Python
Networking

Solutions Guide

Leverage the Power of Python to Automate and Maintain
your Network Environment

Python
Networking

Solutions Guide

Leverage the Power of Python to Automate and Maintain
your Network Environment

Python Networking
Solutions Guide

Leverage the Power of Python to Automate
and Maintain your Network Environment

Tolga Koca

www.bpbonline.com

http://www.bpbonline.com/

Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor BPB Online or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, BPB Online cannot
guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork

119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE
ISBN: 978-93-5551-361-8

www.bpbonline.com

http://www.bpbonline.com/

Dedicated to

My Lovely Family:
Merve Aydin Koca
Ali Seydi Koca
Guluzar Koca (R.1.P)
Duygu Koca

Yesim Eren

About the Author

Tolga Koca has 10+ years of experience as a Network, Cloud, and DevOps
Engineer. He has worked with Internet Service Providers (ISPs) and
Enterprise Companies and also created an online learning platform focused
on Network Automation, Cloud, and DevOps training
(networksautomation.com). He believes in sharing his knowledge with
others, and he practices this by giving live webinars.

About the Reviewer

Pravesh Kumar Sharma, a long-time cybersecurity practitioner, Cyber
Security Specialist in the Indian Air Force. Enrolled just after completing
10+2, he graduated in Electronics and Communication Engineering from
the Institution of Engineers Kolkata. After having 10+ years in web
programming and networking, he switched over to offensive security as a
pentester.

He is the winner of many capture the flags hackathons, an honorable
mention of the SANS hacking challenge. He is an avid learner and stood
top 1% in Indian Institute of Technology Madras-driven NPTEL courses.

A Certified Information Systems Security Professional(CISSP) and Red Hat
Certified Engineer(RHCE) person, he has an interest in solving problems at
its grassroots levels. Python and Powershell are his favorite scripting
languages. Besides this, he i1s MTech Software Systems from Birla Institute
of Science and Technology(BITS) Pilani Rajasthan.

His name appears in TryHackMe top 1% worldwide. You can connect with
him on https://www.linkedin.com/in/pravesh-kumar-sharma-infosec/

Acknowledgement

There are a few people I want to thank for their support during the writing
of this book. First, I would like to thank my lovely wife, Merve, for always
supporting me when I was stuck technically and mostly emotionally. And

thanks to all my family members who supported me from the beginning to
the end of the book.

I also want to thank Ozgur Kok for his outstanding mentorship and for
always encouraging me.

Finally, I would like to thank Serina Haratoka for guiding me to unleash the
power in myself and lightening my way during this period.

Also, special thanks to my cute cats, Mango and Kiwi, who always
supported me from their boxes next to me while I was writing.

I want to thank BPB Publications, for their positive and encouraging
support made this book to become true.

Preface

This book shows the Python programming language's importance and
power to automate network devices such as routers, switches, firewalls,
system devices like Linux servers, and cloud devices like the AWS
platform. It shows to manage and configure thousands of devices with a
single script, saving time and preventing faults.

This book covers network automation with Python specifically for
Network, System, and DevOps engineers. It explains the Python basics
from scratch with various features and modules. It covers the most helpful
connection methods to login to multiple devices concurrently and manages
them with scripts. It explains creating a customized network automation
tool with many scripts.

This book is divided into 11 chapters. It covers network automation and
Python basics, connecting devices with Python, managing devices by
scripts, creating a network automation tool, etc. The detailed chapter
information is listed below.

Chapter 1 covers the fundamentals of network automation and Python
programming language basics. You will learn to install all the tools and
packages for different operating systems. Then, you write a basic Python
script and execute it.

Chapter 2 covers the essential Python functions for beginners and data
types that will be used in later scripts. There are many data types in Python,
focusing on the most used ones, including their methods for network
automation. Then, it continues with the Python statements and conditions to
create the main structure of the scripts.

Chapter 3 explains various built-in and 3rd party Python modules. File
handling modules will be shown to create, modify and delete text, word, or
excel files. One of the most important modules of the manipulation, which
is the RE module, is explained in this chapter. It deeply presents the RE
module with its functions, sets, and other features. The last part explains
some advanced features of Object Oriented Programming (OOP) of Python
to use in the more complex scripts.

Chapter 4 focuses on the Python connection modules and script examples.
It explains the netmiko, paramiko, and telnetlib modules to connect to the
network devices. There are various examples of collecting logs from
devices and creating customized tools explaining each script code line-by-
line. These examples are focused on connecting Cisco network devices, but
these scripts can also be used with other vendor products.

Chapter 5 focuses on configuring network devices with some automation
modules such as Jinja2, NAPALM, and nornir modules. These modules
make configuring devices a more advanced and automated way. They create
YAML files to create simple scripting files to make network automation
easy.

Chapter 6 explains the file transfer protocols with the necessary 3rd party
modules. You can login to devices with SSH, FTP, SFP, and SCP protocols
and upload or download multiple files from network devices with scripts. It
also focuses on plotting module the network data, such as device CPU
values and the interface bandwidth utilization to the plot.

Chapter 7 focuses on upgrading and rebooting devices, collecting alarms,
communicating with devices by the SNMP protocol, sending email
notifications, and making reachability tests such as ping and traceroute for
network and system devices.

Chapter 8 covers the system device management. It explains to create a
Linux server environment step-by-step. It focuses on maintaining these
servers by collecting server data such as CPU, memory, interface, and file
information. It also explains configuring multiple servers by installing
software packages, user management, rebooting servers, and managing the
SErver processes.

Chapter 9 covers the security features and services for the network and
system devices. It has various example scripts with explanations. Examples
of scripts are to manage security services in Linux servers, manipulate
network packets, check security logs, and capture network packets.

Chapter 10 explains to create a network automation tool. It's a command-
line interface (CLI) based tool that combines several scripts to automate,
maintain, and configure devices.

Chapter 11 focuses on network automation in Amazon's AWS Cloud
Platform. It explains the Boto3, an AWS management module that manages

EC2 instances, S3 buckets, and IAM user management.

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/33ehv8a

The code bundle for the book 1is also hosted on GitHub at
https://github.com/bpbpublications/Python-Networking-Solutions-
Guide. In case there's an update to the code, it will be updated on the
existing GitHub repository.

We have code bundles from our rich catalogue of books and videos

Errata

We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to
the eBook version at www.bpbonline.com and as a print book

https://rebrand.ly/33ehv8a
https://github.com/bpbpublications/Python-Networking-Solutions-Guide
https://github.com/bpbpublications
mailto:errata@bpbonline.com
http://www.bpbonline.com/

customer, you are entitled to a discount on the eBook copy. Get in
touch with us at: business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on BPB books and eBooks.

mailto:business@bpbonline.com
http://www.bpbonline.com/

Piracy

If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an
author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit
www.bpbonline.com. We have worked with thousands of developers
and tech professionals, just like you, to help them share their insights
with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why
not leave a review on the site that you purchased it from? Potential
readers can then see and use your unbiased opinion to make purchase
decisions. We at BPB can understand what you think about our
products, and our authors can see your feedback on their book.
Thank you!

For more information about BPB, please visit www.bpbonline.com.

mailto:business@bpbonline.com
http://www.bpbonline.com/
http://www.bpbonline.com/

Table of Contents

1. Introduction to Network Automation
Structure
Objectives
Introduction to network automation
Benefits of network automation
Future of networking
Introduction to Python
Python usage area
Python installation
Pyithon for Windows
Pyithon for Linux
Python for MAC
Running Python codes
Pycharm installation for Windows
Install and import Python modules
Conclusion
Multiple choice questions
Answer
Questions

2. Python Basics
Structure
Objectives
Print and mnput functions
Print(),
Input (),
Data types
String and integer
String methods
List
List methods
Dictionary,

Dictionary, methods
Statements and conditions
If condition
For statement
While statement
Break and continue statement
Range statement
For else statement and nested loops
Iry...except statement
Conclusion
Multiple choice questions
Answers
Questions

3. Python Networking Modules
Structure
Objectives
File handling
Open function
OS module
Word files
Excel files
RE modules
RE module functions
Special sequences
Sets in the RE module
Advanced topics of Python
Functions
Functions with parameters
Functions with default parameters
Call variables from functions
Creating modules
Classes
Conclusion
Multiple choice questions
Answers
Questions

4. Collecting and Monitoring L.ogs
Structure
Objectives
Connection modules
SSH connection
Paramiko module For SSH
Connect 1 device with Paramiko
Running configuration commands with Paramiko
Connect to multiple devices with Paramiko
Netmiko module for SSH
Connect a single device with Netmiko
Connect to multiple devices with Netmiko
Telnet connection
Telnetlib module for telnet
Connect to multiple devices with telnetlib
Netmiko module for telnet
Collecting logs
Collecting version and device information
Collecting CPU levels
Finding duplicated IP address
Collecting logs with multithreading
Tools and calculators
IP address validator
Subnet calculator
Conclusion
Multiple choice questions
Answers
Questions

S. Deploy Configurations in Network Devices
Structure
Objectives
Configure network devices
Configuration of interfaces
Replacing configurations on files
Configure devices with Jinja2 template
Introduction to Jinja2 template

Introduction to YAML language
Rendering Jinja template with a YAML file
Configure devices with Jinja
If statement in Jinja
Configure devices with Napalm module
Collect logs from devices with NAPALM
Configure devices with NAPALM
Configure devices with Nornir module
Configure inventory in Nornir
Connection to devices with Nornir-Netmiko
Connection to devices with Nornir-NAPALM
Configure devices by Nornir and Jinja template
Conclusion
Multiple choice questions
Answers
Questions

6. File Transfer and Plotting
Structure
Objectives
File transfers
Backup configuration file with SSH
File transfer with FTP connection
File transfer with SETP connection
File transfer with Netmiko SCP connection
Netmiko SCP connection with concurrent module
File transfer with Nornir SCP connection
Backup configuration file with SCP
Plotting data
Plotting CPU levels
Plotting interface bandwidth
Conclusion
Multiple choice questions
Answers
Questions

7. Maintain and Troubleshoot Network Issues

Structure

Objectives

Upgrade network devices

Alert alarms in devices

Collect logs with SNMP

Send logs via email

Reachability test to network devices
Ping test script
Traceroute test script

Conclusion

Multiple choice questions
Answers

Questions

8. Monitor and Manage Servers
Structure
Objectives
Implement server environment

Download VMware player and Ubuntu

Install Ubuntu on VMware
Activate SSH connection
Maintain Linux servers
Collect logs via syslog
Login servers with secure password
Collect CPU and memory, levels
Collect interface information
Collect type and permission of files
Server configurations
Create users in servers
Install packages
Transfer files with Paramiko
Reboot servers concurrently,

Conclusion

Multiple choice questions
Answers

Questions

9. Network Security with Python
Structure
Objectives
Activate security services
Install and activate the “Firewalld” service on servers
Configure firewall settings on servers
Create access lists in network devices
Manipulate network packets with scapy.
Check logs and configurations
Check CPU levels periodically with Crontab
Check router configuration for insecure passwords
Check port security configuration in routers
Collect packets from ports with Pyshark
Conclusion
Multiple choice questions
Answers
Questions

10. Deploying Automation Software
Structure
Objectives
Introduction to InquirerPy module
Automation tool design
Create main tool script
Create subtask scripts
Network device scripts
Server scripts
Other remaining scripts
Conclusion
Multiple choice questions
Answers
Questions

11. Automate Cloud Infrastructures with Python
Structure
Objectives
Cloud environment deployment

Introduction to AWS
Installation of Boto3 and AWS CLI
EC2 instance management
Manage EC2 instances with Python
Connection to EC2 instances
S3 bucket management
EBS volume management
Manage EBS volumes
Create snapshots of EBS volumes
Attach EBS volume to EC2 instance
IAM user management
Conclusion
Multiple choice questions
Answers
Questions

Index

CHAPTER 1

Introduction to Network Automation

This chapter will focus on the basics of network automation and
understanding the current and future of networking in the industry. It
will explain the benefits of using automation in network environments for
companies and engineers. We will learn the basics of Python programming
and the usage areas of the language. We will install the necessary packages
and tools for the network automation.

Structure

In this chapter, we will cover the following topics:

e Introduction to network automation

o Benefits of network automation

o Future of networking

Introduction to Python

o Python usage area

Python installation

o Python for Windows
o Python for Linux
o Python for Mac

Running Python codes

Pycharm installation for Windows

Install and import Python modules

Objectives

This chapter aims to introduce network automation and Python
programming language. We will download and then install the Python
package for each OS as Windows, Linux, and macOS. We will also look at
how to install the Pycharm tool, which is an Integrated Development
Environment (IDE). We will write our first Python code, and finally,
install third-party modules and import them into our Python codes.

Introduction to network automation

Before explaining network automation, we should start with what
automation is. In simple terms, automation is the use of technology to
perform tasks automatically. It has been rising since the 1950s. Many
companies were using automation in different fields.

We can say that network automation is performing tasks automatically by
reducing human interaction with network devices. With network
automation, there will be no more manual steps, like making command line
interface (CLI) connections and running commands manually to manage
network devices. Network automation scripts are pre-programmed for
specific purposes like software upgrades, collecting device logs, file
transfers, and comparing configurations.

Python, Perl, Bash or Go scripting languages that can be used for network
automation. These scripting languages are all open-source and free. A
network engineer must learn one of these languages to write scripts in
network automation.

There are also open-source network automation tools like Ansible, Puppet,
and Chef. These are network automation frameworks with libraries for
specific demands or vendors, which make network automation simpler.

Network automation is also known as network orchestration. We can
organize, manage, and troubleshoot our whole network structure or
orchestrate with network automation scripts and tools.

So, why do we need network automation? In recent years, the internet has
been growing exponentially, and it will continue. Business demands are
always changing, and maintenance has become harder. You can think that if
a mobile app does not open for 5 to 10 seconds, you may directly delete it.
The delay even in milliseconds can make big problems in many businesses.

But we are human; we can always make mistakes, and manual maintenance
is very slow. This 1s where automation enters our life. Network automation
is still in the early stages, but tech pioneers like Amazon, Google, and
Facebook are using it very efficiently.

Benefits of network automation

So, what will change after we use automation in our network environment?
Is it necessary for each environment? First, we need to check the details of
the current network environments. For almost 20 years, network
configurations have not changed dramatically, and a network engineer’s
role has also stayed the same for a decade. There are Network
Management Systems (NMS) tools that make monitoring and
configuration more automated, but those are mostly vendor-specific tools.
They are not flexible to the new requirements of customers. Additionally,
acceptance of new technologies in networking has come only slowly
because even small mistakes get us in big trouble.

With Software Defined Networks (SDN), all network infrastructures are
evolving. And with SDN and machine learning, networks are becoming
more flexible and easier to maintain. Network automation will be more
important in the near future.

Network automation has many benefits for engineers and companies, and it
improves engineering quality with Python language.

¢ Reduce the number of human errors: With network automation, we
can reduce the frequency of human mistakes in operations. Operations
are done within a limited time. One command mistake can affect many
things in the network and can also cause service interruption. We can
use scripting to eliminate it. There will be no more mistakes in
command entrance in devices. The idea is not to reduce network
engineers in IT teams but to reduce human mistakes; we still need
network engineers to make the network automation work.

e Improved efficiency: We can ensure faster operations and
troubleshooting. Collecting logs is often painful, and it takes a long
time if there are multiple devices to collect. All tasks are done
manually via SSH tools like SecureCRT or Putty. But with the
prepared Python scripts, we can collect any logs from any device with

just a couple of clicks. That means no more copy/paste work.
Machines are much better than us at repetitive things, so the workload
of network engineers is reduced for repeatable actions.

e Create your own automation tool: We can create our automation tool
for specific expectations. For example, we need to check the CPU
levels of 500 devices. If we have an NMS tool, we can collect CPU
data of all devices. Otherwise, it’s almost impossible to enter devices
by CLI one by one and collect CPU data. Even if we have an NMS
tool, it has a limitation: we cannot run every log or feature in that tool.
If our NMS tool has no feature to collect CPU levels, we cannot
perform this task.

But with Python, we can write scripts for any of the logs or statistics
to collect from devices. We can collect any logs we require. We can
write one time, modify for new purposes and use it numerous times.

e Manage logs: We can manage logs efficiently. Because the logs are
dummy when we collect them, we need to specify them, like filtering,
sorting, or checking specific values or lines. With Python scripting, we
can preset all of them, and then just run scripts to convert logs to
readable data for us.

For example, we need to upgrade core routers, so we can collect logs
before and after the upgrade as pre-checks and post-checks. But the
logs are dummies. If we run the show version command in a cisco
router, only one line is important for us: the one that has the software
version information. Then, we must get the backup of the device
configuration. That’s a lot of work to do, and it’s painful if we have
many devices.

But on the other hand, we can create a script that logs in to devices;
collect logs; gets the necessary information like device version, CPU
level, BGP neighborship summary, and interface status; and puts all
the information in Excel and compares it for us. This way, we can
determine what changed after the upgrade in just seconds. By scripting
a couple of lines, we can get the important parts from the collected
logs and make them easy to read for us.

Future of networking

As technology is growing and changing all over the world in all sectors,
telecommunication, data center and cloud companies are also evolving. So,
the role of network engineers is changing. In the near future, network
engineers must know at least one scripting language and automation tool.

The change starts with SDN and virtualization. Network devices or systems
will find the issue and take the responsibility to solve the issues by
themselves with machine learning. New vendors and companies will be
involved, and network structures will be smarter. BGP, MPLS or any other
network knowledge will not be enough for a network engineer because
software and scripting will enter daily life rapidly.

Introduction to Python

According to Python official (www.python.org), Python is an interpreted,
object-oriented, high-level programming language with dynamic semantics.
It’s an open-source programming language that’s free of cost; here are its
characteristics:

o Interpreted: Python is an interpreted language. It means that the code
that is written with this high-level programming language is converted
to machine code and runs each task line-by-line. Python converts each
line to the machine’s readable code. It is also easy to compile; Python
does not need any compiler like C++ or Java. So, we can develop code
much faster than other languages.

o Easy syntax: Python uses indentations. It’s easier to read instead of
other programming languages.

e Increasing community: Python has a very good community. You can
find anything on GitHub or StackOverflow.

e Platform independent: It is also platform-independent, so you can
use it for different operating systems.

Python usage area

Python has a big usage area. In many sectors, we can see Python
programming. We can develop desktop mobile apps, back-end servers,
games, audio, video apps and more, but Python is mainly used for data
science, automation, and web development.

http://www.python.org/

The most popular usage of Python is for data science. In data science, there
are many sub-areas like data analysis, data visualization, machine learning,
and artificial intelligence. Data science is one of the hottest trends in recent
years. And in the future, it will be much more important in the tech world,
which means the popularity of Python will increase all the more.

And in automation, Python is the most popular language. Here, we are
interested in Python. With scripts, we can do network automation easily.
Ansible, a network automation tool, is also written in Python.

Figure 1.1 shows questions asked each month as a percentage, based on
Stack Overflow, which is one of the biggest QA platforms for software
developers. You can easily see how Python is becoming the most popular
programming language in the future:

18.00% i
16.00% - . E:;;thﬂn
= "'I, @ javascript
E o 14.00% 4 L ® jova
=] | | e c++
£ i I | s
% 12.00%- = A A
by oA A n
2 10.00% AN Vnn
= WA \AA
R e : (Al .
E 8.00% 4y P N a1 . VAN
o WA A Y/ S W, A
z -~ il - T y V\._
S 6.00% A e
e WO T
i TV M A RATY
b . - _.---—-\,'-;_.-'f
2 2.00%- e
= | =
& 0.00%4——"7"

: 1 1 i | 1 1 i | 1 1 L] 1 |
2000 2010 2011 2012 2013 2014 2015 2016 2017 2012 2019 2020 2021 2022

Year

Figure 1.1: Stack Overflow questions by month - insights.stackoverflow.com/trends

Python installation

Note that Python 3.9+ cannot be used on Windows 7 or earlier. Python 2.7
is the end of the Python 2.x series and is succeeded by Python 3. End-of-
support of the Python 2 version expired on 01-01-2020.

Python for Windows

To use the Python programming language, we need to install the Python
tool first. We can download Python by clicking on the following link from
Python’s official website:

https://www.Python.org/downloads/

When we enter the website, there iS a Download the latest version for
section on the top, as shown in Figure [.2. If you enter this site using a
Windows machine, you see it as a Windows download. If you enter it using
a Linux or MAC system, you can see the specific OS download button:

e python’

About Downloads Documentation Communit

Download the latest version for Windows

Download Python 3.10.4

Looking for Python with a different 052 Python for Windows,
Linux/UNIX, macOS, Other

Want to help test development versions of Python? Prereleases,

Docker images

Looking for Python 2.77 See below for specific releases

Figure 1.2: Download Python for Windows

We can download the latest stable version of Python by clicking on the
Download Python button; the latest release is currently 3.10.4.

You can also download other OS installations of Python below the
Download button. If you want to download older versions of Python, you
can scroll down on the same website to see all active Python releases. There
are two main versions active as Python version 2 and version 3. Both

https://www.python.org/downloads/

versions have many releases. We will focus on Python version 3 in this
book.

After the download is finished, when we open the installer, we need to
check the add Python 3.10 to PATH box. By default, it’s unchecked.
When we install Python, it has not been added to Environment variables
in Windows Systems. So, the command prompt will not recognize the
Python commands. By checking that box as shown in Figure 1.3, we can
enter the Python command in the command prompt:

=

/ Install Python 3.10.4 (64-bit)
Select Install Mow to install Python with default settings, or choose
Customize to enable or disable features.

@ Install Now

J - S AIBOEAM A T abal |) P e T PR B 1
Ch\Usershtg4200590 AppData Localh Programs' Python\Pythona 10

ncludes IDLE, pip and documentation

Creates shortcuts and file associations

— Customize installation

Choose location and features

python

EA Install launcher for all users (recommended)

windows (4 Add Python 3.10 to PATH Cancel

Figure 1.3: Installation of Python

After checking the box, we can install Python with the default settings by
clicking on the Install Now button. If you need to install Python with
custom settings, you can click on the customize installation button.

When the installation finishes, we can close the installation screen and open
the command prompt (cmd) by clicking on the Windows start button and
writing command prompt. Alternatively, as a shortcut, we can click on the
Windows button on the keyboard and the r key at the same time, and we
will see the rRun tool of windows will be opened. We can just write emd and
click on Enter.

We can write Python --version to verify the installation of Python in cmd.
If you get Python word with the version information as an output, as shown
here, it means that you installed Python successfully:

C:\> Python --version

Python 3.10.4

We can also start a Python session for simple lines of code by writing
python in cmd. There are three bigger signs in the last line of output. It
means that we are inside a new Python session. We can write our code line
by line here and can easily see the output without using any compilers:

C:\> Python

Python 3.10.4 (tags/v3.10.4:9d38120, Mar 23 2022, 23:13:41)

[MSC v.1929 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more
information.

>>>

Python for Linux

For many Linux systems, Python is an already installed package by default
in the OS. For Ubuntu OS, Python version 3 is installed with Ubuntu OS.
When we enter Python3 --version in the terminal and press Enter, you
can see the current Python package version:

$ Python3 --version

Python 3.8.10

If we need to install Python from the package installer, we need to write the
following command in the terminal:
$ sudo apt-get install Python3

Or we can update the Python3 package that is already installed with the
following command:
$ sudo apt-get update

We can enter a new Python session with the Python3 command in the
terminal. For basic usage of Python, we can use this CLI or terminal. But
for complex structures, it’s better to use IDE tools like Pycharm or any text
editor:

$ Python3

Python 3.8.10 (default, Mar 15 2022, 12:22:08)

[GCC 9.4.0] on linux

Type "help", "copyright", "credits" or "license" for more
information.
>>>

Only Python version 3 is covered in this book, but if you need to use
Python version 2, you can download it via the terminal. It will download the
latest stable version 2 release:

$ sudo apt-get install Python

We can check the version with the Python version command and enter
Python version 2 with the python command in the terminal if necessary:

$ Python --version

Python 2.7.18

$ Python

Python 2.7.18 (default, Mar 8 2021, 13:02:45)

[GCC 9.3.0] on linux2

Type "help", "copyright", '"credits" or "license" for more
information.

>>>

Python for MAC

We can download Python for MAC devices from Python’s official website,
by clicking on the following link:

https:/www.Python.org/downloads/

When we enter the website, there is a Download the latest version for
section on the top. If you enter this site using your MAC device, you can
see it as a MacOS download:

https://www.python.org/downloads/

e python’

About Downloads Documentation Community

Download the latest version for macOS

Download Python 3.10.4

Looking for Python with a different OS? Python for Windows,

Looking for Python 2.77 See below for specific releases

Figure 1.4: Download Python for MAC

After we download the package file, we can start the installation by double-
clicking on the installer icon. And we can install Python3 by continuing the
process on the installation window.

After the installation is finished, we can enter the "Python3 -version"
command in the terminal to verify the installation.

% Python3 -version

Python 3.10.4

We can create a new Python CLI session by entering the python3 command
in the terminal:

% Python3

Python 3.8.5 (default, Jul 21 2020, 10:48:26)

[Clang 11.0.3 (clang-1103.0.32.62)] on arwin

Type "help", "copyright", "credits" or "license" for more
information.

Running Python codes

We have a couple of options to run Python codes:

e We can create a new Python session from cmd (for Windows) and
terminal (for Linux or Mac). We can write the Python code line-by-
line. In each line, we enter a piece of code. For basic usage of Python,
we can use it this way. But if we try to write scripts, this way is not
sustainable. Each code proceeds in the same line. So, if we write the
following example, in the first line, 5 assigns to a, in the second line,
10 assigns to b, and in the last line, we write a plus b, which is a
calculation of 2 variables. And the result was 15. So, the program
shows the output after this line:

C:\> Python

>>a=5

>>> b = 10

>>>a+ b

15

If we write a variable and enter it, it will show the value of the a
variable:

>>> a

5

* We can create Python files with text editors, like in notepad. We write
the piece of code and save it as a .py example. The file extensions in
Microsoft OS are hidden by default. If you create a file as
example.py, it will be created as example.py. txt, which has a file
type of a text document. So, you can follow these steps:

Click on File Explorer | View | options. Click on the drop-down
arrow and click change folder and search options. Then, click on the
view tab and uncheck hide extensions for known file types. You can
also do it by typing one line in the CLI:

reg add C:\>
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Adv
anced /v HideFileExt /t REG DWORD /d 0 /f

0 = false, 1 = true

If the HideFileExt value is set as 0, it means the file extension is
visible. If the HideFileExt value is set as 1, the file extension is not
visible, which 1s the default value:

Example 1.1: Simple Python File

example.py
a=>5
b =10

print (a + b)

After that, we can write the python command with the filename to see
the output of the code. Remember that you must be in the same
directory with the Python file that you run or write the full path of the

file.

C:\> Python Users/YOUR USERNAME/Desktop/example.py
15

C:\Users\ YOUR USERNAME \Desktop> Python example.py
15

There 1s no Python session here. Python directly starts and finishes the
full code. This way i1s more convenient according to the first solution.
This is because if we have many lines with multiple Python codes
connected with different files, we can use them this way. But there are
some missing parts here. We cannot debug or troubleshoot the coding
1ssues with text editors.

e We have the best solution to eliminate the issues in the first three
ways. There are many IDE tools for all programming languages. We
can create projects and directories inside those projects, monitor the
running code line-by-line, and debug or troubleshoot the issues inside
our code with IDEs. Writing code is much easier with these tools. One
of the most popular ones is the Pycharm IDE tool, which will be
covered in this book.

Pycharm installation for Windows

Pycharm 1s an open-source tool owned by JetBrains Company. It’s a code
editor. We can download the Pycharm tool from the following link to the
official website:

We can use Pycharm on Windows, Linux and macOS devices. We can
download it for specific OS. There are two download options, professional
and community versions of Pycharm. Professional as paid version is used

https://www.jetbrains.com/pycharm/download

for scientific and web development of Python, including HTML,
JavaScript, and SQL support.

The community version is totally free. This version is fairly enough for
network automation:

"‘-c\h

o L2y

Download PyCharm

Professional Community

Python For pure Python development

D

Figure 1.5: Download Pycharm for Windows

After we download the Pycharm community version as shown in Figure
1.5, we can start the installer just like installing a regular tool in Windows.
After the installation is complete, we can open Pycharm. When we open
Pycharm, it asks us to create a new project or open an old project. After we
create a new project, on the project files tab, we can see all the files and
directories inside our project.

We can create a new Python file on the project files tab by right-clicking on
New/Python File. We create an example.py file and write three lines of
code, as shown in Figure 1.6:

% sxamplepy

Figure 1.6: Pycharm Code Example

If we want to run this Python code, we have two options. We can press Shift
+ 10 on the keyboard, or we can right-click on the code area and click on
Run example.py.

When we run the code, a section will be opened: the run section. We can
see the output of the code here. Our simple code is the sum of the a and b
variables. So, it’s 5 plus 10, and the result must be 15. So, the output of our
code is 15. We can see the output in Figure 1.7:

example (1)

D:\venv\Scripts\python.exe D:/example.py

Process finlished with exit code ©

Figure 1.7: Pycharm Code Output Example

Install and import Python modules

In Python, we use libraries or modules to write our codes. There are
standard built-in libraries and third-party libraries in Python.

Standard libraries are installed when we install Python to our PC. We don’t
need to install these libraries again. For example, the re module is one of
the standard libraries in Python. It’s used to check a set of strings that
matches. This module will be covered in the next chapter. We don’t need to
install this module on our PC. We only need to import this module when we
need to use it.

Third-party libraries or non-built-in libraries are additional libraries that we
need to install on our PC if we need to use them. For example, the paramiko
module is a third-party library. It’s used to make an SSH connection to
network and system devices. It’s not installed during Python tool
installation. If we need to use this module, we must install it, and then we
can import our code to use. This module will be also covered in the next
chapter.

To install a third-party library, we have two options in the Pycharm tool. We
can click on the terminal tab in the following section of tools, as shown in
Figure 1.8:

Windows PowerShell

Copyright (C) Microsoft Corporation. A1l rights reserve

Try the new cross-platform PowerShell

B Terminal 2 python Packages & Python Console

Figure 1.8: Terminal in Pycharm

In the terminal, we need to install modules with the pip command. We can
write the command as pip install by writing the module name. In the
following example, we try to install the paramiko module. If the module
has not been installed yet, it will be downloaded and installed automatically.
If the module is already installed, but a newer version is released, the pip
command will download and install the latest version of that module:
C:\Sample Project > pip install paramiko

If you write the mentioned command in the Pycharm terminal and get an
error, you need to download the pip installation package to your PC. If your
Python version is higher than v3.4 (released in 2014), you already have the
pip package on your PC. If not, you must manually install the package. We
can check whether the pip package is installed on our PC with the pip -v
command. We can also check the package version.

C:\Users\USERNAME> pip -V

pip 22.2.2 from
C:\Users\USERNAME\AppData\Local\Programs\Python\Python310\1lib\s
ite-packages\pip (Python 3.10)

You can run the following commands to install or update the pip package to
the latest version on Windows and Linux:

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py

Python get-pip.py

Another way to install a third-party module in Pycharm is to install it via

Pycharm GUI. To do that, go to File/Settings on tabs. Inside the
Project/Project Interpreter section in the opening window, you can

see all the modules that are installed under the current project, as shown in
Figure 1.9.

We can also see the difference between the currently installed version and
the latest version. So, if any of the modules have an update, we can see it in
the same window. For example, we can see that the paramiko module is
already installed in our project as a 2.7.2 version, which is an older version,
as shown in Figure 1.9:

.
-
S
-
-
-
-

Figure 1.9: Pycharm Module List

In the Python interpreter section, labeled in yellow in Figure 1.9, we can
change the Python interpreter. It means that we can use any interpreter in
our current project. For example, we use many third-party modules in a
project. And after that, we will create a new Python project. We can choose
an interpreter for the old project when we create the new one, or we can
change the interpreter in Figure 1.9.

We can install third-party modules by clicking on the plus character in the
same window as the one shown in Figure 1.9. In the opening window, we

can search for any of the modules to install. After we choose a specific

module, we can click on the Install package button, as shown in Figure
1.10:

Figure 1.10: Installation of 3rd Party Modules

The installation of modules is complete. Even if it is a standard or third-
party library, we need to import each script that we use as a function from
that library. For example, if we need to log in to a device with SSH
protocol, we need to import the paramiko module at the beginning of our
script. And if we need to use the R module, we need to import it:

import paramiko

import re

After we import the modules, we can call any functions. Modules and
functions will be covered in the next chapter in detail.

Conclusion

In this chapter, we learned what network automation is and how companies
evolve according to network automation. We understood the benefits of
automation, like reducing human mistakes and decreasing the workload for
engineers. We introduced the basics of the Python language and looked at
how to install the Python package and Pycharm tools to start network
automation in our own environment. The version difference is an important
topic in Python, and it is strongly recommended to start or continue with
Python version 3. At the end, we learned the difference between built-in and
third-party modules. We downloaded and installed these third-party
modules and imported them into our code.

In the next chapter, we will start with the basics of Python programming
language, like print and input functions, and data types and their methods,
and also statements and conditions.

Multiple choice questions

1. What are the advantages of using network automation?

a. Fewer human errors
b. Faster operations and troubleshooting

c. Reduced workload
d. All of the above
2. Which of the following is not a feature of the Python language?

a. Interpreted
b. Open-source
c. Object-oriented language

d. Only works in Linux systems

3. What is the extension of a Python file?

a. .Python
b..pyt

C. .py
d..pyth

4. How to write a string in print function with Python version 3?

d. print Welcome to Network Automation
b.print"Welcome to Network Automation"
C. print ("Welcome to Network Automation")

d.print " (Welcome to Network Automation)"
5. Which command is used to download and install third-party modules?

a. pip install netmiko
b.pip download netmiko
C. pip add netmiko

d.pip configure netmiko

Answer

1.d
2.d
3.¢c
4.c
5.a

Questions

1. What is the benefit of using network automation for a company and
for an engineer?

2. How 1is Python different from other high-level programming
languages?
3. What is the process of importing third-party modules in Python?

CHAPTER 2
Python Basics

This chapter will focus on the basics of the Python programming
language. This chapter will explain how to write simple Python scripts.
We will write our first script examples and learn basic functions, data types,
statements, and conditions in this chapter. We will build network
automation scripts with the data types and statements that we will learn
about in this chapter.

Structure

In this chapter, we will cover the following topics:

e Print and input functions

e Data types

o String and integer
o String methods

o List

o List methods

o Set, tuple, and range
o Dictionary

o Dictionary methods

e Statements and conditions

o If condition

o For statement

o While statement

o Break and continue statement

o Range statement

o For else statement and nested loops

o Try — except statement

Objectives

This chapter aims to introduce basic Python functions that we use in many
Python scripts. The chapter starts with print and input functions. It
continues with the most important data types in network automation: string,
integer, list, and dictionary and the methods that are used to manipulate the
data. We compare the difference between other data types. Finally, we focus
on conditions and statements like if, for, while, break, continue, range
function, for..else, nested loops and try..except statements. We will write
and explain several examples of these statements in detail.

Print and input functions

Before starting the Python basics, we can check two major and basic
functions in Python: the print function and the input function. We will
always use the print function to see the result of our codes. It’s kind of an
output of the result. Codes are written by functions in Python like in other
programming languages.

Functions are shortcuts to codes. Function 1s a block of code. When we
write a function to call, it runs the source code of a specific function.

For example, we have a print function, which is used to give the output
when we run a code. It’s just one word to call, but in the background,
Python runs the full code of the print function. The developer only writes
the function name, so the source code can be complex, but the usage is
quite simple for functions. We just call to use them. Our code will be much
simpler.

Another advantage of functions is that we can use them in repeatable things.
So, there is no need to write the full code of function many times. It’s
enough to just call the function with its name.

Print()

The print function is one of the simplest and most useful functions in
Python. It’s used to display or show the value that we want as output. Its

usage is also simple. After writing print as a word, we need to write an
object inside a set of parentheses; this object can be a variable or a value.

For example, we can write code for calculation of variables like a and b,
where a equals 10 and b equals 20. And ¢ equals a plus b. If we write the
code like that, Python calculates ¢ as 30. But we cannot see any output
because we didn’t call the ¢ variable with the print function. So, at each
step of the script, we use the print function to see the result or even for
troubleshooting and debugging the issues in our code. We can call the print
function as many times as we need. As in example 2.1, we can call the ¢
variable and then the a variable, so the output is 30 and 10.

Example 2.1: Print function usage

a =10
b = 20
c=a+b

print (c)
print (a)
Output:

30
10

There are many options to use the print function. We can write any
character as letters, digits or special characters under the parenthesis. To do
that, we must write all of them inside quotes:

print ("Hello World")

Output: Hello World

We can write multiple values by dividing them with commas. We still use
quotes in the beginning and at the end of the value:
print ("Hello", "World")

Output: Hello World

We can assign a value to a variable and call it inside a print function, like
in Example 2.1:

x = "Hello World"

print (x)

QOutput: Hello World

We can write some values and variables with a dividing comma. As in the
following example, values must be inside quotes, but if we call a variable,
we cannot use quotes. We just write the full name of a variable:

y = "World"

print ("Hello", y)

Output: Hello World

Another way is to use the + character instead of a comma. If we use a
comma, code adds space between the values automatically, but if we use
plus, it doesn’t add any space, like in the following example:

print ("Hello" + "World")

Output: HelloWorld

We write the Hello World value to display as output, like in all preceding
examples. And we have many options to do that. In the print function, we
can use characters with percentages and letters. This method is an old-style
usage in Python, but it’s still supported in Python v3. For example, in the
first print function, we write the value as This apple is red. So, output is
the same as the value. Alternatively, we can divide the red value and assign
it to a variable.

print ("This apple is red")

x = "red"

print ("This apple is", x)
Output: This apple is red

We can also call a variable with print function in Python inside a string or
value in quotes. To do that, we must use a special method. Since we cannot
use variables directly inside quotes, we write a percentage character and the
s letter to solve it for strings or letters as values. So, when Python sees s as
a special character, it understands that it is the value of the x variable which
is red. The usage is also simple. We write s inside quotes, and after that,
we write percentage with the variable. We can also write values instead of
variables. To do that, we can write the percentage with value as in the
second print function:

x = "red"

print ("This apple is %s" %x)

print ("This apple is %s" %$"red")

Output:

This apple is red
This apple is red

We can also write #d for integers. We will focus on strings, integers and
other data types later in this chapter. We can call variables or integers, like
in the following examples. When we call an integer, we cannot use quotes.
We must write the values like variables:

x = 30

print ("10 plus 20 equals to %d" %x)

print ("10 plus 20 equals to %d" %30)

Output:
10 plus minus 20 equals to 30
10 plus minus 20 equals to 30

With Python version 3, we have a new method than percentage sign. We use
a curly bracket inside the print function, then we write .format after
quotes with dot and write the values inside parentheses. We can also use
multiple variables to call in a string. So, each curly bracket identifies the
value in the parenthesis of the format method by order. So, in the second
print function, after This, curly brackets call for the x variable, and after
is, curly brackets call for the y variable. The usage of this method is
different but easier than that of the percentage sign. The result is the same.

x = "apple"

y = " red"

print (" This {} is red " .format (x))
print (" This {} is {} " .format (x,y))
Output:

This apple is red
This apple is red

Another usage of the format method is to write the £ letter at the beginning
of the quote and write the variable in quotes inside curly brackets. This
usage makes it easier to write and handle an issue. The result is still the
same as the other examples:

"apple"

X
y = "red"

print (£f"This {x} is red")
print (£"This {x} is {y}")

Output:
This apple is red
This apple is red

In old usage, we must mention if it’s string or integer as %s or $d or other
data type. But with this usage, we don’t need to mention the data type.
Python understands it by itself. So, for integers, we directly write . format
at the end of the quote or write £ at the beginning of the quote:

x = 30

print ("10 plus 20 equals to {}" .format(x))

print (£"10 plus 20 equals to {x}")

Output:
10 plus 20 equals to 30
10 plus 20 equals to 30

Input ()

The input function is also a basic Python function that we use. The print
function displays the output of a value. So, data written in the code, shown
to the user. The input function reads the data that is entered by the user via
the keyboard and saves it to a variable. So, it’s the opposite of the print
function. The input function is used when a user needs to add any data to a
program. This could be an IP address or password to log in to a device for
network engineers.

The usage of the input function is also similar to that of print. We input
function names in parentheses, and we can assign this function to a
variable. Here, we assign the input function to the x variable:

X = input ()

We can also write something that can be understandable for us. As shown in
Figure 2.1, when we run the code, it asks for user input in the Run section in
Pycharm. If we write the code in cmd or terminal, the program goes to the
following line to wait for the input that you will enter.

x = input () indicates that a simple cursor blinks on the interactive
command console when the program is executed. Whatever we enter here is
assigned to x. We write Hello World and press the Enter button on the
keyboard. So, the input value is set to the x variable because we assign an x
value to the output of the input function. We get the value of the x variable,
and it’s time to display the x variable to see the output of the code. So, we

write a print function to call the x variable. Output is Hello World as the
value of the x variable:
x = input ("Enter the wvalue: ")
print (x)
example (1)
Enter the value:
Hello World

Process finished with exit code ©

ET0D0 @ Problems B Terminal 2= Python Packages @ Python Console

Figure 2.1: Input Function Example

In Example 2.2, we write an example to get the IP address, username and
password data from users. When we run the code, the program asks for
three entries for those variables input. Each time we enter data and press
Enter on the keyboard, the program saves them to variables as IP, user and
password. And finally, we can write a print function to display all these
values. In the print function line, we use \n 2 times. \n creates a new line
in Python; it’s similar to the Enter key on the keyboard. So, we can see the
output clearly in Figure 2.2 with three lines of output.

Example 2.2: Getting IP address, username and password information with

input function

ip = input ("Enter IP Address: ")
user = input ("Enter Username: ")
password = input ("Enter Password: ")

print (£"IP Address: {ip} \nUsername: {user} \nPassword:

{password}")

example (1)

Enter IP

Enter Username:

Enter Password:

IP Address: 192.168.1.1
Username: root

Password: admin

Process finlished with exit code ©

P Run =T0ODO @ Problems B Terminal 2= Python Packages 2 Python Console

Figure 2.2: Input Function Output of example 2.2

Data types

In programming, one of the basic and most important sections are data
types. Each value or data has its own type. All data types have different
purposes and features, so we need to know each of them to use in our
scripts in the correct definition.

Anything written in a single quote, like 'hi'; double quotes, like "hi";
triple quotes, like ' * "hi''’; or """hi""" is a string.

x = "5" # the value stored in x is string

x = 5 # the value stored in x is integer

y = x # here x is a letter but not a string. It's a variable

In Python, we create variables, and those variables store values in one of the
data types in Python. It can be anything. The easiest way to find the data
type of a variable is to write the type () function. We need to write a type of
function with the variable or value that we want to know the data type of
inside parentheses. We can display the output of type with the print
function:

a= 10

"Hello World"

print (type(a))
print (type(b))

Output:

<class 'int'>

<class 'str'>

The most common data types that we use in network automation are string,
integer, list, dictionary, and range. In addition to these data types, we have
float, complex, tuple, set, and frozenset data types and more. These are also
used in Python programming, but we rarely used them in our network
automation scripts:

Text sequence: String

Numeric types: Integer, Float, Complex

Sequence types: List, Tuple and Range

Mapping type: Dictionary

Set types: Set, Frozenset

Boolean operations: And, Or, Not

Binary sequence types: Bytes, Bytearray, Memoryview

All of these data types have special features to use in coding. We check the
basics of some important ones with examples.

String: It’s a simple text data type. x = "Hello World"

Integer: It’s used for positive and negative integer numbers (.., -1,
-2, 0,1, 2, .) x = 52

Float: It’s used for float numbers. x = 3.6

List: It’s used to store multiple values or data in a single variable.
Each item can be any kind of data type. Strings and numeric data types
can only store one value inside a variable.

x = ["cat" ’ "dog" ’ "bird"]

Tuple: It’s similar to a list. We will check the difference in the

comparison chart later in this chapter. Instead of square brackets in the
list, we use parentheses for tuples.

X = ("cat" , "dog" , "bird")

e Dictionary: We can store multiple items in a dictionary as mapping
data types. We have keys and values that are attached together in an
item.

x = { "Animal" : "Bird", "type" : "Parrot", "color" : "Red"
}

e Set: It has features similar to those of lists. They are created with
unordered items and immutable data types.
x = { "cat", "dog", "bird" }

In Zable 2.1, we make the comparison table for [ist, tuple, set and
dictionary.

Comparison List Tuple Set Dictionary
Can change | Mutable Immutable Mutable Mutable
value
Usage [items] (items) { items } { items }
Keep duplicated | YES YES NO NO
values
Orderliness Ordered Ordered Unordered Unordered
Parameters Values Values Values Keys and Values

Table 2.1: Comparison of List, Tuple, Set and Dictionary Data Types

We can change values in a list, set and dictionary, but we cannot chage them
in tuples. We use square brackets for lists, parentheses for tuples, and curly
brackets for set and dictionary.

We can store duplicate or the same items in a list and tuple, but in set and
dictionary, they must be unique. List and tuple are ordered, while set and
dictionary are unordered. So, in lists, we can call the second or third item,
but we cannot do it in dictionary. We can call according to the keys.

In list, tuple and set, we have values, and in dictionary, we have keys and
values.

String and integer

String is a sequence of characters. It’s a text base data type. String variables
can store characters as alphabetic characters, numbers, spaces and also

special characters or signs. There are a couple of usages of the string data
type.

We can use strings inside double or single quotes. Their usage is the same
and output is also the same for Python. If we print the following two
variables and run: the code, the output of the x variable and the y variable is
same.

X = "Hello World"

y = 'Hello World'

We can use double quotes in a double qouted string, but we must add a \
(backslash) before the double quote. It’s also same for single quotes:
X = "Writing codes with \"Python\" is so easy"

X 'Writing codes with \'Python\' is so easy'

We can use strings inside three times single quotes or three times double
quotes. If we have a multiline string, we cannot write it in single or double
quotes. In this situation, we must write three times single or double quotes,
and we can write multiple lines inside them. If we write the following
example with only a single qoute or double quotes, the program throws an
erTor.

x = nnn

Hello World

This is a simple Python code.

Thank you !!!

The integer data type is used for positive and negative integer numbers (...,
-1,-2,0, 1, 2, ...). For integers, we directly write the integer number wihout
any quotes. For example, if we write the x variable and set a value as 10, x

automatically becomes an integer. But if we write the value in quotes, it
becomes string.

Example 2.3: Find the data type of a variable

x =10
y - "10"
print ("Data type of x = ", type (x))

print ("Data type of y

Output:
Data type of x = <class 'int'>

", type (y))

Data type of y = <class 'str'>

String methods

For each data type, Python has different methods or functions to modify or
manipulate the data. In the string data type, we have too many methods over
40. We can use them to manipulate the strings. In this chapter, we will focus
on the most used methods that can help us with writing automation scripts:

* len (string): The len method is used to find the length of a script. It
counts the quantity of all characters. It could be alphabetical
characters, digits, space or any special character. To use this method,
we need to write 1en and then, inside parentheses, we need to write a
string or variable that is also a string. As in the following example, x is
a string variable. We understand that the value is inside double quotes.
When we write 1en (x), it returns the value of the x variable, which is
Hello World. This string has 10 letters and 1 space, so the length of
this string is 11. If we print len(x), we can display the output of the
returned value as 11, or we can write a string directly inside the len
method. Both usages have the same result:

x = "Hello World"
print (len (x))
print (len ("Hello World"))

Output:
11
11

e string.upper (): Upper methods are used to replace all capital
letters. To use this method, we first write the string or the string
variable and after the dot, we write the upper method in parentheses. If
we use the x variable as Hello World, only H and w are capital letters.
This method changes all the letters to capital letters, but the x variable
is still the same. There is no change in it because all these methods
return new values. They don’t change anything in the original variable
or string. In the following example, we assign the method output to the
y variable. So, if we display x and y with the print function, we can
see that the value of the x variable is still unchanged, but the value of
the y variable has a value that the upper method returns.

x = "Hello World"
y = x.upper ()
print (x)

print (y)
Output:

Hello World
HELLO WORLD

string.lower (): This has the exact opposite function of the upper
method. It is used to change all letters from capital to small. In the x
variable, we have H and w in capital letters, so the new value must be
all small letters. If we use the same code as earlier, only replace upper
with the lower method, the value of y 1S hello world.

