<packt

Python Essentials for
AWS Cloud Developers

Run and deploy cloud-based Python applications using AWS

<> SERKAN SAKINMAZ



Python Essentials for AWS Cloud
Developers

Run and deploy cloud-based Python applications using AWS

Serkan Sakinmaz

BIRMINGHAM—MUMBAI



Python Essentials for AWS Cloud Developers
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Mohd. Riyan Khan
Publishing Product Manager: Suwarna Rajput
Senior Editor: Runcil Rebello

Technical Editor: Rajat Sharma

Copy Editor: Safis Editing

Project Coordinator: Ashwin Kharwa
Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Production Designer: Arunkumar Govinda Bhat
Marketing Coordinator: Agnes D’souza

First published: May 2023
Production reference: 1260423

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80461-006-0

www.packtpub.com


http://www.packtpub.com

To my mother, Reyhan, and my father, Sami, for always supporting and loving me. To my sons, Batu and
Arman, for recharging my energy. To my wife, Yonca, for giving me support and love.

- Serkan Sakinmaz



Contributors

About the author

Serkan Sakinmaz is a data architect and engineer who lives in Germany. He currently gives consultancy
on the data and cloud area to key companies in Europe. He has also given big data training to students
as well as professionals who want to learn about cloud technologies. He has more than 15 years’
experience in programming and more than 8 years” experience in the cloud area. He likes to share
what he knows and his experiences in the sector, and he gives seminars, writes blogs, and defines the
future of architecture for key companies.

When he is not working, he mostly spends his time with his family, goes running, or plays table tennis
and football.



About the reviewers

Harish LM has more than 5 years of experience in the IT and services industry. He specializes in
Python, NLP, and the AWS Cloud.

Mikayel Ghazaryan is a technology expert with extensive experience in web and cloud engineering
and software design. He specializes in designing and implementing scalable, secure, and cost-effective
solutions for businesses. He currently works as an AWS Cloud architect at Nordcloud, an IBM
company since December 2021. His responsibilities include performing a Well-Architected Review,
and standardization of EC2 Linux machine deployments with Terraform, Systems Manager, Step
Functions, and Lambdas. Before Nordcloud, he performed the migration of on-premise applications
to AWS, designed and implemented data pipelines on AWS, and attributed ML-based quality scores
to millions of images. He holds an AWS Solutions Architect Professional certification.






Table of Contents

Preface Xi

Part 1: Python Installation and the Cloud

Using Python on AWS 3
What is the cloud? 3  Installing PyCharm 7
Understanding the advantages Creating a new project 8
of the cloud 4 Summary 9
Installing Python 5

Creating an AWS Account 11
Creating an AWS account 11  Summary 15
Part 2: A Deep Dive into AWS with Python

Cloud Computing with Lambda 19
Cloud computing 19 A sample application with Lambda 21
What is Lambda? 20  Important configurations in Lambda 24
The advantages of Lambda 20 A Lambda skeleton 26

The limitations of Lambda 20 Lambda returning value 26



viii

Table of Contents

Logging in Lambda 27  Summary 39
Filing a metadata parser application
with Lambda and S3 28
Running Python Applications on EC2 41
What is EC2? 42 Provisioning an EC2 server 44
EC2 purchasing options 42  Connecting to an EC2 server 53
On-Demand 42 Running a simple Python
Reserved 42 application on an EC2 server 54
Spot 42 Processing a CSV file with a Python
Dedicated 42 application on an EC2 server 55
EC2 instance types 42  The AWS CLI 57
Auto-scaling 43 Summary 63
Running Python Applications with PyCharm 65
Installing the AWS Toolkit 65  Running an AWS Lambda function
Configuring the AWS Toolkit 67  usingthe AWS Toolkit 72
Creating a sample Lambda function Summary 74
in AWS 70
Deploying Python Applications on Elastic Beanstalk 75
What is Elastic Beanstalk? 75  Deploying a Python web application
Features of Elastic Beanstalk 75 on Elastic Beanstalk 76
Summary 84

Creating a Python web application 76



Table of Contents

Part 3: Useful AWS Services to Implement Python

Monitoring Applications via CloudWatch 87
What is CloudWatch? 87  CloudWatch Log Insights 94
Collecting Lambda logs via CloudWatch alarms 98
CloudWatch 88  Summary 104
Database Operations with RDS 105
Features of RDS 106  Database operations with Python 124
Provisioning RDS 107  Secrets Manager 128
Connecting to the RDS 117  Summary 132
Creating a table in the database 122

Creating an APl in AWS 133
What is API Gateway? 133 Summary 149
Creating an API using API Gateway 134

Using Python with NoSQL (DynamoDB) 151
What is a NoSQL database? 151  What is a DynamoDB database? 153
Key-value database 152 Creating a DynamoDB database 154
Document database 152

DynamoDB operations with Python 161

Summary

168

ix



Table of Contents

Using Python with Glue 169
What is the AWS Glue service? 169  Defining the permissions for
Features of AWS Glue 170 a Glue job 172
Creating an S3 sample file 170 Creating an AWS Glue service 175
Summary 181
Reference Project on AWS 183
What have we learned? 183  Creating permissions for the services 187
Introducing the Python application 184 Attaching the role to the Lambda function 189
The codine of the Pvthon Creating an API gateway to upload
. .. 8 y the image 190
application 184 _
Using Postman to test the API 194
Creating S3 buckets to store images 184
Creating Lambda code 185 ~ Summary 198
Index 199
Other Books You May Enjoy 204




Preface

Cloud computing is one of the most popular approaches to implementing your applications, with
huge advantages. There are multiple cloud providers, such as AWS, GCP, and Azure. AWS is one of
the most used cloud providers, and many companies are moving there. Cloud usage is significantly
growing and cloud knowledge is expected from developers.

Most of the applications are moving to the cloud. AWS has different services to implement Python
applications, hence the configuration and selecting the right service is a challenge for those who don’t
have an AWS background. By buying this book, you are on the right path and stepping into how to
implement cool Python applications using AWS services.

Who this book is for

This book is implemented for cloud developers, software developers, and IT specialists who intend to
develop Python applications on AWS as well as learn about the concepts of appropriate AWS services
for implementing the Python applications. You should have Python programming experience to
implement the applications on AWS.

What this book covers

Chapter 1, Using Python on AWS. This chapter will teach you how to install and use the Python IDE
and also understand the advantages of AWS Cloud.

Chapter 2, Creating an AWS Account. To start with cloud computing, AWS requires an account to
implement Python programming. In this chapter, you will learn how to create an AWS account.

Chapter 3, Cloud Computing with Lambda. Lambda is a very effective way to implement Python functions.
The chapter will help you to get into the Lambda service and will show how to implement a code.

Chapter 4, Running Python Applications on EC2. EC2 is one of the key services that you can provision
on the cloud. The chapter will help you to get into the EC2 service and will show how to provision a
server and deploy the Python application afterward.

Chapter 5, Running Python Applications with PyCharm. Debugging Python applications is important for
testing the application. The chapter will help you to debug Python applications locally in an easy way.

Chapter 6, Deploying Python Applications on Elastic Beanstalk. Elastic Beanstalk is a useful service
that allows the deployment of applications. The chapter will help you to get into the Elastic Beanstalk
service and will show how to create a service and deploy the Python application afterward.



xii

Preface

Chapter 7, Monitoring Applications via Cloud Watch. CloudWatch allows you to monitor your application
in AWS. The chapter will help you to get into the CloudWatch service and will show how to monitor
the Python application.

Chapter 8, Database Operations with RDS. RDS is used to create a database in AWS. The chapter will
help you to get into the RDS service and will show how to create a database and make SQL operations
via Python applications.

Chapter 9, Creating an API in AWS. An API is an important interface for an application. The chapter
will help you create an API in AWS and publish the API to access the Python application.

Chapter 10, Using Python with NoSQL (DynamoDB). NoSQL is useful to store unstructured and
semi-structured data. The chapter will help you to create a NoSQL database and make SQL operations
on DynamoDB.

Chapter 11, Using Python with Glue. Glue is a serverless data integration service in AWS. The chapter
will help you to embed Python applications into the Glue service.

Chapter 12, Reference Project on AWS. Implementing a sample project is the best way to learn about
application programming. The chapter will help you to implement sample AWS projects with
best practices.

To get the most out of this book

You will need to have an understanding of the basics of the Python programming language to implement
applications on AWS.

Software/hardware covered in the book Operating system requirements
Python Windows, macOS, or Linux
Amazon Web Services (AWS)

Download the example code files

You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Python-Essentials-for-AWS-Cloud-Developers. If theres an
update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https: //
github.com/PacktPublishing/. Check them out!


https://github.com/PacktPublishing/Python-Essentials-for-AWS-Cloud-Developers
https://github.com/PacktPublishing/Python-Essentials-for-AWS-Cloud-Developers
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

Download the color images

We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/hWfwWé

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Execute
python --version from the command line”

A block of code is set as follows:

from flask import Flask
app = Flask( name )

@app.route('/")

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

from flask import Flask
app = Flask( name )

@app.route('/")

Any command-line input or output is written as follows:

wget https://raw.githubusercontent.com/PacktPublishing/Python-
Essentials-for-AWS-Cloud-Developers/main/fileprocessor.py

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “Click Instances on the left side, and
then click Launch Instances.”

Tips or important notes

Appear like this.

Xiii


https://packt.link/hWfW6

Xiv

Preface

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercaree
packtpub. comand mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www . packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyrighte@epackt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors . packtpub. com.

Share Your Thoughts

Once you've read Python Essentials for AWS Cloud Developers, wed love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share
your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.


mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1804610062

Preface XV

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?
Is your eBook purchase not compatible with the device of your choice?

Don't worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804610060

2. Submit your proof of purchase

3. That’s it! We'll send your free PDF and other benefits to your email directly


https://packt.link/free-ebook/9781804610060




Part 1:

Python Installation
and the Cloud

In this part, you will learn to install and use the Python IDE and understand the cloud basics. In order
to get into cloud computing via Python programming in AWS, we will also open an AWS account.

This part has the following chapters:

o  Chapter 1, Using Python on AWS
o Chapter 2, Creating an AWS Account






1
Using Python on AWS

In this chapter, we will give a brief introduction to the cloud. We will then explain how to set up
Python and how to run your first application within the command line as well as via an integrated
development environment (IDE). We're going to cover the following main topics:

o What is the cloud?

o Understanding the advantages of the cloud
o Installing Python

« Installing PyCharm

o Creating a new project

Cloud computing is one of the most popular approaches to implementing your applications, and it has
huge advantages. There are multiple cloud providers, such as Amazon Web Services (AWS), Google
Cloud Platform (GCP), and Azure. AWS is one of the most widely used cloud providers, and many
companies are moving there. Cloud usage is significantly growing, and developers are expected to
have a good understanding of the cloud. By buying this book, you are on the right path and stepping
into how to implement cool Python applications using AWS.

Most companies are moving to the cloud because of the significant advantages. It is important to know
why and how these services are being used.

What is the cloud?

The cloud is a popular way of using your IT infrastructure and services over IT providers that manage
machines, networks, and applications. Basically, you don’t need any on-premises infrastructure, and
cloud providers have their data centers to serve the required services over the internet. For example,
if you need a server, you don’t need to buy a machine and don’t need to set up its network and power.
Cloud providers serve these resources for you, and you can use them over the internet.



4

Using Python on AWS

Understanding the advantages of the cloud

The following aspects explain why companies are moving to the cloud to have a better infrastructure:

Good disaster recovery plan: Cloud providers have multiple data centers in different regions.
If an issue happens in one region, the system can be recovered in another region.

Better scalability and stability: In AWS, you have different services to upscale and downscale
your application. All you need to do is to configure scaling options based on usage.

Quicker time to production: AWS has more than 100 services, and these services come with
huge capabilities. When you have any application for production, you don’t need to start from
the beginning, such as provisioning the server or preparing the infrastructure.

Pay-as-you-go model to reduce the cost: You don’t need to sign a contract that promises
payment; you can also use the service for just one day and then shut it down.

Monitoring and logging advantages: The biggest cloud providers have monitoring and logging
services; you can integrate these services into your application.

Reduces DevOps effort: AWS comes with lots of advantages for DevOps. For example, you
can provision servers quickly and deploy and monitor your service with simple configurations.

Multiple security services to keep data safe: There are different services to keep your services
and data safe.

The cloud comes with lots of advantages. There are also some important considerations when using
cloud services:

Security: Securing your services is important, and AWS provides different services to protect
your data, such as firewall configurations. You have to evaluate security requirements while
using AWS services.

Cost management: You can easily create and scale your services, which is a very big advantage.
The point to note is that while you create these services, it comes with a cost, which can cause
surprises if you don’t consider the costs for specific services. Check the cost of services while
creating them and create some alarms if the service exceeds your budget.

There are more than 100 AWS services, and it is important to choose the right service to implement
your application based on your requirements. In this book, you will learn to create an AWS account and
the required AWS services that allow you to run Python applications. To run and deploy the Python
application in AWS, you will learn how to configure the AWS services and deploy them afterward.

Python is also one of the most widely used programming languages. It is easy to learn and has broader

usage. Within AWS, most application-related services support Python because of its broad usage, and
these services are stable when it comes to the use of Python. AWS always adapts Python use cases
with their services, which is a big advantage.



Installing Python

This book is meant for cloud developers, software developers, and IT specialists who want to develop
Python applications on AWS as well as learn the concepts of appropriate AWS services for implementing
Python applications. You should have Python knowledge, and this book will focus on creating Python
applications in AWS. The focus will be on creating and giving details for AWS services instead of
digging into Python syntax details. Hence, you will add more expertise to your skillset.

While reading this book, it is important to follow the exercises. This is not just a book of theory and
definitions. You will see code examples to illustrate what you have learned. I would recommend
implementing the same examples by yourself to help you learn better and apply the same methodologies
to your cloud projects. This idea slows down your progress, but you will learn better and easily
remember the concepts while using AWS in your professional work life.

At the end of this book, you will implement a graduation project with Python on AWS to connect
different AWS services in one application. This project helps you to use different services in the same
application and understand the connection between them; you will consolidate your learning with
another hands-on exercise.

Once you have created an AWS account, you will be charged according to what usage you have in a
month. You always have to be careful what you use and create in AWS. Another point to note is that
some AWS services are free for limited usage. Please check the costs before deciding to use any AWS
service. Please be aware that you need to pay for AWS costs while doing the exercises. You can check
the pricing at this link: ht tps: //aws .amazon.com/pricing/.

Let’s dig into Python programming on AWS.

Installing Python
To install Python, carry out the following steps:

1. Visit the Python download page, https://www.python.org/downloads/, and select
the right operating system.

2. Download the installation package and run it afterward:


https://aws.amazon.com/pricing/
https://www.python.org/downloads/

6

Using Python on AWS

O ‘& Install Python =]

Welcome to the Python Installer

This package will install Python 3.10.5 for macOS 10.9 or later.
® [ntroduction
Python for macOS consists of the Python programming language
interpreter and its batteries-included standard library to allow easy
access to macOS features. It also includes the Python integrated
development environment, IDLE. You can also use the included pip to
download and install third-party packages from the Python Package
Index.

At the end of this install, click on Install Certificates toinstalla
set of current SSL root certificates.

Continue

Figure 1.1 - Install Python

After the installation, you will have a Python 3.X folder. The Python folder has the following contents:

< Python 3.9

Name

© IDLE

.| Install Certificates.command
.. License.rtf

& Python Documentation.html
§ Python Launcher

... ReadMe.rtf

... Update Shell Profile.command

Figure 1.2 - Installation folder content



Installing PyCharm

We will follow the steps for macOS; it is very similar to the other operating systems. Let’s implement
the 'Hello World' application:

1. Double-click on the IDLE application and run the sample 'Hello World' application:

@ @) IDLE Shell 3.9.11

Python 3.9.11 (v3.9.11:2de452f8bf, Mar 16 2022, 10:34:36)

[Clang 6.0 (clang-6@08.0.57)] on darwin

Type "help", "copyright", "credits" or "license()" for more information.
>>> print('Hello world')

Hello world

> |

Figure 1.3 - Python command line

If you see this output, congrats! You successfully installed the Python compiler. As a next step, we will
install the IDE to simplify the application development.
Installing PyCharm

PyCharm is one of the most powerful IDEs used to develop Python applications. For the examples, we
will use PyCharm; you can also use another IDE if you prefer. You have to carry out the following steps:

1. Visit the download page, https://www.jetbrains.com/pycharm/download, and
select the right operating system:

Download PyCharm

Windows macOS Linux

Professional Community

For both Scientific and Web Python For pure Python development

development. With HTML, JS, and SQL

support.

CIETD
Free 30-day trial available Free, open-source

© Select an installer for Intel or Apple Silicon

Figure 1.4 — PyCharm download page

I recommend downloading the Community Edition. Otherwise, it will be a trial version for 30 days.


https://www.jetbrains.com/pycharm/download

8

Using Python on AWS

2. Download the installation package and run it afterward. Once you click Download, it directly
downloads the installation package to the computer:

Downloads

Name

B pycharm-community-2022.1.3.dmg

Figure 1.5 — Downloaded folder

When you check the installation folder, you will be able to see the installation program. Install
PyCharm onto your machine.
Creating a new project

After the installation of PyCharm, we will create a new project in order to implement our first Python
code snippet:

1. Open PyCharm and you will see the Projects section:

Welcome to PyCharm

Figure 1.6 - PyCharm IDE

2. Add a project name:

sjects/pythonProject

Figure 1.7 — Creating a new project



Summary

3. The project is ready to be implemented. Right-click and then click Run ‘main’:

pythonProject

print_hi(

name} ')

Go To

Generate...

Run 'main’
main’

un Configuration...
Open In

Local History

e Run Fil
[+ Compare with Clipboard

©) Create

Figure 1.8 — Sample project

4. The command runs the application:

main.py

Figure 1.9 — Running the application

Congrats! You have created your first project within PyCharm.

Summary

In this chapter, we explored the cloud basics and advantages. After that, we installed Python and one
of the most popular and useful IDEs, PyCharm. PyCharm will be our main tool in order to implement
the applications for AWS.

In the next chapter, we will sign up for AWS to have an account on the cloud.






2
Creating an AWS Account

In this chapter, we are going to create an AWS account. This book consists of examples and multiple
use cases, so it would be useful to create an account in order to follow along with the exercises in the
rest of the chapters on AWS. Let’s learn how to create an AWS account.

The chapter covers the following topic:

o Creating an AWS account

Creating an AWS account
To create an AWS account, carry out the following steps:
1. Open the AWS website at https://aws.amazon.com/ in order to create an account.

2. Click the Create an AWS Account button on the right side at the top of the page.

Contact Us Support~ Englishv My Account~ Sign In Create an AWS Account

Figure 2.1 —The AWS signup page

The Sign up for AWS screen will open.


https://aws.amazon.com/

12 Creating an AWS Account

Sign up for AWS

Root user email address
Used for account recovery and some administrative
functions

AWS account name
Choose a name for your account. You can change this
name in your account settings after you sign up.

Verify email address

Figure 2.2 — The signup form

3. Ascan be seen in Figure 2.2, there are two fields that need to be completed:

I.  Root user email address: The root user is the owner of all sub-accounts and is able to
access all resources and manage them. You can use a single email for the root user. In
addition to that, the root user has full access to all services. This is something you need
to consider in terms of protecting your account.

II.  AWS account name: The AWS account name is an informal name that appears next to
the account ID. You can name it while creating an AWS account. You can have multiple
accounts under the root account to implement different projects. In some cases, you
need to separate the services and costs. In this case, creating multiple accounts could
be a good solution.

Click the Verify email address button.

4. Once you fill out the Root user email address and AWS account name fields, you will receive
a verification code via email. This code should be filled out in the Verification code input
field. Click Verify.

Verification code

‘ Resend code |

Figure 2.3 — Add the verification code



Creating an AWS account

5. The next step is to define a password for access. Fill out the Root user password and Confirm
root user password fields and click Continue (step 1 of 5).

Your password provides you with sign in access
to AWS, so it's important we get it right.

Root user password

Confirm root user password

Continue (step 1 of 5)

Figure 2.4 - Password definition
6. Fill out the personal information required.

Contact Information

How do you plan to use AWS?

Business - for your work, school, or
organization

© Personal - for your own projects
Who should we contact about this account?

Full Name
Figure 2.5 - The Contact Information screen

7. After filling out the personal information, fill out the credit card info.

Important note

I would recommend having a budget-limited card, because if you mistakenly open an AWS
service that has a big cost or is constantly running, this limited card could prevent you
from overspending.

13



14

Creating an AWS Account

Sign up for AWS

Billing Information

Credit or Debit card number

AWS accepts all major credit and debit cards. To learn
more about payment options, review our FAQ

Expiration date

Month v Year v

Cardholder's name

Figure 2.6 - Credit card info

Once you enter the credit card info, you might be asked for confirmation depending on your
banking account.

After confirming, you will be asked to select a support plan. For learning purposes, you can
use the Basic support - Free plan, as it is reccommended for new users.

Sign up for AWS

Select a support plan

Choose a support plan for your business or personal account. Compare plans and pricing examples
[4. You can change your plan anytime in the AWS Management Console.

© Basic support - Free Developer support - Business support -
« Recommended fOI From $29/m0|‘|t|‘| From $100/n‘|0|‘lth
new lﬁ?f?]““ getting « Recommended for « Recommended for
started with AWS developers running production
« 24x7 self-service experimenting with workloads on AWS
access to AWS AWS = 24x7 tech support via
resources « Email access to AWS email, phone, and

Figure 2.7 — Support plans

Congratulations! After selecting the support plan, you will have an AWS account to get started with
the cloud.



Summary

Summary

In this chapter, we looked into AWS account creation. The AWS account will help you to carry out
Python exercises in the cloud environment. The point to note is that AWS is a paid service and you
have to consider the cost of what you are going to use. In the next chapter, we will take a look at
popular services such as Lambda.

15






Part 2:
A Deep Dive into
AWS with Python

In this part, you will deep-dive into the most used AWS services for Python programming, such as
Lambda, EC2, and Elastic Beanstalk. However, some other AWS services will be mentioned, such as
S3, to gain broader knowledge.

This part has the following chapters:
o Chapter 3, Cloud Computing with Lambda
o Chapter 4, Running Python Applications on EC2
o Chapter 5, Running Python Applications with PyCharm
o Chapter 6, Deploying Python Applications on Elastic Beanstalk






3

Cloud Computing with Lambda

In this chapter, we are going to learn the basics of Lambda and implement a Python application to be
run in AWS Lambda. For this purpose, we will use our AWS account.

The chapter covers the following topics:

Cloud computing

What is Lambda?

