

Python Network
Programming
Techniques

50 real-world recipes to automate infrastructure
networks and overcome networking challenges
with Python

Marcel Neidinger

BIRMINGHAM—MUMBAI

Python Network Programming Techniques
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Vijin Boricha
Publishing Product Manager: Yogesh Deokar
Senior Editor: Sangeeta Purkayastha
Content Development Editor: Nihar Kapadia
Technical Editor: Shruthi Shetty
Copy Editor: Safis Editing
Project Coordinator: Shagun Saini
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Nilesh Mohite

First published: September 2021
Production reference: 1120821

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83864-663-9
www.packt.com

http://www.packt.com

To my mom and dad – the most important writers in my life.

And to my colleague, Julio, without whom I wouldn't be where I am today.

Thank you for everything you have done for me.

Contributors

About the author
Marcel Neidinger started to program at the age of 10 and currently works as an API and
programmability lead for the EMEAR Systems Engineering organization at Cisco Systems.
Specifically, he works with customers and partners to build custom solutions using
programmability and APIs.

Besides having a bachelor's degree in computer science, he is also a Cisco Certified DevNet
Associate as well as a Cisco Certified DevNet Specialist for enterprise network automation.

You can find him on Twitter at squ4rks and on GitHub at squ4rks.

I want to thank my manager, Frans Wittenberg, and my director, Koen
Jacobs, for enabling me to write this book. Thanks to Frederic Wagner for

all the support inside and outside of work while writing this. Michael, Sven,
Simon, Bernhard, Nikola, Christian, and Malte – thanks for bearing with

me during this time.

About the reviewers
Wang Yin Parry, CCIE No. 40245, is a senior network engineer at King Abdullah
University of Science and Technology (KAUST) in Saudi Arabia. Prior to working at
KAUST, Parry left his footprints in the Royal Bank of Scotland, Apple, NCS, Equinix, and
AT&T in Singapore. Parry has 12 years of experience in the computer networking industry
and has certifications from Cisco, Microsoft, HPE, and Aruba. Parry is a NetDevOps
evangelist in the Sinophone world; he was one of the first authors to publish Python
tutorial books for network engineers in the Chinese-speaking world. His books The Road to
Python for Network Engineers and Manage IT Infrastructure Using Python were respectively
published in Mainland China and Taiwan in November 2020 and May 2021.

I started my journey in NetDevOps in my second year at KAUST in 2017.
I could never have imagined it would be so successful in the years to come.
I've been blessed with taking part in lots of great projects over the last few
years at KAUST. I'd like to thank my team, in particular Khalid Mustafa,

Kevin Sale, and Gary Corbett, for encouraging me and giving me the
chance to participate in projects that give me the chance to apply what I

have learned in the real world.

Rickard Körkkö is a NetDevOps consultant at SDNit, where he's part of a group
of experienced technical specialists with a great interest in, and focus on, emerging
network technologies.

He's a self-taught programmer with a primary focus on Python. His daily work includes
working with orchestration tools such as Ansible to manage network devices.

He has also served as a technical reviewer for the book Mastering Python Networking,
Third Edition, by Eric Chou.

Table of Contents
Preface

1

A Primer on Python 3
Technical requirements � 2
Assigning variables in Python� 2
Getting ready� 2
How to do it…� 3
How it works…� 5

Converting between data types
in Python� 6
Getting ready� 6
How to do it…� 6
How it works…� 7

Looping over lists in Python� 8
Getting ready� 8
How to do it…� 8
How it works…� 9
There's more…� 9

Controlling the flow of a Python
program using if statements� 10
Getting ready� 10
How to do it…� 10
How it works…� 11
There's more…� 12

Executing code until a condition
is met using while loops� 12
Getting ready� 13
How to do it…� 13
How it works…� 14
There's more…� 14

Writing reusable code with
functions� 15
Getting ready� 15
How to do it…� 15
How it works…� 16
There's more…� 16

Storing and accessing key-value
pairs using dictionaries� 17
Getting ready� 17
How to do it…� 18
How it works…� 20
There's more…� 20

Importing modules from the
standard library� 21
Getting ready� 21
How to do it…� 21

viii Table of Contents

How it works…� 23
There's more…� 23

Installing modules from the PyPI� 24

Getting ready� 24
How to do it…� 24
How it works…� 25

2
Connecting to Network Devices via SSH Using Paramiko

Technical requirements � 28
Initiating an SSH session
with Paramiko� 28
Getting ready� 28
How to do it...� 29
How it works...� 30
There's more...� 31

Executing a command via SSH� 32
Getting ready� 32
How to do it...� 33
How it works...� 34

Reading the output of an
executed command� 34
Getting ready� 34
How to do it...� 34
How it works...� 35
There's more...� 36

Executing the same command
against multiple devices� 36

Getting ready� 36
How to do it...� 37
How it works...� 38

Executing a sequence of
commands� 39
Getting ready� 39
How to do it...� 39
How it works...� 41

Using public/private keys for
authentication� 41
Getting ready� 41
How to do it...� 42
How it works...� 43
There's more...� 43

Loading local SSH configuration� 44
Getting ready� 44
How to do it...� 44
How it works...� 46

3
Building Configuration Templates Using Jinja2

Technical requirements� 48
Loading Jinja2 templates
in Python� 48
Getting ready� 49
How to do it...� 49

How it works...� 50
There's more...� 50

Passing variables from Python
to a template� 50
Getting ready� 51

Table of Contents ix

How to do it...� 51
How it works...� 52
There's more...� 52

Writing your rendered template
to a file� 53
Getting ready� 53
How to do it� 53
How it works...� 54

Using for-loops in Jinja2 to
configure an access list� 54
Getting ready� 55
How to do it...� 55
How it works...� 56
There's more...� 57

Creating a port configuration
template using if-clauses
in Jinja2� 57
Getting ready� 58
How to do it...� 58
How it works...� 59

There's more...� 60

Creating modular templates
using Jinja2's import methods� 60
Getting ready� 61
How to do it...� 61
How it works...� 62
There's more...� 62

Using Python functions from
within your template with
Jinja2 filters� 63
Getting ready� 64
How to do it...� 64
How it works...� 66
There's more...� 66

Structuring your configuration
template with blocks and
template inheritance� 67
Getting ready� 67
How to do it...� 67
How it works...� 68
There's more...� 69

4
Configuring Network Devices Using Netmiko

Technical requirements � 72
Connecting to a network device
using netmiko� 72
Getting ready� 73
How to do it...� 73
How it works...� 74
There's more...� 76

Sending commands using
netmiko� 77
Getting ready� 78
How to do it...� 78

How it works...� 79

Retrieving command outputs as
structured Python data using
netmiko and Genie � 79
Getting ready� 80
How to do it...� 80
How it works...� 83

Gathering facts using netmiko� 83
Getting ready� 84
How to do it...� 84
How it works...� 86

x Table of Contents

There's more...� 87

Connecting to multiple devices� 87
Getting ready� 87
How to do it...� 88
How it works...� 89
There's more...� 90

Creating and applying a
configuration template with
Jinja2 and netmiko� 90
Getting ready� 91
How to do it...� 91
How it works...� 93
There's more...� 94

Copying files to a device
using netmiko� 94
Getting ready� 94
How to do it...� 94
How it works...� 95

There's more...� 96

Escalating privileges
with netmiko� 96
Getting ready� 97
How to do it...� 97
How it works...� 98

Authenticating using
public-private keys with netmiko�98
Getting ready� 99
How to do it...� 99
How it works...� 100

Handling commands that
prompt for information
using netmiko � 100
Getting ready� 101
How to do it...� 101
How it works...� 102
There's more...� 103

5
Model-Driven Programmability with NETCONF and ncclient

Technical requirements� 106
Revisiting the NETCONF and
YANG modules� 107
Connecting to a network device
using ncclient� 110
Getting ready� 111
How to do it…� 111
How it works…� 112

Using NETCONF and ncclient
to retrieve the running
configuration� 113
Getting ready� 113
How to do it…� 114
How it works…� 115

There's more…� 116

Using NETCONF and ncclient
to change the starting
configuration� 117
Getting ready� 117
How to do it…� 117
How it works…� 118

Retrieving an interface
configuration using NETCONF
and ncclient� 119
Getting ready� 119
How to do it…� 119
How it works…� 121

Table of Contents xi

Changing an interface
configuration using NETCONF
and ncclient� 122
Getting ready� 122
How to do it…� 122
How it works…� 123

Reacting to event notifications
using NETCONF and ncclient� 124
Getting ready� 124
How to do it…� 125
How it works…� 126

6
Automating Complex Multi-Vendor Networks with NAPALM

Technical requirements� 128
Connecting to devices
from different vendors
using NAPALM� 129
Getting ready� 129
How to do it…� 129
How it works…� 130
There's more…� 131

Issuing commands to a device
using NAPALM� 131
Getting ready� 131
How to do it…� 132
How it works…� 133

Testing network reachability
using ping and NAPALM� 134
Getting ready� 134
How to do it…� 134
How it works…� 135

Backing up your device
configuration using NAPALM� 136
Getting ready� 137
How to do it…� 137

How it works…� 138

Gathering facts about your
network device using NAPALM� 139
Getting ready� 139
How to do it…� 140
How it works…� 141

Creating and applying a
configuration template with
jinja2 and NAPALM� 143
Getting ready� 143
How to do it…� 144
How it works…� 146

Rolling back configuration
changes using NAPALM� 147
Getting ready� 147
How to do it…� 147
How it works…� 149

Validating deployments
using NAPALM� 150
Getting ready� 150
How to do it…� 150
How it works…� 152

xii Table of Contents

7
Automating Your Network Tests and Deployments with
pyATS and Genie

Technical requirements� 154
Revisiting the concept
of testing� 155
Creating a pyATS testbed file� 156
Getting ready� 156
How to do it…� 157
How it works…� 158

Connecting to your device and
issuing commands using pyATS� 158
Getting ready� 159
How to do it…� 159
How it works…� 160

Retrieving your device's current
state
using pyATS� 160
Getting ready� 161

How to do it…� 161
How it works…� 162

Using Genie Conf objects
to create a portable
configuration script� 163
Getting ready� 163
How to do it…� 163
How it works…� 165
There's more…� 165

Comparing your device's
current state to a previously
learned state� 166
Getting ready� 166
How to do it…� 167
How it works…� 168

8
Configuring Devices Using RESTCONF and requests

Technical requirements� 170
Revisiting HTTP's request-
response model and
RESTCONF principles� 171
How does HTTP work?� 171
How RESTCONF builds on top of HTTP� 176

Making HTTP requests using
the requests module in Python� 177
Getting ready� 177
How to do it…� 178
How it works…� 179

There's more…� 180

Retrieving all interfaces of
a device using RESTCONF
and requests� 182
Getting ready� 182
How to do it…� 182
How it works…� 184
There's more…� 184

Creating a VLAN using
RESTCONF and requests� 186
Getting ready� 186

Table of Contents xiii

How to do it…� 186
How it works…� 188

Updating a VLAN using
RESTCONF and requests� 188
Getting ready� 188
How to do it…� 189
How it works…� 190

There's more…� 191

Deleting a VLAN using
RESTCONF and requests� 191
Getting ready� 191
How to do it…� 191
How it works…� 193

9
Consuming Controllers and High-Level Networking APIs with
requests

Technical requirements � 196
Authenticating web requests� 197
Passing a username-password
combination as authentication data in
a request� 198
Passing a token to a request using
custom header fields� 199

Storing authentication
metadata between requests
using sessions� 200
Getting ready� 200
How to do it…� 201
How it works…� 202
There's more…� 203

Retrieving a list of Meraki
networks� 203
Getting ready� 204
How to do it…� 204
How it works…� 206
There's more…� 206

Retrieving usage details
and connected clients for
a Meraki network� 207
Getting ready� 207

How to do it…� 207
How it works…� 209
There's more…� 209

Rebooting a Meraki device� 210
Getting ready� 210
How to do it…� 210
How it works…� 212
There's more…� 212

Retrieving channel usage for
your Meraki access point� 213
Getting ready� 213
How to do it…� 213
How it works…� 215
There's more…� 215

Updating the switchport
configuration of a
Meraki device� 216
Getting ready� 216
How to do it…� 216
How it works…� 218

Deleting the QoS rules on
a Meraki device� 218
Getting ready� 218

xiv Table of Contents

How to do it…� 218
How it works…� 220
There's more…� 220

Using webhooks to
programmatically react to
an AP going down� 221
Getting ready� 221
How to do it…� 222
How it works…� 223

10
Incorporating your Python Scripts into an Existing Workflow
by Writing Custom Ansible Modules

Technical requirements � 226
Setting up the module
structure� 227
Getting ready� 227
How to do it…� 227
How it works…� 229
There's more…� 230

Documenting your module� 231
Getting ready� 231
How to do it…� 232
How it works…� 234

Passing information into
your module� 235
Getting ready� 235

How to do it…� 236
How it works…� 239

Using Ansible's built-in
functionality to do
web requests� 240
Getting ready� 240
How to do it…� 241
How it works…� 245

Packaging and calling
your modules from
Ansible playbooks� 246
Getting ready� 247
How to do it…� 247
How it works…� 248
There's more…� 249

11
Automating AWS Cloud Networking Infrastructure Using the
AWS Python SDK

Technical requirements � 252
Setting up the library to
interact with your AWS account�253
Getting ready� 253
How to do it…� 253

How it works…� 255
There's more…� 255

Collecting information about
your cloud networking
resources� 256

Table of Contents xv

Getting ready� 256
How to do it…� 257
How it works…� 258

Starting EC2 instances� 260
Getting ready� 260
How to do it…� 261
How it works…� 262

Creating a VPC� 263
Getting ready� 264
How to do it…� 264

How it works…� 265
There's more…� 266

Subnetting your VPC� 266
Getting ready� 266
How to do it…� 267
How it works…� 269

Changing routes in your VPC� 269
Getting ready� 270
How to do it…� 270
How it works…� 272

12
Automating your Network Security Using Python and the
Firepower APIs

Technical requirements � 274
Exploring the API Explorer� 275
Authenticating against the
FMC REST API� 279
Getting ready� 280
How to do it…� 280
How it works…� 282
There's more…� 283

Retrieving access policies� 283
Getting ready� 284
How to do it…� 284
How it works…� 288

Changing access policies� 288
Getting ready� 288

How to do it…� 289
How it works…� 292

Retrieving access rules� 292
Getting ready� 292
How to do it…� 292
How it works…� 295

Changing access rules� 296
Getting ready� 296
How to do it…� 296
How it works…� 299

Deleting access rules� 300
Getting ready� 300
How to do it…� 300
How it works…� 303

Other Books You May Enjoy
Index

Preface
Networks and the connectivity they provide play a crucial role in the smooth operation of
your business. However, with the rising pressure put on our networking infrastructure by
ever-increasing traffic, paired with more and more devices sending and receiving traffic
from more and more destinations both inside and outside of our networks, as well as the
need to change configurations faster, more reliably, and possibly without any downtime and
automation, becomes a central tool when tackling our modern infrastructure demands.

In this book, we will use Python to get hands-on experience of how to automate different
aspects of our networks. With recipes, each chapter introduces you to one Python package
used for network automation. From using a Python script to sending configuration
commands to a network device via SSH to interacting with cloud-based REST APIs, each
chapter introduces you to the tools needed to get started.

Who this book is for
Are you a network or infrastructure engineer who wants to get started using Python to
automate your network? Then this book will help you to get started by teaching you,
using hands-on examples, the programmability aspects and Python packages needed to
complement your networking knowledge and get started with network automation.

What this book covers
Chapter 1, A Primer to Python 3, covers the basic concepts of Python used throughout
this book. We will cover variables, loops, basic data structures, and flow control as well as
concepts such as functions that help make scripts more readable.

Chapter 2, Connecting to Network Devices via SSH Using Paramiko, covers how to establish
an SSH connection to our network device using Python and the paramiko package. We
will then use this established connection to issue simple commands and read basic output
back from the devices.

xviii Preface

Chapter 3, Building Configuration Templates Using Jinja2, teaches you how to create
templates for configuration files that can be filled with data provided by the Python
script using Python and jinja2, a widely used templating language. Using loops, control
structures, and inheritance within jinja2 templates, we will build highly customizable
configuration templates.

Chapter 4, Configuring Network Devices Using Netmiko, looks at netmiko, which is built on
top of paramiko. The netmiko package provides abstraction around SSH interactions with
network devices of multiple vendors. Using netmiko, we will interact with the network
device to retrieve status information and apply configuration changes.

Chapter 5, Model-Driven Programmability with NETCONF and ncclient, covers how
model-driven programmability allows the user to specify the desired state of a networking
infrastructure using a module that then gets applied to the device. We will use the
ncclient package to change networking devices based on their YANG models.

Chapter 6, Automating Complex Multi-Vendor Networks with NAPALM, looks at
NAPALM, which allows developers to automate complex multi-vendor networks
using a unified interface. In this chapter, we will see examples of how to automate the
configuration of devices from different vendors and validate these deployments.

Chapter 7, Automating Your Network Tests and Deployments with pyATS and Genie, looks
at how automated network tests allow you to verify the success of your change quicker and
find potential errors introduced by your change more easily. In this chapter, we will use
pyATS and Genie to go from simple connectivity tests to advanced state tests for a variety
of devices.

Chapter 8, Configuring Devices Using RESTCONF and requests, revisits model-driven
programmability by using RESTCONF, a protocol that exposes a subset of NETCONF
commands via HTTP(S). We will explore the requests package to send different
RESTCONF JSON payloads to network devices.

Chapter 9, Consuming Controllers and High-Level Networking APIs with requests, discusses
how most modern network controllers provide a REST API to make interaction with the
underlying network infrastructure more uniform and easy to consume. In this chapter, we
will learn how to query REST APIs using the requests package to retrieve information
from and apply changes to multiple network devices.

Chapter 10, Incorporating Your Python Scripts into an Existing Workflow by Writing
Custom Ansible Modules, covers Ansible, which is one of the most common tools for the
automation of IT systems in the world. Its power comes from the variety of modules that
provide functionality, and in this chapter, you'll learn how to write such a module yourself.
This will allow you to call your Python scripts written in previous chapters from Ansible.

Preface xix

Chapter 11, Automating AWS Cloud Networking Infrastructure Using the AWS Python
SDK, looks at Amazon Web Services (AWS), which is one of the biggest cloud providers
in the world. In this chapter, we will use the AWS API and its Python library boto3 to
administer our cloud network.

Chapter 12, Automating Your Network Security Using Python and Firepower APIs, discusses
how security is one of the biggest concerns in modern network engineering. In this
chapter, we will have a look at how to automate our network security using the APIs
available in Cisco's Firepower products and the requests module.

To get the most out of this book
This book requires you to have a version of Python, preferably Python 3, installed. All
scripts have been tested against Python version 3.8 on Mac OS X and Linux but should
also work on Windows.

Chapter 7, Automating Your Network Tests and Deployments with pyATS and Genie,
and Chapter 10, Incorporating Your Python Scripts into an Existing Workflow by Writing
Custom Ansible Modules, use Python packages that are incompatible with Windows. To
follow along with these chapters, you will have to use either the Windows Subsystem
for Linux or a virtual machine running Linux. Any modern Linux distribution, such as
CentOS/Fedora or Debian/Ubuntu, should work.

In addition, you'll need a network device to test your scripts against. This device can be
physical, virtual, or part of a sandbox, but an admin user is required.

Chapter 11, Automating AWS Cloud Networking Infrastructure Using the AWS Python
SDK, requires a Firepower Management console from Cisco, and Chapter 9, Consuming
Controllers and High-Level Networking APIs with requests, requires a Cisco Meraki
organization. The code in both chapters can be tested using the sandboxes available with
the Cisco DevNet sandbox offerings.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

xx Preface

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Python-Networking-Cookbook. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action
Code in Action videos for this book can be viewed at https://bit.ly/3s93enF

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781838646639_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Mount the downloaded WebStorm-10*.dmg disk image file as
another disk in your system."

A block of code is set as follows:

import requests

from requests.auth import HTTPBasicAuth

auth = HTTPBasicAuth("root", "test")

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

my_hostname = "router01"

https://github.com/PacktPublishing/Python-Networking-Cookbook
https://github.com/PacktPublishing/Python-Networking-Cookbook
https://github.com/PacktPublishing/
https://bit.ly/3s93enF
http://www.packtpub.com/sites/default/files/downloads/9781838646639_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781838646639_ColorImages.pdf

Preface xxi

Any command-line input or output is written as follows:

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

{

 "id": 25,

 "name": "my device",

 "mac": "01-23-45-67-89-AB-CD-EF"

}

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"On the security credentials page, navigate down to the Access Keys section and click on
Create New Access Key to generate a new key pair."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com

xxii Preface

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

Share Your Thoughts
Once you've read Python Network Programming Techniques, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for this book and
share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://packt.com
https://packt.link/r/1838646639

1
A Primer on

Python 3
Since its development in the early 1990s, Python has become one of the most widely
used programming languages in the world. Its easy-to-use yet powerful syntax and
cross-platform availability, combined with a rich ecosystem of pre-built functionality,
have turned it into one of the most widely used languages in the realm of infrastructure
automation. From simple automation scripts to complex web applications, Python can
handle a wide variety of tasks.

In this chapter, we are going to review some basic concepts of the Python programming
language before using these skills in the following chapters to automate our infrastructure.

While not being a full introduction to the Python language, this chapter should serve as a
refresher for the concepts we are going to use in the automation script in later chapters. If
you are already proficient with Python, you can skip ahead to the next chapter.

Specifically, you will learn about the following concepts in this chapter:

•	 Assigning variables in Python

•	 Converting between data types in Python

•	 Looping over lists in Python

•	 Controlling the flow of a Python program using if statements

2 A Primer on Python 3

•	 Executing code until a condition is met using while loops

•	 Writing reusable code with functions

•	 Storing and accessing key-value pairs using dictionaries

•	 Importing modules from the standard library

•	 Installing modules from the Python Package Index (PyPI)

Technical requirements
For this section and for the remainder of the book, you'll need an installation of
Python—specifically, you'll need a Python interpreter of version 3.6.1 or higher. This
book makes use of language constructs of Python 3 and thus is incompatible with
Python 2.x.

You will also require a code editor. Popular choices include Microsoft Visual Studio Code
(VS Code) or Notepad++.

While the code for this book was written on a Mac with macOS X version 10.15 installed,
we don't use any packages that behave differently on Windows or Linux, and all code
samples should behave the same.

You can view this chapter's code in action here: https://bit.ly/3fW3EsK

Assigning variables in Python
Variables are named placeholders we can use to store and manipulate data. Variables point
to a portion of the memory in which the data is stored. The kind of data that is stored
within the memory portion that a variable is pointing to is known as the data type of that
variable. These data types can be, for example, a string for text or an integer for a whole
number. While some programming languages (such as C++ or Java) require you as the
developer to explicitly define what kind of data you want to put into a variable, Python is
dynamically typed. This means that the programming language will take care of assigning
the correct data type to your variable, based on what you are putting in.

In this recipe, you will see how to assign variables in Python using the = operator and see
the basic data types Python offers.

Getting ready
Open your code editor and start by creating a file called variables.py. Next, navigate
your terminal to the same directory in which you just created the variables.py file.

https://bit.ly/3fW3EsK

Assigning variables in Python 3

How to do it…
Let's start by assigning some variables containing text (also referred to as a string), whole
and floating-point numbers (in the form of integers and floats), truth values (known as
Booleans), and lists that hold a list of variables:

1.	 Define a variable called my_hostname and assign it the value of your name using
the = operator:

my_hostname = "router01"

2.	 We can also use single quotes to assign a string. Note that you can't mix the different
types of quotes:

my_domain = 'example.com'

3.	 Furthermore, we can use triple quotes to define a string that spans multiple lines:

my_motd = """

This is a string that will

contain linebreaks and could be the motd of a

router.

"""

4.	 If we want to see the value of a variable, we can use Python's built-in print()
function to display the value stored on the command line:

print(my_hostname)

print(my_domain)

print(my_motd)

5.	 Similar to strings, we can also assign numeric values. We can distinguish two
types of variables: floats for floating-point numbers and integers for whole
numbers. Define a variable called my_port to hold the default port number of
a Secure Shell (SSH) server (as an integer/whole number) and a variable called
my_throughput to hold your server's average number of requests per minute
(as a float/floating-point number):

my_port = 22

my_throughput = 1.75

4 A Primer on Python 3

6.	 We can print out the value of a variable of the type int or float, the same way we
did with the string:

print(my_port)

print(my_throughput)

7.	 Truth values in Python are represented by the two True and False Boolean
values. We can define a variable called knows_python, assign it to either be true
or false, and then print the value of said variable:

knows_python = True

knows_python = False

print(knows_python)

8.	 Sometimes, we want to store lists (also referred to as arrays or vectors in other
programming languages) of values or variables. First, we define our variable to be
an empty list:

l = []

9.	 Next, we want to add variables to the end of this list. Let's add my_hostname,
my_domain, my_port, and my_throughput variables to the list using the
append() function:

l.append(my_hostname)

l.append(my_domain)

l.append(my_port)

l.append(my_throughput)

10.	 We can access elements in our list using the index the element is saved under. Be
aware that indexes start at zero, so the first element in the list will be at index 0, not
at index 1. Lists preserve the order in which items are added, so the first element
in our list will be the first name, the second element will be the last name, and the
third element will be the age. Let's print out this information:

print("The hostname stored in the list is: ")

print(l[0])

print("The domain stored in the list is: ")

print(l[1])

print("The port stored in the list is: ")

print(l[2])

Assigning variables in Python 5

11.	 Lastly, if you want to check what kind of data type a variable has, you can use the
type() function. Let's use the type() function to first print out the data type of
our list and then the data type of the element at index 0:

print(type(l))

print(type(l[0]))

12.	 To run the Python script we just created, open your terminal and execute the
script by typing the python3 variables.py command. Your output should
look like this:

python3 variables.py

router01

example.com

This is a string that will

contain linebreaks and could be the motd of a

router.

False

The hostname stored in the list is:

router01

The domain stored in the list is:

example.com

The port stored in the list is:

22

<class 'list'>

<class 'str'>

How it works…
Python determines the type of variable based on the value you are providing it with. The
main data types you are going to be dealing with are strings for text, integers for whole
numbers, floats for floating-point numbers, Booleans for truth values, and lists for lists of
variables and values.

The type of number, float, or integer is determined based on whether you are assigning a
number with or without a decimal point.

6 A Primer on Python 3

As you can see from the preceding example, where we are adding variables of the string
type and variables of the integer and float type to the list, lists are not restricted to only
storing one data type, but rather can keep variables of all different kinds.

When dealing with lists, it is important to remember that the index of a list starts at zero,
so the first element of a list is not at index 1 but rather at index 0.

When trying to determine which data type a variable has, the type() function can
be used to return this information back to the user, as seen in Step 11 in the preceding
code sample.

Converting between data types in Python
While Python does determine the data type of a variable automatically, we often like to
explicitly convert a variable from one data type to another. An example of where this is
useful could be a user providing an input—for example, their age—from the terminal. The
variable would have the str data type, but we might need it as an integer. This is where
converting between data types—or type casting—comes into play.

In this recipe, you will see how to receive an input from a user and convert the received
string into an integer.

Getting ready
Open your code editor and start by creating a file called convert_variables.
py. Next, navigate your terminal to the same directory in which you just created the
convert_variables.py file.

How to do it…
In this recipe, we will receive the user's age as input in the form of a string. We will then
convert that string into a number, add 10 to it, and convert it back to a string:

1.	 First, we need to capture the input from the user. To do this, we can use the built-in
input() function:

the_age = input("What's your age?: ")

2.	 Next, we convert the input from a string to an integer and add 10 to it:

age_as_num = int(the_age)

age_as_num = age_as_num + 10

Converting between data types in Python 7

3.	 Lastly, we convert the variable we just added 10 to into a string and print that string
back to the user:

age_as_text = str(age_as_num)

print("Your age + 10 is " + age_as_text)

4.	 So far, we have always explicitly converted the data types. When, as in this example,
we want to have our variables of the int type included (or formatted) into a string,
we can also use the f-string syntax:

print(f"Your age + 10 is {age_as_num}")

5.	 To run this script, go to your terminal and execute it by typing the command
python3 convert_variables.py. Your output should look like the following
example. The age that is calculated will, of course, depend on the input you are giving:

python3 convert_variables.py

What's your age?: 26

Your age + 10 is 36

Your age + 10 is 36

How it works…
The conversion of variables between data types works by invoking the correct conversion
function. In this example, we used int() to convert the string our user provided into an
integer, and later used str() to convert the integer back to a string.

The different conversion functions for the basic data types we have encountered so far are
outlined here:

•	 str() to convert to strings

•	 int() to convert to integers

•	 bool() to convert to a Boolean—for example, bool(0) will convert to False
while bool(1) converts to True

•	 float() to convert to a floating-point number

If we had not done the last conversion (from number to string), Python would have
errored out as it does not know how to add a string to an integer. This error is referred to
as a TypeError error and looks like this:

TypeError: can only concatenate str (not "int") to str

8 A Primer on Python 3

As you can see, this error message is pretty detailed as to what went wrong. TypeError
specifies that there was an error related to types, and the following text specifies that we
were trying to concatenate a variable whose data type is integer to a variable whose data
type is string. However, Python only knows how to concatenate a string with a string, not
how to concatenate an integer with a string.

To avoid these errors, it is thus good practice to always cast variables you plan on using in
strings (that is, for printing them back to the user) to strings explicitly.

Formatted string literals, commonly referred to as f-strings, allow us to create a shorthand
method for this quite common task of piecing together strings from variables of different
data types. By referencing the name of the variable (in our case, age_as_num) in curly
braces, Python will substitute this with the value of the variable and will automatically call
the string conversion function on it.

Looping over lists in Python
A common use case when programming is the need to apply the same kind of operation
to a list of variables. Think, for example, of a script that needs to connect to a few routers.
For this to work, the script will need to know the Internet Protocol (IP) addresses of said
routers and then perform the same set of commands on them. Instead of copying and
pasting the same code multiple times and just changing the router IP, we can create a list
of our IPs and then execute the commands.

In this recipe, you will see how to create a list of IP addresses and print them out using a
for loop. We will reuse the same concept in the next chapter to actually connect to the
device and issue configuration commands.

Getting ready
Open your code editor and start by creating a file called loops.py. Next, navigate your
terminal to the same directory in which you just created the loops.py file.

How to do it…
In this recipe, we will create IP version 4 (IPv4) addresses with a static network part and a
changing host part that is retrieved from a list:

1.	 First, we need to define the network part of our IP address:

network_part = "192.168.2."

Looping over lists in Python 9

2.	 Next, we need to define the host parts for each of our three routers. We will have
routers on 192.168.2.20, 192.168.2.40, and 192.168.2.60:

host_parts = [20, 40, 60]

3.	 Now, we can use a for-each loop to iterate over each item in the list and combine
the network and host part into a valid IP address. Since the host parts are integers,
we will also need to convert them:

for host_part in host_parts:

 ip = network_part + str(host_part)

 print("The router IP is: " + ip)

4.	 To run this script, go to your terminal and execute the python3 loops.py
command. Your output should look like this:

python3 loops.py

The router IP is: 192.168.2.20

The router IP is: 192.168.2.40

The router IP is: 192.168.2.60

How it works…
In this example, we used a for loop to iterate over a given list of variables. As you can see,
there is an indention that shows Python which parts of the code are to be executed in the
loop. Contrary to other languages, where the indention is good to have but not necessary,
Python uses indention to structure the program. The two indented lines that get executed
for every variable in the host_parts list are also called the loop body.

There's more…
In this example, we used a for each loop to quickly iterate over all items in the list.
Instead, we could have also used the length of the list and the index to retrieve the
correct item. The following code would be equivalent to what we have seen in the
preceding example:

network_part = "192.168.2."

host_parts = [20, 40, 60]

for idx in range(len(host_parts)):

 host_part = host_parts[idx]

10 A Primer on Python 3

 ip = network_part + str(host_part)

 print("The router IP is: " + ip)

In this example, we used two new functions. The len() function returns the length of
a list. In this example, the len() function would return 3. The range() function then
returns a list of integers, starting from the first function argument (0, in this case) up
to—but excluding—the second function argument (the length of the list, which is 3 in this
case). So, in this example, range(0, len(host_parts)) would return the list [0,
1, 2], which are the three indices we can use to access all elements in our list.

Controlling the flow of a Python program
using if statements
So far, we have only written scripts that ran each of the instructions linearly one after
another. But quite often, we want to change the behavior of our script based on the value of
a variable. Let's say, for example, that we want to write a script that asks the user what kind
of device—a user device or an infrastructure device—they want to configure. Our script
then returns an IP address with a pre-defined network part and a user-defined host part.

In this recipe, you will see how to create such a basic IP address management tool if clause.

Getting ready
Open your code editor and start by creating a file called if_conditions.py. Next,
navigate your terminal to the same directory in which you just created the
if_conditions.py file.

How to do it…
In this recipe, we will create a list of user and infrastructure devices, check what kind of
device the user wants to retrieve, and then retrieve an IP from the correct list:

1.	 First, we need to define the two network parts for infrastructure and user devices:

infra_network_part = "10.2.10."

user_network_part = "10.20.1."

2.	 Next, read the user input to understand what kind of device we want to configure
and which host part the user wants:

device_type = input("What type? [infra/user] ")

host_part = input("What's the host part? ")

Controlling the flow of a Python program using if statements 11

3.	 We can now use an if clause to react, based on the choice of the user. We can
react to the two different outcomes we know of—the user wanting to configure an
infrastructure or a user device—and a third outcome, which is everything else. If
the user has entered neither user nor infra, we can just exit the program with a
message stating that we don't know that type:

if device_type == "infra":

 ip = str(infra_network_part) + str(host_part)

 print(f"Your infra ip: {ip}")

elif device_type == "user":

 ip = str(user_network_part) + str(host_part)

 print(f"Your user ip: {ip}")

else:

 print("Sorry, I don't know how to handle the type
{device_type}")

4.	 To run this script, go to your terminal and execute it by typing the command
python3 if_conditions.py. Your output should look like the following
example. The exact output depends on whether you choose to get the IP address of a
user or of an infrastructure device, and on which host part you specified:

python3 if_conditions.py

What type? [infra/user] infra

What's the host part? 30

Your infra ip: 10.2.10.30

How it works…
In this example, we used an if clause to determine which network part to use based on
the user input. Similar to loops, the part of the program that should be executed if the
condition is met—in our case, the check whether the device_type variable is equal to
infra or user—is indented.

In this example, we checked for two explicit conditions: the device_type either being
infra or user, and a catch-all with an else statement. This part of the conditional is
executed when none of the preceding explicit conditions are met.

Note how we used the double equals sign to check which value the variable has. Since the
single equals sign is already reserved for assigning variables, we have to use the double
equals sign when checking our variables in if clauses.

12 A Primer on Python 3

There's more…
The double equals sign is an expression in Python that returns a Boolean. We can check
this by creating a new script with the following code:

print(type(10 == 10))

In this example, we are comparing whether 10 is equal to 10, which it is. More
interestingly, the data type that is revealed by the type() function is <class 'bool'>,
which is the data type of a Boolean in Python.

In the preceding if clause, we checked for equivalency, but sometimes we want to check
that a variable is not equal to or greater than another variable or value. Python offers a
multitude of comparison operators.

The following list shows you all comparison operators for two variables, a and b, that are
available to you:

•	 a == b checks whether the value of a is equal to the value of b.

•	 a != b checks whether the value of a is not equal to the value of b.

•	 a > b checks whether the value of a is strictly greater than the value of b.

•	 a < b checks whether the value of a is strictly less than the value of b.

•	 a >= b checks whether the value of a is greater than or equal to the value of b.

•	 a <= b checks whether the value of a is less than or equal to the value of b.

Executing code until a condition is met using
while loops
A very common use case for command-line programs is to keep asking a user for more
information until a certain condition is met. With our current set of tools, this would be
difficult. We know how to ask a user for information (using the input() function) and
we know how to check information (using if clauses), but how could we keep executing a
piece of code until a condition (that is, the correct input from a user) is met? We could use
a for loop with an extremely high number, but this number would also eventually come
to an end.

To address this, Python includes a while loop. while loops are essentially a
combination of a loop and an if clause that allow us to execute a piece of code until a
condition is met.

Executing code until a condition is met using while loops 13

In this recipe, you'll see how to use a while loop to keep asking a user for more IP
addresses that we will add to a list. Once the user is satisfied with the addresses they have
added, we will terminate the loop and print out the list of addresses.

Getting ready
Open your code editor and start by creating a file called while_loops.py. Next,
navigate your terminal to the same directory in which you just created the while_
loops.py file.

How to do it…
In this recipe, we will create a script that keeps asking the user for IP addresses and later
prints a complete list back:

1.	 First, we need to create a list that will hold our addresses, as well as a variable that
will contain our user input:

ips = []

user_in = ""

2.	 Next, we can define our while loop. Everything in this loop's body will be executed
until the specified condition is met:

while user_in != "done":

 user_in = input("IP addressor type done to exit: ")

 if user_in != "done":

 ips.append(user_in)

3.	 Finally, once the user has exited the loop by typing done in the terminal, we want
to print our list of IPs back:

print(f"Your IPs are: {ips}")

4.	 To run this script, go to your terminal and execute it by typing the command
python3 while_loops.py. Your output should look like the following example.
The exact output depends on which and how many IP addresses you have entered:

python3 while_loops.py

IP address or type done to exit: 192.158.0.1

IP address or type done to exit: done

Your IPs are: ['192.158.0.1']

14 A Primer on Python 3

How it works…
In this example, we used a while loop to execute a piece of code that asks for a user
input. This script will run until the user has met the condition of the while loop by
providing done as the input—in other words, the code within the while block will keep
executing as long as the condition is True.

Once the condition is met, the code after the while loop begins executing. In this case,
the code is just printing back the list of IPs we have just added.

Be aware that while loops can become infinite loops. These are loops that never exit, and
thus your script never exits. Infinite loops occur when the conditional in the while loop
can never be False.

There's more…
The infinite loops mentioned as a problem previously might also be desirable in some
cases. Consider a web server, for example. This server has a loop that is running forever,
listening for new incoming web requests that will then be handled.

We can create such infinite loops by just specifying True as the condition in the while
loop. True will, as the name states, never evaluate to False, and thus the loop will
keep running:

while True:

 print("I am executing.")

But could we also break out of such an infinite loop or are we, once started, stuck in this
loop forever?

Python offers us the ability to escape from while loops (and for loops as well) by using
the break keyword:

while True:

 best_num = input("What's your favorite number? ")

 if best_num == "42":

 break

 else:

 print(f"{best_num} is not the best number. Try
again.")

In this example, we ask the user for input on which is the best number. We then check that
variable and, if the number provided by the user is equal to 42, we break out of the while
loop using the break keyword.

Writing reusable code with functions 15

Writing reusable code with functions
So far, all the code we have written has been executed directly. But what if we want to
reuse some part of our code—maybe a workflow to check whether an IP address matches
your infrastructure or user IP ranges—in another part of our script? We could copy and
paste the code that we wrote, but what if some part of our workflow—for example, the
network parts of our infrastructure devices—changes? We would have to change that
information in every part of our script we copied the workflow to! This is not only labor-
intensive but also very error-prone.

In this recipe, you will see how to create your own functions that you can use to make
your workflows reusable.

Getting ready
Open your code editor and start by creating a file called functions.py. Next, navigate
your terminal to the same directory in which you just created the functions.py file.

How to do it…
In this recipe, we will create a function that checks—based on a provided network and
host part—whether an IP address is an infrastructure or a user device:

1.	 First, we need two lists containing the network parts for infrastructure and
user devices:

infra_parts = ["10.2.10.", "10.30.2."]

user_parts = ["10.50.2.", "10.60."]

2.	 Next, we need to define a function called check_ip, which we are going to put our
workflow into. check_ip has one argument: the IP address we want to check.

In the function itself, we loop through the two lists and check whether the IP starts
with any of those prefixes. If it does, we will print the corresponding address type
back to the user:

def check_ip(ip_addr):

 for net_part in infra_parts:

 if ip_addr.startswith(net_part):

 print(f"{ip_addr} is of type 'infra'")

 for net_part in user_parts:

 if ip_addr.startswith(net_part):

 print(f"{ip_addr} is of type 'user'")

16 A Primer on Python 3

3.	 Lastly, we need to test our function by calling it with two test IPs:

check_ip("10.2.10.1")

check_ip("10.50.2.3")

4.	 To run this script, go to your terminal and execute it by typing the command
python3 functions.py. Your output should look like this:

python3 functions.py

10.2.10.1 is of type 'infra'

10.50.2.3 is of type 'user'

How it works…
In this example, we defined a new function called check_ip(). The function received
one argument called ip_addr and then used startswith(), a built-in function of
strings in Python, to check whether the ip_addr argument provided to the function
starts with any of the prefixes we defined in our lists before.

There's more…
In this simple example, we only had a single argument provided to the function. However,
a function can have multiple arguments. The following is a simple function that takes two
arguments, casts them into integers, adds them up, and then returns the result to the user:

def add_nums(num_a, num_b):

 num_a = int(num_a)

 num_b = int(num_b)

 result = num_a + num_b

 print(f"The result of {num_a} + {num_b} is {result}")

add_nums(10, 2)

Speaking of returning, we can also have our function return back the result of its
computation instead of printing it out. This can be useful when we want to use the output
of one function in the computation of another.

Storing and accessing key-value pairs using dictionaries 17

In the following example, we use a return statement to return the result instead of
directly printing it:

def add_num_and_return(num_a, num_b):

 num_a = int(num_a)

 num_b = int(num_b)

 result = num_a + num_b

 return result

res = add_num_and_return(10, 12)

print("The result is {res}")

Storing and accessing key-value pairs using
dictionaries
One of the most common tasks when automating or programming is the storage of
key-value pairs. Think, for example, of a configuration file or a user profile. These are
long text files containing key-value pairs. So, we need a data structure in Python to
accommodate this kind of variable.

In this recipe, you will see how to store configuration information in a dictionary,
manipulate the values of said configuration, and print the values of our configuration
afterward.

Getting ready
Open your code editor and start by creating a file called dictionaries.py and a file
called config.txt. Next, navigate your terminal to the same directory in which you just
created the dictionaries.py file.

18 A Primer on Python 3

How to do it…
In this recipe, we will read a configuration file from the hard drive, create a dictionary to
store the configuration information we retrieved from the file, and allow the user to query
and change configuration variables. At the end, we overwrite the original configuration
file with the changes provided by the user.

1.	 First, we need to create our initial configuration file. Open the config.txt file
you created and add the following dummy configuration:

mode=development

host=192.168.20.1

port=8020

user=admin

password=password

2.	 We now need to read this file into our program. Python already has a function to
read and write files built-in. Open up the dictionaries.py file you created and
put the instructions for Step 2 to Step 7 in the previously opened dictionaries.
py file:

config = {}

with open("config.txt", "r") as f:

lines = f.readlines()

3.	 We can now loop over each line of our configuration file, split the line to key and
value, and then add it to our config dictionary:

for line in lines:

 key, value = line.split("=")

 value = value.replace("\n", "")

 config[key] = value

 print(f"Added key {key} with value {value}")

4.	 Next, we can ask the user for a key to retrieve. The dictionary has a handy function
to check whether a key is in the dictionaries list of keys:

user_key = input("Which key would you like to see? ")

if user_key not in config:

 print(f"I don't know the key {user_key}")

We will add code here in step 6

Storing and accessing key-value pairs using dictionaries 19

5.	 Now that we know that the key the user has chosen is actually in our configuration,
we can retrieve it and print it back to the user, and ask whether the user wants to
change the value of the key. To do so, replace the # We will add code here
in step 6 comment from Step 4 with the following code:

else:

 val = config[user_key]

 print(f"Current value for {user_key}:{val}")

 next_step = input("Would you like to change?[y/n]")

6.	 If the user says yes (or y) to our question of changing the value, we can overwrite
the value in our dictionary with something the user provides:

if next_step == "y":

 new_val = input("What is the new value? ")

 config[user_key] = new_val

7.	 So far, we have only changed the value of the configuration, but we have not yet
changed the config.txt file. To do so, we can iterate over all key-value pairs in
our dictionary and write them to the file. To do so, we will open the file again, but
this time in write mode:

 with open("config.txt", "w") as f:

 for key, value in config.items():

 l = f"{key}={value}\n"

 f.write(l)

8.	 To run this script, go to your terminal and execute it by typing the command
python3 dictionaries.py. Your output should look like the following example,
varying only depending on which configuration variable you choose to change:

python3 dictionaries.py

Added key mode with value development

Added key host with value 192.168.20.1

Added key port with value 8020

Added key user with value admin

Added key password with value password

Which key would you like to see? user

Current value for user:admin

Would you like to change it? [y/n]y

What's the new value? root

20 A Primer on Python 3

How it works…
In this example, we read the contents of a file into our program and stored it in a dictionary.

To define a dictionary in Python, simply assign a variable an empty dictionary with the
two curly braces.

When reading a file in Python, we first need to open it. The open() function requires
a path or name of the file, and optionally takes a mode. In our example, we used the w
mode, for write. This opens the file with read/write access. If we only need to read a file,
we can use the r mode.

We used the open() function together with a with block. When dealing with files, we
need to close them. We could do this explicitly by calling the f.close() function, but the
with block will do this for us once all instructions within the block have been executed.

The split() function takes a string and splits it according to the provided delimiter,
and then returns a list. In our example, this list always has the length 2, the key (the part
that was before the = sign in config.txt) will be at index 0, and the value (the part that
came after the = sign in config.txt) will be at index 1.

We can then retrieve the key the user wants and check whether it is present in our
dictionary using an if clause and the in operator we saw already when iterating over a
list of items.

If the key the user has provided is, in fact, part of our config dictionary, we can retrieve
and later overwrite its value by using the key in square brackets, similar to how we used
the indices to retrieve the entry of a list.

There's more…
When opening a file, we have more than just the two r and w modes available to us. The
following is a list of available modes:

•	 r+ opens a file for reading and writing.

•	 w+ opens a file for reading and writing, creating a file if it does not exist already.
Writing starts at the beginning of the file.

•	 a opens a file for writing. Any lines that are written to this file will be appended to
the end of it.

•	 a+ opens a file for reading and writing. Any lines that are written to this file will be
appended to the end of it.

Importing modules from the standard library 21

In this example, we have chosen to explicitly open the file for reading and re-open it for
writing. In production code, you would have most likely wanted to open the file once at
the beginning and used the w+ mode.

In the example, we used the .items() function to retrieve key-value pairs from our
dictionary. While this is the most common use case, we can also retrieve a list of just the
keys and just the items. The following example shows both functions:

d = {

 "name": "Marcel",

 "height": 1.73

}

for k in d.keys():

 print(f"A key is {k}")

for v in d.values():

 print(f"A value is {v}")

Importing modules from the standard library
Python is often described as batteries-included programming. This stems from the fact
that Python comes with an extensive standard library that provides a lot of functionality
already. While some functions such as print() or input() are loaded by default, a
lot of the functionality can be imported into our program. This code, also referred to
as a module, encapsulates the functionality and can be used without the need to install
anything, as it comes pre-packaged with your Python installation.

Getting ready
Open your code editor and start by creating a file called libs.py. Next, navigate your
terminal to the same directory in which you just created the libs.py file.

How to do it…
In this recipe, we will import the random module. This module allows us to generate
random numbers or draw a random element from a list. We will use the list of lower- and
uppercase letters, as well as digits provided by the string module to generate a password:

1.	 First, we need to import the required modules using the import statement:

import random

import string

22 A Primer on Python 3

2.	 We first need to know how many random uppercase characters, lowercase characters,
and digits our password should contain. For this, we can use the random.
randint() function. This function, when called with the arguments 1 and 7,
will return a random integer number between 1 and 7. This random number will
determine how many uppercase letters, lowercase letters, and digits our password
will get:

num_upper = random.randint(1, 7)

print(f"Adding {num_upper} uppercase letters to the
password")

num_lower = random.randint(1, 7)

print(f"Adding {num_lower} lowercase letters to the
password")

num_digits = random.randint(1, 7)

print(f"Adding {num_digits} digits to the password")

3.	 With the random numbers for each of our character categories ready, we can go
ahead and generate our password. We could write a list of uppercase characters,
lowercase characters, and digits ourselves, but we can also use the ones provided in
the strings module. Since we are carrying out the same functionality, retrieving a
variable number of elements from a list and appending them to a string, let's write a
function so that we do not have to copy and paste our code when we want to reuse it:

def add_to_password(num_to_include, choices):

 temp = ""

 for i in range(num_to_include):

 temp = temp + str(random.choice(choices))

 return temp

uppers = add_to_password(num_upper, string.ascii_
uppercase)

lowers = add_to_password(num_lower, string.ascii_
lowercase)

numbers = add_to_password(num_digits, string.digits)

pwd = uppers + lowers + numbers

print(f"Your password is {pwd}")

Importing modules from the standard library 23

4.	 To run this script, go to your terminal and execute it by typing the command
python3 libs.py. The output should look like the following example. The
number of uppercase letters, lowercase letters, and digits will, of course, be different,
as well as the resulting password:

python3 libs.py

Adding 5 uppercase letters to the password

Adding 6 lowercase letters to the password

Adding 7 digits to the password

Your password is PYJFFcdfjub7316218

How it works…
We used the import statement to signal to our Python interpreter to make the
functionality in this module available to use in our script. After importing the module,
we were able to use the functions it provides by simply calling the name of the function,
prefixed by the name of the module.

There's more…
In this example, we included the entire module and then called the functions in the
module by always prefixing the function name with the name of the module. While
this always works, it can be cumbersome, especially when using the function a module
provides many times in our code, or if the module name is long.

Instead of importing the entire module, we can also just import a single function that we
can then call without prefixing it with the module name. Here is the code to import the
randint() function from the random module:

from random import randint

random_num = randint(0, 10)

print(f"Your random number is {random_num}")

24 A Primer on Python 3

Installing modules from the PyPI
While the Python standard library provides an extensive set of functionalities, more
specific use cases—such as connecting to a networking device to issue configuration
commands—are not covered specifically. While we could implement them using the
functionality provided in the standard library, this work has already been done by the
community that contributed packages back into the Python ecosystem, more specifically
by making them available for you to install from PyPI. Each chapter of this book will
cover one such package that is specific for network automation.

In this recipe, we will use the pip package manager (which is a recursive acronym for pip
installs packages) to install the paramiko package we will use in the next chapter.

When installing packages from PyPI, we are installing third-party modules. Contrary to
the modules that come with the standard library, these third-party modules need to be
downloaded from the internet, and thus having internet access is required.

Getting ready
Open up your terminal.

How to do it…
In this recipe, we will call pip to install a package. We will first install the latest version of
a package, uninstall it again, and then see how to install a specific version of a package:

1.	 Install the latest version of paramiko by typing the following command in your
terminal. This command will install paramiko and all of its dependencies for you:

python3 -m pip install paramiko

2.	 To uninstall a package, you can type the following command. It will ask you for
confirmation to remove the package:

python3 -m pip uninstall paramiko

3.	 Often, it is useful to install the specific version of a package you have tested your
code against instead of always installing the latest version. To do so, pip offers you
a way of specifying the version. The following command will install version 2.7.1
of paramiko:

python3 -m pip install paramiko==2.7.1

Installing modules from the PyPI 25

4.	 You can get a list of all packages that are installed on your package by using the
freeze command. The returned list will include the version number for each
module so that you can verify you have installed the correct version:

python3 -m pip freeze

5.	 When publishing code on GitHub or other code-sharing sites, many project authors
include a list of packages that need to be installed in a text file. This file is usually
called requirements.txt, and you can install all the packages listed in it using
the following command:

python3 -m pip install -r requirements.txt

How it works…
When issuing the pip install command, pip will reach out to PyPI to find a package
that matches the name you provided. Depending on whether you specified a version or
not, it will download and install either the version you specified or the latest version. pip
also resolves, downloads, and installs all packages that the package you are trying to install
depends on.

Requirements files have made it easy to install all the dependencies of a project.
While this file could be called whatever you want, it has become convention to call it
requirements.txt. You can create such a requirements.txt file by issuing the
following command in your command line:

python3 -m pip freeze > requirements.txt

2
Connecting to

Network Devices via
SSH Using Paramiko

When administrating IT devices from a remote location, be it network equipment
or servers, SSH has become the standard. With its secure transport and various
authentication methods, it's a safe choice that is widely used to this day to administer and
configure servers or network devices. It is thus only natural when getting started with
programmability and network automation, to find a way of issuing SSH commands not by
hand but from a script. With this, you can take a sequence of commands you used to type
into the device by hand and execute them programmatically on one or more devices. The
last part is crucial. With a script that executes commands for you, you can easily apply the
same sequence of commands to another device.