X = "Hello World"

y = x.lower ()

print (x)

print (y)

Output:

Hello World

hello world

string.strip (): The usage of the strip method is the same as that
of the upper and lower methods. We write string or string variable and
then dot and strip in parentheses. This method deletes spaces at the
beginning and ending of a string and returns the new value. In the
following example, we have spaces at the beginning and end of x
variable’s value. We assign the returned value to y, so if we print y, we
can see that there is no space at the beginning and at the end, but we
still have space between words, such as “Hello” and “World”.

x = " Hello World "

y = x.strip()

print (x)

print (y)

Output:

Hello World

Hello World

string.replace (): The replace() function replaces the first
argument in the string with the second argument. To use it, we need to

write a string or string variable and replace the method with
parentheses, and we need to divide both with a dot. Finally, we need to
write old values and new values inside parentheses by dividing them
with commas.

In Example 2.4, we replace the first argument, He, with the second
argument, Te, in the x variable and assign the output to the y variable.
The program checks whether the B and e characters are inside the
target string, which 1s x. However, these letters must be there together
with the order.

Example 2.4: Replace characters in a string with the replace method
x = "Hello World"

y = x.replace("He", "Te") #'He' is replaced with 'Te'’
print (y)

Output:

Tello World

If we write the following example and try to find “w1” together, we
will have no match in the x variable even though we have “w” and “1”
in different places. So the replace method cannot change anything on
the x variable, and the result of y is equal to x.

x = "Hello World"

y = x.replace("W1l", "Te")

print (y)

Output:

Hello World

string.split (): The split method is used to split the string into a
specific character. After that, it returns an output as a list data type. So,
the input is a string, but the output is a list. We again have the x
variable. The target character must be written inside parentheses after
split. This could be a string or a string variable.

In the following example, we write the o character, but this could be a
word or multiple characters. So, each time the program matches the o
character in the source value, it splits from there, and each part is
written with different items in the list. And the o character is removed.
In the following example, we have two of the o characters. The
program matches, and it removes the o character and divides it into the

items in a list. The output is ['Hell', ' w', 'rld'], which is a list
of three items:

X = "Hello world"

y = x.split("o")

print (y)

Output:

['Hell', ' w', 'rld']

List

One of the most important sequence data types for network automation is a
list data type. We will use it in almost every automation script, so it’s quite
important to understand the logic of this data type. Some basic features of
the list data type are mentioned here:

e Lists are sequences of arbitrary objects. Each object is an item.
¢ [Items are ordered and changeable in a list.

e The list allows duplicate items, so there could be multiple same items
in a list.

o All the items in the list are divided by commas.

e Each item has a unique index number in a list. Index numbers start
from O.

o Lists are created in square brackets, and all items are added inside
these square brackets.

e We can also create lists inside a list.

Xx = [iteml, item2, item3, itemd, ..]

In the previous example, we have the x variable as a list. There are items
divided with commas, and all items are inside square brackets:

x = ["Lion", 42, "Panda", "42", "snake", ["1", "2 ", " 3 "]

]

Our first item is Lion as a string. Then, we have 42, which is an integer.
Then we have panda as a string, and then we again have 42, this time as a
string. Since we use it inside double quotes, we have characters as 4 and 2.
Then, there is a string as snake. Finally, there is another list inside of this
list.

We print x square brackets and 0. Code gets the first item in the list. The
item index starts from 0. Our first item is Lion, so the output is Lion. In the
second example, we print the third item as x[2], which is Panda. In the
third example, we want to print the second item from right to left or from
the end of the list. So, if we write minus 1, the code gets the last item from
the list. It receives the item in reverse ordering, from right to left. The minus
2 1S a snake item, so we can search for an item in the list from the
beginning or end.

print (x [O]) Output: Lion

print (x [2]) Output: Panda

print (x [-2]) Output: snake

This time, we check the data type of items in a list. For that, we use the
type function. Here, we print the data type of the second item in the x list as
x[1]. It’s an integer. If we check the fourth item with x[31], it’s a string. If
we check the last item in the list, we can write x[-1] or x[5], and the result
1s the same. It’s a list.

print (type (x [1])) Output: <class 'int'>

print (type (x [3])) Output: <class 'str'>

print (type (x [-1])) Output: <class 'list'>

Now, we print x[0:3]. It means that print items from first to fourth item
(but the fourth item is not included), so from the first item to the third. The
(nﬂputis["Lion", "42" and "Panda"]:

print (x [O : 3]) Output: ['Lion', 42, 'Panda']

We can change all items of a list in reverse ordering. To do that, we write
double colon and minus I as x[: :-1] inside square brackets:

print (x [::-1]) Output: [['1', " 2 ', ' 3 '], 'snake',
'42', 'Panda', 42, 'Lion']

e Replacing items: Suppose we have a list as x variable with three
items, which are “elephant, turtle, hamster”. We can change or
replace any of the items on the list. To do that, we write list variables
with square brackets. Inside square brackets, we write the index
number of the item that we want to change. In the following example,
we write 1. So it’s the second item in the list: turtle. The second item
is replaced with £ish as a string, so the new value of the x variable is

["elephant", "fish" and "hamster"].

x= ["elephant”", "turtle", "hamster"]
x [1] = "fish"

Output: ["elephant", "fish", "hamster"]

Check item existence: We can also check whether or not an item
exists in a list. We can check its existence with the if condition. In
this code, we said that if there is a hamster item inside the x variable,
print Yes. Because the hamster item is included in the x variable, the
output is Yes. If we write £ish instead of hamster, there is no output
because the condition does not match. In the following code, after the
if condition, there is a space in the following line. It’s an indentation
in Python. The following line of the statements or functions starts with
spaces in Python. If we don’t add space, the code understands that we
exited from the statement. We will check the indentation mechanism
in this chapter’s Statements and conditions section.

x= ["elephant", "turtle", "hamster"]

if "hamster" in x:

print ("Yes")

Output: Yes

Create an empty list: We can create empty lists. There are two
options to do that, and both have the same result. We can write a list
with empty parentheses and assign it to a variable, like the x variable
in the following example. Alternatively, we can write empty square
brackets and assign it to a variable. If we print the variable, the output
1s an empty list.

x = list()

y=11

print (x)

print (y)

Output:

[]

[1

Merge lists together: We can merge or join different lists. We create x
and y variables as lists. To merge two list variables together, we just
add them with a plus sign. In the following example, we create a new

variable z for the calculation. If we print z, the result is a list with two
items that come from x and y.

x = ["Lion"]

y = ["Elephant"]
Z=x+y
print(z)

Output: ['Lion', 'Elephant']

List methods

There are many methods in list data type to manipulate it. We will focus on
the most commonly used ones that we need in network automation:

 list.append (item): Append method is used to add an item at the
end of the list. To use it, firstly, we write the list variable, and after the
dot, we write the append method. Then, we write the new item inside
parentheses that we want to add at the end of the list. In the following
example, we have three items: fruit, vegetable, water. We want
to add coffee string to the end of the list, so we write
x.append ("coffee") string inside parentheses. We add a new item
with this method. We will use the append method often for our scripts
in loops to add new items at the end of the lists later in this chapter.

Example 2.5: Add new items end of the list with the append method
x= ["fruit", "vegetable", "water"]

x.append ("coffee")

print (x)

Output: ['fruit', 'vegetable', 'water',6 'coffee']

* list.insert (index, item): The insert method inserts an item at
a particular index. In the following example, fruit is currently at
index 0, and vegetable 1s at index 1. When we insert tea as index 1,
all items after index 0 are shifted. So, in the output, tea” is at index 1,
and vegetable is at index 2.
x= ["fruit", "vegetable", "water"]

X.insert (1, "tea")
print (x)

Output: ['fruit', 'tea', 'vegetable', 'water']

* list.remove (item): Remove method is used to remove the first
match item in the list. In the following example, we have four items:
fruit, coffee, water, fruit. We write the x.remove method and
fruit as the target string match. In the list, the £ruit item is used
twice, so there are two matches of this string. However, the remove
method removes only the first match item in the list; so, the output of
x variable 1s coffee, water, fruit.

x = ["fruit", "coffee", "water", "fruit"]
x.remove ("fruit")

print (x)

Output: ['coffee', 'water',K 'fruit']

e list.pop (index): This method is used to remove a specific index
in the list. Instead of the remove method, the pop method uses the
index number to delete an item. In the following example, we write
x.pop With 0 inside parentheses. It means remove item 0, which is the
first item 1in the list, so cat item is removed from the list.

X = ["cat", "dog", "monkey"]

x.pop (0)

print (x)

Output: ['dog', 'monkey']

If we don’t write any index inside parentheses, the code deletes the
last item in the list. In this example, it’s monkey.

X = ["cat", "dog", "monkey"]

x.pop ()

print (x)

Output: ['cat', 'dog']

* del list [index :]: The del method is used to delete the specific
items in the list. Unlike the pop method, del can delete a bunch of
items. It deletes the specific item. If we add a colon after item, it
deletes all the items starting from the specific index. In the following
example, we write 1: inside square brackets. The code deletes all
items from the second item to the last one. So, the output of this code
1s only the first item, which is the dog string. We can also use the del
method with writing the index without a colon; it deletes the specific
item 1in the list, like the pop method.

X = ["dog", "monkey", "cat"]

del x [1 :]

print (x)

Output: ['dog']

list.clear (): The clear method is used to delete all the items in a
list so that the new value of the list is an empty list. In the following
example, code deletes all items inside the x variable, so the result of
print(x) 1s an empty list.

X = ["dog" , "monkeyll , " cat"]

x.clear ()

print (x)
Output: []

list.copy (): The copy method is used to copy a list into a new list.
To copy a list to another, we write x. copy () . In the example, we copy
the x variable to the y variable. So the output of y is dog, monkey,
cat as a list.

x= ["dog", "monkey", "cat"]

y= x.copy ()

print (y)

()utput:["dog", "monkey", "cat"]

We cannot just write the equal sign to copy a list to another list, like a
= b. I[f we write this, it assigns a to b. If any changes happen in a or b,
it also changes in the other list, so it’s not an independent copy. In the
following example, if we delete item-1 in the x variable by the pop
method, the y variable is also changed, as shown in the output. So, to
copy a list as independent, the copy method must be used.

x= ["dog", "monkey", "cat"]

Y= X

x.pop (1)

print (x)

print (y)

Output:

['dog', 'cat']

['dog', 'cat']

sum (list): The sum method is used to calculate the sum of items
in a list. The important thing is that all the items must be numeric data

type like integer or float. Otherwise, the program throws an error. In
the following example, we have a list including integers and float
items. We use the sum method with variable name as x inside
parentheses. The sum of the x variable is 50.1.

x= [4, 5, 7, 9, 10.1, 15]

y = sum (x)

print(y)

Output: 50.1

* len (list): The len method is used to count the item quantity in a
list. It’s similar to the 1en method in string. In the following example,
we have three items, so we write 1en (x). The result is 3.
x= ["cat", "monkey", "elephant"]
y= len (x)
print (y)

Output: 3

 list.count (item): The count method is used to count the items
inside a list. In the following example, we write x.count ("bird") to
count the bird string item in the x variable. The result is 2 because we
have duplicated items added twice in the list. We must write the exact
same item in the count method. For example, this method cannot find
anything if we write bir instead of bird. If we don’t write exact
characters in the item, the count result is o.
x= ["bird", "horse", "elephant","bird", "monkey"]
y
print(y)
Output: 2

x.count ("bird")

Dictionary

Another important data type for network automation is a dictionary. We can
store multiple items in a dictionary as mapping data types. We have keys
and values that are attached to an item.

e Dictionary is an unordered data type.
e Dictionary is a changeable and indexed data type.
* Dictionary has items, and each item has keys and values.

e Dictionary items are written inside curly brackets.

e Each key is separated from its value by a colon, and items are
separated by commas.

e Keys are unique within a dictionary, but values can be duplicated. So,
we cannot create the same key in a dictionary, but we can create the
same value.

e Values can be of any data type, but keys must be immutable data like
string, number or tuple.

{ keyl : valuel, key2 : value2, key3 : value4d }

In the following example, we can see an x variable that is a dictionary. We
can understand that all data is inside curly brackets, and each item has two
sets of data, as keys and values, which are divided by a colon. From the
following example, animal and color are keys and must be unique. Lion
and Yellow are values.

x = { "animal" : "Lion", "color" : "Yellow" }

To find any value in a dictionary we can call the key of the value. In the
following example, after the x variable, we write the key animal inside
square brackets. This means finding the value that belongs to the animal as
a key. So, the result is Lion.

print(x ["animal"])
Output: Lion

We can also change values in a dictionary. Like in the list data type, we
write the key inside square brackets and equal to the new value. So, the
value of the color key is replaced with white.

X ["color"] = "White"
print (x)
()utput:{ "animal" : "Lion", "color" : "White"}

To change keys under a dictionary, we don’t have a one-line solution or
method, but we have a trick to solve it. If we want to replace the color key
with a key as type, we can write the variable with the new key and equal it
to the old key inside the square brackets. However, this code creates another
item with the same value. Here, the new key is type and the value is still
Yellow. And if we use the del method in the dictionary for the old key as
color, we can reach what we want as a result. As you can see from the

following code, there are two print functions. In the first print function, we
can see that the key type is added to the dictionary. And in the second, we
can see that the key color is removed from the dictionary.

X ["type"] = x ["color"]

print (x)

del x ["color"]

print (x)

Output:

{'animal': 'Lion', 'color': 'Yellow', 'type': 'Yellow'}
{'animal': 'Lion', 'type': 'Yellow'}

We can also add items in a dictionary. We just write a unique key and assign
it to a value. In the following example, we create an item with a key as an
age, and value as an integer 10. So, the program adds a new item with a key
and its value. Dictionaries are unordered. So, we cannot say that the item
was added at the end. There is no beginning and end of dictionary items.

x ["age"] = 10

print (x)

()utput:{"animal":"Lion", "color":"Yellow", "age" : 10 }

Dictionary methods

Similar to list data type, in the dictionary, we have a different method for
every purpose:

e dict.copy (): The copy method is used to copy a dictionary to
another dictionary:

x = {"animal" : "Lion", "color" : "Yellow", "age" : 7}
y = x.copy ()

print(y)

QOutput: {'animal': 'Lion', 'color': 'Yellow',6 'age': 7}

® del dict [key]: The del method is used to delete an item. In the
following example, we want to delete item with key as color. So, we
use the del method and write the target key inside square brackets in
the x variable. In the output, the item with the color key and the
Yellow value is deleted:

x = {"animal" : "Lion", "color" : "Yellow", "age" : 7}

del x ["color"]
print (x)
Output: {'animal': 'Lion', 'age': 7}
e dict.pop (key): The pop method is used to delete items with
specified keys. It has the same function as the del method.

x = {"animal" : "Lion", "color" : "Yellow", "age" : 7}
x.pop ("age")

print (x)

Output: {'animal': 'Lion', 'color': 'Yellow'}

e dict.clear(): The clear method i1s used to clear or empty a
dictionary. In the following example, we clear the x variable with
x.clear (). The output is an empty dictionary.

Example 2.6: Delete all items inside a dictionary with clear method:
x = {"animal" : "Lion", "color" : "Yellow", "age" : 7}
X.clear ()

print (x)

Output: { }

Dictionaries in “for” loop: We can call dictionary items with for loops.
We will learn about for loops later in the chapter. Now let’s check the items
in the dictionary for loop statements. For example, we have 5 values from
1 to 5. To loop these values, the output should be from 1, 2, 3, 4, and finally,
5. So each value is looped from beginning to end.

In the following example, we have a dictionary with three items. We can
print keys inside the dictionary with the for loop. The code finds keys in
the x variable and prints them. So, from the beginning, we have three prints
because we have three items, which are animals, color, and age.
for i in x:

print (i)
Output:
animal
color

age

In the second example, we want to collect only values. To do that, we must
write x.values () to call values. In the output, only values are shown:

for i in x.values ()
print (i)

Output:

Lion

Yellow

7

To find keys and values together, we use x.items (). And in the loop, we
have two items as a for keys and b for values. Results are shown as items.
Each item is listed with its key and value in order:

for a, b in x.items ()

print (a, b)
Output:

animal Lion
color Yellow
age 7

Statements and conditions

One of the key topics in programming is conditions and statements. We will
focus on if, for, while, break, continue, range function, for..else,
nested loops and try..except statements in this book. All of these will be
necessary for our scripts in network automation.

If condition

There are some characters to be used in an i1f condition. 7able 2.2 lists all
the options for if statement equality:

Condition Sign Usage
Equal to == a==b
Not equal to 1= al=b
Greater than > a>b
Greater than or equal to > = a>=b
Less than < a<b
Less than or equal to <= a<=b

Table 2.2: If condition sign and usage

To write an if condition, we must write i£ followed by the condition. After
that, the line must be finished with a colon. If the i£ condition is matched,
we continue with the body of the condition, which is the statement in the
next line. In the following usage, there are some spaces before the
statement. It means we are inside an if condition. If we write without
space, the code gives an indentation error. So, indentation is very important
in Python. For if or any other statement, we must carefully write the code
with indentations if it’s necessary. For general use, it’s simpler to create
space with a tab. So, the code is clearer to understand:

If Condition :

Statement

In the following example, we create two integer variables: a is 33 and b is
200. We write that if b 1s greater than a, print b is greater than a. We
write if, then the condition with a greater sign. After that, we finish the line
with a colon. In the next line, we enter the statement with indentation. So,
when we run the code, because b is greater than a, the condition is matched,
and the statement starts. The statement is to print b is greater than a. It
prints this as an output. If the b greater than a condition is not matched,
there 1s no output because the statement doesn’t start as it is passed.
a = 33
b = 200
if b > a :

print("b is greater than a")

Output: b is greater than a

When the if condition is matched, 1t continues with its statement, but when
the if condition is not matched, we need to check another condition. In
Python, we have elif and else statements inside the if condition. elif is
similar to else if in other programming languages. We can write multiple
elif statements. It means that if the upper condition is not matched, the
elif condition will be checked. If it is not matched again, it continues with
the next condition.

The usage of if and elif is the same. In the first condition, we write if,
and for later conditions related to the if condition, we write elif. At the
end of the if condition, we can use the else condition. This means that if
all upper conditions are not matched, that statement will continue before

exiting the if condition. elif and else are optional conditions in the if
statement. In the following structure, if any of the conditions is matched, its
statement runs, and after that, it exits from the loop. It doesn’t continue to
check whether other conditions are matched.
if condition :

Statement
elif condition :

Statement

else :
Statement

In Example 2.7, there are two integer variables: a is 200 and b is 33. If b is
greater than a, it prints b is greater than a, else, if a is equal to b, it
prints a and b are equal, ¢lse, it prints a is greater than b. When we
checked the values of a and b, a 1s greater than b in the example. The first
condition fails, so the program checks the second condition, which also
fails; the program continues until the else condition. There is no condition
in else. So, in any way, it performs the action for else condition. Instead of
else, we can write the elif a > b : condition and write the print
function inside it. Because a is greater than b, this condition would match.

Example 2.7: Compare 2 integers with if condition

a = 200
b = 33
if b > a :

print("b is greater than a")
elif a ==

print("a and b are equal")
else:

print("a is greater than b")

QOutput: a is greater than b

In this example, we have two scripts. The content of these scripts is similar;
only the if conditions are different. In the first script, we use the if
condition each time. So, there are four different if conditions that are all
independent. If we enter the value of the x variable as -1, the first and
fourth conditions will match. These conditions are connected, so we have
two different results in the output:

x = -1
if x < 10:
print("x is less than 10")
if x == 10:
print("x is equal to 10")
if x > 10:
print("x is greater than 10")
if x < 0:
print("x is less than 0")

Output:
X is less than 10

X is less than 0

But in the second code, we use the if and e1if conditions. So, there is only
one if condition in the following code, and each elif statement is
dependent on the upper condition. When we enter the x variable as -1
again, this time only one match happens. The first condition is matched. So,
after the print function runs, the code exits from the if condition. So, the
output is different from the previous example; we can see the difference in
using the if condition.
x = -1
if x < 10:

print("x is less than 10")
elif x == 10:

print("x is equal to 10")
elif x > 10:

print("x is greater than 10")
elif x < O:

print("x is less than 0")

Output: x is less than 10

For statement

We use for loops in repeatable actions. For example, suppose we want to
call all the items in a list, and we have 100 items inside a list. We need to
write the same code 100 times. But with the for loop, the code needs to be
written only once and can be put into a for loop. It makes the program
simpler with less code. We use for loops in many scripts for automation.

We always use for loops to connect many devices and several different
commands. It is a very important section for automation.

The for loop is a sequence statement. Each item in the loop runs in order,
and the loop continues until it reaches the last item. It returns with the next
value till the end. After the last item is proceeded, the loop is finished, and
control exits from the loop. In the next line, we enter the statements. This is
the body of a for loop:
for Variable in Iterable :

Statement (s)

There are three things to check in the for loop: variable, iterable, and
statement.

e Iterable is a collection of objects like a list.

e Variable is used to get the items from the iterable. In each loop, it gets
the next item until it gets all items in iterable.

e Statement is the body of the loop. It is written inside the for loop, so
there is an indentation for the statement. It is executed for each item
inside of the iterable.

In the following example, we have three values in the animals list. The for
loop says that in the animals list, check the x variable and print in the body
of for loop as a statement. So, from the beginning, the for function prints
elephant and finishes the first round; in the next iteration, it gets monkey as
a new variable and prints monkey; in the last iteration, it gets cat as a new
variable and prints cat in the statement. After that, the loop is finished, and
control exits from the loop because there is no more values to check in the
animals list.

If we have hundreds of items in a loop, the code checks all of them one by
one. So, the for loop is checked from the first item to the last, with the x
variable. In each iteration or loop, the next item in the list is assigned to the
x variable until it reaches the last item in the iteration or list in the following
example. As a result, in the first iteration, x is elephant; in the second
iteration, x 1S monkey; and in the next iteration, x 1S cat. Statement is
print (x), so it prints those three values as output.
animals= ["elephant", "monkey", "cat"]
for x in animals :

print (x)

Output:
elephant
monkey
cat

The following example shows the sum of all items in the numbers list.
Instead of adding each item one-by-one, we can use the for statement:
numbers = [6, 5, 3, 8, 4, 2]
sum = 0
for x in numbers:

sum = sum + X
print (£f"The sum is {sum}")

Output: The sum is 28

When we execute the script, the sum variable changes in each iteration of
the for statement:

sum=0 # Initially sum is 0 as an integer
1st Iteration:

x=6

sum=0+6 #sum is 6

2nd Iteration:

x=5

sum=6+5 #sum is 11

3rd Iteration:

x=3

sum=11+3 #sum is 14

4th Iteration:

x=8

sum=14+8 #sum is 22
5th Iteration:

x=4

sum=22+4 #sum is 26
6th Iteration:

x=2

sum=26+2 #sum is 28

While statement

Another statement is the while loop. The code finishes or exits from the
loop if the while condition is not matched. But if the condition is matched,
it continues with the body of the while loop. In each iteration or loop, it
returns to the beginning to check the while condition. It checks until the
condition is not matched. The program creates a loop with this statement.

The usage of the while loop is similar to that of the i£ condition. We have a
while loop and test expression, and the line is finished with a colon. In the
next line, we write the statements of the loop with indentation:
while Test expression :

Body of while

In the following example, we create an integer x that equals 0. In the while
condition, we write that x is less than 6 and finished the line with a colon. It
means that the while loop will continue until the x less than 6 condition
is false or not matched.

In the body of while, we print out the x variable, and then add 1 to x. There
are two options to write that. We can write x = x + 1 or x += 1. So, we
add 1 to the x variable in each iteration:
x =0
while x < 6 :

print (x)

x +=1

Output:

o s W NP O

When we run the code, x assigns 0 an integer. The while loop checks
whether x 1s smaller than 6. If it’s true or matches the condition, it continues
with the body of the while. In this case, it’s true.

In the body of the while loop, the code prints x, which is 0. In the output,
we can see that first output is 0. Then, it adds 1 to x. So, the value of x is 1
now. The body of while is finished for the first loop.

Then, it checks the condition again. x is 1, so it’s still lower than 6. Now it
prints x as 1 and then adds 1 to x. This continues until x reaches 6. When it
reaches 6, the condition is not true or does not match anymore, so the code
exits from the loop.

We need to be careful while writing a while loop in the script. We can
mistakenly write a while loop for infinitive times, and it may never end. If
we delete the last line in the body of while, which is adding 1 to x, the value
of the x variable is 0 every time. So, the while loop never ends because the
condition always matches, i.e., x 1s less than 6.
x =0
while x < 6 :

print (x)

Output:
0
0

We can write the print function out of the while loop without indentation.
This time, the code writes the final value of x, which 1s 5. After the code
exits from the loop, the print function can be executed like in the
following example. And the value of x is 5 when the while loop is finished:
x =0
while x < 6 :

x +=1
print (x)

Output:
6

We can also write the print function after adding 1 to x. So, in the body of
a while, the code adds 1 to x and then prints x. The result starts from 1 to 6
because we change the order in the body of the while loop.
x =0
while x < 6 :

x +=1

print (x)

Output:
1

o U W DN

Break and continue statement

Break statement: The break statement is used to exit the loop. For
example, we enter the loop, code checks the condition or the statement of
the loop, and if it’s false or not matched, it exits the loop. But if it’s true or
matched, we have another option to exit from the loop. In this situation, we
can use the break statement. So, in any part of the loop, if the code executes
the break statement, the code does not continue to the loop and exits
immediately.

We mostly use break statements with for and while loops. We put a break
statement inside the body of the loop, and we use them for a purpose. For
example, when we want the code to exit from the loop if something
matches our expectation inside the loop. We can use the if condition, 1.e., if
the condition 1s matched, execute the break statement and exit from the
loop.

for variable in iterable : while Test_expression :
body of_ for body of_while

if condition : if condition :

break break

Table 2.3: Break statement usage in for and while loop

In the following example, we have an animals list with three items: lion,
dog, monkey. We create a for loop and print each item with an x variable. If
we finished the line here, the result 1S 1ion, dog, monkey. But we want to
finish or exit the loop when the code matches a value as dog in the list, we
write the if statement that if x variable equals dog, break the loop.

In the second iteration, where the value of the x variable is dog, the code
exits from the loop. Because the if condition is matched, which is if x
equals to dog string, the condition is matched, and the break command is
executed.

animals = ["lion", "dog", "monkey"]

for x in animals:
print (x)
if x == "dog":
break

Output:

lion

dog

If we write if x equals to bird, then the break, the code doesn’t match

the if statement, so the for loop continues without breaking. The result is
lion, dog, monkey because there is no item named bird in the animals list.

Continue statement: The continue statement is used to skip the rest of the
code inside a loop for only the current iteration. Loop does not terminate
like a break statement but continues with the next iteration. So, with the
continue statement, we can stop the current iteration of the loop and
continue with the next iteration. The usage of the continue statement is the
same as that of the break statement. The break statement exits from the
loop, but the continue statement exits only from the current iterable loop.

for variable in iterable : while Test expression :
body of for body of while
if condition : if condition :
continue continue

Table 2.4: Continue statement usage in for and while loops

In the following example, we use the continue statement instead of the
break statement. With using a break statement, the loop finishes when the
dog item is matched. But we use the continue statement. It only passes
when the if condition is matched with dog. In the for loop, x assigns the
first item in the animals list as 1ion. In the body of the loop, it checks the
if statement, and x is lion. So, it passes the if condition and prints the x
function. So, the code prints lion.

Then, x gets the dog item. It checks the if condition, which matches. So, it
checks the body of the if condition, which has a continue statement. So,
this section of the loop is finished, not continue to print function. Then, x
gets the third item, which is monkey. It does not match the condition of the
if statement, so it prints monkey like lion. As a result, we have the output
lion and monkey:

animals = ["lion", "dog", "monkey"]
for x in animals :
if x == "dog"
continue
print (x)

Output:

lion

monkey

Finally, the break statement finishes all the loops and exits, but the

continue statement only finishes the current iteration and continues with
the next iteration.

Range statement

We often use the range function in the for loop in network automation to
loop integers with specific numbers. It returns a sequence of numbers. It
starts from 0, increments by 1 by default, and ends at a specific number.
There are three options to use the range function.

We can write range and write the stop value range (stop) as an integer
inside parentheses. In the following example, we enter 5 for the range
value. So, the for statement is executed from the first item of the range
function, which is 0 and continues until it reaches the first item, which is 4.
As a result, the output is 0, 1, 2, 3 and 4.

for x in range (5):

print (x)

Output:
0

B w N R

We can write range with start and stop values range (start, stop) as
integers inside parentheses. The values are divided by a comma. In the
following example, we enter 2 as a start value and 5 as a stop value. So,
the output is 2, 3, and 4.

for x in range(2, 5):

print (x)

Output:
2
3
4

We can write range with start, stop and step values range (start,
stop, step) as integers inside parentheses. The range statement starts
from the start value to the stop value, incrementing by 1 by default. But
we can modify the incrementing value with the step parameter. In the
following example, it starts with 2 and finishes at 10, incrementing by 3. So,
the code gets 2, 5 and 8.

for x in range(2, 10, 3):

print (x)

Output:
2
5
8

For else statement and nested loops

The for...else statement: There is an option to use the else statement in
for loop. Normally, the else statement is used in if conditions to state that
if all conditions are not matched, the loop should continue with the body of
the else statement. But in the for loop, the else statement is used when the
for loop finishes. After the last item in iterable is used in the loop, the code
passes to the else statement. It’s an optional feature in the Python
language:
for Variable in Iterable :

Statement
else:

Statement

In the following example, we have a for loop with the range as 3. In the
body of the loop, we print the x variable. Then, we have the else statement
to print Finally finished. After the loop is finished, the code prints x as 2,
continues with the else statement, and prints “finally finished”.

for x in range(3)

print (x)
else:
print ("Finally finished!")

Output:

0

1

2

Finally finished!

Nested loops: Nested loop is a loop inside another loop. The first for loop
is called the outer loop, and the second for loop is called the inner loop.
We just use a for loop inside another for loop. From the first line, for
loop, or outer loop, we assign an item to variable-1 and continue with the
body of the first for loop. The body of the first loop has another for loop,
which is the second for loop or inner loop.

In the inner loop, it finds all items in iterable-2 and continues with the
inner loop statement. After the inner loop finishes, the code continues to
choose the next item in the outer loop. Then, it again checks for all loop
statements in the inner loop.
for variable-1 in iterable-1 : #Outer Loop
for variable-2 in iterable-2 : #Inner Loop
Statement (s)

In Example 2.8, we have two lists: types and tools. Both of them have
three items. We write the first loop or the outer loop. It returns all items in
the types list. In the body of the outer loop, we have another loop, which is
the inner loop. The inner loop returns all items in the tools list. And the
statement prints both variables in inner and outer loops as x and y. If we run
this code, it acts like this:

Example 2.8. Nested loops with outer and inner loop
types= ["beautiful", "yellow", "small"]
tools= ["pen", "book", "rubber"]
for x in types:
for y in tools:
print(x, y)

Output:

beautiful pen

beautiful book
beautiful rubber
yellow pen
yellow book
yellow rubber
small pen

small book

small rubber

In the outer loop, x gets the first item as beautiful. Then it continues to the
second line, which is the inner loop. y gets the first item of the inner loop,
which is the pen. In the next line or the inner loop’s body, the code prints x
and y, so the output is beautiful pen. The first iteration of the inner for
loop finishes, but in the outer loop, the statement hasn’t finished yet. y gets
the second item in the inner loop as the book and prints beautiful book.
Finally, y gets the third item as rubber and prints beautiful rubber.

Now the inner loop finishes. It means that the outer loop’s first iteration is
finished, where it had the item as beautiful. So, the outer loop continues
with the second item. So, in the outer loop x gets the second item as yellow.
And in the inner loop, from the beginning, y gets the first item as pen and
prints yellow pen. This continues until all the items are executed in the
outer loop.

In the final iteration of the outer loop, the item gets a small value and
continues the same way with all inner loops. Finally, we have ninw lines of
output combining the inner and outer loops.

We use these nested loops many times in our network automation scripts. In
the outer loop, we write a list for the device IP addresses, and in the inner
loop, we write a list for the command list. The code gets one device IP and
connects it to the outer loop; then, it executes all the commands in the inner
loop and continues with the second device IP to execute all the commands.

Try...except statement

The try..except statement is generally used to catch errors in code, debug,
to catch exceptions. For example, we write a code and get an error
somewhere in our script that we cannot find. We can add a specific part of
the code inside this statement to catch the issue. We can write anything

understandable for us, like a print function that runs There is an error
in these 1lines. S0 if the code gives an output, we understand that there is
an error in that line.

In another example, we have a script that logs in five devices with SSH in
the for loop. And we cannot reach the third device in the loop because that
device has an SSH connection issue. If we run this code, we get an error
because the script cannot be finished; it fails. But if we write all statements
inside the try.except statement, we can continue the code until it is
finished and can print the issue device with its I[P address that cannot be
reachable.

When the loop starts with the third device, it fails, so the except statement
is run. And it prints the IP address and says it is not reachable. Then, it
continues with the fourth device. So, we have two achievements here: our
code 1s finished successfully, and we can catch the third device that cannot
be reachable with SSH. So, in real-life scenarios, we can always use a try..
except statement. The try..except statement is similar to if statements in
some ways. We can also catch failures with the if statement, but it has
limits.
If the try statement fails, it continues with the except statement. If it’s
successful, it continues the code by passing the except statement. The usage
of the try..except statement is easy. We write try with a colon and then
write the body of the try statement. After that, we write the except
statement with a colon and write the body of the except statement.
Optionally, we can add another statement, which explains that the try
statement is successful.
try:

Body of try
except:

Body of except
else:

Body of else

In the following example, we create a string variable, Network Automation
with Python. In the try statement, we print a variable that we already
created in the upper line. Then, we write the except statement and print the
string Failed. In the try statement, the code runs without a problem, so the
output of this code is Network Automation with Python.

a = "Network Automation with Python"
try:
print(a)

except:
print ("Failed")

Output: Network Automation with Python

In the next example, we change the print function in the try statement.
This time, we print b as a variable, but there is no b variable in this code. If
we don’t write a try..except statement in this code, the code gives an error,
like name 'b' is not defined, and even if we have some other codes
after print b, the program doesn’t continue to execute them because of the
failure. But, if we write it with the try..except statement, the code still fails
in the try statement, so it continues with the except statement. This time, it
is not passed in the except statement. So, the output prints the function of a
string, which is Failed.
a = "Network Automation with Python"
try:

print (b)
except:

print ("Failed")

Output: Failed

In the Example 2.9, we write two print functions: print (a) and print
(b). When we run this code, the code processes the first line in the try
statement, which is print (a). There is a value of the a variable above the
code, so it gives the output Network Automation with Python. Then, it
continues to the next line. Now, it’s print b. It continues with an except
statement, which has only one line of code, that is, the print function of the
Failed string.

Example 2.9. Finding the issue code with try...except statement
a = "Network Automation with Python"
try:
print(a)
print (b)
except:
print ("Failed")

Output:
Network Automation with Python

Failed

In this example, we change the order of the body in the try statement. The
code starts executing the first line. There is no b variable in the code, so it
catches an error and then continues with the except statement. It doesn’t
check the next lines in the try statement. So, the output of this example is
different from that of the previous example:
a = "Network Automation with Python"
try:

print (b)

print (a)
except:

print ("Failed")

Output: Failed

In the final example, we use the else statement additionally. We write the
body of the else statement after the except statement. When we run this
code in a try statement, it prints a variable, and then it continues with the
else statement. It bypasses the except statement because there is no issue
in the try statement.

If the try statement is successful, it continues with the else statement. In
the example, we write the print function as a Successful string in the
body of else. As a result, the output has two lines, which are Network
Automation with PythonEHKiSuccessful.
a = "Network Automation with Python"
try:

print(a)
except:

print ("Failed")
else:

print ("Successful")

Output:
Network Automation with Python
Successful

Conclusion

In this chapter, we learned about the basic functions of Python: print and
input We compared the list, set, tuple, and dictionary data types, and we
introduced the basics and methods of string, integer, list and dictionary data
types. We also wrote several example scripts for these methods. We
introduced statements and conditions deeply and wrote example scripts for
if,for,while,break,continue,range,formelse,neﬂbdloopsZnuitrym
except statements. We learned the usage of these statements and learned
their syntax. We focused on the tricks and the important parts to use these
statements.

In the next chapter, we will continue with file handling, Re module, and
some advanced topics of Python, like functions and classes. After that, we
will introduce the connection modules with SSH and telnet protocols to log
in to real network devices. So, we will be ready to collect logs from
network and system devices and modify them for our purposes.

Multiple choice questions

1. What will be the output of the following code?
x =4
for i in range(x):
x +=1
print (x)
a.5678
b.1234
c.4567
d.2345

2. Which of the following is not a dictionary feature?

a. Ordered
b. Changeable
c. Indexed

d. Each item has keys and values

3. What will be the output of the following code?

x ="3 + 5"
print (x)

a. 8

b. “8”

c. 3+5

d. “3+5”

4. What will be the output of the following code?
x = "In google search, Python is the best for in all
scripting”
X = x.replace ("in", "X")
print (x)
a. google search, Python is the best for X all scriptXg
b. In google search, Python is the best for X all scripting
c. In google search, Python is the best for X all scriptXg
d. google search, Python is the best for in all scriptXg
5. What will be the output of the following code?
x = [2, 33, 222, 14, 25]
print (x[-2])
a. Error
b. 25
c. 14
d. 222

Answers

I.a
2.a
3.¢c
4. c
5.¢c

Questions

1. Write a script to calculate the perimeter of the rectangle from length
and width parameters.

2. Write a script to convert degrees Fahrenheit to degrees Celsius.
Formula: Celsius = (5/9) * (Fahrenheit - 32)
3. Write a script to find the grade of a student according to input, like 70,
90, and 50 scores.
a. If the score is between 90 and 100, grade “AA”
b. If the score is between 70 and 90, grade “BB”
c. If the score is between 60 and 70, grade “CC”

d. If the score is below 60, grade “FF” (It can also same as
otherwise it’s “FF”’; else statement can be used.)

CHAPTER 3
Python Networking Modules

This chapter will focus on file handling in Python language. We will use
new modules, like the OS module to modify files and directories, the R
module to manipulate logs, and netmiko, paramiko, and telnetlib modules to
connect devices. We will focus on object-oriented programming in Python
language as functions, classes, and modules.

Structure

In this chapter, we will cover the following topics:

* File handling

o Open function
o OS module
o Word files
o Excel files

e RE modules

o RE module functions
o Special sequences
o Sets in RE module

e Advanced topics of Python

o Functions
o Creating modules

o Classes

Objectives

We will explore Word, Excel, and text files in this chapter. We will also
open, close, and modify files with the OS module. We will learn about the
RE module so that we can manipulate logs of network devices and get the
specific data needed in network automation. Further on, we will move on to
advanced topics in Python, which are functions and classes. And we will
create custom modules to import to the scripts.

File handling

We always display outputs with the print function, but in a more advanced
way of showing results, we will use Word, Excel, and even text files. We
will create, modify, and delete files according to our expectations in
network automation scripts.

Open function

In Python, the open function is used for file handling. With this function,
we can open, read, append, write, create, and close files. We can change the
mode with some parameters to handle a file with our expectations. The files
can be in text or log format. Refer to Table 3.1:

Mode Description
"t Opens a file for reading, gives error if the file does not exist, (default value)
W Opens for writing, truncating the file first
"x" Creates the specified file, returns an error if the file exists
"a" Opens a file for appending at the end, creates the file if it does not exist
"p" Change the mode of the file from text to binary mode

Table 3.1: The Open function parameters

e Read mode: We use the “r” parameter in the open function to read a
file. This 1s the default mode of the open function. In the next
example, we try to open a “test.txt” file, which is in the same
directory as our script. We read the file and display the file as output
with a print function.

First, we assign an open function to the files variable. We write the
target file with its extension and the mode parameter inside the

parentheses of the open function. In this case, even if we don’t write
the r parameter, the code works fine because the default mode of the
open function is read mode as r. The target file can be in any text file
format that the open function supports.

In the first line, we open the file in reading mode. In the next line, we
read the opened file with the files.read () function and assign it to
another variable file read. In this files.read() code, we call the
files variable. This variable equals open ("test.txt", "r"). In the
last line, we print the file read variable. So, we can display a text
file with this script.

files = open("test.txt", "r") #Open a file, same as,
files = open ("test.txt")

file read = files.read() #Read a file
print(file_read) #Print file that we read

Before running the previous code, make sure to create a test. txt file
in the same directory as the code and fill the file with some strings:
test. txt

Hello World

This is Python Script

When we run the code, it shows the string of the test.txt file. The
output will be as follows:

Hello World

This is Python Script

We called the files variable with the read function. Instead of
writing the previous code, we directly wrote open(test.txt),
'r').read(), like in the given example. So, we didn’t call any
variable; we directly wrote the code that works with the read function.
But the following code is more complicated to write and understand.
So, we always assign some codes to variables and call those variables
with other functions. When we write the preceding code, the code
translates it by itself as the example following. So, both the codes are
the same. As we said, the earlier version is much better.

file read = open("test.txt", "r").read()

print(file_read)

Append mode: We can append or add new entries to the current file.
If there is no file, it creates a file. For the append feature, we use the a

parameter. Its usage is similar to that of the read mode. We open a file
with the a parameter with the open function, and then we add the
write function with the new value. In the following example, after we
add strings to the file, we also read the file and print it. We write the
read function to read it after appending a string to display the final
content of the test.txt file. The write function doesn’t change
anything in the original file. It only adds new entries after the last
character in the original content. It doesn’t go to the next line, as
shown in the following output:

files = open("test.txt", "a")

files.write("Hello World")

files = open("test.txt", "r")

print(files.read())

Output:
Hello World
This is Python ScriptHello World

Write mode: We can also overwrite a file. Append doesn’t change
anything in the original content, it only adds new lines. But the w
parameter, which is also the write mode, deletes all the original
content and writes its new value. The usage of overwriting is similar
to that of append. We use the write function on both of them. Only
the open function parameter is changed. In append, we use a and in
overwrite, we use w as the write mode.

files = open("test.txt", "w"

files.write("This is new content !!!")

files = open("test.txt", "r")

print(files.read())

Output: This is new content !!!

Read by characters: If we run the read function with empty
parentheses, it reads the entire file content, as in the following
examples. If we write a number, like 10 in the following example, it
only reads the first 10 characters instead of all the characters in the
file. So, we can read some parts of the content in the target file.

files = open("test.txt")

print(files.read(10))

e Close function: The close function is used to close a file. To use it,
we call a close function with empty parentheses with the variable
which we open the target file as files.
files = open("test.txt")
print(files.readline())

files.close()

Output:
Hello World

e Create mode: Create mode is to create a file. We use the x parameter
in the open function to create a new file. When we run the following
example, we must see a new file as test2.txt created in the same
directory as our script running.
files = open("test2.txt", "x")

OS module

Python consists of modules and functions. One of the basic modules is the
os module. It’s generally used for operating system work, like deleting files
and folders, changing the name of a file, or changing the directory of a file.
There are also other features of this module:

e Delete a file: We can delete files on our PC by Python scripting. To do
that, we can use the os module. To use the os module, we must import
it as import os. After that, we need to call the remove function from
the os module to delete a file. To call a function from its module, we
usemmdule_pame.function_name.SO,ﬁlourexanqﬂe,ﬂﬁSos.remove.
Inside the remove function, we write the target file with its extension.
When we run the code, we can see that the file 1s deleted in the current
directory.
import os

os.remove ("test.txt")

e Create a folder: We can create a directory or folder with the mkdir
function. We need to import the os module before using this function.
import os
os.mkdir ("testfolder")

e Delete a folder: We can delete a directory or folder with the rmdir
function. We need to import the os module before using this function.

import os
os.rmdir ("testfolder")

e Getcwd function: The getcwd function is used to find the full path of
the script running.
import os
print (os.getcwd())

Output:
D:\Examples\test

e Listdir function: The 1istdir function is used to find all the content,
including files and directories, in the current path of the script. We can
specify the path inside parentheses if it’s different from the current
path. The code returns a list with all content. It’s working as a dir
command on Windows or 1s command on Linux.
import os
print(os.listdir())

Output: ['example.py', 'test2.txt']

Word files

Python-docx module is used to create and modify word files in Python. It’s
a third-party module that is not built-in. So, to use this module, we need to
install it with the pip install Python-docx command. We can create
word documents, add headings, add paragraphs, change styles like bold or
italic, add pictures and tables, and add rows in the table. We can save all
these changes to a word file. We can do it without even opening a word file,
only with Python code.

To call a document, we use the document function from the docx module
docx.document (). To call each function, firstly, we must call the
document () function. Instead of writing this function each time, we assign
this function to the document variable. So each time we write document, it
means docx.document ().

There are also other docx module functions, as shown in fable 3.2. If you
need more functions to check for a specific purpose, you can check their
official website with the following link:

https://Python-docx.readthedocs.io/

https://python-docx.readthedocs.io/

Function Description

docx.Document () Call document function to use for other docx functions

add_heading Add a new header in the document with the option to change the
size from 0 to 9

add_paragraph Add a new paragraph

add_run Append characters (words, sentences) in a paragraph, with the
osption to change the style to bold or italics

add_picture Add a picture (JPEG or PNG format) in a document, with the option
to change the size

add_table Add table in a document in any size

cell () Add text inside a table

add_row Add a row in the table

save (file name) Save all changes in the code to word with a file name

Table 3.2: Python-docx Module Functions

We can create word files, like in Example 3.1. For adding images, we need
to add a JPG file to the same directory with our script. When we execute the
code in Example 3.1, Python creates a word file named test.docx as we
save with this name in the last line of our code. When we open the word
file, we can see the following output. It starts with a big size header,
followed by a paragraph including default, bold and italic styles. Then, we
have a bullet list and a numbered list. Finally, we have a table where some
cells are filled with the inputs. Figure 3.1 is created by our script. In later
projects, we can create any kind of Word file by writing Python scripts
according to our demands.

