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Preface

Python Feature Engineering Cookbook, Second Edition, covers almost every aspect of feature engineering 
for tabular data, including missing data imputation, categorical encoding, variable transformation, 
discretization, scaling, and the handling of outliers. It also discusses how to extract features from date 
and time, text, time series, and relational datasets.

This book will take the pain out of feature engineering by showing you how to use open source 
Python libraries to accelerate the feature engineering process via multiple practical, hands-on recipes. 
Throughout the book, you will transform and create new features utilizing pandas, scikit-learn, and 
also the four major open source feature engineering libraries: Feature-engine, Category Encoders, 
Featuretools, and tsfresh.

Who this book is for
This book is for machine learning and data science students and professionals, as well as software 
engineers working on machine learning model deployment, who want to learn more about how to 
transform their data and create new features to train better machine learning models.

What this book covers
Chapter 1, Imputing Missing Data, discusses various techniques to fill in missing values with estimates 
of missing data that are suitable for numerical and categorical features.

Chapter 2, Encoding Categorical Variables, introduces various widely used techniques to transform 
categorical variables into numbers. It starts by describing commonly used methods such as one-hot 
and ordinal encoding, then it moves on to domain-specific methods such as the weight of the evidence, 
and finally, it shows you how to encode variables that are highly cardinal.

Chapter 3, Transforming Numerical Variables, explain when we need to transform variables for use 
in machine learning models and then discusses common transformations and their suitability, based 
on variable characteristics.

Chapter 4, Performing Variable Discretization, introduces discretization and when it is useful, and 
then moves on to describe various discretization methods and their advantages and limitations. It 
covers the basic equal-with and equal-frequency discretization procedures, as well as discretization 
using decision trees and k-means.
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Chapter 5, Working with Outliers, shows commonly used methods to remove outliers from the 
variables. You will learn how to detect outliers, how to cap variables at a given arbitrary value, and 
how to remove outliers.

Chapter 6, Extracting Features from Date and Time, describes how to create features from dates and 
time variables. It covers how to extract date and time components from features, as well as how to 
combine datetime variables and how to work with different time zones.

Chapter 7, Performing Feature Scaling, covers methods to put the variables on a similar scale. It discusses 
standardization, how to scale to maximum and minimum values, and how to perform more robust 
forms of variable scaling.

Chapter 8, Creating New Features, describes multiple methods with which we can combine existing 
variables to create new features. It shows the use of mathematical operations and also decision trees 
to create variables from two or more existing features.

Chapter 9, Extracting Features from Relational Data with Featuretools, introduces relational datasets 
and then moves on to explain how we can create features at different data aggregation levels, utilizing 
Featuretools. You will learn how to automatically create dozens of features from numerical and 
categorical variables, datetime, and text.

Chapter 10, Creating Features from Time Series with tsfresh, discusses how to automatically create 
several hundreds of features from time series data, for use in supervised classification or regression. You 
will learn how to automatically create and select relevant features from your time series with tsfresh.

Chapter 11, Extracting Features from Text Variables, covers simple methods to clean and extract value 
from short pieces of text. You will learn how to count words, sentences, characters, and lexical diversity. 
You will discover how to clean your text pieces and how to create feature matrices by counting words.

To get the most out of this book
Python Feature Engineering Cookbook will give you the practice, tools, and techniques to streamline your 
feature engineering pipelines and simplify and improve the quality of your code. The book discusses 
feature engineering methods to transform and create features to train machine learning models using 
Python. Therefore, some knowledge of machine learning and Python programming will be an asset.

The recipes have been tested in the following library versions: category-encoders == 2.4.0, 
Feature-engine == 1.4.0, featuretools == 1.4.0, 1.5.0, matplotlib==3.4.2, 
numpy==1.22.0, pandas==1.5.0, scikit-learn==1.1.0, scipy==1.7.0, 
seaborn==0.11.1, statsmodels==0.12.2, and tsfresh==0.19.0.

Software/hardware covered in the book OS requirements
Python 3.3 or greater Windows, macOS, or Linux
Jupyter Notebook Windows, macOS, or Linux
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Note that earlier versions or newer versions than those displayed in the table may prevent code from 
running. If you are using newer versions, make sure to check their documentation online for changes 
in parameter names. That usually solves the issue.

If you are using the digital version of this book, we advise you to type the code yourself or access 
the code via the GitHub repository (link available in the next section). Doing so will help you 
avoid any potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition. 
If there’s an update to the code, it will be updated in the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You 
can download it here: https://packt.link/UXyxc.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, 
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: 
“Next, we applied the fit_transform() method to replace missing data in the train set and the 
transform() method to replace missing data in the test set.”

A block of code is set as follows:

X_train = pd.DataFrame(

    X_train,

    columns=numeric_vars + remaining_vars,

)

Any command-line input or output is written as follows:

pip install feature-engine

https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/UXyxc
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Bold: Indicates a new term, an important word, or words that you see on screen. For example, 
words in menus or dialog boxes appear in the text like this. Here is an example: “Click on crx.data 
to download the data.”

Tips or Important notes
Appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it..., How 
it works..., There’s more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready

This section tells you what to expect in the recipe and describes how to set up any software or any 
preliminary settings required for the recipe.

How to do it…

This section contains the steps required to follow the recipe.

How it works…

This section usually consists of a detailed explanation of what happened in the previous section.

There’s more…

This section consists of additional information about the recipe in order to make you more knowledgeable 
about the recipe.

See also

This section provides helpful links to other useful information for the recipe.
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Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title in the 
subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata, select your book, click on the Errata Submission 
Form link, and enter the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on the site that 
you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase 
decisions, we at Packt can understand what you think about our products, and our authors can see 
your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://packt.com
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Share Your Thoughts
Once you’ve read Python Feature Engineering Cookbook, we’d love to hear your thoughts! Please 
click here to go straight to the Amazon review page for this book and share 
your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

https://packt.link/r/1-804-61130-1
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1
Imputing Missing Data

Missing data, that is, the absence of values for certain observations, is an unavoidable problem in 
most data sources. Scikit-learn, the most commonly used Python library for machine learning, does 
not support missing values as input to machine learning models. Thus, we must remove observations 
with missing data or transform them into permitted values.

The act of replacing missing data with statistical estimates of missing values is called imputation. 
The goal of any imputation technique is to produce a complete dataset. There are multiple imputation 
methods that we can use, depending on whether the data is missing at random, the proportion of 
missing values, and the machine learning model we intend to use. In this chapter, we will discuss 
several imputation methods.

This chapter will cover the following recipes:

• Removing observations with missing data

• Performing mean or median imputation

• Imputing categorical variables

• Replacing missing values with an arbitrary number

• Finding extreme values for imputation

• Marking imputed values

• Performing multivariate imputation by chained equations

• Estimating missing data with nearest neighbors

Technical requirements
In this chapter, we will use the Matplotlib, pandas, NumPy, scikit-learn, and feature-engine 
Python libraries. If you need to install Python, the free Anaconda Python distribution (https://
www.anaconda.com/) comes with most numerical computing libraries out of the box.

https://www.anaconda.com/
https://www.anaconda.com/
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Feature-engine can be installed with pip:

pip install feature-engine

If you use Anaconda, you can install feature-engine with conda:

conda install -c conda-forge feature_engine

We will use the Credit Approval dataset from the UCI Machine Learning Repository (https://
archive.ics.uci.edu/). To prepare the dataset, follow these steps:

1. Visit https://archive.ics.uci.edu/ml/machine-learning-databases/
credit-screening/.

2. Click on crx.data to download the data.

Figure 1.1 – Screenshot of the dataset download page

3. Save crx.data to the folder where you will run the following commands.

Open a Jupyter notebook and run the following commands.

4. Import the required Python libraries:

import random

import numpy as np

import pandas as pd

5. Load the data into a pandas DataFrame:

data = pd.read_csv("crx.data", header=None)

6. Create a list with variable names:

varnames = [f"A{s}" for s in range(1, 17)]

https://archive.ics.uci.edu/
https://archive.ics.uci.edu/
https://archive.ics.uci.edu/ml/machine-learning-databases/credit-screening/
https://archive.ics.uci.edu/ml/machine-learning-databases/credit-screening/
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7. Add the variable names to the DataFrame:

data.columns = varnames

8. Replace the question marks (?) in the dataset with NumPy NaN values:

data = data.replace("?", np.nan)

9. Cast some numerical variables as float data types:

data[" A2"] = data["A2"].astype("float")

data[" A14"] = data["A14"].astype("float")

10. Encode the target variable as binary:

data["A16"] = data["A16"].map({"+":1, "-":0})

11. Rename the target variable:

data.rename(columns={"A16": "target"}, inplace=True)

We will introduce missing data at random places in four variables.

12. Add missing values at random positions in four variables:

random.seed(9001)

values = list(set([random.randint(0, len(data)) for p in 
range(0, 100)]))

data.loc[values, ["A3", "A8", "A9", "A10"]] = np.nan

13. Save your prepared data:

data.to_csv("credit_approval_uci.csv", index=False)

Note
Make sure you store the dataset in the same folder from which you will execute the code in 
the recipes.

Now, you are ready to carry on with the recipes in this chapter.

Removing observations with missing data
Complete Case Analysis (CCA), also called list-wise deletion of cases, consists of discarding observations 
with missing data. CCA can be applied to both categorical and numerical variables. With CCA, we 
preserve the distribution of the variables after the imputation, provided the data is missing at random 
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and only in a small proportion of observations. However, if data is missing for many variables, CCA 
may lead to the removal of a large portion of the dataset.

How to do it...

Let’s begin by making some imports and loading the dataset:

1. Let’s import the pandas and matplotlib libraries:

import matplotlib.pyplot as plt

import pandas as pd

2. Load the dataset that we prepared in the Technical requirements section:

data = pd.read_csv("credit_approval_uci.csv")

3. Find the proportion of missing values per variable, sort them in ascending order, and then 
make a bar plot, rotating the ticks on the xaxis and adding a title and the y-axis label:

with plt.style.context("seaborn"):

    data.isnull().mean().sort_values(

                         ascending=True).plot.bar(rot=45)

    plt.ylabel("Proportion of missing data")

    plt.title("Proportion of missing data per variable")

The preceding code block returns the following bar plot:

Figure 1.2 – Proportion of missing data per variable
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4. Now, we’ll remove observations if they have missing values in any variable:

data_cca = data.dropna()

Note
The dropna() method drops observations with any missing value by default. We can remove 
observations with missing data in a subset of variables like this: data.dropna(subset=["A3", 
"A4"]).

5. Let’s print and compare the size of the original and complete case datasets:

print(f"Total number of observations: {len(data)}")

print(f"Number of observations without missing data{len(

    data_cca)}")

We removed more than 100 observations with missing data, as shown in the following output:

Total number of observations: 690

Number of observations without missing data 564

6. To drop observations with missing data utilizing feature-engine, let’s import the 
required transformer:

from feature_engine.imputation import DropMissingData

7. Set up the imputer to automatically find the variables with missing data:

cca = DropMissingData(variables=None, missing_only=True)

8. Make the transformer identify the variables with missing data:

cca.fit(data)

9. Let’s inspect the variables with missing data:

cca.variables_

The preceding command returns the names of the variables with missing data:

['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 
'A10', 'A14']

10.  Remove observations with missing data in the previous variables:

data_cca = cca.transform(data)

Use the code in step 3 to corroborate the absence of missing data in the complete case dataset.
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Tip
To remove obser vat ions with missing data in a  subset  of  variables ,  use 
DropMissingData(variables=['A3', 'A4']). To remove observations with 
missing values in at least 5% of the variables, use DropMissingData(threshold=0.95).

How it works...

In this recipe, we identified and plotted the proportion of missing data in each variable and then 
removed all observations with missing values.

We used the pandas isnull() and mean() methods to determine the proportion of missing 
observations in each variable. The isnull() method created a Boolean vector per variable with the 
True and False values to indicate whether a value is missing. The mean() method took the average 
of these values and returned the proportion of missing data. The pandas sort_values()method 
ordered the variables from that with the least to that with the most missing data. We then used the 
pandas plot.bar()method to create a bar plot. To remove observations with missing values in 
any variable, we used the pandas dropna()method, thereby obtaining a complete case dataset.

Finally, we removed missing data using feature-engine’s DropMissingData(), which 
automatically identified and stored the variables with missing data from the train set when we called 
the fit() method. With the transform() method, the imputer removed observations with 
missing data in those variables.

Performing mean or median imputation
Mean or median imputation consists of replacing missing values with the mean or median variable. 
The mean or median is calculated using a train set, and these values are used to impute missing data 
in train and test sets, as well as in all future data we intend to use with the machine learning model. 
Scikit-learn and feature-engine transformers learn the mean or median from the train set and 
store these parameters for future use out of the box. In this recipe, we will perform mean and median 
imputation using pandas, scikit-learn, and feature-engine.

Tip
Use mean imputation if variables are normally distributed and median imputation otherwise. 
Mean and median imputation may distort the distribution of the original variables if there is 
a high percentage of missing data.
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How to do it...

Let’s begin this recipe:

1. First, we’ll import pandas and the required functions and classes from scikit-learn and feature-
engine:

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.impute import SimpleImputer

from sklearn.compose import ColumnTransformer

from feature_engine.imputation import MeanMedianImputer

2. Let’s load the dataset that we prepared in the Technical requirements section:

data = pd.read_csv("credit_approval_uci.csv")

3. Then, separate the data into train and test sets and their respective targets:

X_train, X_test, y_train, y_test = train_test_split(

    data.drop("target", axis=1),

    data["target"],

    test_size=0.3,

    random_state=0,

)

4. Capture the numerical variables in a list. To do this, we exclude all variables cast as objects:

numeric_vars = X_train.select_dtypes(exclude="O").
columns.to_list()

If you execute numeric_vars, you will see the names of the numerical variables: ['A2', 
'A3', 'A8', 'A11', 'A14', 'A15'].

5. Capture the median values of the numerical variables in a dictionary:

median_values = X_train[numeric_vars].median().to_dict()

Note how we calculate the median using the train set. We will use these values to replace missing 
data in the train and test sets.

Tip
If instead of the median we want to capture the mean, we use pandas mean().
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If you execute median_values, you will see a dictionary with the median value per variable: 
{'A2': 28.835, 'A3': 2.75, 'A8': 1.0, 'A11': 0.0, 'A14': 160.0, 
'A15': 6.0}.

6. Let’s replace missing data with the median:

X_train = X_train.fillna(value=median_values)

X_test = X_test.fillna(value=median_values)

If you execute X_train[numeric_vars].isnull().sum() after the imputation, the 
number of missing values in the numerical variables should be 0.

Tip
The fillna() method returns a new dataset with imputed values by default. We can also 
replace missing data in the original DataFrame by setting inplace to True: X_train.
fillna(value=median_values, inplace=True).

Now, let’s impute missing values with the median using scikit-learn. First, we separate the 
original dataset into train and test sets as we did in step 3.

7. Next, we capture the non-numerical variables in a list:

remaining_vars = [var for var in X_train.columns if var 
not in numeric_vars]

8. Let’s set up the imputer to replace missing data with the median:

imputer = SimpleImputer(strategy="median")

Mean imputation
To perform mean imputation, set SimpleImputer()  like this: imputer = 
SimpleImputer(strategy = "mean").

9. Indicate which variables we want to impute using the ColumnTransformer() auxiliary class:

ct = ColumnTransformer(

    [("imputer",imputer, numeric_vars)],

    remainder="passthrough"

    )

10. Fit SimpleImputer() to the train set so that it learns the median values of the variables:

ct.fit(X_train)
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11.  Inspect the learned median values:

ct.named_transformers_.imputer.statistics_

The previous command returns the median values per variable:

array([28.835, 2.75, 1., 0., 160., 6.])

12. Let’s replace missing values with the median:

X_train = ct.transform(X_train)

X_test = ct.transform(X_test)

13. SimpleImputer() returns NumPy arrays. Let’s transform the array into a DataFrame:

X_train = pd.DataFrame(

    X_train,

    columns=numeric_vars + remaining_vars,

)

14. Finally, let’s perform median imputation using feature-engine. First, split the dataset 
into train and test sets, as in step 3. Next, let’s set up the imputer to replace missing data in 
numerical variables with the median:

imputer = MeanMedianImputer(

    imputation_method="median",

    variables=numeric_vars,

)

Tip
To perform mean imputation, change imputation_method to "mean".

15. Fit the imputer so that it learns the median values for the specified variables:

imputer.fit(X_train)

16. Inspect the learned medians:

imputer.imputer_dict_

The previous command returns the median values in a dictionary:

{'A2': 28.835, 'A3': 2.75, 'A8': 1.0, 'A11': 0.0, 'A14': 
160.0, 'A15': 6.0}
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17. Finally, let’s replace the missing values with the median:

X_train = imputer.transform(X_train)

X_test = imputer.transform(X_test)

Feature-engine’s MeanMedianImputer() returns a DataFrame. You can check that the imputed 
variables do not contain missing values using X_train[numeric_vars].isnull().mean().

How it works...

In this recipe, we replaced missing data with the variable’s median values using pandas, scikit-learn, 
and feature-engine.

The mean or median values should be learned from the train set variables. Thus, we divided the 
dataset into train and test sets using scikit-learn’s train_test_split() function. The function 
takes the predictor variables, the target, the fraction of observations to retain in the test set, and a 
random_state value for reproducibility as arguments. We obtained a train set with 70% of the 
original observations and a test set with 30% of the original observations. The 70:30 split was done 
at random.

To impute missing data with pandas, in step 6, we created a dictionary with the numerical variable 
names as keys and their medians as values, utilizing the training set. To capture the median, we used 
pandas median(), and to return a dictionary, we used pandas to_dict(). To replace missing 
data with the median, we used the pandas fillna()method in the train and test sets, passing the 
dictionary with the median values per variable as a parameter.

To replace the missing values using scikit-learn, we used SimpleImputer() with strategy 
set to "median". To impute only numerical variables, we used ColumnTransformer(), which 
takes the imputer and the numerical variable names in a list as parameters. With the passthrough 
argument set to "remainder", we make ColumnTransformer() return all the variables in the 
final output, the imputed ones followed by the remaining ones.

With the fit() method, SimpleImputer() learned the median of each numerical variable in 
the train set and stored them in its statistics_ attribute. With transform(), the transformer 
replaced the missing values with the medians.

To replace missing values with feature-engine, we set up MeanMedianImputer() with 
imputation_method set to "median" and passed the names of the variables to impute in a 
list. With the fit() method, the transformer learned and stored the median values of the specified 
variables in a dictionary in its imputer_dict_ attribute. With the transform() method, the 
missing values were replaced, returning a pandas DataFrame.
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Note
SimpleImputer() operates on the entire DataFrame and returns NumPy arrays. To 
impute just a subset of variables, we need to use ColumnTransformer(). In contrast, 
MeanMedianImputer() can take an entire DataFrame and yet it will only impute the 
specified variables, returning a pandas DataFrame.

Imputing categorical variables
Categorical variables usually contain strings as values, instead of numbers. We replace missing data 
in categorical variables with the most frequent category, or with a different string. Frequent categories 
are estimated using the train set and then used to impute values in the train, test, and future datasets. 
Thus, we need to learn and store these values, which we can do using scikit-learn and feature-
engine’s out-of-the-box transformers. In this recipe, we will replace missing data in categorical 
variables with the most frequent category, or with an arbitrary string.

How to do it...

To begin, let’s make a few imports and prepare the data:

1. Let’s import pandas and the required functions and classes from scikit-learn and feature-
engine:

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.impute import SimpleImputer

from sklearn.compose import ColumnTransformer

from feature_engine.imputation import CategoricalImputer

2. Then, load the dataset that we prepared in the Technical requirements section:

data = pd.read_csv("credit_approval_uci.csv")

3. Separate the data into train and test sets and their respective targets:

X_train, X_test, y_train, y_test = train_test_split(

    data.drop("target", axis=1),

    data["target"],

    test_size=0.3,

    random_state=0,)
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4. Let’s capture the categorical variables in a list:

categorical_vars = X_train.select_dtypes(

    include="O").columns.to_list()

5. Now, capture the most frequent category per categorical variable in a dictionary:

frequent_values = X_train[

    categorical_vars].mode().iloc[0].to_dict()

6. Then, replace missing values with the frequent categories:

X_train = X_train.fillna(value=frequent_values)

X_test = X_test.fillna(value=frequent_values)

Tip
fillna() returns a new dataset with imputed values by default. We can replace missing data 
in the original DataFrame by executing X_train.fillna(value=frequent_values, 
inplace=True).

7. To replace missing data with a specific string, let’s create an imputation dictionary with the 
categorical variable names as the keys and an arbitrary string as the values:

imputation_dict = {var: "no_data" for var

    in categorical_vars}

Now, we can use this dictionary and the code in step 6 to replace missing data.

Tip
With the pandas value_counts() or unique() methods over each categorical variable, 
we can see the string added by the imputation. Try executing, for example, X_train["A1"].
value_counts().

Now, let’s impute missing values by the most frequent category using scikit-learn. First, we 
separate the original dataset into train and test sets as we did in step 3.

8. Make a list with the numerical variables:

imputation_dict = {var: "no_data" for var

    in categorical_vars}

9. Set up the imputer to find the most frequent category:

imputer = SimpleImputer(strategy='most_frequent')
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Tip
SimpleImputer() will learn the mode for numerical and categorical variables alike. But 
in practice, mode imputation is done for categorical variables only.

10. Let’s indicate, using ColumnTransformer(), which variables to impute:

ct = ColumnTransformer(

    [("imputer",imputer, categorical_vars)],

    remainder="passthrough"

    )

11.  Fit the imputer to the train set so that it learns the most frequent values:

ct.fit(X_train)

12.  Inspect the most frequent values learned by the imputer:

ct.named_transformers_.imputer.statistics_

The previous command returns the most frequent values per variable:

array(['b', 'u', 'g', 'c', 'v', 't', 'f', 'f', 'g'], 
dtype=object)

13. Let’s replace missing values with the frequent categories:

X_train = ct.transform(X_train)

X_test = ct.transform(X_test)

14.  SimpleImputer() will return a NumPy array. Let’s transform it into a pandas DataFrame:

X_train = pd.DataFrame(

    X_train,

    columns=categorical_vars + remaining_vars,

)

Note that the imputed variables will be the first columns in the array.

Tip
To impute missing data with a string instead of the most frequent category, set SimpleImputer(), 
as follows:

imputer = SimpleImputer(

    strategy="constant", fill_value="missing"

).
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Finally, let’s impute missing values using feature-engine. First, we need to separate the 
data into train and test sets, just like we did in step 3.

15. Next, let’s set up the imputer to replace missing data in categorical variables by their most 
frequent value:

imputer = CategoricalImputer(

    imputation_method="frequent",

    variables=categorical_vars,

)

Tip
With the variables parameter set to None, CategoricalImputer() will automatically 
find all categorical variables in the train set for imputation.

16. Fit the imputer to the train set so that it learns the most frequent categories:

imputer.fit(X_train)

Tip
To impute categorical variables with a specific string, we set imputation_method to 
"missing" and fill_value to the desired string.

17. Inspect the learned frequent categories:

imputer.imputer_dict_

We can see the dictionary with the most frequent values in the following output:

{'A1': 'b', 'A4': 'u', 'A5': 'g', 'A6': 'c', 'A7': 'v', 
'A9': 't', 'A10': 'f', 'A12': 'f', 'A13': 'g'}

18. Finally, let’s replace the missing values with frequent categories:

X_train = imputer.transform(X_train)

X_test = imputer.transform(X_test)

CategoricalImputer() returns a pandas DataFrame with the imputed values.

How it works...

In this recipe, we replaced the missing values of categorical variables with the most frequent categories 
or an arbitrary string, using pandas, scikit-learn, and feature-engine.
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To impute missing data with pandas, in step 5, we created a dictionary with the variable names 
as keys and the frequent categories as values. To capture the frequent categories, we used pandas 
mode(), and to return a dictionary, we used pandas to_dict(). To replace missing data with 
the mode, we used the pandas fillna()method, passing the dictionary with the variables and 
their frequent categories as parameters.

Tip
A variable can have more than one mode. If this is the case, we may want to choose a different 
imputation method.

To replace missing data with an arbitrary string, we created a dictionary with the "no_data" value 
for each variable and used this dictionary as an argument to the pandas fillna()method.

To replace the missing values using scikit-learn, we used SimpleImputer()with strategy 
set to "frequent". To impute only categorical variables, we used ColumnTransformer(), 
which takes the imputer and the variable list as arguments. With the passthrough argument set 
to "remainder", ColumnTransformer() returned all the variables in the final output, the 
imputed ones first followed by the remaining ones.

With the fit() method, SimpleImputer() learned the frequent categories for each categorical 
variable and stored them in its statistics_ attribute. With the transform() method, missing 
data was replaced with the learned parameters.

SimpleImputer() returns a NumPy array by default. We converted this array into a pandas 
DataFrame. We had to pass the variable names in the correct order: the imputed variables are located 
first in the array, followed by the remaining variables.

To replace missing values with feature-engine, we set up CategoricalImputer() with 
imputation_method set to "frequent" and passed the names of the variables to impute in 
a list. With the fit() method, the transformer learned and stored the most frequent categories of 
the specified variables in a dictionary in its imputer_dict_ attribute. With the transform() 
method, the missing values were replaced with the learned parameters.

Tip
Note that, unlike SimpleImputer(), CategoricalImputer() will only impute 
categorical variables, unless specifically told not to do so by setting the ignore_format 
parameter to True.
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Replacing missing values with an arbitrary number
Arbitrary number imputation consists of replacing missing data with an arbitrary value. Commonly 
used values include 999, 9999, or -1 for positive distributions. This method is suitable for numerical 
variables. For categorical variables, the equivalent method is to replace missing data with an arbitrary 
string, as described in the Imputing categorical variables recipe.

When replacing missing values with arbitrary numbers, we need to be careful not to select a value 
close to the mean, the median, or any other common value of the distribution.

Tip
Arbitrary number imputation can be used when data is not missing at random, when we are 
building non-linear models, and when the percentage of missing data is high. This imputation 
technique distorts the original variable distribution.

In this recipe, we will impute missing data with arbitrary numbers using pandas, scikit-learn, 
and feature-engine.

How to do it...

Let’s begin by importing the necessary tools and loading the data:

1. Import pandas and the required functions and classes:

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.impute import SimpleImputer

from feature_engine.imputation import ArbitraryNumberImputer

2. Let’s load the dataset that we prepared in the Technical requirements section:

data = pd.read_csv("credit_approval_uci.csv")

3. Separate the data into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(

    data.drop("target", axis=1),

    data["target"],

    test_size=0.3,

    random_state=0,

)
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4. We will select arbitrary values greater than the maximum value of the distribution. Let’s find 
the maximum value of four numerical variables:

X_train[['A2','A3', 'A8', 'A11']].max()

The following is the output of the preceding code block:

Figure 1.3 – Maximum value of each variable

5. Replace the missing values with 99, which is bigger than the maximum values of the numerical 
variables in step 4:

X_train[["A2", "A3", "A8", "A11"]] = X_train[[

    "A2", "A3", "A8", "A11"]].fillna(99)

X_test[["A2", "A3", "A8", "A11"]] = X_test[[

    "A2", "A3", "A8", "A11"]].fillna(99)

Tip
To impute different variables with different values using pandas fillna(), pass a dictionary 
with the keys as variables and the values as arbitrary numbers, for example, imputation_dict 
= {"A2": -1, "A3": -1, "A8": 999, "A11": 9999}.

Now, we’ll impute missing values with an arbitrary number using scikit-learn. First, we separate 
the data into train and test sets as in step 3.

6. Let’s set up the imputer to replace missing values with 99:

imputer = SimpleImputer(

    strategy='constant', fill_value=99

    )

Tip
If your dataset contains categorical variables, SimpleImputer() will add 99 to those 
variables as well if any values are missing.
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7. Fit the imputer to a slice of the train set containing the variables to impute:

imputer.fit(X_train[["A2", "A3", "A8", "A11"]])

8. Replace the missing values with 99 in the desired variables:

X_train[["A2", "A3", "A8", "A11"]] = imputer.transform(

  X_train[["A2", "A3", "A8", "A11"]])

X_test[["A2", "A3", "A8", "A11"]] = imputer.transform(

  X_test[["A2", "A3", "A8", "A11"]])

To finish, let’s impute missing values using feature-engine. First, we separate the data 
into train and test sets, just like we did in step 3.

9. Next, let’s set up the imputer to replace missing values with 99, specifying the variables to impute:

imputer = ArbitraryNumberImputer(

    arbitrary_number=99,

    variables=["A2", "A3", "A8", "A11"],

)

Tip
ArbitraryNumberImputer() can automatically select all numerical variables in the 
train set if we set the variables parameter to None.

10. Finally, let’s replace the missing values with 99:

X_train = imputer.fit_transform(X_train)

X_test = imputer.transform(X_test)

Tip
If you want to impute different variables with different numbers, pass a dictionary with the 
variable names as keys and the arbitrary numbers as values to ArbitraryNumberImputer.

We have now replaced missing data with arbitrary numbers using three different open source libraries.

How it works...

In this recipe, we replaced missing values in numerical variables with an arbitrary number using 
pandas, scikit-learn, and feature-engine.
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To determine which arbitrary value to use, we inspected the maximum values of four numerical 
variables using the pandas max()method. Next, we chose the value 99, because it was greater than 
the maximum values of the selected variables. In step 5, we replaced missing data in the four numerical 
variables with the pandas fillna()method, passing 99 as an argument.

To replace missing values using scikit-learn, we utilized SimpleImputer(), with strategy 
set to "constant", and specified 99 in the fill_value argument. Next, we fitted the imputer 
to a slice of the train set with the numerical variables and also replaced missing values using the 
transform() method in a slice of the train and test sets containing the numerical variables. In 
doing so, we replaced the variables with their imputed version in the original data and avoided having 
to convert the resulting NumPy array back into a DataFrame.

Finally, we replaced missing values with ArbitraryValueImputer() from feature-
engine, specifying the value 99 and the variables to impute as parameters. Next, we applied the 
fit_transform() method to replace missing data in the train set and the transform() method 
to replace missing data in the test set.

Finding extreme values for imputation
Replacing missing values with a value at the end of the variable distribution (extreme values) is 
equivalent to replacing them with an arbitrary value, but instead of identifying the arbitrary values 
manually, these values are automatically selected as those at the very end of the variable distribution. 
Missing data can be replaced with a value that is greater or smaller than the remaining values in the 
variable. To select a value that is greater, we can use the mean plus a factor of the standard deviation, 
or the 75th quantile + (IQR * 1.5), where IQR is the IQR given by the 75th quantile - the 25th quantile. 
To replace missing data with values that are smaller than the remaining values, we can use the mean 
minus a factor of the standard deviation, or the 25th quantile – (IQR * 1.5).

Note
End-of-tail imputation may distort the distribution of the original variables, so it may not be 
suitable for linear models.

In this recipe, we will implement end-of-tail or extreme value imputation using pandas and feature-
engine.
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How to do it...

To begin this recipe, let’s import the necessary tools and load the data:

1. Let’s import pandas and the required function and class:

import pandas as pd

from sklearn.model_selection import train_test_split

from feature_engine.imputation import EndTailImputer

2. Load the dataset we prepared in the Technical requirements section:

data = pd.read_csv("credit_approval_uci.csv")

3. Capture the numerical variables in a list, excluding the target:

numeric_vars = [

    var for var in data.select_dtypes(

        exclude="O").columns.to_list() if var !="target"

]

4. Separate the data into train and test sets, keeping only the numerical variables:

X_train, X_test, y_train, y_test = train_test_split(

    data[numeric_vars],

    data["target"],

    test_size=0.3,

    random_state=0,

)

5. Calculate the IQR for all numerical variables:

IQR = X_train.quantile(0.75) - X_train.quantile(0.25)

If we execute IQR, we will see a pandas Series containing its values:

A2         16.4200

A3          6.5825

A8          2.8350

A11         3.0000

A14       212.0000

A15       450.0000

target      1.0000

dtype: float64
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6. Let’s create a dictionary with the variable names as keys and the imputation replacements as 
values, returned by adding 1.5 times the IQR to the 75th quantile:

imputation_dict = (

    X_train.quantile(0.75) + 1.5 * IQR).to_dict()

Tip
If we want to use the Gaussian approximation instead of the IQR proximity rule, we can calculate 
the value to replace missing data using imputation_dict = (X_train.mean() + 
3 * X_train.std()).to_dict().

7. Finally, let’s replace missing data:

X_train = X_train.fillna(value=imputation_dict)

X_test = X_test.fillna(value=imputation_dict)

Note how we calculated the value to impute the missing data using the variables in the train 
set and then used these to impute train and test sets.

Tip
We can also replace missing data with values at the left tail of the distribution using  
value = X_train[var].quantile(0.25) - 1.5 * IQR or value = X_
train[var].mean() - 3*X_train[var].std().

To finish, let’s impute missing values using feature-engine. First, we need to separate the 
data into train and test sets, just like in step 4 of this recipe.

8. Next, let’s set up the imputer to estimate a value at the right of the distribution using the IQR 
proximity rule, specifying the variables to impute:

imputer = EndTailImputer(

    imputation_method="iqr",

    tail="right",

    fold=3,

    variables=None,

)

Tip
To use the mean and standard deviation to calculate the replacement values, we need to set 
imputation_method="Gaussian". We can use 'left' or 'right' in the tail 
argument to specify the side of the distribution where we’ll place the missing values.
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9. Let’s fit EndTailImputer() to the train set so that it learns the parameters:

imputer.fit(X_train)

10. Let’s inspect the learned values:

imputer.imputer_dict_

The previous command returns a dictionary with the imputation values per variable:

{'A2': 88.18,

 'A3': 27.31,

 'A8': 11.504999999999999,

 'A11': 12.0,

 'A14': 908.0,

 'A15': 1800.0}

11. Finally, let’s replace the missing values:

X_train = imputer.transform(X_train)

X_test = imputer.transform(X_test)

Remember that you can corroborate that the missing values were replaced by using X_
train[['A2','A3', 'A8', 'A11', 'A14', 'A15']].isnull().mean().

How it works...

In this recipe, we replaced the missing values in numerical variables with a number at the end of the 
distribution using pandas and feature-engine.

We first calculated the values at the end of the distributions manually according to the formulas 
described in the introduction to this recipe. We determined the quantiles using pandas quantile() 
and the mean and standard deviation using pandas mean() and std(). Next, we used pandas 
fillna() to replace the missing values.

To replace missing values with EndTailImputer() from feature-engine, we set distribution 
to 'iqr' to calculate the values with the IQR proximity rule and tail to 'right' to place values at 
the right tail. We also specified the variables to impute in a list. With the fit() method, the imputer 
learned and stored the values to use for the imputation in a dictionary in the imputer_dict_ 
attribute. With the transform() method, the missing values were replaced, returning DataFrames.

Marking imputed values
A missing indicator is a binary variable that takes the value 1 or True to indicate whether a value was 
missing, or 0 or False otherwise. It is common practice to replace missing observations with the 
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mean, median, or most frequent category while simultaneously marking those missing observations 
with missing indicators. In this recipe, we will learn how to add missing indicators using pandas, 
scikit-learn, and feature-engine.

How to do it...

Let’s begin by making some imports and loading the data:

1. Let’s import the required libraries, functions, and classes:

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.impute import SimpleImputer

from sklearn.compose import ColumnTransformer

from sklearn.pipeline import Pipeline

from feature_engine.imputation import(

    AddMissingIndicator, CategoricalImputer,

    MeanMedianImputer

    )

2. Load the dataset that we prepared in the Technical requirements section:

data = pd.read_csv("credit_approval_uci.csv")

3. Separate the data into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(

    data.drop("target", axis=1),

    data["target"],

    test_size=0.3,

    random_state=0,

)

4. Capture the variable names in a list:

varnames = ["A1", "A3", "A4", "A5", "A6", "A7", "A8"]

5. Create names for the missing indicators in a list:

indicators = [f"{var}_na" for var in varnames]

If we execute indicators, we will see the names of the new variables: ['A1_na', 'A3_
na', 'A4_na', 'A5_na', 'A6_na', 'A7_na', 'A8_na'].
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6. Add the missing indicators with the 1 or 0 value:

X_train[indicators] = X_train[varnames].isna().astype(int)

X_test[indicators] = X_test[varnames].isna().astype(int)

Tip
If you want the indicators to have the True and False values, remove astype(int) in step 6.

7. Let’s inspect the result of the preceding code block:

X_train.head()

We can see the newly added variables at the end of the DataFrame:

Figure 1.4 – DataFrame with the missing indicators

Now, let’s add missing indicators using feature-engine instead. First, we need to divide 
the data, just like we did in step 3.

8. Next, set up the imputer to add binary indicators to every variable with missing data:

imputer = AddMissingIndicator(

    variables=None, missing_only=True

    )

9. Fit the imputer to the train set so that it finds the variables with missing data:

imputer.fit(X_train)

If we execute imputer.variables_, we will find the variables for which missing indicators 
will be added.

10. Finally, let’s add the missing indicators:

X_train = imputer.transform(X_train)

X_test = imputer.transform(X_test)
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11. Create a pipeline to add missing indicators to categorical and numerical variables, then impute 
categorical variables with the most frequent category, and numerical variables with the mean:

pipe = Pipeline(

    [

        ("ind",

        AddMissingIndicator(missing_only=True)

        ),

        ("cat",

        CategoricalImputer(

            imputation_method="frequent")

        ),

        ("num", MeanMedianImputer()),

    ]

)

Note
Feature-engine imputers automatically identify all numerical or categorical variables, 
modifying only the appropriate variables. So there is no need to slice the data or pass the 
variable names as arguments to the transformers in this case.

12. Now, let’s add the indicators and impute missing values:

X_train = pipe.fit_transform(X_train)

X_test = pipe.transform(X_test)

Use X_train.isnull().sum() to corroborate that there is no data missing.

Finally, let’s add missing indicators and simultaneously impute numerical and categorical 
variables with the mean and most frequent categories respectively, utilizing scikit-learn.

13. Make a list with the names of the numerical and categorical variables:

numvars = X_train.select_dtypes(

    exclude="O").columns.to_list()

catvars = X_train.select_dtypes(

    include="O").columns.to_list()
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14. Set up a pipeline to perform mean and frequent category imputation while marking the 
missing data:

pipe = ColumnTransformer(

    [

        (

            "num_imputer",

            SimpleImputer(

                strategy="mean",

                add_indicator=True

                ),

            numvars

        ),

        (

            "cat_imputer",

            SimpleImputer(

                strategy="most_frequent",

                add_indicator=True

                ),

            catvars,

        ),

    ]

)

15.  Now, let’s carry out the imputation:

X_train = pipe.fit_transform(X_train)

X_test = pipe.transform(X_test)

X_train is a NumPy array with the numerical variables and their missing indicators first, followed 
by the categorical variables with their indicators.

How it works...

To add missing indicators using pandas, we used the isna() method, which created a new vector 
assigning the value of True if there was a missing value or False otherwise. We followed isna() 
with astype(int) to convert the Boolean vectors into binary vectors with values 1 and 0.
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To add a missing indicator with feature-engine, we used AddMissingIndicator() and 
fitted it to the train set, so that the transformer identifies the variables with missing data. Then, we 
used the transform() method to add missing indicators to the train and test sets.

Finally, we added missing indicators and replaced missing data with the mean and most frequent 
category using scikit-learn. Utilizing Pipeline, we lined up two instances of SimpleImputer(), 
the first to impute data with the mean and the second to impute data with the most frequent category. 
In both cases, we set the add_indicator parameter to True, so that SimpleImputer() also 
added the missing indicators. We wrapped SimpleImputer() with ColumnTransformer() 
to specifically modify numerical or categorical variables.

Performing multivariate imputation by chained equations
Multivariate imputation methods, as opposed to univariate imputation, use multiple variables to estimate 
the missing values. In other words, the missing values of a variable are modeled based on the other 
variables in the dataset. Multivariate Imputation by Chained Equations (MICE) models each variable 
with missing values as a function of the remaining variables and uses that estimate for imputation.

The following steps are required to perform MICE:

1. A simple univariate imputation is performed for every variable with missing data, for example, 
median imputation.

2. One specific variable is selected, say, var_1, and the missing values are set back to missing.

3. A model is trained to predict var_1 using the remaining variables as input features.

4. The missing values of var_1 are replaced with the new estimates.

5. Steps 2 to 4 are repeated for each of the remaining variables.

Once all the variables have been modeled based on the rest, a cycle of imputation is concluded. 
Multiple imputation cycles are carried out, typically 10. The idea is that by the end of the cycles, the 
distribution of the imputation parameters should have converged, which means that we should have 
found the best estimates for the missing data.

In this recipe, we will implement MICE using scikit-learn.

How to do it...

To begin the recipe, let’s import the required libraries and load the data:

1. Let’s import the required Python libraries and a function to split the data:

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
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2. Import a regression algorithm from scikit-learn:

from sklearn.linear_model import BayesianRidge

3. Import IterativeImputer to carry out multivariate imputation:

from sklearn.experimental import enable_iterative_imputer

from sklearn.impute import IterativeImputer

4. Load the dataset that we prepared in the Technical requirements section only with some 
numerical variables:

variables = ["A2", "A3", "A8", "A11", "A14", "A15", 
"target"]

data = pd.read_csv("credit_approval_uci.csv",

    usecols=variables)

5. Divide the data into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(

    data.drop("target", axis=1),

    data["target"],

    test_size=0.3,

    random_state=0,

)

6. Let’s create a MICE imputer using Bayes regression, specifying the number of iteration cycles 
and setting random_state for reproducibility:

imputer = IterativeImputer(

    estimator= BayesianRidge(),

    max_iter=10,

    random_state=0,

)

Tip
IterativeImputer() contains other useful arguments. For example, we can specify the 
first imputation strategy using the initial_strategy parameter. We can choose from 
the mean, median, mode, or arbitrary imputation. We can also specify how we want to cycle 
over the variables, either randomly or from the one with the fewest missing values to the one 
with the most.
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7. Let’s fit IterativeImputer() to the train set so that it trains the estimators to predict the 
missing values in each variable:

imputer.fit(X_train)

Tip
We can use any regression model to estimate the missing data with IterativeImputer().

8. Finally, let’s fill in missing values in both the train and test set:

X_train = imputer.transform(X_train)

X_test = imputer.transform(X_test)

Remember that scikit-learn returns NumPy arrays and not DataFrames. To corroborate the 
lack of missing data, we can execute pd.DataFrame(X_train).isnull().sum().

How it works...

In this recipe, we performed multivariate imputation using IterativeImputer() from scikit-
learn. We specified Bayes regression as the estimator and carried out 10 rounds of imputation over the 
entire dataset. By default, the first imputation round is done with the mean of the variable. We fitted 
IterativeImputer() to the train set so that each variable was modeled based on the remaining 
variables in the dataset. Next, we transformed the train and test sets with the transform() method 
in order to replace missing data with their estimates.

Note
This transformer can only impute missing data in numerical variables based on numerical variables.

See also

To learn more about MICE, take a look at the following links:

• A multivariate technique for multiplying imputing missing values using a sequence of regression 
models: https://www.researchgate.net/publication/244959137_A_
Multivariate_Technique_for_Multiply_Imputing_Missing_Values_
Using_a_Sequence_of_Regression_Models.

• Multiple Imputation by Chained Equations: What is it and how does it work?: https://
www.jstatsoft.org/article/download/v045i03/550.

https://www.researchgate.net/publication/244959137_A_Multivariate_Technique_for_Multiply_Imputing_Missing_Values_Using_a_Sequence_of_Regression_Models
https://www.researchgate.net/publication/244959137_A_Multivariate_Technique_for_Multiply_Imputing_Missing_Values_Using_a_Sequence_of_Regression_Models
https://www.researchgate.net/publication/244959137_A_Multivariate_Technique_for_Multiply_Imputing_Missing_Values_Using_a_Sequence_of_Regression_Models
https://www.jstatsoft.org/article/download/v045i03/550
https://www.jstatsoft.org/article/download/v045i03/550
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Estimating missing data with nearest neighbors
In imputation with K-Nearest Neighbors (KNN), missing values are replaced with the mean value 
from their k closest neighbors. The neighbors of each observation are found utilizing distances like 
the Euclidean distance, and the replacement value can be estimated as the mean or weighted mean 
of the neighbor’s value, where further neighbors have less influence on the replacement value. In this 
recipe, we will perform KNN imputation using scikit-learn.

How to do it...

To proceed with the recipe, let’s import the required libraries and prepare the data:

1. Let’s import the required libraries, classes, and functions:

import matplotlib.pyplot as plt

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.impute import KNNImputer

2. Let’s load the dataset that we prepared in the Technical requirements section only with some 
numerical variables:

variables = ["A2", "A3", "A8", "A11", "A14", "A15", 
"target"]

data = pd.read_csv("credit_approval_uci.csv",

    usecols=variables)

3. Let’s divide the data into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(

    data.drop("target", axis=1),

    data["target"],

    test_size=0.3,

    random_state=0,

)

4. Set up the imputer to find the closest 5 neighbors, utilizing Euclidean distance and weighting the 
neighbors so that the furthest neighbors have a smaller influence over the value of the replacement:

imputer = KNNImputer(n_neighbors=5,weights="distance")

5. Find the closest neighbors:

imputer.fit(X_train)
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6. Replace the missing values with the weighted mean of the values shown by the neighbors:

X_train = imputer.transform(X_train)

X_test = imputer.transform(X_test)

The result is a NumPy array with the missing data replaced.

How it works...

In this recipe, we replaced missing data with the average value shown by each observation’s closest 
k neighbors. We set up KNNImputer() to find each observation’s five closest neighbors based on 
the Euclidean distance. The replacement values were estimated as the weighted average of the values 
shown by the five closest neighbors. With transform(), the imputer replaced the missing data.





2
Encoding Categorical Variables

Categorical variables are those whose values are selected from a group of categories or labels. For 
example, the Gender variable with the values of Male and Female is categorical, and so is the marital 
status variable with the values of never married, married, divorced, and widowed. In some categorical 
variables, the labels have an intrinsic order; for example, in the Student’s grade variable, the values 
of A, B, C, and Fail are ordered, with A being the highest grade and Fail being the lowest. These 
are called ordinal categorical variables. Variables in which the categories do not have an intrinsic 
order are called nominal categorical variables, such as the City variable, with the values of London, 
Manchester, Bristol, and so on.

The values of categorical variables are often encoded as strings. To train mathematical or machine 
learning models, we need to transform those strings into numbers. The act of replacing strings 
with numbers is called categorical encoding. In this chapter, we will discuss multiple categorical 
encoding methods.

This chapter will cover the following recipes:

• Creating binary variables through one-hot encoding

• Performing one-hot encoding of frequent categories

• Replacing categories with counts or the frequency of observations

• Replacing categories with ordinal numbers

• Performing ordinal encoding based on the target value

• Implementing target mean encoding

• Encoding with the Weight of Evidence

• Grouping rare or infrequent categories

• Performing binary encoding
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Technical requirements
In this chapter, we will use the pandas, NumPy, and Matplotlib Python libraries, as well as scikit-learn 
and Feature-engine. For guidelines on how to obtain these libraries, visit the Technical requirements 
section of Chapter 1, Imputing Missing Data.

We will also use the open-source Category Encoders Python library, which can be installed 
using pip:

pip install category_encoders

To learn more about Category Encoders, visit the following link: https://contrib.
scikit-learn.org/category_encoders/.

We will also use the Credit Approval dataset, which is available in the UCI Machine Learning Repository 
at https://archive.ics.uci.edu/ml/datasets/credit+approval.

To prepare the dataset, follow these steps:

1. Visit http://archive.ics.uci.edu/ml/machine-learning-databases/
credit-screening/ and click on crx.data to download the data:

Figure 2.1 – The index directory for the Credit Approval dataset

2. Save crx.data to the folder where you will run the following commands.

After downloading the data, open up a Jupyter Notebook and run the following commands.

3. Import the required libraries:

import random

import numpy as np

import pandas as pd

4. Load the data:

data = pd.read_csv("crx.data", header=None)

https://contrib.scikit-learn.org/category_encoders/
https://contrib.scikit-learn.org/category_encoders/
https://archive.ics.uci.edu/ml/datasets/credit+approval
http://archive.ics.uci.edu/ml/machine-learning-databases/credit-screening/
http://archive.ics.uci.edu/ml/machine-learning-databases/credit-screening/
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5. Create a list containing the variable names:

varnames = [f"A{s}" for s in range(1, 17)]

6. Add the variable names to the DataFrame:

data.columns = varnames

7. Replace the question marks in the dataset with NumPy NaN values:

data = data.replace("?", np.nan)

8. Cast some numerical variables as float data types:

data["A2"] = data["A2"].astype("float")

data["A14"] = data["A14"].astype("float")

9. Encode the target variable as binary:

data["A16"] = data["A16"].map({"+": 1, "-": 0})

10. Rename the target variable:

data.rename(columns={"A16": "target"}, inplace=True)

11. Make lists that contain categorical and numerical variables:

cat_cols = [

    c for c in data.columns if data[c].dtypes=="O"] 

num_cols = [

    c for c in data.columns if data[c].dtypes!= "O"]

12. Fill in the missing data:

data[num_cols] = data[num_cols].fillna(0)

data[cat_cols] = data[cat_cols].fillna("Missing")

13. Save the prepared data:

data.to_csv("credit_approval_uci.csv", index=False)

You can find a Jupyter Notebook that contains these commands in this book’s GitHub repository 
at https://github.com/PacktPublishing/Python-Feature-Engineering-
Cookbook-Second-Edition/blob/main/ch02-categorical-encoding/donwload-
prepare-store-credit-approval-dataset.ipynb.

https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch02-categorical-encoding/donwload-prepare-store-credit-approval-dataset.ipynb
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch02-categorical-encoding/donwload-prepare-store-credit-approval-dataset.ipynb
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch02-categorical-encoding/donwload-prepare-store-credit-approval-dataset.ipynb
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Note
Some libraries require that you have already imputed missing data, for which you can use any 
of the recipes from Chapter 1, Imputing Missing Data.

Creating binary variables through one-hot encoding
In one-hot encoding, we represent a categorical variable as a group of binary variables, where each 
binary variable represents one category. The binary variable takes a value of 1 if the category is present 
in an observation, or 0 otherwise.

The following table shows the one-hot encoded representation of the Gender variable with the 
categories of Male and Female:

Figure 2.2 – One-hot encoded representation of the Gender variable

As shown in Figure 2.2, from the Gender variable, we can derive the binary variable of Female, which 
shows the value of 1 for females, or the binary variable of Male, which takes the value of 1 for the 
males in the dataset.

For the categorical variable of Color with the values of red, blue, and green, we can create three 
variables called red, blue, and green. These variables will take the value of 1 if the observation is red, 
blue, or green, respectively, or 0 otherwise.

A categorical variable with k unique categories can be encoded using k-1 binary variables. For Gender, 
k is 2 as it contains two labels (male and female), so we only need to create one binary variable (k - 1 
= 1) to capture all of the information. For the Color variable, which has three categories (k=3; red, 
blue, and green), we need to create two (k - 1 = 2) binary variables to capture all the information so 
that the following occurs:

• If the observation is red, it will be captured by the red variable (red = 1, blue = 0).

• If the observation is blue, it will be captured by the blue variable (red = 0, blue = 1)

• If the observation is green, it will be captured by the combination of red and blue (red = 0, 
blue = 0)
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Encoding into k-1 binary variables is well-suited for linear models. There are a few occasions in which 
we may prefer to encode the categorical variables with k binary variables:

• When training decision trees since they do not evaluate the entire feature space at the same time

• When selecting features recursively

• When determining the importance of each category within a variable

In this recipe, we will compare the one-hot encoding implementations of pandas, scikit-learn, Feature-
engine, and Category Encoders.

How to do it...

First, let’s make a few imports and get the data ready:

1. Import pandas and the train_test_split function from scikit-learn:

import pandas as pd

from sklearn.model_selection import train_test_split

2. Let’s load the Credit Approval dataset:

data = pd.read_csv("credit_approval_uci.csv")

3. Let’s separate the data into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(

    data.drop(labels=["target"], axis=1),

    data["target"],

    test_size=0.3,

    random_state=0,

)

4. Let’s inspect the unique categories of the A4 variable:

X_train["A4"].unique()

We can see the unique values of A4 in the following output:

array(['u', 'y', 'Missing', 'l'], dtype=object)

5. Let’s encode A4 into k-1 binary variables using pandas and then inspect the first five rows of 
the resulting DataFrame:

dummies = pd.get_dummies(X_train["A4"], drop_first=True)

dummies.head()
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Note
With pandas get_dummies(), we can either ignore or encode missing data through the 
dummy_na parameter. By setting dummy_na=True, missing data will be encoded in a new 
binary variable. To encode the variable into k dummies, use drop_first=False instead.

Here, we can see the output of step 5, where each label is now a binary variable:

 l u y

596 0 1 0

303 0 1 0

204 0 0 1

351 0 0 1

118 0 1 0

6. Now, let’s encode all of the categorical variables into k-1 binaries, capturing the result in a 
new DataFrame:

X_train_enc = pd.get_dummies(X_train, drop_first=True)

X_test_enc = pd.get_dummies(X_test, drop_first=True)

Note
The get_dummies method from pandas will automatically encode all variables of the object 
or type. We can encode a subset of the variables by passing the variable names in a list to the 
columns parameter.

7. Let’s inspect the first five rows of the binary variables created in step 6:

X_train_enc.head()

Note
When encoding more than one variable, get_dummies() captures the variable name – 
say, A1 – and places an underscore followed by the category name to identify the resulting 
binary variables.

We can see the binary variables in the following output:
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Figure 2.3 – Transformed DataFrame showing the dummy variables on the right

Note
The get_dummies() method will create one binary variable per seen category. Hence, if 
there are more categories in the train set than in the test set, get_dummies() will return 
more columns in the transformed train set than in the transformed test set, and vice versa. To 
avoid this, it is better to carry out one-hot encoding with scikit-learn or Feature-engine, as we 
will discuss later in this recipe.

8. Let’s concatenate the binary variables to the original dataset:

X_test_enc = pd.concat([X_test, X_test_enc], axis=1)

9. Now, let’s drop the categorical variables from the data:

X_test_enc.drop(

    labels=X_test_enc.select_dtypes(

        include="O").columns,

    axis=1,

    inplace=True,

)

And that’s it! Now, we can use our categorical variables to train mathematical models. To inspect 
the result, use X_test_enc.head().

Now, let’s do one-hot encoding using scikit-learn.

10. Import the encoder from scikit-learn:

from sklearn.preprocessing import OneHotEncoder

11. Let’s set up the transformer. By setting drop to "first", we encode into k-1 binary variables, 
and by setting sparse to False, the transformer will return a NumPy array (instead of a 
sparse matrix):

encoder = OneHotEncoder(drop="first", sparse=False)
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Tip
We can encode variables into k dummies by setting the drop parameter to None. We can also 
encode into k-1 if variables contain two categories and into k if variables contain more than 
two categories by setting the drop parameter to “if_binary”. The latter is useful because 
encoding binary variables into k dummies is redundant.

12. First, let’s create a list containing the variable names:

vars_categorical = X_train.select_dtypes(

    include="O").columns.to_list()

13. Let’s fit the encoder to a slice of the train set with the categorical variables:

encoder.fit(X_train[vars_categorical])

14. Let’s inspect the categories for which dummy variables will be created:

encoder.categories_

We can see the result of the preceding command here:

Figure 2.4 – Arrays with the categories that will be encoded into binary variables, one array per variable

Note
Scikit-learn’s OneHotEncoder() will only encode the categories learned from the train set. If 
there are new categories in the test set, we can instruct the encoder to ignore them or to return an 
error by setting the handle_unknown parameter to 'ignore' or 'error', respectively.

15. Let’s create the NumPy arrays with the binary variables for the train and test sets:

X_train_enc = encoder.transform(

    X_train[vars_categorical])

X_test_enc = encoder.transform(

    X_test[vars_categorical])



Creating binary variables through one-hot encoding 41

16. Let’s extract the names of the binary variables:

encoder.get_feature_names_out()

We can see the binary variable names that were returned in the following output:

Figure 2.5 – Arrays with the names of the one-hot encoded variables

17.  Let’s convert the array into a pandas DataFrame and add the variable names:

X_test_enc = pd.DataFrame(X_test_enc)

X_test_enc.columns = encoder.get_feature_names_out()

18. To concatenate the one-hot encoded data to the original dataset, we need to make their 
indexes match:

X_test_enc.index = X_test.index

Now, we are ready to concatenate the one-hot encoded variables to the original data and then 
remove the categorical variables using steps 8 and 9 from this recipe.

To follow up, let’s perform one-hot encoding with Feature-engine.

19. Let’s import the encoder from Feature-engine:

from feature_engine.encoding import OneHotEncoder

20. Next, let’s set up the encoder so that it returns k-1 binary variables:

ohe_enc = OneHotEncoder(drop_last=True)

Tip
Feature-engine automatically finds the categorical variables. To encode only a subset of the variables, 
we can pass the variable names in a list:  OneHotCategoricalEncoder(variables=["A1", 
"A4"]). To encode numerical variables, we can set the ignore_format parameter to True 
or cast the variables as the object type. This is useful because sometimes, numerical variables 
are used to represent categories, such as postcodes.

21. Let’s fit the encoder to the train set so that it learns the categories and variables to encode:

ohe_enc.fit(X_train)
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22. Let’s explore the variables that will be encoded:

ohe_enc.variables_

The transformer found and stored the variables of the object or categorical type, as shown in 
the following output:

['A1', 'A4', 'A5', 'A6', 'A7', 'A9', 'A10', 'A12', 'A13']

Note
Feature-engine’s OneHotEncoder has the option to encode most variables into k dummies, 
while only returning k-1 dummies for binary variables. For this behavior, set the drop_last_
binary parameter to True.