While we could implement the SSH protocol ourselves, this would be cumbersome
work. Luckily, the Python community has already developed an SSH client library that is
available for our use, called Paramiko.

In this chapter, we are going to learn the basics of programmatically connecting to a
network device using SSH. We are going to use Cisco devices for our examples but the
workflow is the same regardless of the vendor.

28 Connecting to Network Devices via SSH Using Paramiko

In this chapter, we will work through the following recipes:

•	 Initiating an SSH session with Paramiko

•	 Executing a command via SSH

•	 Reading the output of an executed command

•	 Executing the same command against multiple devices

•	 Executing a sequence of commands

•	 Using public/private keys for authentication

•	 Loading local SSH configuration

Technical requirements
For this section and the remainder of the book, you'll need an installation of Python.
Specifically, you'll need a Python interpreter of version 3.6.1 or higher. This book makes
use of language constructs of Python 3 and thus is incompatible with Python 2.x. If you
haven't done so already in the previous chapter, please go ahead and install the Paramiko
package (python3 -m pip install paramiko). At the time of writing, we are
using the latest version of Paramiko, version 2.7.1. You may install this exact version by
issuing python3 -m pip install paramiko==2.7.1.

You also want a code editor. Popular choices include Microsoft Visual Studio Code or
Notepad++. Additionally, you'll need a device (virtual or physical) that you can log into
via SSH.

You can view this chapter's code in action here: https://bit.ly/37Ih46N

Initiating an SSH session with Paramiko
The basis of connecting to a device via SSH with Python and Paramiko is the SSHClient
object of the library. We will use this object to create an initial connection to the SSH server
and later we will use the functions of this object to execute commands on the device.

In this recipe, you will see how to programmatically open an SSH connection.

Getting ready
Open your code editor and start by creating a file called initiating.py. Next, navigate
your terminal to the same directory that you just created the initiating.py file in.

https://bit.ly/37Ih46N

Initiating an SSH session with Paramiko 29

How to do it...
Let's start by importing the Paramiko library and creating a client object. We will also
specify the host, username, and password in variables and then initiate a connection to
the specified host:

1.	 Import the Paramiko library:

from paramiko.client import SSHClient

2.	 Specify the host, username, and password. You can name these variables however
you like. In the Python community, it has become standard to uppercase these
global variables. The three variables SSH_USER, SSH_PASSWORD, and SSH_HOST
are variables of type string and we thus use double quotes to mark them. The SSH_
PORT variable is an integer and thus does not use double quotes:

SSH_USER = "<Insert your ssh user here>"

SSH_PASSWORD = "<Insert your ssh password here>"

SSH_HOST = "<Insert the IP/host of your device/server
here>"

SSH_PORT = 22 # Change this if your SSH port is different

3.	 Create an SSHClient object, which we just imported from Paramiko:

client = SSHClient()

4.	 While we have created our client object, we have not yet connected to the device.
We will use the connect method of the client object to do so. Before actually
connecting, we will need to make sure that our client knows the host keys:

client.load_system_host_keys()

try:

 client.connect(SSH_HOST, port=SSH_PORT,

 username=SSH_USER,

 password=SSH_PASSWORD,

 look_for_keys=False)

 print("Connected successfully!")

except Exception:

 print("Failed to establish connection.")

30 Connecting to Network Devices via SSH Using Paramiko

5.	 Finally, we have created our connection. It is a good habit to close connections after
we are done using them. To do so, we can use the close() function of our client:

finally:

 client.close()

6.	 To run this script, go to your terminal and execute it with the following:

python3 initiating.py

How it works...
In this example, we first imported the Paramiko library's SSHClient class. Next, we set
up our connection details. While you could also provide these details directly when calling
the connect method on the client object, it is good practice to put them into variables.
This means that if you are creating multiple client objects at different points of your script,
you don't have to change the username/password and host in each of these calls but just
once in the variables. Be careful when submitting these scripts to your colleagues or
uploading them to code hosting services though, as they do contain your login details.
You can have a look at the There's more section of this recipe to see how you can either
prompt for this information interactively or get it from your environment.

Before connecting to the device, using the connect method, we load the host keys.
SSH uses host keys and the fingerprints of an SSH server to make sure that the IP you
are connecting to is the server you connected to before. When connecting to a brand-
new device, you'll have to accept this new host key. While we can keep a separate set
of host keys for our Paramiko client, it is usually best to just use the host keys that the
user executing the script has. By doing this, you can connect to every device you have
previously connected to from your command line, also from your Paramiko scripts.

To do this loading, we are using the load_system_host_keys() function. This
function searches the default known hosts file used by OpenSSH and copies them over
into Paramiko. See the following section for an example of how to make Paramiko accept
new keys by default.

Initiating an SSH session with Paramiko 31

With our host keys configured, we can now actually connect to the device that we have
specified. To do so, we are using a try-catch block. This is a Python construct that
allows us to catch exceptions, errors that can be raised by any part of the code we are
using, and handle them. Python will attempt to execute the instructions in the try block.
If any part of that code, in our example the connect() method, errors out and raises
an exception, Python will jump into the except block and execute the instructions
within that block. In our example, we are only printing out a message that our connection
was unsuccessful. The third block, our finally block, will be executed both when the
connection has been successful (our except block was not executed) as well as after a
failed connection (our except block was executed). This allows us to clean up after both
a successful and unsuccessful connection and avoids dangling SSH connections.

There's more...
In this example, we relied on the user having already logged into the device from their
command line in order for the host to be known. If we use the preceding code to connect
to a device that was not previously known, the code will fail with an exception.

The way Paramiko handles unknown host keys can be specified using a policy. One of
these policies, AutoAddPolicy, allows us to just add unknown host keys to our scripts
set of host keys:

from paramiko.client import SSHClient, AutoAddPolicy

SSH_USER = "<Insert your ssh user here>"

SSH_PASSWORD = "<Insert your ssh password here>"

SSH_HOST = "<Insert the IP/host of your device/server here>"

SSH_PORT = 22 # Change this if your SSH port is different

client = SSHClient()

client.set_missing_host_key_policy(AutoAddPolicy())

client.connect(SSH_HOST, port=SSH_PORT,

 username=SSH_USER,

 password=SSH_PASSWORD)

The preceding code will automatically add these host keys. Be aware that this might be a
potential security risk since you are not verifying that the host you are connecting to is the
one you connected to last time.

32 Connecting to Network Devices via SSH Using Paramiko

In this example, we passed connection details such as username, hostname, and password
directly as a variable in the script. While this is great for testing, you might want to have
your script prompt you for a variable upon execution. For non-secret variables such as the
username, host, and port, we can use the built-in input() function, but for passwords,
it's better to use a dedicated password prompt that hides what you have typed so that
someone looking over your console history can't retrieve your password. For this purpose,
Python has the built-in getpass module.

Follow these steps to retrieve the configuration variables necessary, not as static
information in the script but rather interactively from the user using a combination of
input and the getpass module:

import getpass

SSH_PASSWORD = getpass.getpass(prompt='Password: ',
stream=None)

SSH_USER = input("Username: ")

SSH_HOST = input("Host: ")

SSH_PORT = int(input("Port: "))

Executing a command via SSH
With our connection now open, we can go ahead and execute a command on our remote
device. Similar to the way we deal with issuing commands on a remote device by hand, we
have three different streams that come back to us: the standard out (or stdout), which
is the normal output, the standard error (or stderr), which is the default stream for the
system to return errors on, and the standard in (or stdin), which is the stream used to
send text back into the executed command. This can be useful if, in your workflow, you
would normally interact with the command line.

In this recipe, you will see how to programmatically open an SSH connection and then
send a command of your choice to the device.

Getting ready
Open your code editor and start by creating a file called command.py. Next, navigate
your terminal to the same directory that you just created the command.py file in.

Executing a command via SSH 33

How to do it...
Let's start by importing the Paramiko library and create a client object as seen in the last
recipe. We'll then execute a single command of your choice on this device:

1.	 Import the Paramiko library:

from paramiko.client import SSHClient

2.	 Specify the host, username, and password. You can name these variables however
you like. In the Python community, it has become a standard to uppercase these
global variables:

SSH_USER = "<Insert your ssh user here>"

SSH_PASSWORD = "<Insert your ssh password here>"

SSH_HOST = "<Insert the IP/host of your device/server
here>"

SSH_PORT = 22 # Change this if your SSH port is different

3.	 Create an SSHClient object, which we just imported from Paramiko:

client = SSHClient()

4.	 While we have created our client object, we have not yet connected to the device.
We will use the connect method of the client object to do so. Before actually
connecting, we will need to make sure that our client knows the host keys:

client.load_system_host_keys()

client.connect(SSH_HOST, port=SSH_PORT,

 username=SSH_USER,

 password=SSH_PASSWORD)

5.	 Finally, we can use the client to execute a command. Executing a command will return
three different file-like objects to us representing stdin, stdout, and stderr:

CMD = "show ip interface brief" # You can issue any
command you want

stdin, stdout, stderr = client.exec_command(CMD)

client.close()

6.	 To run this script, go to your terminal and execute it with this:

python3 command.py

34 Connecting to Network Devices via SSH Using Paramiko

How it works...
In this example, we first created a new client as seen in the previous example. We then
used the exec_command() method to execute a command of our choice.

The function returns three different file-like objects for the three different streams: stdin,
stdout, and stderr. In the next recipe, Reading the output of an executed command, we
will use this to read back the output that was provided when executing a command.

Reading the output of an executed command
In the previous recipe, we saw how to first connect to a device and then execute a
command. So far, we have ignored the output though.

In this recipe, you will see how to programmatically open an SSH connection, send a
command, and then write the output of that command back to a file. We will use this to
back up a running configuration.

Getting ready
Open your code editor and start by creating a file called read_out.py. Next, navigate
your terminal to the same directory that you just created the read_out.py file in.

How to do it...
Let's start by importing the Paramiko library and create a client object as seen in the last
recipe. Then execute a single command of your choice on this device and save the output:

1.	 Import the Paramiko library:

from paramiko.client import SSHClient

2.	 Specify the host, username, and password. You can name these variables however
you like. In the Python community, it has become a standard to uppercase these
global variables:

SSH_USER = "<Insert your ssh user here>"

SSH_PASSWORD = "<Insert your ssh password here>"

SSH_HOST = "<Insert the IP/host of your device/server
here>"

SSH_PORT = 22 # Change this if your SSH port is different

Reading the output of an executed command 35

3.	 Create an SSHClient object, which we just imported from Paramiko:

client = SSHClient()

4.	 While we have created our client object, we have not yet connected to the device.
We will use the connect method of the client object to do so. Before actually
connecting, we will need to make sure that our client knows the host keys:

client.load_system_host_keys()

client.connect(SSH_HOST, port=SSH_PORT,

 username=SSH_USER,

 password=SSH_PASSWORD)

5.	 Finally, we can use the client to execute a command. Executing a command will return
three different file-like objects to us representing stdin, stdout, and stderr:

CMD = "show running-config"

stdin, stdout, stderr = client.exec_command(CMD)

6.	 We will use the stdout object to retrieve what the command has returned:

output = stdout.readlines()

7.	 Next, we write the output back to a file:

with open("backup.txt", "w") as out_file

 for line in output:

 out_file.write(line)

8.	 To run this script, go to your terminal and execute it with this:

python3 read_out.py

How it works...
In this example, we first created a new client as seen in the previous example. We then
used the exec_command() method to execute a command of our choice. We then used
the returned file-like object for the standard out to read everything that our remote device
printed into the standard out and write it into a file.

36 Connecting to Network Devices via SSH Using Paramiko

A file-like object in the context of Python is an object that offers the same functions as
a file object. When using the open() function to create a new file object to read/write
from locally, we are offered some functions such as write() or readlines(). These
functions allow us to read or write from or to a file. A file-like object offers the same
functions and can thus be used as if it was a remote file. We use the readlines()
function on the stdout object to read everything returned – in this example, the running
configuration of our device – and write it line by line to a local file.

There's more...
If you prefer to just see the output of your command instead of writing it to a file, you can
also use the following construct, instead of the code provided in step 7 of the recipe, to
print out your entire configuration:

for line in output:

 print(line.strip())

The strip() method used in the preceding example will delete any unnecessary leading
or trailing whitespaces.

Executing the same command against
multiple devices
In the previous recipes, we have always only dealt with a single device. Quite often we
have a fleet of similar devices that we want to configure in unison.

In this recipe, you will see how to programmatically open an SSH connection to multiple
devices, issue the same command to all of them, and then save the output. We will again
use this example to back up the running configuration of multiple devices.

Getting ready
Open your code editor and start by creating a file called exec_multiple.py. Next,
navigate your terminal to the same directory that you just created the exec_multiple.
py file in. Additionally, create a file called credentials.json. We will use this file to
retrieve credentials such as the username and password of our devices.

Executing the same command against multiple devices 37

How to do it...
Let's start by creating our credentials file. We will then read that file from our Python
script, create clients for each of these devices, and finally execute a command while also
saving the output back to our file:

1.	 Import the required libraries, Paramiko and json:

import json

from paramiko.client import SSHClient

2.	 Open up the credentials.json file and provide the credentials to your
device(s) in the format shown in the following code. You can specify as many
devices as you want:

[

 {

 "name": "<insert a unique name of your device>",

 "host": "<insert the host of your device>",

 "username": "<insert the username>",

 "password": "<insert the password",

 "port": 22

 },

 {

 "name": "<insert a unique name of your device>",

 "host": "<insert the host of your device>",

 "username": "<insert the username>",

 "password": "<insert the password",

 "port": 22

 }

]

3.	 Go back to your exec_multiple.py file. We will now open the JSON file in our
Python script:

credentials = {}

with open("credentials.json") as fh:

 json.load(fh)

38 Connecting to Network Devices via SSH Using Paramiko

4.	 Create a variable holding the command you want to execute. We will then loop over
all the devices specified in our credentials.json file and create an SSH client
object. Additionally, we will create an individual output file for each of our devices
based on the name we specified in the JSON file:

CMD = "show running-config"

for cred in credentials:

 out_file_name = str(cred['name']) + ".txt"

 client = SSHClient()

 client.load_system_host_keys()

 client.connect(SSH_HOST, port=cred['port'],

 username=cred['username'],

 password=cred['password'])

 stdin, stdout, stderr = client.exec_command(CMD)

 out_file = open(out_file_name, "w")

 output = stdout.readlines()

 for line in output:

 out_file.write(line)

 out_file.close()

 client.close()

 print("Executed command on " + cred['name'])

5.	 To run this script, go to your terminal and execute it with this:

python3 exec_multiple.py

How it works...
In this example, we first create a JSON file containing the credentials and connection
details for all of our devices. We can view this file as a type of inventory. In general, it is
good practice to keep this information separate from the Python code that is acting upon it.

We then use the built-in json module to read the credentials file into a list of dictionaries
that we can loop over.

Based on the credentials specified in the credentials file, we then open up a new Paramiko
connection, execute the command, and write the output to a new log file, that is, by
including the name we set for our device in the JSON file, which is unique for each of
the devices.

Executing a sequence of commands 39

With this, we can back up the running configuration of an entire fleet of devices from one
simple script.

Executing a sequence of commands
In the previous recipes, we have always only dealt with a single command that we wanted
to execute. Maybe you have tried adding another call to the exec_command() function
to the client already and have run into an error telling you that the session is closed. It is
indeed correct that, once your command is done executing, the connection will close.

But quite often we don't want to execute only one but a sequence of commands one after
another. We could reconnect for each of the commands, but this is a workaround that
would create a lot of unneeded disconnecting and reconnecting. What we can do instead
is, if the target device's configuration allows it, open up a shell session. This shell session is
a single command, and we can then use stdin, stderr, and stdout to send multiple
commands in the same session.

In this recipe, you will see how to programmatically open an SSH connection to a device,
open a shell, and then send a list of commands to the device before closing the connection.

Getting ready
Open your code editor and start by creating a file called exec_multiple_commands.
py. Next, navigate your terminal to the same directory that you just created the
exec_multiple_commands.py file in.

How to do it...
Let's start by creating our credentials file. We will then read that file from our Python
script, create clients for each of these devices, and finally execute a command while also
saving the output back to our file:

1.	 Import the Paramiko library. We will also need the built-in time library:

from paramiko.client import SSHClient

import time

40 Connecting to Network Devices via SSH Using Paramiko

2.	 Specify the host, username, and password. You can name these variables however
you like. In the Python community, it has become a standard to uppercase these
global variables:

SSH_USER = "<Insert your ssh user here>"

SSH_PASSWORD = "<Insert your ssh password here>"

SSH_HOST = "<Insert the IP/host of your device/server
here>"

SSH_PORT = 22 # Change this if your SSH port is different

3.	 Create an SSHClient object, which we just imported from Paramiko:

client = SSHClient()

4.	 While we have created our client object, we have not yet connected to the device.
We will use the connect method of the client object to do so. Before actually
connecting, we will need to make sure that our client knows the host keys:

client.load_system_host_keys()

client.connect(SSH_HOST, port=SSH_PORT,

 username=SSH_USER,

 password=SSH_PASSWORD)

5.	 Open up an interactive shell session and a channel that we can use to retrieve
the output:

channel = client.get_transport().open_session()

shell = channel.invoke_shell()

6.	 Next, specify the list of commands we want to execute on the device:

commands = [

 "configure terminal",

 "hostname test"

]

7.	 Iterate over each of the commands, execute them, and then wait for 2 seconds:

for cmd in commands:

 shell.send(cmd + "\n")

 out = shell.recv(1024)

 print(out)

 time.sleep(1)

Using public/private keys for authentication 41

8.	 Finally, we need to close the connection:

client.close()

9.	 To run this script, go to your terminal and execute it with this:

python3 exec_multiple_commands.py

How it works...
In this example, we use Paramiko's concept of an interactive shell to send multiple
commands to the remote device one after another.

When invoking a shell with Paramiko, we will retrieve a channel. This channel was used
by Paramiko in the background all along to execute our commands but has been hidden
from us so far. The channel takes care of low-level aspects such as sending and receiving
the data to and from the raw network connection to our device. The channel function
we use in this example is the send() function, which sends a string to the remote device.
Mind the carriage return we added to the command. The same way you, when connecting
to a device via SSH, have to execute a command by typing enter, the interactive session
has to indicate that via a linebreak, which is the same symbol sent by your interactive
session when hitting the Enter key.

We are using the sleep function here to wait for the commands you have passed to have
finished executing. For short-running commands, you can get away with not using this
sleep function.

Using public/private keys for authentication
So far, we have always used a username/password combination to connect to our device.
This is not the most secure way, however, and many security policies advocate using
public-private key pairs instead of a static password.

In this recipe, you will see how to programmatically open an SSH connection using a
password-protected private key.

Getting ready
Open your code editor and start by creating a file called key_file.py. Next, navigate
your terminal to the same directory that you just created the key_file.py file in.

You'll also need a password-protected private key for the device/server you are trying to
connect to and have the device/server configured to allow or require key-based logins.

42 Connecting to Network Devices via SSH Using Paramiko

How to do it...
Let's start by importing the required libraries, define our new connection details, and
finally open up a connection using key-based authentication:

1.	 Import the Paramiko library:

from paramiko.client import SSHClient

2.	 Specify the host and username. You can name these variables however you like.
In the Python community, it has become a standard to uppercase these global
variables. Instead of the device password, we will now need two new variables – the
path to the private key file that we want to use to authenticate and the password for
that private key file:

SSH_USER = "<Insert your ssh user here>"

SSH_HOST = "<Insert the IP/host of your device/server
here>"

SSH_PORT = 22 # Change this if your SSH port is different

SSH_KEY = "<Insert the name of your private key here>"

SSH_KEY_PASSWORD = "<Insert the password here>"

3.	 Create an SSHClient object, which we just imported from Paramiko:

client = SSHClient()

4.	 While we have created our client object, we have not yet connected to the device.
We will use the connect method of the client object to do so. Before actually
connecting, we will still need to make sure that our client knows the host keys:

client.load_system_host_keys()

client.connect(SSH_HOST, port=SSH_PORT,

 username=SSH_USER,

 look_for_keys=True,

 key_filename=SSH_KEY,

 passphrase=SSH_KEY_PASSWORD)

5.	 As seen before, we can now execute a command once the connection is established:

stdin, stdout, stderr = client.exec_command('<your
command>')

6.	 Finally, we need to close the connection:

client.close()

Using public/private keys for authentication 43

7.	 To run this script, go to your terminal and execute it with this:

python3 key_file.py

How it works...
In this example, we use Paramiko's ability to load RSA keys for authentication to avoid
using a username/password combination for authentication.

We need to import the same packages we have used before. The difference lies in the
parameters that we pass to the connect function. Instead of specifying a password, we
specify the name of our ssh key. The library will then, as indicated by setting the look_
for_keys flag to true, search common places such as ~/.ssh for keys and match them
with the name provided. The passphrase argument is used to provide the passphrase
used to decode the private key. If your private key does not have a passphrase, you can
omit this argument.

Once the connection is established, we can use the client in the same way as we did before,
when dealing with username-password authentication.

There's more...
In the preceding example, we relied on the key file being present in one of the known
paths. Sometimes you might want to explicitly specify the path you are loading a key file
from. You can do so by, instead of just specifying the filename in the key_filename
attribute, specifying the entire path where Paramiko can find your private key.

For example, if your private key is in /home/user/my_keys/id_rsa, you could
modify the preceding example like so:

SSH_KEY = "/home/user/my_keys/id_rsa"

If you want to connect to different devices and have multiple keys, one for each device, you
can also pass a list of key names or paths to ssh keys to the key_filename attribute:

SSH_KEY = [

 "/home/user/my_keys/device_1",

 "/home/user/my_keys/device_2",

 "/home/user/my_keys/device_3"

]

Paramiko will then try out all the keys in the provided list for each device you are
connecting to.

44 Connecting to Network Devices via SSH Using Paramiko

Loading local SSH configuration
When dealing with multiple different devices and connecting to them via SSH, it can be
convenient to specify information such as the hostname, port, username, or identity file to
use in a specific configuration file. The OpenSSH implementation stores this file in a file
called config in the .ssh directory in your home directory (~/.ssh/config on macOS
and Linux).

While we could copy and paste this information into our Python scripts or try to write
a parsing function for the format ourselves, it is easier and more convenient to use
Paramiko's SSH configuration parser.

In this recipe, you will see how to programmatically parse your SSHConfig file, extract
the relevant information based on a host, and store it in a dictionary.

Getting ready
Open your code editor and start by creating a file called parse_config.py. Next,
navigate your terminal to the same directory that you just created the parse_config.
py file in.

You'll also need an SSH config file for the device you are trying to connect to. In this
example, we will be using a config file that has the following content:

Host example

 Host <insert your host address here>

 User <insert your user here>

 Port <insert the port here>

 IdentityFile <insert the path to your private key here>

How to do it...
Let's start by importing the required libraries and defining the path to our SSH
configuration:

1.	 Import the Paramiko library:

from paramiko.client import SSHClient

from paramiko import SSHConfig

Loading local SSH configuration 45

2.	 Specify the path to your SSH config file and the name of your host as it appears in
your SSH configuration (example in this snippet). We will populate all the other
variables from the configuration we are reading:

SSH_CONFIG = "<insert path to ssh config here>"

SSH_HOST = "example"

3.	 Create an SSHConfig object, which we just imported from Paramiko, and create a
local file object with the path to our SSH configuration:

config = SSHConfig()

config_file = open(SSH_CONFIG)

4.	 Next, we need to tell the SSHConfig object to load and parse the configuration file:

config.parse(config_file)

5.	 With the config parsed, we can now do a lookup on this configuration object to
extract all information stored in the configuration itself. The lookup function will
return a dictionary:

dev_config = config.lookup(SSH_HOST)

6.	 With our device configuration extracted from the SSH config we can go ahead
and fill our connection details with what we have extracted from the SSH
configuration file:

client.load_system_host_keys()

HOST = dev_config['hostname'],

client.connect(HOST, port=int(dev_config['port']),

 username=dev_config['user'],

 key_filename=dev_
config['identityfile'])

7.	 With the connection established, we can do all the different things we discovered in
previous recipes before finally closing the connection:

client.close()

8.	 To run this script, go to your terminal and execute it with this:

python3 parse_config.py

46 Connecting to Network Devices via SSH Using Paramiko

How it works...
In this example, we use Paramiko's ability to parse an SSH configuration file to not define
this information in multiple different locations.

We start by importing the SSHConfig class, in addition to the already established
SSHClient class. Instead of manually specifying the host, username, and key file
information, we now create a local file object that points to our SSH configuration.

With that file opened, we can now have Paramiko parse this configuration. The
SSHConfig object now contains all the different information for each of the hosts.
We can then do a lookup on our host – in this recipe, the host is called example – and
extract all configuration variables that are known in the configuration file.

From that, we proceed to providing that information to the SSHClient. Instead of
statically specifying it, we just access it from the dictionary that was returned by Paramiko
when doing the lookup on the host.

3
Building Configuration
Templates Using Jinja2
Configurations are the lifeblood of networking devices and could be, to draw a relation
to software engineering, regarded as the source code of a network. When writing such
configuration files, it can be handy to build templates that parts can be reused from. In
this chapter, we will see how we can programmatically build and render such templates
using a templating language called Jinja2.

The applications of this are manifold. Think of a script that reaches out to your IP Address
Management (IPAM) system and automatically builds a configuration based on the
information and the template you have written. Using sub-templates, you can significantly
improve the overall cohesiveness of your configurations. Instead of each network engineer
writing their own take on some type of configuration, you can pull in a template that does
exactly this configuration for you.

While we could build our configuration templates with pure Python, it is more convenient
to use a templating language. Templating languages are small languages that offer features
such as loops or if-clauses so that you can implement rudimentary logic directly within
your template.

48 Building Configuration Templates Using Jinja2

Specifically, we will use Jinja2 for our templates and learn about the following applications
of Jinja2:

•	 Loading Jinja2 templates in Python

•	 Passing variables from Python to a template

•	 Writing your rendered template to a file

•	 Using for-loops in Jinja2 to configure an access list

•	 Creating a port configuration template using if-clauses in Jinja2

•	 Creating modular templates using Jinja2 import methods

•	 Using Python functions from within your template with Jinja2 filters

•	 Structuring your configuration template with blocks and inheritance

Technical requirements
For this section and the remainder of the book, you'll need an installation of Python.
Specifically, you'll need a Python interpreter of version 3.6.1 or higher. This book makes
use of language constructs of Python 3 and thus is incompatible with Python 2.x.
Additionally, you'll need to install the Jinja2 package. You can install the newest version of
Jinja2 using python3 -m pip install Jinja2. At the time of writing, the current
version is version 2.11.2.

You also want a code editor. Popular choices include Microsoft Visual Studio Code or
Notepad++. Additionally, you'll need a device (virtual or physical) that you can log in
to via SSH.

You can view this chapter's code in action here: https://bit.ly/3CF7RdP

Loading Jinja2 templates in Python
In this chapter, we will use our Python scripts as both an information source for our
template and as the software that starts the rendering of our template into a string that
we can then either display or write to a file for later usage.

In this recipe, we will set up the directory structure for our templates and create a Jinja2
environment in our Python script. This Jinja2 environment will then allow us to load and
render our first template, written in Jinja2, from Python.

https://bit.ly/3CF7RdP

Loading Jinja2 templates in Python 49

Getting ready
Open your code editor and start by creating a file called render_template.py.
Next, navigate your terminal to the same directory that you just created the
render_template.py file in.

Next, in the same directory as your Python file, create a directory called templates.
Inside of this directory, create a file called first.conf.tpl.

How to do it...
Let's start by writing our Python script to load and render our first template before adding
some content into the template:

1.	 Import the required classes from the Jinja2 library:

from Jinja2 import Environment, FileSystemLoader

2.	 We need to tell Jinja2 where to load our templates from. In this chapter, we will
always load from the filesystem:

loader = FileSystemLoader("templates")

3.	 Next, we can create our Jinja2 environment. This environment is used to obtain
a template object that we can then later render out:

environment = Environment(loader=loader)

4.	 With the environment defined, we can obtain our template:

tpl = environment.get_template("first.conf.tpl")

5.	 Finally, we can render our template, save the output to a variable, and print that
variable out on the command line:

out = tpl.render()

print(out)

6.	 With the Python part done, let's open the first.conf.tpl file. This is the
template that is being rendered. For now, just put some normal text into the file:

Hello from the Jinja2 template!

7.	 To run this script, go to your terminal and execute it with the following:

python3 render_template.py

50 Building Configuration Templates Using Jinja2

How it works...
In this recipe, we first import our required Jinja2 components, Environment and
FileSystemLoader, into our script.

FileSystemLoader specifies where Jinja2 can find our templates. While you could put
them wherever you want as long as you specify the correct path here in the argument, it
has become common practice to create a subfolder called templates and store all your
templates in there.

With the loader created, we can now initiate the Jinja2 environment. This environment
handles the retrieval of template objects for us and it is from this environment that we
can obtain our template object itself by using the get_template() method.

Note that, when using the get_template() method, you don't have to specify the full
path to your template. The environment will automatically search in the directory that
you specified in FileSystemLoader.

With our template retrieved from the system, we can then go ahead and render it using
the render() method. This method will return the rendered version of the template
as a string that we can then print out.

Our template called first.conf.tpl is just a plain text file. Again, you can call this
file whatever you want, but it has become common to append .template or .tpl at
the end of the file name to signify that this file is a template.

In the coming recipes, you will see how we can incorporate logic and other advanced
features directly into our template.

There's more...
Some code editors struggle with proper syntax highlighting when a file has the extension
tpl or template. If you prefer to have syntax highlighting for your configuration
file, you can also call your file <filename>.template.<extension>, that is,
first.template.conf.

This will preserve the syntax highlighting of your editor.

Passing variables from Python to a template
So far, we have only seen a static template and we have not passed any information from
our Python script back into the template.

The power of this concept, however, is that we can pass information that we have obtained
in our Python script, for example, by querying an API or by parsing the output of an SSH
command we issued on a device, and use that information in our template.

Passing variables from Python to a template 51

Luckily, Jinja2 supports an easy mechanism for passing variables from our script into our
template, so in this recipe, we will see how we can do this.

Getting ready
Open your code editor and start by creating a file called vars.py. Next, navigate your
terminal to the same directory that you just created the vars.py file in.

In the same directory as your Python file, create a directory called templates if you
have not already done so in a previous recipe. Inside of this directory, create a file called
vars.conf.tpl.

How to do it...
Let's start by writing our Python script to load and render our template before passing
a variable into it and printing the rendered result back to us:

1.	 Import the required classes from the Jinja2 library:

from Jinja2 import Environment, FileSystemLoader

2.	 We need to tell Jinja2 where to load our templates from. In this chapter, we will
always load from the filesystem:

loader = FileSystemLoader("templates")

3.	 Next, we can create our Jinja2 environment. This environment is used to obtain a
template object that we can then later render out:

environment = Environment(loader=loader)

4.	 With the environment defined, we can obtain our template:

tpl = environment.get_template("vars.conf.tpl")

5.	 Finally, we can render our template. The render method allows us to pass an
arbitrary number of variables into the template by specifying them as arguments
of the render() method. In this example, we are going to ask for the name of the
person running the script and pass that information on to the template:

user_name = input("What's your name?: ")

out = tpl.render(name=user_name)

print(out)

52 Building Configuration Templates Using Jinja2

6.	 With the Python part done, let's open the vars.conf.tpl file. This is the
template that is being rendered. Here, we are going to use the variable we have
just passed into the render method:

Hello {{ name }}

7.	 To run this script, go to your terminal and execute it with the following:

python3 vars.py

How it works...
With our Jinja2 components such as the environment and filesystem loader loaded and
initialized, we can go ahead and retrieve some information in the Python script that can
later be passed into the template.

In this example, we used the input method to ask the user for some information and
then passed the variable on to the render method. You can pass as many variables as you
want into the template. The name that you give the function argument, in this case, name,
will be the new name of this variable when using it within the template.

In our template file, we can now use this variable by enclosing the name with double curly
brackets. This indicates to Jinja2 that the content of this bracket represents a variable
whose value should be put in the place of it.

There's more...
Be aware that Jinja2 fails silently. This means that variables you call in your template that
were not passed will just show up as empty. See the following example where we pass the
user_name variable but use the user variable in our template.

In our script, type the following code snippet:

out = tpl.render(user_name=name)

In our template file, use the following code snippet:

Hello {{ user }}

The result of rendering this template would be the following:

Hello

Writing your rendered template to a file 53

Writing your rendered template to a file
So far, we have always printed our template back to the user via the command line, and
while this can be nice to debug and check whether our script ran correctly, in most cases,
we want to save our rendered template as a configuration file to our filesystem.

In this recipe, we will see how we can write the same template we rendered in the Passing
variables from Python to the template recipe to our filesystem using Jinja2 template streams.

Getting ready
Open your code editor and start by creating a file called save_to_file.py. Next,
navigate your terminal to the same directory that you just created the save_to_file.py
file in.

Next, in the same directory as your Python file, create a directory called templates if it
does not already exist from a previous recipe. Inside of this directory, create a file called
vars.conf.tpl if it does not already exist from a previous recipe.

How to do it
Let's start by writing our Python script to load and render our template before passing
a variable into it. Instead of rendering the template and printing the result back to us,
we will dump it directly into a local file:

1.	 Set up the Jinja2 environment. For a detailed explanation of the steps, please refer
to the Loading Jinja2 templates in Python recipe in this chapter:

from Jinja2 import Environment, FileSystemLoader

loader = FileSystemLoader("templates")

environment = Environment(loader=loader)

2.	 With the environment defined, we can obtain our template:

tpl = environment.get_template("vars.conf.tpl")

3.	 Next, let's ask the user for the name again:

user_name = input("What's your name?: ")

4.	 Instead of rendering the stream, we are going to create a template stream and dump
that into a file called rendered.conf:

tpl.stream(name=user_name).dump("rendered.conf")

54 Building Configuration Templates Using Jinja2

5.	 With the Python part done, let's open the vars.conf.tpl file. This is the
template that is being rendered. Here, we are going to use the variable we have
just passed into the render method:

Hello {{ name }}

6.	 To run this script, go to your terminal and execute it with the following:

python3 save_to_file.py

How it works...
With our Jinja2 components, such as the environment and filesystem loader loaded and
initialized, and the information necessary to render the template retrieved from the user,
we can go ahead and write the rendered output of our template to a file.

Contrary to the preceding examples, we used the stream() method instead of the
render() method. This method creates an object that works like a Python generator.
The template is parsed and every time a new line is rendered, this line is returned by
the stream.

While we could also iterate over this stream with a for-loop, Jinja2 conveniently includes
a dump() method. This method takes the name of the file we want to write the output of
our template to as an argument (in our case, rendered.conf) and dumps all the lines
returned from our rendered template into this file.

Using for-loops in Jinja2 to configure
an access list
While we can already achieve a lot by being able to pass information from our Python file
into a template and use this information in there, this is something that could be done
with standard Python strings.

The true power of Jinja2 lies in its ability to include logic in the template. Basically, Jinja2
templates can also be seen as programs written in the Jinja2 template language.

This language supports such constructs as for-loops and if-clauses, which we have
already seen in Python. This means that instead of copy-pasting the same text over
and over and only changing one small part of it, we can create loops to make this more
compact, readable, and changeable.

Using for-loops in Jinja2 to configure an access list 55

In this recipe, you'll see how to take two lists of IP addresses that are provided in your
Python file and create an ACL for all the IPs in both lists, denying access for the IPs in
one list while allowing access for IPs in the other list.

Getting ready
Open your code editor and start by creating a file called jinja_loops.py. Next,
navigate your terminal to the same directory that you just created the jinja_loops.py
file in.

Next, in the same directory as your Python file, create a directory called templates if it
does not already exist from a previous recipe. Inside of this directory, create a file called
acl.conf.tpl.

How to do it...
Let's start by setting up our Python script to be able to render a template. In our script,
we will then define the two lists holding those IPs that will be denied access and those
that will be allowed through.

We will then print the result back to the user:

1.	 Set up the Jinja2 environment. For a detailed explanation of the steps, please refer
to the Loading Jinja2 templates in Python recipe in this chapter:

from Jinja2 import Environment, FileSystemLoader

loader = FileSystemLoader("templates")

environment = Environment(loader=loader)

2.	 With the environment defined, we can obtain our template:

tpl = environment.get_template("acl.conf.tpl")

3.	 Now that we have our template, we need to define two lists that hold the IPs we
want to deny and those we want to allow. Additionally, we are going to specify the
interface that we want this ACL to be configured on:

allowed = [

 "10.10.0.10",

 "10.10.0.11",

 "10.10.0.12"

]

56 Building Configuration Templates Using Jinja2

disallowed = [

 "10.10.0.50",

 "10.10.0.62"

]

intf = "ethernet0"

4.	 Lastly, we need to render our template and print the rendered template back
to the user:

out = tpl.render(allowed=allowed, disallowed=disallowed,
intf=intf)

print(out)

5.	 With the Python part done, let's open the acl.conf.tpl file. This is the template
that is being rendered. Here, we are going to first specify the interface for our ACL
and then loop over the two lists we have provided as an argument to create the
necessary commands to configure our interface to allow or deny the host from
the network:

interface {{ intf }}

ip access-group 1 in

{% for host in disallowed -%}

access-list 1 deny host {{ host }}

{%- endfor %}

{% for host in allowed -%}

access-list 1 permit host {{ host }}

{%- endfor %}

6.	 To run this script, go to your terminal and execute it with the following:

python3 jinja_loops.py

How it works...
With our Jinja2 components such as the environment and filesystem loader loaded and
initialized, and the information necessary to render the template specified in our Python
script, we can go ahead and render the template. This recipe does not have a lot of changes
in the Python file but rather in the template.

Creating a port configuration template using if-clauses in Jinja2 57

In the template, we are using a curly bracket followed by a percentage sign to indicate that
we want to use one of Jinja2's built-in logic blocks. Note that variables are indicated by
using two curly braces while logic is always indicated by a single curly brace followed
by a percentage sign.

Jinja2's for loop follows a similar syntax to the loops in Python. But while Python uses
indentation to indicate what the loop body is, Jinja2 uses the endfor directive to indicate
what block should be repeated for each entry in this list.

In the loop definition, we also added a - sign in front of some of the % signs. By default,
the template engine will add whitespace. Using the - signs tells Jinja2 to remove this
whitespace and thus makes the final configuration prettier format-wise.

There's more...
You can also add comments to your template. A comment block is indicated by a curly
bracket followed by a hashtag.

Areas marked as a comment will be ignored by the template rendering system. This can be
useful when working on a template where you want to comment out a part you don't need
right now:

{# This is a comment that won't be rendered #}

Creating a port configuration template using
if-clauses in Jinja2
With for-loops in our templates, we have the ability to, given a list of variables, print a
modified version of the same configuration block without having to copy-paste the content.

But what if, depending on the value of the variable, we want to specify different commands?
We could, as in the preceding example, use multiple lists but we can also use if-clauses
within our template to specify any additional commands necessary in our configuration.

In this example, we are going to create a port configuration. We will specify both access
and trunk ports and we will add additional commands to our trunk ports by changing
the native VLAN for 802.1Q tagging.

All our ports will be described by dictionaries in our Python script.

58 Building Configuration Templates Using Jinja2

Getting ready
Open your code editor and start by creating a file called jinja_if.py. Next, navigate
your terminal to the same directory that you just created the jinja_if.py file in.

Next, in the same directory as your Python file, create a directory called templates if it
does not already exist from a previous recipe. Inside of this directory, create a file called
ports.conf.tpl.

How to do it...
Let's start by writing our Python script to load and render our template. In our script,
we will then specify three different ports as dictionaries and hand these dictionaries
over to our template.

In the template, we will then use Jinja2's for loops and if clauses to piece together our
configuration:

1.	 Set up the Jinja2 environment. For a detailed explanation of the steps, please refer
to the Loading Jinja2 templates in Python recipe in this chapter:

from Jinja2 import Environment, FileSystemLoader

loader = FileSystemLoader("templates")

environment = Environment(loader=loader)

2.	 With the environment defined, we can obtain our template:

tpl = environment.get_template("ports.conf.tpl")

3.	 Next, let's specify two ports. Each port will be represented by a dictionary specifying
the port information, such as type, slot, port number, and interface type
(access or trunk):

ports = []

port_1 = {

 "type": "ethernet",

 "slot": 1,

 "port_num": 1,

 "intf_type": "access"

}

ports.append(port_1)

Creating a port configuration template using if-clauses in Jinja2 59

port_2 = {

 "type": "ethernet",

 "slot": 1,

 "port_num": 1,

 "intf_type": "trunk"

}

ports.append(port_2)

4.	 Lastly, we need to render our template and print the rendered template back to
the user:

out = tpl.render(ports=ports)

print(out)

5.	 With the Python part done, let's open the ports.conf.tpl file. This is the
template that is being rendered. We will start by looping over each port in our ports
list and specify the common information for each port. Then, we check whether
the interface type of our port is trunk and if that is the case, we add an additional
command that sets the native VLAN for this port to 5:

{% for p in ports %}

interface {{ p['type'] }} {{ p['slot'] }}/{{ p['port_
num'] }}

switchport mode {{ p['intf_type'] }}

{% if p['intf_type'] == "trunk" %}

switchport trunk native vlan 5

{% endif %}

{% endfor %}

6.	 To run this script, go to your terminal and execute it with the following:

python3 jinja_if.py

How it works...
With our Jinja2 components such as the environment and filesystem loader loaded and
initialized and the information on the ports specified in our Python script, we can go
ahead and render the template. This recipe does not have a lot of changes in the Python
file but rather in the template.

60 Building Configuration Templates Using Jinja2

In the body of our for loop, we first print out the common configuration commands
that are shared by both the trunk and access port type ports. Using the same notation
we would use to retrieve the value for a key from a dictionary in Python, we can also
retrieve this information in the template.

Using these dictionaries passed in from the script, we can thus render the interface
information and specify the type of the port.

Next, we can then use an if-clause to check whether the type of our interface is trunk.
Again, Jinja2 is using a similar syntax to Python here. The end of our if-clause is
indicated similar to how the end of a for loop is indicated, by the endif directive.

There's more...
Similar to Python, Jinja2's if-clauses support alternative conditions such as else if
and else blocks in Python:

{% if p['intf_type'] == "trunk" %}

 {# Add commands specific to the trunk port #}

{% elif p['intf_type'] == "access" %}

 {# Add commands specific to the access port #}

{% else %}

 {# Add commands specific to all other types #}

{% endif %}

Creating modular templates using Jinja2's
import methods
So far, our configuration templates have all been one single file that included all the
information. While this is perfectly fine for smaller configurations, it can become hard
to maintain a configuration template that is thousands of lines long and spans different
aspects of your configuration.

In this recipe, you'll see how to split your configuration template up into multiple
sub-templates and include them in one big configuration. This technique allows you
to piece your configuration together from building blocks instead of rewriting these
blocks (like the configuration of an interface) every time you are creating a new
configuration template.

Creating modular templates using Jinja2's import methods 61

Getting ready
Open your code editor and start by creating a file called jinja_modular.py.
Next, navigate your terminal to the same directory that you just created the
jinja_modular.py file in.

Next, in the same directory as your Python file, create a directory called templates if it
does not already exist from a previous recipe. Inside of this directory, create a file called
modular.conf.tpl. We will also need a file called port_conf.sub.conf.tpl.

How to do it...
Let's start by writing our Python script to load and render our template. In our script, we
will then specify three different ports as dictionaries and hand these dictionaries over to
our template.

In the template, we will then use Jinja2's for loops and if clauses to piece together
our configuration:

1.	 Set up the Jinja2 environment. For a detailed explanation of the steps, please refer
to the Loading Jinja2 templates in Python recipe in this chapter:

from Jinja2 import Environment, FileSystemLoader

loader = FileSystemLoader("templates")

environment = Environment(loader=loader)

2.	 With the environment defined, we can obtain our template:

tpl = environment.get_template("modular.conf.tpl")

3.	 Lastly, we need to render our template and print the rendered template back to
the user:

out = tpl.render()

print(out)

4.	 With the work in our Python script done, we can now write the two templates.
Our main template, modular.conf.tpl, will just include our sub template
port_conf.sub.conf.tpl:

{% include 'port_conf.sub.conf.tpl' %}

62 Building Configuration Templates Using Jinja2

5.	 We will put all the information regarding our port configuration into
port_conf.sub.conf.tpl so that it looks like this:

interface ethernet 0/10

switchport mode access

6.	 To run this script, go to your terminal and execute it with the following:

python3 jinja_modular.py

How it works...
With our Jinja2 components such as the environment and filesystem loader loaded and
initialized and the information on the ports specified in our Python script, we can go
ahead and render the template. This recipe does not have a lot of changes in the Python
file but rather in the template.

Instead of putting all our information into one big file, we split our configuration up into
multiple smaller chunks that become more manageable. To do this, we use the include
directive of Jinja2's template language.

There's more...
We can also use sub-templates with an include directive and pass variables to it. Let's
modify the example from the previous recipe such that the configuration information
itself is in a subtemplate and the main template only loops over all ports and then includes
the sub-templates, which, in turn, is responsible for checking the variables and generating
the correct configuration for the specific interface type.

Our Python script thus looks like this:

from Jinja2 import Environment, FileSystemLoader

loader = FileSystemLoader("templates")

environment = Environment(loader=loader)

tpl = environment.get_template("modular_ports.conf.tpl")

Our port configuration ports = []

port_1 = {

 "type": "ethernet",

 "slot": 1,

 "port_num": 1,

 "intf_type": "access"

}

Using Python functions from within your template with Jinja2 filters 63

ports.append(port_1)

port_2 = {

 "type": "ethernet",

 "slot": 1,

 "port_num": 1,

 "intf_type": "trunk"

}

ports.append(port_2)

out = tpl.render(ports=ports)

print(out)

modular_ports.conf.tpl then looks like this:

{% for port in ports %}

{% with p=port %}

{% include "ports_config.sub.conf.tpl" %}

{% endwith %}

{% endfor %}

And finally, ports_config.sub.conf.tpl looks like this:

interface {{ p['type'] }} {{ p['slot'] }}/{{ p['port_num'] }}

switchport mode {{ p['intf_type'] }}

{% if p['intf_type'] == "trunk" %}

switchport trunk native vlan 5

{% endif %}

Using Python functions from within your
template with Jinja2 filters
With if-clauses, loops, and the ability to pass variables into our template, we can now
handle a lot of logic from right within our template file. But while the logic of Jinja2 can
be quite expressive, there are limits to what you can achieve with it. Sometimes it might
be easier to just use a Python function instead.

Jinja2 allows you to call custom functions on their variables to change the output of that
variable. This concept is called filters and the template language itself already comes with
some filters such as length that can be used to determine the length of a list that was
passed into the template.

64 Building Configuration Templates Using Jinja2

In this recipe, we are going to see how you can write your own Python function that can
be called as a filter. In this example, we are going to write a simple function that takes an
IPv4 address and converts this address in to its IPv6 equivalent using Python's built-in
ipaddress module.

Getting ready
Open your code editor and start by creating a file called jinja_filter.py. Next,
navigate your terminal to the same directory that you just created the jinja_filter.
py file in.

Next, in the same directory as your Python file, create a directory called templates if it
does not already exist from a previous recipe. Inside of this directory, create a file called
filter.conf.tpl.

How to do it...
Let's start by writing our Python script to load and render our template. In our script, we
will then create a new Python function that will be our filter. We will then inject this new
filter into our Jinja2 environment and finally call it on a list of IPv4 addresses from within
our template:

1.	 Import the required classes from the Jinja2 library as well as the ipaddress
module, which we will use to do our conversion calculations:

import ipaddress

from Jinja2 import Environment, FileSystemLoader

2.	 We need to tell Jinja2 where to load our templates from. In this chapter, we will
always load from the filesystem:

loader = FileSystemLoader("templates")

3.	 Next, we can create our Jinja2 environment. This environment is used to obtain
a template object that we can later render out:

environment = Environment(loader=loader)

Using Python functions from within your template with Jinja2 filters 65

4.	 We will now need to create a Python function that will be our filter. We are going
to call this function to_ipv6() and it will take a single argument, which is the
IPv4 address. In the function, we'll use the ipaddress module to convert from
the provided IPv4 address to an IPv6 address:

def to_ipv6(addr):

 raw_ipv4 = "2002::" + addr

 ipv6 = ipaddress.IPv6Address(raw_ipv4)

 return str(ipv6)

5.	 With our function defined, we need to inject it into the Jinja2 environment:

environment.filters["toIPv6"] = to_ipv6

6.	 With the environment defined and the filter added, we can obtain our template:

tpl = environment.get_template("filter.conf.tpl")

7.	 Lastly, we need to specify some IPv4 addresses that we want to convert and pass
them to the render method:

addresses = ["10.10.2.10", "10.10.2.40"]

out = tpl.render(addresses=addresses)

print(out)

8.	 With the work in our Python script done, we can now write the template. In it, we
are looping over all addresses and then we print both the original IPv4 address as
well as the converted IPv6 address:

{% for addr in addresses %}

{{ addr }} -> {{ addr|toIPv6 }}

{% endfor %}

9.	 To run this script, go to your terminal and execute it with the following:

python3 jinja_filter.py

66 Building Configuration Templates Using Jinja2

How it works...
With our Jinja2 components such as the environment and filesystem loader loaded and
initialized and the information on the addresses specified, we can then modify our Jinja2
environment.

Filters in Jinja2 are simply functions that are called on the variable upon rendering the
template. A filter always needs a unique name when being passed into the environment.
In our case, the unique name is toIPv6.

In our template, we can then call this filter on a variable by using the pipe symbol. This
will pass the value of the variable as the first argument to the function and the variable
placeholder is replaced with whatever the filter function returns.

There's more...
You can chain multiple filters together. Let's assume you had two different filters, toIPv4
and toIPv6. In a template, you could convert a variable first to IPv4 (using the toIPv4
filter) and then convert that IPv4 address into an IPv6 address (using the toIPv6 filter):

{{ raw_addr|toIPv4|toIPv6 }}

Your filter function can also receive one additional argument. Modify your code from the
recipe so that the filter function now looks like this:

def to_ipv6(addr, prefix):

 raw_ipv4 = str(prefix) + str(addr)

 ipv6 = ipaddress.IPv6Address(raw_ipv4)

 return str(ipv6)

With the filter function modified, we can now provide this additional prefix information
in the template:

{% for addr in addresses %}

{{ addr }} -> {{ addr|toIPv6("2012::") }}

{% endfor %}

Structuring your configuration template with blocks and template inheritance 67

Structuring your configuration template with
blocks and template inheritance
In order to achieve modularity for our templates, we have so far relied upon including
sub-templates in one main template. And while this allows us to not write the same parts
of the configuration multiple times, it is also less flexible while allowing the person writing
the main template to define what part to include where.

So instead of including sub-templates, we could also provide a base template. In this base
template, we will specify blocks of information. We could, for example, have a block for
the message of the day and another block for the port configuration.

Our actual template will then inherit this base template and just overwrite those blocks
that it wants to change while keeping the defaults that are specified in the base template
for those blocks that it does not overwrite.

Using this approach, we can get even more cohesion within our configuration since,
no matter who writes the configuration template and in what order the blocks are
overwritten, the resulting rendered configuration will always follow the format and
include any additional information specified in the base template.

Getting ready
Open your code editor and start by creating a file called jinja_base.py. Next, navigate
your terminal to the same directory that you just created the jinja_base.py file in.

Next, in the same directory as your Python file, create a directory called templates if it
does not already exist from a previous recipe. Inside of this directory, create a file called
base.conf.tpl. Additionally, we will need a file called child.conf.tpl.

How to do it...
Let's start by writing our Python script to load and render our template.

This template will then inherit from our base template and overwrite those blocks that it
wants to change, providing modularity without having to include any sub-templates:

1.	 Set up the Jinja2 environment. For a detailed explanation of the steps, please refer
to the Loading Jinja2 templates in Python recipe in this chapter:

from Jinja2 import Environment, FileSystemLoader

loader = FileSystemLoader("templates")

environment = Environment(loader=loader)

68 Building Configuration Templates Using Jinja2

2.	 With the environment defined, we can obtain our template:

tpl = environment.get_template("child.conf.tpl")

3.	 Lastly, we need to render our template and print the rendered template back to
the user:

out = tpl.render()

print(out)

4.	 With the work in our Python script done, we can start to specify the base template.
In our base.conf.tpl file, we can specify the blocks like so:

banner motd #

{% block motd %}

Welcome to this device. This is the default message of
the day that can be changed in the configuration.

{% endblock %}

#

hostname production-{% block name_suffix %}default{%
endblock %}

5.	 Next, in child.conf.tpl, we need to inherit from this template by extending it:

{% extends 'base.conf.tpl' %}

{% block motd %}

This is a non-default message of the day!

