Some of these functions are similar to Linux terminal commands:

Function Description

storbinary() Upload file from local host to remote host

retrbinary() Download file from remote host to local host

mkd() Create a new directory

cwd() Change the directory of a folder or a file

dir() List all content in the current directory

nlst() Create a list with filenames in the current directory in the router

delete() Delete a file

rmd() Delete a folder

quit() Close the session and exit

Table 6.1: Ftpblib functions

In Example 6.2, we have two codes: downloading files to a local device and
uploading files to a remote device. In the first part, we upload a file from
the local PC to the Huawei router with the ftplib module.

1. We import the ftplib module.
import ftplib

2. We call the FTP class inside the ftplib module and enter three
parameters in order: host information as the management IP address,
username, and password. We create all these variables at the top of the
code and call them inside the FTP class. We assign the FTP class to an

ftp variable. We also define the filename variable and value as the
target file name in a string.
host = "10.10.30.1"
username = "admin"
password = "huawei"
filename = "test.txt"
ftp = ftplib.FTP(host, username, password)

3. We open the source file in binary mode to read, so we write the rb
parameters together for the open function. After that, we call the
storbinary function, which is used to upload files to the remote host.
Inside the function, we write the STOR word, the filename as a string,
and upload as the open function name. Finally, we terminate the FTP
session with the quit function.
with open(filename, "rb") as upload:
ftp.storbinary(f"STOR {filename}", upload)

ftp.quit()

In Example 6.2, with the second part, we download a file from the
router to our PC. We use the open function in the following code to
write the retrbinary. We use wb for the write and binary modes.
Inside the retrbinary function used to download files, we write RETR
and the filename inside a string. This time, the other parameter is
download.write. download is a variable that we set in the open
function to assign the output.
with open(filename, "wb") as download:
ftp.retrbinary(f"RETR {filename}", download.write)

Example 6.2: File transfer with FTP via Ftplib
Upload a File:
import ftplib
host = "10.10.30.1"
username = "admin"
password = "huawei"
filename = "test.txt" #Local PC Filename
ftp = ftplib.FTP(host,username,password)
with open(filename, "rb") as upload:
ftp.storbinary(f"STOR {filename}", upload)

ftp.quit()

Download a File:
import ftplib
host = "10.10.30.1"
username = "admin"
password = "huawei"
filename = "test.txt" #Local PC Filename
ftp = ftplib.FTP(host,username,password)
with open(filename, "wb") as download:
ftp.retrbinary(f"RETR {filename}", download.write)
ftp.quit()

In Example 6.3, we get the file size information from the router and
compare the size in the local host. If both sizes are identical, we give output
saying the size is the same.

1. We import the ftplib, re, and os modules. We use the os module to
check the file size in the local host. OS module execute the operating
system commands such as dir or cd commands.
import ftplib
import re
import os

2. We enter the host, username, password, and filename variables, like
in the previous example. We create an empty list named files that we
use in the following part. After that, we log in to the device with the
FTP function.
host = "10.10.30.1"
username = "admin"
password = "huawei"
filename = "test.txt"
files = []
ftp = ftplib.FTP(host, username, password)

3. We use the dir function. We append all the outputs to the files list. If
we directly write dir(), the code will give an outcome of the list of
the files in the router’s current directory. That’s why we append all
outputs to a variable named files and then convert it to a string with
the join function.
output = ftp.dir(files.append)
files = " ".join(files)

4. The output of the dir command in CLI is given as follows. In the last
line, the target file is test.txt, and the size is 31,570 bytes. So, we
need to get this value with the re module. We write the special
sequences to find the data that we need in the following code:
<HW_Router-1>dir
Directory of cfcard:/
Idx Attr Size(Byte) Date Time FileName
0 drw- - Jun 1 2022 02:00:11 aaa
1 drw- - Jun 1 2022 02:00:11 bios
2 -rw- 5,406 Jun 1 2022 02:00:11 vrpcfg.zip
3 -rw- 31,570 Jun 1 2022 02:00:11 test.txt

file_size = re.findall(f"(\d+)\s+\w+\s+\d+\s+\d+:\d+\s+
{filename}", files)

5. Now, we need to find the file size in the local host, so we call the
getsize function from the os module.
local = os.path.getsize(filename)

6. We need to compare two variables. The file_size variable we got
from the device is a list, and the first item is our value. So, we call the
first value of this list. We compare both variables as an integer value.
If both are identical, we display an output that both file sizes are the
same. Otherwise, we display that file size has a problem.
if int(local) == int(file_size[0]):
print(f"'{filename}': '{local}' Bytes. It's same on local
and remote host.")
else:
print("ERROR: File size has a problem.")

Example 6.3: Compare file sizes in the remote and local devices
import ftplib
import re
import os
host = "10.10.30.1"
username = "admin"
password = "huawei"
filename = "test.txt"
files = []
ftp = ftplib.FTP(host, username, password)

output = ftp.dir(files.append)
files = " ".join(files)
file_size = re.findall(f"(\d+)\s+\w+\s+\d+\s+\d+:\d+\s+
{filename}", files)
local = os.path.getsize(filename)
if int(local) == int(file_size[0]):
print(f"'{filename}': '{local}' Bytes. It's same on local and
remote host.")

else:
print("ERROR: File size has problem.")

Ftpretty module: Instead of the ftplib module, we can use the ftpretty
module to transfer files from or to remote devices. We need to install this
module by using the pip install ftpretty command in the terminal. We
can transfer any file format with this module.

The get function is used to download a file from the remote device to
our local device.
The put function is used to upload a file from our local device to the
remote device.

Table 6.2 contains some functions to use the ftpretty module for
transferring files and file handling:

Function Description

put() Upload file from local host to remote host

get() Download file from remote host to local host

mkdir() Create a new directory

cd() Change the directory of a folder or file

delete() Delete a file in remote host

list() List all content in the current directory

close() Terminate the session and exit

Table 6.2: Ftpretty functions

In Example 6.4, we download and upload files both ways. We create
functions to do that.

1. We import the ftpretty function from the ftpretty module.
from ftpretty import ftpretty

2. We write the hostname as the management IP address of the router,
username, and password variables.
host = "10.10.30.1"
username = "admin"
password = "huawei"

3. We create two functions: upload and download. We will call them
according to our task in the following code. We have two parameters
in the upload function: local_file and remote_file, so we define
files when we call the upload function. We call the ftpretty function
and assign it to the ftp variable. Inside the function, we write the
device information, like host, username, and password. Then, we call
the put function to upload the file from our local PC to a remote
device. We write the local filename with its extension and the remote
filename with its extension. At the end, we terminate the FTP
connection session with the close function.
def upload(local_file, remote_file):
ftp = ftpretty(host, username, password)
ftp.put(local_file, remote_file)
ftp.close()

4. In this function, we write code similar to the last part. We only change
the function name and use the get function instead of the put
function. We also change the parameter order in the get function.
First, we write the remote host filename with its extension, and then
the local PC filename with its extension.
def download(local_file, remote_file):
ftp = ftpretty(host, username, password)
ftp.get(remote_file, local_file)
ftp.close()

5. Finally, we must call upload the function to execute the function. In
this example, we call the upload function that we create. So, we write
upload as the function name and write two parameters. We write
test.txt as the local filename and test2.txt as the remote filename.
When we execute the script, it will upload the test.txt file to the
remote device with the test2.txt filename.
upload("test.txt","test2.txt")

Example 6.4: Upload and download files with the ftpretty module

from ftpretty import ftpretty
host = "10.10.10.1"
username = "admin"
password = "cisco"
def upload(local_file, remote_file):
ftp = ftpretty(host, username, password)
ftp.put(local_file, remote_file)
ftp.close()

def download(local_file, remote_file):
ftp = ftpretty(host, username, password)
ftp.get(remote_file, local_file)
ftp.close()

upload("test.txt","test.txt")

We can list all files by calling the list() function; it creates a list
variable.
ftp.list()

In Example 6.5, we create a script to get the file size of each file in the
remote host and display it. To do that, we use an additional parameter,
which is the extra parameter in the list function. With the extra parameter
as a True value, we can list all files by details, such as filename, size,
created time, and more. The value of the extra parameter is False by
default. We add the extra parameter in the following code and assign the
list function to the variable a. If we print a, it displays all items with details.
We can also print the size value of items in this variable. We create a for
loop, inside which we print list items in each iteration with the name and
size keys. So, in each iteration, the code gets the value from the name and
size keys to print.
a=ftp.list(extra=True)
for i in range(len(a)):
print("File:",a[i]["name"], "- Size:", a[i]["size"])

Example 6.5: Get file size of each file with ftpretty
from ftpretty import ftpretty
host = "10.10.30.1"
username = "admin"
password = "huawei"
ftp = ftpretty(host, username, password)

a=ftp.list(extra=True)
for i in range(len(a)):
print("File:",a[i]["name"], "- Size:", a[i]["size"], "Bytes")

Output:
File: paf.txt - Size: 230 Bytes
File: vrpcfg.zip - Size: 12400 Bytes
File: license.bin - Size: 1023412 Bytes

We can also create a folder and put the source file from the local PC to the
remote host using code similar to that in Example 6.5. After we log in to the
device, we create a folder named test_folder in the remote host with the
mkdir function. Afterward, we must go to this directory to upload the
source file. So, we use the cd function to change the directory to the new
file. After that, we upload the test.txt file with the put function.
ftp.mkdir("test_folder")
ftp.cd("test_folder")
ftp.put("test.txt","test.txt")

We can list the folder content from the CLI:
<HW_Router-1>dir test_folder
Directory of cfcard:/test_folder/
Idx Attr Size(Byte) Date Time FileName

0 -rw- 10,200 Jun 12 2022 10:00:00 test.txt

File transfer with SFTP connection
After FTP, we continue with SFTP, a more commonly used protocol than
FTP. We can use the paramiko module to connect devices with SFTP.
Table 6.3 has some functions to use in paramiko, like in the ftplib module:

Function Description

put() Upload file from local host to remote host

get() Download file from remote host to local host

mkdir() Create a new directory

rmdir() Delete a directory

chdir() Change the directory of a folder or a file

remove() Delete a file in remote host

listdir() List all content in the current directory as a list

rename(old_name, new_name) Change the name of the file or directory in remote
host

close() Terminate the session and exit

Table 6.3: Ftpretty functions

In Example 6.6, we connect to Huawei routers to transfer files with SFTP.
We create three functions: SFTP connection, file upload, and file download.
For Huawei or any other network and system device, you must configure
the SFTP server and enable it to log in by script. After that, we can quickly
log in to devices.

1. We import the paramiko module.
import paramiko

2. We create the first function named sftp_connect and then call the
SSHclient function. Over this function, we call the
set_missing_host_key_policy and the connect functions we wrote
several times in the previous chapters. We call the open_sftp function
to create an SFTP session between our PC and the remote host, and we
assign it to a variable named sftp. In the last line, we return the sftp
variable. We learned how to call a variable outside the function in the
previous.
def sftp_connect():
ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy
(paramiko.AutoAddPolicy())

ssh.connect(hostname="10.10.30.1", username="admin",
password="huawei")
sftp = ssh.open_sftp()
return sftp

3. So, we finish our SFTP connection function. Now, we can write the
upload function. We use the put function from paramiko to upload a
file from the local PC to the remote host. We cannot directly write the
put(local, remote) function. We must use the variable from the
sftp_connect function, which is the sftp variable. So, we write
sftp_connect().put(). To call a variable from a function, there are
two things to do. First, we must return the variable end of the source

function. Second, we need to call the source function. We terminate
the SFTP session with the close function.
def sftp_upload(local_file,remote_file):
sftp_connect().put(local_file,remote_file)
sftp_connect().close()

4. Then, we write the download function with the get function from the
paramiko module. We call the sftp_connect function again but assign
it to a variable named sftp_d. So, sftp_d equals the sftp variable in
the sftp_connect function. So, we can write sftp_d.get in this
function. There is no difference between the previous and the
following code; only the usage is different. We terminate the SFTP
session with the close function.
def sftp_download(remote_file,local_file):
sftp_d = sftp_connect()
sftp_d.get(remote_file,local_file)
sftp_d.close()

5. All three functions finish. We can call the sftp_download function by
writing the remote and local files in order as a string.
sftp_download("remote_test.txt", "local_test.txt")

We write the sftp_upload function to upload the files from the local PC to
the remote host. We write local and remote files in order.
sftp_download("local_test.txt", "remote_test.txt")

Example 6.6: SFTP file transfer with Paramiko
import paramiko
def sftp_connect():
ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy (paramiko.AutoAddPolicy())
ssh.connect(hostname="10.10.30.1", username="admin",
password="huawei")
sftp = ssh.open_sftp()
return sftp

def sftp_upload(local_file,remote_file):
sftp_connect().put(local_file,remote_file)
sftp_connect().close()

def sftp_download(remote_file,local_file):
sftp_d = sftp_connect()

sftp_d.get(remote_file,local_file)
sftp_d.close()

sftp_download("remote_test.txt","local_test.txt")

If we want to print all of items in the default directory on the remote host,
we can use sftp_connect().listdir() in Example 6.6.
print(sftp_connect().listdir())

We can also change the destination filename with its extension in the
paramiko module. We use the same function to connect a device with SFTP
and call the rename function by writing the old and new names in order
inside the parentheses.
sftp_connect().rename("test.txt","test2.txt")
print(sftp_connect().listdir())

Output: ['aaa', 'bios', 'bootlogfile', 'statlogfile', 'fpga',
'diaginfo', 'test2.txt']

File transfer with Netmiko SCP connection
SCP is one of the secure file transfer protocols in network and system
devices. Paramiko module can support SFTP, so we cannot use the
paramiko module for SCP transfer. However, we can use the netmiko
module to transfer files by the SCP protocol.
We can easily use the SCP protocol with the netmiko module. There are
two main functions to use SCP in the netmiko module: Netmiko and
file_transfer. The Netmiko function is used to log in devices with the
SSH protocol we used in the previous chapters. The file_transfer
function is used to connect network devices to transfer files from a local to
a remote host and vice versa. It uses the SCP protocol to make the file
transfer.
In Table 6.4, the file_transfer function has different parameters to
execute:

Function Description

source_file Specify the source file with its extension

dest_file Specify the destination file with its extension

direction put: Upload from local PC to remote host

get: Download from remote host to local PC

file_system Filesystem information, for example flash:

overwrite_file True/False: If file exists in destionation, whether to overwrite

disable_md5 True/False: Whether to perform Md5 encryption check after the
transfer

Table 6.4: Netmiko “file_transfer” function parameters

In Example 6.7, we log in to a single Cisco router and transfer files from the
local PC to the remote host.

1. We import the netmiko and file_transfer functions from the
netmiko module.
from netmiko import Netmiko, file_transfer

2. We write the device connection information for the netmiko module,
as we did in the previous examples. Then, we call the netmiko
function to log in the device with SSH protocol and assign it to the
net_connect variable.
device = {"host": "10.10.10.1", "username": "admin",
"password": "cisco", "device_type": "cisco_ios",
"global_delay_factor": 0.1 }
net_connect = Netmiko(**device)

3. After we log in to the device, we can transfer any file from both sides
with the file_transfer function. The mandatory parameters are
source_file, dest_file and direction. Other parameters in Table
6.4 are optional. Inside the parentheses, we write the connection
variable net_connect. After that, we write three parameters with their
values as strings. The direction parameter has two options: put and
get. We write put to upload a file from a local PC to a remote host.
file_transfer(net_connect, source_file="test.txt",
dest_file="test.txt", direction="put")

4. Finally, we terminate the SSH session with the disconnect function.
net_connect.disconnect()

Example 6.7: SCP file transfer with Netmiko
from netmiko import Netmiko, file_transfer
device = {"host": "10.10.10.1", "username": "admin",
"password": "cisco", "device_type": "cisco_ios",

"global_delay_factor": 0.1 }
net_connect = Netmiko(**device)
file_transfer(net_connect,

 source_file="test.txt",
 dest_file="test10.txt",
 direction="put")

net_connect.disconnect()

We can also download a file from a remote host to a local PC by writing the
same code as in Example 6.7 while replacing put with get in the direction
parameter.
In Example 6.8, we connect three routers and upload a file using the
file_transfer protocol. In this example, we create a JSON file and get
each device’s information from that file inside a new function.
In the following output, we create a JSON file called device_list.json.
There’s a dictionary on the top, and it has keys and their values; the values
are lists. So, we try to convert this JSON file to netmiko device login
format as a dictionary with its items.
device_list.json:
{
"Router-1" :
[
{ "host": "10.10.10.1",
"username": "admin",
"password": "cisco",
"device_type": "cisco_ios",
"global_delay_factor": 0.1

}
],
"Router-2" :
[
{ "host": "10.10.10.2",
"username": "admin",
"password": "cisco",
"device_type": "cisco_ios",
"global_delay_factor": 0.1

}

],
"Router-3" :
[
{ "host": "10.10.10.3",
"username": "admin",
"password": "cisco",
"device_type": "cisco_ios",
"global_delay_factor": 0.1

}
]

}

We write the code to connect device with the SCP protocol with the
following steps.

1. We import the netmiko and json modules.
from netmiko import Netmiko, file_transfer
import json

2. We create a function to convert the device_list.json JSON file to a
list. Each item in the list has information about each device for a
netmiko connection. We create an empty list to append each dictionary
at the end. After that, we call the open function to open the
device_list.json file and parse or convert the JSON file format to
the Python file format and assign it to the data variable.
def json_device():
host_list = []
with open('device_list.json') as json_file:
data = json.load(json_file)

3. JSON file is converted to Python file as the data variable. We need to
get each item in the dictionary, so we create a for loop. In each loop,
we got the item as a dictionary of device information by writing
item[1][0]. When we print this value in the loop, we can see that in
each iteration, the code displays each router’s information that can be
used by the netmiko module. We append or add each dictionary in a
host_list list and return host_list to use it outside the function.

for item in data.items():
host = item[1][0]
print (host)

host_list.append(host)
return host_list

The value of the host_list is in the following output. It’s a list that
contains dictionaries as items.
[{'host': '10.10.10.1', 'username': 'admin', 'password':
'cisco', 'device_type': 'cisco_ios',
'global_delay_factor': 0.1}, {'host': '10.10.10.2',
'username': 'admin', 'password': 'cisco', 'device_type':
'cisco_ios', 'global_delay_factor': 0.1}, {'host':
'10.10.10.3', 'username': 'admin', 'password': 'cisco',
'device_type': 'cisco_ios', 'global_delay_factor': 0.1}]

4. Now, we can call the json_device() function and assign this function
to the host variable. The host variable’s value equals the host_list
variable.
host = json_device()

5. We need to create a for loop to connect each device because in the
Netmiko(**host_info) function, we must write the host information
as a string; we cannot use a list. That’s why we create a for loop to
achieve our goal. We log in to each device and upload the test.txt
file by the file_transfer function, as we did in the previous
example. After all, we terminate the SSH session with the remote
device by the disconnect function.
for ip in host:
net_connect = Netmiko(**ip)
file_transfer(net_connect,

source_file="test.txt",
dest_file="test111.txt",
direction="put",
)

net_connect.disconnect()

Example 6.8: SCP file transfer by getting device information from a JSON
file
from netmiko import Netmiko, file_transfer
import json
def json_device():
host_list = []

with open('device_list.json') as json_file:
data = json.load(json_file)

for item in data.items():
host = item[1][0]
host_list.append(host)
print(host_list)

return host_list
host = json_device()
for ip in host:
net_connect = Netmiko(**ip)
file_transfer(net_connect,

source_file="test.txt",
dest_file="test.txt",
direction="put",
)

net_connect.disconnect()

We can add the disable_md5 optional parameter inside the file_transfer
function. By default, there is no md5 validation. The md5 value assigns to
False.. So, the code checks the source and destination files’ md5
encryption. If we change the value to True, the code will not validate or
check md5 encryption.
file_transfer(net_connect,

source_file="test.txt",
dest_file="test.txt",
direction="put"
disable_md5 = True
)

We can also specify whether to overwrite if the file exists on the peer side,
which can be a local PC or remote host, according to direction. The
overwrite_file parameter is False by default. So, we can overwrite a file
if the file exists in the destination host, and we can change its value to True
and overwrite a file even if it exists in the destination host.
file_transfer(net_connect,

source_file="test.txt",
dest_file="test.txt",
direction="put"

overwrite_file = True

)

We can change the default directory in the remote host. When we upload a
file to the Cisco router, it automatically uploads the file to the default
directory, flash:. But we can also have the option to change the file
directory with the file_transfer function. We use the file_system
parameter to change the upload directory. We write flash2: in the
following code as the destination file system. When we run the dir
flash2: command in Cisco CLI after we upload the file, we can see that
file is successfully uploaded to flash2: instead of flash:.
file_transfer(net_connect,

source_file="test.txt",
dest_file="test123.txt",
direction="put",
file_system="flash2:"
)

Output:
Router-1#dir flash2:
Directory of flash2:/
4 -rw- 31900 Aug 20 2022 17:56:16 +00:00 test123.txt

966656 bytes total (897024 bytes free)

One of the best features of file transfer in netmiko is that we can see the
progress in the output of the code. We need to import the progress_bar
function from the netmiko module and add progress4=progress_bar
inside the file_transfer function.
From netmiko import progress_bar
…
…
file_transfer(net_connect,

source_file="test.txt",
dest_file="test.txt",
direction="put",
file_system="flash:",
overwrite_file = True,
progress4=progress_bar
)

When we execute the code, code logs in three devices one by one to transfer
the test.txt file in order. So, when we need to upload a large file, such as
a software file, we can see the progress of the transfer quickly.
Output:
Transferring file to ('10.10.10.1', 22):
test.txt | (0.00%)
Transferring file to ('10.10.10.1', 22): test.txt
>>>>>>>>>>>>>>>>>>>>>>>>> | (51.36%)
Transferring file to ('10.10.10.1', 22): test.txt
>>| (100.00%)
Transferring file to ('10.10.10.2', 22):
test.txt | (0.00%)
Transferring file to ('10.10.10.2', 22): test.txt
>>>>>>>>>>>>>>>>>>>>>>>>> | (51.36%)
Transferring file to ('10.10.10.2', 22): test.txt
>>| (100.00%)
Transferring file to ('10.10.10.3', 22):
test.txt | (0.00%)
Transferring file to ('10.10.10.3', 22): test.txt
>>>>>>>>>>>>>>>>>>>>>>>>> | (51.36%)
Transferring file to ('10.10.10.3', 22): test.txt
>>| (100.00%)

Netmiko SCP connection with concurrent module
We can upload files to devices one by one in the for loop. In Example 6.8,
we have three devices to transfer files, and we send a text file of 32KB. So,
uploading that file to all three devices takes approximately 20 seconds,
which is not too much time. But if we try to upload a file whose size is
200MB, maybe it will take 30 minutes to upload three devices. If we have
30 devices to upload, the total time to upload is 5 hours, which is not
acceptable in real life.
We use the parallelism feature of Python to reduce the time. We connect
devices concurrently. Even if we have 30 devices to send 200 MB worth of
files, it will take only 10 minutes, which is the period to upload the software
file to a single device, because we use the multithreading feature.

We use the concurrent.futures function. We already used the threading
module with paramiko in the previous chapters.
In Example 6.9, we transfer the test.txt file concurrently to three devices.
In the previous example, it took 20 seconds. In this example, it takes 7
seconds. So, the code acts like it is connecting to a single device. Even if
we add 50 more devices in the example lab, the time will stay the same: 7
seconds. It’s the significant power of the parallelism feature in Python.

1. We import the ThreadPoolExecutor function from the
concurrent.futures module and the netmiko with its necessary
functions.
from concurrent.futures import ThreadPoolExecutor
from netmiko import Netmiko, file_transfer, progress_bar

2. We create a get_ip_address function to get the IP addresses from a
file. We collect IP addresses with the open function and write them to
a list with the splitlines function line-by-line. After that, we return
the variable host_list. When we call the get_ip_address function, it
returns the host_list variable.
def get_ip_address():
with open("device_list.txt") as r:
host_list = r.read().splitlines()

return host_list

3. We create another function named netmiko_scp. Inside this function,
we create a variable as a host to add the device information for the
netmiko connection. We have an ip variable that is the parameter in
the netmiko_scp function. We connect the device with the Netmiko
function and transfer the file with the file_transfer function. After it
finishes, we disconnect from the device and return the function. We
already did this in the previous examples:/p>
def netmiko_scp(ip):
host = {"ip": ip, "username": "admin", "password":
"cisco", "device_type": "cisco_ios"}
print(f"---Try to Login:{ip}---")
net_connect = Netmiko(**host)
file_transfer(net_connect,

source_file="test.txt",
dest_file="eee.txt",

direction="put",
file_system="flash:",
overwrite_file=True,
progress4=progress_bar)

net_connect.disconnect()
return

4. We call the ThreadPoolExecutor function as executor. We use the map
function with the executor. The map function is used with a function
and an iterable, which can be anything, like a list. In this example, we
write the netmiko_scp function and the IP list we collect in the
get_ip_address function inside the parentheses. We assign the
get_ip_address function to the host_ip variable and add it to the
parentheses of the map function.
The code with ThreadPoolExecutor can only log in to 12 devices
concurrently by default, but we can change the default value with the
max_workers parameter. In this example, we write 25, but it can be
more, based on our PC resources. This is because when we run the
code, our local PC CPU/memory resources can be increased. We can
also change the value to 1, so we can see the time difference when we
change the max_workers value.
with ThreadPoolExecutor(max_workers=25) as executor:
host_ip = get_ip_address()
result = executor.map(netmiko_scp, host_ip)

Example 6.9: SCP file transfer with netmiko simultaneously with
parallelism
from concurrent.futures import ThreadPoolExecutor
from netmiko import Netmiko, file_transfer, progress_bar
def get_ip_address():
with open("device_list.txt") as r:
host_list = r.read().splitlines()

return host_list
def netmiko_scp(ip):
host = {"ip": ip, "username": "admin", "password": "cisco",
"device_type": "cisco_ios"}
print(f"---Try to Login:{ip}---")
net_connect = Netmiko(**host)

file_transfer(net_connect,
source_file="test.txt",
dest_file="test.txt",
direction="put",
file_system="flash:",
overwrite_file=True,
progress4=progress_bar)

net_connect.disconnect()
return

with ThreadPoolExecutor(max_workers=25) as executor:
host_ip = get_ip_address()
result = executor.map(netmiko_scp, host_ip)

When we execute the script, in the output, the code is connected to all three
devices concurrently, as in the following output. In the previous example,
the code connected to 10.10.10.1 the first device in the list. After the file
transfer was finished, it continued with 10.10.10.2, like working in a loop.
But in this example, the code connected all devices simultaneously and
didn’t wait until the current connection was finished, so there is no order in
the following output.
Output:
---Try to Login:10.10.10.1---
---Try to Login:10.10.10.2---
---Try to Login:10.10.10.3---
Transferring file to ('10.10.10.3', 22):
test.txt | (0.00%)
Transferring file to ('10.10.10.1', 22): test.txt
| (0.00%)
Transferring file to ('10.10.10.3', 22): test.txt
>>>>>>>>>>>>>>>>>>>>>>>>> | (51.36%)
Transferring file to ('10.10.10.3', 22): test.txt
>>| (100.00%)
Transferring file to ('10.10.10.2', 22):
test.txt | (0.00%)
Transferring file to ('10.10.10.1', 22): test.txt
>>>>>>>>>>>>>>>>>>>>>>>>> | (51.36%)
Transferring file to ('10.10.10.1', 22): test.txt
>>| (100.00%)

Transferring file to ('10.10.10.2', 22): test.txt
>>>>>>>>>>>>>>>>>>>>>>>>> | (51.36%)
Transferring file to ('10.10.10.2', 22): test.txt
>>| (100.00%)

File transfer with Nornir SCP connection
We can also use the nornir framework to transfer files by the SCP protocol.
We use the nornir_netmiko module to handle the transfer process in nornir,
which is a powerful module that we can connect many devices
simultaneously. In the pure netmiko module, to connect multiple devices
simultaneously, we need to use the parallelism feature of Python code, such
as the threading or concurrent modules. But with nornir, we don’t need to
use this module in the script. The parallelism structure is already written in
the back end of the nornir framework, and we don’t need to handle this
complicated process.
In Example 6.10, we connect all three devices simultaneously and transfer
files. We use the YAML file as hosts.yaml in the following output:
hosts.yaml

Router-1:

hostname: 10.10.10.1
platform: ios
username: admin
password: cisco

Router-2:
hostname: 10.10.10.2
platform: ios
username: admin
password: cisco

Router-3:
hostname: 10.10.10.3
platform: ios
username: admin
password: cisco

1. We import the InitNornir function from the nornir module to
initiate the nornir framework to connect devices. Then, we import the

print_result function from the nornir.utils module to print the
detailed output of the process. And finally, we import the
netmiko_file_transfer function from nornir_netmiko to transfer
files by the netmiko module in the nornir framework.
from nornir import InitNornir
from nornir_utils.plugins.functions import print_result
from nornir_netmiko import netmiko_file_transfer

2. We initialize the nornir framework with connecting devices in the
hosts.yaml file and assign its value to the connect variable.
connect = InitNornir()

3. We call the run function to call a task. In this example, we call the task
value netmiko_file_tranfer. The direction is from the local PC to
the remote device. We only write the source_file and dest_file
parameters with their string values.
result = connect.run(task=netmiko_file_transfer,
source_file="test.txt", dest_file="kkk.txt")

4. When we call the print_result function to see the output.
print_result(result)

In the output, the code returns a value of the task as True, which means that
the file transfer process is successfully done.
Example 6.10: SCP file transfer with Nornir
from nornir import InitNornir
from nornir_utils.plugins.functions import print_result
from nornir_netmiko import netmiko_file_transfer
connect = InitNornir()
result = connect.run(task=netmiko_file_transfer,

source_file="test.txt",
dest_file="test.txt"
)

print_result(result)
Output:
netmiko_file_transfer**
********** *******
* Router-1 ** changed : False
**

vvvv netmiko_file_transfer ** changed : False
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv INFO
True
^^^^ END netmiko_file_transfer
^^^
* Router-2 ** changed : False
**
vvvv netmiko_file_transfer ** changed : False
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv INFO
True
^^^^ END netmiko_file_transfer
^^^
* Router-3 ** changed : False
**
vvvv netmiko_file_transfer ** changed : False
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv INFO
True
^^^^ END netmiko_file_transfer
^^^

We also have various parameters in the nornir-netmiko module, like in the
netmiko module. We can choose the direction from a remote device to the
local PC by writing the direction parameter as get. By default, the value
of this parameter is put.
result = connect.run(task=netmiko_file_transfer,

source_file="test2.txt",
dest_file="test2.txt",
direction="get")

We can also check the file’s existence on the destination device by adding
the disable_md5 parameter. The default value is False, so we can overwrite
the file when we transfer the same file. But if we change the value of this
parameter to True, we cannot transfer the file if it exists in the destination
device. And nornir gives an error message ValueError: File already
exists, and overwrite_file is disabled as an output.
result = connect.run(task=netmiko_file_transfer,

source_file="test2.txt",
dest_file="test2.txt",
direction="put",

disable_md5=True
)

Backup configuration file with SCP
In Example 6.11, we save running-configuration in the Cisco routers and
download the config file as a backup to the local PC with the filename,
including the time stamp. We use similar code in Example 6.8, using the
device_list.json JSON file. We add more code pieces to it.

1. We import the netmiko, json, modules, and datetime function from
the datetime module. We save the configuration backup file with the
time stamp.
from netmiko import Netmiko, file_transfer
import json
from datetime import datetime

2. We open JSON files and convert them into a list. Then, we can get the
data from this list to connect to the devices. Then, we call this function
and assign it to a host variable.
def json_device():
host_list = []
with open('device_list.json') as json_file:
data = json.load(json_file)

for item in data.items():
host = item[1][0]
host_list.append(host)

return host_list
host = json_device()

3. We create a loop to log in devices in order. We execute the wr
command to save the Cisco device configuration.
for ip in host:
net_connect = Netmiko(**ip)
print(f"\n----Try to login: {ip['host']}---\n")
save = net_connect.send_command("wr")
print(save)

4. We call the datetime function and the current PC time by calling the
now function inside. After that, with the strftime function, we get the

year, month, day, hour, minute, and second data by writing the
following code. We assign the current time value to the time variable.

time = datetime.now().strftime("%Y_%m_%d_%H_%M_%S")

5. We get the device hostname with the find_prompt function in
netmiko. It’s used to get the hostname information of the device
quickly. We must write [:-1] after that function because it also gets
the # character after the hostname in Cisco, like Router-1#. For other
vendors, that prompt sign character is different. So, we get the
hostname information and assign it to the hostname variable.

hostname = net_connect.find_prompt()[:-1]

6. We call the file_transfer function to download the startup-config
file from the Cisco device. We write the dest_file parameter with the
hostname and the time variables. We also add the file_system
parameter to change the default directory. The startup-config file
is in nvram:, so we write the value of this parameter as nvram:. We
finally terminate the session with the disconnect function.

file_transfer(net_connect,
source_file="startup-config",
dest_file=f"{hostname} backup_config {time}.cfg",
direction="get",
file_system="nvram:",
overwrite_file=True
)

net_connect.disconnect()

Example 6.11: Backup configuration file with Netmiko SCP
from netmiko import Netmiko, file_transfer
import json
from datetime import datetime
def json_device():
host_list = []
with open('device_list.json') as json_file:
data = json.load(json_file)

for item in data.items():
host = item[1][0]
host_list.append(host)

return host_list

host = json_device()
for ip in host:
net_connect = Netmiko(**ip)
print(f"\n----Try to login: {ip['host']}---\n")
save = net_connect.send_command("wr")
print(save)
time = datetime.now().strftime("%Y_%m_%d_%H_%M_%S")
hostname = net_connect.find_prompt()[:-1]
file_transfer(net_connect,

source_file="startup-config",
dest_file=f"{hostname} backup_config {time}.cfg",
direction="get",
file_system="nvram:",
overwrite_file=True
)

net_connect.disconnect()

When we execute the code in Example 6.11, the code downloads three files
from remote devices, which start with their hostname and end with the time
that we download to our PC as the following filenames. If we back up a
configuration file from a device multiple times, we can quickly find the
most updated one or its old versions with time stamps in the configuration
file.
Filenames in the local PC:
Router-1 backup_config 2022_08_21_18_29_16
Router-2 backup_config 2022_08_21_18_29_24
Router-3 backup_config 2022_08_21_18_29_33

Plotting data
Graphics are used in network automation. We can create plots, scatters, or
bars. Network Monitoring System (NMS) tools take the data from
network devices and plot it as graphics. It can be interface bandwidth in
both ways, inbound and outbound, or CPU and memory level to show if it’s
close to the threshold or increasing over an extended period. We can take
action according to these graphics daily or for a very long period.
We can also get the alarms from all devices in the network and categorize
them according to their severity level, such as minor, major, and critical

alarms. After that, we can create a graphic with bars monthly to see the
alarm process. So, we can see what happens in our network over a long
period.
By adding the time stamp, we can collect traffic bandwidth data in a period
and see the traffic changes in the related interface. We focus on collecting
data from a device in a short period and plot it as a graphic.
We can create a scheduler, like the crontab feature in Linux, which
automates the scripts to execute in specified periods or time intervals
repeatedly.
We can use the matplotlib module in Python to plot the data in a graphic,
and it’s a powerful data visualization and third-party Python plotting
module. So, we must install it first with the pip install matplotlib
command in the terminal.
The usage area of matplotlib is large; we can draw data of any type. It’s
also designed to work with NumPy arrays in the NumPy module. Numpy
extends multi-dimensional lists, arrays, and matrices in more complex
usage.
We can change the color and thickness of the lines in the plot. We can add x
and y axis values and grids in the graphic. We can also 3D surface graphics
with this module.
We must import the pyplot function from the matplotlib module in the
following code to use the pyplot function in our scripts.
from matplotlib import pyplot

So, each time we write pyplot in the code, it calls the pyplot function from
the matplotlib module. We have another option to use the function: by
changing its name in the code. After importing a module or function, we
write as and write any value. In the following code, we write as plt. So, in
the same Python file, if we write plt, it calls the pyplot function from
matplotlib.
from matplotlib import pyplot as plt

In the official documentation of matplotlib, we can use the module
functions by the following code. We can also import a function by writing
import MODULE_NAME.FUNCTION_NAME. In the example, it’s import
matplotlib.pyplot.
import matplotlib.pyplot as plt

There are various functions and parameters in the pyplot function. We can
manipulate the data and draw different styles of graphs with these functions
efficiently.

plot(X, Y): This is the primary function to draw a graphic in the
pyplot function. There are two mandatory parameters inside the plot
function: X and Y. These are X-axis and Y-axis variables in the
drawings. We create these variables with the same quantity of items. If
the total item count of the X and Y variables does not match, the code
gives an error: ValueError: x and y must have same first
dimension. The list values can be of different data types, like strings,
integers, or others.
xlabel(): It’s used to add an information header on the X-axis.
ylabel(): It’s used to add an information header on the Y-axis.
For example, if we draw a CPU usage with pyplot, we can write the
graphic header on the X-axis as Time in Seconds and on the Y-axis as
CPU Levels. So, the drawing is more understandable for us.
title(): It adds a header to the graphic. For example, we can write
CPU Level Measure Drawing to define the title of the plot figure. The
xlabel, ylabel, and title functions are informational and optional.
show(): We plot the data with the plot function, but it will not show
the output of the drawing; we should call the show function to see the
drawing as an output.
figure(): We can modify the drawing window specifications with the
figure function. We need to write parameters, such as figsize to
change the size of the plot window and facecolor to change the color
of the window. There are also other parameters to customize the
graphic window; you can check the source code of the figure
function or the official documentation of the matplotlib module.