A sample application with Lambda
Important configurations in Lambda
A Lambda skeleton

A Lambda returning value

Logging in Lambda

Filing a metadata parser application with Lambda and S3

Cloud computing

Cloud computing allows you to use computer resources such as disk and memory without managing

an infrastructure. The concept of the cloud is important in order to free you up to focus on your
application. When you use your infrastructure, you need to buy or hire a computer, install all the
necessary software, wire the cables, and keep the computer safe from physical as well as soft attacks. It
is clear that it takes a significant amount of time; hence, your focus will be on reducing configuration
time for your application. With cloud computing, you don’t have this kind of headache. The cloud
provider takes most of the responsibility and sets up and maintains the data center for you. What you
need to do is carry out some configuration and deploy your application to the data center. It makes
your life easier; the cloud provider focuses on the infrastructure and you focus on the application.
This is the biggest advantage of cloud computing.



20

Cloud Computing with Lambda

What is Lambda?

Lambda is a computing service that allows you to run Python, Java, Node.js, Ruby, .NET, and Go
code without provisioning and managing any server. In AWS, it is one of the most used services in
the AWS stack. The only thing you need to do is develop and run your code. Lambda also has some
advantages in terms of cost.

Lambda is a container that is created by AWS in order to execute your application. When you create
a Lambda function, AWS creates this container for you. Hence, you don’t need to provision an
instance and install the compiler in the container. The only responsibility is to run your code when
selecting Lambda.

The advantages of Lambda
The advantages of Lambda are as follows:

o There’s no need to provision a server

o Itisa pay-as-you-go model

o It supports different runtimes such as Python, Java, and C#

« There’s no need to install a software development kit, since it is ready to develop

o It has scalability features - if your process needs more resources, Lambda automatically scales it
o It saves alot of time for your operational management

« Itis able to constantly monitor your Lambda functions

The limitations of Lambda
The limitations of Lambda are as follows:

o Timeout limit: If you have long-running functions, Lambda is not the best option. For now,
Lambda has a 15-minute timeout limit. If the duration exceeds 15 minutes, you will receive a
timeout error.

o Memory limit: When you run the function, the process needs memory allocation based on
the process flow. If your process needs a massive amount of memory, you will receive an error.
In addition to that, Lambda’s cost is tied to the execution time and memory used.

You can check the up-to-date limits on the AWS Lambda quotas page: https://docs.aws.
amazon.com/lambda/latest/dg/gettingstarted-limits.html.

In this section, we looked at some advantages and limitations of Lambda. It is very useful when you
need to run any type of application quickly, with no need for a server or detailed installation. Now,
we will implement a simple application to learn Lambda and use these advantages to our benefit.


https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html

A sample application with Lambda

A sample application with Lambda

We are going to execute a sample application within Lambda step by step. To run a Python application
on Lambda, take the following steps:

1.  Go to the AWS Management Console.

2. Type lambda in the search box and click on the Lambda service:

Q lambda
Search results for 'lambda’

Services

Features (2)

B Lambda 1y

Run Code without Thinking about Servers

Blogs (855)

Figure 3.1 - AWS Management Console

3. Click Create function.

4.  On the Create function page, select Use a blueprint, and within the blueprint, select the
hello-world-python application:

Create function

Choose one of the following options to create your function.

Author from scratch Use a blueprint o

Start with a simple Hello World example. Build a Lambda application from sample
code and configuration presets for common
use cases.

Blueprints (1/46) info

Q_ Filter blueprints Matches: 1

Name = hello-world-python | X | ’ Clear filters

hello-world-python o

A starter AWS Lambda function.

python3.7

Figure 3.2 — Create function

21



22

Cloud Computing with Lambda

5.

On the next screen, enter the name of the Lambda function and select the security settings:

Basic information info

Function name

HelloworldLambda|

Execution role
Choose a role that defines the permissions of your function. To create a custom role, go to the IAM console.

© Create a new role with basic Lambda permissions
Use an existing role

Create a new role from AWS policy templates

@ Role creation might take a few minutes. Please do not delete the role or edit the trust or permissions policies
in this role.

Lambda will create an execution role named HelloWorldLambda-role-Oamnis16, with permission to upload logs to
Amazon CloudWatch Logs.

Figure 3.3 - Naming the function

When you run a Lambda function, you need to define the role that Lambda can use to be able
to do some actions, which is done under Execution role. The role defines your permissions
in AWS and how to access other AWS services. For example, if Lambda needs to access a
database, then it should have the database access security role. In this case, Lambda will have
basic permission to run a sample Python function.

Once you create the Lambda function, you will have basic Python code to be tested:

Code source info

4 File Edit Find View Go Tools Window Test | v
Q B lambda_function %
E, v [ HelloWorldLambda L% ~ ; Emport 3son
5 #2| lambda_function.py 3 print('Loading function')
E 4
iy 5
6 def lambda_handler(event, context):
7 #print("Received event: " + json.dumps(event, indent=2))
8 print("valuel = " + event['keyl'])
9 print("value2 = " + event['key2'])
10 print("value3 = " + event['key3'])
11 return event['keyl'] # Echo back the first key value
12 #raise Exception('Something went wrong')
13

Figure 3.4 - A sample Lambda function



A sample application with Lambda

6. Click the Test button. When you click it, you can also set the parameters:

Configure test event X

A test event is a JSON object that mocks the structure of requests emitted by AWS services to invoke a Lambda function.
Use it to see the function’s invocation result.

To invoke your function without saving an event, configure the JSON event, then choose Test.

Test event action

‘ O Create new event

Event name

I Event1

Maximum of 25 characters consisting of letters, numbers, dots, hyphens and underscores.

Event sharing settings

© Private
This event is only available in the Lambda console and to the event creator. You can configure a total of 10. Learn more Z

Shareable

This event is available to IAM users within the same account who have permissions to access and use shareable events. Learn more Z

Template - optional

hello-world v

Event JSON

-
"keyl": "valuel",
"key2": "value2",
"key3": "value3"

v wN

¥

Figure 3.5 - Running the Lambda function

23



24

Cloud Computing with Lambda

After running the test, Lambda will run, and you will be able to see the results:

Code source info

~ File Edit Find View Go

jo)

v HelloWorldLambda 4 ~
lambda_function.py

Environment

B lambda_function = Execution result: =

¥ Execution results

Test Event Name
Eventl

Response
"valuel”

Function Logs
START RequestId: 09bb3827-2471-4fc2-9942-0208e5d77ccc Version: $LATEST

Loading function

valuel = valuel
valueZ = valueZ
value3 = value3

END RequestId: @9b63827-2471-4fc2-9942-8208e5d77ccc
REPORT RequestId: @9b63827-2471-4fc2-9942-0208e5d77ccc Duration: 1.37 ms  Billed Duration: 2 ms

Request ID
99b63827-2471-4fc2-9942-0208e5d77ccc

Figure 3.6 — The output of the Lambda function

We have created a sample Lambda function. Once you implement the application, as you can see,

running the application is very easy.

Important configurations in Lambda

When you create a Lambda function, there are different configurations that need to be done in order

to run it in an efficient way:

Code Test Monitor

General configuration
Triggers

Permissions
Destinations

Function URL
Environment variables
Tags

VPC

Manitoring and operations
tools

Configuration Aliases Versions

General configuration info

Description Memory Ephemeral storage
A starter AWS Lambda function. 128 MB 512 MB

Timeout

0 min 3 sec

@ AWS Compute Optimizer
Opt in to see memary recommendations for your Lambda functiens. View details [

Figure 3.7 - The Lambda configuration



Important configurations in Lambda

We will use these configurations for the next example. Before starting with the example, let’s take a
look at the definitions of the configurations:

Memory: This configuration is used to define the memory limit of the application. You need
to find the feasible amount of this value. If you define a large amount that is not used, it affects
the cost. On the other hand, if you define a smaller amount of memory than is used, your
application gives an out-of-memory exception.

Timeout: We mentioned that the Lambda function has a limitation in terms of timeout. You
can provide a duration limit under which the Lambda function is supposed to work.

Ephemeral storage: This configuration allows setting a limit for a temporary filesystem. When
you run the Lambda application, the /tmp folder is used for temporary storage and needs to
be deleted after Lambda finishes the process.

Triggers: Triggers allow you to select an AWS source that runs a Lambda function. For example,
S3, an object storage mechanism in AWS, could be a trigger for a Lambda function. We can add
S3 configuration in Lambda such that when an object/file is uploaded to S3, it triggers Lambda.

Permissions: Permissions define what roles the Lambda function is able to access. For example,
if you need to upload a file to S3 using a Lambda function, then the Lambda function should
have an S3 object PUT permission in the execution role.

Destinations: When Lambda finishes the process, it can send information to other services,
such as a queue.

Environment variable: This allows you to add an environment variable to be used in a Lambda
application. For example, you can add a database URL to this configuration. If the database
URL is changed, you don’t need to change the code.

Tags: Tags allow you to add a label to your AWS services. It is a good practice for when you
search for or categorize services. For example, you may have two similar Lambda functions,
the first of which is deployed by the Customer Relationship Management (CRM) team and
the second of which is deployed by the order management team. Hence, you can give two tags
to the functions, such as CRM and Order Management, allowing you to categorize your
functions and facilitate searching as well. This is also used for cost management.

Virtual Private Cloud (VPC): A VPC allows you to create AWS services in a virtual network
environment that you define. You can separate AWS services into different network settings.
As you see in the following diagram, two instances can be created in different environments:

VPCA VPCA

10.0.0.0/16 10.0.0.0/16

»,

VPC peering connection

Instance
10.0.0.4/32
Subnet

Instance
10.0.0.4/32
Subnet

Figure 3.8 - AVPC

25



26

Cloud Computing with Lambda

o Monitoring and operations tool: Lambda collects application logs by default, and they can be
monitored via CloudWatch, which helps you to monitor an application. This tool is enabled
by default, but you can also disable it.

The configuration of Lambda is important when creating a new function. It is good to know what
configuration is used for what reason, hence enabling you to use Lambda in the right way.

A Lambda skeleton

When you implement a Lambda function via Python, you need to follow some rules in order to
execute the application. When a Lambda function is run, it calls the handler method, which is
shown with the following syntax:

def lambda handler (event, context) :
return some_value

As you see, the first parameter is the event object. An event object consists of JSON in order to
process data as a parameter. You can see a sample parameter here:

{

"Temperature": 10,
"Wind": -5

}

The second parameter shows information about the Lambda runtime. You can see some of the runtime
fields here:

o function name (the name of the function)
o function version (the version of the function)

e memory limit in mb (the Lambda function memory limit)

We've looked at the main skeleton of the Python Lambda function. In the next section, we'll see how
to return a value from Lambda.

Lambda returning value

In Lambda, you can return a value that is either a simple message or a complex event with JSON. In
the following example, you can see a sample returning message for Lambda:

def handler name (event, context):

message = 'Weather details. Temperature: {} and Wind: {}!'.
format (event [ ' Temperature'], event['Wind'])

return message



Logging in Lambda

In this example, Lambda takes Temperature and Wind as input and returns these parameters as
a message. In the following example, you can see a more complex return value:

def handler name (event, context):

return {
"statusCode": 200,
"Temperature": 10,
"Wind": -5

}

As you can see in this example, the return value consists of a simple object to be parsed by the invoker.
For example, if Lambda is called by one of the Python applications, this object will be returned once
Lambda finishes the process. In general, this parameter allows you to run a Python application with
different behavior. In the next section, we'll see how to log information in Lambda.

Logging in Lambda

It is important to use logging functionality in order to trace your application. In some cases, you need
to get information about an application; alternatively, you may be processing data via Lambda and
you may get an exceptional result. Hence, logging is helpful to check the information to understand
the real problem in the application.

There are multiple logging libraries that you can use in Lambda, including this one: https://
docs.python.org/3/library/logging.html

In the following example, just add a log and return a value:

import logging
logger = logging.getLogger ()
logger.setLevel (logging.INFO)
def handler name (event, context):
logger.info ('Process has finished and result will be returned')

return {
"statusCode": 200,
"Temperature": 10,
"Wind": -5

}

I always recommend adding some logs within an application; it is one of the best practices for being a
good developer. In addition to that, we are going to dive deeper into CloudWatch, which is a logging
and monitoring service in AWS.

27


https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.html

28

Cloud Computing with Lambda

Filing a metadata parser application with Lambda and S3

We are going to execute another application within Lambda. In this case, Lambda will be triggered
by S3. S3 is an object storage service to which you can upload different types of files, such as image,
CSV, and text files. In this example, when you upload a file to S3, the service will trigger the Lambda
function, which in turn will provide information about file metadata. Let’s implement the application
step by step:
1. Login to the AWS Management Console.
Type 1lambda in the search box and go to the Lambda service.

2
3. Click Create function.
4

On the Create function page, select Author from scratch and then in the Runtime field,
select Python 3.9:

Create function .«

Choose one of the following options to create your function.

Author from scratch o Use a blueprint

Start with a simple Hello World example. Build a Lambda application from sample
code and configuration presets for common
use cases.

Basic information

Function name
Enter a name that describes the purpose of your function.

S3TriggerLambdaRead

Use only letters, numbers, hyphens, or underscores with no spaces.
Runtime Info
Choose the language to use to write your function. Note that the console code editor supports only Node.js, Python, and Rt

Python 3.9

Architecture Info
Choose the instruction set architecture you want for your function code.

O x86_64

arme64

Figure 3.9 - Create function



Filing a metadata parser application with Lambda and S3

5. In the Permissions section, select Amazon S3 object read-only permissions under Policy
templates and enter a role name. In this case, I entered S3TriggerLambdaReadRole.
The role is required to read the file from the S3 service:

Permissions info
By default, Lambda will create an execution role with permissions to upload logs to Amazon CloudWatch Lo

¥ Change default execution role

Execution role

Choose a role that defines the permissions of your function. To create a custom role, go to the IAM console.
Create a new role with basic Lambda permissions
Use an existing role

O Create a new role from AWS policy templates

(@ Role creation might take a few minutes. Please do not delete the role or edit the trust

Role name
Enter a name for your new role.

S3TriggerLambdaReadRole

Use only letters, numbers, hyphens, or underscores with no spaces.

Policy templates - optional Info
Choose one or more policy templates.

Amazon S3 object read-only permissions X
S3

Figure 3.10 — Permissions

6. Click the Create function button at the bottom of the page:

B3 & @ Oohiovw

X Lambda Functions

Functions (5) Last fetched now | (&7 |

1 @

Q, Filter by tags and attributes or search by keyword

Figure 3.11 — Create function



30

Cloud Computing with Lambda

7.

In order to read object metadata, paste the following code snippet into the Lambda function
and click the Deploy button:

import json
import urllib.parse
import boto3

print ('Loading function')

s3 = boto3.client('s3"')

def lambda_ handler (event, context) :
#print ("Received event: " + json.dumps (event, indent=2))

# Get the object from the event and show its content type
bucket = event['Records'] [0] ['s3'] ['bucket'] ['name']
key = urllib.parse.unquote plus (event ['Records'] [0] ['s3"']
['object'] ['key'], encoding='utf-8")
try:
response = s3.get object (Bucket=bucket, Key=key)
print ("CONTENT TYPE: " + response['ContentType'l])
return response['ContentType']
except Exception as e:
print (e)

print ('Error getting object {} from bucket {}. Make
sure they exist and your zbucket is in the same region as this
function.'.format (key, bucket))

raise e

You can also find the original code block from AWS: https://docs.aws.amazon.com/
lambda/latest/dg/with-s3-example.html.

Boto3 is used to manage AWS services for Python. We created an S3 client to access and
manage the S3 service.

The application is triggered when you put a file into S3. In the code snippet, the code gets the
bucket information from the bucket variable. The ur111ib library allows you to parse an
S3 key in order to retrieve an S3 object via the get _object method. Then, we print the
content type.


https://docs.aws.amazon.com/lambda/latest/dg/with-s3-example.html
https://docs.aws.amazon.com/lambda/latest/dg/with-s3-example.html

Filing a metadata parser application with Lambda and S3 31

You can also see the latest code snippet within Lambda:

Tools  Window Test |+ Deploy Changes not deployed

B lambda_function *
1 import json
2 import urllib.parse
3  import boto3
4
5 print('Loading function')
6
7 s3 = boto3.client('s3")
8
9 def lambda_handler(event, context):
10 #print("Received event: " + json.dumps(event, indent=2))
11 # Get the object from the event and show its content type
12 bucket = event['Records']J[@]['s3']["bucket']["name']

Figure 3.12 - A Lambda function with code

8. Itis time to create an S3 object. Type s3 in the AWS Services search box:

aws I services | Q s3)
@ Successfully up Search results for 's3'

Services

Features (11)

Blogs (1,099) = w

Scalable Storage in the Cloud

Documentation (108,218)
Figure 3.13 - Searching S3

9. Go to the S3 service.
10. Within the S3 service, click the Create bucket button:

Buckets (10) info

Buckets are containers for data stored in S3. Learn more [/}
Create bucket

Figure 3.14 - Creating an S3 bucket



32 Cloud Computing with Lambda

11. Give a unique name to the S3 bucket. The bucket is like a folder, and you can authorize it to
upload files such as image and CSV files. Note that the bucket name should be unique:

Create bucket ..

Buckets are containers for data stored in S3. Learn more [4]

General configuration

Bucket name

inputforlambdal23

Bucket name must be unique and must not contain spaces or uppercase letters. See rules for bucket naming Z

AWS Region

US East (Ohio) us-east-2 v

Copy settings from existing bucket - optional
Only the bucket settings in the following configuration are copied.

Choose bucket

Figure 3.15 — Entering a bucket name

Now, you should see a list of buckets and the bucket that you created:

Name A AWS Region v
O glueinputbucket123 US East (N. Virginia) us-east-1
O inputforlambda123 US East (Ohio) us-east-2

Figure 3.16 — A bucket list

We have created an S3 bucket. Now, we need to make a small configuration that triggers a Lambda
function when a file is uploaded to S3:

1. Click the bucket link. For this sample, we need to click inputforlambdal23. It changes based
on the creation name that the user inputted at the beginning:



Filing a metadata parser application with Lambda and S3

Buckets (5) info

Buckets are containers for data stored in S3. Learn more [2

Q
Name A AWS Region
asdasdasd1123 US East (Ohio) us-east-2
bikebuyer US East (N. Virginia) us-east-1
inputforlambdai23 US East (Ohio) us-east-2

Figure 3.17 - The bucket list
2. Click the Properties tab:
Amazon S3 Buckets inputforlambda123

inputforlambda123 .«

Objects Properties Permissions Metrics Management Access Points

Bucket overview

AWS Region Amazon Resource Name (ARN)

US East (Ohio) us-east-2 arn:aws:s3::inputforlambdai23

Figure 3.18 — The features of the bucket

3. At the bottom of the Properties page, find the Event notifications tab.

4. Click the Create event notification button:

Event notifications (0) Create event notification

Send a natification when specific events accur in your bucket. Learn mare [

Name Event types Filters Destination type Destination

No event notifications

Choose Create event notification to be notified when a specific event occurs.

‘ Create event notification |

Figure 3.19 - The Event notifications tab

33



34 Cloud Computing with Lambda

5. In the form, fill out the event name and select the event type in the Event types section. For
this example, we are going to select the All object create events option. Hence, when an object
is created, the Lambda function will be triggered:

General configuration

Event name
triggerLambda

Event name can contain up to 255 characters.

Prefix - optional
Limit the notifications to objects with key starting with specified characters.

Suffix - optional
Limit the notifications to objects with key ending with specified characters.

Event types

Specify at least one event for which you want to receive notifications. For each group, you can choose an event type for all events, or you
can choose one or more individual events.

Object creation

All object create events Put
s3:0bjectCreated:* s3:0bjectCreated:Put

Figure 3.20 - Event configuration

6. At the bottom of the page, select the Lambda function that will be triggered, under the
Destination section, and click the Save changes button:



Filing a metadata parser application with Lambda and S3 35

Destination

@ Before Amazon S3 can publish messages to a destination, you must grant the Amazon S3 principal the
necessary permissions to call the relevant API to publish messages to an SNS topic, an SQS queue, or a
Lambda function. Learn more [F]

Destination
Choose a destination to publish the event. Learn more Z

© Lambda function
Run a Lambda function script based on S3 events.

SNS topic
Send notifications to email, SMS, or an HTTP endpoint.

SQS queue

Send notifications to an SQS queue to be read by a server.

Specify Lambda function
© Choose from your Lambda functions
Enter Lambda function ARN

Lambda function

S3TriggerLambdaRead v

Figure 3.21 - The event destination

You should see a success message in the AWS console:

© Successfully created event notification "triggerLambda".

Operation successfully completed.

Figure 3.22 - The event destination

You can also double-check with Lambda whether the event has been successfully created. When you
click the respective Lambda function, it shows the event source:

Lambda Functions S3TriggerLambdaRead

S3TriggerLambdaRead

v Function overview info

S3TriggerLambdaRead

@ Layers 0)

B>
+ Add trigger

Figure 3.23 - Lambda with a trigger



36 Cloud Computing with Lambda

At the moment, you are able to see the Lambda function on the left side as a trigger. It is time to test
our Lambda trigger:

1. Open the S3 bucket that you created and navigate to it. After that, click the Upload button:

Amazon S3 Buckets inputforlambda123
inputforlambda123 ...

Objects Properties Permissions Metrics Management Access Points

Objects (0)

Objects are the fundamental entities stored in Amazon S3. You can use Amazon S3 inventory [4] to get a list of all objec

grant them permissions. Learn more [}

[ Upload

Figure 3.24 — An S3 bucket

2. Click the Add files button, which allows you to add any kind of file from your computer. For
this example, we have uploaded one RTF file. You can also upload an image, PDFE, or whatever

you want:

Amazon 53 Buckets inputforlambda123 Upload

Upload i

Add the files and folders you want to upload to S3. To upload a file larger than 160GB, use the AWS CLI, AWS SDK or Amazon
S3 REST API. Learn more [

Drag and drop files and folders you want to upload here, or choose Add files, or Add folders.

Files and folders (0) Add files ‘ ’ Add folder
All files and folders in this table will be uploaded.
Q 1
Name A Folder v Type v Size v

Figure 3.25 - The S3 Upload page



Filing a metadata parser application with Lambda and S3

The following screenshot shows that you have successfully uploaded the testTriggr.rtf
file to S3. S3 also gives some details regarding files, such as the type, the latest modification
time, as well as the size. If you have more files, you can see a file list under the Objects panel:

‘ Q Find objects by prefix ‘ 1 &
Name A Type v Last modified v Size v Storage class v
B testTrigger.rtf rtf July 28, 2022, 22:42:13 (UTC+02:00) 398.0B Standard

Figure 3.26 — The S3 file list

As we have uploaded a file to S3, the Lambda function should work. It is time to check whether
that is the case. Navigate to the Lambda function:

Lambda Functions S3TriggerLambdaRead

S3TriggerLambdaRead

v Function overview info

S3TriggerLambdaRead

<3 Layers 0
= MY (0)
Ee
+ Add trigger
Code Test Monitor Configuration Aliases Versions

Figure 3.27 - The Lambda function

37



38 Cloud Computing with Lambda

3. Click the Monitor tab, and you should be able to see that the Lambda is called:

Invocations H
Count
2
1 —
0
06/30 09/30 12/31 03/31

@ Invocations

Figure 3.28 — Monitor in Lambda

We can also check the detailed logs via CloudWatch. As we mentioned early, CloudWatch helps
you to check AWS service logs.