23. Let’s explore the categories for which dummy variables will be created:

ohe_enc.encoder_dict_

The following dictionary contains the categories that will be encoded in each variable:

{'A1': ['a', 'b'],

 'A4': ['u', 'y', 'Missing'],

 'A5': ['g', 'p', 'Missing'],

 'A6': ['c', 'q', 'w', 'ff', 'm', 'i', 'e', 'cc', 'x', 

 'd',      'k', 'j', 'Missing', 'aa'],

 'A7': ['v', 'ff', 'h', 'dd', 'z', 'bb', 'j', 'Missing', 

 'n'],

 'A9': ['t'],

 'A10': ['t'],

 'A12': ['t'],

 'A13': ['g', 's']}

24. Let’s encode the categorical variables in train and test sets:

X_train_enc = ohe_enc.transform(X_train)

X_test_enc = ohe_enc.transform(X_test)

Tip
Feature-engine’s OneHotEncoder() returns a copy of the original dataset plus the binary 
variables and without the original categorical variables. Thus, this data is ready to train machine 
learning models.
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If we execute X_train_enc.head(), we will see the following DataFrame:

Figure 2.6 – Transformed DataFrame with the one-hot encoded variables on the right

Note how the A4 categorical variable was replaced with A4_u, A4_y, and so on.

Note
We can get the names of all the variables in the transformed dataset by executing ohe_enc.
get_feature_names_out().

How it works...

In this recipe, we performed a one-hot encoding of categorical variables using pandas, scikit-learn, 
Feature-engine, and Category Encoders.

With get_dummies() from pandas, we automatically created binary variables for each of the 
categories in the categorical variables.

The OneHotEncoder transformers from the scikit-learn and Feature-engine libraries share the 
fit() and transform() methods. With fit(), the encoders learned the categories for which 
the dummy variables should be created. With transform(), they returned the binary variables 
either in a NumPy array or added them to the original DataFrame.

Tip
One-hot encoding expands the feature space. From nine original categorical variables, we created 
36 binary ones. If our datasets contain many categorical variables or highly cardinal variables, 
we will easily increase the feature space dramatically, which increases the computational cost 
of training machine learning models or obtaining their predictions and may also deteriorate 
their performance.

There’s more...

We can also perform one-hot encoding using OneHotEncoder from the Category Encoders library.

OneHotEncoder() from Feature-engine and Category Encoders can automatically identify and encode 
categorical variables – that is, those of the object or categorical type. So does pandas get_dummies(). 
Scikit-learn’s OneHotEncoder(), on the other hand, will encode all variables in the dataset.
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With pandas, Feature-engine, and Category Encoders, we can only encode a subset of the 
variables, indicating their names in a list. With scikit-learn, we need to use an additional class, 
ColumnTransformer(), to slice the data before the transformation.

With Feature-engine and Category Encoders, the dummy variables are added to the original dataset 
and the categorical variables are removed after the encoding. With scikit-learn and pandas, we need 
to manually perform these procedures.

Finally, using OneHotEncoder() from scikit-learn, Feature-engine, and Category Encoders, we can 
perform the encoding step within a scikit-learn pipeline, which is more convenient if we have various 
feature engineering steps or want to put the pipelines into production. pandas get_dummies() is 
otherwise well suited for data analysis and visualization.

Performing one-hot encoding of frequent categories
One-hot encoding represents each variable’s category with a binary variable. Hence, one-hot encoding 
of highly cardinal variables or datasets with multiple categorical features can expand the feature space 
dramatically. This, in turn, may increase the computational cost of using machine learning models 
or deteriorate their performance. To reduce the number of binary variables, we can perform one-hot 
encoding of the most frequent categories. One-hot encoding the top categories is equivalent to treating 
the remaining, less frequent categories as a single, unique category.

In this recipe, we will implement one-hot encoding of the most popular categories using pandas 
and Feature-engine.

How to do it...

First, let’s import the necessary Python libraries and get the dataset ready:

1. Import the required Python libraries, functions, and classes:

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from feature_engine.encoding import OneHotEncoder

2. Let’s load the dataset and divide it into train and test sets:

data = pd.read_csv("credit_approval_uci.csv")

X_train, X_test, y_train, y_test = train_test_split(

    data.drop(

        labels=["target"], axis=1),

    data["target"],
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    test_size=0.3,

    random_state=0,

)

Tip
The most frequent categories need to be determined in the train set. This is to avoid data leakage.

3. Let’s inspect the unique categories of the A6 variable:

X_train["A6"].unique()

The unique values of A6 are displayed in the following output:

array(['c', 'q', 'w', 'ff', 'm', 'i', 'e', 'cc', 'x', 
'd', 'k', 'j', 'Missing, 'aa', 'r'], dtype=object)

4. Let’s count the number of observations per category of A6, sort them in decreasing order, and 
then display the five most frequent categories:

X_train["A6"].value_counts().sort_values(

    ascending=False).head(5)

We can see the five most frequent categories and the number of observations per category in 
the following output:

c     93 
q     56 
w     48 
i     41 
ff    38

Name: A6, dtype: int64

5. Now, let’s capture the most frequent categories of A6 in a list by using the code in step 4 inside 
a list comprehension:

top_5 = [

    x for x in X_train["A6"].value_counts().sort_values(

        ascending=False).head(5).index

]

6. Now, let’s add a binary variable per top category to the train and test sets:

for label in top_5:

    X_train[f"A6_{label}"] = np.where(
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        X_train["A6"] ==label, 1, 0)

    X_test[f"A6_{label}"] = np.where(

        X_test["A6"] ==label, 1, 0)

7. Let’s display the top 10 rows of the original and encoded variable, A6, in the train set:

X_train[["A6"] + [f"A6_{label}" for label in top_5]].
head(10)

In the output of step 7, we can see the A6 variable, followed by the binary variables:

    A6  A6_c  A6_q  A6_w  A6_i  A6_ff 
596   c     1     0     0     0      0 
303   q     0     1     0     0      0 
204   w     0     0     1     0      0 
351  ff     0     0     0     0      1 
118   m     0     0     0     0      0 
247   q     0     1     0     0      0 
652   i     0     0     0     1      0 
513   e     0     0     0     0      0 
230  cc     0     0     0     0      0 
250   e     0     0     0     0      0

We can automate one-hot encoding of frequent categories with Feature-engine. First, let’s load 
and divide the dataset, as we did in step 2.

8. Let’s set up the one-hot encoder to encode the five most frequent categories of the A6 and 
A7 variables:

ohe_enc = OneHotEncoder(

    top_categories=5,

    variables=["A6", "A7"]

)

Tip
Feature-engine’s OneHotEncoder() will encode all categorical variables in the dataset by 
default unless we specify the variables to encode, as we did in step 8.

9. Let’s fit the encoder to the train set so that it learns and stores the most frequent categories of 
A6 and A7:

ohe_enc.fit(X_train)
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Note
The number of frequent categories to encode is arbitrarily determined by the user.

10. Finally, let’s encode A6 and A7 in the train and test sets:

X_train_enc = ohe_enc.transform(X_train)

X_test_enc = ohe_enc.transform(X_test)

You can view the new binary variables in the DataFrame by executing X_train_enc.head(). You 
can also find the top five categories learned by the encoder by executing ohe_enc.encoder_dict_.

Note
Feature-engine replaces the original variable with the binary ones returned by one-hot encoding, 
leaving the dataset ready to use in machine learning.

How it works...

In this recipe, we performed one-hot encoding of the five most popular categories using NumPy 
and Feature-engine.

In the first part of this recipe, we worked with the A6 categorical variable. We inspected its unique 
categories with pandas unique(). Next, we counted the number of observations per category using 
pandas value_counts(),which returned a pandas series with the categories as the index and the 
number of observations as values. Next, we sorted the categories from the one with the most to the one 
with the least observations using pandas sort_values(). Next, we reduced the series to the five 
most popular categories by using pandas head(). Then, we used this series in a list comprehension 
to capture the name of the most frequent categories. After that, we looped over each category, and with 
NumPy’s where() method, we created binary variables by placing a value of 1 if the observation 
showed the category, or 0 otherwise.

To perform a one-hot encoding of the five most popular categories of the A6 and A7 variables with 
Feature-engine, we used OneHotEncoder(), indicating 5 in the top_categories argument, and 
passing the variable names in a list to the variables argument. With fit(), the encoder learned 
the top categories from the train set and stored them in its encoder_dict_ attribute. Then, with 
transform(), OneHotEncoder() replaced the original variables with the set of binary ones.

There’s more...

This recipe is based on the winning solution of the KDD 2009 cup, Winning the KDD Cup Orange 
Challenge with Ensemble Selection (http://proceedings.mlr.press/v7/niculescu09/
niculescu09.pdf), where the authors limited one-hot encoding to the 10 most frequent categories 
of each variable.

http://proceedings.mlr.press/v7/niculescu09/niculescu09.pdf
http://proceedings.mlr.press/v7/niculescu09/niculescu09.pdf
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Replacing categories with counts or the frequency of 
observations
In count or frequency encoding, we replace the categories with the count or the fraction of observations 
showing that category. That is, if 10 out of 100 observations show the category blue for the Color 
variable, we would replace blue with 10 when doing count encoding, or with 0.1 if performing frequency 
encoding. These encoding methods, which capture the representation of each label in a dataset, are 
very popular in data science competitions. The assumption is that the number of observations per 
category is somewhat predictive of the target.

Tip
Note that if two different categories are present in the same number of observations, they will 
be replaced by the same value, which leads to information loss.

In this recipe, we will perform count and frequency encoding using pandas, Feature-engine, and 
Category Encoders.

How to do it...

Let’s begin by making some imports and preparing the data:

1. Import pandas and the required function:

import pandas as pd

from sklearn.model_selection import train_test_split

2. Let’s load the dataset and divide it into train and test sets:

data = pd.read_csv("credit_approval_uci.csv")

X_train, X_test, y_train, y_test = train_test_split(

    data.drop(labels=["target"], axis=1),

    data["target"],

    test_size=0.3,

    random_state=0,

)

3. Let’s count the number of observations per category of the A7 variable and capture it in 
a dictionary:

counts = X_train["A7"].value_counts().to_dict()
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Tip
To encode categories with their frequency, execute X_train["A6"].value_
counts(normalize=True).to_dict().

If we execute print(counts), we can observe the count of observations per category:

{'v': 277, 'h': 101, 'ff': 41, 'bb': 39, 'z': 7, 'dd': 5, 
'j': 5, 'Missing': 4,, 'n': 3, 'o': 1}

4. Let’s replace the categories in A7 with the counts:

X_train["A7"] = X_train["A7"].map(counts)

X_test["A7"] = X_test["A7"].map(counts)

Go ahead and inspect the data by executing X_train.head() to corroborate that the 
categories have been replaced by the counts.

Now, let’s carry out count encoding using Feature-engine. First, let’s load and divide the dataset, 
as we did in step 2.

5. Let’s import the count encoder from Feature-engine:

from feature_engine.encoding import CountFrequencyEncoder

6. Let’s set up the encoder so that it encodes all categorical variables with the count of observations:

count_enc = CountFrequencyEncoder(

    encoding_method="count", variables=None,

)

Tip
CountFrequencyEncoder() will automatically find and encode all categorical variables 
in the train set. To encode only a subset of the variables, we can pass the variable names in a 
list to the variables argument.

7. Let’s fit the encoder to the train set so that it stores the number of observations per category 
per variable:

count_enc.fit(X_train)

Tip
The dictionaries with the category-to-counts pairs are stored in the encoder_dict_ attribute 
and can be displayed by executing count_enc.encoder_dict_.
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8. Finally, let’s replace the categories with counts in the train and test sets:

X_train_enc = count_enc.transform(X_train)

X_test_enc = count_enc.transform(X_test)

Tip
If there are categories in the test set that were not present in the train set, the transformer will 
replace those with np.nan and return a warning to make you aware of this. A good idea 
to prevent this behavior is to group infrequent labels, as described in the Grouping rare or 
infrequent categories recipe.

The encoder returns pandas DataFrames with the strings of the categorical variables replaced 
with the counts of observations, leaving the variables ready to use in machine learning models.

To wrap up this recipe, let’s encode the variables using Category Encoders.

9. Let’s import the encoder from Category Encoders:

from category_encoders.count import CountEncoder

10.  Let’s set up the encoder so that it encodes all categorical variables with the count of observations:

count_enc = CountEncoder(cols=None)

Note
CountEncoder()automatically finds and encodes all categorical variables in the train 
set. To encode only a subset of the categorical variables, we can pass the variable names in a 
list to the cols argument. To replace the categories by frequency instead, we need to set the 
Normalize parameter to True.

11. Let’s fit the encoder to the train set so that it counts and stores the number of observations per 
category per variable:

count_enc.fit(X_train)

Tip
The values used to replace the categories are stored in the mapping attribute and can be displayed 
by executing count_enc.mapping.

12.  Finally, let’s replace the categories with counts in the train and test sets:

X_train_enc = count_enc.transform(X_train)

X_test_enc = count_enc.transform(X_test)
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Note
Categories present in the test set that were not seen in the train set are referred to as unknown 
categories. CountEncoder() has different options to handle unknown categories, including 
returning an error, treating them as missing data, or replacing them with an indicated integer. 
CountEncoder() can also automatically group categories with few observations.

The encoder returns pandas DataFrames with the strings of the categorical variables replaced with 
the counts of observations, leaving the variables ready to use in machine learning models.

How it works...

In this recipe, we replaced categories by the count of observations using pandas, Feature-engine, and 
Category Encoders.

Using pandas value_counts(), we determined the number of observations per category of the 
A7 variable, and with pandas to_dict(), we captured these values in a dictionary, where each key 
was a unique category, and each value the number of observations for that category. With pandas 
map() and using this dictionary, we replaced the categories with the observation counts in both the 
train and test sets.

To perform count encoding with Feature-engine, we used CountFrequencyEncoder() and 
set encoding_method to 'count'. We left the variables argument set to None so that the 
encoder automatically finds all of the categorical variables in the dataset. With the fit() method, 
the transformer found the categorical variables and stored the observation counts per category in 
the encoder_dict_ attribute. With the transform() method, the transformer replaced the 
categories with the counts, returning a pandas DataFrame.

Finally, we performed count encoding with CountEncoder() by setting Normalize to False. 
We left the cols argument set to None so that the encoder automatically finds the categorical variables 
in the dataset. With the fit() method, the transformer found the categorical variables and stored 
the category to count mappings in the mapping attribute. With the transform() method, the 
transformer replaced the categories with the counts in, returning a pandas DataFrame.

Replacing categories with ordinal numbers
Ordinal encoding consists of replacing the categories with digits from 1 to k (or 0 to k-1, depending 
on the implementation), where k is the number of distinct categories of the variable. The numbers 
are assigned arbitrarily. Ordinal encoding is better suited for non-linear machine learning models, 
which can navigate through the arbitrarily assigned digits to find patterns that relate to the target.

In this recipe, we will perform ordinal encoding using pandas, scikit-learn, and Feature-engine.
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How to do it...

First, let’s import the necessary Python libraries and prepare the dataset:

1. Import pandas and the data split function:

import pandas as pd

from sklearn.model_selection import train_test_split

2. Let’s load the dataset and divide it into train and test sets:

data = pd.read_csv("credit_approval_uci.csv")

X_train, X_test, y_train, y_test = train_test_split(

    data.drop(labels=["target"], axis=1),

    data["target"],

    test_size=0.3,

    random_state=0,

)

3. To encode the A7 variable, let’s make a dictionary of category-to-integer pairs:

ordinal_mapping = {k: i for i, k in enumerate(

    X_train["A7"].unique(), 0)

}

If we execute print(ordinal_mapping), we will see the digits that will replace each category:

{'v': 0, 'ff': 1, 'h': 2, 'dd': 3, 'z': 4, 'bb': 5, 'j': 
6, 'Missing': 7, 'n': 8, 'o': 9}

4. Now, let’s replace the categories with numbers in the original variables:

X_train["A7"] = X_train["A7"].map(ordinal_mapping)

X_test["A7"] = X_test["A7"].map(ordinal_mapping)

With print(X_train["A7"].head(10)), we can see the result of the preceding 
operation, where the original categories were replaced by numbers:

596 0

303 0

204 0

351 1

118 0

247 2

652 0
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513 3

230 0

250 4

Name: A7, dtype: int64

Next, let’s carry out ordinal encoding using scikit-learn. First, we need to divide the data into 
train and test sets, as we did in step 2.

5. Let’s import the required classes:

from sklearn.preprocessing import OrdinalEncoder

from sklearn.compose import ColumnTransformer

Tip
Do not confuse OrdinalEncoder() with LabelEncoder() from scikit-learn. The 
former is intended to encode predictive features, whereas the latter is intended to modify the 
target variable.

6. Let’s set up the encoder:

enc = OrdinalEncoder()

Note
Scikit-learn’s OrdinalEncoder() will encode the entire dataset. To encode only a selection 
of variables, we need to use scikit-learn’s ColumnTransformer().

7. Let’s make a list containing the categorical variables to encode:

vars_categorical = X_train.select_dtypes(

    include="O").columns.to_list()

8. Let’s make a list containing the remaining variables:

vars_remainder = X_train.select_dtypes(

    exclude="O").columns.to_list()

9. Now, let’s set up ColumTransformer() to encode the categorical variables. By setting 
the remainder parameter to "passthrough", we make ColumnTransformer() 
concatenate the variables that are not encoded at the back of the encoded features:

ct = ColumnTransformer(

    [("encoder", enc, vars_categorical)],
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    remainder="passthrough",

)

10. Let’s fit the encoder to the train set so that it creates and stores representations of categories 
to digits:

ct.fit(X_train)

By executing ct.named_transformers_["encoder"].categories_, you can 
visualize the unique categories per variable.

11. Now, let’s encode the categorical variables in the train and test sets:

X_train_enc = ct.transform(X_train)

X_test_enc = ct.transform(X_test)

Remember that scikit-learn returns a NumPy array.

12. Let’s transform the arrays into pandas DataFrames by adding the columns:

X_train_enc = pd.DataFrame(

    X_train_enc, columns=vars_categorical+vars_remainder)

X_test_enc = pd.DataFrame(

    X_test_enc, columns=vars_categorical+vars_remainder)

Note
Note that, with ColumnTransformer(), the variables that were not encoded will be returned 
to the right of the DataFrame, following the encoded variables. You can visualize the output of 
step 12 with X_train_enc.head().

Now, let’s do ordinal encoding with Feature-engine. First, we must divide the dataset, as we 
did in step 2.

13.  Let’s import the encoder:

from feature_engine.encoding import OrdinalEncoder

14. Let’s set up the encoder so that it replaces categories with arbitrary integers in the categorical 
variables specified in step 7:

enc = OrdinalEncoder(encoding_method="arbitrary", 
variables=vars_categorical)
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Note
Feature-engine’s OrdinalEncoder automatically finds and encodes all categorical variables if 
the variables parameter is left set to None. Alternatively, it will encode the variables indicated 
in the list. In addition, Feature-engine’s OrdinalEncoder() can assign the integers according 
to the target mean value (see the Performing ordinal encoding based on the target value recipe).

15. Let’s fit the encoder to the train set so that it learns and stores the category-to-integer mappings:

enc.fit(X_train)

Tip
The category to integer mappings are stored in the encoder_dict_ attribute and can be 
accessed by executing enc.encoder_dict_.

16. Finally, let’s encode the categorical variables in the train and test sets:

X_train_enc = enc.transform(X_train)

X_test_enc = enc.transform(X_test)

Feature-engine returns pandas DataFrames where the values of the original variables are replaced 
with numbers, leaving the DataFrame ready to use in machine learning models.

How it works...

In this recipe, we replaced categories with integers assigned arbitrarily.

With pandas unique(), we returned the unique values of the A7 variable, and using Python’s list 
comprehension syntax, we created a dictionary of key-value pairs, where each key was one of the A7 
variable’s unique categories, and each value was the digit that would replace the category. Finally, we 
used pandas map() to replace the strings in A7 with the integers.

Next, we carried out ordinal encoding using scikit-learn’s OrdinalEncoder() and used 
ColumnTransformer() to select the columns to encode. With the fit() method, the 
transformer created the category-to-integer mappings based on the categories in the train set. With 
the transform() method, the categories were replaced with integers, returning a NumPy array. 
ColumnTransformer() sliced the DataFrame into the categorical variables to encode, and then 
concatenated the remaining variables at the right of the encoded features.

To perform ordinal encoding with Feature-engine, we used OrdinalEncoder(), indicating that the 
integers should be assigned arbitrarily in encoding_method and passing a list with the variables to 
encode in the variables argument. With the fit() method, the encoder assigned integers to each 
variable’s categories, which were stored in the encoder_dict_ attribute. These mappings were then used 
by the transform() method to replace the categories in the train and test sets, returning DataFrames.
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There’s more...

You can also carry out ordinal encoding with OrdinalEncoder() from Category Encoders.

The transformers from Feature-engine and Category Encoders can automatically identify and encode 
categorical variables – that is, those of the object or categorical type. They also allow us to encode 
only a subset of the variables.

scikit-learn’s transformer will otherwise encode all variables in the dataset. To encode just a subset, we 
need to use an additional class, ColumnTransformer(), to slice the data before the transformation.

Feature-engine and Category Encoders return pandas DataFrames, whereas scikit-learn returns 
NumPy arrays.

Finally, each class has additional functionality. For example, with scikit-learn, we can encode only a 
subset of the categories, whereas Feature-engine allows us to replace categories with integers that are 
assigned based on the target mean value. On the other hand, Category Encoders can automatically 
handle missing data and offers alternative options to work with unseen categories.

Performing ordinal encoding based on the target value
In the previous recipe, we replaced categories with integers, which were assigned arbitrarily. We can 
also assign integers to the categories given the target values. To do this, first, we must calculate the mean 
value of the target per category. Next, we must order the categories from the one with the lowest to the 
one with the highest target mean value. Finally, we must assign digits to the ordered categories, starting 
with 0 to the first category up to k-1 to the last category, where k is the number of distinct categories.

This encoding method creates a monotonic relationship between the categorical variable and the 
response and therefore makes the variables more adequate for use in linear models.

In this recipe, we will encode categories while following the target value using pandas and Feature-engine.

How to do it...

First, let’s import the necessary Python libraries and get the dataset ready:

1. Import the required Python libraries, functions, and classes:

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

2. Let’s load the dataset and divide it into train and test sets:

data = pd.read_csv("credit_approval_uci.csv")

X_train, X_test, y_train, y_test = train_test_split(
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    data.drop(labels=["target"], axis=1),

    data["target"],

    test_size=0.3,

    random_state=0,

)

3. Let’s determine the mean target value per category in A7, then sort the categories from that 
with the lowest to that with the highest target value:

y_train.groupby(X_train["A7"]).mean().sort_values()

The following is the output of the preceding command:

A7

o          0.000000

ff         0.146341

j          0.200000

dd         0.400000

v          0.418773

bb         0.512821

h          0.603960

n          0.666667

z          0.714286

Missing    1.000000

Name: target, dtype: float64

4. Now, let’s repeat the computation in step 3, but this time, let’s retain the ordered category names:

ordered_labels = y_train.groupby(

    X_train["A7"]).mean().sort_values().index

To display the output of the preceding command, we can execute print(ordered_labels):

Index(['o', 'ff', 'j', 'dd', 'v', 'bb', 'h', 'n', 'z', 
'Missing'], dtype='object', name='A7')

5. Let’s create a dictionary of category-to-integer pairs, using the ordered list we created in step 4:

ordinal_mapping = {

    k: i for i, k in enumerate(

        ordered_labels, 0)

}
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We can visualize the result of the preceding code by executing print(ordinal_mapping):

{'o': 0, 'ff': 1, 'j': 2, 'dd': 3, 'v': 4, 'bb': 5, 'h': 
6, 'n': 7, 'z': 8, 'Missing': 9}

6. Let’s use the dictionary we created in step 5 to replace the categories in A7 in the train and test 
sets, returning the encoded features as new columns:

X_train["A7_enc"] = X_train["A7"].map(ordinal_mapping)

X_test["A7_enc"] = X_test["A7"].map(ordinal_mapping)

Tip
Note that if the test set contains a category not present in the train set, the preceding code will 
introduce np.nan.

To better understand the monotonic relationship concept, let’s plot the relationship of the 
categories of the A7 variable with the target before and after the encoding.

7. Let’s plot the mean target response per category of the A7 variable:

y_train.groupby(X_train["A7"]).mean().plot()

plt.title("Relationship between A7 and the target")

plt.ylabel("Mean of target")

plt.show()

We can see the non-monotonic relationship between categories of A7 and the target in the 
following plot:

Figure 2.7 – Relationship between the categories of A7 and the target



Performing ordinal encoding based on the target value 59

8. Let’s plot the mean target value per category in the encoded variable:

y_train.groupby(X_train["A7_enc"]).mean().plot()

plt.title("Relationship between A7 and the target")

plt.ylabel("Mean of target")

plt.show()

The encoded variable shows a monotonic relationship with the target – the higher the mean 
target value, the higher the digit assigned to the category:

Figure 2.8 – Relationship between A7 and the target after the encoding

Now, let’s perform ordered ordinal encoding using Feature-engine. First, we must divide the 
dataset into train and test sets, as we did in step 2.

9. Let’s import the encoder:

from feature_engine.encoding import OrdinalEncoder

10. Next, let’s set up the encoder so that it assigns integers by following the target value to all 
categorical variables in the dataset:

ordinal_enc = OrdinalEncoder(

    encoding_method="ordered",

    variables=None)

Tip
OrdinalEncoder() will find and encode all categorical variables automatically. Alternatively, 
we can indicate which variables to encode by passing their names in a list to the variables argument.
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11.  Let’s fit the encoder to the train set so that it finds the categorical variables, and then stores 
the category and integer mappings:

ordinal_enc.fit(X_train, y_train)

Tip
When fitting the encoder, we need to pass the train set and the target, like with many scikit-
learn predictor classes.

12. Finally, let’s replace the categories with numbers in the train and test sets:

X_train_enc = ordinal_enc.transform(X_train)

X_test_enc = ordinal_enc.transform(X_test)

Tip
A list of the categorical variables is stored in the variables_ attribute of OrdinalEncoder() 
and the dictionaries with the category-to-integer mappings in the encoder_dict_ attribute. 
When fitting the encoder, we need to pass the train set and the target, like with many scikit-
learn predictor classes.

Go ahead and check the monotonic relationship between other encoded categorical variables and 
the target by using the code in step 7 and changing the variable name in the groupby() method.

How it works...

In this recipe, we replaced the categories with integers according to the target mean.

In the first part of this recipe, we worked with the A7 categorical variable. With pandas groupby(), 
we grouped the data based on the categories of A7, and with pandas mean(), we determined the 
mean value of the target for each of the categories of A7. Next, we ordered the categories with pandas 
sort_values() from the ones with the lowest to the ones with the highest target mean response. 
The output of this operation was a pandas Series, with the categories as indices and the target mean 
as values. With pandas index, we captured the ordered categories in an array; then, with Python 
dictionary comprehension, we created a dictionary of category-to-integer pairs. Finally, we used this 
dictionary to replace the category with integers using pandas map() in the train and test sets.

Then, we plotted the relationship of the original and encoded variables with the target to visualize the 
monotonic relationship after the transformation. We determined the mean target value per category of 
A7 using pandas groupby(), followed by pandas mean(), as described in the preceding paragraph. 
We followed up with pandas plot() to create a plot of category versus target mean value. We added 
a title and y labels with Matplotlib’s title() and ylabel() methods.
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To perform the encoding with Feature-engine, we used OrdinalEncoder() and indicated "ordered" 
in the encoding_method argument. We left the argument variables set to None so that the encoder 
automatically detects all categorical variables in the dataset. With the fit() method, the encoder 
found the categorical variables to encode and assigned digits to their categories, according to the target 
mean value. The variables to encode and dictionaries with category-to-digit pairs were stored in the 
variables_ and encoder_dict_ attributes, respectively. Finally, using the transform() method, 
the transformer replaced the categories with digits in the train and test sets, returning pandas DataFrames.

See also

For an implementation of this recipe with Category Encoders, visit this book’s GitHub repository.

Implementing target mean encoding
Mean encoding or target encoding maps each category to the probability estimate of the target attribute. 
If the target is binary, the numerical mapping is the posterior probability of the target conditioned 
to the value of the category. If the target is continuous, the numerical representation is given by the 
expected value of the target given the value of the category.

In its simplest form, the numerical representation for each category is given by the mean value of 
the target variable for a particular category group. For example, if we have a City variable, with the 
categories of London, Manchester, and Bristol, and we want to predict the default rate (the target 
takes values 0 and 1); if the default rate for London is 30%, we replace London with 0.3; if the default 
rate for Manchester is 20%, we replace Manchester with 0.2; and so on. If the target is continuous 
– say we want to predict income – then we would replace London, Manchester, and Bristol with the 
mean income earned in each city.

In mathematical terms, if the target is binary, the replacement value, S, is determined like so:

Here, the numerator is the number of observations with a target value of 1 for category i and the 
denominator is the number of observations with a category value of i.

If the target is continuous, S, this is determined by the following formula:

Here, the numerator is the sum of the target across observations in category i and ni is the total number 
of observations in category i.

These formulas provide a good approximation of the target estimate if there is a sufficiently large 
number of observations with each category value – in other words, if ni is large. However, in most 
datasets, categorical variables will only have categorical values present in a few observations. In these 
cases, target estimates derived from the precedent formulas can be unreliable.

𝑆𝑆𝑖𝑖  = 𝑛𝑛𝑖𝑖(𝑦𝑦𝑦𝑦)/𝑛𝑛𝑖𝑖 

𝑆𝑆𝑖𝑖  =
∑ 𝑦𝑦𝑖𝑖 
 
𝑛𝑛𝑖𝑖
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To mitigate poor estimates returned for rare categories, the target estimates can be determined as a 
mixture of two probabilities: those returned by the preceding formulas and the prior probability of 
the target based on the entire training set. The two probabilities are blended using a weighting factor, 
which is a function of the category group size:

In this formula, ny is the total number of cases where the target takes a value of 1, N is the size of the 
train set, and 𝛌 is the weighting factor.

When the category group is large, 𝛌 approximates 1, so more weight is given to the first term of the 
equation. When the category group size is small, then 𝛌 tends to 0, so the estimate is mostly driven 
by the second term of the equation – that is, the target’s prior probability. In other words, if the group 
size is small, knowing the value of the category does not tell us anything about the value of the target.

The weighting factor, 𝛌, is a function of the group size, k, and a smoothing parameter, f, controls the 
rate of transition between the first and second term of the preceding equation:

Here, k is half of the minimal size for which we fully trust the first term of the equation. The f parameter 
is selected by the user either arbitrarily or with optimization.

Tip
Mean encoding was designed to encode highly cardinal categorical variables without expanding the 
feature space. For more details, check out the following article: Micci-Barreca D. A Preprocessing 
Scheme for High-Cardinality Categorical Attributes in Classification and Prediction Problems. 
ACM SIGKDD Explorations Newsletter, 2001.

In this recipe, we will perform mean encoding using pandas, Feature-engine, and Category Encoders.

How to do it...

In the first part of this recipe, we will replace categories with the target mean value, regardless of the 
number of observations per category. We will use pandas and Feature-engine to do this. In the second part 
of this recipe, we will introduce the weighting factor using Category Encoders. Let’s begin with this recipe:

1. Import pandas and the data split function:

import pandas as pd

from sklearn.model_selection import train_test_split

𝑆𝑆𝑖𝑖  = 𝜆𝜆 𝑛𝑛𝑖𝑖(𝑌𝑌=1)𝑛𝑛𝑖𝑖
+ (1 − 𝜆𝜆𝑖𝑖)

𝑛𝑛𝜆𝜆
𝑁𝑁  

𝜆𝜆 = 1
1 + 𝑒𝑒−(𝑛𝑛−𝑘𝑘)/𝑓𝑓 



Implementing target mean encoding 63

2. Let’s load the dataset and divide it into train and test sets:

data = pd.read_csv("credit_approval_uci.csv")

X_train, X_test, y_train, y_test = train_test_split(

    data.drop(labels=["target"], axis=1),

    data["target"],

    test_size=0.3,

    random_state=0,

)

3. Let’s determine the mean target value per category of the A7 variable and then store them in 
a dictionary:

mapping = y_train.groupby(X_train["A7"]).mean().to_dict()

We can display the content of the dictionary by executing print(mapping):

{'Missing': 1.0,

 'bb': 0.5128205128205128,

 'dd': 0.4,

 'ff': 0.14634146341463414,

 'h': 0.6039603960396039,

 'j': 0.2,

 'n': 0.6666666666666666,

 'o': 0.0,

 'v': 0.4187725631768953,

 'z': 0.7142857142857143}

4. Let’s replace the categories with the mean target value using the dictionary we created in step 
3 in the train and test sets:

X_train["A7"] = X_train["A7"].map(mapping)

X_test["A7"] = X_test["A7"].map(mapping)

You can inspect the encoded A7 variable by executing X_train["A7"].head().

Now, let’s perform target encoding with Feature-engine. First, we must split the data, as we 
did in step 2.

5. Let’s import the encoder:

from feature_engine.encoding import MeanEncoder
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6. Let’s set up the target mean encoder to encode all categorical variables:

mean_enc = MeanEncoder(variables=None)

Tip
MeanEncoder() will find and encode all categorical variables by default. Alternatively, we 
can indicate the variables to encode by passing their names in a list to the variables argument.

7. Let’s fit the transformer to the train set so that it learns and stores the mean target value per 
category per variable. Note that we need to pass both the train set and target to fit the encoder:

mean_enc.fit(X_train, y_train)

8. Finally, let’s encode the train and test sets:

X_train_enc = mean_enc.transform(X_train)

X_test_enc = mean_enc.transform(X_test)

Tip
The category-to-number pairs are stored as a dictionary of dictionaries in the encoder_dict_ 
attribute. To display the stored parameters, execute mean_enc.encoder_dict_.

Feature-engine returns pandas DataFrames containing the categorical variables, ready to use 
in machine learning models.

To wrap up, let’s implement mean encoding with Category Encoders blending the probabilities.

9. Let’s import the encoder:

from category_encoders.target_encoder import TargetEncoder

10. Let’s set up the encoder so that it encodes all categorical variables using blended probabilities 
when there are less than 25 observations in the category group:

mean_enc = TargetEncoder(

    cols=None, min_samples_leaf=25,

    smoothing=1.0

)

Tip
TargetEncoder() finds categorical variables automatically by default. Alternatively, we 
can indicate the variables to encode by passing their names in a list to the cols argument. 
The smoothing parameter controls the blend of the prior and posterior probability. Higher 
values decrease the contribution of the posterior probability to the encoding.
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11. Let’s fit the transformer to the train set so that it learns and stores the numerical representations 
for each category:

mean_enc.fit(X_train, y_train)

Note
The min_samples_leaf parameter refers to the minimum number of observations per 
category that a group should have to solely use the posterior probability. It is the equivalent of 
k in our weighting factor formula. In the original article, k was set to ½ of min_samples_
leaf. Category encoders expose this value and thus, we can optimize it with cross-validation.

12. Finally, let’s encode the train and test sets:

X_train_enc = mean_enc.transform(X_train)

X_test_enc = mean_enc.transform(X_test)

Category Encoders returns pandas DataFrames by default, where the original categorical variable 
values are replaced by their numerical representation. You can inspect the results by executing X_
train_enc.head().

How it works…

In this recipe, we replaced the categories with the mean target value using pandas, Feature-engine, 
and Category Encoders.

With pandas groupby(), using the A7 categorical variable, followed by pandas mean() over the 
target variable, we created a pandas Series with the categories as indices and the target mean as values. 
With pandas to_dict(), we converted this Series into a dictionary. Finally, we used this dictionary 
to replace the categories in the train and test sets using pandas map().

To perform the encoding with Feature-engine, we used MeanEncoder(). With fit(), the 
transformer found and stored the categorical variables and the mean target value per category. 
With transform(), categories were replaced with numbers in the train and test sets, returning 
pandas DataFrames.

Finally, we used TargetEncoder() from Category Encoders to replace categories with a blend of 
prior and posterior probability estimates of the target. We set min_samples_leaf to 25, which 
meant that if a category group had 25 observations or more, then the posterior probability was used 
for the encoding; alternatively, a blend of probabilities was used for the encoding. With fit(), the 
transformer found the categorical variables and the numerical representation of the categories, while 
with transform(), the categories were replaced with numbers, returning pandas DataFrames 
with their encoded values.
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There’s more…

There is an alternative way to return better target estimates when the category groups are small. The 
replacement value for each category is determined as follows:

Here, ni(Y=1) is the target mean for category i and ni is the number of observations with category i. The 
target prior is given by pY and m is the weighting factor. With this adjustment, the only parameter 
that we have to set is the weight, m. If m is large, then more importance is given to the target’s prior 
probability. This adjustment affects target estimates for all categories but mostly for those with fewer 
observations because, in such cases, m could be much larger than ni in the formula’s denominator.

For an implementation of this encoding using MEstimateEncoder(), visit this book’s 
GitHub repository.

Encoding with the Weight of Evidence
The Weight of Evidence (WoE) was developed primarily for credit and financial industries to facilitate 
variable screening and exploratory analysis and to build more predictive linear models to evaluate 
the risk of loan defaults.

The WoE is computed from the basic odds ratio:

Here, positive and negative refer to the values of the target being 1 or 0, respectively. The proportion 
of positive cases per category is determined as the sum of positive cases per category group divided 
by the total positive cases in the training set, and the proportion of negative cases per category is 
determined as the sum of negative cases per category group divided by the total number of negative 
observations in the training set.

The WoE has the following characteristics:

• WoE = 0 if p(positive) / p(negative) = 1; that is, if the outcome is random

• WoE > 0 if p(positive) > p(negative)

• WoE < 0 if p(negative) > p(positive)

This allows us to directly visualize the predictive power of the category in the variable: the higher the 
WoE, the more likely the event will occur. If the WoE is positive, the event is likely to occur:

𝑆𝑆𝑆𝑆  =   𝑛𝑛𝑖𝑖(𝑌𝑌=1) + 𝑝𝑝𝑝𝑝 ×𝑚𝑚
𝑛𝑛𝑖𝑖  + 𝑚𝑚  

𝑊𝑊𝑊𝑊𝑊𝑊  =   log ( 𝑝𝑝𝑝𝑝𝑊𝑊𝑝𝑝𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊𝑝𝑝 𝑝𝑝𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊𝑝𝑝𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊𝑝𝑝 𝑝𝑝𝑝𝑝𝑛𝑛𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝) 

log(𝑝𝑝
(𝑌𝑌 = 1)

𝑝𝑝(𝑌𝑌 = 0)) = 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋1 + 𝑏𝑏2𝑋𝑋2 +  …   + 𝑏𝑏𝑛𝑛𝑋𝑋𝑛𝑛 
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Logistic regression models a binary response, Y, based on X predictor variables, assuming that there 
is a linear relationship between X and the log of odds of Y.

Here, log (p(Y=1)/p(Y=0)) is the log of odds. As you can see, the WoE encodes the categories in the 
same scale – that is, the log of odds – as the outcome of the logistic regression.

Therefore, by using WoE, the predictors are prepared and coded on the same scale, and the parameters 
in the logistic regression model – that is, the coefficients – can be directly compared.

In this recipe, we will perform WoE encoding using pandas and Feature-engine.

How to do it...

Let’s begin by making some imports and preparing the data:

1. Import the required libraries and functions:

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

2. Let’s load the dataset and divide it into train and test sets:

data = pd.read_csv("credit_approval_uci.csv")

X_train, X_test, y_train, y_test = train_test_split(

    data.drop(labels=["target"], axis=1),

    data["target"],

    test_size=0.3,

    random_state=0,

)

3. Let’s get the inverse of the target values to be able to calculate the negative cases:

neg_y_train = pd.Series(

    np.where(y_train == 1, 0, 1),

    index=y_train.index

)

4. Let’s determine the number of observations where the target variable takes a value of 1 or 0:

total_pos = y_train.sum()

total_neg = neg_y_train.sum()
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5. Now, let’s calculate the numerator and denominator of the WoE’s formula, which we discussed 
earlier in this recipe:

pos = y_train.groupby(

    X_train["A1"]).sum() / total_pos

neg = neg_y_train.groupby(

    X_train["A1"]).sum() / total_neg

6. Now, let’s calculate the WoE per category:

woe = np.log(pos/neg)

We can display the series with the category to WoE pairs by executing print(woe):

A1

Missing    0.203599

a          0.092373

b         -0.042410

dtype: float64

7. Finally, let’s replace the categories of A1 with the WoE:

X_train["A1"] = X_train["A1"].map(woe)

X_test["A1"] = X_test["A1"].map(woe)

You can inspect the encoded variable by executing X_train["A1"].head().

Now, let’s perform WoE encoding using Feature-engine. First, we need to separate the data into 
train and test sets, as we did in step 2.

8. Let’s import the encoder:

from feature_engine.encoding import WoEEncoder

9. Next, let’s set up the encoder so that we can encode three categorical variables:

woe_enc = WoEEncoder(variables = ["A1", "A9", "A12"])

Tip
Feature-engine’s WoEEncoder() will return an error if p(0)=0 for any category because 
the division by 0 is not defined. To avoid this error, we can group infrequent categories, as we 
will discuss in the next recipe, Grouping rare or infrequent categories.
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10.  Let’s fit the transformer to the train set so that it learns and stores the WoE of the different categories:

woe_enc.fit(X_train, y_train)

Tip
We can display the dictionaries with the categories to WoE pairs by executing woe_enc.
encoder_dict_.

11. Finally, let’s encode the three categorical variables in the train and test sets:

X_train_enc = woe_enc.transform(X_train)

X_test_enc = woe_enc.transform(X_test)

Feature-engine returns pandas DataFrames containing the encoded categorical variables ready to use 
in machine learning models.

How it works...

First, with pandas sum(), we determined the total number of positive and negative cases. Next, using 
pandas groupby(), we determined the fraction of positive and negative cases per category. And 
with that, we calculated the WoE per category.

Finally, we automated the procedure with Feature-engine. We used WoEEncoder(), which learned 
the WoE per category with the fit() method, and then used transform(), which replaced the 
categories with the corresponding numbers.

See also

For an implementation of WoE with Category Encoders, visit this book’s GitHub repository.

Grouping rare or infrequent categories
Rare categories are those present only in a small fraction of the observations. There is no rule of thumb 
to determine how small a small fraction is, but typically, any value below 5% can be considered rare.

Infrequent labels often appear only on the train set or only on the test set, thus making the algorithms 
prone to overfitting or being unable to score an observation. In addition, when encoding categories 
to numbers, we only create mappings for those categories observed in the train set, so we won’t know 
how to encode new labels. To avoid these complications, we can group infrequent categories into a 
single category called Rare or Other.

In this recipe, we will group infrequent categories using pandas and Feature-engine.
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How to do it...

First, let’s import the necessary Python libraries and get the dataset ready:

1. Import the necessary Python libraries, functions, and classes:

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from feature_engine.categorical_encoders import RareLabelEncoder

2. Let’s load the dataset and divide it into train and test sets:

data = pd.read_csv("credit_approval_uci.csv")

X_train, X_test, y_train, y_test = train_test_split(

    data.drop(labels=["target"], axis=1),

    data["target"],

    test_size=0.3,

    random_state=0,

)

3. Let’s capture the fraction of observations per category in A7 in a variable:

freqs = X_train["A7"].value_counts(normalize=True)

We can see the percentage of observations per category of A7, expressed as decimals, in the 
following output after executing print(freqs):

v 0.573499

h 0.209110

ff 0.084886

bb 0.080745

z 0.014493

dd 0.010352

j 0.010352

Missing 0.008282

n 0.006211

o 0.002070

Name: A7, dtype: float64
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If we consider those labels present in less than 5% of the observations as rare, then z, dd, j, 
Missing, n, and o are rare categories.

4. Let’s create a list containing the names of the categories present in more than 5% of the observations:

frequent_cat = [

    x for x in freqs.loc[freqs > 0.05].index.values]

If we execute print(frequent_cat), we will see the frequent categories of A7:

['v', 'h', 'ff', 'bb'].

5. Let’s replace rare labels – that is, those present in <= 5% of the observations – with the 
"Rare" string:

X_train["A7"] = np.where(

    X_train["A7"].isin(frequent_cat),

    X_train["A7"], "Rare"

)

X_test["A7"] = np.where(

    X_test["A7"].isin(frequent_cat),

    X_test["A7"], "Rare"

    )

6. Let’s determine the percentage of observations in the encoded variable:

X_train["A7"].value_counts(normalize=True)

We can see that the infrequent labels have now been re-grouped into the Rare category:

v       0.573499 
h       0.209110 
ff      0.084886 
bb      0.080745 
Rare    0.051760 
Name: A7, dtype: float64

Now, let’s group rare labels using Feature-engine. First, we must divide the dataset into train 
and test sets, as we did in step 2.

7. Let’s create a rare label encoder that groups categories present in less than 5% of the observations, 
provided that the categorical variable has more than four distinct values:

rare_encoder = RareLabelEncoder(tol=0.05, n_categories=4)
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8. Let’s fit the encoder so that it finds the categorical variables and then learns their most 
frequent categories:

rare_encoder.fit(X_train)

Tip
Upon fitting, the transformer will raise warnings, indicating that many categorical variables 
have less than four categories, thus their values will not be grouped. The transformer just lets 
you know that this is happening.

We can display the frequent categories per variable by executing rare_encoder.encoder_
dict_, as well as the variables that will be encoded by executing rare_encoder.variables_.

9. Finally, let’s group rare labels in the train and test sets:

X_train_enc = rare_encoder.transform(X_train)

X_test_enc = rare_encoder.transform(X_test)

Now that we have grouped rare labels, we are ready to encode the categorical variables, as we’ve done 
in other recipes in this chapter.

How it works...

In this recipe, we grouped infrequent categories using pandas and Feature-engine.

We determined the fraction of observations per category of the A7 variable using pandas value_
counts() by setting the normalize parameter to True. Using list comprehension, we captured 
the names of the variables present in more than 5% of the observations. Finally, using NumPy’s 
where(), we searched each row of A7, and if the observation was one of the frequent categories 
in the list, which we checked using the pandas isin() method, its value was kept; otherwise, its 
original value was replaced with "Rare".

We automated the preceding steps for multiple categorical variables using Feature-engine. For this, 
we used Feature-engine’s RareLabelEncoder(). By setting tol to 0.05, we retained categories 
present in more than 5% of the observations. By setting n_categories to 4, we only group rare 
categories in variables with more than four unique values. With the fit() method, the transformer 
identified the categorical variables and then learned and stored their frequent categories. With the 
transform() method, the transformer replaced infrequent categories with the "Rare" string.

Performing binary encoding
Binary encoding is a categorical encoding technique that uses binary code – that is, a sequence of zeroes 
and ones – to represent the different categories of the variable. How does it work? First, the categories 
are arbitrarily replaced with ordinal numbers, as shown in the intermediate step of the following table. 
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Then, those numbers are converted into binary code. For example, integer 1 can be represented as 
sequence 10, integer 2 as 01, integer 3 as 11, and integer 0 as 00. The digits in the two positions of the 
binary string become the columns, which are the encoded representations of the original variable:

Figure 2.9 – Table showing the steps required for binary encoding of the color variable

Binary encoding encodes the data in fewer dimensions than one-hot encoding. In our example, the 
Color variable would be encoded into k-1 categories by one-hot encoding – that is, three variables 
– but with binary encoding, we can represent the variable with only two features. More generally, 
we determine the number of binary features needed to encode a variable as log2(number of distinct 
categories); in our example, log2(4) = 2 binary features.

Binary encoding is an alternative method to one-hot encoding where we do not lose information 
about the variable, yet we obtain fewer features after the encoding. This is particularly useful when 
we have highly cardinal variables. For example, if a variable contains 128 unique categories, with 
one-hot encoding, we would need 127 features to encode the variable, whereas with binary encoding, 
we would only need 7 (log2(128)=7). Thus, this encoding prevents the feature space from exploding. 
In addition, binary-encoded features are also suitable for linear models. On the downside, the derived 
binary features lack human interpretability, so if we need to interpret the decisions made by our 
models, this encoding method may not be a suitable option.

In this recipe, we will learn how to perform binary encoding using Category Encoders.

How to do it...

First, let’s import the necessary Python libraries and get the dataset ready:

1. Import the required Python library, function, and class:

import pandas as pd

from sklearn.model_selection import train_test_split

from category_encoders.binary import BinaryEncoder
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2. Let’s load the dataset and divide it into train and test sets:

data = pd.read_csv("credit_approval_uci.csv")

X_train, X_test, y_train, y_test = train_test_split(

    data.drop(labels=["target"], axis=1),

    data["target"],

    test_size=0.3,

    random_state=0,

)

3. Let’s inspect the unique categories in A7:

X_train["A7"].unique()

In the following output, we can see that A7 has 10 different categories:

array(['v', 'ff', 'h', 'dd', 'z', 'bb', 'j', 'Missing', 
'n', 'o'], dtype=object)

4. Let’s create a binary encoder to encode A7:

encoder = BinaryEncoder(cols=["A7"], drop_invariant=True)

Tip
BinaryEncoder(), as well as other encoders from the Category Encoders package, allow us to 
select the variables to encode. We simply pass the column names in a list to the cols argument.

5. Let’s fit the transformer to the train set so that it calculates how many binary variables it needs 
and creates the variable-to-binary code representations:

encoder.fit(X_train)

6. Finally, let’s encode A7 in the train and test sets:

X_train_enc = encoder.transform(X_train)

X_test_enc = encoder.transform(X_test)

We can display the top rows of the transformed train set by executing print(X_train_enc.
head()), which returns the following output:
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Figure 2.10 – DataFrame with the variables after binary encoding

Binary encoding returned four binary variables for A7, which are A7_0, A7_1, A7_2, and A7_3, 
instead of the nine that would have been returned by one-hot encoding.

How it works...

In this recipe, we performed binary encoding using the Category Encoders package. First, we loaded 
the dataset and divided it into train and test sets using train_test_split() from scikit-
learn. Next, we used BinaryEncoder() to encode the A7 variable. With the fit() method, 
BinaryEncoder() created a mapping from category to set of binary columns, and with the 
transform() method, the encoder encoded the A7 variable in both the train and test sets.

Tip
With one-hot encoding, we would have created nine binary variables (k-1 = 10 unique 
categories - 1 = 9) to encode all of the information in A7. With binary encoding, 
we can represent the variable in fewer dimensions by using log2(10)=3.3; that is, we only 
need four binary variables.

See also

For more information about BinaryEncoder(), visit https://contrib.scikit-learn.
org/category_encoders/binary.html.

For a nice example of the output of binary encoding, check out the following resource: https://
stats.stackexchange.com/questions/325263/binary-encoding-vs-one-
hot-encoding.

For a comparative study of categorical encoding techniques for neural network classifiers, visit https://
www.researchgate.net/publication/320465713_A_Comparative_Study_of_ 
Categorical_Variable_Encoding_Techniques_for_Neural_Network_Classifiers.

https://contrib.scikit-learn.org/category_encoders/binary.html
https://contrib.scikit-learn.org/category_encoders/binary.html
https://stats.stackexchange.com/questions/325263/binary-encoding-vs-one-hot-encoding
https://stats.stackexchange.com/questions/325263/binary-encoding-vs-one-hot-encoding
https://stats.stackexchange.com/questions/325263/binary-encoding-vs-one-hot-encoding
https://www.researchgate.net/publication/320465713_A_Comparative_Study_of_ Categorical_Variable_Encoding_Techniques_for_Neural_Network_Classifiers
https://www.researchgate.net/publication/320465713_A_Comparative_Study_of_ Categorical_Variable_Encoding_Techniques_for_Neural_Network_Classifiers
https://www.researchgate.net/publication/320465713_A_Comparative_Study_of_ Categorical_Variable_Encoding_Techniques_for_Neural_Network_Classifiers




3
Transforming Numerical 

Variables

Statistical methods used in data analysis make certain assumptions about the data. For example, 
in the general linear model, it is assumed that the values of the dependent variable (the target) are 
independent, that there is a linear relationship between the target and the independent (predictor) 
variables, and that the residuals – that is, the difference between the predictions and the real values 
of the target – are normally distributed and centered at 0. When these assumptions are not met, the 
resulting probabilistic statements might not be accurate. To correct for failure in the assumptions and 
thus improve the performance of the models, we can transform variables before the analysis.

Variable transformation consists of replacing the original variable values with a function of that 
variable. More generally, transforming variables with mathematical functions helps reduce variable 
skewness, improve the value spread, and sometimes unmask linear and additive relationships between 
predictors and the target. Commonly used mathematical transformations include the logarithm, 
reciprocal, power, square, and cube root transformations, as well as the Box-Cox and Yeo-Johnson 
transformations. This set of transformations is commonly referred to as variance stabilizing 
transformations. Variance stabilizing transformations intend to bring the distribution of the variable 
to a more symmetric – that is, Gaussian – shape. In this chapter, we will discuss when to use each 
transformation and then implement them using NumPy, SciPy, scikit-learn, and Feature-engine.

This chapter will cover the following recipes:

• Transforming variables with the logarithm function

• Transforming variables with the reciprocal function

• Using the square root to transform variables

• Using power transformations

• Performing Box-Cox transformation

• Performing Yeo-Johnson transformation
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Transforming variables with the logarithm function
The logarithm function is a powerful transformation for dealing with positive data with a right-skewed 
distribution (observations accumulate at lower values of the variable). A common example is variable 
income, with a heavy accumulation of values toward smaller salaries. The log transform has a strong 
effect on the shape of the variable distribution.

In this recipe, we will perform logarithmic transformation using NumPy, scikit-learn, and Feature-
engine. We will also create a diagnostic plot function to evaluate the effect of the transformation on 
the variable distribution.

Getting ready

To evaluate the variable distribution and understand whether a transformation improves value spread 
and stabilizes the variance, we can visually inspect the data with histograms and Quantile-Quantile 
(Q-Q) plots. A Q-Q plot helps us determine whether two variables show a similar distribution. In 
a Q-Q plot, we plot the quantiles of one variable against the quantiles of the second variable. If we 
plot the quantiles of the variable of interest against the expected quantiles of the normal distribution, 
then we can determine whether our variable is also normally distributed. If the variable is normally 
distributed, the points in the Q-Q plot will fall along a 45-degree diagonal.

Note
A quantile is the fraction of points below a given value. Thus, the 0.2 quantile is the point in 
the distribution at which 20% of the observations fall below and 80% above that value.

How to do it...

Let’s begin by importing the libraries and getting the dataset ready:

1. Import the required Python libraries and dataset:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import scipy.stats as stats

from sklearn.datasets import fetch_california_housing

2. Let’s load the California housing dataset into a pandas DataFrame:

X, y = fetch_california_housing(return_X_y=True,

    as_frame=True)
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3. Let’s explore the distributions of all the variables in the dataset by plotting histograms with pandas:

X.hist(bins=30, figsize=(12, 12))

plt.show()

In the following output, we can see that the MedInc variable shows a mild right-skewed 
distribution, variables such as AveRooms and Population are heavily right-skewed, and that 
the HouseAge variable shows an even spread of values across its range:

Figure 3.1 – Histograms with the distribution of the numerical variables
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4. To evaluate the effect of the transformation on the variable distribution, we’ll create a function 
that takes a DataFrame and a variable name as inputs and plots a histogram next to a Q-Q plot:

def diagnostic_plots(df, variable):

    plt.figure(figsize=(15,6))

    plt.subplot(1, 2, 1)

    df[variable].hist(bins=30)

    plt.title(f"Histogram of {variable}")

    plt.subplot(1, 2, 2)

    stats.probplot(df[variable], dist="norm", plot=plt)

    plt.title(f"Q-Q plot of {variable}")

    plt.show()

5. Now, let’s plot the distribution of the MedInc variable:

diagnostic_plots(X, "MedInc")

The following output shows that MedInc has a mild right-skewed distribution:

Figure 3.2 – Histogram and Q-Q plot of the MedInc variable

Now, let’s transform the data with the logarithm.

6. First, let’s make a copy of the original DataFrame using pandas copy():

X_tf = X.copy()

We’ve created a copy so that we can modify the values in the copy and not in the original 
DataFrame, which we need for the rest of this recipe.
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Note
If we execute X_tf = X instead of using pandas copy(), X_tf will not be a copy of the 
DataFrame; instead, it will be another view of the same data. Therefore, changes made in X_tf 
will be reflected in X as well.

7. Let’s make a list with the variables that we want to transform:

variables = ["MedInc", "AveRooms", "AveBedrms", 
"Population"]

8. Let’s apply the logarithmic transformation with NumPy to the variables from step 7 and capture 
the transformed variables in the new DataFrame:

X_tf[variables] = np.log(X[variables])

Note
Remember that the logarithm transformation can only be applied to strictly positive variables. 
If the variables have zero or negative values, sometimes, it is useful to add a constant to make 
those values positive. We could add a constant value of 1 using X_tf[variables] = 
np.log(X[variables] + 1).

9. Let’s check the distribution of MedInc after the transformation with the diagnostic function 
from step 4:

diagnostic_plots(X_tf, "MedInc")

In the following output, we can see that the logarithmic transformation returned a more evenly 
distributed variable that approximates the theoretical normal distribution in the Q-Q plot better:

Figure 3.3 – Histogram and Q-Q plot of the MedInc variable after the log transformation
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Go ahead and plot the other transformed variables to familiarize yourself with the effect of the 
log transform on distributions.

Now, let’s apply the logarithmic transformation with scikit-learn.

10.  Let’s import FunctionTransformer():

from sklearn.preprocessing import FunctionTransformer

Before we proceed, we need to take a copy of the original dataset, as we did in step 6.

11. Let’s set up the transformer so that we can apply the logarithm and also revert the transformed 
variable to its original representation:

transformer = FunctionTransformer(np.log,

    inverse_func=np.exp)

Note
If we set up FunctionTransformer() with the default parameter, validate=False, 
we don’t need to fit the transformer before transforming the data. If we set validate=True, 
the transformer will check the input data to the fit method. The latter is useful when fitting 
the transformer with a DataFrame so that it learns and stores the variable names.