Example 3.1: Create a Word file and modify with Python

import docx # Import Python-docx module
document = docx.Document() # Call document function to call
other functions

document .add _heading ('PYTHON COURSE V1.0', 0) # Add
heading to word document

p = document.add paragraph('We are learning ') # Create a
new paragraph

p.add run('Python. ') .bold = True # Add characters
in bold

p.add run('for ') # Add characters in
default style

p.add run('Network Automation.').italic = True # Add
characters in italic

Add 2 lines of bullet style text

document .add paragraph ('Lesson-1 Introduction', style='List
Bullet')

document.add paragraph('Lesson-2 Installation',6 style='List
Bullet')

Add 2 lines of Numbered list

document.add paragraph ("What is Python?", style='List Number')
document.add paragraph("How to install Python?", style='List
Number')

document.add picture('logo.jpg', width=docx.shared.Inches(2))
Add Picture

document.add heading('TABLE-1', 2) # Add Heading
with size "2"
table = document.add table(rows=2, cols=2) # Add Table with

2 rows and 2 columns
table.style = document.styles|['Table Grid']

cell = table.cell (0, 0) # Fill Table by cells

cell. text = "Python"

cell = table.cell(0, 1)

cell.text = "automation"

row = table.rows[1l] # Fill Table by cells in
alternative way

row.cells[0] .text = 'network'

row.cells[1l] .text = 'engineers'

row = table.add row() # Add new row to table
document.save ('test.docx"') # Save all changes to

docx file

Refer to Figure 3.1:

PYTHON COURSE V1.0

We are learning Python. for Network Automation,

Lesson-1 Introduction

* Lesson-2 Installation

1. Whatis Python?
2. How to install Python?

TABLE-1
pythﬂn automation
network engineers
Figure 3.1: Output of Example 3.1
Excel files

The openpyx1 module is used to create and modify an Excel file. It’s also a
third-party module, like the Python-docx module. So, we need to install the
openpyxl module using pip install openpyxl. After the installation, we
can import the openpyxl module. Another option is that instead of
importing all the modules, we can only import specific functions of a
module. In the following example, we import the Wworkbook function from
the openpyx1 module:

from openpyxl import Workbook

When we call the workbook function, we don’t write openpyxl .Workbook ()
because we already called it in the previous line. If we only write import

Workbook, W€ must write openpyxl.Workbook () instead of writing
Workbook ().

We assign the workbook () function to the workbook variable. Then, we
assign the workbook variable with active function to the sheet variable.
This two-function assignment is required to write codes more clearly in the
later sections. As the official document of the openpyxl module
the filesystem to get started with openpyxl. We just import the Wworkbook
class and start work. So, with a workbook, we create an Excel file.
workbook = Workbook ()

sheet = workbook.active

After that, we add values in Excel blocks. In the following example, we
choose a1 block and assign its value as Python, B1 is assigned Scripting,
A2 1s assigned For Network, and B2 is assigned Automation.

sheet ["Al"] = "Python"

sheet["Bl1"] = "Scripting"
sheet["A2"] = "For Network"
sheet["B2"] = "Automation"

We can also change the sheet name with the title function. In the following
example, we change it to Test Page:
sheet.title = "Test Page"

We create our Excel file and modify it. Finally, we can save it to a file, like
in the Python-docx module. We use the save function with the workbook
variable that we created in the beginning. Inside the save function, we write
the filename with its extension.

workbook.save (filename="test.xlsx")

When we execute the code, Python creates a file with the mentioned
features and saves it in the same directory as our script. In Example 3.2, you
can find the full code of the preceding example.

Example 3.2: Create an Excel file and modify it with Python
from openpyxl import Workbook

workbook = Workbook ()

sheet = workbook.active
sheet ["Al"] "Python"
sheet["B1l"] = "Scripting"

https://openpyxl.readthedocs.io/

sheet["A2"] = "For Network"

sheet["B2"] = "Automation"
sheet.title = "Test Page"
workbook.save (filename="test.xlsx")

We can also read values from an existing Excel file. This time, we import
the 1oad workbook function from the openpyx1 module.
from openpyxl import load workbook

Then, we create a variable as test.x1sx string, which is an Excel file name
and extension that we created in Example 3.2. Then, we call the load-
workbook function with the filename:

filename="test.xlsx"

wb=load workbook (filename)

Like in Example 3.2, we use the activate function and assign it to the
sheet variable.
sheet=wb.active

We create two variables: b1 and b2. In the first line, we directly write sheet
with a1 inside square brackets. a1 is the block name and number in the
Excel file. In the second line, we call the ce11l function with writing row
and column by numbers as row=1 and column=1. In both instances of usage,
we find the same block in the Excel file. The usage is different, but the
result is the same.

bl=sheet['Al']

b2=sheet.cell (row=1l, column=1l)

After we got the values, we printed the b1 and b2 variables. If we can
directly write the variable, we cannot see the value in the block. We see
<Cell 'Test Page' .Al> in the output, so we must write bl.value to get
the value in the specific block. The output is Python as string, which is the
a1 block value of the Excel file that we created in Example 3.2.

print(bl.value)

print(b2.value)

print(b2)

Example 3.3: Read data from the Excel file

from openpyxl import load workbook

filename="test.xlsx"
wb=load workbook (filename)

sheet=wb.active

bl=sheet['Al"']
b2=sheet.cell (row=l, column=1l)

print(bl.value)
print(b2.value)
print(b2)

Output:
Python
Python
<Cell 'Test Page'.Al>

RE modules

The rRe module is one of the most important modules in network automation
for filtering data and logs. We can also find specific characters in files. Re
means regular expression. RE module 1s a third-party module, so we need to
install the module with pip install regex.

RE module functions

There are many re module functions. As listed in Zable 3.3, we will focus
on four main functions of the re module in this book. They will be the most
useful ones for network automation. We must import re module to use all
functions in the re module:

Function Description
findall () Returns all matches in a list
search () Searches the string for a match, and returns the first match
split() Splits the string with a specific character
sub () Replaces the matched character with new values

Table 3.3: RE module functions

e findall(): The findall function 1s used to find all matches in a
specific variable. When we use the findall function, we first write
the characters or variables that we are searching for inside the
parentheses. After a comma, we write the source string. So with the

findall function, we can find the specific values and return them in a
list. If no match is found, it returns an empty list as an output. So, the
input or source must be a string or byte data type. The result is always
a list data type.

import re

re.findall (Find_the_Characters , Source_String)

In the following example, we import the re module. We create a
string variable as a test. Then, we write re.findall in parentheses.
We write o and n characters as search parameters and test as the source
string inside parentheses. We assign this function to the x variable and
print it.

In this example, we try to find o and n characters together. The test
variable is a string, which is on Friday, I will study Python for
Network Automation. In this string, we have 3 of o and n together.
But in the first letter, o and n, o is capital. It cannot match our
condition. Since the Re module functions are case sensitive, the
condition must match the same characters. There are two on in the
string with the condition, so the function finds two of o and n in the
test string. It returns an output as a list. If it doesn’t find any matches,
it creates an empty list.

import re

test = "On Friday, I will study Python for Network
Automation."

X = re.findall ("on" , test)

print (x)

print (type (x))

Output:

['on', 'on']

<class 'list'>

search () : The search function is used to check for the first match in
the source string.

import re

re.search (Find the Characters , String Name)

We have a test Varkﬂﬂe, which 1S I am learning Python for

network automation. We write the re.search () function with o and
n to find the target and test as a source variable. If we execute this

code, the result will be <re.Match object; span=(18, 20),
match='on'>.

We have o and n two times, but the search function only gets the first
match, which is in Python word.

import re

test = "I am learning Python for network automation”
X = re.search ("on" , test)
print(x)

Output: <re.Match object; span=(18, 20), match='on'>

In the preceding output, match is the value that we are searching for,
and span shows where the first matched value is. In this example, span
1s 18 and 20. It’s the character index in the source string. The matched
characters are between the 18t and 20th characters. Finally, the
matched value is on.

If we print the x.start () function, it shows the matched value in the
first place, which is the 18th character. So, the result is 18:
print (x.start()) Output: 18

If we print the x.end () function, it shows the match value end place,
which is the 20t character. So, the result is 20:
print(x.end()) Output: 20

If we want to know how many characters are there in total in the
source string, we can use the x.endpos () function:
print (x.endpos) Output: 43

If we want to check only the span value, we can write x.span(). The
output shows it:
print (x.span()) Output: (18, 20)

split(): The split function is used to split the string input into a list
by dividing with specific characters. We write the re.split()
function. Inside the parentheses, we write the target characters to
divide by, and the string or string variable as input or source. There is
an optional parameter to choose how many times the split function
splits the matched value with the condition. By default, it divides for
each match.

import re

re.split (Find_characters, String name, (optional)
Number of times)

In the following example, we have a test variable as a string, which is
Network Automation. We write the re.split("o","test") function.
Inside the parentheses, we write the o string to match and the test
variable as a string value. If we print x, the output of the code returns
a list. So, we divide the string each time by a sp1it function that finds
the o character. We have three instances of o in the test variable, so
three times divided, finally, we get 4 different items in a list.

import re

test= "Network Automation"

x = re.split ("o", test)

print (x)

Output: ['Netw', 'rk Aut', 'mati', 'n']

In the following example, we have the same split function, but this
time we provide the number of times optional value as 1. So, the
code finds all matches, but it only divides from the first match. Even
though we have three matches, only one of them is split. We have two
items in the output list instead of four. If we write a higher value than
the matched count, like in the example, we have three matches but
write five in the function, the optional value will make no sense. It is
eventually divided thrice.

import re

test= "Network Automation"

X = re.split ("o", test, 1)

print (x)

Output: ['Netw', 'rk Automation']

sub (): The sub function is used to replace the matches with the new
values. We write the re.sub() function; inside the parentheses, we
write the original or current value, then the new value, and finally, the
source or input string or a variable that needs to be used for the sub
function. There is also an option to choose the number of times to
replace matches, like in the sp1it function, as an optional parameter.
Instead of other functions like £indall or split in the re module, the
sub function’s output is in string data type.

import re

re.sub (Find characters, Replace characters, String name,
(optional) Number of times)

In the first example, we have the same test variable Network
Automation. Inside the re.sub() function, we write the current value
as o, then we write x as a new value, and finally, we write the source
variable. In the output, o is replaced with x thrice in the test variable,
and the output is a string data type.

import re

test= "Network Automation"

X = re.sub ("o" , "x" o, test)

print (x)

Output: Netwxrk Autxmatixn

In the second example, we use the same parameters and add the
optional parameter as 2. So, the sub function only replaces the first
two matches of o with x.

import re

test= "Network Automation"

X = re.sub ("o" , "x" o, test, 2)

print (x)

Output: Netwxrk Autxmation

Special sequences

In the RE module, there are special characters called the “RE Special
Sequences”. They can find all spaces or digits or only get the target
characters. So, they are very powerful to manipulate strings or find the
exact part from any kind of log. All these special sequences are used with

the backslash sign.
Special sequences Description
\A Returns a match if the specified characters are at the beginning of
the string
\d Only returns the digits in the string
\D Only returns non-digit values in the string
\s Only returns spaces in the string

\s Only returns characters except spaces in the string

\w Returns a match where the string contains any word characters
(characters from “a to z”, “A to Z”, digits from “0 to 9”, and
underscore)

\W Returns a match where the string does not contain any word
characters

\z Returns a match if the specified characters are at the end of the
string

Table 3.4: Re module special sequences

From Jable 3.4, there are lower case and capital letters with backslash
signs; these are opposites of one another. For example, lower d is used to
find digits, but capital b is used to find non-digits.

import re

test = "You can learn Python Scripting in 10 Weeks."

We have a string variable test, which iS You can 1learn Python
Scripting in 10 Weeks. In the first example, we write \d. It finds all the
digits in the test string. We have 1 and 0 as digits in the string variable,
so it creates a list with items for each match. There are two items on that
list.

x = re.findall("\d", test)

print (x)

Output: ['1', '0']

In the second example, we write \D. It finds and returns anything like
characters from a to z, spaces, and signs instead of digits. \D is opposite of

the \d.
x = re.findall ("\D", test)

print (x)

Olltpllt:['Y‘, 'O', lul’ ' 1’ lcl’ vav, lnl’ ' v, lll’ |e|’ vav,
lrl’ |n|, ' 1, 'P', lyl’ 't', lhl’ 'O', |n|’ 1 |, lsl’ 'C',
lrl, 'i', 'P', 't', 'i', lnl’ lgl, 1 1, 'i', |n|, ' l, 1 1,
IWI, lel, lel, lkl, lsl, l.l]

In the next example, we use \s. It finds all the spaces in the string and
writes each of them in a list with different items. We have seven spaces in
the string, so we have seven space items in output:

x = re.findall("\s", test)

print (x)

Output[v |, ' |, ' |, ' |, ' |, ' |, ' |]

In this example, we use \w, which finds any characters from a to z,a to
z, digits, or underscore.

x = re.findall("\w", test)

print (x)

Output ['Y', lol’ lul, lcl, |a|, vnv, 'l', lel’ lal, lrl, |n|,
IPI, |y|, ltl, VhV, 'O', VnV, 'S', VCV, lrl, Vil, lpl, |t|,
’i’, ’nl, lgl, lil, lnl, lll, '0', lWl, lel, lel, lkl’ lsl]

In the next example, we write s\w. It finds a character starting with s, then
any characters a to z, A to Z, 0 to 9, or underscore, so the output is sc.

Test = "You can learn Python Scripting in 10 Weeks."

X = re.findall ("S\w", test)

print (x)

Output: ['sc']

In the next example, we use \D to find anything except digits. In the
example, we said the match must start with s, and the result must include
the s character.

x = re.findall ("S\D", test)

print (x)

Output: ['sc']

This time, we use \p with a plus sign. The function matches until it reaches

a digit and stops. So the result of s\D+ is Scripting in until the first digit
match.

This time, in the first line, we use s\w+ with a plus sign for the x variable.
The plus sign means that it continues until the match condition fails. In this
example, after s, we have c. After that, we have r. It’s also a letter
character. \w matches characters from a to z, A to Z, digits, and underscore.
This continues with i,p,t,i,n,g. There is a space after g, so this does not
match the condition of \w. The result will be scripting, starting with s and
finishing with g.

x = re.findall("S\D+", test)

print (x)

Output: ['Scripting in ']

In the second line, we write s(\w+) as the y variable and put \w+ inside
parentheses. So, we said that the match starts with s and continues if the
next character is a to z, A to Z, digits, or underscore. If it fails to match the
condition, finish the function. It is the same as the first line until now. Here,
we find a match for scripting, but we write parentheses for \w+ matches.
The function only gets the part inside the parentheses, so it doesn’t get the s
character because it’s outside the parentheses. The output iS cripting,
without the s character. So the function catches all the matches but only
returns the values inside the parentheses:

x = re.findall ("S\w+", test)

y = re.findall("S(\w+)", test)

print (x)

print (y)

Output:

X => ['Scripting']

y => ['cripting ']

Sets in the RE module

In addition to special sequences, we have the sets in the RE module. Similar
to special sequences, sets can match specific predefined characters to
manipulate strings easier. RE module sets return a value for the match
condition.

Sets are used by parameters. Without sets, it will only match the exact
match together with the order. For example, if we write a match o, n, it will
check all the o,n characters in a string together by order. If we write o,n in
a set, it will check all strings with o or n. So, we can say that sets are the or
parameters to check the strings.

e All re module sets are always written with square brackets. We can
write any of the alphabetic characters for sets.

e We can write any of the characters inside the square brackets. If we try
to match values from a to p, we don’t need to write all characters
between a and p. Instead of this, we add hyphens between the
characters and write them inside parentheses. We can also use hyphen
signs in digits.

e We can use double sets. So, in the first set, we check digits from 0 to
5, and in the second, we check 0 to 9. So, this match starts from “0”,
6(093 tO CGS”) 469”.

o If we try to find the matches with the except statement, we use ~
characters.

There are some example usages of sets in Zable 3.5:

Sample sets Description
[abc] Returns the value that matches of “a”, “b” or “c” in the string
[a-p] Returns the value that matches characters in the alphabetic order

[IPS] €C_.%

from “a” to “p

[*abc] Returns the value that matches anything except “a”,”b” or “c”

[012] Returns the value that matches 0, 1 or 2 as the digits

[0-9] Returns the value that matches all digits from 0 to 9

[0-5] [0-9] Returns the value that matches all digits from 00 to 59

[a-zA-Z] Returns the value that matches any alphabetical character from “a to
7%

Table 3.5: Re module sets examples

In the following example, we have the same string as the test variable. If
we write the £indal1l function with o and n, it checks o and n together in the
string.

test = "You can learn Python Scripting in 10 Weeks."

x = re.findall ("on", test)

print (x)

Output: ['on']

In the second example, we write the same match with square bracket, which
is a set. It checks o or n in target variable. If there is no square bracket, it
checks o and n. But in this example, it’s o or n. So we have two of o and
five of n 1n the string. The result has seven items:

x = re.findall (" [on]", test)

print (x)

Output: ['0', 'n', 'n', 'o', 'n', 'n', 'n']

In the third example, we check digits from 0 to 9 with hyphen sign with
sets. We have two items: 1 and o.

x = re.findall("[0-9]", test)

print (x)

Output: ['1', '0']

Advanced topics of Python

We can write our automation scripts in a basic or more advanced way. If we
use advanced features of Python in our scripts, they are more stable, require
less code, and are easy to troubleshoot. Functions and classes are essential
for advanced usage of the Python programming language, so we add these
in the following scripts. We can also create custom-designed modules to
call them anywhere in our code.

Functions

Functions are one of the most important parts of Python. They make our
scripts simple and clean. For example, we have some scripts with many
lines. We can write these codes each time we must use them, but it’s not
effective and not clear coding. So we create a function for that code once,
and each time we need that code, we call the function. We used many
functions. For example, we use the split function in the regular expression
module. Like in the remodule functions, let’s create a function. Remember
that functions are reusable anytime and anywhere.

To define a function, we write def and we write the function name in
parentheses. The line finishes with a colon. We write the body of the
function in the following lines with indentation. When we write a function
name with parentheses anywhere in the same code, we can call it:
def Function Name ()

Body of Function

function Name ()

In the following example, we create a test function in parentheses. Inside
the function, we just write the print function with the value of the Network
Automation string. After that, we write test in parentheses. We call this
function in a different part of the code. When we call the test function, in
that part of the code, it runs the test function and prints Network

Automation as the output. If the later lines are not in function indentation,
we can understand that the body of the function is already finished:
def test ()
print ("Network Automation")
test ()

Output: Network Automation

Functions with parameters

We create functions with parentheses. When we define a function, we can
write variables inside parentheses. Then, in any part of the code, we call the
function with the value of the variable.
def Function Name (Variable)

Body of Function
function Name (Value_ of Variable)

We define the test function with parentheses. Inside parentheses, we enter
a variable as platform. Inside the test function, we have only one line as a
print function. There is a string I am learning Python for plus a
platform variable. Then, outside of the test function, we write the test
function with the platform variable. In the first line, we write Network
Automation. SO0 when we call this test function, it prints a function and
writes Network Automation wWhen it sees the platform variable. In the
second line, we change the variable to mysel£. So we call the test function
twice, and we have two different outputs.
def test (platform)

print ("I am learning Python for " + platform)
test ("Network Automation")
test ("myself")

Output:
I am learning Python for Network Automation

I am learning Python for myself

Suppose we call this function 10 times. We write the function once, and we
call it 10 times in the code. If we don’t write a function, we need to write
this information again and again when we need it. It will create
maintenance problems and need too much coding. It’s not good coding. So
in our codes, we try to create functions for repeatable codes.

In the second example, we define the test function and the variable of this
function as x. Inside the function, we print the value for x multiplied by 2.
Outside the function, we call the test function with the value of x as 10. So
when we run this code, the output will be 20 because we have a print
function for 10 multiplied by 2, which is 20.
def test (x)

print (x*2)
test(10)

Output: 20

Functions with default parameters

In the previous example, we added a parameter but didn’t set any default
value on it. In the next example, we can add a default value to the platform
parameter. If we call the test function without any values, it gets the
default value. But if we call it with a value, it uses the new value.

def test (platform = "Network Automation")
print ("I am learning Python for " + platform)

test ()

test ("myself")

Output:

I am learning Python for Network Automation

I am learning Python for myself

Call variables from functions

We can call variables outside of functions.

Example 3.4: Different usage of function variables
Case-1: Case-2: Case-3:
def test(): def test(): def test():
a=10 a=10 a=10
b=20 b=20 b=20
c= a+b c= a+b c= a+b
print (c) return c return c
Output: print (c) x= test()
print (c) Output: print (x)
NameError: name 'c' is not print (c) Output: 30
defined NameError: name 'c' is not

defined

In Example 3.4, case-1, we have three variables: a equals 10, b equals 20,
and c equals a+b, which is 30. When we try to print the ¢ variable outside of
the test function, we get an error that c is not defined. This is because we
called the c variable outside of the test function.

In Example 3.4, case-2, c is inside a function. Any variable in a function
has a local scope. Therefore, when ¢ is printed outside, it says ¢ is not
defined.

In Example 3.4, case-3, we call the test function outside the function, and
we need to assign it to a variable, which is x here. If we print the x variable,
the code calls the test function and prints the return value. We can reach
any variable from a function in this way. In this example, we can also write
print ("test () "), and we will get the same result.

Example 3.5: Global and local variables of functions
Case-4: Case-5: Case-6:
def test(): def test(): def test():
a=10 a=10 global c
b=20 b=20 a=10
c= a+b c= a+b b=20
return c all = [a,b,c] c= a+b
return b #Code is not return all test ()
reachable x= test() print(c)
x= test() print (x[1]) #Call "b" Output: 30
print (x) print (x[2]) #Call "c"
Output: 30 Output:
20
30

In Example 3.5, case-4, if we try to reach multiple variables from the
function, we cannot write multiple returns. This is because when the
execution comes to the first return, it understands that there 1s an exit from
the function. So, the function finishes after the first return line. Any code
after the return is not executed. In this example, the return b line is not
executed.

In Example 3.5, case-5, to solve this issue, we can create a list inside a
function and add all the variables that we try to reach outside the function.
Then, we can write return the 1ist variable. Outside the function, we can
call the test function and assign it to x. If we try to reach the b variable, we
can call x[11, which is the second item of the a11 list.

In Example 3.5, case-6, as an alternative to using return, we can call
variables outside the function with global variables. Inside the function, we
can write global with the target variable so that we can call this variable
from outside of the function. After we call the test function, we can call a
global variable in this code.

Creating modules

When we create a function, we can only use it in the same Python file by
default. We can create customized modules with functions, so we can
import those modules and call our functions.

In the following example, the testmodule.py file, we create a function as
test. We have the body of the function as one line of the print function.
We save the file with the .py file extension, which is a Python file format.

When we create another Python file for example.py, we cannot directly call
the test function from the test module Python file. We must import the
module or file first. After that, we can call a function from that module with
module_name.function_name. The test function has one parameter, so we
can write one parameter to call the test function Network Automation, like
in the example. We can call a function from another file, so we create a
module.

Example 3.6: Create a module and call a function from that module
testmodule.py
def test (platform)
print("Hello " + platform)
example.py
import testmodule
testmodule. test ("World")

Output: Hello World

In this example, we have two different ways to call modules. We always
used the first example until now. In the second example, we import the test
function again. We don’t write testmodule. test to call it; we directly write
the test function. For example, if we need a single or a couple of functions
from the module, we can only call those functions. We can use from
module name import function. When we call a function, we only write

the function name, as in the following example, without the module name.
Both usages are the same.

example.py

import testmodule

testmodule. test ("World")

Output: Hello World
example.py

from testmodule import test
test ("World")

QOutput: Hello World

Classes

Programming language has a philosophy of writing codes once and reusing
them efficiently. Object-Oriented Programming (OOPs) is a very
important section in programming. We use classes in almost all our Python
scripts. Classes are code templates for creating objects. To create a class, we
just write class class_name. We can write class names with or without
parentheses. The line is finished with a colon. In the next line, it starts for
the body of the class with indentation. We use classes in network
automation to make the code simpler, understandable for other engineers,
easy to troubleshoot and reusable.

Class Class_name():

Body of class

In the following example, we have a test function, inside which we run the
print function. If we run this code, there will be no output. We must call
the function to execute it:
def test ()

print ("This is a function")
test ()

Output: This is a function

We write a test class that is a format similar to functions. Inside the class,
we run the print function. If this is a function, we need to call this function
in the code. But for class, we don’t need to call it. If we run the following
code, the result is the This is a class string. In classes, we don’t need to
call class instead of functions:

class test ()
print ("This is a class")

QOutput: This is a class

Conclusion

In this chapter, we learned file handling and RE modules to manipulate the
logs we collect from network devices. We can divide logs or find specific
keywords from the logs with the Re module. We learned to create custom
functions, classes, and modules for more advanced usage of Python
language. In later scripts, we always use those scripts. We created Word and
Excel files without opening them and made them with scripts.

In the next chapter, we will log in to network devices with SSH and telnet
protocols. We will collect logs from network devices and modify the data
we receive into a more readable format, like collecting CPU levels, version,
and model information.

Multiple choice questions

1. How can you delete the ‘test’ folder with the OS module?

a. os.remove ("test.txt")
b. os.remove ("test™)
C. os.rmdir ("test.txt")
d. os.rmdir ("test")

2. How can you read five lines from a text file?

d. x = open ("test.txt")
print (x.read(5))

b. x = open ("test.txt")
print (x.readline (5))

C. x = open("test.txt")
print (x(5))

d. x = open ("test.txt")
print (x.readline())

3. How can you find all the digits in x variable?

a. re.findall ("0123456789", x)
b. re.findall ("[09]", x)

C. re.findall ("[0-91", Xx)

d. re.findall ("\s", x)

4. How can you import a function from a module?

a. import FUNCTION NAME from MODULE NAME
b. import MODULE NAME
C. from FUNCTION NAME import MODULE NAME

d. from MODULE NAME import FUNCTION NAME

Answers

1.d
2.b
3.¢c
4.d

Questions

1. Find the phone numbers of the string given, including country codes:
X = "+44-1234567 (AA TELEKOM) /+33-7654321 (BB TELEKOM) /+11-
1111111 (CC TELEKOM) "

Output: ['+44-1234567', '+33-7654321', '+1-1111111']

2. Find all the small letters of the following string:w
x = "This is a Network Automation Example created by
Python."

CHAPTER 4
Collecting and Monitoring 1.ogs

This chapter will focus on connection modules and script examples. We will
use netmiko, paramiko, and telnetlib modules to log in to network and system
devices by SSH (Secure Shell) and telnet protocols. We will use these
modules to collect data from multiple devices and modify it after logging in.
We will also create a custom [P address validation tool and subnet calculator.

Structure

In this chapter, we will cover the following topics:

¢ Connection modules

o SSH connection
o Telnet connection

e Collecting logs

o Collecting version and device information
o Collecting CPU levels

o Finding duplicated IP address

o Collecting logs with multithreading

e Tools and calculators

o [P address validator
o Subnet calculator

Objectives

We must log in to the network and system devices to make automation by SSH
and telnet protocol. We often use paramiko, netmiko, and telnetlib modules to
connect devices with these protocols. We can connect one or more devices by
the for loop and execute many commands in one script, and we can also create
custom scripts to collect data from devices or create custom tools like a subnet

calculator. Additionally, we can use the parallelism feature of Python with the
multithreading module to log in to many devices simultaneously.

Connection modules

To simulate connection scripts in the next part of this book, we can use real
devices and network simulators like GNS3, which is a free tool. It’s
recommended to use test devices or simulators to test the scripts. Real network
devices have traffic, so it could be risky at the beginning of learning
automation. For Cisco or Juniper devices and more vendors, GNS3 can run
properly, and we can use the eNSP simulator for Huawei.

For later scripts, at least one network device is necessary, but it’s better to test
on multiple devices and improve yourself more deeply.

There are many options for networking modules in Python. Some of the most
popular and powerful ones are paramiko, netmiko, NAPALM, nornir, and
socket. There are plenty of options available for networking. You can choose
any of them for network automation; each has its own advantages and
disadvantages. During the course of the book, we will mainly focus on
paramiko and netmiko modules.

There are also automation softwares that can be installed on a PC or server to
make automation easier. Some of the most popular automation tools are Red
Hat’s Ansible, or Python modules such as Paramiko, RE, and threading.
There are other popular tools as well, like Puppet, Saltstack, and Chef.

We can download and install GNS3 and VM Tool by following these steps:

1. We can download the free GNS3 tool from its official website. We must
create a free account to download the tool, and we can install the tool on
Windows, MAC, or Linux.

https://www.gns3.com/software/download

2. After downloading and installing the tool on a PC, we need to download
the GNS3 VM from the following link. You need to choose the specific
VM to use. In this book, we use vMware Workstation Player, free for
non-commercial use. So, we download the GNS3 VM for vMware
Workstation and Fusion.

https://gns3.com/software/download-vim

3. Finally, we must download and install the VMware Player tool from its
official website.

https://www.gns3.com/software/download
https://gns3.com/software/download-vm

https://www.vimware.com/products/workstation-player.html

4. After all installations are finished, we must open the VMware player and
import the GNS3 VM from our PC in Figure 4.1 by clicking on open a

Virtual Machine.

Viware Workstation 16 Player (Nen-commercial use enly) - o *®

Player - [__l:

IR | V/c/corme to VMwre

Workstation 16 Player

Create a New Virtual Machine

[| +I Create a new virtual machine, which will then be added to the

top of your library,

Open a Virtual Machine

H’_‘T:l Open an existing virtual machine, which will then be added to
the top of your library.

Upgrade to VMware Workstation Pro
Get advanced features such as snapshots, virtual network

management, and more,

Help
View online help,

h", This product is not kcensed and is authorized for non-
g—c commerdal use only, For commerdal use, purchase a license.
Buy now.

Figure 4.1: Importing GNS3 VM to VMware Tool

5. After we open the GNS3, from the Edit tab, we must open Preferences.
In Figure 4.2, we must click on Enable the GNS3 vM and choose the VM
engine to correct the VM tool. In the settings tab, we must see GNS3 VM
as the VM name. Remember that the VMware tool must be opened. We
can apply the changes and close the window:

https://www.vmware.com/products/workstation-player.html

General |GNS3 VM preferences |
Server
GNS3 VM
Packet capture etk Eater e
= Built-in
Ethernet hubs I WHmare Warkstabion | Player (recommended) I -
Ethernet switches WHmare s the recommended chaice for best performances.
Cloud nodes The: GNG3 VM can be dossigaded here.
- VPCS Cettrg
VPCS nodes
- Oynamips d (W
105 routers Purt BO =
= 105 on UNIX
i
SO Daviens: R e VM i hiackess mode
- QEMU of | Allocates wIPUs and RAM
Qemu VMs wCPUs: 4 =
* VirtualBox e, e .
VirtualBox VMs g - =
- YMware Eston when dosng GG
VMware VMs o
= Docker sepend the GHEI VM
Docker containers) ging e GHEI VM

| o =

Figure 4.2: GNS3 Configuration

6. To verify whether the previous step 1s successful, we can check whether
the LED indicator of the GNS3 VM turns green, as shown in Figure 4.3.
If it’s not displayed or the LED indicator is red, the GNS3 VM

installation has failed.

Servers Surnmary (2] (3]
) DESKTOP-7O1DELA CPU 10.7% RAM 69.7%
£ GMS3 WM (GMS3 VM) CPU 0.19%, RAM 6.53%

Figure 4.3: Validation of GNS3 VM Installation

7. If the LED indicator of the GNS3 VM is green, we can add appliances.
We can enter the File tab and the Import Appliance button, and then we
can import the GNS3 appliance file from our PC. We can download the
appliance file from the following links. Each router model has a different
appliance file, so you must download the correct appliance file according
to your Cisco device file.

8. You must have the Cisco router ISO file to combine the appliance file.
You can download the Cisco ISO files from Cisco’s official website with
your account.

http://www.cisco.com

9. After we install the correct appliance with the ISO file, the router is
added to the router list in the GNS3. We can create a new project and add
the new router. Then, we can start the router and log in to configure it.

SSH connection

One of the most used protocols to log in to network and system devices is the
SSH protocol. It’s a secure connection protocol with many encryption options
and protocol versions, such as version 1 and version 2, and SSH is much more

https://gns3.com/marketplace/appliances
http://www.cisco.com/

secure than the telnet protocol. We often use the paramiko and netmiko
modules to log in to the devices by the SSH protocol.

Paramiko module For SSH

There are options to make SSH and Secure File Transfer Protocol (SFTP)
connections to any network or system devices with the paramiko module. This
module has no support for telnet and File Transfer Protocol (FTP)
connections. We can log in to any device with a username, password, and port
number. We can execute show or display commands to monitor network
devices and collect logs and can also execute configuration commands to
change the configuration. Paramiko has some codes to connect a network
device and execute commands as it is a third-party module. Hence, we need to
install the paramiko module to project with pip install paramiko.

After the installation, we must import the paramiko module to our code.

import paramiko

We need to call the ssuCclient function from the paramiko module for the SSH
connection. This function is a high-level representation of a session with an
SSH server. We assign this function to the client variable in the following
code. When we write the client variable in the code, we understand that we
call the ssHClient function.

client = paramiko.SSHClient ()

When we try to log in to a network device for the first time, the our PC sends a
message to the network device to trust or not. This is an SSH protocol security
step. Once we click on the option to trust this device, it will never ask that
question again. In paramiko, we push to change the ssH authentication key
to Trust ALL With the set missing host key policy function and insert the
AutoAddPolicy function from the paramiko module. So, we can add untrusted
hosts and write the following code to pass that step with paramiko.

client.set missing host key policy(paramiko.AutoAddPolicy())

We write the IP address, port number, username, and password by order with
the connect function. Thus, the code generates the connect information with
the connect function.

client.connect (IP ADDRESS, PORT, USERNAME, PASSWORD)

We write another paramiko module with the client variable as the
invoke_shell function. With this function, we request an interactive shell
session on this channel and assign this function to the commands variable.
Later, we will use this variable to execute commands on the network devices.

commands = client.invoke_ shell ()

SSH connection to any network or system device is ready. Since we are inside
the device, it’s time to send or execute commands. These can be show or
display commands or any configuration commands in CLI according to
vendor or OS type. So we send commands to the device with the send
function, and then we use the invoke shell function to do that. After that, we
write the commands.send() function. Thus, the commands variable is assigned
to the invoke shell function.

Inside of the send function, we write the command to run on the device. It
sends the command but does not push the Enter button. So, after the command,
we must write \n, which goes to the next line in Python programming.

Go to the next line means pushing the Enter button. So we send and run the
commands on the devices:
commands .send ("COMMAND \n")

Finally, after we send the command to the device, we need to receive some
output. We collect the outputs with the Recv () function. This function gets the
data from the currently active channel. If we write 20 as a nbytes value, the
code contains only the first 20 characters in the output. But, when we run show
running-configuration in a Cisco device, the output is very long, so we need
to enter high values to receive the output the device displays. Hence, we can
enter commands.recv(1.000.000) as a 1 million value or much higher.

output = commands.recv (NBYTES)

However, the received data format is in nbytes, so we need to change it to a
human-readable format as uTrr-8 with the decode function. In the next
example, we will execute the decode function with UTF-8 format and assign it
to the output variable. If we print output, we can see all the output sent to the
network devices. The basic log collection or sending command of the
paramiko module is finished with this line:

output = output.decode ("utf-8")

We use seven different functions to log in to a device with SSH, which is a
little bit complicated, but we only change a few parts of these lines in the later
scripts, like the connect and send functions; the others remain the same. You
don’t need to understand at the beginning which function is used for what
purposes. Rather, it’s better to copy them and write the remaining part of your
code. When you write many scripts repeatedly, you will easily understand what
happens when we try to log in to a device in the background with the paramiko
module. If you want more details about the paramiko module, you can check

out the website www.paramiko.org, which is the official paramiko module web

page.

Connect 1 device with Paramiko

We can log in to a device with SSH and collect logs. Before writing the code in
pycharm, in this basic Example 4.1, we try to log in to a Cisco device and
collect version information with the show version command. After that, we
try to display the output of that command in Pycharm:

1.

We start by importing the paramiko module and the time module. Time
module creates delays in seconds in the code:
import paramiko

import time

. We write an ssHClient function for SSH connection:

client = paramiko.SSHClient()

. We write set missing host key policy to pass the first login

authentication process:
client.set missing host key policy(paramiko.AutoAddPolicy())

. We enter the IP address, port number 22, the default port number of SSH

protocol, username as root, and password as a test:
client.connect("10.10.10.1", 22, "admin", "cisco")

. We write an invoke_shell function to request an interactive shell session

on this channel:

commands = client.invoke_ shell ()

. It’s time to send commands to the device and send the show version

command with \n:

commands .send ("show version \n").

. We call the s1eep function from the time module. When we run a piece

of code, it executes the whole code very fast. We send commands to the
device and get the data with the receive function. For example, when we
execute the show run command in a Cisco device, it takes time to display
the output; it’s not instant.

. So, we should add a delay after the line that we send the command to the

device. We can collect the entire output with this delay. If we did not add
any time delays, some parts of the logs might not have been collected.
That’s why we write some delays after the send command. In this
example, it is one second as 1.

http://www.paramiko.org/

9. After the send function, the program waits for 1 second and then
continues with the receive function. So we can get all the output
correctly. We can change the s1eep function value at any time:
time.sleep(1)

10. We send the command and wait for a second. Now it’s time to receive the
data. We write the nbytes value as 1000000, so this code will receive
outputs with these nbytes. The value is quite enough to receive all the
output correctly.

11. Then, we decode the nbyte format to uTr-8, which is the human-readable
format. Finally, we can print the output as a string. Code displays the
output of the show version command of one device:
output = commands.recv(1000000)
output = output.decode ("utf-8")
print (output)

In Example 4.1, we can log in to a single network or system device by the
paramiko module and execute any commands in the device.

Example 4.1: Connect to a single device with Paramiko
import paramiko

import time

client = paramiko.SSHClient ()

client.set missing host key policy(paramiko.AutoAddPolicy())
client.connect("10.10.10.1", 22, "admin", "cisco")
commands = client.invoke shell()

commands .send ("show version \n")

time.sleep (1)

output = commands.recv(1000000)

output = output.decode ("utf-8")

print (output)

Running configuration commands with Paramiko

We can also execute configuration commands in the network devices with the
paramiko module:

1. To do that, we use the send function, like in the previous example. In
example 4.2, we try to configure a description of an interface in Cisco
Router.

2. Then we show the configuration of this interface: whether or not a
description is created. The beginning, until the send function, is the same
as in Example 4.1. After that, we run the configure terminal command
to enter configuration mode.

3. Then we run interface gigabitethernet 0/1 to enter interface mode
and run a description command to add or change the description of this
interface.
commands.send("configure terminal \n")
commands.send("interface gigabitethernet 0/1 \n")
commands.send("description TEST\n")
commands.send("do show run interface gigabitethernet 0/1
\n")

4. After that, we run the “show” command to check the related interface
configuration, and we run the sleep function and get the output.
time.sleep(.5)
output = commands.recv(1000000)
output = output.decode("utf-8")
print (output)

5. We didn’t enter the sleep function after each command. If you are
experienced in the CLI, many configuration commands are set instantly,
but some of them are set gradually. However, the show command displays
some outputs, so it always takes time.

6. It’s recommended to put some delays between commands. We will
discuss an alternative to using the sleep function in the later chapters.
We will write a script that checks whether output is finished, and the
program waits if not. We use it in a for loop. In this example, we will
keep this as simple as as we can.

7. You may think that we had to write a multiline code just to run one
command in a device. Running a command in CLI instead of a run script
1s much faster in this situation.

8. However, if we run 10 commands in 100 devices and get some specific
data from them, doing this task in CLI is a waste of time. That’s why we
use network automation as network engineers.

Example 4.2: Running configuration commands in a single device with
Paramiko

Configuration change:

conf t

interface g0/1

description TEST

do show run interface gigabitethernet 0/1

Python code:

import paramiko

import time

client = paramiko.SSHClient()

client.set missing host key policy(paramiko.AutoAddPolicy())
client.connect("10.10.10.1", 22, "admin", "cisco")

commands = client.invoke_shell()

commands.send("configure terminal \n")

commands.send("interface gigabitethernet 0/1 \n")
commands.send("description TEST\n")

commands.send("do show run interface gigabitethernet 0/1 \n")
time.sleep (1)

output = commands.recv(1000000)

output.decode ("utf-8")

print (output)

output

Connect to multiple devices with Paramiko

In Example 4.1 and Example 4.2, we could log a device in with SSH and
collect many logs. But we have not tried to log in multiple devices yet; if we
try with those examples, we must write the same paramiko functions and send
the same commands multiple times. It’s not a good way to write code, and it
may introduce more errors in the code.

If we have 100 devices and 20 commands to run, or even a single command to
run, we must create 100 sessions in Secure CRT or in another SSH connection
tool. If you have a much larger network, over 1,000 devices, it’s almost
impossible. In this situation, we can use Python scripting to make things easier
for us.

We will just modify some parts in our last example to automate the code and
use loops for repeatable actions in the programming. Connecting and running
multiple commands in devices are repeatable actions, and computers are much
better than us for repeatable things. By using a for loop, we can connect many
devices.

In Example 4.3, we will use two loops as nested loops, i.e., inner and outer
loops. One of the loops is used for IP addresses to log devices in to each loop,
and the other one is used for the commands that we run in a single device each
time. So if we check the connection timeline, we must log in to a device, and
then we must run the commands. So, the first loop, which is the outer loop, is
used to connect to the device, and the second loop, which is the inner loop, is
used to send commands.

1.

Import paramiko and time modules.
import paramiko

import time

. Create a list of hosts for IP addresses of the devices. In the following

code, we have three IP addresses. For commands, we also create another
list as command 1ist for the commands that run in each device:

hosts = ["10.10.10.1","10.10.10.2","10.10.10.3"]

command list = ["conf t","int g0/0","description NEW-TEST"]

. Enter the outer loop and check the IP address from the hosts list and

make the connection. Then, continue with the body of the for loop,
which includes the inner loop. In the outer loop, write the function to
connect the device by executing the invoke_shell function. In the inner
loop, we get commands from command 1list.

. It chooses the first item in command list and runs the body of the for

loop. After it finishes, it gets to the second iteration or item from the
inner loop. The inner loop continues until all items are chosen.

. After all inner loop iteration is finished, the first statement of the outer

loop 1is finished. So, we collect and execute all these commands in the
first device. After that, outer loop gets the second item or iteration and
continues with the body of the for loop. This continues until all items in
the outer loop are completed. When we print output, we can see all
outputs for each loop.
#Outer Loop
for ip in hosts:

client = paramiko.SSHClient ()

client.set missing host key policy(paramiko.AutoAddPolicy ()

)

client.connect (ip,22,"admin","cisco")

commands = client.invoke shell()

#Inner Loop

for command in command list:
commands.send("{} \n".format (command))
time.sleep (1)
output = commands.recv(1000000)
output = output.decode ("utf-8")
print (output)

Example 4.3: Connect to multiple devices with Paramiko
import paramiko

import time

hosts = ["10.10.10.1","10.10.10.2","10.10.10.3"]
command list = ["conf t","int g0/0","description NEW-TEST"]

for ip in hosts:
client = paramiko.SSHClient ()
client.set missing host key policy(paramiko.AutoAddPolicy ()
)
client.connect (ip,22,"admin","cisco")
commands = client.invoke shell()

for command in command list:
commands.send ("{} \n".format (command))
time.sleep (1)
output = commands.recv(1000000)
output = output.decode ("utf-8")
print (output)

Netmiko module for SSH

Netmiko is another third-party connection module like paramiko. The official
project document (www.github.com/ktbyers/netmiko) says that netmiko is a
multi-vendor library that simplifies paramiko SSH connections to network
devices.

The netmiko module has numerous features that are better to use than the
paramiko module, such as:

e It can support more than 40 vendors like Cisco, Juniper, Huawei, and
Nokia. Netmiko is created on top of the paramiko module.

e It is based on paramiko and supports SSH, telnet, and SCP connections.
Instead of paramiko, we can log in to many vendor network devices by
telnet in the netmiko module.

http://www.github.com/ktbyers/netmiko

e Netmiko has simplified code. The paramiko module had many functions
to run in the code, code lines are fewer in netmiko, making it easier to
understand.

Netmiko module supports almost all the network devices. As the official page
says, there are three categories for support: regularly tested, limited tested, and
experimental. However, major network vendors are supported by the netmiko
module. For a full and updated list, you can visit the following link:

www.ktbyers.github.io/netmiko/PLATFORMS.html

Connect a single device with Netmiko

In Example 4.4, we will write a basic netmiko module to log in to a single
Cisco router. For other vendors, only some parameters change:

1. First, we must install and import the netmiko module. Instead of
importing the whole module, we can import the “Netmiko” function from
the netmiko module.
from netmiko import Netmiko

2. Then, we must write device information inside the device variable as a
dictionary. We write host as IP address, username, password, and device
type as vendor type. Optionally, we can choose timer delay between
commands as a global delay factor, in seconds, as we did with the
time module in the paramiko examples. These keys are predefined in the
netmiko module, and we add values to specific keys. There are also
many keys to this part, which you can check on the netmiko module
official website.

3. For the IP address, we enter the host key. We add the password and
username keys for password and username. We must enter the device
type with the device type key. For other devices, you can check device
type usage. We will use juniper junos as the value for Juniper and
huawei as the value for Huawei.

device = {
"host": "10.10.10.1",
"username": "admin",
"password": "cisco",
"device_type": "cisco_ios",

"global delay factor": 0.1,

http://www.ktbyers.github.io/netmiko/PLATFORMS.html

4. Then, we must call the netmiko function with the device list as the device
variable. We write two stars before the dictionary variable.
net connect = Netmiko (**device)

5. Now, it’s time to send configuration commands to the Cisco device. We
create a list as a command variable and enter the commands by order. First,
we enter the interface and change the description of that interface. You
can see that there 1S no configure terminal in the list. Netmiko
understands the device type we write in the dictionary as Cisco, so it
automatically enters configuration mode.
config= ["interface GigabitEthernet0/0", "description TEST"]
command = "show run interface GigabitEthernet0/0"

6. Then, we create a config output variable and call the send config set
function to send the configuration commands. Inside parentheses, we
write the command variable as a list of commands, and the code enters the
configuration mode automatically. We cannot run the show commands
inside this function. If we want to do that for Cisco, we must enter do
before the show letter. Otherwise, we can run show commands directly
with the send command function.

7. Usage is also the same with the send_config set commands. We cannot
run show commands in Cisco configuration mode or we must write do
before the show command.
config output = net_ connect.send config_set(config)

show_output = net_connect.send command (command)

8. Finally, we call the disconnect function to close the SSH session and
print the output. Netmiko has clear code to run according to the paramiko
module. It automatically does many things in the background, and we
almost write only the device information and command lists.

9.In the netmiko module, commands are automatically run with the
send_config_set function one-by-one in order. So if we try to connect
multiple devices, we don’t need to create nested loops. Only one for loop
is enough for the device list. For the command list, netmiko does the loop
action for us.
net_connect.disconnect()
print (config output)
print (show_output)

Example 4.4: Connect to a single device with Netmiko
from netmiko import Netmiko

device = {
"host": "10.10.10.1",

"username": "admin",
"password": "cisco",
"device_type": "cisco_ios",

"global delay factor": 0.1,
}

net connect = Netmiko (**device)

config= ["interface GigabitEthernet0/0", "description TEST"]
command = "show run interface GigabitEthernet0/0"

config output = net connect.send config set(config)

show_output = net connect.send command (command)

net_connect.disconnect()
print (config output)
print (show_output)

Output:
configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router-1(config) #interface GigabitEthernet0/0
Router-1 (config-if) #description TEST
Router-1(config-if) #end
Router-1#
Building configuration..
Current configuration : 148 bytes
!
interface GigabitEthernet0/0
description TEST
ip address 10.10.10.1 255.255.255.0
duplex auto
speed auto
media-type rj45
no cdp enable
end

Connect to multiple devices with Netmiko

In Example 4.5, we will log in to multiple devices with the netmiko module.
There are three devices, and all of them are added to a list called device 1list.
We create a for loop to call all devices one by one and write the same netmiko
functions inside the loop.