{% endblock %}

6.	 To run this script, go to your terminal and execute it with the following:

python3 jinja_base.py

How it works...
With our Jinja2 components such as the environment and filesystem loader loaded and
initialized, we are ready to render our child template based upon our base template.

In the base template, we start by specifying the blocks that we want this base template to
support. The first line, banner motd #, will always be included, regardless of what our
child templates do. After this required directive, to change the message of the day, we start
by specifying our first block. A block always needs a unique name, motd in this case, and
is defined by the block and endblock directives.

Structuring your configuration template with blocks and template inheritance 69

These directives mark the text that is included in this specific block.

As you can see with the name suffix block, these can also be on one line. In this case, to
allow our child template to overwrite its hostname based on a specified format, blocks
don't need to provide a default value, as was the case for our two preceding examples;
they can also be empty.

In our child template, we start off by telling Jinja2 which template to extend. Since the
base template is in the same directory as our child template, it is loaded by the same
environment and it is thus enough to just specify the filename of the base template.

Be aware that you can only extend one base template per child template. Jinja2 does not
support multi-inheritance.

Within the child template, we can now start overwriting the default values that are
provided by specifying the blocks that we want to overwrite. Upon rendering the child
template, those blocks that we have overwritten in the child template will have these
new values.

All other blocks, such as the name_suffix block that we did not touch in our child
template, will remain with the default values that were defined in our base template.

There's more...
In the preceding example, we always replaced the content of the block that was specified
in our base template with new text specified in our child template.

Instead of doing that, we can also append to the text that was already specified in the base
blocks by using the super method. When used as a template variable, this function will
print the content of the block it is called in, which was specified in the base template.

Let's modify our motd to, instead of replacing the text specified in base.conf.tpl,
add one more line to it.

Our base.conf.tpl file should then look like this:

banner motd #

{% block motd %}

Welcome to this device. This is the default message of the day
that can be changed in the configuration.

{% endblock %}

#

70 Building Configuration Templates Using Jinja2

Our child.conf.tpl file now needs to, when overwriting the motd block, call the
super method to still keep the configured message while adding to it.

child.conf.tpl thus should look like this:

{% extends 'base.conf.tpl' %}

{% block motd %}

{{ super() }}

This line is then added by the child template.

{% endblock %}

As you can see, we call the super() method as the first line, after specifying which block
we want to modify. This way, the this line is added by the child template text is appended
after the original message.

You could also call the super method after the additional text you specified.

4
Configuring Network

Devices Using Netmiko
In Chapter 2, Connecting to Network Devices via SSH Using Paramiko, we saw how to
connect to a network device via SSH using the Paramiko library. While we can do pretty
powerful things such as executing commands against our devices using Paramiko, it was
built as an SSH library, not a library to connect to and configure network devices. Enter
netmiko, a library purpose-built to connect to and configure network devices using Python.

The netmiko library is build on top of Paramiko, hence the similarity in name, which
abstracts away some of the quirks of dealing with SSH connections, including differing
escape codes, and is purpose-built for connecting to and configuring network devices
using either an SSH or telnet connection. This purpose-built abstraction becomes
particularly useful when dealing with devices from different vendors and not with a
homogeneous single-vendor deployment. Additionally, netmiko provides a nice set of
helper functions that allow you to carry out common workflows, such as connecting to a
device and deploying a configuration from a file, with fewer lines of code.

In this chapter, we are going to learn how to use the netmiko library to connect to our
devices, issue commands, retrieve output and copy files all from within Python. With
the techniques learned in this chapter, you'll be able to automate existing workflows that
involve applying one or more commands to a network device from Python as well as
retrieve information from your network devices in a structured way.

72 Configuring Network Devices Using Netmiko

The recipes in this chapter will cover the following areas:

•	 Connecting to a network device using netmiko

•	 Sending commands using netmiko

•	 Retrieving command outputs as structured Python data using netmiko and Genie

•	 Gathering facts using netmiko

•	 Connecting to multiple devices

•	 Creating and applying a configuration template with Jinja2 and netmiko

•	 Copying files to a device using netmiko

•	 Escalating privileges with netmiko

•	 Authenticating using public-private keys with netmiko

•	 Handling commands that prompt for information using netmiko

Technical requirements
For this section and the remainder of the book, you'll need an installation of Python.
Specifically, you'll need a Python interpreter of version 3.6.1 or higher. This book makes
use of the language constructs of Python 3 and thus is incompatible with Python 2.x.
Please also install the netmiko package (python3 -m pip install netmiko). We
are using the latest version of netmiko at the time of writing, version 3.3.3. You may install
this exact version by issuing python3 -m pip install netmiko==3.3.3. All
code examples have been developed and tested on a Mac running macOS version 10.15.4.

You also want a code editor. Popular choices include Microsoft Visual Studio Code or
Notepad++. Additionally, you'll need a device (virtual or physical) that you can log in to
via SSH.

You can view this chapter's code in action here: https://bit.ly/3yHL5Qi

Connecting to a network device using netmiko
When dealing with a network device and its connection in netmiko we will generally deal
with ConnectHandler. This is our central interface to open a connection to a device
and write commands to the device as well as reading the output back.

In this recipe, you will see how to programmatically open an SSH connection by creating
an instance of netmiko's ConnectHandler.

https://bit.ly/3yHL5Qi

Connecting to a network device using netmiko 73

Getting ready
Open your code editor and start by creating a file called connect.py. Next, navigate
your terminal to the same directory that you just created the connect.py file in.

How to do it...
Let's start by importing the required classes from the netmiko library. We will then set
up a dictionary that contains our connection details and then initiate a connection to the
device we just specified.

Follow these steps to establish a connection from your Python script to a network device
using netmiko:

1.	 Import ConnectHandler from netmiko:

from netmiko import ConnectHandler

2.	 Create a dictionary that will contain our connection details. In this example, we are
connecting to a Cisco IOS device. See the How it works section for a list of device
types from other vendors. Make sure to use the exact same dictionary keys (such as
device_type or host) when specifying your connection information:

connection_info = {

 'device_type': 'cisco_ios',

 'host': '<insert your host here>',

 'port': <insert your port number here>,

 'username': '<insert your username here>',

 'password': '<insert your password here>'

}

3.	 Next, we are going to use a Python context manager to open a connection, which is
similar to opening a file:

with ConnectHandler(**connection_info) as conn:

 print("Successfully connected!")

4.	 To run this script, go to your terminal and execute it with the following command.
The output should be the same as the following example:

python3 connect.py

Successfully connected!

74 Configuring Network Devices Using Netmiko

How it works...
In this example, we first loaded ConnectHandler from netmiko into our script. This
is the central class we are going to use when interacting with our network device from a
netmiko perspective.

Next, we specified the connection details in a dictionary. The first entry, device_type,
is a hint to the netmiko library about what kind of device we are dealing with.

Based on this hint, netmiko will handle the SSH connection differently. For example,
different vendors may have different escape sequences or handle prompts differently and
netmiko accounts for these differences in the background so that you as a developer don't
have to worry about it.

While writing this book in January 2021, the netmiko library supports 105 different device
types. A complete list can be found in this source code file: https://github.com/
ktbyers/netmiko/blob/master/netmiko/ssh_dispatcher.py#L104.

While the entire list of 105 handlers would be excessive to reiterate here, the following are
the handlers for the most common (network) device vendors:

•	 cisco_ios, cisco_xe, and cisco_xr for connecting to Cisco IOS devices

•	 cisco_nxos for connecting to devices running the Cisco NX-OS
operating system

•	 linux for connecting to generic Linux devices such as servers

•	 juniper, juniper_junos, and juniper_screenos for connecting to devices
from Juniper

•	 arista_eos for connecting to Arista devices

•	 hp_comware and hp_procurve for connecting to devices from HP

•	 huawei, huawei_smartax, huawei_olt, and huawei_vrpv8 for connecting
to devices from Huawei

If the vendor that produced your device is not in the preceding bullet list, please refer to the
link mentioned prior to the preceding list to check the entire listing of available device types.

With the device type defined, we can now go ahead and specify the familiar connection
attributes, such as host, username, password, and port.

Connecting to a network device using netmiko 75

Next, we are using the Python construct of a context manager. A context manager is a
Python construct that allows us to carry out two related operations one after another
without having the developer write excessive boilerplate code. Essentially, context managers
allow library developers to specify code to be executed when the object is created, before the
user-provided code is executed, and after the user-provided code is executed.

The most common example of where context managers can lead to fewer lines of code is
when opening and closing a file. When opening a file, we generally want to do something
with said file, such as reading or writing to or from it, and then close the file. The context
manager in Python allows developers of a library to offer this exact functionality to the
users using the with keyword. In the previous chapter, we saw files being opened with
this method as well:

with open("file.txt", "r") as f:

 lines = f.readlines()

 for line in lines:

 print(line)

This code is equivalent to the following code snippet:

f = open("file.txt", "r")

lines = f.readlines()

for line in lines:

 print(line)

f.close()

netmiko also defines a context manager for its ConnectHandler so we can use the
with statement to use it. With this, netmiko also takes care of closing the connection to
the device once we have executed all our commands.

In the previously discussed example, we are using the double asterisk operator to unpack
the information specified in the dictionary and pass that information on as keyword
arguments to ConnectHandler. Therefore, it is important to use the exact same spelling
since it refers to the connection_info dictionary. Please refer to the There's more
section of this recipe if you want to learn more about the syntax used here to pass the
arguments from a dictionary.

76 Configuring Network Devices Using Netmiko

Instead of the asterisk syntax we could have also written the following:

connection_info = {

 'device_type': 'cisco_ios',

 'host': '<insert your host here>',

 'port': <insert your port number here>,

 'username': '<insert your username here>',

 'password': '<insert your password here>'

}

with ConnectHandler(device_type='cisco_ios',

 host='<your_host>',

 port=<insert your port number here>,

 username='<insert your username here>',

 password='<insert your password here>') as conn:

 print("Successful connection!")

As you can see, this makes the example significantly longer and harder to read. Also, by
storing the connection information in the dictionary, you could do things such as storing
the access information for all your devices in JSON files and then read them back as
dictionaries when needing to connect to a certain device.

There's more...
The **syntax seen in the preceding section is often used in conjunction with a concept
called variadic arguments. Variadic arguments allow a function to receive an arbitrary
number of arguments from the user without specifying the arguments.

Think for example of a function that should be able to receive an arbitrary number of
integers as an argument and then sum them. You could come up with the idea to specify
a function with the same name, but different parameters. So, you could imagine writing
something like this:

def sum_up(a):

 return a

def sum_up(a, b):

 return a + b

Sending commands using netmiko 77

This won't work because Python does not support function overloading – the process
of having the same function name with different argument sets. Python does not support
function overloading officially. If you are interested in hacking Python to support this
have a look at the concept of virtual namespaces. Together with decorators, you can build
this functionality into Python. This is beyond the scope of this book, however. With
variadic arguments we can build this functionality quite elegantly.

Please refer to the following code to understand how variadic arguments work:

def sum_up(*nums):

 print(type(nums))

 result = 0

 for num in nums:

 num += num

 return num

sum_up(1, 2, 3, 4)

As you can see, the type of the nums variable is a tuple. You can think of a tuple as a
list that can't be changed after it is created. So, we are essentially passed a list of all the
arguments that the function has received. Mind the * we used to specify this to be a
variadic argument.

Similarly, we can use the ** syntax that we used in our example to unpack a dictionary to
keyword arguments to specify that we want to receive a dictionary with all the keyword
arguments as follows:

def sum_up(**kwargs):

 print(str(kwargs.keys())

sum_up(hello="world")

While you can name these two types of arguments however you like, the names *args
and **kwargs have established themselves as the quasi-standard.

Sending commands using netmiko
Now that we have successfully established a connection to our network device using
netmiko and ConnectHandler, we want to be able to send commands to our device.
In Paramiko, the process of sending and receiving the output was rather cumbersome.
Luckily, netmiko provides an easy-to-use abstraction over Paramiko that lets us issue a
command and read back the output with just one line of code.

78 Configuring Network Devices Using Netmiko

In this recipe, you will see how to programmatically open an SSH connection by creating
an instance of netmiko's ConnectHandler, send a command to the remote device, and
retrieve the output of the command as a string.

Getting ready
Open your code editor and start by creating a file called send_command.py. Next,
navigate your terminal to the same directory that you just created the send_command.
py file in.

How to do it...
Let's start by importing the required classes from the netmiko library. We will then set
up a dictionary that contains our connection details and then initiate a connection to the
device we just specified. With the connection covered we can then proceed and issue our
command and print the output back to the user.

Follow these steps to connect to a network device and send commands using netmiko:

1.	 Import ConnectHandler from netmiko:

from netmiko import ConnectHandler

2.	 Create a dictionary that will contain our connection details. In this example, we are
connecting to a Cisco IOS device. See the How it works section in the Connect to a
network device using netmiko recipe for a list of device types from other vendors.
Make sure to use the exact same dictionary keys (such as device_type or host)
when specifying your connection information:

connection_info = {

 'device_type': 'cisco_ios',

 'host': '<insert your host here>',

 'port': <insert your port number here>,

 'username': '<insert your username here>',

 'password': '<insert your password here>'

}

Retrieving command outputs as structured Python data using netmiko and Genie 79

3.	 Next, we are going to use a Python context manager to open a connection similar
to how we can open a file. Inside of that context manager, we'll then use the send_
command() method of ConnectHandler to send our show interfaces
command to the device and print back the output:

with ConnectHandler(**connection_info) as conn:

 out = conn.send_command("show interfaces")

 print(out)

4.	 To run this script, go to your terminal and execute it with the following command.
The output should be the same as if you had connected to the device by SSH directly
and issued the following command:

python3 send_command.py

How it works...
We first import the ConnectHandler class from netmiko. Next, we specify the
connection details for our device, the host, port, username, and password, as well as the
device type. Netmiko uses the device type internally to provide a common interface to
send commands to devices and operating systems from different vendors. Please see the
How it works section in the Connect to a network device using netmiko recipe for a list of
supported device types.

With our context manager established, we can now send the command – in this example,
a show interface command on a Cisco IOS device using the send_command()
method.

The output returned from this method is a string that contains the output from the
command you issued. We then print out that command for the user and the context
manager takes care of closing the connection.

Retrieving command outputs as structured
Python data using netmiko and Genie
In the previous recipe (Sending commands using netmiko), we saw how to send a
command and retrieve the output of said command as a string.

While the text output might be perfectly suitable for a human to look at, and understand
the different parts, computers have a hard time understanding plaintext.

80 Configuring Network Devices Using Netmiko

What if, for example, we want to build a script that prints out all the different interfaces
that are available on our networking device? With plaintext, this is going to involve a
lot of text manipulation. Since turning the output of CLI commands into structured data
is a cornerstone of network automation, libraries have been developed to address this
exact issue.

One such library is Genie. Genie (together with pyATS) is an open source project
originally developed and currently maintained by Cisco. While it has its roots as an
internal Cisco library, it supports the devices from other vendors through its open
interfaces. Genie and pyATS have an active community with new parsers constantly being
added into the new releases.

We will see a lot more of the features that Genie and pyATS provide in Chapter 7,
Automate Your Network Tests and Deployments with pyATS and Genie, but for now we'll be
content with Genie being a very powerful parser that can convert the textual output of a
command into structured Python data.

Getting ready
Open your code editor and start by creating a file called get_interfaces.py.
Next, navigate in your terminal to the same directory that you just created the
get_interfaces.py file in.

When installing netmiko via pip, it does not come preinstalled with pyATS and Genie.
So we'll need to install these two additional packages by issuing python3 -m pip
install pyats genie. The recipes in this book were developed against version
21.1 of pyATS and version 21.1.3 of Genie. If you wish to install the same versions, you
can use the following commands: python3 -m pip install pyats==21.1 and
python3 -m pip install genie==21.1.13. Please note that Genie and pyATS
are not supported on Windows. If you use Windows as your main operating system you
may need to either install Linux in a virtual machine or use the Windows Subsystem for
Linux 2 to use pyATS/Genie.

How to do it...
After installing the required new packages, we can go ahead and connect to our device,
issue the show interfaces command and then use Genie to parse the textual output
into a Python dictionary. With that Python dictionary in hand, we'll first print out the
entire content of the dictionary to see how Genie structures the output and then print out
just the list of interfaces.

Retrieving command outputs as structured Python data using netmiko and Genie 81

Using the following steps you can retrieve the output of a command as structured Python
data instead of plaintext:

1.	 Import the ConnectHandler from netmiko. Additionally, we'll import the pretty
print module that allows us to print a dictionary with better formatting:

from netmiko import ConnectHandler

import pprint

2.	 Create a dictionary that will contain our connection details. In this example, we are
connecting to a Cisco IOS device. See the How it works section in the Connect to a
network device using netmiko recipe for a list of device types from other vendors.
Make sure to use the exact same dictionary keys (such as device_type or host)
when specifying your connection information:

connection_info = {

 'device_type': 'cisco_ios',

 'host': '<insert your host here>',

 'port': <insert your port number here>,

 'username': '<insert your username here>',

 'password': '<insert your password here>'

}

3.	 Next, we are going to use a Python context manager to open a connection, similar
to how we open a file. Inside of that context manager, we'll then use the send_
command() method of the ConnectHandler to send our show interfaces
command to the device and print back the output. Notice how we have set the use_
genie flag of send_command to True:

with ConnectHandler(**connection_info) as conn:

 out = conn.send_command("show interfaces", use_
genie=True)

4.	 Next, we'll print out the entire dictionary we received using prettyprint. Make sure
that you are still within the context manager (one indention level):

 pprint.pprint(out)

82 Configuring Network Devices Using Netmiko

5.	 And finally, we iterate over all the items within the dictionary. The keys of this
specific dictionary will be the names of the interfaces. The output of course depends
on the specific command you are issuing:

 for interface in out.keys():

 print(interface)

6.	 To run this script, go to your terminal and execute it with the following command:

python3 get_interfaces.py

This command will give the following output:

Figure 4.1 – Excerpt of the returned output

Gathering facts using netmiko 83

The preceding screenshot shows an excerpt of the output from the returned dictionary
printed by the prettyprint library. As you can see, the dictionary is nicely formatted
and properly indented, making it easier to read through.

How it works...
With the netmiko connection established (please have a look at the How it works section
of the Send commands using netmiko recipe for a detailed explanation) we can send our
command again and retrieve the output.

The only difference to the way we invoked send_command() in the Send commands
using netmiko recipe was that we toggled the use_genie flag to True. Internally, this
invoked the Genie parser, and the returned object is no longer the plaintext returned by
the network device itself but the parsed output in the form of a dictionary!

We can then use the built-in pretty print library to get a formatted version of the
dictionary printed back to us. With our show interfaces command the Genie
parser put the names of the interfaces as the key to a nested dictionary. Contained in
that dictionary are all the details returned by the command in structured Python data.
You could for example find the bandwidth of an interface called GigabitEthernet1 using
out['GigabitEthernet1']['bandwidth']. Notice how Genie has also converted
numbers to numbers and Booleans to Python Booleans to make it easy for you to do
comparisons or check if a certain setting is set to true or false.

With our knowledge of how the data returned in the dictionary is structured, we can go
ahead and print our desired list of interfaces by looping over all the keys in the dictionary
returned by Genie.

Genie is constantly being updated and new parsers added. You may find an up-to-date list
of all parsers currently included at https://pubhub.devnetcloud.com/media/
genie-feature-browser/docs/#/parsers.

In the explorer on Genies documentation page, in the top right you can specify the
operating system you are interested in and then either scroll through the list or use the
search bar to verify that the commands you are using are supported by Genie.

Gathering facts using netmiko
In the previous recipe (Retrieving command outputs as structured Python data using
netmiko and Genie), we saw how to retrieve the output of a command as structured data
in Python. In this recipe, we will build upon this functionality to get a profile of all our
interfaces. This will show you how to use the parsed data to quickly print out and identify
the relevant information.

84 Configuring Network Devices Using Netmiko

For this example, we'll be using the show interfaces command again and, for each
interface, we will retrieve and print out the following:

•	 The interface name

•	 The status of the interface (enabled or not enabled)

•	 The physical address of the interface

•	 The duplex mode

•	 Any counters that are above 0

Getting ready
Open your code editor and start by creating a file called get_facts.py. Next, navigate
your terminal to the same directory that you just created the get_facts.py file in.

When installing netmiko via pip, it does not come preinstalled with pyATS and Genie.
So we'll need to install these two additional packages by issuing python3 -m pip
install pyats genie. The recipes in this book were developed against version 21.1
of pyATS and version 21.1.3 of Genie. If you wish to install the same versions, you can use
the following commands: python3 -m pip install pyats==21.1 and python3
-m pip install genie==21.1.13.

How to do it...
Using the following steps you can retrieve the output of our show interfaces
command as structured Python data that will then be parsed further:

1.	 Import ConnectHandler from netmiko. Additionally, we'll import the pretty
print module that allows us to print a dictionary with better formatting:

from netmiko import ConnectHandler

import pprint

2.	 Create a dictionary that will contain our connection details. In this example, we are
connecting to a Cisco IOS device. See the How it works section in the Connect to a
network device using netmiko recipe for a list of device types from other vendors.
Make sure to use the exact same dictionary keys (such as device_type or host)
when specifying your connection information:

connection_info = {

 'device_type': 'cisco_ios',

 'host': '<insert your host here>',

Gathering facts using netmiko 85

 'port': <insert your port number here>,

 'username': '<insert your username here>',

 'password': '<insert your password here>'

}

3.	 Next, we are going to use a Python context manager to open a connection, similar to
opening a file. Inside of that context manager, we'll then use the send_command()
method of the ConnectHandler to send our show interfaces command to
the device and print back the output. Notice that we have set the use_genie flag
of send_command to True:

with ConnectHandler(**connection_info) as conn:

 out = conn.send_command("show interfaces", use_
genie=True)

4.	 With our structured data retrieved we can now iterate over each of the interfaces
and print the information we want. Make sure that you are still within the context
manager (one indention level):

 for name, details in out.items():

 print(f"{name}")

 print(f"- Status: {details.get('enabled',
None)}")

 print(f"- Physical address: {details.get('phys_
address', None)}")

 print(f"- Duplex mode: {details.get('duplex_
mode', None)}")

5.	 With our basic information printed out, we can now iterate over all counters and
their values to check if any of those counters is over 0. Make sure that you are still
within the context manager (first indention level) as well as within the for loop
from the interfaces (second indention level):

 for counter, count in details.get('counters',
{}).items():

 if isinstance(count, int):

 if count > 0:

 print(f"- {counter}: {count}")

 elif isinstance(count, dict):

 for sub_counter, sub_count in count.
items():

86 Configuring Network Devices Using Netmiko

 if sub_count > 0:

 print(f"- {counter}::{sub_
counter}: {sub_count}")

6.	 To run this script, go to your terminal and execute it with the following command:

python3 get_facts.py

How it works...
With the netmiko connection established (please have a look at the How it works section
of the Send commands using netmiko recipe for a detailed explanation) we can send our
command again and retrieve the output as structured data (please see the How it works
section of the Retrieving command outputs as structured Python data using netmiko and
Genie recipe for a detailed explanation of how this is achieved).

We then iterate over each of our interfaces and their associated details. We first print
out the static information such as the interface name and status. Note how we are
using for example the details.get("phys_address", None) function of the
dictionary instead of directly accessing it using the square brackets (that is, writing
details["phys_address"]). The benefit of using the get method is that we can
provide a default value, in our case None, that is returned in case the key is not found.
This is to prevent a Key Error. Key errors occur when we are trying to access the key-value
pair of a dictionary where the key does not exist, especially when dealing with output
from devices. It is thus advisable to use this get method. Some interfaces might have an
IPv4 address configured. Others might not have that particular field specified. Using the
get method, we can be sure that our code does not stop executing but rather just prints
the default value.

With our basic information printed, we can next iterate over the available counters.
Counters can come in two different formats. They are either a pair of a counter name
(for example in_crc_errors) and the associated value (for example 0) or they can
be a counter name followed by a dictionary that contains the sub counter name and sub
counter value pairs. We use the built-in isinstance() method to check if our counter
is a number or if we are dealing with a dictionary and thus have mapping of sub counter
name and sub counter value pairs.

The exact output of the structured data depends on how Genie parses the command. You
can see the returned structure by having a look at the parsers available. Genie is constantly
being updated and new parsers added. You can find an up-to-date list of all parsers
currently included at https://pubhub.devnetcloud.com/media/genie-
feature-browser/docs/#/parsers.

Connecting to multiple devices 87

In this explorer, in the top right you can specify the operating system you are interested in
and then either scroll through the list or use the search bar to verify that the commands
you are using are supported by Genie and how the output is structured. Alternatively,
you can always run the command with use_genie set to True and then use the pretty
print library (as shown in the Retrieving command outputs as structured Python data using
netmiko and Genie recipe) to see the structure of the actual output for yourself. In the
pretty printer output you can then identify the keys and the types of their values.

There's more...
The get() method of a dictionary returns None by default, so in the preceding code we
could have omitted the second argument, writing details.get("enabled") instead
of details.get("enabled", None) since None is the default return value. If you
want to return a different default return value – let's say you want to return the string
N/A (commonly used as an abbreviation of Not Applicable) – you would write details.
get("enabled", "N/A").

Connecting to multiple devices
So far, we have always only dealt with a single device and our connection info was always
specified directly in the Python script. It is quite a common use case though to issue the
same set of commands or the same configuration to an entire fleet of devices.

Using a script to apply the same command automatically instead of logging into each
device manually not only saves time but also prevents configuration drift since all devices
are guaranteed to be issued the exact same commands.

In this recipe, we are going to specify the connection information for our devices in the
form of a JSON file. Based on the connection information stored in this JSON file we'll
then connect to each of these devices, issue a command (show running-config in
this example), retrieve the output, and save it to a file.

Getting ready
Open your code editor and start by creating a file called connect_multiple.py.
Next, navigate your terminal to the same directory that you just created the connect_
multiple.py file in.

We'll also need a file to store our connection details. So, in the same directory as your
connect_multiple.py file, create a file called connections.json.

88 Configuring Network Devices Using Netmiko

How to do it...
We'll first import the built-in json library as well as the netmiko module. Next, we are
going to specify our connection details in our connections.json file, read that file in
our Python script, and open up a connection based on the provided details. We'll issue the
show running-config command in each of the devices and save the output into a
text file.

Using the following steps we can read connection details from a JSON file, connect to each
specified device, execute a command, and save the output of the command per device:

1.	 Open the connections.json file in your code editor. For each device, we are
going to define the following structure. Note how the nested dictionary with the
key connection has the exact same keys as those we previously defined in our
Python dictionary:

[

 {

 "name": "device-1",

 "connection": {

 "device_type": "<insert your device type here>",

 "host": "<insert your host here>",

 "port": <insert your port number here>,

 "username": "<insert your username here>",

 "password": "<insert your password here>"

 }

 },

{

 "name": "device-2",

 "connection": {

 "device_type": "<insert your device type here>",

 "host": "<insert your host here>",

 "port": <insert your port number here>,

 "username": "<insert your username here>",

 "password": "<insert your password here>"

 }

 }

]

Connecting to multiple devices 89

2.	 With all your devices specified you can open the connect_multiple.py file. We
first are going to import the required libraries:

import json

from netmiko import ConnectHandler

3.	 Next, we need to read the connection details from our JSON file:

devices = []

with open("connections.json", "r") as fh:

 devices = json.load(fh)

4.	 We can now iterate over each device in the devices list using the connection
information stored in the JSON file, issue the defined command, and then save the
output to a new file based on the name we gave the device in the JSON file:

CMD = "show running-config"

for device in devices:

 file_name = f"{device['name']}.out"

 print(f"Retrieving config for {device['name']}")

 with ConnectHandler(**device['connection']) as conn:

 out = conn.send_command(CMD)

 with open(file_name) as f:

 f.write(out)

5.	 To run this script, go to your terminal and execute it with the following command:

python3 connect_multiple.py

You should see output printed acknowledging that the command is being issued for each
of your devices specified in the connections.json file.

How it works...
In this recipe, we are defining our connections in a JSON file instead of putting them
directly into our Python script. In the JSON file, we defined a list, as indicated by the
opening and closing square brackets, of dictionaries. Each of our dictionaries representing
a device has a name and another nested dictionary with the key connection. Contained in
this nested connection dictionary is the connection information for the device, including
details such as the host, port, username, password, and device type required by netmiko to
connect successfully.

90 Configuring Network Devices Using Netmiko

With the JSON file created, we next read that information back into Python by opening
the file in Python and then reading and parsing the content from JSON into a Python list
of dictionaries using the built-in json module.

With our device data loaded, we can now specify the command we want to issue on all our
devices and then loop over all the dictionaries representing a device contained within the
devices list.

For each of our devices, we then create a filename for the output based on the name we
provided in the JSON file. We then open a ConnectHandler with the connection
details contained within the connection sub-dictionary and execute the command
specified previously on the device.

Finally, we open a new file handler to write the contents of our output, in this case the
running configuration of the device, to a file.

With this simple script, you could already create a full backup of all your configurations.
This could be useful for example when doing a big update and you would want to have the
current state of the configuration preserved in case something goes wrong and you need
to revert to this version of your configuration.

There's more...
Depending on the size of your network it might be difficult to keep the credentials
and connection details for each of your network devices in .json files. While
programmatically consumable files like the ones shown in this recipe are preferable to
keeping your connection details in a .pdf document, large networks might require a
centralized storage for all information. This is where IP Address Management (IPAM)
tools come into play. Popular solutions such as the open source IPAM Netbox (https://
netbox.readthedocs.io/en/stable/) allow you to have a centralized storage
for all your device details. Netbox then offers a REST API that can be used to retrieve
the information. We will discuss REST APIs and how to consume them with Python in
Chapter 9, Consuming Controllers and High-Level Networking APIs with requests.

Creating and applying a configuration
template with Jinja2 and netmiko
With the recipes so far, we have only read back information from our network devices.
What we have not done so far is apply a new configuration to our device.

https://netbox.readthedocs.io/en/stable/
https://netbox.readthedocs.io/en/stable/

Creating and applying a configuration template with Jinja2 and netmiko 91

In Chapter 3, Building Configuration Templates Using Jinja2, we saw how we can use the
Jinja2 templating language to build a new configuration file based on an existing template.
In this recipe, we are going to combine Jinja2's ability to render a configuration template
into an actual configuration file and netmiko's ability to apply a file as a new configuration
to a network device to go from a configuration template to a configuration that is applied
to a real device.

Getting ready
Open your code editor and start by creating a file called apply_config.py. Next,
navigate your terminal to the same directory that you just created the apply_config.
py file in.

Additionally, we'll need a Jinja2 template, so in the same directory as your Python file,
create a directory called templates. Inside of this directory, create a file called acl.
conf.tpl.

We'll be reusing the same template we rendered to a file in Chapter 3, Building
Configuration Templates Using Jinja2, in the Use for loops in Jinja2 to configure an access
list recipe.

If you have not installed the Jinja2 package in Chapter 3, Building Configuration Templates
Using Jinja2, please go ahead and do so now. You can install the newest version of Jinja2
using python3 -m pip install jinja2. At the time of writing, the current
version is version 2.11.2. You can install this specific version by using the following
command: python3 -m pip install jinja2==2.11.2.

How to do it...
We'll first create our configuration template, load that template into our Jinja2
environment, and render it. After writing the rendered template to a file we'll then use
netmiko to open a connection to our network device and apply the previously rendered
configuration to our device as follows:

1.	 Open the acl.conf.tpl file. This is the template that is being rendered. Here,
we are going to first specify the interface for our ACL and then loop over the two
lists we have provided as an argument to create the necessary commands to allow or
deny the host from the network:

interface {{ intf }}

ip access-group 1 in

{% for host in disallowed %}

92 Configuring Network Devices Using Netmiko

access-list 1 deny host {{ host }}

{% endfor %}

{% for host in allowed %}

access-list 1 permit host {{ host }}

{% endfor %}

2.	 Open the apply_config.py file. We'll start by importing the required libraries
(netmiko and Jinja2):

from netmiko import ConnectHandler

from jinja2 import Environment, FileSystemLoader

3.	 With our libraries imported we can define the connection details of our device:

connection_info = {

 'device_type': 'cisco_ios',

 'host': '<insert your host here>',

 'port': <insert your port number here>,

 'username': '<insert your username here>',

 'password': '<insert your password here>'

}

4.	 Next, we need to set up our Jinja2 environment to render the template:

loader = FileSystemLoader("templates")

environment = Environment(loader=loader)

tpl = environment.get_template("acl.conf.tpl")

5.	 Now that we have our template, we need to define two lists that hold the IPs we
want to deny and those we want to allow. Additionally, we are going to specify the
interface that we want this ACL to be configured on in the following manner:

allowed = [

 "10.10.0.10",

 "10.10.0.11",

 "10.10.0.12"

]

disallowed = [

 "10.10.0.50",

 "10.10.0.62"

Creating and applying a configuration template with Jinja2 and netmiko 93

]

intf = "ethernet0"

6.	 With the information needed to render our template in place, we can create a
configuration from our template and write the output to a file:

out = tpl.render(allowed=allowed, disallowed=disallowed,
intf=intf)

with open("configuration.conf", "w") as f:

 f.write(out)

7.	 Now that our template is rendered and written to a file called configuration.
conf, we can establish a connection using ConnectHandler from netmiko.
Instead of using the send_command() method we are going to use the send_
config_from_file() method that takes the path to a configuration file as an
argument as follows:

with ConnectHandler(**connection_info) as conn:

 out = conn.send_config_from_file("configuration.
conf")

8.	 To run the script, go to your terminal and execute the following command:

python3 apply_config.py

How it works...
In this recipe, we first create the configuration template, set up the Jinja2 environment,
and then render the template. Please refer to Chapter 3, Building Configuration Templates
Using Jinja2, in the Use for loops in Jinja2 to configure an access list recipe, for a more
detailed explanation as to how the setup of Jinja2 works.

With our template rendered and written into the new configuration file, we can now go
ahead and open a connection to our network device. With the connection established, we
can then use the convenient send_config_from_file() method.

This method takes the path to a configuration file as an input, reads it line by line, and
applies the commands to the output device.

94 Configuring Network Devices Using Netmiko

There's more...
In this example, we rendered the configuration from a template file and stored that
template file on our hard disk before having netmiko read the file back and apply it. If you
have a list of configuration commands that you would like to issue and you already have
that list as a Python list, you can make this easier in the following way:

commands = [

 'interface ethernet0',

 ' ip access-group 1 in',

 'access-list 1 deny host 10.10.10.10'

]

with ConnectHandler(**connection_info) as conn:

 out = conn.send_config_set(commands)

Copying files to a device using netmiko
Transferring files to and from a network device is a common use case. Be it the transfer
of a new firmware from your computer to a network device, or the download of log files
from the network device back to your computer for further analysis, it is always useful to
be able to sync files with a device.

In this recipe we'll see how netmiko has integrated the secure copy (or scp) protocol that
works on top of SSH to allow us to easily transfer files to and from a device.

Getting ready
Open your code editor and start by creating a file called transfer_files.py. Next,
navigate your terminal to the same directory that you just created the transfer_
files.py file in.

You'll also need a file, for example a new firmware or just a text file, that you want to
transfer to your device. If you don't have a file ready that you could transfer, feel free to
just create an empty text file called test_upload.txt. You'll also have to make sure
that SCP is enabled on your device. Please refer to the manual of your device to find out
how to enable secure copy on your operating system.

How to do it...
In this recipe, we'll first import the required classes and methods from the netmiko
module. With that in place we'll create our connection information that will include file
system information. With this, we can use netmiko to transfer our local file to the
network device.

Copying files to a device using netmiko 95

Follow these steps to establish a connection to the specified device and transfer a file to it:

1.	 Import the ConnectHandler from netmiko as well as the file_transfer
function:

from netmiko import ConnectHandler, file_transfer

2.	 Next, we need to specify the required connection information:

connection_info = {

 'device_type': 'cisco_ios',

 'host': '<insert your host here>',

 'port': <insert your port number here>,

 'username': '<insert your username here>',

 'password': '<insert your password here>',

}

3.	 With our connection information defined, we can open a ConnectHandler to
our remote device and use the file_transfer function imported before to
upload our local file:

with ConnectHandler(**connection_info) as conn:

 ret = file_transfer(conn,

 source_file="test_upload.txt",

 dest_file="test_on_device.txt",

 file_system="<insert target filesystem
here>",

 direction="put")

 for k, v in ret.items():

 print(f"{k}: {v}")

4.	 Run the script by executing the following command:

python3 transfer_file.py

Once the script has run you may want to verify that the file has indeed been transferred by
logging into the device via SSH.

How it works...
In this recipe, we are using the file_transfer function provided by netmiko to
upload a file from our local machine to the remote device using SCP.

96 Configuring Network Devices Using Netmiko

First, we define our connection details for the device we want to upload our file to. Next,
we create a new ConnectHandler within a context manager. This ConnectHandler
is then passed as the first argument into the file_transfer() function.

The file_transfer function takes the following arguments:

•	 source_file is the path to the local file we want to upload.

•	 dest_file is the name of the file in our destination.

•	 file_system allows us to specify which file system we want to write to on the
target device, such as bootflash, flash, or disk0.

•	 direction specifies whether we are transferring to or from a device. To transfer
files from the local machine to a device, we use put, and to transfer a file from a
remote device to our local device, we use the get direction.

The file_transfer function returns a dictionary that contains three Boolean flags
related to our remote file:

•	 file_exists indicates that the file does now exist on the target device.

•	 file_transfered indicates whether the file actually had to be transferred or
whether it was already present on the target device.

•	 file_verified indicates whether the MD5 checksum of the transferred file
matches the MD5 signature of the local file.

There's more...
In the example, you saw how you can upload a file to a device. You can also do the reverse
by setting the direction to get.

By default, the transferred file will be verified by comparing the MD5 hash. This
verification can take a long time and thus you can disable it by setting the disable_md5
flag to True.

We can have the file_transfer function overwrite files by setting the overwrite_
file flag to True.

Escalating privileges with netmiko
When dealing with configuration operations on a network device, we might need to enter
a mode that has more privileges. This enable mode can, and should, be secured by
a password.

Escalating privileges with netmiko 97

In the examples so far, we have assumed that this was not the case and that everyone can
just enter enable mode without being prompted for a password. In this recipe, we are
going to see how you can provide netmiko with the secret when connecting to the device
and then enter enable mode before retrieving the running configuration.

Getting ready
Open your code editor and start by creating a file called enter_enable.py. Next,
navigate your terminal to the same directory that you just created the enter_enable.
py file in.

Make sure that your device is configured to require a secret when trying to enable.

How to do it...
Let's start by importing the required classes from the netmiko library. We will then set
up a dictionary that contains our connection details and then initiate a connection to the
device we just specified. With the connection covered we can then proceed and issue our
command and print the output back to the user.

Follow these steps to programmatically enter enable mode before issuing a command:

1.	 Import ConnectHandler from netmiko:

from netmiko import ConnectHandler

2.	 Create a dictionary that will contain our connection details. In this example, we are
connecting to a Cisco IOS device. See the How it works section in the Connect to a
network device using netmiko recipe for a list of device types from other vendors.
Make sure to use the exact same dictionary keys (such as device_type or
host) when specifying your connection information. Notice how we have added a
key-value pair for the secret:

connection_info = {

 'device_type': 'cisco_ios',

 'host': '<insert your host here>',

 'port': <insert your port number here>,

 'username': '<insert your username here>',

 'password': '<insert your password here>',

 'secret': '<insert enable secret here>'

}

98 Configuring Network Devices Using Netmiko

3.	 Next, we are going to use a Python context manager to open a connection, similar to
opening a file. Inside of that context manager, we'll then use the send_command()
method of the ConnectHandler to send our configuration commands as follows:

with ConnectHandler(**connection_info) as conn:

 conn.enable()

 out = conn.send_command("show running-config")

 print(out)

4.	 To run this script, you will have to go to your terminal and execute it. The output
should be the same as if you had connected to the device by SSH directly and
executed it with the following:

python3 enter_enable.py

How it works...
In this recipe, we are using netmiko's ConnectHandler to connect to our device using
the connection information passed in from a dictionary that contains the host, port,
username, password, and device type information required by netmiko.

Additionally, we have provided a secret. This is the secret used when trying to enter
enable mode.

After establishing a connection, we prompt our netmiko connection to enter enable mode
by using the enable() function on our ConnectHandler.

Authenticating using public-private keys with
netmiko
In all recipes so far, we have used a combination of username and password to
authenticate ourselves against the device. A different approach employed quite frequently,
and sometimes even required by certain audit requirements, is that we use public-private
keys to authenticate.

In Chapter 2, Connecting to Network Devices via SSH Using Paramiko, we saw that
Paramiko supports the usage of keys instead of a username/password combination to
authenticate. As netmiko is built on top of Paramiko, we can also do this conveniently
with netmiko.

Authenticating using public-private keys with netmiko 99

In this recipe, we'll see how to use a private key to authenticate against a device and issue
a command.

Getting ready
Open your code editor and start by creating a file called auth_key.py. Next, navigate
your terminal to the same directory that you just created the auth_key.py file in.

Make sure that the device you are using is configured to use public-private key
authentication and that you have the correct private key.

How to do it...
We'll create a dictionary that contains our connection details. In this dictionary, contrary
to what we have done so far, we won't specify a username/password configuration, but
rather enable key authentication and then provide the path where our private key is stored
for netmiko to use for authentication.

Follow these steps to authenticate using a specific key file instead of a username/password
combination:

1.	 Import ConnectHandler from netmiko:

from netmiko import ConnectHandler

2.	 Create a dictionary that will contain our connection details. In this example, we are
connecting to a Cisco IOS device. See the How it works section in the Connect to a
network device using netmiko recipe for a list of device types from other vendors.
Make sure to use the exact same dictionary keys (such as device_type or host)
when specifying your connection information.

Note how we are not providing a password:
connection_info = {

 'device_type': 'cisco_ios',

 'host': '<insert your host here>',

 'port': <insert your port number here>,

 'username': '<insert your username>',

 'use_keys': True,

 'key_file': '<insert path to private key here>'

}

100 Configuring Network Devices Using Netmiko

3.	 Next, we are going to use a Python context manager for opening a connection,
similar to how we open a file. Inside of that context manager, we'll then use
the send_command() method of the ConnectHandler to send our show
interfaces command to the device and print back the output:

with ConnectHandler(**connection_info) as conn:

 out = conn.send_command("show interfaces")

 print(out)

4.	 To run this script, go to your terminal and execute it with the following:

python3 auth_key.py

The output should be the same as if you had connected to the device by SSH directly and
issued the command.

How it works...
In this recipe, we are providing a different set of inputs to the ConnectHandler
for our connection. Instead of a password, we signal netmiko to use a private key for
authentication by setting the use_keys flag to True. With key-based authentication
enabled we then need to provide the path to our private key. This is done by specifying
this path in the key_file argument.

With these changes to the connection details applied, we can proceed as seen before and
create a ConnectHandler within a context manager that can send commands and
retrieve the output.

Handling commands that prompt for
information using netmiko
In the previous recipes in this chapter, we have always run commands that did not expect
any user input. Once issued to the device, we could just wait for them to finish and see the
output returned by netmiko. But what about commands that do prompt for confirmation?
A typical example would be a delete command that can be used to delete a file from the
device. This command will prompt for confirmation.

A naïve implementation could be to issue our delete command, wait a few moments to
be sure that the device is showing the prompt, and then send the required confirmation,
for example a line break or a y using another send_command() call. While this
approach would work, it is clumsy and does not take into account changes to the required
string. Since this is a common task, netmiko does provide the functionality to react to a
command prompting for information.

Handling commands that prompt for information using netmiko 101

In this recipe, we will issue a delete command and react to the prompt. While this
example uses the delete command, any command that prompts for your input can
be used.

Getting ready
Open your code editor and start by creating a file called prompt.py. Next, navigate your
terminal to the same directory that you just created the prompt.py file in.

We will delete a file called test_upload.txt from the flash of our device in this
example. You can upload such a test file programmatically by following the instructions in
the Copying files to a device using netmiko recipe.

How to do it...
Let's start by first importing the required classes, specifying the connection details, and
then establishing a connection to the device. With the connection to the device built, we
can then issue our commands.

Follow these steps to answer the prompt of a command:

1.	 Import ConnectHandler from netmiko:

from netmiko import ConnectHandler

2.	 Create a dictionary that will contain our connection details. In this example, we are
connecting to a Cisco IOS device. See the How it works section in the Connect to a
network device using netmiko recipe for a list of device types from other vendors.
Make sure to use the exact same dictionary keys (such as device_type or host)
when specifying your connection information:

connection_info = {

 'device_type': 'cisco_ios',

 'host': '<insert your host here>',

 'port': <insert your port number here>,

 'username': '<insert your username>',

 'password': '<insert your password here>',

}

102 Configuring Network Devices Using Netmiko

3.	 Next, we are going to use a Python context manager for opening a connection
similar to opening a file. Inside of that context manager, we'll then use the send_
command() method of the ConnectHandler to send our delete command to
the device and expect and answer the prompts:

with ConnectHandler(**connection_info) as conn:

 conn.send_command("delete flash:/test_upload.txt",

 expect_string=r"Delete filename",

 strip_prompt=False,

 strip_command=False)

 conn.send_command("\n",

 expect_string=r"confirm",

 strip_prompt=False,

 strip_command=False)

 conn.send_command("y",

 expect_string=r"#",

 strip_prompt=False,

 strip_command=False)

4.	 To run this script, go to your terminal and execute it with the following command:

python3 prompt.py

There should be no output but the file should be deleted on the target device.

How it works...
In this recipe, we are using netmiko's ConnectHandler to connect to our device using
the connection information passed in from a dictionary that contains the host, port,
username, password, and device type information required by netmiko.

With the connection established, we can use the send_command function to execute
our command. We passed three additional keyword arguments (expect_string,
strip_prompt, and strip_command) to our command. The strip_prompt and
strip_command flags are turned to false to include the command issued, as well as
the prompt (for example, #) in the output. The netmiko documentation, which you can
find at https://github.com/ktbyers/netmiko/blob/develop/EXAMPLES.
md#handling-commands-that-prompt-timing, specifies that this makes the output
easier to read, and when sending our final y we do expect the prompt (in this example, #) to
appear, indicating that the command has run successfully with all prompts accepted.

https://github.com/ktbyers/netmiko/blob/develop/EXAMPLES.md#handling-commands-that-prompt-timing
https://github.com/ktbyers/netmiko/blob/develop/EXAMPLES.md#handling-commands-that-prompt-timing

Handling commands that prompt for information using netmiko 103

The interesting parameter is the expect_string parameter. Here we are passing
a regular expression, marked by the r before the string, to our command. In the
background, the session waits until a string matching the regular expression we passed
is found in the output. Once a string matching the regular expression is found the
command finishes executing. This allows us to wait until the device is actually ready and
is prompting us for an input before sending the required two inputs, in this example an
Enter keypress or linebreak and a y for confirmation. The exact sequence of commands, as
well as the strings to expect, depend on the command you are issuing.

There's more...
In the preceding example, we used a new Python construct to define a regular expression
called a raw string. In order to understand how raw strings differ from regular strings,
we have to take a look at how Python normally handles the \ character. We have seen
before that we can use \n to define a newline or use \r to define a carriage return. This
means that Python, when using normal strings, treats the character following \ differently.
Python tries to find a matching escape sequence, such as the newline for \n or \t for a
Tab keypress. These sequences are also called escape sequences.

But what if instead of having \ signal the beginning of an escape sequence, we want the slash
to just be treated like a slash? Especially when dealing with regular expressions, this can
become a problem as we want the \ to be treated literally instead of as the start of an escape
sequence, as in most regular expressions. We could escape the slash by using two slashes –
that is, in order to have Python print a single slash, we have to write print("\\") instead
of just print("\"). The former command will error out with a SyntaxError: EOL
while scanning string literal error, while the latter will print out a single
\. Always escaping the slashes can become a pain and thus Python offers us raw strings.
These raw strings, signaled by the r in front of the quotation marks, tell Python to treat the
following string without searching for and processing the string literals.

Have a look at the output of the following code sample:

print("\n")

print(r"\n")

While the first print just prints two new lines (one from the \n and one that is always
printed with each print command), the second print command will print the \n as a
literal string instead of treating it as a special sequence indicating a newline character.

5
Model-Driven

Programmability
with NETCONF and

ncclient
In previous chapters, we learned how to connect to a network device and either retrieve
or change the configuration of our device using the same CLI commands that we can
also issue manually. Now, let's take a step back and examine what we are actually doing
when we issue configuration commands. Fundamentally, a device has a certain state,
which is the sum of all the configuration variables and their values. Every time we issue
a command, we either retrieve this state or change the state by creating, modifying, or
deleting variables within that state.

106 Model-Driven Programmability with NETCONF and ncclient

While CLI commands are a great way to modify states for humans, as they are easy to
read and, therefore, easy to remember and type, they are not ideal for computers. In
Chapter 4, Configuring Network Devices Using Netmiko, in the Retrieving command outputs
as structured Python data using netmiko and Genie recipe, we learned that we need an
entire library (for example, Genie) to take the human-readable CLI output and convert
it into a machine-readable data format. This is a cumbersome task because we are also
trying to teach the computer how to parse information that was primarily intended for
consumption by humans. CLIs and their outputs were never designed to be consumed by
computers; so, in this chapter, we will explore a format that was made for computers.

Of course, we are not the first ones to identify the shortcomings of previous methods.
The gap in the standard way of retrieving and changing the configuration of network
devices has also been identified by the Internet Engineering Task Force (IETF). In 2006,
they published their approach for changing or retrieving configurations and, therefore,
the state of a network device. They named their new protocol Network Configuration
Protocol (NETCONF).

In this chapter, we will explore the different ways in which we can use the ncclient library
to manipulate a device's state by using the NETCONF protocol. Specifically, we will be
covering the following topics and recipes:

•	 Revisiting the NETCONF and YANG modules

•	 Connecting to a network device using ncclient

•	 Using NETCONF and ncclient to retrieve the running configuration

•	 Using NETCONF and ncclient to change the starting configuration

•	 Retrieving an interface configuration using NETCONF and ncclient

•	 Changing an interface configuration using NETCONF and ncclient

•	 Reacting to event notifications using NETCONF and ncclient

Technical requirements
For this chapter and the remainder of the book, you'll require an installation of Python.
Specifically, you'll need a Python interpreter of version 3.6.1 or higher. This book makes
use of the language constructs of Python 3 and, therefore, is incompatible with Python
2.x. Please also install the ncclient package (that is, python3 -m pip install
ncclient). At the time of writing, we are using the latest version of ncclient, that is,
version 0.6.10. You can install this exact version by issuing python3 -m pip install
ncclient==0.6.10. All of the code examples have been developed and tested on a
macOS X machine, running Mac OS X version 10.15.4.

Revisiting the NETCONF and YANG modules 107

You will also need a code editor. Popular choices include Microsoft Visual Studio Code or
Notepad++. Additionally, you'll need a device (either virtual or physical) that you can use
to log in via SSH.

You'll also need the login information of a networking device that supports the
NETCONF protocol. By default, NETCONF uses TCP port 830 and SSH as its transport
protocol. Please make sure that your firewall does not block any communications on this
port. You will have to verify that your device supports NETCONF and that NETCONF is
enabled. Please refer to the configuration guide of your device to verify that NETCONF is
supported and to find out how to enable it.

You can view this chapter's code in action here: https://bit.ly/2VPzqR1

Revisiting the NETCONF and YANG modules
Before jumping straight into the Python code, let's revisit how NETCONF works and how
we use YANG modules to describe the data model used to retrieve or modify our device
configuration. At its core, NETCONF works by sending operations, which are described
in eXtended Markup Language (XML), to a device. The device then carries out that
operation and returns information.

The core operations defined by the NETCONF protocol are as follows:

•	 <get>: This is used to retrieve information about the state of a device.

•	 <get-config>: This is used to retrieve an entire configuration (for example, the
entire running configuration of your device).

•	 <edit-config>: This is used to edit a configuration (for example, to change
the entire running configuration on your device). Here, edit can refer to creating,
deleting, or combining configuration variables.

•	 <copy-config>: This is used to copy from one configuration to another (for
example, to copy your running configuration to your startup configuration).

•	 <delete-config>: This is used to delete an entire configuration.

•	 <lock>: This is used to lock a configuration (for example, your running
configuration). This allows you to make sure that no other process is manipulating
this specific configuration.

•	 <unlock>: This is used to release a lock that was previously obtained using the
<lock> operation.

•	 <close-session>: This is used to terminate a NETCONF session.