12. Let’s transform the positive variables from step 7:

X_tf[variables] = transformer.transform(X[variables])

Note
Scikit-learn transformers return NumPy arrays by default. In this case, we assigned the 
results of the array directly to our existing DataFrame. Go ahead and check the results of the 
transformation with the diagnostic function from step 4.

13.  Because we set up the exponential function in the inverse function of FunctionTransformer() 
in step 11, we can revert the transformed variables to their original representations, as follows:

X_tf[variables] = transformer.inverse_transform(

    X_tf[variables])

If you check the distribution by executing diagnostic_plots(X_tf, "MedInc"), you 
should see a plot identical to that returned by step 5.
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Note
To add a constant value to the variables, in case they are not strictly positive, we can set up 
FunctionTransformer() using transformer = FunctionTransformer(lambda 
x: np.log(x + 1)).

Now, let’s do logarithm transformation with Feature-engine.

14. Let’s import LogTransformer():

from feature_engine.transformation import LogTransformer

15. Let’s set up the transformer so that it modifies the variables from step 7 and then fits them to 
the dataset:

lt = LogTransformer(variables = variables)

lt.fit(X)

Note
If the variables argument is left as None, LogTransformer() identifies and applies the 
logarithm to all the numerical variables in the dataset.

Alternatively, we can indicate which variables to modify, as we did in step 15.

16. Finally, let’s transform the data:

X_tf = lt.transform(X)

Note that X_tf is a pandas DataFrame that contains the original variables, where only the 
variables in the list from step 7 were transformed by the logarithm.

17. Feature-engine’s LogTransformer() comes with the inverse_transform functionality 
out of the box to revert the transformed variable to its original representation:

X_tf = lt.inverse_transform(X_tf)

If you check the distribution of the variables after step 17, they should be identical to those of 
the original data.

Note
Feature-engine has a dedicated transformer that adds constant values to the variables before 
the log transform. Check the There’s more… section later in this recipe for more details.
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How it works...

In this recipe, we applied the logarithm transformation to a subset of positive variables using NumPy, 
scikit-learn, and Feature-engine.

To compare the effect of the transformation on the variable distribution, we created a diagnostic 
function to plot a histogram next to a Q-Q plot. To create the Q-Q plot, we used scipy.stats.
probplot(), which plotted the quantiles of our variable of interest in the y axis versus the quantiles 
of a theoretical normal distribution, which we indicated by setting the dist parameter to norm in 
the x axis. We used Matplotlib to display the plot by setting the plot parameter to plt.

To follow up with the commands used to display the plots, with plt.figure() and figsize, 
we adjusted the size of the figure and, with plt.subplot(), we organized the two plots in 1 row 
with 2 columns – that is, one plot next to the other. The numbers within plt.subplot() indicated 
the number of rows, the number of columns, and the place of the plot in the figure, respectively. We 
placed the histogram in position 1 and the Q-Q plot in position 2 – that is, left and right, respectively.

To test the function, we plotted a histogram and a Q-Q plot for the MedInc variable before the 
transformation and observed that MedInc was not normally distributed: most observations were 
at the left of the histogram and the values deviated from the 45-degree line in the Q-Q plot at both 
ends of the distribution.

Next, using np.log(), we applied the logarithm to a slice of the DataFrame with four positive 
variables. To evaluate the effect of the transformation, we plotted a histogram and Q-Q plot of the 
transformed MedInc variable. We observed that, after the log transformation, the values were more 
centered in the histogram and that, in the Q-Q plot, they only deviated from the 45-degree line toward 
the far ends of the distribution.

Next, we used FunctionTransformer() from scikit-learn, which applies any user-defined 
function to a dataset and returns the result of the operation in a NumPy array. We passed np.log() 
as an argument to apply the log transformation and Numpy’s exp() for the inverse transformation 
to FunctionTransfomer(). With the transform() method, we transformed a slice of the 
DataFrame with the positive variables. Finally, with inverse_transform(), we reverted the 
variable values to their original representation.

Finally, we used Feature-engine’s LogTransformer() to specify the variables to transform in a 
list as an argument. The fit() method of the transformer checked that the variables were numerical 
and positive, and the transform() method called np.log() under the hood to transform the 
indicated variables. With inverse_transform(), we reverted the transformed variables to their 
original representations.

There’s more…

Feature-engine has a dedicated transformer for adding a constant value to variables that are not strictly 
positive, before applying the logarithm: LogCpTransformer(). The advantages of this transformer 
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are that it can (i) add the same constant to all variables, as we saw in this recipe, (ii) automatically 
identify the minimum value required to make the variables positive, or (iii) add different arbitrary 
values defined by the user to different variables.

You can find a code implementation of LogCpTransformer() in this book’s GitHub 
repository: https://github.com/PacktPublishing/Python-Feature-Engineering-
Cookbook-Second-Edition/blob/main/ch03-variable-transformation/
Recipe-6-Yeo-Johnson-transformation.ipynb.

Transforming variables with the reciprocal function
The reciprocal function is defined as 1/x. The reciprocal transformation is often useful when we have 
ratios – that is, values resulting from the division of two variables. Examples of this are population 
density – that is, people per area – and, as we will see in this recipe, house occupancy – that is, the 
number of occupants per house.

The reciprocal transformation is not defined for the value 0, and although defined for negative values, 
it is mainly useful for transforming positive variables.

In this recipe, we will implement the reciprocal transformation using NumPy, scikit-learn, and Feature-
engine, and compare its effect on variable distribution using histograms and a Q-Q plot.

How to do it...

Let’s begin by importing the libraries and getting the dataset ready:

1. Import the required Python libraries and data:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import scipy.stats as stats

from sklearn.datasets import fetch_california_housing

2. Let’s load the California housing dataset:

X, y = fetch_california_housing(return_X_y=True,

     as_frame=True) 

3. To evaluate variable distributions, we’ll create a function that takes a DataFrame and a variable 
name as inputs and plots a histogram next to a Q-Q plot:

def diagnostic_plots(df, variable):

    plt.figure(figsize=(15,6))

https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch03-variable-transformation/Recipe-6-Yeo-Johnson-transformation.ipynb
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch03-variable-transformation/Recipe-6-Yeo-Johnson-transformation.ipynb
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch03-variable-transformation/Recipe-6-Yeo-Johnson-transformation.ipynb
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    plt.subplot(1, 2, 1)

    df[variable].hist(bins=30)

    plt.title(f"Histogram of {variable}")

    plt.subplot(1, 2, 2)

    stats.probplot(df[variable], dist="norm", plot=plt)

    plt.title(f"Q-Q plot of {variable}")

    plt.show()

4. Now, let’s plot the distribution of the AveOccup variable, which specifies the average occupancy 
of the house:

diagnostic_plots(X, "AveOccup")

The AveOccup variable shows a very strong right-skewed distribution, as shown in the 
following output:

Figure 3.4 – Histogram and Q-Q plot of the AveOccup variable

Note
The AveOccup variable refers to the average number of household members – that is, the 
ratio between the number of people and the number of houses in a certain area. This is a 
promising variable for a reciprocal transformation. You can find more details about the variables 
and the dataset by executing data = fetch_california_housing() followed by 
print(data.DESCR).
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Now, let’s apply the reciprocal transformation with NumPy.

5. First, let’s make a copy of the original DataFrame so that we can modify the values in the copy 
and not in the original one, which we need for the rest of this recipe:

X_tf = X.copy()

Note
Remember that executing X_tf = X, instead of using pandas copy(), creates an additional 
view of the same data. Therefore, changes that are made in X_tf will be reflected in X as well.

6. Let’s apply the reciprocal transformation to the AveOccup variable:

X_tf["AveOccup"] = np.reciprocal(X_tf["AveOccup"])

7. Let’s check the distribution of the AveOccup variable after the transformation with the 
diagnostic function we created in step 3:

diagnostic_plots(X_tf, "AveOccup")

Note
After the transformation, AveOccup is now the ratio of the number of houses and the number 
of people in a certain area – in other words, houses per citizen.

Here, we can see a dramatic change in the distribution of the AveOccup variable after the 
reciprocal transformation:

Figure 3.5 – Histogram and Q-Q plot of the AveOccup variable after the reciprocal transformation



Transforming Numerical Variables88

Now, let’s apply the reciprocal transformation with scikit-learn. We need to make a new copy 
of the data, as we did in step 5.

8. Let’s import FunctionTransformer():

from sklearn.preprocessing import FunctionTransformer

9. Let’s set up the transformer by passing np.reciprocal as an argument:

transformer = FunctionTransformer(np.reciprocal)

Note
By default, FunctionTransformer() does not need to be fit before transforming the data.

10. Now, let’s transform the variable of interest after making a copy of the original dataset:

X_tf = X.copy()

X_tf["AveOccup"] = transformer.transform(X["AveOccup"])

You can check the effect of the transformation using the function from step 3.

Note
Note that the inverse of the reciprocal function is the reciprocal function, so if you transform 
the transformed data, you revert it to its original representation.

Now, let’s apply the reciprocal transformation with Feature-engine.

11. Let’s import ReciprocalTransformer():

from feature_engine.transformation import ReciprocalTransformer

12. We must set up the transformer so that it modifies the AveOccup variable and then fit it to 
the dataset:

rt = ReciprocalTransformer(variables="AveOccup")

rt.fit(X)

Note
If the variables argument is None, the transformer applies the reciprocal function to all the 
numerical variables in the dataset. If some of the variables contain a value of 0, the transformer 
will raise an error.
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13. Let’s transform the selected variable in our dataset:

X_tf = rt.transform(X)

ReciprocalTransformer() will return a new pandas DataFrame containing the original 
variables, where the variable indicated in step 12 is transformed with the reciprocal function.

How it works...

In this recipe, we applied the reciprocal transformation using NumPy, scikit-learn, and Feature-engine.

To evaluate the variable distribution, we used the function to plot a histogram next to a Q-Q plot, 
which we described in the How it works… section of the Transforming variables with the logarithm 
function recipe, earlier in this chapter.

We plotted the histogram and Q-Q plot of the AveOccup variable, which showed a heavy right-
skewed distribution; most of its values were at the left of the histogram and they deviated from the 
45-degree line toward the right end of the distribution in the Q-Q plot.

To carry out the reciprocal transformation, we applied np.reciprocal() to the variable. After the 
transformation, AveOccup’s values were more evenly distributed across the value range and followed 
the theoretical quantiles of the normal distribution in the Q-Q plot more closely.

Next, we used np.reciprocal() from within scikit-learn’s FunctionTransformer(). The 
advantage of applying the reciprocal transformation this way is that we can line up this transformation 
step within a scikit-learn pipeline.

Finally, we used Feature-engine’s ReciprocalTransformer() while specifying the variable to 
transform. The fit() method checked that the variables were numerical, while the transform() 
method called np.reciprocal() under the hood to transform the variables, returning a pandas 
DataFrame. Feature-engine’s ReciprocalTransformer() provides functionality to revert the 
variable to its original representation out of the box via the inverse_transform() method.

Using the transformers from scikit-learn or Feature-engine, instead of np.reciprocal(), allows 
us to carry out this transformation as an additional step of a feature engineering pipeline within the 
Pipeline object from scikit-learn. The difference between FunctionTransformer() and 
ReciprocalTransformer() is that the first one can apply any user-specified transformation, 
whereas the latter only applies the reciprocal function. scikit-learn also returns Numpy arrays by default 
and transforms all variables in the dataset, whereas Feature-engine returns pandas DataFrames and 
can modify subsets of variables within the data.

Using the square root to transform variables
The square root transformation, √x, as well as its variations, the Anscombe transformation, √(x+3/8), 
and the Freeman-Tukey transformation, √x + √(x+1), are variance stabilizing transformations that 
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transform a variable with a Poisson distribution into one with an approximately standard Gaussian 
distribution. The square root transformation is a form of power transformation where the exponent 
is 1/2 and is only defined for positive values.

The Poisson distribution is a probability distribution that indicates the number of times an event is 
likely to occur. In other words, it is a count distribution. It is right-skewed and its variance equals its 
mean. Examples of variables that could follow a Poisson distribution are the number of financial items 
of a customer, such as the number of current accounts or credit cards, the number of passengers in a 
vehicle, and the number of occupants in a household.

In this recipe, we will implement square root transformations using NumPy, scikit-learn, 
and Feature-engine.

How to do it...

In this recipe, we will create a toy dataset with two variables whose values are drawn from a 
Poisson distribution:

1. Let’s begin by importing the necessary libraries:

import numpy as np import pandas as pd

import scipy.stats as stats

2. Let’s create a DataFrame with two variables drawn from a Poisson distribution with mean 
values of 2 and 3, respectively, and 10000 observations:

df = pd.DataFrame()

df["counts1"] = stats.poisson.rvs(mu=3, size=10000)

df["counts2"] = stats.poisson.rvs(mu=2, size=10000)

3. Let’s create a function that takes a DataFrame and a variable name as inputs and plots a bar 
graph with the number of observations per value next to a Q-Q plot:

def diagnostic_plots(df, variable):

    plt.figure(figsize=(15,6))

    plt.subplot(1, 2, 1)

    df[variable].value_counts().sort_index(). plot.bar()

    plt.title(f"Histogram of {variable}")

    plt.subplot(1, 2, 2)

    stats.probplot(df[variable], dist="norm", plot=plt)
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    plt.title(f"Q-Q plot of {variable}")

    plt.show()

4. Let’s create a bar plot and a Q-Q plot for one of the variables in the data using the function 
from step 3:

diagnostic_plots(df, "counts1")

Here, we can see the Poisson distribution in the output:

Figure 3.6 – Bar and Q-Q plots of the counts1 variable

5. Now, let’s make a copy of the toy dataset:

df_tf = df.copy()

6. Let’s apply the square root transformation to both variables:

df_tf[["counts1", "counts2"]] = np.sqrt(

    df[["counts1","counts2"]])

7. Let’s round the values to 2 decimals for nicer visualization:

df_tf[["counts1", "counts2"]] = np.round(

    df_tf[["counts1", "counts2"]], 2)

If we plot the variable distribution as we did in step 4, we will see a more stabilized variance, 
as the dots in the Q-Q plot follow the 45-degree diagonal more closely:
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Figure 3.7 – Bar and Q-Q plots of the counts1 variable after the square root transformation

Now, let’s apply the square root transformation with scikit-learn.

8. Let’s import FunctionTransformer() and set up it to perform a square root transformation:

from sklearn.preprocessing import FunctionTransformer

transformer = FunctionTransformer(np.sqrt)

Note
If we wanted to round the values as we did in step 7, we can set up the transformer using 
transformer = FunctionTransformer(func=lambda x: np.round(np.
sqrt(x), 2)).

9. After making a copy of the data, as we did in step 5, we can go ahead and transform the variables:

df_tf = transformer.transform(df[["counts1", "counts2"]])

10. To apply the square root with Feature-engine instead, we must import PowerTransformer() 
and set it up, passing 0.5 as the exponent:

from feature_engine.transformation import PowerTransformer

root_t = PowerTransformer(exp=1/2)

11. Next, we must fit the transformer to the data:

root_t.fit(df)
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Note
The transformer automatically identifies the numerical variables, which we can explore by 
executing root_t.variables_.

12. Finally, we must transform the data:

df_tf = root_t.transform(df)

PowerTransformer() will return a new pandas DataFrame containing the original variables, 
where the variables from step 9 are transformed with the square root function.

How it works…

In this recipe, we applied power transformations using NumPy, scikit-learn, and Feature-engine.

To apply power functions with NumPy, we created a copy of the original DataFrame with copy() 
from pandas. Next, we used the power() method on a slice of the dataset with the variables to 
transform and capture the transformed variables in the new DataFrame. This procedure returned 
a pandas DataFrame containing the original variables, where MedInc and Population were 
transformed with a power of 0.3.

To apply an exponential transformation with scikit-learn, we used FunctionTransformer(), 
which applies a user-defined function. We set up the transformer with np.power() within a 
lambda function while using 0.3 as the exponent. The transform() method applied the power 
transformation to a slice of the dataset and the returned values were assigned to the variables in the 
copy of the DataFrame. This way, we captured the values directly in the DataFrame. Otherwise, scikit-
learn returns the values of the NumPy array by default.

Finally, we used Feature-engine’s PowerTransformer(). We set up the transformer with a list of the 
variables to transform and the exponent, which in this case is 0.3. The fit() method checked that the 
indicated variables were numerical and that the transform() method applied the transformation, 
returning a DataFrame with the transformed variables among the original variables in the dataset.

Using power transformations
Power functions are mathematical transformations that follow 𝑋𝑋𝑡𝑡  = 𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , where lambda can 
take any value. The square and cube root transformations are special cases of power transformations 
where lambda is 1/2 or 1/3, respectively. The challenge resides in finding the value for the lambda 
parameter. The Box-Cox transformation, which is a generalization of the power transformations, 
finds the optimal lambda via maximum likelihood. We will discuss the Box-Cox transformation in 
the following recipe. In practice, we try different lambdas and visually inspect the variable distribution 
to determine which one offers the best transformation. In general, if the data is right-skewed – that 
is, observations accumulate toward lower values – we use lambda <1, while if the data is left-skewed 
– that is, there are more observations around higher values – then we use lambda >1.
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In this recipe, we will carry out power transformations using NumPy, scikit-learn, and Feature-engine.

How to do it...

Let’s begin by importing the libraries and getting the dataset ready:

1. Import the required Python libraries and classes:

import numpy as np

import pandas as pd

from sklearn.datasets import fetch_california_housing

from sklearn.preprocessing import FunctionTransformer

from feature_engine.transformation import PowerTransformer

2. Let’s load the California housing dataset into a pandas DataFrame:

X, y = fetch_california_housing(

    return_X_y=True, as_frame=True)

3. Let’s make a copy of the DataFrame so that we can modify the values in the copy and not in 
the original, which we need for the rest of this recipe:

X_tf = X.copy()

4. To evaluate variable distributions, we’ll create a function that takes a DataFrame and a variable 
name as inputs and plots a histogram next to a Q-Q plot:

def diagnostic_plots(df, variable):

    plt.figure(figsize=(15,6))

    plt.subplot(1, 2, 1)

    df[variable].hist(bins=30)

    plt.title(f"Histogram of {variable}")

    plt.subplot(1, 2, 2)

    stats.probplot(df[variable], dist="norm", plot=plt)

    plt.title(f"Q-Q plot of {variable}")

    plt.show()
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5. Let’s plot the distribution of the Population variable with the function from step 4:

diagnostic_plots(X, "Population")

In the plots returned by the preceding command, we can see that Population is heavily 
skewed to the right:

Figure 3.8 – Histogram and Q-Q plot of the Population variable

Now, let’s apply a power transformation to the MedInc and Population variables. As both 
are skewed to the right, an exponent of <1 might return a better spread of the variable values.

6. Let’s capture the variables to transform in a list and then apply a power transformation where 
the exponent is 0.3:

variables = ["MedInc", "Population"]

X_tf[variables] = np.power(X[variables], 0.3)

Note
With np.power(), we can apply any power transformation by changing the value of the 
exponent in the second position of the method.

7. Let’s examine the change in the distribution of Population:

diagnostic_plots(X_tf, "Population")

As shown in the plots returned by the preceding command, Population is now more 
evenly distributed across the value range and follows the quantiles of the normal distribution 
more closely:
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Figure 3.9 – Histogram and Q-Q plot of the Population variable after the transformation

Now, let’s apply a power transformation with scikit-learn.

Let’s set up FunctionTransformer() with a power transformation, as we did in step 6, 
within a lambda function:

transformer = FunctionTransformer(

    lambda x: np.power(x,0.3))

8. After making a copy of the data, as we did in step 3, we can transform the variables:

X_tf[variables] = transformer.transform(X[variables])

That’s it – we can now examine the variable distribution. Finally, let’s perform an exponential 
transformation with Feature-engine.

9. Let’s set up PowerTransformer() with an exponent of 0.3 and the variables to transform. 
Then, we’ll fit it to the data:

power_t = PowerTransformer(variables=variables, exp=0.3)

power_t.fit(X)

Note
If we don’t define the variables to transform, PowerTransformer() will select all the 
numerical variables in the DataFrame.

10. Finally, let’s transform the variables in our dataset:

X_tf = power_t.transform(X)
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The transformer returns a DataFrame containing the original variables, and the two variables specified 
in step 6 are transformed with the power function.

How it works...

In this recipe, we applied power transformations using NumPy, scikit-learn, and Feature-engine.

To apply power functions with NumPy, we created a copy of the original DataFrame with pandas 
copy(). Next, we used the power() method on a slice of the dataset containing the variables to 
transform and captured the transformed variables in the new DataFrame. This procedure returned 
a pandas DataFrame containing the original variables, where MedInc and Population were 
transformed with a power of 0.3.

To apply an exponential transformation with scikit-learn, we used FunctionTransformer(), 
which applies a user-defined function. We set up the transformer with np.power() within a 
lambda function while using 0.3 as the exponent. The transform() method applied the power 
transformation to a slice of the dataset and the returned values were assigned to the variables in 
the copy of the DataFrame. This way, we captured the values directly in the DataFrame. Otherwise, 
scikit-learn returns the values of the NumPy array by default.

Finally, we used Feature-engine’s PowerTransformer(). We set up the transformer with a list of 
the variables to transform and an exponent of 0.3. The fit() method checked that the indicated 
variables were numerical and the transform() method applied the transformation, returning a 
DataFrame with the transformed variables among the original variables in the dataset.

Performing Box-Cox transformation
The Box-Cox transformation is a generalization of the power family of transformations and is defined 
as follows:

𝑦𝑦(𝜆𝜆)  =   (𝑦𝑦
𝜆𝜆  −  1)
 𝜆𝜆  𝑖𝑖𝑖𝑖 𝜆𝜆 ≠ 0 

𝑦𝑦(𝜆𝜆)  =   log(𝑦𝑦)  𝑖𝑖𝑖𝑖 𝜆𝜆 = 0 

Here, y is the variable and λ is the transformation parameter. It includes important special cases of 
transformations, including untransformed (λ = 1), the logarithm (λ = 0), the reciprocal (λ = - 1), the 
square root (when λ = 0.5, it applies a scaled and shifted version of the square root function) and the 
cube root.

In the Box-Cox transformation, several values of λ are evaluated using the maximum likelihood, and 
the λ parameter that returns the best transformation is selected.

In this recipe, we will perform Box-Cox transformation using scikit-learn and Feature-engine.



Transforming Numerical Variables98

Note
The Box-Cox transformation can only be used on positive variables. If your variables have 
negative values, try the Yeo-Johnson transformation, which is described in the next recipe, 
Performing Yeo-Johnson transformation. Alternatively, you can shift the variable distribution 
by adding a constant before the transformation.

How to do it...

Let’s begin by importing the necessary libraries and getting the dataset ready:

1. Import the required Python libraries and classes:

import numpy as np

import pandas as pd

import scipy.stats as stats

from sklearn.datasets import fetch_california_housing

from sklearn.preprocessing import PowerTransformer

from feature_engine.transformation import BoxCoxTransformer

2. Let’s load the California housing dataset into a pandas DataFrame:

X, y = fetch_california_housing(

    return_X_y=True, as_frame=True)

3. Let’s drop the Latitude and Longitude variables as we don’t use them in machine 
learning models:

X.drop(labels=["Latitude", "Longitude"], axis=1, 
inplace=True)

4. Let’s inspect the variable distributions with histograms:

X.hist(bins=30, figsize=(12, 12), layout=(3, 3))

plt.show()

In the following output, we can see that the MedInc variable shows a mild right-skewed 
distribution, variables such as AveRooms and Population are heavily right-skewed, and the 
HouseAge variable shows an even spread of values across its range:
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Figure 3.10 – Histograms of the numerical variables

5. Let’s capture the variable names in a list since we will use these in the following step:

variables = list(X.columns)

6. Let’s create a function that will plot Q-Q plots for all the variables in the data in 2 rows with 
3 plots each:

def make_qqplot(df):

    plt.figure(figsize=(10, 6), constrained_layout=True)

    for i in range(6):

        # location in figure

        ax = plt.subplot(2, 3, i + 1)

        # variable to plot

        var = variables[i]

        # q-q plot
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        stats.probplot((df[var]), dist="norm", plot=plt)

        # add variable name as title

        ax.set_title(var)

    plt.show()

7. Now, let’s display the Q-Q plots using the preceding function:

make_qqplot(X)

From this, we can corroborate that the variables are not normally distributed in the output of 
step 7:

Figure 3.11 – Q-Q plots of the numerical variables

Next, let’s carry out the Box-Cox transformation using scikit-learn’s PowerTransformer().

8. Let’s set up PowerTransformer() so that it carries out the Box-Cox transformation and 
fits it to the data so that it finds the optimal λ parameter:

transformer = PowerTransformer(

    method="box-cox", standardize=False)

transformer.fit(X)
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Note
The λ parameter should be learned from the train set and then used to transform the 
train and test sets. Thus, remember to separate your data into train and test sets before 
fitting PowerTransformer().

9. Now, let’s transform the dataset:

X_tf = transformer.transform(X)

10.  Scikit-learn returns a NumPy array containing the transformed variables. Let’s convert it into 
a pandas DataFrame:

X_tf = pd.DataFrame(X_tf, columns=variables)

Note
Scikit-learn’s PowerTransformer() stores the learned lambdas in its lambdas_ attribute, 
which you can display by executing transformer.lambdas_.

11. Let’s inspect the distributions of the transformed data with histograms:

X_tf.hist(bins=30, figsize=(12, 12), layout=(3, 3))

plt.show()

In the following output, we can see that the variables have a more even spread across their range:

Figure 3.12 – Histograms of the variables after the transformation
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12. Now, let’s return Q-Q plots of the transformed variables:

make_qqplot(X_tf)

In the following output, we can see that, after the transformation, the variables follow the 
theoretical normal distribution more closely:

Figure 3.13 – Q-Q plots of the variables after the transformation

Now, let’s implement the Box-Cox transformation with Feature-engine.

13. Let’s set up BoxCoxTransformer() so that it transforms all the variables in the dataset, 
and then fits them to the data:

bct = BoxCoxTransformer()

bct.fit(X)

14. Now, let’s go ahead and transform the variables:

X_tf = bct.transform(X)

The transformation returns a pandas DataFrame containing the modified variables.
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Note
PowerTransformer() from scikit-learn will transform the entire dataset. On the other 
hand, BoxCoxTransformer() from Feature-engine will only modify a subset of the 
variables: those indicated in the parameter variables when setting up the transformer. If None, 
the transformer automatically identifies all numerical variables.

15. The optimal lambdas for the Box-Cox transformation are stored in the lambda_dict_ 
attribute. Let’s inspect them:

bct.lambda_dict_

The output of the preceding line of code is as follows:

{'MedInc': 0.09085449361507383,

 'HouseAge': 0.8093980940712507,

 'AveRooms': -0.2980048976549959,

 'AveBedrms': -1.6290002625859639,

 'Population': 0.23576757812051324,

 'AveOccup': -0.4763032278973292}

Now, you know how to implement the Box-Cox transformation with two different Python libraries.

How it works...

In this recipe, using scikit-learn and Feature-engine, we applied the Box-Cox transformation to a 
subset of variables of the California housing dataset.

Scikit-learn’s PowerTransformer() can apply both Box-Cox and Yeo-Johnson transformations, 
so we specified the transformation when setting up the transformer by passing the "box-cox" 
string. Next, we fit the transformer to the data so that the transformer learned the optimal lambdas 
for each variable. The learned lambdas were stored in the lambdas_ attribute. Finally, we used the 
transform() method on a slice of the dataset to return the transformed variables in a NumPy array.

Finally, we applied the Box-Cox transformation using Feature-engine. We initialized 
BoxCoxTransformer(), leaving the parameter variables set the None. Due to this, the transformer 
automatically found the numerical variables in the data. We fit the transformer to the data so that it 
learned the optimal lambdas per variable, which were stored in lambda_dict_, and transformed 
the variables using the transform() method. Feature-engine’s BoxCoxTransformer() can 
take the entire DataFrame as input, and it will only transform the selected variables, returning the 
entire DataFrame with the selected variables transformed.
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There’s more…

We can apply the Box-Cox transformation with the SciPy library. For a code implementation, visit 
this book’s GitHub repository: https://github.com/PacktPublishing/Python-
Feature-Engineering-Cookbook-Second-Edition/blob/main/ch03-variable-
transformation/Recipe-6-Yeo-Johnson-transformation.ipynb.

Performing Yeo-Johnson transformation
The Yeo-Johnson transformation is an extension of the Box-Cox transformation that is no longer 
constrained to positive values. In other words, the Yeo-Johnson transformation can be used on variables 
with zero and negative values, as well as positive values. These transformations are defined as follows:

• ; if λ ≠ 0 and X >= 0

•  ln(X + 1 ); if λ = 0 and X >= 0

• ; if λ ≠ 2 and X < 0

• -ln(-X + 1); if λ = 2 and X < 0

When the variable has only positive values, then the Yeo-Johnson transformation is like the Box-Cox 
transformation of the variable plus one. If the variable has only negative values, then the Yeo-Johnson 
transformation is like the BoxCox transformation of the negative of the variable plus one at the power 
of 2. If the variable has a mix of positive and negative values, the Yeo-Johnson transformation applies 
different powers to the positive and negative values.

In this recipe, we will perform the Yeo-Johnson transformation using scikit-learn and Feature-engine.

How to do it...

Let’s begin by importing the necessary libraries and getting the dataset ready:

1. Import the required Python libraries and classes:

import numpy as np import pandas as pd

import scipy.stats as stats

from sklearn.datasets import fetch_california_housing

from sklearn.preprocessing import PowerTransformer 

from feature_engine.transformation import YeoJohnsonTransformer

https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch03-variable-transformation/Recipe-6-Yeo-Johnson-transformation.ipynb
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch03-variable-transformation/Recipe-6-Yeo-Johnson-transformation.ipynb
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch03-variable-transformation/Recipe-6-Yeo-Johnson-transformation.ipynb
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2. Let’s load the California housing dataset into a pandas DataFrame and then drop the Latitude 
and Longitude variables:

X, y = fetch_california_housing(

    return_X_y=True, as_frame=True)

X.drop(labels=["Latitude", "Longitude"], axis=1,

    inplace=True)

Note
We can evaluate the variable distribution with histograms and Q-Q plots, as we did in steps 4 
to 7 of the Performing Box-Cox transformation recipe.

Now, let’s apply the Yeo-Johnson transformation with scikit-learn.

3. Let’s set up PowerTransformer() with the yeo-johnson transformation:

transformer = PowerTransformer(method="yeo-johnson")

4. Let’s fit the transformer to the data:

transformer.fit(X)

Note
The λ parameter should be learned from the train set and then used to transform the 
train and test sets. Thus, remember to separate your data into train and test sets before 
fitting PowerTransformer().

5. Now, let’s transform the dataset and return a NumPy array containing the transformed variables:

X_tf = transformer.transform(X)

Note
PowerTransformer() stores the learned parameters in its lambda_ attribute, which you 
can return by executing transformer.lambdas_.

We can convert the NumPy array into a pandas DataFrame and then display the histograms and 
Q-Q plot of the transformed variables, as we did in steps 10 to 12 of the Performing Box-Cox 
transformation recipe.

Finally, let’s implement the Yeo-Johnson transformation with Feature-engine.
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6. Let’s set up YeoJohnsonTransformer() so that it modifies all numerical variables and 
then fits them to the data:

yjt = YeoJohnsonTransformer()

yjt.fit(X)

Note
If the variables argument is left set to None, the transformer selects and transforms all the 
numerical variables in the dataset. Alternatively, we can pass the names of the variables to 
modify in a list.

Note that, compared to PowerTransformer() from scikit-learn, the Feature-engine’s 
transformer can take the entire DataFrame as an argument of the fit () method, and yet it 
will only modify the selected variables.

7. Let’s transform the variables:

X_tf = yjt.transform(X)

8. YeoJohnsonTrasnformer() stores the best parameters per variable in its lambda_dict_ 
attribute, which we can display as follows:

yjt.lambda_dict_

The preceding code outputs the following dictionary:

{'MedInc': -0.1985098937827175,

 'HouseAge': 0.8081480895997063,

 'AveRooms': -0.5536698033957893,

 'AveBedrms': -4.3940822236920365,

 'Population': 0.23352363517075606,

 'AveOccup': -0.9013456270549428}

Now, you know how to implement the Yeo-Johnson transformation with two different open source libraries.

How it works...

In this recipe, we applied the Yeo-Johnson transformation using scikit-learn and Feature-engine.

scikit-learn’s PowerTransformer() can apply both Box-Cox and Yeo-Johnson transformations, 
so we specified the transformation with the yeo-johnson string. The standardize argument 
allowed us to determine whether we wanted to standardize (scale) the transformed values. Next, we 
fit the transformer to the DataFrame so that the transformer learned the optimal lambdas for each 
variable. PowerTransformer() stored the learned lambdas in its lambdas_ attribute. Finally, 
we used the transform() method to return the transformed variables in a NumPy array.
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After that, we applied the Yeo-Johnson transformation using Feature-engine. We set up 
YeoJohnsonTransformer() so that it transforms all numerical variables in the data. We fitted 
the transformer to the data so that it learned the optimal lambdas per variable, which were stored in 
lambda_dict_, and finally transformed the variables using the transform() method. Feature-
engine’s YeoJohnnsonTransformer() can take the entire DataFrame as input, yet it will only 
transform the selected variables, returning a new pandas DataFrame.

There’s more…

We can apply the Yeo-Johnson transformation with the SciPy library. For a code implementation, 
visit this book’s GitHub repository: https://github.com/PacktPublishing/Python-
Feature-Engineering-Cookbook-Second-Edition/blob/main/ch03-variable-
transformation/Recipe-6-Yeo-Johnson-transformation.ipynb.

https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch03-variable-transformation/Recipe-6-Yeo-Johnson-transformation.ipynb
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch03-variable-transformation/Recipe-6-Yeo-Johnson-transformation.ipynb
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch03-variable-transformation/Recipe-6-Yeo-Johnson-transformation.ipynb
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Discretization

Discretization is the process of transforming continuous variables into discrete features by creating a 
set of contiguous intervals, also called bins, that span the range of the variable values. Subsequently, 
these intervals or bins are treated as categorical data.

Many machine learning models, such as decision trees and Naïve Bayes, work better with discrete 
attributes. In fact, decision tree-based models make decisions based on discrete partitions over the 
attributes. During induction, a decision tree evaluates all possible feature values to find the best 
cut-point. Therefore, the more values the feature has, the longer the induction time of the tree. In this 
sense, discretization can improve model performance and reduce the time it takes to train the models.

Discretization has additional advantages. Data is reduced and simplified; discrete features can be easier 
to understand by domain experts. Discretization can change the distribution of skewed variables; if 
sorting observations across bins with equal frequency, the values are spread more homogeneously across 
the range. Additionally, discretization can minimize the influence of outliers by placing them at lower 
or higher intervals, together with the remaining inlier values of the distribution. Overall, discretization 
reduces and simplifies data, making the learning process faster and yielding more accurate results.

Discretization can also lead to a loss of information, for example, by combining values that are 
strongly associated with different classes or target values into the same bin. Therefore, the aim of 
a discretization algorithm is to find the minimal number of intervals without a significant loss of 
information. In practice, many discretization procedures require the user to input the number of 
intervals into which the values will be sorted. Then, the job of the algorithm is to find the cut-points 
for those intervals. Among these procedures, we find the most widely used equal-width and equal-
frequency discretization methods. Discretization methods based on decision trees otherwise are able 
to find the optimal number of partitions, as well as the cut-points.

Discretization procedures can be classified as supervised and unsupervised. Unsupervised discretization 
methods do not use any information, other than the variable distribution, to create the contiguous 
bins. On the other hand, supervised methods use target information to create the intervals.
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In this chapter, we will discuss widely used supervised and unsupervised discretization procedures 
that are available in established open source libraries. Among these, we will cover equal-width, equal-
frequency, arbitrary, k-means, and decision tree-based discretization. More elaborate methods, such 
as ChiMerge and CAIM, are out of scope, as their implementation is not yet available open source.

This chapter will cover the following recipes:

• Performing equal-width discretization

• Implementing equal-frequency discretization

• Discretizing the variable into arbitrary intervals

• Performing discretization with k-means clustering

• Implementing feature binarization

• Using decision trees for discretization

Technical requirements
In addition to the numerical computing libraries such as pandas, NumPy, Matplotlib, scikit-
learn, and Feature-engine, we will also use the Yellowbrick library. You can install 
Yellowbrick with pip:

 pip install yellowbrick

For more details about Yellowbrick, please visit the documentation at https://www.
scikit-yb.org/en/latest/index.html.

Performing equal-width discretization
Equal-width discretization is the simplest discretization method, which consists of dividing the range 
of observed values for a variable into k equally sized intervals, where k is supplied by the user. The 
interval width for the X variable is given by the following:

Then, if the values of the variable vary between 0 and 100, we can create five bins like this: width = 
(100-0) / 5 = 20; the bins will be 0–20, 20–40, 40–60, and 80–100. The first and final bins (0–20 and 
80–100) can be expanded to accommodate values smaller than 0 or greater than 100, by extending 
the limits to minus and plus infinity.

In this recipe, we will carry out equal-width discretization using pandas, scikit-learn, 
and Feature-engine.

𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾 =  𝑴𝑴𝑴𝑴𝑴𝑴 (𝑿𝑿) − 𝑴𝑴𝑾𝑾𝑴𝑴(𝑿𝑿)
𝒌𝒌  

https://www.scikit-yb.org/en/latest/index.html
https://www.scikit-yb.org/en/latest/index.html
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How to do it...

First, let’s import the necessary Python libraries and get the dataset ready:

1. Import the Python libraries and the data:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import fetch_california_housing

from sklearn.model_selection import train_test_split

2. Let’s load the predictor and target variables of the California housing dataset:

X, y = fetch_california_housing(

    return_X_y=True, as_frame=True)

Note
The cut-points for the intervals should be learned using variables in the train set only and then 
they should be used to discretize the variables in the train and test sets.

3. Let’s divide the data into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(

    X, y, test_size=0.3, random_state=0,

)

Next, we will divide the HouseAge continuous variable into 10 intervals using pandas and 
the formula described at the beginning of the recipe.

4. Let’s capture the minimum and maximum values of HouseAge:

var = "HouseAge"

min_value = int(X_train[var].min())

max_value = int(X_train[var].max())

5. Let’s determine the interval width, which is the variable’s value range divided by the number 
of bins:

width = int((max_value - min_value) / 10)

If we execute print(width), we will obtain 5, which is the size of the intervals.
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6. Now we need to define the interval limits in a list:

 interval_limits = [i for i in range(

    min_value, max_value, width)]

If we now execute print( interval_limits), we will see the interval limits:

 [1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51]

7. Let’s expand the limits of the first and last interval to accommodate smaller or greater values:

interval_limits[0] = -np.inf

interval_limits[-1] = np.inf

8. To divide a pandas series into intervals, we will use the pandas cut() method using the 
interval limits from step 6, for both the train and test sets:

var_disc = "HouseAge_disc"

 X_train[var_disc] = pd.cut(

    x=X_train[var], bins=interval_limits,

    include_lowest=True)

X_test[var_disc] = pd.cut(

    x=X_test[var], bins=interval_limits,

    include_lowest=True)

Tip
We set include_lowest=True to include the lowest value in the first interval. Through 
the parameter labels, we can return the bins as integers (default), as interval limits, or replace 
them with user-specified labels.

9. Let’s print the top 10 observations of the discretized and original variables, side by side:

print(X_train[[var, var_disc]].head(10))

In following the output, we can see that the value of 52 was allocated to the 46–infinite interval, 
the value of 43 was allocated to the 41–46 interval, and so on:

     HouseAge HouseAge_disc 
1989       52.0   (46.0, inf] 
256        43.0  (41.0, 46.0] 
7887       17.0  (16.0, 21.0] 
4581       17.0  (16.0, 21.0] 
1993       50.0   (46.0, inf] 
10326      11.0   (6.0, 11.0] 
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10339      14.0  (11.0, 16.0] 
12992      17.0  (16.0, 21.0] 
10458       6.0   (-inf, 6.0] 
1700       10.0   (6.0, 11.0]

Note
The parentheses and brackets in the intervals denote whether a value has been included or not 
in the interval. For example, the (41, 46] interval contains all values greater than 41 and 
smaller than or equal to 46.

In equal-width discretization, a different number of observations is allocated to each interval.

10. Let’s make a bar plot with the proportion of observations across the HouseAge intervals in 
the train and test sets:

# determine proportion of observations per bin

t1 = X_train[var_disc].value_counts(normalize=True, 
sort=False)

t2 = X_test[var_disc].value_counts(normalize=True, 
sort=False)

# concatenate proportions

tmp = pd.concat([t1, t2], axis=1)

tmp.columns = ['train', 'test']

# plot

tmp.plot.bar(figsize=(8,5))

plt.xticks(rotation=45)

plt.ylabel('Number of observations per bin')

plt.title("HouseAge")

plt.show()
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In the following output, we can see that the proportion of observations per interval is approximately 
the same in the train and test sets, but different across intervals:

Figure 4.1 – Proportion of observations per interval

With Feature-engine, we can perform equal-width discretization in fewer lines of code 
and for many variables at a time.

11. First, let’s divide the data into train and test sets, as shown in step 3:

X_train, X_test, y_train, y_test = train_test_split(

    X,

    y,

    test_size=0.3,

    random_state=0,

)

12.  Next, let’s import the discretizer:

from feature_engine.discretisation import EqualWidthDiscretiser
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13. Let’s create an equal-width discretizer to sort three continuous variables into eight intervals, 
thus returning the interval limits after the transformation:

variables = ['MedInc', 'HouseAge', 'AveRooms']

disc = EqualWidthDiscretiser(

    bins=8,

    variables=variables,

    return_boundaries=True,

)

Note
The EqualWidthDiscretiser() transformer returns an integer indicating whether the 
value was sorted in the first, second, or eighth bin, by default. That is the equivalent of ordinal 
encoding, which we described in the Replacing categories with ordinal numbers recipe of 
Chapter 2, Encoding Categorical Variables. We can set return_object=True to return the 
variables as objects and then use any of the Feature-engine or Category Encoders 
transformers. Alternatively, you can return the interval limits as we did in step 13.

14. Let’s fit the discretizer to the train set so that it learns the cut-points for each variable:

disc.fit(X_train)

We can inspect the cut-points in the disc.binner_dict_ attribute. Note that Feature-
engine will automatically extend the limits of the lower and upper intervals to infinite, to 
accommodate potential outliers in future data.

15. Let’s discretize the variables in the train and test sets:

train_t = disc.transform(X_train)

test_t = disc.transform(X_test)

EqualWidthDiscretiser() returns a dataframe where the indicated variables are 
discretized. If we run test_t.head() from a Jupyter notebook, we will see the following 
output where the original variable values are replaced by the intervals:
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Figure 4.2 – The dataframe with the discretized variables

16.  Now, let’s make bar plots with the proportion of observations per interval to better understand 
the effect of equal-width discretization:

plt.figure(figsize=(6, 12), constrained_layout=True)

for i in range(3):

    # location of plot in figure

    ax = plt.subplot(3, 1, i + 1)

    # the variable to plot

    var = variables[i]

    # determine proportion of observations per bin

t1 = train_t[var].value_counts(normalize=True,

    sort=False)

t2 = test_t[var].value_counts(normalize=True,

    sort=False)

    # concatenate proportions

    tmp = pd.concat([t1, t2], axis=1)

    tmp.columns = ['train', 'test']

    # sort the intervals

    tmp.sort_index(inplace=True)

    # make plot

    tmp.plot.bar(ax=ax)

    plt.xticks(rotation=45)

    plt.ylabel('Observations per bin')

    # add variable name as title

    ax.set_title(var)

    plt.show()
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The intervals contain a different number of observations, as shown in the following plots:

Figure 4.3 – Bar plots with the proportion of observations per interval
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Now, let’s implement equal-width discretization with scikit-learn.

17. Import classes from scikit-learn:

from sklearn.compose import ColumnTransformer

from sklearn.preprocessing import kBinsDiscretizer

18. Let’s set up an equal-width discretizer by setting its strategy to uniform:

disc = kBinsDiscretizer(n_bins=8, encode='ordinal', 
strategy='uniform')

Note
The kBinsDiscretiser()  class can return the bins as integers by setting 
encoding='ordinal' or one-hot encoding by setting encoding='onehot-dense'.

19. Let’s use ColumnTransformer() to apply the discretization to a slice of the dataframe 
with the selected variables:

ct = ColumnTransformer(

    [("discretizer", disc, variables)],

    remainder="passthrough",

)

Note
The remainder parameter is used to indicate whether we want to keep all the variables in 
the dataframe after the transformation, in which case we use passthrough, or only the 
transformed ones, in which case we use drop.

20. Let’s fit the discretizer to the train set so that the transformer learns the interval limits for 
each variable:

ct.fit(X_train)

21. Finally, let’s transform the train and test sets:

train_t = ct.transform(X_train)

test_t = ct.transform(X_test)

We can inspect the cut-points learned by the transformer by executing ct.named_
transformers_["discretizer"].bin_edges_.

Remember that scikit-learn returns NumPy arrays.



Performing equal-width discretization 119

22. Let’s convert the array into a pandas dataframe:

output_vars = variables + ['AveBedrms', 'Population', 
'AveOccup',"Latitud", "Longitude"]

train_t = pd.DataFrame(train_t, columns = output_vars)

test_t = pd.DataFrame(test_t, columns = output_vars)

That’s it. Now we can make the bar plots as shown in step 14 or use the data to train machine 
learning models.

How it works…

In this recipe, we sorted the variable values into equidistant intervals. To perform discretization with 
pandas, we calculated the maximum and minimum values of the HouseAge variable using the 
pandas methods of max() and min(), capturing the results as integers. Then, we estimated the 
interval width by dividing the value range, that is, the maximum values minus the minimum values, 
by the number of arbitrary bins. With the width and the minimum and maximum values, we captured 
the interval limits in a list. We used this list with pandas cut() to allocate the variable values into 
the intervals.

After discretization, the intervals are normally treated as categorical values. By default, pandas 
cut() returns the interval values as ordered integers, which is the equivalent of ordinal encoding. 
Through the labels parameter, we can modify this behavior to return the interval boundaries or 
user-defined labels.

We created a bar plot with the fraction of observations per interval. We used pandas value_
counts() to obtain the fraction of observations per interval. To plot these proportions, first, we 
concatenated the train and test series using pandas concat() in a temporary dataframe, and then 
we assigned the column names of train and test to it. Finally, we used pandas’ plot.bar() to 
display a bar plot. We rotated the labels with Matplotlib’s xticks() method and added the y 
legend with ylabel() and the title with title().

To perform equal-width discretization with Feature-engine, we used EqualWidthDiscretiser(), 
which takes the number of bins and the variables to discretize as arguments. Using the fit() method, 
the discretizer learned the interval limits for each variable. With the transform() method, the 
discretizer sorted the values into each bin.

EqualWidthDiscretiser() offers a few options to follow up the discretization with encoding. By 
default, it will return the bins as sorted integers, which is the equivalent of ordinal encoding. Alternatively, 
it can return the interval boundaries as with pandas cut(). To follow up the discretization with 
any other encoding procedure available in Feature-engine or Category Encoders, we 
need to return the bins cast as objects, which can be achieved by setting return_object to True.
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We followed the discretization with bar plots to identify the fraction of observation per interval, for 
each of the transformed variables. Because the HouseAge variable had a fairly homogeneous value 
spread before the transformation, with the equal-width discretization, we allocated values to all the 
intervals. However, some of the intervals of the MedInc and AveRooms variables, which had skewed 
distributions, contained very few observations. In particular, even though we wanted to create eight 
bins for AveRooms, there were enough values to create only five, and most values of the variables 
were allocated to the first interval. Therefore, equal-width discretization for very skewed variables 
incurs an important loss of information.

Finally, we discretized three continuous variables into equal-width bins with KBinsDiscretizer() 
from scikit-learn, indicating the number of bins and setting strategy to uniform. With 
the fit() method, the transformer learned the limits of the intervals, and with the transform() 
method, the transformer sorted the values into each interval, returning a NumPy array with the 
discretized variables. The values of the discretized variables were integers representing the intervals. 
KBinsDiscretizer can return the intervals as ordinal numbers or as one-hot-encoded variables. 
The behavior can be modified through the encode parameter.

To apply the discretization to a subset of variables, we used ColumnTransformer(), which 
sliced the data into the selected variables, then applied the discretizer to this slice of data, and finally 
concatenated the remaining variables to the transformed ones in a NumPy array.

See also

For a comparison of equal-width discretization with more sophisticated methods, see Dougherty J, 
Kohavi R, Sahami M. Supervised and unsupervised discretization of continuous features. In: Proceedings 
of the 12th international conference on machine learning. San Francisco: Morgan Kaufmann; 1995. 
p. 194–202.

Implementing equal-frequency discretization
Equal-width discretization is easy to compute. However, if the variables are skewed, then there will 
be many empty bins or bins with only a few values, while most observations will be allocated to a few 
intervals. This could result in a loss of information. This problem can be solved by adaptively finding 
the interval cut-points so that each interval contains a similar fraction of observations.

Equal-frequency discretization divides the values of the variable into intervals that carry the same 
proportion of observations. The interval width is determined by quantiles. Quantiles are values that 
divide data into equal portions. For example, the median is a quantile that divides the data into two 
halves. Quartiles divide the data into 4 portions, and percentiles divide the data into 100 portions. As a 
result, the intervals will most likely have different widths. The number of intervals is defined by the user.

Equal-frequency discretization is particularly useful for skewed variables as it spreads the observations 
over the different bins equally. In this recipe, we will perform equal-frequency discretization using 
pandas, scikit-learn, and Feature-engine.
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How to do it...

First, let’s import the necessary Python libraries and get the dataset ready:

1. Import the required Python libraries and classes:

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import fetch_california_housing

from sklearn.model_selection import train_test_split

2. Let’s load the California housing dataset into a dataframe:

 X, y = fetch_california_housing(

    return_X_y=True, as_frame=True)

The interval boundaries or quantiles should be learned using variables in the train set only.

3. Let’s divide the data into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(

    X, y, test_size=0.3, random_state=0,

)

Let’s implement equal-frequency discretization with pandas.

4. To divide the HouseAge variable into eight quantiles, we use pandas qcut(), which 
returns both, the discretized variable and the quantile limits. We capture them as a column of 
the dataframe and an individual variable, respectively:

var = "HouseAge"

var_disc = "House_disc"

X_train[var_disc], interval_limits = pd.qcut(

    x=X_train[var], q=8, labels=None, retbins=True,

)

We can visualize the cut-points for the intervals by executing print(interval_limits):

array([ 1., 14., 18., 24., 29., 34., 37., 44., 52.])

5. Let’s print the top 10 observations of the discretized and original variables, side by side:

print(X_train[[var, var_disc]].head(10))
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In the following output, we can see that the value of 52 was allocated to the 44–52 interval, 
the value of 43 was allocated to the 37–44 interval, and so on:

       HouseAge     House_disc

1989       52.0   (44.0, 52.0]

256        43.0   (37.0, 44.0]

7887       17.0   (14.0, 18.0]

4581       17.0   (14.0, 18.0]

1993       50.0   (44.0, 52.0]

10326      11.0  (0.999, 14.0]

10339      14.0  (0.999, 14.0]

12992      17.0   (14.0, 18.0]

10458       6.0  (0.999, 14.0]

1700       10.0  (0.999, 14.0]

6. Now, let’s discretize HouseAge in the test set, using pandas cut() with the interval limits 
determined in step 4:

X_test[var_disc] = pd.cut(

    x = X_test[var], bins=interval_limits)

In equal-frequency discretization, similar fractions of observations are allocated to each interval.

7. Let’s make a bar plot with the proportion of observations across the HouseAge intervals in 
the train and test sets:

# determine proportion of observations per bin

t1 = X_train[var_disc].value_counts(normalize=True)

t2 = X_test[var_disc].value_counts(normalize=True)

# concatenate proportions

tmp = pd.concat([t1, t2], axis=1)

tmp.columns = ['train', 'test']

tmp.sort_index(inplace=True)

# plot

tmp.plot.bar()

plt.xticks(rotation=45)

plt.ylabel('Number of observations per bin')

plt.title("HouseAge")

plt.show()
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In the output of the preceding code block, we can see that most bins contain a similar fraction 
of observations, as expected:

Figure 4.4 – The proportion of observations per interval of HouseAge

Note
Note that the limits for the first interval in the test set and train set differ, being 0.99–14 and 1–14, 
respectively. This occurred because the minimum value observed in the train set was 1, whereas, 
in the test set, it was smaller than 1. Therefore, the cut-point was modified to accommodate 
all values. Alternatively, we can set the limits of the first and last intervals to minus and plus 
infinity, as we did in the Performing equal width discretization recipe.

With Feature-engine, we can perform equal frequency for many variables at the same 
time. First, let’s divide the data into train and test sets, as shown in step 3. Next, let’s set up 
a discretizer.

8. Let’s import the discretizer:

from feature_engine.discretisation import EqualFrequencyDiscretiser

9. Let’s set up the transformer to discretize three continuous variables into eight quantiles, returning 
the interval limits after the transformation:

variables = ['MedInc', 'HouseAge', 'AveRooms']

disc = EqualFrequencyDiscretiser(

    q=8, variables =variables,

    return_boundaries=True)
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10.  Let’s fit the discretizer to the train set so that it learns the interval limits:

disc.fit(X_train)

The transformer stores the limits of the intervals for each variable in a dictionary in its disc.
binner_dict_ attribute. Feature-engine will automatically extend the limits of the 
lower and upper intervals to infinite, to accommodate potential outliers in future data.

11. Let’s transform the variables in the train and test sets:

train_t = disc.transform(X_train)

test_t = disc.transform(X_test)

Note
The EqualFrequencyDiscretiser() class returns an integer indicating whether 
the value was sorted in the first, second, or eighth bin, by default. That is the equivalent of 
ordinal encoding, which we described in the Replacing categories with ordinal numbers recipe 
of Chapter 2, Encoding Categorical Variables. If we want to follow up the discretization with a 
different type of encoding, we can set return_object=True to return the variables cast as 
objects and then use any of the Feature-engine or Category Encoders transformers. 
Alternatively, we can return the interval limits, as we did in step 9.

12. Now, let’s make bar plots with the fraction of observations per interval to better understand 
the effect of equal-frequency discretization:

plt.figure(figsize=(6, 12), constrained_layout=True)

for i in range(3):

    # location of plot in figure

    ax = plt.subplot(3, 1, i + 1)

    # the variable to plot

    var = variables[i]

    # determine proportion of observations per bin

    t1 = train_t[var].value_counts(normalize=True)

    t2 = test_t[var].value_counts(normalize=True)

    # concatenate proportions

    tmp = pd.concat([t1, t2], axis=1)

    tmp.columns = ['train', 'test']

    # sort the intervals

    tmp.sort_index(inplace=True)

    # make plot

    tmp.plot.bar(ax=ax)
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    plt.xticks(rotation=45)

    plt.ylabel("Observations per bin")

    # add variable name as title

    ax.set_title(var)

    plt.show()

The intervals have a similar proportion of observations, as shown in the following output:

Figure 4.5 – The proportion of observations per interval
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Now, let’s carry out equal-frequency discretization with scikit-learn.

13. Let’s import the transformer:

from sklearn.preprocessing import KBinsDiscretizer

14. Let’s set up an equal-frequency discretizer by setting strategy to quantile and the 
number of bins to 8:

disc = KBinsDiscretizer(n_bins=8, encode='ordinal', 
strategy='quantile')

15. Let’s fit the discretizer to a slice of the train set containing the variables to transform so that it 
learns the interval limits:

disc.fit(X_train[variables])

Note
Scikit-learn’s KBinsDiscretiser() will discretize all of the variables in the dataset, 
so we only need to use the transformer in the slice of the dataframe that contains the variables 
of interest. In the Performing equal-width discretization recipe, we used the discretizer within 
ColumnTransformer() as an alternative implementation.

16. Let’s make a copy of the dataframe where we will capture the discretized variables:

train_t = X_train.copy()

test_t = X_test.copy()

17. Finally, let’s transform the variables in both train and test sets:

train_t[variables] = disc.transform(X_train[variables])

test_t[variables] = disc.transform(X_test[variables])

Tip
We can inspect the cut-points by executing disc.bin_edges_.

Scikit-learn returns a NumPy array, the values which we assigned directly to the variables in 
our dataframe.
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How it works…

With equal-frequency discretization, we sorted the variable values into intervals with a similar 
proportion of observations.

We used pandas qcut() to determine the limits of the intervals based on train set variable quantiles 
and sorted the values of the HouseAge variable into those intervals. Next, we used those limits 
together with pandas cut() to discretize HouseAge in the test set. Note that pandas qcut(), 
like pandas cut(), returned the interval values as ordered integers. Through the labels parameter, 
we can modify this behavior to return the interval boundaries or user-defined labels.

To perform equal-frequency discretization with Feature-engine , we used 
EqualFrequencyDiscretiser() and indicated the number of quantiles and the variables 
to discretize as arguments. With fit(), the discretizer learned and stored the interval limits in its 
binner_dict_ attribute. With transform(), the observations were allocated to the bins. The 
values of the discretized variables are integers, representing the 1st, 2nd, 3rd, and so on bins.

The EqualFrequencyDiscretiser() class offers a few options to follow up the discretization 
with encoding. By default, it will return the bins as sorted integers, which is the equivalent of 
ordinal encoding. Alternatively, it can return the interval boundaries as with pandas cut(). To 
follow up the discretization with any other encoding procedure available in Feature-engine or 
Category Encoders, we need to return the variables cast as objects, which can be achieved by 
setting return_object to True.