Example 4.5: Connect to multiple devices with Netmiko
from netmiko import Netmiko

devicel = {"host": "10.10.10.1", "username": "admin", "password":
"cisco", "device_ type": "cisco_ios", "global delay factor": 0.1}
device2 = {"host": "10.10.10.2", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global delay factor": 0.1}
device3 = {"host": "10.10.10.3", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global delay factor": 0.1}
device_list = [devicel, device2, device3]

for host in device_list:
net_ connect = Netmiko (**host)

config = ["interface g0/0", "description TEST-NETMIKO"]

command = "show wversion"

config output = net_connect.send config set(config)
show_output = net_ connect.send command (command)

net_connect.disconnect ()
print("Config is starting from here:", config output)

print ("Logs are starting from here:", show_output)

Telnet connection

There are some options for telnet connections. We are focusing on telnetlib and
netmiko modules to log in to network devices with the telnet protocol in this
book. As netmiko is more stable in SSH connections, netmiko is also better for
telnet connections.

Telnetlib module for telnet

We can make SSH connections with paramiko and netmiko modules. Almost
all network devices use SSH to make connections, and it’s more secure, but we
also have a telnet connection protocol. So if we need some devices to connect
with telnet, we have the telnetlib module in Python.

In Example 4.6, we will write a telnet connection script to log in a single
device with the telnetlib module. We can connect many devices with a for

loop:
1.

2.

First, we must install and import the telnetlib module into the code.
import telnetlib

Then, like paramiko, we will assign IP address, username and password
to new variables.

ip = "10.10.10.1"

user = "admin"

password = "cisco"

. Then, we will make the telnet connection and send the username and

password. After that, we can send any command. We will use the telnet
function from the telnetlib module and enter the IP address and port
name. Optionally, we will have a timeout count in the telnet function,
and the code will never end if we don’t set it before running the read all
function. Even though timeout is optional, we must enter the value.

In SSH protocol, we set a username and password, and then directly log
in to a device; the authentication process takes place in the background.
But in telnet, we must enter username first, and then the password in CLI.

So, we send username and password values as a command. When the
code match to Username: string, it sends the username. When the code
match to Password: string, it sends the password.

We write the read until function and the string. Inside parentheses,
there is a b letter and a string. b is for the byte data type. We cannot use
these functions directly with string; we must use the byte data type. We
write b before the string, so it is a byte. The output gives an error if we
remove b in these functions. It says argument should be integer or
bytes-like object, not string'.

With the read until function, we can wait for the code until we see the
output. We wait until the code matches the username: value. If the code
catches it, it continues with the following line. The next line sends a
command with the write function. We send the username as a variable,
but the user variable is a string. We must convert it to byte data type. To
convert the variable, we write variable.encode and AscIiI mode inside
parentheses. Then, we write the username. After that, we must push the
enter button (or go to the next line) with \n. We use it as bytes

again. We wait for Password: output. We use the same read until
function. Then, we send command with the write function.

tel = telnetlib.Telnet(ip, 23, timeout=1l)
tel.read until (b"Username:")

tel.write (user.encode('ascii') + b"\n")
tel.read until (b"Password:")

tel.write (password.encode('ascii') + b"\n")

4. We use the write function to send commands and an exit command to
close the telnet session.
tel.write (b"show ip interface brief\n")
tel.write (b"exit\n")

5. Finally, we can read the output and print it. To read all results, we run the
read_all function. We use the decode function with ASCII inside
parentheses to translate the output to string.

print(tel.read all() .decode('ascii'))

When we run the telnet connection script, the code may give an error or never
finish, so we need to add the try..except statement in the while statement to
avoid any problems. The issue code is in the telnetlib.py Python file, the
path to which is given as follows. We need to change the telnetlib.py file as
in Table 4.1:
C:/Users/USER_NAME/AppData/Local/Programs/Python/Python310/Lib/tel
netlib.py

BEFORE: AFTER:
def read_all(self): def read_all(self):
"""Read all data until EOF; block until """Read all data until EOF; block until
connection closed.""" connection closed."""
self.process_rawq() self.process_rawq()
while not self.eof: while not self.eof:
self.fill rawq() try:
self.process_rawq() self.fill rawq()
buf = self.cookedqg self.process_rawq()
self.cookedqg = b'"' except:
return buf break
buf = self.cookedq
self.cookedqg = b''
return buf

Table 4.1: Changing telnetlib module

In Example 4.6, we can log in to a network device with the telnet1ib module.
We can also log in to multiple devices by sending multiple commands by

adding the for loop in Example 4.6.

Example 4.6: Connect to a single device with the telnetlib module
import telnetlib

ip = "10.10.10.1"

user = "admin"

password = '"cisco"

tel = telnetlib.Telnet(ip, 23, timeout=1)
tel.read until (b"Username:")

tel.write (user.encode('ascii') + b"\n")
tel.read until (b"Password:")

tel.write (password.encode ('ascii') + b"\n")
tel.write (b"show ip interface brief\n")
tel.write (b"exit\n")

print (tel.read_all() .decode('ascii'))

Connect to multiple devices with telnetlib

In Example 4.7, we will write a script to log in to multiple devices and execute
various commands with the telnetlib module. It’s similar to the paramiko
module. We will create nested loops. In the first loop, we will log in to the
devices, and in the second loop, we will execute the commands in the devices.

Example 4.7: Connect to mutiple devices with telnetlib module
import telnetlib

host = ["10.10.10.1","10.10.10.2","10.10.10.3"]

user = "admin"
password = "cisco"
command = ["terminal length 0","show ip interface brief", "show

clock","exit"]

for ip in host:
tel = telnetlib.Telnet(ip, 23, timeout=1l)
tel.read until (b"Username:")
tel.write (user.encode('ascii') + b"\n")
tel.read until (b"Password:")

tel.write (password.encode('ascii') + b"\n")

for config in command:
tel.write (config.encode("ascii") + b"\n")
print(tel.read all() .decode('ascii'))

Netmiko module for telnet

We can make telnet connection with netmiko module. Not all brands support
telnet connection in netmiko, but netmiko supports major vendors like Cisco,
Juniper, and Huawei.

1. We write almost the same code for the SSH connection. First, we import
the netmiko module.
from netmiko import Netmiko

. Then, we enter the device information. As a device type, we add _telnet
for each device type to connect by telnet. Normally, to connect a Cisco
device, the SSH device type is cisco_ios. For telnet connection, we
write cisco_ios_telnet. There is one more thing here: we add the
global delay factor in SSH connections, and it’s an optional parameter to
add delay for connections. If we don’t set this parameter for telnet
connection, we can also log in to the device. However, there is a
possibility not to send the username and password to the device during
connection because the device connection is slow and the program can
create an error. It’s better to set a global delay factor for telnet connection
min to half a second.

device = {
"host": "10.10.10.1",
"username": "admin",
"password": "cisco",
"device_type": "cisco_ios_telnet",

"global delay factor": 0.5
}

. We call the netmiko function. Then, we create a list of commands by
order. We send configurations with the sending_config_set function.
net connect = Netmiko (**device)

command = ["interface g0/0", "description TEST"]

output = net_connect.send config set (command)

print (output)

Example 4.8: Connect to devices with netmiko module with telnet protocol
from netmiko import Netmiko
device = {

"host": "10.10.10.1",

"username": "admin",

"password": "cisco",
"device_type": "cisco_ios_telnet",
"global delay factor": 0.5

}

net_connect = Netmiko (**device)

command = ["interface g0/0", "description TEST"]
output = net connect.send config set (command)
print (output)

Output:

configure terminal

Enter configuration commands, one per line. End with CNTL/Z.
Router-1(config) #interface g0/0

Router-1 (config-if) #description TEST

Router-1 (config-if) #end

Router-1#

Collecting logs

In this section, we collect logs from network devices. Examples are based on
the Cisco devices, but they can be used by any vendor to replace the
commands to execute on a device. We collect the device’s software version,
model information, and CPU levels. We can also search for data in devices and
try to find the duplicated IP addresses in the network. Additionally, we can use
the advanced feature of Python language, called multithreading. Thus, we use
this module to log in to multiple devices simultaneously as it saves time.

Collecting version and device information

In Example 4.9, we try to collect IP address, software version, model
information, vendor type, and hostname information from the Cisco routers
and save them to an Excel file. To do that, we log in to the three Cisco routers
with the netmiko module and execute the show version command. We match
the specific data with the findal1l function from the RE module and add it to
the different lists. In the final part, we save all the information in an Excel file.

1. First, we import the required modules. We call the Netmiko function from
the netmiko module and import the Re module. And finally, we call the
DataFrame function from the pandas module. The pandas module is

often used for data analysis and science. We use the pataFrame function
to create an Excel file from a list.

from netmiko import Netmiko

import re

from pandas import DataFrame

. We add three devices as Cisco routers with the following information.
And we create a list of those three devices as host variable. After that,
we create a string variable as command that we run in the devices as show

version.

devicel = {"host": "10.10.10.1", "username": "admin",
"password": "cisco", "device_type": "cisco_ios",
"global delay factor": 0.1}

device2 = {"host": "10.10.10.2", "username": "admin",
"password": "cisco", "device_type": '"cisco_ios",
"global delay factor": 0.1}

device3 = {"host": "10.10.10.3", "username": "admin",
"password": "cisco", "device_type": '"cisco_ios",
"global delay factor": 0.1}

host = [devicel, device2, device3]

command = "show version"

. In the following code, we write a single-line for loop. This is another
usage of the for loop. In this example, we used it to create five different
lists for each variable name. After that, we created the main for loop of
the code:

ip list, version list, model list, vendor_ list,

hostname list=([] for i in range(5))

for ip in host:

. We write the try..except statement to match whether we can log in to the
device. If we cannot log in to the device, the except statement is
executed, and it continues with the next iteration in the loop. If we can
log in to the device, the code executes the lines in the try statement.

try:

except:

print (£"***Cannot login to {ip['host']}")

. In the try statement, we connect the device with the Netmiko function
and execute the command; we save all logs to the output variable. So
before connecting to the device, we add a print function as Try to

Login with the IP address of the current iteration. Hence, we can see the
process in the output, and if we have multiple devices to log in, it’s better
to give this information in order to track the process.

print (£"\n---Try to Login:{ip['host']}---\n")

net_connect = Netmiko (**ip)

output = net connect.send command (command)

print (output)

. After connecting the device and running the commands, we are still
inside the try statement. We collect the version, model, vendor, and
hostname information from the output variable and use the findall
function from the R module. Then, we create four different variables and
assign them to the target match.

For example, one of Cisco ASR router’s show version outputs is shown
in Jable 4.2 (www.ciscolive.com). For the version information, we must
match 5.3.3[Default], SO we write the findall function with Version
(.*), and it reaches our target. For the model information, we write
Cisco (.*)\(revision, for which the result is ASR9K Series. We write
Cisco to match the vendor data. And finally, for the hostname, we write
(.*) uptime is in the following output. The result is Router-1.

Router-1l#show version

Cisco 10S XR Software, Version 5.3.3[Default]
Copyright (c) 2016 by Cisco Systems, Inc.

ROM: System Bootstrap, Version 10.45(c) 1994-2014 by
Cisco Systems, Inc.

Router-1 uptime is 0 weeks, 3 days, 7 hours, 38 minutes
System image file is "XXXX.vm"

Cisco ASRIK Series (revision ..) processor with

Table 4.2: Example output of the show version command in Cisco Device

version = re.findall ("Version (.%*),", output)
model = re.findall ("Cisco (.*)\(revision", output)
vendor = re.findall ("Cisco", output)

hostname = re.findall(" (.*) uptime is", output)

. We collected the specific data in the previous code, and we can add it to a
list. We already created five lists at the beginning of the code, so we use
the append function in list variables to get the first item in the list as item
0.

ip list.append (ip['host'])

version list.append(version[0])

http://www.ciscolive.com/

model list.append(model[0])
vendor list.append(vendor[0])
hostname list.append(hostname[0])

8. Finally, we need to save these lists into an Excel file where we use the
DataFrame function from the pandas module. We write a dictionary with
keys as the strings and values as the lists we created; this dictionary is
written inside the pataFrame function. After we assign this to the df
variable, we call the to_excel function to write the collected list
variables to the Excel file. We can set the Excel file name and sheet name
and also the index with this function, but we don’t use it in this example
df = DataFrame ({"IP Address": ip list, "Hostname":
hostname list, "Vendor Type": vendor list, "Model":
model list, "Version": version list})
df.to_excel ("Version List.xlsx", sheet name="Vendors",

index=False)

Example 4.9: Collecting device information and saving it in an Excel file
from netmiko import Netmiko
import re

from pandas import DataFrame

devicel = {"host": "10.10.10.1", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global delay factor": 0.1}
device2 = {"host": "10.10.10.2", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global delay factor": 0.1}
device3 = {"host": "10.10.10.3", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global delay factor": 0.1}
host = [devicel, device2, device3]

command = "show version"

ip list, version_ list, model list, vendor_ list, hostname_list =
([] for i in range(5))

for ip in host:

try:
print (£"\n---Try to Login:{ip['host']}---\n")
net_connect = Netmiko (**ip)
output = net connect.send command (command)
print (output)
version = re.findall ("Version (.*),", output)

model = re.findall("Cisco (.*)\(revision", output)
vendor = re.findall("Cisco", output)
hostname = re.findall(" (.*) uptime is", output)

ip list.append(ip['host'])
version list.append(version[0])
model list.append(model[0])
vendor list.append(vendor[0])
hostname list.append (hostname[0])

except:
print (£"***Cannot login to {ip['host']}")

df = DataFrame ({"IP Address": ip list, "Hostname": hostname list,
"Vendor Type'": vendor list, "Model": model list, "Version":
version list})

df.to_excel ("Version List.xlsx", sheet name="Vendors",

index=False)

When we execute Example 4.9, the code creates an Excel file. When we open
it, we see that all device information is filled in the Excel file, as illustrated in
Figure 4.4:

A B i D E
1 IPAddrE55|HnstnamE|VEndDrTyrpE| Model | Version |
2 |10.10.10.1 Router-1 Cisco ASRIK Series Version 5.3.3[Default]
3 [10.10.10.2 Router-2 Cisco ASRIK Series Version 5.3.3[Default]
4 (10.10.10.3 Router-3 Cisco ASRIK Series Version 5.3.3[Default]
Figure 4.4: Output of Example 4.9
[]
Collecting CPU levels

In Example 4.10, we will try to find the CPU levels of the Cisco devices in 5-
second, in 1-minute, and in 5-minute values. When we run show processes
cpu in the Cisco command line, there is a line in the output: cPU utilization
for five seconds: 19%/0%; one minute: 20%; five minutes: 16%. It
shows all the CPU values as we try to collect them. So in this code, we will try
to find CPU data from the output.

1. After we import the modules, we create a command variable, assign the
show processes CPU string, and create five empty lists to use in the
following code:

from netmiko import Netmiko
import re

from pandas import DataFrame

devicel = {"host": "10.10.10.1", "username": "admin",
"password": "cisco", "device_type": '"cisco_ios",
"global delay factor": 0.1}

device2 = {"host": "10.10.10.2", "username": "admin",
"password": "cisco", "device_type": '"cisco_ios",
"global delay factor": 0.1}

device3 = {"host": "10.10.10.3", "username": "admin",
"password": "cisco", "device_type": "cisco_ios",
"global delay factor": 0.1}

host = [devicel, device2, device3]

command = "show processes cpu"

ip list, cpu_list 5s, cpu_list 1m, cpu_list 5m, cpu_list risk
= ([] for x in range(5))
. We create a for loop again, write the try..except statement, and write
the following codes inside the try statement:
for ip in host:

try:

except:
print (f"***Cannot Login to {ip['host']}")

. We log in to the device and execute the command. After that, we assign
all device logs to the output variable as a string:

print (£"\n---Try to Login:{ip['host']}---\n")

net_ connect = Netmiko (**ip)

output = net_connect.send command (command)

. We try to find 5 seconds, 1 minute, and 5 minutes of CPU levels of the
device with the £indall function in the following code:
cpu 5s = re.findall ("CPU utilization for five seconds:
(\d+) " ,output)
cpu_1lm = re.findall ("one minute: (\d+) " ,output)
cpu 5m = re.findall ("five minutes: (\d+) " ,output)
. After we find the specific data, we need to append it to the empty lists,

which we created at the beginning of the code. We will collect the data as
digits, so it’s better to add the ¢ character at the end of the CPU level, like

in the following code. We will also append the IP address of each device.
So in Excel, we can see which device has which CPU level.

ip list.append(ip['host'])

cpu_list 5s.append(cpu_5s[0]+"%")

cpu_list 1lm.append(cpu_1lm[0] + "3%")

cpu_list 5m.append(cpu_5m[0] + "%")

6. Additionally, we can add the if condition to the code and alert the user if
the CPU usage is higher than 90% with the message Fatal CPU Level. If
it’s between 70 and 90, we can alert them with the message High cpu
Level, or we can inform them with the message No Risk. So we use the
if condition and convert the string to an integer with the int (). We can
add the risk value to the cpu_list risk variable.
if int(cpu_5m[0]) > 90:

cpu_risk = "Fatal CPU Level"
elif 70< int(cpu_5m[0]) <90:
cpu_risk = "High CPU Level"
else:

cpu_risk = "No Risk"

cpu_list risk.append(cpu_risk)

7. Finally, as we did in Example 4.9, we will create a dictionary with the
DataFrame function and save all the output to the Excel file.
df=DataFrame ({"IP Address":ip list,"CPU Levels for 5
Seconds": cpu_list 5s,"CPU Levels for 1 Minute":cpu_list 1m,
"CPU Levels for 5 Minutes":cpu list 5m, "CPU
Risk":cpu list risk})
df.to_excel ("CPU Levels.xlsx",6index=False)

Example 4.10: Collecting CPU levels
from netmiko import Netmiko
import re

from pandas import DataFrame

devicel = {"host": "10.10.10.1", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global delay factor": 0.1}
device2 = {"host": "10.10.10.2", "username": "admin", "password":
"cisco", "device_ type": "cisco_ios", "global delay factor": 0.1}
device3 = {"host": "10.10.10.3", "username": "admin", "password":
"cisco", "device_ type": "cisco_ios", "global delay factor": 0.1}

host = [devicel, device2, device3]

command = "show processes cpu"
ip list, cpu_list 5s, cpu_list 1lm, cpu list 5m, cpu_list risk =
([] for x in range(5))

for ip in host:
try:
print (£"\n---Try to Login:{ip['host']}---\n")
net_connect = Netmiko (**ip)

output = net connect.send command (command)

cpu_5s = re.findall("CPU utilization for five seconds:
(\d+) ", output)

cpu_lm = re.findall("one minute: (\d+)", output)

cpu _5m = re.findall("five minutes: (\d+)",6output)

ip list.append(ip['host'])

cpu_list 5s.append(cpu_5s[0]+"%")
cpu_list 1lm.append(cpu 1m[0] + "%")
cpu_list 5m.append(cpu 5m[0] + "%")

if int(cpu_5m[0]) > 90:

cpu_risk = "Fatal CPU Level"
elif 70< int(cpu_5m[0]) <90:

cpu_risk = "High CPU Level"
else:

cpu_risk = "No Risk"

cpu_list risk.append(cpu_risk)
df=DataFrame ({"IP Address":ip list,"CPU Levels for 5 Seconds":
cpu_list 5s, "CPU Levels for 1 Minute":cpu list 1lm, "CPU
Levels for 5 Minutes":cpu list 5m,"CPU Risk":cpu_list risk})
df.to_excel ("CPU Levels.xlsx",6 index=False)

except:
print (£"***Cannot Login to {ip['host']}")

When we execute Example 4.10, the code creates an Excel file. When we open
it, we can see that all the device CPU information in 5 seconds, 1 minute, and
5 minutes is filled in the Excel file illustrated in Eigure 4.5:

A B C D E
IP Address | CPU Levels for 5 Seconds | CPU Levels for 1 Minute | CPU Levels for 5 Minutes |CPU Risk|
F | 4

s

2 10.10.10.1 12% 12% 13% No Risk
F F F

3 110.10.10.2 14% 12% 13% No Risk

4 10.10.10.2 10% "12% 3% No Risk

Figure 4.5: Output of Example 4.10

Finding duplicated IP address

In Example 4.11, we will try to find the duplicated IP addresses in our network.
We have three devices to check an IP address, and we log in to each one to
search for the target IP address. If we find a duplicated IP address, the code
gives the output of the duplicated IP, duplicated host IP, and the interface
information of the duplicated IP address.

1. We import netmiko and re modules. After that, we add three devices’
information as a host list. We create a variable called check_ip. We add
the target IP address that we are looking for in the network, and we create
an empty list that we will use later in the code. Finally, we create the
command variable./p>
from netmiko import Netmiko

import re

devicel = {"host": "10.10.10.1", "username": "admin",
"password": "cisco", "device_type": '"cisco_ios",
"global delay factor": 0.1}

device2 = {"host": "10.10.10.2", "username": "admin",
"password": "cisco", '"device_type": '"cisco_ios",

"global delay factor": 0.1}
device3 = {"host": "10.10.10.3", "username": "admin",

"password": "cisco", "device_type": "cisco_ios",
"global delay factor": 0.1}
host = [devicel, device2, device3]

check ip = "10.10.10.2"
duplicated list = []
command = "show ip interface brief"
2. We create a for loop for all devices in the network. After that, we write
our code inside the try statement. We will continue with the following

code if we can log in to the device./p>
for ip in host:

print (£"\n---Try to Login: {ip['host']} ---\n")
try:
except:

print (f"***Cannot login to {ip['host']}")

3. We connect to the device and collect the logs. We search for the target IP
address inside the logs with the findall function and assign it to the
duplicate_ip variable.

net connect = Netmiko (**ip)
output =net_connect.send command (command)

duplicate_ip = re.findall (check_ip,output)

4. If the duplicate_ ip variable is empty, we have no duplicate IP address
in the network. Otherwise, we have a duplicated IP address. We use the
while statement in the following code. If the duplicate ip variable is
not empty, continue with the while statement.

5. So, if we have a match of the IP address in the network, the while
statement is accurate, and the code executes the following codes. First, it
tries to find the interface information with the (.*){check ip} match.
Afterward, it appends the target IP address to the duplicated list
variable. Finally, it assigns the duplicated device IP address to the
duplicate device variable and finishes the while loop with the break
statement.

while duplicate_ip:
interface = re.findall(f" (.*) {check ip}", output)
duplicated list.append(check ip)
duplicate_device = ip["host"]
break

6. Finally, if the duplicated list variable is not empty or has an item
inside, continue with the print function by writing the duplicated IP, the
duplicated device’s IP address, and the interface of the duplicated IP
address. Otherwise, it prints that the target IP address is not duplicated in
the network and can be used in the network without a problem.
if duplicated list:

print (f"--—-——--- \nDuplicated IP: {check_ip} \nDuplicated
Device IP Address: {duplicate_device} \nInterface:
{interface[0]} \n -~ ——————--—- ")

else:

print (£f"{check ip} IP address is suitable for use")

Example 4.11: Finding duplicated IP address
from netmiko import Netmiko

import re

devicel = {"host": "10.10.10.1", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global delay factor": 0.1}
device2 = {"host": "10.10.10.2", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global delay factor": 0.1}
device3 = {"host": "10.10.10.3", "username": "admin", "password":
"cisco", "device_ type": "cisco_ios", "global delay factor": 0.1}
host = [devicel, device2, device3]

check_ip = "10.10.10.2"
duplicated_list = []
command = "show ip interface brief"

for ip in host:
print (£"\n---Try to Login: {ip['host']} ---\n")
try:
net_ connect = Netmiko (**ip)
output =net connect.send command (command)
duplicate_ip = re.findall (check_ip,output)

while duplicate_ip:
interface = re.findall (f" (.*) {check ip}",6 output)
duplicated list.append(check_ ip)
duplicate_device = ip["host"]
break
except:
print (£"***Cannot login to {ip['host']}")

if duplicated list:
print (f"--------- \nDuplicated IP: {check_ip} \nDuplicated Device
IP Address: {duplicate device} \nInterface: {interface[0]} \n --

else:
print (f"{check_ip} IP address is suitable for use")

Collecting logs with multithreading

When we log in to devices, we always use the for loops. Code connects to the
devices in each for loop one by one. If we have 100 devices, the loop executes

100 times by order, and if one device connection and collect log takes 30
seconds, the total time to collect all devices’ data is 3000 seconds or 50
minutes.

It’s too much time to collect data from many devices. We need a solution to
connect all devices at the same time and collect the data simultaneously.

We can use several options to solve this issue. In Example 4.12, we use the
multithreading module of the Python language. So, if we have 100 devices, we
can collect data on all devices in 30 seconds instead of 50 minutes.
Multithreading is a powerful feature of Python that executes the code on all
devices simultaneously. In the programming language, multithreading can also
be called parallelism.

In Example 4.12, we will use the paramiko module to connect devices. We
create two text files to get the device’s IP addresses and the command lists.

1. We import the paramiko, time, re, and threading modules to execute
our code:/p>
import paramiko
from time import sleep
import re

import threading

2. We create two functions: sSH Thread() and ssh_conn().We open the
ip_list.txt file in Zable 4.3 to read it. We divide each IP address with
lines and create a host variable as a list. Each item on that list is an IP
address, so we have a list that includes IP addresses.

ip list.txt
10.10.10.1
10.10.10.2
10.10.10.3

Table 4.3: Content of the “ip_list.txt” file

def SSH Thread():
with open("ip list.txt") as r:
host = r.read()
host = re.split("\n", host)

3. Inside the for loop, we call the Thread function from the threading
module and assign it to the trd variable. Inside this function, we have
two parameters: target and args. The target parameter is the callable
object to be invoked.

In this example, we call the ssh_conn function, and args is the argument
tuple for the target invocation. In this example, we write ip as the for
loop variable. We must write args=(ip,) the variable and comma after,
otherwise the program gives an error. We need to call the start function
to start the thread’s activity.
for ip in host:
trd = threading.Thread(target=ssh conn, args=(ip,))
trd.start ()

. The first function is finished, and threading is done in that function. Now,
we can execute the commands inside the devices and save them to text
files. We create a command list text file in Zable 4.4 and read it. We split
each command by line.

command list.txt

show ip interface brief
show clock

show arp

show ip route

Table 4.4: Content of the “command _list.txt” file

def ssh _conn(ip):
with open("command list.txt") as c:
command list = c.read()
command list = re.split("\n", command list)

. We write the paramiko connection functions: IP as the ip variable, and
username and password. We call the ssh_conn function with a parameter
as the ip, so threading connects each device at the same time with this
parameter. As we use the ip parameter in the connect function of
paramiko to connect to the devices with the IP address, we create an
empty result string variable to use later in the code./p>

client = paramiko.SSHClient ()

client.set missing host key policy(paramiko.AutoAddPolicy ()

)

client.connect(ip, 22, "admin", "cisco")

commands = client.invoke shell()

result = ""

. We create a for loop to execute all the commands in the device. After
that, we add some delays by the sleep function delays to get all the

output of the command. As there is no mechanism to wait until the output
is finished in paramiko, we save it to the result variable.
for comm in command list:

commands . send (£" {comm} \n")

sleep(1.5)
output = commands.recv(1000000) .decode ("utf-8") .replace
(n\ru, nvv)

result += str (output)
print (output)

7. We save the output of the result variable in a log file by naming the
device’s IP address.
with open(f"{ip}.log", "a") as wr:

wr.write (result)

8. We must call a function to execute in the code. So, we call the
SsH_Thread function to execute the code.
SSH_Thread()

Example 4.12: Collecting logs with multithreading
import paramiko

from time import sleep

import re

import threading

def SSH Thread():
with open("ip_ list.txt") as r:
host = r.read()
host = re.split("\n", host)

for ip in host:
trd = threading.Thread(target=ssh _conn, args=(ip,))
trd.start()

def ssh _conn(ip):
with open("command list.txt") as c:
command list = c.read()

command list = re.split("\n", command list)

client = paramiko.SSHClient()

client.set missing host key policy(paramiko.AutoAddPolicy())
client.connect(ip, 22, "admin", "cisco")

commands = client.invoke_shell(()

result = ""

for comm in command list:
commands .send (£" {comm} \n")
sleep(1.5)
output = commands.recv(1000000) .decode ("utf-8") .replace("\r",
")
result += str (output)
print (output)

with open(f"{ip}.log", "a") as wr:
wr.write (result)
SSH_Thread()

Tools and calculators

We can create custom tools with Python scripts. We will write two examples in
this section: IP address validator and Subnet calculator. We can check whether
an [P address is a valid IPv4 address. We can also calculate parameters such as
the subnet, network and broadcast address, and all available hosts in the subnet
that the user enters.

IP address validator

In Example 4.13, we create a simple tool to verify or validate an IPv4 address.
In this script, we ask the user to enter an IP address and check whether it is
valid or invalid.

1. We ask the user to enter an input with input function.
enter ip = input("\nEnter an IP address: ")

2. We split the input string with dividing dots. It creates a new list variable
as the ip. We create an integer variable as valid that we use in the for

loop.
Ip = enter_ip.split(".")
valid = 0

3. The structure of an IPv4 address is X.X.X.X, with four numbers from 0
to 255 and 3 dots between each number. So, the input cannot have any
alphabetic characters or special characters, and all inputs must be digits
with three dots. Otherwise, it cannot be a valid IPv4 address.

We create an if statement to find whether the input has four numbers
divided by commas. If it doesn’t match the condition, the code gives an
output saying it’s an invalid IP address. If it matches, we continue with
the body of the if statement.

if len(ip) ==

else:
print ("This is NOT a VALID IP Address")

. If we have four items in the list and can fill the if statement. We write a
for loop. So, we can check all four items one-by-one. Each item must be
between 0 and 256, including 0, but a user can enter a non-digit character.
To check it, we can write int (x).

This code automatically converts a string to an integer if all the
characters are digits. Otherwise, it throws an error.

So with this code, we can catch digits. However, when the user enters a
non-digit character, we try to continue without error, so we use the try..
except statement. If the code gives an error in the try statement, the
code directly continues with the except statement. In the except
statement, an error message is shown because the user input has a non-
digit character.

Inside the if condition, we add the vaiid variable as 1. If the integer of
the current iteration or x is not between 0 and 256, the code gives an
error. If all four items match the condition, the valid value equals four
after the loop finishes, code continue. It displays the IPv4 address as a
valid IP address.

We also use the break statement in the for loop. If one of the x values is
invalid, the code exits from the for loop after giving the not valid error
message.
try:
for x in ip:
if 0 <= int(x) < 256:
valid = valid + 1
else:
print ("This is NOT a VALID IP Address")
break
if valid ==

print (f"{enter_ip} is a VALID IP Address")

except:
print ("This is NOT a VALID IP Address")

Example 4.13: Creating an IP address validator

enter ip = input("\nEnter an IP address: ")

ip = enter_ip.split(".")

valid = 0
if len(ip) ==
try:

for x in ip:
if 0 <= int(x) < 256:
valid = valid + 1
else:
print("This is NOT a VALID IP Address")
break
if valid ==
print(f"{enter_ ip} is a VALID IP Address")
except:
print ("This is NOT a VALID IP Address")
else:
print ("This is NOT a VALID IP Address")

Subnet calculator

In Example 4.14, we try to create our subnet calculator. We input the IP
address and the subnet mask, and the code gives the subnet, wildcard, total
available host in that subnet, network and broadcast address, and finally, the IP

address range of this subnet.

1. We enter the IP address and create an empty list. Code divides the string

with dots and adds each string to the ip variable.
enter_ip = input("\nEnter an IP address: ")
octet_1list = []

ip = enter_ip.split(".")

. We create a £or loop to check all octets, regardless of whether or not they
are digits. We must be sure that there are no non-digit characters inside
all items in the ip variable. Code converts each item from string to an
integer, then adds to the octet list. If it fails, it executes the continue

statement, and the following code gives an error as the Invalid 1P
Address.
for octet in ip:
try:
octet list.append(int (octet))
except:

continue

. An [Pv4 address must have four parts and all the parts must be between 0
and 255. For example, 192.168.1.1 is a valid IPv4 address, but
192.260.2.3 is not, because the second part is bigger than 255. If the
condition is not matched, the code throws an eror saying invalid IP
address.

if len(octet _list) == 4 and 0 < octet_1list[0] < 255 and 0 <=
octet list[1l] <= 255 and 0 <= octet_1list[2] <= 255 and 0
<= octet_1list[3] <= 255

else:
print ("ERROR: INVALID IP ADDRESS")

. Inside the if condition, we ask for second input as the subnet mask. The
subnet mask must be from 1 to 32. Otherwise, the code gives an error. We
use the try..except statement to check it./p>
mask = input("\nEnter a Subnet Mask (1 to 32): address: ")
try:
except:
print ("ERROR: INVALID IP ADDRESS")

. Inside the try statement, we convert the input to an integer. If the
condition does not match, the code finishes and gives an invalid 1P
address.

number = int (mask)

if 0 < number <= 32:

else:

print ("ERROR: INVALID IP ADDRESS")

. We are inside the main code of calculation of the parameters. First, we
need to find the main subnet classes of the input mask 0, 8, 16, and 24.
a = int(int(mask) / 8)

7. After that, we need to find the subclasses of the input mask, like 18, 25,
and 26.
b = int (mask) % 8
octetl = 2 ** 8 - 2 ** (8 - b)

8. We need to find the network and broadcast addresses with the following

calculation. After that, we can find the minimum available host by adding
1 to a network address, and we can find the maximum available host by
deleting 1 from the broadcast address.

z = octet _list[a] #Find the octet to change

k = int(z / 2 ** (8 - b))

net = ((2 ** (8 - b)) * k) #network address calculation

brod = ((2 ** (8 - b)) * (k + 1)) - 1 {#Broadcast address

calculation
min host = net + 1 #Min avaliable host
max _host = brod - 1 #Max avaliable host

9. After that, we need to find the subclass value. We had the if condition in
the following part. We check the a variable value from o to 3. If a equals
0, the subnet is x.0.0.0. x must be an integer between 0 and 255. If a
equals 1, the subnet is 255.x.0.0. We also write the wildcard with the y
string. When we find the subnet, we can find other parameters easily. The
calculation is related to network address calculation.

if a ==
subnet = "x.0.0.0"
wildcard = "y.255.255.255"
total host = ((256-octetl)* (256%*3))-2
network = "{}.{}.{}.{}".format(net,0,0,1)
broadcast = "{}.{}.{}.{}".format (brod,255,255,255)
min_host = "{}.{}.{}.{}".format(net,0,0,2)
max_host = "{}.{}.{}.{}".format (brod,255,255,254)
elif a == 1:
subnet = "255.x.0.0"
wildcard = "0.y.255.255"
total host = ((256-octetl) * (256**2)) -2
network = "{}.{}.{}.{}".format (octet list[0], net,0,1)
broadcast = "{}.{}.{}.{}".format (octet_list[O0],
brod, 255, 255)
min host = "{}.{}.{}.{}".format (octet _list[0], net,0,2)

max_host = "{}.{}.{}.{}".format (octet_list[0],
brod, 255,254)
elif a == 2:

subnet = "255.255.x.0"

wildcard = "0.0.y.255"

total host = ((256-octetl) *256) -2

network = "{}.{}.{}.{}".format (octet_list[O0],
octet list[1l],net,1)

broadcast = "{}.{}.{}.{}".format (octet_list[0],
octet_list[1l],brod, 255)

min host = "{}.{}.{}.{}".format (octet_list[0],
octet_list[1l],6 net,2)

max_host = "{}.{}.{}.{}".format (octet_1list[O0],

octet list[1l],brod, 254)

elif a == 3:
subnet = "255.255.255.x"
wildcard = "0.0.0.y"
total host = (256-octetl)-2

network = "{}.{}.{}.{}".format (octet_list[0],
octet_list[l], octet list[2], net)

broadcast = "{}.{}.{}.{}".format (octet_list[O0],
octet list[1l], octet list[2],brod)

min host = "{}.{}.{}.{}".format (octet_1list[O0],
octet list[l], octet list[2],min host)

max _host = "{}.{}.{}.{}".format (octet 1list[O0],

octet list[l], octet list[2],max host)

10. Then, we replace x and y with octetl and 255-octetl in which the value
is subclass value.
subnet new = subnet.replace("x", str(octetl))
wildcard = wildcard.replace("y", str (255 - octetl))

11. After finding all the information, we print it, as shown in the following
code:
print("---———-----——- \nIP Address: {}".format (enter_ip))
print ("Subnet Mask: {}".format (mask))
print ("Subnet: {}".format (subnet new))
print ("Wildcard: {}".format(wildcard))
print ("Total Host: {}".format(total host))
print ("Network Address: {}".format (network))

print ("Broadcast Address: {}".format (broadcast))
print ("IP Address Range: {} - {}".format(min_host,
max_host))

Example 4.14: Subnet calculator

enter ip = input("\nEnter an IP address: ")
octet_list = []
ip = enter ip.split(".") #Divide ip address to octets by
"." dot character
for octet in ip: #Check all octets are digits (not
contain any non-digit character)
try:
octet list.append(int (octet)) #Convert each item in list to
integer, if fail, continue
except: #So if fail,octet list will not be 4
anymore.
continue #And below if condition will not be matched
if len(octet list) == 4 and 0 < octet 1list[0] < 255 and 0 <=

octet list[l] <= 255 and 0 <= octet list[2] <= 255 and 0 <=
octet_list[3] <= 255
mask = input("\nEnter a Subnet Mask (1 to 32): address: ")
try:
number = int (mask) #Convert input to integer, if fail, continue
if 0 < number <= 32:
Find 0/8/16/24 main classes
a = int(int (mask) / 8)
Find sub-class like 18,25,26, etc.
b = int(mask) % 8
octetl = 2 ** 8 - 2 ** (8 - b) #Find subclass value

z = octet list[a] #Find the octet to change
k = int(z / 2 ** (8 - b))

net = ((2 ** (8 - b)) * k) #network address calculation
brod = ((2 ** (8 = b)) * (k + 1)) -1 #Broadcast address
calculation

min host = net + 1 #Min avaliable host

max host = brod - 1 #Max avaliable host

Find subclass value
if a ==
subnet = "x.0.0.0"

wildcard = "y.255.255.255"
total host = ((256-octetl) *(256**3)) -2

network = "{}.{}.{}.{}".format (net,0,0,1)
broadcast = "{}.{}.{}.{}".format (brod,255,255,255)
min host = "{}.{}.{}.{}".format(net,0,0,2)

max_host = "{}.{}.{}.{}".format (brod,255,255,254)
elif a == 1:

subnet = "255.x.0.0"

wildcard = "0.y.255.255"

total _host = ((256-octetl) * (256**2)) -2

network = "{}.{}.{}.{}".format (octet_list[0],net,0,1)
broadcast = "{}.{}.{}.{}".format (octet_list[0], brod,6 255,255)
min host = "{}.{}.{}.{}".format (octet_list[0],net,0,2)

max_host = "{}.{}.{}.{}".format (octet 1list[0], brod, 255,254)
elif a == 2:

subnet = "255.255.x.0"

wildcard = "0.0.y.255"

total host = ((256-octetl) *256) -2
network = "{}.{}.{}.
{}".format (octet_list[0],octet_list[1l],net,1)
broadcast = "{}.{}.{}.
{}".format (octet list[0],octet list[1l],brod, 255)
min host = "{}.{}.{}.
{}".format (octet list[0],octet list[1l],net,2)
max host = "{}.{}.{}.
{}".format (octet_list[0] ,octet list[1l],brod,254)

elif a ==

subnet = "255.255.255.x"

wildcard = "0.0.0.y"

total host = (256-octetl)-2
network = "{}.{}.{}.
{}".format (octet_list[0] ,octet list[1l],octet list[2], net)
broadcast = "{}.{}.{}.
{}".format (octet list[0],octet list[1l],octet list[2],brod)
min host = "{}.{}.{}.
{}".format (octet _list[0],octet list[l],octet list[2],min h
ost)
max_host = "{}.{}.{}.
{}".format (octet_list[0],octet list[1l],octet_list[2],max h

ost)
subnet new = subnet.replace ("x", str(octetl)) #Replace x
value in subnet with octetl
wildcard = wildcard.replace("y", str (255 - octetl))
print("------—-——————- \nIP Address: {}".format (enter_ip))
print ("Subnet Mask: {}".format (mask))
print("Subnet: {}".format (subnet new))
print ("Wildcard: {}".format (wildcard))
print ("Total Host: {}".format(total host))
print ("Network Address: {}".format (network))
print ("Broadcast Address: {}".format (broadcast))
print ("IP Address Range: {} - {}".format(min_host,max host))

else:
print ("ERROR: INVALID IP ADDRESS")
except: # So if fail,octet list will not be 4
anymore.
print ("ERROR: INVALID IP ADDRESS")
else:

print ("ERROR: INVALID IP ADDRESS")

Conclusion

In this chapter, we learnt about connection modules. For SSH, we use netmiko
and paramiko, and for telnet, we use the telnetlib and netmiko modules. We
connected network devices and collected logs for specific purposes like
collecting software versions and CPU levels of devices, logged in to multiple
devices simultaneously with multithreading and created an IP validation tool
and a subnet calculator.

In the next chapter, we will focus on configuring network devices. We will be
configuring interfaces, SNMP, and OSPF protocols, and we will replace the old
configuration with the new configuration parameters. We will be saving the
multiple devices’ configuration with a single script.

Multiple choice questions

1. Which module can log in with telnet protocol?

a. netmiko module

b. paramiko module

c. os module
d. re module
2. What is the device type parameter to log in to Cisco devices by the
netmiko module?
a. cisco
b. csc_i0s
C. cisco_ios
d. cisco_systems

3. Which module is used to connect to multiple devices simultaneously?
a. Import os
b. Import telnetlib

c. Import multithreading
d. Import threading

ANSwers

l.a
2.¢C
3.d

Questions
1. Write a script to collect the ARP table from the Cisco device and write it
to different text files for each device with the show arp command.

2. Write a script to collect logs from the Cisco device using multithreading
and netmiko module.

CHAPTER 5

Deploy Configurations in Network
Devices

This chapter will focus on the configuration of network devices with
different modules and functions. We will use the jinja2 template, YAML
files, NAPALM module, and nornir automation framework. As advanced
usage, we will use these modules and templates to configure multiple
devices in a more automated way.

Structure

In this chapter, we will cover the following topics:

e Configure network devices

o Configuration of interfaces

o Replacing configurations on files

e Configure devices with Jinja2 template

o

Introduction to Jinja2 template

o

Introduction to YAML language
Rendering Jinja template with the YAML file
Configure devices with Jinja

(¢]

o

(¢]

If statement in Jinja
e Configure devices with Napalm module

o Collect logs from devices with NAPALM
o Configure devices with NAPALM

e Configure devices with Nornir module

o Configure inventory in Nornir

o Connection to devices with Nornir-Netmiko
o Connection to devices with Nornir-NAPALM

o Configure devices by Nornir and Jinja Template

Objectives

With the knowledge of previous chapters, we can easily log in to devices
and configure them with the netmiko and paramiko modules. In basic
usage, we can handle easy tasks. When we need to take up more complex
tasks, we must use some modules or frameworks to handle these by adding
automation. We use configuration templates like Jinja to configure multiple
devices with fewer lines of code. We use the NAPALM module to connect
devices in a more straightforward mode. We create a nornir automation
platform to develop our automation scripts with faster connection types.

Configure network devices

As we did in the previous chapter, we can create automation scripts for
collecting data from any network or system device. We can also modify,
implement and configure those devices with Python scripts. We can deploy
10 or even 100 devices with a simple script. We use the netmiko module,
which performs better than the paramiko module, to deploy configurations
in network devices. As we did in the previous chapter, there is always an
option to use multithreading to configure devices in parallel.

There are different options to create data for configuration. We can directly
write the command set inside the script, which is the basic usage of
scripting. But for advanced use, scripts must be more flexible. To do that,
we can write the commands in another text file and get all the commands
from that file. So, our code will be much more apparent. We can also create
an Excel file and get the data from there. We have the option to get different
data for different devices. For example, we can configure each interface
with the different IP addresses on different devices. IP addresses cannot be
identical in the network, so they must be unique. For different purposes, we
will create various kinds of scripts.

1. In Example 5.1, we try to log in to devices with the netmiko module
again. For netmiko, we have a format to add devices, and we need to

add a unique IP address. However, the username, password, delay, or
device models can be identical or unique. We enter too many
parameters and many lines in the examples. We can create a for loop
for those parameters to avoid too many repeatable codes.

We import the netmiko module and then write our code. In the
previous examples of the netmiko module, we always added devices
with different variables: devicel, device2 and device3. In those
examples, it seemed to be no problem. But if we have 100 devices,
adding each variable is not good. So, we can create a loop for this
repeatable code. We create a variable named ip_1ist and fill it with
the device IP addresses.

from netmiko import Netmiko

ip list = ["10.10.10.1", "10.10.10.2", "10.10.10.3",
"10.10.10.4"]

. We create a for loop to get the IP addresses from the ip list
variable. We add the ip variable as the value of the host key. So, in
each iteration, the value of the host key changes according to the
ip 1list items. It means that, in each loop, we have a different device
to log in.
for ip in ip list:
ip = {
"host": £"{ip}",
"username" : "admin",
"password":"cisco",
"device_type": "cisco_ios",
"global delay factor": 0.1
}

We can also change other parameters. For example, if we have Cisco,
Juniper and Huawei devices in our network, we need to change the
device type parameter for different vendors. So, we can create
another variable by adding the vendor names and creating an if
condition in the loop to choose the specific vendor. We can use the
same logic for the username and password.

. As we did in the previous examples, we write our main code in the
try..except statement. In the example, we have a 10.10.10.4 device
that we cannot log in. So, when we execute the code, it gives an error

that we cannot log in. Inside this statement, we write our netmiko
code, and we send the show command to the device and get the output.
try:
print (£"\n---Try to Login: {ip['host']} ---\n")
net_connect = Netmiko (**ip)
output = net_connect.send_command("show interface
description")
print (output)
except:

print (£"***Cannot login to {ip['host']}")

Example 5.1: Creating device information in the loop
from netmiko import Netmiko

ip list = ["10.10.10.1", "10.10.10.2", "10.10.10.3",
"10.10.10.4"]

for ip in ip list:

ip = {
llhost" : fll {ip} " ,
"username" : "admin",

"password":"cisco",
"device_ type": "cisco_ios",
"global delay factor": 0.1

try:
print (£"\n---Try to Login: {ip['host']} ---\n")
net_connect = Netmiko (**ip)
output = net_connect.send_ command("show interface
description")
print (output)

except:
print (£"***Cannot login to {ip['host']}")

Instead of creating a variable and calling it in the loop, we can create a text
file and add all the IP information there. So, we can open the text file and
add all lines as different items in a variable.

In Example 5.2, we import the re module. We open the host_info text file
and read it. After that, we create the ip_1ist variable and get each line as a
unique item in this variable.

host_info. txt
10.10.10.1
10.10.10.2
10.10.10.3

10.10.10.4

import re

with open("host info.txt") as r:
host = r.read()

ip list = re.split("\n", host)

The remaining parts of this example are the same as Example 5.1. So, if we
have many devices, it’s better to use this method to get the IP information.