In the following code, we import the pyplot function from the matplotlib
module and assign it as plt. After that, we create two variables: a and b
lists. Each have five items. The item count must be matched to draw the
graphic, and the data type of items can differ. After that, we call the plot
function with the X-axis as the a variable and the Y-axis as the b variable.
So, the code draws the data, but we want to see the output. We call the show
function to open a new window and its plot.

import matplotlib.pyplot as plt
a = [1,2,3,4,5]
b = [10,20,30,40,50]
plt.plot(a, b)
plt.show()

In Figure 6.1, a new window is opened, and the simple graphics are drawn
according to the data we provided in the code. We can zoom in on some
part of the drawing, save it as a file, and move on both the X-axis and the Y-
axis.

Figure 6.1: Drawing Sample of Matplotlib Module

In Example 6.12, we can add additional features to make the drawing better.
We call the figure function and write the figsize as 8 to 8 dimensions. So,
the output will be in a larger window. We also add the facecolor parameter

with the color code in a string, so we change the color of the window, and
it’s white by default.
We add color to the plot as Red and assign it to the color parameter, and it
draws the plot in red instead of blue, the default color.
We also add a description with xlabel, ylabel, and title to the X-axis, Y-
axis, and the head of the graphic, and we call the grid function by writing
True as its value. So, it adds a grid to the drawing. Finally, the code
displays the plot’s output with the show function.
Example 6.12: Draw a graphic with Matplotlib
import matplotlib.pyplot as plt
a = [1,2,3,4,5]
b = [10,20,30,40,50]
plt.figure(figsize=(8,8), facecolor="#FFCEB4")
plt.plot(a, b, color="Red")
plt.xlabel("Value of 'a'")
plt.ylabel("Value of 'b'")
plt.title("Chart of 'a' and 'b' Values")
plt.grid(True)
plt.show()

When we execute the script, we can see the changes in Figure 6.2. We
change the color of the window and the plot, add X-axis and Y-axis
headers and drawing headers, add a grid and change the drawing window
size.
There are plenty of options to customize the drawing with the matplotlib
module. The graphic is created with dots if we replace the plot function
with the scatter function. There will be no line in the drawing.
plt.scatter(a, b, color="Red")

There are other options like bar, stem, step, fill_between, and more. You
can see the difference when you call these functions and execute the code to
draw the plot.

Figure 6.2: Drawing Advanced Usage of Matplotlib Module

We can also add two drawings in a single window. We write plot functions
twice and call the show command at the end, and we can increase the plot
count by more than two. We need this feature when we get the inbound and
outbound data and draw it in the same graphics.
In the following code, we create the c and d variables and plot both. We
also change the color of both plots so that we divide both drawings
smoothly. Refer to Figure 6.3:
import matplotlib.pyplot as plt

a = [1,2,3,4,5]
b = [10,20,30,40,50]
c = [6,8,10,12,14]
d = [30,50,23,64,72]
plt.plot(a, b, color="Red")
plt.plot(c, d, color="Blue")
plt.show()

Figure 6.3: Drawing of Two Plots in a Single Window

Plotting CPU levels
In Example 6.13, we periodically collect CPU levels from a Cisco device
and draw a graphic. The X-axis is the local PC’s current time in the
hh:mm:ss format, and the Y-axis is the CPU levels.

1. We import all necessary modules to execute the script.
from matplotlib import pyplot as plt
import re

from netmiko import Netmiko
from time import sleep
from datetime import datetime

2. We create a host variable with information to log in to a device with
the netmiko module. We create three variables: count is used to
denote the number of times we run the command to get the CPU
levels. In the example, it’s 7. So, we execute the same command seven
times. The value of the delay variable is 3. After sending the
command, we wait for 3 seconds to see the CPU changes efficiently.
We also create a command variable called show processes cpu to get
the CPU logs from the device each time.
We also create two empty lists that we use in the loop and append all
CPU and time data in them.
host = {"host": "10.10.10.1", "username":"admin",
"password":"cisco", "device_type": "cisco_ios",
"global_delay_factor": 0.1}
count = 7
delay = 3
command = "show processes cpu"
cpu_levels = []
time_list = []

3. After that, we log in to the device with the netmiko function and
create a loop. We use range, showing how often we collect the same
data from the device.
net_connect = Netmiko(**host)
for i in range(1,count):
print(f"Get CPU levels count: {i}")

4. Inside the loop, we send show command. After that, we got the current
time in the local PC and appended it to the time_list variable.

output = net_connect.send_command(command)
time = datetime.now().strftime("%H:%M:%S")
time_list.append(time)

5. We add delay in the code to wait for 3 seconds with the delay
variable. After that, we collect the CPU level value with the findall
function from the RE module. Loop finishes after we print the item in
the cpu_data.

sleep(delay)
cpu_data = re.findall("CPU utilization for five seconds:
(\d+)%/", output)
cpu_levels.append(int(cpu_data[0]))
print("CPU Level: ",cpu_data[0])

6. Outside the loop, we plot two lists named time_list and cpu_levels
with the labeling and adding grid.
plt.plot(time_list, cpu_levels)
plt.xlabel("Time")
plt.ylabel("CPU Levels in %")
plt.grid(True)
plt.show()

Example 6.13: Collect and draw CPU levels of a router
from matplotlib import pyplot as plt
import re
from netmiko import Netmiko
from time import sleep
from datetime import datetime
host = {"host": "10.10.10.1", "username":"admin",
"password":"cisco", "device_type": "cisco_ios",
"global_delay_factor": 0.1}
count = 7
delay = 3
command = "show processes cpu"
cpu_levels = []
time_list = []
net_connect = Netmiko(**host)
for i in range(1,count):
print(f"Get CPU levels count: {i}")
output = net_connect.send_command(command)
time = datetime.now().strftime("%H:%M:%S")
time_list.append(time)
sleep(delay)
cpu_data = re.findall("CPU utilization for five seconds:
(\d+)%/", output)
cpu_levels.append(int(cpu_data[0]))

print("CPU Level: ",cpu_data[0])
plt.plot(time_list, cpu_levels)
plt.xlabel("Time")
plt.ylabel("CPU Levels in %")
plt.grid(True)
plt.show()

When we execute the code, the data’s drawing output is as shown in Figure
6.4. On the X-axis, there are seven timestamps for each CPU level, and on
the Y-axis, there are CPU levels in percentage. We collect the CPU data
from a device in around 17-second periods with a 3-second interval.

Figure 6.4: CPU Level Drawing of a Device

Plotting interface bandwidth
In Example 6.14, we collect the interface traffic data in inbound and
outbound directions. Then, we plot the data for both traffic usage. If the
connected device is a test machine, you only see zero traffic in the inbound

and outbound directions. You can use a traffic generator to create traffic in
the device.
We change some parts in the script according to Example 6.13. We create
two empty lists to get the inbound and outbound traffic usage. We execute
the show interfaces INTERFACE command in a Cisco device. In this
example, interface information is GigabitEthernet0/1.
After we log in and run the command, we catch the interface inbound and
outbound traffic value with the findall function and append it to the empty
lists. We also get the timestamp from the current time of the local PC. We
collected data five times with 3-second intervals.
In the end, we have two different sets of data, so we use the plot function
to draw data at inbound and outbound.
Example 6.14: Collect and draw interface bandwidth values of a router
from matplotlib import pyplot as plt
import re
from netmiko import Netmiko
from time import sleep
from datetime import datetime
host = {"host": "10.10.10.1", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global_delay_factor":
0.1}
count = 5
delay = 3
interface = "GigabitEthernet0/1"
command = f"show interfaces {interface}"
inbound_rate = []
outbound_rate = []
time_list = []
net_connect = Netmiko(**host)
for i in range(1, count):
output = net_connect.send_command(command)
time = datetime.now().strftime("%H:%M:%S")

time_list.append(time)
input_level = re.findall("5 minute input rate (\d+)", output)
output_level = re.findall("5 minute output rate (\d+)",
output)

inbound_rate.append(int(input_level[0]))
outbound_rate.append(int(output_level[0]))
sleep(delay)
print("Input Level: ", input_level[0])
print("Output Level: ", output_level[0])

plt.plot(time_list, inbound_rate, color="blue",
label="Inbound")
plt.plot(time_list, outbound_rate, color="red",
label="Outbound")
plt.xlabel("Time")
plt.ylabel("Interface Levels in MBs")
plt.title(f"Interface Rate of {host['host']} - {interface}")
plt.show()

When we execute the code, if there is traffic on the interface, there should
be two different plots, like in Figure 6.5. We can plot any interface graphic
with the data we collect from the device.

Figure 6.5: Plot of an Interface Bandwidth Usage

Conclusion
In this chapter, we learned about file transfers and plotting features in
network automation. We used the ftplib, ftpretty, paramiko, netmiko,
and nornir modules to transfer files. We connected devices and opened file
transfer sessions such as FTP, SFP, and SCP to transfer files from a local PC
to a remote device and vice versa. We also used the matplotlib module to
draw any data we collected from the device, including the CPU or memory
level of the device or interface bandwidth usage of an interface.
The next chapter will focus on maintaining and troubleshooting network
issues by creating custom scripts. We will collect the necessary logs,
alarms, and other data, and display or send them in various methods.

Multiple choice questions
1. Which protocol cannot support connecting with the paramiko module?

a. SFTP
b. SCP
c. Telnet
d. SSH

2. Which function does not belong to the matplotlib module?

a. grid ()
b. scatter ()
c. figure ()
d. draw ()

3. Which code must we write to change the plot color to red and window
color to blue?

a. plot(x, y, color="Red")
figure(facecolor="Blue")

b. plot(x, y, color="Red", facecolor="Blue")
c. plot(x, y, color="Blue", facecolor="Red")

d. plot(x, y, color="Blue")
figure(facecolor="Red")

Answers
1. b
2. d
3. a

Questions
1. Download the config file from three devices with the paramiko

module by using the concurrent module.
2. Collect all alarms from a device, get the counts of the Minor, Major,

Critical alarms, and draw a bar chart with matplotlib according to
alarm severities.

CHAPTER 7
Maintain and Troubleshoot Network

Issues
This chapter will focus on network device upgrades, collecting alarms, SNMP
communication, email notifications, and reachability test for network and
system devices. We will create scripts to troubleshoot the network in basic
methods and secure it by identifying the alarms by their severity. We will also
collect logs and share them with others by mailing them to Python’s built-in
modules.

Structure
In this chapter, we will cover the following topics:

Upgrade network devices
Alert alarms in devices
Collect logs with SNMP
Send logs via email
Reachability test to network devices

Ping test script
Traceroute test script

Objectives
We will upgrade devices by uploading software files, setting the boot file after
rebooting the device, and then rebooting the device, which are the three steps
to upgrading software in various vendors. We will use the netmiko module to
connect and collect the logs from the network devices, like in the previous
chapters. We will send these logs or device configurations using the email and
the SMTP modules. We will use the subprocess module to execute the ping
and tracert commands in Windows devices to make reachability tests in the
network.

Upgrade network devices
When we upgrade a Cisco device, there are three steps to take. In the first step,
we need to upload the new software file to the device. Then, we need to set the
boot file, and finally, we need to reboot the device. These steps are similar to
those that need to be followed for other vendors like Juniper, Huawei, or
Nokia; only the commands differ.
We already have many scripts about transferring files in Chapter 6, File
Transfer and Plotting. We must write a script to set the new software file and
the reboot process.
In Example 7.1, we write a script to transfer a new software file to the Cisco
device, set the latest software file, and reboot. In more advanced usage, we
need to verify whether the new software file size is identical to the local PC
file size. We need to save the configuration file and back it up to the local PC.
After that, we are ready to upgrade our device.

1. We import the netmiko, re, and os modules to use in this script.
from netmiko import Netmiko, file_transfer
from re import findall
import os

2. We set device information to upgrade. In this example, we only upgrade
one Cisco device. We create three variables: filename is the latest
software file name with its extension on the local PC, set_software is
the command to set the new software file to boot in Cisco Router and
change the config-register value to reload, and local_filesize is the
file size of the latest software on the local PC.
device = {"host": "10.10.10.1", "username": "admin",
"password": "cisco", "device_type": "cisco_ios",
"global_delay_factor": 0.1 }
filename = "universalk9.17.08.01.bin"
set_software = [f"boot system {file_sys}
{filename}","config-register 0x2102"]
local_filesize = os.path.getsize(filename)

3. We connect to the device with netmiko and transfer the software file from
our local PC to the remote device with the file_transfer function, as
we did in the previous chapters.
net_connect = Netmiko(**device)
file_transfer(net_connect,

source_file=filename,
dest_file= filename,
direction="put",
)

4. We execute the dir command to find the new software after the upload
finishes. We get the file size with the findall function.
output = net_connect.send_command(f"dir | include
{filename}")
remote_filesize = findall("\d+",output)

When we run the same command in CLI, the second digit item is the file
size, for example, 31900. So, if we write remote_filesize[1], we catch
the file size of our new software file.
Router-2#dir | include test.txt
280 -rw- 31900 Aug 21 2022 06:45:46
+00:00 test.txt

5. We send the boot command. This command sets the boot file in the
device. Then, we send the show run command to find whether the boot
command is configured on the device. We write the findall function to
find whether the command is set on configuration. Finally, we save the
device with the wr command.
net_connect.send_config_set(set_software)
output = net_connect.send_command(f"show run | include
{filename}")
boot_set = findall(set_software[0],output)
net_connect.send_command(f"wr")

6. In the final step, we compare local and remote file sizes and boot
commands in the configuration. If one or two of the conditions do not
match, the code passes the if statement and disconnects from the device.
Otherwise, we continue to reload the device, which is the reboot
command in Cisco devices. After that, the device asks to continue to
reload. In that step, we need to push the Enter button. In the code, we
must write \n to press enter or go to the following line.
But here, we write the expect_string parameter. So, the code waits until
the Proceed with reload line is shown, and then it continues. We can
also add timing with send_command_timing, and we add delay as 1
second with the delay_factor parameter.

if str(local_filesize) == remote_filesize[1] and
set_software[0] == boot_set[0]:
print("File is uploaded and set to boot successfully")

net_connect.send_command("reload", expect_string="Proceed
with reload")
net_connect.send_command_timing("\n", delay_factor=1)

else:
print("File upload or setting software as boot is failed")

net_connect.disconnect()

Example 7.1: Upgrade a network device with netmiko
from netmiko import Netmiko, file_transfer
from re import findall
import os
device = {"host": "10.10.10.1", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global_delay_factor": 0.1 }
filename = "universalk9.17.08.01.bin"
set_software = [f"boot system {file_sys}{filename}","config-
register 0x2102"]
local_filesize = os.path.getsize(filename)
net_connect = Netmiko(**device)
file_transfer(net_connect,

source_file=filename,
dest_file= filename,
direction="put",
)

output = net_connect.send_command(f"dir | include {filename}")
remote_filesize = findall("\d+",output)
net_connect.send_config_set(set_software)
output = net_connect.send_command(f"show run | include
{filename}")
boot_set = findall(set_software[0],output)
net_connect.send_command(f"wr")
if str(local_filesize) == remote_filesize[1] and set_software[0]
== boot_set[0]:
print("File is uploaded and set to boot successfully")
net_connect.send_command("reload", expect_string="Proceed with
reload")
net_connect.send_command_timing("\n", delay_factor=1)

else:
print("File upload or setting software as boot is failed")

net_connect.disconnect()

Alert alarms in devices
In Example 7.2, we collect alarm information from the Juniper devices with the
show system alarms command. After that, we collect specific data on those
alarms, such as alarm time, alarm severity, and alarm description, and save it to
an Excel file. We also collect total alarms in the network and divide them
according to severity, such as Minor, Major, and Critical, in another sheet or
tab in the same Excel file.

1. We import the netmiko, re, and pandas modules.
from netmiko import Netmiko
from re import findall
from pandas import DataFrame

2. We have three devices in this example. This time, we log in to the Juniper
devices and create empty lists and integers to use in the following code:
host = ["10.10.20.1", "10.10.20.2", "10.10.20.3"]
time_list, severity_list, description_list, ip_list = ([]
for x in range(4))
total_minor = total_major = total_critical = 0

3. We create a for loop to log in devices in each iteration. After the
connection, we execute the show command and collect the output.
for ip in host:
device = {f"host": {ip}, "username": "admin", "password":
"juniper", "device_type": "juniper", "global_delay_factor":
0.1 }
net_connect = Netmiko(**device)
output = net_connect.send_command("show system alarms")

4. We collect all devices’ total alarm count, Minor, Major, and Critical
alarm counts in the network. So, we use findall to get these data and
save it to various variables in the following code. For the alarms
variable, we delete the first four items with the del function because they
are unnecessary lines in the output earlier:

alarm_count = findall("(\d+) alarms currently
active",output)

alarms = split("\n",output)
del alarms[0:4]
total_alarms = total_alarms + len(alarms)
minor_alarms = findall("Minor",output)
major_alarms = findall("Major",output)
critical_alarms = findall("Critical",output)
total_minor = total_minor + len(minor_alarms)
total_major = total_major + len(major_alarms)
total_critical = total_critical + len(critical_alarms)

5. We create an inner or second for loop in the following code. In the
previous code, we collect the total count of the alarms. This time, we
collect the specific data in each device, like alarm occurs time, severity,
and the description with the findall function. Afterward, we append this
data in each device to the lists to use them with the dataframe function
because we add all of them to an Excel file at the end.

for alarm_item in alarms:
time = findall("\d+-\d+\d+ \d+:\d+:\d+ UTC", alarm_item)
severity = findall("Minor|Major|Critical", alarm_item)

description = findall("\d+-\d+\d+ \d+:\d+:\d+ UTC\s+\w+\s+
(.*)", alarm_item)
ip_list.append(f"{ip}")
time_list.append(time[0])
severity_list.append(severity[0])
description_list.append(description[0])

6. We collect the alarms with description, time, and severity value. Finally,
we need to create an Excel file and write the items with the dataframe
function from the pandas module. We need to create two tabs in Excel, so
we need to use the ExcelWriter function. We open the Excel file to fill
it. And we create two variables: df1 and df2. We call the dataframe
function and fill this function like in the previous chapters. After that, we
write these values to the same Excel with the to_excel function. We call
the writer function inside the to_excel function for both the df1 and
df2 variables. We also write the sheet_name or Excel tab, such as
Summary and Alarms.

with pandas.ExcelWriter('Alarm List.xlsx') as writer:
df1 = pandas.DataFrame({"Alarm Count":
[total_alarms],"Minor": [total_minor],"Major":
[total_major],"Critical": [total_critical]})

df2 = pandas.DataFrame({"Device IP": ip_list, "Time":
time_list, "Severity": severity_list, "Description":
description_list})
df1.to_excel(writer, sheet_name="Summary", index=False)
df2.to_excel(writer, sheet_name="Alarms", index=False)

Example 7.2: Collect alarm information from devices and summarize
from netmiko import Netmiko
from re import findall
from pandas import DataFrame
host = ["10.10.20.1", "10.10.20.2", "10.10.20.3"]
time_list, severity_list, description_list, ip_list = ([] for x in
range(4))
total_minor = total_major = total_critical = 0
for ip in host:
device = {f"host": {ip}, "username": "admin", "password":
"juniper", "device_type": "juniper", "global_delay_factor": 0.1
}
net_connect = Netmiko(**device)
output = net_connect.send_command("show system alarms")
alarm_count = findall("(\d+) alarms currently active",output)
alarms = split("\n",output)
del alarms[0:4]
total_alarms = total_alarms + len(alarms)
minor_alarms = findall("Minor",output)
major_alarms = findall("Major",output)
critical_alarms = findall("Critical",output)
total_minor = total_minor + len(minor_alarms)
total_major = total_major + len(major_alarms)
total_critical = total_critical + len(critical_alarms)
for alarm_item in alarms:
time = findall("\d+-\d+\d+ \d+:\d+:\d+ UTC", alarm_item)
severity = findall("Minor|Major|Critical", alarm_item)
description = findall("\d+-\d+\d+ \d+:\d+:\d+ UTC\s+\w+\s+
(.*)", alarm_item)
ip_list.append(f"{ip}")
time_list.append(time[0])
severity_list.append(severity[0])
description_list.append(description[0])

with pandas.ExcelWriter('Alarm List.xlsx') as writer:
df1 = pandas.DataFrame({"Alarm Count":
[total_alarms],"Minor": [total_minor],"Major":
[total_major],"Critical": [total_critical]})
df2 = pandas.DataFrame({"Device IP": ip_list, "Time":
time_list, "Severity": severity_list, "Description":
description_list})
df1.to_excel(writer, sheet_name="Summary", index=False)
df2.to_excel(writer, sheet_name="Alarms", index=False)

When we run show system alarms in the Juniper devices, the output is similar
to the following. There is an empty line; after that, there are total active alarm
counts and the alarm titles. Finally, alarms are listed with their details. We
divide each part in Example 7.2. If there is no Juniper device in your lab, you
can try with other vendors to change the command on the device. It would be
best if you also modified the findall function according to that output. On the
other hand, you can save each Router’s output in a text file in the following
output and open it in the same script by modifying some parts:
Junos_Router-1:
Junos_Router-1> show system alarms
4 alarms currently active
Alarm time Class Description
2022-08-02 15:00:00 UTC Minor IPsec VPN tunneling usage
requires a license
2022-08-24 15:00:00 UTC Major Rescue configuration is not
sent
2022-08-25 15:00:00 UTC Major /root partition usage crossed
critical threshold
2022-08-12 15:00:00 UTC Critical PCI Corrected error on dev
0000:00:01
Junos_Router-2:
Junos_Router-2> show system alarms
4 alarms currently active
Alarm time Class Description
2022-07-24 16:00:00 UTC Minor IPsec VPN tunneling usage
requires a license
2022-07-24 16:00:00 UTC Major Rescue configuration is not
sent

2022-07-05 16:00:00 UTC Critical FPC 8 internal link errors
detected
2022-07-16 16:00:00 UTC Minor NSD l2 channel error on physical
interfaces
Junos_Router-3:
Junos_Router-3> show system alarms
5 alarms currently active
Alarm time Class Description
2022-07-23 17:00:00 UTC Minor IPsec VPN tunneling usage
requires a license
2022-08-02 17:00:00 UTC Major Rescue configuration is not
sent
2022-07-11 17:00:00 UTC Critical Side Fan Tray 7 Failure
2022-05-11 17:00:00 UTC Minor Side Fan Tray 7 Overspeed
2022-07-16 16:00:00 UTC Minor NSD l2 channel error on physical
interfaces

When we execute the code, it creates an Excel file in the same directory as our
code. In the first sheet or tab in this Excel file, which is Summary, we can see
the description of Alarm Count, Minor, Major, and Critical with their values.
Refer to Figure 7.1:

Figure 7.1: Output of the “Summary” Section in Excel

In the next tab, Alarms, we divide each item in the output according to time,
severity, and description. We also write device management IP addresses to
define alarms belonging. So, we can easily filter any information in this Excel
file. Refer to Figure 7.2:

Figure 7.2: Output of the “Alarms” Section in Excel

Collect logs with SNMP
Simple Network Management Protocol (SNMP) is one of the essential
protocols in networking. It’s a communication protocol to share device
information. NMS tools use SNMP to get data from the devices and display it
in the tool. There are three versions of SNMP: versions 1, 2, and 3. SNMPv1
has fragile security protection, and SNMPv2 has more security than SNMPv1;
however, the most secure version is SNMPv3, which has data encryption. It
has an authentication process to to prevent unauthorized connections.
We can collect data like CPU and memory usage, device uptime, Open
Shortest Path First (OSPF) neighbors, and interface status, which can be
UP/DOWN.
Devices have Management Information Base (MIB), which is an object that
keeps the data from the local device. MIB is a file that stores the information
collected from the device. So, the SNMP manager uses MIB files to get data
from any device.
Various objects are inside the MIB, identified by Object Identifier (OID).
NMS requests the object’s value from the agent with these OIDs. OID is a
numerical address to identify the objects in the MIB hierarchy. The
1.3.6.1.2.1.25.1.1.0 OID number is used to get the device uptime. When
the NMS or the monitoring tool sends this OID to a device, the device sends
the device uptime information back to the agency. So, the tool gets all the data
with different OIDs from the network device and creates a database.

Many MIB information or OIDs are the same and generic for different
vendors, but vendor specific MIBs can also be downloaded from the vendor’s
official websites.
We have a third-party SNMP module in Python, pysnmp, which is a mature
library to communicate with network and system devices by the SNMP
protocol. We must install it with the pip install pysnmp command in the
terminal.
We have a third-party SNMP module in Python, pysnmp, which is a mature
library to communicate with network and system devices by the SNMP
protocol. We must install it with the pip install pysnmp command in the
terminal.
We must enable the SNMP feature to collect the data from the network device
by the Python script. We need to configure community value with options like
the read-only or read-write parameters. We configure the Cisco device with
the community public. This command in Cisco devices enables SNMPv1 and
SNMPv2. To use SNMPv3, we must add other commands: the
authentication and encryption commands.
Router-1#configure terminal
Router-1(config)#snmp-server community public ro

In Example 7.3, we collect the free memory data from Router-1 and display it
in the output in bytes. We use the pysnmp module to collect memory data from
the Cisco device.

1. We import the pysnmp module. We use many functions inside the hlapi
function in the pysnmp, so we import all the functions inside it with the *
character.
from pysnmp.hlapi import *

2. We define the host variable for the management IP address of the device,
the snmp_community variable for the community configuration on the
device, which is public, and finally, the snmp_oid variable to get the free
memory data from the device. The 1.3.6.1.4.1.9.2.1.8.0 oid number
collects the device’s free memory. You can search for generic or vendor-
specific mib files and oids on the internet to get the complete list.
host = "10.10.10.1"
snmp_community = "public"
snmp_oid = "1.3.6.1.4.1.9.2.1.8.0"

3. In the following code, we use the pysnmp functions. We have the
errorIndication, errorStatus, errorIndex, and varBinds variables,
which are equal to the next function in pysnmp with the getCmd function
in it.
errorIndication, errorStatus, errorIndex, varBinds =
next(getCmd()

Inside the getCmd function, we execute the SnmpEngine class instance to
start the SNMP feature. All the SNMP operations are involved in this
class. We have class instances like CommunityData, in which we write the
community configured on the device. We can also opt to add the mpModel
parameter. If the value is zero, it uses SNMPv1 to communicate with the
device. If it’s one, it uses SNMPv2, the default value. To communicate
with the device in SNMPv3, we must write the UsmUserData class
instance.
After that, we write the UdpTransportTarget object to connect a device
via SNMP. We write the host and port information as 161, which is the
SNMP protocol’s port number.
We also need to write the ContextData object. The SNMP context is a
message header in the SNMP protocol that finds the specific MIB. So, we
must initialize this object to get the data from the device.
Finally, we call the ObjectType class instance to get the oid number with
the ObjectIdentity object.
errorIndication, errorStatus, errorIndex, varBinds = next(
getCmd(SnmpEngine(),
CommunityData(snmp_community, mpModel=1),
UdpTransportTarget((host, 161)),
ContextData(),
ObjectType(ObjectIdentity(snmp_oid)),))

4. After we get the data from the device, we need to display it in the output.
We create a for loop to get the oid and val variables from varBinds. We
print each value with the prettyPrint() function to display it in human-
readable mode.
for oid, val in varBinds:
print(oid.prettyPrint()," - ", val.prettyPrint())

Example 7.3: Collect device information with SNMP
from pysnmp.hlapi import *
host = "10.10.10.1"

snmp_community = "public"
snmp_oid = "1.3.6.1.4.1.9.2.1.8.0"
errorIndication, errorStatus, errorIndex, varBinds = next(
getCmd(SnmpEngine(),

CommunityData(snmp_community, mpModel=1),
UdpTransportTarget((host, 161)),
ContextData(),
ObjectType(ObjectIdentity(snmp_oid)),))

for oid, val in varBinds:
print(oid.prettyPrint()," - ", val.prettyPrint())

1.3.6.1.4.1.9.2.2.1.1.20.1 gets the interface status, such as UP/DOWN
state. If we want to get the first two interface statuses, we write
1.3.6.1.4.1.9.2.2.1.1.20.1 and 1.3.6.1.4.1.9.2.2.1.1.20.2. We use
these OID numbers in Example 7.4. We can also add another loop to collect
data from multiple devices.
Example 7.4: Collect multiple OID data with SNMP
from pysnmp.hlapi import *
host = "10.10.10.1"
snmp_community = "public"
snmp_oid =
["1.3.6.1.4.1.9.2.2.1.1.20.1","1.3.6.1.4.1.9.2.2.1.1.20.2"]
for id in snmp_oid:
errorIndication, errorStatus, errorIndex, varBinds = next(
getCmd(SnmpEngine(),

CommunityData(snmp_community, mpModel=1),
UdpTransportTarget((host, 161)),
ContextData(),
ObjectType(ObjectIdentity(id)),
)

)
for oid, val in varBinds:
print(oid.prettyPrint()," - ", val.prettyPrint())

Output:
SNMPv2-SMI::enterprises.9.2.2.1.1.20.1 - up
SNMPv2-SMI::enterprises.9.2.2.1.1.20.2 - administratively down

From CLI:
Router-1#show ip int br

Interface IP-Address OK? Method
Status Protocol
GigabitEthernet0/0 10.10.10.1 YES NVRAM up
up
GigabitEthernet0/1 unassigned YES unset administratively
down down

We can get a lot of data from devices with OID:
"1.3.6.1.4.1.9.2.1.3.0" - Hostname Information
"1.3.6.1.4.1.9.2.1.58.0" - CPU Usage
"1.3.6.1.4.1.9.2.1.4.0" - Domain name

We can also use the object name instead of OID. We change the parameters
inside ObjectIdentity. We write the MIB name, object as sysName and zero.
sysName gets the hostname of the device with its domain name.
ObjectType(ObjectIdentity("SNMPv2-MIB", "sysName", 0)),

Output: SNMPv2-MIB::sysName.0 - Router-1.networkautomation
The Python files are inside the venv directory, located in the same folder as our
project code:
PROJECT_FILE\venv\Lib\site-packages\pysnmp\smi\mibs

We can get a lot of data from devices with OID, such as the following:

sysDescr: Gets system information, including version and device model.
snmpInPkts: Gets inbound SNMP packet count. If you execute the code,
it will increase each time because we send SNMP requests to the device.
sysUpTime: Gets the system uptime in hundreds of seconds.

We cannot directly use the MIB file with the pysnmp module; we must convert
it to a Python file. There are options to convert, like the mibdump.py Python
code found on the internet or the local pysnmp module. Using Ubuntu, you can
install the libsmi2pysnmp package to convert it.
On the following website, there are many converted MIB files to download.
You can download the MIB files and paste them to the
PROJECT_FILE\venv\Lib\site-packages\pysnmp\smi\mibs directory. Then,
you can use any of them.
https://pypi.org/project/pysmi/#files
For example, we can use OSPF-MIB with the ospfRouterId object. It collects
OSPF router-id from the device. If you set the OSPF router-id of the
device, you can get output as router-id data.

https://pypi.org/project/pysmi/#files

ObjectType(ObjectIdentity("OSPF-MIB", "ospfRouterId", 0)).

Output: OSPF-MIB::ospfRouterId.0 - 10.10.10.1

Send logs via email
We can send emails with Python’s built-in modules, such as email and
smtplib. In this part, we use the Gmail account to send emails to any email
address. We can send device alarms, logs, and configurations with emails and
add attachments to the emails.
When we use a Gmail account to send emails via Python script, we need a 16-
digit password that’s different from our Google account password. We must
follow the given steps to get this password:

1. Enter the following website and log in to the Gmail account.
https://myaccount.google.com/

2. Click on Security on the opening page, as shown in Figure 7.3:

Figure 7.3: Creating Password in Gmail Step-2

3. As shown in Figure 7.4, 2-Step Verification must be enabled. If it’s
disabled, you must enable it before entering the App passwords section.