•	 <kill-session>: This is used to force the termination of a NETCONF session.

https://bit.ly/2VPzqR1

108 Model-Driven Programmability with NETCONF and ncclient

So far, we have learned that the NETCONF module defines a set of operations that can be
used to carry out all of the different operations required to programmatically retrieve or
modify the configurational state of a network device. What NETCONF does not define
(currently) is what this operation should look like. The content of a NETCONF request
needs to be written in well-formed XML, but what should this XML look like?

This is where Yet Another Next Generation (YANG) comes into play. YANG is a
modeling language that can be used to define what the data that is being sent over a
network connection using NETCONF should look like. While YANG is independent
of the protocol it is being used in, in this chapter, we will focus on NETCONF and,
therefore, only look at XML-formatted messages. In Chapter 8, Configuring Devices Using
RESTCONF and requests, we will examine how YANG modules can also be implemented
using JSON-formatted messages.

Each YANG module is part of a namespace that defines the data types of the tree structure
this YANG module is modeling for us. We do not only have individual items in our leaf
instances but also lists of these items. Let's take a look at an example of a YANG module
that describes a computer, namely, a computer's storage and compute resources:

module example-computer {

 namespace http://example.com/example-computer;

 prefix computer;

 container devices {

 config true;

 list storage {

 key identifier;

 leaf identifier {

 type string; mandatory true;

 }

 leaf type {

 type string; mandatory true;

 }

 }

 typedef clock_rate {

 type uint16;

 description "The clock rate of a CPU in
hertz"

Revisiting the NETCONF and YANG modules 109

 }

 list compute {

 key core;

 leaf core { type uint16; mandatory true; }

 leaf rate { type clock_rate; mandatory true;
}

 }

 }

}

First, we define a container called devices. This container will contain our lists of leaf
instances. In our example, we are modeling a list of storage devices. Here, a storage device
is defined by its identifier (dev0) and its type. For example, this could be information
about whether this device is a hard drive or an SSD. Besides the default types (such as a
string or uint16), YANG also allows us to define our own data types. In this example,
we are defining a clock_rate data type that will model the clock rate of our next list
and the compute resources of our device. Each of these resources is represented by a core
number and a rate that has a custom data type, called clock_rate.

An example of an XML document that would be a valid representation of the model is
shown in the following snippet:

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <devices>

 <storage>

 <identifier>sd0</identifier>

 <type>SSD</type>

 </storage>

 <storage>

 <identifier>sd1</identifier>

 <type>HDD</type>

 </storage>

 <compute>

 <core>1</core>

 <rate>36000</rate>

 </compute>

 </devices>

</data>

110 Model-Driven Programmability with NETCONF and ncclient

Thus, YANG is a powerful tool that you can use to model how data should be structured.
And while we could use YANG to model any kind of data, it is predominantly used to
model the data of the configurational state of network devices.

So, to quickly summarize, the modeling language of YANG is used to describe how
the content of a message that is being sent to a device capable of being configured via
NETCONF needs to be formatted. This information includes what kind of fields are
included, what fields can be changed by the user, and what fields are read-only.

You might be wondering who defines these modules and keeps them up to date. There
are certain models provided by OpenConfig. OpenConfig takes common network
structures, such as VLANs or the configuration of the Open Shortest Path First (OSPF)
protocol, and implements them consistently across different vendors. The benefit of
writing an automation workflow purely using the YANG modules of OpenConfig is
that the same workflow can be applied to the devices of different vendors and will
have the same configurational effect. This is extremely useful when you are dealing with
multi-vendor networks.

For those features that are specific to a vendor platform, most vendors, including Huawei,
Cisco, and Juniper, maintain platform- and vendor-specific YANG modules for their
specific devices and features. https://yangcatalog.org/ is a great resource for
validating and exploring your YANG-based projects. Additionally, you can download all
of the available YANG modules by cloning the GitHub repository at https://github.
com/YangModels/yang.git for offline reference.

Connecting to a network device using ncclient
With the introduction to the NETCONF and YANG modules out of the way, we can
now discuss how to connect to a network device using Python so that we can later issue
a NETCONF command to it. NETCONF is built on top of the Remote Procedure Call
(RPC) protocol, and while we could use a generic library that implements this protocol,
the ncclient package has been purposely built to be used to connect to network devices
using NETCONF and, therefore, issue RPC calls to the device.

In this example, we'll set up our connection details, open a connection, and then
retrieve the list of all the YANG modules that are currently supported by the device we
are connecting to. Then, we'll filter this list of available YANG modules to identify the
OpenConfig modules and print the list of found modules back to the user.

https://yangcatalog.org/
https://github.com/YangModels/yang.git
https://github.com/YangModels/yang.git

Connecting to a network device using ncclient 111

Getting ready
Open your code editor and create a file called connect.py. Next, in your Terminal,
navigate to the same directory that you just created the connect.py file in.

How to do it…
The following steps will allow us to connect to a network device and retrieve all of the
available OpenConfig YANG modules:

1.	 Import the manager from ncclient using the following command:

from ncclient import manager

2.	 Create a dictionary with all of the connection details:

conn_info = {

 "host": "<insert your host here>",

 "port": <insert the port number here>,

 "username": "<insert the username here>",

 "password": "<insert the password here>",

 "hostkey_verify": False

}

3.	 With the connection details defined, we can create a connection to our network
device using the ncclient manager, as follows:

device = manager.connect(**conn_info)

4.	 With our connection established, we can now retrieve the list of available modules.
These are also known as the device's capabilities:

capabilities = device.server_capabilities

5.	 Finally, we can iterate over each of those capabilities and search for the YANG
modules that are defined by OpenConfig as shown:

for cap in capabilities:

 if "http://openconfig.net/yang/" in cap:

 print(cap)

6.	 To run this script, go to your Terminal and execute it using the following command:

python3 connect.py

112 Model-Driven Programmability with NETCONF and ncclient

The output of this command should be a long list of OpenConfig YANG modules that
all start with http://openconfig.net/yang/. The exact list of modules depends on
the device you are connecting to:

Figure 5.1 – The output of the available modules as they are retrieved by our script

The preceding screenshot shows an excerpt of the scripts output when connecting to a
Cisco IOS XE device, which is running IOS version 16.9.3.

How it works…
First, we import the manager from ncclient. This manager serves as the central point
for all our interactions with the network device. Next, we create a dictionary that contains
the connection details for our device, including the following:

•	 The host on which to connect

•	 The username we will use to connect

•	 The password to use when connecting

•	 The disabling of the host key verification

http://openconfig.net/yang/

Using NETCONF and ncclient to retrieve the running configuration 113

Then, we use variadic arguments to pass all of the connection variables that were defined
in the dictionary to our manager. Please refer to the There's more… section of the
Connecting to a network device using netmiko recipe, in Chapter 4, Configuring Network
Devices Using Netmiko, for more information regarding variadic arguments and how they
get passed to a function in Python.

Once our connection has been established, we can use the manager's capabilities
variable to retrieve a list of all the different YANG modules that are available on this
specific device. With our available YANG modules or capabilities saved to a list, we can
then loop over each of them. The capabilities list is a list of strings that represent the names
of the YANG modules. As we learned in the introduction to YANG modules (please refer
to the Revisiting the NETCONF and YANG modules section), each of these modules has a
namespace. Since we are interested in those that are part of the OpenConfig module, we
check whether that particular namespace (http://openconfig.net/yang) is part
of our YANG module's name. Then, we use an if-clause together with the in statement to
check whether our prefix is part of the capability.

Using NETCONF and ncclient to retrieve the
running configuration
So far, we have only established a connection to our device, but we have not actually
retrieved any configuration data. This is about to change in this recipe. Using NETCONF
and ncclient, we are now going to establish a connection to our network device and
retrieve the currently running configuration. This configuration will be in the form of an
XML file that represents the running configuration of our device according to the format
defined in the YANG modules for our device.

Getting ready
Open your code editor and create a file called get_running.py. Next, in your Terminal,
navigate to the same directory that you just created the get_running.py file in.

You'll also need the login information of a networking device that supports the
NETCONF protocol.

http://openconfig.net/yang

114 Model-Driven Programmability with NETCONF and ncclient

How to do it…
To establish a connection to your device and retrieve the currently running configuration
in XML format, follow these steps:

1.	 Import the manager from ncclient along with the prettyprint module from
the standard library:

from ncclient import manager

import pprint

2.	 Create a dictionary with all of the connection details:

conn_info = {

 "host": "<insert your host here>",

 "port": <insert the port number here>,

 "username": "<insert the username here>",

 "password": "<insert the password here>",

 "hostkey_verify": False

}

3.	 With the connection details defined, we can create a connection to our network
device using the ncclient manager, as follows:

device = manager.connect(**conn_info)

4.	 With our connection established, we can retrieve the running configuration using
the following:

conf = device.get_config(source='running').data_xml

5.	 Finally, print out the running configuration's XML:

pprint.pprint(conf)

6.	 To run this script, go to your Terminal and execute it using the following command:

python3 get_running.py

Using NETCONF and ncclient to retrieve the running configuration 115

The output should be a long XML document representing your running configuration:

Figure 5.2 – Our running configuration in XML format

The preceding screenshot shows an excerpt of running our configuration retrieval script
against a Cisco IOS XE device, which is running IOS version 16.9.3.

How it works…
First, we import the manager from ncclient. This manager serves as the central point
for all our interactions with the network device. Next, we create a dictionary that contains
the connection details for our device. Please refer to the Connecting to a network device
using ncclient recipe for a more detailed explanation of the connection process.

With our connection established, we can use the manager's built-in get_config()
method to signal that we want to invoke a NETCONF <get-config> operation. We
need to specify the source, that is, which configuration store on the device to draw from,
as the only argument to get_config(). In our case, we want to retrieve the running
configuration and, therefore, use running. get_config() returns an object that has
the data_xml property, which is the XML representation of the running configuration
that we are after. We can then print out the configuration we just retrieved using
prettyprint to get an output that is formatted so that it is easier to read.

116 Model-Driven Programmability with NETCONF and ncclient

There's more…
While the core concept of ncclient is to be vendor agnostic, version 0.4.1 introduced a
number of changes that allowed for more vendor-specific handling. This means that if you
know the device you are running against, you can give this information to ncclient and
the library will adapt to the specifics of the devices operating system/platform.

To do so, we need another connection detail, called device_params, which is a
dictionary that contains device-specific information such as the name of this device/
vendor. We can modify our conn_info dictionary to look like this when we are dealing
with a Juniper device:

 conn_info = {

 "host": "<insert your host here>",

 "port": <insert the port number here>,

 "username": "<insert the username here>",

 "password": "<insert the password here>",

 "hostkey_verify": False,

 "device_params": {

 "name": "junos"

 }

}

Notice that the additional device_params parameter is a dictionary itself. At the time
of writing, the following device handlers and their associated vendors are supported:

•	 junos for Juniper

•	 csr for Cisco CSR devices

•	 nexus for Cisco Nexus devices

•	 iosxr for Cisco IOS XR devices

•	 iosxe for Cisco IOS XE devices

•	 huawei or huaweiyang for Huawei devices

•	 alu for Alcatel Lucent devices

•	 h3c for H3C devices

•	 hpcomware for HP Comware devices

•	 default for anything that you either don't know the vendor of or is not part of the
preceding list

Using NETCONF and ncclient to change the starting configuration 117

Using NETCONF and ncclient to change the
starting configuration
Retrieving the running configuration, as we will learn in the following recipes (please
refer to the Changing an interface configuration using NETCONF and ncclient recipe), is
already a powerful thing to do. But what if we want to overwrite a configuration? Perhaps
we want to provide a completely new configuration from a local file or overwrite the
starting configuration with our currently running configuration. This is what we are going
to explore in this recipe. We'll learn how to use the copy_config() function from
ncclient to copy the currently running configuration to a file and then copy it over to
the starting configuration.

Getting ready
Open your code editor and create a file called change_starting.py. Next, in your
Terminal, navigate to the same directory that you just created the change_starting.py
file in.

You'll also need the login information of a networking device that supports the
NETCONF protocol.

How to do it…
To, first, copy a running configuration to a file and then copy it to the starting
configuration, follow these steps:

1.	 Import the manager from ncclient using the following command:

from ncclient import manager

2.	 Create a dictionary with all of the connection details:

conn_info = {

 "host": "<insert your host here>",

 "port": <insert the port number here>,

 "username": "<insert the username here>",

 "password": "<insert the password here>",

 "hostkey_verify": False

}

118 Model-Driven Programmability with NETCONF and ncclient

3.	 With the connection details defined, we can create a connection to our network
device using the ncclient manager, as follows:

device = manager.connect(**conn_info)

4.	 With our connection established, we can first copy the running configuration to a
new file, as shown here:

device.copy_config(source='running', target='file:///
current_running.conf')

5.	 Next, we can copy this newly created current_running.conf file over to our
starting configuration using the following:

device.copy_config(source='file:///current_running.conf',
target='starting')

6.	 To run this script, go to your Terminal and execute it using the following command:

python3 change_starting.py

After running this script, you should see that your starting configuration has been replaced
with your running configuration. You can also use this workflow to create configuration
backups and allow for automated rollbacks if one of your changes goes wrong.

How it works…
First, we import the manager from ncclient. This manager serves as the central point
for all our interactions with the network device. Next, we create a dictionary that contains
the connection details for our device. Please refer to the Connecting to a network device
using ncclient recipe for a more detailed explanation of the connection process.

After we have established our device connection, we copy our currently running
configuration over to a file called current_running.conf. With this operation
complete, we then use the same copy_config() function of the ncclient manager to
copy the configuration from our newly created file to our starting configuration.

Retrieving an interface configuration using NETCONF and ncclient 119

Retrieving an interface configuration using
NETCONF and ncclient
In the previous recipes (for example, the Using NETCONF and ncclient to retrieve the
running configuration recipe), we have always dealt with the entire running configuration
of our device. While this can be useful in some cases, often, we want to focus on one
aspect of our network device such as the list of interfaces. NETCONF has support for
this through a concept called filters. Filters allow us to specify criteria on which to filter.
Following this, NETCONF will only return entries that match the filter criterion. Filters in
NETCONF are, as with everything, defined by an XML document and can be passed on to
ncclient to be sent to the device.

In this recipe, we will examine how to filter our running configuration to only return the
interface configuration.

Getting ready
Open your code editor and create a file called get_interface.py. Next, in your
Terminal, navigate to the same directory that you just created the get_interface.py
file in.

You'll also need the login information of a networking device that supports the
NETCONF protocol.

How to do it…
To retrieve the configured interfaces of your device, follow these steps:

1.	 Import the manager from ncclient using the following command:

from ncclient import manager

import pprint

2.	 Create a dictionary with all of the connection details, as follows:

conn_info = {

 "host": "<insert your host here>",

 "port": <insert the port number here>,

 "username": "<insert the username here>",

 "password": "<insert the password here>",

 "hostkey_verify": False

}

120 Model-Driven Programmability with NETCONF and ncclient

3.	 With the connection details defined, we can create a connection to our network
device with the ncclient manager using the following commands:

device = manager.connect(**conn_info)

4.	 With our connection established, we can now define our filter:

filter = """

<filter>

 <interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-
interfaces">

 <interface>

 </interface>

 </interfaces>

</filter>

"""

5.	 With our filter defined, we can apply it to our get_config() command, which is
targeted at the running configuration:

conf = device.get_config(source='running',
filter=filter).data_xml

6.	 Finally, print out the XML of the interfaces that was defined in our running
configuration:

pprint.pprint(conf)

7.	 To run this script, go to your Terminal and execute it using the following command:

python3 get_interface.py

Retrieving an interface configuration using NETCONF and ncclient 121

The output should be a long XML document that represents the interface data of your
running configuration:

Figure 5.3 – Our interface list in XML form

The preceding screenshot shows our interface retrieval script running against a Cisco IOS
XE device, which is running IOS version 16.9.3.

How it works…
First, we import the manager from ncclient. This manager serves as the central point
for all our interactions with the network device. Next, we create a dictionary that contains
the connection details for our device. Please refer to the Connecting to a network device
using ncclient recipe for a more detailed explanation of the connection process.

With our connection established, we define our filter. Filters are within the <filter>
parent element within which we need to define what we want to retrieve. In our case, we are
interested in all of the elements matching the IETF YANG module, ietf-interfaces.
We can then pass this filter along to the get_config() function as the filter parameter.
Finally, we can print out the resulting information about our interfaces back to us using the
prettyprint library to get a better-formatted output.

122 Model-Driven Programmability with NETCONF and ncclient

Changing an interface configuration using
NETCONF and ncclient
So far, we have learned how to retrieve or change our entire configuration. But what if
we only want to modify certain aspects of our device's state? That is what we are going to
cover in this recipe. As an example, we will use an OpenConfig YANG module to create
a VLAN interface. While the code is specific to this example, in the sense that we are
generating XML that can be used to create a VLAN, the workflow itself is always the same:

1.	 Generate an XML message that is formatted according to the specifications of the
YANG module.

2.	 Send the generated XML to your network device using ncclient and the
edit_config() method by choosing the running configuration as your target.
This is similar to how we used the running configuration as our source in the
get_config() call.

Getting ready
Open your code editor and create a file called create_vlan.py. Next, in your Terminal,
navigate to the same directory that you just created the create_vlan.py file in.

You'll also need the login information of a networking device that supports the
NETCONF protocol.

How to do it…
To create the necessary XML for a new VLAN and to send the newly created VLAN
configuration to the networking device, follow these steps:

1.	 Import the manager from ncclient using the following command:

from ncclient import manager

2.	 Create a dictionary with all of the connection details using the following commands:

conn_info = {

 "host": "<insert your host here>",

 "port": <insert the port number here>,

 "username": "<insert the username here>",

 "password": "<insert the password here>",

 "hostkey_verify": False

}

Changing an interface configuration using NETCONF and ncclient 123

3.	 With the connection details defined, we can create a connection to our network
device using the ncclient manager:

device = manager.connect(**conn_info)

4.	 With our connection established, we can now create the XML that we want to send
to our device:

vlan_conf = """

<vlan xmlns=http://openconfig.net/yang/vlan>

 <vlan-id>10</vlan-id>

 <config>

 <name>New VLAN</name>

 <status>ACTIVE</status>

 <vlan-id>10</vlan-id>

 </config>

</vlan>

"""

5.	 With our XML ready, we can now send it to the device by using the edit_
config() method of the manager:

device.edit_config(target="running", config=vlan_conf)

6.	 To run this script, go to your Terminal and execute it using the following command:

python3 create_vlan.py

Once this script has run, your device should have a new VLAN called New VLAN with an
ID of 10.

How it works…
First, we import the manager from ncclient. This manager serves as the central point
for all our interactions with the network device. Next, we create a dictionary that contains
all the connection details for our device. Please refer to the Connecting to a network device
using ncclient recipe for a more detailed explanation of the connection process.

124 Model-Driven Programmability with NETCONF and ncclient

With our connection established, we can then create the necessary XML for a new VLAN.
In this case, we are not using a vendor-specific YANG module, but rather, we are using the
OpenConfig YANG module. You can check whether this specific module is supported on
your device by searching the capabilities list of your device. Please refer to the Connecting
to a network device using ncclient recipe to learn how to retrieve the list of OpenConfig
YAML modules that are supported on the device you are using. In the XML, we specify all
the information we want to configure on our VLAN, such as the name and the ID.

With the XML ready to be sent, we can use the manager's edit_config() method to
actually send the changes we want to apply and that we have defined in our XML to the
device. Note that ncclient has modeled its function names after those of the NETCONF
protocol. We also need to specify a target. In our case, we want to overwrite the running
configuration; therefore, we pass running as the argument to the target parameter.

Reacting to event notifications using NETCONF
and ncclient
A common workflow task when dealing with network devices is the need to carry out a
certain workflow whenever something of interest happens to our device. This "something
of interest" could be a configuration change or a fault. NETCONF specifies a way for these
events to be captured. Every time one of these events occurs, we can get a notification
and act accordingly. One example could be to listen for events describing any sort of
configuration change and then sending a message to a central chat room. In this recipe,
you'll learn how to use ncclient to connect to a network device, subscribe to all
notifications, and print out the contents of one notification if something happens.

Getting ready
Open your code editor and create a file called get_notifications.py. Next,
in your Terminal, navigate to the same directory that you just created the
get_notifications.py file in.

You'll also need the login information of a networking device that supports the
NETCONF protocol.

Reacting to event notifications using NETCONF and ncclient 125

How to do it…
To subscribe to all notifications from your device, follow these steps:

1.	 Import the manager from ncclient using the following command:

from ncclient import manager

2.	 Create a dictionary with all of the connection details using the following commands:

conn_info = {

 "host": "<insert your host here>",

 "port": <insert the port number here>,

 "username": "<insert the username here>",

 "password": "<insert the password here>",

 "hostkey_verify": False

}

3.	 With the connection details defined, we can create a connection to our network
device using the ncclient manager:

device = manager.connect(**conn_info)

4.	 With our connection established, first, we need to tell ncclient to subscribe to
the events, as follows:

device.create_subscription()

5.	 With our events subscribed to, we now have to wait until an event occurs. To do so,
we have to go into an infinite loop to keep our connection up:

while True:

 notification = device.take_notification()

 print(notification.notification_xml)

6.	 To run this script, go to your Terminal and execute it using the following command:

python3 get_notifications.py

Your script should listen for notifications indefinitely, and you can trigger a notification
by either running one of the scripts that will change the configuration or by manually
changing the configuration from the CLI.

126 Model-Driven Programmability with NETCONF and ncclient

How it works…
First, we import the manager from ncclient. This manager serves as the central point
for all of our interactions with the network device. Next, we create a dictionary that
contains the connection details for our device. Please refer to the Connecting to a network
device using ncclient recipe for a more detailed explanation of the connection process.

With our connection established, we can go ahead and create the subscriptions. The
create_subscrptions() method, without any arguments, tells the manager to listen
for notifications on all events. Once an event has been received, it is put in an internal
queue. To retrieve messages from this queue, we use the take_notification()
method, which listens on the internal notification queue and, as soon as the manager
has put a new notification on it, will execute. Then, we print out the contents of our
notification. Again, the notification is an XML-formatted message. With the infinite loop,
we can go back to listen for a new notification once the previous notification has been
processed/printed out.

6
Automating

Complex Multi-
Vendor Networks

with NAPALM
When we consider the landscape of a modern networking infrastructure, one thing
quickly becomes apparent: we are almost never dealing with a greenfield deployment.
Equipment from different vendors gets upgraded and slotted into continuous cycles.
Almost no network is powered purely by the solutions of one vendor, and even if you are
doing a completely new greenfield deployment, most companies opt for multi-vendor
solutions. However, this poses a problem for our network automation efforts. Without one
single vendor to provide the equipment for our infrastructure, we don't have one common
operating system running on the devices themselves. Therefore, due to the different
operating systems of our devices, we have to write different scripts that interact with our
devices differently.

128 Automating Complex Multi-Vendor Networks with NAPALM

In Chapter 5, Model-Driven Programmability with NETCONF and ncclient, we discussed
one approach to solve this problem. Here, the devices were all supporting a common
protocol (NETCONF) and type of data model to allow for vendor-agnostic automation.
The topic of this chapter, NAPALM, takes a different approach to solve this problem.
Instead of using a vendor-agnostic protocol on the device, NAPALM implements common
functions within its library. In the background, these functions then execute differently
depending on what type of device or vendor they are connected to. Therefore, we have a
common Python interface that can deal with devices from different vendors. However,
NAPALM does not stop there. Powered by this unified interface, NAPALM allows us to
easily change, differentiate (or "diff "), and then apply or revert configuration changes
across devices as well as verify the status of devices.

In this chapter, we will examine how to use NAPALM. In particular, we are going to use
NAPALM for the following recipes:

•	 Connecting to devices from different vendors using NAPALM
•	 Issuing commands to a device using NAPALM
•	 Testing network reachability using ping and NAPALM
•	 Backing up your device configuration using NAPALM
•	 Gathering facts about your device using NAPALM
•	 Creating and applying a configuration template with jinja2 and NAPALM
•	 Rolling back configuration changes using NAPALM
•	 Validating your deployment using NAPALM

Technical requirements
For this chapter and the remainder of the book, you'll require an installation of Python.
Specifically, you'll need a Python interpreter of version 3.6.1 or higher. This book makes
use of the language constructs of Python 3 and, therefore, is incompatible with Python
2.x. Please also install the napalm package (that is, python3 -m pip install
napalm). At the time of writing, we are using the latest version of napalm, which is
version 3.2.0. You can install this exact version by issuing python3 -m pip install
ncclient==3.2.0. All of the code examples have been developed and tested on a Mac
OS X machine that is running Mac OS X version 10.15.4.

You will also need a code editor. Some popular choices include Microsoft Visual Studio
Code or Notepad++. Additionally, you'll need a device (either virtual or physical) that you
can log in to via SSH.

You can view this chapter's code in action here: https://bit.ly/3iLeyU1

https://bit.ly/3iLeyU1

Connecting to devices from different vendors using NAPALM 129

Connecting to devices from different vendors
using NAPALM
Let's start by learning how to connect to devices from different vendors using NAPALM.
In Chapter 4, Configuring Network Devices Using Netmiko, we saw the idea of passing
the type of device to the library so that the background code of our library can behave
differently. NAPALM takes this concept to the next level and uses drivers to abstract the
different vendors and provide a common interface.

Getting ready
Open your code editor and create a file called connect_device.py. Next, in your
Terminal, navigate to the same directory that you just created the connect_device.py
file in.

How to do it…
We will use the following steps to establish a connection to our network device using
NAPALM:

1.	 Import the napalm module:

import napalm

2.	 From the napalm module, retrieve the appropriate driver for your device's vendor.
Please refer to the How it works… section for a list of possible drivers:

driver = napalm.get_network_driver("<insert driver
name>")

3.	 Specify the connection details of your device. Note that you can pass a non-standard
port in the optional arguments. If your device connects on the standard port, you
can omit this:

conn_details = {

 "hostname": "<insert hostname>",

 "username": "<insert username>",

 "password": "<insert password>",

 "optional_args": {

 "port": <insert port as integer>

 }

}

130 Automating Complex Multi-Vendor Networks with NAPALM

4.	 With the driver and connection details specified, we can create a new device:

device = driver(**conn_details)

5.	 Now we can establish a connection to the device, print out a success message, and
then close the connection again:

device.open()

print("Succesfully connected to the device")

device.close()

6.	 To run this script, go to your Terminal and execute it using the following command:

python3 connect_device.py

How it works…
As mentioned in the introduction to this recipe, NAPALM uses the concept of drivers.
These drivers abstract away the vendor-specific behavior of the device and, therefore,
allow for a unified interface to be presented to the user.

The drivers for the different vendors are as follows:

•	 eos for EOS

•	 junos for Juniper

•	 iosxr and ios for the two different iOS variants from Cisco

•	 nxos and nxos_ssh for the Nexus switches from Cisco

While NAPALM tries to support all the functionality on all the different drivers, and
therefore different vendors, some features are only available with certain drivers/devices.
When designing your automation script, you can consult the support matrix provided by
NAPALM. This matrix is available in the official documentation. Currently, it can be found
at https://napalm.readthedocs.io/en/latest/support/index.html.

With the correct driver selected, we can then specify our device's connection details and
then, using the driver, create a new device object. With this device object, we can then
attempt to connect to our device using the open() method, print out a message that we
have connected successfully, and then close the device connection again.

In this example, we have passed the username and password as variables in the script.
While this is great for testing purposes, you can find a more secure way of passing on
these variables in the There's more… section of this recipe.

https://napalm.readthedocs.io/en/latest/support/index.html

Issuing commands to a device using NAPALM 131

There's more…
In this example, we passed a number of connection details such as the username,
hostname, and password directly as variables in the script. While this is great for testing
purposes, you might want to have your script prompt you for a variable upon execution.
For non-secret variables, such as the username, host, and port, we can use the built-in
input() function. However, for passwords, it's better to use a dedicated password
prompt that hides what you have typed so that someone looking over your console history
can't retrieve your password. For this purpose, Python has the built-in getpass module.

To retrieve the necessary configuration variables, not as static information in the script
but rather, interactively from the user using a combination of input and the getpass
module, follow these steps:

import getpass

SSH_PASSWORD = getpass.getpass(prompt='Password: ',
stream=None)

SSH_USER = input("Username: ")

SSH_HOST = input("Host: ")

SSH_PORT = int(input("Port: "))

Issuing commands to a device using NAPALM
With our connection to the device established, we can go ahead and issue a command and
retrieve the output of the said command as text. This is similar to what we have previously
done, first with paramiko in Chapter 2, Connecting to Network Devices via SSH Using
Paramiko, and second with netmiko in Chapter 4, Configuring Network Devices Using
Netmiko. NAPALM offers a very convenient method to specify multiple commands at
once and retrieve all the output in one dictionary in a nicely organized way. If your device
does have a driver for NAPALM available, then this is, by far, the most convenient method
to retrieve the output out of paramiko, netmiko, and NAPALM.

Getting ready
Open your code editor and create a file called send_command.py. Next, in your Terminal,
navigate to the same directory that you just created the send_command.py file in.

132 Automating Complex Multi-Vendor Networks with NAPALM

How to do it…
We will use the following steps to establish a connection to our network device and issue a
list of commands to our device using NAPALM:

1.	 Import the napalm module:

import napalm

2.	 From the napalm module, retrieve the appropriate driver for your device's vendor.
Please refer to the How it works… section of the Connecting to devices from different
vendors using NAPALM recipe for a list of possible drivers:

driver = napalm.get_network_driver("<insert driver
name>")

3.	 Specify the connection details of your device. Note that you can pass a non-standard
port in the optional arguments. If your device connects on the standard port, you
can omit this:

conn_details = {

 "hostname": "<insert hostname>",

 "username": "<insert username>",

 "password": "<insert password>",

 "optional_args": {

 "port": <insert port as integer>

 }

}

4.	 With the driver and connection details specified, we can create a new device:

device = driver(**conn_details)

5.	 Specify the commands that we want to run on our device. In this example, we are
going to retrieve the running configuration and the version:

commands = [

 "show running-configuration",

 "show version"

]

Issuing commands to a device using NAPALM 133

6.	 Open a connection to the device:

device.open()

7.	 With our device connected, we will issue the commands and store the results in a
variable called out:

out = device.cli(commands)

8.	 Finally, print out the command's output and close the connection to the device:

print(out)

device.close()

9.	 To run this script, go to your Terminal and execute it using the following command:

python3 send_commands.py

The output should be a dictionary that contains, as the key, the commands (in our
example, show running-configuration and show version) and, as the value
for each command, the output from the device.

How it works…
First, we establish a connection to our device by specifying the connection details and
retrieving the correct driver for our vendor. Please refer to the Connecting to devices from
different vendors using NAPALM recipe for a more detailed explanation of how to establish
a connection to a device using NAPALM.

With our connection established, we can specify the list of commands that we want to
run. This list is passed on to the cli() method that has been provided by our device.
This function takes the list of commands that we want to issue, executes them on the
device, retrieves the output for each command, and then returns a dictionary where the
key is the command we issued, and the value is the output of the command. This is a very
convenient way of executing commands and retrieving their output.

In this example, we have passed the username and password as variables in the script.
While this is great for testing purposes, you can find a more secure way of passing on
these variables in the There's more… section of the Connecting to devices from different
vendors using NAPALM recipe.

134 Automating Complex Multi-Vendor Networks with NAPALM

Testing network reachability using ping and
NAPALM
So far, in this chapter, we have only discussed how to connect to a device (please refer to
the Connecting to devices from different vendors using NAPALM recipe) and then how to
issue a command (please refer to the Issuing commands to a device using NAPALM recipe).
What we have not looked at, so far, are the vendor-agnostic methods that we promised.

The device we obtain from the vendor-specific driver offers a variety of functions; so, in
this example, we are going to use the ping() function to test that our network device can
reach a list of hosts.

Getting ready
Open your code editor and create a file called ping.py. Next, in your Terminal, navigate
to the same directory that you just created the ping.py file in.

How to do it…
We will use the following steps to establish a connection with our network device. Then,
we will use the ping() method to test connectivity:

1.	 Import the napalm module:

import napalm

2.	 From the napalm module, retrieve the appropriate driver for your device's vendor.
Please refer to the How it works… section of the Connecting to devices from different
vendors using NAPALM recipe for a list of possible drivers:

driver = napalm.get_network_driver("<insert driver
name>")

3.	 Specify the connection details of your device. Note that you can pass a non-standard
port in the optional arguments. If your device connects on the standard port, you
can omit this:

conn_details = {

 "hostname": "<insert hostname>",

 "username": "<insert username>",

 "password": "<insert password>",

 "optional_args": {

Testing network reachability using ping and NAPALM 135

 "port": <insert port as integer>

 }

}

4.	 With the driver and connection details specified, we can create a new device:

device = driver(**conn_details)

5.	 Open a connection to the device:

device.open()

6.	 With our device connected, we can specify the hosts that we want to ping. In this
example, I am specifying one host that will be pingable and one that won't be
pingable in order to view the different outputs:

to_ping = [

 "packtpub.com",

 "10.0.0.1"

]

7.	 Next, we loop over each of the hosts and ping them using the device's ping()
method. Then, we close the device connection once all hosts have been pinged:

for host in to_ping:

 out = device.ping(host)

 print(f"Results for {host}")

 print(out)

device.close()

8.	 To run this script, go to your Terminal and execute it using the following command:

python3 ping.py

The output should be two dictionaries. Please refer to the How it works… section for more
details on what kind of information should be present.

How it works…
First, we establish a connection to our device by specifying the connection details and
retrieving the correct driver for our vendor. Please refer to the Connecting to devices from
different vendors using NAPALM recipe for a more detailed explanation of how to establish
a connection to a device using NAPALM.

136 Automating Complex Multi-Vendor Networks with NAPALM

With our connection established and the hosts we want to ping defined, we can go ahead
and use our first vendor-agnostic function, ping(), to ping the specified hosts. As you
can see, we are not using the cli() method to issue a ping command to our device, and
the output we retrieve is not plain text, which we'd have to parse. The output we get is a
dictionary with two different possible keys. If the ping fails, the dictionary will contain a key,
called error, and the value associated with that key will be the error message returned by
ping. In the case of a successful ping, the dictionary contains a key called success, which
itself maps to another dictionary. Contained in this dictionary are, among other things,
the number of probes sent (probes_sent), the packet loss (packet_loss), and a list
of results that detail, for each try, the IP address (ip_address) that was pinged and the
round-trip time (rtt).

The fact that NAPALM does not return unstructured text but instead returns structured
data in the form of dictionaries is a great benefit, as this means that we don't need to
manually parse textual output in order to retrieve information. For example, you could
use this functionality to check the connectivity of all your devices in intervals and report
back whether a device fails to reach a host that it should be able to reach or whether the
average round-trip time is significantly higher than what you would expect.

While NAPALM tries to offer all functions with all drivers, and the ping function has
been chosen for this example because it is supported by all drivers, some functions are
not. You can find a list of all the functions your specific driver supports in the official
documentation. This list is currently available at https://napalm.readthedocs.
io/en/latest/support/index.html#getters-support-matrix. We will
examine more of these supported getters in the Gathering facts about your device using
NAPALM recipe.

In this example, we have passed the username and password as variables in the script.
While this is great for testing purposes, you can find a more secure way of passing on
these variables in the There's more… section of the Connecting to devices from different
vendors using NAPALM recipe.

Backing up your device configuration using
NAPALM
With our vendor-agnostic functions, we can also carry out common backup tasks
with ease. For instance, let's assume, before a big change, you want to back up all the
configurations on your devices. NAPALM offers a very convenient way of retrieving not
only the running configuration but also the starting and candidate configurations of your
devices. In this recipe, we are going to explore how to use this ability to easily retrieve full
configurations from a device to create backups.

Backing up your device configuration using NAPALM 137

Getting ready
Open your code editor and create a file called backup_config.py. Next, in your
Terminal, navigate to the same directory that you just created the backup_config.py
file in.

How to do it…
The following steps demonstrate how to connect to a device, read the different types of
configurations, and then write them to a file:

1.	 Import the napalm module:

import napalm

2.	 From the napalm module, retrieve the appropriate driver for your device's vendor.
Please refer to the How it works… section of the Connecting to devices from different
vendors using NAPALM recipe for a list of possible drivers:

driver = napalm.get_network_driver("<insert driver
name>")

3.	 Specify the connection details of your device. Note that you can pass a non-standard
port in the optional arguments. If your device connects on the standard port, you
can omit this:

conn_details = {

 "hostname": "<insert hostname>",

 "username": "<insert username>",

 "password": "<insert password>",

 "optional_args": {

 "port": <insert port as integer>

 }

}

4.	 With the driver and connection details specified, we can create a new device:

device = driver(**conn_details)

5.	 Open a connection to the device:

device.open()

138 Automating Complex Multi-Vendor Networks with NAPALM

6.	 With our device connected, we can use the get_config() method to retrieve the
different configurations:

config = device.get_config()

7.	 Retrieve the hostname from the connection details and save it to a variable. This is
so that we can later use it as part of the filename for our backup:

host = conn_details['hostname']

8.	 The returned config is not a plain string but a dictionary where the keys specify the
different configuration types; here, they are the starting, running, and candidate
configurations. We can loop over all the keys that are present and create a backup of
our config that includes the hostname:

for conf_type in config.keys():

 with open(f"{host}-{conf_type}.conf.bak", "w") as
f:

 f.writelines(config[conf_type])

9.	 Finally, close the device:

device.close()

10.	 To run this script, go to your Terminal and execute it using the following command:

python3 backup.py

After the script has finished executing, you should have a new .conf.bak file for each of
the configuration types in the directory.

How it works…
First, we establish a connection to our device by specifying the connection details and
retrieving the correct driver for our vendor. Please refer to the Connecting to devices from
different vendors using NAPALM recipe for a more detailed explanation of how to establish
a connection to a device using NAPALM.

Gathering facts about your network device using NAPALM 139

With our connection established, we then use the get_config() function to
get a configuration. This function returns a dictionary where the keys describe the
different types of configurations (for instance, running, starting, or candidate), and the
corresponding values are the contents of the configuration itself. To create a backup of
each of these different configurations, we loop over all of the keys in our config dictionary
and open a new file. The name of this file always includes the host that we retrieved from
the connection details along with the configuration type, and it ends in a .conf.bak file
type. Opening those files after running the script will show the backed-up configuration.

In this example, we have passed the username and password as variables in the script.
While this is great for testing purposes, you can find a more secure way of passing on
these variables in the There's more section of the Connecting to devices from different
vendors using NAPALM recipe.

Gathering facts about your network device
using NAPALM
When dealing with a device, we are usually doing two different types of operations. For
example, we are either setting information or we are gathering information. NAPALM
offers us two different types of functions to carry out these types of actions. To set
information, we have configuration functions, and to retrieve information, we have
getter functions. We will explore configuration functions in the Creating and applying a
configuration template with jinja2 and NAPALM recipe. We have already seen a getter,
the get_config() function, in action in the Backing up your device configuration using
NAPALM recipe. In this recipe, we will explore more of these functions so that we can
retrieve more facts about the device we are connected to.

Getting ready
Open your code editor and create a file called gather_facts.py. Next, in your Terminal,
navigate to the same directory that you just created the gather_facts.py file in.

140 Automating Complex Multi-Vendor Networks with NAPALM

How to do it…
The following steps demonstrate how to connect to a device and retrieve some facts about
it using the getters that NAPALM provides:

1.	 Import the napalm module:

import napalm

2.	 From the napalm module, retrieve the approprtiate driver for your device's vendor.
Please refer to the How it works… section of the Connecting to devices from different
vendors using NAPALM recipe for a list of possible drivers:

driver = napalm.get_network_driver("<insert driver
name>")

3.	 Specify the connection details of your device. Note that you can pass a non-standard
port in the optional arguments. If your device connects on the standard port, you
can omit this:

conn_details = {

 "hostname": "<insert hostname>",

 "username": "<insert username>",

 "password": "<insert password>",

 "optional_args": {

 "port": <insert port as integer>

 }

}

4.	 With the driver and connection details specified, we can create a new device:

device = driver(**conn_details)

5.	 Open a connection to the device:

device.open()

6.	 With our device connected, we can now use the getter to retrieve some information.
First, let's use the get_facts() function to retrieve general facts, such as the
software version and the uptime:

facts = device.get_facts()

Gathering facts about your network device using NAPALM 141

7.	 Next, we also want to retrieve the interfaces that are configured on this device:

interfaces = device.get_interfaces()

8.	 With our facts retrieved, we can now print them back to the user. NAPALM returns
the dictionaries again. For the facts, we'll start by printing out the key-value pairs:

print("Key facts about your device:")

for fact, value in facts.items():

 print(f"-> {fact}: {value}")

9.	 For our interfaces, the get_interfaces() function returns a dictionary where
the key is the name of the interface, and the value is another dictionary that
contains facts such as the Mac address or description. We can use two nested for
loops to print out this information to the user:

print("Facts about your devices interfaces")

for intf_name, details in interfaces.items():

 print(f"{intf_name}")

 for fact, value in details.items():

 print(f"=> {fact}: {value}")

10.	 Finally, close the connection to the device:

device.close()

11.	 To run this script, go to your Terminal and execute it using the following command:

python3 gather_facts.py

After the script has finished executing, you should have a list of key facts such as the OS
version and the uptime of your device along with a list of information about each of the
device's interfaces printed back to you.

How it works…
First, we establish a connection to our device by specifying the connection details and
retrieving the correct driver for our vendor. Please refer to the Connecting to devices from
different vendors using NAPALM recipe for a more detailed explanation of how to establish
a connection to a device using NAPALM.

142 Automating Complex Multi-Vendor Networks with NAPALM

With our connection established, we can use the getters provided by NAPALM to
retrieve the information. In this example, we are using the get_facts() and get_
interfaces() functions. As with everything in NAPALM, which getters are available
to your specific device depends on the driver, and you can verify the functionality in the
support matrix. The support matrix is available in the official documentation. Currently,
it can be found at https://napalm.readthedocs.io/en/latest/support/
index.html#getters-support-matrix. Now that we have gathered our general
facts and the interface details, one immediate benefit is visible. The data has already been
parsed and converted from the plain text that NAPALM receives from the device itself
into structured Python data that we can leverage. In this example, we go ahead and, first,
use a simple loop to loop over the key-value pairs of our simple facts. The simple facts
include, among other things, the following:

•	 uptime

•	 vendor

•	 os_version

•	 serial number

•	 hostname

Then, we also loop over all of our configured interfaces. The interfaces come as a nested
dictionary where each interface's name is associated with a dictionary that contains,
among other things, the details for that specific interface. These can include the following:

•	 ip address

•	 enabled status

•	 active status

•	 mac address

•	 mtu

•	 description

Using two nested for loops, we can parse this information and present it to our users in a
consumable manner.

In this example, we have passed the username and password as variables in the script.
While this is great for testing purposes, you can find a more secure way of passing on
these variables in the There's more… section of the Connecting to devices from different
vendors using NAPALM recipe.

https://napalm.readthedocs.io/en/latest/support/index.html#getters-support-matrix
https://napalm.readthedocs.io/en/latest/support/index.html#getters-support-matrix

Creating and applying a configuration template with jinja2 and NAPALM 143

Creating and applying a configuration
template with jinja2 and NAPALM
A very powerful concept of NetDevOps is configuration templates. The idea is to have
all your device's configurations as a template and then render out that template with
some specific data for your device. This brings you one step closer to the idea of having
your infrastructure stored as code. In this recipe, we will use the jinja2 templating
language to create a configuration template that we can then apply to our device using
NAPALM. Please refer to Chapter 3, Building Configuration Templates Using Jinja2,
for a complete introduction to the jinja2 module and the jinja2 templating language.
In this recipe, we are going to replicate the configuration template that we created
in the Configuring an access list using for loops in jinja2 recipe of Chapter 3, Building
Configuration Templates Using Jinja2.

Getting ready
Open your code editor and create a file called apply_template.py. Next, in your
Terminal, navigate to the same directory that you just created the apply_template.py
file in.

Additionally, we'll need a jinja2 template. So, in the same directory as your Python
file, create a directory called templates. Inside of this directory, create a file called
acl.conf.tpl.

We'll be reusing the same template that we rendered to a file in the Using for loops in
jinja2 to configure an access list recipe of Chapter 3, Building Configuration Templates
Using Jinja2.

If you have not installed the jinja2 package from Chapter 3, Building Configuration
Templates Using Jinja2, please go ahead and do so now. You can install the latest version of
jinja2 using python3 -m pip install jinja2. At the time of writing, the current
version is version 2.11.2. You can install this specific version by using the python3 -m
pip install jinja2==2.11.2 command.

144 Automating Complex Multi-Vendor Networks with NAPALM

How to do it…
The following steps demonstrate how to render a configuration template and apply it to
your device:

1.	 Open the acl.conf.tpl file. This is the template that is being rendered. First, we
are going to specify the interface for our ACL and then loop over the two lists we
have provided as an argument to create the necessary commands to allow or deny
the host from the network:

interface {{ intf }}

ip access-group 1 in

{% for host in disallowed %}

access-list 1 deny host {{ host }}

{% endfor %}

{% for host in allowed %}

access-list 1 permit host {{ host }}

{% endfor %}

2.	 Continuing in our apply_template.py file, import the napalm module and
the jinja2 module:

import napalm

from jinja2 import Environment, FileSystemLoader

3.	 Next, we need to set up our jinaj2 environment to render the template:

loader = FileSystemLoader("templates")

environment = Environment(loader=loader)

tpl = environment.get_template("acl.conf.tpl")

4.	 Now that we have our template, we need to define two lists that hold the IPs we
want to deny and those we want to allow. Additionally, we are going to specify the
interface that we want this ACL to be configured on in the following manner:

allowed = [

 "10.10.0.10",

 "10.10.0.11",

 "10.10.0.12"

]

disallowed = [

Creating and applying a configuration template with jinja2 and NAPALM 145

 "10.10.0.50",

 "10.10.0.62"

]

intf = "ethernet0"

5.	 With the information that is needed to render our template now in place, we can
create a configuration from our template and store it in a variable:

out = tpl.render(allowed=allowed,

 disallowed=disallowed,

 intf=intf)

6.	 With our configuration rendered, we are ready to connect to our device. From the
napalm module, retrieve the appropriate driver for your device's vendor. Please
refer to the How it works… section of the Connecting to devices from different
vendors using NAPALM recipe for a list of possible drivers:

driver = napalm.get_network_driver("<insert driver
name>")

7.	 Specify the connection details of your device. Note that you can pass a non-standard
port in the optional arguments. If your device connects on the standard port, you
can omit this:

conn_details = {

 "hostname": "<insert hostname>",

 "username": "<insert username>",

 "password": "<insert password>",

 "optional_args": {

 "port": <insert port as integer>

 }

}

8.	 With the driver and connection details specified, we can create a new device:

device = driver(**conn_details)

9.	 Open a connection to the device:

device.open()

146 Automating Complex Multi-Vendor Networks with NAPALM

10.	 With our device connected, we can now use the load_merge_candidate()
function to load the rendered template as a candidate for merging:

device.load_merge_candidate(config=out)

11.	 The previous step has only loaded the config for merging. In order to apply it, we
have to commit the configuration using the commit_config() function:

device.commit_config()

12.	 Finally, close the device connection:

device.close()

13.	 To run this script, go to your Terminal and execute it using the following command:

python3 apply_template.py

After the script has finished executing, your device should have the newly configured
ACL present.

How it works…
First, we create a jinja2 template for our configuration. Once this template has been
created, we can populate it with information from our Python script. For a more detailed
explanation of how to render a configuration template, please refer to the Using for loops
in jinja2 to configure an access list recipe of Chapter 3, Building Configuration Templates
Using Jinja2.

With the config created, we can establish a connection to our device by specifying the
connection details and retrieving the correct driver for our vendor. Please refer to the
Connecting to devices from different vendors using NAPALM recipe for a more detailed
explanation of how to establish a connection to a device using NAPALM.

Once the connection to the device has been established, we can use one of the setter
functions, load_merge_candidate(), to load the configuration we just generated
from the template as a candidate. By using the load_merge_candidate() function,
we tell NAPALM to merge our existing configuration. We could also use the
load_replace_candidate() function to simply replace the current configuration
with our provided configuration. Once we have loaded this, the new configuration is set
as a replacement candidate. This means that the config has not yet been applied and is not
yet in action. To turn our replacement candidate into a running configuration, we have to
use the commit_config() function to commit the configuration to the device.

Rolling back configuration changes using NAPALM 147

In this example, we have passed the username and password as variables in the script.
While this is great for testing purposes, you can find a more secure way of passing on
these variables in the There's more… section of the Connecting to devices from different
vendors using NAPALM recipe.

Rolling back configuration changes using
NAPALM
Loading a configuration onto a device blindly, without verifying which lines actually
change, can be a dangerous game, especially if the configuration that is being loaded has
hundreds of lines or was generated programmatically. So, wouldn't it be nice if we could
get a visual representation of all the changes that will be applied to our configuration and
then decide whether we actually want to go ahead and apply them or discard the changes?

This is exactly what NAPALM allows you to do by using the compare_config()
function together with commit_config() and rollback().

Getting ready
Open your code editor and create a file called rollback.py. Next, in your Terminal,
navigate to the same directory that you just created the rollback.py file in.

How to do it…
The following steps demonstrate how to connect to a device, view the differences between
the new configuration and the old configuration, and then lets you choose whether you
want to apply the configuration or not:

1.	 Import the napalm module:

import napalm

2.	 From the napalm module, retrieve the appropriate driver for your device's vendor.
Please refer to the How it works… section of the Connecting to devices from different
vendors using NAPALM recipe for a list of possible drivers:

driver = napalm.get_network_driver("<insert driver
name>")

148 Automating Complex Multi-Vendor Networks with NAPALM

3.	 Specify the connection details of your device. Note that you can pass a non-standard
port in the optional arguments. If your device connects on the standard port, you
can omit this:

conn_details = {

 "hostname": "<insert hostname>",

 "username": "<insert username>",

 "password": "<insert password>",

 "optional_args": {

 "port": <insert port as integer>

 }

}

4.	 With the driver and connection details specified, we can create a new device:

device = driver(**conn_details)

5.	 Open a connection to the device:

device.open()

6.	 With our device connected, first, we create a new configuration. In this example, we
are just going to change the hostname. Each entry in the list represents one line of
our configuration:

config_change = [

 "hostname test"

]

7.	 Since NAPALM requires a string as the replacement config, we join all the entries of
our config_change list with newlines:

new_config "\n".join(config_change)

device.load_merge_candidate(config=new_config)

8.	 Then, we compare the differences between the currently running configuration and
the configuration loaded for merging and display this information:

print(device.compare_config())

Rolling back configuration changes using NAPALM 149

9.	 With the difference represented visually, we can ask the user to specify whether to
either apply the configuration candidate or disregard it:

user_in = input("Continue? [y/n]")

if user_in == "y":

 device.commit_config()

 print("Applied config to device")

else:

 device.rollback()

 print("Rolled back to previous config")

10.	 Finally, close the connection to the device:

device.close()

11.	 To run this script, go to your Terminal and execute it using the following command:

python3 rollback.py

How it works…
First, we establish a connection to our device by specifying the connection details and
retrieving the correct driver for our vendor. Please refer to the Connecting to devices from
different vendors using NAPALM recipe for a more detailed explanation of how to establish
a connection to a device using NAPALM.

Once our connection has been established, first, we create a configuration string from
a list of configuration changes. With this target configuration created, we can use the
load_merge_candidate() function to load the configuration. After this loading is
complete, we can use the compare_config() function to get a visual comparison of
the changes. This is similar to how version control systems display the differences between
two versions of a file (also known as a "diff "). A + sign in front of a line indicates that
this is new, while a – sign indicates that this line was present in the old configuration
and is no longer in the new configuration. With this visual representation, we can then
ask the user for a decision. The user can either chose to apply the configuration by
committing it or roll back to the previous version. As with most things in NAPALM,
you have to verify whether the driver supports these kinds of comparisons. You can find
the list of drivers supporting this operation in the official documentation. Currently, it is
available at https://napalm.readthedocs.io/en/latest/support/index.
html#configuration-support-matrix.

https://napalm.readthedocs.io/en/latest/support/index.html#configuration-support-matrix
https://napalm.readthedocs.io/en/latest/support/index.html#configuration-support-matrix

150 Automating Complex Multi-Vendor Networks with NAPALM

In this example, we have passed the username and password as variables in the script.
While this is great for testing purposes, you can find a more secure way of passing on
these variables in the There's more… section of the Connecting to devices from different
vendors using NAPALM recipe.

Validating deployments using NAPALM
We have learned how NAPALM allows us to, very conveniently, issue commands, load and
replace configurations, and gather facts. But what happens after you have carried out your
changes? How do you verify that your device is still compliant with the state that you want
to have? We'll take an even deeper look at automating the testing of your network devices
in Chapter 7, Automating Your Network Tests and Deployments with pyATSand Genie.
However, NAPALM also offers you a way to describe the desired state of your device in a
human-readable format and make sure that the device actually complies.