Example 5.2: Getting device information from text file
from netmiko import Netmiko
import re
with open("host info.txt") as r:
host = r.read()
ip list = re.split("\n", host)
for ip in ip list:
ip = {
"host": f£"{ip}",
"username" :"admin",
"password":'"cisco",
"device_type": '"cisco_ios",
"global delay factor": 0.1

try:
print (£"\n---Try to Login: {ip['host']} ---\n")
net connect = Netmiko (**ip)
output = net_connect.send command("show interface
description")
print (output)

except:
print (£"***Cannot login to {ip['host']}")

Configuration of interfaces

In Example 5.3, we create a netmiko script to execute commands to
configure hostnames, OSPF, and interface configurations in Cisco routers.
We collect all three-device data from the Excel file with the xlwings
module. It’s a third-party Python module that must be installed with the pip
install xlwings command in the terminal. This module opens an Excel
file. After that, it reads the data in all columns, writing the range a1:a14
with the range function.

So, we add all Router-1 configurations in the A column, Router-2 is in B,
and Router-3 1s in C. We write a for loop to get each column range and
device connection data from the netmiko module simultaneously. So, we
create the for loop with two iterables. After that, we connect to the devices
in each loop and send the configuration variable. The value in the
configuration 1S a list of data in Excel from a1 to a14.

A B C

1 hostname Test-R1 hostname Test-R2 hostname Test-R3

2 interface interface interface
GigabitEthernet0/1 GigabitEthernet0/1 GigabitEthernet0/1

3 ip address 20.20.20.1 |ip address 20.20.20.2 |ip address 20.20.20.3
255.255.255.0 255.255.255.0 255.255.255.0

4 no shutdown no shutdown no shutdown

5 interface interface interface
GigabitEthernet0/2 GigabitEthernet0/2 GigabitEthernet0/2

6 ip address 30.30.30.1 |ip address 30.30.30.2 |ip address 30.30.30.3
255.255.255.0 255.255.255.0 255.255.255.0

7 no shutdown no shutdown no shutdown

8 interface interface interface
GigabitEthernet0/3 GigabitEthernet0/3 GigabitEthernet0/3

9 ip address 40.40.40.1 |ip address 40.40.40.2 |ip address 40.40.40.3
255.255.255.0 255.255.255.0 255.255.255.0

10 no shutdown no shutdown no shutdown

11 router ospf 10 router ospf 10 router ospf 10

12 network 20.20.20.0 | network 20.20.20.0 | network 20.20.20.0
0.0.0.255 area 0 0.0.0.255 area O 0.0.0.255 area O

13 network 30.30.30.0 | network 30.30.30.0 | network 30.30.30.0

0.0.0.255 area 0 0.0.0.255 area 0 0.0.0.255 area 0

14 network 40.40.40.40 | network 40.40.40.40 | network 40.40.40.40
0.0.0.255 area 0 0.0.0.255 area 0 0.0.0.255 area 0

Table 5.1: Configuration template of an Excel file “Config file.xlsx”

In Zable 5.1, all three device configurations are saved in the
Config file.xlsx Excel file with the same script directory. When we
execute the script in Example 5.3, it configures each device with the
specific template in columns A, B, and C. With an Excel template, we can
configure many devices with the first installation in a simple solution.

Example 5.3: Deploy configuration template from the Excel file
import xlwings

from netmiko import Netmiko

excel = xlwings.Book("Config file.xlsx") .sheets['Sheetl']
column = ["A","B","C"]

host = ["10.10.10.1", "10.10.10.2", "10.10.10.3"]

for x,ip in zip(column, host):

print (£"---Connected to {ip}---")

configuration = excel.range(f"{x}1:{x}14") .value
device = {"host": ip, "username": "admin", "password":
"cisco","device_ type": "cisco_ios"}

net_ connect = Netmiko (**device)
net_connect.send config set(configuration)

In the output of Example 5.3, in each connection, we display the IP address
with a print function. So, we can understand which device has a
connection now. So, if we have 100 devices, we can see how many device
configurations are finished and how many of them remain.

Netmiko is designed to connect network devices more smartly. So, when we
send configuration with the send _config _set function, it automatically
enters the configuration mode, and after all commands finish, it
automatically exits to user mode. In this example, it’s Cisco routers, so it
enters configuration mode with the configure terminal and exists with
the end command. We have no need to enter those commands, but if we use
the paramiko module, we need to enter them.

In Example 5.4, we get the IP address and assigned it to the ip list
variable. This time, we call the commands from a text file. We call the

send_config from file function to run all content in the file. We write the
filename with its extension as a string inside parentheses.

output =

net_ connect.send config from file("command list.txt")

So, the code is much clearer to handle, and the script gets all the
information to log the device in and executes commands from files.

Example 5.4: Configuration of interfaces from text files
from netmiko import Netmiko
import re
with open("host info.txt") as r:
host = r.read()
ip list = re.split("\n", host)
for ip in ip list:
ip = {
"host": £"{ip}",
"username" : "admin",

"password":'"cisco",

"device_type": '"cisco_ios",
"global delay factor": 0.1 }
try:
print (£"\n---Try to Login: {ip['host']} ---\n")
net connect = Netmiko (**ip)
output =
net_connect.send config from file("command list.txt")
print (output)
except:

print (£"***Cannot login to {ip['host']}")

For later usage of this code, we only need to change two files, and we do
not need to change anything in the code.

host_info.txt command list.txt

10.10.10.1 interface GigabitEthernet0/1
10.10.10.2 description Test

10.10.10.3 no shutdown

no cdp enable

Replacing configurations on files

In Example 5.5, we have a router’s interface configuration text file. It could
be a complete configuration to modify for further usage. In this scenario,
we change the interface description, port shutdown status, and IP address
information.

We remove the description line in the GigabitEthernet0/0 interface in the
following code. We also replace the no ip address line with the ip
address 192.168.10.10 255.255.255.0 line, and we remove the
shutdown line under the GigabitEthernet0/1.

1. We create an old config.txt text file with the following content.
After that, we create a command change variable. We write the old and
new configurations in this variable. command change[0] is the old
value, and the command change[1] 1s the new value. Also,
command _change [2] 1s the Oki\wﬂue,and,command_change[3] 1s the
new value. Even-numbered items represent old values, and odd-
numbered items represent new values.
command_change = [

"""interface GigabitEthernet0/0
description TEST""",

"interface GigabitEthernet0/0",
"""interface GigabitEthernet0/1

no ip address

shutdown""",

"""interface GigabitEthernet0/1

ip address 192.168.10.10 255.255.255.0"""

]

2. We count the command _change lists items with the 1en function. In this
example, the value of the item count is four.

item count = len(command change)

3. We open the old configuration file with the open function, read it and
assign it to the new_config variable.
with open("old config.txt") as old config:
new_config = old config.read()

4. We create a loop with a range function. x is 0 in the first iteration and
2 in the second iteration because in the range function, we add two in
each loop as we write in the code. After that, we use the replace
function to change the old value with the new one. So, we write the

old value as command change[x] and the new value as
command change[x+1]. So in the first loop, it’s "new config =
new config.replace (command change[O0], [1])".
for x in range (0, item count, 2):

new_config = new_config.replace (command change[x],

command change[x + 1])

5. We write the output of the new_config variable with the open function
to the new_config. txt file.
with open("new_config.txt", "w") as new:

new.write (new_config)

Example 5.5: Replacing configurations on files

command change = [

"""interface GigabitEthernet0/0

description TEST""",

"interface GigabitEthernet0/0",

"""interface GigabitEthernet0/1

no ip address

shutdown""",

"""interface GigabitEthernet0/1

ip address 192.168.10.10 255.255.255.0"""

]

item count = len(command change)

with open("old config.txt") as old config:
new_config = old_config.read()

for x in range(0, item count, 2):
new_config = new_config.replace (command change[x],
command change[x + 1])

with open("new_config.txt", "w") as new:

new.write (new_config)

In the following text files, we replace the configuration with a basic
configuration change script. We can use this script for the migration or
swap project as a network engineer:

old config. txt

interface GigabitEthernet0/0

description TEST

ip address 10.10.10.1 255.255.255.0

duplex auto

speed auto

media-type rj45

!

interface GigabitEthernet0/1
no ip address

shutdown

duplex auto

speed auto

media-type rj45

!

new_config. txt

interface GigabitEthernet0/0
ip address 10.10.10.1 255.255.255.0
duplex auto

speed auto

media-type rj45

!

interface GigabitEthernet0/1
ip address 192.168.10.10 255.255.255.0
duplex auto

speed auto

media-type rj45

!

Configure devices with Jinja2 template

Jinja2 template is one of the popular Python modules in network
automation. We use this third-party module to create configuration
templates and execute them with YAML format files. With these two
concepts, we can easily configure thousands of network and system devices
with many options.

Introduction to Jinja2 template

We use variables and call them with their values to execute the network
commands. Or we write full configuration command for a device and send
it to network devices. If we configure a couple of lines in network or system
devices, it’s normal to use that, like in the previous examples.

But when we configure many parts and devices, we need to make it more
automated. For example, if we need to configure 10 interfaces in a single
device, as a primary way, we can write all the configurations in a file and
execute all of them. On the other hand, we can create a sample interface,
and with a loop, we can define different values for them. This can be done
with basic Python knowledge, but it’s still more work. Instead of writing
this kind of script, we have another solution: the Jinja template.

Jinja is a template engine for Python. It’s fast, has a syntax similar to
Python, and has many features to use in many areas. It’s a simple and
powerful language for templating usage. As network engineers, we use this
template to create configuration templates to be executed in the network
and system devices. We must download jinja to use in scripts by running the
pip install Jinja2 command in the terminal, as we did for the other
third-party modules in Python.

In the following code template, there is a sample jinja template for network
devices. There is a hostname configuration and two different port
configurations. Hostname, interface IP address and subnet mask are
changeable variables. So, in this template, we can configure many devices
by setting the following variables. Each variable is inside double curly
brackets:

hostname {{name}}

1

interface GigabitEthernet 0/1

ip address {{ip_address}} {{subnet mask}}

no shutdown

!

interface GigabitEthernet 0/2

ip address {{ip_address}} {{subnet_mask}}

no shutdown
1

Introduction to YAML language

The official website of Yet Another Markup Language (YAML) says
YAML is a human-friendly data serialization language for all programming
languages. So, 1t’s a programming language, and we need to learn the
basics of this language to use with the jinja template. YAML is a modern
and primary language used in different languages or tools. Ansible, one of
the most popular network automation tools, executes all the scripts in
YAML format. So, it’s essential to understand that clearly.

* YAML is easy to use, human-friendly, and easily readable format.

e Like in many programming languages such as Python, indentations are
very important in the YAML language.

e Unlike in other languages, we cannot use fab characters in the YAML
language. If we use a tab, the script throws an error; so, we use spaces
instead of tab.

e In YAML, we use the # character to write a comment, as in Python.

* YAML is a case-sensitive language, so characters of lower and upper
case are different values.

 YAML files are specified with an extension of .yaml or .ym1l.

Like in other programming languages, there are several data types in the
YAML language: string, boolean, integer, float, list, and dictionary.

For example, we can create a list with a - character. In the following
example, there are four items: 1lion, elephant, and dog are strings, and 5 is
an integer. All of them make up a list with four items:
- lion
- elephant
- dog
-5
QOutput: ['lion', 'elephant', 'dog', 5]
In this example, we create a block mapping or a dictionary. lion is a
dictionary variable name, age is the key, and 5 is the value of that key. Keys
and values are divided by a colon, and keys and their values create
dictionaries, as in Python language.
- lion:

age: 5

color: yellow

type: wild
Output: lion: {age: 5, color: yellow, type: wild}

Rendering Jinja template with a YAML file

When we write scripts using the jinja template, we use both the jinja and
YAML modules at the same time. We create the jinja template file in text
format and the YAML file in the YAML format. We call or load both
YAML and text files inside the code. Finally, we render the template in the
script to get the data combined with the YAML file.

In Example 5.6, we create a script to execute the jinja template file with the
data in the YAML file and render it in the main script.

1. We use both jinja and YAML modules. Instead of importing all
modules, we only import the necessary functions. For jinja, we use the
Environment and.FileSystemLoader funcﬁon& and ﬁn‘ﬁﬁ%hdL,\Ne
use the safe load function.
from jinja2 import Environment, FileSystemLoader

from yaml import safe_ load

2. Environment 1S the core object in the jinja module, and it contains the
variables as configurations. Inside the parentheses, we use the loader
parameter, and it’s a template 1oader for this environment. The value
of the loader is the FileSystemLoader function, which loads the
template in the file system. We can write a dot to target the current
directory or write the full path. In the following code, we enter the dot
inside the quote, which is in the parentheses. It means ‘load the
current file path in the PC as an environment’. If we need to call the
jinja template file from a different directory, we need to write the
directory name inside the quote. After that, we assign this value to the
env variable to use later in the code.
env = Environment (loader=FileSystemLoader("."))

3. We need to call the jinja file with the env variable.We use the
get template function to do that. Inside this function, we write the
jinja template file, which is commands. txt in this example. After that,
we assign this value to the template variable.
template = env.get template ("commands.txt")

4. Now, the file is ready to be combined with the data in the YAML file.
So, inside the info.yml file, we write YAML format variables
parameters to assign in the jinja template. First, we need to read the
YAML file in Python. We have already imported the safe load
function from the pyyaml module. We open the file and read it with
the safe load function. After that, we assign all the output to the data
variable.
with open("info.yml") as r:

data = safe_ load(r)

5. Finally, we combine the template and the YAML data by rendering the
script with the render function. We display the output of this code.
print (template.render (data))

In the following code, we write one line of string in the commands. txt file.
We write double curly brackets and write the variable name inside it as
language. When we execute the code, Python replaces this variable with
the data in the YAML file.

commands . txt

We try to learn {{ language }}

In the following code, we write the key and its value as 1anguage: Python
in the info.yml file. So, code uses this data to combine with the jinja
template.

info.yml

language: Python

When we run the code, we see Python instead of {{ language }}. So the
code gets the Python data or value of the language key and replaces it with
the {{ language }} variable in jinja template.

Output: we try to learn Python

This example is the basic usage of the jinja template with the YAML file. In
the following examples, we try to create more features of jinja, like creating
loops inside the template for repeatable actions.

Example 5.6: Rendering jinja template with the YAML file
from jinja2 import Environment, FileSystemLoader
from yaml import safe_ load

env = Environment (loader=FileSystemLoader ("."))
template = env.get_ template("commands.txt")

with open("info.yml") as r:
data = safe_ load(r)
print (template.render (data))

Configure devices with Jinja

We already got the data, merged with the jinja template, and rendered it in
the previous example. In Example 5.7, we use the same script as the one in
Example 5.6. This time, we configured a hostname and interface in a Cisco
router.

In Example 5.7, we create two files that are the jinja template and the
YAML file. In the jinja template, we write the whole configuration in the
following code. We write variable names in double curly brackets for the
changeable strings. These are hostname information, interface description,
IP address, and subnet mask. So, we need to create four sets of data for
these variables. After that, we execute the commands on the router with the
netmiko module.

commands . txt

hostname {{name}}

interface GigabitEthernet0/1

description {{description}}

ip address {{ip_address}} {{subnet mask}}

no shutdown

In the following code, we create four different keys and their values in the
YAML data file. These values replace the specific variables in the jinja
template.

info.yml

name: Router-1

description: Test Interface

ip address: 192.168.10.10

subnet mask: 255.255.255.0

We import the jinja2, yaml, netmiko, and re modules in the main script.
After that, we write the device information to log in.

from jinja2 import Environment, FileSystemLoader

from yaml import safe_ load

from netmiko import Netmiko

import re

ip = {"host": "10.10.10.1", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global delay factor":
0.1}

We write the jinja template commands as we did in Example 5.6.
env = Environment (loader=FileSystemLoader ("."))
template = env.get template("commands.txt")
with open("info.yml") as r:

data = safe_load(r)
command = template.render (data

When we check the command variable, it’s a string of commands. We need to
change it to a list by each line. So, if we have 10 lines of commands, we
need to change it to a list with 10 items. We use the sp1it function from the
RE module by dividing lines with the \n string.

command = re.split("\n", command)

Finally, we log in to the device and send the configuration commands with
netmiko functions.

print (£"\n---Try to Login: {ip['host']} ---\n")

net connect = Netmiko (**ip)

output = net connect.send config set (command)

print (output)

When we execute the script in Example 5.7, we can see a simple router
configuration with its parameters.

Output of the Jinja Template:

hostname Router-1

interface GigabitEthernet0/1

description Test Interface

ip address 192.168.10.10 255.255.255.0

no shutdown

Example 5.7: Configure a single interface with Jinja

from jinja2 import Environment, FileSystemLoader

from yaml import safe_ load

from netmiko import Netmiko

import re

ip = {"host": "10.10.10.1", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global delay factor":
0.1}

env = Environment (loader=FileSystemLoader ("."))
template = env.get template("commands.txt")
with open("info.yml") as r:

data = safe_load(r)
command = template.render (data)
command = re.split("\n", command)
print (£"\n---Try to Login: {ip['host']} ---\n")
net connect = Netmiko (**ip)
output = net connect.send config set (command)
print (output)

In the previous example, we execute one interface configuration in a router.
If we have repeatable configurations, such as configuring many interfaces
with the same parameters in routers, we can use for loops in the jinja
template.

To create a for loop in the jinja template, we need to write for loop like in
Python. It must be between % and curly brackets as {% .. %}. The loop must
be finished with the {$ endfor ¢} line. Inside the for loop, we write the
string and variables together, like in the jinja templates as in the previous
examples. We call the data from the YAML file as writing {{
ITERABLE["varl"] }}.
Sample Jinja Template:
{$ for ITERABLE in OBJECT %}
Hello {{ ITERABLE["varl"] }}, it's{{ ITERABLE["var2"] }}.
{% endfor %}
Sample YAML file:
ITERABLE:
- varl: World

var2: Python

When we execute the code, the output will be Hello World, it's Python.

In Example 5.8, we use the same Python script as in Example 5.7. But we
changed the YAML file and the jinja template. In this scenario, we
configure the hostname of the router and three interfaces with their
description, IP address, and status as no shutdown. Instead of writing three
interfaces configuration in the jinja template and YAML file, we write the
for loop in the jinja template.

In the YAML file, we write the hostname key and value. After that, we
write the interfaces dictionary. There are three lists in this dictionary, and
each list has a dictionary with keys and values, for example, name and
GigabirEthernet0/1. So, we enter the keys and values for each interface.

We write the jinja file with the for loop. We have data for hostnames,
interface name, interface description, IP address, and subnet mask.

Example 5.8: Configure multiple interfaces with Jinja
commands . txt:
hostname {{hostname}}
{% for int in interfaces %}
interface {{ int["name"] }}
description {{ int["description"] }}
ip address {{ int["ip address"] }} {{ int["subnet mask"] }}
no shutdown
{% endfor %}
info.yml:
hostname: Router-1
interfaces:
- name: GigabitEthernet0/1
description: Service Interface
ip address: 172.16.10.10
subnet mask: 255.255.255.0
- name: GigabitEthernet0/2
description: MGMT Interface
ip address: 10.0.0.10
subnet mask: 255.255.255.0
- name: GigabitEthernet0/3
description: Dowlink Interface
ip address: 1.1.1.1
subnet mask: 255.255.255.0

When we execute the Python code in Example 5.6, it executes the following
configurations in Router-1. We can configure dozens of interfaces with a
single template; that’s why the jinja template is so powerful for automation.

Output:
Rl (config) #hostname Router-1
Router-1 (config) #

Router-1(config) #interface GigabitEthernet0/1
Router-1(config-if)# description Service Interface
Router-1(config-if)# ip address 172.16.10.10 255.255.255.0
Router-1(config-if)# no shutdown

Router-1 (config-if) #

Router-1(config-if) #interface GigabitEthernet0/2
Router-1(config-if)# description MGMT_ Interface
Router-1(config-if)# ip address 10.0.0.10 255.255.255.0
Router-1 (config-if)# no shutdown

Router-1 (config-if) #

Router-1(config-if) #interface GigabitEthernet0/3
Router-1(config-if)# description Dowlink Interface
Router-1(config-if)# ip address 1.1.1.1 255.255.255.0
Router-1(config-if)# no shutdown

Router-1 (config-if) #

Router-1 (config-if) #end

Router-1#

In Example 5.9, we configure interface information in multiple devices. We
have three Cisco routers, as we did in the previous examples:

1. We import jinja, yaml, netmiko and RE modules and create a list of
[P addresses to log in to the routers.
from jinja2 import Environment, FileSystemLoader
from yaml import safe_ load
from netmiko import Netmiko
import re
ip list = ["10.10.10.1", "10.10.10.2", "10.10.10.3"]

2. We execute the Environment function for the current directory and get
the template from the text file. After that, we get the data from the
YAML file.
env = Environment (loader=FileSystemLoader("."))
template = env.get template ("commands.txt")
with open("info.yml") as r:

data = safe_ load(r)
3. We create a for loop with multiple lists. In this example, the x iterable

gets the items from the data list, and the ip iterable receives the items
from the ip 1list list. So, we get the data for Router-1 as the first set

of data, that for Router-2 as the second set of data, and the data for
Router-3 as the third set of data. We render the data in each loop and
execute the commands in a specific router with a netmiko module

connection.
for x,ip in zip(data,ip list):
ip = {
"host": £"{ip}",
"username": "admin",
"password": "cisco",
"device_type": "cisco_ios",

"global delay factor": 0.1}
command = template.render (x)
command = re.split("\n", command)
print (£"\n---Try to Login: {ip['host']} ---\n")
net_connect = Netmiko (**ip)
output = net connect.send config set (command)
print (output)

If we use nested loops for the previous examples, the code runs all three
device configurations on each device. So, all three devices would be
configured as third device configuration. It’s the wrong script to run, but in
this example, in the first loop, we get the data for the first router and log in
to the first router simultaneously; then, it continues the same way on other
routers.

Example 5.9: Configure a single interface on multiple devices with jinja
from jinja2 import Environment, FileSystemloader
from yaml import safe load
from netmiko import Netmiko
import re
ip list = ["10.10.10.1", "10.10.10.2", "10.10.10.3"]
env = Environment (loader=FileSystemLoader ("."))
template = env.get template("commands.txt")
with open("info.yml") as r:
data = safe_load(r)
for x,ip in zip(data,ip list):
ip = {
"host": f£"{ip}",

In the following command, we create two files again: one for the jinja
template and another for the data in the YAML file. We already used this
jinja template in the previous examples, which has different usage in the
YAML file in Example 5.9. It has three items on a list, and each list
includes a dictionary with keys and values. In each for loop, it gets the data
from this file. So, Router-1 gets the first item. Each key has a specific value
for Router-1, and the loop gets other device information in the same way.

"username": "admin",

"password": "cisco",

"device_type": "cisco_ios",
"global delay factor": 0.1}
command = template.render (x)

command = re.split("\n", command)

print (£"\n---Try to Login:
net connect = Netmiko (**ip)

{ip['host']} ---\n")

output = net_ connect.send config set (command)

print (output)

commands . txt:

hostname {{hostname}}

interface {{int_name}}

description {{description}}

ip address {{ip_address}} {{subnet mask}}

no shutdown

info.yml:

hostname: R1

int name: GigabitEthernet0/3
description: Test-1

ip address: 10.1.1.1

subnet mask: 255.255.255.0
hostname: R2

int name: GigabitEthernet0/3
description: Test-2

ip address: 10.1.1.2

subnet mask: 255.255.255.0
hostname: R3

int name: GigabitEthernet0/3

description: Test-3

ip address: 10.1.1.3
subnet mask: 255.255.255.0

In Example 5.10, we write a script in more advanced usage. We created a
for loop to configure three interfaces and did this in three routers; it’s more
complicated according to previous examples. We use the same Python
script in Example 5.9, and we only change the jinja template file and the
YAML file.

We used the same template in the jinja file to create multiple interface
configurations in the previous example, but the YAML file is different in
this example. We make a dictionary with its items, and we create items of
lists again in the interfaces. S0, when we run this code, it configures three
routers with hostnames, interface IP addresses with their subnet masks, and
interface descriptions and opens the ports with no shutdown.

Example 5.10: Configure multiple interfaces on multiple routers with jinja
commands . txt:

hostname {{hostname}}

{% for int in interfaces %}

interface {{ int["int name"] }}

description {{ int["description"] }}

ip address {{ int["ip_address"] }} {{ int["subnet mask"] }}

no shutdown
{% endfor %}
info.yml:
- hostname: Router-1

interfaces:

- int name: GigabitEthernet0/1
description: Service Interface 1
ip address: 172.16.10.10
subnet mask: 255.255.255.0

- int name: GigabitEthernet0/2
description: MGMT Interface_ 1
ip address: 10.0.0.10
subnet mask: 255.255.255.0

- int name: GigabitEthernet0/3
description: Dowlink Interface 1
ip address: 1.1.1.1

subnet mask: 255.255.255.0
- hostname: Router-2

interfaces:

- int name: GigabitEthernet0/1
description: Service Interface 2
ip address: 172.16.10.20
subnet mask: 255.255.255.0

- int name: GigabitEthernet0/2
description: MGMT Interface 2
ip address: 10.0.0.20
subnet mask: 255.255.255.0

- int name: GigabitEthernet0/3
description: Dowlink Interface 2
ip address: 1.1.1.2
subnet mask: 255.255.255.0

- hostname: Router-3

interfaces:

- int name: GigabitEthernet0/1
description: Service_ Interface 3
ip address: 172.16.10.30
subnet mask: 255.255.255.0

- int_name: GigabitEthernet0/2
description: MGMT Interface 3
ip address: 10.0.0.30
subnet mask: 255.255.255.0

- int name: GigabitEthernet0/3
description: Dowlink Interface 3
ip address: 1.1.1.3
subnet mask: 255.255.255.0

In the following output, when we execute the script and check the interface
information of three routers, we can see that the interface description and IP
address with subnet mask are configured, and ports are configured with a no
shutdown command.

ROUTER-1:

Router-1l#show interfaces description

Interface Status Protocol Description

Gi0/0 up up

Gi0/1 down down Service Interface 1

Gi0/2 down down MGMT Interface 1

Gi0/3 down down Dowlink Interface 1

Router-1l#show ip interface brief

Interface IP-Address OK? Method Status Protocol
GigabitEthernet0/0 10.10.10.1 YES NVRAM up up
GigabitEthernet0/1 172.16.10.10 YES manual down down
GigabitEthernet0/2 10.0.0.10 YES manual down down
GigabitEthernet0/3 1.1.1.1 YES manual down down
ROUTER-2:

Router-2#show interfaces description

Interface Status Protocol Description

Gi0/0 up up

Gi0/1 down down Service_ Interface 2

Gi0/2 down down MGMT_ Interface 2

Gi0/3 down down Dowlink Interface 2

Router-2#show ip interface brief

Interface IP-Address OK? Method Status Protocol
GigabitEthernet0/0 10.10.10.2 YES NVRAM up up
GigabitEthernet0/1 172.16.10.20 YES manual down down
GigabitEthernet0/2 10.0.0.20 YES manual down down
GigabitEthernet0/3 1.1.1.2 YES manual down down
ROUTER-3:

Router-3#show interfaces description

Interface Status Protocol Description

Gi0/0 up up

Gi0/1 up up Service_Interface 3

Gi0/2 down down MGMT Interface 3

Gi0/3 down down Dowlink Interface 3
Router-3#show ip interface brief

Interface IP-Address OK? Method Status Protocol
GigabitEthernet0/0 10.10.10.3 YES NVRAM up up
GigabitEthernet0/1 172.16.10.30 YES manual up up
GigabitEthernet0/2 10.0.0.30 YES manual down down
GigabitEthernet0/3 1.1.1.3 YES manual down down

If statement in Jinja

In Example 5.11, we use the if statement inside the jinja template. We
execute the same Python script as in Example 5.7. We configure Access
List (ACL) and interface information in the following code.

#

access-list 1 permit 10.10.10.0 0.0.0.255

access-list 1 permit 20.20.20.0 0.0.0.255

access-list 1 permit 30.30.30.0 0.0.0.255

#

interface GigabitEthernet0/1

description Service Interface

ip address 172.16.10.10 255.255.255.0

no shutdown

ip access-group 1 in

#

interface GigabitEthernet0/2

description NOT USED

ip address

shutdown

#

We send the shutdown or the no shutdown command according to the
interface information, and we add the act command in the
GigabitEthernet0/1 interface.

In this example, we have two interfaces: GigabitEthernet0/1 has the IP
address, and GigabitEthernet0/2 has no IP address, and the description is
NoT_useD. Empty ports should be shutdown in network devices, and others
should be configured as no shutdown. So, in the jinja for loop, we can
decide which interface is active or closed.

There is an if statement line in the jinja file before we close the for loop.
Usage of the if statement is also similar to that of the for statement. We
write {$ if int['active'] %} no {% endif %} to check if the active
variable is true or false in the related interface on the YAML file. If it’s true,
the no string will be written, and that line will be no shutdown. If it’s false,
the no string will not be written, and that line will be shutdown. So, if the
active key’s value is true, the port is configured as no shutdown; otherwise,
it’s configured as shutdown.

When we check the YAML file, there is an active key in the items, and the
value is true or false. GigabitEthernet0/2 is false, so the port is configured
as shutdown. GigabitEthernet0/1 is true, so the port is configured as no
shutdown.

Example 5.11: Access-list configuration in routers with the if statement
commands. txt:
{% for acl in access_list %}
access-list {{ acl no }} permit {{ acl["ip address"] }} {{
acl["wild card"] }}
{% endfor %}
{%$ for int in interfaces %}
interface {{ int["name"] }}
description {{ int["description"] }}
ip address {{ int["ip address"] }} {{ int["subnet mask"] }}
{% if int['active'] %$}no {%$ endif %}shutdown
{% if int['active'] %}ip access-group {{ acl no }} in {%
endif %}
{% endfor %}
info.yml:
acl no: 1
access_list:
- ip address: 10.10.10.0
wild card: 0.0.0.255
active: true
- ip address: 20.20.20.0
wild card: 0.0.0.255
- ip_address: 30.30.30.0
wild card: 0.0.0.255
interfaces:
- name: GigabitEthernet0/1
description: Service Interface
ip address: 172.16.10.10
subnet mask: 255.255.255.0
active: true
- name: GigabitEthernet0/2
description: NOT_USED
active: false

When we execute the code, the GigabitEthernet0/2 interface has no IP
address, and the description is NOT UsED, as in the following output. And
it’s also administratively down, Which 1S shutdown.

Router-1l#show interface description

Interface Status Protocol Description

Gi0/0 up up

Gi0/1 down down Service Interface

Gi0/2 admin down down NOT USED

Gi0/3 down down

Router-1l#show ip interface brief

Interface IP-Address OK? Method Status Protocol
GigabitEthernet0/0 10.10.10.1 YES NVRAM up up
GigabitEthernet0/1 172.16.10.10 YES manual down down
GigabitEthernet0/2 unassigned YES unset administratively down
down

GigabitEthernet0/3 unassigned YES unset administratively down

down

In Example 5.11, the GigabitEthernet0/2 interface has no IP address. But,
when we check the output of our script, the ip address command is
executed in the Cisco device. Because there is no IP and subnet mask on the
command, the router returns a ¢ Incomplete command. as a warning.
Router-1(config-if)# ip address

% Incomplete command.

We can create another if statement for the ip address command. So, if
there is no ip_address key in the list item in the YAML file, ip address
{{ int['ip_address'] }} {{ int['subnet_mask'] }} line is not run in
the device. As we see in the YAML file, the cigabitEthernet0/2 has no IP
address key. So, our code doesn’t send the ip address command.

{%$ if int['ip_address'] -%}

ip address {{ int['ip_address'] }} {{ int['subnet mask'] }}

{% endif -%}

Configure devices with Napalm module

Network Automation and Programmability Abstraction Layer with
Multivendor (NAPALM) is a Python library that connects network devices
by a unified API.

e [t’s built on top of the netmiko module.

o It currently supports Cisco, Juniper, and Arista devices. It does not
have as wide a range of vendor support as the netmiko module.

e It has a feature to manipulate configurations and commit or roll back
the configuration on the network devices.

e We can combine NAPALM with the network automation frameworks
such as Ansible and Salt.

We can use NAPALM with multiple platforms simpler than netmiko
because it uses the same syntax for different vendors, and it’s one of the
powerful parts of NAPALM.

There are plenty of getters or the get functions in NAPALM to collect the
logs in a smarter way that can be converted to a JSON format or more
readable for us. We need to enable the Secure Copy Protocol (SCP) server
in Cisco devices with the ip scp server enable command to log in with
NAPALM. Otherwise, the code gives an error and asks to enable the SCP
protocol.

We must run the pip install napalm command in the terminal to install
the NAPALM module. For more details about NAPALM, like supported
network devices, getters, and configurations, you can check the official
website at the following link:

Collect logs from devices with NAPALM

We will collect logs with the NAPALM module in this section. In Example
5.12, we collect interface information or route information detail. We can
also convert it to the JavaScript Object Notation (JSON) format to make
it more readable for us.

1. We import the napalm and JSON modules. After that, we write the
host variable and add the hostname as IP address, username, and
password information to log in to the device.

import napalm
import json
host = {"hostname": "10.10.10.1", "username": "admin",

"password": "cisco"}

https://napalm.readthedocs.io/en/latest/support/index.html

2. We call the get network_driver function from the NAPALM module
and assign it to the driver variable. We choose the specific vendor to
get data: for cisco - ios, for arista - eos, and for juniper - junos. We
write (**host) to login a device like in netmiko module.We assign
this value to a variable called connect.

driver = napalm.get network_driver("ios")

connect = driver (**host)

3. We call the open function with connecting variable to open a
connection session on the device. Now, we can call the getters or the
commands to get the data or log from the device. We use the
get_interfaces function to get the details of the interfaces in the
device and write all the output logs to the output variable. We can
also call other functions for other purposes.

connect.open ()
output = connect.get_interfaces()

4. We can display the output with a print function. If we print only the
output function, it displays a very long line of a dictionary, which is
not a good way to read the data. In this situation, we use the JSON
format to read the output variable. We use the dumps function from
the JSON module and add an indentation between the items as one.
Finally, we close the connection session with the close function.

print(json.dumps (output, indent=1l))
connect.close ()

Example 5.12: Get interface information with NAPALM
import napalm

import json

host = {"hostname": "10.10.10.1", "username": "admin",
"password": "cisco"}

driver = napalm.get network _driver("ios")
connect = driver (**host)

connect.open ()

output = connect.get_interfaces()

print (json.dumps (output, indent=1))
connect.close ()

When we execute the script in Example 5.12, it collects detailed interface
data from the routers, as in the following output. We can see the description,

MAC address, MTU size, and more.
{
"GigabitEthernet0/0": {
"is_enabled": true,
"is_up": true,
"description": "aaa",
"mac_address": "0C:70:B7:89:00:00",
"last flapped": -1.0,
"mtu": 1500,
"speed": 1000.0
b,
"GigabitEthernet0/1": {
"is_enabled": false,
"is up": false,
"description": "11",
"mac_address": "0C:70:B7:89:00:01",
"last flapped": -1.0,
"mtu": 1500,
"speed": 1000.0
b,
"GigabitEthernet0/2": {
"is_enabled": false,
"is _up": false,
"description": "22",
"mac_address": "0C:70:B7:89:00:02",
"last flapped": -1.0,
"mtu": 1500,
"speed": 1000.0
b,
"GigabitEthernet0/3": {
"is_enabled": false,
"is up": false,
"description": "33",
"mac_address": "0C:70:B7:89:00:03",
"last flapped": -1.0,
"mtu": 1500,
"speed": 1000.0

}
}

We can also get route information from the device. We call the
get_route_to function to get the data, and we write the destination route IP
address as a string in parentheses.

output = connect.get route to("192.168.10.30")

When we execute show ip route with the destination IP address, we can
see the following output From CLI part. If we execute the Python script, we
can see the output as the From Python Code part. From Router-1, we have
an Open Shortest Path First (OSPF) neighbor as 192.168.10.30 in the
router. So, we use this IP address to check the route details.

From CLI:

Router-1l#show ip route 192.168.10.30

Routing entry for 192.168.10.30/32
Known via "ospf 1", distance 110, metric 2, type intra area
Last update from 10.10.10.3 on GigabitEthernet0/0, 00:37:50
ago
Routing Descriptor Blocks:
* 10.10.10.3, from 10.10.10.3, 00:37:50 ago, via
GigabitEthernet0/0

Route metric is 2, traffic share count is 1

From Python code:
{ "192.168.10.30/32": [
{

"protocol": "ospf",
"outgoing interface": "GigabitEthernet0/0",
"age": 2223,

"current active": true,
"routing table": "default",
"last_active": true,
"protocol attributes": {},
"next hop": "10.10.10.3",
"selected next hop": true,
"inactive_reason": "",

"preference": 2 }] }

In Example 5.13, we add an ip 1list variable as three IP addresses, and we
create a for loop to log in all three devices and collect the detailed ARP
table information with the get_arp table function.

Example 5.13: Collect logs from multiple devices with NAPALM
import napalm
import json
ip list = ["10.10.10.1","10.10.10.2","10.10.10.3"]
for ip in ip list:
print (£"*** Connecting to {ip} ***")
host = {"hostname": ip, "username": "admin", "password":
"cisco"}
driver = napalm.get network_driver("ios")
connect = driver (**host)
connect.open ()
output = connect.get arp table()
print(json.dumps (output, indent=1))
connect.close()

To check the full list of the get functions, you can check the following link
to the NAPALM official website:

Configure devices with NAPALM

In Example 5.14, we try to configure the Border Gateway Protocol (BGP)
configuration in the router.

Instead of the get functions, we use the 1oad merge candidate function to
call the configuration file. We define the filename inside the parentheses.
output =

connect.load merge candidate (filename="command list.txt"”)

We can print the output of the compare config function to see the
difference when we add configurations on the device as an option. In the
following output, we can see that all configurations are added in order, and
all of them get the + plus character at the beginning of the line. It means that
this command 1s added to the device. If it’s - minus, it’s deleted from the
device.

print (connect.compare config())

https://napalm.readthedocs.io/en/latest/support/index.html

+router bgp 100

+ bgp log-neighbor-changes

+ neighbor 10.10.10.2 remote-as 100

+ neighbor 10.10.10.2 description to_Router-2
+ neighbor 10.10.10.2 next-hop-self

Finally, we use the commit config function to execute all these commands
to the device.

connect.commit config()

Example 5.14: Configure dynamic routes in devices with NAPALM
import napalm

host = {"hostname": "10.10.10.1", "username": "admin",
"password": "cisco"}

driver = napalm.get network driver("ios")

connect = driver (**host)

connect.open ()

output =

connect.load merge candidate (filename="command list.txt")
print (connect.compare_ config())

connect.commit config()

connect.close ()

Instead of using a file to send the configuration to the device, we can use
the string to load the candidate configuration. We use the config parameter
and write a string to it or a string variable as the command.

output = connect.load merge_candidate (config=command)

Configure devices with Nornir module

Nornir is one of the most popular and open-source network automation
frameworks that is written in the Python language. The power of nornir is to
use pure Python code when writing automation scripts. So, it has no limits
like other automation tools and can also handle tasks in advanced usage. We
can import and use any Python module and features with nornir module.

e Nornir is a framework formed by plugins. We can extend its
capability by using advanced features of plugins.

e Nornir has a multithreaded feature that can connect many devices
simultaneously, about which we learned in the previous chapters as

parallelism. It saves time when we make automation in a large-scale
network.

e We use the NAPALM or netmiko modules to connect devices in the
nornir framework. It also supports the use of paramiko or scrapli,
which is also the SSH connection module.

e Inventories are created by the YAML files like we did in NAPALM
module.

Nornir has similarities with the Ansible automation framework. It has tasks
to execute commands and an inventory system to keep the device
connection information. Ansible has its domain-specific language, but
nornir uses Python in scripts.

e Inventory: Inventory stores the device information to connect. It can
be IP address, username, password, platform as vendor type, or more.
Inventory files are written in the YAML language. The inventory
system has three structures in the more advanced usage:

o Hosts: It stores unique host information like IP address or
platform data.

o Groups: We can group the data about the devices, like platform
information.

o Defaults: It stores similar data, which is identical in devices, like
username or password.

We can combine all three files in a single configuration file with the
SimpleInventory plugin.

o Tasks: The task is a plugin that is a reusable Python code to execute
functions in a single device. It returns an output at the end of the task.

e Functions: The function is a plugin from the nornir utils module
that executes an action or task. The print_result function is the most
common function to display the output of the tasks.

We need to install two modules in the terminal, i1.e., pip install nornir
and pip install nornir-utils, to use the nornir module.

We need to install the additional nornir modules in the terminal for the
connection type. We are using netmiko and napalm with nornir in this book,

so we need to install pip install nornir-napalm and pip install
nornir netmiko in the terminal.

Configure inventory in Nornir

We can configure inventory with one file, i.e., hosts.yaml, in a simple
solution. It’s the default file for host information in the nornir framework.

In the YAML file, we start with three hyphen characters, ---, at the top of
the file. After that, we write the host information as dictionaries. In the
following output, we have three device information. We write the device
name at the beginning, like Router-1, which is not a hostname on the
device; we can enter any string. Inside the device, we write hostname for
the management IP address, platform as a vendor type, and username and
password as the login information to the device.

hosts.yaml

Router-1:
hostname: 10.10.10.1
platform: ios
username: admin
password: cisco
Router-2:
hostname: 10.10.10.2
platform: ios
username: admin
password: cisco
Router-3:
hostname: 10.10.10.3
platform: ios
username: admin

password: cisco

We can use an advanced feature of inventory systems, and we can divide
the data in hosts.yaml file into different YAML files.

In the following code, we have a groups.yaml file. We can add platforms as
vendor information, like Cisco, Juniper, or Arista. For example, we create
the ios and junos variables, and the value of the platform is ios Or junos.
So, in the hosts.yaml file, we can create a key as groups and write an item

as ios for a Cisco device. We can use the groups feature for multi-vendor
automation scripts.

We can also create a defaults.yaml file to enter the same data that can run
in devices, such as username and password. In our example, all three
devices have the same username and password information.

We only write the hostname and groups keys inside the hosts.yaml file
with the router name, like Router-1.
groups.yaml
ios:
platform: "ios"
junos:
platform: "junos"

defaults.yaml
username: admin
password: cisco
hosts.yaml
Router-1:

hostname: 10.10.10.1

groups:

- ios
Router-2:

hostname: 10.10.10.2

groups:

- ios
Router-3:

hostname: 10.10.10.3

groups:

- ios
In the following output, after configuring all three files, we create a
config.yaml file to combine these files in the nornir framework. We
added an inventory dictionary. We use the simpleInventory plugin to
combine these YAML files. Inside the options, we write host file,

group file, defaults file keys and the YAML files that we create in a
string.
In the second part, we write the runner plugin to use the multithreading
feature of nornir. So, we can run the code on 10 or more devices
concurrently. We use the threaded plugin, and in the options, we use the
num workers key as three. We can change this parameter to tell our code
how many devices to connect concurrently. In this scenario, it tries to log in
to three devices simultaneously and faster. If we enter 1 as the value of
num_workers, the code logs in to devices one by one, which is slower.
config.yaml
inventory:
plugin: SimpleInventory
options:
host file: "hosts.yaml"
group file: "groups.yaml"
defaults file: "defaults.yaml"
runner:
plugin: threaded
options:

num workers: 3

Connection to devices with Nornir-Netmiko

In Example 5.15, we collect the show arp command output from Cisco
devices using netmiko over the nornir framework. We use the hosts.yaml
file above.

1. We import nornir for the nornir framework, nornir utils for
functions, and nornir netmiko to log in via the netmiko module.
from nornir import InitNornir
from nornir utils.plugins.functions import print result

from nornir netmiko import netmiko send command

2. We initialize nornir with the InitNornir () function in the nornir
module and assign it to a connect variable.

connect = InitNornir()

3. We call the run function and assign it to a result variable. Inside this
function, we write the task parameter to call the
netmiko send command function from the nornir netmiko module
and the command string parameter to execute the command in the
device.

result = connect.run(task=netmiko_send command,

command_string="show arp")

4. Finally, we have a special print function in the nornir utils
module. We call this function the result variable.
print result(result)

Example 5.15: Collect logs with Nornir-Netmiko

from nornir import InitNornir

from nornir utils.plugins.functions import print result
from nornir netmiko import netmiko send command

connect = InitNornir ()

result = connect.run(task=netmiko_send command,
command_string="show arp")

print result(result)

When we execute the code in Example 5.15, it connects to three devices
very fast. This is because the value of the num workers parameter, which is
used for multithreading, 1s 20 by default. So, if we don’t set the
num_workers value in the code, the code connects to max 20 device
concurrency.

We can change the num workers parameter to one in the following code.
We must write it inside the options from the threaded plugin, which we
set in the runner parameter.

connect = InitNornir (runner={"plugin": "threaded", "options":

{"num_workers": 1}1},)

In Example 5.16, we can also add the YAML configuration files groups,
defaults, hosts.yaml and config.yaml. To do that, we write the
config file parameter inside the InitNornir function and the value
config file as a string.

Example 5.16.: Collect logs by “config.yaml” with Nornir-Netmiko
from nornir import InitNornir

from nornir utils.plugins.functions import print result

from nornir netmiko import netmiko send command
connect = InitNornir (config file="config.yaml")
result = connect.run(task=netmiko send command,
command string="show arp")

print result(result)

In Example 5.17, We can execute multiple commands. The command string
variable must be a string, so we cannot add a list by various commands; we
need to use a loop. That’s why we create a commands variable as a list with
the show commands and create a for loop after executing the InitNornir ()
function. We still use multithreading.

Example 5.17: Collect multiple logs with Nornir-Netmiko
from nornir import InitNornir
from nornir utils.plugins.functions import print result
import nornir netmiko
commands = ["show arp", "show ip interface brief", "show
interface description"]
connect = InitNornir ()
for comm in commands:
result =
connect.run(task=nornir netmiko.netmiko send command,
command string=comm)

print result(result)

In Example 5.18, we use the netmiko send config function from the
nornir_netmiko module to execute commands in the devices. We execute
basic SNMP v2 configuration in the Cisco devices. We have the options of
sending commands from a variable or from a file.

To send commands from a variable, we use the config_commands parameter
inside the run function, and to send them from a file, we use the
config_file parameter with a file named string.

result = connect.run(task=netmiko send config,

config commands=commands)

result = connect.run(task=netmiko send config,

config file="command list.txt")

Example 5.18: SNMP configuration in devices with Nornir-Netmiko
from nornir import InitNornir

from nornir utils.plugins.functions import print result

from nornir netmiko import netmiko send config
commands = ["snmp-server community public RO", "snmp-server
community private RW",
"snmp-server enable traps cpu threshold",
"snmp-server host 10.10.10.150 version 2c snmp_user",
"snmp-server source-interface informs GigabitEthernet0/0"]
connect = InitNornir ()
result = connect.run(task=netmiko send config,
config commands=commands)

print result(result)

In Example 5.19, we can also filter devices. So, we can choose nornir to
show only some commands or devices by the filter function. In the
following code, we write the filter function with the hostname parameter
as 10.10.10.2, which is Router-2 in our example. So, the code only
connects this device and executes the show arp command.

Example 5.19: Using the filter function in the Nornir Framework
from nornir import InitNornir

from nornir utils.plugins.functions import print result
from nornir netmiko import netmiko_ send command

connect = InitNornir ()

connect = connect.filter (hostname="10.10.10.2")

result = connect.run(task=netmiko send command,

command string="show arp")

print result(result)

Connection to devices with Nornir-NAPALM

In Example 5.20, we use the NAPALM connection mode with the
nornir napalm module. Everything is the same with the netmiko
connection; we only change the task and commands parameter. We use the
napalm cli function for tasks and the commands parameter for sending
commands. We save configuration commands with the write command in
the Cisco devices.