To understand the effect of the discretization, we performed bar plots with the fraction of observation 
per interval. The variables showed a similar fraction of observations in each of the intervals, in contrast 
to what we observed after performing equal-width discretization in the previous recipe, where the 
skewed MedInc and AveRooms variables showed a few intervals that were almost empty.

Note
With equal-frequency discretization, many occurrences of values within a small continuous 
range could cause observations with very similar values, resulting in different intervals. This 
would not happen with equal-width discretization.

Finally, we discretized variables with KBinsDiscretizer() from scikit-learn, indicating 
the number of bins and setting strategy to quantile. With the fit() method, the transformer 
learned and stored the cut-points in its bin_edges_ attribute, and with the transform() 
method, the discretizer sorted the values of the variables to each interval. Note that, differently from 
EqualFrequencyDiscretiser(), KBinsDiscretizer() will transform all of the variables 
in the dataset. To avoid this, we only applied the discretizer on a slice of the data with the variables 
to modify. Scikit-learns KBinsDiscretizer() has the option to return the intervals as 
ordinal numbers or one-hot encoding. The behavior can be modified through the encode parameter.
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Discretizing the variable into arbitrary intervals
In various industries, it is common to group variable values into segments that make sense for the 
business. For example, we might want to group the variable age in intervals representing children, 
young adults, middle-aged people, and retired people. Alternatively, we might group ratings into bad, 
good, and excellent. On other occasions, if we know that the variable is in a certain scale, for example, 
logarithmic, we might want to define the interval cut-points within that scale.

In this recipe, we will discretize a variable into pre-defined user intervals using pandas and Feature-
engine.

How to do it...

First, let’s import the necessary Python libraries and get the dataset ready:

1. Import the required Python libraries and classes:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import fetch_california_housing

2. Let’s load the California housing dataset into a pandas dataframe:

X, y = fetch_california_housing(

    return_X_y=True, as_frame=True)

3. Let’s plot a histogram of the Population variable to find out its value range:

X["Population"].hist(bins=30)

plt.title("Population")

plt.ylabel("Number of observations")

plt.show()

Population values vary from 0 to, approximately, 40,000:
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Figure 4.6 – A histogram of the Population variable

4. Let’s create a list with arbitrary interval limits, setting the upper limit to infinity to accommodate 
bigger values:

intervals = [0, 200, 500, 1000, 2000, np.Inf]

5. Let’s create a list with the interval limits as strings:

labels = ["0-200", "200-500", "500-1000", "1000-2000", 
">2000"]

6. Let’s discretize the Population variable into the pre-defined limits from step 4, where the 
intervals take the values we created in step 5 as values:

X["Population_range"] = pd.cut(

    X["Population"],

    bins=intervals,

    labels=labels,

    include_lowest=True,

)
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7. Now, let’s discretize Population into pre-defined intervals and capture it in a new variable 
that takes the interval limits as values:

X["Population_limits"] = pd.cut(

    X["Population"],

    bins=intervals,

    labels=None,

    include_lowest=True,

)

8. Let’s inspect the first five rows of the original and discretized variables:

X[['Population', 'Population_range',

    'Population_limits']].head()

In the last two columns of the dataframe, we see the discretized variables: the first one with the 
strings we created in step 5 as values, and the second one with the interval limits:

   Population Population_range Population_limits

0       322.0          200-500    (200.0, 500.0]

1      2401.0            >2000     (2000.0, inf]

2       496.0          200-500    (200.0, 500.0]

3       558.0         500-1000   (500.0, 1000.0]

4       565.0         500-1000   (500.0, 1000.0]

Note
We only need one of the variable versions, either the one with the value range or the one with the 
interval limits. In this recipe, I create both to highlight the different options offered by pandas.

9. Finally, we can count and plot the number of observations within each interval:

X['Population_range'].value_counts().sort_index().plot.bar()

plt.xticks(rotation=0)

plt.ylabel("Number of observations")

plt.title("Population")

plt.show()
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The number of observations per interval varies, as shown in the output of the proceeding 
code block:

Figure 4.7 – The proportion of observations per interval

To wrap up the recipe, let’s carry out arbitrary discretization utilizing Feature-engine. 
First, we need to reload the California housing dataset, as we did in step 2.

10.  Let’s import the transformer:

from feature_engine.discretisation import

    ArbitraryDiscretiser

11. Let’s set up the transformer by using a dictionary with the variables to modify, in this case, 
Population and the interval limits in a list:

discretizer = ArbitraryDiscretiser(

    binning_dict={"Population": intervals},

    return_boundaries=True,

)

12.  Now we can go ahead and discretize the variable:

X_t = discretizer.fit_transform(X)
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Now, if we execute X_t.head(), we will see the following output, where the Population variable 
has been discretized:

Figure 4.8 – A dataframe containing the discretized variable

The advantage of using Feature-engine is that we can discretize multiple variables in the 
dataframe at the same time.

How it works...

In this recipe, we sorted the values of a variable into user-defined intervals. First, we plotted a 
histogram of the Population variable, to get an idea of the range of values of the variable. Next, 
we arbitrarily determined and captured the limits of the intervals in a list: we created intervals that 
vary from 0–200, 200–500, 500–1000, 1000–2000, and more than 2,000, by setting the upper limit to 
infinite with np.Inf. Next, we created a list with the interval names as strings.

Using the pandas cut() method and passing the list with the interval limits, we sorted the 
variable values into the pre-defined bins. We executed the command twice; in the first run, we set 
the labels argument to the list that contained the label names as strings, and in the second run, we 
set the labels argument to None. We captured the returned output in two variables: the first one 
displaying the interval limits as values and the second one with interval names as values. Finally, we 
counted the number of observations per variable using the pandas value_counts() method.

Finally, we automated the procedure with ArbitraryDiscretiser() from Feature-engine. 
This transformer takes a dictionary with the variables to discretize as keys, and the interval limits in 
a list as values, and then uses pandas cut under the hood to discretize the variables. With fit(), 
the transformer does not learn any parameters but checks that the variables are numerical. With 
transform(), the variables indicated in the dictionary are discretized.
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Performing discretization with k-means clustering
The aim of a discretization procedure is to find a set of cut-points that partition a variable into a small 
number of intervals that have good class coherence. To create partitions that group similar observations, 
we can use clustering algorithms, such as k-means.

In discretization using k-means clustering, the partitions are the clusters identified by the k-means 
algorithm. The k-means clustering algorithm has two main steps. In the initialization step, k observations 
are chosen randomly as the initial centers of the k clusters, and the remaining data points are assigned 
to the closest cluster. The proximity to the cluster is measured by a distance measure such as the 
Euclidean distance. In the iteration step, the centers of the clusters are re-computed as the average 
points of all of the observations within the cluster, and the observations are reassigned to the newly 
created closest cluster. The iteration step continues until the optimal k centers are found.

Discretization with k-means requires one parameter, which is k, the number of clusters. There are a 
few methods to determine the optimal number of clusters: one of them is the elbow method, which 
we will use in this recipe. This method consists of training several k-means algorithms over the data 
using different values of k, and then determining the explained variation returned by the clustering. 
In the next step, we plot the explained variation as a function of the number of clusters, k, and pick 
the elbow of the curve as the number of clusters to use. The elbow is the inflection point that indicates 
that increasing the number of k further does not significantly increase the variance explained by the 
model. There are different metrics to quantify the explained variation. We will use the sum of square 
distances from each point to its assigned center.

In this recipe, we will use Yellowbrick to determine the optimal number of clusters and then 
carry out k-means discretization with scikit-learn.

How to do it...

First, let’s import the necessary Python libraries and get the dataset ready:

1. Import the required Python libraries and classes:

import pandas as pd

from sklearn.cluster import KMeans

from sklearn.datasets import fetch_california_housing

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import KBinsDiscretizer

from yellowbrick.cluster import KElbowVisualizer
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2. Let’s load the California housing dataset into a pandas dataframe:

X, y = fetch_california_housing(

    return_X_y=True, as_frame=True)

3. The k-means optimal clusters should be determined using the train set, so let’s divide the data 
into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(

    X, y, test_size=0.3, random_state=0,

)

4. Let’s make a list with the variables to transform:

variables = ['MedInc', 'HouseAge', 'AveRooms']

5. Let’s set up a k-means clustering algorithm:

k_means = KMeans(random_state=10)

6. Now, using Yellowbrick’s visualizer and the elbow method, let’s find the optimal number 
of clusters for each variable:

for variable in variables:

    # set up a visualizer

    visualizer = KElbowVisualizer(

        k_means, k=(4,12), metric='distortion',

     timings=False

    )

    # Fit the data to the visualizer

    visualizer.fit(X_train[variable].to_frame())

    # Finalize and render the figure

    visualizer.show()
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In the following plots, we can see that the optimal number of clusters is six for each variable:

Figure 4.9 – Number of clusters versus the variability for the MedInc, 

HouseAge, and AveRooms variables from top to bottom
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7. Let’s set up a discretizer that uses k-means clustering to create six partitions and returns the 
clusters as one-hot-encoded variables:

k = 6

disc = KBinsDiscretizer(n_bins=k, encode="onehotdense", 
strategy="kmeans")

8. Let’s fit the discretizer to the slice of the dataframe that contains the variables that we want to 
discretize. This is so that the transformer finds the optimal clusters for each variable:

disc.fit(X_train[variables])

Tip
If we had a different optimal number of clusters for different variables, we would have to set 
up one instance of the discretizer for each variable group with the same value of k, either by 
repeating steps 7 and 8 or by using ColumnTransformer() from scikit-learn to 
slice the dataframe into the requited variable group.

9. Let’s inspect the cut-points:

disc.bin_edges_

Each array contains the cut-points for the six clusters for each of the three variables, MedInc, 
HouseAge, and AveRooms:

array([array([0.4999, 2.49587954, 3.66599029, 4.95730115, 
6.67700141, 9.67326677, 15.0001]),

array([1., 11.7038878, 19.88430419, 27.81472503, 
35.39424098, 43.90930314, 52.]),

array([0.84615385, 4.84568771, 6.62222005, 15.24138445, 
37.60664483, 92.4473438, 132.53333333])], dtype=object)

10.  Let’s obtain the discretized form of the original variables in the train test sets:

train_features = disc.transform(X_train[variables])

test_features = disc.transform(X_test[variables])

With print(test_features), we can inspect the Numpy array returned by the discretizer, 
containing 18 binary variables corresponding to the one-hot-encoded transformation of the 6 
clusters returned for each of the 3 numerical variables:

array([[0., 0., 1., ..., 0., 0., 0.],

       [0., 0., 0., ..., 0., 0., 0.],

       [0., 0., 1., ..., 0., 0., 0.],
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       ...,

       [0., 0., 0., ..., 0., 0., 0.],

       [1., 0., 0., ..., 0., 0., 0.],

       [0., 0., 1., ..., 0., 0., 0.]])

Now, let’s concatenate the new features to the original dataframe.

11.  Let’s create names for the new features:

var_names = [

    f"{var}_cluster_{i}"

    for var in variables

    for i in range(k)

]

By executing print(var_names), we see the following names:

['MedInc_cluster_0',

 'MedInc_cluster_1',

 'MedInc_cluster_2',

 'MedInc_cluster_3',

 'MedInc_cluster_4',

 'MedInc_cluster_5',

 'HouseAge_cluster_0',

 'HouseAge_cluster_1',

 'HouseAge_cluster_2',

 'HouseAge_cluster_3',

 'HouseAge_cluster_4',

 'HouseAge_cluster_5',

 'AveRooms_cluster_0',

 'AveRooms_cluster_1',

 'AveRooms_cluster_2',

 'AveRooms_cluster_3',

 'AveRooms_cluster_4',

 'AveRooms_cluster_5']

12. Let’s concatenate the new features to the original dataframe:

X_train = pd.concat([

    X_train,

    pd.DataFrame(train_features, columns=var_names, 
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        index=X_train.index)

    ], axis=1)

X_test = pd.concat([

    X_test,

    pd.DataFrame(test_features, columns=var_names,

        index=X_test.index)

    ], axis=1)

13. And finally, let’s drop the original variables:

X_train.drop(labels=variables, axis=1, inplace=True)

X_test.drop(labels=variables, axis=1, inplace=True)

Now, we are done with the discretization using k-means clustering.

How it works...

In this recipe, we performed discretization with k-means clustering. First, we identified the optimal 
number of clusters utilizing the elbow method. With KElbowVisualizer() from Yellowbrick, 
we identified the optimal cluster number for three variables.

To perform k-means discretization, we used KBinsDiscretizer() from scikit-learn, 
setting strategy to kmeans and the number of clusters to six in the n_bins argument. With the 
fit() method, the transformer learned the cluster boundaries using the k-means algorithm. With 
the transform() method, the discretizer sorted the values of the variable to their corresponding 
cluster, returning a NumPy array with the discretized variables, which we converted into a dataframe.

See also

• Discretization with k-means was described in Palaniappan and Hong, Discretization of Continuous 
Valued Dimensions in OLAP Data Cubes. International Journal of Computer Science and 
Network Security, VOL.8 No.11, November 2008.

• To learn more about the elbow method, visit the Yellowbrick documentation and references 
therein: https://www.scikit-yb.org/en/latest/api/cluster/elbow.html.

• For other ways of determining the fit of k-means clustering, check out the additional visualizers in 
Yellowbrick: https://www.scikit-yb.org/en/latest/api/cluster/index.
html.

https://www.scikit-yb.org/en/latest/api/cluster/elbow.html
https://www.scikit-yb.org/en/latest/api/cluster/index.html
https://www.scikit-yb.org/en/latest/api/cluster/index.html
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Implementing feature binarization
Some datasets contain sparse variables. Sparse variables are those where the majority of the values 
are 0. The classical example of sparse variables are those derived from text data through the bag-of-
words model, where each variable is a word, and each value represents the number of times the word 
appears in a certain document. Given that a document contains a limited number of words, whereas 
the feature space contains the words that appear across all documents, most documents, that is, most 
rows, will show the value of 0 for most columns. But words are not the sole example. If we think about 
house details data, the variable number of saunas will also be 0 for most houses. In summary, some 
variables have very skewed distributions, where most observations show the same value, usually 0, 
and only a few observations show different, usually higher, values.

A more robust representation of these sparse or highly skewed variables is to binarize them by clipping 
all values greater than 1 to 1. In fact, binarization is commonly performed on text count data, where we 
consider the presence or absence of a feature rather than a quantified number of occurrences of a word.

In this recipe, we will perform binarization using scikit-learn.

Getting ready

We will use a dataset consisting of a bag of words, which is available in the UCI Machine Learning 
Repository (https://archive.ics.uci.edu/ml/datasets/Bag+of+Words).

To prepare the dataset, follow these steps:

1. Visit https://archive.ics.uci.edu/ml/machine-learning-databases/
bag-of-words/.

2. Click on docword.enron.txt.gz to download the data.

3. Unzip docword.enron.txt.gz and save docword.enron.txt in the folder where 
you will run the following commands.

4. Then, click on vocab.enron.txt to download the word names.

5. Save vocab.enron.txt in the folder where you will run the following commands.

After you’ve downloaded the data, open a Jupyter notebook and run the following commands.

6. Import pandas:

import pandas as pd

7. Load the data into a pandas dataframe and assign the column names:

data = pd.read_csv(

    "docword.enron.txt", sep=" ",

    skiprows=3, header=None)

data.columns = ["docID", "wordID", "count"]

https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
https://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/
https://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/
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8. Load the words:

words = pd.read_csv("vocab.enron.txt", header=None)

words.columns = ["words"]

9. Select 10 words at random:

words = words.sample(10, random_state=290917)

10. Merge the word counts to the 10 selected words:

data = words.merge(

    data, left_index=True, right_on="wordID")

11. Reconstitute the bag of words:

bow = data.pivot(index="docID", columns="words", 

     values="count")

bow.fillna(0, inplace=True)

bow.reset_index(inplace=True, drop=True)

12. Save the data:

bow.to_csv("bag_of_words.csv", index=False)

Now, you are ready to carry on with the recipe.

You can find the instructions to download, prepare, and store the dataset in the notebook of our repository 
at https://github.com/PacktPublishing/Python-Feature-Engineering-
Cookbook-Second-Edition/blob/main/ch04-discretization/donwload-
prepare-store-enron-data.ipynb.

How to do it...

Let’s begin by importing the libraries and getting the data loaded:

1. Let’s import the required Python libraries, classes, and datasets:

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import Binarizer

from feature_engine.wrappers import SklearnTransformerWrapper

https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch04-discretization/donwload-prepare-store-enron-data.ipynb
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch04-discretization/donwload-prepare-store-enron-data.ipynb
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch04-discretization/donwload-prepare-store-enron-data.ipynb
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2. Let’s load the data that we prepared in the Getting ready section:

data = pd.read_csv("bag_of_words.csv")

3. Let’s display histograms to visualize the sparsity of the variables:

data.hist(bins=30, figsize=(20, 20), layout=(3,4))

plt.show()

In the following histograms, we can see that the words appear 0 times in most documents:

Figure 4.10 – A histogram of the sparse variables

4. To perform binarization, let’s set up binarizer to clip all values greater than 1, to 1:

binarizer = Binarizer(threshold = 0)
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5. Binarizer() from scikit-learn will return a NumPy array by default, so to return a 
dataframe, let’s wrap it with the Feature-engine wrapper:

wrapper = SklearnTransformerWrapper(transformer=binarizer)

Note
SklearnTransformerWrapper, when wrapping classes that work with numerical variables, 
such as Binarizer(), will select all the numerical variables by default. Alternatively, we can 
indicate the variables to transform through the variables parameter.

6. Let’s binarize the variables:

data_t = wrapper.fit_transform(data)

We can explore the variables that will be transformed by executing print(wrapper.
variables_):

['advice',

 'cab',

 'decker',

 'etis',

 'eurobond',

 'halligan',

 'keen',

 'pvr',

 'refundable',

 'soda']

Now we can explore the distribution of the binarized variables by displaying the histograms as 
in step 3, or better, by creating bar plots.

7. Let’s create a bar plot with the number of observations per bin per variable:

variables = data_t.columns.to_list()

plt.figure(figsize=(20, 20), constrained_layout=True)

for i in range(10):

    # location in figure

    ax = plt.subplot(3, 4, i + 1)

  # variable to plot

    var = variables[i]

    # determine proportion of observations per bin
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    t = data_t[var].value_counts(normalize=True)

    t.plot.bar(ax=ax)

    plt.xticks(rotation=45)

    plt.ylabel("Observations per bin")

    # add variable name as title

    ax.set_title(var)

    plt.show()

In the following plot, we can see the binarized variables, where most occurrences show the 
value of 0:

Figure 4.11 – The proportion of observations per interval

That’s it; now our variables have a more succinct representation of the data.
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How it works…

In this recipe, we changed the representation of sparse variables to consider the presence or absence of 
an occurrence, which, in our case, is a word. The data consisted of a bag of words, where each variable 
is a word, each row is a document, and the values represent the number of times a word appears in 
a document. Most words do not appear in most documents; therefore, most values in the data are 0. 
We corroborated the sparsity of our data with histograms.

Binarizer() from scikit-learn mapped values greater than the threshold, which, in 
our case, is 0, to the value 1, while values less than or equal to the threshold were mapped to 0. 
Binarizer() has the fit() and transform() methods, where fit() does not do anything 
and transform() binarizes the variables. Binarizer() modifies all variables in a dataset 
returning NumPy arrays. To return a pandas dataframe instead, we wrapped Binarizer() with 
SklearnTransformerWrapper() from Feature-engine. The wrapper found all numerical 
variables automatically, and applied Binarizer() to them, returning a pandas dataframe. The 
wrapper has the option to apply Binarizer() to only a subset of the variables; it does this by 
passing the variable names in a list when initializing the transformer.

Note
SklearnTransformerWrapper() is an alternative to ColumnTransformer() from 
scikit-learn and can wrap many transformers from this library.

Using decision trees for discretization
Decision tree methods discretize continuous attributes during the learning process. A decision tree 
evaluates all possible values of a feature and selects the cut-point that maximizes the class separation, 
by utilizing a performance metric such as the entropy or Gini impurity. Then, it repeats the process 
for each node of the first data separation, along with each node of the subsequent data splits, until a 
certain stopping criterion has been reached. Therefore, by design, decision trees can find the set of 
cut-points that partition a variable into intervals with good class coherence.

Discretization with decision trees consists of using a decision tree to identify the optimal partitions 
for each continuous variable. In the Feature-engine implementation of this method, the decision 
tree is fit using the variable to discretize, and the target. After fitting, the decision tree is able to assign 
each observation to one of the N end leaves, generating a discrete output, the values of which are 
the predictions at each of its leaves. Therefore, with Feature-engine, the values of continuous 
features are replaced by the predictions of a decision tree.

In this recipe, we will perform decision tree-based discretization manually using scikit-learn 
and then automate the procedure with Feature-engine.
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How to do it...

Let’s begin by importing some libraries and getting the data loaded:

1. Let’s import the required Python libraries, classes, and datasets:

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import fetch_california_housing

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeRegressor, plot_tree

2. Let’s load the California housing dataset into a pandas dataframe:

X, y = fetch_california_housing(return_X_y=True, 

     as_frame=True)

3. Let’s divide the data into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(

    X, y, test_size=0.3, random_state=0,

)

4. Let’s assemble a decision tree to predict the house price, setting the maximum depth to 3 and 
random_state for reproducibility:

tree_model = DecisionTreeRegressor(

    max_depth=3, random_state=0)

Note
For binary classification, we would use DecisionTreeClassifier() instead.

5. Let’s fit the decision tree using the MedInc variable to predict the target:

tree_model.fit(X_train['MedInc'].to_frame(), y_train)

Note
Scikit-learn predictors take dataframes as inputs. A single variable is a pandas series, 
so we need to use the to_frame() method to transform it into a dataframe and make it 
compatible with scikit-learn.
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6. Now, let’s replace the values of MedInc with the predictions of the decision tree:

X_train['MedInc_tree'] = tree_model.predict(

    X_train['MedInc'].to_frame())

X_test['MedInc_tree'] = tree_model.predict(

    X_test['MedInc'].to_frame())

Note
If we created a classification tree, we would use predict_proba() and retain the second 
column of the array, which is the probability of the target being 1.

7. Let’s explore the end leaves, that is, the partitions the tree created:

X_test['MedInc_tree'].unique()

The decision tree produced eight different prediction outputs for all of the observations of the 
MedInc variable:

array([2.27113313, 2.76842266, 1.51756502, 3.46323449, 
1.91725491, 1.14863215, 4.31789332, 4.87645172])

8. In many cases, this discretization method returns a monotonic relation between the discretized 
variable and the target, so let’s make a line plot to visualize this relationship:

y_test.groupby(X_test["MedInc_tree"]).mean().plot()

plt.title("Monotonic relationship between discretized 
MedInc and target")

plt.ylabel("Median Price")

We can observe the monotonic relationship between the tree-derived partitions and the target 
in the output of the preceding code block:
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Figure 4.12 – The monotonic relationship between the discretized variable and the target

9. Also, we can explore the number of observations per end leave:

X_test["MedInc_tree"] = np.round(

    X_test["MedInc_tree"],2)

X_test.groupby(

    ["MedInc_tree"])["MedInc"].count().plot.bar()

plt.title("Median Income")

plt.ylabel("Number of observations")

We can see the number of observations per prediction in the following bar plot:

Figure 4.13 – The number of observations per bin
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10. To better understand how the decision tree made the partitions, let’s display them:

fig = plt.figure(figsize=(20, 6))

plot_tree(tree_model, fontsize=10, proportion=True)

plt.show()

In the following display, we can see how the decision tree partitioned the variable based on 
cut-points that maximized the entropy into eight final leaves or bins for our method:

Figure 4.14 – A diagram of the decision tree

Now, let’s implement decision tree discretization with Feature-engine. With Feature-
engine, we can discretize multiple variables at the same time, while searching for the best 
hyperparameters for the decision trees using cross-validation.

 First, we need to divide the dataset into train and test sets, just as we did in step 3.

11. Let’s import the discretizer:

from feature_engine.discretisation import DecisionTreeDiscretiser

12. Let’s capture all variables except the latitude and longitude in a list:

variables = list(X.columns)[:-2]

13. Now, let’s set up the decision tree discretizer, which will optimize the hyperparameter’s maximum 
depth and minimum samples per leaf based on the negative mean square error metric using 
three-fold cross-validation:

treeDisc = DecisionTreeDiscretiser(

    cv=3,

    scoring='neg_mean_squared_error',

    variables=variables,

    regression=True,

    param_grid={'max_depth': [1, 2, 3],

                "min_samples_leaf": [10, 20, 50]},

)
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14. Let’s fit() the discretizer using the train set and the target so that it finds the best decision 
trees for each of the variables:

treeDisc.fit(X_train, y_train)

15. Let’s inspect the best parameters for the tree trained for the MedInc variable:

 treeDisc.binner_dict_["MedInc"].best_params_

The output of the preceding code shows that the optimal depth for the decision tree is 3 and 
the optimal samples per leaf is 10:

{'max_depth': 3, 'min_samples_leaf': 10}

16. Let’s transform the variables in the train and test sets:

train_t = treeDisc.transform(X_train)

test_t = treeDisc.transform(X_test)

17. Finally, we can explore the number of observations per partition for three of the discretized variables:

plt.figure(figsize=(6, 12), constrained_layout=True)

for i in range(3):

    # location in figure

    ax = plt.subplot(3, 1, i + 1)

    # variable to plot

    var = variables[i]

    # determine proportion of observations per bin

    t1 = train_t[var].value_counts(normalize=True)

    t2 = test_t[var].value_counts(normalize=True)

    # concatenate proportions

    tmp = pd.concat([t1, t2], axis=1)

    tmp.columns = ["train", "test"]

    # order the intervals

    tmp.sort_index(inplace=True)

    tmp.plot.bar(ax=ax)

    plt.xticks(rotation=45)

    plt.ylabel('Observations per bin')

    # add variable name as title

    ax.set_title(var)

    plt.show()
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We can see the number of observations per bin in the output of the preceding code:

Figure 4.15 – The number of observations per bin

As evidenced in the plots, discretization with decision trees returns a different fraction of observations 
at each node or bin.
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How it works...

To perform discretization with decision trees, first, we chose a variable, MedInc, and fit a decision tree 
for regression using DecisionTreeRegressor() from scikit-learn. We used to_frame() 
to transform the pandas series with the variable into a dataframe and make the data compatible with 
the scikit-learn predictors. We used the fit() method to make the tree learn how to predict 
the target from MedInc. With the predict() method, the tree estimated the target from MedInc 
in the train and test sets. The decision tree returned eight distinct values, which were its predictions. 
These outputs represented the bins or partitions of the discretized variable.

To visualize the monotonic relationship between the tree outputs and the target, we created a plot of 
the bins predicted by the tree versus the mean target value for each of these bins. We used the pandas 
groupby() method to group the observations per bin and then calculated the target mean in each 
bin. With pandas plot(), we plotted the relationship between the bins and target.

To perform decision tree discretization using Feature-engine, we used DecisionTreeDis-
cretiser() indicating the cross-validation fold, the performance metric, and the hyperparameter 
space to optimize each tree. With the fit() method, the discretizer fit the best tree for each of the 
variables. With the transform() method, we obtained the discretized variables in the train and 
test sets.

There’s more...

Feature-engine’s implementation is inspired by the winning solution of the KDD 2009 data 
science competition. The winners created new features by obtaining predictions of decision trees based 
on continuous features. You can find more details in the Winning the KDD Cup Orange Challenge 
with Ensemble Selection article, on page 27 of the article series available at http://www.mtome.
com/Publications/CiML/CiML-v3-book.pdf.

For a review of discretization techniques, you might find the following articles useful:

• Dougherty et al, Supervised and Unsupervised Discretization of Continuous Features, Machine 
Learning: Proceedings of the 12th International Conference, 1995, (https://ai.stanford.
edu/~ronnyk/disc.pdf).

• Lu et al, Discretization: An Enabling Technique, Data Mining, and Knowledge Discovery, 6, 
393–423, 2002, (https://www.researchgate.net/publication/220451974_
Discretization_An_Enabling_Technique).

• Garcia et al, A Survey of Discretization Techniques: Taxonomy and Empirical Analysis in Supervised 
Learning, IEEE Transactions on Knowledge in Data Engineering 25 (4), 2013, (https://
ieeexplore.ieee.org/document/6152258).

http://www.mtome.com/Publications/CiML/CiML-v3-book.pdf
http://www.mtome.com/Publications/CiML/CiML-v3-book.pdf
https://ai.stanford.edu/~ronnyk/disc.pdf
https://ai.stanford.edu/~ronnyk/disc.pdf
https://www.researchgate.net/publication/220451974_Discretization_An_Enabling_Technique
https://www.researchgate.net/publication/220451974_Discretization_An_Enabling_Technique
https://ieeexplore.ieee.org/document/6152258
https://ieeexplore.ieee.org/document/6152258




5
Working with Outliers

An outlier is a data point that is significantly different from the remaining data. Statistical parameters 
such as the mean and variance are sensitive to outliers. Outliers may also affect the performance of 
some machine learning models, such as linear regression models. In these cases, we may want to 
remove or engineer the outliers in our variables.

How can we engineer outliers? One way to handle outliers is to perform variable discretization with 
any of the techniques we covered in Chapter 4, Performing Variable Discretization. With discretization, 
the outliers will fall in the lower or upper intervals and, therefore, will be treated as the remaining 
lower or higher values of the variable. An alternative way to handle outliers is to assume that the 
information is missing, treat the outliers together with the remaining missing data, and carry out any 
of the missing imputation techniques described in Chapter 1, Imputing Missing Data. We can also 
remove observations with outliers from the dataset or cap the maximum and minimum values of the 
variables, as we will discuss throughout this chapter.

Note
Sometimes, outliers can be very informative. In these cases, we don’t want to remove them 
from the data. This chapter does not focus on these scenarios. The techniques discussed in this 
chapter are tailored to the management of outliers in those cases where they negatively affect 
the performance of the machine learning models.

In this chapter, we will first discuss how to identify outliers in a dataset, and then we will describe 
how to remove outliers or how to cap variables at maximum or minimum values.

This chapter will cover the following recipes:

• Visualizing outliers with boxplots

• Finding outliers using the mean and standard deviation

• Finding outliers with the interquartile range proximity rule

• Removing outliers
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• Capping or censoring outliers

• Capping outliers using quantiles

Technical requirements
In this chapter, we will use the Python libraries NumPy, pandas, Matplotlib, seaborn, and Feature-engine.

Visualizing outliers with boxplots
In this recipe, we will identify outliers using boxplots. Boxplots produce a box that encloses the 
observations within the 75th and 25th quantiles, or in other words, within the Inter-Quartile Range 
(IQR). The IQR is given through the following equation:

According to the IQR proximity rule, a value is an outlier if it falls outside the following boundaries:

 

In a boxplot, these boundaries are indicated by their whiskers. Thus, values outside the whiskers are 
considered outliers. Outliers are highlighted with asterisks.

How to do it...

We will create the boxplots utilizing the Seaborn library. Let’s begin the recipe by importing the 
Python libraries and loading the dataset as follows:

1. Import the required Python libraries as follows:

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

sns.set(style="darkgrid")

from sklearn.datasets import fetch_california_housing

2. Let’s load the California house prices dataset from scikit-learn as follows:

X, y = fetch_california_housing(

    return_X_y=True, as_frame=True)

𝐼𝐼𝐼𝐼𝐼𝐼 =  75𝑡𝑡ℎ 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑡𝑡𝑞𝑞𝑞𝑞𝑞𝑞 −  25𝑡𝑡ℎ 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑡𝑡𝑞𝑞𝑞𝑞𝑞𝑞 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑈𝑈𝑏𝑏 =  75𝑡𝑡ℎ 𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑞𝑞𝑞𝑞𝑈𝑈 + (𝐼𝐼𝐼𝐼𝐼𝐼 ∗  1.5)  
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3. Let’s make a boxplot of the  MedInc variable to visualize outliers as follows:

plt.figure(figsize=(3,6))

sns.boxplot(y=X["MedInc"])

plt.title("Boxplot")

plt.show()

The outliers are the asterisks sitting outside the whiskers, which delimit IQR proximity 
rule boundaries.

Figure 5.1 – A boxplot

4. Let’s now create a function to plot a boxplot on top of a histogram:

def plot_boxplot_and_hist(data, variable):

    #figure composed of two matplotlib.Axes 

objects (ax_box and ax_hist)

    f, (ax_box, ax_hist) = plt.subplots(

        2, sharex=True,

        gridspec_kw={"height_ratios": (0.50, 0.85)}

    )
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    # assigning a graph to each ax

    sns.boxplot(x=data[variable], ax=ax_box)

    sns.histplot(data=data, x=variable, ax=ax_hist)

    # Remove x axis name for the boxplot

    ax_box.set(xlabel='')

    plt.title(variable)

    plt.show()

5. Let’s now use the previous function to create the plots for the MedInc variable:

plot_boxplot_and_hist(X, "MedInc")

We see in the following plot that most outliers lie on the right tail, or higher values, of the 
distribution as people with high-income salaries are unusual in this dataset:

Figure 5.2 – A boxplot and a histogram

That’s it! We now know how to identify outliers visually utilizing boxplots.

How it works…

In this recipe, we used the boxplot method from seaborn to create the boxplots. In the y-axis 
of the plot, we obtained the values of the variable. The asterisks highlighted extremely high values 
compared with the rest of the observations.
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We then combined seaborn’s boxplot with seaborn’s histplot to create a histogram under 
the boxplot. The plots shared the x-axis with the values of the observations. The y-axis of the histogram 
contained the number of observations per interval. The variable was left-skewed, with most of the 
values in the lower range. The outliers lie only on the right tail of the distribution.

Finding outliers using the mean and standard deviation
In normally distributed variables, more than 99% of the observations lie within the interval comprising 
the mean plus or minus three times the standard deviation. Thus, any values beyond those limits can 
be considered outliers. In this recipe, we will identify outliers as those observations that lie outside 
of this interval.

How to do it...

Let’s begin the recipe by importing the Python libraries and loading the dataset:

1. Import the required Python libraries:

import numpy as np

import pandas as pd

from sklearn.datasets import load_breast_cancer

2. Let’s load the Breast Cancer dataset from scikit-learn:

breast_cancer = load_breast_cancer()

X = pd.DataFrame(

    breast_cancer.data,

    columns=breast_cancer.feature_names

)

3. Let’s create a function that returns the mean plus and minus fold times the standard deviation, 
where fold is a parameter to the function:

def find_limits(df, variable, fold):

    lower_limit = df[variable].mean() - fold *

    df[variable].std()

    upper_limit = df[variable].mean() + fold *

    df[variable].std()

    return lower_limit, upper_limit



Working with Outliers158

4. Let’s use the function to capture the extreme limits of the mean smoothness variable, which 
follows approximately a Gaussian distribution:

lower_limit, upper_limit = find_limits(

    X, "mean smoothness", 3)

5. If we now execute lower_limit or upper_limit, we will see the values 0.0541 and 
0.13855, corresponding to the limits beyond which we can consider a value an outlier.

6. Let’s create a Boolean vector that flags observations with values beyond the limits:

 outliers = np.where(

    (X["mean smoothness"] > upper_limit) |

    (X["mean smoothness"] < lower_limit),

    True,

    False,

)

If we now execute outliers.sum(), we will see the value 5, indicating that there are five outliers 
or observations that are smaller or greater than the extreme values found with the mean and the 
standard deviation.

How it works…

With the pandas mean() and std()methods, we captured the mean and standard deviation 
of the variable. To find the outliers, we used NumPy’s where() method, which produced a Boolean 
vector with True if the value was an outlier. The where() function scanned the rows of the variable, 
and if the value was greater than the upper limit, or smaller than the lower limit, it was assigned True, 
and alternatively False. Finally, we used pandas sum() over this Boolean vector to calculate the 
total number of outliers.

Finding outliers with the interquartile range proximity 
rule
If the variables are not normally distributed variables, we can identify outliers utilizing the IQR 
proximity rule. According to the IQR rule, data points that fall below the 25th quantile - 1.5 times 
the IQR, or beyond the 75th quantile + 1.5 times the IQR, are outliers.

Note
We described the IQR in the Visualizing outliers with boxplots recipe.

In this recipe, we will identify outliers utilizing the IQR proximity rule.
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How to do it...

Let’s begin the recipe by importing the Python libraries and loading the dataset:

1. Import the required Python libraries:

import numpy as np

import pandas as pd

from sklearn.datasets import fetch_california_housing

2. Let’s load the California housing dataset from scikit-learn:

X, y = fetch_california_housing(

    return_X_y=True, as_frame=True)

3. Let’s create a function that returns the 25th quantile - 1.5 times the IQR, or the 75th quantile 
+ 1.5 times the IQR:

def find_limits(df, variable, fold):

    IQR = df[variable].quantile(0.75) - df[variable].

    quantile(0.25)

    lower_limit = df[variable].quantile(0.25) - (IQR *

    fold)

    upper_limit = df[variable].quantile(0.75) + (IQR *

    fold)

    return lower_limit, upper_limit

4. Let’s use the function to capture the extreme limits of the MedInc variable:

lower_limit, upper_limit = find_limits(X, "MedInc", 3)

If we now execute lower_limit or upper_limit, we will see the values -3.9761 and 
11.2828, corresponding to the limits beyond which we can consider a value an outlier.

5. Let’s create a Boolean vector with True for values beyond the limits:

 outliers = np.where(

    (X["MedInc"] > upper_limit) |

    (X["MedInc"] < lower_limit),

    True,

    False,

)
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If we now execute outliers.sum(), we will see the value 140, indicating that there are 140 outliers 
or observations that are smaller or greater than the extreme values found with the IQR proximity rule.

How it works…

The pandas quantile()method calculates any quantile of the variable. We calculated the 25th 
and 75th quantile by passing 0.25 and 0.75 as arguments to quantile. The rest of the recipe is exactly 
as we described in the previous recipe, Finding outliers using the mean and standard deviation.

Removing outliers
Trimming, or truncating, is the process of removing observations with outliers in one or more variables 
in the dataset. There are three commonly used methods to set the boundaries beyond which a value can 
be considered an outlier. If the variable is normally distributed, the boundaries are given by the mean 
plus or minus three times the standard deviation, as approximately 99% of the data will be distributed 
between those limits. For normally as well as not normally distributed variables, we can determine 
the limits using the IQR proximity rule or by directly setting the limits to the 5th and 95th quantiles. 
In this recipe, we are going to use the IQR proximity rule to identify and then remove outliers, using 
pandas, and then we will automate this process for multiple variables, utilizing Feature-engine.

How to do it...

Let’s first import the Python libraries and load the data:

1. Let’s import the Python libraries, functions, and classes:

import numpy as np

import pandas as pd

from sklearn.datasets import fetch_california_housing

from sklearn.model_selection import train_test_split

from feature_engine.outliers import OutlierTrimmer

2. Let’s load the California housing dataset from scikit-learn and separate it into a training 
and a testing set:

 X, y = fetch_california_housing(

    return_X_y=True, as_frame=True)

X_train, X_test, y_train, y_test = train_test_split(

    X,

    y,
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    test_size=0.3,

    random_state=0,

)

3. Let’s create a function to find the boundaries of a variable distribution using the interquartile 
range proximity rule:

def find_limits(df, variable, fold):

    IQR = df[variable].quantile(0.75) - df[variable].

    quantile(0.25)

    lower_limit = df[variable].quantile(0.25) - (IQR *

    fold)

    upper_limit = df[variable].quantile(0.75) + (IQR *

    fold)

    return lower_limit, upper_limit

Note
We can replace the code in the preceding function with that described in the Finding outliers using 
the mean and standard deviation recipe to find the boundaries using the mean and the standard 
deviation. Alternatively, we can set the lower limit to df[variable].quantile(0.05) 
and the upper limit to df[variable].quantile(0.95).

4. Let’s use the function from step 3 to determine the limits of the MedInc variable:

lower_limit, upper_limit = find_limits(X_train, "MedInc", 
3)

5. Let’s retain the observations whose value is greater than or equal to (ge) the lower limit in the 
train and test sets:

inliers = X_train["MedInc"].ge(lower_limit)

X_train = X_train.loc[inliers]

inliers = X_test["MedInc"].ge(lower_limit)

X_test = X_test.loc[inliers]

6. Let’s retain the observations whose value is lower than or equal to (le) the upper limit:

inliers = X_train["MedInc"].le(upper_limit)

X_train = X_train.loc[inliers]



Working with Outliers162

inliers = X_test["MedInc"].le(upper_limit)

X_test = X_test.loc[inliers]

With pd.shape, we can corroborate that the training and testing sets are smaller in size after 
removing the outliers.

Now, we will remove outliers across multiple variables utilizing Feature-engine. First, we 
need to separate the data into a training and a testing set as we did in step 2.

7. Let’s set up a transformer to remove outliers in three variables by determining the limits with 
the IQR rule:

trimmer = OutlierTrimmer(

    variables = ["MedInc", "HouseAge", "Population"],

    capping_method="iqr",

    tail="both",

    fold=1.5,

)

8. Let’s fit the transformer to the data so that it learns those limits:

trimmer.fit(X_train)

By executing trimmer.left_tail_caps_, we can visualize the lower limits for the 
three variables: {'MedInc': -0.6776500000000012, 'HouseAge': -10.5, and 
'Population': -626.0}. By executing trimmer.right_tail_caps_, we can see 
the upper limits for those variables: {'MedInc': 7.984350000000001, 'HouseAge': 
65.5, and 'Population': 3134.0}.

9. Finally, let’s remove outliers from the train and test sets:

X_train_enc = trimmer.transform(X_train)

X_test_enc = trimmer.transform(X_test)

To finish with the recipe, let’s compare the distribution of a variable before and after 
removing outliers.

10. Let’s import matplotlib and seaborn and create a function to display a boxplot on top 
of a histogram:

import matplotlib.pyplot as plt

import seaborn as sns

def plot_boxplot_and_hist(data, variable):

    f, (ax_box, ax_hist) = plt.subplots(

        2, sharex=True, gridspec_kw={"height_ratios":
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        (0.50, 0.85)}

    )

    sns.boxplot(x=data[variable], ax=ax_box)

    sns.histplot(data=data, x=variable, ax=ax_hist)

    ax_box.set(xlabel="")

    plt.title(variable)

    plt.show()

Note
We discussed the code in step 10 in the Visualizing outliers with boxplots recipe earlier in 
this chapter.

11. Let’s now display the distribution of the MedInc variable before removing the outliers:

plot_boxplot_and_hist(X_train, "MedInc")

In the following plot, we see that MedInc is skewed and presents outliers at the maximum values:

Figure 5.3 – The boxplot and the histogram before removing outliers

12. Finally, let’s display the distribution of the same variable after removing the outliers:

plot_boxplot_and_hist(X_train_enc, "MedInc")
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In the following plot, we see that we’ve removed the extreme maximum values of MedInc, 
and note that the histogram seems more evenly distributed:

Figure 5.4 – The boxplot and the histogram after removing outliers

Note that the boxplot still highlights outliers in the variable. This is not uncommon. When we remove 
outliers, the values of the median and quantiles change and, therefore, values that were not flagged as 
outliers may now be beyond the whiskers.

How it works...

We created a function to find the boundaries according to the IQR proximity rule, as described in the 
Finding outliers with the inter-quartile range proximity rule recipe. With pandas ge(), we created a 
Boolean vector with True for the observations that are greater than or equal (that is, ge) to the lower 
limit. With pandas le(), we created another Boolean vector with True for those observations 
whose values are lower than or equal (that is, le) to the upper limit. With pandas loc and the 
Boolean vectors, we removed the outliers from the data.

We used Feature-engine to remove outliers simultaneously from multiple variables. The 
OutlierTrimmer() transformer can identify outliers based on the mean and standard deviation, 
IQR proximity rule, or quantiles. It can also change the width of the inliers interval through the 
fold parameter that multiplies the IQR or the standard deviation, and it can find outliers at both 
tails of the distribution or just at one end. By setting the capping_method='iqr' parameter, 
OutlierTrimmer() calculated the boundaries using the IQR proximity rule. With fold set 
to 3, the IQR was multiplied by three to find the limits. With tails set to "both", outliers were 
flagged at both ends of the variable’s distribution. To cap outliers at either end, we can pass "left" 
or "right" to the tails argument. With the fit() method, the transformer learned and stored 
the limits for each variable. With the transform() method, it removed the outliers from the data.
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Capping or censoring outliers
Capping or censoring is the process of transforming the data by limiting the extreme values, as in the 
outliers, to a certain maximum or minimum arbitrary value. With this procedure, the outliers are not 
removed but are instead replaced by other values. A typical strategy involves setting outliers to a specified 
percentile. For example, we can set all data below the 5th percentile to the value at the 5th percentile 
and all data greater than the 95th percentile to the value at the 95th percentile. Alternatively, we can cap 
the variable at the limits determined by the IQR proximity rule or at the mean plus and minus three 
times the standard deviation. In this recipe, we will cap variables at arbitrary values determined by the 
mean plus and minus three times the standard deviation using pandas and Feature-engine.

How to do it...

Let’s first import the Python libraries and load the data:

1. Import the required Python libraries:

import numpy as np

import pandas as pd

from sklearn.datasets import load_breast_cancer

from sklearn.model_selection import train_test_split

from feature_engine.outliers import Winsorizer

2. Let’s load the Breast Cancer dataset from scikit-learn and then separate it into a train 
and a test set:

X = pd.DataFrame(

    breast_cancer.data,

    columns=breast_cancer.feature_names)

y = breast_cancer.target

X_train, X_test, y_train, y_test = train_test_split(

    X,

    y,

    test_size=0.3,

    random_state=0,

)
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3. Let’s create a function that returns the mean plus and minus fold times the standard deviation, 
where fold is a parameter to the function:

def find_limits(df, variable, fold):

    lower_limit = df[variable].mean() - fold *

    df[variable].std()

    upper_limit = df[variable].mean() + fold *

    df[variable].std()

    return lower_limit, upper_limit

4. Let’s use the function to capture the extreme limits of the mean smoothness variable, which 
follows approximately a Gaussian distribution:

lower_limit, upper_limit = find_limits(X_train, "worst

smoothness", 3)

lower_limit, upper_limit

5. Now let’s cap the values at the lower and upper limits:

X_train["worst smoothness"].clip(lower=lower_limit, 
upper=upper_limit, inplace=True)

X_test["worst smoothness"].clip(lower=lower_limit, 
upper=upper_limit, inplace=True)

6. Let’s check that the values were censored:

X_train["worst smoothness"].min(), X_train["worst 
smoothness"].max()

The previous command returns the minimum and maximum values of the variable, 
which now coincide with the upper and lower limits we identified in step 4: (0.07117, 
0.20149734880520967).

Now, we will cap multiple variables simultaneously utilizing Feature-engine. First, we need to 
separate the data into a training and testing set as we did in step 2.

7. Let’s set up a transformer to cap two variables at the limits determined with the mean and 
standard deviation:

 capper = Winsorizer(

    variables=["worst smoothness", "worst texture"],

    capping_method="gaussian",

    tail="both",



Capping or censoring outliers 167

    fold=3,

)

8. Let’s fit the transformer to the data so that it learns those limits:

capper.fit(X_train)

By executing capper.left_tail_caps_, we can visualize the lower limits for the three 
variables: {'worst smoothness': 0.06356074164705164, 'worst texture': 
7.092123638591499}. By executing capper.right_tail_caps_, we can see the 
upper limits for those variables: {'worst smoothness': 0.20149734880520967, 
'worst texture': 43.97692158753917}.

9. Finally, let’s remove outliers from the train and test sets:

X_train = capper.transform(X_train)

X_test = capper.transform(X_test)

If we now execute X_train[capper.variables_].max(), we’ll see the maximum 
values coincide with the upper limits:

worst smoothness     0.201497

worst texture       43.976922

dtype: float64

That’s it! We’ve now capped variables at the minimum and maximum values.

How it works...

With the function described in the Finding outliers using the mean and standard deviation recipe, we 
identified the outliers. With pandas clip(), we capped the values of the variable at those values.

We used Feature-engine to cap outliers in multiple variables simultaneously. The Winsorizer() 
transformer can identify outliers based on the mean and standard deviation, the IQR proximity rule, 
or by using percentiles. It can also change the width of the interval through the fold parameter that 
multiplies the IQR or the standard deviation, and it can find outliers at both tails of the distribution 
or just one.

By setting the capping_method='gaussian' parameter, Winsorizer() calculated the 
boundaries using the mean and the standard deviation. With fold set to 3, the standard deviation 
was multiplied by three to find the limits. With tails set to "both", outliers were flagged at both 
ends of the variables distribution. With the fit() method, the transformer learned and stored the 
limits for each variable. With the transform() method, it capped the variable values at those limits. 
Finally, we used pandas max() to corroborate that the variables were capped.
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There’s more...

Winsorizer() caps the variables at values estimated using statistical parameters of the variables. 
Feature-engine also has the ArbitraryOutlierCapper() transformer, which allows us to 
cap variables at arbitrary values. To learn more about the arbitrary capper from Feature-engine, 
visit https://feature-engine.readthedocs.io/en/latest/api_doc/outliers/
ArbitraryOutlierCapper.html.

Capping outliers using quantiles
When capping outliers, we clip the variable extreme values to a certain maximum or minimum value 
determined by some statistical parameter. A typical strategy involves setting outliers to a specified 
percentile. For example, we can set all data below the 5th percentile to the value at the 5th percentile 
and all data greater than the 95th percentile to the value at the 95th percentile. In this recipe, we will cap 
variables at arbitrary values determined by the percentiles using pandas and Feature-engine.

How to do it...

Let’s first import the Python libraries and load the data:

1. Import the required Python libraries:

import pandas as pd

from sklearn.datasets import load_breast_cancer

from sklearn.model_selection import train_test_split

from feature_engine.outliers import Winsorizer

2. Let’s load the Breast Cancer dataset from scikit-learn:

breast_cancer = load_breast_cancer()

X = pd.DataFrame(

    breast_cancer.data, 

    columns=breast_cancer.feature_names)

y = breast_cancer.target

3. Let’s separate the data into a train set and a test set:

X_train, X_test, y_train, y_test = train_test_split(

    X,

    y,

https://feature-engine.readthedocs.io/en/latest/api_doc/outliers/ArbitraryOutlierCapper.html
https://feature-engine.readthedocs.io/en/latest/api_doc/outliers/ArbitraryOutlierCapper.html
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    test_size=0.3,

    random_state=0,

)

4. Let’s cap the variable’s minimum and maximum values to the 5th and 95th percentile:

for variable in X_train.columns:

    lower_limit = X_train[variable].quantile(0.05)

    upper_limit = X_train[variable].quantile(0.95)

X_train[variable].clip(

    lower=lower_limit,upper=upper_limit, inplace=True)

X_test[variable].clip(

    lower=lower_limit, upper=upper_limit, inplace=True)

That’s it, now the variables have been clipped to their respective 5th and 95th percentiles.

We will cap multiple variables simultaneously utilizing Feature-engine. First, we need to separate 
the data into a training setand a testing set as we did in step 2.

5. Let’s set up a transformer to cap two variables at the 5th and 95th percentiles:

capper = Winsorizer(

    variables = ["worst smoothness", "worst texture"],

    capping_method="quantiles",

    tail="both",

    fold=0.05,

)

Tip
To cap variables at the 10th and 90th percentiles, we need to set fold=0.1.

6. Let’s fit the transformer to the data so that it learns those limits:

capper.fit(X_train)

By executing capper.left_tail_caps_, we can visualize the lower limits for the 
three variables: {'worst smoothness': 0.0960535, 'worst texture': 
16.7975}. By executing capper.right_tail_caps_, we can see the upper limits 
for those variables: {'worst smoothness': 0.17321499999999998, 'worst 
texture': 36.2775}.
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7. Finally, let’s remove outliers from the train and test sets:

X_train = capper.transform(X_train)

X_test = capper.transform(X_test)

If we now execute X_train[capper.variables_].max(), we’ll see the maximum 
values coincide with the upper limits:

worst smoothness     0.173215

worst texture       36.277500

dtype: float64

That’s it! We’ve now capped variables at the minimum and maximum values.

How it works...

With pandas quantile(), we found the 5th and 95th percentiles of each variable. With pandas 
clip(), we capped the values of the variable at those values.

We used Feature-engine to cap outliers in multiple variables simultaneously based on quantiles 
by setting capping_method to "quantiles" and fold to 0.05. With tails set to "both", 
outliers were capped at both ends of the variables distribution. With the fit() method, the transformer 
learned and stored the limits for each variable. With the transform() method, it capped the variable 
values at those limits. Finally, we used pandas max() to corroborate that the variables were capped.



6
Extracting Features from Date 

and Time Variables

Date and time variables are those that contain information about dates, times, or both. In programming, 
we refer to these variables as datetime variables. Examples of datetime variables include date 
of birth, the time of an event, and date of last payment. The cardinality of datetime variables is 
usually very high. This means they contain a multitude of unique values, each corresponding to a 
specific combination of date and/or time. Therefore, we do not utilize datetime variables in their 
raw format in machine learning models. Instead, we enrich the dataset by extracting multiple features 
from these variables. In this chapter, we will learn how to extract new features from date and time by 
utilizing the pandas dt module. Later on, we will automate feature extraction over multiple variables 
with Feature-engine.

This chapter will cover the following recipes:

• Extracting features from dates with pandas

• Extracting features from time with pandas

• Capturing elapsed time between datetime variables

• Working with time in different time zones

• Automating feature extraction with Feature-engine

Technical requirements
 In this chapter, we will use the pandas, NumPy, and Feature-engine Python libraries.
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Extracting features from dates with pandas
datetime variables can take dates, time, or dates and time as values. They are not used in their raw 
format to build machine learning algorithms. Instead, we create additional features from them, and 
we can enrich the dataset dramatically by extracting information from the date and time.

The pandas Python library contains a lot of capabilities for working with dates and time. pandas 
dt is the accessor object to the datetime properties of a pandas Series. To access the pandas 
dt functionality, the variables should be cast in a data type that supports these operations, such as 
datetime or timedelta.

Tip
Often, the datetime variables are cast as objects, particularly when the data is loaded from 
a CSV file. Therefore, to extract the date and time features that we will discuss throughout this 
chapter, it is necessary to recast the variables as datetime.

In this recipe, we will learn how to extract features from dates by utilizing pandas.

Getting ready

The following are some of the features that we can extract from the date part of the datetime 
variable off the shelf using pandas:

• pandas.Series.dt.year

• pandas.Series.dt.quarter

• pandas.Series.dt.month

• pandas.Series.dt.isocalendar().week

• pandas.Series.dt.day

• pandas.Series.dt.day_of_week

• pandas.Series.dt.weekday

• pandas.Series.dt.dayofyear

• pandas.Series.dt.day_of_year

We can use the features we’ve obtained with pandas to create even more features, such as the semester 
or whether it is the weekend. We will learn how to do this in the next section.
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How to do it...

To proceed with the recipe, let’s import pandas and NumPy, and create a toy DataFrame:

1. Import pandas and numpy:

import numpy as np

import pandas as pd

2. Let’s create 20 datetime values beginning from 2019-03-05 at midnight, followed by 
increments of 1 day. Then, we must capture the values in a DataFrame and display the top 
five rows:

rng_ = pd.date_range("2019-03-05", periods=20, freq="D")

data = pd.DataFrame({"date": rng_}) 

data.head()

Our variable contains only dates, as shown in the following output:

Figure 6.1 – First five rows of a toy DataFrame with a datetime variable

Tip
We can check the data format of the variable by executing data["date"].dtypes. 
If the variable is cast as an object, we can convert it into datetime format by executing 
data["date_dt"] = pd.to_datetime(data["date"]).

3. Let’s extract the year part of the date in a new column and display the top five rows of the 
resulting DataFrame:

data["year"] = data["date"].dt.year

data.head()

We can see the new variable, year, in the following screenshot:
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Figure 6.2 – First five rows of a toy DataFrame with the new year variable

4. Let’s extract the quarter out of the date into a new column and display the top five rows:

data["quarter"] = data["date"].dt.quarter

data[["date", "quarter"]].head()

We can see the new variable, quarter, in the following output:

Figure 6.3 – First five rows of a toy DataFrame with the new quarter variable

5. With quarter, we can now create the semester feature:

data["semester"] = np.where(data["quarter"]<3, 1, 2)

Tip
To familiarize yourself with the distinct values of the new variables, you can use pandas unique() 
– for example, df["quarter"].unique() or df["semester"].unique().

6. Let’s extract the month part of the date in a new column and display the top five rows of 
the DataFrame:

data["month"] = data["date"].dt.month

data[["date", "month"]].head()
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 We can see month in the newly created variable in the following output:

Figure 6.4 – First five rows of a toy DataFrame with the new month variable

7. We can extract the week number (in a year) that the date corresponds to like so:

data["week"] = data["date"].dt.isocalendar().week

We can see the week variable in the following output:

Figure 6.5 – First five rows of a toy DataFrame with the new week variable

8. Let’s extract the day of the month, which can take values between 1 and 31, and capture it in a 
new column. Then, we will display the top rows of the DataFrame:

data["day_mo"] = data["date"].dt.day

data[["date", "day_mo"]].head()

 We can see the day of the month in the new variable in the following output:
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Figure 6.6 – First five rows of a toy DataFrame with the new variable

9. Let’s extract the day of the week, with values between 0 and 6 (from Monday to Sunday), in a 
new column, then display the top rows:

data["day_week"] = data["date"].dt.dayofweek

data[["date", "day_mo", "day_week"]].head()

We can see the day of the week in the new variable in the following output:

Figure 6.7 – First five rows of a toy DataFrame with the new variables derived from days

10. Next, let’s create a binary variable that indicates whether the date was a weekend. Then, we will 
display the DataFrame’s top rows:

data["is_weekend"] = (

    data["date"].dt.dayofweek > 4).astype(int)

data[["date", "day_week", "is_weekend"]].head()

 We can see the new is_weekend variable in the following output:
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Figure 6.8 – First five rows of a toy DataFrame with the new is_weekend variable

With that, we have created many new features from the date part of a datetime variable using 
pandas. These features are useful for data analysis, visualization, and machine learning.