Figure 7.4: Creating Password in Gmail Step-3

4. As shown in Figure 7.5, you need to click on the Select app button and
write the app name. You can write anything to be understandable for you
later. After that, the GENERATE button becomes blue and is activated; you
can click on it to create a password.

Figure 7.5: Creating Password in Gmail Step-4

5. Figure 7.6 shows a new popup that opens in the web browser. You must
copy the 16-digit password in a safe place and not share it with anyone.

It’s a unique password that is created for your account and app. The
password creation finishes with this step, and we can continue to write
the scripts in Python.

Figure 7.6: Creating Password in Gmail Step-5

6. We import the smtplib module and the message class from the email
module.
import smtplib
from email import message

7. We create various variables. We add sender mail to mail_from and
password to mail_password variable. We get the mail_password value
from the previous steps in Gmail. It’s 16-digit password which is not a
Gmail password.We also add the receiver as mail_to; optionally, we add
cc and bcc. And in the final two variables, we add subject and content
variables. All these variables’ values are in string values.
mail_from = "example@gmail.com"
mail_password = "16-DIGIT-PASSWORD"
mail_to = "example@gmail.com"
mail_to_cc = "example@gmail.com"
mail_to_bcc = "example@gmail.com"

mail_subject = "Test Email"
mail_content = "Hi,\nThis is a test email"

8. We call the EmailMessage function from the message class and assign the
send variable; we add the email details to it. We use the add_header
function to add email subject, sender, and receiver address information.
We write From as the sender, To as a receiver, Cc as the cc-receiver, Bcc as
the bcc-receiver, and Subject as the mail subject.
send = message.EmailMessage()
send.add_header("From", mail_from)
send.add_header("To", mail_to)
send.add_header("Cc", mail_to_cc)
send.add_header("Bcc", mail_to_bcc)
send.add_header("Subject", mail_subject)
send.set_content(mail_content)

9. At the end, we execute the SMTP_SSL function from the smtplib module.
We use the smtp.gmail.com server with port 465, which is the SMTP
protocol port number. We log in to our account with the sender’s email
and password information with the login function. Finally, we send an
email by the sendmail function by entering email details like sender,
receiver, and content of the mail.
with smtplib.SMTP_SSL("smtp.gmail.com", 465) as smtp:
smtp.login(mail_from, mail_password)
smtp.sendmail(mail_from, mail_to, send.as_string())

Example 7.5: Sending email via Gmail
import smtplib
from email import message
mail_from = "example@gmail.com" #The value must be Gmail
address
mail_password = "16-DIGIT-PASSWORD"
mail_to = "example@gmail.com"
mail_to_cc = "example@gmail.com"
mail_to_bcc = "example@gmail.com"
mail_subject = "Test Email"
mail_content = "Hi,\nThis is a test email"
send = message.EmailMessage()
send.add_header("From", mail_from)
send.add_header("To", mail_to)

send.add_header("Cc", mail_to_cc)
send.add_header("Bcc", mail_to_bcc)
send.add_header("Subject", mail_subject)
send.set_content(mail_content)
with smtplib.SMTP_SSL("smtp.gmail.com", 465) as smtp:
smtp.login(mail_from, mail_password)
smtp.sendmail(mail_from, mail_to, send.as_string())

We can also add attachments to these emails. We can attach various file
formats, like text-based files, pictures, and more. First, we need to open the
source file with the open function in reading and binary mode as rb. Then, we
need to read the file and assign it to a variable. In the following line, we need
to use mime_type and encoding variables and assign them to the
mimetypes.guess_type function with the filename. After that, we call the
add_attachment function. We write attached_file, maintype, subtype, and
filename variables. Finally, we add the filename parameter, and its value is
the filename of the source file. We use the following code in Example 7.6 with
the for loop to add multiple files in the attachment.
import mimetypes
with open("test.txt", "rb") as r:
attached_file = r.read()

mime_type, encoding = mimetypes.guess_type(filename)
send.add_attachment(attached_file,
maintype=mime_type.split("/")[0], subtype=mime_type.split("/")[1],
filename=filename
)

In Example 7.6, we collect three Cisco router configurations with the netmiko
module and save them to the local directory. After that, we send these three
configuration files from our mail address to another email address.
We create a function to collect configurations of the devices and save them to
the text files with different namings. After that, we call the function in the
script. In the rest of the code, we only add the attachment part in the loop to
add three files in the same mail content and send the mail to the receiver.
Example 7.6: Sending router configurations by mail
import smtplib
from email import message
import mimetypes
from netmiko import Netmiko

def collect_configuration():
host = ["10.10.10.1", "10.10.10.2", "10.10.10.3"]
for ip in host:
device = { "host": ip, "username": "admin", "password":
"cisco", "device_type": "cisco_ios"}
net_connect = Netmiko(**device)
output = net_connect.send_command("show run")
with open (f"{ip} config.txt","w") as wr:
wr.write(output)

net_connect.disconnect()
return host

host = collect_configuration()
mail_from = "example@gmail.com"
mail_password = "16-DIGIT-PASSWORD"
mail_to = "example@gmail.com"
mail_subject = "Router Configurations"
mail_content = "Hi,\nYou can find the all configuration files in
the attachment."
send = message.EmailMessage()
send.add_header("From", mail_from)
send.add_header("To", mail_to)
send.add_header("Subject", mail_subject)
send.set_content(mail_content)
for file in host:
filename = f"{file} config.txt"
with open(filename, "rb") as r:
attached_file = r.read()

mime_type, encoding = mimetypes.guess_type(filename)
send.add_attachment(attached_file, maintype=mime_type.split("/")
[0], subtype=mime_type.split("/")[1], filename= filename)

with smtplib.SMTP_SSL("smtp.gmail.com", 465) as smtp:
smtp.login(mail_from, mail_password)
smtp.sendmail(mail_from, mail_to, send.as_string())

Reachability test to network devices
The most basic and initial troubleshooting step in networking is to make the
reachability tests. These are the ping and traceroute tests. The ping test
checks whether the remote device is reachable from the source device, and we

test it for connectivity problems. The traceroute test checks the hops or the
devices in the network until we reach the destination device. For example, if
we have a topology A-B-C-D, there are four different routers in the network.
When we make a traceroute test from A to D, if A and D can ping each other,
the traceroute output will be A, B, C, and D. So, all the hops will be shown in
the output.

Ping test script
In Example 7.7, we create a script to make reachability tests for various IP
addresses from our local PC. In this example, we use a Windows machine, and
the code is also for Windows OS. The following output shows two ping tests:
10.10.10.1 which is a reachable IP address, and 10.10.10.10, which is an
unreachable IP address. We make the ping test from the local PC cmd
(command prompt).
If the ping test is successful, the reply message has the destination IP address,
packet size in bytes, period of packet travels from source to destination and
Time to Live (TTL), which is the packet life cycle. At the end, there are
values like Sent, Received, and Lost, with the lost rate inside the parentheses.
If the ping test fails, it gives a message saying Request timed out.
C:\> ping 10.10.10.1
Pinging 10.10.10.1 with 32 bytes of data:
Reply from 10.10.10.1: bytes=32 time=4ms TTL=255
Reply from 10.10.10.1: bytes=32 time=6ms TTL=255
Reply from 10.10.10.1: bytes=32 time=6ms TTL=255
Reply from 10.10.10.1: bytes=32 time=6ms TTL=255
Ping statistics for 10.10.10.1:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss)

C:\> ping 10.10.10.10
Pinging 10.10.10.10 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 10.10.10.10:
Packets: Sent = 4, Received = 0, Lost = 4 (100% loss)

We create a variable in that each item is the destination IP address or website
can ping. We try to send three ping packets. To start the ping, we execute the

Popen function from the subprocess module in Windows. We write the ping
count parameter and the IP information inside this function. We collect the
output and get all data we need from a list with an append function. Finally, we
create the Excel file with this data and save it.
We call the Popen function from the subprocess module in the following code.
Inside the parentheses, we write the ping command with cmd /c ping and
then write the IP address with the -n option, which sets the ping packet count.
In this example, it’s three. We also add stdout and encoding parameters. We
create a loop to get the ping process line-by-line and use the rstrip string
method to remove whitespaces at the end of the string.
output = Popen(f"cmd /c ping {ip} -n {ping_count}", stdout=PIPE,
encoding ="utf-8")
for line in output.stdout:
data = data +"\n" + line.rstrip('\n')

Example 7.7: Ping test from command prompt in Windows
from re import findall
from pandas import DataFrame
from subprocess import Popen, PIPE
host = ["10.10.10.1","123.214.2.3","www.google.com",
"192.168.123.24", "8.8.8.8"]
ping_count = "3"
packet_loss, ip_list, status_list, sent_list, received_list,
lost_list = ([] for i in range(6))
for ip in host:
data = ""
print(f"\n---Try to Ping: {ip} ---")
output= Popen(f"cmd /c ping {ip} -n {ping_count}",stdout=PIPE,
encoding="utf-8")
for line in output.stdout:
data = data +"\n" + line.rstrip('\n')

print(data)
ping_test = findall("TTL", data) #Check TTL word if the ping is
successful or not
if ping_test:
status = "Successful" #Ping Successful or Failed
sent = findall("Sent = (\d+)", data) #Find Sent packet number
received = findall("Received = (\d+)", data) #Find received
packet number

lost = findall("Lost = (\d+)", data) #Find lost packets
number
loss = findall("\((.*) loss", data) #Get loss packet
percentage

else:
status = "Failed"
sent = findall("Sent = (\d+)", data)
received = ["0"]
lost = sent
loss = ["100%"]

sent_list.append(sent[0])
received_list.append(received[0])
lost_list.append(lost[0])
packet_loss.append(loss[0])
ip_list.append(ip)
status_list.append(status)
df = DataFrame({"IP Address": ip_list, "Status": status_list,
"Sent": sent_list, "Received": received_list, "Lost": lost_list,
"Packet Loss Rate": packet_loss})
df.to_excel("Ping Result.xlsx", sheet_name="Ping", index=False)

Figure 7.7 shows six different items and five IP addresses as tested. We can
see that each item and values is in a separate column:

Figure 7.7: Output of the “Ping Result”Excel File

Traceroute test script
In Example 7.8, we make a traceroute test to the destination IP address. So, we
try to get each hop or router IP address until the destination IP address. In
Windows, the maximum traceroute hop is 30. We can change this with the -h
parameter in the tracert command.
As we did in Example 7.7, we use the Popen function. We only change the
ping command with tracert and add the -h parameter with its value as hops.

After that, we collect the logs in the data variable. We save the output of the
traceroute command in a file in the same directory as our script.
We also check whether we reach the destination IP in the specified max hops
value. If the final line of the loop has the destination IP address, we reach the
target device; otherwise, we cannot reach it. So, we search for the IP address in
the output. The IP address is also at the beginning of the traceroute, like in the
following output. So, to identify it, we use the findall function by writing
ms\s+IP_ADDRESS. We can locate the IP address on the last line if it exists.
C:\> tracert -h 1 10.10.10.1
Tracing route to 10.10.10.1 over a maximum of 1 hops
1 7 ms 6 ms 10 ms 10.10.10.1

Example 7.8: Tracert test from command prompt in Windows
from subprocess import Popen, PIPE
from re import findall
hostname = "10.10.10.1"
hops = 1
output = Popen(f"cmd /c tracert -h {hops} {hostname}",stdout=PIPE,
encoding="utf-8")
data = ""
for line in output.stdout:
data = data + "\n" + line.rstrip('\n')
print(line.rstrip('\n'))

with open (f"Traceroute to {hostname}","w") as wr:
wr.write(data)

result = findall(f"ms\s+{hostname}",data)
if result:
print (f"***Traceroute to {hostname} is successfully finished")

else:
print(f"***Cannot reach {hostname}")

Conclusion
In this chapter, we learned the operational steps for software upgrades in
network devices, such as uploading files, setting the boot software file, and
reloading the device. We also modified dummy data to make it meaningful for
engineers, like collecting all alarms from the network and creating statistics to
check the risks by severity. We also collected the device data with SNMP, such
as system information, hostname, or interface status. We created backups of

the configuration files and sent them with emails in attachments. Towards the
end, we made a reachability test by executing the ping and tracert commands
in the Windows machines to troubleshoot the network.
The next chapter will focus on monitoring and managing Linux servers and
storage. We will create scripts to maintain multiple servers concurrently, such
as collecting logs, installing new packages, and upgrading operating systems.

Multiple choice questions
1. Which command is used to restart Cisco devices?

a. reboot
b. restart
c. reload
d. shutdown

2. How can you change the maximum hop count in the tracert in Windows
OS?

a. -n
b. -t
c. -m
d. -h

3. What data is collected from the devices when we write the sysUpTime
parameter in SNMP?

a. System uptime in minutes
b. System uptime in hundreds of seconds
c. System uptime in seconds
d. System uptime in hours

Answers
1. c
2. d
3. 3
4. b

Questions
1. Write a script to collect the interface information, such as interface name,

interface number, interface status, interface IP address, and description.

CHAPTER 8
Monitor and Manage Servers

This chapter will focus on server management, including collecting logs and
configuring servers. We will use paramiko and netmiko modules to log in to
servers. All examples in this chapter are based on Ubuntu OS, which is a Linux
distro. We will implement the server environment, collect logs, and modify
them and change configurations on the Linux servers, which are daily tasks for
a system engineer.

Structure
In this chapter, we will cover the following topics:

Implement server environment

Download VMware player and Ubuntu
Install Ubuntu on VMware
Activate SSH connection

Maintain Linux servers

Collect logs via syslog
Login servers with secure password
Collect CPU and memory levels
Collect interface information
Collect type and permission of files

Server configurations

Create users in servers
Install packages
Transfer files with Paramiko
Reboot servers concurrently
Stop running processes by script

Objectives
With the help of the Virtual Machine (VM) tool, we will prepare a lab setup
with three Linux servers. We will set up Ubuntu as the OS and VMware Player
as the virtual machine tool. We will also log in to servers using the netmiko
and paramiko modules. We will be gathering the syslog information and
transmitting it to you as an attachment. Additionally, we will discuss how to
configure servers by adding a new user, moving files, rebooting the servers,
and quitting any open processes.

Implement server environment
In system engineering, servers are the essential devices to work with, like
routers and switches in network engineering. We use Linux servers to execute
automation scripts and still use the Pycharm tool in Windows, but these scripts
can also be run on Linux devices.
We will install three Ubuntu OS as Linux Distributors in this chapter. In the
previous chapters, we always worked with network devices, mainly Cisco
devices. In this chapter, we will connect and automate system devices, and
Linux OS are the essential systems for automation as a system engineer. You
can also use Fedora, Suse, or other Linux distros instead of Ubuntu. In this
chapter, we will write our scripts for Ubuntu OS.
We need to create the environment for the scripts to execute. The lab has three
Ubuntu servers in VMs, and the following steps belong to the Windows OS.
For Linux or MAC, you need to check from the internet. There are tiny
differences between them in creating the Ubuntu server environment.

Download VMware player and Ubuntu
To use Ubuntu on a Windows PC, we have the option to use VM tools. So, we
download the VM tool as VMware player and Ubuntu’s latest version from
their respective official websites:

1. We need to download VMware Workstation Player from VMware’s
official source. At the end of the page are Windows and Linux versions
of VMware Player. We are using Windows, so we need to install the
Windows version.
https://www.vmware.com/tr/products/workstation-
player/workstation-player-evaluation.html

https://www.vmware.com/tr/products/workstation-player/workstation-player-evaluation.html

2. After the download process, we must install the VMware Player tool on
our PC. We can also use other VM tools like VirtualBox or Hyper-V as
virtualization tools. In all examples, we use VMware Player.

3. After that, we need to download the latest version of the Ubuntu OS
from the official Ubuntu website. It’s recommended to download the
Long Time Support (LTS) version of Ubuntu as it has official support
for upgrades and any bugs and vulnerabilities. That said, you also have
the option to download older versions.
https://ubuntu.com/download/desktop

Install Ubuntu on VMware
We need to import the Linux distro as Ubuntu into the VMware tool, so we
install the OS by following the steps mentioned here. We install three Linux
Servers in the VM, so we can automate three of them with a single Python
script.

1. After downloading the Ubuntu file, which has a .iso file extension, we
must import it to the VMware tool. We open VMware and click on the
Create a New Virtual Machine button to import the ISO file, as shown
in Figure 8.1:

Figure 8.1: Importing the ISO file step-1

2. On the opening page, we choose Installer disc image file (iso):
and find the downloaded ISO file by clicking on the Browse button, as
shown in Figure 8.2:

https://ubuntu.com/download/desktop

Figure 8.2: Importing the ISO file step 2

3. The next page asks for Full name as hostname, username, and password.
We need to fill in these values. You can add the following data in this
part:
Full name: Server-1
Username: ubuntu
Password: ubuntu

4. After that, it asks to set the Maximum Disk Size. By default, it’s 20 GB,
which is enough for simple usage.

5. We finalize the steps by finishing other steps by the default values.
6. When it finishes successfully, we can see the New Ubuntu VM in the

VMware tool with its hostname or full name that we configured in step 3.
When we open it, Ubuntu installation from the ISO file has started.

7. The installation of Ubuntu takes 10-20 minutes, and it asks some
questions to continue, such as language options, timezone, username,
password, and hostname. After choosing the configurations or going with
the default options, it is installed.

8. After the installation of Ubuntu finishes, Ubuntu starts on the same VM
page. The first server is ready to automate. Now, we copy this VM to
create other VMs, or we can install two other VMs in the same
procedure.
Hostname: Server-1 / Server-2 / Server-3
Username: ubuntu
Password: Ubuntu

Activate SSH connection
After finishing the Server OS installation, we need to configure the SSH
connection and activate it. We connect Linux servers with the SSH protocol, so
we install the net-tools and openssh-server packages. Then, we can configure
the IP addresses in the same subnet and activate the SSH server in systemctl.

1. We can log in to terminal via the Show Applications section in the
Ubuntu window in the bottom-left corner.

2. We need to download the net-tools package with the sudo apt install
net-tools command in the terminal. After that, we can run the ifconfig
command. There is an interface that has a 192.168.163.135 IP address,
and it’s automatically given to the server. You can change the IP range,
but remember that you may need to change the network driver IP address
if you want to reach the internet.
ubuntu@Server-1:~$ sudo apt install net-tools
ubuntu@Server-1:~$ ifconfig
ens33: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.163.135 netmask 255.255.255.0 broadcast
192.168.163.255

inet6 fe80::87fe:a97d:5cf7:9625 prefixlen 64 scopeid
0x20<link>
ether 00:0c:29:ff:0e:b1 txqueuelen 1000 (Ethernet)
RX packets 149785 bytes 218151216 (218.1 MB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 19397 bytes 1316978 (1.3 MB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions
0

When we write the SSH connection scripts in Python, we use the
following IP addresses to log in to servers. In your environment, IP
addresses may be different.
Server-1 IP Address: 192.168.163.135
Server-2 IP Address: 192.168.163.136
Server-3 IP Address: 192.168.163.137

We need to test the server IP with a ping command from the local PC.
Reachability is successful if we can ping all the server’s IP addresses
from our local PC.

3. We must enable SSH protocol in servers. Otherwise, we cannot log in to
the devices with SSH by default. We must install the openssh-server
package to activate SSH. After that, we must enable the SSH service in
the system and start the SSH service.
$ sudo apt-get install openssh-server
$ sudo systemctl enable ssh
$ sudo systemctl start ssh

4. If all the SSH activation commands are successful, we can make an SSH
connection test from our local PC to the servers. We need to write ssh
USERNAME@IP_ADDRESS to enter a device with SSH. So, we write the
following command in the Windows terminal. The server username and
password are ubuntu, and we can log in via SSH if we write the server’s
IP address.
C:\>ssh ubuntu@192.168.163.135
ubuntu@192.168.163.135's password:
Welcome to Ubuntu 22.04.1 LTS (GNU/Linux 5.15.0-46-generic
x86_64)
* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

0 updates can be applied immediately.
Last login: Mon Aug 29 10:25:03 2022 from 192.168.163.1
ubuntu@Server-1:~$

Maintain Linux servers

This part will focus on collecting logs from the Linux servers. Maintaining the
system devices like servers is essential for system engineers, and we can use
Python to automate these servers. We will use Ubuntu as a Linux distro in the
following examples.
We collect specific data, modify them, and convert them to more readable
formats such as creating text or Excel files. We also send the logs in text files
with emails. To study the topics in this section, you should be familiar with
primary Ubuntu usage. Some basic commands to check are sudo,
hostnamectl, uname, reboot, free -m, htop, top, ifconfig, ps, ls, nano, vim,
rmdir, mkdir, and touch, with optional parameters and package installation
commands like sudo apt-get install PACKAGE_NAME.
You can check the details of these commands on the internet. On the other
hand, you can check any command’s manual by writing man COMMAND_NAME in
the Linux terminal.
ubuntu@Server-1:~$ man nano
NANO(1) General Commands Manual NANO(1)
NAME

nano - Nano's ANOther editor, inspired by Pico
SYNOPSIS

nano [options] [[+line[,column]] file]…
nano [options] [[+[crCR](/|?)string] file]…

DESCRIPTION
 nano is a small and friendly editor. It copies the look
and feel of Pico, but is free software, and implements several
features that
 Pico lacks, such as: opening multiple files, scrolling per
line, undo/redo, syntax coloring, line numbering, and soft-
wrapping overlong
lines.

……

In Example 8.1, we use the paramiko module to connect three servers we
created. We collect the hostname information from all of them via the
hostnamectl hostname command and display it as the output.

1. We import the necessary functions from the paramiko and time modules.
After that, we create a variable named host with the management IP
addresses of the servers.
from paramiko import SSHClient, AutoAddPolicy

from time import sleep
host = ["192.168.163.135", "192.168.163.136",
"192.168.163.137"]

2. We create a for loop to log in to each device in a sequence. We open the
SSH session and add the functions to open an active shell session on the
device.
for ip in host:
client = SSHClient()
client.set_missing_host_key_policy(AutoAddPolicy())

client.connect(hostname=ip, username="ubuntu", password=
"ubuntu")
commands = client.invoke_shell()

3. After that, we execute the necessary commands with the paramiko send
function and wait to get all the output. Finally, we collect the result in
human-readable utf-8 format and display it in the output.

commands.send("hostnamectl hostname\n")
sleep(1)
output = commands.recv(1000000).decode("utf-8")

print(f"\n\n-------------------\nConnected to: {ip}\n------
-------------\n{output}")

Example 8.1: Connect Ubuntu servers with paramiko
from paramiko import SSHClient, AutoAddPolicy
from time import sleep
host = ["192.168.163.135", "192.168.163.136", "192.168.163.137"]
for ip in host:
client = SSHClient()
client.set_missing_host_key_policy(AutoAddPolicy())
client.connect(hostname=ip, username="ubuntu",
password="ubuntu")
commands = client.invoke_shell()
commands.send("hostnamectl hostname\n")
sleep(1)
output = commands.recv(1000000).decode("utf-8")
print(f"\n\n-------------------\nConnected to: {ip}\n-----------
--------\n{output}")

The following output is quite long for a device because when we make an SSH
connection to the device, there is a banner that meets us with information about

the device and support page links. But we only try to collect the hostname
information, such as Server-1, Server-2, and Server-3. We can delete the
other data with some functions, like in the RE module. On the other hand, we
can use the netmiko module, which has clearer output according to the
paramiko module. We will use netmiko to connect servers and collect and
configure them in the following examples:

Connected to: 192.168.163.135

Welcome to Ubuntu 22.04.1 LTS (GNU/Linux 5.15.0-46-generic x86_64)
* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage
0 updates can be applied immediately.
hostnamectl hostname
ubuntu@Server-1:~$ hostnamectl hostname
Server-1
ubuntu@Server-1:~$

Connected to: 192.168.163.136

Welcome to Ubuntu 22.04.1 LTS (GNU/Linux 5.15.0-46-generic x86_64)
* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage
0 updates can be applied immediately.
hostnamectl hostname
ubuntu@Server-2:~$ hostnamectl hostname
Server-2
ubuntu@Server-2:~$

Connected to: 192.168.163.137

Welcome to Ubuntu 22.04.1 LTS (GNU/Linux 5.15.0-46-generic x86_64)
* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage
0 updates can be applied immediately.
hostnamectl hostname

ubuntu@Server-3:~$ hostnamectl hostname
Server-3
ubuntu@Server-3:~$

Another alternative to using the paramiko module to connect servers is to use
the netmiko module. As it’s already well-explained in the previous chapters,
netmiko has shorter and simple code. Also, the output is much better than that
of paramiko.
In Example 8.2, we import the Netmiko module and add the device data that
netmiko needs to log in. We set the IP address, username, and password as
usual, but this time, the value of the device_type key must be linux instead of
cisco. For Linux devices, we must always use linux for this key.
After that, we execute the uname -a command in the Linux machines, which
displays the output of device information, such as hostname, and OS and
version release information. When we wrote the send_command, we added the
command variable in the previous examples. In this example, we also add an
optional parameter, strip_command, with value False. By default, its value is
True.
At the end, we print the output variable to see the result of the command. The
output is much more straightforward, and there is no banner of device
information at the beginning of the output. As netmiko removes it for us, we
only see the command output of the device. As we set strip_command as False,
in the output, the code displays the uname -a command. If we don’t add it, it
will not show the command we execute on the device. We can also use this
parameter as False in the previous examples in network devices.
Example 8.2: Connect Ubuntu servers with Netmiko
from netmiko import Netmiko
host = ["192.168.163.135", "192.168.163.136", "192.168.163.137"]
for ip in host:
device = {"host": ip, "username": "ubuntu", "password":

"ubuntu", "device_type": "linux"}
command = "uname -a"
net_connect = Netmiko(**device)
output = net_connect.send_command(command, strip_command=False)
net_connect.disconnect()
print(f"{ip}:{output}\n")

Output:
192.168.163.135:uname -a

Linux Server-1 5.15.0-47-generic #51-Ubuntu SMP Thu Aug 11
07:51:15 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux
192.168.163.136:uname -a
Linux Server-2 5.15.0-47-generic #51-Ubuntu SMP Thu Aug 11
07:51:15 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux
192.168.163.137:uname -a
Linux Server-3 5.15.0-47-generic #51-Ubuntu SMP Thu Aug 11
07:51:15 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux

Collect logs via syslog
In Example 8.3, we use the netmiko module to log in to servers and collect the
syslogs. Syslog is an essential file for Linux servers, and all the log data related
to the server is stored inside it. By default, it’s inside the /var/log/ directory.
To open a text file in the Linux terminal, we write the cat command, which
displays the file’s output. We only write cat FILENAME to show it. So, we
execute the cat command with the full path of the Syslog file in this example
and save the output in different files with the IP address information of three
devices.
By default, there is no paging in the Linux terminal. In network devices, there
is paging. For example, terminal length 0 needs to be entered in Cisco. In
paramiko examples, we enter it, but in netmiko, it automatically enters this
command inside the functions.
Example 8.3: Collect syslog data and save it to the file
from netmiko import Netmiko
host = ["192.168.163.135", "192.168.163.136", "192.168.163.137"]
for ip in host:
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux"}
command = "cat /var/log/syslog"
net_connect = Netmiko(**device)
output = net_connect.send_command(command)
net_connect.disconnect()
with open (f"{ip} syslog.txt","a") as w:
w.write(output)

In Example 8.4, we collect the lines that include SSH or ssh words in the
Syslog. We use the pipeline and the grep word | grep to search for something
in the file. It’s similar to Cisco, such as | include . After that, we write

SSH\|ssh, which means find SSH or ssh words in all lines. \| is used as the or
logical operator in Linux systems.
After we collect the SSH data, we save it to an individual text file with its IP
address. We write the emailing script from a Gmail account that we wrote in
the previous chapter.
Example 8.4: Collect Syslog data and send by email
from netmiko import Netmiko
import smtplib
from email import message
import mimetypes
def collect_configuration():
host = ["192.168.163.135", "192.168.163.136", "192.168.163.137"]
for ip in host:
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux"}
command = "cat /var/log/syslog | grep 'SSH\|ssh'"
net_connect = Netmiko(**device)
output = net_connect.send_command(command)
net_connect.disconnect()
with open (f"{ip} syslog.txt","a") as w:
w.write(output)

return host
host = collect_configuration()
mail_from = "example@gmail.com"
mail_password = "16-DIGIT-CODE"
mail_to = "example@gmail.com"
mail_subject = "Router Configurations"
mail_content = "Hi,\nYou can find the all configuration files in
the attachment."
send = message.EmailMessage()
send.add_header("From", mail_from)
send.add_header("To", mail_to)
send.add_header("Subject", mail_subject)
send.set_content(mail_content)
for file in host:
filename = f"{file} syslog.txt"
with open(filename, "rb") as r:
attached_file = r.read()

mime_type, encoding = mimetypes.guess_type(filename)
send.add_attachment(attached_file, maintype=mime_type.split("/")
[0], subtype=mime_type.split("/")[1], filename=filename)

with smtplib.SMTP_SSL("smtp.gmail.com", 465) as smtp:
smtp.login(mail_from, mail_password)
smtp.sendmail(mail_from, mail_to, send.as_string())

Login servers with secure password
We constantly add passwords in scripts, but generally, these users and
passwords are unique to engineers. When we share the scripts with other team
members, we need to remove the password value from the script. On the other
hand, we have the option to enter the password when we execute the script.
Python language has a pretty good built-in module as the getpass. We use the
getpass function from this module, and it creates an input session when we
execute the script. If we run the code in the terminal writing Python
EXAMPLE.py, the code asks for the password.
However, if we use an IDE tool like Pycharm, the code gets stuck and does not
ask for the password by default. We need to change the setting in the Pycharm
tool.
In Figure 8.3, we enter the Run tab and click on the Edit Configurations
section.

Figure 8.3: Modifying Pycharm Configuration-1

In the new opening window, we need to enable the Emulate terminal in
output console feature, like in Figure 8.4, and close the window by clicking
on the Apply button.

Figure 8.4: Modifying Pycharm Configuration-2

In Example 8.5, we import the getpass function from the getpass module. In
the device variable, we write the getpass() value for the password key instead
of the device password. The only difference in the following code is this.
Example 8.5: Login servers with the secure password with the getpass module
from netmiko import Netmiko
from getpass import getpass
host = "192.168.163.135"
device = {"host": host, "username": "ubuntu", "password":
getpass(), "device_type": "linux"}
command = "uname -a"
net_connect = Netmiko(**device)
show_output = net_connect.send_command(command)
net_connect.disconnect()
print(f"{host}:{show_output}\n")

When we execute the code, we can see the Password: output to enter. We
manually enter the password in the output terminal. It’s also a secret password,
so we cannot see the output of the password value we enter from the keyboard.
It’s a secure way to enter a password.
Output:

Password:
192.168.163.135:
Linux Server-1 5.15.0-47-generic #51-Ubuntu SMP Thu Aug 11
07:51:15 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux

When we try to log in to multiple devices, if we create a loop in the previous
example and execute it, each device code asks for the password. So, if we have
100 devices to log in to, we must write the password 100 times.
In Example 8.6, we assign the getpass() function at the beginning of the code,
which is outside of the for loop. Then, we call this variable as the password
key. In the loop, the value of the password is always the password we enter
when executing the code.
Example 8.6: Log in to multiple devices with a secure password
from netmiko import Netmiko
from getpass import getpass
host = ["192.168.163.135", "192.168.163.136", "192.168.163.137"]
command = "uname -a"
password = getpass()
for ip in host:
device = {"host": ip, "username": "ubuntu", "password":
password, "device_type": "linux"}
net_connect = Netmiko(**device)
show_output = net_connect.send_command(command)
net_connect.disconnect()
print(f"{ip}:{show_output}\n")

There is only one Password: output. When we enter the password on the
terminal, it assigns the new value to the password variable. So, we manually
enter the password to collect the following data from three devices.
Output:
Password:
192.168.163.135:
Linux Server-1 5.15.0-46-generic #49-Ubuntu SMP Thu Aug 4 18:03:25
UTC 2022 x86_64 x86_64 x86_64 GNU/Linux
192.168.163.136:
Linux Server-2 5.15.0-46-generic #49-Ubuntu SMP Thu Aug 4 18:03:25
UTC 2022 x86_64 x86_64 x86_64 GNU/Linux
192.168.163.137:

Linux Server-3 5.15.0-46-generic #49-Ubuntu SMP Thu Aug 4 18:03:25
UTC 2022 x86_64 x86_64 x86_64 GNU/Linux

Collect CPU and memory levels
In Example 8.7, we collect CPU and memory (total, used, and free) data and
save it to an Excel file.The free -m command in Ubuntu is used to get
memory data.
ubuntu@Server-1:~$ free -m
total used free shared buff/cache available

Mem: 3889 651 1872 13 1365 2983
Swap: 2139 0 2139

Ubuntu’s top command is used to get memory data, but it’s a live log. So, it’s
frequently updated by default. Suppose we execute this command with
netmiko; the code gets stuck in this line because netmiko continues to the
following line in the code. If it finishes collecting the log from the device, it’s
infinite in the top command. So, we use the top -n 1 command. -n is used for
a number of iterations as limits. If we enter the value of -n as 1, it only gets the
data once. The top output is quite long, including memory usage, and shows
each application’s use of resources. So, we execute the top -n 1 | grep %Cpu
command to get the lines that include the word %Cpu.
ubuntu@Server-1:~$ top -n 1 | grep %Cpu
%Cpu(s): 5,4 us, 5,4 sy, 0,0 ni, 89,2 id, 0,0 wa, 0,0
hi, 0,0 si, 0,0 st

1. We import the netmiko, RE, and pandas modules with their necessary
functions.
from netmiko import Netmiko
from re import findall
from pandas import DataFrame

2. We create empty lists with the following code. We also write the host
variable with the device management IP addresses.
memory_total, memory_free, memory_used, cpu_used, host_list
= ([] for i in range(5))
host = ["192.168.163.135", "192.168.163.136",
"192.168.163.137"]

3. We create a for loop to log in to devices. Inside the loop, we create a
device dictionary with the keys and values that the netmiko module

needs to log in to the devices. We log in and execute two commands and
assign them to variables like mem_output and cpu_output.
for ip in host:
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux"}
net_connect = Netmiko(**device)

mem_output = net_connect.send_command("free -m",
strip_command=False)
cpu_output = net_connect.send_command("top -n 1 | grep
%Cpu", strip_command=False)

4. We can collect the hostname information with the find_prompt()
function in the netmiko module. So, we collect it and get only the
hostname data with the findall function. As there are some words like
the USERNAME@HOSTNAME: value in the prompt, we only try to get the
HOSTNAME value; that’s why we use the findall function.

hostname = findall("@(.*):", net_connect.find_prompt())

5. We collect the data, and we use the findall function to get the specific
data for each value: CPU value and total, free and used memory. After
that, we assign each match to a particular list we created at the beginning
of the code.

total = findall("Mem:\s+(\d+)", mem_output)
free = findall("Mem:\s+\d+\s+(\d+)", mem_output)
used = findall("Mem:\s+\d+\s+\d+\s+(\d+)", mem_output)
cpu = findall("\d+,\d+", cpu_output)
memory_total.append(f"{total[0]} MB")
memory_free.append(f"{free[0]} MB")
memory_used.append(f"{used[0]} MB")
cpu_used.append(f"% {cpu[0]}")
host_list.append(hostname[0])

Instead of using the code in step 5, we can decrease the lines of code by
collecting only digits in the free -m command and getting the total,
free, and used data in the same list.

total = findall("\d+", mem_output)
cpu = findall("\d+,\d+", cpu_output)
memory_total.append(f"{total[0]} MB")
memory_free.append(f"{total[1]} MB")
memory_used.append(f"{total[2]} MB")
cpu_used.append(f"% {cpu[0]}")

host_list.append(hostname[0])

6. After the loop finishes, we use the DataFrame function to organize all the
lists we filled with data and save them to an Excel file with the to_excel
function.
df = DataFrame({"Hostname": host_list, "Total Memory":
memory_total, "Free Memory": memory_free, "Memory Usage":
memory_used, "CPU Usage": cpu_used})
df.to_excel("CPU-Memory Usage.xlsx", index=False)

Example 8.7: Collect CPU and memory levels of servers
from netmiko import Netmiko
from re import findall
from pandas import DataFrame
memory_total, memory_free, memory_used, cpu_used, host_list = ([]
for i in range(5))
host = ["192.168.163.135", "192.168.163.136", "192.168.163.137"]
for ip in host:
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux"}
net_connect = Netmiko(**device)
mem_output = net_connect.send_command("free -m",
strip_command=False)
cpu_output = net_connect.send_command("top -n 1 | grep %Cpu",
strip_command=False)
hostname = findall("@(.*):", net_connect.find_prompt())
total = findall("Mem:\s+(\d+)", mem_output)
free = findall("Mem:\s+\d+\s+(\d+)", mem_output)
used = findall("Mem:\s+\d+\s+\d+\s+(\d+)", mem_output)
cpu = findall("\d+,\d+", cpu_output)
memory_total.append(f"{total[0]} MB")
memory_free.append(f"{free[0]} MB")
memory_used.append(f"{used[0]} MB")
cpu_used.append(f"% {cpu[0]}")
host_list.append(hostname[0])

df = DataFrame({"Hostname": host_list, "Total Memory":
memory_total, "Free Memory": memory_free, "Memory Usage":
memory_used, "CPU Usage": cpu_used})
df.to_excel("CPU-Memory Usage.xlsx", index=False)

Figure 8.5 shows the Excel file content of the script in Example 8.7. There are
three servers which has total, free, and used memory count with CPU usage
data.