Example 5.20: Save configuration with Nornir-NAPALM

from nornir import InitNornir

from nornir utils.plugins.functions import print result

from nornir napalm.plugins.tasks import napalm cli

connect = InitNornir ()
result = connect.run(task=napalm cli, commands=["write"])

print result(result)

In the print_result function, if we write the result variable as [Router-1],
the code collects data from all devices but only shows Router-1 logs.
print result(result["Router-1"])

If we use only the print function, the output will be different from that of
the print_result function. We write device information with the specific
command, which only displays the a particular log from that device as an
output.

print (result["Router-1"] .result["write"])

Instead of running commands, we can use the NAPALM feature of getters.
In the following code, we must import the napalm get function and add it
to tasks. After that, we need to add a getters parameter and write the get
function.

result = connect.run(tasks=napalm get, getters=

"get_interfaces_ip")

We can also configure devices with the nornir-napaim module. To do that,
we must import the napalm configure function and add it to tasks, as
shown in the following code. After that, we write a filename in the
filename parameter.

result = connect.run(task=napalm configure,

filename="command list.txt")

Configure devices by Nornir and Jinja template

In Example 5.21, we combine nornir with the jinja2 template. So, the code
has a more advanced usage. In the following code, we combine the jinja2
example and the nornir-netmiko example.

We get the jinja template from the commands. txt file and the data from the
info.yml file, and we create a template as shown in the following code. We
execute the following OSPF configuration commands in routers using the
nornir module and the Jinja template.

router ospf 1

network 10.10.10.0 0.0.0.255 area O

network 20.20.20.0 0.0.0.255 area 1

network 30.30.30.0 0.0.0.255 area 0
#
interface LoopbackO0
ip ospf network point-to-point
ip ospf cost 100
commands . txt
router ospf {{ ospf process }}
{% for net in networks %}
network {{ net["ip address"] }} {{ net["subnet mask"] }} area
{{ net["area_id"] }}
{% endfor %}
int loopback {{ loopback_int }}
ip ospf cost {{ lo_cost }}
ip ospf network {{ net_type }}
info.yml
ospf process: 1
networks:
- ip address: 10.10.10.0
subnet mask: 255.255.255.0
area_id: 0
- ip_address: 20.20.20.0
subnet mask: 255.255.255.0
area_id: 1
- ip address: 30.30.30.0
subnet mask: 255.255.255.0
area id: 0
loopback_int: 0
lo_cost: 100
net_type: point-to-point
After that, we save this configuration template to the conf.txt file in the
current directory. Finally, we call this file with the config file parameter
using the netmiko_send config function.

Example 5.21: Configure OSPF with Jinja template in devices by Nornir
from nornir import InitNornir

from nornir utils.plugins.functions import print result

from nornir netmiko import netmiko send config

from jinja2 import Environment, FileSystemLoader

from yaml import safe load
env = Environment (loader=FileSystemLoader ("."))
template = env.get template("commands.txt")
with open("info.yml") as r:

data = safe_load(r)
with open("conf.txt","w") as w:

w.write (template.render (data))
connect = InitNornir ()
result = connect.run(task=netmiko send config,
config file="conf.txt")
print result(result)

Conclusion

In this chapter, we learned about advanced network automation features to
make scripts more flexible with high quality. We use templates, new
connection methods, and an automation framework, which are essential in
high-level automation engineering.

The next chapter will focus on file transfers with SCP, SSH, or SFTP
protocols. We have different modules to complete these tasks in Python, and
we also create plots of data from the devices like, CPU usage or interface
traffic graphics, by plotting modules.

Multiple choice questions
1. How can you use the for loop in the jinja template?

a. {% for X in Y %}
CONTENT

b. {$ for X in Y %}
CONTENT
{%$ end %}

C. {$ for X in Y %}
CONTENT
{% endfor %}
d.{% for X in Y %}
CONTENT

{%}
2. Which of the following is not one of the get functions in NAPALM?

a. get eigrp neighbors
b.get_facts
C. get _bgp neighbors
d.get_vlans
3. What is the maximum number of devices that can be connected
simultaneously in the nornir framework?”
a. 1
b. 5
c. 10
d. 20

AnNswers

l.c
2.a
3.d

Questions

1. Using jinja, write a script to configure three network devices with the
nornir-napalm module.

2. Write a nornir script to get VLAN data and save it to an Excel file in
columns and rows.

CHAPTER 6
File Transfer and Plotting

This chapter will focus on file transfer and plotting data, including example
scripts. We will use network connection modules to log in to devices and
transfer files in upload and download directions. We will use file transfer
protocols like FTP, SFTP, and SCP, and we will back up the device
configuration file to the local PC with the SSH or SCP protocols. We also
use netmiko to collect data and draw a plot in a new window.

Structure

In this chapter, we will cover the following topics:

e File transfers

o Backup configuration file with SSH

o File transfer with FTP connection

o File transfer with SFTP connection

o File transfer with SCP connection

o Netmiko SCP connection with concurrent module
o File transfer with Nornir SCP connection

o Backup configuration file with SCP

e Plotting data

o Plotting CPU levels
o Plotting interface bandwidth

Objectives

We will use FTP, SFTP, and SCP to log in and transfer files in the network
and system devices. Even if we can do this task in the CLI, we will create
automation scripts and transfer files to many devices concurrently by using

parallelism in Python language. We will use the ftplib, ftpretty,
paramiko, netmiko, and nornir modules to transfer files in different
protocols. We will also collect data periodically from devices with netmiko
and draw a plot to check the graphics. We will use the matplotlib module to
plot any data from the device and customize the drawing window.

File transfers

File transfer is one of the critical topics in the daily work of network
engineering. We transfer a lot of data both ways: upload or download data.
The data can be software or patch file, configuration data, packet captures,
logs, or any other information to transfer.

There are various protocols in file transfer methods, such as File Transfer
Protocol (FTP), Secure File Transfer Protocol (SFTP), and Secure Copy
Protocol (SCP). Many file transfer tools exist, such as FileZilla, WinSCP,
and more. We can transfer files or folders with these tools, but in this
chapter, we will create custom-designed scripts and share files with these
scripts. These are more flexible than the FTP tools because we can
automate the network with our scripts and transfer files to many devices
concurrently. We can see that the transfer success or file size matches the
local file. We can touch on all the transferring processes in the advanced
usage of these scripts.

e FTP: It’s a simple file transfer protocol developed as one of the oldest
protocols on the internet and used for over 40 years. It creates a
connection session between two machines to transfer a file from one
to the other. Connections occur over IP addresses, like with the other
file transfer protocols. However, this protocol has no encryption, so
it’s insecure. It uses data channels, which are at risk of being
manipulated by hackers.

o SFTP: It’s created as an alternative to File Transfer Protocol (FTP)
to transfer files over the SSH protocol. Instead of FTP, SFTP uses the
SSH protocol more securely. It creates a single connection instead of
FTP and encrypts the data for transfer. So, it’s more secure than FTP.

e SCP: It transfers files over an encrypted tunnel based on the SSH
protocol. We can use SCP only to transfer files both ways. Unlike FTP
and SFTP, we cannot delete files, create directories, or list all content

in a directory in the remote host. It uses SSH for authentication, so it’s
also a secure file transfer protocol.

We have various modules in Python to use the file transfer protocols, such
aSftplib,paramiko,netmiko,napalngEHKinornir.

Backup configuration file with SSH

Before using the file transfer protocols on network devices, we can start
with Example 1.1 to log in devices with the netmiko SSH protocol and
collect data. In this example, we collect complete device configurations,
such as running configuration in Cisco or configuration in Juniper and
Huawei devices. We can modify this script for other vendors like Nokia or
Arista.

1. We import the netmiko function from the netmiko module. We create
two lists, ip list and device 1list, for netmiko device type and the
I[P information for the management of devices. After that, we create a
for loop with the zip feature, allowing us to iterate two lists together
with a for loop. We write the netmiko connection parameters inside
the 100p a8 host, username, password, device_ type, and
global delay factor. S0, in each iteration, the code gets the item in
the ip list and device list lists.

In the following code, we have three Cisco devices, a Juniper, and a
Huawei device. So, the device types are different, and it’s
juniper junos for Juniper and huawei for Huawei. If the loop gets
the IP address as 10.10.20.1, it also brings the juniper junos item.
So, we have an ip variable with a parameter to log in to a Juniper
device.

from netmiko import Netmiko

ip list = ["10.10.10.1", "10.10.10.2", "10.10.10.3",

"10.10.20.1", "10.10.30.1"]

device list =

["cisco_jos","cisco_ios","cisco_ios","juniper junos", "hua

wei"]

for ip,device in zip(ip_list,device_list):

ip = {
"host": £"{ip}",

"username" : "admin",

"password":"cisco",

"device_type": f"{devicel}",

"global delay factor": 0.1
}

2. We define the commands to collect the configuration data from each
device. Collecting the configuration commands is different for each
vendor. For Cisco, it’s show running-config; for Juniper, it’s show
configuration OI show configuration | display setacconﬁngto
show in different formats; and for Huawel, it’s display current-

configuration.

We use the if condition to change the value of the command variable.
For each vendor, the value will change. At the end of the i£ condition,
we use the else statement so that in case the vendor is not Cisco,
Juniper, or Huawei, it displays as a warning that this device is a
different vendor’s product.

if ip["device_type"] == "cisco_ios":
command = "show running-config"
elif ip["device_ type"] == "Jjuniper junos":
command = "show configuration | display set"
elif ip["device_ type"] == "huawei':
command = "display current-configuration"
else:

print ("This is different vendor (Not Cisco,Huawei or
Juniper) ")

3. We create a try..except statement to check whether IP is reachable.
Inside the try statement, we connect to devices and send the
commands with the command variable in the previous code. So, for
each IP or host, we send the specific vendor command to the device.

try:
print (£"\n----Try to login: {ip['host']}---\n")
net connect = Netmiko (**ip)
output = net connect.send command (command)
except:
print (£"***Cannot login to {ip['host']}")

4. After we collect the configuration output from each device, we save it
to different files, and the file name is the device’s IP address. In this
example, if we can log in and run commands on all five devices, we
will get five text files in the same directory as our code.

with open (f"{ip['host']}.txt","w") as w:
w.write (output)

Example 6.1: Backup configuration in a text file by SSH
from netmiko import Netmiko
ip list = ["10.10.10.1", "10.10.10.2", "10.10.10.3",
"10.10.20.1", "10.10.30.1"]
device list =
["cisco _jos","cisco _jos","cisco_ios","Jjuniper junos", "huawei']
for ip,device in zip(ip_ list,device_list):
ip = {
"host": £"{ip}",
"username":"admin",
"password":'"cisco",
"device_type": f"{devicel}",
"global delay factor": 0.1
}

if ip["device_type"] == "cisco_ios":
command = "show run"
elif ip["device_type"] == "juniper Jjunos":
command = "show configuration | display set"
elif ip["device_type"] == "huawei':
command = "display current-configuration"
else:

print ("This is different vendor (Not Cisco,Huawei or
Juniper) ")
try:
print (£"\n----Try to login: {ip['host']}---\n")
net_connect = Netmiko (**ip)
output = net_connect.send_ command (command)
except:
print (£"***Cannot login to {ip['host']}")
with open (f"{ip['host']}.txt","w") as w:
w.write (output)

File transfer with FTP connection

FTPlib module: We can use the £tp1ib module to log in to network and
system devices by FTP, and we can transfer files both ways: upload and
download. In Cisco and Juniper, the transfer system is different, and there is
a direct connection between the peers to make only copy processes. The
ftplib module is used to connect and run commands on the remote device.
So, we cannot use this module in Cisco and Juniper routers. We can use it in
Huawei, other vendors, or sytem devices.

lable 6.1 contains some functions to use the £tplib module for transferring
files. Some of these functions are similar to Linux terminal commands:

Function Description
storbinary () Upload file from local host to remote host
retrbinary () Download file from remote host to local host
mkd () Create a new directory
cwd () Change the directory of a folder or a file
dir () List all content in the current directory
nlst() Create a list with filenames in the current directory in the router
delete () Delete a file
rmd () Delete a folder
quit () Close the session and exit

Table 6.1: Ftpblib functions

In Example 6.2, we have two codes: downloading files to a local device and
uploading files to a remote device. In the first part, we upload a file from
the local PC to the Huawei router with the £tpl1ib module.

1. We import the ftplib module.
import ftplib

2. We call the rFrp class inside the ftplib module and enter three
parameters in order: host information as the management [P address,
username, and password. We create all these variables at the top of the
code and call them inside the Frp class. We assign the FTP class to an

ftp variable. We also define the filename variable and value as the
target file name in a string.
host = "10.10.30.1"

username = "admin"
password = "huawei"
filename = "test.txt"

ftp = ftplib.FTP (host, username, password)

3. We open the source file in binary mode to read, so we write the rb
parameters together for the open function. After that, we call the
storbinary function, which is used to upload files to the remote host.
Inside the function, we write the sTOR word, the filename as a string,
and upload as the open function name. Finally, we terminate the FTP
session with the quit function.

with open(filename, "rb") as upload:
ftp.storbinary (£"STOR {filename}", upload)
ftp.quit()
In Example 6.2, with the second part, we download a file from the
router to our PC. We use the open function in the following code to
write the retrbinary. We use wb for the write and binary modes.
Inside the retrbinary function used to download files, we write RETR
and the filename inside a string. This time, the other parameter is
download.write. download 1S a variable that we set in the open
function to assign the output.
with open(filename, "wb'") as download:
ftp.retrbinary (£f"RETR {filenamel}", download.write)

Example 6.2: File transfer with FTP via Fitplib
Upload a File:

import ftplib

host = "10.10.30.1"

username = "admin"
password = "huawei"
filename = "test.txt" #Local PC Filename

ftp = ftplib.FTP (host,username, password)
with open(filename, "rb") as upload:

ftp.storbinary (f"STOR {filename}", upload)
ftp.quit()

Download a File:

import ftplib
host = "10.10.30.1"

username = "admin"

password = "huawei"

filename = "test.txt" #Local PC Filename

ftp = ftplib.FTP (host,username, password)

with open(filename, "wb") as download:
ftp.retrbinary (f"RETR {filename}", download.write)
ftp.quit()

In Example 6.3, we get the file size information from the router and
compare the size in the local host. If both sizes are identical, we give output
saying the size is the same.

1. We import the ftplib, re, and os modules. We use the os module to

check the file size in the local host. OS module execute the operating
system commands such as dir or cd commands.

import ftplib

import re

import os

. We enter the host, username, password, and filename variables, like

in the previous example. We create an empty list named files that we
use in the following part. After that, we log in to the device with the
FTP function.

host = "10.10.30.1"

username = "admin"
password = "huawei"
filename = "test.txt"
files = []

ftp = ftplib.FTP (host, username, password)

. We use the dir function. We append all the outputs to the files list. If

we directly write dir (), the code will give an outcome of the list of
the files in the router’s current directory. That’s why we append all
outputs to a variable named files and then convert it to a string with
the join function.

output = ftp.dir(files.append)

files = " ".join(files)

4. The output of the dir command in CLI is given as follows. In the last
line, the target file is test.txt, and the size is 31,570 bytes. So, we
need to get this value with the re module. We write the special
sequences to find the data that we need in the following code:

<HW_Router-1>dir
Directory of cfcard:/

Idx Attr Size (Byte) Date Time FileName
0 drw- - Jun 1 2022 02:00:11 aaa
1 drw- - Jun 1 2022 02:00:11 bios
2 -rw- 5,406 Jun 1 2022 02:00:11 vrpcfg.zip
3 -rw- 31,570 Jun 1 2022 02:00:11 test.txt
file size = re.findall (£" (\d+) \s+\w+\s+\d+\s+\d+:\d+\s+
{filename}", files)

5. Now, we need to find the file size in the local host, so we call the
getsize function from the os module.
local = os.path.getsize (filename)

6. We need to compare two variables. The file size variable we got
from the device is a list, and the first item is our value. So, we call the
first value of this list. We compare both variables as an integer value.
If both are identical, we display an output that both file sizes are the
same. Otherwise, we display that file size has a problem.

if int(local) == int(file_size[0]):

print(f"'{filename}': '{local}' Bytes. It's same on local
and remote host.")

else:

print ("ERROR: File size has a problem.")

Example 6.3: Compare file sizes in the remote and local devices
import ftplib

import re

import os

host = "10.10.30.1"

username = "admin"
password = "huawei"
filename = "test. txt"
files = []

ftp = ftplib.FTP (host, username, password)

output = ftp.dir(files.append)
files = " ".join(files)
file size = re.findall (f" (\d+) \s+\w+\s+\d+\s+\d+:\d+\s+
{filename}", files)
local = os.path.getsize(filename)
if int(local) == int(file_size[O0]):
print (£f"'{filename}': '{local}' Bytes. It's same on local and
remote host.")
else:
print ("ERROR: File size has problem.")

Ftpretty module: Instead of the £tplib module, we can use the ftpretty
module to transfer files from or to remote devices. We need to install this
module by using the pip install ftpretty command in the terminal. We
can transfer any file format with this module.

e The get function is used to download a file from the remote device to
our local device.

e The put function is used to upload a file from our local device to the
remote device.

Tauble 6.2 contains some functions to use the ftpretty module for
transferring files and file handling:

Function Description

put () Upload file from local host to remote host
get () Download file from remote host to local host
mkdir () Create a new directory

cd() Change the directory of a folder or file
delete() |Delete a file in remote host

list() List all content in the current directory
close() Terminate the session and exit

Table 6.2: Ftpretty functions

In Example 6.4, we download and upload files both ways. We create
functions to do that.

1. We import the £tpretty function from the £tpretty module.
from ftpretty import ftpretty

2. We write the hostname as the management IP address of the router,
username, and password variables.
host = "10.10.30.1"
username = "admin"

password = "huawei"

3. We create two functions: upload and download. We will call them
according to our task in the following code. We have two parameters
in the upload function: local file and remote file, so we define
files when we call the upload function. We call the ftpretty function
and assign it to the ftp variable. Inside the function, we write the
device information, like host, username, and password. Then, we call
the put function to upload the file from our local PC to a remote
device. We write the local filename with its extension and the remote
filename with its extension. At the end, we terminate the FTP
connection session with the close function.

def wupload(local file, remote file):
ftp = ftpretty(host, username, password)
ftp.put(local file, remote_ file)
ftp.close()

4. In this function, we write code similar to the last part. We only change
the function name and use the get function instead of the put
function. We also change the parameter order in the get function.
First, we write the remote host filename with its extension, and then
the local PC filename with its extension.

def download(local file, remote_ file):
ftp = ftpretty(host, username, password)
ftp.get(remote file, local file)
ftp.close()

5. Finally, we must call upload the function to execute the function. In
this example, we call the upload function that we create. So, we write
upload as the function name and write two parameters. We write
test. txt as the local filename and test2. txt as the remote filename.
When we execute the script, it will upload the test.txt file to the
remote device with the test2. txt filename.

upload ("test.txt","test2. txt")

Example 6.4: Upload and download files with the fipretty module

from ftpretty import ftpretty
host = "10.10.10.1"
"admin"

password = "cisco"

username

def wupload(local file, remote file):
ftp = ftpretty(host, username, password)
ftp.put(local_file, remote_file)
ftp.close()

def download(local file, remote file):
ftp = ftpretty(host, username, password)
ftp.get(remote file, local file)
ftp.close()

upload ("test.txt","test. txt")

We can list all files by calling the 1ist() function; it creates a list
variable.
ftp.list ()

In Example 6.5, we create a script to get the file size of each file in the
remote host and display it. To do that, we use an additional parameter,
which is the extra parameter in the list function. With the extra parameter
as a True value, we can list all files by details, such as filename, size,
created time, and more. The value of the extra parameter is False by
default. We add the extra parameter in the following code and assign the
list function to the variable a. If we print a, it displays all items with details.
We can also print the size value of items in this variable. We create a for
loop, inside which we print list items in each iteration with the name and
size keys. So, in each iteration, the code gets the value from the name and
size keys to print.

a=ftp.list (extra=True)

for i in range(len(a)):

print("File:" ,a[i] ["name"], "- Size:", a[i]["size"])

Example 6.5: Get file size of each file with fipretty
from ftpretty import ftpretty

host = "10.10.30.1"

username = "admin"

password = "huawei"

ftp = ftpretty(host, username, password)

a=ftp.list (extra=True)
for i in range(len(a)):

print("File:" ,a[i] ["name"], "- Size:", a[i]["size"], "Bytes")

Output:

File: paf.txt - Size: 230 Bytes

File: vrpcfg.zip - Size: 12400 Bytes
File: license.bin - Size: 1023412 Bytes

We can also create a folder and put the source file from the local PC to the
remote host using code similar to that in Example 6.5. After we log in to the
device, we create a folder named test_folder in the remote host with the
mkdir function. Afterward, we must go to this directory to upload the
source file. So, we use the cd function to change the directory to the new
file. After that, we upload the test. txt file with the put function.
ftp.mkdir ("test_folder")

ftp.cd("test_folder")

ftp.put ("test.txt","test.txt")

We can list the folder content from the CLI:
<HW_Router-1>dir test folder
Directory of cfcard:/test folder/
Idx Attr Size (Byte) Date Time FileName
0 -rw- 10,200 Jun 12 2022 10:00:00 test. txt

File transfer with SF'TP connection

After FTP, we continue with SFTP, a more commonly used protocol than
FTP. We can use the paramiko module to connect devices with SFTP.

Table 6.3 has some functions to use in paramiko, like in the £tplib module:

Function Description
put () Upload file from local host to remote host
get () Download file from remote host to local host
mkdir () Create a new directory
rmdir () Delete a directory
chdir () Change the directory of a folder or a file
remove () Delete a file in remote host

listdir() List all content in the current directory as a list

rename (old _name, new_name) Change the name of the file or directory in remote
host
close() Terminate the session and exit

Table 6.3: Fipretty functions

In Example 6.6, we connect to Huawei routers to transfer files with SFTP.
We create three functions: SFTP connection, file upload, and file download.
For Huawei or any other network and system device, you must configure
the SFTP server and enable it to log in by script. After that, we can quickly
log in to devices.

1. We import the paramiko module.
import paramiko
2. We create the first function named sftp_connect and then call the
SSHeclient function. Over this function, we <call the
set missing host key policy and the connect functions we wrote
several times in the previous chapters. We call the open_sftp function
to create an SFTP session between our PC and the remote host, and we
assign it to a variable named sftp. In the last line, we return the sftp
variable. We learned how to call a variable outside the function in the
previous.
def sftp connect():
ssh = paramiko.SSHClient ()
ssh.set missing host key policy
(paramiko.AutoAddPolicy())
ssh.connect (hostname="10.10.30.1", username="admin",
password="huawei")
sftp = ssh.open_sftp()
return sftp

3. So, we finish our SFTP connection function. Now, we can write the
upload function. We use the put function from paramiko to upload a
file from the local PC to the remote host. We cannot directly write the
put(local, remote) function. We must use the variable from the
sftp connect function, which is the sftp variable. So, we write
sftp connect() .put(). To call a variable from a function, there are
two things to do. First, we must return the variable end of the source

function. Second, we need to call the source function. We terminate
the SFTP session with the close function.
def sftp upload(local file,remote file):
sftp connect() .put(local_file,remote file)
sftp_connect() .close()

4. Then, we write the download function with the get function from the
paramiko module. We call the sftp connect function again but assign
it to a variable named sftp d. So, sftp_d equals the sftp variable in
the sftp connect function. So, we can write sftp d.get in this
function. There is no difference between the previous and the
following code; only the usage is different. We terminate the SFTP
session with the close function.

def sftp download(remote file,local file):
sftp d = sftp connect()
sftp d.get(remote_file,local file)
sftp d.close()

5. All three functions finish. We can call the sftp_download function by
writing the remote and local files in order as a string.
sftp download("remote test.txt", "local test.txt")

We write the sftp _upload function to upload the files from the local PC to
the remote host. We write local and remote files in order.
sftp _download("local_test.txt", "remote_test.txt")

Example 6.6: SFTP file transfer with Paramiko

import paramiko

def sftp connect():
ssh = paramiko.SSHClient ()
ssh.set missing host key policy (paramiko.AutoAddPolicy())
ssh.connect (hostname="10.10.30.1", username="admin",
password="huawei")
sftp = ssh.open_sftp()
return sftp

def sftp upload(local file,remote file):
sftp_connect() .put(local_file,remote file)
sftp_connect() .close()

def sftp download(remote file,local file):
sftp d = sftp_connect()

sftp _d.get(remote_file,local file)
sftp d.close()
sftp download("remote test.txt","local test.txt")

If we want to print all of items in the default directory on the remote host,
W€ can uS€ sftp_connect() .listdir () n Example 6.6.
print (sftp _connect() .listdir())

We can also change the destination filename with its extension in the
paramiko module. We use the same function to connect a device with SFTP
and call the rename function by writing the old and new names in order
inside the parentheses.

sftp connect() .rename ("test.txt", "test2.txt")

print (sftp _connect() .listdir())

Output: ['aaa', 'bios', 'bootlogfile',6 'statlogfile', 'fpga',
'diaginfo', 'test2.txt']

File transfer with Netmiko SCP connection

SCP is one of the secure file transfer protocols in network and system
devices. Paramiko module can support SFTP, so we cannot use the
paramiko module for SCP transfer. However, we can use the netmiko
module to transfer files by the SCP protocol.

We can easily use the SCP protocol with the netmiko module. There are
two main functions to use SCP in the netmiko module: Netmiko and
file_ transfer. The Netmiko function is used to log in devices with the
SSH protocol we used in the previous chapters. The file transfer
function is used to connect network devices to transfer files from a local to
a remote host and vice versa. It uses the SCP protocol to make the file
transfer.

In Zable 6.4, the file transfer function has different parameters to
execute:

Function Description
source file Specify the source file with its extension
dest file Specify the destination file with its extension

direction put: Upload from local PC to remote host

get: Download from remote host to local PC
file system Filesystem information, for example flash:
overwrite file True/False: If file exists in destionation, whether to overwrite
disable md5 True/False: Whether to perform MdS encryption check after the
transfer

Table 6.4: Netmiko “file transfer” function parameters

In Example 6.7, we log in to a single Cisco router and transfer files from the
local PC to the remote host.

1. We import the netmiko and file transfer functions from the
netmiko module.
from netmiko import Netmiko, file transfer

2. We write the device connection information for the netmiko module,
as we did in the previous examples. Then, we call the netmiko
function to log in the device with SSH protocol and assign it to the
net connect variable.

device = {"host": "10.10.10.1", "username": "admin",
"password": "cisco", "device_ type": "cisco_ios",
"global delay factor": 0.1 }

net connect = Netmiko (**device)

3. After we log in to the device, we can transfer any file from both sides
with the file transfer function. The mandatory parameters are
source file, dest file and direction. Other parameters in Table
0.4 are optional. Inside the parentheses, we write the connection
variable net_connect. After that, we write three parameters with their
values as strings. The direction parameter has two options: put and
get. We write put to upload a file from a local PC to a remote host.

file transfer (net_connect, source_ file="test.txt",
dest file="test.txt", direction="put")

4. Finally, we terminate the SSH session with the disconnect function.
net_connect.disconnect()

Example 6.7: SCP file transfer with Netmiko
from netmiko import Netmiko, file transfer
device = {"host": "10.10.10.1", "username": "admin",

"password": "cisco", "device_ type": "cisco_ios",

"global delay factor": 0.1 }

net connect = Netmiko (**device)

file transfer (net_connect,
source_file="test.txt",
dest file="testlO.txt",
direction="put")

net connect.disconnect()

We can also download a file from a remote host to a local PC by writing the
same code as in Example 6.7 while replacing put with get in the direction
parameter.

In Example 6.8, we connect three routers and upload a file using the
file transfer protocol. In this example, we create a JSON file and get
each device’s information from that file inside a new function.

In the following output, we create a JSON file called device list.json.
There’s a dictionary on the top, and it has keys and their values; the values
are lists. So, we try to convert this JSON file to netmiko device login
format as a dictionary with its items.

device list.]json:

{

"Router-1"

[
{ "host": "10.10.10.1",

"username": "admin",
"password": "cisco",
"device type": '"cisco ios",

"global delay factor": 0.1

}
1,

"Router-2"

[
{ "host": "10.10.10.2",

"username": "admin",
"password": "cisco",
"device_ type": "cisco_ios",

"global delay factor": 0.1

1,

"Router-3"

[
{ "host": "10.10.10.3",

"username": "admin",
"password": "cisco",
"device type": '"cisco ios",

"global delay factor": 0.1
}
1
}

We write the code to connect device with the SCP protocol with the
following steps.

1. We import the netmiko and json modules.
from netmiko import Netmiko, file_ transfer

import json

2. We create a function to convert the device list.json JSON file to a
list. Each item in the list has information about each device for a
netmiko connection. We create an empty list to append each dictionary
at the end. After that, we call the open function to open the
device list.json file and parse or convert the JSON file format to
the Python file format and assign it to the data variable.

def json_device():
host _list = []
with open('device list.]json') as json file:
data = Jjson.load(json_file)

3. JSON file is converted to Python file as the data variable. We need to
get each item in the dictionary, so we create a for loop. In each loop,
we got the item as a dictionary of device information by writing
item[1][0]. When we print this value in the loop, we can see that in
each iteration, the code displays each router’s information that can be
used by the netmiko module. We append or add each dictionary in a
host list list and return host_1list to use it outside the function.

for item in data.items () :
host = item[1][O0]
print (host)

host list.append (host)
return host_ list

The value of the host 1ist is in the following output. It’s a list that
contains dictionaries as items.

[{'host': '10.10.10.1', 'username': 'admin', 'password':
'cisco', 'device_ type': 'cisco_ios',

'global_delay factor': 0.1}, {'host': '10.10.10.2'",
'username': 'admin', 'password': 'cisco', 'device_ type':
'cisco_ios', 'global delay factor': 0.1}, {'host':
'10.10.10.3', 'username': 'admin', 'password': 'cisco',
'device_type': 'cisco_ios', 'global delay factor': 0.1}]

4. Now, we can call the json_device () function and assign this function

to the host variable. The host variable’s value equals the host 1ist
variable.
host = json_device()

. We need to create a for loop to connect each device because in the

Netmiko (**host_info) function, we must write the host information
as a string; we cannot use a list. That’s why we create a for loop to
achieve our goal. We log in to each device and upload the test.txt
file by the file transfer function, as we did in the previous
example. After all, we terminate the SSH session with the remote
device by the disconnect function.
for ip in host:
net_connect = Netmiko (**ip)
file transfer (net connect,
source_file="test.txt",
dest file="testlll.txt",
direction="put",
)

net_connect.disconnect()

Example 6.8: SCP file transfer by getting device information from a JSON

file

from netmiko import Netmiko, file transfer

import json

def json_device():
host _1list = []

with open('device list.]json') as json file:
data = json.load(json_file)
for item in data.items () :
host = item[1][O0]
host_list.append (host)
print (host_list)
return host_list
host = json_device()
for ip in host:
net_connect = Netmiko (**ip)
file transfer (net_connect,
source_file="test.txt",
dest file="test.txt",
direction="put",
)

net connect.disconnect()

We can add the disable_md5 optional parameter inside the file transfer
function. By default, there is no md5 validation. The mdS value assigns to
False.. So, the code checks the source and destination files’ md5
encryption. If we change the value to True, the code will not validate or
check md5 encryption.
file transfer (net connect,

source_file="test.txt",

dest file="test.txt",

direction="put"

disable md5 = True

)

We can also specify whether to overwrite if the file exists on the peer side,
which can be a local PC or remote host, according to direction. The
overwrite file parameter 1S False by default. So, we can overwrite a file
if the file exists in the destination host, and we can change its value to True
and overwrite a file even if it exists in the destination host.
file_ transfer (net_connect,

source_file="test.txt",

dest file="test.txt",

direction="put"

overwrite_file = True

)

We can change the default directory in the remote host. When we upload a
file to the Cisco router, it automatically uploads the file to the default
directory, flash:. But we can also have the option to change the file
directory with the file transfer function. We use the file system
parameter to change the upload directory. We write flash2: in the
following code as the destination file system. When we run the dir
flash2: command in Cisco CLI after we upload the file, we can see that
file 1s successfully uploaded to £1ash2: instead of £lash:.
file transfer (net_connect,

source_file="test.txt",

dest_file="testl23.txt",

direction="put",

file system="flash2:"

)

Output:
Router-1#dir flash2:
Directory of flash2:/
4 -rw- 31900 Aug 20 2022 17:56:16 +00:00 testl23.txt
966656 bytes total (897024 bytes free)

One of the best features of file transfer in netmiko is that we can see the
progress in the output of the code. We need to import the progress bar
function from the netmiko module and add progress4=progress_bar
inside the file_ transfer function.

From netmiko import progress_bar

file transfer (net_connect,
source_file="test.txt",
dest file="test.txt",
direction="put",
file system="flash:",
overwrite file = True,
progress4=progress_bar

)

When we execute the code, code logs in three devices one by one to transfer
the test. txt file in order. So, when we need to upload a large file, such as
a software file, we can see the progress of the transfer quickly.

Output:

Transferring file to ('10.10.10.1', 22):

test. txt | (0.00%)

Transferring file to ('10.10.10.1', 22): test.txt

DO DD5D55>>>> | (51.36%)

Transferring file to ('10.10.10.1', 22): test.txt
SOOODOODDSDDODDSDDOODSDDIODIDDIIDOIDOOD>OO>S>5>>5>>>>| (100.00%)
Transferring file to ('10.10.10.2', 22):

test. txt | (0.00%)

Transferring file to ('10.10.10.2', 22): test.txt
DODDDDDDDDDDDDDDDDDODD>>D> | (51.36%)
Transferring file to ('10.10.10.2', 22): test.txt
SOODDDDDDDDDDDDDDODODODODODODOD5O5O5O5O5555555>>>>| (100.00%)
Transferring file to ('10.10.10.3', 22):

test. txt | (0.00%)

Transferring file to ('10.10.10.3', 22): test.txt

SO DD5D55555555>> | (51.36%)
Transferring file to ('10.10.10.3', 22): test.txt
SOODDDDDDDDDDDDDODDODDDODODIODODOOOOO55O>55555>>>>| (100.009%)

Netmiko SCP connection with concurrent module

We can upload files to devices one by one in the for loop. In Example 6.8,
we have three devices to transfer files, and we send a text file of 32KB. So,
uploading that file to all three devices takes approximately 20 seconds,
which is not too much time. But if we try to upload a file whose size is
200MB, maybe it will take 30 minutes to upload three devices. If we have
30 devices to upload, the total time to upload is 5 hours, which is not
acceptable in real life.

We use the parallelism feature of Python to reduce the time. We connect
devices concurrently. Even if we have 30 devices to send 200 MB worth of
files, it will take only 10 minutes, which is the period to upload the software
file to a single device, because we use the multithreading feature.

We use the concurrent. futures function. We already used the threading
module with paramiko in the previous chapters.

In Example 6.9, we transfer the test. txt file concurrently to three devices.
In the previous example, it took 20 seconds. In this example, it takes 7
seconds. So, the code acts like it is connecting to a single device. Even if
we add 50 more devices in the example lab, the time will stay the same: 7
seconds. It’s the significant power of the parallelism feature in Python.

1. We import the ThreadPoolExecutor function from the
concurrent. futures module and the netmiko with its necessary
functions.

from concurrent.futures import ThreadPoolExecutor

from netmiko import Netmiko, file transfer, progress bar

2. We create a get_ip_address function to get the IP addresses from a
file. We collect IP addresses with the open function and write them to
a list with the splitlines function line-by-line. After that, we return
the variable host 1ist. When we call the get _ip address function, it
returns the host 1list variable.
def get ip address():
with open("device list.txt") as r:
host list = r.read() .splitlines()
return host_list

3. We create another function named netmiko_scp. Inside this function,
we create a variable as a host to add the device information for the
netmiko connection. We have an ip variable that is the parameter in
the netmiko_scp function. We connect the device with the Netmiko
function and transfer the file with the file transfer function. After it
finishes, we disconnect from the device and return the function. We
already did this in the previous examples:/p>

def netmiko_scp(ip):

host = {"ip": ip, "username": "admin", "password":
"cisco", "device_ type": "cisco_ios"}
print (f"---Try to Login:{ip}---")

net_ connect = Netmiko (**host)

file transfer (net_connect,
source_file="test.txt",
dest file="eee.txt",

direction="put",

file system="flash:",

overwrite file=True,

progress4=progress_bar)
net_connect.disconnect()
return

4. We call the ThreadPoolExecutor function as executor. We use the map
function with the executor. The map function is used with a function
and an iterable, which can be anything, like a list. In this example, we
write the netmiko scp function and the IP list we collect in the
get ip address function inside the parentheses. We assign the
get_ip_address function to the host_ip variable and add it to the
parentheses of the map function.

The code with ThreadPoolExecutor can only log in to 12 devices
concurrently by default, but we can change the default value with the
max_workers parameter. In this example, we write 25, but it can be
more, based on our PC resources. This 1s because when we run the
code, our local PC CPU/memory resources can be increased. We can
also change the value to 1, so we can see the time difference when we
change the max workers value.
with ThreadPoolExecutor (max workers=25) as executor:
host _ip = get ip address()
result = executor.map(netmiko_scp, host_ip)

Example 6.9: SCP file transfer with netmiko simultaneously with
parallelism
from concurrent.futures import ThreadPoolExecutor
from netmiko import Netmiko, file transfer, progress_bar
def get ip address():

with open("device list.txt") as r:

host list = r.read() .splitlines()
return host_list

def netmiko scp(ip):

host = {"ip": ip, "username": "admin", "password": "cisco",
"device_type": '"cisco_ios"}
print (f"---Try to Login:{ip}---")

net_connect = Netmiko (**host)

file transfer (net_connect,
source_ file="test.txt",
dest file="test.txt",
direction="put",
file system="flash:",
overwrite_ file=True,
progress4=progress_bar)
net connect.disconnect()
return
with ThreadPoolExecutor (max workers=25) as executor:
host_ip = get_ ip address()
result = executor.map(netmiko_scp, host_ip)

When we execute the script, in the output, the code is connected to all three
devices concurrently, as in the following output. In the previous example,
the code connected to 10.10.10.1 the first device in the list. After the file
transfer was finished, it continued with 10.10.10.2, like working in a loop.
But in this example, the code connected all devices simultaneously and
didn’t wait until the current connection was finished, so there is no order in
the following output.

Output:

---Try to Login:10.10.10.1---

---Try to Login:10.10.10.2---

---Try to Login:10.10.10.3---

Transferring file to ('10.10.10.3', 22):

test. txt | (0.00%)

Transferring file to ('10.10.10.1', 22): test.txt

| (0.00%)

Transferring file to ('10.10.10.3', 22): test.txt
DO 5>>>> | (51.36%)
Transferring file to ('10.10.10.3', 22): test.txt
SODDDDDDDDDDDDDDDODDDODODODODOOOO5O5O55555555>>>>| (100.00%)
Transferring file to ('10.10.10.2', 22):

test. txt | (0.00%)
Transferring file to ('10.10.10.1', 22): test.txt
DODDDDDDDDDDDDDDIDIDIDO>D>D> | (51.36%)

Transferring file to ('10.10.10.1', 22): test.txt
SOODDDDDDDDDDDDDDDDDDDDODODODODOOOO5O5O5>55555>>5>>| (100.009%)

Transferring file to ('10.10.10.2', 22): test.txt
DO 5>>>> | (51.36%)
Transferring file to ('10.10.10.2', 22): test.txt
SOODDDODDSDDSDDSDDODDSDDIDDIDDIDOIDOOO>OO>>5>>5>>>>| (100.00%)

File transfer with Nornir SCP connection

We can also use the nornir framework to transfer files by the SCP protocol.
We use the nornir netmiko module to handle the transfer process in nornir,
which i1s a powerful module that we can connect many devices
simultaneously. In the pure netmiko module, to connect multiple devices
simultaneously, we need to use the parallelism feature of Python code, such
as the threading Or concurrent modules. But with nornir, we don’t need to
use this module in the script. The parallelism structure is already written in
the back end of the nornir framework, and we don’t need to handle this
complicated process.

In Example 6.10, we connect all three devices simultaneously and transfer
files. We use the YAML file as hosts.yaml in the following output:
hosts.yaml
Router-1:

hostname: 10.10.10.1

platform: ios

username: admin

password: cisco
Router-2:

hostname: 10.10.10.2

platform: ios

username: admin

password: cisco
Router-3:

hostname: 10.10.10.3

platform: ios

username: admin

password: cisco

1. We import the InitNornir function from the nornir module to
initiate the nornir framework to connect devices. Then, we import the

print result function from the nornir.utils module to print the
detailed output of the process. And finally, we 1import the
netmiko file transfer function from nornir netmiko to transfer
files by the netmiko module in the nornir framework.

from nornir import InitNornir

from nornir utils.plugins.functions import print result

from nornir netmiko import netmiko file transfer

2. We initialize the nornir framework with connecting devices in the
hosts.yaml file and assign its value to the connect variable.
connect = InitNornir()

3. We call the run function to call a task. In this example, we call the task
value netmiko_file tranfer. The direction is from the local PC to
the remote device. We only write the source file and dest_file
parameters with their string values.

result = connect.run(task=netmiko file transfer,
source_file="test.txt", dest file="kkk.txt")

4. When we call the print_result function to see the output.
print result(result)

In the output, the code returns a value of the task as True, which means that
the file transfer process is successfully done.

Example 6.10: SCP file transfer with Nornir
from nornir import InitNornir
from nornir utils.plugins.functions import print result
from nornir netmiko import netmiko file transfer
connect = InitNornir()
result = connect.run(task=netmiko file transfer,
source_file="test.txt",
dest file="test.txt"
)
print result(result)
Output:
netmiko file transfer**kxkxkkkkkkkkkkkkkkkhkkhkhkkkhkkhkhkhkkhkhkhkkkkhkhkkkhkhkk
*******:** *:*****

* Router-1 ** changed : False
khkkkkk

vvvv netmiko file transfer ** changed : False
VVVVVVVVVVVVVVVVVVVVVVVVYVvvvvvvvvvy INFO

True

A~n~ END netmiko file transfer

AANAN

* Router-2 ** changed : False
hhkhkhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhkhkhkhkhkhkhhkhkhkhkhkhhkhkhkhkkhkhkkhkkhk
vvvv netmiko file transfer ** changed : False
VVVVVVVVVVVVVVVVVVVVVVYVYVvVvvvvvvvvvy INFO

True

Anns END netmiko file transfer

AANAN

* Router-3 ** changed : False
khkkhkkkkk
vvvv netmiko file transfer ** changed : False
VVVVVVVVVVVVVVVVVVVVVVVVYVVYVvvvvvvvvy INFO

True

Annn END netmiko file transfer

AANAN

We also have various parameters in the nornir-netmiko module, like in the
netmiko module. We can choose the direction from a remote device to the
local PC by writing the direction parameter as get. By default, the value
of this parameter is put.
result = connect.run(task=netmiko file transfer,

source_ file="test2.txt",

dest file="test2.txt",

direction="get")

We can also check the file’s existence on the destination device by adding
the disable md5 parameter. The default value is False, so we can overwrite
the file when we transfer the same file. But if we change the value of this
parameter to True, we cannot transfer the file if it exists in the destination
device. And nornir gives an error message ValueError: File already
exists, and overwrite file is disabled as an output.
result = connect.run(task=netmiko file transfer,

source file="test2.txt",

dest file="test2.txt",

direction="put",

disable md5=True

)

Backup configuration file with SCP

In Example 6.11, we save running-configuration in the Cisco routers and
download the config file as a backup to the local PC with the filename,
including the time stamp. We use similar code in Example 6.8, using the
device_list.json JSON file. We add more code pieces to it.

1. We import the netmiko, json, modules, and datetime function from
the datetime module. We save the configuration backup file with the
time stamp.

from netmiko import Netmiko, file_ transfer
import json
from datetime import datetime

2. We open JSON files and convert them into a list. Then, we can get the
data from this list to connect to the devices. Then, we call this function
and assign it to a host variable.

def json_device():

host _list = []

with open('device list.]json') as json file:
data = Jjson.load(json_file)

for item in data.items () :
host = item[1][O0]
host_list.append (host)

return host_list

host = json_device()

3. We create a loop to log in devices in order. We execute the wr
command to save the Cisco device configuration.
for ip in host:
net_connect = Netmiko (**ip)
print (£"\n----Try to login: {ip['host']}---\n")
save = net_connect.send command ("wr")

print (save)

4. We call the datetime function and the current PC time by calling the
now function inside. After that, with the strftime function, we get the

year, month, day, hour, minute, and second data by writing the
following code. We assign the current time value to the time variable.
time = datetime.now() .strftime ("%Y_%m %d %H %M %S")

. We get the device hostname with the find prompt function in
netmiko. It’s used to get the hostname information of the device
quickly. We must write [:-1] after that function because it also gets
the # character after the hostname in Cisco, like Router-1#. For other
vendors, that prompt sign character is different. So, we get the
hostname information and assign it to the hostname variable.

hostname = net_connect.find prompt() [:-1]

. We call the file transfer function to download the startup-config
file from the Cisco device. We write the dest file parameter with the
hostname and the time variables. We also add the file system
parameter to change the default directory. The startup-config file
1S in nvram:, SO we write the value of this parameter as nvram:. We

finally terminate the session with the disconnect function.
file_transfer (net_connect,
source_file="startup-config",
dest file=f"{hostname} backup config {time}.cfg",
direction="get",
file system="nvram:",
overwrite file=True

)

net_connect.disconnect()

Example 6.11: Backup configuration file with Netmiko SCP
from netmiko import Netmiko, file transfer
import json
from datetime import datetime
def json_device():
host 1list = []
with open('device_list.]json') as json_file:
data = json.load(json_file)
for item in data.items():
host = item[1][0]
host_list.append (host)
return host_list

host = json_device()
for ip in host:
net_connect = Netmiko (**ip)
print (£"\n----Try to login: {ip['host']}---\n")
save = net connect.send command("wr")
print (save)
time = datetime.now().strftime("%Y_%m %d_ %H %M %S")
hostname = net connect.find prompt() [:-1]
file transfer (net_connect,
source_ file="startup-config",
dest file=f"{hostname} backup config {time}.cfg",
direction="get",
file system="nvram:",
overwrite_ file=True

)

net connect.disconnect()

When we execute the code in Example 6.11, the code downloads three files
from remote devices, which start with their hostname and end with the time
that we download to our PC as the following filenames. If we back up a
configuration file from a device multiple times, we can quickly find the
most updated one or its old versions with time stamps in the configuration
file.

Filenames in the local PC:

Router-1 backup config 2022 08 21 18 29 16

Router-2 backup config 2022 08 21 18 29 24

Router-3 backup_config 2022 08_21 18 29 33

Plotting data

Graphics are used in network automation. We can create plots, scatters, or
bars. Network Monitoring System (NMS) tools take the data from
network devices and plot it as graphics. It can be interface bandwidth in
both ways, inbound and outbound, or CPU and memory level to show if it’s
close to the threshold or increasing over an extended period. We can take
action according to these graphics daily or for a very long period.

We can also get the alarms from all devices in the network and categorize
them according to their severity level, such as minor, major, and critical

alarms. After that, we can create a graphic with bars monthly to see the
alarm process. So, we can see what happens in our network over a long
period.

By adding the time stamp, we can collect traffic bandwidth data in a period
and see the traffic changes in the related interface. We focus on collecting
data from a device in a short period and plot it as a graphic.