How it works...

In this recipe, we extracted the many date-related features from a datetime variable by using the dt 
module from pandas. First, we created a toy DataFrame with a variable that contained both the date 
and time in its values. To create the toy DataFrame, we used the pandas date_range() method 
to create a range of values starting from an arbitrary date and increasing this by intervals of 1 day. 
With the periods argument, we indicated the number of values to create in the range – that is, the 
number of dates. With the freq argument, we indicated the size of the steps between the dates. We 
used D for days in our example. Finally, we transformed the date range into a DataFrame with the 
pandas DataFrame() class.

To extract the different parts of the date, we used pandas dt module to access the datetime 
properties of a pandas Series, and then utilized the different properties required: year, month, and 
quarter to capture the year, month, and quarter in new columns of the DataFrame, respectively. To 
find the semester, we used the where() method from NumPy in combination with the newly created 
quarter variable. NumPy’s where() method scanned the values of this quarter variable. If they 
were smaller than 3, it returned a value of 1 for the first semester; otherwise, it returned a value of 2.

To extract the different representations of days and weeks, we utilized the isocalender().
week, day, and dayofweek properties. To create a binary variable indicating whether the date 
was a weekend, we used the where() method from NumPy in combination with the newly created 
day_week variable. NumPy’s where() method scanned the name of each day, and if they were 
smaller than 5, it assigned a value of 0; otherwise, it assigned a value of 1. With that, we created 
multiple features that we can use for data analysis and machine learning.
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There’s more…

pandas also offers the following methods out of the box to create Boolean vectors to highlight the 
beginning or end of a month, a quarter, or a year, and also whether it is a leap year:

• pandas.Series.dt.is_month_start

• pandas.Series.dt.is_month_end

• pandas.Series.dt.is_quarter_start

• pandas.Series.dt.is_quarter_end

• pandas.Series.dt.is_year_start

• pandas.Series.dt.is_year_end

• pandas.Series.dt.is_leap_year

• pandas.Series.dt.days_in_month

We can also return the number of days in a specific month with pd.dt.days_in_month and the 
day in a year (from 1 to 365) with pd.dt.dayofyear.

For more details, visit the pandas datetime documentation: https://pandas.pydata.org/
pandas-docs/stable/user_guide/timeseries.html#time-date-components.

See also

To learn how to create different datetime ranges with pandas date_ranges(), visit https://
pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-
aliases.

To learn more about pandas dt, visit https://pandas.pydata.org/pandas-docs/
stable/reference/series.html#datetime-properties.

Extracting features from time with pandas
Some events occur more often at certain times of the day – for example, fraudulent activity is more 
likely to occur during the night or early morning. Air pollutant concentration also changes with the 
time of the day, with peaks at rush hour when there are more vehicles on the streets. Therefore, deriving 
time features is extremely useful. In this recipe, we will extract different time parts of a datetime 
variable by utilizing pandas and NumPy.

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#time-date-components.
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#time-date-components.
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases.
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases.
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases.
https://pandas.pydata.org/pandas-docs/stable/reference/series.html#datetime-properties.
https://pandas.pydata.org/pandas-docs/stable/reference/series.html#datetime-properties.
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Getting ready

The following are some of the features that we can extract offtheshelf using pandas:

• pandas.Series.dt.hour

• pandas.Series.dt.minute

• pandas.Series.dt.second

How to do it...

To proceed with this recipe, we must import the necessary libraries and create a toy dataset:

1. Let’s import pandas and numpy:

import numpy as np

import pandas as pd

2. Let’s create 20 datetime observations, beginning from 2019-03-05 at midnight followed 
by increments of 1 hour, 15 minutes, and 10 seconds. Next, we must capture the range in a 
DataFrame and display the top five rows:

rng_ = pd.date_range("2019-03-05", periods=20, 
freq="1h15min10s")

df = pd.DataFrame({"date": rng_}) 

df.head()

In the following screenshot, we can see the variable we just created, with a date part and a time 
part, and the values increasing by intervals of 1 hour, 15 minutes, and 10 seconds:

Figure 6.9 – First five rows of a toy DataFrame with a datetime variable
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3. Let’s extract the hour, minute, and second parts of the time into three new columns, then display 
the DataFrame’s top five rows:

df["hour"] = df["date"].dt.hour

df["min"] = df["date"].dt.minute

df["sec"] = df["date"].dt.second

df.head()

 We can see the different time parts in the new columns of the DataFrame:

Figure 6.10 – First five rows of the toy DataFrame with the variables derived from time

Note
Remember that pandas dt needs a datetime object to work. You can change the data type 
of an object variable into datetime using pandas to_datetime().

4. Let’s perform the same operations that we did in step 3 but now in one line of code:

df[["h", "m", "s"]] = pd.DataFrame([(x.hour, x.minute, 

     x.second) for x in df["date"]])

df.head()

 We can see the newly created variables in the following screenshot:

Figure 6.11 – First five rows of the toy DataFrame with the variables derived from time
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Note
Remember that you can display the unique values of a variable with pandas unique(), for 
example, by executing df['hour'].unique().

5. Finally, let’s create a binary variable that flags whether the event occurred in the morning, 
between 6 A.M. and 12 P.M:

df["is_morning"] = np.where( 

    (df["hour"] < 12) & (df["hour"] > 6), 1, 0 )

df.head()

 We can see the is_morning variable in the following screenshot:

Figure 6.12 – First five rows of the toy DataFrame with the new variables derived from time

With that, we have extracted multiple features from the time part of a datetime variable. These 
features can be used for data analysis as well as to build machine learning models.

How it works...

In this recipe, we created features that capture representations of time. First, we created a toy DataFrame 
with a datetime variable. We used the pandas date_range() method to create a range of 20 
values starting from an arbitrary date and increased this by intervals of 1 hour, 15 minutes, and 10 
seconds. We used the '1h15min10s' string as the frequency term for the freq argument to 
indicate the desired increments. Next, we transformed the date range into a DataFrame with the 
pandas DataFrame() method.

To extract the different time parts, we used pandas dt to access the time properties: hour, minute, 
and second. To create a binary variable to indicate whether the time was in the morning, we used 
the where() method from NumPy in combination with the hour variable. NumPy’s where() 
method scanned the hour variable; if its values were smaller than 12 and bigger than 6, it assigned a 
value of 1; otherwise, it assigned a value of 0. With these operations, we added several features to the 
DataFrame that can be used for data analysis and to train machine learning models.
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There’s more…

We can also extract microseconds and nanoseconds with the following pandas properties:

• pandas.Series.dt.microsecond

• pandas.Series.dt.nanosecond

For more details, visit https://pandas.pydata.org/pandas-docs/stable/user_
guide/timeseries.html#time-date-components.

Capturing the elapsed time between datetime variables
datetime variables offer value individually, though they may offer additional value collectively when 
used with other datetime variables to derive important insights. A common example consists of 
deriving the age at the time of an event from the date of birth and date of event variables. We can 
combine several datetime variables to derive the time that has passed and create more meaningful 
features. In this recipe, we will learn how to capture the time between two datetime variables in 
different formats and the time between a datetime variable and the current time by utilizing pandas, 
NumPy, and the datetime library.

How to do it...

To proceed with this recipe, we must import the necessary libraries and create a toy dataset:

1. Let’s begin by importing pandas, numpy, and datetime:

import datetime

import numpy as np

import pandas as pd

2. Let’s create two datetime variables with 20 values each, in which values start from 2019-
05-03 and increase in intervals of 1 hour and 1 month, respectively. Then, we must capture 
the variables in a DataFrame, add column names, and display the top rows:

rng_hr = pd.date_range("2019-03-05", periods=20, 
freq="H")

rng_month = pd.date_range("2019-03-05", periods=20, 
freq="M")

df = pd.DataFrame({"date1": rng_hr, "date2": rng_month})  

df.head()

We can see the first five rows of the created variables in the following output:

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#time-date-components
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#time-date-components
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#time-date-components.
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Figure 6.13 – First five rows of the toy DataFrame

3. Let’s capture the difference in days between the two variables in a new feature, and then display 
the DataFrame’s top rows:

df["elapsed_days"] = (df["date2"] - df["date1"]).dt.days

df.head()

 We can see the difference in days in the following output:

Figure 6.14 – First five rows of the toy DataFrame with the new variable

4. Let’s capture the difference in months between the two datetime variables in a new feature 
and then display the DataFrame’s top rows:

df["months_passed"] = (

    (df["date2"] - df["date1"]) / np.timedelta64(1, "M"))

df["months_passed"] = np.round(df["months_passed"],0)

df.head()

We can see the difference in months between the variables in the following screenshot:
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Figure 6.15 – DataFrame with the time difference in different units

5. Now, let’s calculate the time in between the variables in minutes and seconds and then display 
the DataFrame’s top rows:

df["diff_seconds"] = (

    df["date2"] - df["date1"])/np.timedelta64(1, "s")

df["diff_minutes"] = (

    df["date2"] - df["date1"])/ np.timedelta64(1,"m")

df.head()

We can see the new variables in the following output:

Figure 6.16 – DataFrame with the time difference in different units

6. Finally, let’s calculate the difference between one variable and the current day, and then display 
the first five rows of the DataFrame:

df["to_today"] = (

    datetime.datetime.today() - df["date1"])

df.head()

We can see the new variable in the final column of the DataFrame in the following screenshot:
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Figure 6.17 – DataFrame with the new variables

Note
The to_today variable on your computer will be different from the one in this book, due to 
the difference between the current date (at the time of writing) and when you execute the code.

That’s it! We’ve now enriched our dataset with new features that were created by comparing two 
datetime variables.

How it works...

In this recipe, we captured different representations of the time between two datetime variables. To 
proceed with this recipe, we created a toy DataFrame with two variables, each with 20 dates starting at 
an arbitrary date. The first variable increased in intervals of 1 hour, while the second variable increased 
in intervals of 1 month. We created the variables with pandas date_range(), which we covered 
extensively in the previous recipes in this chapter.

To determine the difference between the variables – that is, to determine the time between them – we 
directly subtracted one datetime variable from the other – that is, one pandas Series from the other. 
The difference between the two pandas Series returns a new pandas Series. To capture the difference 
in days, we used pandas dt, followed by days. To convert the time difference into months, we used 
the timedelta() method from NumPy and indicated we wanted the difference in months, passing 
M in the second argument of the method. To capture the difference in seconds and minutes, we passed 
the s and m strings to timedelta(), respectively.

Note
NumPy’s timedelta() method complements pandas datetime. The arguments for 
NumPy’s timedelta method are a number – 1, in our example – to represent the number of 
units, and a datetime unit, such as (D)ay, (M)onth, (Y)ear, (h)ours, (m)inutes, or (s)econds.

Finally, we captured the difference from one datetime variable to today’s date. We obtained the 
date and time of today using the built-in Python library, datetime, while using the datetime.
today() method. We subtracted one of the datetime variables from our DataFrame for today’s 
date and captured the difference in days, hours, minutes, seconds, and nanoseconds, which is the 
default value of the operation.
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See also

To learn more about NumPy’s timedelta, visit https://numpy.org/devdocs/reference/
arrays.datetime.html#datetime-and-timedelta-arithmetic.

Working with time in different time zones
Some organizations operate internationally; therefore, the information they collect about events may 
be recorded alongside the time zone of the area where the event took place. To be able to compare 
events that occurred across different time zones, we need to set all of the variables within the same 
zone. In this recipe, we will learn how to unify the time zones of a datetime variable and then learn 
how to reassign a variable to a different time zone using pandas.

How to do it...

To proceed with this recipe, we must import pandas and then create a toy DataFrame with two variables, 
each one containing a date and time in different time zones:

1. Import pandas:

import pandas as pd

2. Let’s create a toy DataFrame with one variable with values in different time zones:

df = pd.DataFrame()

df['time1'] = pd.concat([

    pd.Series(

        pd.date_range(

    start='2015-06-10 09:00', freq='H',

    periods=3,

            tz='Europe/Berlin')),

    pd.Series(

        pd.date_range(

        start='2015-09-10 09:00', freq='H',

        periods=3,

            tz='US/Central'))

    ], axis=0)

https://numpy.org/devdocs/reference/arrays.datetime.html#datetime-and-timedelta-arithmetic
https://numpy.org/devdocs/reference/arrays.datetime.html#datetime-and-timedelta-arithmetic
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3. Now, let’s add another datetime variable to the DataFrame, which also contains values in 
different time zones, and then display the resulting DataFrame:

df['time2'] = pd.concat([

    pd.Series(

        pd.date_range(

        start='2015-07-01 09:00', freq='H',

        periods=3,

            tz='Europe/Berlin')),

    pd.Series(

        pd.date_range(

        start='2015-08-01 09:00', freq='H',

        periods=3,

            tz='US/Central'))

    ], axis=0)

df

We can see the toy DataFrame with the variables in the different time zones in the 
following screenshot:

Figure 6.18 – Toy DataFrame with two datetime variables in different time zones

Note
The time zone is indicated with the +02 and -05 values, respectively.

4. To work with different time zones, first, we must unify the time zone to the central time zone 
setting, utc = True:

df['time1_utc'] = pd.to_datetime(df['time1'], utc=True)

df['time2_utc'] = pd.to_datetime(df['time2'], utc=True)

df
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Note how, in the new variables, utc is zero, whereas in the previous variables, it varies:

Figure 6.19 – The variables have now been unified to the central time zone (UTC)

5. Now, let’s calculate the difference in days between the variables and then display the DataFrame:

df['elapsed_days'] = (

    df['time2_utc'] - df['time1_utc']). dt.days

df['elapsed_days'].head()

We can see the time between the values of the variables in the DataFrame in the following output:

0    21

1    21

2    21

0   -40

1   -40

Name: elapsed_days, dtype: int64

6. Finally, let’s change the time zone of the datetime variables to alternative ones and display 
the new variables:

df['time1_london'] = df[

    'time1_utc'].dt.tz_convert('Europe/London')

df['time2_berlin'] = df[

    'time1_utc'].dt.tz_convert('Europe/Berlin')

df[['time1_london', 'time2_berlin']]

We can see the variables in their respective time zones in the following screenshot:



Working with time in different time zones 189

Figure 6.20 – The variables reformatted into different time zones

Note how, when changing time zones, not only do the values of the zone change – that is, the +01 and 
+02 values in the preceding screenshot – but the value of the hour changes as well.

How it works...

In this recipe, we changed the time zone of the variables and performed operations with variables 
in different time zones. To begin, we created a DataFrame with two variables, the values of which 
started at an arbitrary date and increased hourly; these were set in different time zones. To combine 
the different time zone variables in one column within the DataFrame, we concatenated the series 
returned by pandas date_range() by utilizing the pandas concat() method. We set the axis 
argument to 0, to indicate we wanted to concatenate the series vertically in one column. We covered 
the arguments of pandas date_range() extensively in former recipes in this chapter; see, for 
example, the Extracting features from dates with pandas and Extracting features from time with pandas 
recipes for more details.

To reset the time zone of the variables to the central zone, we used the pandas to_datetime() 
method and passed utc=True. Finally, we determined the time difference between the variables by 
subtracting one series from the other and capturing the difference in days. To reassign a different time 
zone, we used the pandas tz_convert() method, indicating the new time zone as an argument.

See also

To learn more about the _datetime() method, visit https://pandas.pydata.org/
pandas-docs/stable/reference/api/pandas.to_datetime.html.

To learn more about the pandas tz_convert() method, visit https://pandas.pydata.org/
pandas-docs/stable/reference/api/pandas.Series.dt.tz_convert.html.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.dt.tz_convert.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.dt.tz_convert.html
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Automating feature extraction with Feature-engine
Feature-engine is a Python library dedicated to engineering and selecting features and is well-suited 
to working with pandas DataFrames. The DatetimeFeatures() class from Feature-engine can 
extract features from date and time automatically by using the pandas dt module under the hood. 
This transformer allows you to extract the following features:

• Month

• Quarter

• Semester

• Year

• Week

• Day of week

• Day of month

• Day of year

• Weekend

• Month start

• Month end

• Quarter start

• Quarter end

• Year start

• Year end

• Leap year

• Days in month

• Hour

• Minute

• Second

In this recipe, we will automatically create features from date and time by utilizing Feature-engine.
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How to do it...

To proceed with this recipe, we must import the necessary libraries and create a toy dataset:

1. Let’s begin by importing pandas and  DatetimeFeatures():

import pandas as pd

from feature_engine.datetime import DatetimeFeatures

2. Let’s create 20 datetime values, with values beginning from 2019-03-05 at midnight 
followed by increments of 1 day. Then, we must capture the value range in a DataFrame:

rng_ = pd.date_range('2019-03-05', periods=20, freq='D')

data = pd.DataFrame({'date': rng_})

3. Let’s set up the transformer to create the default date and time features automatically:

dtfs = DatetimeFeatures(

    variables=None,

    features_to_extract=None,

)

Note
DatetimeFeatures() automatically finds all the variables of the datetime type, or that 
could be parsed as datetime when the parameter variable is set to None. Alternatively, 
you can pass a variable list, with the names of the variables for which you want to create the 
date and time features.

4. Let’s add the date and time features to the data:

dft = dtfs.fit_transform(data)

5. Let’s capture the names of the new variables in a list:

vars_ = [v for v in dft.columns if "date" in v]

Note
DatetimeFeatures() names the new features with the original variable name plus the 
type of feature created, for example, date_day_of_week.
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If we execute dft[vars_].head(), we will see the new variables, as shown in the following output:

Figure 6.21 – DataFrame returned by DatetimeFeatures() with the new variables

Note
We can create specific features by passing their names to features_to_extract, for 
example, dtfs = DatetimeFeatures(features_to_extract=["week", 
"year"]). We can also extract all possible features by setting that parameter to "all". If 
features_to_extract=None, Feature-engine will return default features, predefined 
in the transformer.

DatetimeFeatures() can also create features from variable values in different time zones. 
Let’s learn how to correctly set up the transformer in this situation.

6. Let’s create a toy DataFrame with one variable with values in different time zones:

df = pd.DataFrame()

df["time"] = pd.concat(

    [

        pd.Series(

            pd.date_range(

        start="2014-08-01 09:00", freq="H",

        periods=3, tz="Europe/Berlin"

            )

        ),

        pd.Series(

            pd.date_range(

                start="2014-08-01 09:00", freq="H",

         periods=3, tz="US/Central"

            )

        ),



Automating feature extraction with Feature-engine 193

    ],

    axis=0,

)

If we execute df, we will see the toy DataFrame, as shown in the following screenshot:

Figure 6.22 – DataFrame with a variable with values in different time zones

7. Now, let’s set up DatetimeFeatures() so that it extracts three specific features, indicating 
utc=True so that it transforms the variable into the central time zone:

dfts = DatetimeFeatures(

    features_to_extract=["day_of_week", "hour",

    "minute"],

    drop_original=False,

    utc=True,

)

8. Now, we can create the new features:

dft = dfts.fit_transform(df)

DatetimeFeatures() will put all timestamps in UTC before deriving the features. With 
dft.head(), we can see the resulting DataFrame:

Figure 6.23 – DataFrame with the original and new variables
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With that, we’ve created multiple date and time-related features in a few lines of code. Feature-engine 
offers a great alternative to manually creating features per feature with pandas.

How it works...

DatetimeFeatures() extracts several date and time features from datetime variables 
automatically by utilizing pandas dt under the hood. It works with variables whose original data 
types are datetime, as well as with object-like and categorical variables, provided that they can be 
parsed into datetime format. DatetimeFeatures() can extract all features when we set the 
features_to_extract parameter to "all" or a specific subset predefined by the class when 
we leave the parameter set to None. Alternatively, we can pass the names of the features to extract 
into a list.

DatetimeFeatures() automatically finds the datetime variables, although we can define 
them in a list and pass them to the parameter variables.

With the fit() method, the transformer does not learn any parameters; instead, it checks that the 
variables that are entered by the user are or can be parsed into datetime format. If the user does 
not indicate the variables, it finds the datetime variables automatically. With transform(), 
DatetimeFeatures() adds the date and time-derived variables to the DataFrame.



7
Performing Feature Scaling

Many machine learning algorithms are sensitive to the scale of the features. In particular, the 
coefficients of linear models depend on the scale of the feature; that is, changing the feature scale will 
change the coefficient’s value. In linear models, as well as and algorithms that depend on distance 
calculations, such as clustering and principal component analysis, features with bigger value ranges 
tend to dominate over features with smaller ranges. Therefore, having features within a similar scale 
allows us to compare feature importance and also helps algorithms converge faster, thus improving 
performance and training times.

Scaling techniques will divide the variables by some constant; therefore, it is important to highlight 
that no matter the scaling method, the shape of the variable distribution does not change. If what 
you want is to change the distribution shape, check out Chapter 3, Transforming Numerical Variables.

In this chapter, we will describe different methods you can use to put the features on the same scale, 
highlighting the characteristics of each method and the variable distributions for which they are 
better suited.

This chapter will cover the following recipes:

• Standardizing the features

• Scaling to the maximum and minimum values

• Scaling with the median and quantiles

• Performing mean normalization

• Implementing maximum absolute scaling

• Scaling to vector unit length



Performing Feature Scaling196

Technical requirements
The main libraries that we use in this chapter are scikit-learn for scaling and pandas to handle the 
data and make a few plots.

Standardizing the features
Standardization is the process of centering the variable at 0 and standardizing the variance to 1. To 
standardize features, we subtract the mean from each observation and then divide the result by the 
standard deviation:

The result of the preceding transformation is called the z-score and represents how many standard 
deviations a given observation deviates from the mean. In this recipe, we will implement standardization 
with scikit-learn.

How to do it...

To begin, we will import the required packages, load the dataset, and prepare the train and test sets:

1. Import the required Python packages, classes, and functions:

import matplotlib.pyplot as plt

import pandas as pd

from sklearn.datasets import fetch_california_housing

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

2. Let’s load the California housing dataset from scikit-learn into a dataframe, and drop the 
Latitude and Longitude variables as we would not use them as such in predictive models:

X, y = fetch_california_housing(

    return_X_y=True, as_frame=True)

X.drop(labels=["Latitude", "Longitude"], axis=1, 
inplace=True)

3. Now, let’s divide the data into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size=0.3, random_state=0)

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =   𝑥𝑥  −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥)
𝑠𝑠𝑠𝑠𝑑𝑑(𝑥𝑥)  
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4. Next, we’ll set up a standard scaler using StandardScaler() from scikit-learn and fit it to 
the train set so that it learns each variable’s mean and standard deviation:

scaler = StandardScaler() scaler.fit(X_train)

5. Now, let’s standardize the train and test sets with the trained scaler:

X_train_scaled = scaler.transform(X_train)

X_test_scaled = scaler.transform(X_test)

StandardScaler() stores the mean and standard deviation needed to standardize the 
variables. Let’s visualize the learned parameters.

6. First, we’ll print the mean values that were learned by the scaler:

scaler.mean_

The mean values per variable can be seen in the following output:

array([3.86666741e+00, 2.86187016e+01, 5.42340368e+00, 
1.09477484e+00,1.42515732e+03, 3.04051776e+00])

7. Now, let’s print the standard deviation values that were learned by the scaler:

scaler.scale_

The standard deviation of each variable can be seen in the following output:

array([1.89109236e+00, 1.25962585e+01, 2.28754018e+00, 
4.52736275e-01,1.14954037e+03, 6.86792905e+00])

Scikit-learn scalers, just like any scikit-learn transformer, return NumPy arrays.

8. Let’s convert the arrays into dataframes:

X_train_scaled = pd.DataFrame(

    X_train_scaled, columns=X_train.columns)

X_test_scaled = pd.DataFrame(

    X_test_scaled, columns=X_test.columns)

Now we can compare the transformed data with the original data to visualize the changes.

9. Let’s print the main statistics from the original variables:

X_test.describe()

In the output of the preceding command, we can see that the data is not centered at 0 and the 
variance varies among the variables:
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Figure 7.1 – Statistical parameters of the original variables

10. Let’s now print the main statistics from the transformed variables:

X_test_scaled.describe()

In the output of the preceding command, we can see that the data is now centered at 0 and 
the variance is 1:

 Figure 7.2 – Statistical parameters of the scaled variables
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11. Finally, let’s plot a histogram of the original distributions:

X_test.hist(bins=20, figsize=(20, 20))

plt.show()

In the following output, we see the distribution of each variable:

Figure 7.3 – Histograms of the original variables

12. And now, let’s plot a histogram of the scaled variables:

X_test_scaled.hist(bins=20, figsize=(20, 20))

plt.show()

In the following output, we see that after the scaling, the shape of the variable’s distribution 
remains the same:
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Figure 7.4 – Histograms of the scaled variables

We now have the variables of our data on a similar scale.

How it works...

In this recipe, we standardized the variables of the California housing dataset by utilizing scikit-learn. 
We split the data into train and test because the parameters for the standardization should be learned 
from the train set.

To standardize these features, we used StandardScaler(). Using the fit() method, the scaler 
learned each variable’s mean and standard deviation and stored them in its mean_ and scale_ 
attributes. Using the transform() method, the scaler standardized the variables in the train and 
test sets, returning NumPy arrays.

Scaling to the maximum and minimum values
Scaling to the minimum and maximum values squeezes the values of the variables between 0 and 1. 
To implement this scaling technique, we subtract the minimum value from all the observations and 
divide the result by the value range, that is, the difference between the maximum and minimum values:
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In this recipe, we will implement scaling to the minimum and maximum values by utilizing scikit-learn.

How to do it...

To begin, we will import the required packages, load the dataset, and prepare the train and test sets:

1. Import pandas and the required scikit-learn classes and functions:

import pandas as pd

from sklearn.datasets import fetch_california_housing

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

2. Let’s load the California housing dataset from scikit-learn into a pandas dataframe:

X, y = fetch_california_housing(

     return_X_y=True, as_frame=True

)

X.drop(labels=["Latitude", "Longitude"], axis=1, 
inplace=True)

3. Let’s divide the data into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(

    X,

    y,

    test_size=0.3,

    random_state=0,

)

4. Let’s set up the scaler and then fit it to the train set so that it learns each variable’s minimum 
and maximum values:

scaler = MinMaxScaler()

scaler.fit(X_train)

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =   𝑥𝑥  − min(𝑥𝑥)
max(𝑥𝑥) −min(𝑥𝑥) 
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5. Finally, let’s scale the variables in the train and test sets with the trained scaler:

X_train_scaled = scaler.transform(X_train)

X_test_scaled = scaler.transform(X_test)

Tip
MinMaxScaler() stores the maximum and minimum values and the value ranges in its 
data_max_, min_, and data_range_ attributes, respectively.

We can now transform these NumPy arrays into pandas dataframes and compare the variable 
distributions and their values before and after the transformation, as we did in steps 8 to 12 of the 
Standardizing the features recipe.

How it works...

In this recipe, we scaled the numerical variables of the California housing dataset that comes with 
scikit-learn to their minimum and maximum values.

The MinMaxScaler() from scikit-learn learned the minimum and maximum values of each 
variable when we called the fit() method and stored these parameters in its data_max_, min_, 
and data_range attributes. With the transform() method, the scaler removed the minimum 
value from each variable in the train and test sets and divided the result by the value range, returning 
NumPy arrays.

After the transformation, the minimum and maximum values of each variable were 0 and 1, respectively.

Tip
If you want to scale only a subset of variables, you can use either ColumnTransformer() 
from scikit-learn or SklearnTransformerWrapper() from Feature-engine together 
with MinMaxScaler().

Scaling with the median and quantiles
When scaling variables to the median and quantiles, the median value is removed from the observations, 
and the result is divided by the Inter-Quartile Range (IQR). The IQR is the difference between the 
1st quartile and the 3rd quartile, or, in other words, the difference between the 25th quantile and the 
75th quantile:

𝑥𝑥𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙 =   𝑥𝑥  − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥)
75𝑡𝑡ℎ 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑞𝑞𝑚𝑚(𝑥𝑥) − 25𝑡𝑡ℎ 𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑞𝑞𝑚𝑚(𝑥𝑥) 
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This method is known as robust scaling because it produces more robust estimates for the center and 
value range of the variable and is recommended if the data contains outliers. In this recipe, we will 
implement scaling with the median and IQR by utilizing scikit-learn.

How to do it...

To begin, we will import the required packages, load the dataset, and prepare the train and test sets:

1. Import pandas and the required scikit-learn classes and functions:

import pandas as pd

from sklearn.datasets import fetch_california_housing

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import RobustScaler

2. Let’s load the California housing dataset from scikit-learn into a pandas dataframe:

X, y = fetch_california_housing(

    return_X_y=True, as_frame=True)

X.drop(labels=["Latitude", "Longitude"], axis=1, 
inplace=True))

3. Let’s divide the data into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(

    X,

    y,

    test_size=0.3,

    random_state=0,

)

4. To perform scaling to the median and quantiles, we use RobustScaler() from scikit-learn 
and fit it to the train set so that it learns and stores the median and IQR:

scaler = RobustScaler()

scaler.fit(X_train)

5. Finally, let’s scale the variables in the train and test sets with the trained scaler:

X_train_scaled = scaler.transform(X_train)

X_test_scaled = scaler.transform(X_test)
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6. We can go ahead and print the variable median values stored by RobustScaler():

scaler.center_

7. The medians that are stored in the center_ attribute of RobustScaler() can be seen in 
the following output:

array([3.53910000e+00, 2.90000000e+01, 5.22931763e+00, 
1.04878049e+00,1.16500000e+03, 2.81635506e+00])

8. Now, let’s output the IQR stored in RobustScaler():

scaler.scale_

We can see the IQR for each variable in the following output:

array([2.16550000e+00, 1.90000000e+01, 1.59537022e+00, 
9.41284380e-02,9.40000000e+02, 8.53176853e-01])

We can now transform these NumPy arrays into pandas dataframes and compare the variable 
distributions and their values before and after the transformation, as we did in steps 8 to 12 of the 
Standardizing the features recipe.

How it works...

In this recipe, we scaled the numerical variables of the California housing dataset from scikit-learn 
to the median and IQR. First, we divided it into train and test sets.

To scale the features, we created an instance of RobustScaler(). With the fit() method, the 
scaler learned the median and IQR for each variable from the train set. With the transform() 
method, the scaler subtracted the median from each variable in the train and test sets and divided 
the result by the IQR, returning NumPy arrays with the scaled variables.

After the transformation, the median values of the variables are centered at 0, but the overall shape 
of the distributions did not change.

You can check the distributions in our repository at https://github.com/PacktPublishing/
Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch07-
scaling/Recipe-3-robust-scaling.ipynb.

Performing mean normalization
In mean normalization, we center the variable at 0 and rescale the distribution to the value range. 
This procedure involves subtracting the mean from each observation and then dividing the result by 
the difference between the minimum and maximum values:

https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch07-scaling/Recipe-3-robust-scaling.ipynb
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch07-scaling/Recipe-3-robust-scaling.ipynb
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch07-scaling/Recipe-3-robust-scaling.ipynb
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In this recipe, we will implement mean normalization with pandas and then with scikit-learn.

How to do it...

We’ll begin by importing the required libraries, loading the dataset, and preparing the train and test sets:

1. Import pandas and the required scikit-learn class and function:

import pandas as pd

from sklearn.datasets import fetch_california_housing

from sklearn.model_selection import train_test_split

2. Let’s load the California housing dataset from scikit-learn into a pandas dataframe:

X, y = fetch_california_housing(

    return_X_y=True, as_frame=True)

X.drop(labels=["Latitude", "Longitude"], axis=1, 
inplace=True)

3. Let’s divide the data into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(

    X,

    y,

    test_size=0.3,

    random_state=0,

)

4. Let’s learn the mean values from the variables in the train set using the following:

means = X_train.mean(axis=0)

Note
We set the axis to 0 to indicate we want the mean across all the rows, that is, across all the 
observations, which is the mean of each variable. If we set axis to 1 instead, pandas will calculate 
the mean value per observation across all the columns.

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =   𝑥𝑥  − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥)
max(𝑥𝑥) −min(𝑥𝑥) 
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5. By executing print(mean), we can see the mean values per variable:

MedInc           3.866667

HouseAge        28.618702

AveRooms         5.423404

AveBedrms        1.094775

Population    1425.157323

AveOccup         3.040518

dtype: float64

6. Now, let’s capture the difference between the maximum and minimum values per variable:

ranges = X_train.max(axis=0)-X_train.min(axis=0)

7. By executing print(ranges), we can see the value ranges per variable:

MedInc           14.500200

HouseAge         51.000000

AveRooms        131.687179

AveBedrms        33.733333

Population    35679.000000

AveOccup        598.964286

dtype: float64

Note
The pandas mean(), max(), and min() methods return a pandas Series.

8. Now, we’ll implement the mean normalization of the train and test sets by utilizing the 
learned parameters:

X_train_scaled = (X_train - means) / ranges

X_test_scaled = (X_test - means) / ranges

Tip
In order to transform future data, you will need to store these parameters, for example, in a 
.txt or .csv file.

Note that this procedure returns pandas dataframes of the transformed train and test sets. You can 
go ahead and compare the variables before and after the transformations using the commands from 
steps 9 to 12 of the Standardizing the features recipe.
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How it works…

In this recipe, we standardized the numerical variables of the California housing dataset from scikit-learn. 
We loaded the dataset and divided it into train and test sets using the train_test_split() function 
from scikit-learn. To implement mean normalization, we captured the mean values of the numerical 
variables in the train set using the pandas mean() method. Next, we determined the difference between 
the maximum and minimum values of the numerical variables in the train set by utilizing the pandas 
max() and min() methods. Finally, we used the pandas Series with the mean values and the value ranges 
to implement normalization. We subtracted the mean from each observation in our train and test sets 
and divided the result by the value ranges. This returned the normalized variables in a pandas dataframe.

There’s more...

There is no dedicated scikit-learn transformer to implement mean normalization, but we combine 
the use of two transformers to do so. This is convenient if you want to implement this transformation 
within a pipeline.

1. To do this, we need to import pandas and load the data, just like we did in steps 1 to 3 in the 
How to do it... section of this recipe. Then, follow these steps:

2. Import the scikit-learn transformers:

from sklearn.preprocessing import StandardScaler, RobustScaler

3. Let’s set up StandardScaler() so that it learns and subtracts the mean but does not divide 
the result by the standard deviation:

scaler_mean = StandardScaler(

    with_mean=True, with_std=False)

4. Now, let’s set up RobustScaler() so that it does not remove the median from the values but 
divides them by the value range, that is, the difference between the maximum and minimum values:

scaler_minmax = RobustScaler(

    with_centering=False,

    with_scaling=True,

    quantile_range=(0, 100)

)

Tip
To divide by the difference between the minimum and maximum values, we need to specify 
(0, 100) in the quantile_range argument of RobustScaler().
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5. Let’s fit the scalers to the train set so that they learn and store the mean, maximum, and 
minimum values:

scaler_mean.fit(X_train)

scaler_minmax.fit(X_train)

6. Finally, let’s apply mean normalization to the train and test sets:

X_train_scaled = scaler_minmax.transform(

    scaler_mean.transform(X_train)

)

X_test_scaled = scaler_minmax.transform(

    scaler_mean.transform(X_test)

)

We transformed the data with StandardScaler() to remove the mean and then transformed 
the resulting NumPy array with RobustScaler() to divide the result by the range between the 
minimum and maximum values. We described the functionality of StandardScaler() in the 
Standardizing the features recipe of this chapter and RobustScaler() in the Scaling with the 
median and quantiles recipe of this chapter.

Tip
MinMaxScaler() stores the maximum and minimum values and the value ranges in its 
data_max_, min_, and data_range_ attributes.

Implementing maximum absolute scaling
Maximum absolute scaling scales the data to its maximum value; that is, it divides every observation 
by the maximum value of the variable:

As a result, the maximum value of each feature will be 1.0. Note that maximum absolute scaling does 
not center the data. It was specifically designed for scaling sparse data. In this recipe, we will implement 
maximum absolute scaling with scikit-learn.

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =   𝑥𝑥 
max(𝑥𝑥) 
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Tip
Scikit-learn recommends using this transformer on data that is centered at 0 or on sparse data.

Getting ready

Maximum absolute scaling was specifically designed to scale sparse data. Thus, we will use a bag-of-
words dataset that contains sparse variables for the recipe. In this dataset, the variables are words, 
the observations are documents, and the values are the number of times each word appears in the 
document. Most entries in the data are 0.

For guidelines on how to download, prepare, and store the dataset, please check out the Getting ready 
section of the Implementing feature binarization recipe in Chapter 4, Performing Variable Discretization. 
Alternatively, you can download and run this notebook at https://github.com/solegalli/
Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch04-
discretization/donwload-prepare-store-enron-data.ipynb.

How to do it...

Let’s begin by importing the required packages and loading the dataset:

1. Import the required libraries and the scaler:

import matplotlib.pyplot as plt

import pandas as pd

from sklearn.preprocessing import MaxAbsScaler

2. Let’s load the bag-of-words dataset:

data = pd.read_csv("bag_of_words.csv"))

Note
Although we omit this step in the recipe, remember that the maximum absolute values should 
be learned from a training dataset only. So, remember to split the dataset into train and test 
sets when carrying out your analysis.

https://github.com/solegalli/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch04-discretization/donwload-prepare-store-enron-data.ipynb
https://github.com/solegalli/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch04-discretization/donwload-prepare-store-enron-data.ipynb
https://github.com/solegalli/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch04-discretization/donwload-prepare-store-enron-data.ipynb
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3. Let’s set up the maximum absolute scaler and fit it to the data so that it learns the variable’s 
maximum values:

scaler = MaxAbsScaler()

scaler.fit(data)

4. Now, let’s scale the variables by utilizing the trained scaler:

X_train_scaled = scaler.transform(data)

Tip
MaxScaler() stores the maximum values in its max_abs_ attribute.

5. Let’s display the maximum values stored by the scaler:

scaler.max_abs_

In the output of the preceding command, we see the maximum number of times each word 
appeared in a document:

array([ 7.,  6.,  2.,  2., 11.,  4.,  3.,  6., 52.,  2.])

6. Let’s convert the NumPy array into a dataframe:

data_scaled = pd.DataFrame(

    data_scaled, columns=data.columns)

And now, let’s plot the distributions of the original and scaled variables.

7. Let’s make a histogram with the bag of words before carrying out the scaling:

data.hist(bins=20, figsize=(20, 20))

plt.show()

In the following output, we see the number of times each word appears in a document:
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Figure 7.5 – Histograms with different word counts

8. Now, let’s make a histogram with the scaled variables:

data_scaled.hist(bins=20, figsize=(20, 20))

plt.show()

In the following output, we can corroborate the change of scale of the variables, but their 
distribution shape remains the same:
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Figure 7.6 – Histograms of the word counts after the transformation

Let’s move on to the next section!

How it works...

In this recipe, we scaled the sparse variables of a bag of words to their maximum values. To scale the 
features, we created an instance of MaxAbsScaler(). With the fit() method, the scaler learned the 
maximum values for each variable and stored them in its max_abs_ attribute. With the transform() 
method, the scaler divided the variables by their maximum values, returning a NumPy array.



Implementing maximum absolute scaling 213

There’s more...

If you want to center the variable distributions at 0 and then scale them to their absolute maximum, 
you can do so by combining the use of two scikit-learn transformers:

1. Let’s import the required libraries, transformers, and functions:

import pandas as pd

from sklearn.datasets import fetch_california_housing

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MaxAbsScaler, StandardScaler

2. Let’s load the California housing dataset and split it into train and test sets:

X, y = fetch_california_housing(

    return_X_y=True, as_frame=True)

X.drop(labels=["Latitude", "Longitude"], axis=1, 
inplace=True)

X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size=0.3, random_state=0)

3. Let’s set up StandardScaler() from scikit-learn so that it learns and subtracts the mean 
but does not divide the result by the standard deviation:

scaler_mean = StandardScaler(

    with_mean=True, with_std=False)

4. Now, let’s set up MaxAbsScaler() with its default parameters:

scaler_maxabs = MaxAbsScaler()

5. Let’s fit the scalers to the train set so that they learn the required parameters:

scaler_mean.fit(X_train)

scaler_maxabs.fit(scaler_mean.transform(X_train))

6. Finally, let’s transform the train and test sets:

X_train_scaled = scaler_maxabs.transform(

    scaler_mean.transform(X_train)) 

X_test_scaled = scaler_maxabs.transform(

    scaler_mean.transform(X_test))
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We transformed the datasets with StandardScaler() to remove the mean and then transformed 
the returned NumPy arrays with MaxAbsScaler() to scale the variables to their maximum values.

Scaling to vector unit length
When scaling to vector unit length, we scale individual samples or observations so that the transformed 
vector has a length of 1, or in other words, a norm of 1. Note that this scaling technique scales each 
individual observation and not each individual variable. To be clear, in all the scaling methods that 
we discussed so far in the chapter, the algorithms learned some parameters from each variable and 
then used those parameters to shift or rescale the distribution of the variables. On the contrary, when 
we scale to the unit length, we seek to normalize each observation individually, contemplating their 
values across all features.

Scaling to the unit norm is achieved by dividing each observation vector by either the Manhattan 
distance (l1 norm) or the Euclidean distance (l2 norm) of the vector. The Manhattan distance is given 
by the sum of the absolute components of the vector:

The Euclidean distance is given by the square root of the square sum of the component of the vector:

Here, x1, x2, and xn are the values of variables 1, 2, and n for each observation.

Scaling to the unit norm can be used when utilizing kernels to quantify similarity for text classification 
and clustering. In this recipe, we will implement scaling to vector unit length using scikit-learn.

How to do it...

To begin, we’ll import the required packages, load the dataset, and prepare the train and test sets:

1. Import the required Python packages, classes, and functions:

import numpy as np import pandas as pd

from sklearn.datasets import fetch_california_housing

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import Normalizer

2. Let’s load the California housing dataset from scikit-learn into a pandas dataframe:

 X, y = fetch_california_housing(

    return_X_y=True, as_frame=True)

𝑙𝑙1(𝑥𝑥)  =  |𝑥𝑥1| + |𝑥𝑥2| +⋯   +  |𝑥𝑥𝑛𝑛| 

𝑙𝑙2(𝑥𝑥)  =  √𝑥𝑥12 + 𝑥𝑥22 +⋯+ 𝑥𝑥𝑛𝑛2 
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X.drop(labels=["Latitude", "Longitude"], axis=1, 
inplace=True)

3. Let’s divide the data into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(

    X,

    y,

    test_size=0.3,

    random_state=0,

)

4. Let’s set up Normalizer() from scikit-learn to scale each observation to the Manhattan 
distance or l1:

scaler = Normalizer(norm='l1')

Tip
To normalize utilizing the Euclidean distance, you need to set the norm to l2 using scaler 
= Normalizer(norm='l2').

5. Let’s transform the train and test sets; that is, we’ll divide each observation vector by its norm:

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

6. We can calculate the length, that is, the Manhattan distance of each observation vector, using 
linalg() from NumPy:

np.round(np.linalg.norm(X_train_scaled, ord=1, axis=1), 
1)

Tip
You need to set ord=1 for the Manhattan distance or ord=2 for the Euclidean distance as 
arguments of NumPy’s linalg(), depending on whether you scaled the features to the l1 
or l2 norm.

We can see the normalized observation vectors in the following output:

array([1., 1., 1., ..., 1., 1., 1.])

As expected, the feature length for each observation is 1.
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Tip
You can compare the output of step 7 with the distance of the unscaled data by executing 
np.round( np.linalg.norm(X_train, ord=1, axis=1), 1).

How it works...

In this recipe, we scaled the numerical variables of the California housing dataset from scikit-learn 
to the vector unit norm by utilizing the Manhattan or Euclidean distance. To scale the features, we 
created an instance of Normalizer() from scikit-learn and set the norm to l1 for the Manhattan 
distance. For the Euclidean distance, we set the norm to l2. Then, we applied the fit() method, 
although there were no parameters to be learned, as this normalization procedure depends exclusively 
on the values of the features for each observation. Finally, with the transform() method, the scaler 
divided each observation by its norm. This returned a NumPy array with the scaled dataset.



8
Creating New Features

We can create valuable features by combining two or more variables. For example, in finance, the 
disposable income, which is the total income minus the acquired debt for any one month, might 
be more predictive of credit risk than just the income. Similarly, the total acquired debt of a person 
across financial products, such as a car loan, a mortgage, and credit cards, might be more predictive 
of credit risk than any debt considered individually. In these examples, we used domain knowledge 
of the data to craft the new variables, and the new variables were created by adding or subtracting 
existing features.

In some cases, a variable may not have a linear or monotonic relationship with the target, but a 
polynomial combination might. For example, if our variable has a quadratic relationship with the 
target, 𝑦𝑦 =  𝑥𝑥2 , we can convert that into a linear relationship by squaring the original variable. We 
can also obtain better variable relationships with the target by transforming the variables through 
splines, or by using decision trees.

In this chapter, we will create new features using multiple mathematical functions that will be applied 
based on domain knowledge, and then automate feature creation by combining existing features with 
polynomial functions or decision trees or by creating new features using splines.

This chapter will cover the following recipes:

• Combining features with mathematical functions

• Comparing features to reference variables

• Performing polynomial expansion

• Combining features with decision trees

• Creating periodic features from cyclical variables

• Creating spline features
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Technical requirements
In this chapter, we will use the Python libraries pandas, NumPy, Matplotlib, scikit-learn, and Feature-engine.

Combining features with mathematical functions
New features can be created by combining existing variables with mathematical and statistical functions. 
At the beginning of this chapter, we mentioned that we can calculate the total debt by summing up 
the debt across individual financial products, as follows:

Total debt = car loan debt + credit card debt + mortgage debt

We can also derive other insightful features using alternative statistical operations. For example, we 
can determine the maximum debt of a customer across financial products or the average time users 
have spent on a web page:

maximum debt = max(car loan balance, credit card balance, mortgage balance)

average time on page = mean(time spent user 1, time spent user 2, time spent user 3)

We can, in principle, use any mathematical or statistical operation to create new features, such as the 
product, mean, standard deviation, or maximum or minimum values, to name a few. In this recipe, 
we will implement these mathematical operations using pandas and Feature-engine.

Getting ready

In this recipe, we will use the Breast Cancer dataset that comes with scikit-learn, which contains 
information about the morphology of cell nuclei in tissue samples, and a target indicating whether 
they are cancerous cells. The features are computed from digitized images of breast cells, and they 
describe the characteristics of the cell nuclei in those images.

To become familiar with the dataset, run the following commands in a Jupyter Notebook or Python console:

from sklearn.datasets import load_breast_cancer 
data = load_breast_cancer() 
print(data.DESCR)

The preceding code block should print out a description of the dataset and an interpretation of 
its variables.
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How to do it...

In this recipe, we will create new features by combining variables using multiple mathematical operations:

1. Let’s begin by loading the necessary libraries, classes, and data:

import pandas as pd

from feature_engine.creation import MathFeatures 
from sklearn.datasets import load_breast_cancer

2. Let’s load the Breast Cancer dataset into a pandas DataFrame:

data = load_breast_cancer() 
df = pd.DataFrame(data.data, columns=data.feature_names)

In the following code lines, we will create new features by combining variables using multiple 
mathematical operations.

3. Let’s begin by creating a list with the subset of features that we want to combine:

features = [

    "mean smoothness",

    "mean compactness",

    "mean concavity",

    "mean concave points",

    "mean symmetry",

]

The features in step 3 represent the mean characteristics of cell nuclei in the images. It might 
be useful to obtain the mean across all examined characteristics.

4. Let’s get the mean value of the features and then display the resulting feature:

df["mean_features"] = df[features].mean(axis=1)

df["mean_features"].head()

The following output shows the mean value of the features:

0    0.21702

1    0.10033

2    0.16034

3    0.20654

4    0.14326

Name: mean_features, dtype: float64
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5. Similarly, to capture the general variability of the cell nuclei, let’s determine the standard 
deviation of the mean characteristics, and then display the resulting feature:

df["std_features"] = df[features].std(axis=1)

df["std_features"].head()

The following output shows the standard deviation of features:

0    0.080321

1    0.045671

2    0.042333

3    0.078097

4    0.044402

Name: std_features, dtype: float64

Tip
When we craft new features based on domain knowledge, we know exactly how we want to 
combine the variables. We could also combine features with multiple operations and then 
evaluate whether they are predictive using, for example, a feature selection algorithm or by 
deriving feature importance from the machine learning model.

6. Let’s make a list containing mathematical functions that we want to use to combine the features:

math_func = ["sum", "prod", "mean", "std", "max", "min"]

7. Now, let’s apply the previous functions to combine the features, and capture the resulting 
variables in a new DataFrame:

df_t = df[features].agg(math_func, axis="columns")

If we execute df_t.head(), we will see the DataFrame with the newly created features:

Figure 8.1 – DataFrame with the newly created features
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Note
pandas agg can apply multiple functions to combine features. It can take a list of strings with 
the function names, as we did in step 7, a list of NumPy functions, such as np.log, and also 
Python functions that you create.

We can create the same features that we created with pandas automatically by using Feature-engine.

8. Let’s create a list by using the name of the output features:

new_feature_names = ["sum_f", "prod_f", "mean_f", 
"std_f", "max_f", "min_f"]

9. Let’s set up the MathFeatures() transformer so that it applies the functions in step 6 to the 
features from step 3, and names the new features with the strings from step 8:

create = MathFeatures(

    variables=features,

    func=math_func,

    new_variables_names=new_feature_names,

)

10. Now, let’s create the new features, add them to the original DataFrame, and capture it in a 
new variable:

df_t = create.fit_transform(df)

We can display the input and output features by executing df_t[features + new_
feature_names].head():

Figure 8.2 – DataFrame with the input features and the newly created variables

While pandas agg returns a DataFrame with the features resulting from the operation, Feature-engine 
goes one step further, by concatenating the new features to the original DataFrame.
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How it works...

The pandas library has plenty of built-in operations to return the desired mathematical and statistical 
computations over the indicated axis – that is, across the rows or the columns of a DataFrame. In this 
recipe, we leveraged the power of pandas to create new features from existing ones. First, we made a 
list containing the names of the features we wanted to combine. Next, we applied those features over 
a slice of the DataFrame using the pandas mean() and std() methods, though we could apply any 
of the sum(), prod(), max(), and min() methods. These methods return the mean, standard 
deviation, sum, product, and maximum and minimum values of those features, respectively. To 
perform these operations across the columns, we added the axis=1 argument within the methods.

With pandas agg(), we applied several of the mathematical combinations simultaneously. pandas 
agg() takes, as arguments, a list of strings corresponding to the methods to apply and the axis 
property that the operations should be applied to, which can be either 1 for columns or 0 for rows. 
pandas agg() returned a pandas DataFrame with the feature combination as columns.

Finally, we created the same features by combining variables with Feature-engine. We used the 
MathFeatures() transformer, which takes the features to combine and the functions to apply 
as input; it also has the option to indicate the names of the new features. When we used fit(), 
the transformer did not learn parameters but checked that the variables were indeed numerical. 
transform()used pandas.agg under the hood to apply the mathematical functions to combine 
the variables.

See also

To find out more about the mathematical operations supported by pandas, go to https://pandas.
pydata.org/pandas-docs/stable/reference/frame.html#computations-
descriptive-stats.

To learn more about pandas aggregate, go to https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.aggregate.html.

Comparing features to reference variables
In the previous recipe, Combining features with mathematical functions, we created new features by 
applying mathematical or statistical functions, such as the sum or the mean, to a group of variables. 
Some mathematical operations, however, such as subtraction or division, make more sense when 
performed between two features, or when considering multiple features against one reference variable. 
These operations are very useful to derive ratios, such as the debt-to-income ratio:

debt-to-income ratio = total debt / total income

Alternatively, we can use them for differences, for example, to calculate disposable income:

disposable income = income - total debt

https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#computations-descriptive-stats
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html
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In this recipe, we will learn how to create new features via subtraction or division while utilizing 
pandas, and then automate the procedure for multiple variables by using Feature-engine.

How to do it…

Let’s begin by loading the necessary Python libraries and the Breast Cancer dataset from scikit-learn:

1. Let’s load the necessary libraries, classes, and data:

import pandas as pd

from feature_engine.creation import RelativeFeatures 
from sklearn.datasets import load_breast_cancer

2. Let’s load the Breast Cancer dataset into a pandas DataFrame:

data = load_breast_cancer() 
df = pd.DataFrame(data.data, columns=data.feature_names)

In the Breast Cancer dataset, there are features for capturing the worst and mean characteristics 
of the cell nuclei of breast cells. For example, for each image, we have the worst compactness 
observed in all nuclei and the mean compactness of all nuclei. A feature that captures the 
difference between the worst and the mean value could be predictive of tumor malignancy.

3. Let’s capture the difference between two features, the worst compactness and mean compactness 
of cell nuclei, in a new variable and display its values:

df["difference"] = df["worst compactness"].sub(df["mean 
compactness"])

df["difference"].head()

In the following code block, we can see the values of the difference between the features:

0    0.38800

1    0.10796

2    0.26460

3    0.58240

4    0.07220

Name: difference, dtype: float64

Note
We can perform the same calculation by executing df["difference"] = df["worst 
compactness"] - (df["mean compactness"]).
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Similarly, the ratio between the worst and the average characteristic of the cell nuclei might 
be indicative of malignancy.

4. Now, let’s create a new feature with the ratio between the worst and mean radius of the nuclei, 
and then display its values:

df["quotient"] = df["worst radius"].div(

    df["mean radius"])

df["quotient"].head()

In the following code block, we can see the values of the ratio between the features:

0    1.410784

1    1.214876

2    1.197054

3    1.305604

4    1.110892

Name: quotient, dtype: float64

Note
We can calculate the ratio by executing an alternative command – that is, df["quotient"] 
= df["worst radius"] / (df["mean radius"]).

We can also capture the ratio of every nuclei morphology characteristic and the mean radius 
or mean area of the nuclei. Let’s begin by capturing these subsets of variables into lists.

5. Make a list of the features in the numerator:

features = ["mean smoothness", 

    "mean compactness", "mean concavity",

     "mean symmetry"]

6. Make a list of the features in the denominator:

reference = ["mean radius", "mean area"]

Note
We can create features by dividing all of the features in step 5 with one of the features in step 6 
with pandas by executing df[features].sub(df["mean radius"]).



Comparing features to reference variables 225

7. Let’s set up Feature-engine’s RelativeFeatures() so that it subtracts or divides every 
feature from step 5 against the features from step 6:

creator = RelativeFeatures(

    variables=features,

    reference=reference,

    func=["sub", "div"],

)

Note
Subtracting the features from step 5 and step 6 does not make biological sense, but we will do 
it anyway to demonstrate the power of the RelativeFeatures() transformer.

8. Let’s add the new features to the DataFrame and capture it in a new variable:

df_t = creator.fit_transform(df)

9. Let’s capture the names of the new features in a list:

new_features = [

    f for f in df_t.columns if f not in creator.feature_
names_in_}

Tip
The feature_names_in_ attribute is a fairly new attribute that’s now available in most 
scikit-learn transformers and all Feature-engine transformers and stores the name of the variables 
in the DataFrame that were used to fit the transformer. When using transform() over a 
DataFrame, the transformers will check that the features match those used in the training set 
while using this attribute.

If we execute print(new_features), we will see a list containing the names of the features 
after the combinations. Note that the features contain the variables on the left-  and right-hand 
sides of the equation, plus the function that was applied to them to create the new feature:

['mean smoothness_sub_mean radius',

 'mean compactness_sub_mean radius',

 'mean concavity_sub_mean radius',

 'mean symmetry_sub_mean radius',

 'mean smoothness_sub_mean area',

 'mean compactness_sub_mean area',

 'mean concavity_sub_mean area',
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 'mean symmetry_sub_mean area',

 'mean smoothness_div_mean radius',

 'mean compactness_div_mean radius',

 'mean concavity_div_mean radius',

 'mean symmetry_div_mean radius',

 'mean smoothness_div_mean area',

 'mean compactness_div_mean area',

 'mean concavity_div_mean area',

 'mean symmetry_div_mean area']

Finally, we can display the first five rows of the resulting variables by executing df_t[new_
features].head():

Figure 8.3 – DataFrame with the newly created features

Feature-engine adds new features at the back of the original DataFrame and automatically adds 
variable names to those features. By doing so, Feature-engine automates much of the manual work 
that we would do with pandas.

How it works...

The pandas library has plenty of built-in operations to compare one feature or a subset of features to a 
single reference variable. In this recipe, we used the pandas sub() and div() methods to determine 
the difference or the ratio between two variables or a subset of variables and one reference feature.

To subtract one variable from another, we applied the sub() method to a pandas Series with the 
first variable, passing the second pandas Series with the second variable within the method, which 
returned a third pandas Series with the second variable subtracted from the first one. To divide one 
variable from another, we used the div() method, which works identically – that is, it divides the 
variable on the left by the variable passed as an argument of div().

Next, we combined several variables with two reference variables automatically via subtraction or division 
by utilizing the ReferenceFeatures() transformer from Feature-engine. ReferenceFeatures() 
takes the variables to combine, the reference variables, and the functions to use to combine the former 
with the latter. When using fit(), the transformer did not learn parameters but checked that the 
variables were numerical. transform() added the new features to the DataFrame.
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Note
ReferenceFeatures() can also add, multiply, get the module, or get the power of a group of 
variables by a group of reference variables. You can find out more in its documentation: https://
feature-engine.readthedocs.io/en/latest/api_doc/creation/
RelativeFeatures.html.

See also

To learn more about the binary operations supported by pandas, go to https://pandas.pydata.
org/pandas-docs/stable/reference/frame.html#binary-operator-functions.