4. On the same page, click View logs in CloudWatch. You will be redirected to the CloudWatch service:

0 Log stream v | Last event time
O 2022/08/29/[$LATEST]d221e172b11c4e6d989cf3833ab2205d 2022-08-29 16:18:16 (UTC+02:00)
O 2022/07/28/[$LATEST1859d62e2a7b1441aa818a8da5def217f 2022-07-28 22:42:14 (UTC+02:00)

Figure 3.29 — The CloudWatch service

5.  When you click the link under Log stream, you will be able to see the logs that you implemented
in the Lambda function:

> Timestamp Message

There are older events to load. Load more.

» 2022-07-28T22:42:14.044+02 :00

» 2022-07-28722:42:14.145+02:00 START RequestId: 7c¢S536laf-bf86-41d3-95aa-adb279633667 Version: SLATEST

> 2022-97-28T22:42:14.397+02:00

> 2022-07-28T22:42:14.399+02 :00 END RequestId: 7c536laf-bf86-41d3-9500-adb279633667

»> 2022-07-28T22:42:14.399+082:00 REPORT RequestId: 7c¢536laf-bf86-41d3-95aa-adb279633667 Duration: 252.78 ms Billed Duration: 253 ms Memory Size: 1.

No newer events at this moment. Auto retry paused. Resume

Figure 3.30 - CloudWatch logs



Summary

You can also upload different types of files in order to test the Lambda function as well as the
CloudWatch logs.

We implemented a simple Python application integrated with S3. When you add a file to a storage
mechanism, it triggers the Lambda function in order to process the file. As you saw in this example,
you can test your Python code without provisioning a server and installing the Python library. Lambda
comes with logging, monitoring, and object storage capabilities.

Summary

In this chapter, we dived into Lambda, which is one of the most important services in AWS. Lambda
helps you to deploy and run your application without provisioning a server, which facilitates deployment
time. We also touched upon the S3 service, which is used for object storage and has good integration
with Lambda. In the following chapter, we will take a look at how to provision a server and run a
Python application on an AWS-based server.

39






4

Running Python Applications

on EC2

In this chapter, we are going to learn how to run Python applications within the Elastic Compute
Cloud (EC2) service. EC2 is an AWS service that allows you to provision a server in the cloud. You can
find different types of server options. You need to carry out some configuration and run the server on

the cloud. You might wonder why we need EC2 when we have Lambda. Lambda is very effective but
has a duration limit. If you run your function for more than 15 minutes, it will give a timeout. What
happens if your application needs to be run for a couple of hours because of a huge process? Lambda

doesn’t work and you need your own server. Another reason to use EC2 would be if you need a very
special configuration or installation that needs to be done within a specific server; you would need a
server as well. Based on this kind of requirement, you need to have your own server in the cloud. We

will provision a server and run a Python application within EC2.

The chapter covers the following topics:

What is EC2?

EC2 purchasing options

EC2 instance types

Provisioning an EC2 server

Connecting to an EC2 server

Running a simple Python application on an EC2 server
Processing a CSV file with a Python application on an EC2 server
The AWS CLI



42

Running Python Applications on EC2

What is EC2?

AWS EC2 is a service that provides a secure and scalable server machine in the cloud. The main
advantage of EC2 is that server management is very easy from the AWS Management Console. When
you provision an on-premises server, it is not easy to configure security policies, disk management,
backup management, and so on. AWS accelerates all this. When you provision EC2, AWS ofters
different contracts that you need to select and all these types impact the cost.

In order to select the right service, you need to understand what services you are going to use, how
many resources you need, and what type of storage you really need. These things are going to help
you to reduce the cost and use EC2 efficiently.

EC2 purchasing options

We will now look at the types of EC2 contracts.

On-Demand

In this offer, you don't need to contract for a specific time period. AWS charges according to the time
you use the server. You can provision a server, shut it down, and release the server whenever you
want. It is a pay-as-you-go model.

Reserved

You need to sign a contract with AWS for 1-3 years. The key thing to note is that AWS offers a discount
for a Reserved commitment.

Spot

Let’s imagine you have an application that has flexible start and end times. You define a bid price for
whatever you are willing to pay for the server. Let’s imagine you have a data processing application that
runs for five hours and the running time is not important. You are able to run at the beginning or end
of the month; it is not a problem. You can provision a Spot instance that significantly reduces your cost.

Dedicated

This is useful when your organization has a software license and is moving to AWS. These servers
are only used for your organization. Hence, you can keep the license that is served to your company.

EC2 instance types

AWS offers different types of servers depending on your technical requirement. Server type selection
is one of the most important things to manage your budget and use the EC2 server efficiently. If



EC2 instance types

you need to use memory processing applications such as Spark, it would be better to provision a
memory-optimized server. On the other hand, if you need a server that needs more storage, you can
use a storage-optimized server.

The following screenshot shows that you are able to select more than hundreds of types of servers
in AWS:

Instance types (498) [ C ‘ | Actions
Q 1 2 3 4 5 6 7 . 10 »

Instance type ¥ vCPUs ¥ Architecture ¥ Memory (GiB) ¥ Storage (GB} ¥ Storage type A4 Network performance
t2.nano 1 1386, xB6_64 0.5 - - Low to Moderate
t2.micro 1 i386, xB6_64 1 - - Low to Moderate
t2.small 1 1386, x86_64 2 - - Low to Moderate
t2.medium 2 386, x86_64 4 - - Low to Moderate
t2large 2 x86_64 8 - - Low to Moderate
t2xlarge 4 x86_64 16 - - Moderate
t2.2xlarge 8 x86_64 32 - - Moderate
t3.nano 2 x86_64 0.5 - - Up to 5 Gigabit

Figure 4.1 - EC2 instance types [Source - https://aws.amazon.com/]

Auto-scaling

If you need a clustered environment, it would be better to define an auto-scaling policy in order to
manage resources efficiently.

Let’s think about a batch processing job that runs once a day in order to process massive amounts of
data. You provision more than one machine. But when the system is idle, you are going to be charged
unnecessarily. However, if you define an auto-scaling policy, the system will close when it is idle.
This configuration is going to reduce your costs. The following figure shows the minimum size of the
launched instances and the maximum size of the desired capacity:

43


https://aws.amazon.com/

44 Running Python Applications on EC2

Maximum size
A

fi
- 1

Minimum size

Figure 4.2 — Auto-scaling

Auto-scaling is one of the most important features of EC2. You need to consider the usage of EC2
and configure an auto-scaling feature.

In this section, we took a look at the most important features of EC2. In the next section, we will

provision an EC2 server.

Provisioning an EC2 server

We are going to provision an EC2 server step by step. There are different types of EC2 machines; we
will provision a free server. I would recommend terminating the server when you finish your work,
as we are just using EC2 for learning purposes.

To provision an EC2 server on AWS, carry out the following steps:

1. Go to the AWS Management Console.
2. Search for EC2 and go to the link titled EC2:

Search results for 'Ec2'

Services

Features (46)

B EC2 ¢
Virtual Servers in the Cloud

Blogs (1,785)

Documentation (130,781)

Figure 4.3 — AWS Management Console



Provisioning an EC2 server

3. In order to launch an instance, click Instances on the left side, and then click Launch instances:

Instances info

@ New EC2 Experience %

Tell us what you think

Q
EC2 Dashboard
EC2 Global View Name v Instance ID Instance state v Instance type ¥ Sta
UL No instances
Tags '0u do not have any instances r

——

¥ Instances

Instances >

Instance Types

Figure 4.4 — Create an instance

4. In the new panel, you can give a name to the EC2 instance. You can see that we titled ours
Test_Python. On this launch page, AWS recommends a Linux machine, which is in the free tier.
The free tier means that you don’t need to pay money to AWS. We will proceed with that option:

45

Launch an instance o

Amazon EC2 allows you to create virtual machines, or instances, that run on the AWS Cloud. Quickly get started by
following the simple steps below.

Name and tags info

Name

Test_Python Add additional tags

v Application and OS Images (Amazon Machine Image) info

An AMI is a template that contains the software configuration (operating system, application server, and applications) required to
launch your instance. Search or Browse for AMIs if you don't see what you are looking for below

Q, Search our full catalog including 1000s of application and OS images

Quick Start

Amazon Ubuntu Windows Red Hat SUSE Linux Q
Linux
> Browse more AMIs
aws ubuntu® | E¥Microsoft || 4 RedHat Including AMIs from

SUSE AWS, Marketplace and
the Community

Amazon Machine Imaae {AMI}

Figure 4.5 — Instance features

¥ Summary

Number of instances. Info

1

Software Image (AMI)
Amazon Linux 2 Kernel 5.10 AMI 2.0.20220719.0

x86_64 HVM gp2
2ami-051dfed8f67f035f5

Virtual server type (instance type)

t2.micro

Firewall {security group)

New security group

Sterage {volumes)
1 volumels) - 8 GiB

@ Free tier: In your first year includes 750 X
hours of t2 micra (o t3 micro In the
Regiens in which t2.micro is unavailable)
instance usage on free tier AMIs per
manth, 30 GIB of EBS starage, 2 million
105, 1 GB of snapshots, and 100 GB of
bandwidth to the intarnet.

5. You can now see the Key pair (login) panel. A key pair is used to connect to the server via the
SSH key in a secure way. In order to create a new SSH key, click Create new key pair:



46

Running Python Applications on EC2

¥ Key pair (login) info
You can use a key pair to securely connect to your instance. Ensure that you have access to the selected key pair before you launch
the instance.

Key pair name - required

v | C Create new key pair

& Please choose a key pair or choose the option to proceed with a key pair

Figure 4.6 — Creating a new key pair

6. We need to give a name to the key pair. Apart from that, you can keep the key pair type and
private key file format as the defaults. Click Create key pair:

Create key pair X

(@ We noticed that you didn't select a key pair. If you want to be able to connect
to your instance it is recommended that you create one.

Key pairs allow you to connect to your instance securely.

Enter the name of the key pair below. When prompted, store the private key in a secure
and accessible location on your computer. You will need it later to connect to your
instance. Learn more [4

I O Create new key pair Proceed without key pair

Key pair name

| key_for_test_python

The name can include upto 255 ASCII characters. It can't include leading or trailing spaces.

Key pair type

O RsA
RSA encrypted private and public key pair

ED25519
ED25519 encrypted private and public key pair (Not supported for Windows instances)
Private key file format

© .pem
For use with OpenSSH

.ppk
For use with PuTTY

Cancel Create key pair

Figure 4.7 — Naming the key pair



Provisioning an EC2 server 47

Once you click Create key pair, it will download the file. Please keep this file; it will be used to connect
to the machine. The Key pair name dropdown will also be selected with your creation. When you
create a new key pair in the upper section, the new key pair name will be visible, which you can see
in the following screenshot. For this example, our key pair is key_for_test_python:

v Key pair (login) info
You can use a key pair to securely connect to your instance. Ensure that you have access to the selected key pair before you launch
the instance.

Key pair name - required

key_for_test_python v C |Create new key pair

Figure 4.8 — The key pair is ready

In the next step, we are going to create and assign a virtual private cloud (VPC) and subnet:

VPC - required Info
| | ¢

Subnet Info

‘ Select v ’ C Create new subnet [4

Figure 4.9 - VPC and subnet

A VPC allows AWS services to run in a logically isolated network. It is one of the key services that
keep the service secure. You can easily isolate the servers with VPC configuration. The following figure
illustrates a VPC and EC2 setup:



48 Running Python Applications on EC2

VPC Subnet in AZ 1
&

Amazon EC2 Amazon EC2

Instance Instance

VPC Subnet in AZ 2

L =

Instance Instance

VPC Subnet in AZ 1
&

Amazon EC2 Amazon EC2

Instance Instance

VPC Subnet in AZ 2

&

Instance Instance

Figure 4.10 - VPC [Source - https://aws.amazon.com/]

As you see, once you add one of the servers to the VPC subnet in AZ 2, it means the EC2 instances
are logically isolated from others. Hence, you can add access controls to keep the server secure.

The subnet is also one of the important parts of a VPC. Each VPC consists of a subnet that defines an
IP range for the VPC. In the following diagram, you can see the IP range for each subnet:

EC2 Instance A
IP:10.0.1.15

Subnet 1 -10.0.1.0/24

Availability Zone 1

Subnet 2 - 10.0.2.0/24

EC2 Instance B
IP:10.0.2.142 ;

Availability Zone 2

Figure 4.11 - Subnet [Source - https://aws.amazon.com/]



Provisioning an EC2 server

We took a look at VPCs and subnets. Now, we need to define a VPC for the EC2 instance:

1. Type VPC in the search box of the AWS Management Console:

Search results for 'vpc'

Services

Features (39)

Blogs (623)

Isolated Cloud Resources

Documentation (54,552)
Figure 4.12 - VPC on the AWS Management Console

2. Click Create VPC:

m ’ Launch EC2 Instances ‘

Note: Your Instances will launch in the US East region.

Resources by Region C Refresh Resources
Figure 4.13 — Create VPC
3. Once you click the button, under the VPC settings, VPC and more is selected by default. This

option allows you to create a VPC with subnets, which you see on the right side of the following
screenshot. With this option, you can create a VPC and subnet together:

VPC  Show details Subnets (4)
Your AWS virtual network Subnets within this VPC
project-vpc us-east-1a

project-subnet-public1-us-east-1a

project-subnet-private1-us-east-1a

us-east-1b

project-subnet-public2-us-east-1b

project-subnet-private2-us-east-1b

Figure 4.14 - Adding VPC details

49



50

Running Python Applications on EC2

4. At the bottom of this page, click the Create VPC button:

Tags

A tag is a label that you assign to an AWS resource. Each tag consists of a key and an optional value. You can use tags to search and filter
your resources or track your AWS costs.

No tags associated with the resource.

Add new tag

You can add 50 more tags.

Cancel Create VPC

Figure 4.15 - Creating a VPC

When you click Create VPC, the VPC begins creation and you can see the status of the progress:

© Success

¥ Details

® Create VPC: vpc-058e7f6b9a98c8829 [4

© Enable DNS hostnames

(® Enable DNS resolution

(@ Verifying VPC creation: vpc-058e7f6b9a98c8829 [4
(® Create 53 endpoint: vpce-0c6d83badbbcce65c [4
(@ Create subnet: subnet-Oe5cd84ea07ea0be3 [

@ Create subnet: subnet-014e1ad14efa7805b [

@ Create subnet: subnet-088b09df85f0155a1 [

® Create subnet: subnet-00dd3af3cce642264 [/

(@ Create internet gateway: igw-0687ad5094c223abe [2
(@ Attach internet gateway to the VPC

(@ Create route table: rtb-0Oe6e259f011a8f2e4 [4

(© Create route

(@ Associate route table

® Associate route table

© Create route table: rtb-0001f93723753426b [4

® Associate route table

(® Create route table: rtb-09a68003b281bd08e [A

(® Associate route table

(@ Verifying route table creation

® Associate S3 endpoint with private subnet route tables: vpce-0c6d83badbbcce65c [2

Figure 4.16 — The VPC creation process



Provisioning an EC2 server

After it has been created, you are able to see the VPC and subnet in the VPC console:

Resources by Region G refresh Resources

You are using the following Amazon VPC resources

VPCs US East 1 NAT Gateways us east 0
See all regions See all regions
Subnets US East © VPC Peering Connections us East O
See all regions See all regions

Figure 4.17 - The VPC and subnet

So far, we have created a VPC and a subnet. We can proceed with the EC2 creation:

1. Open the EC2 launch page again. In this case, the VPC and subnet are selected by default.
Click Edit:

v Network settings Get guidance

Network Info
vpc-058e7f6b9a98c8829 | project-vpc

Subnet Info
subnet-00dd3af3cce642264 | project-subnet-private2-us-east-2b

Auto-assign public IP Info
Disable

Firewall (security groups) Info

A security group is a set of firewall rules that control the traffic for your instance. Add rules to allow specific traffic to reach your
instance.

© Create security group Select existing security group

We'll create a new security group called 'launch-wizard-2' with the following rules:

Figure 4.18 - Network settings

51



52 Running Python Applications on EC2

2. Inorder to connect to the machine, we need to select a public subnet and enable Auto-assign
public IP. You can see the public subnet options in the Subnet dropdown. In general, it is not
recommended to put production applications in a public subnet. As we are implementing a
test project, we can proceed in this manner:

¥ Network settings et guidance

VPC - required Info

vpc-0bf20¢5f5d1db629f (project-vpc) v (&
10.0.0.0/16
Subnet Info
subnet-0ed205d475ea759fb project-subnettpublic1-is-east-2a (& (Create new subnet
VPC: vpc-0bf20c5f5d1db629f  Owner: 961487522622 = E

Availability Zone: us-east-2a  IP addresses available: 4091 subnet-0ed206d475ea759fb

Auto-assign public IP Info
v

Figure 4.19 — Enabling the public IP

3. At the bottom of the page, click Launch instance:

@ Fres ther: In your first year Includes 750 X
v haurs of t2 micro (or 13.micro in the

(@ Free tier eligible customers can get up to 30 GB of EBS General Purpose (SSD) or Magnetic storage

Regions in which t2.micro is unavailable)

instance usage on free tier AMIs per
Add new volume month, 30 GiB of EBS storage, 2 million
105, 1 GB of snapshats, and 100 GB of
bandwidth to the internet.

0 x File systems Edit

» Advanced details info

Figure 4.20 - Launching an instance

When we click the Instances link on the left side, we are able to see the list of instances that we have
created. Congratulations, you have created your first server!

@ NewEC2 Experience o, Instances (1) info Instance state

Tell us what you think

EC2 Dashboard

EC2 Global View Name v Instance ID Instance state v Instance type ¥ Status check Al

Events Test_Python i-0ef04670cd4e71478 @Rumning @& t2.micro (@ 2/2 checks passed Nt

Tags

Limits
¥ Instances

Instances

Figure 4.21 - Running instances



Connecting to an EC2 server

You have successfully created a server in an efficient way. We are going to connect to the server in
the upcoming section.

Connecting to an EC2 server
In this stage, we are going to connect to the EC2 server via SSH:

1. In the list of instances, there is a Connect button. Click it:

Instances (1/1) info ‘ Cc H Connect || Instance state ¥ ‘ ‘ Actions ¥
Q

Name v Instance ID Instance state v Instance type ¥ Status check Alarm status Availal

Test_Python i-052219d139b113952 @ Running ax t2.micro @ 2/2 checks passed No alarms + us-eas

Figure 4.22 — Connecting an instance
2. Under the SSH client tab, you can see the steps to connect to the EC2 machine:

Connect to instance info
Connect to your instance i-052219d139b113952 (Test_Python) using any of these options

EC2 Instance Connect Session Manager SSH client EC2 serial console

Instance ID

i-052219d139b113952 (Test_Python)

1. Open an SSH client.

2. Locate your private key file. The key used to launch this instance is key_for_test_python.pem

3. Run this command, if necessary, to ensure your key is not publicly viewable.
chmod 400 key_for_test_python.pem

4. Connect to your instance using its Public DNS:

ec2-18-188-101-167.us-east-2.compute.amazonaws.com

Example:

ssh -i "key_for_test_python.pem" ec2-user@ec2-18-188-101-167.us-east-2.compute.amazonaws.com

@ Note: In most cases, the guessed user name is correct. However, read your AMI usage instructions to check if
the AMI owner has changed the default AMI user name.

Figure 4.23 - Steps to connect

53



54 Running Python Applications on EC2

3. In this example, I will use Mac Terminal in order to connect to the machine via SSH. I am
copying the command in the example and pasting it into Terminal. You can also use different
SSH applications such as PuTTY and WinSCP. Please make sure the PEM key file is in the same
location where you execute the command or that you set the right path for the PEM key file:

serkans@NC-serkans—DR4IXX4WVR key % 1s
key_for_test_python.pem

4 L Y S 4 R LR S AT ' CYV I s sh -1 "key_for_test_python.pem" ec2-user@ec?
—-18-188-101-167.us—east—2.compute.amazonaws.com

Figure 4.24 — Connecting via Terminal

4. Type yes to confirm the connection with this machine:
serkans@NC-serkans—-DR49XX4WVR key % ssh —-i "key_for_test_python.pem" ec2-user@ec2
-18-188-101-167.us—east—2.compute.amazonaws.com
The authenticity of host 'ec2-18-188-101-167.us—-east—2.compute.amazonaws.com (18.
188.101.167)' can't be established.

ED25519 key fingerprint is SHA256:BvU4cHBsD4SyC301WIJIXnGo3T+zy6ELIKFfqRD8MxRs.
This key is not known by any other names
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Figure 4.25 — Confirmation for the machine

Congratulations! You have connected to the machine.

ED25519) to the list of known hosts.
]« / Amazon Linux 2 AMI

https://aws.amazon.com/amazon-linux-2/

5 package(s) needed for security, out of 17 available

Run "sudo yum update" to apply all updates.

-bash: warning: setlocale: LC_CTYPE: cannot change locale (UTF-8): No such file o
r directory

[ec2-userPip-10-0-6-217 ~1%

Figure 4.26 — Connected to the machine

You have successfully connected to the server. We are going to install Python in the next section.

Running a simple Python application on an EC2 server
We are going to run a simple Python application on EC2. First of all, check the Python version:
1. Execute python --version from the command line:
[ec2-user@ip-10-6-6-217 ~1$ python —--version
Python 2.7.18

[ec2-user@ip-10-0-6-217 ~1%

Figure 4.27 — Checking the Python version



Processing a CSV file with a Python application on an EC2 server

2.  Run the python command on the command line:

[ec2-user@Pip-10-8-6-217 ~1$% python

Python 2.7.18 (default, May 25 2022, 14:30:51)

[GCC 7.3.1 20180712 (Red Hat 7.3.1-15)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>>

Figure 4.28 — Connecting to the Python compiler

3. Runasimple code snippet suchasprint 'Hello EC2' and you will see that the compiler
executes the command and prints it:
[ec2-user@ip-10-0-6-217 ~1$% python

Python 2.7.18 (default, May 25 2022, 14:30:51)
[GCC 7.3.1 20180712 (Red Hat 7.3.1-15)1 on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> print 'Hello EC2'
Hello EC2

Figure 4.29 - Running simple code

We have executed a simple Python application. In the next section, we will run a simple project on EC2.