Figure 8.5: Excel File Output of Example 8.7

Collect interface information
In Ubuntu, we use the ifconfig command to get all interface data from the
server. The ifconfig command software package must be installed to execute
this command, and we need to install its package by running sudo apt
install net-tools. When we run ifconfig in the Ubuntu terminal, we get
the following output. It has two interfaces named ens33 and lo as loopback in
Server-1. In the following line, we have inet and the IP address, netmask and
the netmask address. We will collect this data for the following example.
ubuntu@Server-1:~$ ifconfig
ens33: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 192.168.163.135 netmask 255.255.255.0 broadcast
192.168.163.255

inet6 fe80::87fe:a97d:5cf7:9625 prefixlen 64 scopeid
0x20<link>
ether 00:0c:29:ff:0e:b1 txqueuelen 1000 (Ethernet)
RX packets 29835 bytes 39126512 (39.1 MB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 14325 bytes 2328952 (2.3 MB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets 390 bytes 40395 (40.3 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 390 bytes 40395 (40.3 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

In Example 8.8, we collect the hostname, interface name, interface IP address,
and netmask from all devices and write them to an excel file.

1. We import the necessary modules and create empty lists to fill them with
data. And we log in to three devices, as we did in the earlier examples.
from netmiko import Netmiko
from re import findall
from pandas import DataFrame
list_ipv4, list_netmask, list_int, list_hostname,
list_int_name = ([] for i in range(5))
host = ["192.168.163.135", "192.168.163.136",
"192.168.163.137"]

2. We collect the ifconfig command output inside the for loop from each
device. We get specific data with the findall function, such as the
hostname and interface name, inside the first or outer loop.
for ip in host:
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux"}
net_connect = Netmiko(**device)
output = net_connect.send_command("ifconfig")
hostname = findall("@(.*):", net_connect.find_prompt())
int_name = findall("(.*): flags", output)

3. Inside the second or inner loop, we execute the ifconfig -a command
with the interface name we collected in the first loop. The ifconfig -a
INTERFACE_NAME CLI command is used to get the only output of a
specified interface. So, we get only one interface in each iteration and
collect the interface IP address and netmask.

for interface in int_name:
output = net_connect.send_command(f"ifconfig -a
{interface}")
ipv4 = findall("inet (.*) netmask", output)
netmask = findall("netmask (\d+.\d+.\d+.\d+)", output)

4. After we collect all four sets of data from the logs, we append them to the
lists. We are still inside the second loop.

list_ipv4.append(ipv4[0])
list_netmask.append(netmask[0])
list_hostname.append(hostname[0])
list_int_name.append(interface)

5. Finally, we exit both loops and save the items of the lists to an Excel file.
df = DataFrame({"Hostname": list_hostname, "Interface
Name": list_int_name, "IP Address": list_ipv4, "Netmask":
list_netmask, })
df.to_excel("Interface Information.xlsx", index=False)

Example 8.8: Collect interface information of servers
from netmiko import Netmiko
from re import findall
from pandas import DataFrame
list_ipv4, list_netmask, list_int, list_hostname, list_int_name =
([] for i in range(5))
host = ["192.168.163.135", "192.168.163.136", "192.168.163.137"]
for ip in host:
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux"}
net_connect = Netmiko(**device)
output = net_connect.send_command("ifconfig")
hostname = findall("@(.*):", net_connect.find_prompt())
int_name = findall("(.*): flags", output)
for interface in int_name:
output = net_connect.send_command(f"ifconfig -a {interface}")
ipv4 = findall("inet (.*) netmask", output)
netmask = findall("netmask (\d+.\d+.\d+.\d+)", output)
list_ipv4.append(ipv4[0])
list_netmask.append(netmask[0])
list_hostname.append(hostname[0])
list_int_name.append(interface)

df = DataFrame({"Hostname": list_hostname, "Interface Name":
list_int_name, "IP Address": list_ipv4, "Netmask": list_netmask,
})
df.to_excel("Interface Information.xlsx", index=False)

In Figure 8.6, we can see the output of the script in Example 8.8. The
hostname, interface name, interface IP address, and the netmask of this IP
address are filled in the Excel file in order.

Figure 8.6: Excel File Output of Example 8.8

Collect type and permission of files
We can check the file list in Linux machines with the ls command in the
terminal. The following output has five items with three folders and two files.
ubuntu@Server-1:~$ ls
Desktop Downloads nohup.out Pictures test.txt

We can run the ls -l command to get detailed information about the items,
such as the item type, permissions, user information of creation, file size, and
creation time. We have the following output after running the ls -l command
in Server-1.
ubuntu@Server-1:~$ ls -l
total 28
drwxr-xr-x 2 ubuntu server-1 4096 Aug 28 20:38 Desktop
drwxr-xr-x 2 ubuntu server-1 4096 Aug 28 20:38 Downloads
-rw------- 1 ubuntu server-1 0 Sep 1 08:30 nohup.out
dr--r--r-- 2 ubuntu server-1 4096 Aug 28 20:38 Pictures
---------- 1 ubuntu server-1 20 Sep 1 08:19 test.txt

Each file’s line starts with the d or - character. d means that the item is a
directory, and - means that the item is a file. So, we can easily understand the
item type, whether a file or a folder.
After the first character, the following three characters specify the user
permission. These characters can be r for reading permission, w for writing
permission, x for executing permission, and – for no permission.
"r" - Read Permission
"w" - Write Permission
"x" - Execute Permission
"-" - No Permission

We can change the permission of the items with the chmod command. We write
- to remove permissions and + to add permissions.
To delete all permissions: chmod -rwx test.txt
To add all permissions: chmod +rwx test.txt

In Example 8.9, we collect the items as folder or file with its extension, file
type as file or folder, and permissions as read, write, execute, or none.

1. We import the necessary functions from the netmiko and RE modules. We
add a device variable to let netmiko to log in to the server.
from netmiko import Netmiko
from re import findall,split
device = {"host": "192.168.163.135", "username": "ubuntu",
"password": "ubuntu", "device_type": "linux"}

2. After we connect to the device, we run the ls -l command and use the
split function to split each line into an item in a list. So, the output
variable is a list. After that, we delete two items at the beginning of the
list with the del output[:2] function because these two lines are
unnecessary in the output of the ls -l command.
net_connect = Netmiko(**device)
output = split("\n",net_connect.send_command("ls -l"))
del output[:2]

3. Inside the for loop, we iterate each item in the output list. We collect the
file name with the findall function. In each item, the first value or
character specifies the type as folder or file. So if we use item[0], it gets
this value. If we use item[1:4], it gets the user permission value, such as
rwx or a different value.
for item in output:
file_name = findall("\d+:\d+ (.*)",item)
print(f"File/Directory Name: {file_name[0]}")

4. So, we create two if conditions: one to find the item type, and one to
find the permission type. We had many options in the permission type.
We add some permission types with their meanings, such as rw-, as the
Read/Write Permission.

if item[0] == "d":
print("Type: Dictionary")

else:
print("Type: File")

if item[1:4] == "r--":

print(f"User Permission: Read as '{item[1:4]}'\n")
elif item[1:4] == "rw-":
print(f"User Permission: Read/Write as '{item[1:4]}'\n")

elif item[1:4] == "rwx":
print(f"User Permission: Read/Write/Execute as
'{item[1:4]}'\n")
elif item[1:4] == "---":
print(f"User Permission: None as '{item[1:4]}'\n")

Example 8.9: Collect file type and permissions in a directory of a server
from netmiko import Netmiko
from re import findall,split
device = {"host": "192.168.163.135", "username": "ubuntu",
"password": "ubuntu", "device_type": "linux"}
net_connect = Netmiko(**device)
output = split("\n",net_connect.send_command("ls -l"))
del output[:2]
for item in output:
file_name = findall("\d+:\d+ (.*)",item)
print(f"File/Directory Name: {file_name[0]}")
if item[0] == "d":
print("Type: Directory")

else:
print("Type: File")

if item[1:4] == "r--":
print(f"User Permission: Read as '{item[1:4]}'\n")

elif item[1:4] == "rw-":
print(f"User Permission: Read/Write as '{item[1:4]}'\n")

elif item[1:4] == "rwx":
print(f"User Permission: Read/Write/Execute as
'{item[1:4]}'\n")

elif item[1:4] == "---":
print(f"User Permission: None as '{item[1:4]}'\n")

Output:
File/Directory Name: Desktop
Type: Directory
User Permission: Read/Write/Execute as 'rwx'
File/Directory Name: Downloads
Type: Directory

User Permission: Read/Write/Execute as 'rwx'
File/Directory Name: nohup.out
Type: File
User Permission: Read/Write as 'rw-'
File/Directory Name: Pictures
Type: Directory
User Permission: Read as 'r--'
File/Directory Name: test.txt
Type: File
User Permission: None as '---'

Server configurations
Here, we will focus on configuring servers with Python scripts. We will use
netmiko and paramiko modules in the following examples, and we can create
users, install packages, transfer files both ways, reboot servers, and kill
processes with the scripts.

Create users in servers
In Example 8.10, we create a user in the servers and collect their UID, GID,
and group information to display in the output. We use the Jinja2 template
from a file and data from the YAML file in the following:
info.yaml
user_name: test_user
group_name: test_group
command_list.txt
useradd {{user_name}}
addgroup {{group_name}}
usermod -a -G {{group_name}} {{user_name}}
id {{user_name}}

1. We import the necessary functions from the netmiko, RE, jinja2, and
yaml modules. Then, we create a host variable for the device
management IP addresses.
from netmiko import Netmiko
from re import findall, split
from jinja2 import Environment, FileSystemLoader
from yaml import safe_load

host = ["192.168.163.135", "192.168.163.136",
"192.168.163.137"]

2. We use the Environment function from the jinja2 module with the
FileSystemLoader function to load the jinja platform. After that, we call
the get_template function to get the jinja codes.
env = Environment(loader=FileSystemLoader("."))
template = env.get_template("command_list.txt")

3. We open the YAML file, read it with the safe_load function, and get the
values. We get the username data from the file to display in the output.
with open("info.yml") as r:
data = safe_load(r)
user_name = data["user_name"]

4. We render or merge the Jinja commands with the YAML file with the
render function and create a list of items divided line by line.
command = template.render(data)
command = split("\n", command)

5. Inside a for loop, we create a device variable and add the secret key
with its value as ubuntu. It’s the root user’s password. We can set the root
password by entering the sudo passwd root line in the terminal and
putting the new password in the following line. After that, we log in to
devices and execute the command variable. We get the hostname value
with the find_prompt function, and then we check the uid information in
the output.
for ip in host:
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux", "secret": "ubuntu"}
net_connect = Netmiko(**device)
output = net_connect.send_config_set(command)
hostname = findall("@(.*):", net_connect.find_prompt())
result = findall("uid",output)

6. If there is a uid word in the output, it means the user has been created
successfully. Otherwise, the code has failed to create a user in the server.
If the result variable has a value, we collect the uid, gid, and groups
values and display them in the output.

if result:
uid = findall("uid=(.*) gid",output)
gid = findall("gid=(.*) ",output)

groups = findall("groups=(.*)",output)
print(f"{hostname[0]}: User '{user_name}' is created and
assigned to a group")
print(f"UID: {uid[0]} \nGID: {gid[0]} \nGroups:
{groups[0]}\n")
else:
print("Failed to create user and group")

Example 8.10: Create users in servers
from netmiko import Netmiko
from re import findall, split
from jinja2 import Environment, FileSystemLoader
from yaml import safe_load
host = ["192.168.163.135", "192.168.163.136", "192.168.163.137"]
env = Environment(loader=FileSystemLoader("."))
template = env.get_template("command_list.txt")
with open("info.yml") as r:
data = safe_load(r)
user_name = data["user_name"]

command = template.render(data)
command = split("\n", command)
for ip in host:
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux", "secret": "ubuntu"}
net_connect = Netmiko(**device)
output = net_connect.send_config_set(command)
hostname = findall("@(.*):", net_connect.find_prompt())
result = findall("uid",output)
if result:
uid = findall("uid=(.*) gid",output)
gid = findall("gid=(.*) ",output)
groups = findall("groups=(.*)",output)
print(f"{hostname[0]}: User '{user_name}' is created and
assigned to a group")
print(f"UID: {uid[0]} \nGID: {gid[0]} \nGroups:
{groups[0]}\n")

else:
print("Failed to create user and group")

In the output, three device outputs create a test_user, showing UID, GID, and
groups.
Output:
Server-1: User 'test_user' is created and assigned to a group
UID: 1005(test_user)
GID: 1008(test_user)
Groups: 1008(test_user),1009(test_group)
Server-2: User 'test_user' is created and assigned to a group
UID: 1006(test_user)
GID: 1009(test_user)
Groups: 1009(test_user),1010(test_group)
Server-3: User 'test_user' is created and assigned to a group
UID: 1006(test_user)
GID: 1011(test_user)
Groups: 1011(test_user),1012(test_group)

Install packages
In Example 8.11, we install a package from the internet to a server. So, the
server must have an internet connection to download the package and install it.

1. We import the Nemiko function from the netmiko module and set a host
variable as the server management IP address. After that, we create a
device variable with its data to log in to the device by netmiko. We also
add the secret key inside the variable because in Ubuntu, we must enter
the admin mode to install a package or run the command by adding sudo
at the beginning of the line, such as sudo apt-get install
PACKAGE_NAME. Then, we add the package variable by adding the package
name as a value.
from netmiko import Netmiko
host = "192.168.163.135"
device = {"host": host, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux", "secret": "ubuntu"}
package = "htop"

2. We connect to the device and send the command with the
send_config_set function. This function executes the commands in the
network devices’ configuration terminal or admin mode. It’s the same in
Linux, and the command runs in the admin mode. So, we write apt-get
install PACKAGE_NAME. In the following code, we add -y at the end of

the command. By default, if the size is large, such as 10MB or more, the
Ubuntu machine asks us whether or not to continue to download the
package from the internet. The server waits until we enter Y or N. It stays
infinite if we do not enter Y into the question. Netmiko gives a timeout
error when the command doesn’t finish. To prevent this issue, we can add
-y at the end of the command, regardless of the package size, so that the
code works fine. We can also add the read_timeout parameter to extend
the timeout if the command doesn’t finish in the default timeout period. If
we have a large file to download, it takes much more time, depending on
the local internet connection. We can set the timeout value with this
parameter.
net_connect = Netmiko(**device)
output =net_connect.send_config_set(f"apt-get install
{package} -y",read_timeout=1000)
print(output)

3. After we download the file, we test it by writing the PACKAGE_NAME --
version command in the user mode of the server. Each package has
version information, and we can see it with that command. If the package
installation fails, we can see it with this output.
output = net_connect.send_command(f"{package} --version")
print(f"{host}: {package} --version{output}\n")
net_connect.disconnect()

Example 8.11: Install a package on a server
from netmiko import Netmiko
host = "192.168.163.135"
device = {"host": host, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux", "secret": "ubuntu"}
package = "htop"
net_connect = Netmiko(**device)
output = net_connect.send_config_set(f"apt-get install {package} -
y")
print(output)
output = net_connect.send_command(f"{package} --version")
print(f"{host}: {package} --version{output}\n")
net_connect.disconnect()

When the code executes, it automatically enters Ubuntu’s admin or root user to
run the configuration change command, like in Cisco or other network devices.

In Ubuntu, it’s sudo –s. We already added the secret key and its value as
ubuntu, which is the root user’s password. We set this password after we log in
to the server. After that, it executes the command without sudo at the
beginning of the command. We add -y at the end of the line because if we
download a large package, it will not ask the user to continue or stop the
installation. If we don’t enter -y and the size is large, the code throws an error
because of timeout.
Output:
192.168.163.135:sudo -s
[sudo] password for ubuntu:
root@Server-1:/home/ubuntu# apt-get install htop -y
Reading package lists… 0%
Preparing to unpack …/htop_3.0.5-7build2_amd64.deb …
Progress: [0%] [……….] 87Progress: [20%] [#################……..]
exit
ubuntu@Server-1:~$
192.168.163.135: htop --version
htop 3.0.5

In Example 8.12, we install multiple packages on various servers. We use the
concurrent module to execute the commands simultaneously on three devices.
So, we have speedy installation of the packages on many devices. We create a
function, as we did in the previous example, to log in to the device and execute
the commands. And we have a device IP list as the host variable. We combine
package_installation function and list in the ThreadPoolExecutor.
Example 8.12: Install packages in servers simultaneously
from netmiko import Netmiko
from concurrent.futures import ThreadPoolExecutor
host = ["192.168.163.135", "192.168.163.136", "192.168.163.137"]
def package_installation (ip):
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux", "secret": "ubuntu"}
package = ["htop","nano", "vim", "nmap"]
for pack in package:
net_connect = Netmiko(**device)
net_connect.send_config_set(f"sudo apt-get install {pack} -y")
output = net_connect.send_command(f"{pack} --version")
hostname = net_connect.find_prompt()
print(f"{hostname}: {pack} --version{output}\n")

net_connect.disconnect()
with ThreadPoolExecutor(max_workers=5) as executor:
result = executor.map(package_installation, host)

Transfer files with Paramiko
We can transfer files from our local PC to remote servers, as we did in the
network devices in the previous chapters. We can use the paramiko module to
transfer files both ways. We can create a function to connect devices with the
SFTP protocol. After that, we can create two additional functions for
uploading and downloading in both sides. We use the get and put functions to
do this. Finally, we can call either the sftp_upload or the sftp_download
function according to our request.
Example 8.13: Transfer files with the paramiko module
from paramiko import SSHClient, AutoAddPolicy
def sftp_connect():
ssh = SSHClient()
ssh.set_missing_host_key_policy (AutoAddPolicy())
ssh.connect(hostname="192.168.163.137", username="ubuntu",
password="ubuntu")
sftp = ssh.open_sftp()
return sftp

def sftp_upload(local_file,remote_file):
sftp_connect().put(local_file,remote_file)
sftp_connect().close()

def sftp_download(remote_file,local_file):
sftp_d = sftp_connect()
sftp_d.get(remote_file,local_file)
sftp_d.close()

sftp_upload("test.txt","test.txt")

Before uploading the test.txt file from our local PC to the server, when we
run the ls command in the default directory, there is no test.txt file.
ubuntu@Server-3:~$ ls
Desktop Documents Downloads Music Pictures Public snap Temp
lates test Videos

The default directory of the Ubuntu server is /home/USERNAME, which is
/home/ubuntu. We can check the current directory in Linux by running the pwd
command in the terminal.

ubuntu@Server-3:~$ pwd
/home/ubuntu

The test.txt file’s content is in the following line:
Output of the "test.txt" file:
Hello, This is a text file.

After we execute the script and it finishes, we can check the directory with the
ls command again. There is a test.txt file now.
ubuntu@Server-3:~$ ls
Desktop Documents Downloads Music Pictures Public snap Temp
lates test test.txt Videos

When we check the file’s content by running the cat test.txt command in
the terminal, we can see the content, which is precisely the same on the local
PC.
ubuntu@Server-3:~$ cat test.txt
Hello, This is a text file.

Reboot servers concurrently
In Example 8.14, we reboot or reload devices simultaneously. We use the
concurrent module, as we did in the previous examples. We use the reboot
command to reboot Ubuntu servers, and we add the secret key with its value
in the device variable. As this command also executes in the administrator
mode, we display the device hostname information when the reboot process
starts.
Example 8.14: Reboot servers simultaneously
from netmiko import Netmiko
from re import findall
from concurrent.futures import ThreadPoolExecutor
host = ["192.168.163.135", "192.168.163.136", "192.168.163.137"]
command = "reboot"
def netmiko_reboot(ip):
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux", "secret": "ubuntu"}
net_connect = Netmiko(**device)
hostname = findall("@(.*):", net_connect.find_prompt())
print(f"---Rebooting to:{hostname}---")
net_connect.send_config_set(command)
return

with ThreadPoolExecutor(max_workers=5) as executor:
result = executor.map(netmiko_reboot, host)

When we execute the script, it gives the following output for all servers. After
running the script, all three devices will reboot themselves.
Output:
---Rebooting to:Server-1---
---Rebooting to:Server-3---
---Rebooting to:Server-2---

Stop running processes by script
Each process has a unique PID, process id or process identification number.
When we start a process or an application, it creates its own PID. We can see a
complete list of processes and PIDs by entering the ps fax command. It shows
all the running processes, with details, in Linux systems.
ubuntu@Server-1:~$ ps fax
PID TTY STAT TIME COMMAND
 2 ? S 0:00 [kthreadd]
 3 ? I< 0:00 _ [rcu_gp]
 4 ? I< 0:00 _ [rcu_par_gp]
 5 ? I< 0:00 _ [netns]
 7 ? I< 0:00 _ [kworker/0:0H-events_highpri]
……………….

In Example 8.15, we stop a kill a process process in Linux termination. We
write kill PID to stop the process. So, in the beginning, we manually start an
application, a calculator in Linux, by running the gnome-calculator &
command. If we don’t write &, we cannot write anything in the terminal until
we quit the application. So, we write the & character to run the app in the
background. After we enter the following command in the terminal, the
calculator window opens on the Linux machine desktop, as shown in Figure
8.7. In the following output, the PID of this application is 17204. If we
terminate the process and rerun it, it will get another PID.
ubuntu@Server-1:~$ gnome-calculator &
[1] 17204
ubuntu@Server-1:~$ ps fax | grep 17204
17204 pts/0 Sl 0:00 _ gnome-calculator

Figure 8.7: Desktop Screen of Server-1 After starting the “gnome-calculator” App

1. We import the necessary functions from the netmiko and RE modules.
After that, we create a host variable of the server IP addresses we try to
log in to.
from netmiko import Netmiko
from re import findall
host = ["192.168.163.135", "192.168.163.136",
"192.168.163.137"]

2. We add the device variable to connect devices and add the command
variable to execute the ps fax command to find the PID of the process.
And finally, the process variable to find the target process or application
to stop the process in all devices.
for ip in host:
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux"}
command = "ps fax"

process = "gnome-calculator"

3. After we log in to the servers, we collect the ps fax command output.
Then, we get the hostname information with the find_prompt function.
We also have the PID with the findall function, and it’s the first digit in
the same line as the process name, such as 17204 pts/0 Sl 0:00 _
gnome-calculator.

net_connect = Netmiko(**device)
output = net_connect.send_command(command)
hostname = findall("@(.*):", net_connect.find_prompt())
pid = findall(f"(\d+).*{process}", output)

4. If we don’t find the PID in the previous code, the pid value is empty. So,
the code finishes as Process is not started. Otherwise, it sends the
kill PROCESS_ID command to the server to stop the process. When we
rerun the ps fax command, if we find the PID again, code assigns the
output to the pid_new variable. This means stopping the process has
failed. If the pid_new variable is empty, stopping the process is
successful. We display all the conditions as output.

if pid:
net_connect.send_command(f"kill {pid[0]}")
output = net_connect.send_command(command)
pid_new = findall(f"(\d+).*{process}", output)
if not pid_new:
print(f"{hostname[0]} '{process}' with {pid[0]}
process-id is successfully stopped.")

else:
print(f"{hostname[0]} '{process}' with {pid[0]}
process-id is failed stopped.")

else:
print(f"{hostname[0]} '{process}' process is not
started.")

Example 8.15: Stop running processes by script
from netmiko import Netmiko
from re import findall
host = ["192.168.163.135", "192.168.163.136", "192.168.163.137"]
for ip in host:
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux"}

command = "ps fax"
process = "gnome-calculator"
net_connect = Netmiko(**device)
output = net_connect.send_command(command)
hostname = findall("@(.*):", net_connect.find_prompt())
pid = findall(f"(\d+).*{process}", output)
if pid:
net_connect.send_command(f"kill {pid[0]}")
output = net_connect.send_command(command)
pid_new = findall(f"(\d+).*{process}", output)
if not pid_new:
print(f"{hostname[0]} '{process}' with {pid[0]} process-id
is successfully stopped.")

else:
print(f"{hostname[0]} '{process}' with {pid[0]} process-id
is failed stopped.")

else:
print(f"{hostname[0]} '{process}' process is not started.")

When we execute the script, we get the following output. We manually enter
gnome-calculator & commands in Server-1 and Server-2. So, the code finds
the related PID as process-id from these servers and kills or stops the
application. But in Server-3, we don’t start this application, so the code cannot
find the PID of the gnome-calculator application. It displays the output
process is not started.
Output:
Server-1 'gnome-calculator' with 17204 process-id is successfully
stopped.
Server-2 'gnome-calculator' with 11633 process-id is successfully
stopped.
Server-3 'gnome-calculator' process is not started.

Conclusion
This chapter taught us about maintaining and configuring Linux servers with
the netmiko and paramiko modules. We also checked some basic Linux
commands, such as ls, cat, ifconfig, top. We collected logs, displayed them
in the output, saved them to a text or Excel file, and sent them by email. We
used connection modules to log in to devices to make some processes in the

administrator mode, such as downloading and installing a software package,
creating users, or even stopping a process or an application.
The next chapter will focus on creating scripts for network security in both
network and system devices. We will make firewall configurations in servers
and create access lists in network devices to keep the network secure.

Multiple choice questions
1. Which of the following tools is not a Virtual Machine (VM) tool?

a. Vmware Player
b. VirtualBox
c. Vagrant
d. KVM

2. Which command shows the CPU and memory levels in the same output
in Ubuntu?

a. ps
b. top
c. free -m
d. ifconfig

3. Which command shuts down the server immediately in Ubuntu?

a. shutdown
b. shutdown +10
c. shutdown -c
d. shutdown now

Answers
1. c
2. b
3. d

Questions

1. Write a script to create a new process and find the process ID with the ps
fax command.

2. Write a script to delete a package from the server and verify that it’s
deleted.

3. Write a script to shut down a server after 1 minute of the script being
executed.

CHAPTER 9
Network Security with Python

This chapter will focus on the security features and services of network and
system devices. We will use the netmiko module to connect devices to
check and configure security services. We will also send alerts if there is a
risky configuration in the machine by Python scripts, and we will check the
network in the packet base to investigate any issues in depth.

Structure
In this chapter, we will cover the following topics:

Activate security services

Install and activate the “Firewalld” service on servers
Configure firewall settings on servers
Create access lists in network devices
Manipulate network packets with scapy

Check logs and configurations

Check CPU levels periodically with Crontab
Check router configuration for insecure password
Check port security configuration in routers

Collect packets from ports with Pyshark

Objectives
We will install the firewalld service in Linux servers to configure the
security features. We will check how to use this service with Linux
commands, and we will activate and deactivate it according to our
requirements. We will also create new security zones and make
configurations to allow for accessing ports, services, and IP addresses.

Further on, we will configure Access Lists (ACLs) in network devices with
the Jinja template. We will also manipulate network packets with the Scapy
module and send ICMP request packets, get ICMP reply packets, and check
in the Wireshark tool. Additionally, we will collect data from the network
devices to check if any risky settings are configured and capture the
network packets (with full details) in the pyshark module.

Activate security services
In this section, we focus on security services in network and system
devices. We use firewall services, ACLs, or traffic policies to secure the
network and system environment to protect from attacks outside.
In the data center, enterprise, or internet service provider (ISP) networks,
all systems and network devices are connected; on the top, they are
connected to firewall. Essential security starts at the top of the topology,
and Firewall security is another part related to security engineers. This book
focuses on initial or device-based security features like ACLs, traffic
policies in network devices, or firewalld services in Linux servers.
In network devices like routers or switches, we configure ACLs to create a
primary security feature in these devices. We can deny or permit both
inbound and outbound traffic by developing policies and access lists. There
are many options to identify the parameters, such as protocol, Quality of
Service (QoS), and source and destination IP address.
In system devices like Linux servers, we can activate the firewalld
security service to make the server environment more secure.

Install and activate the “Firewalld” service on
servers
We use the firewalld service to secure servers in the primary step. It’s a
Linux OS firewall management tool or service that is also written in the
Python language.

It supports dynamic management firewall systems, including network
zones.
It’s based on trust in a network or protocol inside or outside the
network.

It has support for IPv4 and IPv6 address settings.
We can make changes in this service concurrently when we enter the
configurations. So, it’s a runtime environment without needing to
restart the service or daemon.
It’s already installed on many Linux distros by default, such as
CentOS, Fedora, and SUSE. We must download and install the
firewalld service in Ubuntu to use it.

Before we start using the firewalld service, we must install it with the
following command:
$ sudo apt install firewalld

All the firewalld service commands require an admin account. So, at the
beginning of the command, we should add the sudo command to enter the
root or admin user in each command entrance. We can also use the sudo -s
command to change the current user of the terminal to the root account.
When we enter it, we don’t need to enter the sudo command in each line.
With the # character, we are inside the root or admin user.
ubuntu@Server-1:~$ sudo -s
[sudo] password for ubuntu:
root@Server-1:/home/ubuntu#

In the following command examples, we will execute all commands as the
root user so that we don’t need to use sudo at the beginning of the line. If
we enter the following commands in the standard user view in which we
have a user account of a ubuntu name, we must enter the sudo command at
the beginning of the line.
We can start the service with the systemctl start firewalld command.
With the firewall-cmd --state command, we can verify whether or not
the firewalld service starts. If the output of this command is running, this
service is running or activated. If the output is not running, this service is
not running or is deactivated. With this command, we can check the status
of the firewall service, and it only shows whether it is running.
root@Server-1:/home/ubuntu# systemctl start firewalld
root@Server-1:/home/ubuntu# firewall-cmd --state
running

The systemctl command is a Linux service management command to
check any of the services installed on the server. We can check any service

status with this command. If we enter this command, it displays a large
output of the service status as a summary. We can also check each service’s
status by writing the systemctl status SERVICE_NAME command.
We need to use systemctl status firewalld to check the details of the
firewalld service. It shows the firewall details, such as the directory it is
loaded from, an active state in the active (running) state, process ID as
PID, tasks inside this service, and resource usage of this service from the
server CPU and memory. In the end, the logs include the time of the record
and the log information. We can check the service starting time from this
log.
root@Server-1:/home/ubuntu# systemctl status firewalld
firewalld.service - firewalld - dynamic firewall daemon
Loaded: loaded (/lib/systemd/system/firewalld.service;
enabled; vendor preset: enabled)

Active: active (running) since Sat 2022-09-10 16:42:31 +03;
3s ago
Docs: man:firewalld(1)
Main PID: 2625 (firewalld)
Tasks: 2 (limit: 4584)
Memory: 22.6M

CPU: 672ms
CGroup: /system.slice/firewalld.service
└─2625 /usr/bin/Python3 /usr/sbin/firewalld --nofork --
nopid

Aug 10 16:42:31 Server-1 systemd[1]: Starting firewalld -
dynamic firewall daemon…
Aug 10 16:42:31 Server-1 systemd[1]: Started firewalld -
dynamic firewall daemon.

With a similar usage of the systemctl command, we can stop any service by
writing systemctl stop SERVICE_NAME. In the following command, we
write the systemctl stop firewall command to stop the firewall service.
After that, we can check the not running states. We can also check the
details of the systemctl status firewalld command output. The active
state is inactive (dead) after we stop the service. At the end of the output,
we can find the logs about the service when it starts and stops. This log
section keeps a maximum of five lines, so we can see only these lines in the
output:

root@Server-1:/home/ubuntu# systemctl stop firewalld
root@Server-1:/home/ubuntu# firewall-cmd --state
not running
root@Server-1:/home/ubuntu# systemctl status firewalld
firewalld.service - firewalld - dynamic firewall daemon
Loaded: loaded (/lib/systemd/system/firewalld.service;
enabled; vendor preset: enabled)
Active: inactive (dead) since Sat 2022-09-10 16:53:10 +03; 8s
ago

Docs: man:firewalld(1)
Process: 2799 ExecStart=/usr/sbin/firewalld --nofork --nopid
(code=exited, status=0/SUCCESS)
Main PID: 2799 (code=exited, status=0/SUCCESS)
CPU: 389ms

Aug 10 16:45:52 Server-1 systemd[1]: Starting firewalld -
dynamic firewall daemon…

Aug 10 16:45:52 Server-1 systemd[1]: Started firewalld -
dynamic firewall daemon.