Performing polynomial expansion
Existing variables can be combined to create new insightful features. We discussed how to combine 
variables using mathematical and statistical operations in the previous two recipes, Combining 
features with mathematical functions and Combining features to reference variables. A combination of 
one feature with itself – that is, a polynomial combination of the same feature – can also return more 
predictive features. For example, in cases where the target has a quadratic relation with a variable, 
creating a second-degree polynomial of the feature allows us to use it in a linear model, as shown in 
the following figure:

Figure 8.4 – Change in the relationship between a target and a 

predictor variable after squaring the values of the latter

https://feature-engine.readthedocs.io/en/latest/api_doc/creation/RelativeFeatures.html
https://feature-engine.readthedocs.io/en/latest/api_doc/creation/RelativeFeatures.html
https://feature-engine.readthedocs.io/en/latest/api_doc/creation/RelativeFeatures.html
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#binary-operator-functions.
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#binary-operator-functions.
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In the plot on the left, due to the quadratic relationship between the target, y, and the variable, x, there 
is a poor linear fit. Yet, in the plot on the right, we appreciate how the x_squared variable, which is a 
quadratic combination of x, shows a linear relationship with the target, y, and therefore improves the 
performance of the linear model, which predicts y from x_squared.

With similar logic, polynomial combinations of the same or different variables can return new variables 
that convey additional information and capture feature interaction and can, therefore, result in useful 
inputs for our linear models. We can create polynomial variables automatically using scikit-learn, and, 
in this recipe, we will learn how to do so.

Getting ready

Polynomial expansion serves to automate the creation of new features, capture feature interaction, 
and capture potential non-linear relationships between the original variables and the target. To create 
polynomial features, we need to determine which features to combine and which polynomial degree 
to use.

Note
High polynomial degrees or a large number of features to combine will return an enormous 
number of new features. High polynomial degrees may also result in overfitting.

The PolynomialFeatures() transformer from scikit-learn creates polynomial combinations of 
the features with a degree less than or equal to the specified degree, automatically. To follow up easily 
with this recipe, let’s understand the output of the PolynomialFeatures() transformer from 
scikit-learn, when used to create second-  and third-degree polynomial combinations of three variables.

Second-degree polynomial combinations of three variables – a, b, and c – will return the following 
new features:

1, a, b, c, ab, ac, bc, a2, b2, c2

From the previous features,  a, b, and c are the original variables; ab, ac, and bc are the products of those 
features; and a2, b2, and c2 are the squared values of the original features. The PolynomialFeatures() 
transformer also returns the bias term 1, which we would probably exclude when creating features.

Tip
The resulting features – ab, ac, and bc – are called interactions or feature interactions of degree 2. 
The degree reflects the number of variables combined. The result combines a maximum of two 
variables because we indicated a second-degree polynomial as the maximum allowed combination.
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Third-degree polynomial combinations of the three variables – a, b, and c – will return the following 
new features:

1, a, b, c, ab, ac, bc, abc, a2b, a2c, b2a, b2c, c2a, c2b, a3, b3, c3

Among the returned features, in addition to those returned by the second-degree polynomial 
combination, we now have the third-degree combinations of the features with themselves (a3, b3, and 
c3); the squared values of every feature combined linearly with a second feature (a2b, a2c, b2a, b2c, c2a, 
and c2b); and the product of the three features (abc). Note how we have all possible interactions of 
degrees 1, 2, and 3 and the bias term 1.

Now that we understand the output of the polynomial expansion, let’s jump into the recipe.

How to do it...

In this recipe, we will create features via polynomial expansion using a toy dataset so that we become 
familiar with the returned variables. Creating features via polynomial expansion of a real dataset is 
identical to what we will discuss in this recipe. Follow these steps:

1. Let’s import the required libraries, classes, and data:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.preprocessing import PolynomialFeatures

2. Let’s create a DataFrame containing one variable with values from 1 to 10:

df = pd.DataFrame(np.linspace(0, 10, 11), 
columns=["var"])

3. Let’s set up the transformer to create all possible combinations up to a third-degree polynomial of 
the single variable and exclude the bias term from the result – that is, we will exclude the value 1:

poly = PolynomialFeatures(

    degree=3,

    interaction_only=False,

    include_bias=False)

4. Now, let’s create the polynomial combinations and display the result:

dft = poly.fit_transform(df)

dft
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The new features are returned in a NumPy array, where we can see the original feature followed 
by its values squared and then its values to the power of three:

array([[   0.,    0.,    0.],

       [   1.,    1.,    1.],

       [   2.,    4.,    8.],

       [   3.,    9.,   27.],

       [   4.,   16.,   64.],

       [   5.,   25.,  125.],

       [   6.,   36.,  216.],

       [   7.,   49.,  343.],

       [   8.,   64.,  512.],

       [   9.,   81.,  729.],

       [  10.,  100., 1000.]])

5. We can obtain the name of the new features as follows:

poly.get_feature_names_out()

The previous command returns the names of the new features, where ^ indicates the degree 
of the polynomial combination:

array(['var', 'var^2', 'var^3'], dtype=object)

6. Now, let’s capture the array from step 4 in a pandas DataFrame, add the feature names from 
step 5 as column names, and plot the new feature values against the original variable:

dft = pd.DataFrame(

    dft, columns=poly.get_feature_names_out())

plt.plot(df["var"], dft)

plt.legend(dft.columns)

plt.xlabel("original variable")

plt.ylabel("new variables")

plt.show()

Here, we can see the relationship that the polynomial features have with the original feature values:
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Figure 8.5 – Relationship between the polynomial expansion features and the original variable values

7. Let’s add two additional variables to our toy dataset, with values from 1 to 10:

df["col"] = np.linspace(0, 5, 11)

df["feat"] = np.linspace(0, 5, 11)

8. Next, let’s combine the three features in the dataset with polynomial expansion up to the 
second degree, but this time, we will only return features produced by combining at least two 
different variables:

poly = PolynomialFeatures(

    degree=2, interaction_only=True, include_bias=False)

dft = poly.fit_transform(df)

9. Let’s capture the feature combinations in a DataFrame and add the feature names:

dft = pd.DataFrame(

    dft, columns=poly.get_feature_names_out()

)

If we execute df, we will see the features resulting from the polynomial expansion, which 
contain the original features plus all possible combinations of the three variables:
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Figure 8.6 – DataFrame with the original features plus all possible combinations of two features

Tip
Go ahead and create third-degree polynomial combinations of the features, returning only 
the interactions or all possible features to get a better sense of the output of Polynomial-
Features().

With that, we’ve learned how to expand the feature space by combining existing features either with 
themselves or with other features in the data. Creating features via polynomial expansion using a real 
dataset is, in essence, identical. If we want to combine only a subset of the features, we can select the 
features to combine by utilizing ColumnTransformer().

How it works...

In this recipe, we created new features by using polynomial combinations of three variables in a toy 
dataset. To create these polynomial features, we used the PolynomialFeatures() transformer 
from scikit-learn, which generates a new feature matrix consisting of all polynomial combinations of 
the indicated features with a degree less than or equal to the specified degree, by default. By setting 
degree to 3, we were able to create all possible polynomial combinations of degree 3 or smaller. To 
retain all of the terms of the expansion, we set interaction_only to False. To avoid returning 
the bias term, we set the include_bias parameter to False.
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Note
Setting the interaction_only term to True only returns the interaction terms – that is, 
the variables that contain combinations of two or more variables.

The fit() method learned all of the possible feature combinations based on the parameters specified. 
At this stage, the transformer did not perform actual mathematical computations. The transform() 
method performed the mathematical computations with the features to create the new variables. With 
the get_feature_names() method, we could identify the terms of the expansion – that is, how 
each new feature was calculated.

There’s more...

Now, let’s create features by performing polynomial expansion on a subset of variables in the Breast 
Cancer dataset:

1. Let’s import the necessary libraries, classes, and data:

import pandas as pd

from sklearn.datasets import load_breast_cancer

from sklearn.compose import ColumnTransformer

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import PolynomialFeatures

2. Let’s load the data and separate it into train and test sets:

data = load_breast_cancer()

df = pd.DataFrame(data.data, columns=data.feature_names)

X_train, X_test, y_train, y_test = train_test_split(

    df, data.target, test_size=0.3, random_state=0

)

3. Let’s make a list with the features to combine:

features = ["mean smoothness", "mean compactness", "mean 
concavity"]

4. Let’s set up the transformer to create all possible combinations up to the third degree:

poly = PolynomialFeatures(

    degree=3, interaction_only=False, include_bias=False)
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5. Let’s set up the column transformer to create features only from those specified in step 3:

ct = ColumnTransformer([("poly", poly, features)])

6. Let’s create the polynomial features:

train_t = ct.transform(X_train)

test_t = ct.transform(X_test)

And that’s it. By executing ct.get_feature_names_out(), we obtain the names of the 
new features. By executing test_t = pd.DataFrame(test_t, columns=ct.get_
feature_names_out()) we capture the features in a DataFrame; then, we can display their 
values with pandas.head().

See also

To learn more about PolynomialFeatures() from scikit-learn, go to https://scikit-learn.
org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.
html.

You can use the Python gplearn package to automatically map out other relationships between the 
variables and the target: https://gplearn.readthedocs.io/en/stable/intro.html.

Combining features with decision trees
In the winning solution of the KDD competition in 2009, the authors created new features by 
combining two or more variables using decision trees. When examining the variables, they noticed 
that some features had a high level of mutual information with the target yet low correlation, indicating 
that the relationship with the target was not monotonic. While these features were predictive when 
used in tree-based algorithms, linear models could not take advantage of them. Hence, to use these 
features in linear models, they replaced the features with the outputs of decision trees trained on the 
individual features, or combinations of two or three variables, to return new features with a monotonic 
relationship with the target.

So, in short, combining features with decision trees is particularly useful for deriving features that are 
monotonic with the target, which is convenient for linear models. The procedure consists of training 
a decision tree using a subset of the features – typically one, two, or three at a time – and then using 
the prediction of the tree as a new feature.

In this recipe, we will learn how to create new features with decision trees using pandas and scikit-learn.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://gplearn.readthedocs.io/en/stable/intro.html
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Getting ready

You can find more details about this procedure and the overall winning solution of the 2009 KDD 
data competition in this article: http://proceedings.mlr.press/v7/niculescu09/
niculescu09.pdf.

In this recipe, we will combine two features of the California Housing dataset, and then evaluate the 
relationship between the original and new features with the target to understand more about the 
intended output of this feature engineering technique.

How to do it...

Let’s begin by importing the required libraries and getting the dataset ready:

1. Import pandas and the required functions, classes, and datasets from scikit-learn:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import fetch_california_housing

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeRegressor

from sklearn.model_selection import GridSearchCV

2. Let’s load the California Housing dataset and its target into a pandas DataFrame:

X, y = fetch_california_housing(

    return_X_y=True, as_frame=True)

3. Let’s separate the dataset into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size=0.3, random_state=0)

Note
Remember to set random_state, as indicated in step 3, for reproducibility.

In the following lines, we are going to create a new feature from two variables in the dataset 
using a decision tree. We are going to build this decision tree within GridSearch() so that 
we can optimize the tree’s depth.

http://proceedings.mlr.press/v7/niculescu09/niculescu09.pdf
http://proceedings.mlr.press/v7/niculescu09/niculescu09.pdf
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4. Let’s create a dictionary with the parameter to optimize and a few of the potential values it 
can take:

param_grid = {"max_depth ": [2, 3, 4, None]}

Note
To find out which other parameters you can optimize, go to https://scikit-learn.
org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.
html.

5. Let’s set up the decision tree within a scikit-learn GridSearch() with five-fold cross-validation, 
add the dictionary with the parameter to optimize that we created in step 4, and indicate that 
we want to optimize the mean squared error of the model:

tree_model = GridSearchCV(

    DecisionTreeRegressor(random_state=0),

    cv=5,

    scoring="neg_mean_squared_error",

    param_grid=param_grid,

)

Note
We are using DecisionTreeRegressor() from scikit-learn because the target in 
this dataset is continuous. If you have a binary target or are performing classification, use 
DecisionTreeClassifier() instead. Note that you will have to change the scoring 
metric to one permitted for classification.

6. Let’s make a list containing the variables we want to combine:

variables = ["AveRooms", "AveBedrms"]

7. Now, let’s train the decision tree using the selected features:

tree_model.fit(X_train[variables], y_train)

8. Let’s add the new feature that’s returned by the decision tree in the train and test sets:

X_train["new_feat"] = tree_model.predict(

    X_train[variables])

X_test["new_feat"] = tree_model.predict(

    X_test[variables])

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
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With that, we have created a new feature by combining the information of two existing features 
using a decision tree. Let’s explore the relationship between the original and new features with 
the target.

9. Let’s make a scatter plot of each feature individually against the target, and then the new feature 
against the target, and display them side by side. The y-axis, which will contain the values of 
the target variable, will be the same for all plots:

fig, axs = plt.subplots(1, 3, figsize=(12, 4), 
sharey=True)

axs[0].scatter(X_test["AveRooms"], y_test)

axs[0].set_ylabel("House price")

axs[0].set_xlabel("AveRooms")

axs[1].scatter(X_test["AveBedrms"], y_test)

axs[1].set_xlabel("AveBedrms")

axs[2].scatter(X_test["new_feat"], y_test)

axs[2].set_xlabel("new_feat")

plt.show()

We can begin to appreciate the monotonic relationship between the new variable and the target 
in the right-hand plot, where there isn’t a clear relationship between the original features and 
the target:

Figure 8.7 – Scatter plots between the original or new variables and the target
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10. Finally, let’s print out the correlation between the original features and the new variable with 
the target:

for var in variables + ["new_feat"]:

    corr = np.corrcoef(X_test[var], y_test)[0, 1]

    corr = np.round(corr, 3)

    print(f"Correlation between {var} and the target:

    {corr}")

As shown in the following output, the new feature has a higher correlation with the target, so 
it should be more predictive when used in linear models:

Correlation between AveRooms and the target: 0.141

Correlation between AveBedrms and the target: -0.033

Correlation between new_feat and the target: 0.466

I hope I have given you a flavor of the power of combining features with decision trees and how to 
do so using Python and scikit-learn.

How it works...

In this recipe, we combined two variables into a new feature while utilizing a decision tree. We 
loaded the dataset from scikit-learn and then separated the data into train and test sets using the 
train_test_split() function. Next, we created a dictionary with the decision tree parameter 
to optimize as the key, and a list of the values to examine as values.

Next, we created an instance of a decision tree for regression by using DecisionTreeRegressor() 
from scikit-learn inside GridSearch(), indicating the cross-validation fold, the metric to optimize, 
and the dictionary with the parameters and values to examine. Next, we fit the decision tree using the 
two variables that we wanted to combine, and, finally, with the predict() method, we obtained 
the predictions derived by the tree from those two features, which we captured as a new feature in 
the DataFrame.

Then, we compared the relationship of the original or new feature with the target through scatter plots 
and by evaluating their correlation.

Creating periodic features from cyclical variables
Some features are periodic, for example, the hours in a day, the months in a year, and the days in a 
week. They all start at a certain value, say January, go up to a certain other value, say December, and 
then start over from the beginning. Some features are numeric, such as the hours, and some can be 
represented with numbers, such as the months, with values of 1 to 12. Yet, this numeric representation 
does not capture the periodicity or cyclical nature of the variable. For example, December (12) is closer 
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to January (1) than June (6); however, this relationship is not captured by the numerical representation 
of the feature. But we could change it if we transformed these variables with sine and cosine, two 
naturally periodic functions.

Encoding cyclical features with the sine and cosine functions allows linear models to leverage the 
cyclical nature of features and reduce their modeling error. In this recipe, we will create new features 
from periodic variables that capture the cyclical nature of the feature.

Getting ready

Trigonometric functions, such as sine and cosine, are periodic, with values cycling between -1 and 
1 every 2π cycles:

Figure 8.8 – Sine and cosine functions

We can capture the periodicity of a cyclical variable by applying a trigonometric transformation after 
normalizing the variable values between 0 and 2π:

Dividing the variable’s values by its maximum will normalize it between 0 and 1, whereas multiplying 
it by 2π will rescale the variable between 0 and 2π.

Should we use sine? Or should we use cosine? The thing is, we need to use both to encode all the 
values of the variables unequivocally. Since sine and cosine circle between 0 and 1, they will take a 
value of 0 for more than 1 value of x. For example, the sine of 0 returns 0, and so does the sine of π. 
So, if we encode a variable with just the sine, we wouldn’t be able to distinguish between the values 
0 and π anymore. However, because the sine and the cosine are out of phase, the cosine of 0 returns 
1, whereas the cosine of π returns -1. Hence, by encoding the variable with the two functions, we are 
now able to distinguish between 0 and 1, which would take (0,1) and (0,-1) as values for the sine and 
cosine functions, respectively.

𝒔𝒔𝒔𝒔𝒔𝒔(𝒙𝒙) = 𝒔𝒔𝒔𝒔𝒔𝒔(𝟐𝟐𝝅𝝅 𝑿𝑿
𝑿𝑿𝒎𝒎𝒎𝒎𝒙𝒙

) 
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How to do it…

In this recipe, first, we will transform the hour variable in a toy DataFrame with the sine and the 
cosine to get a sense of the new variable representation. Then, we will automate feature creation from 
multiple cyclical variables using Feature-engine:

1. Let’s begin by importing the necessary libraries:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

2. Let’s create a toy DataFrame with one variable – hour – with values between 0 and 23:

df = pd.DataFrame([i for i in range(24)], 
columns=["hour"])

3. Next, we will create two features using the sine and cosine transformations, after normalizing 
the variable values between 0 and 2π:

df["hour_sin"] = np.sin(

    df["hour"] / df["hour"].max() * 2 * np.pi)

df["hour_cos"] = np.cos(

    df["hour"] / df["hour"].max() * 2 * np.pi)

4. If we execute df.head(), we will see the original and new features:

Figure 8.9 – DataFrame with the hour variable and the new features 

obtained by the sine and cosine transformations
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5. Let’s make a scatter plot between the hour and its sine-transformed values:

plt.scatter(df["hour"], df["hour_sin"])

plt.ylabel("Sine of hour")

plt.xlabel("Hour")

plt.title("Sine transformation")

In the following plot, we can see how the values of the hour circle between -1 and 1, just like 
the sine function after the transformation:

Figure 8.10 – Scatter plot of the hour versus its sine transformed values

6. Now, let’s make a scatter plot between the hour and its cosine transformation:

plt.scatter(df["hour"], df["hour_cos"])

plt.ylabel("Cosine of hour")

plt.xlabel("Hour")

plt.title("Cosine transformation")

In the following plot, we can see how the values of the hour circle between -1 and 1, just like 
the cosine function after the transformation:



Creating New Features242

Figure 8.11 – Scatter plot of the hour versus its cosine-transformed values

Finally, we can reconstitute the cyclical nature of the hour, which is now captured by the two 
new features.

7. Let’s plot the values of the sine versus the cosine of the hour and overlay the original values of 
the hour on a color map:

fig, ax = plt.subplots(figsize=(7, 5))

sp = ax.scatter(df["hour_sin"], df["hour_cos"], 
c=df["hour"])

ax.set(

    xlabel="sin(hour)",

    ylabel="cos(hour)",

)

_ = fig.colorbar(sp)

In the following plot, we can see how the two trigonometric transformations of the hour reflect 
the cyclical nature of the hour, in a plot that reminds us of a clock:
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Figure 8.12 – Scatter plot of the trigonometric transformation of the hour

Note
The code implementation and idea for this plot were taken from scikit-learn’s 
documentation: https://scikit-learn.org/stable/auto_examples/
applications/plot_cyclical_feature_engineering.html#trigonometric-
features.

Now that we understand the nature and effect of the transformation, let’s create new features 
using the sine and cosine transformations from multiple variables automatically. We will use 
Feature-engine’s CyclicalFeatures.

8. Let’s import CyclicalFeatures:

from feature_engine.creation import CyclicalFeatures

9. Let’s create a toy DataFrame that contains the hour, month, and week variables, whose values 
vary between 0 and 24, 1 and 12, and 0 and 6, respectively:

df = pd.DataFrame()

df["hour"] = pd.Series([i for i in range(24)])

df["month"] = pd.Series([i for i in range(1, 13)]*2)

df["week"] = pd.Series([i for i in range(7)]*4)

https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html#trigonometric-features.
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html#trigonometric-features.
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html#trigonometric-features.
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Now, if we execute df.head(), we will see the first five rows of the toy DataFrame:

Figure 8.13 – Toy DataFrame with three cyclical features

10. Let’s set up the transformer so that it creates the sine and cosine features from these variables:

cyclic = CyclicalFeatures(

    variables=None,

    drop_original=False,

)

Note
By setting variables to None, the transformer will create the trigonometric features 
from all numerical variables. Alternatively, we can pass the subset of cyclical variables in a 
list. We can retain or drop the original variables after creating the cyclical features using the 
drop_original parameter.

11. To finish, let’s add the features to the DataFrame and capture it in a new variable:

dft = cyclic.fit_transform(df)

Now, if we execute dft.head(), we will see the original and new features:

Figure 8.14 – DataFrame with cyclical features plus the features 

created through the sine and cosine functions
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And that’s it – we’ve created features by using the sine and cosine transformation automatically from 
multiple variables and added them directly to the original DataFrame.

How it works…

In this recipe, we encoded cyclical features by values obtained from the sine and cosine functions 
applied to the normalized values of the variable. First, we normalized the variable values between 
0 and 2 π. To do this, we divided the variable values by the variable maximum value, which we 
obtained with pandas.max(), to scale the variables between 0 and 1. Next, we multiplied those 
values by 2π, using numpy.pi. Finally, we used np.sin and np.cos to apply the sine and cosine 
transformations, respectively.

To automate these procedures for multiple variables, we used Feature-engine’s CyclicalFeatures. 
With fit(), the transformer learned the maximum values of each variable, and with transform(), 
it added the features resulting from the sine and cosine transformations to the DataFrame.

See also

More details about cyclical features can be found in Feature-engine’s documentation: https://scikit-
learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.
html.

Creating spline features
Linear models expect a linear relationship between the predictor variables and the target. However, we 
can use linear models to model non-linear effects if we first transform the features. In the Performing 
polynomial expansion recipe, we saw how we can unmask linear patterns by creating features with 
polynomial functions. In this recipe, we will discuss the use of splines.

Splines are used to mathematically reproduce flexible shapes. They consist of piecewise low-degree 
polynomial functions. To create splines, we must place knots at several values of x within its value 
range. These knots indicate where the pieces of the function join together. Then, we fit low-degree 
polynomials to the data between two consecutive knots.

There are several types of splines, such as smoothing splines, regression splines, and B-splines. scikit-
learn supports the use of B-splines to create features. The procedure to fit and therefore return the 
spline values for a certain variable based on a polynomial degree and the number of knots exceeds the 
scope of this recipe. For more details, check out the resources in the See also section of this recipe. In 
this recipe, we’ll get a sense of what splines are and how we can use them to improve the performance 
of linear models.

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
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Getting ready

Let’s get a sense of what splines are. In the following figure, on the left, we can see a spline of degree 
1. It consists of two linear pieces – one from 2.5 to 5 and the other from 5 to 7.5. There are three 
knots: 2.5, 5, and 7.5. And outside the interval of 2.5 to 7.5, the spline takes a value of 0. The latter is 
characteristic of splines; they are only non-negative between certain values. On the right-hand side 
of the figure, we can see three splines of degree 1. We can construct as many splines as we want by 
introducing more knots:

Figure 8.15 – Splines of degree 1

In the following figure, on the left, we can see a quadratic spline, also known as a spline of degree 2. 
It is based on four adjacent knots: 0, 2.5, 5, and 7.5. On the right-hand side of the figure, we can see 
several splines of degree 2:

Figure 8.16 – Splines of degree 2

We can use splines to model non-linear functions and we will learn how to do this in the next section.
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How to do it…

In this recipe, we will use splines to model the sine function. Once we have gotten a sense of what 
splines are and how we can use them to fit non-linear covariates through a linear model, we will use 
splines for regression in a real dataset:

Note
The idea to model the sine function with splines was taken from scikit-learn’s 
documentation: https://scikit-learn.org/stable/auto_examples/
linear_model/plot_polynomial_interpolation.html.

1. Let’s begin by importing the necessary libraries and classes:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.linear_model import Ridge

from sklearn.preprocessing import SplineTransformer

2. Let’s create a training set, X, with 20 values between -1 and 11, and the target variable, y, which 
is the sine of X:

X = np.linspace(-1, 11, 20)

y = np.sin(X)

3. Let’s plot the relationship between X and y:

plt.plot(X, y)

plt.ylabel("y")

plt.xlabel("X")

In the following plot, we can see the sine function of X:

https://scikit-learn.org/stable/auto_examples/linear_model/plot_polynomial_interpolation.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_polynomial_interpolation.html
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Figure 8.17 – Relationship between the predictor and the target variable

4. Let’s fit a linear model to predict y from X by utilizing Ridge regression, and then obtain the 
predictions of the model:

linmod = Ridge(random_state=10)

linmod.fit(X.reshape(-1, 1), y)

pred = linmod.predict(X.reshape(-1, 1))

5. Now, let’s plot the relationship between X and y, and overlay the predictions:

plt.plot(X, y)

plt.plot(X, pred)

plt.ylabel("y")

plt.xlabel("X")

plt.legend(["y", "linear"], bbox_to_anchor=(1, 1), 
loc="upper left")

In the following figure, we can see that the linear model returned a very poor fit of the non-linear 
relationship between X and y:
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Figure 8.18 – The linear fit between X and y

6. Now, let’s set up SplineTransformer to obtain spline features from X by utilizing third-
degree polynomials and five knots at equidistant places within the values of X:

spl = SplineTransformer(degree=3, n_knots=5)

7. Let’s obtain the spline features and convert the NumPy array into a pandas DataFrame, adding 
the names of the spline basis functions:

X_t = spl.fit_transform(X.reshape(-1, 1))

X_df = pd.DataFrame(

    X_t, columns = spl.get_feature_names_out(

        ["var"]

    )

)

By executing X_df.head(), we can see the spline features:

Figure 8.19 – DataFrame with the splines
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Note
SplineTransformer returns a new feature matrix of features consisting of n_splines 
= n_knots + degree – 1.

8. Now, let’s plot the splines against the values of X:

plt.plot(X, X_t)

plt.legend(

    spl.get_feature_names_out(["var"]),

    bbox_to_anchor=(1, 1),

    loc="upper left")

plt.xlabel("X")

plt.ylabel("Splines values")

plt.title("Splines")

plt.show()

In the following figure, we can see the relationship between the different splines and the values 
of the predictor variable, X:

Figure 8.20 – Splines plotted against the values of the predictor variable, X

9. Now, let’s fit a linear model to predict y from the spline features obtained from X by utilizing 
Ridge regression, and then obtain the predictions of the model:

linmod = Ridge(random_state=10)

linmod.fit(X_t, y)

pred = linmod.predict(X_t)
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10. Now, let’s plot the relationship between X and y, and overlay the predictions:

plt.plot(X, y)

plt.plot(X, pred)

plt.ylabel("y")

plt.xlabel("X")

plt.legend(["y", "splines"], bbox_to_anchor=(1, 1), 
loc="upper left")

In the following figure, we can see that by utilizing spline features as input, Ridge regression 
can better predict the shape of y:

Figure 8.21 – The linear fit between the splines from X and y

Tip
Increasing the number of knots of the degree of the polynomial increases the flexibility of the 
spline curves. Try creating splines from higher polynomial degrees and see how the predictions 
of the Ridge regression change.

Now that we understand what the splines features are and how we can use them to predict 
non-linear effects, let’s try them out on a real dataset.

11. Let’s import some additional classes and functions from scikit-learn:

from sklearn.datasets import fetch_california_housing

from sklearn.compose import ColumnTransformer

from sklearn.model_selection import cross_validate
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12. Let’s load the California Housing dataset, drop two variables that we won’t use for modeling, 
and plot histograms of the remaining predictors:

X, y = fetch_california_housing(

    return_X_y=True, as_frame=True)

X.drop(["Latitude", "Longitude"], axis=1, inplace=True)

X.hist(bins=20, figsize=(10,10))

plt.show()

In the following figure, we can see the distribution of the predictors:

Figure 8.22 – Histograms of the predictor variables
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Here, we used splines to model frequencies. The distributions of the last four variables resemble 
frequencies. So, let’s create spline features from them and see whether they improve the 
performance of a linear model.

13. First, we will fit a Ridge regression to predict house prices based on the existing variables by 
utilizing cross-validation and obtain the performance of the model to set up the benchmark:

linmod = Ridge(random_state=10)

cv = cross_validate(linmod, X, y)

mean_, std_ = np.mean(

    cv["test_score"]), np.std(cv["test_score"])

print(f"Model score: {mean_} +- {std_}")

The previous commands return the following model performance, where the values are R2:

Model score: 0.490618615960575 +- 0.03617289854929812

14. Now, let’s set up the transformers to obtain spline features from four variables by utilizing 
third-degree polynomials and 50 knots, and then fit them to the data:

spl = SplineTransformer(degree=3, n_knots=50)

ct = ColumnTransformer(

    [("splines", spl, ["AveRooms", "AveBedrms",

    "Population", "AveOccup"])],

    remainder="passthrough",

)

ct.fit(X, y)

15. Now, let’s fit a Ridge regression to predict house prices based on the existing variables plus the 
polynomial features by using cross-validation, and then obtain the performance of the model:

cv = cross_validate(linmod, ct.transform(X), y)

mean_, std_ = np.mean(

    cv["test_score"]), np.std(cv["test_score"])

print(f"Model score: {mean_} +- {std_}")

The previous commands return the following model performance, where the values are R2:

Model score: 0.5553526813919297 +- 0.02244513992785257

As we can see, by using splines instead of the original variables, we can improve the performance of 
the linear regression model.
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How it works…

In this recipe, we created new features based on splines. First, we used a toy variable, with values from 
-1 to 11, and then we obtained splines from a real dataset. The procedure in both cases is identical: 
we used SplineTransformer from scikit-learn. SplineTransformer takes the degree 
property of the polynomial and the number of knots (n_knots) as input and returns the splines that 
better fit the data. The knots are placed at equidistant values of X by default, but through the knots 
parameter, we can choose to place them uniformly distributed at the quantiles of X instead, or pass 
an array with the specific values of X that should be used as knots.

Note
The number, spacing, and position of the knots are arbitrarily set by the user and are the 
parameters that influence the shape of the splines the most. When using splines in regression 
models, we can optimize these parameters in a randomized search with cross-validation.

With fit(), the transformer computes the knots of the splines. With transform(), it returns the 
array of B-splines. The transformer returns n_splines=n_knots + degree – 1.

Finally, we used ColumnTransformer  to derive splines from a subset of features. 
ColumnTransformer applies SplineTransformer to the subset of variables. Because we 
set remainder to "passthrough", ColumnTransformer concatenated the features that 
were not used to obtain splines to the resulting matrix of splines. By doing this, we fitted a Ridge 
regression with the splines plus the MedInc and HouseAge variables and managed to improve the 
linear model’s performance.

See also

To find out more about the math underlying B-splines, check out the following articles:

• Perperoglou, et al. A review of spline function procedures in R (https://bmcmedresmethodol.
biomedcentral.com/articles/10.1186/s12874-019-0666-3). BMC Med 
Res Methodol 19, 46 (2019).

• Eilers and Marx. Flexible Smoothing with B-splines and Penalties (https://projecteuclid.
org/journals/statistical-science/volume-11/issue-2/Flexible-
smoothing-with-B-splines-and-penalties/10.1214/ss/1038425655.
full.

• For an example of how to use B-splines to model time series data, check out the following page in 
scikit-learn’s documentation: https://scikit-learn.org/stable/auto_examples/
applications/plot_cyclical_feature_engineering.html#periodic-
spline-features.

https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-019-0666-3
https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-019-0666-3
https://projecteuclid.org/journals/statistical-science/volume-11/issue-2/Flexible-smoothing-with-B-splines-and-penalties/10.1214/ss/1038425655.full
https://projecteuclid.org/journals/statistical-science/volume-11/issue-2/Flexible-smoothing-with-B-splines-and-penalties/10.1214/ss/1038425655.full
https://projecteuclid.org/journals/statistical-science/volume-11/issue-2/Flexible-smoothing-with-B-splines-and-penalties/10.1214/ss/1038425655.full
https://projecteuclid.org/journals/statistical-science/volume-11/issue-2/Flexible-smoothing-with-B-splines-and-penalties/10.1214/ss/1038425655.full
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html#periodic-spline-features.
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html#periodic-spline-features.
https://scikit-learn.org/stable/auto_examples/applications/plot_cyclical_feature_engineering.html#periodic-spline-features.


9
Extracting Features from 

Relational Data with 
Featuretools

In previous chapters, we worked with data organized in rows and columns, where the columns are 
the variables, the rows are the observations, and each observation is independent. In this chapter, we 
will focus on creating features from relational datasets. In relational datasets, data is structured across 
various tables, which can be joined together via unique identifiers. These unique identifiers indicate 
the relationships that exist between the different tables.

A classic example of relational data is that held by retail companies. One table can contain information 
about customers, such as names and addresses. A second table can contain information about the 
purchases made by the customers, such as the type and number of items bought per purchase. A third 
table can contain information about the customers’ interactions with the company’s website, with 
variables such as session duration, the mobile device used, and the pages visited. The customers, the 
purchases, and the sessions are identified with unique identifiers. These unique identifiers allow us 
to put these tables together, and in this way, we can get information about the customers’ purchases 
or sessions.

If we want to know more about the types of customers we have (that is, customer segmentation) or 
make predictions about whether they would buy a product, we can create features that aggregate or 
summarize the information across the different tables at the customer level. For example, we can 
create features that capture the maximum amount spent by the customer on a purchase, the number 
of purchases they have made, the time between sessions, or the average session duration. The number 
of features we can create and the ways in which we can aggregate this information are plentiful.

In this chapter, we will discuss some common ways of creating aggregated views of relational data 
utilizing the Python library Featuretools. We will begin by setting up various data tables and their 
relationships and automatically creating features, and next, we will follow up with more detail on the 
different features that we can create.
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In this chapter, we will cover the following recipes:

• Setting up an entity set and creating features automatically

• Creating features with general and cumulative operations

• Combining numerical features

• Extracting features from date and time

• Extracting features from text

• Creating features with aggregation primitives

Technical requirements
In this chapter, we will use pandas, matplotlib, and the open source Python library Featuretools. 
You can install Featuretools with pip:

pip install featuretools

Otherwise, you can do so with conda:

conda install -c conda-forge featuretools

Make sure you have Featuretools version 1.14.0 or greater to run this notebook. The code was tested 
using versions 1.14.0 and 1.15.0.

Note
We will work with the Online Retail II dataset from the UCI Machine Learning Repository: 
https://archive.ics.uci.edu/ml/datasets/Online+Retail+II. Dua, D. 
and Graff, C. (2019). UCI Machine Learning Repository (http://archive.ics.uci.edu/
ml). Irvine, CA: The University of California, School of Information and Computer Science.

To download the Online Retail II dataset, follow these steps:

1. Go to https://archive.ics.uci.edu/ml/machine-learning-
databases/00502/.

2. Click on online_retail_II.xlsx to download the data.

3. Save online_retail_II.xlsx to the folder from which you will run the following commands.

After you’ve downloaded the dataset, open a Jupyter notebook and execute the following:

1. Import pandas:

import pandas as pd

https://archive.ics.uci.edu/ml/datasets/Online+Retail+II
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml/machine-learning-databases/00502/
https://archive.ics.uci.edu/ml/machine-learning-databases/00502/
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2. The data is spread across two Excel sheets. Load them into a single dataframe:

file = "online_retail_II.xlsx"

df_1 = pd.read_excel(file, sheet_name="Year 2009-2010")

df_2 = pd.read_excel(file, sheet_name="Year 2010-2011")

df = pd.concat([df_1, df_2])

3. Step 2 may raise an error if you don’t have the openpyxl library installed. Go ahead and install 
it to proceed with the data preparation. Select the data corresponding to the United Kingdom 
and then drop the Country column:

df = df[df["Country"]=="United Kingdom"]

df.drop("Country", axis=1, inplace=True)

4. Remove any rows without a given Customer ID:

df.dropna(subset=["Customer ID"], inplace=True)

5. Rename the dataframe’s columns:

df.columns = [

    "invoice",

    "stock_code",

    "description",

    "quantity",

    "invoice_date",

    "price",

    "customer_id",

]

6. Reset the index of the dataframe:

df.reset_index(inplace=True, drop=True)

7. Re-order the columns and save the data:

ordered_cols = [

    "customer_id",

    "invoice",

    "invoice_date",

    "stock_code",

    "description",
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    "quantity",

    "price",

]

df[ordered_cols].to_csv("retail.csv", index=False)

Make sure you install Featuretools and download and prepare the dataset before proceeding with this 
chapter since we will be using both throughout.

Setting up an entity set and creating features 
automatically
Relational datasets or databases contain data spread across multiple tables and the relationships 
between tables are dictated by a unique identifier that tells us how we can join those tables. To automate 
feature creation with Featuretools, first, we need to enter the different data tables and establish their 
relationships within what is called an entity set. The entity set then informs Featuretools how these 
tables are connected so that the library can automatically create features based on those relationships.

We will work with a dataset containing information about customers, invoices, and products. First, we 
will set up an entity set highlighting the relationships between these three items. This entity set will be 
the starting point for the remaining recipes in this chapter. Next, we will create features automatically 
by aggregating the data at the customer, invoice, and product levels, utilizing the default parameters 
from Featuretools.

In this recipe, you will learn how to correctly set up an entity set and extract a bunch of features 
automatically for each entity. In the upcoming recipes, we will delve deeper into the different types 
of features that we can create with Featuretools.

Getting ready

In this recipe, we will use the Online Retail II dataset from the UCI Machine Learning 
repository. In this table, there are customers, which are businesses that buy in bulk from the retail 
company. The customers are identified with the unique identifier customer_id. Each customer makes 
one or more purchases, which are flagged by the unique identifier invoice, containing the invoice 
number. In each invoice, there are one or more items that have been bought by the customer. Each 
item or product sold by the company is also identified with a unique stock code.

Thus, the data has the following relations:
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Figure 9.1 – Diagram showing the relationships between the data

Each customer made one or more purchases, identified by the invoice number. Each invoice contains 
one or more items, identified by the stock code. Each item can be bought by one or more customers 
and is therefore present in several invoices. With these relationships in mind, let’s proceed to the recipe.

How to do it...

In this recipe, we will set up an entity set with the data, and then highlight the different relationships 
in the dataset. Finally, we will create features by aggregating the information in the dataset at the 
customer, invoice, and product levels:

1. Let’s import the required libraries:

import matplotlib.pyplot as plt

import pandas as pd

import featuretools as ft

from woodwork.logical_types import Categorical

2. Let’s load the dataset that we prepared in the Technical requirements section and display the 
first five rows of it:

df = pd.read_csv(

    "retail.csv", parse_dates=["invoice_date"])

df.head()
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In the following screenshot, we can see the unique identifiers for customers (customer_id) 
and invoices (invoice), and additional information about the items bought in each invoice, 
such as the item’s code, description, quantity, and unit price, as well as the date of the invoice:

Figure 9.2 – Online Retail dataframe

Tip
Use pandas unique() to identify the number of unique items, customers, and invoices – for 
example, by executing df["customer_id"].nunique().

3. Let’s initialize an entity set with an arbitrary name, such as data:

es = ft.EntitySet(id="data")

4. Let’s add the dataframe to the entity set. Note that we give the dataframe a name (data), we 
need to add a unique identifier for each row, which we call rows, and since we do not have a 
unique row identifier, we will create this additional column when setting the entity set. Finally, we 
indicate that invoice_date is of the datetime type and customer_id is Categorical:

es = es.add_dataframe(

    dataframe=df,

    dataframe_name="data",

    index="rows",

    make_index=True,

    time_index="invoice_date",

    logical_types={ "customer_id": Categorical},

)

5. Next, we add the relationship between the original data and invoices. To do this, we indicate 
the original or base dataframe, which we called data in step 4, we give the new dataframe a 
name, invoices, we add the unique identifier for invoices, and we add the column containing 
customer_id to this dataframe:

es.normalize_dataframe(

    base_dataframe_name="data",
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    new_dataframe_name="invoices",

    index="invoice",

    copy_columns=["customer_id"],

)

Tip
We copy the customer_id variable to the invoices data because we want to create a 
subsequent relationship between customers and invoices.

6. Now, we add the second relationship, which is between customers and invoices. To do this, we 
indicate the base dataframe, which we named invoices in step 5, we give the new dataframe 
a name, customers, and add the unique customer identifier:

es.normalize_dataframe(

    base_dataframe_name="invoices",

    new_dataframe_name="customers",

    index="customer_id",

)

7. We can add a third relationship between the original data and the products:

es.normalize_dataframe(

    base_dataframe_name="data",

    new_dataframe_name="items",

    index="stock_code",

)

8. Let’s display the information in the entity set:

es

The entity set contains four dataframes: the original data, the invoices dataframe, the customers 
dataframe, and the product or items dataframe. The entity also contains the relationships between 
invoices or items with the original data, as well as between customers and invoices:

Entityset: data

  DataFrames:

    data [Rows: 741301, Columns: 8]

    invoices [Rows: 40505, Columns: 3]

    customers [Rows: 5410, Columns: 2]

    items [Rows: 4631, Columns: 2]
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  Relationships:

    data.invoice -> invoices.invoice

    invoices.customer_id -> customers.customer_id

    data.stock_code -> items.stock_code

9. Let’s display the invoices dataframe:

es["invoices"].head()

We see in the following output that Featuretools automatically created a dataframe containing 
the invoice’s unique identifier, followed by the customer’s unique identifier and the first date 
registered for each invoice:

Figure 9.3 – Dataframe with information at the invoice level

10. Let’s now display the customers dataframe:

es["customers"].head()

We can see in the following output that Featuretools automatically created a dataframe containing 
the customer’s unique identifier, followed by the date of the first invoice for this customer:

Figure 9.4 – Dataframe with information at the customer level
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Tip
Go ahead and display the dataframe containing the products by executing es["items"].
head(). You can also evaluate the size of the different dataframes using pandas shape. You 
will notice that the number of rows in each dataframe coincides with the number of unique 
invoices, customers, and products.

11. We can also display the relationships between these data tables:

es.plot()

Note
To visualize the data relationships, you need to have Graphviz installed. If you don’t, follow the 
instructions in the Featuretools documentation to install it per your operating system: https://
featuretools.alteryx.com/en/stable/install.html#installing-
graphviz.

In the following output, we can see the relational datasets and their relationships:

Figure 9.5 – Relationships between invoices, customers, and products within our dataset

After entering the data and their relationships, we can start automatically creating features for 
each one of our new dataframes, that is, customers, invoices, and products, using the default 
parameters from Featuretools.

https://featuretools.alteryx.com/en/stable/install.html#installing-graphviz
https://featuretools.alteryx.com/en/stable/install.html#installing-graphviz
https://featuretools.alteryx.com/en/stable/install.html#installing-graphviz
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12. Let’s create features by aggregating the data at the customer level. To do this, we set up the 
deep feature synthesis (dfs) class from Featuretools, indicating customers as the target 
dataframe. When creating features, we want to ignore the two columns with unique identifiers:

feature_matrix, feature_defs = ft.dfs(

    entityset=es,

    target_dataframe_name="customers",

    ignore_columns={

        "invoices":["invoice"],

        "invoices":["customer_id"],

    }

)

Note
The former block of code triggered the creation of 114 features with different aggregations of 
data at the customer level. The feature_matrix variable is a dataframe with the feature 
values and feature_defs is a list of the names of the new features. Go ahead and execute 
feature_defs or visit our accompanying GitHub repository (https://github.com/
PacktPublishing/Python-Feature-Engineering-Cookbook-Second-
Edition/blob/main/ch09-featuretools/Recipe1-Setting-up-an-
entitity-set.ipynb) to check the names of the created features. You will find more 
details about these features in the How it works… section.

13. Let’s display the name of five of the created features:

feature_defs[5:10]

In the following output, we can see 5 of the 114 features created by Featuretools:

[<Feature: MIN(data.price)>,

 <Feature: MIN(data.quantity)>,

 <Feature: MODE(data.description)>,

 <Feature: MODE(data.stock_code)>,

 <Feature: NUM_UNIQUE(data.description)>]

Note
Featuretools names the new features with the function used to create them, followed by the 
dataframe that was used to perform the aggregation, followed by the aggregated variable name. 
Thus, MIN(data.quantity) is equivalent to df.groupby(["customer_id"])
["quantity"].min(). We will give more details in the How it works… section.

https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch09-featuretools/Recipe1-Setting-up-an-entitity-set.ipynb
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch09-featuretools/Recipe1-Setting-up-an-entitity-set.ipynb
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch09-featuretools/Recipe1-Setting-up-an-entitity-set.ipynb
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch09-featuretools/Recipe1-Setting-up-an-entitity-set.ipynb
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14. Let’s display the first five rows of the dataframe containing five of the created features:

feature_matrix[feature_matrix.columns[5:10]].head()

In the following output, we can see the first five rows containing the values of the five new features:

Figure 9.6 – Dataframe with five features created by aggregating the data at the customer level

15. Similarly, we can create features automatically by aggregating information at the invoice level:

feature_matrix, feature_defs = ft.dfs(

    entityset=es,

    target_dataframe_name="invoices",

    ignore_columns = {"data": ["customer_id"]},

    max_depth = 1,

)

16. The previous step returns 24 features – let’s display their names:

feature_defs

We can see the names of the features in the following output:

[<Feature: customer_id>,

 <Feature: COUNT(data)>,

 <Feature: MAX(data.price)>,

 <Feature: MAX(data.quantity)>,

 <Feature: MEAN(data.price)>,

 <Feature: MEAN(data.quantity)>,

 <Feature: MIN(data.price)>,

 <Feature: MIN(data.quantity)>,

 <Feature: MODE(data.description)>,

 <Feature: MODE(data.stock_code)>,

 <Feature: NUM_UNIQUE(data.description)>,

 <Feature: NUM_UNIQUE(data.stock_code)>,

 <Feature: SKEW(data.price)>,
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 <Feature: SKEW(data.quantity)>,

 <Feature: STD(data.price)>,

 <Feature: STD(data.quantity)>,

 <Feature: SUM(data.price)>,

 <Feature: SUM(data.quantity)>,

 <Feature: DAY(first_data_time)>,

 <Feature: MONTH(first_data_time)>,

 <Feature: WEEKDAY(first_data_time)>,

 <Feature: YEAR(first_data_time)>]

Tip
Go ahead and display the dataframe containing the new features by executing feature_
matrix.head() or check our accompanying GitHub repository for the result.

To wrap up, by using the code from step 16 and changing the target dataframe name from invoices 
to items, go ahead and create features automatically at the product level.

How it works...

In this recipe, we set up an entity set containing the data and the relationships between some of its variables 
(unique identifiers). After that, we automatically created features by aggregating the information in the 
dataset for each of the unique identifiers. We used two main classes from Featuretools, EntitySet 
and dfs, to create the features. Let’s discuss each of these in more detail.

EntitySet stores the data, the logical types of the variables, and the relationships between the variables. 
The variable types (whether numeric or categorical) are automatically assigned by Featuretools. We 
can also set up specific variable types when adding a dataframe to the entity set. In step 4, we added 
the data to the entity set and set the logical type of customer id to Categorical.

EntitySet has the add_dataframe method, which we used in step 4 to add a new dataframe. 
When using this method, we need to specify the unique identifier, and if there is none, then we need to 
create one, as we did in step 4, by setting make_index to True. Note that in the index parameter 
from add_dataframe, we passed the "rows" string. With this configuration, EntitySet added 
the "rows" column containing the unique identifier for each row to the dataframe, which is a new 
sequence of integers starting with 0.

Note
Instead of using the add_dataframe method to add a dataframe to an entity set, we can 
add it by executing es["df_name"]=df, where "df_name" is the name we want to give 
to the dataframe and df is the dataframe we want to add.
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EntitySet has the normalize_dataframe method, which is used to create a new dataframe and 
relationship from unique values of an existing column. The method takes the name of the dataframe to 
which the new dataframe will be related and a name for the new dataframe. We also need to indicate 
the unique identifier for the new dataframe in the index parameter. By default, this method creates 
a new dataframe containing the unique identifier, followed by a datetime column containing the first 
date each unique identifier was registered. We can add more columns to this dataframe by using the 
copy_columns parameters as we did in step 5. Adding more columns to the new dataframe is useful 
if we want to follow up with relationships to this new dataframe, as we did in step 6.

EntitySet has also the plot() method, which displays the existing relationships in the entity set. 
In Figure 9.5, we saw the relationships between our data tables; the invoices and items (products) 
tables were related to the original data, whereas the customers table was related to the invoices 
table, which was in turn, related to the original data.

Note
The relationship between the tables dictates how the features will be created. The invoices 
and items tables are related to the original data. Thus, we can only create features with 
depth 1. The customers table is, on the other hand, related to invoices, which is related 
to data. Thus, we can create features with depth 2. That means that new features will consist 
of aggregations from the entire dataset, or aggregations for invoices first, which will then 
be subsequently aggregated for customers. We can regulate the features to create with the 
max_depth parameter in dfs.

After setting up the data and the relationships, we used dfs from Featuretools to automatically create 
features. When creating features with dfs, we need to set the target dataframe, that is, the data table for 
which the features should be created. The dfs class creates features by transforming and aggregating 
existing variables, through what are called transform and aggregate primitives.

A transform primitive transforms variables. For example, from datetime variables, using a transform 
primitive, dfs extracts the month, year, day, and week values.

An aggregate primitive aggregates information for a unique identifier. Aggregate primitives use 
mathematical operations such as the mean, standard deviation, maximum and minimum values, the 
sum, and the skew coefficient for numerical variables. For categorical variables, aggregate primitives 
use the mode and the count of unique items. For unique identifiers, aggregate primitives count the 
number of occurrences.

With the functionality of transform and aggregate primitives in mind, let’s try to understand the features 
that we created in this recipe. We used the default parameters of dfs to create the default features.
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Note
For more details on the default features offered by Featuretools, visit https://
featuretools.alteryx.com/en/stable/generated/featuretools.dfs.
html#featuretools.dfs.

We first created features for each customer. Featuretools returned 114 features for each customer. 
Because the customers data is related to the invoices data, which is related to the entire dataset, 
the features were created by aggregating data at two levels. First, the data was aggregated for each 
customer using the entire dataset. Next, the data was aggregated for each invoice first, and then the 
pre-aggregated data was aggregated again for each customer.

Featuretools names the new features with the function used to aggregate the data, for example, COUNT, 
MEAN, STD, and SKEW, among others. Next, it uses the data that was used for the aggregation and 
follows it with the variable that was aggregated. For example, the MEAN(data.quantity) feature 
contains the mean quantity of items bought by the customer calculated from the entire dataset, which 
is the equivalent of df.groupby("customer_id"])["quantity"].mean(), if you are 
familiar with pandas. On the other hand, the MEAN(invoices.MEAN(data.quantity)) 
feature first takes the mean quantity of items for each invoice, that is, df.groupby("invoice"])
["quantity"].mean(), and from the resulting series, it takes the mean value, considering the 
invoices for a particular customer.

For categorical features, Featuretools determines the mode and the unique values. For example, from the 
description variable, we’ve got the NUM_UNIQUE(data.description) and MODE(data.
description) features. The description is just the name of the item. Thus, these features highlight 
the number of unique items the customer bought and the item the customer bought the most times.

Note
Note something interesting: the NUM_UNIQUE(data.description) and MODE(data.
description) variables are numeric after the aggregation. Thus, Featuretools creates more 
features by using numerical aggregations of these variables. In this way, the MAX(invoices.
NUM_UNIQUE(data.description) feature first finds the number of unique items per 
invoice, and then returns the maximum from those values for a particular customer, considering 
all the customer’s invoices.

From datetime features, Featuretools extracts date components by default. Remember that the customers 
dataframe contains the customer_id variable and the date of the first invoice for each customer, as 
we saw in the output of step 10. From this datetime feature, Featuretools created the DAY(first_
invoices_time), MONTH(first_invoices_time), WEEKDAY(first_invoices_time), 
and YEAR(first_invoices_time) features containing the different date parts.

Finally, Featuretools also returned the total number of invoices per customer (COUNT(invoices)) 
and the total number of rows (COUNT(data)) per customer.

https://featuretools.alteryx.com/en/stable/generated/featuretools.dfs.html#featuretools.dfs
https://featuretools.alteryx.com/en/stable/generated/featuretools.dfs.html#featuretools.dfs
https://featuretools.alteryx.com/en/stable/generated/featuretools.dfs.html#featuretools.dfs
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See also

For more details into what inspired Featuretools, check the original article Deep Feature Synthesis: 
Towards Automating Data Science Endeavors by Kanter and Veeramachanen at https://www.
jmaxkanter.com/papers/DSAA_DSM_2015.pdf.

Creating features with general and cumulative operations
Featuretools uses what are called transform primitives to create features. Transform primitives take 
one or more columns in a dataset as input and return one or more columns as output. They are applied 
to a single dataframe.

Featuretools divides its transform primitives into various categories depending on the type of operation 
they perform or the type of variable they modify. For example, general transform primitives apply 
mathematical operations, such as the square root, the sine, and the cosine. Cumulative transform 
primitives create new features by comparing a row’s value to the previous row’s value. For example, 
the cumulative sum, cumulative mean, and cumulative minimum and maximum values belong to this 
category, as well as the difference between row values. There is another cumulative transformation 
that can be applied to datetime variables, which is the time since previous, which determines the 
time passed between two consecutive timestamps.

In this recipe, we will create features using the general and cumulative transform primitives in Featuretools.

Getting ready

General variable transformations are useful when we want to change the distribution of a variable, 
as we saw in Chapter 3, Transforming Numerical Variables, or in the Creating periodic features from 
cyclical variables recipe in Chapter 8, Creating New Features. From the transformations described in 
those chapters, Featuretools supports the square root transformation and the sine and cosine (albeit 
without the normalization between 0 and 2p).

With a cumulative transformation, we can, for example, get the total number of items bought per 
invoice by adding up the item’s quantity in each row at the invoice level. To understand the features 
that we will create in this recipe, let’s create them with pandas first:

1. Let’s import pandas:

Import numpy as np

import pandas as pd

2. Let’s load the dataset that we prepared in the Technical requirements section:

df = pd.read_csv(

    "retail.csv", parse_dates=["invoice_date"])

https://www.jmaxkanter.com/papers/DSAA_DSM_2015.pdf
https://www.jmaxkanter.com/papers/DSAA_DSM_2015.pdf
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3. Let’s capture the two numerical variables, price and quantity, in a list:

numeric_vars = ["quantity", "price"]

4. Let’s capture the names of the cumulative functions in a list:

func = ["cumsum", "cummax", "diff"]

5. Let’s create a list with new names for the variables that we will create:

new_names = [f"{var}_{function}" 

    for function in func for var in numeric_vars]

6. Let’s create new variables using the cumulative functions from step 4, applied to the variables 
from step 3, and add them to the dataframe:

df[new_names] = df.groupby("invoice")[numeric_vars].
agg(func)

The previous step returns the cumulative sum or cumulative maximum value, or the difference 
between rows, within each invoice. As soon as it encounters a new invoice number, it starts 
afresh. To better understand the result, execute df[df["invoice"] == "489434" ]
[numeric_vars + new_names] and compare the result to that of df[df["invoice"] 
== "489435" ][numeric_vars + new_names].

Let’s now apply the sine and cosine transformation to the entire dataframe.

7. Let’s create a list with names for the new variables:

new_names = [f"{var}_{function}" for function in ["sin", 
"cos"] for var in numeric_vars]

8. Let’s transform the price and quantity with the sine and cosine:

df[new_names] = df[numeric_vars].agg([np.sin, np.cos])

The transformation in step 8 was applied to the entire dataset, irrespective of the invoice number. 
You can inspect the result by executing df[new_names].head().

With these feature creation procedures in mind, let’s automate the process with Featuretools.
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How to do it...

We will apply cumulative transformations within each invoice and general transformations to the 
entire dataset:

1. First, we’ll import pandas, featuretools, and the Categorical logical type:

import pandas as pd

import featuretools as ft

from woodwork.logical_types import Categorical

2. Let’s load the dataset that we prepared in the Technical requirements section:

df = pd.read_csv(

    "retail.csv", parse_dates=["invoice_date"])

3. Let’s set up an entity set:

es = ft.EntitySet(id="data")

4. Let’s add the dataframe to the entity set:

es = es.add_dataframe(

    dataframe=df,

    dataframe_name="data",

    index="rows",

    make_index=True,

    time_index="invoice_date",

    logical_types={"customer_id": Categorical},

)

5. Let’s create a new dataframe with a relationship to the dataframe from step 4:

es.normalize_dataframe(

    base_dataframe_name="data",

    new_dataframe_name="invoices",

    index="invoice",

    copy_columns=["customer_id"],

)
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Note
For more details about steps 4 and 5, visit the Setting up an entity set and creating features 
automatically recipe.

6. Let’s make a list with the cumulative transformations to perform:

cum_primitives = ["cum_sum", 

"cum_max", "diff", "time_since_previous"]

Note
You can find Featuretools-supported cumulative transformations at this link: https://
featuretools.alteryx.com/en/stable/api_reference.html#cumulative-
transform-primitives.

7. Let’s make a list of the general transformations to carry out:

general_primitives = ["sine"]

Note
You can find Featuretools-supported general transformations at this link: https://
featuretools.alteryx.com/en/stable/api_reference.html#general-
transform-primitives.