Processing a CSV file with a Python application on an EC2
server

In the previous chapter, we processed a CSV file within Lambda. In this section, we will run the same
application within EC2, but there will be some differences:

1. Login to the EC2 machine.
2. Create a folder in which to keep the csv file that is to be processed.
3. Runthemkdir csv command in order to create a csv folder on Ubuntu:

https://aws.amazon.com/amazon-1linux-2/

5 package(s) needed for security, out of 17 available
Run "sudo yum update" to apply all updates.

—bash: warning: setlocale: LC_CTYPE: cannot change locale (UTF-8): No such file
or directory

[ec2-user@ip-10-08-6-217 ~1%

[ec2-user@ip-10-0-6-217 ~]1%

[ec2-user@ip-10-0-6-217 ~1%

[ec2-user@ip-10-0-6-217 ~1% pwd

/home/ec2-user

[ec2-user@ip-10-0-6-217 ~]$ mkdir csv
[ec2-user@ip-10-0-6-217 ~1% 1s

csv

[ec2-user@ip-10-0-6-217 ~1%

Figure 4.30 — Creating a folder

After running the mkdir command, you can execute with the 1s command in order to list
your directory. As you see, the csv folder is created.

55



56

Running Python Applications on EC2

4. Locate the csv folder by executing cd csv:

[ec2-userPip-10-0-6-217 ~1$ cd csv/
[ec2-user@ip-10-8-6-217 csv1$ []

Figure 4.31 - Locating the csv folder

5. Create a sample CSV file in the EC2 machine.

I have uploaded a sample CSV file for you in the following URL. Run the following code to download
the sample CSV. The wget command allows you to download the file from the specific link:

wget https://raw.githubusercontent.com/PacktPublishing/Python-
Essentials-for-AWS-Cloud-Developers/main/sample.csv

[ec2-user@ip-10-8-6-217 csv]$ wget https://raw.githubusercontent.com/serkansakinmaz/python-aws—book/main/sample.csv
--2922-08-26 11:30:10-- https://raw.githubusercontent.com/serkansakinmaz/python-aws-book/main/sample.csv

Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.111.133, 185.199.188.133, 185.199.109.133,
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.111.133|:443... connected.

HTTP request sent, awaiting response... 280 0K

Length: 176 [text/plain]

Saving to: 'sample.csv'

108%[ >] 176 --.-K/s in @s

2022-88-26 11:30:18 (7.77 MB/s) - 'sample.csv' saved [176/176]

[ec2-user@ip-10-8-6-217 csv1$ 1ls
csvprocess.py employees.csv sample.csv
[ec2-userQip-10-8-6-217 csv]$ cat sample.csv
header @,header 1,header 2

row 1 col @,row 1 col 1,row 1 col
row 2 col @,row 2 col 1,row 2 col
row 3 col @,row 3 col 1,row 3 col
row 4 col @,row 4 col 1,row 4 col
[ec2-user@ip-10-8-6-217 csv1$ |

MR

Figure 4.32 — Downloading the sample CSV file

Now that you have downloaded the file, you are able to create Python code in order to process
the CSV file.

6. Run the following code to download the Python code:

wget https://raw.githubusercontent.com/PacktPublishing/Python-
Essentials-for-AWS-Cloud-Developers/main/fileprocessor.py

[ec2-user@Pip-10-8-6-217 csv]$ wget https://raw.githubusercontent.com/serkansakinmaz/python-aws—book/main/fileprocessor.py
—-2022-88-26 11:36:41—— https://raw.githubusercontent.com/serkansakinmaz/python-aws—book/main/fileprocessor.py

Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.111.133, 185.199.108.133, 185.199.109.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.111.133|:443... connected
HTTP request sent, awaiting response... 288 0K

Length: 272 [text/plain])
Saving to: 'fileprocessor.py

1ee%[ 1 272 —.-K/s in @s

2022-88-26 11:36:42 (16.5 MB/s) — 'fileprocessor.py' saved [272/272]
[ec2-user@ip-10-8-6-217 csv]$ 1s

employees.csv fileprocessor.py sample.csv
[ec2-user@ip-10-0-6-217 csv1$ | '

Figure 4.33 - Downloading the Python code



The AWS CLI

The following code is very simple; the code imports the csv library and prints the first five

lines within the CSV:
1 import csv
2
3 with open('sample.csv') as csv_file:
4 csv_reader = csv.reader(csv_file, delimiter="',")
5 line_count = @
6 for row in csv_reader:
7 print(row)
8 line_count += 1
9 if line_count == 5:
10 break;
11 print('Lines are printed')

Figure 4.34 - Python code

7. The next step is to run Python code to see the results. Execute python fileprocessor.
py to run the application. After running the application, you will see the results:

[ec2-user@ip-10-0-6-217 csv1$ python fileprocessor.py
['header @', 'header 1', 'header 2 ']

['row
['row
['row
['row
Lines

1 col 8', 'row 1 col 1', 'row 1 col 2 ']
2 col ', 'row 2 col 1', 'row 2 col 2 ']
3 col @', 'row 3 col 1', 'row 3 col 2 ']
4 col @', 'row 4 col 1', 'row 4 col 2 ']
are printed

[ec2-user@ip-10-0-6-217 csvl$

Figure 4.35 — Running Python code

In this section, we saw how to run a simple Python application within an AWS EC2 server. Now, we
will touch upon the AWS SDK for Python.

The AWS CLI

CLI stands for command-line interface, which provides some tools and libraries to facilitate accessing
AWS services. As such, the AWS CLI has some APIs to use AWS services. The AWS CLI is one of the
most common tools used when working with AWS. It has different methods to access AWS services.
We are going to install awsc11i to access AWS services. In this section, we will install awsc11i and,
after that, configure an EC2 machine to upload a file from EC2:

1. In order to access S3 from awscli, we need to create an IAM role to be attached to EC2.
Connect to the AWS Management Console, type IAM, and then click IAM:

57



58 Running Python Applications on EC2

Services Q iaml

Search results for 'iam'

Services

Features (17)
IAM %

Manage access to AWS resources

Blogs (1,362)

Documentation (112,

Figure 4.36 — IAM in the console

2. Click Roles on the left panel and then click Create role:

Identity and Access % IAM > Roles
Management (IAM)
Roles (59) info o
An |AM role is an identity you can
Delete

create that has specific permissions

Q Search IAM : ‘ .
with credentials that are valid for short Create
Dashboard durations. Roles can be assumed by role

entities that you trust.

¥ Access management
[ Q [Search ]
User groups
Users L 28 > @}
Roles
Role name
Policies

Figure 4.37 — Create role

3. Select EC2 as a common use case and click Next:



The AWS CLI

Use case

Allow an AWS service like EC2, Lambda, or others to perform actions in this account.

Common use cases
O EC2

Allows EC2 instances to call AWS services on your behalf.

Lambda

Allows Lambda functions to call AWS services on your behalf.

Use cases for other AWS services:

Choose a service to view use case v

Figure 4.38 — Select a service
4. Now, we need to give the required permission. Since we will access S3, check the

AmazonS3FullAccess checkbox. This policy will allow users to upload and read the object
under S3. After selecting the policy, you can click the Next button:

Policy name (& v Type Description

' AmazonS3FullAccess AWS m... Provides full acce:

P Set permissions boundary - optional info
Set a permissions boundary to control the maximum permissions this role can have. This is not a common setting, but
you can use it to delegate permission management to others.

Cancel Previous m

Figure 4.39 - Selecting the policy

59



60 Running Python Applications on EC2

5. Give a name to the role and click the Create role button to create a role:

Name, review, and create

Role details

Role name
Enter a meaningful name to identify this role.

EC2ROLE

Maximum 64 characters. Use alphanumeric and '+=,.@-_' characters

Description
Add a short explanation for this role.

Allows EC2 instances to call AWS services on your behalf.

Maximum 1000 characters. Use alphanumeric and '+=,.@-_' characters.
@)
Tags

Add tags - optionial info

Tags are key-value pairs that you can add to AWS resources to help identify, organize, or search for resources.

No tags associated with the resource.

Add tag

You ean add up to 50 more tags.

(b)

Figure 4.40 - Naming the role

v

6. In the final step to attach the role, click the Actions drop-down button, go to Security, and

select Modify IAM role:

Instances (1/1) info C || connect

Q. Find instance by attribute or tag (case-sensitive) ‘

Name ¥ | Instance ID | Instancestate @ Instance type ¥ Status check

Test_Python i-07ddf2c470bcBbe50 ®@Running @& t2.micro

(@ 2/2 checks passed No alarms

Figure 4.41 - Attach role

Modify 1AM role

Connect

View details

Manage instance state

Instance settings >
Networking »
Security >
Image and templates >

Monitor and troubleshoot B




The AWS CLI 61

7. On the next screen, select EC2ROLE, to be attached to EC2, and click Update IAM role:

EC2 > Instances > i-07ddf2c470bc8bc50 > Modify IAM role

Modify IAM role info

Attach an 1AM role to your instance.

Instance ID
i-07ddf2c470bc8bc50 (Test_Python)

1AM role
Select an IAM role to attach to your instance or create a new role if you haven't created any. The role you select replaces any roles that are
currently attached to your instance.

EC2ROLE A C | Create new IAM role [£
_I Q [
|

Choose this option to detach an IAM role

SSMRole
arn:aws:iam::961487522622:instance-profile/SSMRole

aws-elasticbeanstalk-ec2-role
arn:aws:iam::961487522622:instance-profile/aws-elasticbeanstalk-ec2-role

EC2ROLE 7 ‘
arn:aws:iam::961487522622:instance-profile/ECZROLE

Figure 4.42 — Update IAM role

We have created and attached the required role to log in to an EC2 machine:

® Successfully attached EC2ZROLE to instance i-07ddf2c470bc8bc50

Instances (1) info

’ Q. Find instance by attribute or tag (case-sensitive)

O Name v | Instance ID | Instance state

O Test_Python i-07ddf2c470bc8bc50 ® Running

Figure 4.43 —Task complete

Now, we will upload a file to S3.

Create a file under the EC2 machine. The touch command helps you to create an empty file. Optionally,
you can also create a file using another application:

[[ec2-user@ip-10-0-6-217 ~1$ touch filel.txt
[[ec2-user@Pip-10-8-6-217 ~1% 1s
csv  file.txt filel.txt

Figure 4.44 - Creating a file



62 Running Python Applications on EC2

We can upload this file to S3 via the AWS CLI. In the previous chapter, we created an S3 bucket. You
can use this bucket or create a new bucket to test the AWS CLI S3 command. Let’s upload the file to
the S3 bucket. The format for uploading a file is as follows:

Format : aws s3 cp from to
aws s3 cp file.txt s3://inputforlambdal23

[ec2-user@ip-10-0-6-217 ~1% aws s3 cp file.txt s3://inputforlambdal23
upload: ./file.txt to s3://inputforlambdal23/file.txt

Figure 4.45 — Uploading the file

We successfully uploaded the file. We are able to check whether the S3 bucket is uploaded from the
console. Open the bucket from the S3 console and check:

inputforlambdai123 .«

Objects Properties Permissions Metrics

Objects (2)

Objects are the fundamental entities stored in Amazon S3. You can use
grant them permissions. Learn more E

Q
Name A Type v
[ file.txt txt
[ testTrigger.rtf rtf

Figure 4.46 — Bucket content

As you can see, the file is uploaded to the S3 bucket.

The AWS client is useful when you want to access AWS services and perform some tasks using
commands. In this section, we learned how to copy a file to the S3 bucket via the command line,
which saves a lot of time.



Summary

Summary

In this chapter, we learned about the AWS EC2 service, which is used to create a server on the cloud.
You can create your server in an efficient way and use it for different purposes, such as an application
server, web server, or database server. We also created an EC2 server as an example and ran our
Python application on EC2. In the following chapter, we will take a look at how to debug our Python
application via PyCharm.

63






5
Running Python Applications

with PyCharm

In this chapter, we are going to run a Lambda application with PyCharm. Running Lambda applications
via PyCharm is both useful and practical during development as it consists of a code editor, debugger,
and common development tools with a developer-friendly graphical user interface. These features of
PyCharm help us to easily find bugs in our code.

This chapter covers the following topics:
« Installing the AWS Toolkit
« Configuring the AWS Toolkit
o Creating a sample Lambda function in AWS

« Running an AWS Lambda function using the AWS Toolkit

Installing the AWS Toolkit

In this section, we will install the AWS Toolkit in PyCharm. The AWS Toolkit is an extension for
PyCharm to develop, debug, and deploy your applications for AWS. Let’s get to it:

1. Open PyCharm on your computer.

2. Open Preferences from the PyCharm dropdown and select Plugins:



66 Running Python Applications with PyCharm

3.

4.

PyCharm File Edit View Navigate Code Refactor Run Tools VCS

About PyCharm
Check for Updates... 4 = & — g manpy

"} Preference:

Services >

I Project

) Preferences
Hide PyCharm *H

Hide Others Marketplace

Show All .
Appearance & Behavior

Quit PyCharm Keymap
> Editor
Plugins IdeaVim

Version Control

> Project: pythonProject

> Build, Execution, Deployment EE csv
Languages & Frameworks Sl
Tools

Advanced Settings

Figure 5.1 - Preferences

Type AWS Toolkit in the search area and click Install:

Preferences
Plugins Marketplace

Appearance & Behavior AWS Toolkiti
LGET]
Editor

Plugins aws s Toolkit

Version Control

Project: pythonProject

Figure 5.2 — Install the AWS Toolkit

After installation, the IDE will ask you to restart it. Click the Restart IDE button:

Plugins Marketplace

AWS Toolkit

ch ts (1)

AWS Toolkit Restart IDE

aws

Figure 5.3 — Restart the IDE

We have installed the AWS Toolkit in PyCharm. As the next step, we are going to configure the
credentials for our AWS account.



Configuring the AWS Toolkit

Configuring the AWS Toolkit

We are going to configure the AWS Toolkit in order to connect it to our AWS account. We will start
by setting the credentials for our AWS account:

1.  After restarting the IDE, you will see the text AWS: No credentials selected at the bottom-right
of the page. Click this text:

€) Event Log

1711 LF UTF-8 4 spaces Python 3.8 (pythonProject) (2) AWS: No credentials selected i

Figure 5.4 — AWS: No credentials selected

2. After clicking it, you will see the AWS Connection Settings menu appear. We are now going
to configure the credentials. In order for the IDE to connect to AWS, we need to provide the

AWS access key and secret key:

AWS Connection Settings

v N. Virginia (us-east-1)
All Regions

@ Edit AWS Credential file(s)

AWS Connection Settings [No credentials selected]
Python 3.8 ythonFroject) (2 AWS: No credentials selected

Figure 5.5 — Click Region

In the previous chapter, Chapter 4, Running Python Applications on EC2, we created an S3User via
the IJAM service. For our current use case, we follow the same steps in order to create a user that has

Lambda access:

1. IntheIAM console, add a user with the name ProgrammaticUser and click Next: Permissions:

67



68 Running Python Applications with PyCharm

Add user o 2 3 4 s

Set user details

You can add multiple users at once with the same access type and permissions. Learn more

User name*  ProgrammaticUser

© Add another user

Select AWS access type

Select how these users will primarily access AWS. If you choose only programmatic access, it does NOT prevent users from accessing the console using
an assumed role. Access keys and autogenerated passwords are provided in the last step. Learn more

Select AWS credential type* Access key - Programmatic access
Enables an access key ID and secret access key for the AWS API, CLI, SDK, and
other development tools.

Password - AWS Management Console access
Enables a password that allows users to sign-in to the AWS Management Console.

Figure 5.6 — Add user

2. Inthe next panel, select AWSLambda_FullAccess and proceed to create a new user. The steps
are the same as those we used to create the user in the previous chapter. Click Next: Tags
and proceed:

~ Set permissions

'fz“ Add usar to group ec):;)ifnpge:l:;?sions from .::ea;?yexist‘zng policies
Create policy 5]
Filter policies v~ Q lamb Showing 36 results
Policy name Type Used as
[3 T ‘AmazonS30bjectlambdaExecutionRolePolicy AWS managed None
y W AmazonSageMakerServiceCatalogProductsLambdaServiceRolePolicy AWS managed None
y W AWSCodeDeployRoleForLambda AWS managed None
» T AWSCodeDeployRoleForLambdaLimited AWS managed None
3 T AWSDeepLensLambdaFunctionAccessPolicy AWS managed None
» W AWSLambda_FullAccess AWS managed None
y W AWSLambda_ReadOnlyAccess AWS managed None
» NP AWSLambdaBasicExecutionfole AWS managed None
» AWSLarr ecutionRole-4ae97aee-2af7-43a5-bcaé-0b49e2...  Customer managed  Permissions policy (1)
» AWSLambdaBasicExecutionRole-529fe2ea-47c2-4eec-968d-7abe7f... Customer managed  Permissions policy (1)
» AWSLambdaBasicExecutionRole-54f6b51b-c72a-47f6-8c43-6d1597... Customer managed  Permissions policy (1)

Cancel Previous Next: Tags

Figure 5.7 — Add permission



Configuring the AWS Toolkit

3. We will now provide the access key ID and secret access key for the AWS connection setup.
Open PyCharm again and click Edit AWS Credential file(s):

AWS Connection Settings

Figure 5.8 — Edit credentials

4. Click the Create button on the following dialog window that appears:

Create Credential File

Credentials file /Users/serkans/.aws/config
does not exist. Create it?

Cancel Create

Figure 5.9 - Create the credential file

5. Once you click Create, you will be presented with a file in which you can enter the credentials.
Place the access key ID and secret access key in the file and save it:

[default]

# The access key and secret key pair identify your account and grant access to AWS.
aws_access_key_id = AKIAG?Z

# Treat your secret key like a password. Never share your secret key with anyone. Do

# not post it in online forums, or store it in a source control system. If your secret
# key is ever disclosed, immediately use IAM to delete the access key and secret key

# and create a new key pair. Then, update this file with the replacement key details.
aws_secret_access_key = AYJyEeHrJTUB/P9YUB7HQdziit Mo

Figure 5.10 — Edit the credential file

We have created the AWS credentials and adjusted them in the PyCharm. As a next step, we are ready
to create a Lambda function.

69



70 Running Python Applications with PyCharm

Creating a sample Lambda function in AWS

In this step, we are going to create a Lambda function that reads and prints a file from S3. In the
previous chapter, we learned how to create the S3 bucket and Lambda function. Hence, we keep the
explanation short here:

1.  We are going to copy a sample file to the S3 bucket:

Amazon 53 Buckets ser-addresses
ser-addresses .«

Objects Properties Permissions Metrics Management Access Points

Objects (1)
Objects are the fundamental entities stored in Amazon S3. You can use Amazon 53 inventory [7] to get a list of all objects in your bucket. For others to access your objects, you'll need to explicitly

grant them permissions. Learn more [

Actions ¥ || Create folder
[ Upload

Q 1 @

Name a Type v Last modified A4 Size v Storage class v

B addresses.csv sV August 18, 2022, 09:59:31 (UTC+02:00) 1.1 KB Standard

Figure 5.11 - File in S3
2. Create a Lambda function that reads the file from S3. I've called the Lambda function
FileProcessing; however, you can give it any name that you prefer:

Lambda Functions FileProcessing
FileProcessing

v Function overview info

FileProcessing

g Layers (0)

+ Add trigger

Figure 5.12 — Lambda function

3. Once the Lambda is created, we paste the code to Lambda from the GitHub link under the
image. In the code block, we are going to implement a simple function to read the content of
the S3 bucket and print it. You can retrieve the code block from the GitHub page that I have
shared after Figure 5.13. Broadly speaking, the s3 .get object method reads the file with



Creating a sample Lambda function in AWS

the given parameters of bucket and key. Once you have a file stored in S3, the content is
under the Body JSON file and the final step is to print the content:

Code source info

jo

Environment

File Edit Find View Go Tools Window Test |v

al

lambda_function * Execution results %

) . t j
v FileProcessing LF~ E‘.:sz:t ﬂzzga

£» | lambda_function.py

def lambda_handler(event, context):
bucket = 'ser-addresses’
key = 'addresses.csv'
s3 = boto3.client('s3")
response = s3.get_object(Bucket=bucket, Key=key)
file_content = response['Body'].read().decode('utf-8")
print(file_content)

=
P ® WK ~NOU & WwN

[y

Figure 5.13 — Code in Lambda

The following GitHub link consists of the code block for the S3 Reader application: https://
github.com/PacktPublishing/Python-Essentials-for-AWS-Cloud-
Developers/blob/main/S3Reader.py.

Click the Test button in order to check whether the Lambda function is running. When you
click the Test button the first time, you need to configure the sample event:

Configure test event X

A test event is a JSON object that mocks the structure of requests emitted by AWS services to invoke a Lambda function.
Use it to see the function’s invocation result.

To invoke your function without saving an event, modify the event, then choose Test. Lambda uses the modified event to
invoke your function, but does not overwrite the original event until you choose Save changes.

Test event action

‘ ) Create new event | I © Edit saved event ‘
Event name
‘event‘l " ‘ C H Delete ‘
Event JSON Format JSON
1-({
2 "keyl": "valuel",
3 "key2": "value2",
4 "key3": "value3"
5 [

71


https://github.com/PacktPublishing/Python-Essentials-for-AWS-Cloud-Developers/blob/main/S3Reader.py
https://github.com/PacktPublishing/Python-Essentials-for-AWS-Cloud-Developers/blob/main/S3Reader.py
https://github.com/PacktPublishing/Python-Essentials-for-AWS-Cloud-Developers/blob/main/S3Reader.py

72 Running Python Applications with PyCharm

Code source info

-~ File Edit Find View Go Tools Window Test |~

o)

B lambda_function, * Execution result *

¥ Execution results
v FileProcessing e 24 Test Event N
est Event Name

lambda_function.py eventl

Environment

Response
null

Function Logs

START RequestId: @ffel3df-660f-4bb4-9e10-ac@430601687 Version: SLATEST
id,location_id,address_1,address_2,city,state_province,postal_code, country
1,1,2600 Middlefield Road, ,Redwood City,CA,94063,US

2,2,24 Second Avenue,,San Mateo,CA,94401,US
3,3,24 Second Avenue,,San Mateo,CA,94483,US
4,4,24 Second Avenue,,San Mateo,CA,94401,US
5,5,24 Second Avenue,,San Mateo,CA,94491,US
6,6,800 Middle Avenue,,Menlo Park,CA,94025-9881,US
7,7,500 Arbor Road,,Menlo Park,CA,94025,US

B

(b)
Figure 5.14 — Configure and test the Lambda function

We have created the Lambda function. In the next section, we are going to run this function within
PyCharm via the AWS Toolkit.