Aug 10 16:53:10 Server-1 systemd[1]: Stopping firewalld -
dynamic firewall daemon…

Aug 10 16:53:10 Server-1 systemd[1]: firewalld.service:
Deactivated successfully.
Aug 10 16:53:10 Server-1 systemd[1]: Stopped firewalld -
dynamic firewall daemon.

We can also enable or disable the firewall service on the boot of the server.
So, we can decide whether the service is enabled when we start the server.
We can use the generic systemctl enable/disable SERVICE_NAME
command to enable or disable a service in the boot. So, we use the
following commands to enable or disable the firewalld service on the
boot.
We can check whether the setting is successfully done by listing the
services with the systemctl command. The output of the following
command is long, so we filter the necessary service with its name by
writing grep firewalld after the pipeline character. We also note the type
option as a service to display only the services.
root@Server-1:/home/ubuntu# systemctl enable firewalld

root@Server-1:/home/ubuntu# systemctl list-unit-files --
type=service | grep firewalld
firewalld.service enabled
enabled
root@Server-1:/home/ubuntu# systemctl disable firewalld
Removed /etc/systemd/system/multi-
user.target.wants/firewalld.service.
Removed /etc/systemd/system/dbus-
org.fedoraproject.FirewallD1.service.
root@Server-1:/home/ubuntu# systemctl list-unit-files --
type=service | grep firewalld
firewalld.service disabled enab
led

In the output, we can see that the first word after the service name is the
service status on the boot. If we enabled the service, it’s enabled;
otherwise, it’s disabled.
After introducing the firewalld service in the Linux systems, we can start
writing the active automation code and make changes to this service in
Python. In Example 9.1, we create five functions to handle the previous
processes by script. We develop functions to log in to servers, start or stop
the firewalld service, and enable or disable the service on the boot. We use
the concurrent feature of the Python language to make changes in all the
servers simultaneously.
In Table 9.1, we create two files in the same directory as the script:
stop_firewalld.txt and start_firewalld.txt. We write the previous
commands in these text files to start or stop the service and check the status.
We also add a package installation command in the start_firewalld.txt
file to install the service before we activate it.

stop_firewalld.txt
systemctl stop firewalld

systemctl status firewalld
firewall-cmd --state

start_firewalld.txt
apt-get install firewalld -y
systemctl start firewalld
systemctl status firewalld
firewall-cmd --state

Table 9.1: Output of the “stop_firewalld.txt” and “start_firewalld.txt” Files

In Example 9.1, we install firewalld service, and change status of this
service in runtime and on boot

1. We import the necessary functions from the netmiko and concurrent
modules. After that, we write all server management IP addresses in a
variable.
from netmiko import Netmiko
from concurrent.futures import ThreadPoolExecutor
host = ["192.168.163.135", "192.168.163.136",
"192.168.163.137"]

2. We create a function to make the connection to the Linux servers and
write a parameter as the ip we use when we get all items in order from
the host variable. We enter the device connection information,
including the secret parameter to log in to netmiko in the root or
admin user. After that, we call the Netmiko function to log in to the
devices and assign Netmiko functionto the net_connect variable. At
the last line of this function, we return the net_connect variable,
which we call in the following functions to log in to the devices:
def server_connection(ip):
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux", "secret": "ubuntu"}
net_connect = Netmiko(**device)
return net_connect

3. In the following code, we create functions to start or stop the
firewalld function in the connected servers. We use the ip parameter
again for this function. We call the server_connection function to log
in to the devices before we start or stop the service, and we assign the
output of this function to the connection variable. The output of the
server_connection function is the value of the return code, which is
the net_connect variable. So, the connection variable equals the
net_connect variable in the server_connection function.
Now, we are inside the function and can send the configurations on the
files with the send_config_from_file from the netmiko module. We
write text files that we created in Table 9.1. We also add a timeout to
execute commands more reliably. Finally, we display the output of the
command with the print function.
def start_firewalld(ip):
connection = server_connection(ip)

output =
connection.send_config_from_file("start_firewalld.txt",
read_timeout=1000)
print(output)

def stop_firewalld(ip):
connection = server_connection(ip)

output =
connection.send_config_from_file("stop_firewalld.txt",
read_timeout=1000)
print(output)

4. In the following code, we create two functions to enable or disable any
of the services in the systemctl. We create a variable called service
to match the service we change on the boot. After that, we again call
the server_connection function and assign it to the connection
variable. So, the value of this variable is the net_connect variable in
the server_connection function. After that, we run the systemctl
disable/enable SERVICE_NAME command with the timeout
parameter. After that, we also check the status of the service in the
previous commands and display the output of systemctl command by
filtering the service name.
def disable_service_on_boot(ip):
service = "firewalld"
connection = server_connection(ip)

connection.send_config_set(f"systemctl disable
{service}", read_timeout=1000)
output = connection.send_command(f"systemctl list-unit-
files --type=service | grep {service}")
print(output)

def enable_service_on_boot(ip):
service = "firewalld"
connection = server_connection(ip)

connection.send_config_set(f"systemctl enable {service}",
read_timeout=1000)
output = connection.find_prompt() +
connection.send_command(f"systemctl list-unit-files --
type=service | grep {service}")
print(output)

5. In the last part, we call the ThreadPoolExecutor function from the
concurrent module. We set the value of the max_workers parameter as
5. So, in each process, our script logs in to a maximum of five devices.
Finally, we use the map function to call the specific function, which
can be any of the previous functions we created, and the host variable.
In the following code, we add the enable_service_on_boot function.
So, when we execute the code, the script runs
enable_service_on_boot to enable the firewalld service on the
boot.
with ThreadPoolExecutor(max_workers=5) as executor:
result = executor.map(enable_service_on_boot, host)

Example 9.1: Installing “firewalld” service, and changing status in runtime
and on boot
from netmiko import Netmiko
from concurrent.futures import ThreadPoolExecutor
host = ["192.168.163.135", "192.168.163.136",
"192.168.163.137"]
def server_connection(ip):
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux", "secret": "ubuntu"}
net_connect = Netmiko(**device)
return net_connect

def start_firewalld(ip):
connection = server_connection(ip)
output =
connection.send_config_from_file("start_firewalld.txt",
read_timeout=1000)
print(output)

def stop_firewalld(ip):
connection = server_connection(ip)
output =
connection.send_config_from_file("stop_firewalld.txt",
read_timeout=1000)
print(output)

def disable_service_on_boot(ip):
service = "firewalld"
connection = server_connection(ip)

connection.send_config_set(f"systemctl disable {service}",
read_timeout=1000)
output = connection.send_command(f"systemctl list-unit-files
--type=service | grep {service}")
print(output)

def enable_service_on_boot(ip):
service = "firewalld"
connection = server_connection(ip)
connection.send_config_set(f"systemctl enable {service}",
read_timeout=1000)
output = connection.find_prompt() +
connection.send_command(f"systemctl list-unit-files --
type=service | grep {service}")
print(output)

with ThreadPoolExecutor(max_workers=5) as executor:
result = executor.map(enable_service_on_boot, host)

Configure firewall settings on servers
We can also create security zones in the firewalld service. The firewalld
package automatically creates predefined zones, such as block, dmz, home,
internal, and trusted, after we start the firewalld service. Let’s check the
details of some zones:

The public zone is used for the public areas we don’t trust on the
computers, which is not harmful to our network.
Thetrusted zone is used for all accepted network connections.
The drop zone drops incoming packets to our server. All network
packets are dropped, so there is no reply to these packets.

When we install and start the firewalld service with the systemctl start
firewalld command, we can run the firewall-cmd --get-zones
command to find all the zones in the Linux server.
root@Server-1:/home/ubuntu# firewall-cmd --get-zones
block dmz drop external home internal nm-shared public trusted
work

There are many options in the firewall-cmd command, as listed in Table
9.2. You can check more details about the parameters on the official
firewalld website.

Command Parameter Description

firewall-cmd --version Check service version

firewall-cmd --state Check service status

firewall-cmd --get-zones List all zone names

firewall-cmd --list-all-zones List all zones with details

firewall-cmd --get-default-zone Find default zone

firewall-cmd --set-default-zone=internal Change default zone

firewall-cmd --get-zone-of-interface=ens33 Check zone as interface-based

firewall-cmd --list-all --zone=public Show the details of the specified zone

firewall-cmd --get-active-zones List of active zones

Table 9.2: Examples of the “firewall-cmd” command

We can open and close ports in specific zones, and it’s up to our
requirements from the zones. We can open a port if we want to get traffic
flow from that port number. We need to write the port number and the
service name. For example, the Hypertext Transfer Protocol (HTTP)
protocol’s port number is 80. When we write HTTP, we use the --add-
service parameter to add the service. When we write the port number of
the HTTP, we write --add-port with 80 to add the port. We must mention
the protocol as UDP or TCP after the port number as
PORT_NUMBER/PROTOCOL. Both commands’ output is successful if the
firewall configuration is successfully configured. We add http as a service
and 80/tcp as a port in the following code:
root@Server-1:/home/ubuntu# firewall-cmd --zone=public --add-
service=http
success
root@Server-1:/home/ubuntu# firewall-cmd --zone=public --add-
port=80/tcp
success

When we check the details of the public zone, we can see http in the
services line and 80/tcp in the ports line.
root@Server-1:/home/ubuntu# firewall-cmd --list-all --
zone=public
public (active)
target: default
icmp-block-inversion: no
interfaces: ens33
sources:
services: dhcpv6-client http ssh
ports: 80/tcp
protocols:
forward: yes
masquerade: no
forward-ports:
source-ports:
icmp-blocks:
rich rules:

We use the --remove-service and --remove-port parameters to remove
the service and port information from a zone when the service or port is not
required to be accepted.
root@Server-1:/home/ubuntu# firewall-cmd --zone=public --
remove-service= http
success
root@Server-1:/home/ubuntu# firewall-cmd --zone=public --
remove-port=80/tcp
success

If we log in to the server via an SSH tool like Secure Crt or Putty, we
enter via active zone with SSH service. If we enter the following command,
it removes the SSH service. So, if we try to create a new session to the
server in these SSH tools, it’s rejected because we remove the SSH service
from the active default zone of the server. The current session is not
affected, and we are still connected to the server.
root@Server-1:/home/ubuntu# firewall-cmd --zone=public --
remove-service=ssh
success

We can open the SSH service again with the --add-service parameter.
root@Server-1:/home/ubuntu# firewall-cmd --zone=public --add-
service=ssh
success

There are two essential parameters in the firewall-cmd command. The --
permanent parameter makes the firewall configuration updates or changes
permanent even after the server reboots. This parameter combines with
other parameters.
root@Server-1:/home/ubuntu# firewall-cmd --permanent --
zone=public --add-port=80/tcp
success

We have another parameter to reload the firewall to update the changes in
the firewall configuration runtime. We use the --reload parameter to
achieve this goal. It’s recommended to use this parameter at the end of a
configuration change in a new line, such as the firewall-cmd --reload
command, without any other parameters.
root@Server-1:/home/ubuntu# firewall-cmd --reload
success

We can create a new zone with the --new-zone parameter. We should use
the --permanent parameter in this line if we need this zone permanently,
even after rebooting the server. We create a zone named test123. After we
reload the configuration, it’s created. We can check zone list with the
firewall-cmd --get-zones command. We can see the new zone listed in
the following output:
root@Server-1:/home/ubuntu# firewall-cmd --new-zone=test123 –-
permanent
success
root@Server-1:/home/ubuntu# firewall-cmd –reload
success
root@Server-1:/home/ubuntu# firewall-cmd --get-zones
block dmz drop external home internal nm-shared public test123
trusted work

We have more configuration parameters in the firewall-cmd command, as
listed in Table 9.3:

Command Parameter Description

firewall-cmd PARAMETER --permanent Change configuration
permanently

firewall-cmd --reload Reload the firewall
configuration

firewall-cmd --new-zone Create a new zone

firewall-cmd --zone=home --change-interface=eth0 Change or add the zone to
an interface

firewall-cmd --zone="public" --add-forward-
port=port=80:proto=tcp:toport=8080

Add the forwarding port
with port number, protocol,
and the destination port

firewall-cmd --list-all --zone=public Show the details of the
specified zone

Table 9.3: Examples of the Zone Configuration Commands

In Example 9.2, we add a new zone in a single server. Then, we make
changes in the zone configuration, such as adding an interface, service, port,
and forwarding port. After that, we display the new zone with the details to
see the new configurations. We use the Jinja2 template with the YAML file.
In Table 9.4, we create two files: info.yaml and command_list.txt. We
enter the entire command in the text file, except for the specific values in
the YAML file. Instead of this, we write the key inside double curly
brackets {{ KEY }}. In the following files, we only use the new_zone key,
but we use the interface and service keys in the script.

info.yaml
new_zone:
test
interface:
lo
service:
http

command_list.txt
firewall-cmd --new-zone={{new_zone}} --
permanent
firewall-cmd --reload
firewall-cmd --get-zones

Table 9.4: Output of the “info.yaml” and “command_list.txt” Files

In the Example 9.2 we configure Linux firewall zones with the jinja
template.

1. We import the necessary functions from the netmiko, RE, jinja2, and
yaml modules.
from netmiko import Netmiko
from re import split

from jinja2 import Environment, FileSystemLoader
from yaml import safe_load

2. We create a function to get the data from the YAML file and combine
or render this file with the Jinja template.
def from_jinja():
env = Environment(loader=FileSystemLoader("."))
template = env.get_template("command_list.txt")
with open("info.yml") as r:
data = safe_load(r)

command = split("\n", template.render(data))
return [command, data]f

We return two values: command and data. The command variable is the
full command to add the data from the YAML file; each item has
different commands. And the data variable is a Python dictionary
variable.
Output of the "command": ['firewall-cmd --new-
zone=cccccccc --permanent', 'firewall-cmd --reload',
'firewall-cmd --get-zones']

Output of the "data": {'new_zone': 'cccccccc'}

3. In the following function, we create a new zone for the server. To do
that, we connect with the Netmiko function and send the commands
variable output. So, we need to call the first item or item-0 of the
from_jinja function. We return a list in that function, so the first item
is the commands variable. If we write from_jinja()[0], we assign all
the configurations to the new commands variable. After that, we send
the configuration commands to the device. The new zone must be
created in this step. Then, we return the net_connect variable, which
we use to log in to the server to configure the new zone in the
following function: zone_configuration.
def add_zone(ip):
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux", "secret": "ubuntu"}
net_connect = Netmiko(**device)
commands = from_jinja()[0]
net_connect.send_config_set(commands, read_timeout=1000)
return net_connect

4. In the following function, we configure the new zone with the
following commands:
firewall-cmd --reload
firewall-cmd --get-active-zones
firewall-cmd --zone={new_zone} --add-service=http
firewall-cmd --zone={new_zone} --add-port=80/tcp
firewall-cmd --zone={new_zone} --add-forward-
port=port=80:proto=udp:toport=8080:toaddr=10.10.10.1

We get the new_zone value from the YAML file. First, we call the
from_jinja()[2] function with the second item of the returned list.
It’s the data variable, a dictionary of a single item with a key and its
value. We need to get its value, so we assign data[new_zone] as a
value to the new_zone variable. According to the YAML file, the value
of new_zone in the following function is test, so our new zone name
is test.
def zone_configuration(ip):
interface = "lo"
data = from_jinja()[1]
new_zone = data["new_zone"]

commands = [f"firewall-cmd --permanent --zone={new_zone}
--change-interface={interface}",

"firewall-cmd --reload",
"firewall-cmd --get-active-zones",

f"firewall-cmd --zone={new_zone} --add-service=http",
f"firewall-cmd --zone={new_zone} --add-port=80/tcp",
f"firewall-cmd --zone={new_zone} --add-forward-
port=port=80:proto=udp:toport=8080:toaddr=10.10.10.1"

]

5. We use the add_zone function to connect to the server in the same
function. Then, we send the commands by the send_config_set
function from the netmiko module. Finally, we check the new zone
detailed configuration with the sudo firewall-cmd --list-all --
zone={new_zone} command.

connect = add_zone(ip)
connect.send_config_set(commands)

out=connect.send_config_set(f"sudo firewall-cmd --list-
all --zone={new_zone}")

print(out)

6. At the end, we call the zone_configuration function.
zone_configuration("192.168.163.135")

Example 9.2: Firewall Zone Configuration with the jinja Template
from netmiko import Netmiko
from re import split
from jinja2 import Environment, FileSystemLoader
from yaml import safe_load
def from_jinja():
env = Environment(loader=FileSystemLoader("."))
template = env.get_template("command_list.txt")
with open("info.yml") as r:
data = safe_load(r)

command = split("\n", template.render(data))
return [command, data]

def add_zone(ip):
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux", "secret": "ubuntu"}
net_connect = Netmiko(**device)
commands = from_jinja()[0]
net_connect.send_config_set(commands, read_timeout=1000)
return net_connect

def zone_configuration(ip):
interface = "lo"
data = from_jinja()[1]
new_zone = data["new_zone"]
commands = [f"firewall-cmd --permanent --zone={new_zone} --
change-interface={interface}",

"firewall-cmd --reload",
"firewall-cmd --get-active-zones",
f"sudo firewall-cmd --zone={new_zone} --add-
service=http",
f"sudo firewall-cmd --zone={new_zone} --add-port=80/tcp",
f"firewall-cmd --zone={new_zone} --add-forward-
port=port=80:proto=udp:toport=8080:toaddr=10.10.10.1"

]

connect = add_zone(ip)
connect.send_config_set(commands)
out=connect.send_config_set(f"sudo firewall-cmd --list-all --
zone={new_zone}")
print(out)

zone_configuration("192.168.163.135")

When we execute the script in Example 9.2, we get the following output.
The zone name is listed in the first line as test. In the interfaces, we set the
loopback interface lo. In the services, we have the http service enabled. In
the ports, we have 80/tcp and a forwarding port configuration in forward-
ports.
Output:
test (active)
target: default
icmp-block-inversion: no
interfaces: lo
sources:
services: http
ports: 80/tcp
protocols:
forward: no
masquerade: no
forward-ports:
port=80:proto=udp:toport=8080:toaddr=10.10.10.1
source-ports:
icmp-blocks:
rich rules:

Create access lists in network devices
In network devices like routers or switches, we can secure the inbound and
outbound traffic with the ACLs. It’s the primary protection to secure
network devices from outside attacks. We can configure the ACLs with
many parameters. ACLs are based on permitting or denying networks by
checking the network packets. We can add protocol, source, and destination
IP addresses.

In Example 9.3, we use nornir framework with the jinja2 module to render
the commands with the YAML file. We need to enter the following
commands in the Cisco routers.
configure terminal
ip access-list extended 100
10 deny ip 10.11.0.0 0.0.255.255 192.32.0.0 0.0.255.255
20 deny ip 15.12.0.0 0.0.255.255 192.12.0.0 0.0.255.255
30 permit ip 120.1.0.0 0.0.255.255 192.168.0.0 0.0.255.255
40 permit tcp 10.1.1.0 0.0.0.255 172.16.1.0 0.0.0.255 eq telnet
50 permit ip 140.1.0.0 0.0.255.255 192.168.0.0 0.0.255.255
90 deny pim any any dscp cs1
100 deny ip any any

The format of the rules is in Table 9.5. We divide each part into sections to
understand it easier. If we divide each code into pieces, we have a sequence
number, permission value as permit or deny, protocol name, source, and
destination IP address. In some commands, we have an optional parameter
with its value, such as eq telnet or dscp cs1.

Sequen
ce

Numbe
r

Permit
/

Deny

Protoc
ol

Source IP Destination IP Paramet
er

Value

10 deny ip 10.11.0.0 0.0.255.255 192.32.0.0
0.0.255.255

20 deny ip 15.12.0.0 0.0.255.255 192.12.0.0
0.0.255.255

30 permit ip 120.1.0.0 0.0.255.255 192.168.0.0
0.0.255.255

40 permit tcp 10.1.1.0 0.0.0.255 172.16.1.0 0.0.0.255 eq telnet

50 permit ip 140.1.0.0 0.0.255.255 192.168.0.0
0.0.255.255

90 deny pim any any dscp cs1

100 deny ip any any

Table 9.5: Example 9.3 ACL Rules

In the following code, we create a command.txt text file. Inside it, we enter
the commands that we execute in the device. But for each value, we use {{

}} double curly brackets and write a key inside it. We get the values of
these keys from the YAML file. In the first line, we enter the ACL 100 with
the ip access-list extended ACL_NUMBER command. We get the ACL
number from the YAML file. In the following lines, we use jinja2 for a
loop because all remaining ACL rules are similar; only the parameters
change. We write the following line with each parameter one-by-one. We
also write the if condition for the last two keys as parameter and value,
which are only used in rules with sequence numbers 40 and 90. We already
saw examples with the for and if conditions. We also enter a show
command to see the configuration output at the end of the file.
commands.txt
ip access-list extended {{acl_number}}
{% for acl in access_lists %}
{{acl["sequence"]}} {{acl["permission"]}} {{acl["protocol"]}}
{{acl["source_ip"]}} {{acl["dest_ip"]}} {% if acl['eq'] %}eq{%
endif %} {{acl["eq"]}} {% if acl['dscp'] %}dscp{% endif %}
{{acl["dscp"]}}
{% endfor %}
do show access-lists {{acl_number}}

After configuring the text file, we add the keys and values in the YAML file
as info.yaml in the same directory as the script and text file. We have a
dictionary named acl_number, representing the ACL number of our
configuration as 100. After that, we have the access_lists key. A - dash
characterizes its value as items on a list. We add all values inside these
items with their keys, so when the jinja renders both files, it creates a
configuration batch as expected:

info.yaml
acl_number: 100
access_lists:
- sequence: 10
permission: deny
protocol: ip
source_ip: 10.11.2.0 0.0.255.255
dest_ip: 192.32.1.0 0.0.255.255

- sequence: 20
permission: deny
protocol: ip
source_ip: 15.12.2.0 0.0.255.255
dest_ip: 192.12.1.0 0.0.255.255

- sequence: 30

- sequence: 40
permission: permit
protocol: tcp
source_ip: 10.1.1.0 0.0.0.255
dest_ip: 172.16.1.0 0.0.0.255
eq: telnet

- sequence: 50
permission: permit
protocol: ip
source_ip: 140.1.2.0 0.0.255.255
dest_ip: 192.168.1.0 0.0.255.255

- sequence: 90
permission: deny
protocol: pim

permission: permit
protocol: ip
source_ip: 120.1.2.0 0.0.255.255
dest_ip: 192.168.1.0 0.0.255.255

source_ip: any
dest_ip: any
dscp: cs1

- sequence: 100
permission: deny
protocol: ip
source_ip: any
dest_ip: any

Table 9.6: Output of the “info.yaml” File

The script of the nornir file is similar to the previous examples. We only
change the Jinja file format with the YAML file. In the configuration, we
render both text and YAML file and assign its output to the config variable.
Inside it, we have the absolute configuration that needs to be sent to the
devices. With the nornir framework, we log in to the devices simultaneously
and execute the commands with the netmiko_send_config function from
the nornir_netmiko module. After that, we display the output of the
commands we run on the devices.
Example 9.3: Creating ACLs in network devices
from nornir import InitNornir
from nornir_utils.plugins.functions import print_result
from nornir_netmiko import netmiko_send_config
from jinja2 import Environment, FileSystemLoader
from yaml import safe_load
from re import split
env = Environment(loader=FileSystemLoader("."))
template = env.get_template("commands.txt")
with open("info.yml") as r:
data = safe_load(r)

config = split("\n",template.render(data))
connect = InitNornir()
result = connect.run(task=netmiko_send_config,
config_commands=config)
print_result(result)

Manipulate network packets with scapy
We can sniff, scan and forge network packets with the third-party scapy
module in Python. It can probe, scan, or attack networks, and it’s a powerful

packet manipulation program with a significant usage area in the security
part of networking. We must download the module with the pip install
scapy command in the terminal of the IDE or on the PC on which your
script is located. You can check out more details about the scapy module at
the following official documentation:
https://scapy.readthedocs.io/
There are some basic functions in scapy to use in network automation.

ARP: We can create Address Resolution Protocol (ARP) packets
with the scapy module. We use the ARP function to create the ARP
request packets to any network device or IP address.
Ether: The ether function creates an ethernet packet.
Srp: The srp function sends and receives packets at layer 2. We use it
to scan the network.
Summary: The summary function displays the status of the packets we
create with the scapy module. It gives a piece of basic information,
such as packet type or destination data.
from scapy.all import *
request = ARP()
print(request.summary())

Output: ARP who has 0.0.0.0 says 192.168.1.25
Home Wi-Fi IP information from the ipconfig command output in
Windows Terminal:
Wireless LAN adapter Wi-Fi:
Connection-specific DNS Suffix . : home
IPv4 Address. : 192.168.1.25
Subnet Mask : 255.255.255.0
Default Gateway : 192.168.1.1

Show: The show function has more detailed packet information as
compared to the summary function.
###[ARP]###
hwtype = 0x1
ptype = IPv4
hwlen = None
plen = None
op = who-has

https://scapy.readthedocs.io/

hwsrc = ac:67:5d:9f:24:6e
psrc = 192.168.1.25
hwdst = 00:00:00:00:00:00
pdst = 0.0.0.0

In Example 9.4, We send an Internet Control Message Protocol (ICMP)
packet to the Google DNS IP address 8.8.8.8 with the scapy module:

1. We use multiple functions from the scapy module. We can import
each function by writing its name with a dividing comma or by adding
the * character after import. This character means ‘import all the
functions from the module’. So, we don’t need to write all the
necessary functions to import.
from scapy.all import *

2. We enter the destination IP address for the ICMP packet and sequence
number.
ip_address = IP(dst="8.8.8.8")
icmp_sequence= ICMP(seq=1111)

3. Network packets are built with a block of packets, which are layers. In
scapy, we use the / character to stack layers in order.
pckt= ip_address / icmp_sequence

4. In the final part, we send the created packets with the send function.
send(pckt)

When we execute the script, it sends an ICMP request packet to the
8.8.8.8 IP address with the 1111 sequence number on the internet. If the IP
address is reachable, that device returns an ICMP reply packet with the
same sequence number.
Output:
.
Sent 1 packets.

Example 9.4: Sending ICMP packet with scapy
from scapy.all import *
ip_address = IP(dst="8.8.8.8")
icmp_sequence= ICMP(seq=1111)
pckt= ip_address / icmp_sequence
send(pckt)

When we execute the script, it sends an ICMP request packet to the
8.8.8.8 IP address with the 1111 sequence number on the internet. If the IP
address is reachable, that device returns an ICMP reply packet with the
same sequence number.
We need to install the Wireshark tool to see the ICMP request and reply
packets. It’s an open-source packet capture program that we can download
and install from its official web page at the following link:
https://www.wireshark.org/#download
After the installation, when we open the tool, we must choose the correct
adaptor name that connects our PC to the internet, as shown in Figure 9.1.
If you are using a Wi-Fi connection, it’s a Wi-Fi adaptor.

Figure 9.1: PC Adaptor List in Wireshark

After entering the adaptor, we can execute the script. We can see the ICMP
request and ICMP reply packets to the 8.8.8.8 IP address in Figure 9.2.
The source IP address is our Wi-Fi adaptor IP address, 192.168.1.25, as a
private IP address. It can be different on your PC. You can check the Wi-Fi
IP address via ipconfig in Windows or ifconfig in Linux or Mac.
Protocol as ICMP and packet type as request or reply messages are shown
in Figure 9.2. We can also see the sequence number we set as 1111.

Figure 9.2: Output of the Wireshark

https://www.wireshark.org/#download

In Example 9.5, we scan the network to find the host information, such as
the IP address and the MAC (physical or hardware) address. If our Wi-Fi
network subnet is in 192.168.1.1/24, we can check all IP addresses with
ARP requests from 192.168.1.0/24 to 192.168.1.255/24 with 256 IP
addresses. If we change the subnet mask to /16, code checks 256*256 hosts
with ARP request. But it takes too much time to check it, so it’s better to
use a /24 mask. With Example 9.5, we can check all devices connected to
our local home modem or any other local network.

1. We import all the functions from the scapy module.
from scapy.all import *

2. We call two functions: ARP and Ether. We use the ARP function to send
ARP requests to a network address, pdst to choose the destination
network, and the Ether function to create an ethernet packet. We chose
destination MAC address as ff:ff:ff:ff:ff:ff, which is a
broadcast. You can check the details of the ARP packet process on the
internet.
arp = ARP(pdst="192.168.1.1/24")
ether = Ether(dst="ff:ff:ff:ff:ff:ff")

3. We stack the ether and arp variables in order. After that, we use the
srp function to send and receive packets at layer 2 in the networking
layers. We add a broadcast variable with the timeout parameter as 1.
We call the first item of this list and assign it to a host variable.
broadcast = ether / arp
hosts = srp(broadcast, timeout=1)[0]

4. Finally, we try to get the IP and MAC address of the devices in the
same network as 192.168.1.0/24. We use a for loop to get the data.
We collect IP addresses with the psrc value and MAC addresses with
the hwsrc value.
for device in hosts:
print(f"IP: {device[1].psrc} MAC: {device[1].hwsrc}")

Example 9.5: Network scanner with scapy
from scapy.all import *
arp = ARP(pdst="192.168.1.1/24")
ether = Ether(dst="ff:ff:ff:ff:ff:ff")
broadcast = ether / arp

hosts = srp(broadcast, timeout=1)[0]
for device in hosts:
print(f"IP: {device[1].psrc} MAC: {device[1].hwsrc}")

When we execute the script, it sends ARP request packets to all IP
addresses in the subnet. So, it sends 256 packets in Example 9.5. The IP and
MAC address information is listed in the following output. MAC addresses
should be shown, including digits and alphabetic characters. The following
output is just an example.
Output:
Begin emission:
Finished sending 256 packets.
…
…………………..…………………………………………………………………………………….*………….*………………………………
…………………..*……………………………………………….
Received 259 packets, got 5 answers, remaining 254 packets
IP: 192.168.1.1 MAC: XX:XX:XX:XX:XX:XX
IP: 192.168.1.25 MAC: XX:XX:XX:XX:XX:XX
IP: 192.168.1.124 MAC: XX:XX:XX:XX:XX:XX
IP: 192.168.1.133 MAC: XX:XX:XX:XX:XX:XX
IP: 192.168.1.228 MAC: XX:XX:XX:XX:XX:XX

Check logs and configurations
In this part, we focus on collecting logs to secure our network devices in
our environment. We create periodic tasks to execute Python scripts to
contain CPU levels of devices to check if there is a risk to them. We check
the insecure password or unencrypted data in the Cisco devices to alert the
network administrator, and we also check whether the port security
configuration on routers exists.

Check CPU levels periodically with Crontab
We collected and saved the CPU levels in the earlier chapters. We collected
all the logs at once. For some logs, we need to collect periodically, such as
CPU levels. We can create a script to contain the CPU levels every 5
minutes with an infinite while loop, so the code collects CPU levels every 5
minutes. But this is not a good choice to execute an endless script. In this

situation, we can get help from operating system schedulers. We can use the
Task Scheduler in Windows and the crontab service in Linux or MAC. In
such periodical tasks, crontab service is essential. We focus on this service
in Example 9.6. You can check the internet for Windows’s Task Scheduler
service.
We need to configure some settings in the Linux machine. We need to make
an SSH connection from the Linux machine to the Cisco routers. If you can
log in, you can continue to set up the crontab service.