We can create a scheduler, like the crontab feature in Linux, which
automates the scripts to execute in specified periods or time intervals
repeatedly.

We can use the matplotlib module in Python to plot the data in a graphic,
and it’s a powerful data visualization and third-party Python plotting
module. So, we must install it first with the pip install matplotlib
command in the terminal.

The usage area of matplotlib is large; we can draw data of any type. It’s
also designed to work with NumPy arrays in the NumPy module. Numpy
extends multi-dimensional lists, arrays, and matrices in more complex
usage.

We can change the color and thickness of the lines in the plot. We can add x
and y axis values and grids in the graphic. We can also 3D surface graphics
with this module.

We must import the pyplot function from the matplotiib module in the
following code to use the pyplot function in our scripts.
from matplotlib import pyplot

So, each time we write pyplot in the code, it calls the pyplot function from
the matplotlib module. We have another option to use the function: by
changing its name in the code. After importing a module or function, we
write as and write any value. In the following code, we write as plt. So, in
the same Python file, if we write p1t, it calls the pyplot function from
matplotlib.

from matplotlib import pyplot as plt

In the official documentation of matplotlib, we can use the module
functions by the following code. We can also import a function by writing
import MODULE NAME.FUNCTION NaME. In the example, it’s import
matplotlib.pyplot.

import matplotlib.pyplot as plt

There are various functions and parameters in the pyplot function. We can
manipulate the data and draw different styles of graphs with these functions
efficiently.

e plot(X, Y): This is the primary function to draw a graphic in the
pyplot function. There are two mandatory parameters inside the plot
function: X and Y. These are X-axis and Y-axis variables in the
drawings. We create these variables with the same quantity of items. If
the total item count of the x and Yy variables does not match, the code
gives an error: ValueError: x and y must have same first
dimension. The list values can be of different data types, like strings,
integers, or others.

e xlabel (): It’s used to add an information header on the X-axis.
e ylabel (): It’s used to add an information header on the Y-axis.

For example, if we draw a CPU usage with pyplot, we can write the
graphic header on the X-axis as Time in Seconds and on the Y-axis as
CPU Levels. So, the drawing is more understandable for us.

e title(): It adds a header to the graphic. For example, we can write
CPU Level Measure Drawing to define the title of the plot figure. The
xlabel, ylabel, and title functions are informational and optional.

e show(): We plot the data with the plot function, but it will not show
the output of the drawing; we should call the show function to see the
drawing as an output.

e figure(): We can modify the drawing window specifications with the
figure function. We need to write parameters, such as figsize to
change the size of the plot window and facecolor to change the color
of the window. There are also other parameters to customize the
graphic window; you can check the source code of the figure
function or the official documentation of the matplotlib module.

In the following code, we import the pyplot function from the matplotlib
module and assign it as plt. After that, we create two variables: a and b
lists. Each have five items. The item count must be matched to draw the
graphic, and the data type of items can differ. After that, we call the plot
function with the X-axis as the a variable and the Y-axis as the b variable.
So, the code draws the data, but we want to see the output. We call the show
function to open a new window and its plot.

import matplotlib.pyplot as plt
a=1[1,2,3,4,5]

b [10,20,30,40,50]
plt.plot(a, b)

plt.show ()

In Figure 6.1, a new window is opened, and the simple graphics are drawn
according to the data we provided in the code. We can zoom in on some
part of the drawing, save it as a file, and move on both the X-axis and the Y-
axis.

50

45

35 -+

30 A

25 1

20 ~

15 1

10 +

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

& €3 Q=@

Figure 6.1: Drawing Sample of Matplotlib Module

In Example 6.12, we can add additional features to make the drawing better.
We call the £igure function and write the figsize as 8 to 8 dimensions. So,
the output will be in a larger window. We also add the facecolor parameter

with the color code in a string, so we change the color of the window, and
it’s white by default.

We add color to the plot as Red and assign it to the color parameter, and it
draws the plot in red instead of blue, the default color.

We also add a description with xlabel, ylabel, and title to the X-axis, Y-
axis, and the head of the graphic, and we call the grid function by writing
True as its value. So, it adds a grid to the drawing. Finally, the code
displays the plot’s output with the show function.

Example 6.12: Draw a graphic with Matplotlib
import matplotlib.pyplot as plt
a=1[1,2,3,4,5]

b = [10,20,30,40,50]

plt.figure (figsize=(8,8), facecolor="#FFCEB4")
plt.plot(a, b, color="Red")

plt.xlabel ("Value of 'a'")

plt.ylabel ("Value of 'b'")
plt.title("Chart of 'a' and 'b' Values")
plt.grid(True)

plt.show()

When we execute the script, we can see the changes in Figure 6.2. We
change the color of the window and the plot, add X-axis and Y-axis
headers and drawing headers, add a grid and change the drawing window
size.

There are plenty of options to customize the drawing with the matplotlib
module. The graphic is created with dots if we replace the plot function
with the scatter function. There will be no line in the drawing.
plt.scatter(a, b, color="Red")

There are other options like bar, stem, step, £i11_between, and more. You
can see the difference when you call these functions and execute the code to
draw the plot.

Chart of 'a' and 'b' Values

45

=53

Value of 'b'
&

25 1

20

15 A

10 -

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Value of 'a’

Figure 6.2: Drawing Advanced Usage of Matplotlib Module

We can also add two drawings in a single window. We write plot functions
twice and call the show command at the end, and we can increase the plot
count by more than two. We need this feature when we get the inbound and
outbound data and draw it in the same graphics.

In the following code, we create the ¢ and d variables and plot both. We
also change the color of both plots so that we divide both drawings
smoothly. Refer to Figure 6.3:

import matplotlib.pyplot as plt

a=1[1,2,3,4,5]

b = [10,20,30,40,50]
c = [6,8,10,12,14]
d = [30,50,23,64,72]

plt.plot(a, b, color="Red")
plt.plot(c, d, color="Blue")
plt.show()

70 A

60 1

30 ~

40

30

20

10 1

2 4 5] a8 10 12 14

Figure 6.3: Drawing of Two Plots in a Single Window

Plotting CPU levels

In Example 6.13, we periodically collect CPU levels from a Cisco device
and draw a graphic. The X-axis i1s the local PC’s current time in the
hh:mm:ss format, and the Y-axis 1s the CPU levels.

1. We import all necessary modules to execute the script.
from matplotlib import pyplot as plt

import re

from netmiko import Netmiko
from time import sleep
from datetime import datetime

2. We create a host variable with information to log in to a device with
the netmiko module. We create three variables: count 1s used to
denote the number of times we run the command to get the CPU
levels. In the example, it’s 7. So, we execute the same command seven
times. The value of the delay variable is 3. After sending the
command, we wait for 3 seconds to see the CPU changes efficiently.
We also create a command variable called show processes cpu to get
the CPU logs from the device each time.

We also create two empty lists that we use in the loop and append all
CPU and time data in them.
host = {"host": "10.10.10.1", "username":"admin",
"password":"cisco", "device_type": "cisco_ios",
"global delay factor": 0.1}

count = 7

delay = 3
command = "show processes cpu"
cpu_levels = []

time list = []

3. After that, we log in to the device with the netmiko function and
create a loop. We use range, showing how often we collect the same
data from the device.

net connect = Netmiko (**host)
for i in range(l,count):
print (£f"Get CPU levels count: {i}")

4. Inside the loop, we send show command. After that, we got the current
time in the local PC and appended it to the time 1list variable.
output = net_connect.send_ command (command)
time = datetime.now() .strftime ("$H:%M:%S")
time list.append(time)

5. We add delay in the code to wait for 3 seconds with the delay
variable. After that, we collect the CPU level value with the £findall
function from the R module. Loop finishes after we print the item in
the cpu_data.

sleep (delay)
cpu data = re.findall("CPU utilization for five seconds:
(\d+)%/", output)

cpu_levels.append (int (cpu_data[0]))

print ("CPU Level: ",cpu data[0])

6. Outside the loop, we plot two lists named time list and cpu_levels
with the labeling and adding grid.
plt.plot(time_list, cpu_levels)
plt.xlabel ("Time")
plt.ylabel ("CPU Levels in %")
plt.grid(True)
plt.show ()

Example 6.13: Collect and draw CPU levels of a router
from matplotlib import pyplot as plt

import re

from netmiko import Netmiko

from time import sleep

from datetime import datetime

host = {"host": "10.10.10.1", "username":"admin",
"password":"cisco", "device_ type": "cisco_ios",
"global delay factor": 0.1}

count = 7

delay = 3
command = "show processes cpu"
cpu_levels = []

time list = []

net connect = Netmiko (**host)

for i in range(l,count):
print (£f"Get CPU levels count: {i}")
output = net_ connect.send_ command (command)
time = datetime.now() .strftime ("$H:%M:%S")
time_ list.append(time)
sleep (delay)
cpu data = re.findall ("CPU utilization for five seconds:
(\d+) %/", output)
cpu_levels.append(int (cpu_data[0]))

print ("CPU Level: ",cpu_data[0])
plt.plot(time_list, cpu_ levels)
plt.xlabel ("Time")
plt.ylabel ("CPU Levels in %")
plt.grid(True)
plt.show ()

When we execute the code, the data’s drawing output is as shown in Figure
6.4. On the X-axis, there are seven timestamps for each CPU level, and on
the Y-axis, there are CPU levels in percentage. We collect the CPU data
from a device in around 17-second periods with a 3-second interval.

24 1

22

20

18 -

CPU Levels in %

16 1

14 -

125

I I I I I I
20:08:320 20:08:323 20:08:37 20:08:40 20:08:43 20:08:47
Time

Figure 6.4: CPU Level Drawing of a Device

Plotting interface bandwidth

In Example 6.14, we collect the interface traffic data in inbound and
outbound directions. Then, we plot the data for both traffic usage. If the
connected device is a test machine, you only see zero traffic in the inbound

and outbound directions. You can use a traffic generator to create traffic in
the device.

We change some parts in the script according to Example 6.13. We create
two empty lists to get the inbound and outbound traffic usage. We execute
the show interfaces INTERFACE command in a Cisco device. In this
example, interface information is GigabitEthernet0/1.

After we log in and run the command, we catch the interface inbound and
outbound traffic value with the £inda11 function and append it to the empty
lists. We also get the timestamp from the current time of the local PC. We
collected data five times with 3-second intervals.

In the end, we have two different sets of data, so we use the plot function
to draw data at inbound and outbound.

Example 6.14: Collect and draw interface bandwidth values of a router
from matplotlib import pyplot as plt

import re

from netmiko import Netmiko

from time import sleep

from datetime import datetime

host = {"host": "10.10.10.1", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global delay factor":
0.1}

count = 5

delay = 3

interface = "GigabitEthernet0/1"

command = f"show interfaces {interfacel}"

inbound rate = []

outbound rate = []

time list = []

net_connect = Netmiko (**host)

for i in range(l, count):
output = net_connect.send_ command (command)
time = datetime.now() .strftime ("$H:%M:%S")

time list.append(time)
input level = re.findall ("5 minute input rate (\d+)", output)
output level = re.findall("5 minute output rate (\d+)",
output)

inbound rate.append(int (input_level[0]))
outbound rate.append(int (output_level[0]))

sleep (delay)
print ("Input Level: ", input level[0])
print ("Output Level: ", output level[0])

plt.plot(time_list, inbound rate, color="blue",
label="Inbound")

plt.plot(time_list, outbound rate, color="red",
label="Outbound")

plt.xlabel ("Time")

plt.ylabel ("Interface Levels in MBs")

plt.title(f"Interface Rate of {host['host']} - {interface}")
plt.show ()

When we execute the code, if there is traffic on the interface, there should
be two different plots, like in Figure 6.5. We can plot any interface graphic
with the data we collect from the device.

1e7 Interface Rate of 10.10.10.1 - GigabitEthernet0/1

1.0

0.9 1

0.8

0.7 1

Interface Levels in MBs

0.6 1

0.5 A

T T T T
01:15:47 01:15:50 01:15:53 01:15:57
Time

Figure 6.5: Plot of an Interface Bandwidth Usage

Conclusion

In this chapter, we learned about file transfers and plotting features in
network automation. We used the ftplib, ftpretty, paramiko, netmiko,
and nornir modules to transfer files. We connected devices and opened file
transfer sessions such as FTP, SFP, and SCP to transfer files from a local PC
to a remote device and vice versa. We also used the matplotlib module to
draw any data we collected from the device, including the CPU or memory
level of the device or interface bandwidth usage of an interface.

The next chapter will focus on maintaining and troubleshooting network
issues by creating custom scripts. We will collect the necessary logs,
alarms, and other data, and display or send them in various methods.

Multiple choice questions

1. Which protocol cannot support connecting with the paramiko module?

a. SFTP
b. SCP

c. Telnet
d. SSH

2. Which function does not belong to the matplotlib module?

a. grid ()
b. scatter ()
C. figure ()
d. draw ()

3. Which code must we write to change the plot color to red and window
color to blue?

a. plot(x, y, color="Red")
figure (facecolor="Blue")
b.plot(x, y, color="Red", facecolor="Blue")

C. plot(x, vy, color="Blue", facecolor="Red")

d.plot(x, y, color="Blue")
figure (facecolor="Red")

Answers

1.b
2.d
3.a

Questions

1. Download the config file from three devices with the paramiko
module by using the concurrent module.

2. Collect all alarms from a device, get the counts of the Minor, Major,
Critical alarms, and draw a bar chart with matplotlib according to
alarm severities.

CHAPTER 7

Maintain and Troubleshoot Network
Issues

This chapter will focus on network device upgrades, collecting alarms, SNMP
communication, email notifications, and reachability test for network and
system devices. We will create scripts to troubleshoot the network in basic
methods and secure it by identifying the alarms by their severity. We will also
collect logs and share them with others by mailing them to Python’s built-in
modules.

Structure

In this chapter, we will cover the following topics:

Upgrade network devices

Alert alarms in devices
Collect logs with SNMP
Send logs via email

Reachability test to network devices

o Ping test script
o Traceroute test script

Objectives

We will upgrade devices by uploading software files, setting the boot file after
rebooting the device, and then rebooting the device, which are the three steps
to upgrading software in various vendors. We will use the netmiko module to
connect and collect the logs from the network devices, like in the previous
chapters. We will send these logs or device configurations using the email and
the SMTP modules. We will use the subprocess module to execute the ping
and tracert commands in Windows devices to make reachability tests in the
network.

Upgrade network devices

When we upgrade a Cisco device, there are three steps to take. In the first step,
we need to upload the new software file to the device. Then, we need to set the
boot file, and finally, we need to reboot the device. These steps are similar to
those that need to be followed for other vendors like Juniper, Huawei, or
Nokia; only the commands differ.

We already have many scripts about transferring files in Chapter 6, File
Transfer and Plotting. We must write a script to set the new software file and
the reboot process.

In Example 7.1, we write a script to transfer a new software file to the Cisco
device, set the latest software file, and reboot. In more advanced usage, we
need to verify whether the new software file size is identical to the local PC
file size. We need to save the configuration file and back it up to the local PC.
After that, we are ready to upgrade our device.

1. We import the netmiko, re, and os modules to use in this script.
from netmiko import Netmiko, file transfer
from re import findall

import os

2. We set device information to upgrade. In this example, we only upgrade
one Cisco device. We create three variables: filename is the latest
software file name with its extension on the local PC, set software is
the command to set the new software file to boot in Cisco Router and
change the config-register value to reload, and 1ocal filesize is the
file size of the latest software on the local PC.

device = {"host": "10.10.10.1", "username": "admin",
"password": "cisco", "device_ type": '"cisco_ios",
"global delay factor": 0.1 }

filename = "universalk9.17.08.01.bin"

set_software = [f"boot system {file sys}

{filename}","config-register 0x2102"]

local filesize = os.path.getsize(filename)

3. We connect to the device with netmiko and transfer the software file from
our local PC to the remote device with the file transfer function, as
we did in the previous chapters.

net connect = Netmiko (**device)

file transfer (net_connect,

source_file=filename,
dest file= filename,
direction="put",

)

4. We execute the dir command to find the new software after the upload
finishes. We get the file size with the finda11 function.
output = net connect.send command(f"dir | include
{filename}")
remote filesize = findall("\d+",output)

When we run the same command in CLI, the second digit item is the file
size, for example, 31900. So, if we write remote filesize[1], we catch
the file size of our new software file.

Router-2#dir | include test.txt

280 -rw- 31900 Aug 21 2022 06:45:46

+00:00 test.txt

5. We send the boot command. This command sets the boot file in the
device. Then, we send the show run command to find whether the boot
command is configured on the device. We write the £indall function to
find whether the command is set on configuration. Finally, we save the
device with the we command.

net connect.send config set(set_software)

output = net connect.send command(f"show run | include
{filenamel}")

boot _set = findall (set_software[0],output)

net_ connect.send command (f"wr")

6. In the final step, we compare local and remote file sizes and boot
commands in the configuration. If one or two of the conditions do not
match, the code passes the if statement and disconnects from the device.
Otherwise, we continue to reload the device, which is the reboot
command in Cisco devices. After that, the device asks to continue to
reload. In that step, we need to push the Enfer button. In the code, we
must write \n to press enter or go to the following line.

But here, we write the expect_string parameter. So, the code waits until
the Proceed with reload line is shown, and then it continues. We can
also add timing with send command timing, and we add delay as 1
second with the delay factor parameter.

if str(local filesize) == remote_ filesize[l] and
set_software[0] == boot_set[0]:

print("File is uploaded and set to boot successfully")
net_connect.send command("reload", expect_ string="Proceed
with reload")

net_connect.send_command_timing("\n", delay factor=1)
else:

print ("File upload or setting software as boot is failed")

net connect.disconnect()

Example 7.1: Upgrade a network device with netmiko
from netmiko import Netmiko, file transfer
from re import findall

import os

device = {"host": "10.10.10.1", "username": "admin", "password":
"cisco", "device_type": "cisco_ios", "global delay factor": 0.1 }
filename = "universalk9.17.08.01.bin"

set _software = [f"boot system {file sys}{filename}",6 "config-

register 0x2102"]
local filesize = os.path.getsize(filename)
net connect = Netmiko (**device)
file transfer (net_connect,
source_file=filename,
dest file= filename,
direction="put",
)
output = net connect.send command(f"dir | include {filename}")
remote filesize = findall("\d+",output)
net connect.send_config set(set_software)
output = net_connect.send command(f"show run | include
{filename}")
boot_set = findall (set_software[0],output)
net_connect.send command (f"wr")
if str(local filesize) == remote filesize[l] and set_ software[0]
== boot_set[0]:
print("File is uploaded and set to boot successfully")
net connect.send command("reload", expect string="Proceed with
reload")
net_connect.send;pommand_timing("\n", delay factor=1)

else:
print ("File upload or setting software as boot is failed")
net connect.disconnect()

Alert alarms in devices

In Example 7.2, we collect alarm information from the Juniper devices with the
show system alarms command. After that, we collect specific data on those
alarms, such as alarm time, alarm severity, and alarm description, and save it to
an Excel file. We also collect total alarms in the network and divide them
according to severity, such as Minor, Major, and Critical, in another sheet or
tab in the same Excel file.

1. We import the netmiko, re, and pandas modules.
from netmiko import Netmiko
from re import findall

from pandas import DataFrame

2. We have three devices in this example. This time, we log in to the Juniper
devices and create empty lists and integers to use in the following code:
host = ["10.10.20.1", "10.10.20.2", "10.10.20.3"]
time list, severity list, description_list, ip list = ([]
for x in range(4))
total minor = total major = total critical = 0

3. We create a for loop to log in devices in each iteration. After the
connection, we execute the show command and collect the output.
for ip in host:

device = {f"host": {ip}, "username": "admin", "password":
"juniper", "device_type": "juniper", "global delay factor":
0.1}

net connect = Netmiko (**device)
output = net_connect.send command("show system alarms")

4. We collect all devices’ total alarm count, Minor, Major, and Critical
alarm counts in the network. So, we use findall to get these data and
save it to various variables in the following code. For the alarms
variable, we delete the first four items with the del function because they
are unnecessary lines in the output earlier:

alarm count = findall(" (\d+) alarms currently
active" ,output)

alarms = split("\n",output)

del alarms[0:4]

total alarms = total_alarms + len(alarms)

minor alarms = findall ("Minor", output)

major_alarms = findall ("Major", output)

critical alarms = findall("Critical", output)

total minor = total minor + len(minor_alarms)

total major = total major + len(major_alarms)

total critical = total critical + len(critical alarms)

5. We create an inner or second for loop in the following code. In the
previous code, we collect the total count of the alarms. This time, we
collect the specific data in each device, like alarm occurs time, severity,
and the description with the £indal1l function. Afterward, we append this
data in each device to the lists to use them with the dataframe function
because we add all of them to an Excel file at the end.

for alarm item in alarms:

time = findall ("\d+-\d+\d+ \d+:\d+:\d+ UTC", alarm item)

severity = findall ("Minor|Major|Critical", alarm item)
description = findall ("\d+-\d+\d+ \d+:\d+:\d+ UTC\s+\w+\s+
(.*)", alarm_item)

ip list.append(f"{ip}")

time list.append(time[0])

severity list.append(severity[0])

description_list.append(description[0])

6. We collect the alarms with description, time, and severity value. Finally,
we need to create an Excel file and write the items with the dataframe
function from the pandas module. We need to create two tabs in Excel, so
we need to use the Excelwriter function. We open the Excel file to fill
it. And we create two variables: df1 and df2. We call the dataframe
function and fill this function like in the previous chapters. After that, we
write these values to the same Excel with the to_excel function. We call
the writer function inside the to excel function for both the df1 and
df2 variables. We also write the sheet name or Excel tab, such as
SummaryznuiAlarms.

with pandas.ExcelWriter ('Alarm List.xlsx') as writer:
dfl = pandas.DataFrame ({"Alarm Count":
[total alarms],"Minor": [total minor],"Major":
[total major],"Critical": [total_criticall]})

df2 = pandas.DataFrame ({"Device IP": ip list, "Time":
time_list, "Severity": severity list, "Description":
description_list})

dfl.to_excel (writer, sheet name="Summary", index=False)

df2.to_excel (writer, sheet name="Alarms", index=False)

Example 7.2: Collect alarm information from devices and summarize
from netmiko import Netmiko
from re import findall
from pandas import DataFrame
host = ["10.10.20.1", "10.10.20.2", "10.10.20.3"]
time list, severity list, description_list, ip list = ([] for x in
range (4))
total minor = total major = total critical =0
for ip in host:
device = {f"host": {ip}, "username": "admin", "password":
"juniper", "device_ type": "Jjuniper", "global delay factor": 0.1
}
net connect = Netmiko (**device)
output = net_connect.send command("show system alarms")
alarm count = findall("(\d+) alarms currently active", output)
alarms = split("\n",output)
del alarms[0:4]
total_alarms = total_alarms + len(alarms)
findall ("Minor" ,output)
findall ("Major" ,output)

minor alarms

major alarms
critical alarms = findall ("Critical", output)
total minor = total minor + len(minor_ alarms)
total major = total major + len(major_alarms)
total critical = total critical + len(critical_alarms)
for alarm item in alarms:
time = findall("\d+-\d+\d+ \d+:\d+:\d+ UTC", alarm item)
severity = findall ("Minor|Major|Critical", alarm item)
description = findall ("\d+-\d+\d+ \d+:\d+:\d+ UTC\s+\w+\s+
(.*)", alarm_item)
ip list.append(f"{ip}")
time list.append(time[0])
severity list.append(severity[0])
description list.append(description[0])

with pandas.ExcelWriter ('Alarm List.xlsx') as writer:
dfl = pandas.DataFrame ({"Alarm Count":
[total alarms],"Minor": [total minor],"Major":
[total major],"Critical": [total criticall})
df2 = pandas.DataFrame ({"Device IP": ip list, "Time":
time_ list, "Severity": severity list, "Description":
description_list})
dfl.to_excel (writer, sheet name="Summary", index=False)
df2.to_excel (writer, sheet name="Alarms", index=False)

When we run show system alarms in the Juniper devices, the output is similar
to the following. There is an empty line; after that, there are total active alarm
counts and the alarm titles. Finally, alarms are listed with their details. We
divide each part in Example 7.2. If there is no Juniper device in your lab, you
can try with other vendors to change the command on the device. It would be
best if you also modified the £indal1 function according to that output. On the
other hand, you can save each Router’s output in a text file in the following
output and open it in the same script by modifying some parts:
Junos_Router-1:

Junos_Router-1> show system alarms

4 alarms currently active

Alarm time Class Description

2022-08-02 15:00:00 UTC Minor IPsec VPN tunneling usage
requires a license

2022-08-24 15:00:00 UTC Major Rescue configuration is not
sent

2022-08-25 15:00:00 UTC Major /root partition usage crossed

critical threshold

2022-08-12 15:00:00 UTC Critical PCI Corrected error on dev
0000:00:01

Junos_Router-2:

Junos_Router-2> show system alarms

4 alarms currently active

Alarm time Class Description

2022-07-24 16:00:00 UTC Minor IPsec VPN tunneling usage
requires a license

2022-07-24 16:00:00 UTC Major Rescue configuration is not

sent

2022-07-05 16:00:00 UTC Critical FPC 8 internal link errors
detected

2022-07-16 16:00:00 UTC Minor NSD 12 channel error on physical
interfaces

Junos_Router-3:

Junos_Router-3> show system alarms

5 alarms currently active

Alarm time Class Description

2022-07-23 17:00:00 UTC Minor IPsec VPN tunneling usage
requires a license

2022-08-02 17:00:00 UTC Major Rescue configuration is not
sent

2022-07-11 17:00:00 UTC Critical Side Fan Tray 7 Failure
2022-05-11 17:00:00 UTC Minor Side Fan Tray 7 Overspeed

2022-07-16 16:00:00 UTC Minor NSD 12 channel error on physical

interfaces

When we execute the code, it creates an Excel file in the same directory as our
code. In the first sheet or tab in this Excel file, which is summary, we can see
the description of Alarm Count, Minor, Major, and Critical with their values.
Refer to Figure 7.1:

Alarm Cnunt| Minor | Major | Critical |
13 b 4 3

Figure 7.1: Output of the “Summary” Section in Excel

In the next tab, aAlarms, we divide each item in the output according to time,
severity, and description. We also write device management IP addresses to
define alarms belonging. So, we can easily filter any information in this Excel
file. Refer to Figure 7.2:

| DevicelP | Time | Severity | Description

:1D.1D.2EI'.1 08-02 15:00:00 UTC Minor IPsec VPN tunneling usage requires a license
(10.10.20.1 08-241%:00:00UTC Major Rescue configuration is not sent

(10.10.20.1 | 08-2515:00:00 UTC Major [root partition usage crossed critical threshold
|10.10.20.1 08-12 15:00:00 UTC Critical PCI Corrected error on dev 0000:00:01
(10.10.20.2 07-2416:00:00UTC Minor IPsec VPN tunneling usage requires a license
(10.10.20.2 07-2416:00:00UTC Major Rescue configuration is not sent

|10.10.20.2 07-0516:00:00 UTC Critical FPC 8 internal link errors detected
|10.10.20.2 07-16 16:00:00 UTC Minor MSD 12 channel error on physical interfaces
(10.10.20.3 07-23 17:00:00UTC Minor IPsec VPN tunneling usage requires a license
(10.10.20.3 08-0217:00:00UTC Major Rescue configuration is not sent

(10.10.20.3 07-1117:00:00 UTC Critical Side Fan Tray 7 Failure

(10.10.20.3 03-1117:00:00UTC Minor Side Fan Tray 7 Overspeed

|10.10.20.3 | 07-16 16:00:00 UTC Minor MSD 12 channel error on physical interfaces

Figure 7.2: Output of the “Alarms” Section in Excel

Collect logs with SNMP

Simple Network Management Protocol (SNMP) is one of the essential
protocols in networking. It’s a communication protocol to share device
information. NMS tools use SNMP to get data from the devices and display it
in the tool. There are three versions of SNMP: versions 1, 2, and 3. SNMPvl1
has fragile security protection, and SNMPv2 has more security than SNMPv1;
however, the most secure version is SNMPv3, which has data encryption. It
has an authentication process to to prevent unauthorized connections.

We can collect data like CPU and memory usage, device uptime, Open
Shortest Path First (OSPF) neighbors, and interface status, which can be
UP/DOWN.

Devices have Management Information Base (MIB), which is an object that
keeps the data from the local device. MIB is a file that stores the information
collected from the device. So, the SNMP manager uses MIB files to get data
from any device.

Various objects are inside the MIB, identified by Object Identifier (OID).
NMS requests the object’s value from the agent with these OIDs. OID is a
numerical address to identify the objects in the MIB hierarchy. The
1.3.6.1.2.1.25.1.1.0 OID number is used to get the device uptime. When
the NMS or the monitoring tool sends this OID to a device, the device sends
the device uptime information back to the agency. So, the tool gets all the data
with different OIDs from the network device and creates a database.

Many MIB information or OIDs are the same and generic for different
vendors, but vendor specific MIBs can also be downloaded from the vendor’s
official websites.

We have a third-party SNMP module in Python, pysnmp, which is a mature
library to communicate with network and system devices by the SNMP
protocol. We must install it with the pip install pysnmp command in the
terminal.

We have a third-party SNMP module in Python, pysnmp, which is a mature
library to communicate with network and system devices by the SNMP
protocol. We must install it with the pip install pysnmp command in the
terminal.

We must enable the SNMP feature to collect the data from the network device
by the Python script. We need to configure community value with options like
the read-only or read-write parameters. We configure the Cisco device with
the community public. This command in Cisco devices enables SNMPv1 and
SNMPv2. To use SNMPv3, we must add other commands: the
authenticationZnuiencryptionconnnand&

Router-1l#configure terminal

Router-1 (config) #snmp-server community public ro

In Example 7.3, we collect the free memory data from Router-1 and display it
in the output in bytes. We use the pysnmp module to collect memory data from
the Cisco device.

1. We import the pysnmp module. We use many functions inside the hlapi
function in the pysnmp, so we import all the functions inside it with the *
character.

from pysnmp.hlapi import *

2. We define the host variable for the management IP address of the device,
the snmp community variable for the community configuration on the
device, which is public, and finally, the snmp_oid variable to get the free
memory data from the device. The 1.3.6.1.4.1.9.2.1.8.0 oid number
collects the device’s free memory. You can search for generic or vendor-
specific mib files and oids on the internet to get the complete list.

host = "10.10.10.1"
snmp_community = "public"
snmp oid = "1.3.6.1.4.1.9.2.1.8.0"

3. In the following code, we use the pysnmp functions. We have the
errorIndication,errorStatus,errorIndex,and.varBinds Vaﬂabkm,
which are equal to the next function in pysnmp with the getcmd function
in it.

errorIndication, errorStatus, errorIndex, varBinds =
next (getCmd ()

Inside the getcmd function, we execute the snmpEngine class instance to
start the SNMP feature. All the SNMP operations are involved in this
class. We have class instances like communityData, in which we write the
community configured on the device. We can also opt to add the mpModel
parameter. If the value is zero, it uses SNMPv1 to communicate with the
device. If it’s one, it uses SNMPv2, the default value. To communicate
with the device in SNMPv3, we must write the UsmUserData class
instance.

After that, we write the udpTransportTarget object to connect a device
via SNMP. We write the host and port information as 161, which is the
SNMP protocol’s port number.

We also need to write the contextbData object. The SNMP context is a
message header in the SNMP protocol that finds the specific MIB. So, we
must initialize this object to get the data from the device.

Finally, we call the objectType class instance to get the oid number with
the objectIdentity object.
errorIndication, errorStatus, errorIndex, varBinds = next(
getCmd (SnmpEngine (),
CommunityData (snmp_community, mpModel=1l),
UdpTransportTarget ((host, 161)),
ContextData(),
ObjectType (ObjectIdentity (snmp_oid)),))

4. After we get the data from the device, we need to display it in the output.
We create a for loop to get the oid and val variables from varBinds. We
print each value with the prettyPrint () function to display it in human-
readable mode.

for oid, val in varBinds:

print (oid.prettyPrint()," - ", val.prettyPrint())

Example 7.3: Collect device information with SNMP
from pysnmp.hlapi import *
host = "10.10.10.1"

snmp_community = "public"
snmp oid = "1.3.6.1.4.1.9.2.1.8.0"
errorIndication, errorStatus, errorIndex, varBinds = next (
getCmd (SnmpEngine () ,
CommunityData (snmp_community, mpModel=1l),
UdpTransportTarget ((host, 161)),
ContextData(),
ObjectType (ObjectIdentity (snmp oid)),))
for oid, val in varBinds:
print (oid.prettyPrint()," - ", val.prettyPrint())
1.3.6.1.4.1.9.2.2.1.1.20.1 gets the interface status, such as UP/DOWN
state. If we want to get the first two interface statuses, we write
1.3.6.1.4.1.9.2.2.1.1.20.1and1.3.6.1.4.1.9.2.2.1.1.20.2. We use
these OID numbers in Example 7.4. We can also add another loop to collect
data from multiple devices.

Example 7.4: Collect multiple OID data with SNMP
from pysnmp.hlapi import *
host = "10.10.10.1"
snmp_community = "public"
snmp_oid =
["1.3.6.1.4.1.9.2.2.1.1.20.1","1.3.6.1.4.1.9.2.2.1.1.20.2"]
for id in snmp oid:
errorIndication, errorStatus, errorIndex, varBinds = next(
getCmd (SnmpEngine (),
CommunityData (snmp_community, mpModel=1l),
UdpTransportTarget ((host, 161)),
ContextData(),
ObjectType (ObjectIdentity (id)),
)
)

for oid, val in varBinds:

print(oid.prettyPrint() ," - ", val.prettyPrint())
Output:
SNMPv2-SMI: :enterprises.9.2.2.1.1.20.1 - wup
SNMPv2-SMI: :enterprises.9.2.2.1.1.20.2 - administratively down
From CLI:

Router-1l#show ip int br

Interface IP-Address OK? Method

Status Protocol
GigabitEthernet0/0 10.10.10.1 YES NVRAM up
up

GigabitEthernet0/1 unassigned YES wunset administratively

down down

We can get a lot of data from devices with OID:
"1.3.6.1.4.1.9.2.1.3.0" - Hostname Information
"1.3.6.1.4.1.9.2.1.58.0" - CPU Usage
"1.3.6.1.4.1.9.2.1.4.0" - Domain name

We can also use the object name instead of OID. We change the parameters
inside objectIdentity. We write the MIB name, object as sysName and zero.
sysName gets the hostname of the device with its domain name.

ObjectType (ObjectIdentity ("SNMPv2-MIB", "sysName", 0)),

Output: SNMPv2-MIB::sysName.0 - Router-1.networkautomation

The Python files are inside the venv directory, located in the same folder as our
project code:
PROJECT FILE\venv\Lib\site-packages\pysnmp\smi\mibs

We can get a lot of data from devices with OID, such as the following:

e sysDescr: Gets system information, including version and device model.

e snmpInPkts: Gets inbound SNMP packet count. If you execute the code,
it will increase each time because we send SNMP requests to the device.

e sysupTime: Gets the system uptime in hundreds of seconds.

We cannot directly use the MIB file with the pysnmp module; we must convert
it to a Python file. There are options to convert, like the mibdump.py Python
code found on the internet or the local pysnmp module. Using Ubuntu, you can
install the 1ibsmi2pysnmp package to convert it.

On the following website, there are many converted MIB files to download.
You can download the MIB files and paste them to the
PROJECT FILE\venv\Lib\site-packages\pysnmp\smi\mibs directory. Then,
you can use any of them.

For example, we can use ospF-MIB with the ospfRouterId object. It collects
OSPF router-id from the device. If you set the OSPF router-id of the
device, you can get output as router-id data.

https://pypi.org/project/pysmi/#files

ObjectType (ObjectIdentity ("OSPF-MIB", "ospfRouterId", 0)).
Output: OSPF-MIB: : ospfRouterId.0 - 10.10.10.1

Send logs via email

We can send emails with Python’s built-in modules, such as email and
smtplib. In this part, we use the Gmail account to send emails to any email

address. We can send device alarms, logs, and configurations with emails and
add attachments to the emails.

When we use a Gmail account to send emails via Python script, we need a 16-
digit password that’s different from our Google account password. We must
follow the given steps to get this password:
1. Enter the following website and log in to the Gmail account.
https://myaccount.google.com/

2. Click on security on the opening page, as shown in Figure 7.3:

Google Account Q

@ Horme PEI"SDHE| ”"If(::I
E.E Berscnal o fer about v vl s s B L i .
—® Data & privacy

[ﬁ Security

Your profile info in Google services

People & sharing

De

i AN oplions 10 manage It. 7ou Can maxke Some OfF Ths

il

Payments & subscriptions y easily. You can also see a summary of your profiles

Figure 7.3: Creating Password in Gmail Step-2

3. As shown in Figure 7.4, 2-Step Verification must be enabled. If it’s
disabled, you must enable it before entering the app passwords section.

Signing in to Google

AT

Passward Last changed Dec 1, 2017 >

2-Step Verification @ on >

App passwords 1 password -

Figure 7.4: Creating Password in Gmail Step-3

4. As shown in Figure 7.5, you need to click on the select app button and
write the app name. You can write anything to be understandable for you
later. After that, the GENERATE button becomes blue and is activated; you
can click on it to create a password.

Your app passwords

Name Created Last used

python-mail 12:27 AM 12:52 PM

Select the app and device you want to generate the app password for.

Select app Select device

Mail

Calendar

Contacts

YouTube

Other {Custom name)

Figure 7.5: Creating Password in Gmail Step-4

5. Figure 7.6 shows a new popup that opens in the web browser. You must
copy the 16-digit password in a safe place and not share it with anyone.

It’s a unique password that is created for your account and app. The
password creation finishes with this step, and we can continue to write
the scripts in Python.

Generated app password

Your app password for your device

kokkk kkkk kkkk kkkk

How to use it

Email

Go to the settings for your Google Account in

securesally@gmail.com the application or device you are trying to set
up. Replace your password with the 16-
Pasaword character password shown above.

Just like your normal password, this app
password grants complete access to your
Google Account. You won't need to remember
it, so don't write it down or share it with
anyone.

DONE

Figure 7.6: Creating Password in Gmail Step-5

6. We import the smtplib module and the message class from the email
module.
import smtplib

from email import message

7. We create various variables. We add sender mail to mail from and
password to mail_password variable. We get the mail password value
from the previous steps in Gmail. It’s 16-digit password which is not a
Gmail password.We also add the receiver as mail_to; optionally, we add
cc and bee. And in the final two variables, we add subject and content
variables. All these variables’ values are in string values.

mail from = "example@gmail.com"
mail password = "16-DIGIT-PASSWORD"
mail to = "example@gmail.com"
mail to cc = "example@gmail.com"
mail to_bcc = "example@gmail.com"

mail subject "Test Email"

mail content = "Hi,\nThis is a test email"

8. We call the EmailMessage function from the message class and assign the
send variable; we add the email details to it. We use the add header
function to add email subject, sender, and receiver address information.
We write From as the sender, To as a receiver, Cec as the cc-receiver, Bec as
the bce-receiver, and subject as the mail subject.

send = message.EmailMessage ()

send.add header ("From", mail from)
send.add header ("To", mail_to)

send.add header ("Cc", mail_to_cc)
send.add header ("Bcc", mail to_bcc)
send.add header ("Subject", mail subject)

send.set_content(mail content)

9. At the end, we execute the sMTP_ssL function from the smtplib module.
We use the smtp.gmail.com server with port 465, which is the SMTP
protocol port number. We log in to our account with the sender’s email
and password information with the 1ogin function. Finally, we send an
email by the sendmail function by entering email details like sender,
receiver, and content of the mail.

with smtplib.SMTP_ SSL("smtp.gmail.com", 465) as smtp:
smtp.login(mail from, mail password)
smtp.sendmail (mail from, mail to, send.as_string())

Example 7.5: Sending email via Gmail
import smtplib

from email import message

mail from = "example@gmail.com" #The value must be Gmail
address

mail password = "16-DIGIT-PASSWORD"

mail to = "example@gmail.com"

mail to_cc = "example@gmail.com"

mail to _bcc = "example@gmail.com"

mail subject = "Test Email"

mail content = "Hi,\nThis is a test email"

send = message.EmailMessage ()
send.add header ("From", mail from)
send.add_header ("To", mail_ to)

send.add_header ("Cc", mail to_cc)

send.add _header ("Bcc", mail_ to_bcc)

send.add header ("Subject", mail subject)

send.set_content (mail_content)

with smtplib.SMTP_ SSL("smtp.gmail.com", 465) as smtp:
smtp.login(mail from, mail password)

smtp.sendmail (mail from, mail to, send.as_string())

We can also add attachments to these emails. We can attach various file
formats, like text-based files, pictures, and more. First, we need to open the
source file with the open function in reading and binary mode as rb. Then, we
need to read the file and assign it to a variable. In the following line, we need
to use mime type and encoding variables and assign them to the
mimetypes.guess_type function with the filename. After that, we call the
add_attachment function. We write attached_file, maintype, subtype, and
filename variables. Finally, we add the filename parameter, and its value is
the filename of the source file. We use the following code in Example 7.6 with
the for loop to add multiple files in the attachment.
import mimetypes
with open("test.txt", "rb") as r:

attached file = r.read()
mime type, encoding = mimetypes.guess_type (filename)
send.add_attachment (attached file,
maintype=mime type.split("/")[0], subtype=mime type.split("/")[1],
filename=filename

)

In Example 7.6, we collect three Cisco router configurations with the netmiko
module and save them to the local directory. After that, we send these three
configuration files from our mail address to another email address.

We create a function to collect configurations of the devices and save them to
the text files with different namings. After that, we call the function in the
script. In the rest of the code, we only add the attachment part in the loop to
add three files in the same mail content and send the mail to the receiver.

Example 7.6: Sending router configurations by mail
import smtplib

from email import message

import mimetypes

from netmiko import Netmiko

def collect_configuration():
host = ["10.10.10.1", "10.10.10.2", "10.10.10.3"]
for ip in host:
device = { "host": ip, "username": "admin", "password":
"cisco", "device_ type": "cisco_ios"}
net_connect = Netmiko (**device)
output = net connect.send command("show run")
with open (f"{ip} config.txt","w") as wr:
wr .write (output)
net connect.disconnect()
return host
host = collect_configuration()
mail from = "example@gmail.com"
mail password = "16-DIGIT-PASSWORD"
mail to = "example@gmail.com"
mail subject = "Router Configurations"
mail content = "Hi,\nYou can find the all configuration files in
the attachment."
send = message.EmailMessage ()
send.add header ("From", mail from)
send.add_header ("To", mail to)
send.add header ("Subject", mail subject)
send.set_content (mail_content)
for file in host:
filename = f"{file} config.txt"
with open(filename, "rb") as r:
attached file = r.read()
mime type, encoding = mimetypes.guess_type (filename)
send.add _attachment (attached file, maintype=mime type.split("/")
[0], subtype=mime type.split("/")[1l], filename= filename)
with smtplib.SMTP SSL("smtp.gmail.com", 465) as smtp:
smtp.login(mail from, mail password)
smtp.sendmail (mail from, mail to, send.as_string())

Reachability test to network devices

The most basic and initial troubleshooting step in networking is to make the
reachability tests. These are the ping and traceroute tests. The ping test
checks whether the remote device 1s reachable from the source device, and we

test it for connectivity problems. The traceroute test checks the hops or the
devices in the network until we reach the destination device. For example, if
we have a topology A-B-C-D, there are four different routers in the network.
When we make a traceroute test from A to D, if A and D can ping each other,
the traceroute output will be A, B, C, and D. So, all the hops will be shown in
the output.

Ping test script

In Example 7.7, we create a script to make reachability tests for various IP
addresses from our local PC. In this example, we use a Windows machine, and
the code is also for Windows OS. The following output shows two ping tests:
10.10.10.1 which is a reachable IP address, and 10.10.10.10, which is an
unreachable IP address. We make the ping test from the local PC cmd
(command prompt).

If the ping test is successful, the reply message has the destination IP address,
packet size in bytes, period of packet travels from source to destination and
Time to Live (TTL), which is the packet life cycle. At the end, there are
values like sent, Received, and Lost, with the lost rate inside the parentheses.

If the ping test fails, it gives a message saying Request timed out.
C:\> ping 10.10.10.1
Pinging 10.10.10.1 with 32 bytes of data:
Reply from 10.10.10.1: bytes=32 time=4ms TTL=255
Reply from 10.10.10.1: bytes=32 time=6ms TTL=255
Reply from 10.10.10.1: bytes=32 time=6ms TTL=255
Reply from 10.10.10.1: bytes=32 time=6éms TTL=255
Ping statistics for 10.10.10.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss)
C:\> ping 10.10.10.10
Pinging 10.10.10.10 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 10.10.10.10:
Packets: Sent = 4, Received = 0, Lost = 4 (100% loss)

We create a variable in that each item i1s the destination IP address or website
can ping. We try to send three ping packets. To start the ping, we execute the

Popen function from the subprocess module in Windows. We write the ping
count parameter and the IP information inside this function. We collect the
output and get all data we need from a list with an append function. Finally, we
create the Excel file with this data and save it.

We call the popen function from the subprocess module in the following code.
Inside the parentheses, we write the ping command with emd /c ping and
then write the IP address with the -n option, which sets the ping packet count.
In this example, it’s three. We also add stdout and encoding parameters. We
create a loop to get the ping process line-by-line and use the rstrip string
method to remove whitespaces at the end of the string.
output = Popen(f"cmd /c ping {ip} -n {ping count}", stdout=PIPE,
encoding ="utf-8")

for line in output.stdout:

data = data +"\n" + line.rstrip('\n')

Example 7.7: Ping test from command prompt in Windows
from re import findall
from pandas import DataFrame
from subprocess import Popen, PIPE
host = ["10.10.10.1","123.214.2.3","www.google.com",
"192.168.123.24", "8.8.8.8"]
ping _count = "3"
packet loss, ip list, status_list, sent_list, received list,
lost list = ([] for i in range(6))
for ip in host:
data = ""
print (£"\n---Try to Ping: {ip} ---")
output= Popen(f"cmd /c ping {ip} -n {ping count}", stdout=PIPE,
encoding="utf-8")
for line in output.stdout:
data = data +"\n" + line.rstrip('\n')
print (data)
ping test = findall ("TTL", data) #Check TTL word if the ping is
successful or not

if ping_test:

status = "Successful" #Ping Successful or Failed
sent = findall("Sent = (\d+)", data) #Find Sent packet number
received = findall ("Received = (\d+)", data) #Find received

packet number

lost = findall("Lost = (\d+)", data) #Find lost packets

number
loss = findall("\((.*) loss", data) #Get loss packet
percentage
else:
status = "Failed"
sent = findall ("Sent = (\d+)", data)
received = ["0"]

lost = sent
["100%"]
sent_list.append(sent[0])

loss

received list.append(received[0])

lost list.append(lost[0])

packet loss.append(loss[0])

ip list.append(ip)

status_list.append(status)

df = DataFrame ({"IP Address": ip list, "Status": status_list,
"Sent": sent list, "Received": received list, "Lost": lost list,
"Packet Loss Rate": packet loss})

df.to_excel ("Ping Result.xlsx", sheet name="Ping", index=False)

Figure 7.7 shows six different items and five IP addresses as tested. We can
see that each item and values is in a separate column:

IP Address Status Sent Received Lost | Packet Loss Rate
10.10.10.1 ‘Successful i3 Iz 0 0%
123.214.2.3 Failed 3 0 3 100%
www.google.com Successful 3 3 0 0%
192.168.123.24 Failed 3 0 3 100%
8.8.8.8 Successful 3 3 0 0%

Figure 7.7: Output of the “Ping Result ”Excel File

Traceroute test script

In Example 7.8, we make a traceroute test to the destination IP address. So, we
try to get each hop or router IP address until the destination IP address. In
Windows, the maximum traceroute hop is 30. We can change this with the -h
parameter in the tracert command.