Running an AWS Lambda function using the AWS Toolkit

In this section, we are going to run our Lambda function within PyCharm. Let’s follow the steps:

1. Open AWS Toolkit on the left side of PyCharm and you will be able to see the Lambda
functions that are defined in the AWS Lambda service. Seeing this means that the connection

we configured works:



Running an AWS Lambda function using the AWS Toolkit

AWS Toolkit: Developer Tools

Explorer

default us-east-2

App Runner

CloudFormation

CloudWatch Logs

DynamoDB

ECR

EES

Lambda
FileProcessing
HelloWorldLambda
S3TriggerLambdaRead

Structure

M Bookmarks

53
Schemas
SQS
Resources

) AWS Toolkit

Figure 5.15 — Open the AWS Toolkit menu

In the list, we can see the functions that we created in the us-east-2 region. We are now ready
to run the Lambda function that we created in the previous section.

Right-click FileProcessing and, on the resulting menu, click the Run ‘[Remote]
FileProcess... button:

AWS Toolkit: Explorer Developer Tools

default us-east-2

Structure

M Bookmarks

& AWS Toolkit

App Runner
CloudFormation
CloudWatch Logs
DynamoDB
ECR
ECS
Lambda
FileProcessing
HelloWorldLambda
S3TriggerLambdaRead
53
Schemas
SQS
Resources

Run '[Remote] FileProcess...! ~{OR

Modify Run Configuration...

Update Function Configuration
Update Function Code

View Log Streams

I8 Copy Arn

X Delete Function...

Figure 5.16 — Run the function

73



74 Running Python Applications with PyCharm

When you click the link, the AWS Toolkit will run the Lambda function via PyCharm:

> ECS
v Lambda
i\, FileProcessing
HelloWorldLambda
S3TriggerLambdaRead

[Remote] FileProcessing

Invoking Lambda function: FileProcessing

Logs:

START RequestId: adf4lfd8-b7a3-4ce2-b82b-286246267332 Version: $LATEST
id,location_id,address_1,address_2,city,state_province,postal_code,country
1,1,2600 Middlefield Road,,Redwood City,CA,94063,US

2,2,24 Second Avenue,,San Mateo,CA,b94401,US

3,3,24 Second Avenue,,San Mateo,CA,%94403,US

4,4,24 Second Avenue,,San Mateo,CA,94401,US

5,5,24 Second Avenue,,San Mateo,CA,94401,US

6,6,800 Middle Avenue,,Menlo Park,CA,94025-9881,US

7,7,500 Arbor Road,,Menlo Park,CA,94025,US

8,8,800 Middle Avenue,,Menlo Park,CA,94025-9881,US

9,9,2510 Middlefield Road,,Redwood City,CA,94063,US

Structure

M Bookmarks

&) AWS Toolkit

Figure 5.17 - Logs of the function

After running the function, some Lambda logs will appear in PyCharm. As you can see, this makes
it easier to develop Python applications for AWS. You can test this from your local machine without
logging into the AWS Management Console.

Summary

In this chapter, we learned how to install and use the AWS Toolkit within PyCharm. It is always helpful
when you implement and deploy AWS services within PyCharm in a practical way. AWS Toolkit has
AWS services integration; therefore, instead of using the AWS Management Console, you can use
PyCharm where it is installed on the local machine. In the following chapter, we will take a look at
how to deploy a Python application to Elastic Beanstalk.



6
Deploying Python Applications
on Elastic Beanstalk

In this chapter, we are going to learn how to deploy Python applications on Elastic Beanstalk. Elastic
Beanstalk is an AWS service that allows you to deploy web applications in the cloud. Basically, you
don’t need to provision a server; Elastic Beanstalk provisions an infrastructure in the backend and
deploys your web application. Another advantage of Elastic Beanstalk is being able to scale up your
web applications when there are a large number of requests from the user.

This chapter covers the following topics:

o What is Elastic Beanstalk?
o Creating a Python web application

o Deploying a simple Python web application on Elastic Beanstalk

What is Elastic Beanstalk?

Elastic Beanstalk is an AWS service that is used to deploy web applications in the cloud. It supports
multiple web application frameworks such as Python, Java, .NET, PHP, Node.js, Ruby, and Go. Once
you deploy your application, Elastic Beanstalk manages the infrastructure in order to deploy, run,
scale, and monitor applications.

Features of Elastic Beanstalk
Let’s take a look at the high-level features of Elastic Beanstalk:

o It supports monitoring and logging; hence, you can easily track how the application is behaving.
For example, if an application goes down, you can check via Elastic Beanstalk.

« It manages updates for infrastructure. In some cases, your application should be updated with
the latest improvements in Python or other libraries and Elastic Beanstalk manages the updates
with you in control.



76

Deploying Python Applications on Elastic Beanstalk

o It manages scaling features up and scaling features down; hence, if your application has too
many requests, it adds more resources, and your application can then meet the requests. On
the other hand, if there is less demand, it reduces the resources and helps to reduce the cost.

« It supports some financial data or protected health information standards; hence, you can use
Elastic Beanstalk for financial applications as well as health information applications.

We have taken a look at the basic features of Elastic Beanstalk, and we will now start to implement a
sample web application with Python to deploy via Elastic Beanstalk.

Creating a Python web application

We are going to create a sample web application with Python. For that purpose, Flask will be used as
a web application framework for Python.

Flask is a web application framework that is written with Python. It has the required libraries to start
implementing web applications as a beginner. In the following code block, you can see a sample "Hello,
World!" web application with Flask:

from flask import Flask
app = Flask(_name_ )

@app.route('/")
def hello world() :
return 'Hello, World!'

The code imports the Flask library and runs the application on localhost port 5000. When you run
it, you will see "Hello World!" in the browser.

You can also check the Flask framework at the following website: https://flask.
palletsprojects.com/en/2.2.x/.

As the next step, we are going to deploy a Python web application to Elastic Beanstalk.

Deploying a Python web application on Elastic Beanstalk
In this section, we are going to deploy a sample Python web application on Elastic Beanstalk:

1. TypeElastic Beanstalk in the AWS Management Console search box and click
Elastic Beanstalk:


https://flask.palletsprojects.com/en/2.2.x/
https://flask.palletsprojects.com/en/2.2.x/

Deploying a Python web application on Elastic Beanstalk 77

al‘ﬁ 3% Services | Q, Elastic Beanstalk
Search results for 'Elastic Beans'

Services

Features (24)

@? T
Run and Manage Web Apps

Blogs (1,822)

Documentation (23)

Figure 6.1 - AWS Console

You will see the main page of Elastic Beanstalk:

[Optic

Elastic Beanstalk (@ AWS Graviton now supported
AWS Graviton, an arm64-based processer, can offer up to 40% better price performance over the comparable x86 processor. To upgradd
'Capacity' settings in 'Additional configuration.'
Environments
Applications pute

Change history

Amazon Elastic
Beanstalk A
End-to-end web

application management.

Amazon Elastic Beanstalk is an easy-to-use service for deploying and scaling

web applications and services developed with Java, .NET, PHP, Nodejs,

Figure 6.2 — Elastic Beanstalk

2. Click Environments on the left side in order to create a new Python web application, and then
click the Create a new environment button:

Elastic Beanstalk X Elastic Beanstalk > Environments

Environments
All environments c

Applications
Change history a . ®
Environment Application Date Last Running Plat
Health ¥ URL v Platform v
Recent environments name a e name v created v modified v versions ¥ orm stat
Test1-env
F— mee  mamos roeing on
e pe- Python Web 28 2 test-python.us-gast- Sample ot a @
o matech app 17:07:49 1:17:40 Zelesticbeanstalicom  Application 7
: UTC+0200 UTC+0200 ;
Linux 2
2022-09- 2022-09- :’::f‘n"gi‘:
29 29 Test1-envus-east- Sample
Test1- test] 64bit !
eetieny Lo & 11:19:20 1:24:40 Zelssticheanstalkcom  Application o L=
UTCH0200  UTC+0200 "
Linux 2

Figure 6.3 - Environment list



78 Deploying Python Applications on Elastic Beanstalk

3. In the next panel, we are going to select what type of environment we want. Since we would
like to deploy a web application, select Web server environment:

Elastic Beanstalk Create environment

Select environment tier

Amazon Elastic Beanstalk has two types of environment tiers to support different types of web applications. Web servers are standard
applications that listen for and then process HTTP requests, typically over port 80. Workers are specialized applications that have a
background processing task that listens for messages on an Amazon SQS queue. Worker applications post those messages to your
application by using HTTP.

© Web server environment
Run a website, web application, or web API that serves HTTP requests.
Learn more [

Worker environment
Run a worker application that processes long-running workloads on demand or performs tasks on a schedule.
Learn more [

Figure 6.4 - Selecting an environment
4. Thave named the file Python Web app. You can name it whatever you want:

Create a web server environment

Launch an envirenment with a sample application or your own code. By creating an environment, you allow Amazon Elastic Beanstalk
to manage Amazon Web Services resources and permissions on your behalf. Learn more [

Application information

Application name

Python Web appl

Up to 100 Unicode characters, not including forward slash (/).

» Application tags (optional)

Environment information

Choose the name, subdomain, and description for your environment. These cannot be changed later.

Environment name

Figure 6.5 — Naming the application



Deploying a Python web application on Elastic Beanstalk 79

After naming the application, scroll down and fill in the Environment name input field. Keep
in mind that this can also be named by the AWS Console by default. You have the option to
change it.

Application information

Application name

Python Web app

Up to 100 Unicode characters, not including forward slash (/).

» Application tags (optional)

Environment information

Choose the name, subdomain, and description for your environment. These cannot be changed later.

Environment name

Pythonwebapp-env-1

Figure 6.6 — Environment name field

When you scroll down further, there is another input field to fill out - Domain. The domain will
be used to access your web application via the browser. In this example, we will enter test -
training and check the availability by clicking the Check availability button:

Environment information

Choose the name, subdomain, and description for your environment. These cannot be changed later.

Environment name

Pythonwebapp-env-1

Domain

| test-trainind .us-east-2.elasticbeanstalk

@ test-training.us-east-2.elasticbeanstalk.com is available.

Figure 6.7 - Naming the domain



80 Deploying Python Applications on Elastic Beanstalk

7. Once you find the available domain name, scroll down, and locate the Platform panel. In this
panel, we need to select the web application framework. Elastic Beanstalk supports different
web environments such as Java, PHP, Node.js, Python, and so on. We will select the Python
platform to deploy a Python web application. Depending on which Python platform you are
working on, you can select it from the Platform branch field. In this example, I am selecting
the Python 3.8 running on 64bit Amazon Linux 2 version. Platform version consists of some
updates and patches according to the platform. You can proceed with the latest version; for
example, if AWS finds a security patch, it creates a new version:

Platform

© Managed platform
Platforms published and maintained by
Amazon Elastic Beanstalk. Learn more [/}

Platform

Python v

Platform branch

Python 3.8 running on 64bit Amazon Linux 2 v

Platform version

3.3.17 (Recommended) v

Figure 6.8 — Selecting the platform

8.  Scroll down and you will see the latest panel on the page. In this example, we will proceed with
Sample application and click Create environment:

Application code

© sample application
Get started right away with sample code.

Upload your code
Upload a source bundle from your computer or copy one from Amazon S3.

Cancel ‘ Configure more options ‘ Create environment

Figure 6.9 - Finalizing the platform




Deploying a Python web application on Elastic Beanstalk

Once you click Create environment, you will see the logs. Elastic Beanstalk creates the platform
and deploys sample applications:

Elastic Beanstalk Environments Pythonwebapp-env-1

@ Creating Pythonwebapp-env-1
This will take a few minutes.

11:49am Instance deployment completed successfully.
11:49am Instance deployment successfully generated a 'Procfile’.

11:49am Created Load Balancer listener named:
arn:aws:elasticloadbalancing:us-east-2:961487522622:listener/app/awseb-AWSEB-1K2345CY55544/d0286ceaf9c2a1a8/34846ff26e666c8b

11:49am Created load balancer named:
arn:aws:elasticloadbalancing:us-east-2:961487522622:loadbalancer/app/awseb-AWSEB-1K2345CY55544/d0286ceaf9c2a1a8

11:49am Created CloudWatch alarm named:
awseb-e-7xpsidkmzk-stack-AWSEBCloudwatchAlarmHigh-1AQWS80HQGMT31

11:49am Created CloudWatch alarm named:
awseb-e-7xpsidkmzk-stack-AWSEBCloudwatchAlarmLow-SPNWOZQLH2BH

11:49am Created Auto Scaling greup policy named:
arn:aws:autoscaling:us-east-2:961487522622:scalingPolicy:88251669-544f-4a62-8b05-4227dda7c9fb:autoScalingGroupName/awseb-e- 7xpsidk}
1TTBRO7PT3ZB5: policyName/awseb-e-7xpsidkmzk-stack-AWSEBAutoScalingScaleUpPolicy-Q07S3NwhziuN

11:49am Created Auto Scaling greup policy named:
arn:aws:autoscaling:us-east-2:961487522622:scalingPolicy:64fcb345-a97c-44dc-abd5-582¢11125606:autoScalingGroupName/awseb-e-7xpsidk|
1TTBRO7PT3ZB5: policyName/awseb-e-7xpsidkmzk-stack-AWSEBAutoScalingScaleDownPolicy-3DYSDSGXzUoz

11:49am Waiting for EC2 instances to launch. This may take a few minutes.

Figure 6.10 - Logs of the platform

Wait a few minutes so that the application is deployed. Once deployed, you will be presented
with the following screen:

Elastic Beanstalk Environments Pythonwebapp-env-1
Pythonwebapp-env-1 £ Refresh Actions ¥
test-training.us-east-2. i [7 (e-7x¢

Application name: Pythen Webapp

Health Running version Platform

Sample Application

Upload and deploy

Ok
Python 3.8 running on 64bit
Amazan Linux 2/3.3.17

Recent events I Show all

1

Time Type Details

2022-09-29 11:51:03 UTC+0200 INFO Environment health has transitioned from Pending to Ok. Initialization completed 50 seconds ago and took 2 minutes.

Figure 6.11 — Application deployment

81



82

Deploying Python Applications on Elastic Beanstalk

It seems like the sample application has been deployed and is running properly. Click the domain link
to see the running application. In the preceding screenshot, the domain linkis test -training.
us-east-2.elasticbeanstalk.com:

@ Welcome = 3

< i test-training.us-east-2.elasticbeanstalk.com

AWS Elastic Beanstalk overview
AWS Elastic Beanstalk concepts

Deploy a Flask Application to AWS Elastic Beanstalk

Customizing and Configuring a Python Container

Congratulations s

Your first AWS Elastic Beanstalk Python Application is now running on your own
dedicated environment in the AWS Cloud

This environment is launched with Elastic Beanstalk Python Platform

Figure 6.12 - Application

Congrats! You deployed the sample web application to the cloud.

In this example, we deployed the sample application to Elastic Beanstalk. The sample web application
is implemented by AWS. As the next step, we are going to implement a simple Python web application
to be deployed by Elastic Beanstalk:

1. Open the Elastic Beanstalk service in AWS.

2. Click Environments on the left side and see the list of environments. In the previous section,
we created an environment and deployed the sample application. In this example, we will use
the same Python web environment:

Pythonwebapp- Python
env-1 @ Webapp

Figure 6.13 — Environments


http://test-training.us-east-2.elasticbeanstalk.com
http://test-training.us-east-2.elasticbeanstalk.com

Deploying a Python web application on Elastic Beanstalk

3. Click Pythonwebapp-env-1 in the list as it supports Python web applications. It could be
different in your environment, based on the naming conventions:

All environments c

Q 1 @
Environment Health v Application Date Last. ) URL o Runrlmg Platform v Plat
name name v created ¥ modified ¥ versions v stat

2022-09- 2022-09- :’;:;" Z’Oﬁ
Pythonwebapp- m Python 29 29 test-training.us-east- Sample Sabit 9 m
env-1 Webapp 11:47:39 11:50:08 2.elasticbeanstalk.com Application Amazon
UTC+0200 UTC+0200 N
Linux 2
Figure 6.14 - Python All environments
4. Click the Upload and deploy button in order to follow the deployment process:
Elastic Beanstalk Environments Pythonwebapp-env-1
Pythonwebapp-env-1 < Refresh | | Actions ¥
test-training.us-east-2.elasti com [F] (e-7xpsidkmzk)
Application name: Python Webapp
Health Running version Platform
Sample Application
& =
Ok
Python 3.8 running on 64bit

Amazon Linux 2/3.3.17

A\ Different version
recommended

Change

Figure 6.15 — Python web environment

5. In the Upload and deploy window, click the Choose file button:

83



84 Deploying Python Applications on Elastic Beanstalk

Upload and deploy X

(@ To deploy a previous version, go to the Application Versions page.

Upload application

[ Choose file

Version label

» Deployment Preferences

The application version will be deployed using the All at once policy.

Current number of instances: 1

Figure 6.16 — Deploy environment

Once you click the Choose file button, your Python web application will be deployed to Elastic Beanstalk.

As you can see in the following screenshot, you are going to select the local folder:

o
o
o

< m v 7 app Q

gl

)

g
<

Today Today

Figure 6.17 — Local folder

You can deploy whichever Python web framework you prefer, such as Flask, Django, and so on.

In this section, we learned how to deploy a custom Python web application to Elastic Beanstalk.

Summary

In this chapter, we learned about the AWS Elastic Beanstalk service and how to create a Python web
environment in the cloud. Elastic Beanstalk is useful when you deploy web applications in the cloud.
It comes with scalability, logging, and monitoring advantages. In the following chapter, we will take
a look at how to monitor our applications via CloudWatch.



Part 3:
Useful AWS Services
to Implement Python

In this part, you will deep-dive into other AWS services for Python programming, such as monitoring,
creating an API, database operations, and NoSQL with DynamoDB.

This part has the following chapters:

Chapter 7, Monitoring Applications via CloudWatch
Chapter 8, Database Operations with RDS

Chapter 9, Creating an API in AWS

Chapter 10, Using Python with NoSQL (DynamoDB)
Chapter 11, Using Python with Glue

Chapter 12, Reference Project on AWS






7

Monitoring Applications
via CloudWatch

In this chapter, we are going to learn about one of the important AWS services, CloudWatch.
CloudWatch is a serverless service that allows you to collect and monitor application logs within
AWS. It has extensive integrations with most AWS services. When you start using any AWS service,
it helps to observe an application via CloudWatch tools.

In this chapter, we are going to cover the following topics:

o What is CloudWatch?

o Collecting Lambda Logs via CloudWatch
+ CloudWatch logs Insights

o CloudWatch alarms

What is CloudWatch?

When you deploy any application, it is important to track that it meets the set expectations regarding
availability, performance, and stability. It is possible an issue may have occurred in the application. It’s
important to note that some of the AWS services could be down or run incorrectly. This is a very bad
experience from a customer’s point of view, and it would be better to observe these issues before the
customer finds out. If you service an application via AWS, you need to use CloudWatch to monitor
your applications to observe how they behave.

CloudWatch is a monitoring service in AWS; it provides different features to observe an application.
The features of CloudWatch are as follows:

« Collecting and storing logs from AWS services such as Lambda and EC2.

» Providing a dashboard to monitor metrics and logs.



88 Monitoring Applications via CloudWatch

o The ability to create an alarm. For example, if an application has consumed significant memory
on a server, you can create an alarm in order to be notified.

o The ability to correlate different metrics. For example, you can aggregate EC2 memory logs
and CPU logs to have a better overall view of a situation.

+ The detection of anomalous behavior with the machine learning-based CloudWatch anomaly
detection feature.

Collecting Lambda logs via CloudWatch

In this topic, we are going to deploy a simple Python function in order to investigate logs via the
CloudWatch service. Let’s do so step by step:

1. Create a Lambda function in AWS. In Chapter 3, where we covered Lambda, the basic steps
of the Lambda deployment were explained. Hence, here, we will provide a summary of the
Lambda steps. The name of the Lambda function is TestLogs:

Function name
Enter a name that describes the purpose of your function.

TestLogs

Use only letters, numbers, hyphens, or underscores with no spaces.

Runtime Info
Choose the language to use to write your function. Note that the console

Python 3.9

Figure 7.1 - Creating a Lambda function

2. 'The Lambda function creates a basic template, like the following:



Collecting Lambda logs via CloudWatch

Code Test Monitor Configuration Aliases Versions

Code source info

~ File Edit Find View Go Tools Window Test |v

jo
o

lambda_function *

> TestLogs - import json

| lambda_function.py def lambda_handler(event, context):
# TODO implement
return {
'statusCode': 200,

'body"': json.dumps('Hello from Lambda!')

Environment

Woo~NOWUV A WNE

Figure 7.2 — The Lambda template

3. Copy the following code block to the handler:

import json
import os

def lambda handler (event, context) :
print ('ENVIRONMENT VARIABLES')
print (os.environ)

return {
'statusCode': 200,
'body': json.dumps('Hello from Lambda!')

os will import the operating system module; hence, you can see the environment variables

via the logging print (os . environ) variable. Once we add the code block, Lambda code
should be seen as follows:

89



90 Monitoring Applications via CloudWatch

Code source

Edit Find View Go Tools Window Deploy Changes not deployed

jo

Environment

4.

File

v

TestLogs

Info

B lambda_function %

L+ 1 import json
2 1import os
<» lambda_function.py 3
4 def lambda_handler(event, context):
5 print('ENVIRONMENT VARTABLES')
6 printCos.environ)
7
8 return {
9 'statusCode': 200,
10 'body': json.dumps('Hello from Lambda!"')
11 }
12 |

Figure 7.3 — Lambda with logs

Next, click the Deploy button to deploy the latest changes to Lambda and click the Test button.
After testing the Lambda function, you are able to see the execution results:

Tools Window m

| lambda_function. x Execution result: X

v Execution results

Test Event Name
MyEvent

Response

"statusCode": 200,
"body": "\"Hello from Lambda!\""

}

Function Logs

START RequestId: e5670818-e6c@-4871-9a3b-91d95b2d7add Version: $LAT
ENVIRONMENT VARIABLES

environ({'AWS_LAMBDA_FUNCTION_VERSION': '$LATEST', 'AWS_SESSION_TOkK
END RequestId: e5670818-e6c@-4871-9a3b-91d95b2d7add

REPORT RequestId: e5670818-e6c@-4871-9a3b-91d95b2d7add Duration:

Request ID
e5670818-e6c0-4871-9a3b-91d95b2d7add

Figure 7.4 — The execution results



Collecting Lambda logs via CloudWatch

Let’s use the CloudWatch service to investigate the logs:

1.  Open the CloudWatch service from AWS Management Console:

22 services | Q cloudwatch

Search results for 'cloudwatch’

Services

Features (15)
& CloudWatch vy

Monitor Resources and Applications

Resources | New

Blogs (479)

Figure 7.5 - The CloudWatch service

2. Click Log groups under the Logs dropdown in the left pane:

CloudWatch X
Favorites and recents >
Dashboards
» Alarms Ao ®o Bo
¥ Logs
Log groups

Logs Insights
Figure 7.6 - The CloudWatch log group

3. Once you click Log groups, you will see a list. This list represents the running AWS services
that create a log. In this list, find the Lambda function that you run:

91



92 Monitoring Applications via CloudWatch

Log groups (9)
By default, we only load up to 10000 log groups.