The mechanism NAPALM uses to implement these are getters. Recall that these functions
return well-formatted and structured Python data and have a unique function name.
NAPALM leverages that by allowing you to describe what the output of this getter should
be in a .yaml file and then runs the getter to find out what the device is currently
running on.

Getting ready
Open your code editor and create a file called validate_deployment.py.
Next, in your Terminal, navigate to the same directory that you just created the
validate_deployment.py file in.

We'll also need a file called compliance.yaml. This needs to be in the same directory
as your Python script.

How to do it…
To verify the compliance of a deployment based on a .yaml file describing the desired
state, follow these steps:

1.	 Let's start by defining the desired state in our compliance.yaml file:

- get_facts:

 os_version: 4.17

- get_interfaces_ip:

 GigabitEthernet1:

Validating deployments using NAPALM 151

 ipv4:

 10.10.10.1

2.	 Going back to our validate_deployment.py, we can now import the
napalm module:

import napalm

3.	 From the napalm module, retrieve the appropriate driver for your device's vendor.
Please refer to the How it works… section of the Connecting to devices from different
vendors using NAPALM recipe for a list of possible drivers:

driver = napalm.get_network_driver("<insert driver
name>")

4.	 Specify the connection details of your device. Note that you can pass a non-standard
port in the optional arguments. If your device connects on the standard port, you
can omit this:

conn_details = {

 "hostname": "<insert hostname>",

 "username": "<insert username>",

 "password": "<insert password>",

 "optional_args": {

 "port": <insert port as integer>

 }

}

5.	 With the driver and connection details specified, we can create a new device:

device = driver(**conn_details)

6.	 Open a connection to the device:

device.open()

7.	 With our device connected, we can run our compliance report using the
compliance_report() function:

out = device.compliance_report("compliance.yaml")

print(out)

152 Automating Complex Multi-Vendor Networks with NAPALM

8.	 Finally, close the connection to the device:

device.close()

9.	 To run this script, go to your Terminal and execute it using the following command:

python3 validate_deployment.py

How it works…
First, we define the desired state of our device in the YAML file. As you can see, we
are using the names of the getters as the keys and then specifying the values we want.
In our example, we specify that our device should have an OS version of 4.17 and that
GigabitEthernet1 should have an IPv4 address of 10.10.10.1. The IPv4 validation
example shows that we can also check nested data. Our interface for example has nested
properties such as, in this example, the IPv4 address of one of the interfaces.

With our desired state described, we can establish a connection to our device by
specifying the connection details and retrieving the correct driver for our vendor. Please
refer to the Connecting to devices from different vendors using NAPALM recipe for a more
detailed explanation of how to establish a connection to a device using NAPALM.

Once the connection has been established, we run the compliance report. This will invoke
all the getters that are specified in our compliance.yaml file and compare the values.
What we get back is a dictionary that defines all the parts of this device that are either in
or out of compliance. We can see the value that was expected along with the value that we
got. This can be a powerful tool to verify, after a big change, that all the changes have also
been applied properly or that things that you have not touched, such as BGP routes, for
example, are still configured to how you had them before.

In this example, we have passed the username and password as variables in the script.
While this is great for testing purposes, you can find a more secure way of passing on
these variables in the There's more… section of the Connecting to devices from different
vendors using NAPALM recipe.

7
Automating Your

Network Tests and
Deployments with

pyATS and Genie
In previous chapters, we have seen how we can use Python and open source packages to
automatically retrieve and change a configuration on one or more network devices. When
we think about the normal process we go through when manually updating infrastructure
configuration, the next step would be to test that the configuration change we just
initiated didn't have any unwanted side effects. How could we automate this step? With
the packages we previously discussed, this would be quite cumbersome since we'd have
to manually retrieve the state of the device before and after our change and then do the
differentiation between the two versions ourselves.

This is where pyATS and Genie come into play. Originally developed as an internal testing
framework at Cisco, the framework was open sourced and now supports the deployment
and testing of changes for network devices. Build-agnostic by design, the framework
supports plugins that extend its compatibility and functionality beyond Cisco devices.
With its broad scope, pyATS and Genie allow you to tackle all tasks of automatically
rolling out changes to your infrastructure, from planning to deploying and testing.

154 Automating Your Network Tests and Deployments with pyATS and Genie

In this chapter, we will explore the capabilities of pyATS and Genie to both deploy and
then test the changes you have made to your infrastructure. While pyATS and Genie
are technically two libraries—pyATS being responsible for device connectivity, test
definition, and reporting, and Genie being responsible for high-level capabilities such as
parsing command-line interface (CLI) output to structured Python data or defining test
cases—we will refer to them both as pyATS for the remainder of this chapter.

Specifically, we will cover the following topics:

•	 Revisiting the concept of testing

•	 Creating a pyATS testbed file

•	 Connecting to your device and issuing commands using pyATS

•	 Retrieving your device's current state using pyATS

•	 Using Genie Conf objects to create a portable configuration script

•	 Comparing your device's current state to a previously learned state

Technical requirements
For this section and the remainder of the book, you'll need an installation of Python.
Specifically, you'll need a Python interpreter of version 3.6.1 or higher. This book makes
use of language constructs of Python 3 and thus is incompatible with Python 2.x.
Additionally, you'll need to install the pyATS and Genie packages. You can install the
newest version of pyATS and Genie using python3 -m pip install pyats. At the
time of this writing, the current version is version 21.1.

You will also need a code editor. Popular choices include Microsoft Visual Studio Code
(VS Code) or Notepad++. Additionally, you'll need a device (virtual or physical) that you
can log in to via Secure Shell (SSH).

Please be aware that pyATS and Genie only work on Linux and Linux-like environments
such as Ubuntu, CentOS, or Fedora Linux distributions, as well as the family of macOS
operating systems. If you are using Windows, you can run pyATS either in a Linux virtual
machine (VM) or by using the Windows Subsystem for Linux (WSL).

You can view this chapter's code in action here: https://bit.ly/3k4TabN

https://bit.ly/3k4TabN

Revisiting the concept of testing 155

Revisiting the concept of testing
So, why do we need testing and, more specifically, why would we want to automate it?
A lot of the ideas that have been proposed for network automation have their roots
in software engineering, so it is worth having a brief look at how modern software
is developed and deployed on a continuous basis. When developing software, most
engineers go through four basic phases, outlined as follows:

1.	 The development stage is where the code is first designed and then written.
2.	 The testing stage is where the code that has been written is tested extensively.
3.	 The deployment stage is where the code that has been developed and tested is

deployed to the servers.
4.	 The monitoring stage is where data such as access times, occurring errors, and load

on the system of the new change is closely monitored. Any insights that have been
identified in the monitoring stage (such as the need to optimize a certain portion of
the code) are fed back into the next development stage, leading to an infinite cycle
of developing, testing, deploying, and monitoring your software.

While this is a simplified model, it gives us an idea of the different steps involved in
developing, deploying, and maintaining software. As with infrastructure, every change to
a software system is inherently risky since we are changing something we knew worked
and replacing it with code that might not work. In order to make smaller and thus usually
safer changes, we need to make Steps 2-4 as effortless as possible. If it takes our operations
team a day to take a change by a developer and deploy it to the production systems, the
developers will be hesitant to ask for changes to be applied frequently, thus leading to
bigger and bigger changes that are inherently riskier. This is where automation comes
into play. By automating the testing, deployment, and monitoring stage, we can deploy
smaller changes to the code base much more often and react faster to issues. Instead of
releasing once a month or once a week, some software companies these days measure
their deployment speed in changes per minute.

Going back to infrastructure engineering, we can identify a similar cycle, outlined
as follows:

1.	 The design phase is where changes to our infrastructure are designed and then
implemented in the form of a change of configuration.

2.	 The testing phase is where the changes are usually applied in a lab environment to
troubleshoot and identify any potential issues.

3.	 The deployment phase is where, during a maintenance window, the different
devices are being updated with the new configuration.

4.	 The monitoring phase is where issues that may have occurred are monitored.

156 Automating Your Network Tests and Deployments with pyATS and Genie

Similar to how automation can be used to speed up the change cycle in software products,
we can use it to speed up the change cycle in our infrastructure. Speeding up this change
cycle can lead to smaller changes that, similar to smaller software changes, are less risky.
And similar to how, with a faster software deployment cycle, we can fix issues in our
software faster, we can leverage a sped-up deployment cycle of our infrastructure to
resolve issues faster.

While the cycles of software change and infrastructure change are quite similar, there
is one key difference: it is much easier to test software. With a software project that has
been changed, you can just spin up a new server, deploy the software—including all its
dependencies, such as databases—to that new server, and then run a bunch of tests against
the newly updated instance. Once the testing is done, the server can be shut down. With
infrastructure, this is not as easy. Usually, you'll have a lab environment, either virtual or
physical, that can be used to test changes before applying them into production.

This means that when we are doing testing in an infrastructure environment, we will often
do testing before the changes are applied by testing on our lab environment as well as after
the changes have been applied to the production environment, to verify that no unwanted
side effects have been occurring. The framework presented in this chapter, pyATS, can
be used to perform all four stages of the preceding cycle of making a change to the
infrastructure. In this chapter, we will put our focus on how to use pyATS for designing,
deploying, and testing your infrastructure changes.

Creating a pyATS testbed file
When connecting to devices, we always need a way of specifying the connection details.
In previous chapters, we have provided these details either in the script or asked the
user to provide the connection details upon execution. With pyATS, there is a different
concept. pyATS relies on a text file, written in YAML Ain't Markup Language (YAML)
and commonly referred to as a testbed, that specifies the different attributes such as device
type, hostname, and username/password for our device.

In this recipe, you'll see how to create such a testbed file and how to use the interactive
shell that comes with every installation of pyATS to test the connectivity to the devices in
your testbed.

Getting ready
Open your code editor and start by creating a file called testbed.yaml. Next, navigate
in your terminal to the same directory in which you just created the testbed.yaml file.

Creating a pyATS testbed file 157

How to do it…
Follow these steps to define a testbed for your devices to connect to:

1.	 Open your testbed.yaml file and define a devices list and a hostname for
your device—in this case, device-1:

devices:

 device-1:

2.	 Next, define the device type (in this example, router) and the operating system
(in this example, iosxe) running on the device, as well as the connection credentials:

 type: router

 os: iosxe

 credentials:

 default:

 username: <insert your username>

 password: <insert your password>

3.	 Next, we need to define the connection details to our management interface. In
this example, we are going to connect to the device via SSH. If you want to use an
Internet Protocol (IP) address instead of a host, use ip: <insert your ip
here> instead of the host part shown here:

 connections:

 mgmt:

 protocol: ssh

 host: <insert your host here>

 port: <insert your port here>

4.	 With the testbed file created, we can go ahead and use the pyATS shell to connect to
our device. Open your console in the same directory as the testbed file and type the
following command:

pyats shell –testbed-file testbed.yaml

5.	 After the shell has loaded and you have an interactive Python shell, type the following
command to connect your device and open a device shell within the Python session:

testbed.devices['device-1'].connect()

158 Automating Your Network Tests and Deployments with pyATS and Genie

How it works…
In our YAML file, we are defining properties that are needed for pyATS to be able to
connect. The first directive, devices, specifies that we are about to define a list of
devices. Underneath this list of devices, we then give each of these devices a name—in
our example, device-1. You can use any name you want as long as it is unique, but most
people prefer to use the hostname of their device here. Next, we define the type and os
so that pyATS knows how to connect to this device. Out of the box, pyATS ships with
support for connecting to all Cisco Internetwork Operating System (IOS) variants, as
well as the Nexus Operating System (OS) family.

Finally, we specify the authentication details such as username and password, as well as the
connection details to our management interface. pyATS supports SSH, RESTCONF (which
stands for REpresentational State Transfer (REST) configuration), and NETCONF
(which stands for network configuration), but we will stick to SSH for this chapter.

With our device specified within the testbed, we can use the interactive shell provided by
pyATS to verify that we have specified everything correctly and can connect to our device.
When starting the shell, we specify the name of the testbed file, and pyATS automatically
imports the required modules of the framework that parse our testbed file and provides
us with a testbed object. This object has a dict-like property called devices that we
can call to—based on the name we specified in the testbed file—retrieve our device and
connect to it using the connect() method. This will open a shell to the device that we
can use to issue a device command such as show ip interface brief.

Connecting to your device and issuing
commands using pyATS
A basic functionality we have seen across all the different packages covered so far is
the ability to issue commands against a device. In the Retrieving command outputs as
structured Python data using Netmiko and Genie recipe in Chapter 4, Configuring Network
Devices Using Netmiko, we have already seen that we can use Genie, the package that
is part of the pyATS ecosystem, to retrieve the output of a command not as text but as
structured Python data.

In this recipe, we are going to use pyATS to connect to a device, issue a command, and
retrieve the output as structured data.

Connecting to your device and issuing commands using pyATS 159

Getting ready
Open your code editor and start by creating a file called testbed.yaml, as well as a file
called connect.py. Next, navigate in your terminal to the same directory in which you
just created the testbed.yaml file.

How to do it…
Follow these steps to connect to a device and issue a command using pyATS:

1.	 Open your testbed.yaml file and define a devices list and a hostname for
your device—in this case, device-1:

devices:

 device-1:

2.	 Next, define the device type (in this example, router) and the operating system (in
this example, iosxe) running on the device, as well as the connection credentials:

 type: router

 os: iosxe

 credentials:

 default:

 username: <insert your username>

 password: <insert your password>

3.	 Next, we need to define the connection details to our management interface. In
this example, we are going to connect to the device via SSH. If you want to use an
IP address instead of a host, use ip: <insert your ip here> instead of the
host part shown here:

 connections:

 mgmt:

 protocol: ssh

 host: <insert your host here>

 port: <insert your port here>

4.	 With the testbed file created, we can go ahead and open the connect.py file. We
first need to import the required pyATS library to load the testbed file:

from pyats.topology import loader

160 Automating Your Network Tests and Deployments with pyATS and Genie

5.	 Next, load the testbed file and retrieve the device by its name (in this example,
device-1), and issue a command:

testbed = loader.load('testbed.yaml')

device = testbed.devices['device-1']

device.connect()

6.	 With the device connection established, we can issue our command and retrieve the
output as unstructured data:

out = device.execute('show ip interface brief')

print(out)

How it works…
We first create our testbed file. This file specifies the details of all the devices that we
want to be able to connect to and makes them available to pyATS. For a more detailed
explanation of how this testbed file is constructed, please refer to the How it works…
section of the Creating a pyATS testbed file recipe.

With our testbed file created, we can then import the loader from the pyATS topology
module. This loader parses the testbed file into a topology and makes the devices available to
our Python script. Using the name we have specified in the testbed file, we can then retrieve
the device we want to connect to, connect to it, and execute a command. The output of that
command is retrieved in text form and Genie uses its parsers to convert it from text into
structured Python data, in the form of a dictionary that is then printed back to the user.

Retrieving your device's current state
using pyATS
With pyATS, we have the ability to retrieve the output of a network device command as
structured Python data. With this structured data, we can get a full picture of what the
configuration of our device looks like. Now, could we use this ability of pyATS to learn the
state of a network device? Using this learned state, we could take a snapshot of our device
after applying a configuration change, and then, the next time we want to apply a change
to this device, we can verify that no one has manually applied changes to the configuration
by comparing the snapshot we took before with the current state of the device. This is
exactly the scenario that we are going to cover in the Comparing your device's current state
to a previously learned state recipe, and in this recipe we are going to cover the first part of
this, learning the state of a device using pyATS.

Retrieving your device's current state using pyATS 161

Getting ready
Open your code editor and start by creating a file called testbed.yaml, as well as a file
called learn.py. Next, navigate in your terminal to the same directory in which you just
created the testbed.yaml file.

How to do it…
Follow these steps to learn the current state of a network device automatically using pyATS:

1.	 Open your testbed.yaml file and define a devices list and a hostname for
your device—in this case, device-1:

devices:

 device-1:

2.	 Next, define the device type (in this example, router) and the operating system
(in this example, iosxe) running on the device, as well as the connection credentials:

 type: router

 os: iosxe

 credentials:

 default:

 username: <insert your username>

 password: <insert your password>

3.	 Next, we need to define the connection details to our management interface. In
this example, we are going to connect to the device via SSH. If you want to use an
IP address instead of a host, use ip: <insert your ip here> instead of the
host part shown here:

 connections:

 mgmt:

 protocol: ssh

 host: <insert your host here>

 port: <insert your port here>

162 Automating Your Network Tests and Deployments with pyATS and Genie

4.	 With the testbed file created, we can go ahead and open the learn.py file. We
first need to import the required pyATS library to load the testbed file. We will also
import the built-in JavaScript Object Notation (JSON) library to save the output of
our learning to a file:

from genie.testbed import load

import json

5.	 Next, load the testbed file and retrieve the device by its name (in this example,
device-1), and issue a command:

testbed = load('testbed.yaml')

device = testbed.devices['device-1']

device.connect()

6.	 With our device connected, we can initiate the learning. In this example, we are
going to learn all available device features:

output = device.learn('all')

7.	 Lastly, we'll have to write the data stored in our output variable to a file for us to
later retrieve it:

with open("backup.json, "w") as fh:

 json.dump(output.to dict(), fh, indent=2)

How it works…
We first create our testbed file. This file specifies the details of all the devices that we
want to be able to connect to and makes them available to pyATS. For a more detailed
explanation of how this testbed file is constructed, please refer to the How it works…
section of the Creating a pyATS testbed file recipe.

With our testbed file created, we can then import the loader from the pyATS topology
module. This loader parses the testbed file into a topology and makes the devices available
to our Python script. Using the name we have specified in the testbed file, we can then
retrieve the device we want to connect to and connect to it. We can then use the learn()
function to learn a feature. In this example, we used all to indicate to pyATS that we
want to learn all the available features on this platform. You can also only learn certain
parts of the configuration—such as interface, bgp, or ospf—by specifying the
name. A full list of available models can be accessed using this link: https://pubhub.
devnetcloud.com/media/genie-feature-browser/docs/#/models.

https://pubhub.devnetcloud.com/media/genie-feature-browser/docs/#/models
https://pubhub.devnetcloud.com/media/genie-feature-browser/docs/#/models

Using Genie Conf objects to create a portable configuration script 163

You might be wondering why we can't just use the execute() function to issue the
show commands ourselves and then write the parsed output to a JSON file for later
diffing. First off, the learn() function, depending on which model you are learning,
will invoke multiple show commands but, more importantly, the learn() function also
ensures a consistent set of keys. This means that we can write one script that works across
different devices. Once we have retrieved this output, we can then go ahead and save it to
a file using the JSON module.

Using Genie Conf objects to create a portable
configuration script
So far, we have always used the Genie parser to go from unstructured textual output to
structured data in the form of a Python dictionary, but Genie can also do it the other way
around! Instead of specifying a configuration command and issuing this command to
the network device we can, using pure Python objects, define our changed configuration
in the form of Python objects. Genie then goes ahead and, based on the Python objects,
generates the required configuration files and issues them to the device. This means that
we can write consistent device configurations and let Genie handle the work of converting
this into actual configuration instructions.

In this recipe, we are going to configure an interface and generate the required
configuration file using pyATS and Genie.

Getting ready
Open your code editor and start by creating a file called testbed.yaml, as well as a file
called change.py. Next, navigate in your terminal to the same directory in which you
just created the testbed.yaml file.

How to do it…
Follow these steps to change the configuration of an interface using pyATS:

1.	 Open your testbed.yaml file and define a devices list and a hostname for
your device—in this case, device-1:

devices:

 device-1:

164 Automating Your Network Tests and Deployments with pyATS and Genie

2.	 Next, define the device type (in this example, router) and the operating system (in
this example, iosxe) running on the device, as well as the connection credentials:

 type: router

 os: iosxe

 credentials:

 default:

 username: <insert your username>

 password: <insert your password>

3.	 Next, we need to define the connection details to our management interface. In
this example, we are going to connect to the device via SSH. If you want to use an
IP address instead of a host, use ip: <insert your ip here> instead of the
host part shown here:

 connections:

 mgmt:

 protocol: ssh

 host: <insert your host here>

 port: <insert your port here>

4.	 With the testbed file created, we can go ahead and open the change.py file. Here,
we are going to import the required libraries to connect to our device based on the
testbed file and also the required models to change our interface:

from pyats.topology import loader

from genie.conf.base import Interface

5.	 Next, we can load our device and connect to it:

testbed = loader.load('testbed.yaml')

device = testbed.devices['device-1']

device.connect()

6.	 Now, we can use the previously imported Interface object to create a new
interface configuration:

intf = Interface(device=device, name='GigabitEthernet2')

Using Genie Conf objects to create a portable configuration script 165

7.	 With this Interface object, we can now specify the properties we want:

intf.ipv4 = '10.10.10.2'

intf.ipv4.netmask = '255.255.255.0'

intf.shutdown = False

8.	 Finally, we can apply the configuration to our interface by issuing a build_
config() command:

intf.build_config()

How it works…
We first create our testbed file. This file specifies the details of all devices that we want to
be able to connect to and makes them available to pyATS. For a more detailed explanation
of how this testbed file is constructed, please refer to the How it works… section of the
Creating a pyATS testbed file recipe.

With our device created and connected, we can go ahead and use the Interface object
imported at the beginning to specify our interface configuration. On this object, we
specify things such as the IP Address and netmask we would like to have on this interface.
We can then let Genie generate the required configuration and automatically apply this
configuration to our device using the build_config() function.

There's more…
You can also have a look at what the generated configuration looks like without actually
applying the configuration right away. To do so, use the apply=False argument for the
build_config() function:

print(intf.build_config(apply=False)

Running the preceding command will give us the following configuration:

interface GigabitEthernet2

 ip address 10.10.10.2 255.255.255.0

 no shutdown

 exit

166 Automating Your Network Tests and Deployments with pyATS and Genie

You can also do the reverse, and generate the configuration necessary to undo the changes
you have specified. To do so, instead of using the build_config() function, you can
use the build_unconfig() function:

print(intf.build_unconfig(apply=False))

Running the preceding command will return to us the following commands, which would
undo the previous configuration:

default interface GigabitEthernet2

interface GigabitEthernet2

shutdown

If we had left out the apply=False flag, the configuration would have actually been
unapplied on our device.

Comparing your device's current state to a
previously learned state
In the Retrieving your device's current state using pyATS recipe, we learned how to retrieve
the state of a device, and in the previous recipe, Using Genie Conf objects to create a
portable configuration script, we have seen how to apply changes to our device. This means
that we can now not only save the state of a device but also change it. This recipe will
cover the final piece of the puzzle and show how to compare our current device state to a
previously saved state and print out the difference in the configuration.

Getting ready
Open your code editor and start by creating a file called testbed.yaml, as well as a file
called compare.py. Next, navigate in your terminal to the same directory in which you
just created the testbed.yaml file.

You'll also need to first create a snapshot of your device's features (see the Retrieving your
device's current state using pyATS recipe) before applying some changes, either manually
or automatically, to your device. For an introduction to adding changes automatically, see
the Using Genie Conf objects to create a portable configuration script recipe.

Comparing your device's current state to a previously learned state 167

How to do it…
Follow these steps to get the differences between a previously saved state and the current
state of your device:

1.	 Open your testbed.yaml file and define a devices list and a hostname for
your device—in this case, device-1:

devices:

 device-1:

2.	 Next, define the device type (in this example, router) and the operating system (in
this example, iosxe) running on the device, as well as the connection credentials:

 type: router

 os: iosxe

 credentials:

 default:

 username: <insert your username>

 password: <insert your password>

3.	 Next, we need to define the connection details to our management interface. In
this example, we are going to connect to the device via SSH. If you want to use an
IP address instead of a host, use ip: <insert your ip here> instead of the
host part shown here:

 connections:

 mgmt:

 protocol: ssh

 host: <insert your host here>

 port: <insert your port here>

4.	 With the testbed file created, we can go ahead and open the compare.py file. In it,
we are going to first import the required libraries:

from genie.testbed import load

from genie.utils.diff import Diff

import json

168 Automating Your Network Tests and Deployments with pyATS and Genie

5.	 Next, load the device from the testbed and connect to it:

testbed = load('testbed.yaml')

device = testbed.devices['device-1']

device.connect()

6.	 With the device loaded, we can learn the current state of this device:

current = device.learn('all')

7.	 After pyATS has learned the current state of the device, it's time to load the
previously saved snapshot. In this example, we are assuming that the snapshot was
saved to a file called backup.txt:

with open('backup.txt') as fh:

 snapshot = json.load(fh)

8.	 Finally, we can generate the difference between the previous state, retrieved from
the loaded snapshot, and the current state of our device and print the difference
back to the user:

diff = Diff(snapshot, current.to_dict())

diff.findDiff()

print(diff)

How it works…
We first create our testbed file. This file specifies the details of all devices that we want to
be able to connect to and makes them available to pyATS. For a more detailed explanation
of how this testbed file is constructed, please refer to the How it works… section of the
Creating a pyATS testbed file recipe.

With our device created and connected, we can go ahead and retrieve the current state
of the device by using the learn() function. For a detailed explanation of how the
learn() function works, please refer to the Retrieving your device's current state using
pyATS recipe. With our current state learned, we can then load the previously saved state
from our JSON file and use the diff function from Genie to generate the difference
between the two snapshots.

8
Configuring Devices

Using RESTCONF
and requests

In Chapter 5, Model-Driven Programmability with NETCONF and ncclient, we already saw
how you can use Yet Another Next Generation (YANG) modules to model a network
device's configuration and then use the network configuration (NETCONF) protocol
to either retrieve or change the configuration of your device. The aim of NETCONF
was to provide a unified interface for these operations. However, one major drawback of
NETCONF is its rather unmodern reliance on Extensible Markup Language (XML) as
the language of choice for describing the data as well as the operations you want to carry
out. To solve this, the Internet Engineering Task Force (IETF) came up with the concept
of REpresentational State Transfer (REST) configuration (RESTCONF). Built to use
the same concepts as NETCONF, RESTCONF allows you to use the HyperText Transfer
Protocol (HTTP) to interact with your device instead of the Remote Procedure Calls
(RPCs) used by NETCONF. And, instead of forcing the user to use XML, RESTCONF lets
us describe the data in either XML or JavaScript Object Notation (JSON).

In this chapter, we will learn how to use RESTCONF to carry out basic workflows around
your devices. Specifically, we will look at the following topics:

•	 Revisiting HTTP's request-response model and RESTCONF principles

•	 Making HTTP requests using the requests module in Python

170 Configuring Devices Using RESTCONF and requests

•	 Retrieving all interfaces of a device using RESTCONF and requests

•	 Creating a Virtual Local-Area Network (VLAN) using RESTCONF and requests

•	 Updating a VLAN using RESTCONF and requests

•	 Deleting a VLAN using RESTCONF and requests

Technical requirements
It is recommended that you have a basic understanding of how YANG and NETCONF
work before diving into this chapter. For an introduction to both topics, please refer
to the Revisiting NETCONF and YANG modules recipe in Chapter 5, Model-Driven
Programmability with NETCONF and ncclient.

Since RESTCONF is built on top of HTTP requests, we will need the ability to make
HTTP requests with Python. While we could implement the HTTP protocol ourselves or
use one of the low-level modules that come with the Python standard library to perform
these requests, the Python community has developed a package called requests that
makes dealing with HTTP requests and responses much easier. Under the slogan HTTP
for Humans™, this has abstracted most of the difficult tasks of dealing with HTTP on top
of the standard library and has become the de facto standard for consuming HTTP-based
resources from Python. We'll be using requests for this chapter as well as for Chapter 9,
Consuming Controllers and High-Level Networking APIs with requests.

For this section and the remainder of the book, you'll need an installation of Python.
Specifically, you'll need a Python interpreter of version 3.6.1 or higher. This book makes
use of language constructs of Python 3 and thus is incompatible with Python 2.x.
Additionally, you'll need to install the requests package. You can install the newest
version of requests using python3 -m pip install requests. At the time of
this writing, the current version is version 2.25.1. You can install this specific version of
the requests module by using python3 -m pip install requests==2.25.1.

You will also need a code editor. Popular choices include Microsoft Visual Studio Code
(VS Code) or Notepad++. Additionally, you will need a device (virtual or physical) that
you can log in with via Secure Shell (SSH) and that has RESTCONF enabled. Please
consult the manual of your device to find configuration instructions on how to enable the
RESTCONF feature.

You can view this chapter's code in action here: https://bit.ly/3yHLjqC

https://bit.ly/3yHLjqC

Revisiting HTTP's request-response model and RESTCONF principles 171

Revisiting HTTP's request-response model and
RESTCONF principles
When Tim Berners-Lee, a scientist at the European Organization for Nuclear Research
(CERN) in Geneva, published the first drafts for HTTP, the protocol that would become
the cornerstone of the World Wide Web (WWW), he probably did not expect the way
his idea would develop. Started as a way for scientists to exchange their findings and
collaborate on particle physics, life today could not be envisioned without the web.

In this section, we are going to revisit the basics of how HTTP works and have a specific
look at how RESTCONF uses the ideas and building blocks defined by HTTP to model
the configuration state and changes thereof of a network device. If you are already very
familiar with the HTTP protocol itself, you may want to skip the next section and jump
straight to the How RESTCONF builds on top of HTTP subsection of this recipe.

How does HTTP work?
HTTP is a plain text request-response protocol. A client sends an HTTP request to a
server and receives an HTTP response back from the server.

An HTTP request always has three components, outlined here:

•	 A request line that specifies the request method and the resource that is accessed,
identified by a resource identifier (ID)

•	 Request header fields that specify meta-information that the server should follow

•	 An optional request body that is separated from the request header fields by
a newline

A request method is a specific keyword that describes the kind of operation we want the
server to carry out when receiving and processing an HTTP request. The most important
request methods, and the ones that will be relevant for our usage in RESTCONF and
when dealing with REST Application Programming Interfaces (APIs), are outlined here:

•	 GET specifies that we are requesting to read information. This could be, for example,
the retrieval of a device state.

•	 POST specifies that we want to submit the data enclosed in our request body to the
specified resource. Data submitted via the POST method can be used to either create
or update a resource.

•	 PUT specifies that we want to replace the resource identified with that specified in
the request body.

172 Configuring Devices Using RESTCONF and requests

•	 PATCH specifies that we want to overwrite or amend the resources identified by the
resource ID with the data specified in the request body.

•	 DELETE specifies that we want to delete the resource specified by the resource ID.

The header fields of our HTTP request are used to specify meta-information that we want
to give to our server when processing the request. An HTTP header is a key-value pair
that is sent by the client to the server. While there are standard header fields as well as
common non-standard fields, we can pass any information we want as part of a header.
We just need a server that can interpret the information properly. The most common
types of information passed inside of a header are outlined here:

•	 Content-Type: This header field specifies the type of data (such as JSON or
XML) that is being sent as part of the request body. A POST request that contains
JSON-encoded data in it would set the Content-Type: application/json
header. This line tells the server that the body should be interpreted as JSON-
formatted data.

•	 Accept: This header field specifies the way we would like to receive content back
from the server. When we request information from our device and want to retrieve
this information formatted as JSON, we would set an Accept: application/
json header in our request header.

•	 Authorization: This header field is used to provide authentication credentials
such as username/password or API tokens with our request. As an example, if the
web server we are interacting with supports basic authentication (HTTP Basic
Auth), which is authentication with a username/password combination, we would
send a header like this: Authorization: Basic cm9vdDpwYXNzd29yZA==.
The Basic keyword describes the type of authorization used, and the string that
follows is a Base64-encoded representation of <username>:<password>. In
this case, our username is root and the password is password, so the string that
is being Base64-encoded is root:password. For RESTCONF, we will stick with
this HTTP Basic Auth type. In the Authenticating web requests recipe of Chapter 9,
Consuming Controllers and High-Level Networking APIs with requests, we will revisit
some other concepts of authenticating web requests.

•	 Content-Length: This specifies the size of our request body in octets.

•	 Host: This specifies the host (and, optionally, the port) that the web server is
listening on.

Revisiting HTTP's request-response model and RESTCONF principles 173

An authenticated HTTP POST request to the /devices resource, containing some
JSON-encoded information that is being sent to a server running on port 8080 of host
data.com that requests JSON data in response, would thus look like this:

POST /devices HTTP/1.1

Host: data.com:8080

Content-Type: application/json

Content-Length: 63

Accept: application/json

Authorization: Basic cm9vdDpwYXNzd29yZA==

{

 "name": "my device",

 "mac": "01-23-45-67-89-AB-CD-EF"

}

Our server will then come back and return to us an HTTP response. This response will
either contain the information we have requested from the server in our HTTP request or
an error. An HTTP response always has the following components:

•	 A status line with the protocol version and status code that is sent by the server to
indicate whether a request was successful or not. An example for a status line could
be HTTP/1.1 200 OK, which specifies that the HTTP protocol version is version
1.1, the status code is 200, and the reason phrase is OK.

•	 Response header fields that, as with request header fields, allow the server to
pass meta-information such as the type of content being sent to the client. A
server sending JSON-encoded information back to the client would, for example,
specify this to the client by sending a Content-Type: application/json;
charset=utf-8 header that indicates to the client that the message body should
be interpreted as JSON-encoded information and be encoded using utf-8.

•	 A (possibly empty) message body that contains the information we have requested
from the server and that is separated from the header fields by a blank line.

An HTTP response to the HTTP request we have seen before could thus look like this:

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

{

174 Configuring Devices Using RESTCONF and requests

 "id": 25,

 "name": "my device",

 "mac": "01-23-45-67-89-AB-CD-EF"

}

One of the most important concepts when dealing with HTTP requests, be it when
using them for RESTCONF or when interacting with REST APIs, are the status codes.
These codes can be used by the server developers to specify whether a request should be
interpreted as a success or a failure and what kind of response was sent. Status codes have
a possible range from 100 to 599 and are accompanied by a reason phrase. The reason
phrase can be set freely by the application developer, but most status codes have reason
phrases, such as OK for a response with status code 200, which has become the norm.

Status codes come in five broad categories, outlined as follows:

•	 1XX for informational responses.

•	 2XX for successful responses.

•	 3XX for responses that redirect.

•	 4XX for responses that indicate a client error—for example, a missing authentication
or a wrongly formatted request body that could not be understood by the server.

•	 5XX for responses that indicate a server-side error. This means that the request was
formatted and understood correctly but the server encountered an internal error
while processing the request.

The most important status codes that we will encounter when dealing with RESTCONF
and REST APIs are listed next.

For the 2XX range:

•	 200 – OK: A successful HTTP response. This is usually sent when doing GET
requests to retrieve information but also when using PATCH/PUT requests to
replace or update existing information.

•	 201 – Created: A resource was successfully created by the request that was sent.
This response is mainly sent when sending information to a server via a
POST request.

•	 204 – No Content: A response with this status code is returned when the
request was successful but no data is returned. This code is mainly encountered
when dealing with DELETE requests.

Revisiting HTTP's request-response model and RESTCONF principles 175

For the 3XX range:

•	 301 – Moved permanently: This indicates that the request should be redirected.

For the 4XX range:

•	 400 – Bad request: The server was unable to understand the request that was
sent. This is usually due to a wrongly formatted request body or missing data in the
request body.

•	 401 – Unauthorized: The server was expecting authorization information—for
example, an Authorization header with a username/password combination
according to the HTTP Basic Auth method, but the request did not supply that
information.

•	 403 – Forbidden: The request included required authorization information,
but the credentials provided do not have the required permissions. An account that
only has read-only access to resources might encounter this error when sending an
HTTP DELETE request with a valid Authorization header. The server would
successfully authenticate the user, enabling them to realize that they do not have
the required permissions to carry out a DELETE operation and thus the request is
Forbidden, as outlined in the reason phrase.

•	 404 – Not Found: The requested resource could not be found on the server.

•	 405 – Method Not Allowed: The request used a method that is not allowed
for this specific resource. Maybe your server only allows GET requests to the
/devices resource and you are trying to send a POST request. In that case, this
response code would be returned.

For the 5XX range:

•	 500 – Internal Server error: The server has encountered some sort of
error. A response with this error code means that the request could not be carried
out correctly due to an issue on the server side.

•	 502 – Bad Gateway: The server had issues reaching another upstream server.

•	 503 – Service Unavailable: The server currently cannot handle the
request—for example, because the web service you are interacting with is currently
rolling out some updates.

176 Configuring Devices Using RESTCONF and requests

You'll see that we will check these status codes frequently when dealing with RESTCONF
or REST APIs to verify that our requests were successful. Here is a summary of an HTTP
request-response process:

Figure 8.1 – Schematic summary of an HTTP request-response process

With the underlying HTTP protocol taken care of, let's see how RESTCONF builds on
top of HTTP to provide a REST-like way of interacting with the configuration of a
network device.

How RESTCONF builds on top of HTTP
So, how does RESTCONF use the concepts of HTTP, and where does it come from? With
the rise of REST APIs, an API standard built on top of the HTTP protocol, the ask for a
way to automate the change and retrieval of configuration data from network devices in a
REST-like way became more and more prominent.

The idea behind RESTCONF was to build a REST-like interface that can be used similarly
to NETCONF, but instead of using RCPs and XML, we use HTTP requests and either
XML or JSON to format the data we are retrieving or submitting to the device.

Making HTTP requests using the requests module in Python 177

We can still use the YANG modules to specify the data we want to retrieve or change and
then use HTTP requests and JSON/XML to format and send the data to our device. Each
operation in NETCONF is mapped to an HTTP request method, just as REST APIs map
the Create, Read, Update, and Delete (CRUD) operations of a database system to HTTP
methods, as specified in the following list:

•	 <get> and <get-config> are represented by GET requests.

•	 <edit-config> with create operation types is represented by POST requests.

•	 <copy-config> with create/replace operation types is represented by PUT
requests.

•	 <edit-config>, where the goal of the operation is to change information, is
represented by PATCH requests.

•	 <edit-config>, where the goal of the operation is to delete information, is
represented by DELETE requests.

You can find a complete mapping of NETCONF operations to their RESTCONF
equivalent in Section 4 of Request for Comments (RFC) 8040. You can find a full link to
the RFC here: https://datatracker.ietf.org/doc/html/rfc8040.

Making HTTP requests using the requests
module in Python
As we have seen, the HTTP protocol is a plain text protocol, and while we could
implement this protocol by hand, that is very cumbersome. We will thus use the
requests module. This module abstracts the process of requesting and handling the
response from an HTTP server. In this first recipe, we will see how to do an initial request
against a network device that has RESTCONF enabled. This recipe thus also serves as a
verification that RESTCONF is properly enabled on your device.

Getting ready
Open your code editor and start by creating a file called make_request.py. Next,
navigate in your terminal to the same directory in which you just created the make_
request.py file.

https://datatracker.ietf.org/doc/html/rfc8040

178 Configuring Devices Using RESTCONF and requests

How to do it…
Follow these steps to make your first HTTP request using Python and the requests
module:

1.	 Import the requests module:

import requests

2.	 Create a requests session:

s = requests.Session()

3.	 Specify the connection information for your device:

host = "<insert your host here>"

rest_path = "restconf"

port = <insert your port here>

user = "<insert your username here>"

password = "<insert your password here

4.	 Pass the previously specified authentication information into the session and disable
certificate verification if your device uses self-signed certificates when serving the
RESTCONF endpoint via HTTP Secure (HTTPS):

s.auth = (user, password)

s.verify = False

5.	 Update the headers to specify that we are sending JSON-formatted YANG data and
will accept JSON-formatted YANG data:

s.headers.update({

 "Content-Type": "application/yang-data+json",

 "Accept": "application/yang-data+json"

})

6.	 Put together the Uniform Resource Locator (URL) for our RESTCONF endpoint:

url = f"https://{host}:{port}/{rest_path}/"

7.	 Send the request:

resp = s.get(url)

Making HTTP requests using the requests module in Python 179

8.	 Check the status code and, if the request returned a 200 status code and was thus
successful, print out the returned information:

if resp.status_code == 200:

 print(resp)

else:

 print(f"Failed to retrieve data. Status code:
{resp.status_code}")

9.	 Finally, run the script by typing the following command in your terminal:

python3 make_request.py

The output should be a Python dictionary that contains the YANG library version.

How it works…
In order to make an HTTP request using requests, we first must import our module.
With the module imported, we can then go ahead and create a session. While requests
also offers us the ability to use functions such as get() or post() to make the
corresponding HTTP requests without creating a session first, the session does have
some distinct advantages. With a session, the headers we specify—in this case, the type
of content we are sending in the request body and the type of content we would like to
receive, as well as our authentication information—are automatically stored between
requests. With our user information specified, we can go ahead and first define the
authentication details. We assign the session's auth variable a tuple that contains our
username and password. We also set the verify flag to False. This tells requests to
not verify the HTTPS certificates. Since most network devices use self-signed certificates
to serve their RESTCONF endpoints over, this is required for the request to not abort with
a self-signed certificate error.

We can then update our session's header information by using the update() function
on our headers variable of our previously created session object. With the headers
specified and stored in our session, we can then go ahead and put the URL for our
RESTCONF endpoint together. In this example, we are just sending a request to the main
RESTCONF endpoint that exposes some basic information. By sending a request to this
endpoint and retrieving a valid response, we also verify that RESTCONF is configured
properly and that our login credentials are valid. With our URL specified, we can then go
ahead and send the actual request. This is done by using the session's get() method that we
provide with the URL of the endpoint. This method returns a Response object that, among
other things, contains a status_code member variable that contains the status code of
our HTTP response. We can check this status code to ensure that our request was successful.

180 Configuring Devices Using RESTCONF and requests

In this case, we are checking that the status code is 200 and, if so, use the json()
function of our Response object to retrieve the JSON-formatted data that was sent in the
response body as a parsed Python dictionary. If the request did not return a status code of
200 and was thus not successful, we print out an error message that includes the HTTP
status code, which can give us some information about what the problem could be.

There's more…
In the recipe, we specified our headers on a per-session basis. This is great for use cases
where you make multiple requests to the same device and do not want to always specify
authentication information, for example. We can also pass additional headers on a
per-request basis. The following code snippet shows how you can specify these additional
headers when making a GET request using the get() function. This works equally for all
other request types and their associated functions:

import requests

s = requests.Session()

s.headers.update({

 "Content-Type": "application/json"

})

url = f"https://{host}:{port}/{rest_path}/"

addt_headers = {

 "Accept": "application/yang-data+json"

}

resp_one = s.get(url, headers=addt_headers)

resp_two = s.get(url)

Here, we are specifying a Content-Type header on the session and creating an
additional dictionary with an Accept header that we can pass on to a request using a
headers parameter. The first request, which results in resp_one, would thus have both
the Content-Type and Accept headers set, while the second request, which results in
resp_two, would only have the Content-Type header that was set on the session we
used to make this request.

https://{host}:{port}/{rest_path}/

Making HTTP requests using the requests module in Python 181

In this recipe, we only showed a GET request and its corresponding method, but
requests also allows us to create and send all the other HTTP methods as well. Here is
a list of the important HTTP methods and their corresponding requests functions:

•	 POST requests can be performed by using the post() function. This function
importantly has a json keyword argument that allows us to specify a Python
dictionary that should be sent as a JSON-formatted payload on the resulting
request. A POST request that sends a dictionary called payload to the server
would thus look like this:

payload = {

 "some": "data"

}

resp = s.post(url, json=payload)

•	 DELETE requests can be performed using the delete() function.

•	 PATCH requests can be performed using the patch() function. Similar to the
post() function, they support the json keyword argument to specify JSON-
formatted data to be sent.

•	 PUT requests can be performed using the put() function. Just as with the post()
and patch() functions, this function also supports the json keyword argument
to specify a payload.

And while we will use sessions throughout this chapter to send requests, you can also send
HTTP requests without creating a session first. The requests module, just as with the
session object we created, offers functions for all the different HTTP methods. The next
code snippet shows how you can send an HTTP GET request without creating a session
object first:

import requests

resp = requests.get("https://packtpub.com")

print(resp.text)

This works equally for POST/PATCH/PUT/DELETE requests by using the post()/
patch()/put()/delete() functions.

https://packtpub.com

182 Configuring Devices Using RESTCONF and requests

We have seen that web servers might send redirect instructions (using 3XX status codes)
as a response. By default, requests will follow these redirects for all types of requests except
for HEAD requests. We can go ahead and change that behavior if we desire by using an
allow_redirects flag, as shown in the following code snippet:

url = "https://packtpub.com"

resp = requests.get(url, allow_redirects=False)

HEAD requests are used to retrieve the meta-information of a resource without actually
retrieving the resource itself. The response to a HEAD request should be the same as if you
were doing a GET request to the specified resource, except that the HEAD request will not
include a response body like the result of a GET request would. HEAD requests can thus be
used to retrieve information about a response without going through and downloading
the entire content of a request.

Retrieving all interfaces of a device using
RESTCONF and requests
A sort of hello world-type script and a workflow we have seen with different tools
throughout this book is the ability to retrieve a list of interfaces currently configured on
the device. This can also be achieved using RESTCONF, and in this recipe, we will see how
to use the YANG modules that specify our interfaces to retrieve the configuration data
present on our device.

Getting ready
Open your code editor and start by creating a file called retrieve_interfaces.
py. Next, navigate in your terminal to the same directory in which you just created the
retrieve_interfaces.py file.

How to do it…
Follow these steps to retrieve the interfaces from your RESTCONF-enabled network device:

1.	 Import the required modules and set up a requests session that can interact
with the device. We will also import the prettyprint standard library to get a nicely
formatted output later. For a detailed step-by-step guide on how to connect to
your device, please refer to the Making HTTP requests using the requests module in
Python recipe of this chapter:

import requests

import pprint

https://packtpub.com

Retrieving all interfaces of a device using RESTCONF and requests 183

s = requests.Session()

host = "<insert your host here>"

rest_path = "restconf"

port = <insert your port here>

user = "<insert your username here>"

password = "<insert your password here>"

s.auth = (user, password)

s.verify = False

s.headers.update({

 "Content-Type": "application/yang-data+json",

 "Accept": "application/yang-data+json"

})

2.	 Put together the URL that we want to send our request to. In this example, we
want to query the interfaces that are described by the ietf-interfaces YANG
module:

url = f"https://{host}:{port}/{rest_path}/ietf-
interfaces:interfaces"

3.	 Send the request using our session setup:

resp = s.get(url)

4.	 Check the status code of the returned response, and if the response was successful,
use prettyprint to print out the resulting JSON-formatted data:

if resp.status_code == 200:

 pprint.pprint(resp.json())

else:

 print(f"Failed to retrieve data from device.
Status code: {resp.status_code}")

5.	 Finally, run the script by typing the following command in your terminal:

python3 retrieve_interfaces.py

The resulting output should be a JSON-formatted dictionary that includes entries for all
the interfaces configured on your device, including their name, type, and information
such as the configured Internet Protocol (IP) addresses.

184 Configuring Devices Using RESTCONF and requests

How it works…
We first import the requests library as well as the prettyprint module from the standard
library. We then specify the connection variables such as hostname, port, and the
username/password combination used to authenticate ourselves on the device. With the
details specified, we can create a requests session and define our headers, as well as
authentication details, on it. For a more detailed description of how this setup part works,
please refer to the Making HTTP requests using the requests module in Python recipe of
this chapter.

With our session established, we can specify the YANG module we want to query. In
this example, we want to retrieve the data for our interfaces, so we are querying
the ietf-interfaces YANG module and, within that, we are looking for the
interfaces container. With our URL pieced together, we can go ahead and send the
request by using our session. Since we want to retrieve information, we are sending a GET
request using the get() function. Once our request has finished, we check the status
codes for error codes and, if the response indicates success by returning a 200 status code,
we can go ahead and print out the retrieved information. The information that we get
returned is in JSON format. The Response object of requests offers a handy json()
function that we can use to automatically parse the JSON-formatted data in the response
body to a Python dictionary.

There's more…
In this recipe, we queried our device for information on all the interfaces present on
our device. However, sometimes we only want to retrieve information about one single
interface. This is especially true when talking about requests that apply changes. As is
specified by the HTTP protocol and is common practice in REST APIs, this specification
should be in the URL. In YANG, we have the concept of leaves. In our previous example,
every interface is a leaf of the container interfaces. We can specify one of these leaves by
specifying the parameter—for example, the interface name, that we want to check for. Let's
say you want to query only the information of the GigabitEthernet2 interface. You
can do that by changing the URL, as follows:

url = f"https://{host}:{port}/{rest_path}/ietf-interfaces:inter
faces/?interface=GigabitEthernet2

resp = s.get(url)

if resp.status_code == 200:

 pprint.pprint(resp.json())

Retrieving all interfaces of a device using RESTCONF and requests 185

else:

 print(f"Failed to retrieve data from device. Status code:
{resp.status_code}")

With the URL specified in the preceding snippet, you might be wondering how you can
determine the URL that you have to use based on a YANG module you found for your
device. First, you have a base URL. This base URL contains the following:

•	 The protocol—Usually, this will be https://.

•	 The host—In our recipes, we are always including them from our host variable.

•	 The port that your device is serving RESTCONF on. In our recipes, we are always
including this information from the port variable.

•	 The entry point for your RESTCONF endpoints. In our recipes, we are specifying
this using the rest_path variable. This entry point can vary depending on
the vendor.

With our base URL done, we next need to specify the YANG module that we want to
use. In the previous example, this is the ietf-interfaces YANG module that specifies
a container, as in the interfaces example. You can then specify an individual leaf by
providing an identification such as the interface name given in the previous example.

It can also be quite handy to be able to list all YANG modules that are available on your
device. Similar to how NETCONF lets you retrieve a list of available modules, you can
use RESTCONF to do the same. The following code snippet will print a list of the names
of all available modules on the command line. You'll have to have a session created for
your device:

url = f"https://{host}:{port}/{rest_path}/ietf-yang-
library:modules-state"

resp = s.get(url)

if resp.status_code == 200:

 data = resp.json()

 for m in data['ietf-yang-library:modules-state']
['module']:

 print(f"- {m['name']}")

186 Configuring Devices Using RESTCONF and requests

Creating a VLAN using RESTCONF and requests
Now that we have seen how to set up our Python scripts to be able to connect to a network
device using RESTCONF and how to carry out some basic information retrieval using
RESTCONF, we can now go ahead and configure a service. The final three recipes in
this chapter, Creating a VLAN using RESTCONF and requests, Updating a VLAN using
RESTCONF and requests, and Deleting a VLAN using RESTCONF and requests, show how
to use a YANG module to do typical administrative work such as creating, changing, and
then deleting a device configuration.

Let's go ahead and first use RESTCONF and requests to create a new
VLAN configuration.

Getting ready
Open your code editor and start by creating a file called create_vlan.py. Next,
navigate in your terminal to the same directory in which you just created the create_
vlan.py file.

How to do it…
Follow these steps to use RESTCONF and requests to create a new VLAN:

1.	 Import the required modules and set up a requests session that can interact
with the device. We will also import the prettyprint standard library to get a nicely
formatted output later. For a detailed step-by-step guide on how to connect to
your device, please refer to the Making HTTP requests using the requests module in
Python recipe of this chapter:

import requests

import pprint

s = requests.Session()

host = "<insert your host here>"

rest_path = "restconf"

port = <insert your port here>

user = "<insert your username here>"

password = "<insert your password here>"

s.auth = (user, password)

s.verify = False

s.headers.update({

Creating a VLAN using RESTCONF and requests 187

 "Content-Type": "application/yang-data+json",

 "Accept": "application/yang-data+json"

})

2.	 With our session connected and set up, we can now go ahead and specify the URL
that we want to use to configure it:

intf_name = "<insert your interface name here>"

url = f"https://{host}:{port}/{rest_path}/ios-xe-
native:native/interface/{intf_name}"

3.	 Next, we need to specify the data that we want to send to our RESTCONF server on
the device:

payload = {

 "name": "3.10",

 "encapsulation": {

 'dot1Q": {

 'vlan-id': 10

 }

 }

}

4.	 With our data and URL specified, we can use a POST request from our session to
carry out the operation:

resp = s.post(url, json=payload)

5.	 Check the status code of the returned response, and if the response was successful,
use prettyprint to print out the resulting JSON-formatted data:

if resp.status_code == 200:

 pprint.pprint(resp.json())

else:

 print(f"Failed to retrieve data from device.
Status code: {resp.status_code}")

6.	 Finally, run the script by typing the following command in your terminal:

python3 create_vlan.py

188 Configuring Devices Using RESTCONF and requests

How it works…
We first import the requests library as well as the prettyprint module from the standard
library. We then specify the connection variables such as hostname, port, and the
username/password combination used to authenticate ourselves on the device. With the
details specified, we can create a requests session and define our headers, as well as
authentication details, on it. For a more detailed description of how this setup part works,
please refer to the Making HTTP requests using the requests module recipe of this chapter.