1. We need to run Linux commands in the admin account, so we change
our user to the root user. After that, we enter the Desktop directory
and create the Python file in this directory; you can create it in any
directory on your Linux system. Our CPU-level collection code needs
a third-party module to install the netmiko module. So, in the same
script directory, we run the pip install netmiko command to
install it.
ubuntu@Server-1:~$ sudo su
[sudo] password for ubuntu:
root@Server-1:/home/ubuntu/Desktop# cd
/home/ubuntu/Desktop
root@Server-1:/home/ubuntu/Desktop# pip install netmiko

2. We create a file in the same directory as
cpu_levels_periodically.py, a Python file. When we run ls -l
after we create the file, we can see the file in the following output.
root@Server-1:/home/ubuntu/Desktop# touch
cpu_levels_periodically.py
root@Server-1:/home/ubuntu/Desktop# ls -l
total 20
-rw-r--r-- 1 root root 1294 Eyl 13 13:52
cpu_levels_periodically.py

3. Crontab task scheduler service is running tasks periodically. In this
example, our job is to execute a Python file with the Python3 tool.
Usually, if we want to execute a Python file in Python version 3, we
need to write Python3 FILE_NAME.py. So, we call the Python3
package. In crontab, we also need to call this package, but we need to
call it from its directory. We need to write which Python3 to find its

entire path. It’s in the /usr/bin directory, and the full path of the
package is /usr/bin/Python3, as shown in the following output.
root@Server-1:/home/ubuntu/Desktop# which Python3
/usr/bin/Python3

4. We are ready to set up the crontab service. If we log this service in to
that Linux machine for the first time, it asks which editor package to
open with. The most common and simple text editor package is nano.
It also recommends the nano package. We need to enter the 1 value in
the following output.
root@Server-1:/home/ubuntu/Desktop# crontab -e
no crontab for root - using an empty one
Select an editor. To change later, run 'select-editor'.
1. /bin/nano <---- easiest
2. /usr/bin/vim.basic
3. /usr/bin/vim.tiny
4. /bin/ed
Choose 1-4 [1]: 1

5. After entering the number, the crontab service page is opened in the
terminal with the nano text editor. Lines that start with the # dash
character are the comment line in Linux, like in the Python language.
So, it’s an introduction to the service. We need to add the tasks in this
file. Firstly, we need to set the timing to schedule the task.
There are five parts to the orderly timing: minute, hour, day of the
month, month, and day of the week. They are shown with * characters,
and / means every in the timing. Consider the following example:
* * * * * - Every Minute
*/3 * * * * - Every 3 Minutes
* */5 * * * - Every 5 Hours
0 15 * * * - At 15:00 everyday
* * * * 1 - At every minute on Monday

You can check the details of the timing on the internet. You can easily
calculate or check the output of your schedule from the following link
to understand the timing in the crontab.
https://crontab.guru/

6. After the timing, we must set the task details in the same line. We
want to collect the CPU levels of each device every minute, so the

https://crontab.guru/

timing is * * * * *. Then, we execute the Python file with the
python3 package in the Desktop” directory. So, we enter that directory
by writing the full path with the cd command. Then, we add the &&
double ampersand character, call the package from the
/usr/bin/Python3 path, and write the Python file in the following
line. After we fill the crontab file, we save and exit it. The crontab
service automatically starts the task after saving and exiting the file.
The task starts at the beginning of the minute.
* * * * * cd /home/ubuntu/Desktop && /usr/bin/Python3
cpu_levels_periodically.py

7. We can add the following example code to the
cpu_levels_periodically.py file we created in desktop, we enter the
file with nano cpu_levels_periodically.py and paste them. In
Example 9.6, we collect 5 seconds of CPU value from each device and
append it to a file with their IP addresses. If the CPU level is higher
than 70 percent, we create another file called
high_cpu_risk_devices.txt and append the CPU levels to this text
file.
root@Server-1:/home/ubuntu/Desktop# nano
cpu_levels_periodically.py

Example 9.6: Check CPU levels periodically with crontab
from netmiko import Netmiko
from re import findall
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor
host = ["10.10.10.1", "10.10.10.2", "10.10.10.3"]
def collect_cpu(ip):
device = {"host": ip, "username": "admin", "password":
"cisco", "device_type": "cisco_ios"}
command = "show processes cpu"
print(f"\n---Try to Login:{ip}---\n")
net_connect = Netmiko(**device)
output = net_connect.send_command(command)
cpu_5s = findall("five seconds: (\d+)",output)
time = datetime.now().strftime("%d.%m.%Y %H:%M:%S")
if int(cpu_5s[0]) > 90:

cpu_risk = "Fatal CPU Level"
with open(f"high_cpu_risk_devices.txt", "a") as w:
w.write(f"---Time:{time}--- \nIP: {ip} \nCPU:{cpu_5s[0]}
\nStatus:{cpu_risk}\n\n")

elif 70 < int(cpu_5s[0]) < 90:
cpu_risk = "High CPU Level"
with open(f"high_cpu_risk_devices.txt", "a") as w:
w.write(f"---Time:{time}--- \nIP: {ip} \nCPU:{cpu_5s[0]}
\nStatus:{cpu_risk}\n\n")

else:
cpu_risk = "No Risk"

with open (f"{ip}_cpu_levels.txt","a") as w:
w.write(f"---Time:{time}--- \nIP: {ip} \nCPU:{cpu_5s[0]}
\nStatus:{cpu_risk}\n\n")

with ThreadPoolExecutor(max_workers=50) as executor:
result = executor.map(collect_cpu, host)

When we check the newly created files in the same directory with our code,
it collects CPU levels every minute.
root@Server-1:/home/ubuntu/Desktop# cat
10.10.10.1_cpu_levels.txt
---Time:13.09.2022 15:08:04---
IP: 10.10.10.1
CPU:15
Status:No Risk
---Time:13.09.2022 15:09:03---
IP: 10.10.10.1
CPU:11
Status:No Risk
---Time:13.09.2022 15:10:03---
IP: 10.10.10.1
CPU:8
Status:No Risk
---Time:13.09.2022 15:11:04---
IP: 10.10.10.1
CPU:10
Status:No Risk

We can monitor the text file in real time with the tail -f command. So, we
don’t need to run the cat command every minute. The text file is updated
when new lines are added to it.
root@Server-1:/home/ubuntu/Desktop# tail -f
10.10.10.1_cpu_levels.txt
---Time:13.09.2022 15:12:03---
IP: 10.10.10.1
CPU:15
Status:No Risk
---Time:13.09.2022 15:13:03---
IP: 10.10.10.1
CPU:9
Status:No Risk

Check router configuration for insecure
passwords
In Example 9.7, we collect the username and password data in the Cisco
devices and check whether the password is simple text or secret. If it’s not a
secret password for any user, the code alerts that the password is insecure
for a specific username.
We execute the show run command on all devices simultaneously. Then,
we try to find the username word in all lines and add to a list. In the for
loop, we check for the word secret in the output. If we have a secret word,
it means that the password is secure. Otherwise, the password is not safe for
that username.
Example 9.7: Check username and passwords in routers
from netmiko import Netmiko
from re import findall
from concurrent.futures import ThreadPoolExecutor
host = ["10.10.10.1", "10.10.10.2", "10.10.10.3"]
def collect_cpu(ip):
device = {"host": ip, "username": "admin", "password":
"cisco", "device_type": "cisco_ios"}
command = "show run"
net_connect = Netmiko(**device)

output = net_connect.send_command(command)
username = findall("username.*",output)
for user in username:
secret = findall("secret", user)
username = findall("username (\S+) ",user)
if secret:
print(f"{ip}: '{username[0]}' has a secret password. It's
SECURE")

else:
print(f"{ip}: '{username[0]}' has no secret password. It's
INSECURE")

with ThreadPoolExecutor(max_workers=50) as executor:
result = executor.map(collect_cpu, host)

If we check the username and password in three routers, we see the
password in simple text in some examples as cisco. In the test123 and
test12 usernames in Router-1, passwords are secret. There is also the
word secret before the secret password.
Router-1#show run | include username
username admin privilege 15 password 0 cisco
username test privilege 15 password 0 cisco
username test123 secret 5 1jjsA$EyYryqyh2SkUijYoc0K7s.
username test12 privilege 15 secret 5
$1$09LY$V1R8vRxCOR2pC/q6eren6.

Router-2#show run | include username
username admin privilege 15 password 0 cisco

Router-3#show run | include username
username admin privilege 15 password 0 cisco

We check all the passwords in the routers. We have an IP address and
username value for each password, and the last line shows us whether it is
secure.
Output:
10.10.10.2: 'admin' has no secret password. It's INSECURE
10.10.10.3: 'admin' has no secret password. It's INSECURE
10.10.10.1: 'admin' has no secret password. It's INSECURE
10.10.10.1: 'test' has no secret password. It's INSECURE
10.10.10.1: 'test123' has a secret password. It's SECURE

10.10.10.1: 'test12' has a secret password. It's SECURE

Check port security configuration in routers
In Example 9.8, we check the unused and no shutdown ports. If a port is
active and there is no peer on the remote side, it has a risk of vulnerability.
Someone can make cabling on purpose or mistakenly, affecting all network
traffic. So, it’s essential to network port security that you shut down all
unused ports. We can check the risky interfaces with the Python script. We
collect the interface information from the show ip interface brief
command:
Router-1#show ip interface brief
Interface IP-Address OK? Method Status
Protocol
GigabitEthernet0/0 10.10.10.1 YES

NVRAM up up
GigabitEthernet0/1 unassigned YES

unset down down
GigabitEthernet0/2 unassigned YES unset administratively
down down
GigabitEthernet0/3 unassigned YES unset administratively
down down

If the interface status is up up or administratively down, there is no risk.
Otherwise, we have a risk. So, we create our code to find both words in the
items in the following code. If we cannot see both, we have a risk. That’s
why we write not port_shutdown and not port_up in the if condition.
We display all risky interfaces with the device IP address and interface
names.
Example 9.8: Check port shutdown status for security
from netmiko import Netmiko
from re import findall
from concurrent.futures import ThreadPoolExecutor
host = ["10.10.10.1", "10.10.10.2", "10.10.10.3"]
def collect_cpu(ip):
device = {"host": ip, "username": "admin", "password":
"cisco", "device_type": "cisco_ios"}
command = "show ip interface brief"

net_connect = Netmiko(**device)
output = net_connect.send_command(command)
interfaces = findall("GigabitEthernet.*",output)
for port in interfaces:
int_name = findall("(GigabitEthernet\d+/\d+)", port)
port_shutdown = findall("administratively down", port)
port_up = findall("up\s+up", port)
if not port_shutdown and not port_up:
print(f"{ip}: '{int_name[0]}' is 'no shutdown' There is a
risk")

with ThreadPoolExecutor(max_workers=50) as executor:
result = executor.map(collect_cpu, host)

In the output, one port is not shut down and is not connected to another
device. So, the interfaces are empty and active. If someone can make
cabling on these ports, it has a risk to our network. The script shows us all
the risky interfaces in detail.
Output:
10.10.10.1: 'GigabitEthernet0/1' is 'no shutdown' There is a
risk
10.10.10.2: 'GigabitEthernet0/3' is 'no shutdown' There is a
risk
10.10.10.3: 'GigabitEthernet0/2' is 'no shutdown' There is a
risk

Collect packets from ports with Pyshark
We can collect packets with packet capture tools like wireshark, which is
the most popular packet capture tool in networking. We have a third-party
module called pyshark, which is a simple packet capture module. We must
install the module by running the pip install pyshark command in the
terminal. In Example 9.9, we collect packets from the local PC interface.

1. We import the pyshark module to use it.
import pyshark

2. We execute the LiveCapture function from the pyshark module and
assign it to a capture variable. Inside the parentheses, we should write

the local PC interface, Wi-Fi in the following example. So, we collect
the packets from the Wi-Fi interface in our local PC.
capture = pyshark.LiveCapture(interface='Wi-Fi')

3. After that, we sniff the packet from the network with the
sniff_continuously function. We use the packet_count as three,
meaning it collects three packets from the specific interface. We add
timeout as 1 second to wait.
packets = capture.sniff_continuously(packet_count=3)

4. Finally, we call the sniff_continuously function with the
packet_count parameter as 3. It means that three packets should be
collected from the specific interface. We use it in a for loop.
for pckt in packets:
print (f"\n\nPacket: \n{pckt}")

Example 9.9: Capture packets in an interface by pyshark
import pyshark
capture = pyshark.LiveCapture(interface='Wi-Fi')
packets = capture.sniff_continuously(packet_count=3)
for pckt in packets:
print (f"\n\nPacket: \n{pckt}")

When we execute the code, we can see detailed packet information for each
packet with its layers. We can manipulate or catch a packet we need with
the findall function in more advanced usage of the pyshark module.

Conclusion
This chapter taught us about securing our network and system devices by
configuring and checking the Python script. We configured security services
in Linux servers and security features like ACLs in network devices. We
collected logs from routers to check for security risks on the configuration
and to alert the engineer if necessary. We also manipulated and sniffed
network packets in any interface or port and investigated issues at the
packet level.
The next chapter will focus on creating a Python software tool by writing
small pieces of scripts using classes and functions. We will automate our
tasks with a simple and fast solution by a software tool. We will combine

most script examples in the previous chapters in a single script, like an
automation tool.

Multiple choice questions
1. Which of the following commands in Ubuntu activates the “firewalld”

service on the boot?

a. systemctl enable firewalld
b. systemctl start firewalld
c. systemctl activate firewalld
d. firewalld enable

2. Which of the following services is used to run tasks periodically in
Linux systems?

a. NetworkManager
b. Openvpn
c. Task Scheduler
d. Crontab

3. Which command changes the zone to the default zone in the
firewalld??

a. --get-default-zone
b. --get-active-zones
c. --set-default-zone
d. --get-zones

Answers
1. a
2. d
3. c

Questions

1. Write a script to create a new interface with an IP address and bind it
to a new zone that will be the default zone in the server.

2. Write a script to collect packets and save each packet in a different
text file from the Wi-Fi interface with the pyshark module.

CHAPTER 10
Deploying Automation Software

This chapter will focus on creating a network automation tool based on
command prompt selection, including various network automation script
codes. We will combine all scripts inside different files and classes
according to their purposes. We have a tool that can do a lot in the network
devices or servers, such as collecting logs, configuring devices, and more.

Structure
In this chapter, we will cover the following topics:

Introduction to InquirerPy module
Automation tool design
Create main tool script
Create sub tasks scripts

Network device scripts
Server scripts
Other remaining scripts

Objectives
We will install the third-party InquirerPy Python module to create a
command prompt output that can ask a user to select an item. It’s a Python
Command-line Interface (CLI) with a selection of items. With the simple
usage of this module, we will create a CLI-based network automation tool.
We can collect logs, configure devices, transfer files, install packages,
calculate subnets, ping tests, plot data, and do much more with a single
automation tool. It’s a flexible tool whose usage we can expand according
to our requirements. We will divide the scripts into small pieces of code as

functions, and then we will combine the functions into the classes according
to their purposes.

Introduction to InquirerPy module
In this chapter, we will create a single main script that combines other small
scripts. We will deploy automation software or tools to make automation
faster and use the third-party InquirerPy module to design this automation
tool. First of all, we must install this module in the Pycharm terminal via
pip install InquirerPy.
The InquirerPy module is a re-implementation of the PyInquirer project
with more features and bug fixes. There are also the questionary or
columbo modules as alternatives.
The InquirerPy module provides a selection of questions or items to ask
the user, and action is taken based on the answers. It’s a questionnaire
module that asks users questions and gets responses from them.
There are two syntax uses of the InquirerPy module: classic syntax and
alternate syntax. We can use both versions and alternate syntax in our
scripts. You can check the details of both syntaxes from the following
official website:
https://inquirerpy.readthedocs.io/en/latest/
We use the inquirer class from the InquirerPy module. When we use this
module, we use the from InquirerPy import inquirer line in our scripts.
To use this module, we must also change the running settings in the
Pycharm tool, as we did in Chapter 8: Monitor and Manage Servers, to use
the getpass function. If we use an IDE tool like Pycharm, the code gets
stuck and does not ask for the password by default when we execute the
code. We need to change the setting in the Pycharm tool. In Figure 10.1, we
enter the Run tab and the Edit Configurations section.

https://inquirerpy.readthedocs.io/en/latest/

Figure 10.1: Modifying Pycharm Configuration-1

In Figure 10.2, we need to enable the Emulate terminal in output console
feature, and close the window by clicking on the Apply button. After that,
we can use InquirerPy without any problem.

Figure 10.2: Modifying Pycharm Configuration-2

The InquirerPy module has various prompts. We use text, select,
confirm, and secret prompts in our script.

The “text” prompt: As its name signifies, it’s a text prompt that
accepts user inputs and returns the output value. In the following code,
we import the necessary function and then call the text class. We
write the message to display in the output and run the execute
function. We use the message parameter to display an introductory
output to the user. We assign the value to a name variable. So, if we
print the name variable, we can see the user input in the script’s output.
It’s similar to Python’s built-in input function, with advanced
features.
from InquirerPy import inquirer
name = inquirer.text(message="What is your favorite
color:").execute()

print (f"Your favorite color is {name}")

When we execute the code in the following example, we enter yellow
as user input. And code displays the yellow value from the name
variable.

Output:
? What is your favorite color: yellow
Your favorite color is yellow

The “select” prompt: It displays all items in a list to select from. It’s
a selector prompt that asks the user to select an item from the list in
the output. We use it to ask the user which script to execute in our
automation tool.
We call the select class with the execute function, as we did in the
text class. Inside the list, we have the message and choices
parameters. Both are mandatory parameters in the select prompt. The
message parameter displays an introductory message to the user. The
choices parameter stores each item within a list to ask the user to
choose one of them.
In the following code, we ask for the favorite fruit and add four items
to the choices parameter list. We assign all lines to a fruit variable to
call it in the print function.
from InquirerPy import inquirer
fruit = inquirer.select(
message="What's your favorite fruit:",
choices=["Banana", "Apple", "Blueberry", "Orange"]
).execute()

print (f"Your favorite fruit is {fruit}")

When we execute the script, the script output ask the user to choose
any of the items in Figure 10.3. We can select any of the items or
choices with the help of the arrow keys on the keyboard and then press
the Enter button.

Figure 10.3: Example of the “select” prompt

If we select Apple for example, the code displays the selected items in
the following output.
Output:
? What's your favorite fruit: Apple
Your favorite fruit is Apple

The “confirm” prompt: It asks the user whether or not to confirm. If
the user enters y, it gives the output as True in the boolean data type.
Otherwise, it provides False as the output. We use this prompt when
the user chooses the send configurations to a device. The changes
affect the devices, so we must be more careful when we run the
configuration change scripts. That’s why we ask the user whether or
not to continue with the confirm prompt.
The usage of the confirm prompt is similar to that of te text and select
prompts. When we execute the following script, if we enter y, the
output of the confirm variable is True. Otherwise, it’s False.
from InquirerPy import inquirer
confirm = inquirer.confirm(message="Confirm:").execute()
print (confirm)

Output:
? Confirm: Yes
True

Output:
? Confirm: No
False

The “secret” prompt: It changes the user input to a secret character
in the output. If the user writes test as an input, it displays ****. We
use this prompt when we ask users to enter device passwords.
The usage of this prompt is also similar. We add the message
parameter to display in the output. We assign the value of this code to
the password variable. If we print that variable, we can see our input
in the output.
from InquirerPy import inquirer
password = inquirer.secret(message="Enter Device
Password:").execute()
print (password)

When executing the code, we enter text input as the following output.
Output:
? Enter Device Password: ****
test

Automation tool design
We created a network automation tool that provides 17 scripts for various
purposes, such as collecting logs from network devices, installation of
packages in servers, ping tests, and file transfers.
We design it with classes and functions. We divide functions into classes
according to their purpose. We also divide classes into different Python
files, such as files for network devices and files for system devices.
We can summarize the Python files, classes, and functions in the following
list. We can divide it into smaller parts according to our structure so that the
maintenance and readability are better. We have four Python files in our
network automation tool.
In main.py, we call the classes and functions to execute the scripts. In this
file, we use the InquirerPy module to write the visual part of our script
with multiple choices of scripts. In each selection, we call a function from
the other Python files.
In network_devices.py, we write all scripts related to the network devices,
such as collecting logs, configuring devices, or file transfers. We have three
classes in this file with various functions in the file.
In servers.py, we write all scripts related to the servers similar to
network_devices.py. We have only one class, and all functions are inside
this class; we can also divide them into different classes according to their
purposes.
In others.py, we write the remaining scripts that we don’t categorize with
network_devices.py and servers.py. We have two classes: tools and
plotting.
As a result, we have a network automation tool with 4 Python files, 6
classes, and 17 functions. We can add more scripts for more specific usage
according to our requirements. Even with the main structure in the
following steps, we have a powerful automation tool for network and

system devices. This tool is written for Cisco on the network and Ubuntu on
the system side, but we can add other vendors like Juniper, Huawei, or
Nokia in networking and Windows in system.
Automation tool structure:
-main.py
-network_devices.py
-class: collect_logs
-def: from_one_device
-def: from_multiple_devices
-def: collect_device_info
-def: collect_cpu_usage
-def: send_logs_by_email
-class: configure_device
-def: config_with_netmiko
-def: config_with_nornir
-class: transfer_files
-def: scp_upload_to_routers
-def: sftp_upload_to_servers

-servers.py
-class: config_and_collect_logs
-def: config_collect_logs
-def: collect_resource_usage
-def: collect_interface_information
-def: package_installation

-others.py
-class: tools
-def: subnet_calculator
-def: ping_test
-class: plotting
-def: cpu_plot
-def: interface_bandwidth_plot

In the following sections, we combine all of the codes in a single piece of
code. At the end, we have an automation tool with many usage areas.
We also have text and YAML files in our tool to add device lists and
configuration commands in a bundle. We create two folders: input and
output folders. In the input directory, we have the command_list.txt file

containing all the commands we send to devices. We also have the
device_list.txt file that includes the device management IP addresses to
log in to multiple devices.
In the output directory, we save all the output files if the script gives output
as a file. For the nornir module, we use the hosts.yaml file, which
contains device login information like the IP address, platform information,
username, and password. This file is in the same directory as the main
Python files. Otherwise, nornir cannot reach the YAML file.
According to this design, we have a directory structure in the following
code:
Automation Tool Structure:
/
main.py
network_devices.py
servers.py
others.py
hosts.yaml
input/
command_list.txt
device_list.txt

output/
Output Files

Create main tool script
We can start to write the main.py Python file to call all scripts in this file.
We select the options or items with the InquirerPy module.
After that, we must import all the classes in various Python files mentioned
in the earlier code. We can import each class one by one in the following
example.
from InquirerPy import inquirer
from network_devices import collect_logs, configure_device,
transfer_files
from servers import config_and_collect_logs
from others import tools, plotting

We can also use the * character to import all classes or functions from a
specific Python file or module. If we have many classes to import, this
usage is better. In our automation tool, we use the following script:
from InquirerPy import inquirer
from network_devices import *
from servers import *
from others import *

We can write our code after importing all the necessary modules or Python
files. We call some functions from the InquirerPy module, such as select,
text, secret, and confirm functions.
We start by writing the first selection of our code. We use the select
prompt with items like Collect Logs, Device Configuration, File
Transfer, Server Configuration, Others, and Exit. The Exit item exits
from the selection and finishes the code without action. We also add Exit
item in each subtask.
main_task = inquirer.select(
message="Choose a Main Task:",
choices=["Collect Logs", "Device Configuration", "File
Transfer", "Server Configuration", "Others",
"Exit"]).execute()

After choosing an item in the output, we create an if condition to perform
an action according to the item. We run the main.py file to start our
automation tool. When we execute the main.py file, it gives an output, as
shown in Figure 10.4. If the user selects Collect Logs, it continues with
the items inside the Collect Logs item.

Figure 10.4: 1st Screen after executing the “main.py” script

Figure 10.5 shows the subtasks in the Collect Logs item. If we choose one
of the items, such as Collect CPU Usage, the tool calls the
collect_cpu_usage function from the collect_logs class, which is inside
the network_devices.py Python file. It creates a file to write the output of
the script.

Figure 10.5: After selecting “Collect Logs” from the items

We start with the first selection, which is Collect Logs. We assigned the
select prompt value as the main_task in the previous piece of code. So, if
the choice is Collect Logs, we continue to the subtask in the following
code. There are six items, including the Exit item, and five of them execute
a function from the related code.
We ask the user to select one of the six items with the select prompt again.
If the user chooses one of them, the code starts executing the function. We
use the if condition for each item again. For example, if we decide From 1
Device, it calls the function from_one_device from the collect_logs class
that is inside the network_devices.py Python file.
The output displays three text prompts, i.e., IP Address, Username, and
Command, which we try to execute on the device. It also displays one secret
prompt to enter the Password value in hidden characters. At the end, it calls
the from_one_device function with the four values that the user enters.
After that, we call each subtask inside in the if condition. Other scripts
don’t need any user entrance. Many get the device IP addresses from the

input/device_list.txt file for the netmiko connections. For the nornir
scripts, the code receives the device data from the hosts.yaml file.
if main_task == "Collect Logs":
sub_task = inquirer.select(
message="Choose a Sub Task:",
choices=["From 1 Device", "From Multiple Devices", "Collect
Device Information", "Collect CPU Usage", "Send Collected
Logs by Email", "Exit"]).execute()

if sub_task == "From 1 Device":
ip = inquirer.text(message="IP Address: ").execute()
username = inquirer.text(message="Username: ").execute()
password = inquirer.secret(message="Password: ").execute()
command = inquirer.text(message="Command: ").execute()
collect_logs.from_one_device(ip, username, password, command)
elif sub_task == "From Multiple Devices":
collect_logs.from_multiple_devices()
elif sub_task == "Collect Device Information":
collect_logs.collect_device_info()
elif sub_task == "Collect CPU Usage":
collect_logs.collect_cpu_usage()
elif sub_task == "Send Collected Logs by Email":
collect_logs.send_logs_by_email()
elif sub_task == "Exit":
print("Exited from the tool.")

We create the if conditions according to the structure in the earlier piece of
code. If the first selection is the Device Configuration, we add two
subtasks with choices again and write the if conditions with the related
functions. For example, if we choose Configure With Netmiko, it displays
the confirm prompt. It has one more step according to the previous
examples. We ask the user to confirm the device_list.txt and
command_list.txt files to control. If we enter y, the code starts the
config_with_netmiko function. Otherwise, it finishes from the code. There
is an additional step for important changes.
elif main_task == "Device Configuration":
sub_task = inquirer.select(
message="Choose a Sub Task:",

choices=["Configure With Netmiko", "Configure With Nornir",
"Exit"]).execute()

if sub_task == "Configure With Netmiko":
result = inquirer.confirm(message="\n**IP addresses in
'input/device_list.txt'\n**Commands in
'input/command_list.txt'\n").execute()
if result:
configure_device.config_with_netmiko()

else:
print("Exited from the tool.")

elif sub_task == "Configure With Nornir":
result = inquirer.confirm(message="\n**IP addresses in
'hosts.yaml'\n**Commands in
'input/command_list.txt'\n").execute()
if result:
configure_device.config_with_nornir()

else:
print("Exited from the tool.")

elif sub_task == "Exit":
print("Exited from the tool.")

If the first selection is the File Transfer item, it continues with two
subtasks. In both tasks, the code also asks for the source and destination file
names.
elif main_task == "File Transfer":
sub_task = inquirer.select(
message="Choose a Sub Task:",
choices=["Upload with SCP to Routers", "Upload with SFTP to
Servers", "Exit"]).execute()

if sub_task == "Upload with SCP to Routers":
src_file = inquirer.text(message="Source File on PC:
").execute()
dest_file = inquirer.text(message="Destination File:
").execute()
transfer_files.scp_upload_to_routers(src_file, dest_file)

elif sub_task == "Upload with SFTP to Servers":
src_file = inquirer.text(message="Source File on PC:
").execute()

dest_file = inquirer.text(message="Destination File:
").execute()
transfer_files.sftp_upload_to_servers(src_file, dest_file)

elif sub_task == "Exit":
print("Exited from the tool.")

If the first selection is Server Configuration, the code asks for four
functions to execute. We have the Configure or Collect Info, Collect
Resource Usage, Collect Interface Information, and Install
Packages subtasks to execute with their functions. Specific functions are
mentioned in each if condition.
elif main_task == "Server Configuration":
sub_task = inquirer.select(
message="Choose a Sub Task:",
choices=["Configure or Collect Info", "Collect Resource
Usage",

"Collect Interface Information ", "Install Packages",
"Exit"]).execute()

if sub_task == "Configure or Collect Info":
result = inquirer.confirm(message="\n**IP addresses in
'input/device_list.txt'\n**Commands in
'input/command_list.txt'\n").execute()
if result:
config_and_collect_logs.config_collect_logs()

else:
print("Exited from the tool.")

elif sub_task == "Collect Resource Usage":
config_and_collect_logs.collect_resource_usage()

elif sub_task == "Collect Interface Information ":
config_and_collect_logs.collect_interface_information()

elif sub_task == "Install Packages":
package_name = inquirer.text(message="Enter Package Name:
").execute()
result = inquirer.confirm(message="\n**IP addresses in
'input/device_list.txt'\n").execute()
if result:
config_and_collect_logs.package_installation(package_name)

else:

print("Exited from the tool.")
elif sub_task == "Exit":
print("Exited from the tool.")

As the last item, we have "Others" in the first selection. There are four
functions to execute in this code.
elif main_task == "Others":
sub_task = inquirer.select(
message="Choose a Sub Task:",
choices=["Subnet Calculator", "Ping Test", "Plotting CPU
Levels", "Plotting Interface Bandwidth", "Exit"]).execute()

if sub_task == "Subnet Calculator":
ip_address = inquirer.text(message="Enter an IP address:
").execute()
subnet_mask = inquirer.text(message="Enter a Subnet Mask (1
to 32): ").execute()
tools.subnet_calculator(ip_address, subnet_mask)

elif sub_task == "Ping Test":
ip_address = inquirer.text(message="Enter an IP address:
").execute()
ping_count = inquirer.text(message="Enter Quantity of Ping
Packets: ").execute()
tools.ping_test(ip_address, ping_count)

elif sub_task == "Plotting CPU Levels":
ip_address = inquirer.text(message="Enter an IP address:
").execute()
plotting.cpu_plot(ip_address)

elif sub_task == "Plotting Interface Bandwidth":
ip_address = inquirer.text(message="Enter an IP address:
").execute()
interface_name = inquirer.text(message="Enter the Interface
Name: ").execute()
plotting.interface_bandwidth_plot(ip_address,
interface_name)

elif sub_task == "Exit":
print("Exited from the tool.")

We can write the device IP address input/device_list.txt file, as we did
in the previous examples.

device_list.txt:
10.10.10.1
10.10.10.2
10.10.10.3

We can write the commands we try to send to the devices in the
input/command_list.txt file.
command_list.txt
show version
show ip interface brief
show interface description

We can also use the hosts.yaml file to get the device information for the
nornir module connections.
hosts.yaml
Router-1:

hostname: 10.10.10.1
platform: ios
username: admin
password: cisco

Router-2:
hostname: 10.10.10.2
platform: ios
username: admin
password: cisco

Router-3:
hostname: 10.10.10.3
platform: ios
username: admin
password: cisco

Create subtask scripts
We can write the script files to execute in the devices such as, such as
network_devices.py, servers.py, and others.py, with related classes and
functions. We already write the main.py that is the main tool file we wrote
in the earlier section. The codes in these three files have already been
written in the previous chapters, and we can change small parts of them to

combine with this structure. You can check related examples in the earlier
chapters if you need to check the details of the following examples.

Network device scripts
At the beginning of the network_devices.py file, we import the following
modules with the necessary functions:
from netmiko import Netmiko
from concurrent.futures import ThreadPoolExecutor
from re import findall, split
from pandas import DataFrame
import smtplib
from email import message
import mimetypes
from nornir import InitNornir
from nornir_utils.plugins.functions import print_result
from nornir_netmiko import netmiko_send_config,
netmiko_file_transfer
from paramiko import SSHClient, AutoAddPolicy

In the collect_logs class, we call the following examples in the same file.
In the following code, we write the from_one_device function to log in to a
single device, collect a single command log, and display it as output.
Example 10.1: Collect logs from a single device
class collect_logs:
def from_one_device(ip, username, password,command):
device = { "host": ip, "username": username, "password":
password, "device_type": "cisco_ios"}
net_connect = Netmiko(**device)
show_output = net_connect.send_command(command)
print(show_output)

In the following code, we collect multiple logs from many devices with the
from_multiple_devices function by using the netmiko module. This
function is in the collect_logs class.
Example 10.2: Collect logs from multiple devices
def from_multiple_devices():
with open("input/device_list.txt") as r:

device_list = r.read().splitlines()
with open("input/command_list.txt") as r:
command_list = r.read().splitlines()

def concurrent(ip):
device = {"host": ip, "username": "admin", "password":
"cisco", "device_type": "cisco_ios"}

net_connect = Netmiko(**device)
hostname = net_connect.find_prompt()
for command in command_list:
output = net_connect.send_command(command,
strip_command=False)
print(f"{hostname} {output}\n")
with open(f"output/{ip} logs.txt", "a") as w:
w.write(f"{hostname} {output}\n\n")

with ThreadPoolExecutor(max_workers=25) as executor:
executor.map(concurrent, device_list)

In the following code, we collect device information like IP address,
hostname, vendor type, device model, and software version with the
collect_device_info function. This function is in the collect_logs class.
Example 10.3: Collect device information
def collect_device_info():
with open("input/device_list.txt") as r:
device_list = r.read().splitlines()

ip_list, version_list, model_list, vendor_list,
hostname_list = ([] for i in range(5))
for ip in device_list:
device = {"host": ip, "username": "admin", "password":
"cisco", "device_type": "cisco_ios"}
print(f"\n---Try to Login:{ip}---\n")
net_connect = Netmiko(**device)
output = net_connect.send_command("show version")
version = findall("Version (.*),", output)
model = findall("Cisco (.*)\(revision", output)
vendor = findall("Cisco", output)
hostname = findall("(.*)#", net_connect.find_prompt())
ip_list.append(ip)
version_list.append(version[0])

model_list.append(model[0])
vendor_list.append(vendor[0])
hostname_list.append(hostname[0])

df = DataFrame(
{"IP Address": ip_list, "Hostname": hostname_list, "Vendor
Type": vendor_list, "Model": model_list, "Version":
version_list})

df.to_excel("output/Version List.xlsx",
sheet_name="Vendors", index=False)

In the following example, we collect CPU usage information from various
devices and save it in an Excel file with the collect_cpu_usage function.
This function is in the collect_logs class.
Example 10.4: Collect CPU usage information
def collect_cpu_usage():
with open("input/device_list.txt") as r:
device_list = r.read().splitlines()

ip_list, cpu_list_5s, cpu_list_1m, cpu_list_5m,
cpu_list_risk = ([] for x in range(5))
for ip in device_list:
device = {"host": ip, "username": "admin", "password":
"cisco", "device_type": "cisco_ios"}
print(f"\n---Try to Login:{ip}---")
net_connect = Netmiko(**device)
output = net_connect.send_command("show processes cpu")
cpu_5s = findall("CPU utilization for five seconds: (\d+)",
output)
cpu_1m = findall("one minute: (\d+)", output)
cpu_5m = findall("five minutes: (\d+)", output)
ip_list.append(ip)
cpu_list_5s.append(cpu_5s[0] + "%")
cpu_list_1m.append(cpu_1m[0] + "%")
cpu_list_5m.append(cpu_5m[0] + "%")
if int(cpu_5m[0]) > 90:
cpu_risk = "Fatal CPU Level"

elif 70 < int(cpu_5m[0]) < 90:
cpu_risk = "High CPU Level"

else:

cpu_risk = "No Risk"
cpu_list_risk.append(cpu_risk)

df = DataFrame(
{"IP Address": ip_list, "CPU Levels for 5 Seconds":
cpu_list_5s, "CPU Levels for 1 Minute": cpu_list_1m, "CPU
Levels for 5 Minutes": cpu_list_5m, "CPU Risk":
cpu_list_risk})

df.to_excel("output/CPU Levels.xlsx", index=False)

In the following code, we collect logs, save them as output file and send an
email to ourselves with the send_logs_by_email function. This function is
in the collect_logs class.
Example 10.5: Send collected logs via email
def send_logs_by_email():
with open("input/device_list.txt") as r:
device_list = r.read().splitlines()

with open("input/command_list.txt") as r:
command_list = r.read().splitlines()

def concurrent(ip):
print(f"---Try to Login:{ip}---")
device = {"host": ip, "username": "admin", "password":
"cisco", "device_type": "cisco_ios"}
net_connect = Netmiko(**device)
hostname = net_connect.find_prompt()
for command in command_list:

output = net_connect.send_command(command,
strip_command=False)

with open(f"output/{ip} logs.txt", "a") as w:
w.write(f"{hostname} {output}\n\n")

with ThreadPoolExecutor(max_workers=25) as executor:
executor.map(concurrent, device_list)

print("\nSending Email")
mail_from = "example@gmail.com"
mail_password = "16-DIGIT-PASSWORD"
mail_to = "example@gmail.com"
mail_subject = "Device Logs"
mail_content = "Hi,\nYou can find the all device log files
in the attachment."