Q Filter log groups or try prefix search

Log group A Retention

/aws/lambda/A4L-IPv6WorkaroundLambda-10YPQF7... Never expire
Jaws/lambda/A4LVPC-IPv6WorkaroundLambda-1006... Never expire
/aws/lambda/A4LVPC-IPv6WorkaroundLambda-FOG3... Never expire
/aws/lambda/bike-buyer-lambda Never expire
/aws/lambda/testbuyukveri Never expire
/aws/lambda/TestLogs Never expire
/var/log/httpd/access_log Never expire
/var/log/httpd/error_log Never expire
/var/log/secure Never expire

Figure 7.7 - Log list

4. Click /aws/lambda/TestLogs. The new page consists of the logs that Lambda creates. You
can see a log stream. When the Lambda function runs, the logs are created in this list. At the
beginning of the list, you can see the most up-to-date logs:

/aWS/lambda/TestLogS ‘ Actions ¥ || View in Logs Insights ‘

¥ Log group details

Retention Creation time Subscription filters
Never expire 12 minutes ago 0
KMS key ID Metric filters Contributor Insights rules
- ]

Stored bytes ARN

arn:aws:logs:us-east-1:961487522622:leg-
group:/aws/lambda/TestLogs:*

Log streams Metric filters Subscription filters Contributor Insights Tags
Log streams (2) Create log stream | | Search all log streams ‘
Q Filter log streams or try prefix search Exact match 1 &
Log stream v Last event time v
2022/10/11/[$LATEST]5f38042a65f84a95aba761 1ac 1ccdebb 2022-10-11 10:48:17 (UTC+02:00)
2022/10/11/[$LATEST]9d 1 bae1b9d4adc3695fd 176330013371 2022-10-11 10:46:58 (UTC+02:00)

Figure 7.8 — The log page for Lambda



Collecting Lambda logs via CloudWatch

Let’s click the latest link under Log stream:

Log streams Metric filters Subscription filters Contributor Insights Tags

Log streams (2) Create log stream | | Search all log streams I
Q. Filter log streams or try prefix search Exact match 1 @
Log stream v Last event time v
2022/10/11/[$LATEST]5f38042a65f84a95aba7611ac1 cedebb 2022-10-11 10:48:17 (UTC+02:00)
2022/10/11/[$LATEST]9d 1bae1b9d4a4c3695fd176330013371 2022-10-11 10:46:58 (UTC+02:00)

Figure 7.9 — Log stream

After clicking the link, you can see the detailed logs that Lambda creates:

Log events
You can use the filter bar below to search for and match terms, phrases, or values in your log events. Learn more about filter patterns [

Q Clear  1m 30m 1h 12h

View as text

3 Timestamp Message

No older events at this moment. Retry

Custom &

» 2022-18-11T10:48:83 . 470+02 : 00 START RequestId: aachf25a-4@be-43cf-82ba-el115ff165dfd Version: SLATEST

L4 2022-10-11T10:48:03.470+02:00 ENVIRONMENT VARIABLES

L4 2022-10-11T18:48:83.470+02:00 environ({"ANS_LAMBDA_FUNCTION_VERSION': '$LATEST', "AWS_SESSION_TOKEN': 'IQolb3JpZ2luX2VJEKn//////////wEaCXVzLWVh.,
» 2022-18-11T10:48:83.473+02 : 00 END RequestId: aachf25a-48be-43cf-82ba-el15ff165dfd

»> 2022-10-11T10:48:03.473+082:00 REPORT RequestId: aacbf25a-4@be-43cf-82ba-ell5ff165dfd Duration: 1.25 ms Billed Duration: 2 ms Memory Size: 128 M.
L4 2022-10-11T18:48:17.671+02:00 START RequestId: e567@818-e6c@-4871-9a3b-91d95b2d7add Version: SLATEST

> 2022-18-11T10:48:17 .671+82 : 00 ENVIRONMENT VARTABLES

L4 2022-10-11T10:48:17.671+02:00 environ({"ANS_LAMBDA_FUNCTION_VERSION': '$LATEST', 'AWS_SESSION_TOKEN': 'IQolb3]pZZluX2VIEKn//////////WEaCXVZLWVh..
L4 2022-10-11T18:48:17.690+02 :00 END RequestId: e567@818-e6c@-4871-9a3b-91d95b2d7add

» 2022-18-11T10:48:17.690+02 : 00 REPORT Requestld: e5670818-e6c@- 1-9a3b-91d95b2d7add Duration: 1.14 ms Billed Ouration: 2 ms Memory Size: 128 M.

No newer events at this moment. Auto retry paused. Resume

Figure 7.10 - Lambda logs

This list shows a summary view of the log. When you click the down arrow to the left, the panel will
open and you can investigate the detailed logs. In Lambda, we have logged the operating system variables
for Lambda. Hence, you will see some details for that, such as region, memory size, and language:

93



94 Monitoring Applications via CloudWatch

NU DWUET BVENLS dL LIS UL RELY

> 2022-10-11T19:48:03.470+02: 60 START RequestId: aachf2Sa-4@be-43cf-B2ba-ell5ff165dfd Version: $LATEST
» 2022-10-11T10:48:03.470+02:00 ENVIRONMENT VARIABLES
@ 2022-10-11710:48:03.470402: 00 environ({"AWS_LAMBDA_FUNCTION_VERSION': "$LATEST', "AWS_SESSION_TOKEN': 'IQolb3)pZ21uX2VIEKn//////////wEaCXVzLWvh..

environ({' AWS_LAMBDA_FUNCTION_VERSION': "$LATEST', "ANS_SESSION_TOKEN':

'IQoIb3IpZZLuX2VIEKN/ /17 1/ F 7 /WEaCXVZLWWhe3QEMS JIMEYCIQDNgtA+tiF@2qyBRSLPUy jyHyJabcsM14LaksZxugbwXwIhAMkhu28tbcELGzQxugFc144 JONRWNV48eL DK Copy
2pWeDHRHKUQCCHIQAXOMOTY xNDG3NT Ty Ty TgzHGnSovZ9t ZUNw IABQWQJ SHCWI U 5akKTPmXFPAtNZ FMMBFy ] DAF eug+qQK L mSKhBVR 10z /1n9HCbSOTVA2 1RGV4PkT3g99DF N

D71 7W9+AUL 1CAMXT 1Kvk@+oL XTsRexQyGINSZBSIbIYAMpUwbBZeAt /1zrzNIcdd1mg/ Y0+gB2mAoysWVBNKT 1znwY Zg4Qbs+F 2XAVLE3FZ Tuyn jDCSI/SLMcIpNnUL zMbmUVOtdViAy8oISTPI I Edd
mGBRrvretav+cZeatzSdmTMNALBTAEKCpnzAFYxowwL+7h74wu@ShRBDASpBrOXTrN6ZsT/GDKS52cIRLOBAgVNgcwSNzZEePUE+QVEYGI7ZASZFG5T2E4852KrBmC/KSHGZg TRV F4msBRXtSWZ VYH
12+5700q3348w445H7e39tuTTD42Eq/ TGtK3XIXIB5xgwgtulimgYBnQEPEVMKG150 ) cMael i U+am7DJobNIyTaHmvIA3 fmpEGS+HF 7/ VNoNpkodFLCe4LC40r3F+F/DBLFwCwWchQfbmTWEB Ip7NMSVEG
acMzMLsEIAYL4/nLhmKHniQY1KDUPN jLaef8UZXo4QxhiGAkFbIY1xELdAZGIa@WUdSKR7ydYAUNXNHMg@uCeo/UBn8Y7ezSxKbKp6UMKT711M' , *LAMBDA_TASK_ROOT': '/var/task',

" AWS_LAMBDA_LOG_GROUP_NAME": ' /aws/lambdao/Testlogs', 'LO_LTBRARY_PATH':

'/var/lang/lib:/1ib64:/usr/1ib64: /var/runtime:/var/runtime/1ib:/var/task: /var/task/1ib: /opt/lib", 'AWS_LAMBDA_LOG_STREAM_NAME' :
'2022/10/11/[SLATEST]5f38042a65F84a95aba7611aclccdebb’, 'ANS_LAMBDA_RUNTIME_API': '127.9.0.1: 9@01 ", "AWS_EXECUTION_ENV': '"AWS_Lambda_python3.9',

" AWS_LAMBDA_FUNCTION_NAME® : ‘Testlogs', "AWS_XRAY_DAEMON_ADDRESS®: '169.254.79.1 ", "PATH" /val‘/lnng/bln /usr/lucﬂl/hln /usr‘/blm’ /bin:/opt/bin®

eoa’,
"AWS_DEFAULT_REGION': 'us-east-1", 'PWD': "/var/task', 'AWS_SECRET_ACCESS_KEY': Hme'lsAzDgCS‘(sLkSXIX?IWEKquJJSSesys 5 ~en US UTE_8
"LAMBDA_RUNTIME_DIR': '/var/runtime’, ‘AWS_LAMBDA_INITIALIZATION_TYPE': 'on-demand’, "AWS_REGION': 'us-east-1', 'TZ': ':UTC AWS_AC[ESS KEY_ID":

"ASTAS7XI7IMZNYGFPUVM', 'SHLVL': '@', '_ANS_XRAY_DAEMON_ADDRESS': '169.254.79.129", "AWo. Rﬁv,ﬁamﬂﬂ PORT - ME TR XRAY_CONTEXT_MISSING :
'LOG_ERROR', "_HANDLER': 'lamhda_fumctwn lambda_handler', "AWS_LAMBDA_! FUNCTIONIMEMORY.SIZE 128" . 'PYTHONPATH': '/var'/rumt\me , ' X_AMZN_TRACE_ID':
'Rout:l-63452dc3—1eldeﬁeﬂ@a(fe}ﬂmas?}ehf;Pur‘ent:?eemdlﬁﬁdexzn? Sampled

> 2022-10-11T10:48:93.473402:00 END RequestId: aachf25a-4@be-43cf-82ba-e115fF165dfd

» 2022-10-11T19:48:03.473+02:00 REPORT RequestId: aacbf2Sa-40be-43cf-82ba-el15ff165dfd Duration: 1.25 ms Billed Duration: 2 ms Memory Size: 128 M.

Figure 7.11 - Log details

Congratulations! You are able to investigate Lambda logs via the CloudWatch service. It is simple to
use CloudWatch to investigate a log for any AWS service. In the next topic, we will learn some tricks
regarding filtering logs.

CloudWatch Log Insights

In this topic, we will take a look at Log Insights. If you have massive lines of logs, it is not easy to
search and find the respective log that you are searching for. For this use case, Log Insights comes
into play. CloudWatch Log Insights allows you to search logs with the filtering feature. Let’s see how
Log Insights helps us to search logs:

1. Click Log Insights under the Logs dropdown in the left pane:

CloudWatch X CloudWatch Logs Insights

Favorites and recents >
Logs Insights

Dashboards Select log groups, and then run a query or choose a sample query.

» Alarms Ao ®o ®o

¥ Logs

1 fields @timestamp, @message
2 | sort @timestamp desc
3 | limit 20

Log groups

Logs Insights

Figure 7.12 - Log Insights



CloudWatch Log Insights

2. Select the log that you want to investigate. In the previous example, we ran the TestLogs Lambda
function, and I am also selecting that one here:

Logs Insights sm 30m 1h  3h  12h  Custom
Select log groups, and then run a query or choose a sample query.

faws/lambda/A4L-IPveWorkaroundLambda-10YPQF7PSZWET
faws/lambda/A4LVPC-IPvEWorkaroundLambda-1006JHL30UJIA
faws[flambda/A4LVPC-IPveWorkaroundLambda-FOG3U13ZZ1IP
faws/lambda/bike-buyer-lambda

faws/lambda/testbuyukveri

faws/lambda/TestLogs

[var/log/httpd/acce (aws/lambda/TestLogs
[var/log/httpd/ferror_log
[var/log/secure

All log groups loaded.
Figure 7.13 - The Log Insights window
3. Once you select it, you can see the default query:

Logs Insights

Select log groups, and then run a query or choose a sample query.

/aws/lambda/TestLogs X

1 fields @timestamp, @message
2 | sort @timestamp desc
3 | limit 20

K o [ ][ o

Queries are allowed to run for up to 15 minutes.

Figure 7.14 — The Log Insights filter



96 Monitoring Applications via CloudWatch

4. Click the Run query button in order to see the result. In this filter, f ie1ds represents the
columns that will be listed, whereas the sort keyword indicates the sorting method, and you
can see only 20 records with the 1imit keyword:

Jaws/lambda/TestLogs X

1 fields @timestamp, @message
2 | sort @timestamp desc
3 | limit 20

EXEE o [ ][

Queries are allowed to run for up to 15 minutes.

Logs Visualization Export re

Showing 5 of 5 records matched &

5 records (2.5 kB) scanned in 3.2s @ 1 records/s (813.342 B/s)

5

4

3

2

1

0

10:30 10:35 10:40 10:45 10:50 10:55 1AM 11:05

# @timestamp @message
b1 2022-10-13T11:14:21... END RequestId: db3c@860-2c96-4cad-9897-911b44e303e9
> 2 2022-10-13T11:14:21... REPORT RequestId: db3c@86@-2c96-4ca@-9897-911b44e303e9 Duration: 2.47 ms
> 3 2022-10-13T11:14:20@... START RequestId: db3c@860-2c96-4ca@-9897-911b44e303e9 Version: $LATEST
> 4 2022-10-13T11:14:20@... ENVIRONMENT VARIABLES

Figure 7.15 - Logs

Let’s add one more filter to search for a keyword within the message. You can use the following
query format:

fields @timestamp, @message

| filter @message like /AWS DEFAULT REGION/

| sort etimestamp desc

| limit 20

With this query, we search for logs that contain AWS DEFAULT REGION. Paste that and click Run
query again. After running the query, you will see that the message lines are reduced:



CloudWatch Log Insights

faws/lambda/TestLogs X

| sort @timestamp desc
| limit 20

O O R N

fields @timestamp, @message
| filter @message like /AWS_DEFAULT_REGION/

[ eon quary |

Save | [ History

Queries are allowed to run for up to 15 minutes.

Logs Visualization
1
0
10:30 10:35 10:40
£ @timestamp
> 1 2022-10-13T11:14:20...

Showing 1 of 1 records matched @

Expor

5 records (2.5 kB) scanned in 2.6s @ 1 records/s (1,001.157 B/s)

10:45 10:50 10:55 11 AM 11:05 11:10

@message

environ({ AWS_LAMBDA_FUNCTION_VERSION': '$LATEST', 'AWS_SESSION_TOKEN'

When you expand the message, you will find what you searched for - in this case, AWS DEFAULT _

Figure 7.16 - Filtered logs

REGION:

# @timestamp @message

vl 2022-10-13T11:14:20... environ({"AWS_LAMBDA_FUNCTION_VERSION': '$LAT
Field Value
@ingestionTime 1665652465080
@log 961487522622 : /aws/1ambda/TestLogs
@logStream 2022/10/13/[$LATEST]7e5aaadeaaf84ald82aa2dbe
@message environ({'AWS_LAMBDA_FUNCTION_VERSION"': '$LA
@timestamp 1665652460997
@xrayTraceld 1-6347d6ec-3d2886861f5141db1d518618
_AWS_XRAY_DAEMON_ADDRESS 169.254.79.129
_AWS_XRAY_DAEMON_PORT 2000
_HANDLER lambda_function.lambda_handler

_X_AMZN_TRACE_ID
AWS_ACCESS_KEY_ID
AWS_DEFAULT_REGION
AWS_EXECUTION_ENV

Root=1-6347d6ec-3d2886861f5141db1d518618;Par
ASIAS7XI7IM7DMADYZ50

us-east-1

AWS_Lambda_python3.9

AWS_LAMBDA_FUNCTION_MEMORY_SIZE 128

Figure 7.17 — Detailed logs

97



98

Monitoring Applications via CloudWatch

As you can see, Log Insights is very helpful to search and filter logs within a massive log block. In the
next topic, we will take a look at how to create an alarm.

CloudWatch alarms

AWS has more than 100 services, and it is not easy to control the behavior of all the services. You need
to be informed if some AWS services achieve a specific metric. In Chapter 4, we covered how to create
a server with an EC2 service. For example, you define a server for an EC2 service, and sometimes, its
CPU usage is more than 90%, causing some performance problems. Another example would be to
add a notification if you exceed a specific cost in AWS. For these kinds of scenarios, you can define a
metric, and if the metric is reached, you will be notified via email.

In this topic, we are going to create an alarm to notify us if AWS cost exceeds $10 in a month. Let’s
implement the application:

1. Click In alarm under the Alarms dropdown in the CloudWatch pane:

CloudWatch X Cloudwatch > Alarms
Favorites and recents >
Alarms (0) [] Hide Auto Scaling
Dashboards
Q, Search
v Alarms Ao @®o o
In alarm Name v State v
All alarms
Billing

Figure 7.18 — In alarm

2. Click Create Alarm. You can click either the button to the right or the one at the bottom:

Create alarm

Any type v ’ ‘Any actions... ¥ 1 1)

Figure 7.19 — Creating an alarm



CloudWatch alarms

3. Click the Select metric button:
Specify metric and conditions

Metric

Graph

Preview of the metric or metric expression and the alarm threshold.

N———

Figure 7.20 - Select metric

4. Once you click the Select metric button, you will be able to see a list of categories with which
to narrow down your metric:

ApplicationELB 50 Billing 27

EC2 76 ElasticBeanstalk 2

Figure 7.21 — Metric types

In this list, you can see different types of metrics. Billing allows you to define cost-related metrics,
while Lambda allows you to define Lambda-related metrics. In this example, we are going to define
a monthly budget for our AWS account. The aim is to receive an alarm if our monthly cost exceeds
a specific threshold:

1. Click Billing from the categories:

Billing 27

ElasticBeanstalk 2

Figure 7.22 - The Billing category

929



100 Monitoring Applications via CloudWatch

2. Click Total Estimated Charge. The intention is to define a metric if your total monthly AWS
cost exceeds a target budget:

Total Estimated Charge 1

Figure 7.23 - Total Estimated Change

3. From the list, select USD and click Select metric. The currency type may vary, depending on
your AWS account:

O Currency 1/1 A Metric name

(] usb EstimatedCharges

Figure 7.24 - The currency type

On the next screen, go to the Define the threshold value field. For this example, I added 10,
which means that if the total cost is greater than $10 for a month, an alarm will be activated.
In this panel, you can also change the currency type, calculation type, and so on. In this case,
the most important value is defining the target budget to receive an alarm. After you have done
that, click the Next button:

Threshold type

O Static
Use a value as a threshold

Whenever EstimatedCharges is...
Define the alarm condition.

O Greater (O Greater/Equal
> threshold >= threshold

than...
Define the threshold value.

10

Must be a number

usD

4

Figure 7.25 - Threshold value



CloudWatch alarms

4. In the next panel, we are going to define the alarm endpoint. In this case, we have selected the
Create new topic radio button. Simple Notification Service (SNS) is used to communicate
between services and end users. This is a choice under Send a notification to the following
SNS. Once we select Create new topic, we can define an email address in the Email endpoints
that will receive the notification... section. SNS is an access point to filter messages in order
to send them to different subscribers such as Lambda or email. You can keep the topic name

as is; it is the same as the SNS topic name. When completed, click Create topic:

Motification

Alarm state trigger
Define the alarm state that will trigger this action.

© Inalarm ) OK
The metric or expression is The metric or expression is
outside of the defined within the defined threshold.
threshold.

Send a notification to the following SNS topic

Define the SM5 (Simple Notification Service) topic that will receive the notification.

) Select an existing SMS topic
© Create new topic

—_—
(1 Use topic ARN to notify other accounts

Create a new topic...
The topic name must be unique.

Default_CloudwWatch_Alarms_Topic
e —

LSNS topic namas can contain only alphanumeric characters, hyphens (-) and undarscores ().

Email endpoints that will receive the notification. ..

() Insufficient data
The alarm has just started or
not encugh data is available.

Add a comma-separated list of email addresses. Each address will be added as a subscription to the topic abowve.

serkansakinmaz@gamil.com
—

user] @example.com, user2@ecample.com

Create topic

| Add notification ‘

Figure 7.26 — Receiver

101



102 Monitoring Applications via CloudWatch

5. After Create topic is clicked, AWS will create an endpoint in order to send an email:

Notification
Alarm state trigger
Define the alarm state that will trigger this action.
© Inalarm ) 0K ) Insufficient data
The metric or expression is The metric or expression is The alarm has just started or
outside of the defined within the defined threshold. not encugh data is availabla.
thrashold.

Send a notification to the following SNS topic
Define the SNS (Simple Motification Service) topic that will receive the notification.

© Select an existing SNS topic
() Create new topic

(7 Use topic ARN to notify other accounts

Send a notification to...

Q. Default_ClaudWatch_Alarms_Tapic *

Only email lists for this account are available.

Email (endpoints)
serkansakinmaz@gmail.com - View in N5 Console [

Add netification

Figure 7.27 - Creating an endpoint

Now, you have an endpoint, and you can proceed by clicking the Next button.

6. 'The next step is to define the alarm name. In this case, | named it BillingAlarmGreaterThanl0,
since it sends an alarm if the billing cost goes above than $10:

Add name and description

Name and description

Alarm name

Blllinghlarnbrcater‘rhan 10

Alarm description - optional

Alarm description

Up to 1024 characters (0/1024)

Figure 7.28 - Naming the alarm



CloudWatch alarms

7.

Preview and create
stap 1: Specify metric and conditions
Metric

Graph

The next step is to review the input and click Create alarm:

Thin alarm wil triggar whan the i bne goe abzes tha red ina far 1 datapsists within & houmn

Ho usit

£1%
112 1214 1818 18/18

W e matedharge

Conditions

Thrashisle type
Static

‘Wihanever EstimatedCharges &
Greater (=)

than..

10

& Additional cemfiguration

Stap 2: Configure actions

Actions

Motification

Hamespace
A5 Elling

Matric name
EstimatedCrarges

Currency
uso

Statistic
Madmum

Paricd
& howrs

Wihan In akarm, send a noefication to "Default_Cloudwatch_slamre_Topic

Step 3: Add name and description
Name and description

Maimez
BlingalarmGreEaterihan1o

Description

Figure 7.29 - Creating the alarm

103



104 Monitoring Applications via CloudWatch

8. If you successfully create the alarm, you will be redirected to the Alarm list to see the alarm
that you created. We can see the alarm as follows:

Name v

BillingAlarmGreaterThan10

Figure 7.30 - The billing alarm type

In this topic, we have created an alarm. An alarm is useful if we need to create a notification for the AWS
service behaviors. This example will send a notification if, for example, we reach the defined cost limit.

Summary

In this chapter, we learned about the AWS CloudWatch service and how to investigate service logs
in AWS. CloudWatch is very useful for logging; it also allows you to define some metrics and alarms
to monitor services. In the following chapter, we will take a look at database operations within AWS.