With our session established, we can go ahead and specify the information we would like
to specify on our interface. With the URL, we are defining on which interface, indicated
by the intf_name variable, we want to change the dot1Q encapsulation. We can then
specify all our configuration information in a Python dictionary that contains the keys
that are specified as required by the YANG module.

With our data and URL defined, we can then go ahead and use the POST request
functionality of our session to send the data to our device for configuration.

Updating a VLAN using RESTCONF and
requests
Now that we have programmatically created a part of our device configuration using
RESTCONF (see the Creating a VLAN using RESTCONF and requests recipe), let's request
it this time for the next step. Using RESTCONF and the PATCH method, we can use a
similar data structure to what we have seen when creating the configuration initially, to
change the configuration that we previously created.

Let's go ahead and change our previously created VLAN on our interface using
RESTCONF and requests.

Getting ready
Open your code editor and start by creating a file called change_vlan.py. Next,
navigate in your terminal to the same directory in which you just created the change_
vlan.py file.

Updating a VLAN using RESTCONF and requests 189

How to do it…
Follow these steps to define the necessary information to change a previously created VLAN:

1.	 Import the required modules and set up a requests session that can interact
with the device. We will also import the prettyprint standard library to get a nicely
formatted output later. For a detailed step-by-step guide on how to connect to
your device, please refer to the Making HTTP requests using the requests module in
Python recipe in this chapter:

import requests

import pprint

s = requests.Session()

host = "<insert your host here>"

rest_path = "restconf"

port = <insert your port here>

user = "<insert your username here>"

password = "<insert your password here>"

s.auth = (user, password)

s.verify = False

s.headers.update({

 "Content-Type": "application/yang-data+json",

 "Accept": "application/yang-data+json"

})

2.	 With our session connected and set up, we can now go ahead and specify the URL
that we want to use to configure it:

intf_name = "<insert your interface name here>"

url = f"https://{host}:{port}/{rest_path}/ios-xe-
native:native/interface/{intf_name}"

3.	 Next, we need to specify the data that we want to change on our interface. We need
to send that data to our RESTCONF server on the device:

payload = {

 "name": "3.15",

 "encapsulation": {

 'dot1Q": {

 'vlan-id': 15

190 Configuring Devices Using RESTCONF and requests

 }

 }

}

4.	 With our data and URL specified, we can use a POST request from our session to
carry out the operation:

resp = s.patch(url, json=payload)

5.	 Check the status code of the returned response, and if the response was successful,
use prettyprint to print out the resulting JSON-formatted data:

if resp.status_code == 200:

 pprint.pprint(resp.json())

else:

 print(f"Failed to retrieve data from device.
Status code: {resp.status_code}")

6.	 Finally, run the script by typing the following command in your terminal:

python3 change_interfaces.py

How it works…
We first import the requests library as well as the prettyprint module from the standard
library. We then specify the connection variables, such as hostname, port, and the
username/password combination used to authenticate ourselves on the device. With the
details specified, we can create a requests session and define our headers, as well as
authentication details, on it. For a more detailed description of how this setup part works,
please refer to the Making HTTP requests using the requests module in Python recipe of
this chapter.

With our session established, we can go ahead and define the information we want to
change on our interface. With RESTCONF, we can use a Python dictionary to specify
the information that needs to be changed on our interface. We first define a target
resource by specifying the URL that we will send our configuration payload to. In this
example, we are changing the configuration of an interface, and thus we use the native
interface container. We then specify the interface that we want to change in our
intf_name variable. With our target specified in the URL, we can go ahead and change
the configuration. To do so, we use the same dictionary structure that we have already
seen for creating the interface configuration. The variables that need to be specified in this
can be found in the YANG module itself.

Deleting a VLAN using RESTCONF and requests 191

With our data and URL defined, we can then go ahead and use the PATCH request
functionality of our session to send the data to our device for configuration. We then
check the status code to make sure that our operation was successful and, if that is the
case, print out the returned response from our device.

There's more…
You might be wondering when to use the PATCH and PUT HTTP methods. If you recall the
comparison between NETCONF and RESTCONF in the Revisiting HTTP's request-response
model and RESTCONF principles section, you'll know that both allow you to change a
configuration. PATCH should be used when you are only changing part of the configuration.
PUT, on the other hand, is used to replace an entire object with a new object.

Deleting a VLAN using RESTCONF and requests
With the creation (see the Creating a VLAN using RESTCONF and requests recipe) and
change of a device configuration (see the Updating a VLAN using RESTCONF and requests
recipe) taken care of, we need to have a look at the final operation we have thus far
neglected: deleting resources that are present in our device configuration.

Let's now go ahead and delete our previously created and then changed VLAN
programmatically.

Getting ready
Open your code editor and start by creating a file called delete_vlan.py. Next, navigate
in your terminal to the same directory in which you just created the delete_vlan.py file.

How to do it…
Follow these steps to delete a VLAN using RESTCONF and requests:

1.	 Import the required modules and set up a requests session that can interact
with the device. We will also import the prettyprint standard library to get a nicely
formatted output later. For a detailed step-by-step guide on how to connect to
your device, please refer to the Making HTTP requests using the requests module in
Python recipe:

import requests

import pprint

192 Configuring Devices Using RESTCONF and requests

s = requests.Session()

host = "<insert your host here>"

rest_path = "restconf"

port = <insert your port here>

user = "<insert your username here>"

password = "<insert your password here>"

s.auth = (user, password)

s.verify = False

s.headers.update({

 "Content-Type": "application/yang-data+json",

 "Accept": "application/yang-data+json"

})

2.	 With our session connected and set up, we can now go ahead and specify the URL
that we want to use to delete our VLAN. This URL will define the target device:

intf_name = "<insert your interface name here>"

url = f"https://{host}:{port}/{rest_path}/ios-xe-
native:native/interface/{intf_name}"

3.	 In addition to the target interface, we also need to specify the target VLAN that
we want to delete. In our example in the previous recipe, Updating a VLAN using
RESTCONF and requests, this VLAN was called 3.10:

target_vlan = "<insert target vlan here>"

url = f"{url}/{target_vlan}"

4.	 With our data and URL specified, we can use a DELETE request from our session to
invoke a delete operation on our device. Notice that the delete operation does
not take any arguments or additional data:

resp = s.delete(url)

5.	 Check the status code of the returned response and, if the response was successful,
use prettyprint to print out the resulting JSON-formatted data:

if resp.status_code == 200:

 pprint.pprint(resp.json())

else:

 print(f"Failed to retrieve data from device.
Status code: {resp.status_code}")

Deleting a VLAN using RESTCONF and requests 193

6.	 Finally, run the script by typing the following command in your terminal:

python3 delete_interfaces.py

How it works…
We first import the requests library as well as the prettyprint module from the
standard library. We then specify connection variables such as hostname, port, and
the username/password combination used to authenticate ourselves on the device. With
the details specified, we can create a requests session and define our headers, as well as
authentication details, on it. For a more detailed description of how this setup part works,
please refer to the Making HTTP requests using the requests module in Python recipe.

With our session established, we can go ahead and define the resource—in our case, the
VLAN on our specified interface—that we want to delete. Resources in RESTCONF are
always specified by their URL. In our Python script, we first specify the YANG module
(see the There's more… section in the Retrieving all interfaces of a device using RESTCONF
and requests recipe for an overview of how to identify the correct URL) and then the
interface (specified in the intf_name variable). We then amend this information with
the VLAN that we want to delete. With our resource uniquely identified in the URL, we
can use the delete() function to issue a DELETE request to our RESTCONF server on
the device. We then check if the request was carried out correctly and print out the status
code if that's not the case.

9
Consuming
Controllers

and High-Level
Networking APIs

with requests
Why do we have to always connect to each of our devices individually to carry out
some operation? This is a question you might have asked yourself throughout this
book. And while device-by-device configuration remains a common way to interact
with networking device configuration, controller-based approaches, where a central
component coordinates and controls all devices on a network, are on the rise. And these
control components usually offer us an application programming interface (API) that
we can use to interact with the controller. The controller then goes out to all the devices
we have registered on it and retrieves the required information or applies the required
configuration change, without us having to explicitly apply this configuration change to
all our devices. The controller takes over the job of connecting to each of the devices.

196 Consuming Controllers and High-Level Networking APIs with requests

The common architectural style these APIs use is REST, short for REpresentational State
Transfer. REST builds on top of the Hyper Text Transfer Protocol (HTTP) and has,
since its inception in the early 2000s, become the de facto standard for building web APIs.
In this chapter, we will have a look at one specific REST API, known as the Dashboard
API, which can be used to interact with the Cisco Meraki family of devices. To interact
with this API, we are going to use the requests package.

This chapter will show the principles of interacting with a REST API using the Cisco
Meraki Dashboard API as an example. These principles can be applied to any other
REST API. Additionally, many REST APIs provide a Python package that wraps the API
calls. This is also the case for Meraki, and you'll see how to do the same requests you
did manually with the Meraki SDK, which is the recommended way of doing things for
production usage.

In this chapter, we will be covering the following recipes:

•	 Authenticating web requests

•	 Storing authentication metadata between requests sessions

•	 Retrieving a list of Meraki networks

•	 Retrieving usage details and connected clients for a Meraki network

•	 Rebooting a Meraki device

•	 Retrieving channel usage for your Meraki access point

•	 Updating the switch port configuration of a Meraki device

•	 Deleting the QoS rules on a Meraki device

•	 Using webhooks to programmatically react to an Access Point (AP) going down

Technical requirements
For this chapter and the remainder of this book, you'll need to install Python. Specifically,
you'll need a Python interpreter that's version 3.6.1 or higher. This book makes use of
the language constructs of Python 3, which means it is incompatible with Python 2.x.
Additionally you'll need to install the requests package. You can install the newest
version of requests using python3 -m pip install requests. At the time of
writing, the current version is version 2.25.1.

If you want to follow the There's more… sections, you'll also need the Meraki SDK. To
install the newest version of the package, you can use python3 -m pip install
meraki. At the time of writing, the current version is version 1.7.2.

Authenticating web requests 197

You will also need a code editor. Popular choices include Microsoft Visual Studio
Code or Notepad++. Additionally, you'll need a Meraki organization that has API
access enabled. You can find a guide on how to do this for your organization at
https://documentation.meraki.com/General_Administration/Other_
Topics/Cisco_Meraki_Dashboard_API.

You can view this chapter's code in action here: https://bit.ly/3fWD2rc

Authenticating web requests
In this chapter, we will learn how APIs handle authentication when they're queried. While
there are some APIs out there that do not require any sort of authentication, most APIs
will require some sort of user-provided authentication in order to associate a request with
a user and verify that that user is actually who they claim to be. This also helps ensure they
have the right set of permissions to access the resource that is being requested.

The most common way to carry out this authentication is by using an Authorization
header. You may want to refer to Chapter 8, Configuring Devices Using RESTCONF and
requests, the Revisiting the HTTPS request-response module recipe, for a more detailed recap
of how HTTP requests work, but in summary, headers are additional meta information that
can be sent by a client to the server. The header is a key-value pair, where in our example the
key is Authorization and the value is the secret that authenticates us against the API server.
This secret, commonly referred to as an access token, or simply token, is used to authenticate
and authorize requests on behalf of a user. It is equal to a username/password combination.
There are different types of tokens, but they generally fall into one of two categories:

•	 Tokens with an indefinite validity: Once generated, these tokens stay valid until
they are revoked by the user. Meraki uses these types of indefinite valid tokens, and
they can usually be generated in the web interface of the web services of the API you
want to interact with.

•	 Tokens with a limited validity: These are tokens that only have a limited time span
in which they are valid. This timespan can range from a few minutes to several days
or weeks. However, once the token is past its validity date, it can no longer be used.
While tokens with indefinite validity can usually be obtained using a web interface,
APIs that use limited tokens usually offer an API endpoint that we can send a
username/password combination to, in order to obtain the token. An example of an
API that uses such an approach would be Cisco DNA Center.

While the Authorization header is the most commonly used field name to specify
authorization information, there is no standard on this, and an API service can choose to
define a different header field to use. Notably, Cisco Meraki uses the X-Cisco-Meraki-
API-Key header field instead of the Authorization field.

https://documentation.meraki.com/General_Administration/Other_Topics/Cisco_Meraki_Dashboard_API
https://documentation.meraki.com/General_Administration/Other_Topics/Cisco_Meraki_Dashboard_API
https://bit.ly/3fWD2rc

198 Consuming Controllers and High-Level Networking APIs with requests

Passing a username-password combination as
authentication data in a request
First, let's have a look at how to pass a username-password combination to an API service
using requests. Username-password authentication, sometimes also referred to as Basic
Auth, uses the Authorization header in a request and specifies the username and
password as the value of the header field. These credentials are not transferred in plain
text; instead, the username and password, separated by a colon sign, are base64-encoded
and prepended with the Basic keyword. This keyword indicates to the server that the
HTTP Basic auth schema is being used. Therefore, the final Authorization header for
a request that uses the root username and the test password as credentials would look
like this:

Authorization: Basic cm9vdDp0ZXN0

Here, cm9vdDp0ZXN0 is the base64-encoded version of root:test.

While we could use Python's built-in modules to create a base64-encoded string based
on a username-password combination and then manually set the header to the correct
values, requests offers a convenient way of passing a username/password combination
to a request and automatically getting the correctly encoded headers set. The following
code imports requests as well as the HTTPBasicAuth model from the requests auth
subpackage, and then uses them to authenticate a GET request to packt.com using the
root username and test password. Once the request is complete, it prints out the status
code of the request we just completed:

import requests

from requests.auth import HTTPBasicAuth

auth = HTTPBasicAuth("root", "test")

response = requests.get("https://packt.com", auth=auth)

print(response.status_code)

While this is a common way of authenticating requests, some APIs may also require you
to send the username and password in the body of a POST request. We will discuss how
to POST data to an API later in this chapter. Check the authentication details of your
API docs to see how the access tokens are obtained. Some APIs might even allow you to
authenticate all your requests using HTTP Basic Auth, in which case you can use the
preceding method to just use the API itself without having to obtain an access token.

Authenticating web requests 199

requests provides you with a handy shorthand when using HTTP Basic Auth. While
you can import the HTTPBasicAuth class and create a new Auth object, you can
also just pass a tuple containing the username/password combination. Since you may
encounter both versions in sample scripts, I have opted to include both here. With this
new shorthand, the preceding snippet can also be written like so:

import requests

auth = ("root", "test")

response = requests.get("https://packt.com", auth=auth)

print(response.status_code)

Passing a token to a request using custom header fields
But what about APIs that, instead of letting us specify a username and password to
authenticate, require an authentication token? In requests, we can specify custom header
fields for every request we make. Each of the HTTP request methods, such as GET, POST,
and DELETE, have a corresponding method in the requests package, and each of these
methods accepts the headers keyword argument. This argument takes a dictionary and
passes every key-value pair of that dictionary as an additional header field.

The following code imports the requests module and then specifies additional headers
in a dictionary called headers. Once the headers have been specified, they are passed on
to a GET request to packt.com and the response code is printed:

import requests

headers = {

 'Authorization': f"Bearer thiswouldbeatoken"

}

response = requests.get("https://packt.com", headers=headers)

print(response.status_code)

As you can see, we specify our Authorization header field in our headers dictionary
and then pass this information on to the request method, which in this case is get().

So far, we have always set our credentials, be it the username/password combination
or our dummy token from the preceding example, explicitly in the source code.
However, this is bad practice in production. Your authentication tokens are as valuable
as a password, so writing them into the source code is highly problematic. You may
accidentally send the source code file, including your credentials, to a colleague or check
it into a version control system. So, where should we put our tokens? Instead of putting
them into the source code directly, we can use the concept of environment variables.

200 Consuming Controllers and High-Level Networking APIs with requests

On Linux/macOS, you can use the following command to specify an environment variable
called ACCESS_TOKEN with a value of THIS_IS_A_TOKEN:

export ACCESS_TOKEN=THIS_IS_A_DUMMY_TOKEN

On Windows, you would use the set command:

set ACCESS_TOKEN=THIS_IS_A_DUMMY_TOKEN

This will set the environment variable for our current terminal session. Then, within our
Python script, we can use the built-in os package to retrieve the variable. The following
code shows how to read the ACCESS_TOKEN environment variable and print out its value:

import os

access_token = os.environ.get("ACCESS_TOKEN")

print(f"The access token is {access_token}"

Going forward, we are going to use this to specify the access token that will be used to
authenticate against the Meraki Dashboard API.

Storing authentication metadata between
requests using sessions
In the previous chapter, you learned how to specify header fields for a request. But if we
are sending multiple requests to the same API, and thus require each of these requests to
have the same authentication information, we will have to pass the headers dictionary
on every single request. While we could do this, it requires additional effort and is very
prone to errors since we might forget to pass the headers in one of our requests. To make
our life easier and our code more maintainable, the requests module provides us with
a way of storing header fields between requests by creating a Session object, and then
setting the headers on it. Let's see how we can use such a Session object to specify the
headers required for authenticating against the Meraki Dashboard API, and then use a
GET request to retrieve all the organizations associated with the user this token belongs to.

Getting ready
Open your code editor and start by creating a file called authenticate.py. Next,
navigate your terminal to the same directory that you just created the authenticate.
py file in.

Storing authentication metadata between requests using sessions 201

In your terminal, you'll also have to set an environment variable called MERAKI_
DASHBOARD_API_KEY, whose value is the API key for your Meraki organization. You
can refer to the Authenticating web requests section for an introduction on how to set
environment variables on different operating systems.

How to do it…
Follow these steps to authenticate your request against the Meraki API using a Session
object and retrieve all organizations:

1.	 Import the built-in os and sys modules, as well as our requests module:

import os

import sys

import requests

2.	 Retrieve the API key from our environment variable and check that it is not None.
We must also specify the base URL of our API:

base_url = "https://api.meraki.com/api/v1"

key = os.environ.get("MERAKI_DASHBOARD_API_KEY", None)

if key is None:

 print("Please provide an API key. Aborting.")

 sys.exit(-1)

3.	 Create a new requests Session object:

sess = requests.Session()

4.	 On that Session, update the headers so that they include our authorization details:

sess.headers.update({

 " X-Cisco-Meraki-API-Key": key

})

5.	 Create the URL where we will receive a list of all our organizations and send a GET
request using our session:

url = f"{base_url}/organizations"

resp = sess.get(url)

202 Consuming Controllers and High-Level Networking APIs with requests

6.	 Check the status code of our response and if it's 200, indicating that the request
was successful, parse the JSON the API has sent us into a dictionary and print out
all the organizations:

if resp.status_code == 200:

 data = resp.json()

 for org in data:

 print(org['name'])

else:

 print(f"Bad response. Status code: {resp.
status_code}")

7.	 Execute the script by running the following command in your terminal:

python3 auth.py

How it works…
First, we imported three modules: the built-in sys and os modules from the standard
library, as well as our requests module. We then specified the base URL of our API,
which in this case was https://api.meraki.com/api/v1, and retrieved the
access token from the environment. To do this, we used a dictionary called environ
that is specified by the os module. On that dictionary, we used the get() function to
either retrieve the value stored in the environment under the MERAKI_DASHBOARD_
API_KEY variable or None. We then checked that we had retrieved something from
the environment variable. If that didn't happen, we would have to stop executing our
script by using the exit() function provided by the sys module. With the required
authentication details retrieved, we created a new Session object and updated the
session's headers to include our Authorization header field and the previously
retrieved API key as the value.

Next, we specified the URL of the resource, which in this case was the organization's,
that we wanted to retrieve and sent a GET request. Instead of using the get() function
provided by the requests module itself (requests.get()), we called the get()
function of our session to retrieve the data from the previously specified URL using the
previously specified headers, and then stored the response in our resp variable. We
then checked the status code of our response and, if it was a 200, indicating a successful
request, we retrieved the JSON-encoded data provided in the body of our response. We
then had requests parse this into a Python dictionary by using the response's json()
function. This returns a list of dictionaries that represent our different organizations. The
keys of each of these dictionaries are the names of the organizations that we can print out.

Retrieving a list of Meraki networks 203

There's more…
We can also use the Meraki SDK to achieve the same outcome, without having to
manually do the requests ourselves. You'll have to have the same environment variable
(MERAKI_DASHBOARD_API_KEY) set:

import meraki

dashboard = meraki.DashboardAPI()

orgs = dashboard.organizations.getOrganizations()

for org in orgs:

 print(org['name'])

As you can see, the Meraki SDK takes care of putting together the correct URL based on
our function call. It also takes care of sending and retrieving the request for us.

When checking for status codes, instead of comparing the value from the response to
the number itself, a response object obtained from requests can also check that by
comparing the status code and checking that it is below 400. The response includes a
Boolean property of ok, which will be true if the status code is less than 400:

if resp.ok:

 data = resp.json()

Retrieving a list of Meraki networks
Meraki organizes all its information in a hierarchy, where a device belongs to a network
and a network, in turn, belongs to an organization that can have multiple networks.
A common task when dealing with REST APIs is to retrieve all the information that
is currently stored on the system. In this example, we will see how to retrieve all the
networks that are registered to all our organizations. This will require us to make multiple
HTTP requests.

204 Consuming Controllers and High-Level Networking APIs with requests

Getting ready
Open your code editor and start by creating a file called networks.py. Next, navigate
your terminal to the same directory that you just created the networks.py file in.

In your terminal, you'll also have to set an environment variable called MERAKI_
DASHBOARD_API_KEY, whose value is the API key for your Meraki organization. You
can refer to the Authenticating web requests recipe for an introduction on how to set
environment variables on different operating systems.

How to do it…
Follow these steps to authenticate your request against the Meraki API and retrieve a list
of networks for each of your organizations:

1.	 Set up a requests session using the API key stored in your environment. Please
refer to the How to do it… section of the Storing authentication and metadata in
requests sessions recipe for a detailed explanation of each of these steps:

import os

import sys

import requests

base_url = "https://api.meraki.com/api/v1"

key = os.environ.get("MERAKI_DASHBOARD_API_KEY", None)

if key is None:

 print("Please provide an API key. Aborting.")

 sys.exit(-1)

sess = requests.Session()

sess.headers.update({

 " X-Cisco-Meraki-API-Key": key

})

2.	 With our session established, we must retrieve all the organizations associated with
our account:

orgs_url = f"{base_url}/organizations"

resp_orgs = sess.get(orgs_url)

Retrieving a list of Meraki networks 205

3.	 If our request was successful, and thus returned with a status code of 200, we can
iterate over all the organizations that were returned:

if resp_orgs.status_code == 200:

 for org in resp_orgs.json():

4.	 Then, we can extract the organization ID and create a new URL to request all
networks for the organization specified by the ID, as well as print out the name of
the organization:

 org_id = org['id']

 print(f"Retrieving networks for {org['name']}")

 url = f"{base_url}/organizations/{org_id}/
networks"

5.	 Next, we will send a request to gather all the networks and, if that request is
successful, iterate over all the networks and print out the networks' names:

 resp = sess.get(url)

 if resp.status_code == 200:

 for ntwrk in resp.json():

 print(f"- {ntwrk['name']}")

6.	 Finally, we must make sure that we handle any non-successful status codes both
from our network and organization requests:

 else:

 print(f"Failed to retrieve network. Status
code: {resp.status_code}")

else:

 print(f"Failed to retrieve orgs. Response code:
{resp_orgs.status_code}")

7.	 Execute the script by running the following command in your terminal:

python3 networks.py

You should see a list of all your organizations, as well as the names of all your networks.

206 Consuming Controllers and High-Level Networking APIs with requests

How it works…
We started by creating an authenticated requests session by retrieving the Meraki API
key from our environment and updating the header fields that are sent with each request.
Please refer to the How it works… section of the Storing authentication and metadata in
requests sessions recipe for a more detailed explanation of how this works.

With our session established, we retrieved all the organizations. We needed to do
this since the Meraki hierarchy puts networks under an organization, so, using our
authenticated session, we performed a GET request against the /organizations
endpoint. If this request is successful, it will have a status code of 200 and we can iterate
over all the organizations associated with our account. Mainly, we wanted to print out
the name of our organization and extract the ID. With this ID, we pieced together the
URL for requesting the networks associated with each ID. They follow the format of /
organizations/<org_id>/networks. We then used our session to perform a
request for all the networks and, if the request was successful, parsed the returned JSON
list into a list of Python dictionaries and, for each dictionary representing a network in
that organization, printed out the name of the network. Finally, we needed to put in our
debug information in case one of our requests fails. In this example, we printed out a
message specifying which request – either a request for an organization or for a network
that has failed – and what the response code was.

There's more…
We can also use the Meraki SDK to achieve the same outcome, without having to
manually do the requests ourselves. You must have the same environment variable
(MERAKI_DASHBOARD_API_KEY) set:

import meraki

dashboard = meraki.DashboardAPI()

orgs = dashboard.organizations.getOrganizations()

for org in orgs:

 networks = dashboard.organizations.
getOrganizationNetworks(org['id'], total_pages='all')

 for ntwrk in networks:

 print(f"- {ntwrk['name']}")

As you can see, the Meraki SDK takes care of putting together the correct URL based on
our function calls. Here, we pass the required parameter, which in this case is the ID of the
organization of our getOrganizationNetworks() function.

Retrieving usage details and connected clients for a Meraki network 207

Retrieving usage details and connected clients
for a Meraki network
How many clients do you currently have on your network? What are their MAC
addresses? How much data are they sending or receiving? When did the client first
connect and when was the client last online? These kinds of questions lend themselves
to automated report creation. In this recipe, we will explore how to extract these metrics
using our API, and then save them into a CSV file that can be opened with a table
calculation program such as Excel for further analysis.

Getting ready
Open your code editor and start by creating a file called usage.py. Next, navigate your
terminal to the same directory that you just created the usage.py file in.

In your terminal, you'll also have to set an environment variable called
MERAKI_DASHBOARD_API_KEY, whose value is the API key for your Meraki
organization. Please refer to the Authenticating web requests recipe for an introduction
on how to set environment variables on different operating systems.

How to do it…
Follow these steps to authenticate your request against the Meraki API and create a
usage report:

1.	 Set up a requests session using the API key stored in your environment. Please
refer to the How to do it… section of the Storing authentication and metadata in
requests sessions recipe for a detailed explanation of each of these steps. Additionally,
we are importing Python's built-in csv module to create our file export with:

import os

import sys

import csv

import requests

base_url = "https://api.meraki.com/api/v1"

key = os.environ.get("MERAKI_DASHBOARD_API_KEY", None)

208 Consuming Controllers and High-Level Networking APIs with requests

if key is None:

 print("Please provide an API key. Aborting.")

 sys.exit(-1)

sess = requests.Session()

sess.headers.update({

 " X-Cisco-Meraki-API-Key": key

})

2.	 With our session set up, we can get started with our calls. We will start by setting the
ID of the network that we want to query the clients for and put our URL together:

network_id = "<insert network id here>"

url = f"{base_url}/networks/{network_id}/clients

3.	 Request all client information and, if successful, retrieve a list of dictionaries
containing all the clients from the past 31 days:

resp = sess.get(url)

if resp.status_code == 200:

 clients = resp.json()

4.	 Open a new file called clients.csv for writing and create a csv.writer that
we will use to export any information that's retrieved from the API:

 with open('clients.csv', 'w') as csvfile:

 out = csv.writer(csvfile, delimiter=',')

5.	 Next, we must export the keys of our clients as the header for our csv file:

 out.writerow(clients[0].keys())

6.	 Then, we will iterate over each of our client dictionaries and write the specific
information into the csv file:

 for client in clients:

 out.writerow(client.values())

7.	 Lastly, we must react if our status code is not 200:

else:

 print(f"Request failed. Status code: {resp.status_
code}")

Retrieving usage details and connected clients for a Meraki network 209

8.	 Execute the script by running the following command in your terminal:

python3 usage.py

Once the script has finished running, you should see a file called clients.csv that
contains your extracted information.

How it works…
We started by creating an authenticated requests session by retrieving the Meraki API
key from our environment and updating the header fields that are sent with each request.
Please refer to the How it works… section of the Storing authentication and metadata in
requests sessions recipe for a more detailed explanation of how this works. Additionally, we
included the csv module from the standard library for exporting purposes.

With the session established, we specified the ID of the network that we wanted to run our
report on. You could, of course, used the code in the Retrieving a list of Meraki networks
recipe to retrieve the IDs of all our networks and run this code snippet for all of them, but
in this example, we specified a network ID. With this ID, we can put together the URL.
In this case, the URL follows the /networks/<network_id>/clients schema. We
requested the information on all clients with this URL and, if the request was successful,
we opened a new file for writing called clients.csv. Then, we passed the newly
created file handler into a csv.writer object, which we can use to easily write a list of
values into the csv file. Since the API returned a list of dictionaries, we used the keys of
these dictionaries as the header of our csv file. Once the header was written to the file,
we iterated over each of the clients we retrieved from the API and wrote the required
information to the csv file.

There's more…
We can also use the Meraki SDK to achieve the same outcome, without having to
manually do the requests ourselves. You must have the same environment variable
(MERAKI_DASHBOARD_API_KEY) set:

import csv

import meraki

network_id = "<insert network id here>"

dashboard = meraki.DashboardAPI()

clients = dashboard.networks.getNetworkClients(network_id,
total_pages='all')

210 Consuming Controllers and High-Level Networking APIs with requests

with open('clients.csv', 'w') as csvfile:

 out = csv.writer(csvfile, delimiter=',')

 out.writerow(clients[0].keys())

 for client in clients:

 out.writerow(client.values())

As you can see, the Meraki SDK takes care of putting together the correct URL based on
our function call. We can then use the same logic that we used for our manual requests to
save the data to a csv file.

Rebooting a Meraki device
So far, in our requests, we have only retrieved information by using GET requests. But
what about changing something? Creating or changing a resource in a REST API is usually
done by sending POST or PATCH/PUT requests. POST requests are typically used when
creating a resource or kicking off an action, while PATCH/PUT are used when updating
a resource. In this recipe, we are going to reboot a Meraki device, based on its serial
number, using a POST request.

Getting ready
Open your code editor and start by creating a file called reboot.py. Next, navigate your
terminal to the same directory that you just created the reboot.py file in.

In your terminal, you'll also have to set an environment variable called MERAKI_
DASHBOARD_API_KEY, whose value is the API key for your Meraki organization.
Please refer to the Authenticating web requests recipe, for an introduction on how to set
environment variables on different operating systems.

How to do it…
Follow these steps to authenticate your request against the Meraki API and reboot a device
based on its serial number:

1.	 Set up a requests session using the API key stored in the environment. Please
refer to the How to do it… section of the Storing authentication and metadata in
requests sessions recipe for a detailed explanation of each of these steps:

import os

import sys

import requests

Rebooting a Meraki device 211

base_url = "https://api.meraki.com/api/v1"

key = os.environ.get("MERAKI_DASHBOARD_API_KEY", None)

if key is None:

 print("Please provide an API key. Aborting.")

 sys.exit(-1)

sess = requests.Session()

sess.headers.update({

 " X-Cisco-Meraki-API-Key": key

})

2.	 With our session set up, we can specify the serial number of the device we want to
reboot and put together the URL based on that serial number:

serial = "<Insert device serial here>"

url = f"{base_url}/devices/{serial}/reboot

3.	 Next, we will use the post() method of our session to kick off the request and save
the response in resp:

resp = sess.post(url)

4.	 Finally, we will check the status code and print out a different message to the user,
based on whether the request was a success or not:

if resp.status_code == 202:

 print("Rebooted device successfully.")

else:

 print(f"Failed to reboot device. Status code:
{resp.status_code}")

5.	 Execute the script by running the following command in your terminal:

python3 reboot.py

You should see a message stating whether the reboot was successful or not. After, your
device should start rebooting.

212 Consuming Controllers and High-Level Networking APIs with requests

How it works…
We started by creating an authenticated requests session by retrieving the Meraki API
key from our environment and updating the header fields that are sent with each request.
Please refer to the How it works… section of the Storing authentication and metadata in
requests sessions recipe for a more detailed explanation of how this works.

With our session established, we pieced together the URL. Since we were dealing with
devices as our main resource, and these devices are identified by their serial number,
the schema we used was /devices/<serial>/reboot. So, instead of specifying
additional resources, such as clients, for our previous GET request to retrieve all the clients
of a network, we specified reboot as the additional resource. Then, we sent a POST
request using our session and checked the response for a status code, indicating either
success or failure. Note how the API returned a status code of 202 upon success. This
status code indicates that our request was successfully received, and that the API is now in
the process of restarting the device.

There's more…
We can also use the Meraki SDK to achieve the same outcome, without having to
manually do the requests ourselves. You must have the same environment variable
(MERAKI_DASHBOARD_API_KEY) set:

import meraki

serial = "<Insert device serial here>"

dashboard = meraki.DashboardAPI()

dashboard.devices.rebootDevice(serial)

As you can see, the Meraki SDK takes care of putting together the correct URL based on
our function call. It also takes care of sending and retrieving the request for us, as well
as using a POST request instead of the GET requests we used previously. Notice how the
function call changed from starting with get to starting with reboot, indicating that we
are now carrying out an action instead of retrieving information.

Here, we are checking the status code of our response manually against the desired status
code of 202. If we are not interested in the actual status code, we could also use the
built-in ok property of a response. This property is set to True if the status code of a
response is below 400. Therefore, we could write the following:

if resp.ok:

 print("Request was succesful")

Retrieving channel usage for your Meraki access point 213

Retrieving channel usage for your Meraki
access point
Are your Wi-Fi points using their channels properly? And what is the channel utilization
over each radio? We can use a script to retrieve the total utilization for each Wi-Fi point in
a Meraki network and print this information out for a user to look at. Meraki allows us to
specify the time frame, so we are going to use query parameters to specify a suitable one.

Getting ready
Open your code editor and start by creating a file called utilization.py. Next, navigate
your terminal to the same directory that you just created the utilization.py file in.

In your terminal, you'll also have to set an environment variable called MERAKI_
DASHBOARD_API_KEY, whose value is the API key for your Meraki organization.
Please refer to the Authenticating web requests recipe for an introduction on how to set
environment variables on different operating systems.

How to do it…
Follow these steps to authenticate your request against the Meraki API and retrieve the
total utilization for all your Wi-Fi points in the last 7 days:

1.	 Set up a requests session using the API key stored in your environment. Please
refer to the How to do it… section of the Storing authentication and metadata in
requests sessions recipe for a detailed explanation of each of these steps:

import os

import sys

import requests

base_url = "https://api.meraki.com/api/v1"

key = os.environ.get("MERAKI_DASHBOARD_API_KEY", None)

if key is None:

 print("Please provide an API key. Aborting.")

 sys.exit(-1)

sess = requests.Session()

sess.headers.update({

 " X-Cisco-Meraki-API-Key": key

})

214 Consuming Controllers and High-Level Networking APIs with requests

2.	 With our session established, we can set up the URL. We need a network ID that we
want to receive all the information for:

network_id = "<Insert network id here>"

url = f"{base_url}/networks/{network_id}/networkHealth/
channelUtilization

3.	 Next, we want to specify the query parameters that will be passed on. We can
specify them in a dictionary:

params = {

 'timespan': 7

}

4.	 Using our session, we will execute a GET request and pass the query parameter:

resp = sess.get(url, params=params)

5.	 If our request was successful, we will retrieve the list of our APs and then, for each
network in an AP, print out the total utilization:

if resp.status_code == 200:

 aps = resp.json()

 for ap in aps:

 print(f"Wifies on AP {ap['serial']}")

 for e in ap['wifi0']:

 print(f"{e['utilizationTotal']}")

6.	 Lastly, we need to react to a non-successful response and print out the status code:

else:

 print(f"Failed to retrieve utilization. Code:
{resp.status_code}")

7.	 Execute the script by running the following command in your terminal:

python3 utilization.py

You should see the utilization for each of your AP's Wi-Fi points printed.

Retrieving channel usage for your Meraki access point 215

How it works…
We started by creating an authenticated requests session by retrieving the Meraki API
key from our environment and updating the header fields that are sent with each request.
Please refer to the How it works… section of the Storing authentication and metadata in
requests sessions recipe for a more detailed explanation of how this works.

With our session established, we could specify our URL. In addition to the path
parameter, which in this case was our network ID, we specified some query parameters.
These parameters are passed on in the query part of the URL. While we could have added
our query parameters to the URL manually, we can also have requests do this based
on a dictionary by specifying the dictionary and then passing it on to the request function
using the params argument. In this example, we set the timeframe that we wanted to
look back to from the default of 1 day to 7 days. In REST APIs, query parameters are
usually used to specify optional parameters such as filters.

With our URL put together, we sent the request, parsed the JSON response, and iterated
over all the entries to print the information back to the user. Finally, we checked for
non-successful status codes and printed an error message back that included the status
code of our failed request.

There's more…
We can also use the Meraki SDK to achieve the same outcome, without having to
manually do the requests ourselves. You must have the same environment variable
(MERAKI_DASHBOARD_API_KEY) set:

import meraki

dashboard = meraki.DashboardAPI()

network_id = "<Insert network id here>"

data = dashboard.networks.
getNetworkNetworkHealthChannelUtilization(network_id,
timespan=7, total_pages='all')

for ap in aps:

 print(f"Wifies on AP {ap['serial']}")

 for e in ap['wifi0']:

 print(f"{e['utilizationTotal']}")

As you can see, the Meraki SDK takes care of putting together the correct URL based on
our function call. You can see that we are passing on additional arguments, such as the
timespan in our example, as keyword arguments.

216 Consuming Controllers and High-Level Networking APIs with requests

Updating the switchport configuration of a
Meraki device
So far, we have retrieved information and sent requests to carry out operations. But what
we have not done yet is update a resource. In this recipe, we are going to change the
switchport maximum number of sticky MAC addresses allowed on our switch port to 10.

Getting ready
Open your code editor and start by creating a file called update.py. Next, navigate your
terminal to the same directory that you just created the update.py file in.

In your terminal, you'll also have to set an environment variable called
MERAKI_DASHBOARD_API_KEY, whose value is the API key for your Meraki
organization. Please refer to the Authenticating web requests recipe for an introduction
on how to set environment variables on different operating systems.

How to do it…
Follow these steps to authenticate your request against the Meraki API and update the
switch port configuration:

1.	 Set up a requests session using the API key stored in the environment. Please
refer to the How to do it… section of the Storing authentication and metadata in
requests sessions recipe for a detailed explanation of each of these steps:

import os

import sys

import requests

base_url = "https://api.meraki.com/api/v1"

key = os.environ.get("MERAKI_DASHBOARD_API_KEY", None)

if key is None:

 print("Please provide an API key. Aborting.")

 sys.exit(-1)

sess = requests.Session()

sess.headers.update({

 " X-Cisco-Meraki-API-Key": key

})

Updating the switchport configuration of a Meraki device 217

2.	 With our session established, we need a device serial number and the ID of the port
to update, such as port 1. Make sure that this port has been configured with the
access policy type; that is, Sticky MAC allow list:

serial = "<INSERT Serial here>"

port = <Insert port number here>

url = f"{base_url}/devices/{serial}/switch/ports/{port}

3.	 Next, we are going to retrieve the current configuration using a GET request:

resp = sess.get(url)

4.	 If our GET request is successful, we can retrieve the current configuration of our
switch port as a Python dictionary and change the value – in our case, the number
of allowed sticky mac addresses – and send a PUT request to the same URL to
change the configuration:

if resp.status_code == 200:

 conf = resp.json()

 conf['stickyMacAllowListLimit'] = 10

 resp_update = sess.put(url, json=conf)

 if resp_update.status_code == 200:

 print("Config updated!")

5.	 Lastly, we need to respond to any of our requests failing:

 else:

 print(f"Failed to update. Status:
{resp_update.status_code}")

else:

 print(f"Failed to get config. Status: {resp.
status_code}")

6.	 Execute the script by running the following command in your terminal:

python3 update.py

You should see a message indicating that the port configuration has been updated. You
should also see the changed limit in your dashboard.

218 Consuming Controllers and High-Level Networking APIs with requests

How it works…
We started by creating an authenticated requests session by retrieving the Meraki API
key from our environment and updating the header fields that are sent with each request.
Please refer to the How it works… section of the Storing authentication and metadata in
requests sessions recipe for a more detailed explanation of how this works.

With our session established, we retrieved our switch port configuration. The URL we
needed identified the device by its serial number and then specified that we are looking at
the port with the specified number. The URL schema here was /devices/{serial}/
switch/ports/{port}. With the URL put together, we made a request to retrieve the
current configuration state, which we could retrieve as a JSON dictionary from the API.
With the current configuration retrieved, we applied the change we wanted to make – in
this case, the number of sticky MACs allowed – and sent the updated configuration back
to Meraki to be applied to our device. Finally, we reacted to any of our requests failing by
printing out the status code for further investigation.

Deleting the QoS rules on a Meraki device
The last kind of operation we sometimes need to carry out is deleting a configuration.
For REST APIs, this functionality can be achieved by sending a DELETE request. In this
recipe, we are going to learn how to use a combination of GET and DELETE requests to
delete all QoS rules that were previously present in our specific network.

Getting ready
Open your code editor and start by creating a file called qos.py. Next, navigate your
terminal to the same directory that you just created the qos.py file in.

In your terminal, you'll also have to set an environment variable called
MERAKI_DASHBOARD_API_KEY, whose value is the API key for your Meraki
organization. Please refer to the Authenticating web requests recipe for an introduction
on how to set environment variables on different operating systems.

How to do it…
Follow these steps to authenticate your request against the Meraki API so that you can
retrieve a list of QoS rules for a specific network and then delete them:

1.	 Set up a requests session using the API key stored in your environment. Please
refer to the How to do it… section of the Storing authentication and metadata in
requests sessions recipe for a detailed explanation of each of these steps:

Deleting the QoS rules on a Meraki device 219

import os

import sys

import requests

base_url = "https://api.meraki.com/api/v1"

key = os.environ.get("MERAKI_DASHBOARD_API_KEY", None)

if key is None:

 print("Please provide an API key. Aborting.")

 sys.exit(-1)

sess = requests.Session()

sess.headers.update({

 " X-Cisco-Meraki-API-Key": key

})

2.	 With our session set up, we can specify the network ID where we want to delete all
our QoS rules and, based on that, specify the URL to retrieve all rules:

network_id = "<Insert network id here>"

url = f"{base_url}/networks/{network_id}/switch/qosRules"

3.	 Retrieve all the rules that are present:

resp = sess.get(url)

if resp.status_code == 200:

 rules = resp.json()

4.	 Iterate over all the rules and send a DELETE request using our session, the network
ID, and the ID of the rule we want to delete:

 for rule in rules:

 url_del = "{base_url}/networks/{network_id}/
switch/qosRules/{rule['id']}"

 resp_del = sess.delete(url_del)

 if resp_del.status_code == 204:

 print(f"Deleted QoS rule {rule['id']}")

220 Consuming Controllers and High-Level Networking APIs with requests

5.	 Finally, we need to check for failing requests and handle them by displaying the
status code to the user for further investigation:

 else:

 print(f"Failed on delete request.
Status: {resp_del.status_code}")

else:

 print(f"Failed to retrieve rules. Status:
{resp.status_code}")

6.	 Execute the script by running the following command in your terminal:

python3 qos.py

You should see a list of all the QoS rules in your system being deleted.

How it works…
We started by creating an authenticated requests session by retrieving the Meraki API
key from our environment and updating the header fields that are sent with each request.
Please refer to the How it works… section of the Storing authentication and metadata in
requests sessions recipe for a more detailed explanation of how this works.

With our session set up, we retrieved the QoS rules that were enabled. To do that, we
pieced together a URL that included the ID of our network. Upon a successful response
on our request to list all QoS rules, we used the ID of the QoS rule that is present in each
of the QoS items in the list to issue a delete request for that specific rule, using both the
network ID and the ID of the QoS rule. Then, we printed out an indication that the rule
was successfully deleted if the DELETE request was successful. Notice how the success
code for a DELETE request is usually 204 instead of 200. Finally, we printed the status
code for the user in case any of our requests failed.

There's more…
We can also use the Meraki SDK to achieve the same outcome, without having to
manually do the requests ourselves. You must have the same environment variable
(MERAKI_DASHBOARD_API_KEY) set:

import meraki

network_id = "<Insert network id here>"

dashboard = meraki.DashboardAPI()

Using webhooks to programmatically react to an AP going down 221

rules = dashboard.switch.getNetworkSwitchQosRules(network_id)

for rule in rules:

 dashboard.switch.deleteNetworkQosRule(network_id,
rule['id'])

As you can see, the Meraki SDK takes care of putting together the correct URL based on
our function call. It also takes care of sending and retrieving the request for us.

Using webhooks to programmatically react to
an AP going down
How do you know when something goes wrong with your infrastructure? At the latest,
this usually happens when a user complains about not being able to log into the network,
but then, it is usually too late. The idea of monitoring your network for any kinds of
unforeseen events, such as a rogue access point appearing within the premises of your
network, is nothing new and with programmability, we could even automate parts of
this. A simplistic approach would be to, every few seconds, send requests to our API
and retrieve the information we need to make decisions regarding whether something is
wrong or not. This approach, also referred to as polling, has multiple issues:

•	 We need to keep track of what information we have already seen and what
information we have not seen yet.

•	 We are putting a lot of stress on the API by constantly sending requests.

•	 We are requesting a lot of information we don't really need.

Instead of polling, it would be easier if, any time something happens within our
infrastructure, the API sends us a push notification stating that an event occurred.
This is the idea of webhooks and in this recipe, we are going to use Flask, a lightweight
framework for building web applications in Python, to receive these webhooks, check for a
type, and print out an alert.

Getting ready
Open your code editor and start by creating a file called webhook.py. Next, navigate
your terminal to the same directory that you just created the webhook.py file in.

While requests is great at sending HTTP requests, we now need to receive HTTP
requests. To do this, we'll have to install a Python framework that allows us to build a
lightweight web application. The framework is called Flask, and you can install it by
running the python3 -m pip install flask command.

222 Consuming Controllers and High-Level Networking APIs with requests

We will also need a HTTP tunnel since the Meraki cloud needs a way of sending a
POST request to a server running on your local machine. You can use ngrok for this
(https://ngrok.com/). After installation, you can start a new HTTP tunnel by
opening a new terminal window and running the ngrok http 8080 command. ngrok
will display a forwarding address, as shown in the following screenshot:

Figure 9.1 – ngrok displaying the forwarding address

You'll have to set up a webhook from your dashboard that points to the forwarding
address specified by ngrok. You can find a guide on how to set up a webhook here:
https://documentation.meraki.com/General_Administration/Other_
Topics/Webhooks.

How to do it…
Follow these steps to create a lightweight web server that you can receive your Meraki
webhooks on:

1.	 Import flask:

from flask import Flask, request

2.	 Create a new Flask app:

app = Flask("webhook_receiver")

3.	 In Flask, every HTTP request that gets sent to the server can be handled by a
Python function. Set up a function for the root directory of our web server:

@app.route('/', methods=['POST'])

def webhook():

https://ngrok.com/
https://documentation.meraki.com/General_Administration/Other_Topics/Webhooks
https://documentation.meraki.com/General_Administration/Other_Topics/Webhooks

Using webhooks to programmatically react to an AP going down 223

4.	 Within the webhook function, retrieve the data that is sent by the Meraki webhook:

 data = request.get_json()

5.	 Check if the alert type is from Air Marshal about a rogue AP and, if that's the case,
print out information to the user:

 if data['alertType'] == "Air Marshal - Rogue AP
detected":

 print("Rogue AP detected!")

 return {'success': True}

6.	 Start the Flask app:

if __name__ == "__main__":

 app.run(host='0.0.0.0', port=8080)

7.	 Execute the script by running the following command in your terminal. Make sure
that ngrok is still running in the other terminal window:

python3 webhook.py

You should see debug output that shows that your server is running. If a rogue AP is
detected, you should see the line Rogue AP detected in the terminal.

How it works…
First, we imported the flask module and created a Flask app. This app abstracted away
a lot of the complexity of actually receiving a web request. Instead, all we needed to do
was provide a function. Every time someone hits the / endpoint on our little web server,
this webhook() function will be executed. Within that function, we retrieved the data
that was sent by the Meraki API. This data comes in JSON format, and we can use the
get_json() function of the Flask request object to retrieve the data as a formatted
Python dictionary. While every webhook can have different additional parameters, each
of the webhooks has an alertType property that we can check. In this case, we only
printed out a message to the command line in case a rogue AP came in. In reality, you
could connect this to your chat application to automatically receive a notification or use
services such as PagerDuty to page your on-call engineers.

With the handling done, we returned a dictionary with a success flag set to true. This
triggers Flask to send a 200-OK response back to the Meraki cloud. Lastly, we started
our little web server on port 8080, which is the same port that we had the ngrok tunnel
forwarding all traffic to.

10
Incorporating your

Python Scripts
into an Existing

Workflow by Writing
Custom Ansible

Modules
Ansible has, since its first release in early 2012, become a widely adopted tool for
application deployment and infrastructure automation projects. Its vast ecosystem of
pre-build modules allows you to describe the desired state of your infrastructure or
application deployment using the YAML Ain't Markup Language (YAML) language.
Being agentless, there is no need for a central controller that you send your instructions to
for these to be carried out. Instead, your workstation running the description of tasks in
the form of an Ansible playbook becomes the controller.

226 Incorporating your Python Scripts into an Existing Workflow by Writing Custom Ansible Modules

But have you ever wondered where all these modules that are pre-built for Ansible come
from, and how they are implemented? In this chapter, we will get an introduction to
developing your own Ansible modules. By developing modules, you can use Python to
carry out complex workflows and then use Ansible and Ansible playbooks as an interface
to run your workflows. In this chapter, we will cover the following recipes:

•	 Setting up the module structure

•	 Documenting your module

•	 Passing information into your module

•	 Using Ansible's built-in functionality to do web requests

•	 Packaging and calling your modules from Ansible playbooks

Technical requirements
For this section, you'll need a working installation of Ansible. Ansible is currently only
supported on Unix or Unix-like systems such as most Linux distributions and Mac OS
X. The code in this recipe was tested on both Linux and Mac OS X. If you are using
Windows, you can either install Ansible in a Linux virtual machine (VM) or use the
Windows Subsystem for Linux (WSL). You can find more information on how to set
up Ansible under Windows by following this link to the official documentation:
https://docs.ansible.com/ansible/latest/user_guide/windows_
faq.html#can-ansible-run-on-windows.

You can install Ansible by running python -m pip install --user ansible,
or if you are using Linux, by using the package manager of your distribution. You may
find more information on how to set up Ansible in your specific environment by following
this link to the official documentation: https://docs.ansible.com/ansible/
latest/installation_guide/intro_installation.html#installing-
and-upgrading-ansible-with-pip.

This section assumes that you have a working understanding of how Ansible functions
from a user perspective, how to write playbooks, and how to run them.

You can view this chapter's code in action here: https://bit.ly/3fW4m9o

https://docs.ansible.com/ansible/latest/user_guide/windows_faq.html#can-ansible-run-on-windows
https://docs.ansible.com/ansible/latest/user_guide/windows_faq.html#can-ansible-run-on-windows
https://bit.ly/3fW4m9o

Setting up the module structure 227

Setting up the module structure
Functionality in Ansible is provided and can be extended in two different ways: by
writing either a module or a plugin. Ansible defines a module as "reusable, standalone
scripts that can be used by the Ansible API, the ansible command, or the ansible-playbook
command. Modules provide a defined interface. Each module accepts arguments and returns
information…"(see https://docs.ansible.com/ansible/latest/dev_
guide/developing_locally.html#modules-and-plugins-what-is-the-
difference). An example of such a module could be one command that is executed
on a remote device and retrieves some information for you. Writing your own modules
can allow you to integrate internal tools, or tools where no module exists yet, into your
existing Ansible-based automation plays. Modules for Ansible can be developed in many
different languages, but since the core of Ansible is written in Python and most modules
are also written in Python, we are going to focus on developing Ansible modules using
Python. Plugins, on the other hand, are defined in the official documentation as "Plugins
are pieces of code that augment Ansible's core functionality. "(see https://docs.
ansible.com/ansible/latest/plugins/plugins.html#plugins-lookup).
In this chapter, we are going to focus solely on modules.

In this recipe, we are going to see how to set up the directory and file structure necessary
for writing your own modules, how to make Ansible aware of these new modules under
development, and write and run our very first module.

Getting ready
Verify that Ansible is installed by opening up your terminal and running ansible
--version.