send = message.EmailMessage()
send.add_header("From", mail_from)
send.add_header("To", mail_to)
send.add_header("Subject", mail_subject)
send.set_content(mail_content)
for file in device_list:
filename = f"output/{file} logs.txt"
with open(filename, "rb") as r:
attached_file = r.read()

mime_type, encoding = mimetypes.guess_type(filename)
send.add_attachment(attached_file,
maintype=mime_type.split("/")[0],
subtype=mime_type.split("/")[1], filename=filename)

with smtplib.SMTP_SSL("smtp.gmail.com", 465) as smtp:
smtp.login(mail_from, mail_password)
smtp.sendmail(mail_from, mail_to, send.as_string())

We continue with a new class called configure_device in the same Python
file. In the following code, we configure the network devices using the
netmiko module with the config_with_netmiko function. This function is
in the configure_device class.
Example 10.6: Configure network devices with netmiko
class configure_device:
def config_with_netmiko():
with open("input/device_list.txt") as r:
device_list = r.read().splitlines()

def concurrent(ip):
device = {"host": ip, "username": "admin", "password":
"cisco", "device_type": "cisco_ios"}
net_connect = Netmiko(**device)
output = net_connect.send_config_from_file
(config_file="input/command_list.txt", strip_command=False)
print(output)

with ThreadPoolExecutor(max_workers=25) as executor:
executor.map(concurrent, device_list)

In the following example, we configure the network devices using the
nornir module with the config_with_nornir function. This function is in

the configure_device class.
Example 10.7: Configure network devices with nornir
def config_with_nornir():
with open("input/command_list.txt") as r:
command_list = r.read().splitlines()

connect = InitNornir(config_file="hosts.yaml")
result = connect.run(task=netmiko_send_config,
config_commands=command_list)
print_result(result)

We continue with a new class called transfer_files in the same Python
file. In the following example, we upload files from the local PC to the
network devices with the scp_upload_to_routers function. This function
is in the transfer_files class.
Example 10.8: Upload files to the network devices
class transfer_files:
def scp_upload_to_routers(src_file, dest_file):
if not dest_file:
dest_file = src_file

connect = InitNornir(config_file="hosts.yaml")
result = connect.run(task=netmiko_file_transfer,
source_file=src_file, dest_file=dest_file, direction="put")
print_result(result)

In the following example, we upload files from the local PC to the servers
with the sftp_upload_to_servers function. This function is in the
transfer_files class.
Example 10.9: Upload files to the servers
def sftp_upload_to_servers(src_file, dest_file):
with open("input/device_list.txt") as r:
device_list = r.read().splitlines()

ssh = SSHClient()
ssh.set_missing_host_key_policy(AutoAddPolicy())
for ip in device_list:
ssh.connect(hostname=ip, username="ubuntu",
password="ubuntu")
sftp = ssh.open_sftp()
sftp.put(src_file,dest_file)

Server scripts
We continue to fill the servers.py Python file to connect servers and
configure or collect logs from them. In this file, we have a single class
called config_and_collect_logs, which has four functions. We import the
following modules and their necessary functions according to the functions
we use in this file:
from netmiko import Netmiko
from concurrent.futures import ThreadPoolExecutor
from re import findall
from pandas import DataFrame

We write our single class called config_and_collect_logs in the
servers.py Python file. In the following example, we configure servers or
collect logs from them with the config_collect_logs function. This
function is in the config_and_collect_logs class.
Example 10.10: Configure servers or collect logs from servers
class config_and_collect_logs:
def config_collect_logs():
with open("input/device_list.txt") as r:
device_list = r.read().splitlines()

def concurrent(ip):
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux", "secret": "ubuntu"}
net_connect = Netmiko(**device)
hostname = net_connect.find_prompt()
output =
net_connect.send_config_from_file(config_file="input/comman
d_list.txt", strip_command=False)
print(f"{hostname} {output}\n")

with ThreadPoolExecutor(max_workers=25) as executor:
executor.map(concurrent, device_list)

In the following example, we collect CPU and memory resources usage of
servers with the collect_resource_usage function. This function is in the
config_and_collect_logs class.
Example 10.11: Collect resource usage information of servers
def collect_resource_usage():

memory_total, memory_free, memory_used, cpu_used, host_list
= ([] for i in range(5))
with open("input/device_list.txt") as r:
device_list = r.read().splitlines()

for ip in device_list:
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux", "secret": "ubuntu"}
net_connect = Netmiko(**device)
mem_output = net_connect.send_command("free -m",
strip_command=False)
cpu_output = net_connect.send_command("top -n 1 | grep
%Cpu", strip_command=False)
hostname = findall("@(.*):", net_connect.find_prompt())
total = findall("Mem:\s+(\d+)", mem_output)
free = findall("Mem:\s+\d+\s+(\d+)", mem_output)
used = findall("Mem:\s+\d+\s+\d+\s+(\d+)", mem_output)
cpu = findall("\d+,\d+", cpu_output)
memory_total.append(f"{total[0]} MB")
memory_free.append(f"{free[0]} MB")
memory_used.append(f"{used[0]} MB")
cpu_used.append(f"% {cpu[0]}")
host_list.append(hostname[0])

df = DataFrame({"Hostname": host_list, "Total Memory":
memory_total, "Free Memory": memory_free, "Memory Usage":
memory_used, "CPU Usage": cpu_used})
df.to_excel("output/CPU-Memory Usage.xlsx", index=False)

In the following example, we collect the interface information of the
servers, such as hostname, interface name, IP address, and netmask, with
the collect_interface_information function. This function is in the
config_and_collect_logs class.
Example 10.12: Collect Interface Information of Servers
def collect_interface_information():
list_ipv4, list_netmask, list_int, list_hostname,
list_int_name = ([] for i in range(5))
with open("input/device_list.txt") as r:
device_list = r.read().splitlines()

for ip in device_list:

device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux", "secret": "ubuntu"}
net_connect = Netmiko(**device)
output = net_connect.send_command("ifconfig")
hostname = findall("@(.*):", net_connect.find_prompt())
int_name = findall("(.*): flags", output)
for interface in int_name:

output = net_connect.send_command(f"ifconfig -a
{interface}")

ipv4 = findall("inet (.*) netmask", output)
netmask = findall("netmask (\d+.\d+.\d+.\d+)", output)
list_ipv4.append(ipv4[0])
list_netmask.append(netmask[0])
list_hostname.append(hostname[0])
list_int_name.append(interface)

df = DataFrame({"Hostname": list_hostname, "Interface Name":
list_int_name, "IP Address": list_ipv4, "Netmask":
list_netmask, })
df.to_excel("output/Interface Information.xlsx",
index=False)

In the following example, we install packages on the servers with the
package_installation function. This function is in the
config_and_collect_logs class.
Example 10.13: Install package on the servers
def package_installation(package):
with open("input/device_list.txt") as r:
device_list = r.read().splitlines()

def concurrent(ip):
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux", "secret": "ubuntu"}
net_connect = Netmiko(**device)
net_connect.send_config_set(f"sudo apt-get install
{package} -y")
output = net_connect.send_command(f"{package} --version")
hostname = net_connect.find_prompt()
print(f"{hostname}: {package} --version{output}\n")

with ThreadPoolExecutor(max_workers=25) as executor:

executor.map(concurrent, device_list)

Other remaining scripts
We continue to fill the others.py Python file to execute the remaining
scripts in the others category. This file has two classes: tools and
plotting. In each class, we have two functions. We import the following
modules and their necessary functions according to the functions we use in
others.py file:
from re import findall
from subprocess import Popen, PIPE
from matplotlib import pyplot as plt
from netmiko import Netmiko
from time import sleep
from datetime import datetime

We write the first class named tools in the servers.py Python file. Inside
it, we write the subnet_calculator function, similar to Example 4.14 in
Chapter 4, Collecting and Monitoring Logs. We remove the following lines:
enter_ip = input("\nEnter an IP address: ")
mask = input("\nEnter a Subnet Mask (1 to 32): address: ")

We replace the variable names from enter_ip to ip_address and from
mask to subnet_mask in the following example. The remaining part is the
same as Example 4.14. We write the class named tools. Our function name
for subnet calculator is subnet_calculator, with two parameters:
ip_address and subnet_mask.
class tools:
def subnet_calculator(ip_address,subnet_mask)

In the following example, we start the ping test from our local PC by
choosing the ping packet quantity with the ping_test function. This
function is in the tools class.
Example 10.14: Ping Test from the Local Device
def ping_test(ip,ping_count):
output = ""
print(f"\n---Try to Ping: {ip} ---")
data = Popen(f"cmd /c ping {ip} -n {ping_count}",
stdout=PIPE, encoding="utf-8")

for line in data.stdout:
output = output + "\n" + line.rstrip('\n')

print(output)

We write our second class named plotting in the others.py Python file. In
the following example, we collect the CPU data in a period and plot it with
the cpu_plot function. This function is in the plotting class.
Example 10.15: Plot CPU levels of a network device
class plotting:
def cpu_plot(ip):
host = {"host": ip, "username": "admin", "password":
"cisco", "device_type": "cisco_ios"}
count = 7
delay = 3
command = "show processes cpu"
cpu_levels = []
time_list = []
net_connect = Netmiko(**host)
for i in range(1, count):
print(f"Get CPU levels count: {i}")
output = net_connect.send_command(command)
time = datetime.now().strftime("%H:%M:%S")
time_list.append(time)
sleep(delay)
cpu_data = findall("CPU utilization for five seconds:
(\d+)%/", output)
cpu_levels.append(int(cpu_data[0]))
print("CPU Level: ", cpu_data[0])

plt.plot(time_list, cpu_levels)
plt.xlabel("Time")
plt.ylabel("CPU Levels in %")
plt.grid(True)
plt.show()

In the following example, we collect inbound and outbound interface traffic
data and plot it with the interface_bandwidth_plot function. This
function is in the plotting class.
Example 10.16: Collect logs from a single device

def interface_bandwidth_plot(ip, interface):
host = {"host": ip, "username": "admin", "password":
"cisco", "device_type": "cisco_ios"}
count = 5
delay = 3
inbound_rate = []
outbound_rate = []
time_list = []
net_connect = Netmiko(**host)
for i in range(1, count):
output = net_connect.send_command(f"show interfaces
{interface}")
time = datetime.now().strftime("%H:%M:%S")
time_list.append(time)
input_level = findall("5 minute input rate (\d+)", output)
output_level = findall("5 minute output rate (\d+)",
output)
inbound_rate.append(int(input_level[0]))
outbound_rate.append(int(output_level[0]))
sleep(delay)
print("Input Level: ", input_level[0])
print("Output Level: ", output_level[0])

plt.plot(time_list, inbound_rate, color="blue",
label="Inbound")
plt.plot(time_list, outbound_rate, color="red", label=
"Outbound")
plt.xlabel("Time")
plt.ylabel("Interface Levels in MBs")
plt.title(f"Interface Rate of {host['host']} - {interface}")
plt.show()

Conclusion
This chapter discussed creating a custom CLI-based automation tool. We
planned a tool design by dividing the scripts into files and classes according
to their similarities or usage purposes. We connected the network devices

and servers with the netmiko, nornir, and paramiko modules. We collected
data, ran configurations, and transferred files to them.
The next chapter will focus on Amazon Web Services (AWS) cloud
infrastructures. We write automation scripts to create and manage AWS
services like servers and storage by Python coding.

Multiple choice questions
1. Which of the following prompts changes the input characters into

hidden characters?

a. password
b. secret
c. hidden
d. encrypted

2. Which of the following modules is not an alternative to the
“PyInquirer” module?

a. columbo
b. InquirerPy
c. selectors
d. questionary

Answers
1. b
2. c

Questions
1. Write main.py file by adding coloring from the InquirerPy function.
2. Add a new subtask called Save Device Configuration into a File

to the collect_logs class.

CHAPTER 11
Automate Cloud Infrastructures with

Python
This chapter will focus on network automation in a cloud platform, such as
Amazon’s AWS Cloud Platform. We will deploy a cloud environment in the
AWS platform to execute the Python scripts. We will manage various services
like EC2 for instance, S3 and EBS for storage, and IAM for user account
management. Additionally, we will use the boto3 module to handle all tasks
without entering the AWS Console web page.

Structure
In this chapter, we will cover the following topics:

Cloud environment deployment

Introduction to AWS
Installation of Boto3 and AWS CLI

EC2 ınstance management

Manage EC2 ınstances with Python
Connection to EC2 ınstances

S3 bucket management
EBS volume management

Manage EBS volumes
Create snapshots of EBS volumes
Attach EBS volume to EC2 ınstance

IAM user management

Objectives

We will be introducing Amazon’s AWS cloud platform with essential services
like EC2, S3, EBS, and IAM. We will install the necessary Python module
called boto3 to write the automation scripts. We’ll also check AWS Console
and AWS CLI usage to verify that our scripts work successfully. We will create
Linux servers as EC2 instances and manage them with the scripts. Paramiko
and netmiko modules will be brought into use to log in to these instances, and
we will manage S3 and EBS storage with simple scripts, create a backup of
EBS volumes via snapshots, and attach or bind EBS volumes to a particular
EC2 instance. Ultimately, we will manage user access and permissions with
Python codes. Lastly, we will create users and add or delete roles from those
users.

Cloud environment deployment
In the previous chapter, we created Amazon Web Services (AWS) Cloud
technology automation scripts. Three significant brands lead in Cloud
computing services: Amazon’s AWS, Google’s Google Cloud Platform
(GCP), and Microsoft’s Azure. We will focus on AWS, the pioneer in cloud
services; AWS is one of the most popular services for system, cloud, and
DevOps engineers.

Introduction to AWS
AWS is a web-based platform that includes various services. Each service has
its purpose, and we will focus on EC2, S3, EBS, and IAM, the most used
services in AWS.

EC2 (Elastic Compute Cloud) is an instance-based server system in the
AWS platform. We can create Linux or Windows servers with EC2
service.
S3 (Simple Storage Service) is a bucket-based storage system on the
AWS platform. We can create hosting or straightforward cloud storage to
keep our files in the cloud.
EBS (Elastic Block Store) is a volume-based storage system on the AWS
platform. We can also keep files in the cloud as an S3 service, but with
more enhanced features like attaching volumes to EC2 instances or
snapshot EBS volumes that back up the volume in a different system.
IAM (Identity and Access Management) is a user management system
on the AWS platform. We can create and delete users and change user

privileges in this service.

We can handle all these services in the AWS platform from the following
website. Instead of this, we log in to this platform with a Python module, that
is, boto3, which is a third-party module and completes all tasks through
custom Python scripts. So, we can automate the AWS platform with simple
scripts. For example, we can create 10 EC2 instances with a single code or add
a new service privilege to all users in our AWS account. So, the boto3 module
is a straightforward and powerful module to automate AWS services.

Installation of Boto3 and AWS CLI
Create AWS account: Before we start the installation of modules and
necessary tools, we connect to the AWS platform with our account. You
can continue installing the boto3 module if you already have an account.
Otherwise, you need to create an AWS account with your email address
from the following link:
https://aws.amazon.com/
Creating an account is free in AWS and other cloud services, but running
services are paid, such as EC2, S3, or EBS. So, it costs us if we create
and start an EC2 instance. It’s hourly usage in USD, and the cost for this
test is less than a dollar. However, remember to shut down or terminate
services like an EC2 instance or S3 buckets after you finish the test.
Otherwise, AWS charges for running objects. You can check the billing
service after you start some services.
Install boto3 module: We can continue installing the boto3 module, a
third-party Python module provided by AWS. We must run the pip
install boto3 command in the IDE terminal. You can check the details
of the boto3 module from the official web page at the following link:
https://boto3.abmazonaws.com/v1/documentation/api/latest/index.ht
ml
Create user in IAM: After that, we need to create a user inside our AWS
account. After we log in to AWS, we need to open the IAM service. You
can search IAM or check the following link. In the Users section, we can
click on the Add users button to create a new user.
https://us-east-1.console.aws.amazon.com/iamv2/home#/home

https://boto3.abmazonaws.com/v1/documentation/api/latest/index.html

In Figure 11.1, we enter a username, i.e., test_user, and choose access
type as Access key - Programmatic access; then, we continue to the
next step.

Figure 11.1: Adding User-1

In Figure 11.2, in the next step, we choose the Attach existing
policies directly tab and add policies to the new user. We can search
for and enable the following access permissions for full access to EC2,
S3, and IAM services.
Policy for Permissions:
AmazonEC2FullAccess
AmazonS3FullAccess
IAMFullAccess

Figure 11.2: Adding User-2

We can pass step 3 and check the new user details in step 4, as shown in
Figure 11.3. We can verify the username, AWS access type, and
permissions we enter.

Figure 11.3: Adding User-3

In Figure 11.4, we successfully create the user after we continue to the
last step. We must download the .csv file by clicking on the Download
.csv button and store it on our local PC or in a safe place. This file has
the Access key ID and Secret access key information, which is
unique to this user. So, we should not share it with anyone.

Figure 11.4: Adding User-4

We use this user’s details to log in to AWS via IAM console, AWS CLI,
or with boto3 Python scripts.
Install AWS CLI: There are various options to manage AWS. We can
log in to the AWS console from the AWS website; this is the most
generic option. We can also use the AWS CLI, to use AWS command
line in PC. It supports only 64-bit devices. You can check the installation
steps on the following official page.
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-
install.html
For Windows:

1. Download and install the AWS CLI tool from the following link
from AWS.
https://awscli.amazonaws.com/AWSCLIV2.msi

2. Verify the installation with the following command in the command
prompt. If you see the version information, AWS CLI is
successfully installed. Otherwise, reinstall the tool from the
previous link or check the official installation document of AWS
CLI.
C:\> aws --version

aws-cli/2.7.24 Python/3.8.8 Windows/10 exe/AMD64
prompt/off

For Linux:

1. Download the AWS CLI ZIP file on the Linux machine with the
“curl” package. If you don’t have it, you must enter “sudo apt-get
install curl” to install that package. After that, download the ZIP file
with the following command:
$ curl "https://awscli.amazonaws.com/awscli-exe-linux-
x86_64.zip" -o "awscliv2.zip"

2. We need to unzip the downloaded file with the following command
in the same directory that we downloaded the file in.
$ unzip awscliv2.zip

3. Installation is complete, but we must enter an additional command
to use the “aws” command in the AWS CLI without running the
“sudo” command each time.
$ sudo ./aws/install

4. We can verify the installation with the following command, which
we also run for the installation on a Windows device.
$ aws --version
ws-cli/2.7.24 Python/3.8.8 Linux/4.14.133-
113.105.amzn2.x86_64 botocore/2.4.5

We must configure the authentication parameters to use AWS CLI. All
commands are the same for Linux, Windows, or MAC machines. We need to
configure AWS CLI with the aws configure command. There are four
parameters we must enter. We need to copy the AWS Access Key ID and AWS
Secret Access Key values from the generated User credential CSV Excel file.
After that, we enter the region name into the Default region name. We use
eu-west-2, which is London. We write the Default output format parameter
as a final parameter in JSON format.
C:\> aws configure
AWS Access Key ID [None]: AAAAAA
AWS Secret Access Key [None]: BBBBBB
Default region name [None]:
Default output format [None]:

We can modify the parameters by running the aws configure command again
in the command prompt. These parameters are saved in the config and

credential files. We can find these files in the following path in Windows.
You can also modify the parameters you enter by changing these files in the
text editor.
C:\Users\USERNAME\.aws

In Table 11.1, we can see the values that we configured in the previous aws
configure command. These are the default values when we try to log in to
AWS with AWS CLI and the boto3 module. We can change the default values
by adding parameters. In the following section, we check the boto3 parameters
to change these default values by parameters.

config

[default]
region = eu-west-2
output = json

credentials

[default]
aws_access_key_id = AAAAAA
aws_secret_access_key = BBBBBB

Table 11.1: Output of the “config” and “credentials” Files

You can check all the details about the AWS CLI usage and commands in the
following official documentation link:
https://docs.aws.amazon.com/cli
For example, we can check all EC2 instances with the aws ec2 describe-
instances command in the command prompt. The output will be empty if you
haven’t created any instance yet. If there is an instance in our account in the
eu-west-2 region, we can see the similarities with the following output. It
shows all details about the instance we create, such as ImageId, InstanceId,
and InstanceType.
C:\> aws ec2 describe-instances
{
"Reservations": [
{
"Groups": [],
"Instances": [
{
"AmiLaunchIndex": 0,
"ImageId": "ami-09e2d756e7d78558d",
"InstanceId": "i-***************",
"InstanceType": "t2.micro",
"KeyName": "ec2-keypair",
"LaunchTime": "2022-09-12T04:21:22+00:00",
"Monitoring": {

"State": "disabled"
}

}
}

EC2 instance management
Elastic Compute Cloud (EC2) is one of the most popular AWS services. It’s a
cloud computing system that includes server systems. We can check the details
of the EC2 service in the AWS platform by searching for EC2 in the Search
tab. We directly created the instance from this service page.
https://console.aws.amazon.com/ec2/v2/home
In this chapter, we manage all EC2 services by Python scripts. You can check
the AWS console web platform to familiarize yourself with essential AWS
services.

Manage EC2 instances with Python
We created an EC2 instance with the boto3 module in AWS. There are various
instance types in AWS; servers like Linux or Windows, network devices like
Cisco virtual routers, Juniper routers, Palo Alto firewalls, and many more
virtual machines are in the AWS platform marketplace. This chapter focuses
on Linux servers and manages them with Python scripts.
Before starting the code, you can check the AMI (Amazon Machine Images)
Catalog on the EC2 platform page under the Images tab. You can see all
images in the AWS Marketplace AMIs section, as shown in Figure 11.5.
All images that are installed on the instances have unique IDs that start with
ami-*********. In the following examples, we will always use the ami-
06672d07f62285d1d ID, which creates the Amazon Linux 2 AMI (HVM) -
Kernel 5.10, SSD Volume Type EC2 instance as a Linux machine. AMI IDs
may change if you change the AWS platform region from the AWS console.

Figure 11.5: AMI Catalog in AWS Console

When we create an EC2 instance in the AWS console, as in the AWS web
page, it gives an SSH connection permission to the instance in its security
parameter in the security group by default. So, we can directly log in to the
instance via SSH connection. However, when we create an instance with the
boto3 module, it may choose a security group without permission for an SSH
connection. As a result, we can change the default security group parameter to
permit SSH protocol.
We enter Network & Security > Security Groups page in the EC2 instance.
As shown in Figure 11.6, enter the Security Groups page and choose the
default group name on the top. Then, enter the Inbound rules tab and click on
Edit inbound rules.

Figure 11.6: Chaning Default Security Group-1

In the opening page shown in Figure 11.7, we delete the default rule and add a
new rule by choosing SSH in the Type section and 0.0.0.0/0 in the Source
section. So, we can log in to the instance via SSH on the internet:

Figure 11.7: Chaning Default Security Group-2

There are two essential functionalities in the boto3 module: client and
resource. We must use one of them to make API calls to an AWS service with
boto3. The client provides a low-level interface to the AWS service. On the
other hand, the resource is a higher-level abstraction compared to clients. We
often use the resource function in this chapter, which is more straightforward
and capable than the client function.
Key pairs: Before connecting the EC2 instances by the Python code, we must
create a key pair. It’s required to make a secure connection to access an EC2
instance. We use the boto3 module to create key pairs by Python code in
Example 11.1.

1. We import the boto3 module to use the functions for AWS services.
import boto3

2. We call the resource function and write the service name as ec2. Then,
we assign resource function to a variable as ec2.
ec2 = boto3.resource("ec2")

The service name is the first parameter in the resource function. We can
also write the following code by naming the service name parameter:

ec2 = boto3.resource(service_name="ec2")

The script uses default parameters that we configured with the aws
configure in the previous section. So, when we run the code in Example
11.1, it creates a key pair in the eu-west-2 region. We have an optional
parameter to change the region by writing the region_name parameter. In
the following code, we change the region to eu-central-1, so the code
creates the key pair in that region.
ec2 = boto3.resource("ec2", region_name="eu-central-1")

3. In the following step, we create a key pair with the create_key_pair
function by writing the key name ec2-keypair. This value can be
anything but it should be unique to the current region.
key_pair = ec2.create_key_pair(KeyName="ec2-keypair")

4. From the following code, we get the string value of the key as an output
variable.
output = str(key_pair.key_material)

5. In the last step, we save the output variable of the key pair value to a file
with a .pem extension. It saves the file in the same directory as our script.
We use this key pair to communicate with the AWS services using boto3.
with open("ec2-keypair.pem","w") as wr:

wr.write(output)

Example 11.1: Create key pair for a specific region
import boto3
ec2 = boto3.resource("ec2")
key_pair = ec2.create_key_pair(KeyName="ec2-keypair")
output = str(key_pair.key_material)
with open("ec2-keypair.pem","w") as wr:

wr.write(output)

After executing the code, it creates a file named ec2-keypair.pem in the same
directory as our Python script. If we rerun the script, the code gives an error
output: key pair named ec2-keypair is already created. We need to change the
KeyName value. We should also change the .pem file name to be stored locally
as a different key pair file.
Ouput:
-----BEGIN RSA PRIVATE KEY-----
MULTILINE KEY-VALUE
-----END RSA PRIVATE KEY-----

We can also check whether the key pairs in the AWS console have been
created. First of all, we must choose the correct region name. We used London
as eu-west-2 as the coding in our example. We configured it in the previous
section with the aws configure command in the command prompt. You can
also change the region from there. We need to search as key pairs in the AWS
search tab or enter the EC2 instance section and enter the Key Pair section
under the Network & Security tab. Figure 11.8 shows the key pair name we
created with Python as ec2-keypair. We can create multiple key pairs with a
unique key pair name for different usage.

Figure 11.8: Checking Key Pairs

Remember that in all the upcoming examples, we create AWS services,
and it may charge you according to the AWS pricing policy. So, ensure
that you terminate (stop and delete objects) the deployed objects in any
services, like EC2, S3 or EBS, to prevent high charges from AWS. You can
check each instance’s or other services’ hourly prices in AWS. It depends
on the region. But for testing and learning the AWS platform, the cost of a
couple of hours is less then 1 USD. You can check the details on the AWS
platform.

After changing the default value of the security group and creating the key
pair, we can start managing EC2 instances with the boto3 module.
In Example 11.2, we write our first AWS platform automation script with the
boto3 module in the Python language. We create an instance with a given
instance image ID as AMI. We use the ami-06672d07f62285d1d image name
as Amazon Linux 2 AMI (HVM) - Kernel 5.10, SSD Volume Type.

1. We import the boto3 module to connect to the AWS platform via a
Python script.
import boto3

2. We call the resource function; inside it, we write a service named ec2,
and then we assign it to a variable named “ec2”.
ec2 = boto3.resource("ec2")

3. In the last step, we call the create_instances function to create an
instance in the eu-west-2 region as London. Inside this function, we add
ImageId as the AMI value, Mincount as 1, and MaxCount as 3, creating
three instances from the same AMI. We set InstanceType as t2.micro as
the resource type of the virtual machine. Then we set KeyName as ec2-
keypair to connect instances via key pairs.
instances = ec2.create_instances(
ImageId="ami-06672d07f62285d1d",
MinCount=1,
MaxCount=3,
InstanceType="t2.micro",
KeyName="ec2-keypair"
)

Example 11.2: Create an EC2 instance with boto3 module
import boto3
ec2 = boto3.resource("ec2")
instances = ec2.create_instances(

ImageId="ami-06672d07f62285d1d",
MinCount=1,
MaxCount=3,
InstanceType="t2.micro",
KeyName="ec2-keypair")

When we execute the script in example 11.2, it takes less than a minute to
create and start three instances in the current default region. We can check the

EC2 instances in the AWS console, as in Figure 11.9. In the Instance tab,
three instances are running, and they all have a unique instance ID. The
instance type is also configured as we set in the script. The availability zone or
the region is eu-west-2b, which is in the default region as eu-west-2. We can
check the instance state in which all are running. In the last column, we can
also see the key pair name as ec2-keypair.

Figure 11.9: Checking Instances in AWS Console

After your study finishes, you can click on each instance or choose all of them
and push right-click on the mouse. You can see a section as the Instance
State, you should enter it with the Terminate button to stop and delete the
instances. The terminated instance can still be shown in the instance list, but
after a while, it disappears from the instance list. If it’s in the running state,
AWS costs you for each usage hour. We can create many instances
simultaneously with a couple of lines of Python code. So, it’s crucial to use
scripting in the AWS platform automation.
We can choose the EC2 Instance Connect (browser-based SSH

connection) as a Connection method and click on the Connect button with
the default user as ec2-user. We connect to the instance in the new web page
automatically via the AWS console. We can check the OS by entering uname -
a, a Linux OS.
We also connect with the A standalone SSH client connection method in the
following section using the ec2-keypair.pem file.
In Example 11.3, we get the instance information from each and display it in
the output. We get the instance data from the default region as eu-west-2. We
can change the region by adding the region_name in the resource function.
We get all instances one by one in a for loop. We get instance İD from the id

value, instance state from state['Name'] value, public IPv4 address from
public_ip_address value, AMI from image.id and finally, instance type from
instance_type. We can see a list of the instances with their details in the
output when we run the script. We can add more values to get from the AWS
platform. You can check the official documentation link for more details:
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
Example 11.3: List all EC2 instances in a region
import boto3
ec2 = boto3.resource("ec2")
instance_data = ec2.instances.all()
for info in instance_data:
print("-"*20,f"\nEC2 instance ID: {info.id}")
print(f"Instance State: {info.state['Name']}")
print(f"Instance Public IP: {info.public_ip_address}")
print(f"Instance AMI: {info.image.id}")
print(f"Instance Type: {info.instance_type}")
print("-"*20,"\n")

Output:

EC2 instance ID: i-*************
Instance State: running
Instance Public IP: *************
Instance AMI: ami-06672d07f62285d1d
Instance Type: t2.micro

EC2 instance ID: i-*************
Instance State: running
Instance Public IP: *************
Instance AMI: ami-06672d07f62285d1d
Instance Type: t2.micro

EC2 instance ID: i-*************
Instance State: running
Instance Public IP: *************
Instance AMI: ami-06672d07f62285d1d
Instance Type: t2.micro

In Example 11.4, we create various functions to manage EC2 instances, such as
starting, stopping, rebooting, and terminating. Terminating an instance means
deleting an instance in the AWS platform. Even if the instance is terminated, it
would be displayed in the instance list as a terminate for a while.
We use the InquirerPy module that we described in Chapter 10: Deploying
Automation Software. We ask the user to enter the EC2 instance ID and choose
the action for that instance ID, such as start, stop, reboot, or terminate. We
create a function for each task and call them according to the user’s choice
with the if condition.
We use the input function to ask the user for the instance ID.
instance_id = input("Enter Instance ID: ")

After that, we use the resource function with the AWS service name ec2. We
call the Instance function with the instance ID the user enters in the
parentheses.
ec2 = boto3.resource("ec2")
instance = ec2.Instance(instance_id)

In each function that we create, we call a specific boto3 function:
start() #To start an instance
stop() #To stop an instance
reboot() #To reboot an instance
terminate() #To terminate an instance

The following wait_until commands check the instance state every 15
seconds until it reaches the related state. It generates an error message after 40
failed checks.
wait_until_running() #Checks the instance whether it's in the
"running" state.

wait_until_stopped() #Checks the instance whether it's in the
"stopped" state.

wait_until_terminated() #Checks the instance whether it's in the
"terminated" state.

To execute the InquirerPy module, we need to change the running settings in
the Pycharm tool, as we did in the last chapter. We enter the section Run/Edit
Configurations tab. In the opening window, we enable the Emulate

terminal in output console option and apply it.
Example 11.4: Manage EC2 instance

import boto3
from InquirerPy import inquirer
def ec2_start():

instance.start()
print(f"Starting EC2 instance: {instance.id}")
instance.wait_until_running()
print(f"----\nEC2 Instance ID: {instance.id} \nStatus:
Started")

def ec2_stop():
instance.stop()
print(f"Stopping EC2 instance: {instance.id}")
instance.wait_until_stopped()
print(f"----\nEC2 Instance ID: {instance.id} \nStatus:
Stopped")

def ec2_reboot():
instance = ec2.Instance(instance_id)
instance.reboot()
print(f"----\nEC2 Instance ID: {instance.id} \nStatus:
Rebooted")

def ec2_terminate():
instance.terminate()
print(f"Terminating EC2 instance: {instance.id}")
instance.wait_until_terminated()
print(f"----\nEC2 Instance ID: {instance.id} \nStatus:
Terminated")

instance_id = input("Enter Instance ID: ")
main_task = inquirer.select(
message="Choose action for Instance:",
choices=["Start EC2 Instance", "Stop EC2 Instance", "Reboot EC2
Instance", "Terminate EC2 Instance", "Exit"]).execute()

ec2 = boto3.resource("ec2")
instance = ec2.Instance(instance_id)
if main_task == "Start EC2 Instance":

ec2_start()
elif main_task == "Stop EC2 Instance":

ec2_stop()
elif main_task == "Reboot EC2 Instance":

ec2_reboot()
elif main_task == "Terminate EC2 Instance":

ec2_terminate()
elif main_task == "Exit":

print("Exit from the task.")

In Example 11.5, we change the settings of an instance. We replace the instance
type from the current type with the t2.small type. We import the boto3
module, call the resource function with the ec2 service, and then use the
instance function in Example 11.4. Before changing the attribute, we must
stop the instance, and then we execute the stop function to stop.
After we verify that the instance has stopped with the wait_until_stopped
function, we run the modify_attribute function with a parameter as the
InstanceType. The value of this parameter is t2.small, which is one of the
AWS platform instance types.
After we change the instance type, we start the instance with a new type:
t2.small.
Example 11.5: Manage EC2 Instance
import boto3
instance_id = "i-0aabe4b7adb32fd87" #Enter your instance ID in
string
ec2 = boto3.resource("ec2")
instance = ec2.Instance(instance_id)
print(f"Instance ID: {instance_id} \nCurrent Instance Type:
{instance.instance_type}")
instance.stop()
print("---\nInstance is stopping")
instance.wait_until_stopped()
print("---\nInstance is stopped")
instance.modify_attribute(InstanceType={"Value": "t2.small"})
print("---\nInstance type is changed")
instance.start()
print("---\nInstance is starting")
instance.wait_until_running()
print(f"---\nInstance started with the new instance type.")
print(f"Instance ID: {instance_id} \nCurrent Instance Type:
{instance.instance_type}")

We add various print functions to the script because stopping and starting the
instance takes time. So, we can see the process of our script. Initially, we get
an instance ID and collect the instance type. After the operation finishes, we

collect the same data from the instance. The instance type changes from
t2.micro to t2.small at the end of the output.
Instance ID: i-0aabe4b7adb32fd87
Current Instance Type: t2.micro

Instance is stopping

Instance is stopped

Instance type is changed

Instance is starting
Instance started with the new instance type.
Instance ID: i-0aabe4b7adb32fd87
Current Instance Type: t2.small

In Example 11.6, we collect all instances in the default region with the instance
state. It can be running, stopped, and terminated. We create six instances,
out of which we stop two and terminate two. So we have two instances in the
running, stopped, and terminated states each, with a total of six instances, as
shown in Figure 11.10. You can create all instances via the AWS console.