8
Database Operations with RDS

In this chapter, we are going to learn the basics of Amazon Relational Database Service (Amazon
RDS) and create an RDS instance in order to make a database operation. You can use RDS to create
the most popular databases in AWS. You can create Oracle, MySQL, or MS SQL databases on the
cloud with scaling capabilities. In general, when you need to create a database, you must manage the
infrastructure using an on-premises system. Managing the hardware and infrastructure, installing
the database, and then monitoring could require a lot of effort to set up. AWS allows you to select the
database type that you want and then create it with a simple button click - that is all:

Create database

Choose a database creation method info

© standard create Easy create
You set all of the configuration options, including ones Use recommended best-practice configurations. Some
for availability, security, backups, and maintenance. configuration options can be changed after the

database is created.

Engine options

Engine type Info

Amazon Aurora MySQL MariaDB
+
O PostgresQL Oracle Microsoft SQL Server

ORACLE 7 SOL Server

Figure 8.1 - Click to create




106

Database Operations with RDS

In this chapter, we will create a database and make some operations using Python. The chapter covers
the following topics:

Features of RDS

Provisioning RDS

Connecting to the RDS

Creating a table in the database
Database operations with Python

Secrets Manager

Features of RDS

RDS comes with different features that facilitate the creation and maintenance of the database. Let’s
look at the most important features:

Easy to use: You can easily create and maintain RDS via the AWS console. It also allows us to
use some API capabilities to make some programmatic operations. For example, you can create
and scale the database, and monitor its usage.

Scalability: RDS supports scalability; if there is a need to support more capacity, you can
easily scale the database up. However, if the capacity is less than you estimate, you can reduce
the capacity with a scale-down request to reduce the cost. Another option is Amazon Aurora,
which allows cloud users to implement more performance-intensive applications that support
a Relational Database Management System (RDBMS).

Backup: A database backup is important in case any issue arises with the infrastructure. In some
cases, the backup is used to create a new database. RDS supports both manual and automated
backups. You can create a snapshot whenever you want, or RDS can take a snapshot at regular
intervals. In general, the snapshots are stored in AWS S3 buckets.

Multi-AZ deployment: RDS can be available within different locations to improve availability.
If the infrastructure is down in one location, RDS can serve in another location to improve
availability. This approach can be used for critical applications that use databases in the cloud.

Monitoring: Monitoring is very important for critical applications. You can track how the
database is behaving and see whether there are any issues in it. RDS has a supporting monitoring
feature. For example, you can track when I/O problems are happening in the database, and
you can take the right action.

Cost options: AWS offers different pricing options for using the database. One of the popular
options is the pay-as-you-go option. In this option, you don't need to commit to any long-term
contract. You simply pay for how many resources you use in a specific period. Hence, you can
pay the bill monthly. In other options, you make a contract with AWS for a specific duration;
however, in this case, you have to pay for the contract even if you don’t use the database.



Provisioning RDS

Provisioning RDS

In this section, we are going to create a sample relational database on the cloud. To provision the RDS
on AWS, carry out the following steps:

1. Open the AWS console and type rds in the search box:

i1 Services Q rds

Amazon RDS Search results for ‘rds'

Dashboard Services
Databases Features (25)
Query Editor Blogs (1,577)
Managed Relational Database Service
Performance insights Documentation (59,619)

Figure 8.2 — RDS on the console

2. Click Databases on the left pane to see the list of databases. To create a new database, click
Create database:

Amazon RDS x ROS > Databases

Databsses © wopnsues [ G recretom s [T

a d @

Snapsno DB identifier a  Ralev  Engine v Region&AZ v Size v Stms v CPU Currentactivity Maintenance ©  WPC v MulthAZ @

Exports in Amazon 53
v Mo Instances found

Figure 8.3 — Database list

3. On the new panel, Create database, and fill out the information required for the new database.
RDS supports multiple database types, such as Amazon Aurora, MySQL, MariaDB, PostgreSQL,
Oracle, and Microsoft SQL Server. In this example, we will use MySQL:

107



108 Database Operations with RDS

RDS Create database

Create database

Choose a database creation method info

© Sstandard create Easy create
You set all of the configuration options, including ones Use recommended best-practice configurations. Some
for availability, security, backups, and maintenance. configuration options can be changed after the

database is created.

Engine options

Engine type Info

Amazon Aurora O MysQL MariaDB
+*
PostgresQL Oracle Microsoft SQL Server

orAcle | PSisener

Figure 8.4 — MySQL selection

4. After selecting MySQL, scroll down and select the correct version of MySQL. In this example,
we will use one of the latest versions, MySQL 8.0.28:



Provisioning RDS

Engine type info

Amazon Aurora MariaDB
+*
¢*
PostgreSQL Oracle Microsoft SQL Server

@ ORACLE 77 S8 server

Edition
© MySQL Community

@ Known issues/limitations
Review the Known issues/limitations [ to learn about potential compatibility issues with specific
database versions.

Version

MySQL 8.0.28 v

Templates

Choose a sample template to meet your use case.

Production Dev/Test O Free tier

Use defaults for high availability This instance is intended for Use RDS Free Tier to develop

and fast, consistent development use outside of a new applications, test existing

performance. production environment. applications, or gain hands-on
experience with Amazon RDS.
Info

Figure 8.5 - Template selection

5. Templates are useful for working in different environments. When you select the Production
template, it gives you high availability. In this example, we will select the Free tier template to
avoid any costs.

109



110 Database Operations with RDS

6. Scroll down and fill in the Settings details. In the Settings panel, you need to fill in the database
identifier, username, and password:

Settings

DB instance identifier Info

Type a name for your DB instance. The name must be unigue across all DB instances owned by your AWS account in the current AWS
Region.

database-1

The DB instance identifier is case-insensitive, but is stored as all lowercase (as in "mydbinstance”). Constraints: 1 to 60 alphanumeric
characters or hyphens. First character must be a letter. Can't contain tweo consecutive hyphens. Can't end with a hyphen.

¥ Credentials 5ettings

Master username Info
Type a login ID for the master user of your DB instance.

admin

1 to 16 alphanumeric characters. First character must be a letter.

Auto generate a password
Amazon RDS can generate a password for you, or you can specify your own password.

Master password Info

Constraints: At least 8 printable ASCII characters. Can't contain any of the following: / (slash), '{single quote), "{double quote) and @
(at sign).

Confirm password infeo

Figure 8.6 — Settings

DB instance identifier is used to represent the database name in the cloud. You can also enter
the Master username and Master password details. These credentials are important for security.

Scroll down and fill in the details with regard to storage and instance configuration.

7. In Instance configuration, in DB instance class, you can select the processor and memory
types. Since we are creating it for education, you can select the simple instance type that has
basic hardware features. Another hardware selection is made for Storage. You can keep what
AWS has recommended or use the minimum values.

In Storage type, you can select the disk type. In Allocated storage, you have to specify the
limit of the disk. For this example, we selected 200 GiB. If the disk needs to be scaled, you can
check the Enable storage autoscaling checkbox.



Provisioning RDS

When the disk is scaled, the value you enter in the Maximum storage threshold field is the
maximum value of the database. In this case, the maximum threshold is 1000:

Instance configuration

The DB instance configuration options below are limited to those supperted by the engine that you selected above.

DB instance class Info

© Burstable classes (includes t classes)

db.t3.micro
2vCPUs  1GIiBRAM  Network: 2,085 Mbps

(® Include previous generation classes

Storage

Storage type Info

General Purpose 55D (gp2)

Baseline performance determined by volume size
Allocated storage

200 GIB

The minimum value is 20 GiB and the maximum is §,144 GiB
Storage autoscaling nfo
Provides dynamic scaling support for your database’s storage based en your application's needs.

Enable storage autoscaling
Enabling this feature will allow the storage to increase after the specified threshold is
exceeded.

Maximum storage threshold info
Charges will apply when your database autoscales to the specified threshold

1000 GiB

The minimum value is 220 GiB and the maximum is 6,144 GiB

Figure 8.7 - Instance configuration (part 1)

Scroll down and fill in the details with regard to Connectivity.

111



112

Database Operations with RDS

In the first option, AWS asks whether you want to connect to EC2. For this example, we don't
need to connect to EC2, so we select Don’t connect to an EC2 compute resource. (After setting
up the database, we will use Lambda for database operations.) RDS needs to be created in the
VPG, so in Virtual private cloud (VPC), we select Create new VPC, and it will automatically
create a VPC.

Another option is to select a group in DB Subnet group. This allows you to define which IP
group is going to connect to the database. It is also important in terms of security. You can
limit the IP range with this option.

Public access allows you to enable access over the internet. For this application, we will use
public access. However, you need to be careful when you set production databases as public.

The final option for Connectivity is to select a group in VPC security group (firewall). In this
case, you can define the same security group that connects to RDS:



Provisioning RDS

Connectivity info -

Compute resource
Choose whether to set up a connection to a compute resource for this database. Setting up a connection will automatically change
connectivity settings so that the compute resource can connect to this database.

© Don't connect to an EC2 compute resource 1 Connect to an EC2 compute resource
Don't set up a connection to a compute resource for Set up a connection to an EC2 compute resource for
this database. You can manually set up a connection to this database.

a compute resource later.

Virtual private cloud (VPC) Info
Choose the VPC. The VPC defines the virtual networking environment for this DB instance.

Create new VPC v

Only VPCs with a corresponding DB subnet group are listed.

(i) After a database is created, you can't change its VPC.

DB Subnet group Info
Choose the DB subnet group. The DB subnet group defines which subnets and IP ranges the DB instance can use in the VPC that you
selected.

Create new DB Subnet Group v

Public access Info

O Yes
RDS assigns a public IP address to the database. Amazon EC2 instances and other resources outside of the VPC can connect to
your database. Resources inside the VPC can also connect to the database. Choose one or more YPC security groups that specify
which resources can connect to the database.

) No
RDS deesn't assign a public IP address to the database. Only Amazon EC2 instances and other resources inside the VPC can
cannect to your database. Choose one or more VPC security groups that specify which resources can connect to the database.

VPC security group (firewall) info
Choose one or more VPC security groups to allow access to your database. Make sure that the security group rules allow the
appropriate incoming traffic.

© Choose existing (1 Create new
Choose existing VPC security groups Create new VPC security group

Existing VPC security groups

‘ Choose one or more options v

Figure 8.8 - Instance configuration (part 2)

Scroll down and fill in the database port information.

113



114 Database Operations with RDS

9. Database port defines which port is used to connect to the database. The default value is 3306
for MySQL, but you can also change it:

» Additional configuration

Database port Info
TCP/IF port that the database will use for application connections.

3306

Figure 8.9 - Database port

Scroll down and fill in the authentication details.

10. Database authentication is used to define the approach for password management. You can
connect with only a password, a combination of a password with IAM authentication, or a
password with Kerberos authentication. Let’s keep it simple and just use Password authentication:

Database authentication

Database authentication options Info

0 Password authentication
Authenticates using database passwords,

Password and IAM database authentication
Authenticates using the database password and user credentials through AWS 1AM users and
roles.

Password and Kerberos authentication
Choose a directory in which you want to allow authorized users to authenticate with this DB
instance using Kerberos Authentication.

Figure 8.10 — Database authentication

Scroll down and fill in the details regarding database creation.

11. As afinal step, you can keep other values as is. Click Create database and proceed with the
database creation:



Provisioning RDS

Monitoring

Monitoring

Enable Enhanced monitoring
Enabling Enhanced monitoring metrics are useful when you want to see how different processes or threads use the CPU.

» Additional configuration

Database options, encryption turned an, backup turned on, backtrack turned off, maintenance, ClaudWatch Logs, delete
protection turned off.

Estimated monthly costs

The Amazon RDS Free Tier is available to you for 12 months. Each calendar month, the free tier will allow you to
use the Amazon RDS resources listed below for free:

* 750 hrs of Amazon RDS in a Single-AZ db.t2.micro, db.t3.micro or db.tdg.micro Instance.
» 20 GB of General Purpose Storage (55D).

= 20 GB for automated backup storage and any user-initiated DB Snapshots.

Learn more about AWS Free Tier. [4

When your free usage expires or if your application use exceeds the free usage tiers, you simply pay standard,
pay-as-you-go service rates as described in the Amazon RDS Pricing page. [4

(©) You are responsible for ensuring that you have all of the necessary rights for any third-party products or
services that you use with AWS services.

Cancel Create database

Figure 8.11 — Database creation

This forwards you to the Databases list, in which you can see the database is being created:

RDS Databases

Databases @) Group resources
Q
DB identifier A Role w Engine v Region & AZ ¥ Size v Status CPU
database-1 Instance MySQL Community - db.t3.micro (@) Creating -

Figure 8.12 — Databases list with a Creating status



116 Database Operations with RDS

After some time, you can see the database is ready to use:

Databases @D Group resources ’T
Q
DB identifier a Role ¥ Engine Region & AZ ¥ size v status ¥ ] Current activity
database-1 Instance MySQL Community us-east-1f db.t3.micro @ Available 11267% 0 Connections

Figure 8.13 — Databases list with an Available status

We will connect from our computer. To connect to the database, we need to enable the connection

from outside of AWS.

12. Click the Connectivity & security tab. You will see VPC security groups; click the link:

RDS Databases database-1
database-1
Summary
DB identifier cPU Status
database-1 I 15.76% Available
Role Current activity Engine
Instance 110 Connactions MySQL Community

Connectivity & security Monitoring Logs & events

Connectivity & security

Endpoint & port

Endpoint

Configuration Maintenance & backups

Networking

Availability Zone

Tags

Security

WVPC security groups

database-1.cshvuutaltln.us-east-1.rds.amazonaws.com us-east-1f default (sg-0d0f606bch 7901683
Erheti
Port VPC
3306 vpe-06f1d1e22c187d76d Publicly accessible
Yes
Subnet group
default-vpc-06f1d1e22¢187d76d Certificate authority
rds-ca-2019

Subnets

Figure 8.14 — Security groups



Connecting to the RDS

13. In the new panel, click Edit inbound rules. This will allow us to define the inbound connections:

2
5g-0d0fE06bch 7901683 - default
Detalls inbound rutes | Outboundrukes | Tags
@ You can now check network connecthity with Reachabilty Analyzer Run Reachability Analyzer | X
Inbound rules (1/1) | [ Mamogeregs | [ Eaiinn

a

Name v Security group rule... ¥ 1P version s Type v Protocel Portrange Source “  Description

1] 50r-D0C3bAIS 141092221 1Pvd. MYSQL furara TP 3306 0.00.0/0

Figure 8.15 — Inbound rules

14. Add the rule for the MySQL/Aurora type and click Save, which isn't depicted in the following
figure but is situated at the bottom of the page:

Edit inbound rules

Inbound rules w0

Socurity group rule 10 Type nie Fratocol infe Pert rango Info Sourca infe Description - optional infs

5-00c3bAfS14f092221 HYsafhvora . Custom v o Dulete
00000 X
Add rule

Figure 8.16 — Adding the rule
These steps allow us to accept the connection from outside of AWS. Hence, we will connect to AWS
via a local computer.

Congrats! You have created the database on the cloud. As you can see in the steps, creating a database
is easy and efficient on the cloud. Let’s connect to the database in the next topic.

Connecting to the RDS

In this section, we are going to connect to the RDS from one of the database viewers. For that purpose,
you can install a free database viewer; I will use a MySQL viewer. To install the MySQL viewer, carry
out the following steps:

1.  Open the following link: https: //www.mysqgl . com/products/Workbench/.

2. Click Download Now on the main page:

117


https://www.mysql.com/products/workbench/

118 Database Operations with RDS

MySQL Workbench

Enhanced Data Migration

Download Now »
e )

Figure 8.17 - MySQL Workbench
3. Click Download on the next page:

General Availability (GA) Releases Archives i)

MySQL Workbench 8.0.31

Select Operating System:

| macOS hd

o Packages require Big Sur (11.1 or newer)

MacOs (x86, 64-bit), DMG Archive 8031 113.0M
(mysqgl-workbench-community-8.0.31-macos-x86_64.dmg) MD5: 57927c4341d3ae5addbladB2ac9647e3 | Signature

Figure 8.18 - MySQL Workbench download

4. Double-click and install the downloaded package, and the installation will be done.

5. Once the installation has been completed, click the + symbol to connect to the new database:



Connecting to the RDS

MySQL Workbench

Migration

Setup New Connection

Welcome ***

Connection Name: Type a nar

Connection Method:  Standard (TCP/IP) B method o
MySQL Workbench is the ¢

create and browse your (
design and run SQL queries

Parameters  SSL  Advanced

Hostname: 457501 Port: 49ng ;;arl:e or IP address of the

Username: rpot Name of the user to conne

Password: : B The user's password. WIll

Browse Documentatil Store in Keychain ... Clear hasie
Default Schema: The schema to use as def:
to select It later.
MySQL Connectjons ®®
MySQL ¥
Thist
Configure Server Management... Test Connection

Figure 8.19 — New connection

6. Open AWS and copy the connection details:

119



120 Database Operations with RDS

Amazon RDS X RDS Databases database-1
Dashboard database-1
Databases
Query Editor Summary
Performance insights
Snapshots DB identifier
Exports in Amazon 53 database-1
Automated backups
P Role
Reserved instances Instanee
Praoxies
Connectivity & security Monitoring Logs & events
Subnet groups
Parameter groups
Option groups 5 %
pHion group Connectivity & security
Custom engine versions
Endpoint & port
Events Endpoint
Event subscriptions database-1.cshvuutaltln.us-east-1.rds.amazonaws.com
Port
3306

Recommendations o

Certificate update
Figure 8.20 - Endpoint name

7. Fill out the endpoint and password details in MySQL Workbench and click Test Connection:



Connecting to the RDS

N ] Setup New Connection
Connection Name: database-1 Type a name for the connection
Connection Method: ~ Standard (TCP/IP) Method to use to connect to the RDBMS

Parameters = SSL  Advanced

Hostname: database-1.cshvuutaltin.us-east Port: 3306 mle or IP address of the server host - and TCR/IP
Username: admin Name of the user to connect with.
Password: Store in Keychain ... Clear ::tssl.;t-;r's password. Wil be requested later If It's
Default Schema: I The schema to use as default schema. Leave blank
to select It later.
Configure Server Management... Test Connection Cancel m

Figure 8.21 — Test Connection

After clicking Test Connection, you will be able to see the connection:

Successfully made the
MySQL connection

Information related to this connection:

Host: database-1.cshvuutaltin.us-
east-1.rds.amazonaws.com
Port: 3306
User: admin
55L: enabled with
TLS_AES_256_GCM_SHA384

A successful MySQL connection was
made with

the parameters defined for this
connaction.

Figure 8.22 — Connection is successful

121



122 Database Operations with RDS

Good work! We have successfully connected to the RDS database from MySQL Workbench. Let’s
create a table and insert some records in the next topic.

Creating a table in the database

We have created a database in the cloud and have connected via MySQL Workbench. As a next step,
we are going to create a table via MySQL Workbench:

1. Connect to the database via MySQL Workbench.

2. Create a database with the following command and click the lightning symbol, as shown in
the figure that follows:

CREATE DATABASE address;

aatapase

W
&8 o JEE&ELN w

Administration Schemas F Query
SCHEMAS > = (:]’j a8, el @  Limit to 1000 rows 8 4 <Q =
Q
le CREATE DATABASE address;
~ [£] address 2
3

s [ Tables

Figure 8.23 — Creating a database

3. Execute the USE address command in order to switch databases:

USE address;

i o dE&&EL o
h F Query1

SCC:EMAS * o ¥ ¥ B & @ Limit to 1000 rows 8 % <=

1e USE address;

Figure 8.24 — USE address

4. Create an address table:

CREATE TABLE address (id INT, address VARCHAR(20));

§8 ¢ JBEEHEE & &

h F Query 1
SCHEMAS * - ¥ F & & 75 Limit to 1000 rows 8 # <6 [RE=
Q -
le CREATE TABLE address (id INT, address VARCHAR(22));
+ (=1 address P

Figure 8.25 - Creating a table



Creating a table in the database

We have created an address table, and for the next step, we are going to insert data into the table.

5. Execute the following script to insert data into the table:

INSERT INTO address (id,address) VALUES (1, "Germany") ;
INSERT INTO address (id,address) VALUES (2, "USA");

Q& o SEE&EL w

F Query1
SCHEMAS * mH FEFB & [@  Limitto 1000 rows B 4% QMR
Q le INSERT INTO address (id,address) VALUES(1,' any'')}:

+ [=] address 2 ®  INSERT INTO address (id,address) WALUES(2,"USA");
= - 1

Figure 8.26 — Inserting script

The table has two rows, and we are going to read these values from the Lambda function:

8 ¢ SEEHE @ &

Administration Schemas F Query1 F address F address # address
CHEMAS > & e ¥ ¥ 8 ) B  Limitto 1000 rows 2]
Q

1 e BELECT * FROM address.address;
« [=| address
+ [ Tables
- address
y Columns
7 Indexes
Y % Foreign Keys

>E|Triggers
5 Views Result Grid HH 43 Filter Rows: Q Export: E

100% 1 IEE]

[Z Stored Procedures id address
B Functions 1 Germany

e 2 USA
y (= 5¥5

Figure 8.27 — Select script

In this topic, we have created a simple table and inserted records. The insertion was made with MySQL
Workbench, but you can also use other database tools. As a next step, we are going to read the records
using Python.

123



124

Database Operations with RDS

Database operations with Python

In this section, we are going to read a table using Python. To execute a Python function, we will use

PyCharm on a local computer. Carry out the following steps:

1.
2.

Open PyCharm or an IDE, whichever you prefer.

We are going to install MySQL Connector to PyCharm. MySQL Connector will be used for
database operations from Python. In PyCharm, select File | New Projects Setup | Preferences
for New Projects...:

A

>

PyCharm

Project

Il External
© Scratche

File Edit View Navigate

Mew Project...
New...

New Scratch File
&= Open...

Save As...

Open Recent
Close Project
Rename Project...

File Properties

Local History

=l Save All

‘> Reload All from Disk
Repair IDE...

Invalidate Caches...
Restart IDE...

Manage IDE Settings

Save File as Template...

Export
= Print...

Power Save Mode

Code Refactor Run Tools

Preferences for New Projects...

Run Configuration Templates...