8. Finally, let’s create the features. We use the dfs class, setting the original dataframe as the target 
dataframe, that is, the one whose variables we want to modify. Note that we pass an empty 
list to the agg_primitives parameter; this is to avoid returning the default aggregation 
primitives. We pass the general primitive from step 7 to the trans_primitives parameter 
and the cumulative primitives from step 6 to the groupby_trans_primitives parameter:

feature_matrix, feature_defs = ft.dfs(

    entityset=es,

    target_dataframe_name="data",

    agg_primitives=[],

    trans_primitives=general_primitives,

    groupby_trans_primitives = cum_primitives,

    ignore_dataframes = ["invoices"],

)

https://featuretools.alteryx.com/en/stable/api_reference.html#cumulative-transform-primitives
https://featuretools.alteryx.com/en/stable/api_reference.html#cumulative-transform-primitives
https://featuretools.alteryx.com/en/stable/api_reference.html#cumulative-transform-primitives
https://featuretools.alteryx.com/en/stable/api_reference.html#general-transform-primitives
https://featuretools.alteryx.com/en/stable/api_reference.html#general-transform-primitives
https://featuretools.alteryx.com/en/stable/api_reference.html#general-transform-primitives
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Tip
Featuretools will automatically apply the cumulative primitive transformations after grouping 
by invoice because of the relationship we set up in step 5.

9. Let’s now display the name of the created features:

feature_defs

In the following output, we can see the name of the features that we created, including the sine 
and cosine of the price and quantity and the cumulative transformations of these variables after 
grouping them by invoice number:

[<Feature: customer_id>,

 <Feature: invoice>,

 <Feature: stock_code>,

 <Feature: description>,

 <Feature: quantity>,

 <Feature: price>,

 <Feature: SINE(price)>,

 <Feature: SINE(quantity)>,

 <Feature: CUM_MAX(price) by invoice>,

 <Feature: CUM_MAX(quantity) by invoice>,

 <Feature: CUM_SUM(price) by invoice>,

 <Feature: CUM_SUM(quantity) by invoice>,

 <Feature: DIFF(price) by invoice>,

 <Feature: DIFF(quantity) by invoice>,

 <Feature: TIME_SINCE_PREVIOUS(invoice_date) by invoice>]

As you can see from the previous list, the new features were appended as new columns to 
the original dataframe and returned in a new variable. You can display the final dataframe by 
executing feature_matrix.head(), which will return the following dataframe:
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Figure 9.7 – Dataframe with the original and new features

For more details about the created features, check the How it works… section.

How it works...

To create features using general and cumulative transformations with Featuretools, first, we need to 
set up an entity set with the data and define the relationships between its variables. We described 
how to set up an entity set in the Setting up and entity set and creating features automatically recipe.

To apply cumulative and general transforms, we used the dfs class from Featuretools. We applied 
general transformation to the entire dataframe without grouping anything by a specific variable. To 
do this, we passed a list of strings that identify each transformation to the trans_primitives 
parameter from dfs.

We applied cumulative transformation after grouping by invoice. To do this, we passed a list of strings 
that identify each transformation to the groupby_trans_primitives parameter from dfs. 
Featuretools knows it should group by invoice because we established this unique identifier by using 
the normalize_dataframe method from EntitySet in step 5.
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Finally, we did not want features created from the variables in the invoices dataframe; thus, we 
set dfs to ignore this dataframe.

The dfs class returned two variables, the dataframe with the original and new features and the name 
of the features in a list. The new features are named with the operations applied to create them, such 
as SINE, COSINE, CUM_MAX, or DIFF, followed by the variable to which the transformation was 
applied, and when corresponding, the variable that was used for grouping.

Note that Featuretools automatically recognizes and selects the variables over which the transformations 
should be applied. The sine, cosine, cumulative sum, maximum, and difference were applied to numerical 
variables, whereas the time_since_previous transformation was applied to the datetime variable.

Combining numerical features
In Chapter 8, Creating New Features, we saw that we can create new features by combining variables 
with mathematical operations. Featuretools supports a number of operations to combine variables, 
including addition, division, modulo, and multiplication. In this recipe, we will learn how to combine 
these features with Featuretools.

How to do it...

Let’s begin by importing the libraries and getting the dataset ready:

1. First, we’ll import pandas, featuretools, and the Categorical logical type:

import pandas as pd

import featuretools as ft

from woodwork.logical_types import Categorical

2. Let’s load the dataset that we prepared in the Technical requirements section:

df = pd.read_csv(

    "retail.csv", parse_dates=["invoice_date"])

3. Let’s set up an entity set:

es = ft.EntitySet(id="data")

4. Let’s add the dataframe to the entity set:

es = es.add_dataframe(

    dataframe=df,

    dataframe_name="data",

    index="rows",
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    make_index=True,

    time_index="invoice_date",

    logical_types={"customer_id": Categorical},

)

5. Let’s create a new dataframe with a relationship to the dataframe from step 4:

es.normalize_dataframe(

    base_dataframe_name="data",

    new_dataframe_name="invoices",

    index="invoice",

    copy_columns=["customer_id"],

)

Note
For more details about steps 4 and 5, visit the Setting up an entity set and creating features 
automatically recipe.

6. We will multiply the quantity and price variables, which reflect the number of items 
bought and the unit price, respectively, to obtain the total amount paid:

feature_matrix, feature_defs = ft.dfs(

    entityset=es,

    target_dataframe_name="data",

    agg_primitives=[],

    trans_primitives=["multiply_numeric"],

    primitive_options={

        ("multiply_numeric"): {

            'include_columns': {

                'data': ["quantity", "price"]

            }

        }

    },

    ignore_dataframes=["invoices"],

)

7. Let’s now display the name of the new features:

feature_defs
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In the following output, we can see the feature names, the last one of which corresponds to the 
combination of the price and quantity variables:

[<Feature: customer_id>,

 <Feature: invoice>,

 <Feature: stock_code>,

 <Feature: description>,

 <Feature: quantity>,

 <Feature: price>,

 <Feature: price * quantity>]

8. To finish off, let’s inspect the new dataframe created in step 6:

feature_matrix.head()

In the following output, we can see that the new feature was appended to the end of the 
original dataframe:

Figure 9.8 – Dataframe with the new feature from the combination of price with quantity

Combining features with Featuretools may seem like a lot of work, compared to the (df["price"].
mul(df["quantity"])) pandas functionality. The real power comes in when we create new 
features in this way and follow it up with aggregations at the invoice or customer level.

How it works...

To multiply features, we used the MultiplyNumeric primitive from Featuretools (https://
primitives.featurelabs.com/#MultiplyNumeric), which can be accessed from dfs 
using the multiply_numeric string. We set the former string to the trans_primitive 
parameter and then used the primitive_options parameter to specify which variables to multiply. 
Note that in addition, we passed an empty list to the agg_primitives parameter to override the 
default aggregation primitives, and we ignored the features coming from the invoices dataframe.

https://primitives.featurelabs.com/#MultiplyNumeric
https://primitives.featurelabs.com/#MultiplyNumeric
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Extracting features from date and time
In Chapter 6, Extracting Features from Date and Time, we created various features from the date and 
time parts of datetime variables using pandas and Feature-engine. We can also extract multiple features 
from datetime variables, automatically utilizing Featuretools.

Featuretools supports the creation of various features from datetime variables using its datetime 
transform primitives. These primitives include the creation of features such as year, month, and day, 
and also other features such as is it lunch time or is it weekday?

Note
For more details on the features that can be created using datetime variables, visit https://
featuretools.alteryx.com/en/stable/api_reference.html#datetime-
transform-primitives.

In this recipe, we will automatically create multiple features from a datetime variable with Featuretools.

How to do it...

Let’s begin by importing the libraries and getting the dataset ready:

1. First, we’ll import pandas, featuretools, and the Categorical logical type:

import pandas as pd

import featuretools as ft

from woodwork.logical_types import Categorical

2. Let’s load the dataset that we prepared in the Technical requirements section:

df = pd.read_csv(

    "retail.csv", parse_dates=["invoice_date"])

3. Let’s set up an entity set:

es = ft.EntitySet(id="data")

4. Let’s add the dataframe to the entity set:

es = es.add_dataframe(

    dataframe=df,

    dataframe_name="data",

    index="rows",

    make_index=True,

https://featuretools.alteryx.com/en/stable/api_reference.html#datetime-transform-primitives
https://featuretools.alteryx.com/en/stable/api_reference.html#datetime-transform-primitives
https://featuretools.alteryx.com/en/stable/api_reference.html#datetime-transform-primitives
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    time_index="invoice_date",

    logical_types={"customer_id": Categorical},

)

5. Let’s create a new dataframe with a relationship to the dataframe from step 4:

es.normalize_dataframe(

    base_dataframe_name="data",

    new_dataframe_name="invoices",

    index="invoice",

    copy_columns=["customer_id"],

)

Note
For more details about steps 4 and 5, visit the Setting up an entity set and creating features 
automatically recipe.

6. Let’s make a list with string names that identify the features we want to create:

date_primitives = ["day", "year", "month", "weekday",

                   "days_in_month", "part_of_day",

                   "is_federal_holiday",

                   "hour", "minute"]

7. Let’s now create date and time features from the invoice date variable:

feature_matrix, feature_defs = ft.dfs(

    entityset=es,

    target_dataframe_name="invoices",

    agg_primitives=[],

    trans_primitives=date_primitives,

)

Note
In step 3, we entered the invoice date variable as a time variable. Thus, Featuretools will use 
this variable to create the date- and time-related features.
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8. Let’s display the name of the created features:

feature_defs

In the following output, we can see the name of the original and time features:

[<Feature: customer_id>,

 <Feature: DAY(first_data_time)>,

 <Feature: DAYS_IN_MONTH(first_data_time)>,

 <Feature: HOUR(first_data_time)>,

 <Feature: IS_FEDERAL_HOLIDAY(first_data_time)>,

 <Feature: MINUTE(first_data_time)>,

 <Feature: MONTH(first_data_time)>,

 <Feature: PART_OF_DAY(first_data_time)>,

 <Feature: WEEKDAY(first_data_time)>,

 <Feature: YEAR(first_data_time)>]

9. Let’s now display the resulting dataframe containing the original and new features:

feature_matrix.head()

In the following output, we can see the dataframe with the original and time features:

Figure 9.9 – Dataframe with the original and time features

Note that some of the created features are numeric, such as HOUR or DAY, some are Booleans, such 
as IS_FEDERAL_HOLIDAY, and some are categorical, such as PART_OF_DAY.
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How it works...

To create features from datetime variables, we used datetime transform primitives from Featuretools 
(https://featuretools.alteryx.com/en/stable/api_reference.html#datetime-
transform-primitives). These primitives can be accessed from dfs using the strings we 
specified in step 6 with the trans_primitive parameter. Note that in addition, we passed an 
empty list to the agg_primitives parameter to override the default aggregation primitives, and 
we ignored the features coming from the invoices dataframe.

Tip
We override the aggregation primitives in order to focus on the features we want to discuss in 
the recipe. However, in practice, when creating features with Featuretools, we will most likely 
use a combination of transform and aggregate primitives.

There’s more...

Featuretools supports additional time-related features, which you can find by carefully inspecting the 
primitive list at https://primitives.featurelabs.com/#MultiplyNumeric. One 
example is the DistanceToHoliday primitive (https://primitives.featurelabs.
com/#DistanceToHoliday), which returns the time between a date and a specified holiday. 
Let’s see how we can use this cool primitive.

First, we need to import pandas and Featuretools and set up the entity set as we did in steps 1 to 5 in 
the How to do it... section:

1. Let’s import the primitive to calculate the distance to a holiday:

from featuretools.primitives import DistanceToHoliday

2. Let’s prepare the primitive by specifying that we are interested in the UK’s bank holidays and 
that in particular, we want to know how long it is until Boxing Day:

distance_to_boxing_day = DistanceToHoliday(

    holiday="Boxing Day", country="UK")

3. Let’s now add that feature to the dataframe:

feature_matrix, feature_defs = ft.dfs(

    entityset=es,

    target_dataframe_name="invoices",

    agg_primitives=[],

    trans_primitives=[distance_to_boxing_day],

    verbose=True,

)

https://featuretools.alteryx.com/en/stable/api_reference.html#datetime-transform-primitives
https://featuretools.alteryx.com/en/stable/api_reference.html#datetime-transform-primitives
https://primitives.featurelabs.com/#MultiplyNumeric
https://primitives.featurelabs.com/#DistanceToHoliday
https://primitives.featurelabs.com/#DistanceToHoliday
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4. Let’s print the name of the returned features:

feature_defs

In the following output, we can see the names of the original and new features in the 
resulting dataframe:

[<Feature: customer_id>,

 <Feature: DISTANCE_TO_HOLIDAY(first_data_time, 
holiday=Boxing Day, country=UK)>]

Tip
Note that we do not have the price or description variables, among other things, because 
we transformed the invoices dataset in step 2 and not the entire dataframe.

5. Finally, let’s display the resulting data:

feature_matrix.head()

We can see the resulting dataframe with the distance to Boxing Day in the following output:

Figure 9.10 – Dataframe with the distance to Boxing Day

6. To find out which holidays exist in the UK and are supported by Featuretools, we need to 
import HolidayUtil:

from featuretools.primitives.utils import HolidayUtil

7. Next, we need to specify that we are interested in the UK:

holidayUtil = HolidayUtil("UK")
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8. Finally, we will capture the holidays in a list and then display them:

available_holidays = list(

    set(holidayUtil.federal_holidays.values()))

available_holidays

We can see the following holidays for the UK:

['Good Friday',

 'Boxing Day',

 "St. Patrick's Day [Northern Ireland]",

 "New Year's Day",

 'Golden Jubilee of Elizabeth II',

 'Millennium Celebrations',

 'Christmas Day',

 'Late Summer Bank Holiday [England/Wales/Northern 

     Ireland]',

 'Platinum Jubilee of Elizabeth II',

 'New Year Holiday [Scotland]',

 'Battle of the Boyne [Northern Ireland]',

 'May Day',

 'Boxing Day (Observed)',

 'Silver Jubilee of Elizabeth II',

 'Summer Bank Holiday [Scotland]',

 'Christmas Day (Observed)',

 'Wedding of Charles and Diana',

 'Diamond Jubilee of Elizabeth II',

 "St. Patrick's Day [Northern Ireland] (Observed)",

 'Easter Monday [England/Wales/Northern Ireland]',

 'State Funeral of Queen Elizabeth II',

 'New Year Holiday [Scotland] (Observed)',

 'Wedding of William and Catherine',

 "St. Andrew's Day [Scotland]",

 "New Year Holiday [Scotland], New Year's Day 

     (Observed)",

 'Spring Bank Holiday',

 "New Year's Day (Observed)"]

With this list in mind, you can pick and choose the holidays that make sense for your business.
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Extracting features from text
In Chapter 11, Extracting Features from Text Variables, we will discuss various features that we can 
extract from pieces of text utilizing pandas and scikit-learn. We can also extract multiple features 
from text automatically by utilizing Featuretools.

Featuretools supports the creation of two basic features from text as part of its default functionality, 
which are the number of characters and the number of words in a piece of text. In addition, there is 
an accompanying Python library, Natural Language Processing (NLP) primitives, which contains a 
lot more functionality to create more advanced features for use with text. Among these functions, we 
find primitives for counting the number of stop words and punctuation and calculating the amount 
of whitespace and uppercase, as well as more complex functions for deriving the diversity score or 
the polarity score.

Note
For a complete list of the functions available, visit https://featuretools.alteryx.
com/en/stable/api_reference.html#natural-language-processing-
primitives.

In this recipe, we will automatically create multiple features from a text variable, utilizing Featuretools 
default functionality first, and then utilizing primitives from the NLP Primitives library.

Getting ready

To follow along with this recipe, you need to install the NLP Primitives library, which you can 
do with pip:

pip install nlp_primitives

Otherwise, you can use conda:

conda install -c conda-forge nlp-primitives

Note
For more details, visit the NLP Primitives GitHub repository: https://github.
com/alteryx/nlp_primitives.

https://featuretools.alteryx.com/en/stable/api_reference.html#natural-language-processing-primitives
https://featuretools.alteryx.com/en/stable/api_reference.html#natural-language-processing-primitives
https://featuretools.alteryx.com/en/stable/api_reference.html#natural-language-processing-primitives
https://github.com/alteryx/nlp_primitives
https://github.com/alteryx/nlp_primitives
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How to do it...

Let’s begin by importing the libraries and getting the dataset ready:

1. First, we’ll import pandas, featuretools, and the logical types:

import pandas as pd

import featuretools as ft

from woodwork.logical_types import (

   Categorical, 

   NaturalLanguage,

)

2. Let’s load the dataset that we prepared in the Technical requirements section:

df = pd.read_csv(

    "retail.csv", parse_dates=["invoice_date"])

3. Let’s set up an entity set:

es = ft.EntitySet(id="data")

4. Let’s add the dataframe to the entity set, highlighting that the description variable is a 
text variable:

es = es.add_dataframe(

    dataframe=df,

    dataframe_name="data",

    index="rows",

    make_index=True,

    time_index="invoice_date",

    logical_types={

        "customer_id": Categorical,

        "description": NaturalLanguage,

    }

)

Note
For Featuretools text primitives to work, we need to indicate which variables are text by using 
the NaturalLanguage logical type.
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5. Let’s create a new dataframe with a relationship to the dataframe from step 4:

es.normalize_dataframe(

    base_dataframe_name="data",

    new_dataframe_name="invoices",

    index="invoice",

    copy_columns=["customer_id"],

)

Note
For more details about steps 4 and 5, visit the Setting up an entity set and creating features 
automatically recipe.

6. Let’s make a list with string names that identify the text features we want to create:

text_primitives = ["num_words", "num_characters"]

7. Let’s now extract the text features from the description variable:

feature_matrix, feature_defs = ft.dfs(

    entityset=es,

    target_dataframe_name="data",

    agg_primitives=[],

    trans_primitives=text_primitives,

    ignore_dataframes=["invoices"],

)

8. Let’s display the name of the created features:

feature_defs

In the following output, we can see the name of the original features, followed by those created 
from the description variable:

 [<Feature: customer_id>,

 <Feature: invoice>,

 <Feature: stock_code>,

 <Feature: quantity>,

 <Feature: price>,

 <Feature: NUM_CHARACTERS(description)>,

 <Feature: NUM_WORDS(description)>]
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9. Let’s now display the resulting dataframe:

feature_matrix.head()

In the following output, we can see the dataframe with the original data and the features created 
from the text:

Figure 9.11 – Dataframe with the original data and the date and time features

Note that Featuretools removes the original text variable, description, and in its place, it 
returns the new features.

To follow up, let’s create more interesting features. To do this, we need to have the NLP 
Primitives library installed.

10. Let’s import a few text primitives:

from nlp_primitives import (

    DiversityScore,

    MeanCharactersPerWord,

    PunctuationCount,

)

11. Let’s now add the text primitives from step 10 to our list of primitives from step 6:

text_primitives = text_primitives + [

    DiversityScore,

    MeanCharactersPerWord,

    PunctuationCount,

]

To create the text primitives, you need to execute the code from step 7 after executing steps 10 and 
11. After that, go ahead and display the names of the new features by executing feature_defs.
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12. To finish off the recipe, let’s display the new features created after executing the code from step 
7 with the primitives from step 11:

new_vars = feature_matrix.columns[5:10]

feature_matrix[new_vars].head()

In the following output, we can see the dataframe with new features created from the 
description variable:

Figure 9.12 – Dataframe with the new text features

Go ahead and compare the new features with the original variable to understand their output better.

How it works...

To create features from text variables, first, we used the Featuretools built-in functionality for counting 
the number of words and characters, and then we used additional NLP primitives available in the 
NLP Primitives library.

The default primitives can be accessed from dfs with the strings we specified in step 6 using the 
trans_primitives parameter. The additional primitives need to be imported from NLP 
Primitives and then passed on to the trans_primitives parameter from dfs. With this, 
dfs is able to tap into the functionality of these primitives to create new features from the text. The 
NLP Primitives library uses the nltk Python library under the hood.



Creating features with aggregation primitives 289

Creating features with aggregation primitives
Throughout this chapter, we’ve created features automatically by transforming existing variables into 
new features. For example, we extracted date and time parts from datetime variables, we counted the 
number of words, characters, and punctuation in a text, and we combined numerical features into 
new variables. To create these features, we worked with transform primitives.

Featuretools also supports aggregation primitives. These primitives take related observations as input 
and return a single value. For example, if we have a numerical variable, price, related to an invoice, 
an aggregation primitive would take all the price observations for a single invoice and return a single 
value, such as the mean price or the sum (that is, the total amount paid), for that particular invoice.

Tip
The Featuretools aggregation functionality is the equivalent of groupby in pandas, followed 
by pandas functions such as mean, sum, std, and count, among others.

Some aggregation primitives work with numerical variables, such as the mean, sum, or maximum 
and minimum values. Other aggregation primitives are specific to categorical variables, such as the 
number of unique values and the most frequent value (mode).

Note
For a complete list of supported aggregation primitives, visit https://featuretools.
alteryx.com/en/stable/api_reference.html#aggregation-primitives.

In this recipe, first, we will create multiple features by aggregating existing variables, and then we will 
combine creating new features with transform primitives and subsequently aggregating them with 
aggregation primitives.

Getting ready

In this recipe, we will use the Online Retail II dataset from the UCI Machine Learning 
Repository. This dataset has information about items, invoices, and customers. To follow along with 
this recipe, it is important to understand the nature of and the relationships between these entities 
and how to correctly set up an entity set with Featuretools, which we described in the Setting up an 
entity set and creating features automatically recipe.

https://featuretools.alteryx.com/en/stable/api_reference.html#aggregation-primitives
https://featuretools.alteryx.com/en/stable/api_reference.html#aggregation-primitives
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How to do it...

Let’s begin by importing the libraries and getting the dataset ready:

1. First, we’ll import pandas, featuretools, and the logical types:

import pandas as pd

import featuretools as ft

from woodwork.logical_types import (

     Categorical,NaturalLanguage)

2. Let’s load the dataset that we prepared in the Technical requirements section:

df = pd.read_csv(

    "retail.csv", parse_dates=["invoice_date"])

3. Let’s set up an entity set:

es = ft.EntitySet(id="data")

4. Let’s add the dataframe to the entity set, highlighting that the description variable is a text 
variable, the customer_id is Categorical, and the invoice date is a datetime feature:

es = es.add_dataframe(

    dataframe=df,

    dataframe_name="data",

    index="rows",

    make_index=True,

    time_index="invoice_date",

    logical_types={

        "customer_id": Categorical,

        "description": NaturalLanguage,

    }

)

5. Let’s create a new dataframe with a relationship to the dataframe from step 4:

es.normalize_dataframe(

    base_dataframe_name="data",

    new_dataframe_name="invoices",

    index="invoice",

    copy_columns=["customer_id"],

)
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6. Now, we add the second relationship, which is between customers and invoices. To do this, we 
indicate the base dataframe, which we called invoices in step 5, we give the new dataframe 
a name, customers, and add the unique customer identifier:

es.normalize_dataframe(

    base_dataframe_name="invoices",

    new_dataframe_name="customers",

    index="customer_id",

)

Note
For more details about steps 4 to 5, visit the Setting up an entity set and creating features 
automatically recipe.

7. Let’s make a list with string names that identify the aggregation primitives we want to use:

agg_primitives = ["mean", "max", "min", "sum"]

8. Let’s create features by aggregating the data at the customer level. To do this, we set up the 
dfs class from Featuretools, indicating customers as the target dataframe and passing the 
aggregation primitives from step 7 and an empty list to the trans_primitives parameter 
to prevent dfs from returning the default transformations:

feature_matrix, feature_defs = ft.dfs(

    entityset=es,

    target_dataframe_name="customers",

    agg_primitives=agg_primitives,

    trans_primitives=[],

)

9. Let’s display the name of the created features:

feature_defs

In the following output, we can see the name features that were aggregated at the customer level:

 [<Feature: MAX(data.price)>,

 <Feature: MAX(data.quantity)>,

 <Feature: MEAN(data.price)>,

 <Feature: MEAN(data.quantity)>,

 <Feature: MIN(data.price)>,

 <Feature: MIN(data.quantity)>,
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 <Feature: SUM(data.price)>,

 <Feature: SUM(data.quantity)>,

 <Feature: MAX(invoices.MEAN(data.price))>,

 <Feature: MAX(invoices.MEAN(data.quantity))>,

 <Feature: MAX(invoices.MIN(data.price))>,

 <Feature: MAX(invoices.MIN(data.quantity))>,

 <Feature: MAX(invoices.SUM(data.price))>,

 <Feature: MAX(invoices.SUM(data.quantity))>,

 <Feature: MEAN(invoices.MAX(data.price))>,

 <Feature: MEAN(invoices.MAX(data.quantity))>,

 <Feature: MEAN(invoices.MEAN(data.price))>,

 <Feature: MEAN(invoices.MEAN(data.quantity))>,

 <Feature: MEAN(invoices.MIN(data.price))>,

 <Feature: MEAN(invoices.MIN(data.quantity))>,

 <Feature: MEAN(invoices.SUM(data.price))>,

 <Feature: MEAN(invoices.SUM(data.quantity))>,

 <Feature: MIN(invoices.MAX(data.price))>,

 <Feature: MIN(invoices.MAX(data.quantity))>,

 <Feature: MIN(invoices.MEAN(data.price))>,

 <Feature: MIN(invoices.MEAN(data.quantity))>,

 <Feature: MIN(invoices.SUM(data.price))>,

 <Feature: MIN(invoices.SUM(data.quantity))>,

 <Feature: SUM(invoices.MAX(data.price))>,

 <Feature: SUM(invoices.MAX(data.quantity))>,

 <Feature: SUM(invoices.MEAN(data.price))>,

 <Feature: SUM(invoices.MEAN(data.quantity))>,

 <Feature: SUM(invoices.MIN(data.price))>,

 <Feature: SUM(invoices.MIN(data.quantity))>]

Note
Remember that Featuretools names the features with the function used to create them, followed 
by the dataframe that was used in the computation, followed by the variable that was used in 
the computation. Thus, MAX(data.price) is the maximum price seen in the dataset for 
each customer. On the other hand, MEAN(invoices.MAX(data.price)) is the mean 
value of all maximum prices observed in each invoice for a particular customer. That is, if a 
customer has six invoices, first, we find the maximum price for each of the six invoices, and 
then take the average of those values.
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10. Let’s now display the resulting dataframe containing the original data and new features:

feature_matrix.head()

In the following output, we can see some of the variables in the dataframe returned by dfs:

Figure 9.13 – Dataframe with some of the original and new features for each customer

Note
Due to space limitations, we can’t display the entire output of step 9, so make sure you execute 
it on your computer or visit our accompanying GitHub repository for more details: https://
github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-
Second-Edition/blob/main/ch09-featuretools/Recipe6-Creating-
features-with-aggregation-primitives.ipynb.

To follow up, let’s combine the recipes that we’ve discussed throughout the chapter with the aggregation 
functions from this recipe. First, we will create new features from existing variables and then aggregate 
those features, along with the existing variables, at the customer level:

1. Let’s make lists with date and text primitives:

trans_primitives = ["month", "weekday", "num_words"]

2. Let’s make a list with an aggregation primitive:

agg_primitives = ["mean"]

3. Let’s now automatically create features by transforming and aggregating the variables:

feature_matrix, feature_defs = ft.dfs(

    entityset=es,

    target_dataframe_name="customers",

https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch09-featuretools/Recipe6-Creating-features-with-aggregation-primitives.ipynb
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch09-featuretools/Recipe6-Creating-features-with-aggregation-primitives.ipynb
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch09-featuretools/Recipe6-Creating-features-with-aggregation-primitives.ipynb
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch09-featuretools/Recipe6-Creating-features-with-aggregation-primitives.ipynb
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    agg_primitives=agg_primitives,

    trans_primitives=trans_primitives,

    max_depth=3,

)

The code from step 13 triggers the creation of the features and their subsequent aggregation 
at the customer level.

4. Let’s display the names of the new features:

feature_defs

In the following output, we can see the names of the created variables:

[<Feature: MEAN(data.price)>,

 <Feature: MEAN(data.quantity)>,

 <Feature: MONTH(first_invoices_time)>,

 <Feature: WEEKDAY(first_invoices_time)>,

 <Feature: MEAN(invoices.MEAN(data.price))>,

 <Feature: MEAN(invoices.MEAN(data.quantity))>,

 <Feature: MEAN(data.NUM_WORDS(description))>,

 <Feature: MEAN(invoices.MEAN(data.NUM_

    WORDS(description)))>] WORDS(description)))>]

Note that in our recipes, we keep the creation of features to a minimum due to space limitations, 
but you can create as many features as you want and enrich your datasets dramatically with the 
functionality built into Featuretools.

How it works...

In this recipe, we brought together the creation of features using transform primitives, which we 
discussed throughout the chapter, with the creation of features using aggregation primitives.

To create features with Featuretools automatically, first, we need to enter the data into an entity set and 
establish the relationships between the data. We discussed how to set up an entity set in the Setting 
up an entity set and creating features automatically recipe.

To aggregate existing features, we used the dfs class. We created a list with string names that can be 
used to access the aggregation primitives from dfs using the agg_primitives parameter. To 
aggregate existing variables without creating new features, we passed an empty list to the trans_
primitives parameter of dfs.
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The customers dataframe is the child of the invoice dataframe, which is in turn, the child of 
the original data. Thus, dfs created aggregations from the original data and the pre-aggregated data 
for each invoice. Thus, the MEAN(data.price) feature consists of the mean price for an item 
bought by a customer calculated from the entire data, whereas MEAN(invoices.MEAN(data.
price)) calculates the mean price per invoice first and then takes the mean of those values for a 
customer. Thus, if a customer has five invoices, first, Featuretools calculates the mean price paid for 
each of those invoices and then takes the mean of those values. As such, MEAN(data.price) and 
MEAN(invoices.MEAN(data.price)) are not the same feature.

Note
An aggregate primitive aggregates information for a unique identifier. Aggregate primitives 
use mathematical operations such as the mean, standard deviation, maximum and minimum 
values, the sum, and the skew coefficient for numerical variables. For categorical variables, 
aggregate primitives use the mode and the count of unique items. For unique identifiers, 
aggregate primitives count the number of occurrences.

Next, we combined the creation of new features from date and text variables with aggregation. First, 
we defined a list of strings that can be used to access the transform primitives using the trans_
primitives parameter of dfs. Then, we set up dfs with this list and passed a list with a string 
for an aggregation primitive to the agg_primitives parameter.

In the output of step 13, we got a list of the new features. From these, we can identify the features created 
from the first invoice date for each customer, such as MONTH(first_invoices_time) and 
WEEKDAY(first_invoices_time). We can also see features that were aggregated from features 
created from text, such as MEAN(data.NUM_WORDS(description)) and MEAN(invoices.
MEAN(data.NUM_WORDS(description))). Finally, we can see the aggregations of existing 
numerical variables, such as MEAN(data.price) and MEAN(invoices.MEAN(data.price)).





10
Creating Features from a Time 

Series with tsfresh

Throughout this book, we’ve discussed feature engineering methods and tools suitable for tabular data 
and relational datasets. In this chapter, we will focus on time series data. A time series is a sequence of 
observations taken sequentially over time. Examples of time series are energy generation and demand, 
temperature, air pollutant concentration, stock prices, and sales revenue. Each of these examples 
constitutes a variable, and their values change over time.

The availability of cheap sensors that can measure motion, movement, humidity, or temperature, among 
several other things, has dramatically increased the availability of temporally annotated data. These 
time series can then be used in classification tasks. For example, based on the electricity fingerprint of 
a household at a given time interval, we can infer whether a certain appliance was being used. Based 
on the signal of an ultrasound sensor, we can determine the probability of a failure in a pipeline. And 
based on the characteristics of a sound wavelength, we can anticipate whether a listener will like the 
song. We can also use time series in regression tasks. For example, we can use the signal returned by 
machinery sensors to predict the remaining useful life of the device.

To use time series in traditional supervised machine learning models, each time series needs to be 
mapped into a well-defined feature vector that captures the characteristics of the time series. These 
characteristics, which are based on the distribution of the time series data points, can be captured by 
simple mathematical operations such as the mean and the standard deviation. We can also describe time 
series based on their correlation properties, stationarity, entropy, and non-linear time series analysis 
functions that decompose the time series signal through, for example, Fourier or wavelet transformations.

Creating features from time series can be very time-consuming because we may need to consider the 
many algorithms that can be used for signal processing and time series analysis to identify and extract 
meaningful features. The tsfresh Python package, which stands for Time Series FeatuRe Extraction on the 
Basis of Scalable Hypothesis tests, accelerates this process by combining 63 time series characterization 
methods, which compute more than 750 features automatically. The tsfresh library also provides a 
feature selection algorithm that identifies the most predictive features for a given time series. Thus, tsfresh 
narrows the gap between signal processing experts and machine learning practitioners by providing a tool 
that automatically applies complex time series methods to extract features that describe the time series.
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In this chapter, we will learn how to automatically create hundreds of features from time series data 
by utilizing tsfresh. Then, we will discuss how to select the most relevant features, how to optimize 
feature creation, and how to embed the creation of features from time series within a scikit-learn 
pipeline to classify time series.

In this chapter, we will cover the following recipes:

• Extracting features automatically from a time series

• Creating and selecting features from a time series

• Tailoring feature creation to a different time series

• Creating pre-selected features

• Embedding feature creation into a scikit-learn pipeline

Technical requirements
In this chapter, we will use the open source tsfresh Python library. You can install tsfresh with 
pip by executing pip install tsfresh.

Note
If you have an old Microsoft operating system, you may need to update Microsoft C++ Build 
Tools to proceed with tsfresh’s installation. Follow the steps in this thread to do so: https://
stackoverflow.com/questions/64261546/how-to-solve-error-microsoft-
visual-c-14-0-or-greater-is-required-when-inst.

Throughout the recipes in this chapter, we will work with the Occupancy Detection dataset, available 
in the UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/datasets/
Occupancy+Detection+#.

Note
The dataset was described in Accurate occupancy detection of an office room from light, temperature, 
humidity, and CO2 measurements using statistical learning models. Luis M. Candanedo, Veronique 
Feldheim. Energy and Buildings. Volume 112, 15 January 2016. Pages 28-39.

To download the Occupancy Detection dataset, follow these steps:

1. Go to http://archive.ics.uci.edu/ml/machine-learning-
databases/00357/.

2. Click on occupancy_data.zip to download the data.

https://stackoverflow.com/questions/64261546/how-to-solve-error-microsoft-visual-c-14-0-or-greater-is-required-when-inst
https://stackoverflow.com/questions/64261546/how-to-solve-error-microsoft-visual-c-14-0-or-greater-is-required-when-inst
https://stackoverflow.com/questions/64261546/how-to-solve-error-microsoft-visual-c-14-0-or-greater-is-required-when-inst
http://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+#
http://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+#
http://archive.ics.uci.edu/ml/machine-learning-databases/00357/
http://archive.ics.uci.edu/ml/machine-learning-databases/00357/
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3. Unzip the file from step 2.

4. Save the datatraining.txt file, which is inside the folder from step 3 to the folder where 
you will run the commands in the coming paragraph.

After you’ve downloaded the dataset, open a Jupyter Notebook and perform the following steps:

1. Import pandas:

import pandas as pd

2. Load the data into a DataFrame:

df = pd.read_table(

    "datatraining.txt", sep=",", parse_dates=["date"])

3. Select the data between the dates indicated in the following code snippet:

df = df[(df["date"] >= "2015-02-04 18:00:00") &

        (df["date"] < "2015-02-10 09:00:00")]

4. Rename the DataFrame’s columns:

df.columns = [

    "date",

    "temperature",

    "humidity",

    "light",

    "co2",

    "humidity_ratio",

    "occupancy"

]

5. We will add a unique identifier to highlight each hour of data:

ls = []

c = 0

for i in range(len(df)):

    if i % 60 == 0:

        c = c+1

    ls.append(c)

df['id']=ls
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Note
In this dataset, there are 135 hours of records at 1-minute intervals. Each hour of records is 
marked with a unique integer in step 5. Thus, the first hour of records takes the value 1, the 
records in the second hour take the value 2, and so on.

6. Re-order the columns and save the data:

df[["id"]+columns[0:-1]].to_csv("occupancy.csv", 
index=False)

7. The occupancy variable takes a value of 1 when someone was in the office at any given 
minute. Let’s create a new target variable that indicates that the office was occupied if people 
were in the office for more than 30 minutes:

occ = (df.groupby(

    "id") ["occupancy"].mean()>0.5).astype (int)

8. Save the target variable:

occ.to_csv("occupancy_target.csv", index=True)

The Occupancy Detection dataset contains time series data taken at 1-minute intervals. These variables 
measure the temperature, humidity, CO2 level, and light consumption within an office. The dataset 
also contains a target variable, indicating whether someone was in the office at any given minute. We 
modified this target in step 7, to indicate whether the office was occupied for more than 30 minutes 
at any given hour. We also added an additional variable in step 5, with a unique identifier for each 
hour in the data.

You probably noticed that the dataset and the target variable have different numbers of rows. The 
dataset contains 135 hours of records at 1-minute intervals – that is, 8,100 rows. The target has only 
135 rows, with a label indicating whether the office was occupied in each of the 135 hours.

Tip
Check out the notebook in this book’s GitHub repository for plots of the different time series 
in this dataset: https://github.com/PacktPublishing/Python-Feature-
Engineering-Cookbook-Second-Edition/blob/main/ch10-tsfresh/
prepare-occupancy-dataset.ipynb.

Extracting features automatically from a time series
Time series are data points indexed in time order. Based on a time series sequence, we can predict 
several things. For example, we can predict whether  a pipeline will fail, a music genre, whether a 
person is sick, or, as we will do in this recipe, whether an office is occupied.

https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch10-tsfresh/prepare-occupancy-dataset.ipynb
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch10-tsfresh/prepare-occupancy-dataset.ipynb
https://github.com/PacktPublishing/Python-Feature-Engineering-Cookbook-Second-Edition/blob/main/ch10-tsfresh/prepare-occupancy-dataset.ipynb
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To train regression or classification models with traditional machine learning algorithms, we require 
a dataset of size M x N, where M is the number of rows and N is the number of features or columns. 
However, with time series data, what we have is a collection of M time series. And each time series 
has multiple rows indexed in time. To use time series in supervised learning models, each time series 
needs to be mapped into a well-defined feature vector, N, as shown in the following diagram:

Figure 10.1 – Diagram showing the process of feature creation 

from a time series for classification or regression

These feature vectors, which are represented as x1, x2, and x3 in Figure 10.1, should capture the 
characteristics of the time series. For example, x1 could be the mean value of the time series and x2 
its variance. We can create many features to characterize the time series concerning the distribution 
of data points, correlation properties, stationarity, or entropy, among others. Therefore, the feature 
vector, N, can be constructed by applying a series of characterization methods that take a time series 
as input and return one or more scalars as output. The mean (or the sum operations) takes the time 
series sequence and returns a single scalar, with the mean value of the time series or the sum of its 
values. We can also fit a linear trend to the time series sequence, which will return two scalars – one 
with the slope and one with the intercept.

The tsfresh library applies 63 characterization methods to a time series, each of which returns one or 
more scalars, therefore resulting in more than 750 features for any given time series. In this recipe, 
we will use tsfresh to transform time series data into an M x N feature table, which we will then use 
to predict office occupancy.
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Getting ready

In this recipe, we will use the Occupancy Detection dataset that we prepared in the Technical 
requirements section. This dataset contains time series data taken at 1-minute intervals. The variables 
measure the temperature, humidity, CO2 level, and light consumption within an office. There are 135 
hours of measurements, and each hour is flagged with a unique identifier. We also created a target 
variable that indicates in which of these 135 hours the office was occupied. Let’s load the data and 
make some plots to understand its structure:

1. Let’s load pandas and matplotlib:

import matplotlib.pyplot as plt

import pandas as pd

2. Let’s load the dataset and display the first five rows:

X = pd.read_csv("occupancy.csv", parse_dates=["date"])

X.head()

In the following screenshot, you can see the dataset, which contains a unique identifier for the 
first hour of records, followed by the date and time of the measurements, and values for five 
time series capturing temperature, humidity, lights, and CO2 levels in the office:

Figure 10.2 – DataFrame with the time series data

3. Let’s create a function to plot the time series from step 2 for a given hour:

def plot_timeseries(n_id):

    fig, axes = plt.subplots(nrows=2, ncols=3, 

     figsize=(20, 10))

    X[X["id"] == n_id]["temperature"].plot(ax=axes[0, 0], 

     title="temperature")

    X[X["id"] == n_id]["humidity"].plot(ax=axes[0, 1], 

     title="humidity
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    X[X["id"] == n_id]["light"].plot(ax=axes[0, 2], 

     title="light")

    X[X["id"] == n_id]["co2"].plot(ax=axes[1, 0], 

     title="co2")

    X[X["id"] == n_id]["humidity_ratio"].plot(ax=axes[1, 

     1], title="humidity_ratio")

    plt.show()

4. Let’s plot the time series corresponding to an hour when the office was not occupied:

plot_timeseries(2)

In the following screenshot, we can see the time series values during the second hour of records, 
when the office was empty:

Figure 10.3 – Time series values during the second hour of data

Note that the lights were off, and that is why we can see the flat line at 0 in the plot of light 
consumption in the top-right corner.

5. Now, let’s plot the time series data corresponding to an hour when the office was occupied:

plot_timeseries(15)
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In the following screenshot, we can see the time series values during the fifteenth hour of 
records, when the office was occupied:

Figure 10.3 – Time series values during the fifteenth hour of data

Notice that the lights were on this time.

I hope these plots make it easier to understand what we will do in the recipe. From each of these 
60-minute time series, we will create more than 750 features that capture their characteristics. We 
will create these features automatically, using tsfresh.

How to do it...

We will begin by automatically creating hundreds of features from one time series, lights, and then 
use those features to predict whether the office was occupied at any given hour:

1. Let’s import the required Python libraries and functions:

import pandas as pd

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import classification_report

from sklearn.model_selection import train_test_split

from tsfresh import extract_features

from tsfresh.utilities.dataframe_functions import impute
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2. Let’s load the dataset that we prepared in the Technical requirements section:

X = pd.read_csv("occupancy.csv", parse_dates=["date"])

3. Let’s load the target variable and then convert it into a pandas series:

y = pd.read_csv("occupancy_target.csv", index_col="id")

y = pd.Series(y["occupancy"])

Note
We convert the target into a pandas series because tsfresh only accepts pandas series or NumPy 
arrays as target variables.

4. Let’s create hundreds of features automatically for each hour of records using tsfresh, and then 
display the shape of the resulting matrix. To create features from the light variable, we need 
to pass the DataFrame containing this variable and the unique identifier for each time series:

features = extract_features(

    X[["id", "light"]], column_id="id")

features.shape

The output of the previous step is (135, 789). Each row represents an hour of records. The 
tsfresh library created 789 features that characterize light consumption at any given hour. Go 
ahead and execute features.head() to get a view of the resulting DataFrame. For space 
reasons, we can’t display the entire DataFrame in the book. So, instead, we will explore some 
of the features.

5. Let’s display five of the created features:

feats = features.columns[10:15]

feats

In the output of step 5, we can see the names of five features that were created by simple 
mathematical operations such as the mean, variance, or standard deviation of the light consumption 
at any given hour, the length of the time series, or the coefficient of variation:

Index(['light__mean', 'light__length', 'light__standard_
deviation',

       'light__variation_coefficient', 'light__
variance'],

      dtype='object')

6. Now, let’s display the values of the features from step 5 for the first 5 hours of records:

features[feats].head()
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We can see the new features that were created for the first 5 hours of light consumption in the 
following DataFrame:

Figure 10.4 – Features created for each hour of light consumption

In Figure 10.4, we can see that the lights were on in the first hour of records, and then off in the 
following 4 hours, by inspecting the mean value of light consumption. The length of the time 
series is 60 because we have 60 minutes of records – one for each hour.

Note
The tsfresh library applies 63 feature creation methods to a time series. Based on the characteristics 
of the time series, such as its length or its variability, some of the methods will return missing 
values or infinite values. For example, in Figure 10.4, we can see that the variation coefficient 
could not be calculated for those hours where the light consumption is constant. And the 
variance is also 0 in those cases. In fact, for our particular dataset, many of the resulting features 
contain only NAN values and are therefore unsuitable for training machine learning models.

7. The tsfresh library offers an imputation function to quickly impute features, should they have 
NAN values. Let’s go ahead and impute our features:

impute(features)

8. Now, let’s use these features to train a logistic regression model and predict whether the office 
was occupied. Let’s begin by separating the dataset into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(

    features,

    y,

    test_size=0.1,

    random_state=42,

)
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9. Now, let’s set up and train a logistic regression model, and then evaluate its performance:

cls = LogisticRegression(random_state=10, C=0.01)

cls.fit(X_train, y_train)

print(classification_report(y_test, cls.predict(X_test)))

In the following output, we can see the evaluation metrics that are commonly used for classification 
analysis, which suggests that the created features are useful for predicting office occupancy:

              precision    recall  f1-score   support

           0       1.00      0.91      0.95        11

           1       0.75      1.00      0.86         3

    accuracy                           0.93        14

   macro avg       0.88      0.95      0.90        14

weighted avg       0.95      0.93      0.93        14

10. To finish off, let’s create features automatically for each of the time series in our dataset and 
then display the shape of the resulting DataFrame. This time, we will perform the imputation 
automatically after extracting the features:

features = extract_features(

    X,

    column_id="id",

    impute_function=impute,

    column_sort="date",

)

features.shape

Note
In step 10, we indicated that we want to sort our time series based on the timestamp containing 
the time and date of the measurement, by passing the datetime variable to the column_sort 
parameter. This is useful if our time series are not equidistant or not ordered in time. If we leave 
this parameter set to None, tsfresh assumes that the time series are ordered and equidistant.

The output of step 10 consists of a DataFrame with 135 rows, containing 3,945 features that characterize 
the five original time series – temperature, light, humidity and its ratio, and CO2 in the office. These 
features were imputed in step 10, so you can go ahead and use these DataFrames to train another 
logistic regression model to predict office occupancy.
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How it works...

In this recipe, we used tsfresh to automatically create hundreds of features for each of the five time 
series, and then used those features to train a logistic regression model to predict whether an office 
was occupied.

To create features with tsfresh, each time series that we want to extract features from must be marked 
with a unique identifier. In our dataset, that was the id variable.

To create features for each time series, in step 4, we used the extract_features function from 
tsfresh and passed the DataFrame containing the time series that we want to extract the features from 
– that is, lights – and the unique identifier for each hour of light consumption records. Note that 
we had to pass id to the column_id parameter.

The extract_features function has many parameters, some of which we will discuss in upcoming 
recipes. In this recipe, we used the additional column_sort parameter. In step 4, we left it set to 
None, so tsfresh assumed that the data was ordered in time and that the time stamps were equidistant. 
In step 10, we passed the date variable as the sorting variable.

Tip
In our dataset, we could have either left column_sort set to None or passed the date variable 
because our time series were indeed ordered in time and the timestamps were equidistant. 
Otherwise, be mindful of this parameter.

The extract features function also accepts the impute function through the impute_
function parameter, to automatically remove infinite and NAN values from the created features.

Note
For more details about the extract_features function, visit https://tsfresh.
readthedocs.io/en/latest/api/tsfresh.feature_extraction.
html#module-tsfresh.feature_extraction.extraction.

The impute method, which can be used independently, as we did in step 7, or within the extract_
features function, as we did in step 10, will replace NAN values and infinite values introduced in the 
features automatically. It will replace NAN, -Inf, and Inf values with the variable’s median, minimum, 
or maximum values, respectively. If the feature contains only NAN values, they will be replaced by 
zeroes. The imputation occurs in place – that is, in the same DataFrame that is being imputed.

Now, let’s discuss the output of the feature creation process. The extract features function returns 
a DataFrame containing as many rows as there are unique identifiers in the data. In our case, it returned 
a DataFrame with 135 rows. The columns of the resulting DataFrame correspond to the 789 values that 
were returned by 63 characterization methods, applied to each of the 135 60-minute time series.

https://tsfresh.readthedocs.io/en/latest/api/tsfresh.feature_extraction.html#module-tsfresh.feature_extraction.extraction
https://tsfresh.readthedocs.io/en/latest/api/tsfresh.feature_extraction.html#module-tsfresh.feature_extraction.extraction
https://tsfresh.readthedocs.io/en/latest/api/tsfresh.feature_extraction.html#module-tsfresh.feature_extraction.extraction
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In step 5, we explored some of the resulting features, which captured the time serie mean, variance, 
and coefficient of variation, as well as their length. Let’s explore a few more of the resulting features.

Some of the created variables are very self-explanatory. For example, the 'light__skewness' and 
'light__kurtosis' variables contain the skewness and kurtosis coefficients, which characterize 
the data distribution. The 'light__has_duplicate_max', 'light__has_duplicate_
min', and 'light__has_duplicate' variables indicate whether the time series has duplicated 
values or duplicated minimum and maximum values. The 'light__quantile__q_0.1', 
'light__quantile__q_0.2', and 'light__quantile__q_0.3' variable return the 
different quantile values of the time series. Finally, the 'light__autocorrelation__lag_0', 
'light__autocorrelation__lag_1', and 'light__autocorrelation__lag_2' 
variables return the autocorrelation of the time series with its past values lagged by 0, 1, or 2 steps, 
which may be useful in forecasting.

Other characterization methods return features obtained from signal processing algorithms, 
such as the continuous wavelet transform for the Ricker wavelet, which returns the 'light__
cwt_coefficients__coeff_0__w_2__widths_(2, 5, 10, 20)', 'light__
cwt_coefficients__coeff_0__w_5__widths_(2, 5, 10, 20)', 'light__
cwt_coefficients__coeff_0__w_10__widths_(2, 5, 10, 20)', and 
'light__cwt_coefficients__coeff_0__w_20__widths_(2, 5, 10, 20)' 
features, among others.

Note
We can’t discuss each of these feature characterization methods or their outputs in detail in 
the book because they are too many. You can find more details about the transformations 
supported by tsfresh and their formulation at https://tsfresh.readthedocs.io/
en/latest/api/tsfresh.feature_extraction.html.

Some of the features that are automatically created by tsfresh may not make sense or even be possible 
to calculate for some time series because they require a certain length or data variability, or the time 
series must meet certain distribution assumptions. Therefore, the suitability of the features will depend 
on the nature of the time series.

Tip
We can decide which features to extract from our time series based on domain knowledge, or 
by creating all possible features and then applying feature selection algorithms.

See also

For more details on the tsfresh library, check out its original article: Christ, Braun, Neuffer, and Kempa-
Liehr (2018). Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh – A Python 
package). Neurocomputing 307 (2018). Pages 72-77. doi: 10.1016/j.neucom.2018.03.067.

https://tsfresh.readthedocs.io/en/latest/api/tsfresh.feature_extraction.html
https://tsfresh.readthedocs.io/en/latest/api/tsfresh.feature_extraction.html
http://doi: 10.1016/j.neucom.2018.03.067
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Creating and selecting features for a time series
In the previous recipe, we automatically extracted several hundred features from a time series variable 
using tsfresh. If we have more than one time series variable, we can easily end up with a dataset that 
contains thousands of features.

When we create classification and regression models to solve real-life problems, we often want our 
models to take a small number of relevant features as input to produce their predictions. Simpler 
models have many advantages. First, their output is easier to interpret for the end users of the models. 
Second, simpler models are cheaper to store and faster to train. They also return their outputs faster.

The tsfresh library provides a highly parallel feature selection algorithm based on non-parametric 
statistical hypothesis tests, which can be executed at the back of the feature creation procedure to quickly 
remove irrelevant features. The feature selection procedure utilizes different tests for different features.

Under the hood, tsfresh uses the following tests:

• Fisher’s exact test of independence if both the feature and the target are binary

• Kolmogorov-Smirnov test if either the feature or the target is binary

• Kendall rank test, if neither the feature nor target is binary

The advantage of these tests is that they are non-parametric, and thus make no assumption on the 
underlying distribution of the variables being tested.

The result of these tests is a vector of p-values that measures the significance of the association between 
each feature and the target. These p-values are then evaluated based on the Benjamini-Yekutieli 
procedure to decide which features to keep.

Note
For more details about tsfresh’s feature selection procedure, check the original article: Christ, 
Kempa-Liehr, Feindt: Distributed and parallel time series feature extraction for industrial 
big data applications. Asian Machine Learning Conference (ACML) 2016, Workshop on 
Learning on Big Data (WLBD), Hamilton (New Zealand), ArXiv, https://arxiv.org/
abs/1610.07717v1.

In this recipe, we will automatically create hundreds of features from various time series, and then 
select the most relevant features by utilizing tsfresh.

https://arxiv.org/abs/1610.07717v1
https://arxiv.org/abs/1610.07717v1
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How to do it...

We will begin by automatically creating and selecting features from one time series, lights, and then 
we will automate the procedure for multiple time series. We will use the extracted features to predict 
whether the office was occupied at any given hour:

1. Let’s import the required Python libraries and functions:

import pandas as pd

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import classification_report

from sklearn.model_selection import train_test_split

from tsfresh import (

    extract_features,

    extract_relevant_features,

    select_features,

)

from tsfresh.utilities.dataframe_functions import impute

2. Let’s load the dataset and the target variable that we prepared in the Technical requirements 
section into a DataFrame and a pandas series, respectively:

X = pd.read_csv("occupancy.csv", parse_dates=["date"])

y = pd.read_csv("occupancy_target.csv", index_col="id")

y = pd.Series(y["occupancy"])

3. Let’s create hundreds of features automatically for each hour of records of light use, and 
impute the resulting features:

features = extract_features(

    X[["id", "light"]],

    column_id="id",

    impute_function=impute,

)

The output of the previous step is a DataFrame that consists of 135 rows and 789 columns called 
features, which means that 789 features were created from each hour of light consumption.

Note
For more details about step 3, or the Occupancy Detection dataset, check out the Extracting 
features automatically from a time series recipe of this chapter.
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4. Now, let’s select the features based on the non-parametric tests that we mentioned in the 
introduction of this recipe, and then display the number of selected features:

features = select_features(features, y)

len(features)

The output of step 4 is 135, which means that from the 789 features created in step 3, only 135 
are statistically significant. Go ahead and execute features.head() to display the first five 
rows of the resulting DataFrame.

For space reasons, we will only display the first five of the selected features:

feats = features.columns[0:5]

features[feats].head()

We can see the values of the first five features for the first 5 hours of light consumption in the 
following DataFrame:

Figure 10.5 – DataFrame with five of the selected features created for each hour of light consumption

Check the discussion in the How it works… section for a more detailed analysis of the DataFrame 
from step 5.

5. Now, we will use the features from step 4 to train a logistic regression model and predict whether 
the office was occupied. Let’s begin by separating the dataset into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(

    features,

    y,
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    test_size=0.1,

    random_state=42,

)

6. Now, let’s set up and train a logistic regression model, and then evaluate its performance:

cls = LogisticRegression(

    random_state=10, C=0.1, max_iter=1000)

cls.fit(X_train, y_train)

print(classification_report(y_test, cls.predict(X_test)))

In the following output, we can see the evaluation metrics that are commonly used for classification 
analysis. These suggest that the selected features are useful for predicting office occupancy:

              precision    recall  f1-score   support

           0       1.00      0.91      0.95        11

           1       0.75      1.00      0.86         3

    accuracy                           0.93        14

   macro avg       0.88      0.95      0.90        14

weighted avg       0.95      0.93      0.93        14

Tip
Go ahead and compare the results from step 7 with those of step 9 in the Extracting features 
automatically from a time series recipe of this chapter. You will see that we obtained similar 
performance, with only a fraction of the features.

7. We can trigger the feature creation and feature selection procedures by using one single function, 
extract_relevant_features, and therefore combine steps 3 and 4. Now, let’s create 
features automatically for the five time series in our dataset, then select the most relevant 
features, and finally display the shape of the resulting DataFrame:

features = extract_relevant_features(

    X,

    y,

    column_id="id",

    column_sort="date",

)

features.shape
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Note
The parameters of extract_relevant_features are very similar to those of extract_
features. Note, however, that the former will automatically perform imputation to be able 
to proceed with the feature selection. We discussed the parameters of extract_features 
in the Extracting features automatically from time series recipe of this chapter.

The output of step 7 consists of a DataFrame with 135 rows, containing only 969 features from the 
original 3,945 that are returned by default by tsfresh. Go ahead and use this DataFrame to train another 
logistic regression model to predict office occupancy.

How it works...

In this recipe, we created hundreds of features from a time series and then selected the most relevant 
features based on non-parametric statistical tests. The feature creation and selection procedures were 
carried out automatically by tsfresh.

To create the features, we used tsfresh’s extract_features function, which we described in detail 
in the Extracting features automatically from a time series recipe of this chapter.

To select features, we used the select_features function, also from tsfresh. This function applies 
different statistical tests, depending on the nature of the feature and the target. Briefly, if the feature 
and target are binary, it tests their relationship with Fisher’s exact test. If either the feature or the target 
is binary, and the other variable is continuous, it tests their relationship by using the Kolmogorov-
Smirnov test. If neither the features nor the target is binary, it uses the Kendall rank test.

The result of these tests is a vector with one p-value per feature. Next, tsfresh applies the Benjamini-
Yekutieli procedure, which aims to reduce the false discovery rate, to select which features to keep based 
on the p-values. This feature selection procedure has some advantages, the main one being that statistical 
tests are fast to compute, and therefore the selection algorithm is scalable and can be parallelized.

From Figure 10.5, however, we can immediately detect one of the limitations of tsfresh’s selection 
procedure: it is unable to remove redundant features. We know from the Extracting features automatically 
from a time series recipe that if the lights are off, then most likely the office is empty. Therefore, many of 
the features that capture one aspect of this pattern (lights off) will be important to predict occupancy, 
and redundant at the same time. Note that in Figure 10.5, the different quantiles of light consumption 
contain identical values, so they are identical features. We only need one of them to train a machine 
learning model; we can get rid of the rest.

Note
The limitations of the tsfresh algorithm are shared by all filter selection methods. Because 
these methods evaluate each feature individually, they can’t assess their interaction with other 
features, and as such, return redundant features as part of their selection procedure.
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Finally, in step 8, we combined the feature creation step (step 3) and the feature selection step (step 4) into 
one function. The extract_relevant_features function applies the extract_features 
function to create the features from each time series and imputes them. Next, it applies the select_
features function to return a DataFrame containing one row per unique identifier, and the features 
that were selected for each time series. Note that different features can be selected for different time series.