How to do it…
Follow these steps to create your first Ansible module:

1.	 In your console, create a new directory that will contain the Ansible modules:

mkdir custom_ansible_modules

cd custom_ansible_modules

2.	 Next, we'll have to make Ansible aware of this new directory by adding it to the
Ansible path. This path is controlled by the ANSIBLE_LIBRARY environment
variable:

export ANSIBLE_LIBRARY=$ANSIBLE_LIBRARY:`pwd`

https://docs.ansible.com/ansible/latest/dev_guide/developing_locally.html#modules-and-plugins-what-is-the-difference
https://docs.ansible.com/ansible/latest/dev_guide/developing_locally.html#modules-and-plugins-what-is-the-difference
https://docs.ansible.com/ansible/latest/dev_guide/developing_locally.html#modules-and-plugins-what-is-the-difference
https://docs.ansible.com/ansible/latest/plugins/plugins.html#plugins-lookup
https://docs.ansible.com/ansible/latest/plugins/plugins.html#plugins-lookup

228 Incorporating your Python Scripts into an Existing Workflow by Writing Custom Ansible Modules

3.	 Verify that the path has been altered successfully by printing the ANSIBLE_
LIBRARY path. The directory you are currently in should be at the end. If you
do not see the path included, check the There's more… section of this recipe for
possible solutions to this problem:

echo $ANSIBLE_LIBRARY

4.	 With our directory added to the path, we can create our first module by creating a
first_module.py file:

touch first_module.py

5.	 With the structure created and Ansible made aware of our new module directory,
you can open the previously created first_module.py file in your code editor to
get started writing your first module.

First, we need to import the required libraries from Ansible:
from ansible.module_utils.basic import AnsibleModule

6.	 Next, we want to define our module function in which we are going to specify the
module itself:

def run_module():

7.	 Then, we'll define our module arguments as an empty dictionary:

args = {}

8.	 Next, we can define our result dictionary. The result is the data that is passed back
from your module both to the user (by displaying it in your console) and to any
subsequent modules that want to consume the information. In this simple example,
we are going to pass a static method as well as information on the changed status:

result = {

 "changed": False,

 "message": "Hello from my ansible module"

}

9.	 Finally, we can define our Ansible module itself:

module = AnsibleModule(argument_spec=args,

 supports_check_mode=False)

Setting up the module structure 229

10.	 Since we only want to pass the static information specified in our result
dictionary back, we can exit the module and return the content of the results as
JavaScript Object Notation (JSON):

module.exit_json(**result)

11.	 Finally, we need to specify that our previously defined run_module() method
should be called when the file itself is being run:

if __name__ == "__main__":

 run_module()

12.	 With our first module written and stored in the previously created directory, we can
go back to the terminal and run the newly created module:

ansible localhost -m first_module.py

The following screenshot shows what your output should look like:

Figure 10.1 – Output from running our first Ansible module

How it works…
We start by setting up a directory that will contain all of the modules we want to develop.
Next, we need to make Ansible aware of this new directory. By default, Ansible has some
system-wide and user-specific directories such as /usr/share/ansible/plugins/
modules/ that will be searched when running a module from the command line or
from a playbook. While we could put our newly created modules into one of those paths,
it's easier for our development to define all our new modules in one central directory
and then add that directory to the search path. We do this by changing the ANSIBLE_
LIBRARY environment variable. This variable contains a list of additional paths Ansible
should search in for modules. The list is separated by :.

230 Incorporating your Python Scripts into an Existing Workflow by Writing Custom Ansible Modules

After adding our new directory to the list of directories that are being searched by Ansible,
we can create our first module, a Python file called first_module.py, in the previously
created directory. This file then contains all the logic of our new module. We start by
importing the required components from Ansible—namely, the AnsibleModule
class. This class is the central structure of our module and is passed properties such as
the arguments and returns so that they can then be used by Ansible. Next, we define a
function called run_module(). This function will instantiate our new module. It is
the function that is being run when our module is invoked by a playbook or by using
the ansible command. We first specify a list of arguments. In our simple example, we
don't accept any arguments, and thus args is just an empty dictionary. Next, we define
our result. This result is the dictionary that is being returned back by our module. The
information in this dictionary is returned to both any subsequent Ansible modules and
the user in the form of a JSON-formatted string. Notably, there is a changed attribute
that should be present. This Boolean attribute defines whether your code has changed the
current status of a device or not. Modules that only gather information but don't change
the configuration of the target device should always define changed as false.

With the inputs (the arguments in the args dictionary) and the outputs (the key-value
pairs in our result dictionary) defined, we can create a module by instantiating
AnsibleModule. The constructor takes two arguments, one being the previously
defined list of available arguments, and the second, a flag that indicates that we do not
support check-mode. Running a module in check-mode is like a dry run. Modules
should not modify any information when being run in check-mode. Since we do not
change any configuration in this module anyways, we can ignore check-mode for now.
With the module defined, we can use its exit_json(**results) method to pass our
previously defined results back to the system.

We then run our module against our localhost using the Ansible command-line tool, by
specifying the name of our module without the .py extension. The output returned from
Ansible is the dictionary that we passed back in the result variable of our Python script.

There's more…
Depending on your operating system and shell of choice, the backtick syntax that, in
a shell script, executes the command that is written within the two backticks may not
be supported. If you are seeing a The module first_module was not found
error when trying to execute the module, this can be the issue. In that case, you have to
manually set the correct library path:

1.	 Navigate to the directory in which you have put the first_module.py file. If you
followed the instructions, this folder should be called custom_ansible_modules.

Documenting your module 231

2.	 Inside of the custom_ansible_modules folder, print the absolute path to
the folder:

pwd

3.	 Copy the path that is shown by the pwd command.
4.	 Add the absolute path to the custom_ansible_module folder to your

ANSIBLE_LIBRARY environment variable:

export ANSIBLE_LIBRARY="$ANSIBLE_LIBRARY:<insert_the_
path_here>"

Documenting your module
One great feature of Ansible is its built-in documentation. Similar to man pages on a
Unix system, we can use the ansible-doc command to get a summary of the module's
functionality, which arguments it accepts, which values can be expected to be returned,
as well as examples on how to use the module in your playbooks.

However, if we run the ansible-doc command on the module created in the Setting up
the module structure recipe, you'll be left with an error message stating that the module is
missing documentation:

Figure 10.2 – Exemplar error when trying to access the documentation of an undocumented module

Ansible does not require us to provide any additional files to serve as the documentation
that is retrieved and presented to the user by the ansible-doc command. Rather, we
embed the documentation into the Ansible module itself, and this is exactly what we are
going to do in this recipe.

Getting ready
Verify that Ansible is installed by opening up your terminal and running ansible
--version, and also verify that you have included the local directory in which you are
storing all your modules to the Ansible path by adding it to the ANSIBLE_LIBRARY
environment variable. You can find information on how to do this in the Setting up the
module structure recipe.

In that directory, create a new file called documented_module.py that is going to
contain our module code.

232 Incorporating your Python Scripts into an Existing Workflow by Writing Custom Ansible Modules

How to do it…
Follow these steps to create a new Ansible module and specify the information necessary
for ansible-doc to be able to show your module's documentation:

1.	 If you have not already done so, set up the directory structure needed for your
Ansible modules. You can find a more detailed step-by-step description of this
process in the How to do it… section of the Setting up the module structure recipe:

mkdir custom_ansible_modules

cd custom_ansible_modules

export ANSIBLE_LIBRARY=$ANSIBLE_LIBRARY:`pwd`

touch documented_module.py

2.	 With your directory structure set up, open the documented_module.py file in
your code editor, and in it, start by importing the required modules from Ansible:

from ansible.module_utils.basic import AnsibleModule

3.	 We first specify the basic documentation information in a variable called
DOCUMENTATION:

DOCUMENTATION = r'''

module: documented_module

short_description: A small documented module.

version_added: "1.0.0"

description: This is a longer description of our
documented module.

author:

 - Name (GitHub handle)

'''

4.	 With our basic information defined, we can also specify an example of how our
basic module can be used in an Ansible playbook. We specify this information in a
variable called EXAMPLES:

EXAMPLES = r'''

- name: Testing my documented task

 documented_module

'''

Documenting your module 233

5.	 And finally, we can also specify the information that is being returned by our
module by specifying a RETURN variable:

RETURN = r'''

message:

 description: A small welcome message returned
by our module

 type: str

 returned: always

 sample: 'Hello from my first ansible module'

'''

6.	 With our documentation defined, we can go ahead and actually specify the module
and its functionality. Please refer to the How to do it… section of the Setting up
the module structure recipe for a more detailed step-by-step description of how to
specify your module:

def run_module():

 args = {}

 result = {

 "changed": False,

 "messsage": 'Hello from my first ansible module'

 }

 module = AnsibleModule(

 argument_spec=args,

 supports_check_mode=False

)

 module.exit_json(**result)

def main():

 run_module()

if __name__ == '__main__':

 main()

234 Incorporating your Python Scripts into an Existing Workflow by Writing Custom Ansible Modules

7.	 With our module defined and documented, we can have a look at the docs by
rerunning the ansible-doc command:

ansible-doc documented_module

The output returned by the ansible-doc command should look like this:

Figure 10.3 – Excerpt of the documentation for our module as it is shown in the ansible-doc command

How it works…
Ansible uses YAML not only for defining the playbooks but also for documenting
its modules. Instead of having to provide an additional file that then contains this
information, the YAML code is embedded directly into the source code of our module.

We first have to set up our directory structure for the new modules and make Ansible
aware of where to search for them. For a more detailed description of this process, please
refer to the How it works… section in the Setting up the module structure recipe.

With our module defined, we have three different variables: DOCUMENTATION, EXAMPLES,
and RETURN. In order for the ansible-doc command to not error out, only the
DOCUMENTATION variable is needed. Inside each of these variables, we define a raw multiline
string that will contain our YAML code with the information required by ansible-doc to
build the documentation. Using standard YAML syntax, we define the following:

•	 module, to contain the name of our module

•	 short_description, to contain a short summary of what our module is doing

•	 version_added, to specify the version of this module that was added to Ansible

•	 description, to contain a possibly longer description of what this module is doing

•	 author, to contain a list of the authors that have developed this module, with their
name and GitHub handle

Passing information into your module 235

With the required information out of the way, we can then use the EXAMPLES variable
to define one or more examples of how to use our module in a playbook. Additionally,
we can use the RETURN variable to specify the return values that can be expected when
running this module. The key (message in our example) that is being returned as part of
the result dictionary then has the following properties that give more context around
what is being returned:

•	 description, containing a description of what is being returned

•	 type, containing the data type that is being returned

•	 returned, containing information regarding the circumstances in which this
property is returned; it could also be returned only on success

•	 sample, containing an exemplary return value

With our documentation specified, we can then go ahead and define the module itself. For
a more detailed explanation of how this works, please refer to the How it works… section
of the Setting up the module structure recipe.

Passing information into your module
So far, we have only dealt with a module that received no input from the user at all. One
strength of Ansible is how easy a playbook makes it to structure the inputs that you want
to pass from a module, as well as passing the output of one module back into the input
of another. In this recipe, we are going to see how to both implement and document the
arguments that are being passed into our module.

Getting ready
Verify that Ansible is installed by opening up your terminal and running ansible
--version, and also verify that you have included the local directory in which you are
storing all your modules to the Ansible path by adding it to the ANSIBLE_LIBRARY
environment variable. You can find information on how to do this in the Setting up the
module structure recipe.

In that directory, create a new file called value_module.py that is going to contain our
module code.

236 Incorporating your Python Scripts into an Existing Workflow by Writing Custom Ansible Modules

How to do it…
Follow these steps to create a new Ansible module and specify the information necessary
for ansible-doc to be able to show your module's documentation:

1.	 If you have not already done so, set up the directory structure needed for your
Ansible modules. You can find a more detailed step-by-step description of this
process in the How to do it… section of the Setting up the module structure recipe:

mkdir custom_ansible_modules

cd custom_ansible_modules

export ANSIBLE_LIBRARY=$ANSIBLE_LIBRARY:`pwd`

touch value_module.py

2.	 With your directory structure set up, open the value_module.py file in your
code editor, and in it, start by importing the required modules from Ansible.
Additionally, we will import the built-in ipaddress module to generate our
Internet Protocol (IP) addresses:

from ansible.module_utils.basic import AnsibleModule

import ipaddress

3.	 We first specify the basic documentation information in a variable called
DOCUMENTATION:

DOCUMENTATION = r'''

module: value_module

short_description: A small module to create IPv4 address
list.

version_added: "1.0.0."

description: Create a IPv4 address list based on host
portion and netmask information.

options:

 ip_address:

 description: The network portion of your IP

 required: true

 type: str

 netmask:

 description: The netmask of your IP address pool

Passing information into your module 237

 required: true

 type: int

author:

 - Name (GitHub handle)

'''

4.	 With our basic documentation done, we can also document the results and examples:

EXAMPLES = r'''

- name: Testing my ip address task

 value_module:

 ip_address: 192.168.10.0

 netmask: 28

'''

RETURN = r'''

addressses:

 description: A list of IPv4 addresses

 type: list

 returned: always

 sample: ['192.168.10.1', '192.168.10.2']

'''

5.	 With our documentation done, we can start specifying the module itself inside our
run_module() method:

def run_module():

6.	 We start by defining two parameters inside of the args dictionary:

 args = {

 "ip_address": {

 "type": str,

 "required": True

 },

 "netmask": {

238 Incorporating your Python Scripts into an Existing Workflow by Writing Custom Ansible Modules

 "type": int,

 "required": True

 }

 }

7.	 Next, we define the module object itself and pass the arguments specified in the
preceding step:

 module = AnsibleModule(

 argument_spec=args,

 supports_check_mode=False

)

8.	 Next comes our logic of actually generating the IP addresses using the ipaddress
module and the parameters provided by the Ansible playbook or command line:

 # Generate IP addresses

 cidr_address = f"{module.params['ip_address']}/
{module.params['netmask']}"

 address_objects = ipaddress.IPv4Network(cidr_address)

 addresses = []

 for a in address_objects:

 addresses.append(str(a))

9.	 We then return the information created in the preceding snippet as the result of
our module:

 result = {

 "changed": False,

 "addresses": addresses

 }

 module.exit_json(**result)

10.	 Finally, we need to instruct Python to run the run_module() function:

if __name__ == '__main__':

 run_module()

Passing information into your module 239

11.	 We can test the functionality of our module by running the following command:

ansible localhost -m value_module -a "ip_
address=10.10.10.0 netmask=28"

Your output should look like this:

Figure 10.4 – Output from our module showing the IP pool generated by our module

How it works…
We first have to set up our directory structure for the new modules and make Ansible
aware of where to search for them. For a more detailed description of this process, please
refer to the How it works… section of the Setting up the module structure recipe.

With our directory structure set up, we can import Ansible and the module required to
carry out our operations before defining the documentation of our module. Please refer to
the How it works… section of the Documenting your module recipe for a description of the
different documentation variables. In addition to the information covered in that section,
we now also include a summary of our input arguments. In this case, we are documenting
two different variables, an IP address of type str and a netmask of type int.

With our documentation done, we can go ahead and specify our actual module. We first
define the arguments that we require in the args dictionary. For each argument,
we specify the name, data type, and whether it is a required argument or not. Ansible will
make sure that these parameters are then present when the module is run or will
return an error to the user, stating which variables are missing.

240 Incorporating your Python Scripts into an Existing Workflow by Writing Custom Ansible Modules

With the arguments dictionary defined, we then instantiate our module before generating
the IP addresses. Notice how we use the params variable of our module to access the
information passed into the module. We use that information to piece together a classless
inter-domain routing (CIDR) string on which we can use the ipaddress module
to generate a list of IP addresses. We convert these into strings since we are ultimately
returning JSON, and thus every variable in the result dictionary needs to be
JSON-serializable.

We then call our module and, using the -a command-line parameter, are able to pass the
arguments required by the module.

Using Ansible's built-in functionality to do
web requests
In previous chapters, we have seen how to use modules from the Python standard library
within our Ansible module. But what about third-party packages such as the requests
package we used in Chapter 8, Configuring Devices Using RESTCONF and requests, and
Chapter 9, Consuming Controllers and High-Level Networking APIs with requests, to make
web requests? While we could import an external package, Ansible modules generally try
to be as independent of third-party packages as possible. But this does not mean that we
have to rebuild the entire functionality to make HyperText Transfer Protocol (HTTP)
requests from scratch. Ansible comes pre-packaged with many built-in utility modules,
one of which, the uri module, can be used to make web requests.

In this recipe, we will see how you can use an Ansible module and built-in functionality
to send an HTTP request to the Meraki application programming interface (API). We'll
be using the Meraki API as an example here, and the same code would work for different
APIs. For an introduction to consuming REpresentational State Transfer (REST) APIs in
Python, please refer to Chapter 9, Consuming Controllers and High-Level Networking APIs
with requests.

Getting ready
Verify that Ansible is installed by opening up your terminal and running ansible
--version, and also verify that you have included the local directory in which you are
storing all your modules to the Ansible path by adding it to the ANSIBLE_LIBRARY
environment variable. You can find information on how to do this in the Setting up the
module structure recipe.

In that directory, create a new file called web_module.py that is going to contain our
module code.

Using Ansible's built-in functionality to do web requests 241

How to do it…
Follow these steps to create a new Ansible module and specify the information necessary
for ansible-doc to be able to show your module's documentation:

1.	 If you have not already done so, set up the directory structure needed for your
Ansible modules. You can find a more detailed step-by-step description of this
process in the How to do it… section of the Setting up the module structure recipe:

mkdir custom_ansible_modules

cd custom_ansible_modules

export ANSIBLE_LIBRARY=$ANSIBLE_LIBRARY:`pwd`

touch web_module.py

2.	 With your directory structure set up, open the web_module.py file in your
code editor, and in it, start by importing the required modules from Ansible.
Additionally, we will import the build-in JSON module to parse our API output, as
well as a built-in helper function to make web requests:

from ansible.module_utils.basic import AnsibleModule

form ansible.module_utils.urls import fetch_url

import json

3.	 We first specify the basic documentation information in a DOCUMENTATION
variable:

DOCUMENTATION = r'''

module: web_module

short_description: A small module to retrieve all orgs
from the meraki API.

version_added: "1.0.0."

description: Retrieve all organizations the user has
access to.

options:

 access_token:

 description: The API access token to use

 required: true

 type: str

 base_url:

242 Incorporating your Python Scripts into an Existing Workflow by Writing Custom Ansible Modules

 description: The base url of the meraki API to use

 required: false

 default: https://api.meraki.com/api/v1

 type: str

author:

 - Name (GitHub handle)

'''

4.	 With our basic documentation done, we can also document the results and examples:

EXAMPLES = r'''

- name: Retrieving all my organizations from meraki

 web_module:

 access_token: <Insert access token here>

'''

RETURN = r'''

status:

 description: The returned http status

 type: int

 returned: always

 sample: 200

organizations:

 description: A list of dictionaries describing the
organizations

 type: list

 returned: success

 sample: [{"id": "463308", "name": "DevNet San
Jose", "url": "https://n18.meraki.com/o/vB2D8a/manage/
organization/overview"},]

msg:

 description: A status message in case of an
unsuccesful request

 type: str

 returned: failure

 sample: Unable to call API.

'''

Using Ansible's built-in functionality to do web requests 243

5.	 With the documentation finished, we can start specifying the module itself inside
our run_module() method:

def run_module():

6.	 We start by defining two parameters inside of the args dictionary:

 args = {

 "access_token": {

 "required": True,

 "type": str

 },

 "base_url": {

 "required": False,

 "default": "https://api.meraki.com/api/v1",

 "type": str

 }

 }

7.	 Next, we can create our module:

 module = AnsibleModule(

 argument_spec=args,

 supports_check_mode=False

)

8.	 For our web request, we will need headers that contain the authentication
information (the access token passed into the module as a parameter). We can set
them up as a dictionary:

 headers = {

 "X-Cisco-Meraki-API-Key":module.params['access_
token']

 }

244 Incorporating your Python Scripts into an Existing Workflow by Writing Custom Ansible Modules

9.	 Next, we can piece together our request Uniform Resource Locator (URL) and
send the actual request:

 url = "{}/organizations".format(module.params['base_
url'])

 resp, info = fetch_url(module, url, method="get",
headers=headers)

10.	 We then need to prepare our resulting output:

 result = {

 "changed": False,

 "status": info['status'],

 }

11.	 In case of a successful request, we want to return all the organizations. In case of an
unsuccessful return from the API, we want to return an error message together with
the status code:

 if info['status'] == 200:

 result["networks"] = json.loads(resp.read())

 module.exit_json(**result)

 else:

 result["msg"] = "Unable to call API."

 module.fail_json(**result)

12.	 Finally, we need to instruct Python to run the run_module() function:

if __name__ == '__main__':

 run_module()

13.	 We can test the functionality of our module by running the following command:

ansible localhost -m web_module -a "access_
token=6bec40cf957de430a6f1f2baa056b99a4fac9ea0"

Using Ansible's built-in functionality to do web requests 245

Your output should look like this:

Figure 10.5 – Exemplar output from querying all Meraki organizations in our account using our module

The access token mentioned here is for the public read-only Cisco Meraki sandbox, and
you can use it to test your module.

How it works…
We first have to set up our directory structure for the new modules and make Ansible
aware of where to search for them. For a more detailed description of this process, please
refer to the How it works… section in the Setting up the module structure recipe.

With our directory structure set up, we can import Ansible and the JSON module from
the standard library. Additionally, we import the fetch_url method from Ansible's
built-in module of helper functions around the querying of web services. Next, we
document our new module. Please refer to the How it works… section of the Documenting
your module recipe for a description of the different documentation variables.
Additionally, we also see an optional parameter, the base URL, indicated by a required:
false definition. This optional parameter also has a default value specified that is used
when the flag is not passed.

246 Incorporating your Python Scripts into an Existing Workflow by Writing Custom Ansible Modules

With our documentation done, we can then start implementing the module functionality
itself inside the run_module() function. We start by specifying our input arguments.
This time, we not only create a required flag in the form of our access token but also an
optional flag in the form of our base URL. It's in the args dictionary where we specify the
default value that Ansible will use if this parameter is not set by the user in their playbook
that's calling the module.

With the object of our Ansible module initialized, we can then go ahead and carry out
our actual workflow—the web request to the Meraki API. To do this, we first specify
headers. Similar to how requests use dictionaries to represent their headers, we can also
do the same here and, as such, we specify a single additional header in the form of our
X-Cisco-Meraki-API-Key header, whose value we retrieve from the parameters
passed by the playbook or your command line.

Next, we do the actual request itself by first piecing together the target URL. To do so, we
retrieve the base URL from our parameters. If the user did not specify any overwriting
base URL argument, it will be the same value as the default specified in the args
dictionary. We then use the fetch_url() function to run the web request itself. Finally,
we set up our result dictionary. Irrespective of failure or success, we always want to
return the fact that nothing changed (changed=False) and the status code of our web
request, which we can retrieve from the info dictionary returned by the fetch_url()
function. We then differentiate a successful request and an unsuccessful request based on
the returned status code and, depending on whether we were successful or not, we return
a different result dictionary. In the case of success, our result dictionary uses the
JSON module from the standard library to parse the body of the web response, and thus
returns a list of all organizations this user has access to. In the case of an unsuccessful
request, a message stating that the request was unsuccessful is returned.

We then call our module and, using the -a command-line parameter, are able to pass the
arguments required by the module.

Packaging and calling your modules from
Ansible playbooks
In the recipes so far, we have always used the Ansible command-line tool to directly
invoke a module. While this is great for debugging and testing during our development
cycle, the goal of Ansible modules is usually to be part of an Ansible playbook. So, how
can we use our newly created Ansible modules from a playbook?

In this recipe, we will create a simple playbook as well as the folder structure necessary
to call the web_module module that we built in the Using Ansible's built-in functionality
to do web requests recipe. The playbook will call our self-written module and then use an
Ansible debug task to print out the name of all our organizations that we have access to.

Packaging and calling your modules from Ansible playbooks 247

Getting ready
Verify that Ansible is installed by opening up your terminal and running ansible
--version. You will need a version of our previously written web_module.py file.
You can obtain this by either following the instructions in the Using Ansible's built-in
functionality to do web requests recipe or by downloading it from the book's GitHub
repository. You can find the files for this chapter by accessing this link: https://github.
com/PacktPublishing/Python-Networking-Cookbook/tree/main/ch10.

Create a new directory called module_test. Inside this directory, you'll create a file
called sample_playbook.yaml and another directory called libraries.

How to do it…
1.	 Copy the previously created or obtained web_module.py file into the

libraries folder.
2.	 Open up the sample_playbook.yaml file. Inside this file, we'll write

our playbook.
3.	 We first need to specify the host; in our case, we are running this on our localhost:

- hosts: localhost

4.	 Next, we specify a list of tasks. Our first task will be to call our custom module to
retrieve the organizations:

tasks:

 - name: Testing our module from ansible playbook

 web_module:

 access_token:
6bec40cf957de430a6f1f2baa056b99a4fac9ea0

5.	 In that task, we also want to make sure that we register the output as a new variable
called result and delegate this to the localhost so that it runs on our local machine:

 register: result

 delegate_to: localhost

6.	 With the list of networks retrieved and stored in the result variable, we can use
an Ansible debug task to then retrieve the list of names:

 - name: Show results

 debug:

https://github.com/PacktPublishing/Python-Networking-Cookbook/tree/main/ch10
https://github.com/PacktPublishing/Python-Networking-Cookbook/tree/main/ch10

248 Incorporating your Python Scripts into an Existing Workflow by Writing Custom Ansible Modules

7.	 Inside of the debug task, we iterate over each item in the organization list that is
contained within our result object and print the name:

 msg: "{{ item.name }}"

 with_items: "{{ result['networks'] }}"

8.	 With our playbook specified, you can now run it by using the following command:

ansible-playbook sample_playbook.yaml

Your output should look like this:

Figure 10.6 – Exemplar output from calling our self-developed module from an Ansible playbook

How it works…
By placing the previously created module in a libraries folder that is in the same
parent directory as our playbook itself, our self-developed module is made available to
the playbook when we are running it. We can thus use our self-developed module in the
same way as any module included with Ansible or installed from Ansible Galaxy. In our
playbook, we first define that we only want to run this on localhost before specifying
a list of tasks. Our first task is to run our web_module module. Similar to how we passed
the access token as a parameter using the -a command-line option when running the
module previously, we now have to pass it from our playbook. We then register the output
of our module to be saved in the result variable.

Packaging and calling your modules from Ansible playbooks 249

With our module called, we can then print out the output. We use the debug task that
comes with Ansible, together with the built-in with_items directive, to iterate over
all items in our list of networks. Remember that, as with the other modules, our custom
module just returned JSON, and Ansible can thus easily parse the module output and
make it available for simple looping operations. In our case, we loop over all organizations
and then print out the name as the debug message.

There's more…
You might encounter that your version of Ansible is displaying the name of the task with a
little drawing of a cow and a speech bubble:

Figure 10.7 – Ansible's default behavior of using cowsay American Standard Code for Information
Interchange (ASCII) art to display debug messages

You can disable this behavior by setting the ANSIBLE_NOCOWS=1 environment variable.

11
Automating AWS

Cloud Networking
Infrastructure Using
the AWS Python SDK

Very few new technology trends had such a big impact on infrastructure in the past years
as cloud computing. Spearheaded by the demand for computing infrastructure that is
available on-demand and billed to usage, cloud computing providers such as Amazon
Web Services, Google Cloud, and Microsoft Azure have influenced how people think
about infrastructure as a whole. Gone are the days where you had to have a data center
with racks upon racks of servers to deploy your application to. Today, you can farm out
many of the administrative tasks of running a data center to your cloud providers and
just consume the resources you need. One key benefit of this flexibility is that it perfectly
matches the concepts of Infrastructure as Code (IaC) and programmability. Using the
cloud provider's APIs, we can automatically create, administer, and destroy resources such
as the computing infrastructure in the cloud, and this is exactly what we will look at in
this chapter while using Amazon Web Services (AWS).

252 Automating AWS Cloud Networking Infrastructure Using the AWS Python SDK

While we could use the techniques we explained in Chapter 9, Consuming Controllers and
High-Level Networking APIs with requests, and leverage the REST APIs provided by AWS,
we are going to use the boto3 package in this chapter. With boto3, AWS has developed a
software development kit (SDK) that abstracts the REST API for us as developers and
lets us carry out operations in a more pythonic way.

In this chapter, we will be covering the following recipes:

•	 Setting up the library to interact with your AWS account

•	 Collecting information about your cloud networking resources

•	 Starting an EC2 instance

•	 Creating a VPC

•	 Subnetting your VPC

•	 Changing routes in your VPC

Technical requirements
For this chapter and the remainder of this book, you'll need to install Python. Specifically,
you'll need a Python interpreter that's version 3.6.1 or higher. This book makes use of the
language constructs provided by Python 3, which means it is incompatible with Python
2.x. Additionally, you'll need to install the boto3 package. You can install the newest
version of boto3 using python3 -m pip install boto3. At the time of writing, the
current version is version 1.17.91.

You will also need a code editor. Popular choices include Microsoft Visual Studio Code
and Notepad++. Additionally, you'll need an AWS account. You can sign up for a free
tier account that will give you some limited computing resources to try out the scripts in
this chapter.

A basic understanding of the different concepts and services, such as EC2, is advisable
when following the recipes in this chapter. You may gather such an overview of key
concepts by visiting the Getting started page from AWS at https://aws.amazon.
com/getting-started/.

You can view this chapter's code in action here: https://bit.ly/3fXAObg

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://bit.ly/3fXAObg

Setting up the library to interact with your AWS account 253

Setting up the library to interact with your
AWS account
When logging into the AWS web console, you are probably used to using a username/
password combination to authenticate either for an organization's root user account, or
for an IAM user that has been set up with a separate set of credentials and scoped access.
When dealing with AWS programmatically using the boto3 SDK, we will use two different
credentials, an Access Key ID and a Secret Key, to authenticate against the API. In this
recipe, we are going to configure our key pair in the web console, which we'll then use
for the remainder of this chapter to authenticate our requests. While there are multiple
ways to pass this credential information to boto3, we are going to configure it in a central
configuration file for convenient reuse.

Getting ready
You'll need an AWS account, either for a root user or for an IAM account that has been
created with the necessary access scopes for you.

How to do it…
Follow these steps to create the credentials you are going to use for authenticating your
requests from the SDK:

1.	 Open the AWS console by accessing console.aws.amazon.com and
authenticating using your username/password combination.

2.	 Navigate to your user's security credentials:

Figure 11.1 – Start page of the AWS Management Console with the credentials settings highlighted

http://console.aws.amazon.com

254 Automating AWS Cloud Networking Infrastructure Using the AWS Python SDK

3.	 On the Your Security Credentials page, navigate to the Access keys section and
click on Create New Access Key to generate a new key pair:

Figure 11.2 – The "Your Security Credentials" section, where you can generate a new pair of access keys

4.	 You'll be presented with a pop-up that shows your newly created Access Key ID and
Secret Access Key. You can either save them by copying the information from the page
or by clicking the Download Key File button. Take note of your Secret Access Key.
Once this pop-up window has been closed, you won't be able to retrieve this key again:

Figure 11.3 – Example pop-up with the newly created credentials

5.	 Create a credentials file by opening your text editor and creating the file in the
~/.aws/credentials path. Then, add your credentials to it:

[default]

aws_access_key_id = <Insert your access key here>

aws_secret_access_key = <Insert your secret key here>

Setting up the library to interact with your AWS account 255

6.	 You will also want to configure your default region. To do so, create a file in the
~/.aws/config path and add the following configuration. Have a look at the
How it works… section for a list of available regions:

[default]

region = <insert your region here, i.e. us-east-1>

How it works…
In this recipe, we used the AWS console to generate a new key pair to use when
programmatically accessing AWS resources. With the retrieved credentials, we set up our
configuration so that boto3 knows where to find them. We added our previously created
Access Key ID and Secret Key to an INI-style credentials file and then configured the
default region. The following is a (non-comprehensive) list of the available regions:

•	 us-east-1

•	 us-west-1

•	 eu-central-1

•	 eu-west-1

•	 ap-east-1

•	 ap-south-1

•	 me-south-1

You can find a full list of all available regions at https://docs.aws.amazon.com/
AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.
html. With the credentials set, the boto3 library will be able to pick them up without us
having to specifically provide the information in the code.

There's more…
In this recipe, we created a central configuration file that will be automatically used
by boto3. Especially when using your script in a continuous integration/continuous
delivery (CI/CD) pipeline, you may not want to create such a configuration on the server
running your deployment script. As an alternative, you can also specify them using
environment variables. These environment variables are as follows:

•	 AWS_ACCESS_KEY_ID for your AWS Access Key ID

•	 AWS_SECRET_ACCESS_KEY for your AWS Secret Access Key

•	 AWS_DEFAULT_REGION for your default region

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html

256 Automating AWS Cloud Networking Infrastructure Using the AWS Python SDK

The values you must provide here are the same as the ones you inserted into the config
files in this recipe.

If you have the AWS CLI tools installed, you can also run the following command, which
will guide you through the process of creating the configuration files:

aws configure

Collecting information about your cloud
networking resources
With our programmatic connection to AWS set up, we can now start using the boto3
library to gather some facts about the deployments that are currently running in the
account. This is a common task that can come in useful when we are trying to answer
questions about how many Virtual Private Clouds (VPCs) we have, or what Elastic
Compute Cloud (EC2) instance is associated with which private cloud. While all this
information is also available in the graphical user interface provided by the AWS console,
being able to retrieve such information programmatically can then enable us to automate
maintenance tasks such as deleting VPCs that do not have any EC2 instances associated
with them. In this recipe, you are going to learn how to programmatically retrieve all the
VPCs that are associated with your account and, for each of these VPCs, retrieve the EC2
instances that are currently part of that specific VPC. AWS and the boto3 library use the
same structure to deal with requests for all their resources, which means you can easily
adapt this script to filter for different parameters than the ones we are going to see here.

Getting ready
Open your code editor and start by creating a file called get_facts.py. Next, navigate
your terminal to the same directory that you just created the get_facts.py file in.

You'll have to have authentication set up, as described in the Setting up the library to
interact with your AWS account recipe.

You will also need a running EC2 instance that you can launch from the console. A
t2.micro instance that is eligible for the free tier is sufficient here. AWS will create a
default VPC for you when you create your EC2 instance.

Collecting information about your cloud networking resources 257

How to do it…
Follow these steps to programmatically retrieve all the VPCs and their associated
EC2 instances:

1.	 Import the boto3 library:

import boto3

2.	 Set up the ec2 client from boto3:

ec2 = boto3.client('ec2')

3.	 First, retrieve all the VPCs:

vpc_data = ec2.describe_vpcs()

4.	 Then, iterate over all the VPCs:

for v in vpc_data['Vpcs']:

 print(f"VPC Id: {v['VpcId']}")

5.	 Filter for all EC2 instances associated with this VPC by providing a Filters
argument:

 instance_data = ec2.describe_instances(Filters=[

 {

 "Name": "vpc-id",

 "Values": [

 v['VpcId']

]

 }

])

6.	 Check if we have active reservations:

 if len(instance_data['Reservations']) > 0:

7.	 Then, iterate over all the active Reservations groups:

 for res_num in range(0, len(instance_
data['Reservations'])):

258 Automating AWS Cloud Networking Infrastructure Using the AWS Python SDK

8.	 Finally, retrieve all the instances in that reservation group and display some
information for that instance:

 for i in instance_data['Reservations'][res_
num].get('Instances', []):

 print(f"- {i['InstanceType']} launched at
{i['LaunchTime']}")

9.	 Run your script by typing the following command in your console:

python3 get_facts.py

The output should look as follows:

Figure 11.4 – Exemplary output from our facts retrieval script. The number of VPCs and IDs
will be different

How it works…
We started by importing the boto3 library, our SDK for the AWS REST API. Within
boto3, every resource, such as the S3 storage or the EC2 compute part, has its own client
that we can retrieve using the service identifier, which in this case is ec2. The returned
client object has a long list of available methods that we can use to retrieve, create,
manipulate, or delete resources that are part of this section. These functions follow a
naming convention:

•	 Functions starting with retrieve_ allow you to retrieve one or more instances of
the resource, as well as filter on them.

•	 Functions starting with delete_ allow you to delete resources.

•	 Functions starting with create_ allow you to create resources.

•	 Functions starting with modify_ allow you to modify resources.

A full list of available functions (at the time of writing, there are 453 just for the EC2
client) can be found in the following documentation: https://boto3.amazonaws.
com/v1/documentation/api/latest/reference/services/ec2.html.

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html

Collecting information about your cloud networking resources 259

Using the describe function, we retrieved all the available VPCs. In return, we received
a list of dictionaries that contain all the information about our VPCs. The following
screenshot of the documentation shows the response's structure:

Figure 11.5 – Response structure of a VPC

Below the structure, there is also a table containing the names and descriptions of the
returned keys. You can find this list in the following documentation: https://boto3.
amazonaws.com/v1/documentation/api/latest/reference/services/
ec2.html#EC2.Client.describe_vpcs.

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_vpcs
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_vpcs
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_vpcs

260 Automating AWS Cloud Networking Infrastructure Using the AWS Python SDK

With our VPC ID, we filtered all our EC2 instances for those running within the provided
Vpc Id. The describe_instances() function takes a Filter argument. Filters are
always a list of dictionaries. These dictionaries must have the same keys:

•	 A Name key that specifies the name of the filter.

•	 A Values key that specifies a list of values to filter for. This always needs to be a
list, even if we are, as in this example, filtering for only one value (our Vpc Id).

A list of all the filters is available in the following documentation: https://boto3.
amazonaws.com/v1/documentation/api/latest/reference/services/
ec2.html#EC2.Client.describe_instances.

With the filters specified, we iterated over all the instances and printed out some basic
information, such as the instance type and when this instance was launched. The response
syntax is also referenced in the documentation.

Starting EC2 instances
In the previous recipes, we only retrieved facts about our currently running infrastructure.
But we still had to create the necessary resources so that something shows up using the
console. While this is a painless process in the web browser, in this recipe, we want to
explore how to launch an EC2 instance using boto3.

Getting ready
Open your code editor and start by creating a file called create_ec2.py. Next, navigate
your terminal to the same directory that you just created the create_ec2.py file in.

You'll have to have the authentication set up as described in the Setting up the library to
interact with your AWS account recipe.

Additionally, you will need a previously set up SSH key pair. This is not the key pair that
we used for authenticating to the API, but rather an SSH key that can be used to log into
the instance itself via SSH once launched. You can create this key pair in the console. You
can find a guide on how to do this at https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/ec2-key-pairs.html.

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

Starting EC2 instances 261

How to do it…
Follow these steps to launch an EC2 instance from your Python script:

1.	 Import the boto3 library:

import boto3

2.	 Create an ec2 resource:

ec2 = boto3.resource('ec2')

3.	 Next, we need to specify what kind of instance (the image) we would like to launch
and what key-pair can be used for SSH authentication. Have a look at the How it
works… section for a (non-comprehensive) list of available images:

KEY_PAIR = "<Insert key-pair name here>"

IMAGE_ID = "<Insert image id here>"

NUM_INSTANCES = <Insert number of instances>

4.	 With our information specified, we can create our new instance:

i = ec2.create_instances(ImageId=IMAGE_ID,

 KeyName=KEY_PAIR,

 MaxCount=NUM_INSTANCES,

 MinCount=NUM_INSTANCES)

5.	 Finally, print out the instance:

print(i)

6.	 Run the script by typing the following command:

python3 create_ec2.py

The output of your script should look similar to the following. The ID of your instance will
be different:

Figure 11.6 – Screenshot showing the desired output of running our script

262 Automating AWS Cloud Networking Infrastructure Using the AWS Python SDK

You can verify that the instance has been created by accessing the list of instances in your
AWS console:

Figure 11.7 – Overview of running instances in the AWS console to verify that the new
instance was created

The newly created instance should show up with a Status check of Initializing.

How it works…
So far, in this chapter, we have created a new EC2 instance programmatically. With our
boto3 client authenticated, we created a new EC2 instance. In the previous recipe,
Collecting information about your cloud networking resources, we retrieved a client instead
of a resource. The difference between the two is the level of abstraction. A client is a
low-level abstraction that is shared between the SDK and the AWS CLI tool. A client maps
all the operations provided by the AWS API one to one and returns the JSON information
that's retrieved from the API. A resource, on the other hand, is a boto3-specific abstraction
that builds on top of a client and exposes the information in an object-oriented format.
However, not all operations and services are available as resources. If you want to access
something that is not present as a resource, you'll have to fall back to using a client instead.
With our EC2 resource retrieved, we used the create_instances() function to create
one or more EC2 instances. To do so, we needed to provide an ImageId. This ImageId
specifies which image to use as a basis for the newly created instance. Some of the most
prominent image ID are as follows:

•	 Amazon Linux 2 AMI, a general-purpose Linux image with an ID of
ami-0bad4a5e987bdebde.

Creating a VPC 263

•	 Red Hat Enterprise Linux 8 has an ID of ami-0bad4a5e987bdebde.

•	 SUSE Linux Enterprise Server 15 SP2 (HVM) has an ID of
ami-09e8a19c9eda495b3 (64-bit x86).

•	 Ubuntu Server 20.04 LTS has an ID of ami-05f7491af5eef733a.

•	 Microsoft Windows Server 2019 Base has an ID of ami-086d0be14ab5129e1.

You can find a full list of available image IDs by accessing the AWS console, navigating to
the EC2 service, and then starting the process of creating a new EC2 instance:

Figure 11.8 – Overview of the available images in the console

Besides the officially supported images, there is also the AWS marketplace, where images
can be published. The filters on the left allow you to search for images that can be used
with the Free Tier, which is restricted to some images.

Creating a VPC
VPC is an AWS service that lets you create separate and isolated environments for your
resources to run in. In fact, every EC2 instance you start is part of your default VPC, but
creating and then associating an EC2 instance with a specific VPC allows you to have full
control over routing tables, internal IP addresses, and all other aspects of your instance's
connectivity. In this recipe, we will learn how to create such a VPC programmatically.
In the Subnetting your VPC recipe, we will create a subnet within a VPC and create an
EC2 instance in the previously created VPC. Then, in the Changing routes in your VPC
recipe, we'll learn how to change the routes in our VPC. But before we can change these
properties, we'll have to create a VPC.

264 Automating AWS Cloud Networking Infrastructure Using the AWS Python SDK

Getting ready
Open your code editor and start by creating a file called create_vpc.py. Next, navigate
your terminal to the same directory that you just created the _vpc.py file in.

You'll have to have authentication set up as described in the Setting up the library to
interact with your AWS account recipe.

How to do it…
Follow these steps to create a VPC programmatically:

1.	 Import the boto3 library:

import boto3

2.	 Create a new EC2 resource. VPCs are logically grouped in the EC2 section:

ec2_resource = boto3.resource('ec2')

3.	 Create a new VPC for the 10.10.0.0/16 CIDR block:

vpc = ec2_resource.create_vpc(CidrBlock='10.10.0.1/16')

4.	 Wait until the VPC resource has been created:

vpc.wait_until_available()

5.	 Finally, print out the ID of our newly created VPC:

print(f"Created vpc {vpc.id}")

6.	 Run the script by typing the following command:

python3 create_vpc.py

The output of your script should look as follows. The ID of your VPC will be different:

Figure 11.9 – Output of our script for creating a VPC

Creating a VPC 265

You can verify that the VPC has been created properly by accessing the AWS console on
the web:

Figure 11.10 – The AWS console showing our newly created VPC

How it works…
With our successfully authenticated boto3 library (see the Setting up the library to
interact with your AWS account recipe for an explanation on how to do this), we created
an EC2 resource. Compared to the client that we saw in previous recipes, a resource is a
high-level abstraction that provides additional abstractions and functionalities. We used
the resources for the create_vpc() function to retrieve a newly created VPC. This
function returns a VPC Python object that provides the wait_until_available()
helper function. This function will pause the execution of our script until the VPC
resource has been created successfully and is available. Finally, we printed out the ID of
our VPC, an alphanumeric string that always starts with vpc-, back to the user. With this,
we navigated to the VPC section in our EC2 web console and validated that our VPC has
indeed been created with the CIDR block we specified.

266 Automating AWS Cloud Networking Infrastructure Using the AWS Python SDK

There's more…
There is a maximum number of VPCs that you can create in your account:

Figure 11.11 – Error message returned by boto3 when too many VPCs already exist

boto3 will inform you of this by throwing a ClientError, which contains an error
message indicating that too many VPCs exist. If you encounter this error, you'll have to
delete one of your VPCs, either programmatically or via the AWS console.

Subnetting your VPC
VPCs already separate your resources in the cloud into logical and separated blocks but,
within your VPC, you can have an additional separation in the form of subnets. Subnets
allow you to further specify the routing and accessibility of your EC2 resources.

In this recipe, you are going to learn how to create a VPC and, in that newly created VPC,
create a new subnet. Within this subnet, you'll then create an EC2 instance.

Getting ready
Open your code editor and start by creating a file called subnet_vpc.py. Next, navigate
your terminal to the same directory that you just created the subnet_vpc.py file in.

You'll have to have the same authentication that you set up in the Setting up the library to
interact with your AWS account recipe.

Additionally, you will need a previously set up SSH key pair. This is not the key pair that
we used for authenticating to the API, but rather an SSH key that can be used to log into
the instance itself via SSH once launched. You can create this key pair in the console. You
can find a guide on how to do this at https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/ec2-key-pairs.html.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

Subnetting your VPC 267

How to do it…
Follow these steps to create a new subnet and start an EC2 instance within it:

1.	 Import the boto3 library:

import boto3

2.	 Define the key pair and image ID that our EC2 instance will use:

KEY_PAIR = "<Insert your key pair name here>"

IMAGE_ID = "ami-05f7491af5eef733a"

3.	 Next, create an ec2 resource with our boto3 library:

ec2_resource = boto3.resource('ec2')

4.	 Then, create a new VPC that our subnet will be a part of:

vpc = ec2_resource.create_vpc(CidrBlock='10.10.0.0/16')

vpc.wait_until_available()

print(f"Created vpc {vpc.id}")

5.	 Next, create a new subnet. The subnet's CIDR block needs to be a part of the IP
block we've defined for our VPC:

subnet = vpc.create_subnet(CidrBlock='10.10.1.0/24')

6.	 With our subnet created, we can define the network interface of our EC2 instance,
which will be part of the newly created subnet:

net_inf = []

net_inf.append({

 'SubnetId': subnet.id,

 'DeviceIndex': 0

})

7.	 With the interface defined, we can go ahead and create our EC2 instance:

i = ec2_resource.create_instances(ImageId=IMAGE_ID,

 KeyName=KEY_PAIR,

 NetworkInterfaces=net_
inf,

268 Automating AWS Cloud Networking Infrastructure Using the AWS Python SDK

 MaxCount=1,

 MinCount=1

)

8.	 Finally, print out the ID of our instance:

print(f"Instance with id {i[0].id} created")

9.	 Run the script by typing the following command:

python3 create_vpc.py

The output of your script should look as follows. The ID of your created VPC and EC2
instance will be different:

Figure 11.12 – Output of our subnetting script

We can verify that our script worked by navigating to the EC2 page of the AWS console.
By clicking on the newly created instance, whose ID we have seen in the output of our
script, we can access the instance summary:

Figure 11.13 – Instance summary for our automatically created EC2 instance

Changing routes in your VPC 269

As you can see, our instance has a private IPv4 address from the subnets block and has
associations with the VPC that was created, as well as the subnet that we created.

How it works…
With our boto3 library authenticated (see the Setting up the library to interact with your
AWS account recipe for an explanation of how to do this), we defined the properties of the
EC2 instance we wanted to create. Specifically, we needed to define the key pair and the
image that will be used for this instance. You can find a more detailed explanation of these
two properties in the How it works… section of the Starting EC2 instances recipe.

With these properties defined, we created a VPC with a defined CIDR block and, within
that VPC, created a new subnet that is part of the VPC's CIDR block. We then defined
a new interface for our EC2 instance. Since an EC2 instance can have multiple (virtual)
network interfaces, we needed to provide a list here that we can append a dictionary that
specifies each of our interfaces to. In this example, we only created a single virtual network
interface with a device ID of 0, and we referenced the subnet ID of the previously created
subnet to associate this interface with the subnet. After creating our EC2 instance, this
prompted AWS to assign an IP from that subnets pool to this interface. With the interface
information defined, we used the boto3 library to create the EC2 instance. This process
is the same as what we saw in the Starting EC2 instances recipe, with the exception that we
passed the network interfaces parameter as well, which prompts AWS to create the
previously defined virtual networking interface for our instance.

With the instance created, we printed out the ID. This allows us to find it more easily in
the AWS console, to verify that the EC2 instance has indeed been created in our VPC and
has been assigned an IP address from the subnets pool.

You can find more information on how to implement subnets in AWS in the official
documentation: https://docs.aws.amazon.com/vpc/latest/userguide/
VPC_Subnets.html.

Changing routes in your VPC
With our VPCs and subnets created programmatically, we can now think about routing
and, more specifically, how we want to route from a subnet to different destinations.
AWS uses the concept of routing tables and routes, all of which can be configured
programmatically. In this recipe, we are going to create a new VPC, associate a subnet
with it, define an internet gateway for that subnet, and then change the routing table of
our VPC and subnet so that it uses the previously created gateway.

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html

270 Automating AWS Cloud Networking Infrastructure Using the AWS Python SDK

Getting ready
Open your code editor and start by creating a file called create_routes.py. Next,
navigate your terminal to the same directory that you just created the create_routes.
py file in.

You'll have to have the same authentication that you set up in the Setting up the library to
interact with your AWS account recipe.

How to do it…
Follow these steps to create a new route in your VPC:

1.	 Import the boto3 library:

import boto3

2.	 Let's start by defining the destination CIDR that we want our route to be valid for:

DST_CIDR = "0.0.0.0/0"

3.	 Next, create an ec2 resource from boto3:

ec2_resource = boto3.resource('ec2')

4.	 Create a new VPC and print out the VPC's ID for debugging:

vpc = ec2_resource.create_vpc(CidrBlock='10.10.0.0/16')

vpc.wait_until_available()

print(f"Created vpc {vpc.id}")

5.	 Create a new subnet and print out that ID as well:

subnet = vpc.create_subnet(CidrBlock='10.10.1.0/24')

print(f"Created subnet {subnet.id}")

Changing routes in your VPC 271

6.	 Define a new gateway and attach the newly created internet gateway to our VPC:

gateway = ec2_resource.create_internet_gateway()

vpc.attach_internet_gateway(InternetGatewayId=gateway.id)

print(f"Created gateway {gateway.id} and associated with
{vpc.id}")

7.	 Create a new route table within our VPC and associate the route table with our
previously created subnet:

route_table = ec2_resource.create_route_table(VpcId=vpc.
id)

route_table.associate_with_subnet(SubnetId=subnet.id)

print(f"Created route table {route_table.id}")

8.	 Finally, create a new route from our Destination block and associate the internet
gateway we created previously:

r = route_table.create_route(DestinationCidrBlock=DST_
CIDR, GatewayId=gateway.id)

print(f"Created route {r} for {DST_CIDR} block")

9.	 Run the script by typing the following command:

python3 create_routes.py

The output of your script should look as follows. The IDs of your created VPC, subnet,
gateway ID, and route table will be different:

Figure 11.14 – Output from our route creation script

272 Automating AWS Cloud Networking Infrastructure Using the AWS Python SDK

You can verify that the resources have been created correctly by navigating to the VPC's
Details page in the AWS console, as shown in the following screenshot:

Figure 11.15 – VPC details showing the VPC's CIDR block and routing table that we created

How it works…
With our boto3 library authenticated (see the Setting up the library to interact with your
AWS account recipe for an explanation of how to do this), we defined the destination
CIDR block for our new rules. Next, we retrieved an ec2 resource from boto3. This
resource is an abstraction that's built on top of the JSON data returned by the AWS
API gateway itself, which allows us to deal with the API in a more abstracted way. As
an example, the function to create a VPC, create_vpc(), does not return a pure
dictionary but rather a Python object with additional helper functions such as the wait
function, which halts the execution of our script until the VPC has been created. With
the VPC for our CIDR block created (see the Creating a VPC recipe, for a more detailed
explanation) we created a new subnet within that VPC.

For our newly created subnet, we created a new routing table that we assigned to the
subnet by using the associate_with_subnet() function. With our route table
created and associated, we created a new route from the destination CIDR block we
defined at the beginning of the script to the internet gateway we just created. Finally, after
running the script, we verified that it worked by accessing the VPC's details in the EC2
section of the AWS console.

12
Automating your
Network Security
Using Python and

the Firepower APIs
Security has become a central concern for every network operations team in the world.
Whether you are securing the network of a global corporation or the wireless access of
your local coffee shop, network security touches every aspect of network operations.
In this chapter, we are going to focus on the automation abilities of Cisco's Firepower
Management Center (FMC) by using its Representational State Transfer (REST)
application programming interface (API). Using automation together with FMC allows
us to constantly check our enacted access policies or automatically update them.