Figure 11.10: Instance List in AWS Console

We use the filter function. Inside parentheses, we add the name parameter
instance-state-name with the values ["stopped",
"terminated","running"]. If the instance state matches with one of them, it
filters the instance.

import boto3
ec2 = boto3.resource("ec2")
instances = ec2.instances.filter(

Filters=[{"Name": "instance-state-name", "Values": ["stopped",
"terminated", "running"]}])

After that, we display all filtered instances in each line with their instance
state. So, we use the for loop to get all of them one-by-one. We call the id
value for the instance ID and the state['Name'] value for the instance state.
for info in instances:

print(f"Instance ID: {info.id} - InstanceState:
{info.state['Name']}")

In the instance-state-name filtering, there are additional values, such as
pending, shutting-down, and stopping states. We don’t use these values in
this example. After executing the script, we can see the following output with
six instances, including the current states.
Output:
Instance ID: i-0c2fb7d380983faa2 - InstanceState: terminated
Instance ID: i-0db78c77c5cfaaa01 - InstanceState: stopped
Instance ID: i-0caeb3e2441e9ea1a - InstanceState: terminated
Instance ID: i-089e84988073f45e2 - InstanceState: running
Instance ID: i-06193fa1ebe7cb322 - InstanceState: running
Instance ID: i-0aabe4b7adb32fd87 - InstanceState: stopped

The output changes if we change the values list in the instance-state-name.
For example, if we try to get the instances that are running, we only write the
running string as an item of the Values.
instances = ec2.instances.filter(

Filters=[{"Name": "instance-state-name", "Values":

["running"]}])

Output:
Instance ID: i-089e84988073f45e2 - InstanceState: running
Instance ID: i-06193fa1ebe7cb322 - InstanceState: running

Connection to EC2 instances
We already write scripts to manage the EC2 instances. In this section, we will
try to connect instances and collect data, as we did in the previous chapters.

These instances can be a virtual router, firewall, or server. So, we use the same
method to log in to these instances by running paramiko or netmiko modules.
We can also connect to instances directly from a PC. We use the key pair file
with an extension like .pem. We can connect an instance with its public IP
address, as shown in Figure 11.11. We enter the EC2 service page in the AWS
console. Then, we click on one of the running instances. At the bottom, a page
shows a Description tab. Inside this tab, we can see the public IP address of
the instance. There is also a public DNS link in the same tab. We use these
public IP addresses or Public DNS links to log in via SSH tools or modules in
Python.

Figure 11.11: Finding Public IP Address of an Instance in AWS Console

In Linux machines, we need to go to the same directory with the ec2-
keypair.pem file in the terminal. After that, we enter the following command
in the terminal to change the permission of the .pem file.
chmod 400 ec2-keypair.pem

Then, we execute the ssh command with the -i parameter to use the key pair
file to authenticate the remote device. After that, we write the default username
as ec2-user, with the @ character. Finally, we write the public IP address we
get from the AWS Console.
ssh -i ec2-keypair.pem ec2-user@PUBLIC_IP

In Windows machines, we can use a similar way in command prompt. First,
we change the permissions of the key pair file and enter the PowerShell tool in
Windows. Then, we go to the directory where our key pair file is and enter the

following commands in PowerShell. If all the commands’ output is successful,
the operation finishes. If one of them fails, you can check for a solution on the
internet.
icacls.exe "ec2-keypair.pem" /reset
icacls.exe "ec2-keypair.pem" /grant:r "$($env:username):(r)"
icacls.exe "ec2-keypair.pem" /inheritance:r

After changing the file permissions, we can use the command prompt or
PowerShell to connect to the instance via SSH protocol.
ssh -i ec2-keypair.pem ec2-user@PUBLIC_IP

As an option, we can also use an open-source tool like Putty as an SSH
connection tool. We must convert the key pair file from the .pem file to the
.ppk file with the Puttygen tool. Then, we change the authentication mode by
adding the .ppk file in Putty. You can check the details about connection with
Putty tool in the following AWS official document:
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html?
icmpid=docs_ec2_console
Paramiko module: One of the most popular SSH connection module in
Python is the paramiko module. In Example 11.6, we use the paramiko module
to connect an instance and execute a command. We looked at several examples
of the paramiko module in the previous chapters; the only difference is the
usage of the connect function in this example. We enter the hostname value as
a public IP address or the DNS we get from the AWS console. Username is the
default username ec2-user, and a new parameter named key_filename is used
to set the key pair file to ec2-keypair.pem. Instead of entering passwords, we
use the key pair authentication method between our PC and the instance in the
AWS platform.
Example 11.6: Connect EC2 instance with paramiko
from paramiko import SSHClient, AutoAddPolicy
from time import sleep
client = SSHClient()
client.set_missing_host_key_policy(AutoAddPolicy())
client.connect(hostname="PUBLIC IP_OR_DNS", username="ec2-user",
key_filename= "ec2-keypair.pem")
commands = client.invoke_shell()
commands.send("uname -a \n")
sleep(1)
output = commands.recv(1000000)

output = output.decode("utf-8")
client.close()
print(output)print("---\nInstance type is changed")
instance.start()
print("---\nInstance is starting")
instance.wait_until_running()
print(f"---\nInstance started with the new instance type.")
print(f"Instance ID: {instance_id} \nCurrent Instance Type:
{instance.instance_type}")

Netmiko module: We used the netmiko module several times in the previous
chapters. In Example 11.7, we use the netmiko module to log in to an instance.
The only difference here is that instead of password, we use the key_file
parameter with the ec2-keypair.pem value, which is the file name of our key
pair. The code is more straightforward, and the output is more evident with the
netmiko module.
Example 11.7: Connect EC2 instance with netmiko
from netmiko import Netmiko
device = {"host": "18.170.25.70", "username": "ec2-user",
"device_type": "linux", "key_file": "ec2-keypair.pem"}
net_connect = Netmiko(**device)
output = net_connect.send_command("uname -a", strip_command=False)
print(output)

In Example 11.8, we create an instance with boto3 and execute a command in
the new instance. After we create the instance, we get the instance ID with the
instance_id parameter. We wait until the instance is in the running state with
the wait_until_running function.
Then, we reload the instance to update the instance attributes to avoid getting
the public IP address from the instance data. The remaining part is what we did
in Example 11.7 by connecting the instance with netmiko and executing the
command inside.
Example 11.8: Create and log in an instance with executing commands
import boto3
from netmiko import Netmiko
ec2 = boto3.resource("ec2")
instances = ec2.create_instances(

ImageId="ami-06672d07f62285d1d",
MinCount=1,

MaxCount=1,
InstanceType="t2.micro",
KeyName="ec2-keypair"

)
instance_id = instances[0].instance_id
print(f"{instance_id} Instance is created")
instances[0].wait_until_running()
print(f"Instance is started")
instances[0].reload()
public_ip = instances[0].public_ip_address
print(f"Public IP: {public_ip}")
device = {"host": public_ip, "username": "ec2-user",
"device_type": "linux", "key_file": "ec2-keypair.pem"}
net_connect = Netmiko(**device)
output = net_connect.send_command("uptime", strip_command=False)
print(output)

When we execute the script, it creates a new instance, gets the instance ID of
the new instance, and starts the instance. After that, it collects the instance’s
public IP address and connects with the netmiko module. In the end, it
executes the specific command and displays it in the output. All steps are
shown in the following output with the print functions.
Output:
i-0156f7378bee20917 Instance is created
Instance is started
Public IP: ***.***.***.***
uptime
20:12:42 up 0 min, 1 user, load average: 0.23, 0.05, 0.02

S3 bucket management
In this section, we continue with another popular service of the AWS platform:
S3 (Simple Storage Service). In EC2, objects are called instances, and in S3,
objects are called buckets. So, we manage S3 buckets with Python scripts here.
The AWS platform provides an S3 storage system to store files in the AWS
cloud. We write simple scripts, such as creating or deleting buckets and
managing the files in buckets.
You can search for S3 in the search bar on the AWS console to check the
details of the S3 service and the bucket list. We are still in the same region as

eu-west-2, i.e., London.
In Example 11.9, we use the create_bucket function to create a bucket and the
delete function to delete a bucket. S3 buckets are a global namespace,
meaning that all bucket names must be unique in the AWS platform. If any
user in AWS uses the bucket with a name, we cannot use the same bucket
name again. If it’s identical, the following code gives an error message. So, we
must write a unique bucket name.
We call the resource function from the boto3 module with another service
called s3. After that, we can use all functions inside the S3 service. To create a
bucket, we must write two parameters: Bucket as a bucket name and
CreateBucketConfiguration as a region name. We use the eu-west-2 region
as London. When we execute this function by writing the bucket name in the
following code, AWS creates a bucket for us if the bucket name is unique.
create_bucket("test-storage-Python-1")

We use the Bucket function with the bucket name to delete a bucket. Then, we
call it the delete function. If the bucket exists in our region, AWS deletes the
bucket permanently.
bucket = s3.Bucket(bucket_name)
bucket.delete()

Example 11.9: Create and delete buckets
import boto3
s3 = boto3.resource("s3")
def create_bucket (bucket_name):
s3.create_bucket(Bucket=bucket_name, CreateBucketConfiguration={
"LocationConstraint": "eu-west-2"})

def delete_bucket (bucket_name):
bucket = s3.Bucket(bucket_name)
bucket.delete()

create_bucket("test-storage-Python-1")

After running the script, you can check the S3 service in AWS Console to see
whether the buckets are created or deleted. Remember to delete a bucket that
must be empty, without including any files or folders inside it.
In Example 11.10, we write a Python automation script to upload a file from a
local PC to the AWS S3 bucket and download a file from the AWS S3 bucket
to the local PC. We also have a function to delete a file from a bucket.
We use the Object function for the bucket name and the file on the S3 bucket.
Then, we call the upload_file function with the local file name in the local

PC to upload a file to the S3 bucket. We call the download_file function with
the local file name in the local PC to download a file from the S3 bucket to the
local PC.
Finally, we call the delete function to delete the file on the bucket that we
mentioned in the parameter of the Object function.
Example 11.10: Upload, download and delete files in buckets
import boto3
bucket_name = "test-storage-Python-1"
local_file = "test.txt"
file_on_bucket = "test.txt"
s3 = boto3.resource("s3")
s3_object = s3.Object(bucket_name, file_on_bucket)
def uploading(local_file):
s3_object.upload_file(local_file)

def downloading(local_file):
s3_object.download_file(local_file)

def deleting():
s3_object.delete()
print("S3 object deleted")

uploading(local_file)

In Example 11.11, we copy a file from one bucket to another. We create two
variables called source and destination. In the source variable, we create a
dictionary with two items, such as Bucket with the source bucket name and
Key with the file to be transferred. We call the bucket function in the
destination variable by writing the destination bucket name in parentheses.
In the end, we call the copy function for the destination variable by adding the
source dictionary and the destination file name as test.txt.
When we execute the code, the test.txt file from the test-storage-Python-
1 bucket is copied to the test-storage-Python-2 bucket with the name called
test.txt.
Example 11.11: Copy files from a bucket to another
import boto3
s3 = boto3.resource("s3")
source= { "Bucket" : "test-storage-Python-1", "Key": "test.txt"}
destination = s3.Bucket("test-storage-Python-2")
destination.copy(source, "test.txt")

We can also list all S3 buckets in the default region. We use the
s3.buckets.all code in a for loop. Then, we call the name variable from the
bucket iterable. The following code lists all buckets when we execute it:
import boto3
s3 = boto3.resource("s3")
print("All Bucket Lists:")
for bucket in s3.buckets.all():
print(f"- {bucket.name}")

Output:
All Bucket Lists:
- test-storage-Python-1
- test-storage-Python-2

In Example 11.12, we list all items or objects in an S3 bucket. We get the
specific bucket name data to the s3_bucket variable with the
s3.Bucket(bucket_name) function. After that, we check all objects in the
s3_bucket variable with s3_bucket.objects.all in the for loop.
Inside the loop, we print the key value, which is the file name with its
extension, and the size value, which is the file size in bytes.
Example 11.12: List all items in a bucket
import boto3
bucket_name = "test-storage-Python-1"
s3 = boto3.resource("s3")
s3_bucket = s3.Bucket(bucket_name)
for item in s3_bucket.objects.all():
print(f"{item.key} - Size: {item.size} Bytes")

This code gets all the objects in the S3 bucket. Even if we have folders
including files, it shows all objects or items in that bucket, as in the following
output:
test1.txt - Size: 2112 Bytes
test2.txt - Size: 1200 Bytes
test_folder/ - Size: 0 Bytes
test_folder/test3.txt - Size: 1968 Bytes

EBS volume management
Elastic Block Store (EBS) is another storage service provided by the AWS
platform. It’s inside the EC2 service, and EC2 instances use it for block-level

storage. It offers high performance, durability, and scalable volumes, as in
Tebibyte (TiBs).
EBS volumes have an option for snapshots of volumes in which we can store
all backup data in different availability zones. It protects our data and is highly
reliable.
You can check the EBS section in the AWS console on the EC2 page which is
listed in Figure 11.12. All EBS volumes in the specific region are listed in
Figure 11.12.

Figure 11.12: EBS Section in AWS Console

There are various volume types in EBS, such as gp2 (General Purpose SSD),
io1 (Provisioned IOPS SSD), st1 (Throughput Optimized HDD), and sc1
(Cold HDD). You can check the details of each volume type in the AWS
documentation.

Manage EBS volumes
We can manage EBS volumes with the boto3 module, as we did in EC2 and S3
services. In Example 11.13, we create an EBS volume using the Python script.
We use the ec2 service with the resource function from the boto3 module.
After that, we call the create_volume function to create an EBS volume.
There are two mandatory parameters to create an EBS volume:
AvailabilityZone and Size. We must define the availability zone and the
volume size. In the following example, the availability zone is eu-west-2a.
These zones are inside the eu-west region. We add a,b,c to the end of the

region name to write an availability zone. We set the volume size to 20 GB,
and we can change it to any value. In the end, we show the new volume ID by
calling the new_volume.id.
Example 11.13: Create an EBS volume
import boto3
ec2 = boto3.resource("ec2")
new_volume = ec2.create_volume(AvailabilityZone="eu-west-2a",
Size=20)
print(f"Created volume ID: {new_volume.id}")

We can also add optional parameters inside the create_volume function. With
the VolumeType parameter, we can configure the volume type when we create a
volume, and it’s gp2 by default.
volume = ec2.create_volume(AvailabilityZone="eu-west-2a", Size=20,

VolumeType="gp2")

We can also add a tag to a volume. To do that, we must use the
TagSpecifications parameter. We set ResourceType and Tags parameters. In
the Tags, we select the key as Name and the value as test-tag-name, which
will be our new volumes tag.
volume = ec2.create_volume(AvailabilityZone="eu-west-2a", Size=20,
TagSpecifications=
[

{
"ResourceType": "volume", "Tags": [
{"Key": "Name", "Value": "test-tag-name"}]}])

When we execute the script, we can see an output with the generated volume’s
ID. You can also check the volume in the AWS Console.
Output: Created volume ID: vol-00bda8ef88e6f21ad
It’s also recommended to delete all values after your study to prevent any
chances of them being used.

Create snapshots of EBS volumes
EBS volume has a data protection feature that creates a copy of the volume,
which is called a snapshot. These snapshots can be stored in different regions
or availability zones to protect the data. You can check the created snapshots
on the EC2 service page, under the Elastic Block Store tab as Snapshots,
as shown in Figure 11.12.

In Example 11.14, we create a snapshot of an existing volume with the
create_shapshot function. Inside parentheses, we write the VolumeId
parameter to choose the target volume to create a backup or snapshot.
Example 11.14: Create a snapshot of an EBS volume
import boto3
ec2 = boto3.resource("ec2")
volume_id = "vol-0ae620def39c1c379"
snapshot_volume = ec2.create_snapshot(VolumeId=volume_id)
print(f"Original Volume: {volume_id} \nSnapshot Volume:
{snapshot_volume.id}")

When we execute the script, we display the original volume and the snapshot
volume ID. Volume IDs start with vol-, and snapshot volume IDs begin with
snap-.
Output:
Original Volume: vol-0ae620def39c1c379
Snapshot Volume: snap-0206bfa631894b75f

Attach EBS volume to EC2 instance
In Example 11.15, we attach an EBS volume to an EC2 instance. We must have
at least one available EBS volume not connected to an instance and an active
instance to attach the volume. We check the volume state at the beginning of
the code, and we check the status at the end. If the EBS volume is not attached
to an instance, it’s available. If it’s attached to an instance, it’s in the in-use
state.
We use the attach_to_instance function to attach the volume to an instance;
we must add two mandatory parameters: Device and InstanceID. The Device
parameter is used to expose to the instance (for example, /dev/sdh or xvdh).
If the instance is an AWS marketplace instance, the instance must be stopped
before the attachment of the EBS volume. Otherwise, as we did in this
example, we can attach an EBS volume to an instance in the running state.
Example 11.15: Attach EBS Volume to an EC2 Instance
import boto3
ec2_resource = boto3.resource("ec2")
volume = ec2_resource.Volume("vol-0ae620def39c1c379")
print(f"Volume: {volume.id} Status: {volume.state}")

volume.attach_to_instance(Device="/dev/sdh", InstanceId="i-
0d1d8dd7bc1887539")
print(f"Volume: {volume.id} Status: {volume.state}")

When we execute the script, in the output, we can see the volume’s status at
the beginning and the end of the code. After it attaches to an instance, the
status of the EBS volume changes from available to in-use.
Output:
Volume vol-0ae620def39c1c379 status -> available
Volume vol-0ae620def39c1c379 status -> in-use

We can also check the instance by connecting via SSH. In Linux machines, we
can check all volumes and their size information with the lsblk command.
Before executing the script, we have only one drive: xvda, 8 GB. After running
the script, a new drive is added: xvdh, 20 GB. This is the volume that we attach
to this instance.
Before script:
[ec2-user@IP_ADDRESS /]$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
xvda 202:0 0 8G 0 disk
└─xvda1 202:1 0 8G 0 part /
After script:
[ec2-user@IP_ADDRESS /]$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
xvda 202:0 0 8G 0 disk
└─xvda1 202:1 0 8G 0 part /
xvdh 202:112 0 20G 0 disk

We can also detach EBS volumes from the EC2 instances using the
detach_from_instance function. We write the same code, only changing the
function name. This function also has two mandatory parameters: Device and
InstanceID.
volume.detach_from_instance(Device="/dev/sdh", InstanceId="i-
09b0e33f1e8a88c37")

IAM user management
AWS has another essential service called Identity and Access Management
(IAM). It’s a user management service related to user permissions and access
control, allowing us to manage all users and access levels in the AWS console.

We can create multiple users in a single AWS account, so we can divide users
into groups to give access to the specific services according to the related
teams. We can even manage the billing section for the particular user.
In Example 11.16, we create a user with the IAM service. So, we call the iam
value in the resource function and assign it to a variable. After that, we create
the user with the create_user function. Inside parentheses, we write the
UserName parameter with its value as abcd. In the end, it displays the output.
When we execute this script, it creates a new user called abcd.
Example 11.16: Create a new user in IAM service
import boto3
iam = boto3.resource("iam")
result = iam.create_user(UserName="abcd")
print(result)

In the following example, we list all the users in the IAM service. We get user
data from users.all and assign it to a variable in a list type. After that, we use
the for loop to get each item’s name value to get the username. The script
displays all active users in the IAM service when we execute the script.
import boto3
iam = boto3.resource("iam")
users = list(iam.users.all())
for user in users:
print(user.name)

In Example 11.17, we add new roles and remove current roles from users in the
IAM service. We use the attach_policy function with the policy name to add
a new role to a user and the detach_policy function to remove a current role
from a user. We add policy Amazon Resource Name (ARN) with the role
name at the end in the following example.
When we call the customized add_role function with the username and the
role name, the script adds the particular role to the specified user. You can
check the user permissions from the IAM service in the AWS Console.
Example 11.17: Add and remove roles from users
import boto3
def add_role(username,role_name):
policy_arn = f"arn:aws:iam::aws:policy/{role_name}"
iam = boto3.resource("iam")
iam.User(username).attach_policy(PolicyArn=policy_arn)

def remove_role(username,role_name):

policy_arn = f"arn:aws:iam::aws:policy/{role_name}"
iam = boto3.resource("iam")
iam.User(username).detach_policy(PolicyArn=policy_arn)

add_role("abcd","AmazonEC2FullAccess")

Conclusion
This chapter taught us about creating automation scripts in the AWS cloud
platform with the Python script. We made an environment in AWS Console to
connect it with the scripts we created. We used the boto3 module to handle
tasks like managing EC2 instances, S3 buckets, EBS volumes, and user access
and permissions in the IAM Service.

Multiple choice questions
1. Which of the following services are managed through the AWS user

access management?

a. EC2
b. VPC
c. S3
d. IAM

2. Which of the following functions create an EC2 instance?

a. create_ec2_instance()
b. instance()
c. create_instances()
d. add_instances()

3. Which of the following feature is wrong about EBS volumes to compare
the S3 bucket?

a. High performance
b. Cheaper
c. Easy data backup via snapshots
d. Highly scalable

Answers
1. d
2. c
3. b

Questions
1. Write a script to create 3 EC2 instances and attach 5 GB of EBS volumes

for each.
2. Write a script to detach an EBS volume from an EC2 instance and attach

it to another EC2 instance.

Index
A
Address Resolution Protocol (ARP) packets 343
Amazon Web Services (AWS) 396

EBS (Elastic Block Store) 396
EC2 (Elastic Compute Cloud) 396
IAM (Identity and Access Management) 397
S3 (Simple Storage Service) 396

Ansible 96
AWS account

creating 397
user, creating 397-399

AWS CLI
for Linux 400, 401
for Windows 400
installing 399
usage 401, 402

B
boto3 module 397

installing 397
break statement 53, 54

C
classes 91
close function 68
cloud environment deployment 396

AWS 396, 397
collecting logs 118

CPU levels, collecting 122-126
duplicated IP address, finding 126-128
version and device information, collecting 118-122
with multithreading 129-132
with SNMP 257-262

Command Line Interface (CLI) 2
concurrent module

using 314
connection modules 96

SSH connection 99
telnet connections 112

continue statement 54, 55
CPU levels

plotting 240-243
crontab service 348

D
data plotting 235-238

CPU levels, plotting 240-243
interface bandwidth, plotting 243-245

data types 28, 29
dictionary 30, 41, 42
float 29
integer 31
list 29, 35-37
set 30
string 29, 30
tuple 29

devices. See network devices
dictionary 41, 42

for loop statements 44
dictionary methods

clear method 43
copy method 43
del method 43
pop method 43

E
EBS volumes

attaching, to EC2 instance 429, 430
managing 426
managing, with boto3 module 427, 428
snapshots, creating 428

EC2 instances
connecting to 417, 418
connecting, with Netmiko 420, 422
connecting, with paramiko 419
managing 402
managing, with Python 403-417

Elastic Block Store (EBS) 426
Elastic Compute Cloud (EC2) 402
elif statement 48
email

logs, sending via 262-267
ether function 343

F
file handling 66

Excel files 73-75
open function, using for 66-69

OS module 69
Word files 70, 71

file transfer 200
backup configuration file, with SCP 232-234
backup configuration file, with SSH 201-203
Netmiko SCP connection, with concurrent module 224-227
with FTP connection 204-213
with Netmiko SCP connection 216-223
with Nornir SCP connection 228-231
with SFTP connection 213-216

File Transfer Protocol (FTP) 99, 200
firewalld service 323

activating 323, 324
configuring, on servers 331-339
drop zone 331
installing 323
public zone 331
trusted zone 331
using 324-329

for…else statement 57
for loops 48-50
ftplib module 204
ftpretty module 209
functions 85, 86

variables, calling from 88, 89
with default parameters 87
with parameters 86, 87

G
GNS3

downloading 96
installing 97

GNS3 VM
downloading 97
installing 97-99

Google Cloud Platform (GCP) 396

I
IAM user management 430, 431
Identity and Access Management (IAM) 430
if condition 45-48
input function 22, 26, 27
InquirerPy module 362, 363

confirm prompt 365
secret prompt 366
select prompt 364
text prompt 364

integer data type 31

interface bandwidth
plotting 243-245

Internet Control Message Protocol (ICMP) packet 344
internet service provider (ISP) networks 322
IP address validator 134, 135

J
JavaScript Object Notation (JSON) 179
Jinja2 template 157, 158

devices, configuring with 157, 162-173
if statement 174-178
rendering, with YAML file 160, 161

K
key pairs

creating 405-407

L
Linux

Python installation 9
Linux servers maintenance 283-287

CPU and memory levels, collecting 294-298
file type and permission, collecting 301-303
interface information, collecting 298-301
logs, collecting via syslog 288, 289
server login, with secure password 291-294

list 35-37
list methods

append method 37, 38
clear method 39
copy method 39, 40
count method 40, 41
del method 39
insert method 38
len method 40
pop method 38, 39
remove method 38
sum method 40

logs
sending via email 262-267

M
MacOS

Python installation 10, 11
main tool script

creating 369-377

Management Information Base (MIB) 257
matplotlib module 235

advanced usage 239
graphic, drawing with 238
sample, drawing 237

modules
creating 90

multithreading 118

N
Napalm module 178

devices, configuring with 178, 184, 185
logs, collecting from devices 179-183

nested loops 58, 59
Netmiko module

for SSH 107, 108
for telnet 116, 117

network automation 2
benefits 3, 4
future of networking 4
tool design 366-368

network devices
alert alarms 251-257
configurations, replacing on files 154-156
configuring 146-149
configuring, by Nornir and Jinja template 194-196
configuring, with Jinja 162-173
configuring, with Napalm module 178-185
configuring, with Nornir module 185, 186
connecting, with Nornir-NAPALM 193, 194
connecting, with Nornir-Netmiko 189-192
interfaces, configuring 150-153
reachability test 269
upgrading 248-250

Network Management Systems (NMS) 3
tools 235

network orchestration 2
network packets

manipulating, with scapy 343-348
network security

configurations, checking 348
CPU levels, checking periodically with crontab service 348-353
logs, checking 348
network packets, manipulating with scapy 343-348
packet collecting from ports, with Pyshark 357, 358
port security configuration, checking in routers 356, 357
router configuration, checking for insecure password 353-355
security services, activating 322

Nornir 185, 186

inventory, configuring 186-189
Nornir and Jinja template

devices, configuring with 194-196
Nornir-NAPALM

devices, connecting with 193, 194
Nornir-Netmiko

devices, connecting with 189-192

O
Object Identifier (OID) 257
Object-Oriented Programming (OOPs) 91
open function

append mode 67, 68
create mode 69
for file handling 66
read by characters 68
read mode 66, 67
write mode 68

openpyxl module 73
Open Shortest Path First (OSPF) 257
OS module 69

getcwd function 70
listdir function 70
mkdir function 69
remove function 69
rmdir function 69

P
paramiko module 96

for SSH 99-101
print function 22-26
Pycharm 13

installation, on Windows 13, 14
pyplot function

functions and parameters 236
Pyshark

for collecting packets, from ports 357, 358
Python 5

characteristics 5
codes, running 11, 12
functions 85
installation 6
installation, for Linux 9
installation, for Mac 10, 11
installation, for Windows 6-8
tools and calculators 133
URL 5
usage area 5

Python modules
importing 14-17
installing 14

Q
Quality of Service (QoS) 322

R
range statement 55, 56
reachability test, to network devices

script, creating 269-272
traceroute test script, creating 272, 273

RE module 76, 96
findall function 77
search function 78
sets 83, 84
special sequences 80-83
split function 79
sub function 80

S
S3 bucket management 422-426
scapy module

network packets, manipulating with 343-348
Secure Copy Protocol (SCP) 200, 201
Secure File Transfer Protocol (SFTP) 99, 200
security services

activating 322
firewalld service 323-331
network devices access lists, creating 339-342

server configurations 305
file transfer, with paramiko 312-314
packages, installing 309-312
processes, stopping by script 315-319
server reboot concurrently 314, 315
users, creating 305-308

server environment
implementing 278
SSH connection, activating 281, 282
Ubuntu installation, on VMware 279-281
VMware player, downloading 278, 279

show function 344
Simple Network Management Protocol (SNMP) 257

logs, collecting with 257-262
Software Defined Networks (SDN) 3
srp function 343
SSH connection 99

activating 281, 282
configuration commands, running with paramiko 103, 104
multiple devices, connecting with Netmiko 111
multiple devices, connecting with paramiko 105, 106
Netmiko module, importing 107, 108
one device, connecting with Netmiko 108, 109
one device, connecting with paramiko 101-103
paramiko module, importing 99-101

string 30
using 30, 31

string methods
len method 32
lower method 33
replace() function 33, 34
split method 34
strip method 33
upper method 32

subnet calculator 136-140
subtask scripts

creating 377
network device scripts 378-385
others.py file 389-392
server scripts 386-389

summary function 344

T
telnet connection 112

multiple devices, connecting with telnetlib 115
Netmiko module for 116, 117
telnetlib module for 112-115

threading module 96
try except statement 59-62

U
Ubuntu 278

downloading 279
installing, on VMware 279-281
Long Time Support (LTS) version 279

V
VMware player

downloading 279
VMware Workstation Player

downloading 278, 279

W

while loop 51-53
Windows

Python installation 6-8
Wireshark tool 346

Y
Yet Another Markup Language (YAML) 158, 159

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Reviewer
	Acknowledgement
	Preface
	Errata
	Table of Contents
	1. Introduction to Network Automation
	Structure
	Objectives
	Introduction to network automation
	Benefits of network automation
	Future of networking

	Introduction to Python
	Python usage area

	Python installation
	Python for Windows
	Python for Linux
	Python for MAC

	Running Python codes
	Pycharm installation for Windows
	Install and import Python modules
	Conclusion
	Multiple choice questions
	Answer

	Questions

	2. Python Basics
	Structure
	Objectives
	Print and ınput functions
	Print()
	Input ()

	Data types
	String and integer
	String methods
	List
	List methods
	Dictionary
	Dictionary methods

	Statements and conditions
	If condition
	For statement
	While statement
	Break and continue statement
	Range statement
	For else statement and nested loops
	Try…except statement

	Conclusion
	Multiple choice questions
	Answers

	Questions

	3. Python Networking Modules
	Structure
	Objectives
	File handling
	Open function
	OS module
	Word files
	Excel files

	RE modules
	RE module functions
	Special sequences
	Sets in the RE module

	Advanced topics of Python
	Functions
	Functions with parameters
	Functions with default parameters
	Call variables from functions

	Creating modules
	Classes

	Conclusion
	Multiple choice questions
	Answers

	Questions

	4. Collecting and Monitoring Logs
	Structure
	Objectives
	Connection modules
	SSH connection
	Paramiko module For SSH
	Connect 1 device with Paramiko
	Running configuration commands with Paramiko
	Connect to multiple devices with Paramiko
	Netmiko module for SSH
	Connect a single device with Netmiko
	Connect to multiple devices with Netmiko

	Telnet connection
	Telnetlib module for telnet
	Connect to multiple devices with telnetlib
	Netmiko module for telnet

	Collecting logs
	Collecting version and device information
	Collecting CPU levels
	Finding duplicated IP address
	Collecting logs with multithreading

	Tools and calculators
	IP address validator
	Subnet calculator

	Conclusion
	Multiple choice questions
	Answers

	Questions

	5. Deploy Configurations in Network Devices
	Structure
	Objectives
	Configure network devices
	Configuration of interfaces
	Replacing configurations on files

	Configure devices with Jinja2 template
	Introduction to Jinja2 template
	Introduction to YAML language
	Rendering Jinja template with a YAML file
	Configure devices with Jinja
	If statement in Jinja

	Configure devices with Napalm module
	Collect logs from devices with NAPALM
	Configure devices with NAPALM

	Configure devices with Nornir module
	Configure inventory in Nornir
	Connection to devices with Nornir-Netmiko
	Connection to devices with Nornir-NAPALM
	Configure devices by Nornir and Jinja template

	Conclusion
	Multiple choice questions
	Answers

	Questions

	6. File Transfer and Plotting
	Structure
	Objectives
	File transfers
	Backup configuration file with SSH
	File transfer with FTP connection
	File transfer with SFTP connection
	File transfer with Netmiko SCP connection
	Netmiko SCP connection with concurrent module
	File transfer with Nornir SCP connection
	Backup configuration file with SCP

	Plotting data
	Plotting CPU levels
	Plotting interface bandwidth

	Conclusion
	Multiple choice questions
	Answers

	Questions

	7. Maintain and Troubleshoot Network Issues
	Structure
	Objectives
	Upgrade network devices
	Alert alarms in devices
	Collect logs with SNMP
	Send logs via email
	Reachability test to network devices
	Ping test script
	Traceroute test script

	Conclusion
	Multiple choice questions
	Answers

	Questions

	8. Monitor and Manage Servers
	Structure
	Objectives
	Implement server environment
	Download VMware player and Ubuntu
	Install Ubuntu on VMware
	Activate SSH connection

	Maintain Linux servers
	Collect logs via syslog
	Login servers with secure password
	Collect CPU and memory levels
	Collect interface information
	Collect type and permission of files

	Server configurations
	Create users in servers
	Install packages
	Transfer files with Paramiko
	Reboot servers concurrently
	Stop running processes by script

	Conclusion
	Multiple choice questions
	Answers

	Questions

	9. Network Security with Python
	Structure
	Objectives
	Activate security services
	Install and activate the “Firewalld” service on servers
	Configure firewall settings on servers
	Create access lists in network devices

	Manipulate network packets with scapy
	Check logs and configurations
	Check CPU levels periodically with Crontab
	Check router configuration for insecure passwords
	Check port security configuration in routers
	Collect packets from ports with Pyshark

	Conclusion
	Multiple choice questions
	Answers

	Questions

	10. Deploying Automation Software
	Structure
	Objectives
	Introduction to InquirerPy module
	Automation tool design
	Create main tool script
	Create subtask scripts
	Network device scripts
	Server scripts
	Other remaining scripts

	Conclusion
	Multiple choice questions
	Answers

	Questions

	11. Automate Cloud Infrastructures with Python
	Structure
	Objectives
	Cloud environment deployment
	Introduction to AWS
	Installation of Boto3 and AWS CLI

	EC2 instance management
	Manage EC2 instances with Python
	Connection to EC2 instances

	S3 bucket management
	EBS volume management
	Manage EBS volumes
	Create snapshots of EBS volumes
	Attach EBS volume to EC2 instance

	IAM user management
	Conclusion
	Multiple choice questions
	Answers

	Questions

	Index