See also

The selection algorithm from tsfresh offers a quick method to remove irrelevant features. However, it 
does not find the best feature subset for the classification or regression task. Other feature selection 
methods can be applied at the back of tsfresh that can reduce the feature space further.

Note
For more details on feature selection algorithms, check out the book Feature Selection in 
Machine Learning with Python, by Soledad Galli on Leanpub: https://leanpub.com/
feature-selection-in-machine-learning/.

Tailoring feature creation to different time series
The tsfresh library extracts many features based on the time series characteristics and distribution, 
such as their correlation properties, stationarity, entropy, and non-linear time series analysis functions, 
which decompose the time series signal through, for example, Fourier or wavelet transformations. 
Depending on the nature of the time series, some of these transformations make more sense than 
others. For example, wavelength decomposition methods can make sense for time series resulting 
from signals or sensors but are unsuitable for time series representing sales or stock prices.

In this recipe, we will discuss how to optimize the tsfresh feature extraction procedure to create specific 
features for each time series, and then use these features to predict office occupancy.

How to do it...

The tsfresh library accesses the methods that will be used to create features through a dictionary that 
contains the method’s names as keys, and if they are based on a parameter, it has the parameter as a 
value. The library comes with some predefined dictionaries. We’ll explore these predefined dictionaries 
first, which can be accessed through the settings module:

1. Let’s import the required Python libraries and functions and the settings module:

import pandas as pd

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import classification_report

from sklearn.model_selection import train_test_split

https://leanpub.com/feature-selection-in-machine-learning/
https://leanpub.com/feature-selection-in-machine-learning/
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from tsfresh.feature_extraction import extract_features

from tsfresh.feature_extraction import settings

2. Let’s load the dataset and the target variable that we prepared in the Technical requirements 
section into a DataFrame and a pandas series, respectively:

X = pd.read_csv("occupancy.csv", parse_dates=["date"])

y = pd.read_csv("occupancy_target.csv", index_col="id")

y = pd.Series(y["occupancy"])

The tsfresh library has three main dictionaries that control the feature creation output: settings.
ComprehensiveFCParameters, settings.EfficientFCParameters, and 
settings.MinimalFCParameters. Let’s explore the dictionary that returns the smaller 
number of features.

3. Let’s instantiate the dictionary that returns the smaller number of features and then display the 
feature creation methods that will be applied by this configuration:

minimal_feat = settings.MinimalFCParameters()

minimal_feat.items()

In the output of step 2, we can see a dictionary with the feature extraction method names as 
keys, and the parameters used by those methods, if any, as values:

ItemsView({'sum_values': None, 'median': None, 'mean': 
None, 'length': None, 'standard_deviation': None, 
'variance': None, 'root_mean_square': None, 'maximum': 
None, 'absolute_maximum': None, 'minimum': None})

Note
Go ahead and explore the other two predefined dictionaries, settings.Comprehen-
siveFCParameters and settings.EfficientFCParameters, by adapting the 
code from step 3.

4. Now, let’s use the dictionary from step 3 to extract only those features from the light time 
series and then display the shape of the resulting DataFrame:

features = extract_features(

    X[["id", "light"]],

    column_id="id",

    default_fc_parameters=minimal_feat,

)

features.shape
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The output of step 4 is (135, 10), which means that only 10 features were created for each 
of the 135 hours of light consumption data.

5. Let’s display the resulting DataFrame:

features.head()

We can see the values of the features for the first 5 hours of light consumption in the 
following DataFrame:

Figure 10.6 – DataFrame with the features created for each hour of light consumption

Now, we will use these features to train a logistic regression model and predict whether the 
office was occupied.

6. Let’s begin by separating the dataset into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(

    features,

    y,

    test_size=0.1,

    random_state=42,

)

7. Now, let’s set up and train a logistic regression model, and then evaluate its performance:

cls = LogisticRegression(random_state=10, C=0.01)

cls.fit(X_train, y_train)

print(classification_report(y_test, cls.predict(X_test)))
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In the following output, we can see the evaluation metrics that are commonly used for classification 
analysis. These suggest that the selected features are useful for predicting office occupancy:

              precision    recall  f1-score   support

           0       1.00      0.91      0.95        11

           1       0.75      1.00      0.86         3

    accuracy                           0.93        14

   macro avg       0.88      0.95      0.90        14

weighted avg       0.95      0.93      0.93        14

Tip
Because light consumption is a very good indicator of office occupancy, with very simple 
features, we can obtain a predictive logistic regression model.

Now, let’s learn how to specify the creation of different features for different time series.

8. Let’s create a dictionary with the names of the methods that we want to use to create features 
from the light time series. We enter the method’s names as keys, and if the methods take a 
parameter, we pass it as an additional dictionary to the corresponding key; otherwise, we pass 
None as the values:

light_feat = {

    "sum_values": None,

    "median": None,

    "standard_deviation": None,

    "quantile": [{"q": 0.2}, {"q": 0.7}],

}

9. Now, let’s create a dictionary with the features that we want to create from the co2 time series:

co2_feat = {

    "root_mean_square": None,

     "number_peaks": [{"n": 1}, {"n": 2}],

}

10. Let’s combine these dictionaries into a new dictionary:

kind_to_fc_parameters = {

    "light": light_feat,
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    "co2": co2_feat,

}

11. Finally, let’s use the dictionary from step 10 to create the features from both time series:

features = extract_features(

    X[["id", "light", "co2"]],

    column_id="id",

    kind_to_fc_parameters=kind_to_fc_parameters,

)

The output of step 11 consists of a DataFrame with 135 rows and 8 features. If we execute 
features.columns, we will see the names of the created features:

Index(['light__sum_values', 'light__median',

    'light__standard_deviation',

    'light__quantile__q_0.2',

    'light__quantile__q_0.7',

    'co2__root_mean_square',

    'co2__number_peaks__n_1',

    'co2__number_peaks__n_2'],

    dtype='object')

Note that in the output from step 11, different variables have been created from each of the light 
and co2 time series.

How it works...

In this recipe, we created a subset of the possible features for our time series data. First, we created 
features specified in a predefined dictionary that comes with tsfresh. Next, we created our own 
dictionary, specifying the creation of different features for different time series.

The tsfresh package comes with some predefined dictionaries that can be accessed through the 
settings module. The MinimalFCParameters directory triggers the creation of 10 simple 
features based on basic statistical parameters of the time series distribution. In step 3, we displayed 
the names of the methods that are used to create each one of these 10 variables. Among these, the 
"sum_values" method will return the sum of the time series values, whereas the "mean" method 
will return its mean value. These methods do not need additional parameters to create the features, 
so for each of the keys corresponding to their names, we used None as the values.

The predefined EfficientFCParameters dictionary applies the methods that are fast to compute, 
whereas the ComprehensiveFCParameters dictionary returns all possible features.
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Note
For more details about these dictionaries, check out the tsfresh documentation at https://
tsfresh.readthedocs.io/en/latest/text/feature_extraction_settings.
html.

By using these predefined dictionaries in the default_fc_parameters parameter of tsfresh’s 
extract_features function, we can create specific features from one or more time series, as we 
did in step 4. Note that default_fc_parameters instructs extract_features to create 
the same features from all the time series.

To create different features for different time series, we can use the kind_to_fc_parameters 
parameter of tsfresh’s extract_features function. This parameter takes a dictionary with 
dictionaries, where each dictionary specifies parameters for one time series.

In step 8, we created a dictionary to specify the creation of features from the light time series. Note 
that the "sum_values" and "mean" methods take None as values, but the quantile method 
needs additional parameters corresponding to the quantiles that should be returned from the time series.

In step 9, we created a dictionary to specify the creation of features from the co2 time series. In step 10, 
we combined both dictionaries into one that takes the name of the time series as keys and the feature 
creation dictionaries as values. Then, we used this dictionary in kind_to_fc_parameters of 
tsfresh’s extract_features function.

This way of specifying features is suitable if we use domain knowledge to create the features, or if we 
only create a small number of features. But do we need to type each method by hand into a dictionary 
if we want to create multiple features for various time series? Not really. In the following recipe, we 
will learn how to specify which features to create based on features selected by Lasso.

Creating pre-selected features
In the Creating and selecting features for a time series recipe, we learned how to select relevant features 
using tsfresh. We also discussed how we can use additional feature selection procedures to further 
reduce the number of features created from our time series.

In this recipe, we will create and select features using tsfresh. Next, we will reduce the feature space by 
utilizing Lasso regularization. Then, we will learn how to create a dictionary from the selected feature 
names to trigger the creation of those features from future time series.

https://tsfresh.readthedocs.io/en/latest/text/feature_extraction_settings.html
https://tsfresh.readthedocs.io/en/latest/text/feature_extraction_settings.html
https://tsfresh.readthedocs.io/en/latest/text/feature_extraction_settings.html
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How to do it...

Let’s begin by importing the necessary libraries and getting the dataset ready:

1. Let’s import the required libraries and functions:

import pandas as pd

from sklearn.feature_selection import SelectFromModel

from sklearn.linear_model import LogisticRegression

from tsfresh import (

    extract_features,

    extract_relevant_features,

)

from tsfresh.feature_extraction import settings

2. Let’s load the Occupancy Detection dataset that we prepared in the Technical requirements 
section and its target variable:

X = pd.read_csv("occupancy.csv", parse_dates=["date"])

y = pd.read_csv("occupancy_target.csv", index_col="id")

y = pd.Series(y["occupancy"])

3. Let’s create and select features for our five time series and then display the shape of the 
resulting DataFrame:

features = extract_relevant_features(

    X,

    y,

    column_id="id",

    column_sort="date",

)

features.shape

The output of step 2 is (135, 969), indicating that 969 features were returned from the five 
original time series, for each hour of records.

Note
We discussed the function from step 3 in the Extracting features automatically from a time series 
and Creating and selecting features for a time series recipes.
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4. Now, let’s select features using Lasso regularization. First, let’s set up a logistic regression 
with Lasso regularization, which is the "l1" penalty, and some additional parameters that I 
set arbitrarily:

cls = LogisticRegression(

    penalty="l1",

    solver="liblinear",

    random_state=10,

    C=0.05,

    max_iter=1000,

)

5. Next, we must set up a transformer that will select the features based on the coefficients from 
the logistic regression model from step 4:

selector = SelectFromModel(cls)

6. Let’s train the logistic regression model and select the features:

selector.fit(features, y)

7. Now, let’s capture the selected features in a new variable and display their names:

features = selector.get_feature_names_out()

features

In the following output, we can see the names of the selected features:

array(['light__sum_of_reoccurring_data_points',

       'co2__spkt_welch_density__coeff_2', 'co2__

    variance',

       'temperature__c3__lag_1', 'temperature__abs_

    energy',

       'temperature__c3__lag_2', 'temperature__c3__

    lag_3',

       'co2__sum_of_reoccurring_data_points',

       'light__spkt_welch_density__coeff_8', 'light__

    variance',

       'light__agg_linear_trend__attr_"slope"__chunk_

    len_50__f_agg_"var"',

       'light__agg_linear_trend__attr_"intercept"__chunk_
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    len_10__f_agg_"var"'],

      dtype=object)

Note that Lasso regularization selected features created by different feature characterization 
methods from the time series – that is, light, co2, and temperature.

8. To create the features from step 6 from our dataset, we need to capture their names and the 
parameters they use in a dictionary. We can do this automatically from the feature names with tsfresh:

kind_to_fc_parameters = settings.from_columns(

   selector.get_feature_names_out(),

)

9. Let’s display the dictionary that we just created:

kind_to_fc_parameters

In the output of step 9, we can see the dictionary that was created from the names of the features 
from step 6:

{'light': 

    {'sum_of_reoccurring_data_points': None,

    'spkt_welch_density': [{'coeff': 8}],

    'variance': None,

    'agg_linear_trend': [

        {'attr': 'slope','chunk_len': 50,'f_agg': 'var'},

        {'attr': 'intercept', 'chunk_len': 10,'f_
agg':'var'}

        ]

    },

'co2': 

    {'spkt_welch_density': [{'coeff': 2}],

    'variance': None,

    'sum_of_reoccurring_data_points': None

    },

    'temperature': {'c3': [{'lag': 1}, {'lag': 2}, 
{'lag':3}],

    'abs_energy': None}

}
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10. Now, we can use the dictionary from step 7 together with the extract_features function 
to create only those features from our dataset:

features = extract_features(

    X,

    column_id="id",

    column_sort="date",

    kind_to_fc_parameters=kind_to_fc_parameters,

)

The new DataFrame, which can be displayed by executing features.head(), only contains the 
12 selected features. Go ahead and corroborate the result on your computer, or check this book’s 
GitHub repository.

How it works...

In this recipe, we created 969 features from five time series. Next, we reduced the feature space to 12 
features by using Lasso regularization. Finally, we captured the specifications of the selected features 
in a dictionary so that, looking forward, we only create those features from our time series.

To automatically create and select features with tsfresh, we used the extract_relevant_features 
function, which we described in detail in the Creating and selecting features for a time series recipe.

Lasso regularization has the intrinsic ability to reduce some of the coefficients of the logistic regression 
model to zero. The contribution of the features whose coefficient is zero to the prediction of office 
occupancy is null and can therefore be removed. The SelectFromModel() class can identify and 
remove those features. We set up an instance of SelectFromModel() with a logistic regression 
model that used Lasso regularization to find the model coefficients. With the fit() method, 
SelectFromModel() trained the logistic regression model using the 969 features created from 
our time series and identified those whose coefficients were different from zero. Then, with the get_
feature_names_out() method, we captured the names of the selected features in a new variable.

To create only the 12 features selected by Lasso regularization, we created a dictionary from the variable 
names by using the from_columns() function from tsfresh. This function returned a dictionary 
with the variables from which features were selected as keys. The values were additional dictionaries, 
containing the methods used to create features as keys, and the parameters used, if any, as values. To 
create the new features, we used this dictionary together with the exctract_features function.

Note
Note that in step 8, we passed the entire dataset to the extract_features function. The 
resulting features only contained features extracted from three of the five time series.
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Embedding feature creation in a scikit-learn pipeline
Throughout this chapter, we discussed how to automatically create and select features from time series 
data by utilizing tsfresh. Then, we used these features to train a classification model to predict whether 
an office was occupied at any given hour.

The tsfresh library offers wrapper classes around its main functions, extract_features and 
extract_relevant_features, to make features that have been created from time series 
compatible with the scikit-learn pipeline.

In this recipe, we will line up the process of creating features with tsfresh and training a logistic 
regression model in a scikit-learn pipeline.

How to do it...

Let’s begin by importing the necessary libraries and getting the dataset ready:

1. Let’s import the required libraries and functions:

import pandas as pd

from sklearn.pipeline import Pipeline

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report

from tsfresh.transformers import RelevantFeatureAugmenter

2. Let’s load the Occupancy Detection dataset that we prepared in the Technical requirements 
section and its target variable:

X = pd.read_csv("occupancy.csv", parse_dates=["date"])

y = pd.read_csv("occupancy_target.csv", index_col="id")

y = pd.Series(y["occupancy"])

3. Let’s create an empty DataFrame that contains the index of the target variable:

tmp = pd.DataFrame(index=y.index)

4. Now, let’s split the DataFrame from step 3 and the target from step 2 into train and test sets:

X_train, X_test, y_train, y_test = train_test_split(tmp, 
y)
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Note
X_train and X_test are containers where the features created by tsfresh will be added. 
They are crucial for the functionality of RelevantFeatureAugmenter().

5. Let’s create a dictionary containing the specifications of the features that should be created 
from each time series. I have defined the features arbitrarily this time:

kind_to_fc_parameters = {

    "light": {

        "c3": [{"lag": 3}, {"lag": 2}, {"lag": 1}],

        "abs_energy": None,

        "sum_values": None,

        "fft_coefficient": [

            {"attr": "real", "coeff": 0},

            {"attr": "abs", "coeff": 0}],

        "spkt_welch_density": [

            {"coeff": 2}, {"coeff":5}, {"coeff": 8}

        ],

        "agg_linear_trend": [

            {"attr": "intercept", 

            "chunk_len": 50, "f_agg": "var"},

            {"attr": "slope",

            "chunk_len": 50, "f_agg":"var"},

        ],

        "change_quantiles": [

            {"f_agg": "var", "isabs": False,

            "qh": 1.0,"ql": 0.8},

            {"f_agg": "var", "isabs": True,

            "qh": 1.0,"ql": 0.8},

        ],

    },

"co2": {

    "fft_coefficient": [

        {"attr": "real", "coeff": 0},

        {"attr": "abs", "coeff": 0}],

    "c3": [{"lag": 3}, {"lag": 2}, {"lag": 1}],

    "sum_values": None,
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    "abs_energy": None,

    "sum_of_reoccurring_data_points": None,

    "sum_of_reoccurring_values": None,

    },

"temperature": {"c3": [{"lag": 1},

     {"lag": 2},{"lag": 3}], "abs_energy": None},

}

Note
We discussed the parameters of the dictionary from step 5 in the Tailoring feature creation to 
a different time series recipe.

6. Let’s set up  RelevantFeatureAugmenter(), which is a wrapper around the extract_
relevant_features function, to create the features specified in step 5:

augmenter = RelevantFeatureAugmenter(

    column_id="id",

    column_sort="date",

    kind_to_fc_parameters=kind_to_fc_parameters,

)

Note
To create all possible features, use the FeatureAugmenter() class instead in step 6.

7. Let’s combine the feature creation instance from step 6 with a logistic regression model in a 
scikit-learn pipeline:

pipe = Pipeline(

    [

        ("augmenter", augmenter),

        ("classifier", LogisticRegression(

    random_state=10, C=0.01)),

    ]

)

8. Now, let’s tell RelevantFeatureAugmenter() which dataset it needs to use to create 
the features:

pipe.set_params(augmenter__timeseries_container=X)
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9. Now, let’s fit the pipeline, which will trigger the feature creation process, followed by the training 
of the logistic regression model:

pipe.fit(X_train, y_train)

10. Now, let’s obtain predictions using the time series in the test set, and evaluate the model’s 
performance through a classification report:

print(classification_report(

    y_test, pipe.predict(X_test)))

We can see the output of step 10 here:

              precision    recall  f1-score   support

           0       0.96      1.00      0.98        27

           1       1.00      0.86      0.92         7

    accuracy                           0.97        34

   macro avg       0.98      0.93      0.95        34

weighted avg       0.97      0.97      0.97        34

The values of the classification report suggest that the extracted features are suitable for predicting 
whether the office is occupied at any given hour.

How it works...

In this recipe, we combined creating features from a time series with tsfresh with training a machine 
learning algorithm from the scikit-learn library in a pipeline.

The tsfresh library offers two wrappers around its main functions to make the feature creation process 
compatible with the scikit-learn pipeline. In this recipe, we used the RelevantFeatureAugmenter() 
class, which wraps the extract_relevant_features function to create and then select features 
from a time series.

The default functionality of RelevantFeatureAugmenter() is as follows. With the fit() 
method, RelevantFeatureAugmenter() creates and selects features. The name of the 
selected features are then stored internally in the transformer. With the transform() method, 
RelevantFeatureAugmenter()creates the selected features from the time series.

We overrode the default functionality of RelevantFeatureAugmenter() by passing a dictionary 
with the features we wanted to create to its kind_to_fc_parameters parameter. Therefore, 
with transform(), RelevantFeatureAugmenter() created the indicated features from 
the time series.
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To create all features from the time series, tsfresh offers the FeatureAugmenter() class, which has 
the same functionality as RelevantFeatureAugmenter(), but without the feature selection step.

Both RelevantFeatureAugmenter() and FeatureAugmenter() need two DataFrames 
to work. The first DataFrame contains the time series data with the unique identifiers (we loaded this 
DataFrame in step 2). The second DataFrame should be empty and contain the unique identifiers in 
its index (we created this DataFrame in step 3). After the features were created by the transform() 
method, they were added to this second DataFrame.

Note how, in step 9, we fit the pipeline by using the empty DataFrame, but in step 8, we set up 
RelevantFeatureAugmenter() to extract features from the raw time series data.

When we fit() the pipeline, we created features from our raw time series and trained a logistic 
regression model with the resulting features. With the predict() method, we created features from 
the test set, and the subsequent logistic regression predictions based on those features.

See also

For more details about the classes and procedures used in this recipe, visit the following links:

• The tsfresh documentation: https://tsfresh.readthedocs.io/en/latest/
api/tsfresh.transformers.html#tsfresh.transformers.relevant_
feature_augmenter.RelevantFeatureAugmenter

• A Jupyter Notebook with a demo: https://github.com/blue-yonder/tsfresh/
blob/main/notebooks/examples/02%20sklearn%20Pipeline.ipynb

https://tsfresh.readthedocs.io/en/latest/api/tsfresh.transformers.html#tsfresh.transformers.relevant_feature_augmenter.RelevantFeatureAugmenter
https://tsfresh.readthedocs.io/en/latest/api/tsfresh.transformers.html#tsfresh.transformers.relevant_feature_augmenter.RelevantFeatureAugmenter
https://tsfresh.readthedocs.io/en/latest/api/tsfresh.transformers.html#tsfresh.transformers.relevant_feature_augmenter.RelevantFeatureAugmenter
https://github.com/blue-yonder/tsfresh/blob/main/notebooks/examples/02%20sklearn%20Pipeline.ipynb
https://github.com/blue-yonder/tsfresh/blob/main/notebooks/examples/02%20sklearn%20Pipeline.ipynb
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Extracting Features from  

Text Variables

Text can be part of the variables in our datasets. For example, in insurance, information about an 
incident may come from free text fields in a form. On a website that gathers customer reviews, some 
information may come from short text descriptions provided by the users. Text data does not show 
the tabular pattern of the datasets we have worked with throughout this book. Instead, information 
in texts can vary in length and content, and the writing style may be different. We can still extract a 
lot of information from text variables to use as predictive features in machine learning models. The 
techniques we will cover in this chapter belong to the realm of Natural Language Processing (NLP). 
NLP is a subfield of linguistics and computer science, concerned with the interactions between computer 
and human language, or, in other words, how to program computers to understand human language. 
NLP includes a multitude of techniques to understand the syntax, semantics, and discourse of text, 
and therefore to do this field justice, it would require a book in itself.

In this chapter, we will discuss those techniques that will allow us to quickly extract features from 
short pieces of text, to complement our predictive models. Specifically, we will discuss how to capture 
a piece of text’s complexity by looking at some statistical parameters of the text, such as the word 
length and count, the number of words and unique words used, the number of sentences, and so on. 
We will use the pandas and scikit-learn libraries, and we will make a shallow dive into a very useful 
Python NLP toolkit called Natural Language Toolkit (NLTK).

This chapter will cover the following recipes:

• Counting characters, words, and vocabulary

• Estimating text complexity by counting sentences

• Creating features with bag-of-words and n-grams

• Implementing term frequency-inverse document frequency

• Cleaning and stemming text variables
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Technical requirements
In this chapter, we will use the pandas, Matplotlib, and scikit-learn Python libraries. We will also use 
NLTK from Python, a comprehensive library for NLP and text analysis. You can find the instructions 
to install NLTK here: http://www.nltk.org/install.html. If you are using the Python 
Anaconda distribution, follow these instructions to install NLTK: https://anaconda.org/
anaconda/nltk.

After you have installed NLTK, open up a Python console and execute the following:

import nltk

nltk.download('punkt')

nltk.download('stopwords')

These commands will download the necessary data for you to be able to run the recipes in this 
chapter successfully.

Note
If you haven’t downloaded these or other data sources necessary for NLTK functionality, NLTK 
will raise an error. Read the error message carefully because it will direct you to download the 
data required to run the command you are trying to execute.

Counting characters, words, and vocabulary
One of the salient characteristics of text is its complexity. Long descriptions are more likely to contain 
more information than short descriptions. Texts rich in different, unique words are more likely to be 
richer in detail than texts that repeat the same words over and over. In the same way, when we speak, 
we use many short words such as articles and prepositions to build the sentence structure, yet the 
main concept is often derived from the nouns and adjectives we use, which tend to be longer words. 
So, as you can see, even without reading the text, we can start inferring how much information the 
text provides by determining the number of words, the number of unique words, the lexical diversity, 
and the length of those words. In this recipe, we will learn how to extract these features from a text 
variable using pandas.

Getting ready

We are going to use the 20 Newsgroup dataset that comes with scikit-learn, which comprises around 
1,800 news posts on 20 different topics. More details about this dataset can be found in these links:

• Scikit-learn dataset website: z

• Home page for the 20 Newsgroup dataset: http://qwone.com/~jason/20Newsgroups/

https://anaconda.org/anaconda/nltk
https://anaconda.org/anaconda/nltk
http://qwone.com/~jason/20Newsgroups/
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Before jumping into the recipe, let’s become familiar with the features we are going to derive from 
these text pieces. We mentioned that longer descriptions, more words in the article, a greater variety of 
unique words, and longer words tend to correlate with the amount of information the article provides. 
Hence, we can capture text complexity by extracting the following information:

• The total number of characters in the text

• The total number of words

• The total number of unique words

• Lexical diversity = total number of words / number of unique words

• Word average length = number of characters / number of words

In this recipe, we will extract these numerical features using pandas, which is equipped with multiple 
pieces of string processing functionality that can be accessed via the str vectorized string functions 
for series.

How to do it...

Let’s begin by loading pandas and getting the dataset ready to use:

1. Load pandas and the dataset from scikit-learn:

import pandas as pd

from sklearn.datasets import fetch_20newsgroups

2. Let’s load the train set part of the 20 Newsgroup dataset into a pandas DataFrame:

data = fetch_20newsgroups(subset='train')

df = pd.DataFrame(data.data, columns=['text'])

Tip
You can print out an example of a text  variable in the DataFrame by executing 
print(df['text'][1]). Change the number between [] to navigate through different 
texts. Note how every text description is a single string composed of letters, numbers, punctuation, 
and spaces.

Now that we have the text in a pandas DataFrame, we are ready to extract the features.

3. Let’s capture the number of characters in each text piece in a new column:

df['num_char'] = df['text'].str.len()
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Tip
You can remove trailing whitespaces, including new lines, in a string before counting the number 
of characters by adding the strip() method before the len() method: df['num_char'] 
= df['text'].str.strip().str.len().

4. Let’s capture the number of words in each text in a new column:

df['num_words'] = df['text'].str.split().str.len()

5. Let’s capture the number of unique words in each text in a new column:

df['num_vocab'] = df['text'].str.lower().str.split().
apply(

    set).str.len()

Note
Python will interpret the same word as two different words if one has a capital letter. To avoid 
this behavior, we can introduce the lower() method before the split() method.

6. Let’s create a feature that captures the lexical diversity – that is, the total number of words to 
the number of unique words:

df['lexical_div'] = df['num_words'] / df['num_vocab']

7. Let’s calculate the average word length by dividing the number of characters by the number 
of words:

df['ave_word_length'] = df['num_char'] / df['num_words']

If we execute df.head(), we will see the first five rows of data with the text and the newly 
created features:

Figure 11.1 – DataFrame view with the text variable and the new features

With that, we have extracted five different features that capture the text complexity, which we 
can use as inputs for our machine learning algorithms. With df.head(), you can peek at 
the values of the first five rows of the created features.
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Note
In this recipe, we created new features straight away from the raw data, without doing any data 
cleaning, removing punctuation, or even stemming words. Note that these are steps that are 
performed ahead of most NLP standard procedures. To learn more about this, visit the Cleaning 
and stemming text variables recipe at the end of this chapter.

How it works...

In this recipe, we created five new features that capture text complexity by utilizing pandas str to 
access built-in pandas functionality to work with strings. We worked with the text column of the 
train subset of the 20 Newsgroup dataset that comes with scikit-learn. Each row in this dataset is 
composed of a string with text.

We used pandas str, followed by len(), to count the number of characters in each string – that 
is, the total number of letters, numbers, symbols, and spaces. We also combined str.len() with 
str.strip() to remove trailing whitespaces at the beginning and end of the string and in new 
lines, before counting the number of characters.

To count the number of words, we used pandas str, followed by split(), to divide the string into 
a list of words. The split() method creates a list of words by breaking the string at the whitespaces 
between words. Next, we counted those words with pandas str.len(), obtaining the number of 
words per string.

Note
We can alter the behavior of str.split() by passing the string or character that we would 
like to have the strings divided by. For example, df['text'].str.split(';') divides 
a string at each occurrence of ;.

To determine the number of unique words, we used pandas str.split() to divide the string into a 
list of words. Next, we applied the built-in Python set() method within pandas apply() to return 
a set of words; remember that a set contains unique occurrences of the elements in a list – that is, 
unique words. Next, we counted those words with pandas str.len() to return the vocabulary, or, 
in other words, the number of unique words in the string. Python interprets words that are written 
in uppercase differently from those in lowercase; therefore, we introduced the pandas lower() 
method to set all the characters in lowercase before splitting the string and counting the number of 
unique words.

To create the lexical diversity and average word length features, we simply performed a vectorized 
division of two pandas Series. And that’s it: we created five new features with information about the 
complexity of the text.



Extracting Features from Text Variables336

There’s more...

We can get a glimpse of the distribution of the newly created features in each of the 20 different news 
topics present in the dataset by introducing some simple visualizations. To make histogram plots of 
the newly created features, after you have run all of the steps in the How it works... section of this 
recipe, follow these steps:

1. Import matplotlib:

import matplotlib.pyplot as plt

2. Add the target with the news topics to the 20 Newsgroup DataFrame:

df['target'] = data.target

3. Create a function that displays a histogram of a feature of your choice for each of the news topics:

def plot_features(df, text_var):

     nb_rows = 5

     nb_cols = 4

     fig, axs = plt.subplots(

    nb_rows, nb_cols,figsize=(12, 12))

     plt.subplots_adjust(wspace=None, hspace=0.4)

     n = 0

     for i in range(0, nb_rows):

           for j in range(0, nb_cols):

                 axs[i, j].hist(df[df.target==n][text_

     var], bins=30)

                 axs[i, j].set_title(text_var + ' | ' + 

     str(n))

                 n += 1

     plt.show()

4. Run the function for the number of words feature:

plot_features(df, 'num_words')

The preceding code block returns a plot where you can see the distribution of the number of 
words in each of the 20 news topics, numbered from 0 to 19 in the plot title:
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Figure 11.2 – Histograms of the features extracted from text

The number of words shows a different distribution, depending on the news topics. Therefore, this 
feature is likely useful in a classification algorithm to predict the topic of the text.

See also

To learn more about the built-in string processing functionality from pandas str, go to https://
pandas.pydata.org/pandas-docs/stable/user_guide/text.html#method-
summary.

https://pandas.pydata.org/pandas-docs/stable/user_guide/text.html#method-summary.
https://pandas.pydata.org/pandas-docs/stable/user_guide/text.html#method-summary.
https://pandas.pydata.org/pandas-docs/stable/user_guide/text.html#method-summary.
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Estimating text complexity by counting sentences
One aspect of a piece of text we can capture in features is its complexity. Usually, longer descriptions 
that contain multiple sentences spread over several paragraphs tend to provide more information 
than descriptions with very few sentences. Therefore, capturing the number of sentences may provide 
some insight into the amount of information provided by the text. This process is called sentence 
tokenization. Tokenization is the process of splitting a string into a list of pieces or tokens. In the 
Counting characters, words, and vocabulary recipe, we did word tokenization – that is, we divided the 
string into words. In this recipe, we will divide the string into sentences, and then we will count them. 
We will use the NLTK Python library, which provides this functionality.

Getting ready

In this recipe, we will use the NLTK Python library. For guidelines on how to install NLTK, check out 
the Technical requirements section of this chapter.

How to do it...

Let’s begin by importing the required libraries and dataset:

1. Load pandas, the sentence tokenizer from NLTK, and the dataset from scikit-learn:

import pandas as pd

from nltk.tokenize import sent_tokenize

from sklearn.datasets import fetch_20newsgroups

2. To understand the functionality of the sentence tokenizer from NLTK, let’s create a variable 
that contains a string with multiple sentences:

text = """

The alarm rang at 7 in the morning as it usually did 
on Tuesdays. She rolled over, stretched her arm, and 
stumbled to the button till she finally managed to switch 
it off. Reluctantly, she got up and went for a shower. 
The water was cold as the day before the engineers did 
not manage to get the boiler working. Good thing it was 
still summer.

Upstairs, her cat waited eagerly for his morning snack. 
Miaow! He voiced with excitement as he saw her climb the 
stairs.

"""
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3. Now, let’s separate the string we created in step 2 into sentences using the NLTK sentence tokenizer:

sent_tokenize(text)

Tip
If you encounter an error in step 3, read the error message carefully and download the data 
source required by NLTK, as described in the error message. For more details, check out the 
Technical requirements section.

The sentence tokenizer will return the list of sentences shown in the following output:

['\nThe alarm rang at 7 in the morning as it usually did 
on Tuesdays.',

 'She rolled over,\nstretched her arm, and stumbled to 
the button till she finally managed to switch it off.',

 'Reluctantly, she got up and went for a shower.',

 'The water was cold as the day before the engineers\ndid 
not manage to get the boiler working.',

 'Good thing it was still summer.',

 'Upstairs, her cat waited eagerly for his morning 
snack.',

 'Miaow!',

 'He voiced with excitement\nas he saw her climb the 
stairs.']

Note
The escape character followed by the letter \n indicates a new line.

4. Let’s count the number of sentences in the text variable:

len(sent_tokenize(text))

The code in the preceding line returns 8, which is the number of sentences in our text variable. 
Now, let’s determine the number of sentences in an entire DataFrame.

5. Let’s load the train subset of the 20 Newsgroup dataset into a pandas DataFrame:

data = fetch_20newsgroups(subset='train')

df = pd.DataFrame(data.data, columns=['text'])
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6. To speed up the following steps, we will only work with the first 10 rows of the DataFrame:

df = df.loc[1:10]

7. Let’s also remove the first part of the text, which contains information about the email sender, 
subject, and other details we are not interested in. Most of this information comes before the 
word Lines followed by :, so let’s split the string at Lines: and capture the second part 
of the string:

df['text'] = df['text'].str.split('Lines:').apply(

    lambda x: x[1])

8. Finally, let’s create a variable that captures the number of sentences per text variable:

df['num_sent'] = df['text'].apply(

    sent_tokenize).apply(len)

With the df command, you can display the entire DataFrame with the text variable and the 
new feature containing the number of sentences per text:

Figure 11.3 – DataFrame with the text variable and the number of sentences per text

Now, we can use this new feature in machine learning algorithms.

How it works...

In this recipe, we separated a string with text into sentences using sent_tokenizer from the 
NLTK library. sent_tokenizer has been pre-trained to recognize capitalization and different 
types of punctuation that signal the beginning and the end of a sentence.
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First, we applied sent_tokenizer to a manually created string to become familiar with its 
functionality. The tokenizer divided the text into a list of seven sentences. We combined the tokenizer 
with the built-in Python len() method to count the number of sentences in the string.

Next, we loaded a dataset with text and, to speed up the computation, we only retained the first 
10 rows of the DataFrame using pandas loc[]. Next, we removed the first part of the text, which 
contained information about the email sender and subject. To do this, we split the string at Line: 
using pandas str.split(), which returned a list with two elements – the strings before and after 
Line:. Utilizing a lambda function within pandas apply(), we retained the second part of the 
text – that is, the second string in the list returned by pandas split().

Finally, we applied sent_tokenizer to each row in the DataFrame with the pandas apply() 
method, to separate the strings into sentences, and then applied the built-in Python len() method 
to the list of sentences to return the number of sentences per string. This way, we created a new feature 
that contains the number of sentences per text.

There’s more...

NLTK has functionality for word tokenization among other useful features, which we can use instead of 
pandas to count and return the number of words. You can find out more about NLTK’s functionality here:

• Python 3 Text Processing with NLTK 3 Cookbook, by Jacob Perkins, Packt Publishing

• NLTK documentation: http://www.nltk.org/

Creating features with bag-of-words and n-grams
A Bag-of-Words (BoW) is a simplified representation of a piece of text that captures the words that 
are present in the text and the number of times each word appears in the text. So, for the text string 
Dogs like cats, but cats do not like dogs, the derived BoW is as follows:

dogs like cats but do not

2 2 2 1 1 1

Figure 11.4 – BoW derived from the sentence “Dogs like cats, but cats do not like dogs”

Here, each word becomes a variable, and the value of the variable represents the number of times 
the word appears in the string. As you can see, BoW captures multiplicity but does not retain word 
order or grammar. That is why it is a simple, yet useful, way of extracting features and capturing some 
information about the texts we are working with.

http://www.nltk.org/
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To capture some syntax, BoW can be used together with n-grams. An n-gram is a contiguous sequence 
of n items in a given text. Continuing with the sentence Dogs like cats, but cats do not like dogs, the 
derived 2-grams are as follows:

• Dogs like

• like cats

• cats but

• but do

• do not

• like dogs

We can create, together with a BoW, a bag of n-grams, where the additional variables are given by the 
2-grams and the values for each 2-grams are the number of times they appear in each string; for this 
particular example, the value is 1. So, our final BoW with 2-grams would look like this:

dogs like cats but do not dogs like like cats cats but but do do not like dogs

2 2 2 1 1 1 1 1 1 1 1 1

Figure 11.5 – BoW with 2-grams

In this recipe, we will learn how to create BoWs with or without n-grams using scikit-learn.

Getting ready

Before jumping into this recipe, let’s get familiar with some of the parameters of a BoW that we can 
adjust to make the BoW more or less comprehensive. When creating a BoW over several pieces of text, 
a new feature is created for each unique word that appears at least once in any of the text pieces we 
are analyzing. If the word appears only in one piece of text, it will show a value of 1 for that particular 
text and 0 for all of the others.

Therefore, BoWs tend to be sparse matrices, where most of the values are zeros. Also, the number of 
columns – that is, the number of words – can be quite large if we work with huge text corpora, and 
even bigger if we also include n-grams. To limit the number of columns created and the sparsity of the 
returned matrix, we can choose to retain words that appear across multiple texts; or, in other words, 
we can retain words that appear in, at least, a certain percentage of texts.

To reduce the number of columns and sparsity of the BoW, we should also work with words in the same 
case – for example, lowercase – as Python will identify words in a different case as different words. We 
can also reduce the number of columns and sparsity by removing stop words. Stop words are very 
frequently used words that make sentences flow, but that, per se, do not carry any useful information. 
Examples of stop words are pronouns such as I, you, and he, as well as prepositions and articles.
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In this recipe, we will learn how to set words in lowercase, remove stop words, retain words with a 
minimum acceptable frequency, and capture n-grams all together with a single transformer from 
scikit-learn: CountVectorizer().

How to do it...

Let’s begin by loading the necessary libraries and getting the dataset ready:

1. Load pandas, CountVectorizer, and the dataset from scikit-learn:

import pandas as pd

from sklearn.datasets import fetch_20newsgroups

from sklearn.feature_extraction.text import CountVectorizer

2. Let’s load the train set part of the 20 Newsgroup dataset into a pandas DataFrame:

data = fetch_20newsgroups(subset='train')

df = pd.DataFrame(data.data, columns=['text'])

3. To make interpreting the results easier, let’s remove punctuation and numbers from the 
text variable:

df['text'] = df['text'].str.replace(

    '[^\w\s]','', regex=True).str.replace(

    '\d+','', regex=True)

4. Now, let’s set up CountVectorizer() so that, before creating the BoW, it puts the text in 
lowercase, removes stop words, and retains words that appear at least in 5% of the text pieces:

vectorizer = CountVectorizer(

    lowercase=True,

    stop_words='english',

    ngram_range=(1, 1),

    min_df=0.05)

Note
To introduce n-grams as part of the returned columns, we can change the value of ngrams_
range to, for example, (1,2). The tuple provides the lower and upper boundaries of the range 
of n-values for different n-grams to be extracted. In the case of (1,2), CountVectorizer() 
will return single words and arrays of two consecutive words.
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5. Let’s fit CountVectorizer() so that it learns which words should be used in the BoW:

vectorizer.fit(df['text'])

6. Now, let’s create the BoW:

X = vectorizer.transform(df['text'])

7. Finally, let’s capture the BoW in a DataFrame with the corresponding feature names:

bagofwords = pd.DataFrame(

    X.toarray(),

    columns = vectorizer.get_feature_names_out()

)

With that, we have created a pandas DataFrame that contains words as columns and the number of 
times they appeared in each text as values. You can inspect the result by executing bagofwords.
head():

Figure 11.6 – DataFrame with the BoW

We can use this BoW as input for a machine learning model.

How it works...

CountVectorizer() from scikit-learn converts a collection of text documents into a matrix of 
token counts. These tokens can be individual words or arrays of two or more consecutive words – that 
is, n-grams. In this recipe, we created a BoW from a text variable in a DataFrame.

We loaded the 20 Newsgroup text dataset from scikit-learn and removed punctuation and 
numbers from the text rows using pandas replace(), which can be accessed through pandas 
str, to replace digits, '\d+', or symbols, '[^\w\s]', with empty strings, ''. Then, we used 
CountVectorizer() to create the BoW. We set the lowercase parameter to True, to put the 
words in lowercase before extracting the BoW. We set the stop_words argument to english to 
ignore stop words – that is, to avoid stop words in the BoW. We set ngram_range to the (1,1) 
tuple to return only single words as columns. Finally, we set min_df to 0.05 to return words that 
appear in at least 5% of the texts, or, in other words, in 5 % of the rows in the DataFrame.
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After setting up the transformer, we used the fit() method to allow the transformer to find the words 
that fulfill the preceding criteria. Finally, using the transform() method, the transformer returned 
an object containing the BoW with its feature names, which we captured in a pandas DataFrame.

See also

For more details about CountVectorizer(), visit the scikit-learn documentation at https://
scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.
text.CountVectorizer.html.

Implementing term frequency-inverse document 
frequency
Term Frequency-Inverse Document Frequency (TF-IDF) is a numerical statistic that captures how 
relevant a word is in a document concerning the entire collection of documents. What does this mean? 
Some words will appear a lot within a text document as well as across documents, for example, the 
English words the, a, and is. These words generally convey little information about the actual content 
of the document and don’t make it stand out from the crowd. TF-IDF provides a way to weigh the 
importance of a word by contemplating how many times it appears in a document, concerning how 
often it appears across documents. Hence, commonly occurring words such as the, a, and is will have 
a low weight, and words more specific to a topic, such as leopard, will have a higher weight.

TF-IDF is the product of two statistics: term frequency and inverse document frequency. Term 
frequency is, in its simplest form, the count of the word in an individual text. So, for term t, the 
term frequency is calculated as tf(t) = count(t) and is determined text by text. The inverse document 
frequency is a measure of how common the word is across all documents and is usually calculated on 
a logarithmic scale. A common implementation is given by the following:

Here, n is the total number of documents, and df(t) is the number of documents in which the term t 
appears. The bigger the value of df(t), the lower the weighting for the term.

TF-IDF can be also used together with n-grams. Similarly, to weight an n-gram, we compound the 
n-gram frequency in a certain document by the times the n-gram appears across all documents.

In this recipe, we will learn how to extract features using TF-IDF with or without n-grams using scikit-learn.

Getting ready

The scikit-learn implementation of TF-IDF uses a slightly different way to calculate the IDF statistic. 
For more details on the exact formula, visit the scikit-learn documentation: https://scikit-
learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting.

𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) = log( 𝑛𝑛
1 + 𝑖𝑖𝑖𝑖(𝑡𝑡)) 

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting.
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting.
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TF-IDF shares the characteristics of BoW when creating the term matrix – that is, high feature 
space and sparsity. To reduce the number of features and sparsity, we can remove stop words, set the 
characters to lowercase, and retain words that appear in a minimum percentage of observations. If 
you are unfamiliar with these terms, visit the Creating features with bag-of-words and n-grams recipe 
in this chapter for a recap.

In this recipe, we will learn how to set words in lowercase, remove stop words, retain words with a 
minimum acceptable frequency, capture n-grams, and then return the TF-IDF statistic of words, all 
using a single transformer from scikit-learn: TfidfVectorizer().

How to do it...

Let’s begin by loading the necessary libraries and getting the dataset ready:

1. Load pandas, TfidfVectorizer, and the dataset from scikit-learn:

import pandas as pd

from sklearn.datasets import fetch_20newsgroups

from sklearn.feature_extraction.text import TfidfVectorizer

2. Let’s load the train set part of the 20 Newsgroup dataset into a pandas DataFrame:

data = fetch_20newsgroups(subset='train')

df = pd.DataFrame(data.data, columns=['text'])

3. To make interpreting the results easier, let’s remove punctuation and numbers from the 
text variable:

df['text'] = df['text'].str.replace(

    '[^\w\s]','', regex=True).str.replace(

    '\d+','', regex=True)

4. Now, let’s set up TfidfVectorizer() from scikit-learn so that, before creating the TF-IDF 
metrics, it puts all text in lowercase, removes stop words, and retains words that appear in at 
least 5% of the text pieces:

vectorizer = TfidfVectorizer(

    lowercase=True,

    stop_words='english',

    ngram_range=(1, 1),

    min_df=0.05)
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Note
To introduce n-grams as part of the returned columns, we can change the value of ngrams_
range to, for example, (1,2). The tuple provides the lower and upper boundaries of the range 
of n-values for different n-grams to be extracted. In the case of (1,2), TfidfVectorizer() 
will return single words and arrays of two consecutive words as columns.

5. Let’s fit TfidfVectorizer() so that it learns which words should be introduced as columns 
of the TF-IDF matrix:

vectorizer.fit(df['text'])

6. Now, let’s create the TF-IDF matrix:

X = vectorizer.transform(df['text'])

7. Finally, let’s capture the TF-IDF matrix in a DataFrame with the corresponding feature names:

tfidf = pd.DataFrame(

    X.toarray(),

    columns = vectorizer.get_feature_names_out()

)

With that, we have created a pandas DataFrame that contains words as columns and the TF-IDF 
as values. You can inspect the result by executing tfidf.head():

Figure 11.7 – DataFrame with features resulting from TF-IDF

Now, we can use this term frequency DataFrame to train machine learning models.
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How it works...

In this recipe, we extracted the TF-IDF values of words present in at least 5% of the documents by 
utilizing TfidfVectorizer() from scikit-learn.

We loaded the 20 Newsgroup text dataset from scikit-learn and then removed punctuation and 
numbers from the text rows using pandas replace(), which can be accessed through pandas 
str, to replace digits, '\d+', or symbols, '[^\w\s]', with empty strings, ''. Then, we used 
TfidfVectorizer() to create TF-IDF statistics for words. We set the lowercase parameter to 
True to put words in lowercase before making the calculations. We set the stop_words argument 
to english to avoid stop words in the returned matrix. We set ngram_range to the (1,1) tuple 
to return single words as features. Finally, we set the min_df argument to 0.05 to return words that 
appear at least in 5% of the texts or, in other words, in 5% of the rows.

After setting up the transformer, we applied the fit() method to let the transformer find the words 
to retain in the final term matrix. With the transform() method, the transformer returned an 
object with the words and their TF-IDF values, which we then captured in a pandas DataFrame with 
the appropriate feature names. Now, we can use these features in machine learning algorithms.

See also

For more details on TfidfVectorizer(), visit the scikit-learn documentation at https://
scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.
text.TfidfVectorizer.html.

Cleaning and stemming text variables
Some variables in our dataset can be created based on free text fields, which are manually completed 
by users. People have different writing styles, and we use a variety of punctuation marks, capitalization 
patterns, and verb conjugations to convey the content, as well as the emotions around it. We can 
extract information from text without taking the trouble to read it by creating statistical parameters 
that summarize the text’s complexity, keywords, and relevance of words in a document. We discussed 
these methods in the preceding recipes of this chapter. Yet, to derive these statistics and aggregated 
features, we should clean the text variables first.

Text cleaning or text preprocessing involves punctuation removal, the elimination of stop words, 
character case setting, and word stemming. Punctuation removal consists of deleting characters that 
are not letters, numbers, or spaces; in some cases, we also remove numbers. The elimination of stop 
words refers to removing common words that are used in our language to allow for the sentence 
structure and flow, but that individually convey little or no information. Examples of stop words 
include articles such as the and a for the English language, as well as pronouns such as I, you, and 
they, and commonly used verbs in their various conjugations, such as the verbs to be and to have, as 
well as the auxiliary verbs would and do.

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
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To allow computers to identify words correctly, it is also necessary to set all the words in the same 
case, since the words Toy and toy would be identified as different by a computer, due to the capital 
T in the first one. Finally, to focus on the message of the text and not count them as different words 
that convey similar meanings if it weren’t for their conjugation, we may also want to introduce word 
stemming as part of the preprocessing pipeline. Word stemming refers to reducing each word to its 
root or base so that the words playing, plays, and played become play, which, in essence, convey the 
same or very similar meaning.

In this recipe, we will learn how to remove punctuation and stop words, set words in lowercase, and 
perform word stemming with pandas and NLTK.

Getting ready

We are going to use the NLTK stem package to perform word stemming, which incorporates different 
algorithms to stem words from English and other languages. Each method differs in the algorithm it 
uses to find the root of the word; therefore, they may output slightly different results. I recommend 
that you read more about it, try different methods, and choose the one that serves the project you 
are working on.

More information about NLTK stemmers can be found here: https://scikit-learn.
org/stable/modules/generated/sklearn.feature_extraction.text.
TfidfVectorizer.html.

How to do it...

Let’s begin by loading the necessary libraries and getting the dataset ready:

1. Load pandas, stopwords, and SnowballStemmer from NLTK and the dataset 
from scikit-learn:

import pandas as pd

from nltk.corpus import stopwords

from nltk.stem.snowball import SnowballStemmer

from sklearn.datasets import fetch_20newsgroups

2. Let’s load the train set part of the 20 Newsgroup dataset into a pandas DataFrame:

data = fetch_20newsgroups(subset='train')

df = pd.DataFrame(data.data, columns=['text'])

Now, let’s begin with the text cleaning.

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
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Note
Print some example text with the print(df['text'][10]) command, right after executing 
each line of code in this recipe, so that you can visualize the changes introduced to the text.

3. First, let’s remove the punctuation:

df["text"] = df['text'].str.replace('[^\w\s]','')

Tip
You can also remove the punctuation using the built-in string module from Python. First, 
import the module by executing import string and then execute df['text'] = 
df['text'].str.replace('[{}]'.format(string.punctuation), '').

4. We can also remove characters that are numbers, leaving only letters, as follows:

df['text'] = df['text'].str.replace('\d+', '', 
regex=True)

5. Now, let’s set all cases in lowercase:

df['text'] = df['text'].str.lower()

Now, let’s remove stop words.

Note
Step 6 may fail if you did not download the nltk library stopwords. Visit the Technical 
requirements section for more details.

6. Let’s create a function that splits a string into a list of words, then removes the stop words from 
the list if the words are within NLTK’s English stop words list, and finally, concatenates the 
remaining words back into a string:

def remove_stopwords(text):

     stop = set(stopwords.words('english'))

     text = [word 

    for word in text.split() if word not in stop]

     text = ' '.join(x for x in text)

     return text
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Note
To be able to process the data with scikit-learn’s CountVectorizer()  or 
TfidfVectorizer(), we need the text to be in string format. Therefore, after removing 
the stop words, we need to return the words as a single string. We have transformed NLTK’s stop 
words list into a set because sets are faster to scan than lists. This improves the computation time.

7. Now, let’s use the function we created in step 6 to remove stop words from the text variable:

df['text'] = df['text'].apply(remove_stopwords)

Finally, let’s stem the words in our data. We will use SnowballStemmer from NLTK to do so.

8. Let’s create an instance of SnowballStemer for the English language:

stemmer = SnowballStemmer("english")

Tip
Try the stemmer in a single word to see how it works; for example, run stemmer.
stem('running'). You should see run as the result of that command. Try different words!

9. Let’s create a function that splits a string into a list of words, then applies stemmer to each 
word, and finally concatenates the stemmed word list back into a string:

 def stemm_words(text):

     text = [stemmer.stem(word) for word in text.split()]

     text = ' '.join(x for x in text)

     return text

10. Let’s use the function we created in step 9 to stem the words in our data:

df['text'] = df['text'].apply(stemm_words)

Now, our text is ready to create features based on character and word counts, as well as create 
BoWs or TF-IDF matrices, as described in the previous recipes of this chapter.

If we execute print(df['text'][10]), we will see a text example after cleaning:

irwincmptrclonestarorg irwin arnstein subject recommend 
duc summari what worth distribut usa expir sat may gmt 
organ computrac inc richardson tx keyword ducati gts 
much line line ducati gts model k clock run well paint 
bronzebrownorang fade leak bit oil pop st hard accel 
shop fix tran oil leak sold bike owner want think like k 
opinion pleas email thank would nice stabl mate beemer 
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ill get jap bike call axi motor tuba irwin honk therefor 
computracrichardsontx irwincmptrclonestarorg dod r

Note
Note that the only feature that needs to be derived before removing punctuation is the count 
of the sentences, as punctuation and capitalization are needed to define the boundaries of 
each sentence.

How it works...

In this recipe, we removed punctuation, numbers, and stop words from a text variable, set the words 
in lowercase, and finally, stemmed the words to their root. We removed punctuation and numbers 
from the text variable using pandas replace(), which can be accessed through pandas str, to 
replace digits, '\d+', or symbols, '[^\w\s]', with empty strings, ''. Alternatively, we can use 
the punctuation module from the built-in string package.

Tip
Run string.punctuation in your Python console after importing string to visualize 
the symbols that will be replaced by empty strings.

Next, utilizing pandas string processing functionality through str, we set all of the words to lowercase 
with the lower() method. To remove stop words from the text, we used the stopwords module 
from NLTK, which contains a list of words that are considered frequent – that is, the stop words. We 
created a function that takes a string and splits it into a list of words using pandas str.split(), 
and then, with list comprehension, we looped over the words in the list and retained the non-stop 
words. Finally, with the join() method, we concatenated the retained words back into a string. 
We used the built-in Python set() method over the NLTK stop words list to improve computation 
efficiency since it is faster to iterate over sets than over lists. Finally, with pandas apply(), we applied 
the function to each row of our text data.

Tip
Run stopwords.words('english') in your Python console after importing stopwords 
from NLTK to visualize the list with the stop words that will be removed.

Finally, we stemmed the words using SnowballStemmer from NLTK. stemmer works one word 
at a time. Therefore, we created a function that takes a string and splits it into a list of words using 
pandas str.split(). In a list comprehension, we applied stemmer word per word, and then 
concatenated the list of stemmed words back into a string, using the join() method. With pandas 
apply(), we applied the function to stem words to each row of the DataFrame.
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The cleaning steps we performed in this recipe resulted in strings containing the original text, without 
punctuation or numbers, in lowercase, without common words, and with the root of the word instead 
of its conjugated form. The data, as it is returned, can be used to derive features, as described in 
the Counting characters, words, and vocabulary recipe, or to create BoWs and TI-IDF matrices, as 
described in the Creating features with bag-of-words and n-grams and Implementing term frequency-
inverse document frequency recipes.
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Natural Language Processing (NLP)  284
Natural Language Toolkit (NLTK)  341

URL  341
n-grams

used, for creating features  341-344
NLTK stemmers

reference link  349
number of characters  284
number of words  284
numerical features

combining  275-277

O
observations

removing, with missing data  3-6
one-hot encoding

performing  44-47
used, for creating binary variable  36-43

Online Retail II dataset  256
ordinal encoding

performing, on target value  59-61
outliers

capping  165-167

capping, with quantiles  168-170
censoring  165-167
finding, with interquartile range 

proximity rule  158-160
finding, with mean deviation  157, 158
finding, with standard deviation  157
removing  160-164
visualizing, with boxplots  154-156

P
pandas

methods  178
used, for extracting date variable 

features  172-177
used, for extracting time variable 

features  178-181
pandas aggregate

reference link  222
periodic features

creating, from cyclical variables  238-245
polynomial expansion

performing  227-234
PolynomialFeatures()

reference link  234
power transformations

using  93-97
PowerTransformer()  103
pre-selected features

creating  320-324

Q
Quantile-Quantile (Q-Q) plot  78
quantiles

scaling with  202-204
used, for capping outliers  168-170



Index 359

R
rare categories  69

grouping  69-72
reciprocal function

used, for transforming variables  85-89
reference variables

features, comparing  222-226
robust scaling  203

S
scikit-learn dataset

reference link  332
scikit-learn pipeline

feature creation, embedding  325-328
sentence tokenization  338

text complexity, estimating  338-341
spline features

creating  245-254
square root

using, for transforming variables  89-93
standard deviation

used, for finding outliers  157, 158
stop words  342, 350

T
target mean encoding

implementing  61-66
Term Frequency-Inverse Document 

Frequency (TF-IDF)
implementing  345-348

text
used, for extracting text  284-288

text complexity
estimating, by sentence 

tokenization  338-341

text variables
cleaning  348-353
stemming  348-353

Tfidf term weighting
reference link  345

TfidfVectorizer()  351
reference link  348

time/date components
reference link  178

time series
automatic feature extraction  301-309
features, creating  310-314
features, selecting  310-314
specific features, creating  315-320

time since previous  269
time variable

features, extracting with pandas  178-181
working with, in time zones  186-189

to_datetime() method
reference link  189

transform primitives  267, 269, 289
tsfresh documentation

reference link  320
tsfresh library  301, 310

tests, using  310
tz_convert() method

reference link  189

V
variable

discretizing, into arbitrary intervals  128-132
transforming, with logarithm function  78-84
transforming, with reciprocal 

function  85-89
transforming, with square root  90-93

variance stabilizing transformations  77
variation coefficient  306
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vector unit length
scaling  214-216

vocabulary
counting  332-335

W
Weight of Evidence (WoE)  66

encoding  66-69
words

counting  332-335
Workshop on Learning on Big 

Data (WLBD)  310
worst compactness  223

Y
Yeo-Johnson transformation

performing  104-107
reference link  107
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