274 Automating your Network Security Using Python and the Firepower APIs

In this chapter, we are going to cover the following recipes:

•	 Exploring the API Explorer

•	 Authenticating against the FMC REST API

•	 Retrieving access policies

•	 Changing access policies

•	 Retrieving access rules

•	 Changing access rules

•	 Deleting access rules

Technical requirements
For this section and the remainder of the book, you'll need an installation of Python.
Specifically, you'll need a Python interpreter of version 3.6.1 or higher. This book makes
use of language constructs of Python 3 and thus is incompatible with Python 2.x.
Additionally, you'll need to install the requests package. You can install the newest
version of requests by using python3 -m pip install requests. At the time
of this writing, the current version is version 2.25.1.

You will also need a code editor. Popular choices include Microsoft Visual Studio Code
(VS Code) or Notepad++.

Additionally, you'll need access to a Cisco FMC instance that has the REST API enabled,
as well as a valid user account. Please have a look at the reference guide for your FMC
installation on how to enable the REST API. You can find the reference guide at this link:
https://www.cisco.com/c/en/us/support/security/defense-center/
products-programming-reference-guides-list.html.

The scripts in this recipe have been tested against version 6.3 of FMC.

You can view this chapter's code in action here: https://bit.ly/3CL6z1c

https://www.cisco.com/c/en/us/support/security/defense-center/products-programming-reference-guides-
https://www.cisco.com/c/en/us/support/security/defense-center/products-programming-reference-guides-
https://bit.ly/3CL6z1c

Exploring the API Explorer 275

Exploring the API Explorer
When diving into a new API, it can be quite daunting to explore it. While trying out
requests from a Python script can be done, it is usually easier to explore in a graphical
user interface (GUI). Many cloud APIs offer this type of interactive documentation
where, with a few clicks, you can not only see the schemas of a request, which Uniform
Resource Locators (URLs) to use, and which parameters to pass but can also run the
request directly from your web browser. FMC offers a similar feature on the device itself,
called the API Explorer. Based on the OpenAPI Specification, a standard to define REST
APIs, an interactive page for the API can be generated and used to execute API requests
from within your browser.

In this recipe, we are going to have a look at the FMC API Explorer and explore
its capabilities:

1.	 Access your FMC installation's API Explorer by navigating to the following link:
https://<path_to_your_fmc_webinterface> /api/api-explorer/.

After authenticating with your username/password combination, you will be
presented with an overview of all the available API endpoints:

Figure 12.1 – Overview of the available FMC API endpoints

https://<path_to_your_fmc_webinterface> /api/api-explorer/

276 Automating your Network Security Using Python and the Firepower APIs

2.	 Click on one of the endpoints—for example, System Information. The expanded
section contains all requests that can be made within that endpoint. The URL,
as well as the required request method—in this case, GET—are specified:

Figure 12.2 – List of all available URLs under the System Information endpoint

3.	 Click on one of the endpoints— for example, the one with the /api/fmc_
platform/v1/info/serverversion URL. On the resulting page, you have
information on the parameters that can be passed to the endpoint. In this case,
these are the following:

a) offset, which is of type integer and is part of the query parameters.

b) limit, which is of type integer and is part of the query parameters.

c) expanded, which is of type Boolean and is part of the query parameters.

d) Additionally, each of the parameters has a description.

Exploring the API Explorer 277

Below the parameters, there is a section for all the possible responses grouped
by their response code, as well as an exemplar response body. You can use this
example to understand what kind of information is returned by the API and how
this is formatted:

Figure 12.3 – Overview of a single request in the API

278 Automating your Network Security Using Python and the Firepower APIs

4.	 Click on the Try it out button in the top-right corner. This will open a new dialog
to try out the request. The input fields for the query parameters allow you to specify
values for each of these parameters. We can then execute the request by clicking on
the blue Execute button:

Figure 12.4 – The Try it out page for your chosen API endpoint

5.	 After clicking on Execute, you will be presented with the result of your request.
There are two fields: one for the response body—in this case, JavaScript Object
Notation (JSON)-formatted information about the version of our FMC server—and
another for the response headers that contain all the meta-information returned in
the header of our request:

Authenticating against the FMC REST API 279

Figure 12.5 – Response after executing our query from the API Explorer

Using the API Explorer, and interactive API documentation in general, it's easier to try
out a new API from within your browser. If you want to check whether other APIs of
products you are using have interactive API documentation, look out for names such
as the OpenAPI Specification, Swagger Docs (Swagger is an old name for the format
and tools used to describe a REST API and generate these interactive docs), or
interactive documentation.

Authenticating against the FMC REST API
In this recipe, we'll learn how to obtain an authentication token for our FMC console.
In contrast to other REST APIs, such as the Cisco Meraki API we explored in a
previous chapter, FMC's REST API does not use a static authentication token that can
be generated for a user and is valid indefinitely. Instead, we must use our username/
password combination to obtain a token that can then be used for all further requests to
authenticate the request. In addition to the token itself, the response also contains a list of
available domains that our account has access to.

280 Automating your Network Security Using Python and the Firepower APIs

Since we must do this authentication for every request, we'll write a function that takes
our username/password combination as well as the base URL of our console and returns
an authenticated requests session object, as well as a list of domains. We will then
reuse this function in the coming chapters to create an authenticated session.

Getting ready
Open your code editor and start by creating a file called authenticate.py.
Next, navigate in your terminal to the same directory in which you just created the
authenticate.py file.

How to do it…
Follow these steps to authenticate against the FMC REST API:

1.	 Import the required requests library as well as the json and sys modules from
the standard library:

import requests

import json

import sys

from requests.auth import HTTPBasicAuth

2.	 Next, specify the base URL as well as our login information:

base_url = "https://fmcrestapisandbox.cisco.com"

username = "<Insert username here>"

password = "<Insert password>"

3.	 Next, we create our authentication function:

def get_authenticated_session(user, password, base_url):

4.	 Within this authentication function, specify the authentication URL and
authentication details:

 auth_url = f"{base_url}/api/fmc_platform/v1/auth/
generatetoken"

 auth = HTTPBasicAuth(user, password)

Authenticating against the FMC REST API 281

5.	 Send a POST request with an empty body to the auth URL. Depending on your
FMC installation, you'll have a self-signed certificate. If that is the case, set the
verify property of the POST request to False. This will prevent requests from
verifying the Secure Sockets Layer (SSL) certificate:

 resp = requests.post(auth_url, auth=auth,
verify=False)

6.	 Next, we create a new session object and, if the request to the authentication URL
was successful, set the authentication header of our session based on the token
returned from the request to the authentication URL:

 s = requests.Session()

 if resp.ok:

 s.headers.update({

 'X-auth-access-token': resp.headers.get('X-
auth-access-token')

 })

7.	 Next, we disable SSL verification for our session, print out a message that our
authentication was successful, and parse the domains. These are JSON-encoded
into the DOMAINS header field:

 s.verify = False

 print("Authenticated successfully!")

 domains = json.loads(resp.headers.get('DOMAINS'))

8.	 To finish off, we return the session as well as our list of domains:

 return s, domains

9.	 If our request failed, we print out the status code returned from FMC and stop the
execution of the script:

 else:

 print(f"Failed to authenticate. Response code:
{resp.status_code}")

 sys.exit(-1)

10.	 With our authentication function finished, we can use it to retrieve an authenticated
session as well as a list of domains:

sess, domains = get_authenticated_session(username,
password, base_url)

282 Automating your Network Security Using Python and the Firepower APIs

11.	 And then, for each of our domains, we can print out the name and the
identifier (ID):

for d in domains:

 print(f"{d['name']}: {d['uuid']}")

12.	 To run this script, go to your terminal and execute the following command:

python3 authenticate.py

The output of your script should look like this:

Figure 12.6 – Output from our authentication script

The name and ID of your domain(s) will be different.

How it works…
In this recipe, we first import the required libraries. We will use the requests module
again to make our HyperText Transfer Protocol (HTTP) requests, and we also use the
sys and json modules from the standard library. After specifying our credentials
(see the There's more… section of this recipe for hints on how to do this in production
code), we start by defining our authentication function. This function takes three
arguments: username, password, and the base URL of our FMC console. Within the
function, we use our base URL to construct the authentication URL and create HTTP
basic authentication (HTTP Basic Auth) details using our username and password.
With this pre-work done, we send an empty POST request to our authentication URL that
contains the username/password combination as an HTTP Basic Auth header. For
checking whether our request was successful or not, we use the ok property
of our response object. This Boolean property will be True if the status code of our
response was below 400. If this is not the case, we print out the response code of our
failed request and end the execution of our script using the standard library's sys module
and the exit function.

Retrieving access policies 283

If the request succeeded, we extract the authorization token from the response header.
FMC uses an X-auth-access-token header key instead of the more common
Authorization key. We copy this key into the headers of our session object and disable
the SSL verification for our session. The last step is only required if your FMC installation
uses a self-signed certificate. In addition to the token, our response headers also contain
a JSON-encoded list of domains in the DOMAIN response-header field. We can decode
the associated JSON and retrieve a list of domains. To finish our function, we then return
both the session and domain.

Next, we use our previously written function to retrieve the authenticated session and
domains and iterate over all of our domains to print out the name and ID.

There's more…
In production code, you should not store your credentials in a script. You can use the
following snippet to read the username and password from your environment variables:

import os

username = os.environ.get('FMC_USERNAME')

password = os.environ.get('FMC_PASSWORD')

Before running your scripts, you will then have to first set the environment variables. In
Linux/macOS X, you can do this by using the export command:

export FMC_USERNAME="<insert username here>"

export FMC_PASSWORD="<insert password here>"

If you are using Linux or Mac OS X, you can also make this permanent by adding it to
your .bashrc or .profile file.

Retrieving access policies
Access policies configured in your FMC instance can easily be retrieved using the
FMC REST API. However, doing GET requests to list large amounts of data can be
computationally expensive for the API server. Imagine you have an API that returns
you a list of all the policies in your network. This list might have, as an example, 5,000
entries, and retrieving all the information is computationally expensive. Let's imagine the
API would always return a full list of entries. If your script now searches for one specific
policy, based on the name, and that entry was the first entry in your list, you would
have requested the information about the other 4,999 access policies without using the
information. To lessen the load on API servers, most REST APIs employ a concept called
pagination when dealing with large lists of items.

284 Automating your Network Security Using Python and the Firepower APIs

Instead of always returning all entries, they return you a selection—let's say 50 entries.
This response is called a page. In addition to the entries themselves, the page also contains
information about how to request the next page. This means that, for requesting all our
5,000 network policies from the preceding example, we do not send one large request
but instead, we send a first request that gives us the first 50 entries, as well as information
about where to get the next page, which contains the next 50 entries. Using this principle,
if we want all 5,000 entries, we do 100 small requests with 50 items each, instead of one
large request that contains all the items. Pagination is a very common and useful concept
employed by most APIs for load balancing, and the FMC REST API uses pagination
as well. In this recipe, you'll see how we can retrieve a list of all access policies that are
configured in a domain and resolve the resulting pagination.

Getting ready
Open your code editor and start by creating a file called get_access_policies.py.
Next, navigate in your terminal to the same directory in which you just created the get_
access_policies.py file.

How to do it…
Follow these steps to retrieve your access policies from the FMC REST API:

1.	 Import the required requests library as well as the json and sys modules from
the standard library:

import requests

import json

import sys

from requests.auth import HTTPBasicAuth

2.	 Specify the required variables such as your username, password, and domain ID:

base_url = "https://fmcrestapisandbox.cisco.com"

username = "<Insert username here>"

password = "<Insert password here>"

domain = "<Insert domain id here>"

3.	 Define an authentication function and use this function to obtain an authenticated
session based on your username and password combination. Please have a look at
the How to do it… and How it works… sections of the Authenticating against the
FMC REST API recipe:

Retrieving access policies 285

def get_authenticated_session(user, password, base_url):

 auth_url = f"{base_url}/api/fmc_platform/v1/auth/
generatetoken"

 auth = HTTPBasicAuth(user, password)

 resp = requests.post(auth_url, auth=auth,
verify=False)

 s = requests.Session()

 if resp.ok:

 s.headers.update({

 'X-auth-access-token': resp.headers.get('X-
auth-access-token')

 })

 s.verify = False

 print("Authenticated succesfully!")

 domains = json.loads(resp.headers.get('DOMAINS'))

 return s, domains

 else:

 print(f"Failed to authenticate. Response code:
{resp.status_code}")

 sys.exit(-1)

sess, domains = get_authenticated_session(username,
password, base_url)

4.	 Define a URL that we want to request our policies from, as well as an empty list of
items. Then, do the request itself using our previously obtained session:

url = f"{base_url}/api/fmc_config/v1/domain/
{domain}/policy/accesspolicies"

items = []

resp = sess.get(url)

286 Automating your Network Security Using Python and the Firepower APIs

5.	 If the request was successful, we first decode the returned data and add all the
items—in this case, dictionaries representing access policies—to the items list:

if resp.ok:

 data = resp.json()

 for i in data['items']:

 items.append(i)

6.	 Next, we need to take care of all the additional pages. We define an empty
next_links list and then extract the links to the remaining pages from the
first response:

next_links = []

 if "next" in data['paging']:

 if isinstance(data['paging']['next'], list):

 next_links = data['paging']['next']

 else:

 next_links.append(data['paging']['next'])

7.	 With the list of remaining pages retrieved, we can then iterate over this list and send
a GET request for each of these links:

 for link in next_links:

 print(f"Requesting url '{link}'")

 r = sess.get(link)

8.	 If this request was successful, we add all the access policies contained within the
items list. If the request was unsuccessful, we print out the status code, as well as
the link that our request failed on:

 if r.ok:

 for i in r.json()['items']:

 items.append(i)

 else:

 print(f"Failed to request url '{link}'.
Status code: {r.status_code}")

Retrieving access policies 287

9.	 Finally, we need to handle the case that our initial request failed and then print out
the name and ID of all of our access policies by iterating over the items list:

else:

 print(f"Failed to request url '{url}'. Status code:
{resp.status_code}")

for i in items:

 print(f"{i['name']}: {i['id']}")

10.	 To run this script, go to your terminal and execute the following command:

python3 get_access_policies.py

The output of your script should look like this:

Figure 12.7 – Output from our access policy retrieval script

The name and ID of your policies will be different. Note how, at the top, there are
two additional pages that we are requesting, denoted by the Requesting url
debug message.

288 Automating your Network Security Using Python and the Firepower APIs

How it works…
We start by importing our required libraries, and then define our connection details
such as the username/password combination to use for authentication, the base URL
of our FMC instance, and the domain under which we are operating. Next, we define
our authentication function. For a more detailed explanation of how the authentication
process works, please refer to the How to do it… and How it works… sections of the
Authenticating against the FMC REST API recipe.

With our authenticated session, we can do our initial request. Remember that for a
paginated result, the response of this request will contain at least two pieces of information:

•	 A container—in the case of FMC's REST API, this is called items. Contained
within this list are the items—in our case, dictionaries representing access
policies—that we are requesting.

•	 A pagination section—in the case of FMC's REST API, this is called paging— that
contains information about the next and previous pages.

We first copy all items from the items key in our response into a local list called items.
We then retrieve a list of the next URLs. This list contains URLs to all the other pages that
are part of this response. We iterate over this list and do another GET request for each of
them. We then parse the result from our request and add it to our local items list. Once
we have requested all pages and stored the results in our local items list, we can then go
ahead and iterate over them, printing out the name and ID.

Changing access policies
Now that we have seen how to retrieve information about our access policy, what about
changing it? Maybe we want to automatically carry out a workflow that checks all access
policies against a list of valid policies and either automatically deactivates the policy or at
least marks it for someone to have a look at it. We have seen the automatic retrieval of all
lists in the previous recipe, Retrieving access policies. This recipe will cover the part about
changing an access policy based on the policy ID.

Getting ready
Open your code editor and start by creating a file called change_access_policies.
py. Next, navigate in your terminal to the same directory in which you just created the
change_access_policies.py file.

Changing access policies 289

How to do it…
Follow these steps to change one of your access policies using the FMC REST API:

1.	 Import the required requests library as well as the json and sys modules from
the standard library:

import requests

import json

import sys

from requests.auth import HTTPBasicAuth

2.	 Specify the required variables such as your username, password, domain ID, and the
ID of the policy you want to change:

base_url = "https://fmcrestapisandbox.cisco.com"

username = "<Insert username here>"

password = "<Insert password here>"

domain = "<Insert domain id here>"

policy_id = "<Insert your policy id here>"

3.	 Define an authentication function and use this function to obtain an authenticated
session based on your username and password combination. Please have a look at
the How to do it… and How it works… sections of the Authenticating against the
FMC REST API recipe:

def get_authenticated_session(user, password, base_url):

 auth_url = f"{base_url}/api/fmc_platform/v1/auth/
generatetoken"

 auth = HTTPBasicAuth(user, password)

 resp = requests.post(auth_url, auth=auth,
verify=False)

 s = requests.Session()

 if resp.ok:

 s.headers.update({

 'X-auth-access-token': resp.headers.get('X-
auth-access-token')

 })

290 Automating your Network Security Using Python and the Firepower APIs

 s.verify = False

 print("Authenticated succesfully!")

 domains = json.loads(resp.headers.get('DOMAINS'))

 return s, domains

 else:

 print(f"Failed to authenticate. Response code:
{resp.status_code}")

 sys.exit(-1)

sess, domains = get_authenticated_session(username,
password, base_url)

4.	 Specify the URL of the policy we want to change and request the initial data:

url = f"{base_url}/api/fmc_config/v1/domain/{domain}/
policy/accesspolicies/{policy_id}"

resp = sess.get(url)

5.	 If the request was successful, meaning that we have retrieved the details of our
access policy, we can retrieve the data as a Python dictionary:

if resp.ok:

 data = resp.json()

6.	 Next, delete some of the API-specific keys in your data. This step is required so that
we can update the resource using the information obtained from the GET request
without running into API errors.

7.	 With the list of remaining pages retrieved, we can then iterate over this list and send
a GET request for each of these links:

 if 'urls' in data.keys():

 del data['urls']

 if 'metadata' in data.keys():

 del data['metadata']

 if 'links' in data.keys():

 del data['links']

Changing access policies 291

8.	 We can then change the property we want to change—in this case, our policy
name—and post the data back to the API:

 data['name'] = 'Test-API'

 r = sess.put(url, json=data)

 print(r.status_code)

 print(r.json())

9.	 To run this script, go to your terminal and execute the following command:

python3 change_access_policies.py

The output of your script should look like this:

Figure 12.8 – Output from our access policy retrieval script

The data returned from the script will be different for your access policy.

292 Automating your Network Security Using Python and the Firepower APIs

How it works…
We start by importing our required libraries, and then define our connection details
such as the username/password combination to use for authentication, the base URL
of our FMC instance, and the domain under which we are operating. Next, we define
our authentication function. For a more detailed explanation of how the authentication
process works, please refer to the How to do it… and How it works… sections of the
Authenticating against the FMC REST API recipe.

With our authenticated session, we can retrieve the details of our access policy. When
doing PUT requests, we need to provide all the fields of the original item. PUT essentially
replaces a resource on the server, and thus we need to give it all the information we have.
We obtain this information by using a GET request on the URL specifying our access
policy, as identified by the policy ID. We then delete some API-specific information such
as the links and URLs. With the data manipulated, we can then apply the changes we want
to make. In this case, we change the name of our policy and, together with the previously
retrieved data, then send it back to the API using a PUT request.

Retrieving access rules
The access policy resource covered so far in this chapter has, as is very common with
REST APIs, more attributes that refer (or link) to another object. Our access policy, for
example, also has a list of associated access rules that define which zone is allowed or
disallowed from sending traffic to another zone. In this recipe, we will cover the process of
retrieving all associated rules for a given access policy.

Getting ready
Open your code editor and start by creating a file called get_access_rules.py.
Next, navigate in your terminal to the same directory in which you just created the
get_access_rules.py file.

How to do it…
Follow these steps to retrieve all access rules associated with your access policy:

1.	 Import the required requests library as well as the json and sys modules from
the standard library:

import requests

import json

import sys

from requests.auth import HTTPBasicAuth

Retrieving access rules 293

2.	 Specify the required variables such as your username, password, domain ID, and the
ID of the policy we want to retrieve our access rules for:

base_url = "https://fmcrestapisandbox.cisco.com"

username = "<Insert username here>"

password = "<Insert password here>"

domain = "<Insert domain id here>"

policy_id = "<Insert your policy id here>"

3.	 Define an authentication function and use this function to obtain an authenticated
session based on your username and password combination. Please have a look at
the How to do it… and How it works… sections of the Authenticating against the
FMC REST API recipe:

def get_authenticated_session(user, password, base_url):

 auth_url = f"{base_url}/api/fmc_platform/v1/auth/
generatetoken"

 auth = HTTPBasicAuth(user, password)

 resp = requests.post(auth_url, auth=auth,
verify=False)

 s = requests.Session()

 if resp.ok:

 s.headers.update({

 'X-auth-access-token': resp.headers.get('X-
auth-access-token')

 })

 s.verify = False

 print("Authenticated succesfully!")

 domains = json.loads(resp.headers.get('DOMAINS'))

 return s, domains

 else:

 print(f"Failed to authenticate. Response code:
{resp.status_code}")

 sys.exit(-1)

sess, domains = get_authenticated_session(username,
password, base_url)

294 Automating your Network Security Using Python and the Firepower APIs

4.	 Next, define the URL we want to request our access rules from and send off the request:

url = f"{base_url}/api/fmc_config/v1/domain/{domain}/
policy/accesspolicies/{policy_id}/accessrules"

resp = sess.get(url)

5.	 Since we are doing a GET request to list items again, our result will be paginated.
We'll request all entries from the API and store them locally in a list called items.
Please refer to the How to do it… section of the Retrieving access policies recipe for a
detailed explanation of how the retrieval of paginated results works:

items = []

resp = sess.get(url)

if resp.ok:

 data = resp.json()

 for i in data['items']:

 items.append(i)

 next_links = []

 if "next" in data['paging']:

 if isinstance(data['paging']['next'], list):

 next_links = data['paging']['next']

 else:

 next_links.append(data['paging']['next'])

 for link in next_links:

 print(f"Requesting url '{link}'")

 r = sess.get(link)

 if r.ok:

 for i in resp.json()['items']:

 items.append(i)

 else:

 print(f"Failed to request url '{link}'.
Status code: {r.status_code}")

else:

 print(f"Failed to request url '{url}'. Status code:
{resp.status_code}")

Retrieving access rules 295

6.	 With all our access rules retrieved, we can then iterate over them all. We then use
the self-link that is included with each of the returned resources to request the
details for each of our access rules and then print out these details, such as name,
action, and whether the rule is enabled or not:

for i in items:

 url = i['links']['self']

 r = sess.get(url)

 if r.ok:

 rule = r.json()

 print(f"{rule['name']}({rule['id']}): Action:
{rule['action']} Enabled: {rule['enabled']}")

7.	 To run this script, go to your terminal and execute the following command:

python3 get_access_rules.py

The result should look like this:

Figure 12.9 – Result of running our access rules retrieval script

The name of your access rules and their ID, action, and status may differ.

How it works…
We start by importing our required libraries, and then define our connection details such
as the username/password combination to use for authentication, the base URL of our
FMC instance, the domain under which we are operating, and the policy for which we
want to retrieve the access rules. Next, we define our authentication function. For a
more detailed explanation of how the authentication process works, please refer to the
How to do it… and How it works… sections of the Authenticating against the FMC REST
API recipe.

296 Automating your Network Security Using Python and the Firepower APIs

We then request all the configured access rules. These rules come as paginated results,
and we thus have to resolve all the pages. Please refer to the How it works… section of the
Retrieving access policies recipe for a more detailed explanation of how paginated results
are retrieved.

With all our access rules retrieved, we can use another property that is specified by the
API: the links section. Each object—in our case, this is a representation of an access
rule—comes with a links property that contains the URLs. Specifically, under the name
self, it contains a link to retrieve the details of this object. We could piece together this
URL ourselves using the base URL, API prefix, domain ID, endpoint path, and access
policy as well as the access rule ID, but using the self-link is a much more convenient
way. After successfully requesting the details of each of our access rules, we print out the
information obtained, such as the name, ID, action, and status.

Changing access rules
Now that we can automatically retrieve first the access policy and then its access rules,
you might be wondering how we can change the rules themselves. A common task when
dealing with access rules is to enable or disable them. In this recipe, we will see how you
can update the properties of an existing access rule. In our case, we will disable the
policy itself.

Getting ready
Open your code editor and start by creating a file called change_access_rules.
py. Next, navigate in your terminal to the same directory in which you just created the
change_access_rules.py file.

How to do it…
Follow these steps to change an existing access rule and disable it:

1.	 Import the required requests library as well as the json and sys modules from
the standard library:

import requests

import json

import sys

from requests.auth import HTTPBasicAuth

Changing access rules 297

2.	 Specify the required variables such as your username, password, domain ID, and the
ID of the policy, as well as the ID of the rule we want to change:

base_url = "https://fmcrestapisandbox.cisco.com"

username = "<Insert username here>"

password = "<Insert password here>"

domain = "<Insert domain id here>"

policy_id = "<Insert your policy id here>"

rule_id = "<Insert your rule id here>"

3.	 Define an authentication function and use this function to obtain an authenticated
session based on your username and password combination. Please have a look at
the How to do it… and How it works… sections of the Authenticating against the
FMC REST API recipe:

def get_authenticated_session(user, password, base_url):

 auth_url = f"{base_url}/api/fmc_platform/v1/auth/
generatetoken"

 auth = HTTPBasicAuth(user, password)

 resp = requests.post(auth_url, auth=auth,
verify=False)

 s = requests.Session()

 if resp.ok:

 s.headers.update({

 'X-auth-access-token': resp.headers.get('X-
auth-access-token')

 })

 s.verify = False

 print("Authenticated succesfully!")

 domains = json.loads(resp.headers.get('DOMAINS'))

 return s, domains

 else:

 print(f"Failed to authenticate. Response code:
{resp.status_code}")

298 Automating your Network Security Using Python and the Firepower APIs

 sys.exit(-1)

sess, domains = get_authenticated_session(username,
password, base_url)

4.	 We start by retrieving the details of our access rule using a GET request to the URL
that specifies our access rule resource based on the rule ID:

url = f"{base_url}/api/fmc_config/v1/domain/{domain}/
policy/accesspolicies/{policy_id}/accessrules/{rule_id}"

resp = sess.get(url)

5.	 If this request is successful, we can use the information to update our rule using
a PUT request. We first retrieve the returned data and delete some API-specific
properties such as the links, metadata, and urls sections:

if resp.ok:

 data = resp.json()

 if 'urls' in data.keys():

 del data['urls']

 if 'metadata' in data.keys():

 del data['metadata']

 if 'links' in data.keys():

 del data['links']

6.	 Now, we can change the property we want to change. In our example, this is going
to be the enabled property, which we are going to switch to False:

 data['enabled'] = True

7.	 We can then send off a PUT request and check whether the request was successful or
not. If it was not successful, we print out the response code; otherwise, we retrieve
the returned access rule object itself and print out some information stating that the
rule has been updated:

 r = sess.put(url, json=data)

 if r.ok:

 obj = r.json()

Changing access rules 299

 print(f"Updated access rule {obj['name']}")

 else:

 print(f"Failed to update access rule. Status
code: {r.status_code}")

8.	 Finally, we need to handle the case that our initial GET request failed:

else:

 print(f"Failed to retrieve access rule. Status code:
{resp.status_code}")

9.	 To run this script, go to your terminal and execute the following command:

python3 change_access_rules.py

Important note
The name of your rule might differ.

The output of your script should look like this:

Figure 12.10 – Result of running our script to change an access rule

You can also verify that the change happened by running the script from the Retrieving
access rules recipe again.

How it works…
We start by importing our required libraries, and then define our connection details such
as the username/password combination to use for authentication, the base URL of our
FMC instance, the domain under which we are operating, the policy for which our access
rule is defined, and the ID of the rule itself. Next, we define our authentication function.
For a more detailed explanation of how the authentication process works, please refer
to the How to do it… and How it works… sections of the Authenticating against the FMC
REST API recipe.

300 Automating your Network Security Using Python and the Firepower APIs

With our authenticated session, we first retrieve the details of the access rule. We need
these details since a PUT request replaces a resource and thus needs all the information,
even for those we are not changing. We delete some API-specific information such as the
links and urls sections from the returned data. With this done, we can then modify
the property we want to change—in our case, the enabled status of our access rule,
which we are setting to False. We then send a PUT request to the API. If the request is
successful, we get the changed access rule object back.

Deleting access rules
The final capability we are looking for is how we can automate housekeeping tasks such as
finding and deleting outdated rules. We have already covered finding a rule by retrieving
all of the rules and iterating over their details in previous chapters, so this recipe will show
you how you can delete an existing access rule.

Getting ready
Open your code editor and start by creating a file called delete_access_rules.
py. Next, navigate in your terminal to the same directory in which you just created the
delete_access_rules.py file.

How to do it…
Follow these steps to delete an existing access rule for your access policy:

1.	 Import the required requests library as well as the json and sys modules from
the standard library:

import requests

import json

import sys

from requests.auth import HTTPBasicAuth

2.	 Specify the required variables such as your username, password, domain ID, and the
ID of the policy, as well as the ID of the rule we want to delete:

base_url = "https://fmcrestapisandbox.cisco.com"

username = "<Insert username here>"

password = "<Insert password here>"

Deleting access rules 301

domain = "<Insert domain id here>"

policy_id = "<Insert your policy id here>"

rule_id = "<Insert your rule id here>"

3.	 Define an authentication function and use this function to obtain an authenticated
session based on your username and password combination. Please have a look at
the How to do it… and How it works… sections of the Authenticating against the
FMC REST API recipe:

def get_authenticated_session(user, password, base_url):

 auth_url = f"{base_url}/api/fmc_platform/v1/auth/
generatetoken"

 auth = HTTPBasicAuth(user, password)

 resp = requests.post(auth_url, auth=auth,
verify=False)

 s = requests.Session()

 if resp.ok:

 s.headers.update({

 'X-auth-access-token': resp.headers.get('X-
auth-access-token')

 })

 s.verify = False

 print("Authenticated successfully!")

 domains = json.loads(resp.headers.get('DOMAINS'))

 return s, domains

 else:

 print(f"Failed to authenticate. Response code:
{resp.status_code}")

 sys.exit(-1)

sess, domains = get_authenticated_session(username,
password, base_url)

302 Automating your Network Security Using Python and the Firepower APIs

4.	 Next, we want to define the URL of our rule using the domain ID, policy ID,
and rule ID. With the URL specified, we can send a DELETE request to the
API server:

url = f"{base_url}/api/fmc_config/v1/domain/{domain}/
policy/accesspolicies/{policy_id}/accessrules/{rule_id}"

resp = sess.delete(url)

5.	 Finally, we need to check if our DELETE request was successful:

if resp.ok:

 print(f"Deleted rule with id {rule_id}")

else:

 print(f"Failed to delete rule with id {rule_id}.
Status code: {resp.status_code}")

6.	 To run this script, go to your terminal and execute the following command:

python3 delete_access_rule.py

Important note
Before executing this script, be aware that this will delete the access rule.

Your output should look like this:

Figure 12.11 – Output of our access rule deletion script

The ID of your access rule will differ.

Deleting access rules 303

How it works…
We start by importing our required libraries, and then define our connection details such
as the username/password combination to use for authentication, the base URL of our
FMC instance, the domain under which we are operating, the policy for which our access
rule is defined, and the ID of the rule itself. Next, we define our authentication function.
For a more detailed explanation of how the authentication process works, please refer
to the How to do it… and How it works… sections of the Authenticating against the FMC
REST API recipe.

Next, we define the URL of the access rule we want to delete using the three IDs of the
domain, policy, and rule. We then send a DELETE request to the API and check for a
successful return of our request.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

306 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Python for Networking and Security - Second Edition
José Manuel Ortega
ISBN: 978-1-83921-716-6

•	 Create scripts in Python to automate security and pentesting tasks

•	 Explore Python programming tools that are used in network security processes

•	 Automate tasks such as analyzing and extracting information from servers

•	 Understand how to detect server vulnerabilities and analyze security modules

•	 Discover ways to connect to and get information from the Tor network

•	 Focus on how to extract information with Python forensics tools

https://www.packtpub.com/product/mastering-python-for-networking-and-security-second-edition/9781839217166

Other Books You May Enjoy 307

Azure Networking Cookbook - Second Edition

Mustafa Toroman

ISBN: 978-1-80056-375-9

•	 Get to grips with building Azure networking services

•	 Understand how to create and work on hybrid connections

•	 Configure and manage Azure networking services

•	 Explore ways to design high availability network solutions in Azure

•	 Discover how to monitor and troubleshoot Azure network resources

•	 Work with different methods to connect local networks to Azure virtual networks

https://www.packtpub.com/product/azure-networking-cookbook-second-edition/9781800563759

308

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Python Network Programming Techniques, we'd love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site
that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1838646639
https://packt.link/r/1838646639

Index

Symbols
.items() function

used, to retrieve key-value pairs
from dictionary 21

A
Access Key ID 253
access list

for-loops, using in Jinja2 to
configure 54-56

Access Point (AP)
webhooks, used for reacting

programmatically to 221-223
access policies

modifying 288-292
retrieving 283-288

access rules
deleting 300-303
modifying 296-299
retrieving 292-296

access token 197
Ansible playbooks

modules, packaging and
calling from 246-249

Ansible's built-in functionality
using, to do web requests 240-246

API Explorer
about 275
exploring 275-279

application programming
interface (API) 240

application programming
interfaces (APIs) 171

authentication
public/private keys, using 41-43

authentication data
storing, between requests with

sessions 200-202
Authorization 197
AWS account

used, for setting up library 253-255
AWS, subnets implementation

reference link 269

B
basic authentication (basic auth) 282
Basic keyword 198

310 Index

blocks inheritance
configuration template,

structuring with 67-70
boto3

used, for launching EC2
instances 260-263

C
channel usage

retrieving, for Meraki access
point 213-215

classless inter-domain routing (CIDR) 240
cloud networking resources

information, collecting 256-260
code

executing, with while loops 12, 13
command outputs

retrieving, as structured Python
data with Genie 79-83

retrieving, as structured Python
data with netmiko 79-83

commands
executing, against multiple

devices 36-38
executing, via SSH 32, 33
issuing, with pyATS 158-160
sending, with netmiko 77-79

commands, issuing to device
with NAPALM 131-133

commands, sequence
executing 39-41

commands, that prompt for information
handling, with netmiko 100-102

configuration template
applying, with Jinja2 91-93
applying, with netmiko 91-93
creating, with Jinja2 90-93

creating, with netmiko 90-93
structuring, with blocks

inheritance 67-70
structuring, with template

inheritance 67-70
configuration templates

applying, with NAPALM 143-147
creating, with Jinja2 143-147

connected clients
retrieving, for Meraki network 207-209

continuous integration/continuous
delivery (CI/CD) pipeline 255

custom header fields
used, for passing token to request 199

D
data types

converting, in Python 6-8
deployment phase 155
deployments

validating, with NAPALM 150-152
deployment stage 155
design phase 155
development stage 155
device

connecting, with pyATS 158-160
current state, comparing to

learned state 166-168
current state, retrieving with

pyATS 160-162
device capabilities 111
device configuration

backing up, with NAPALM 136-139
device, connecting from vendors

with NAPALM 129, 130
device handlers and vendors 116

Index 311

device interface
retrieving, with requests

module 182-184
retrieving, with RESTCONF 182-184

dictionaries
used, for accessing key-value pairs 17-20
used, for storing key-value pairs 17-20

double equals sign 12

E
EC2 instances

launching, with boto3 260-263
Elastic Compute Cloud (EC2) 256
escape sequences 103
European Organization for Nuclear

Research (CERN) 171
event notifications

reacting, with ncclient 124-126
reacting, with NETCONF 124-126

executed command
output, reading 34-36

eXtended Markup Language (XML) 107

F
facts

gathering, with netmiko 83-86
files

copying, to device with netmiko 94-96
modes 20
rendered template, writing to 53, 54

filters 119
FMC REST API

authenticating 279-283
for-loops

used, to iterate items in lists 10

using, in Jinja2 to configure
access list 54-56

function overloading 77
functions

used, for writing reusable code 15, 16
with multiple arguments 16

G
Genie

about 80
command outputs, retrieving as

structured Python data 79-83
Genie Conf objects

using, to create portable
configuration script 163, 164

genie, models list
reference link 162

Genie, parsers
reference link 83

GET request
about 181
making 180

GigabitEthernet2 interface 184
graphical user interface (GUI) 275

H
HEAD request 182
HTTP header 172
HTTP request

making, with requests module
in Python 177-179

HTTP request components
request body 171
request header fields 171
request line 171

HTTP response 173

312 Index

HTTP response, components
message body 173
response header fields 173
status line 173

HTTP Secure (HTTPS) 178
HTTP's request-response model

revisiting 171-175
working 171

HyperText Transfer Protocol
(HTTP) 240, 282

I
if-clauses

used, for creating port configuration
template in Jinja2 57-60

if statements
using, to control flow of Python

program 10, 11
infinite loops 14
interactive documentation 279
interface configuration

changing, with ncclient 122-124
changing, with NETCONF 122-124
retrieving, with ncclient 119-121
retrieving, with NETCONF 119-121

Internet Protocol (IP) 157, 183
Internetwork Operating System (IOS) 158
IP Address Management (IPAM) 90
IPAM Netbox

reference link 90

J
JavaScript Object Notation

(JSON) 162, 229, 278

Jinja2
configuration template,

applying with 91-93
configuration template,

creating with 91-93
for-loops, using to configure

access list 54-56
port configuration template,

creating with if-clauses 57-60
used, for creating configuration

template 143-147
Jinja2 filters

Python functions, using within
template with 63-66

Jinja2 's import methods
used, for creating modular

templates 60-63
Jinja2 templates

loading, in Python 48-50
JSON-encoded 281

K
key-value pairs

accessing, with dictionaries 17-20
storing, with dictionaries 17-20

L
learned state

device's current state,
comparing to 166-168

library
setting up, with AWS account 253-255

lists
looping, in Python 8

local SSH configuration
loading 44-46

Index 313

M
MD5 checksum 96
MD5 hash 96
Meraki access point

channel usage, retrieving 213-215
Meraki API 279
Meraki device

QoS rules, deleting on 218-220
rebooting 210, 211
switchport configuration,

updating 216-218
Meraki network

connected clients, retrieving 207-209
list, retrieving 203-206
usage details, retrieving 207-209

Meraki SDK
used, for deleting QoS rules 220
used, for rebooting 212
used, for retrieving channel usage 215
using 203-209

modular templates
creating, with Jinja2 's import

methods 60-63
module

documenting 231-235
importing, from standard library 21-23
information, passing into 235-240
installing, from PyPI 24, 25
packaging and calling, from

Ansible playbooks 246-249
structure, setting up 227-231

monitoring phase 155
monitoring stage 155
multiple devices

same command, executing against 36-38
multiple devices, in JSON file

connecting 87-90

N
NAPALM

used, for applying configuration
template 143-147

used, for backing up device
configuration 136-139

used, for connecting to devices
from vendors 129, 130

used, for gathering facts of
network device 139-142

used, for issuing commands
to device 131-133

used, for rolling back configuration
changes 147-149

used, for testing network
reachability 134-136

used, for validating
deployments 150-152

ncclient
network device, connecting

with 110-113
used, to change starting

configuration 117, 118
used, for changing interface

configuration 122-124
used, for reacting to event

notifications 124-126
used, to retrieve running

configuration 113-115
used, for retrieving interface

configuration 119-121
NETCONF

about 107, 108
used, to change starting

configuration 117, 118
used, for changing interface

configuration 122-124

314 Index

used, for reacting to event
notifications 124-126

used, to retrieve running
configuration 113-115

used, for retrieving interface
configuration 119-121

NETCONF protocol
core operations 107

netmiko
command outputs, retrieving as

structured Python data 79-83
commands, sending with 77-79
commands that prompt for information,

handling with 100-103
configuration template, applying 91-93
configuration template, creating 91-93
facts, gathering with 83-86
network device, connecting with 72-75
privileges, escalating 96-98
public-private keys, authenticating

with 98-100
used, for copying files to device 94, 95

network configuration (NETCONF) 158
network device

connecting, with ncclient 110-113
connecting, with netmiko 72-75

network reachability
testing, with NAPALM 134-136
testing, with ping 134-136

ngrok
URL 222

O
OpenAPI Specification 279
Open Shortest Path First

(OSPF) protocol 110
Operating System (OS) 158

P
page 284
pagination 283
Paramiko

private key, finding 43
SSH session, initiating 28-31
unknown host keys, handling 31

parsers, up-to-date list
reference link 86

ping
used, for testing network

reachability 134-136
plugin 227
portable configuration script

creating, with Genie Conf
objects 163, 164

port configuration template
creating, with if-clauses in Jinja2 57-60

privileges
escalating, with netmiko 97, 98

public-private keys
authenticating, with netmiko 98-100

public/private keys
using, for authentication 41-43

pyATS
device's current state, retrieving

with 160-162
used, for connecting device 158-160
used, for issuing commands 158-160

pyATS testbed file
creating 156-158

PyPI
modules, installing from 24, 25

Python
data types conversion 6-8
getpass module 32
Jinja2 templates, loading in 48-50

Index 315

lists, looping 8, 9
variables, assigning in 2-5
variables, passing to template 50-52

Python functions
using, within template with

Jinja2 filters 63-66

Q
QoS rules

deleting, on Meraki device 218-220

R
randint() function

importing, from random module 23
raw string 103
Remote Procedure Call (RPC) 110
rendered template

writing, to file 53, 54
REpresentational State Transfer

(REST) 240
REpresentational State Transfer (REST)

configuration (RESTCONF) 158
request

username-password combination,
passing as authentication
data 198, 199

Request for Comments (RFC)
about 177
reference link 177

requests module
used, for creating VLAN 186-188
used, for deleting VLAN 191-193
used for making HTTP request

in Python 177-180
used, for updating VLAN 188-190

using, to retrieve device
interface 182-184

RESTCONF
used, for creating VLAN 186-188
used, for deleting VLAN 191-193
used, for updating VLAN 188-190
using, to retrieve device

interface 182-184
RESTCONF principles

building 176
revisiting 171-175

reusable code
writing, with functions 15, 16

running configuration
retrieving, with ncclient 113-115
retrieving, with NETCONF 113-115

S
Secret Key 253
Secure Sockets Layer (SSL) 281
sessions

used, for storing authentication data
between requests 200-202

SSH
command, executing via 32, 33

SSH session
initiating, with Paramiko 28-31

SSL verification 281
standard library

modules, importing from 21-23
starting configuration

changing, with ncclient 117, 118
changing, with NETCONF 117, 118

Swagger Docs 279
switchport configuration, Meraki device

updating 216-218

316 Index

T
template inheritance

configuration template,
structuring with 67-70

testing phase 155
testing stage 155
token

about 197
passing, to request with custom

header fields 199
with indefinite validity 197
with limited validity 197

U
Uniform Resource Locator

(URL) 178, 244
usage details

retrieving, for Meraki network 207-209
username-password combination

passing, as authentication data
in request 198, 199

V
variables

assigning, in Python 2-6
comparison operators 12
passing, from Python to template 50-52

variadic arguments 76
vendor-specific handling 116
Virtual Local Area Network (VLAN)

creating, with requests module 186-188
creating, with RESTCONF 186-188
deleting, with requests module 191-193
deleting, with RESTCONF 191-193

updating, with requests module 188-190
updating, with RESTCONF 188-190

Virtual Private Clouds (VPCs)
about 256
creating 263-266
routes, modifying 269-272
subnetting 266-269

Visual Studio Code (VS Code) 274

W
webhooks

used, to programmatically react
to AP going down 221-223

web requests
Ansible's built-in functionality,

using 240-246
authenticating 197

while loops
used, for executing code 12, 13

World Wide Web (WWW) 171

Y
YAML Ain't Markup Language

(YAML) 156
YANG module 107-110, 185
YANG module, devices and features

reference link 110
Yet Another Next Generation

(YANG) 108

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Chapter 1: A Primer on
Python 3
	Technical requirements
	Assigning variables in Python
	Getting ready
	How to do it…
	How it works…

	Converting between data types in Python
	Getting ready
	How to do it…
	How it works…

	Looping over lists in Python
	Getting ready
	How to do it…
	How it works…
	There's more…

	Controlling the flow of a Python program using if statements
	Getting ready
	How to do it…
	How it works…
	There's more…

	Executing code until a condition is met using while loops
	Getting ready
	How to do it…
	How it works…
	There's more…

	Writing reusable code with functions
	Getting ready
	How to do it…
	How it works…
	There's more…

	Storing and accessing key-value pairs using dictionaries
	Getting ready
	How to do it…
	How it works…
	There's more…

	Importing modules from the standard library
	Getting ready
	How to do it…
	How it works…
	There's more…

	Installing modules from the PyPI
	Getting ready
	How to do it…
	How it works…

	Chapter 2: Connecting to Network Devices via SSH Using Paramiko
	Technical requirements
	Initiating an SSH session with Paramiko
	Getting ready
	How to do it...
	How it works...
	There's more...

	Executing a command via SSH
	Getting ready
	How to do it...
	How it works...

	Reading the output of an executed command
	Getting ready
	How to do it...
	How it works...
	There's more...

	Executing the same command against multiple devices
	Getting ready
	How to do it...
	How it works...

	Executing a sequence of commands
	Getting ready
	How to do it...
	How it works...

	Using public/private keys for authentication
	Getting ready
	How to do it...
	How it works...
	There's more...

	Loading local SSH configuration
	Getting ready
	How to do it...
	How it works...

	Chapter 3: Building Configuration Templates Using Jinja2
	Technical requirements
	Loading Jinja2 templates in Python
	Getting ready
	How to do it...
	How it works...
	There's more...

	Passing variables from Python to a template
	Getting ready
	How to do it...
	How it works...
	There's more...

	Writing your rendered template to a file
	Getting ready
	How to do it
	How it works...

	Using for-loops in Jinja2 to configure
an access list
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a port configuration template using if-clauses in Jinja2
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating modular templates using Jinja2's import methods
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using Python functions from within your template with Jinja2 filters
	Getting ready
	How to do it...
	How it works...
	There's more...

	Structuring your configuration template with blocks and template inheritance
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 4: Configuring Network Devices Using Netmiko
	Technical requirements
	Connecting to a network device using netmiko
	Getting ready
	How to do it...
	How it works...
	There's more...

	Sending commands using netmiko
	Getting ready
	How to do it...
	How it works...

	Retrieving command outputs as structured Python data using netmiko and Genie
	Getting ready
	How to do it...
	How it works...

	Gathering facts using netmiko
	Getting ready
	How to do it...
	How it works...
	There's more...

	Connecting to multiple devices
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating and applying a configuration template with Jinja2 and netmiko
	Getting ready
	How to do it...
	How it works...
	There's more...

	Copying files to a device using netmiko
	Getting ready
	How to do it...
	How it works...
	There's more...

	Escalating privileges with netmiko
	Getting ready
	How to do it...
	How it works...

	Authenticating using public-private keys with netmiko
	Getting ready
	How to do it...
	How it works...

	Handling commands that prompt for information using netmiko
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 5: Model-Driven Programmability with NETCONF and ncclient
	Technical requirements
	Revisiting the NETCONF and YANG modules
	Connecting to a network device using ncclient
	Getting ready
	How to do it…
	How it works…

	Using NETCONF and ncclient to retrieve the running configuration
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using NETCONF and ncclient to change the starting configuration
	Getting ready
	How to do it…
	How it works…

	Retrieving an interface configuration using NETCONF and ncclient
	Getting ready
	How to do it…
	How it works…

	Changing an interface configuration using NETCONF and ncclient
	Getting ready
	How to do it…
	How it works…

	Reacting to event notifications using NETCONF and ncclient
	Getting ready
	How to do it…
	How it works…

	Chapter 6: Automating Complex Multi-Vendor Networks with NAPALM
	Technical requirements
	Connecting to devices from different vendors using NAPALM
	Getting ready
	How to do it…
	How it works…
	There's more…

	Issuing commands to a device using NAPALM
	Getting ready
	How to do it…
	How it works…

	Testing network reachability using ping and NAPALM
	Getting ready
	How to do it…
	How it works…

	Backing up your device configuration using NAPALM
	Getting ready
	How to do it…
	How it works…

	Gathering facts about your network device using NAPALM
	Getting ready
	How to do it…
	How it works…

	Creating and applying a configuration template with jinja2 and NAPALM
	Getting ready
	How to do it…
	How it works…

	Rolling back configuration changes using NAPALM
	Getting ready
	How to do it…
	How it works…

	Validating deployments using NAPALM
	Getting ready
	How to do it…
	How it works…

	Chapter 7: Automating Your Network Tests and Deployments with pyATS and Genie
	Technical requirements
	Revisiting the concept of testing
	Creating a pyATS testbed file
	Getting ready
	How to do it…
	How it works…

	Connecting to your device and issuing commands using pyATS
	Getting ready
	How to do it…
	How it works…

	Retrieving your device's current state
using pyATS
	Getting ready
	How to do it…
	How it works…

	Using Genie Conf objects to create a portable configuration script
	Getting ready
	How to do it…
	How it works…
	There's more…

	Comparing your device's current state to a previously learned state
	Getting ready
	How to do it…
	How it works…

	Chapter 8: Configuring Devices Using RESTCONF
and requests
	Technical requirements
	Revisiting HTTP's request-response model and RESTCONF principles
	How does HTTP work?
	How RESTCONF builds on top of HTTP

	Making HTTP requests using the requests module in Python
	Getting ready
	How to do it…
	How it works…
	There's more…

	Retrieving all interfaces of a device using RESTCONF and requests
	Getting ready
	How to do it…
	How it works…
	There's more…

	Creating a VLAN using RESTCONF and requests
	Getting ready
	How to do it…
	How it works…

	Updating a VLAN using RESTCONF and requests
	Getting ready
	How to do it…
	How it works…
	There's more…

	Deleting a VLAN using RESTCONF and requests
	Getting ready
	How to do it…
	How it works…

	Chapter 9: Consuming Controllers and High-Level Networking APIs with requests
	Technical requirements
	Authenticating web requests
	Passing a username-password combination as authentication data in a request
	Passing a token to a request using custom header fields

	Storing authentication metadata between requests using sessions
	Getting ready
	How to do it…
	How it works…
	There's more…

	Retrieving a list of Meraki networks
	Getting ready
	How to do it…
	How it works…
	There's more…

	Retrieving usage details and connected clients for a Meraki network
	Getting ready
	How to do it…
	How it works…
	There's more…

	Rebooting a Meraki device
	Getting ready
	How to do it…
	How it works…
	There's more…

	Retrieving channel usage for your Meraki access point
	Getting ready
	How to do it…
	How it works…
	There's more…

	Updating the switchport configuration of a Meraki device
	Getting ready
	How to do it…
	How it works…

	Deleting the QoS rules on a Meraki device
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using webhooks to programmatically react to an AP going down
	Getting ready
	How to do it…
	How it works…

	Chapter 10: Incorporating your Python Scripts into an Existing Workflow by Writing Custom Ansible Modules
	Technical requirements
	Setting up the module structure
	Getting ready
	How to do it…
	How it works…
	There's more…

	Documenting your module
	Getting ready
	How to do it…
	How it works…

	Passing information into your module
	Getting ready
	How to do it…
	How it works…

	Using Ansible's built-in functionality to do
web requests
	Getting ready
	How to do it…
	How it works…

	Packaging and calling your modules from Ansible playbooks
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 11: Automating AWS Cloud Networking Infrastructure Using the AWS Python SDK
	Technical requirements
	Setting up the library to interact with your AWS account
	Getting ready
	How to do it…
	How it works…
	There's more…

	Collecting information about your cloud networking resources
	Getting ready
	How to do it…
	How it works…

	Starting EC2 instances
	Getting ready
	How to do it…
	How it works…

	Creating a VPC
	Getting ready
	How to do it…
	How it works…
	There's more…

	Subnetting your VPC
	Getting ready
	How to do it…
	How it works…

	Changing routes in your VPC
	Getting ready
	How to do it…
	How it works…

	Chapter 12: Automating your Network Security Using Python and the Firepower APIs
	Technical requirements
	Exploring the API Explorer
	Authenticating against the FMC REST API
	Getting ready
	How to do it…
	How it works…
	There's more…

	Retrieving access policies
	Getting ready
	How to do it…
	How it works…

	Changing access policies
	Getting ready
	How to do it…
	How it works…

	Retrieving access rules
	Getting ready
	How to do it…
	How it works…

	Changing access rules
	Getting ready
	How to do it…
	How it works…

	Deleting access rules
	Getting ready
	How to do it…
	How it works…

	Other Books You May Enjoy
	Index