As we did in Example 7.7, we use the popen function. We only change the
ping command with tracert and add the -h parameter with its value as hops.

After that, we collect the logs in the data variable. We save the output of the
traceroute command in a file in the same directory as our script.

We also check whether we reach the destination IP in the specified max hops
value. If the final line of the loop has the destination IP address, we reach the
target device; otherwise, we cannot reach it. So, we search for the IP address in
the output. The IP address is also at the beginning of the traceroute, like in the
following output. So, to identify it, we use the £indall function by writing
ms\s+IP ADDRESS. We can locate the IP address on the last line if it exists.
C:\> tracert -h 1 10.10.10.1
Tracing route to 10.10.10.1 over a maximum of 1 hops

1 7 ms 6 ms 10 ms 10.10.10.1

Example 7.8: Tracert test from command prompt in Windows
from subprocess import Popen, PIPE
from re import findall
hostname = "10.10.10.1"
hops =1
output = Popen(f"cmd /c tracert -h {hops} {hostname}",stdout=PIPE,
encoding="utf-8")
data = ""
for line in output.stdout:
data = data + "\n" + line.rstrip('\n')
print(line.rstrip('\n'))
with open (f"Traceroute to {hostname}","w") as wr:
wr.write(data)
result = findall (f"ms\s+{hostname}", data)
if result:
print (f"***Traceroute to {hostname} is successfully finished")
else:
print (£"***Cannot reach {hostname}")

Conclusion

In this chapter, we learned the operational steps for software upgrades in
network devices, such as uploading files, setting the boot software file, and
reloading the device. We also modified dummy data to make it meaningful for
engineers, like collecting all alarms from the network and creating statistics to
check the risks by severity. We also collected the device data with SNMP, such
as system information, hostname, or interface status. We created backups of

the configuration files and sent them with emails in attachments. Towards the
end, we made a reachability test by executing the ping and tracert commands
in the Windows machines to troubleshoot the network.

The next chapter will focus on monitoring and managing Linux servers and
storage. We will create scripts to maintain multiple servers concurrently, such
as collecting logs, installing new packages, and upgrading operating systems.

Multiple choice questions
1. Which command is used to restart Cisco devices?

a. reboot
b.restart
C. reload

d. shutdown

2. How can you change the maximum hop count in the tracert in Windows

0OS?
a. -n
b. -t
C. -m
d. -n

3. What data is collected from the devices when we write the sysUpTime
parameter in SNMP?
a. System uptime in minutes
b. System uptime in hundreds of seconds
c. System uptime in seconds

d. System uptime in hours

Answers

l.c
2.d
3.3
4.b

Questions

1. Write a script to collect the interface information, such as interface name,
interface number, interface status, interface IP address, and description.

CHAPTER 8

Monitor and Manage Servers

This chapter will focus on server management, including collecting logs and
configuring servers. We will use paramiko and netmiko modules to log in to
servers. All examples in this chapter are based on Ubuntu OS, which is a Linux
distro. We will implement the server environment, collect logs, and modify
them and change configurations on the Linux servers, which are daily tasks for
a system engineer.

Structure

In this chapter, we will cover the following topics:

e Implement server environment

o Download VMware player and Ubuntu
o Install Ubuntu on VMware

o Activate SSH connection
e Maintain Linux servers

o Collect logs via syslog

o Login servers with secure password

(o]

Collect CPU and memory levels

o

Collect interface information

o

Collect type and permission of files
e Server configurations

o Create users in servers

o

Install packages
Transfer files with Paramiko

(o]

(o]

Reboot servers concurrently

o

Stop running processes by script

Objectives

With the help of the Virtual Machine (VM) tool, we will prepare a lab setup
with three Linux servers. We will set up Ubuntu as the OS and VMware Player
as the virtual machine tool. We will also log in to servers using the netmiko
and paramiko modules. We will be gathering the syslog information and
transmitting it to you as an attachment. Additionally, we will discuss how to
configure servers by adding a new user, moving files, rebooting the servers,
and quitting any open processes.

Implement server environment

In system engineering, servers are the essential devices to work with, like
routers and switches in network engineering. We use Linux servers to execute
automation scripts and still use the Pycharm tool in Windows, but these scripts
can also be run on Linux devices.

We will install three Ubuntu OS as Linux Distributors in this chapter. In the
previous chapters, we always worked with network devices, mainly Cisco
devices. In this chapter, we will connect and automate system devices, and
Linux OS are the essential systems for automation as a system engineer. You
can also use Fedora, Suse, or other Linux distros instead of Ubuntu. In this
chapter, we will write our scripts for Ubuntu OS.

We need to create the environment for the scripts to execute. The lab has three
Ubuntu servers in VMs, and the following steps belong to the Windows OS.
For Linux or MAC, you need to check from the internet. There are tiny
differences between them in creating the Ubuntu server environment.

Download VMware player and Ubuntu

To use Ubuntu on a Windows PC, we have the option to use VM tools. So, we
download the VM tool as VMware player and Ubuntu’s latest version from
their respective official websites:

1. We need to download VMware Workstation Player from VMware’s
official source. At the end of the page are Windows and Linux versions
of VMware Player. We are using Windows, so we need to install the
Windows version.

https://www.vimware.com/tr/products/workstation-
player/workstation-player-evaluation.html

https://www.vmware.com/tr/products/workstation-player/workstation-player-evaluation.html

2. After the download process, we must install the VMware Player tool on
our PC. We can also use other VM tools like VirtualBox or Hyper-V as
virtualization tools. In all examples, we use VMware Player.

3. After that, we need to download the latest version of the Ubuntu OS
from the official Ubuntu website. It’s recommended to download the
Long Time Support (LTS) version of Ubuntu as it has official support
for upgrades and any bugs and vulnerabilities. That said, you also have
the option to download older versions.

https://ubuntu.com/download/desktop

Install Ubuntu on VMware

We need to import the Linux distro as Ubuntu into the VMware tool, so we
install the OS by following the steps mentioned here. We install three Linux
Servers in the VM, so we can automate three of them with a single Python
script.

1. After downloading the Ubuntu file, which has a .iso file extension, we
must import it to the VMware tool. We open VMware and click on the
Create a New Virtual Machine button to import the ISO file, as shown
in Figure 8.1:

Vihiware Workstation 16 Player (Mon-commercial use only) - o B
Player » {u)
Welcome to VMware Workstation
16 Player

Create a New Virtual Machine

[l - | I Create a new virtual machine, which will then be added to the

top of your library.

Open a Virtual Machine

E‘l [:l Opeen an exsting virtual machine, which will then be added to

the top of your lbrary.

Figure 8.1: Importing the ISO file step-1

2. On the opening page, we choose Installer disc image file (iso):
and find the downloaded ISO file by clicking on the Browse button, as
shown in Figure 8.2:

https://ubuntu.com/download/desktop

Welcome to the New Virtual Machine Wizard

A virtual machine is like a physical computer; it needs an operating
system. How will you install the guest operating system?

Install from:

Installer disc:

No drives available

(@) Installer disc image file (iso):

b Browse...

= Select the installer disc image to continue.

()1 will install the operating system later.

The virtual machine will be created with a blank hard disk.

Help < Back MNext = Cancel

Figure 8.2: Importing the 1SO file step 2

. The next page asks for Full name as hostname, username, and password.
We need to fill in these values. You can add the following data in this
part:

Full name: Server-1

Username: ubuntu

Password: ubuntu

. After that, it asks to set the Maximum Disk size. By default, it’s 20 GB,
which is enough for simple usage.

. We finalize the steps by finishing other steps by the default values.

6. When it finishes successfully, we can see the New Ubuntu VM in the

VMware tool with its hostname or full name that we configured in step 3.
When we open it, Ubuntu installation from the ISO file has started.

7. The installation of Ubuntu takes 10-20 minutes, and it asks some
questions to continue, such as language options, timezone, username,
password, and hostname. After choosing the configurations or going with
the default options, it is installed.

8. After the installation of Ubuntu finishes, Ubuntu starts on the same VM
page. The first server is ready to automate. Now, we copy this VM to

create other

procedure.
Hostname:
Username:

Password:

VMs, or we can install two other VMs in the same

Server-1 / Server-2 / Server-3
ubuntu
Ubuntu

Activate SSH connection

After finishing the Server OS installation, we need to configure the SSH
connection and activate it. We connect Linux servers with the SSH protocol, so
we install the net-tools and openssh-server packages. Then, we can configure
the IP addresses in the same subnet and activate the SSH server in systemctl.

1. We can log in to terminal via the Show Applications section in the
Ubuntu window in the bottom-left corner.

2. We need to download the net-tools package with the sudo apt install
net-tools command in the terminal. After that, we can run the ifconfig
command. There is an interface that has a 192.168.163.135 IP address,
and 1t’s automatically given to the server. You can change the IP range,
but remember that you may need to change the network driver IP address
if you want to reach the internet.

ubuntu@Server-1:~$ sudo apt install net-tools

ubuntu@Server-1:~$ ifconfig
ens33: flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 1500
inet 192.168.163.135 netmask 255.255.255.0 broadcast
192.168.163.255
inet6 fe80::87fe:a97d:5c£f7:9625 prefixlen 64 scopeid
0x20<1link>
ether 00:0c:29:ff:0e:bl txqueuelen 1000 (Ethernet)
RX packets 149785 bytes 218151216 (218.1 MB)
RX errors 0 dropped 0 overruns 0 frame O
TX packets 19397 bytes 1316978 (1.3 MB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions
0

When we write the SSH connection scripts in Python, we use the
following IP addresses to log in to servers. In your environment, IP
addresses may be different.

Server-1 IP Address: 192.168.163.135

Server-2 IP Address: 192.168.163.136

Server—-3 IP Address: 192.168.163.137

We need to test the server IP with a ping command from the local PC.
Reachability is successful if we can ping all the server’s IP addresses
from our local PC.

3. We must enable SSH protocol in servers. Otherwise, we cannot log in to
the devices with SSH by default. We must install the openssh-server
package to activate SSH. After that, we must enable the SSH service in
the system and start the SSH service.

$ sudo apt-get install openssh-server
$ sudo systemctl enable ssh
$ sudo systemctl start ssh

4. If all the SSH activation commands are successful, we can make an SSH
connection test from our local PC to the servers. We need to write ssh
USERNAMEQIP_ADDRESS to enter a device with SSH. So, we write the
following command in the Windows terminal. The server username and
password are ubuntu, and we can log in via SSH if we write the server’s
IP address.

C:\>ssh ubuntu@192.168.163.135
ubuntu@192.168.163.135's password:
Welcome to Ubuntu 22.04.1 LTS (GNU/Linux 5.15.0-46-generic
x86_64)
* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage
0 updates can be applied immediately.
Last login: Mon Aug 29 10:25:03 2022 from 192.168.163.1
ubuntu@Server-1:~$

Maintain Linux servers

This part will focus on collecting logs from the Linux servers. Maintaining the
system devices like servers is essential for system engineers, and we can use
Python to automate these servers. We will use Ubuntu as a Linux distro in the
following examples.

We collect specific data, modify them, and convert them to more readable
formats such as creating text or Excel files. We also send the logs in text files
with emails. To study the topics in this section, you should be familiar with
primary Ubuntu usage. Some basic commands to check are sudo,
hostnamectl, uname, reboot, free -m, htop, top, ifconfig, ps, 1s, nano, vim,
rmdir, mkdir, and touch, with optional parameters and package installation
commands like sudo apt-get install PACKAGE NAME.

You can check the details of these commands on the internet. On the other
hand, you can check any command’s manual by writing man COMMAND NAME in
the Linux terminal.

ubuntu@Server-1:~$ man nano

NANO (1) General Commands Manual NANO (1)
NAME

nano - Nano's ANOther editor, inspired by Pico
SYNOPSIS

nano [options] [[+line[,column]] file]..
nano [options] [[+[crCR] (/|?)string] file]..
DESCRIPTION
nano 1is a small and friendly editor. It copies the look
and feel of Pico, but is free software, and implements several
features that
Pico lacks, such as: opening multiple files, scrolling per
line, undo/redo, syntax coloring, line numbering, and soft-
wrapping overlong

lines.

In Example 8.1, we use the paramiko module to connect three servers we
created. We collect the hostname information from all of them via the
hostnamectl hostname command and display it as the output.

1. We import the necessary functions from the paramiko and time modules.
After that, we create a variable named host with the management IP
addresses of the servers.

from paramiko import SSHClient, AutoAddPolicy

from time import sleep
host = ["192.168.163.135", "192.168.163.136",
"192.168.163.137"]

2. We create a for loop to log in to each device in a sequence. We open the
SSH session and add the functions to open an active shell session on the
device.

for ip in host:

client = SSHClient()

client.set missing host key policy (AutoAddPolicy())
client.connect (hostname=ip, username="ubuntu", password=
"ubuntu")

commands = client.invoke_ shell(()

3. After that, we execute the necessary commands with the paramiko send
function and wait to get all the output. Finally, we collect the result in
human-readable ut£-8 format and display it in the output.

commands . send ("hostnamectl hostname\n")

sleep (1)
output = commands.recv(1000000) .decode ("utf-8")
print (£"\n\n---------—--———-——-—- \nConnected to: {ip}\n------

Example 8.1: Connect Ubuntu servers with paramiko
from paramiko import SSHClient, AutoAddPolicy
from time import sleep
host = ["192.168.163.135", "192.168.163.136", "192.168.163.137"]
for ip in host:
client = SSHClient()
client.set missing host key policy (AutoAddPolicy())
client.connect (hostname=ip, username="ubuntu",
password="ubuntu")
commands = client.invoke_ shell(()
commands . send ("hostnamectl hostname\n")

sleep (1)
output = commands.recv(1000000) .decode ("utf-8")
print (£"\n\n-------———-—--—-———- \nConnected to: {ip}\n-----------

-------- \n{output}")

The following output is quite long for a device because when we make an SSH
connection to the device, there is a banner that meets us with information about

the device and support page links. But we only try to collect the hostname
information, such as Server-1, Server-2, and Server-3. We can delete the
other data with some functions, like in the RE module. On the other hand, we
can use the netmiko module, which has clearer output according to the
paramiko module. We will use netmiko to connect servers and collect and
configure them in the following examples:

Connected to: 192.168.163.135

Welcome to Ubuntu 22.04.1 LTS (GNU/Linux 5.15.0-46-generic x86_64)
* Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage

0 updates can be applied immediately.

hostnamectl hostname

ubuntu@Server-1:~$ hostnamectl hostname

Server-1

ubuntu@Server-1:~$

Connected to: 192.168.163.136

Welcome to Ubuntu 22.04.1 LTS (GNU/Linux 5.15.0-46-generic x86_64)
* Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage

0 updates can be applied immediately.

hostnamectl hostname

ubuntu@Server-2:~$ hostnamectl hostname

Server-2

ubuntu@Server-2:~$

Connected to: 192.168.163.137

Welcome to Ubuntu 22.04.1 LTS (GNU/Linux 5.15.0-46-generic x86_64)
* Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage

0 updates can be applied immediately.

hostnamectl hostname

ubuntu@Server-3:~$ hostnamectl hostname
Server-3
ubuntu@Server-3:~$

Another alternative to using the paramiko module to connect servers is to use
the netmiko module. As it’s already well-explained in the previous chapters,
netmiko has shorter and simple code. Also, the output is much better than that
of paramiko.

In Example 8.2, we import the Netmiko module and add the device data that
netmiko needs to log in. We set the IP address, username, and password as
usual, but this time, the value of the device_ type key must be 1inux instead of
cisco. For Linux devices, we must always use 1inux for this key.

After that, we execute the uname -a command in the Linux machines, which
displays the output of device information, such as hostname, and OS and
version release information. When we wrote the send_command, we added the
command variable in the previous examples. In this example, we also add an
optional parameter, strip command, with value False. By default, its value is
True.

At the end, we print the output variable to see the result of the command. The
output is much more straightforward, and there is no banner of device
information at the beginning of the output. As netmiko removes it for us, we
only see the command output of the device. As we set strip command as False,
in the output, the code displays the uname -a command. If we don’t add it, it
will not show the command we execute on the device. We can also use this
parameter as False in the previous examples in network devices.

Example 8.2: Connect Ubuntu servers with Netmiko

from netmiko import Netmiko

host = ["192.168.163.135", "192.168.163.136", "192.168.163.137"]
for ip in host:

device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux"}
command = "uname -a"

net_ connect = Netmiko (**device)

output = net connect.send command(command, strip command=False)
net connect.disconnect()

print (£"{ip}: {output}\n")

Output:
192.168.163.135:uname -a

Linux Server-1 5.15.0-47-generic #51-Ubuntu SMP Thu Aug 11
07:51:15 UTC 2022 x86_64 x86_64 x86_ 64 GNU/Linux
192.168.163.136:uname -a

Linux Server-2 5.15.0-47-generic #51-Ubuntu SMP Thu Aug 11
07:51:15 UTC 2022 x86_ 64 x86_64 x86_64 GNU/Linux
192.168.163.137:uname -a

Linux Server-3 5.15.0-47-generic #51-Ubuntu SMP Thu Aug 11
07:51:15 UTC 2022 x86 64 x86 64 x86 64 GNU/Linux

Collect logs via syslog

In Example 8.3, we use the netmiko module to log in to servers and collect the
syslogs. Syslog is an essential file for Linux servers, and all the log data related
to the server is stored inside it. By default, it’s inside the /var/log/ directory.
To open a text file in the Linux terminal, we write the cat command, which
displays the file’s output. We only write cat FILENAME to show it. So, we
execute the cat command with the full path of the Syslog file in this example
and save the output in different files with the IP address information of three
devices.

By default, there is no paging in the Linux terminal. In network devices, there
is paging. For example, terminal length 0 needs to be entered in Cisco. In
paramiko examples, we enter it, but in netmiko, it automatically enters this
command inside the functions.

Example 8.3: Collect syslog data and save it to the file

from netmiko import Netmiko

host = ["192.168.163.135", "192.168.163.136", "192.168.163.137"]
for ip in host:

device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_type": "linux"}
command = "cat /var/log/syslog"

net connect = Netmiko (**device)
output = net connect.send command (command)
net_connect.disconnect()
with open (f"{ip} syslog.txt","a") as w:
w.write (output)
In Example 8.4, we collect the lines that include ssr or ssh words in the

Syslog. We use the pipeline and the grep word | grep to search for something
in the file. It’s similar to Cisco, such as | include . After that, we write

ssH\ | ssh, which means find ssH or ssh words in all lines. \| is used as the or
logical operator in Linux systems.

After we collect the SSH data, we save it to an individual text file with its IP
address. We write the emailing script from a Gmail account that we wrote in
the previous chapter.

Example 8.4: Collect Syslog data and send by email

from netmiko import Netmiko

import smtplib

from email import message

import mimetypes

def collect_configuration():
host = ["192.168.163.135", "192.168.163.136"
for ip in host:

, "192.168.163.137"]

device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_ type": "linux"}
command = "cat /var/log/syslog | grep 'SSH\|ssh'"
net connect = Netmiko (**device)
output = net connect.send command (command)
net connect.disconnect()
with open (f"{ip} syslog.txt","a") as w:
w.write (output)
return host
host = collect_configuration()
mail from = "example@gmail.com"
mail password = "16-DIGIT-CODE"
mail to = "example@gmail.com"
mail subject = "Router Configurations"
mail content = "Hi,\nYou can find the all configuration files in
the attachment.”
send = message.EmailMessage ()
send.add _header ("From", mail from)
send.add _header ("To", mail_ to)
send.add _header ("Subject", mail subject)
send.set_content (mail_ content)
for file in host:
filename = f"{file} syslog.txt"
with open(filename, "rb") as r:
attached file = r.read()

mime type, encoding = mimetypes.guess_type (filename)
send.add attachment (attached file, maintype=mime type.split("/")
[0], subtype=mime type.split("/")[1l], filename=filename)

with smtplib.SMTP_ SSL("smtp.gmail.com", 465) as smtp:
smtp.login(mail from, mail password)

smtp.sendmail (mail from, mail to, send.as_string())

Login servers with secure password

We constantly add passwords in scripts, but generally, these users and
passwords are unique to engineers. When we share the scripts with other team
members, we need to remove the password value from the script. On the other
hand, we have the option to enter the password when we execute the script.
Python language has a pretty good built-in module as the getpass. We use the
getpass function from this module, and it creates an input session when we
execute the script. If we run the code in the terminal writing Python
EXAMPLE . py, the code asks for the password.

However, if we use an IDE tool like Pycharm, the code gets stuck and does not
ask for the password by default. We need to change the setting in the Pycharm
tool.

In Figure 8.3, we enter the Run tab and click on the Edit Configurations
section.

E
PROJECT | g main.py

b i

PROJECT

o
o
)

Figure 8.3: Modifying Pycharm Configuration-1

In the new opening window, we need to enable the Emulate terminal in
output console feature, like in Figure 8.4, and close the window by clicking

on the apply button.

Figure 8.4: Modifying Pycharm Configuration-2

In Example 8.5, we import the getpass function from the getpass module. In
the device variable, we write the getpass () value for the password key instead
of the device password. The only difference in the following code is this.

Example 8.5: Login servers with the secure password with the getpass module
from netmiko import Netmiko

from getpass import getpass

host = "192.168.163.135"

device = {"host": host, "username": "ubuntu", "password":
getpass (), "device type": "linux"}
command = "uname -a"

net connect = Netmiko (**device)

show_output = net_connect.send command (command)
net connect.disconnect()

print (£"{host}: {show_output}\n")

When we execute the code, we can see the password: output to enter. We
manually enter the password in the output terminal. It’s also a secret password,
so we cannot see the output of the password value we enter from the keyboard.
It’s a secure way to enter a password.

Output:

Password:

192.168.163.135:

Linux Server-1 5.15.0-47-generic #51-Ubuntu SMP Thu Aug 11
07:51:15 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux

When we try to log in to multiple devices, if we create a loop in the previous
example and execute it, each device code asks for the password. So, if we have
100 devices to log in to, we must write the password 100 times.

In Example 8.6, we assign the getpass () function at the beginning of the code,
which is outside of the for loop. Then, we call this variable as the password
key. In the loop, the value of the password is always the password we enter
when executing the code.

Example 8.6: Log in to multiple devices with a secure password
from netmiko import Netmiko
from getpass import getpass
host = ["192.168.163.135", "192.168.163.136", "192.168.163.137"]
command = "uname -a"
password = getpass()
for ip in host:
device = {"host": ip, "username": "ubuntu", "password":
password, "device_ type": "linux"}
net connect = Netmiko (**device)
show_output = net_connect.send_ command (command)
net_connect.disconnect()

print(f"{ip}:{show_putput}\n")

There is only one Password: output. When we enter the password on the
terminal, it assigns the new value to the password variable. So, we manually
enter the password to collect the following data from three devices.

Output:

Password:

192.168.163.135:

Linux Server-1 5.15.0-46-generic #49-Ubuntu SMP Thu Aug 4 18:03:25
UTC 2022 x86_64 x86_64 x86_ 64 GNU/Linux

192.168.163.136:

Linux Server-2 5.15.0-46-generic #49-Ubuntu SMP Thu Aug 4 18:03:25
UTC 2022 x86 64 x86 64 x86 64 GNU/Linux

192.168.163.137:

Linux Server-3 5.15.0-46-generic #49-Ubuntu SMP Thu Aug 4 18:03:25
UTC 2022 x86_ 64 x86_64 x86_ 64 GNU/Linux

Collect CPU and memory levels

In Example 8.7, we collect CPU and memory (total, used, and free) data and
save it to an Excel file.The free -m command in Ubuntu is used to get
memory data.

ubuntu@Server-1:~$ free -m

total used free shared buff/cache available
Mem: 3889 651 1872 13 1365 2983
Swap: 2139 0 2139

Ubuntu’s top command is used to get memory data, but it’s a live log. So, it’s
frequently updated by default. Suppose we execute this command with
netmiko; the code gets stuck in this line because netmiko continues to the
following line in the code. If it finishes collecting the log from the device, it’s
infinite in the top command. So, we use the top -n 1 command. -n is used for
a number of iterations as limits. If we enter the value of -n as 1, it only gets the
data once. The top output is quite long, including memory usage, and shows
each application’s use of resources. So, we execute the top -n 1 | grep %Cpu
command to get the lines that include the word $cpu.

ubuntu@Server-1:~$ top -n 1 | grep %Cpu

%Cpu(s): 5,4 us, 5,4 sy, 0,0 ni, 89,2 id, 0,0 wa, 0,0

hi, 0,0 si, 0,0 st

1. We import the netmiko, RE, and pandas modules with their necessary
functions.
from netmiko import Netmiko
from re import findall
from pandas import DataFrame

2. We create empty lists with the following code. We also write the host
variable with the device management IP addresses.
memory total, memory free, memory used, cpu used, host list
= ([] for i in range(5))
host = ["192.168.163.135", "192.168.163.136",
"192.168.163.137"]

3. We create a for loop to log in to devices. Inside the loop, we create a
device dictionary with the keys and values that the netmiko module

needs to log in to the devices. We log in and execute two commands and
assign them to variables like mem output and cpu_output.

for ip in host:

device = {"host": ip, "username": "ubuntu", "password":

"ubuntu", "device_type": "linux"}

net_connect = Netmiko (**device)

mem output = net connect.send command("free -m",

strip command=False)

cpu_output = net connect.send command("top -n 1 | grep

%Cpu", strip command=False)

4. We can collect the hostname information with the find prompt ()
function in the netmiko module. So, we collect it and get only the
hostname data with the findall function. As there are some words like
the USERNAMEQGHOSTNAME: value in the prompt, we only try to get the
HOSTNAME value; that’s why we use the findall function.

hostname = findall("Q(.*):", net connect.find prompt())

5. We collect the data, and we use the findall function to get the specific
data for each value: CPU value and total, free and used memory. After
that, we assign each match to a particular list we created at the beginning
of the code.

total = findall("Mem:\s+(\d+)", mem output)

free = findall("Mem:\s+\d+\s+(\d+)", mem output)

used = findall ("Mem:\s+\d+\s+\d+\s+(\d+)", mem output)

cpu = findall ("\d+,\d+", cpu_output)

memory total.append(f"{total[0]} MB")

memory free.append(f"{free[0]} MB")

memory used.append (f"{used[0]} MB")

cpu_used.append (f"% {cpu[0]}")

host_list.append (hostname[0])
Instead of using the code in step 5, we can decrease the lines of code by
collecting only digits in the free -m command and getting the total,
free, and used data in the same list.

total = findall("\d+", mem output)

cpu = findall ("\d+,\d+", cpu_output)

memory total.append(f"{total[0]} MB")

memory free.append(f"{total[1l]} MB")

memory used.append(f"{total[2]} MB")

cpu_used.append (f"% {cpu[0]}")

host_list.append (hostname[0])

6. After the loop finishes, we use the pataFrame function to organize all the
lists we filled with data and save them to an Excel file with the to_excel
function.

df = DataFrame ({"Hostname": host list, "Total Memory":
memory total, "Free Memory": memory free, "Memory Usage":
memory used, "CPU Usage": cpu_used})

df.to_excel ("CPU-Memory Usage.xlsx", index=False)

Example 8.7: Collect CPU and memory levels of servers
from netmiko import Netmiko
from re import findall
from pandas import DataFrame
memory total, memory free, memory used, cpu used, host list = ([]
for i in range(5))
host = ["192.168.163.135", "192.168.163.136", "192.168.163.137"]
for ip in host:
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device type": "linux"}
net_connect = Netmiko (**device)
mem output = net connect.send command("free -m",
strip command=False)
cpu_output = net connect.send command("top -n 1 | grep %Cpu",
strip command=False)
hostname = findall("@(.*):", net connect.find prompt())
total = findall("Mem:\s+(\d+)", mem output)
free = findall ("Mem:\s+\d+\s+(\d+)", mem output)
used = findall ("Mem:\s+\d+\s+\d+\s+(\d+)", mem output)
cpu = findall("\d+,\d+", cpu_output)
memory total.append(f"{total[0]} MB")
memory free.append(f"{free[0]} MB")
memory used.append (f"{used[0]} MB")
cpu_used.append (f"% {cpu[0]}")
host list.append(hostname[0])
df = DataFrame ({"Hostname": host list, "Total Memory":
memory total, "Free Memory": memory free, "Memory Usage":
memory used, "CPU Usage": cpu_used})
df.to_excel ("CPU-Memory Usage.xlsx", index=False)

Figure 8.5 shows the Excel file content of the script in Example 8.7. There are
three servers which has total, free, and used memory count with CPU usage
data.

Hostname Total Memory Free Memory Memory Usage CPU Usage

Server-1 3889 MB 649 MB 1875 MB % 10,5
Server-2 3885 MB 659 MB 2147 MB %59
Server-3 3885 MB 640 MB 2160 MB % 2,9

Figure 8.5: Excel File Output of Example 8.7

Collect interface information

In Ubuntu, we use the ifconfig command to get all interface data from the
server. The ifconfig command software package must be installed to execute
this command, and we need to install its package by running sudo apt
install net-tools. When we run ifconfig in the Ubuntu terminal, we get
the following output. It has two interfaces named ens33 and 10 as loopback in
Server-1. In the following line, we have inet and the IP address, netmask and
the netmask address. We will collect this data for the following example.
ubuntu@Server-1:~$ ifconfig
ens33: flags=4163<UP,BROADCAST, RUNNING,MULTICAST> mtu 1500

inet 192.168.163.135 netmask 255.255.255.0 Dbroadcast

192.168.163.255

inet6 fe80::87fe:a97d:5c£f7:9625 prefixlen 64 scopeid

0x20<1link>

ether 00:0c:29:ff:0e:bl txqueuelen 1000 (Ethernet)

RX packets 29835 bytes 39126512 (39.1 MB)

RX errors 0 dropped 0 overruns 0 frame O

TX packets 14325 bytes 2328952 (2.3 MB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP, LOOPBACK,RUNNING> mtu 65536

inet 127.0.0.1 netmask 255.0.0.0

inet6 ::1 prefixlen 128 scopeid 0x10<host>

loop txqueuelen 1000 (Local Loopback)

RX packets 390 bytes 40395 (40.3 KB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 390 bytes 40395 (40.3 KB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

In Example 8.8, we collect the hostname, interface name, interface IP address,
and netmask from all devices and write them to an excel file.

1. We import the necessary modules and create empty lists to fill them with
data. And we log in to three devices, as we did in the earlier examples.

from netmiko import Netmiko
from re import findall
from pandas import DataFrame
list ipv4, list netmask, list _int, list hostname,
list int name = ([] for i in range(5))
host = ["192.168.163.135", "192.168.163.136",
"192.168.163.137"]

2. We collect the ifconfig command output inside the for loop from each
device. We get specific data with the findall function, such as the
hostname and interface name, inside the first or outer loop.

for ip in host:
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_ type": "linux"}
net connect = Netmiko (**device)
output = net_connect.send command("ifconfig")
hostname = findall("@(.*):", net connect.find prompt())
int name = findall("(.*): flags", output)

3. Inside the second or inner loop, we execute the ifconfig -a command
with the interface name we collected in the first loop. The ifconfig -a
INTERFACE NAME CLI command is used to get the only output of a
specified interface. So, we get only one interface in each iteration and
collect the interface IP address and netmask.

for interface in int name:
output = net_connect.send command(f"ifconfig -a
{interfacel}")

ipv4d = findall("inet (.*) netmask", output)

netmask = findall ("netmask (\d+.\d+.\d+.\d+)", output)

4. After we collect all four sets of data from the logs, we append them to the
lists. We are still inside the second loop.

list ipv4.append(ipv4[0])

list netmask.append(netmask([0])
list hostname.append (hostname[0])
list _int name.append(interface)

5. Finally, we exit both loops and save the items of the lists to an Excel file.
df = DataFrame ({"Hostname": list hostname, "Interface
Name": list int name, "IP Address": list ipv4, "Netmask":
list_netmask, })

df.to_excel ("Interface Information.xlsx", index=False)

Example 8.8: Collect interface information of servers
from netmiko import Netmiko
from re import findall
from pandas import DataFrame
list_ipv4, list netmask, list_int, list hostname, list int name =
([] for i in range(5))
host = ["192.168.163.135", "192.168.163.136", "192.168.163.137"]
for ip in host:
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_ type": "linux"}
net connect = Netmiko (**device)
output = net connect.send command("ifconfig")
hostname = findall("Q(.*):", net connect.find prompt())
int _name = findall("(.*): flags", output)
for interface in int name:
output = net_connect.send command(f"ifconfig -a {interface}")
ipv4d = findall("inet (.*) netmask", output)
netmask = findall ("netmask (\d+.\d+.\d+.\d+)", output)
list ipv4.append(ipv4[0])
list netmask.append(netmask[0])
list hostname.append (hostname[0])
list _int name.append(interface)
df = DataFrame ({"Hostname": list hostname, "Interface Name":
list_int name, "IP Address": list ipv4, "Netmask": list netmask,
3]

df.to_excel ("Interface Information.xlsx", index=False)

In Figure 8.6, we can see the output of the script in Example 8.8. The
hostname, interface name, interface IP address, and the netmask of this IP
address are filled in the Excel file in order.

_ Hostname | Interface Name | IPAddress | Netmask
Server-1 ens33 192.168.163.135 |[255.255.255.0
Server-1 lo 127.0.0.1 255.0.0.0
Server-2 ens33 192.168.163.136 255.255.255.0
Server-2 lo 127.0.0.1 255.0.0.0
Server-3 ens33 192.168.163.137 255.255.255.0
Server-3 lo 127.0.0.1 255.0.0.0

Figure 8.6: Excel File Output of Example 8.8

Collect type and permission of files

We can check the file list in Linux machines with the 1s command in the
terminal. The following output has five items with three folders and two files.

ubuntu@Server-1:~$ 1ls

Desktop Downloads nohup.out Pictures test.txt

We can run the 1s -1 command to get detailed information about the items,
such as the item type, permissions, user information of creation, file size, and
creation time. We have the following output after running the 1s -1 command
in Server-1.

ubuntu@Server-1:~$ 1ls -1

total 28

drwxr-xr-x 2 ubuntu server-1 4096 Aug 28 20:38 Desktop

drwxr-xr-x 2 ubuntu server-1 4096 Aug 28 20:38 Downloads
—-rw-————-—-—- 1 ubuntu server-1 0 Sep 1 08:30 nohup.out
dr--r--r-- 2 ubuntu server-1 4096 Aug 28 20:38 Pictures

—————————— 1 ubuntu server-1 20 Sep 1 08:19 test.txt

Each file’s line starts with the 4 or - character. d means that the item is a
directory, and - means that the item is a file. So, we can easily understand the
item type, whether a file or a folder.

After the first character, the following three characters specify the user
permission. These characters can be r for reading permission, w for writing
permission, x for executing permission, and - for no permission.

"r" - Read Permission

"w" - Write Permission

"x" - Execute Permission

- No Permission

We can change the permission of the items with the chmod command. We write
- to remove permissions and + to add permissions.

To delete all permissions: chmod -rwx test.txt

To add all permissions: chmod +rwx test.txt

In Example 8.9, we collect the items as folder or file with its extension, file
type as file or folder, and permissions as read, write, execute, or none.

1. We import the necessary functions from the netmiko and Re modules. We
add a device variable to let netmiko to log in to the server.
from netmiko import Netmiko
from re import findall,split
device = {"host": "192.168.163.135", "username'": "ubuntu",

"password": "ubuntu", "device_ type": "linux"}

2. After we connect to the device, we run the 1s -1 command and use the
split function to split each line into an item in a list. So, the output
variable is a list. After that, we delete two items at the beginning of the
list with the del output[:2] function because these two lines are
unnecessary in the output of the 1s -1 command.

net connect = Netmiko (**device)
output = split("\n",net_connect.send command("ls -1"))
del output]:2]

3. Inside the for loop, we iterate each item in the output list. We collect the
file name with the findall function. In each item, the first value or
character specifies the type as folder or file. So if we use item[0], it gets
this value. If we use item[1:4], it gets the user permission value, such as
rwx or a different value.

for item in output:
file name = findall("\d+:\d+ (.*)",item)
print (f"File/Directory Name: {file name[0]}")

4. So, we create two if conditions: one to find the item type, and one to
find the permission type. We had many options in the permission type.
We add some permission types with their meanings, such as rw-, as the
Read/Write Permission.

if item[0] == "d":

print ("Type: Dictionary")
else:

print ("Type: File")
if item[1:4] == "r--":

print (f"User Permission: Read as '{item[1:4]}'\n")
elif item[l:4] == "rw-":

print (f"User Permission: Read/Write as '{item[1:4]}'\n")
elif item[l:4] == "rwx":
print (f"User Permission: Read/Write/Execute as
"{item[1:4]}'\n")
elif item[l:4] == "---":

print (f"User Permission: None as '{item[1:4]}'\n")

Example 8.9: Collect file type and permissions in a directory of a server
from netmiko import Netmiko
from re import findall,split
device = {"host": "192.168.163.135", "username": "ubuntu",
"password": "ubuntu", "device_ type": "linux"}
net_connect = Netmiko (**device)
output = split("\n",net_connect.send_pommand("ls -1"))
del output][:2]
for item in output:
file name = findall("\d+:\d+ (.*)",item)
print (f"File/Directory Name: {file name[0]}")
if item[0] == "d":
print ("Type: Directory")
else:
print ("Type: File")
if item[l:4] == "r--":
print (f"User Permission: Read as '{item[1:4]}'\n")
elif item[1l:4] == "rw-":
print (f"User Permission: Read/Write as '{item[1:4]}'\n")
elif item[l:4] == "rwx":
print (f"User Permission: Read/Write/Execute as
'"{item[1:4]}'\n")
elif item[l:4] == "---":
print (f"User Permission: None as '{item[1:4]}'\n")

Output:

File/Directory Name: Desktop

Type: Directory

User Permission: Read/Write/Execute as 'rwx'
File/Directory Name: Downloads

Type: Directory

User Permission: Read/Write/Execute as 'rwx'
File/Directory Name: nohup.out

Type: File

User Permission: Read/Write as 'rw-'
File/Directory Name: Pictures

Type: Directory

User Permission: Read as 'r—-'
File/Directory Name: test.txt

Type: File

User Permission: None as '—---'

Server configurations

Here, we will focus on configuring servers with Python scripts. We will use
netmiko and paramiko modules in the following examples, and we can create
users, install packages, transfer files both ways, reboot servers, and kill
processes with the scripts.

Create users in servers

In Example 8.10, we create a user in the servers and collect their UID, GID,
and group information to display in the output. We use the Jinja2 template
from a file and data from the YAML file in the following:

info.yaml

user name: test user

group name: test group

command list.txt

useradd {{user_name}}

addgroup {{group_ name}}

usermod -a -G {{group_name}} {{user_name}}
id {{user_name}}

1. We import the necessary functions from the netmiko, RE, jinja2, and
yaml modules. Then, we create a host variable for the device
management [P addresses.

from netmiko import Netmiko

from re import findall, split

from jinja2 import Environment, FileSystemlLoader
from yaml import safe_load

host = ["192.168.163.135", "192.168.163.136",
"192.168.163.137"]

2. We use the Environment function from the jinja2 module with the
FileSystemLoader function to load the jinja platform. After that, we call
the get template function to get the jinja codes.

env = Environment (loader=FileSystemLoader ("."))

template = env.get template("command list.txt")

3. We open the YAML file, read it with the safe 1oad function, and get the
values. We get the username data from the file to display in the output.
with open("info.yml") as r:
data = safe load(r)

user name = data["user_ name"]

4. We render or merge the Jinja commands with the YAML file with the
render function and create a list of items divided line by line.
command = template.render (data)

command = split("\n", command)

5. Inside a for loop, we create a device variable and add the secret key
with its value as ubuntu. It’s the root user’s password. We can set the root
password by entering the sudo passwd root line in the terminal and
putting the new password in the following line. After that, we log in to
devices and execute the command variable. We get the hostname value
with the find prompt function, and then we check the uid information in
the output.

for ip in host:
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device type": "linux", "secret": "ubuntu"}
net connect = Netmiko (**device)
output = net_connect.send config set (command)
hostname = findall("@(.*):", net connect.find prompt())
result = findall ("uid", output)

6. If there is a uid word in the output, it means the user has been created
successfully. Otherwise, the code has failed to create a user in the server.
If the result variable has a value, we collect the uid, gid, and groups
values and display them in the output.

if result:
uid = findall ("uid=(.*) gid",output)
gid = findall("gid=(.*) ",output)

groups = findall ("groups=(.*)", output)
print (f"{hostname[0]}: User '{user name}' is created and
assigned to a group")
print (£"UID: {uid[0]} \nGID: {gid[0]} \nGroups:
{groups[0]}\n")
else:

print("Failed to create user and group")

Example 8.10: Create users in servers
from netmiko import Netmiko
from re import findall, split
from jinja2 import Environment, FileSystemlLoader
from yaml import safe_ load
host = ["192.168.163.135", "192.168.163.136", "192.168.163.137"]
env = Environment (loader=FileSystemLoader ("."))
template = env.get template("command list.txt")
with open("info.yml") as r:
data = safe load(r)
user name = data["user name"]
command = template.render (data)
command = split("\n", command)
for ip in host:
device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_ type": "linux", "secret": "ubuntu"}
net connect = Netmiko (**device)
output = net connect.send config set (command)
hostname = findall("Q(.*):", net connect.find prompt())
result = findall ("uid",output)
if result:
uid = findall ("uid=(.*) gid" , output)
gid = findall("gid=(.*) " ,output)
groups = findall ("groups=(.*)",output)
print (f"{hostname[0]}: User '{user name}' is created and
assigned to a group")
print (£"UID: {uid[0]} \nGID: {gid[0]} \nGroups:
{groups[0]}\n")
else:
print("Failed to create user and group")

In the output, three device outputs create a test_user, showing UID, GID, and
groups.

Output:

Server-1: User 'test user' is created and assigned to a group
UID: 1005 (test_user)

GID: 1008 (test_user)

Groups: 1008 (test user),1009 (test_group)

Server-2: User 'test user' is created and assigned to a group
UID: 1006 (test_user)

GID: 1009 (test_user)

Groups: 1009 (test_user) ,1010(test_group)

Server-3: User 'test user' is created and assigned to a group
UID: 1006 (test_user)

GID: 1011 (test_user)

Groups: 1011 (test user) ,1012(test_group)

Install packages

In Example 8.11, we install a package from the internet to a server. So, the
server must have an internet connection to download the package and install it.

1. We import the Nemiko function from the netmiko module and set a host
variable as the server management IP address. After that, we create a
device variable with its data to log in to the device by netmiko. We also
add the secret key inside the variable because in Ubuntu, we must enter
the admin mode to install a package or run the command by adding sudo
at the beginning of the line, such as sudo apt-get install
PACKAGE NAME. Then, we add the package variable by adding the package
name as a value.

from netmiko import Netmiko

host = "192.168.163.135"

device = {"host": host, "username": "ubuntu", "password":
"ubuntu", "device_ type": "linux", "secret": "ubuntu"}

package = "htop"

2. We connect to the device and send the command with the
send config_set function. This function executes the commands in the
network devices’ configuration terminal or admin mode. It’s the same in
Linux, and the command runs in the admin mode. So, we write apt-get
install PACKAGE NaME. In the following code, we add -y at the end of

the command. By default, if the size is large, such as 10MB or more, the
Ubuntu machine asks us whether or not to continue to download the
package from the internet. The server waits until we enter ¥ or N. It stays
infinite if we do not enter v into the question. Netmiko gives a timeout
error when the command doesn’t finish. To prevent this issue, we can add
-y at the end of the command, regardless of the package size, so that the
code works fine. We can also add the read_timeout parameter to extend
the timeout if the command doesn’t finish in the default timeout period. If
we have a large file to download, it takes much more time, depending on
the local internet connection. We can set the timeout value with this
parameter.

net connect = Netmiko (**device)

output =net_connect.send config set(f"apt-get install

{package} -y",read timeout=1000)

print (output)

3. After we download the file, we test it by writing the PACKAGE NaAME --
version command in the user mode of the server. Each package has
version information, and we can see it with that command. If the package
installation fails, we can see it with this output.

output = net_connect.send command(f"{package} --version")
print (£"{host}: {package} --version{output}\n")
net connect.disconnect()

Example 8.11: Install a package on a server

from netmiko import Netmiko

host = "192.168.163.135"

device = {"host": host, "username": "ubuntu", "password":
"ubuntu", "device type": "linux", "secret": "ubuntu"}
package = "htop"

net connect = Netmiko (**device)

output = net connect.send config set(f"apt-get install {package} -
y")

print (output)

output = net connect.send command (f" {package} --version")
print (£"{host}: {package} --version{output}\n")
net_connect.disconnect()

When the code executes, it automatically enters Ubuntu’s admin or root user to
run the configuration change command, like in Cisco or other network devices.

In Ubuntu, it’s sudo -s. We already added the secret key and its value as
ubuntu, which is the root user’s password. We set this password after we log in
to the server. After that, it executes the command without sudo at the
beginning of the command. We add -y at the end of the line because if we
download a large package, it will not ask the user to continue or stop the
installation. If we don’t enter -y and the size is large, the code throws an error
because of timeout.

Output:

192.168.163.135:sudo -s

[sudo] password for ubuntu:
root@Server-1:/home/ubuntu# apt-get install htop -y
Reading package lists.. 0%

Preparing to unpack ../htop_3.0.5-7build2_amdé64.deb ..
Progress: [0%] [..... .] 87Progress: [20%] [######H##HH######HE...... .]
exit

ubuntu@Server-1:~$

192.168.163.135: htop --version

htop 3.0.5

In Example 8.12, we install multiple packages on various servers. We use the
concurrent module to execute the commands simultaneously on three devices.
So, we have speedy installation of the packages on many devices. We create a
function, as we did in the previous example, to log in to the device and execute
the commands. And we have a device IP list as the host variable. We combine
package installation function and list in the ThreadPoolExecutor.

Example 8.12: Install packages in servers simultaneously

from netmiko import Netmiko

from concurrent. futures import ThreadPoolExecutor

host = ["192.168.163.135", "192.168.163.136", "192.168.163.137"]
def package_installation (ip):

device = {"host": ip, "username": "ubuntu", "password":
"ubuntu", "device_ type": "linux", "secret": "ubuntu"}
package = ["htop","nano", "vim", "nmap"]

for pack in package:
net_connect = Netmiko (**device)
net_connect.send config set(f"sudo apt-get install {pack} -y")
output = net connect.send command(f"{pack} --version")
hostname = net_ connect.find prompt ()
print (£"{hostname}: {pack} --version{output}\n")

net connect.disconnect()
with ThreadPoolExecutor (max workers=5) as executor:
result = executor.map (package_installation, host)

Transfer files with Paramiko

We can transfer files from our local PC to remote servers, as we did in the
network devices in the previous chapters. We can use the paramiko module to
transfer files both ways. We can create a function to connect devices with the
SFTP protocol. After that, we can create two additional functions for
uploading and downloading in both sides. We use the get and put functions to
do this. Finally, we can call either the sftp upload or the sftp download
function according to our request.

Example 8.13: Transfer files with the paramiko module
from paramiko import SSHClient, AutoAddPolicy
def sftp connect