Figure 8.28 — Preferences



Database operations with Python 125

3. In the panel, select Python Interpreter:

> Appearance & Behavior

» Editor

Plugins

> \Vlersion Control
Python Interpreter
» Build, Execution, Deployment
> Languages & Frameworks
> Tools

» Other Settings

Figure 8.29 — Python Interpreter

4. To add a new package, click the + symbol:

Preferences
Python Interpreter

Appearance & Behavior
> Editor

Plugins

Python Interpreter:

> Version Control
Python Interpreter

Build, Execution, Deployment

> Languages & Frameworks
> Tools

Other Settings

Figure 8.30 - Adding a package

5. Inthe upcoming panel, type mysql - conn to install mysql-connector. You will be able to see
mysql-connector. Click Install Package to install it:



126 Database Operations with RDS

Available Packages

its affiliates

Figure 8.31 - Installing mysql-connector

6. Once you install it, you will be able to see mysql-connector within the installed packages:

Python Interpreter

> Appearance & Behavior
> Editor
Plugins
> Version Control
Python Interpreter
> Build, Execution, Deployment
> Languages & Frameworks

> Tools

> Other Settings

Apply

Figure 8.32 - Package list



Database operations with Python 127

7. Copy and paste the following code to read data from the database:

import mysqgl.connector

#rds settings

rds_host = "database-1.******** yg-east-1.rds.amazonaws.com"
name = "**min"

password = "****k%kD34M

db_name = "address"

if name == ' main_ ':

conn = mysql.connector.connect (host=rds host, user=name,
passwd=password, database=db name, port=3306)

cursor = conn.cursor ()
cursor.execute ("select * from address")
data = cursor.fetchall ()

print (data)

The preceding code block connects to the RDS database and reads from the address table by
executing the select * from address query. For rds host, name, and password,
please fill out your database host and credentials:

g main.py

cute(
r.fetchall()

Figure 8.33 — Query from the database



128

Database Operations with RDS

8. When you click Run, you can see the results from the database:

Figure 8.34 — Results from the database

Congrats! You are able to read data from the AWS database via Python. You can also extend your query
by implementing insert and update queries. In this topic, we learned how to make a database
operation via Python.

Secrets Manager

Secrets Manager is an AWS service that allows you to manage and retrieve database credentials, which
can be helpful when using a database. Let’s learn how to use Secrets Manager:

1. Open Secrets Manager via the console:
Q secrets ai
Search results for 'secrets a'

Services
Features (187)
Resources | New

Easily rotate, manage, and retrieve secrets throughout their lifecycle
Blogs (17,470)

Top features

Documentation (41,057)

Figure 8.35 - Opening Secrets Manager



Secrets Manager

2.

Click the Store a new secret button:

Description Last retrieved (UTC)

No secrets

Store a new secret

Figure 8.36 — Storing a new secret

Select the secret type that you want to store a secret for, and fill out the username and password.
In this case, we will select the database-1 instance. After filling out the details, click Next:
Secret type info

© Credentials for Amazon RDS () Credentials for Amazon (O Credentials for Amazon
database DocumentDB database Redshift cluster

() Credentials for other () Other type of secret
database AP key, OAuth token, other.

Credentials info

User name

serkan

Password

saenannns

D Show password

Encryption key info
You can encrypt using the KMS key that Secrets Manager creates or a customer managed KMS key that you create.

aws/secretsmanager v &) ‘

Add new key [

Database info

Q, Search instances 1
DB instance v | DB engine v Status v Creation date (UTC) ¥
o database-1 mysql creating April 5, 2023 at 09:0...
Cancel Next

Figure 8.37 - Filling out the details

129



130 Database Operations with RDS

4.  You need to give a name to the upcoming path in the Secret name textbox:

Configure secret

Secret name and description info

Secret name
A descriptive name that helps you find your secret later.

test/database-1

Secret name must contain only alphanumeric characters and the characters /_+=.@-

Description - optional

Access to MYSQL prod database for my AppBeta

Maximum 250 characters.

Tags - optional

No tags associated with the secret.

Resource permissions - optional info Edit permissions
Add or edit a resource policy to access secrets across AWS accounts.

» Replicate secret - optional
Create read-only replicas of your secret in other Regions. Replica secrets incur a charge.

Figure 8.38 — Naming the secret

5. On the next screen, you will see the options for using this secret with different programming
languages. Click Store to finalize it:



Secrets Manager

Sample code
Use these code samples to retrieve the secret in your application.

Java JavaScript c# Python3 Ruby Go

BN # Use this code snippet in your app.

2 # If you need more information about configurations
3  # or implementing the sample code, visit the AWS docs:
4 # https://aws.amazon.com/developer/1language/python/
5

6 import boto3

7 from botocore.exceptions import ClientError

8

9

10 def get_secret():

11

12 secret_name = "test/database-1"

13 region_name = "us-east-1"

14

15 # Create a Secrets Manager client

Python Line1,Column1 () Errors:0 /A Warnings: 0

[ Download AWS SDK for Python

Cancel

Figure 8.39 - Store secret

6. As the final step, you will see the secret on the list:

AWS Secrets Manager » Secrets

Secrets

LN

Q, Filter secrets by name, description, tag key, tag value, owning service or primary

Secret name

test/database-1

Figure 8.40 - List of secrets

Congrats! You have learned how to create and store secrets on the cloud in a secure way.

131



132

Database Operations with RDS

Summary

In this chapter, we learned about AWS RDS, which is used to create a relational database on the cloud.
You can create your database in an efficient way. The point to note is that you have the possibility to
create different databases, including MySQL, Microsoft SQL, and PostgreSQL. In this chapter, we have
created an RDS instance on the cloud and run a Python application to make a read operation. In the
following chapter, we will take a look at creating an API in AWS.



°
Creating an APl in AWS

In this chapter, we are going to learn how to create an application programming interface (API)
via API Gateway. API Gateway is an AWS service that allows you to create and maintain an APL
With the API Gateway service, you don’t need to provision a server; AWS manages it in the backend.
In addition to that, API Gateway helps you to monitor incoming and outgoing requests. Another
advantage of API Gateway is to scale up your API services when there is a huge request from users.

The chapter covers the following topics:

o What is API Gateway?

o Creating an API using API Gateway

What is APl Gateway?

API Gateway is an AWS service that is used to create, maintain, and publish an API. API Gateway
supports multiple API protocols, such as RESTful (also known as the REST API) and WebSocket.

API Gateway is a single point of entry for the backend services. As you can see in the following
architecture, API Gateway gets a request from a client and integrates the incoming request with
microservices, databases, AWS Lambda, or another AWS service:

—» Microservice

 ofa
4 o
Client APl Gateway

Database

Lambda

Figure 9.1 - Architecture of APl Gateway



134

Creating an APl in AWS

Now that we have a good idea of what API Gateway is, let’s have a look at its features.

Features of APl Gateway

The features of API Gateway are as follows:

It supports different protocols, such as RESTful and WebSocket.
You can monitor incoming and outgoing API requests, which enhances the visibility of the service.

You can easily create and maintain the API. It can be created either in AWS Management
Console or the AWS CLL

Security is important for cloud services, as well as the API. You can create a key to enable
secure access to the API. In addition to that, you can add an SSL certificate to verify the request.

It has built-in integration with AWS services. When you implement an API, you can easily
integrate it with AWS services.

It is a scalable service that adds more resources when you have more requests. For example,
on Black Friday, there is more load on e-commerce websites. In these cases, API Gateway
automatically scales your API requests. In this case, you can also define a Cross-Origin Resource
Sharing (CORS) policy as a security feature that controls the HT'TP request.

In this section, we have looked at the basic features of API Gateway, and now we will start to implement
sample API applications.

Creating an APl using APl Gateway

We are going to create a simple API that accepts a request from a client. The API accepts two numbers,
sums up two numbers in a Lambda function, and returns the calculated values. AWS Lambda is going
to be implemented via Python. You can see the high-level flow in the following architecture:

J
y1. @’

Client API Gateway Lambda

Figure 9.2 - Data flow

We are going to start with the Lambda function creation. After the Lambda function creation, API
Gateway is going to be set up with Lambda integration.

Let’s create the Lambda function step by step:

L.

Open the console and navigate to the AWS Lambda page:



Creating an APl using APl Gateway

Services

AWS Lambda x Lambda » Functions
Dashboard Functions (5)
Applications ) )
Q. Filter by tags and attributes or search by keyword
Functions
¥ Additional resources O B e
Code signing configurations O testbuyukveri
L
ayers O myFuneName
Replicas
O TestLogs
¥ Related AWS resources
O ReadFromDB
Step Functions state machines
O bike-buyer-lambda

Description

Figure 9.3 — Lambda function

2. Create a new Lambda function. Let’s name it SumUpLambda:

Lambda » Functions » Create function

Create function

AWS Serverless Application Repository applications have moved to Create application.

Author from scratch

Start with a simple Hello World example.

Basic information

Function name
Enter a name that describes the purpose of your function.

SumUpLambda

Use anly letters, numbers, hyphens, or underscores with no spaces.

Runtime info

Choose the language to use to write your function. Note that the console code editor supports only Node

Python 3.9

Architecture Info
Choose the instruction set architecture you want for your function code.
O x86_64

() armb4

Permissions info

By default, Lambda will create an execution role with permissions to upload logs to Amazon CloudWatch

» Change default execution role

Figure 9.4 - Creating a new Lambda function

135



136 Creating an APl in AWS

3. Click Create function and wait a few seconds while the function is created:

Basic information

Function name
Entera name that desoribes the purpese of your function.

SumUpLarmbda
Usis oinky Lattars, mumbars, fyphere, o underscarss with & spaces
RURLIME Infa
Choase the language ta use to write your Fanetion, Note that the tesole cate editor supsorts onty Nodejs, Pythan, and Buly
Pythan 3.6

Architecture infe
Choose the Instruction set architecture you want for your function code.

0O 18664
) armé4

Permissions e

By default, Lambea will create an execution role with perissicns to uptoad logs to Amazan CloudWakch Logs. You can customize this default role later when adding triggers.

» Change default execution rale

» Advanced settings

Figure 9.5 - Clicking Create function

A few seconds later, you will see the Lambda function has been created with the template code:



Creating an APl using API Gateway 137

Lambda > Functions » SumUplLambda

SumUpLambda

¥ Function overview info

SumUpLambda

£ Layers (0)
~
4+ Add trigger
Code Test Monitor Configuration Aliases Versions
Code source info
« File Edit Find View Go Tools Window Test | -
Q 50 to Anything (38 P) 8 lambda_function *
’E = Gl L import json
5 £ lambda_function.py def lambdo_handler{event, context):
'E # TODO implement
w

‘statusCode’: 200,

1

2

3

4

5 return {
B

7 'body*: json.dumps('Hello from Lambda!‘)
B

9

Figure 9.6 — Lambda template

Let’s create a Lambda function that sums up two values:
import json

def lambda handler (event, context):
numberl = event ['Numberl']
number2 = event ['Number2']
sum = numberl + number2

return {
'statusCode': 200,
'Sum': sum



138 Creating an APl in AWS

This code snippet takes two numbers as parameters, such as Number1 and Numbexr2. The Lambda
function calculates the sum of two values and returns a status code and the value of the sum. When
we call this function from the API, it returns the sum value as well as statusCode.

Let’s paste this code block into the Lambda function:

Code Test Monitor Configuration Aliases Versions

Code source info

« File Edit Find View Go Tools Window m

8 lambda_function = Execution results =

o

& SumUpLambda e B import json

€» | lambda_function.py def lambda_handler(event, context):

numberl = event['Numberl']
number? = event['NumberZ']
sum = numberl + number?

Environment

return {
'statusCode’: 200,
1@ "Sum': sum
11 1
12

Woe = B wmrp

Figure 9.7 — Actual Lambda code

Now, let’s follow these steps:

1.  Click Test. A new panel opens in which Lambda asks for a test parameter:



Creating an APl using APl Gateway

A test event is a JSON object that mocks the structure of requests emitted by AWS services to invoke a Lambda function.
Use it to see the function’s invocation result.

To invoke your function without saving an event, configure the JSON event, then choose Test.

Test event action

‘ O Create new event

Event name

| TestSum|

Maximum of 25 characters consisting of letters, numbers, dots, hyphens and underscores.

Event sharing settings
O Private

This event is only available in the Lambda console and to the event creator. You can configure a total of 10. Learn more E

() Shareable

This event is available to IAM users within the same account who have permissions to access and use shareable events. Learn more E

Template - optional

hello-world v
18 {

2 "Numberl": 10,

3 "Number2": 15

Yl

Figure 9.8 — Test event

2. As can be seen in the preceding figure, you can paste the following JSON to see whether the
Lambda function is running properly before integrating with the API:

{

"Numberl": 10,
"Number2": 15

3. Click Save, which is under the Event JSON panel:

Figure 9.9 - Clicking on the Save button

139



140 Creating an APl in AWS

4. Deploy the changes by clicking Deploy:

Code source info

4 File Edit Find View Go Tools Window Test |' Deploy Changes not deployed

Deploy your Lambda function (3£ < U)

o]
o

lambda_function * Execution results *

v SumUpLambda o 1 LINPC CE) Sory

2| lambda_function.py def lambda_handler(event, context):
numberl = event['Numberl']
number? = event['Numberz']

sum = numberl + numberZ

Environment

return {
"statusCode’: 20@,
"Sum’: sum

P S Wom~Nohw e WP

[y

}

Figure 9.10 — Deploying Lambda

After the Lambda deployment, we are going to integrate API Gateway with AWS Lambda. Lambda
will be used as the backend for API Gateway.

Let’s create an API step by step:

1. Open the console and search for api gateway:

ervices | Q apl gatewhy

Search results for 'api gatew'

Services

Features (52)
5]

Build, Deploy and Manage APls

Blogs (3,494)

Knowledge Articles (30)

Figure 9.11 - The console

2. On the main screen, select REST API, and click Build:

REST API erivate

Create a REST API that is only accessible from within a VPC.

Works with the following:
Lambda, HTTF, AWS Services

Figure 9.12 - REST API



Creating an APl using APl Gateway

3. You will now see a new screen to be filled out. We will select New API in the Create new
API section. Other options in this section allow you to create an example API or import a
predefined APL In the Settings section, we will add the API name and Description details.
In the Endpoint Type drop-down list, we will select Regional, which is used to create an API
that is accessible from the same region:

HE smazon AP Gateway  APls > Greas snowainins g

Choose the protocol

Select whather you would lka to craate a BEST AP or s WabSocket &P
W REST 'WebSocket

Create new API

In Amazon AF| Gateway, @ REST AP refars 1o a collaction of regources and methods thet can b Invoked through HTTFS endgolnts.
% New AP " Impart from Swagger of Open AFI3 O Example AP

Settings

Crocsa & friandly name and gascription for your AP,

AFI name® SumlipaP!
Description Sum up tad umbars
Endpaint Type Regional o

o =

Figure 9.13 - Form for API creation

4. Once you click Create API (as depicted in the preceding figure), you will be taken to a new
page that allows you to define the details for a custom SumUp API:

141



142 Creating an APl in AWS

:1,1 Amazon APl Gateway APls > SumUpAPI (cdxwzleqw2) > Resources > /(ismj7k27k2)
APls Resources Actions~ @/ Methods

[
Custom Domain Names /

VPC Links

API: SumUpAPI
| Resources

Stages
Authorizers
Gateway Responses
Models
Resource Policy
Documentation
Dashboard
Settings

Usage Plans

API Keys

Client Certificates

Settings
Figure 9.14 — API form

5. Now, we are going to define the API details. Click on the Actions dropdown and select
Create Method:



Creating an APl using APl Gateway

Resources Actions~ @/ Methods

RESOURCE ACTIONS

Create Method

/

Create Resource
Enable CORS

Edit Resource Documentation

APIACTIONS
Deploy API
Import AP
Edit APl Documentation
Delete API

Figure 9.15 - Create Method

6. When we create a method, we select POST as the API type:

Resources Actions~ &/ Methods

/
v o

ANY
DELETE
GET
HEAD
OPTIONS
PATCH
POST
PUT

Figure 9.16 — Selecting POST

While you implement an API, you can select API types. The following are the most used API
types:

GET is used to retrieve data from a source.

POST is used to send data to a source. In our example, POST will bring the calculation of
SumUp from Lambda.

PUT is used to update the data in a source.

DELETE is used to delete the data in a source.

143



144 Creating an APl in AWS

7. When you select POST, you need to choose the integration type. For this example, we are going
to select the Lambda Function integration type:

Resources Actions~ '@ /- POST - Setup

-/
POST

Choose the integration point for your new method.

Integration type @® Lambda Function @
O HTTP @
O Mock @
O AWS Service @
O VPCLink @
Use Lambda Proxy integration [ @

Lambda Region |s-east-1 A

Lambda Function

Use Default Timeout 4@

Figure 9.17 — Setting up the integration type

8. Select the SumUpLambda function that is implemented, and click Save, which is not depicted
in the following figure but is situated at the bottom of the page:

Resources Actions~ @&/ - POST - Setup

Choose the integration point for your new method.
POST

Integration type ® Lambda Function @
O HTTP @
O Mock @
) AWS Service @
O VPCLInk @
Use Lambda Proxy integration [ @
Lambda Region us-east-1 ~

Lambda Function SumUpLambda o

Use Default Timeout M ©

Figure 9.18 — Selecting Lambda



Creating an APl using APl Gateway 145

9.  When you click Save, it asks for confirmation to allow the required permissions. Click OK and
it will create the permissions:

Add Permission to Lambda Function

You ara about 1o give API Gateway permission 1o invoke your Lambda function:

51-1: ambda

Figure 9.19 — Permissions

After setting the permissions, you can see the data flow for the API:

Resources Actions- @/ - POST - Method Execution &
-/
—— ® Method Request - Integration Request L
TE;' Auth: NOME Type: LAMEDA
ARMN: Brn:aws exacUte-apius-east- Region: us-east-1
—4 | 1:961487522622.coowzeqw2/POST/ — —
b
B
& 2
£ §
o 5
Method Response - Integration Response - g
HTTP Status: 200 HTTP status patterm: |_"J g

Madels: application/json == Empty k
— — | Output passthrough: No —

Figure 9.20 - The API flow



146 Creating an APl in AWS

Now, we need to add a CORS policy. CORS is a security policy that allows a particular origin (domain
or port) to browse your resource. Let’s enable a CORS policy:

1. Click the Actions drop-down button to list the available actions, and then click Enable CORS:

Resources Actions ~ ‘ Enable CORS

RESOURCE ACTIONS

Create Method
POST

Create Resource

Enable CORS

Edit Resource Documentation

Figure 9.21 - List of actions

2. Fill out the form and click Enable CORS and replace existing CORS headers. You can retain
the form details as is. The form defines the following:

A. Which methods are allowed access to the API by selecting Methods
Which request header is required via Access-Control-Allow-Headers

B
C. Which origins are able to call the API via Access-Control-Allow-Origin
D

Gateway response types by selecting the DEFAULT 4XX or DEFAULT 5XX port. You
can see the list here: https://docs.aws.amazon.com/apigateway/latest/
developerguide/supported-gateway-response-types.html.

. Resources Actions ~ Enable CORS

v/ - .
Gateway Responses for ) pepauLT axx [ DEFAULT 5XX @
POST SumUpAPI API

Methods EPOST © OPTIONS @

Control-All OPTIONS, POST @

Access-Contral-Allow-Headers  'Confent-Type X-Amz-Date Authorizatio €
Access-Control-Allow-Origin® "' i JaN

+ Advanced

Enable CORS and replace existing CORS headers

Figure 9.22 - Enable CORS

Congrats! You have successfully created the Lambda function and an API gateway. The next step is
to test the APL


https://docs.aws.amazon.com/apigateway/latest/developerguide/supported-gateway-response-types.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/supported-gateway-response-types.html

Creating an APl using APl Gateway 147

Let’s test the SumUp API:

1. Click on the Test button in the flow:

& Method Execution  / - POST - Method Test

Make a test call to your method. When you make a test call, AP| Gateway skips authorization and directly invokes your
Path

No path parameters exist for this resource. You can define path parameters by using
the syntax {myPathParam} in a resource path.

Query Strings

No query string parameters exist for this method. You can add them via Method
Request.

Headers

No header parameters exist for this method. You can add them via Method Request.

Stage Variables

No 'stage variables exist for this method.

Request Body

1

Figure 9.23 - Testing the API



148

Creating an APl in AWS

2. Enter the following code in the Request Body field to add a parameter for Lambda:

{

"Numberl": 10,
"Number2": 15

}

3. Click Test and see the results:

Headers

Mo header parameters exist for this method. You can add them via Method Request.

Stage Variables

No ('stage variables exist for this method.

Request Body
=
£ "Numberl™: 1@,
3 "NumberZ™: 15
4 }

Figure 9.24 - Adding a parameter

k Test



Summary 149

Here are the results:

dhkdkkkdkkdkh kb dhkdhk bk kb kb k ke d ok krdhkkhk bk hkrkk kb d ko hrd kb d b d bk dkdd kb d ok dkdohdd ki
*t****t*******t**t***t****t*****t******t*t**********t***t*c44fdl’ ¥-Amz-Source-Arn=arn:aws:
execute-api:us-east-1:961487522622 :cdxwzleqwl/test-invoke-stage/POST/, X-Amz-Security-Token
=I00Jb3JpZ21uX2ViEBAaCXVzLWVhe30tMSIIMEYCTQCULkz 5BVMw/ 29 JWLGFQFRO1 7UuYdpgwUAArCfggLMcFgThAM
qIBxUufk0iZgBgsWkmpulvVHUpAEweC2sRpsiSaodLEswECBkQABoM [TRUNCATED]
Wed Nov 16 16:24:58 UTC 2022 : Endpoint request body after transformations: {

"Numberl": 10,

"Number2": 15
}
Wed Nov 16 16:24:58 UTC 2022 : Sending request to https://lambda.us-east-1l.amazonaws.com/20
15-03-31/functions/arn:aws:lambda:us-east-1:961487522622: function:SumUpLambda/invocations
Wed Nov 16 16:24:58 UTC 2022 : Received response. Status: 200, Integration latency: 397 ms
Wed Nov 16 16:24:58 UTC 2022 : Endpoint response headers: {Date=Wed, 16 Nov 2022 16:24:58 G
MT, Content-Type=application/json, Content-Length=30, Connection=keep-alive, x-amzn-Request
Id=d51191a9-1476-4c03-bdad-12e243ec72ba, x-amzn-Remapped-Content-Length=0, X-Amz-Executed-V
ersion=$LATEST, X-Amzn-Trace-Id=root=1-63750eda-7212934a09b0f6085£4c0235;sampled=0}
Wed Nov 16 16:24:58 UTC 2022 : Endpoint response body before transformations: {"statusCod
e": 200, "Sum": 25}
Wed Nov 16 16:24:58 UTC 2022 : Method response body after transformations: {"statusCode": 2
00, "Sum": 25}
Wed Nov 16 16:24:58 UTC 2022 : Method response headers: {X-Amzn-Trace-Id=Root=1-63750eda-72
12934a09b0£6085f4c0235; Sampled=0, Content-Type=application/json}
Wed Nov 16 16:24:58 UTC 2022 : Successfully completed execution
Wed Nov 16 16:24:58 UTC 2022 : Method completed with status: 200

Figure 9.25 — The result of the API response

When you check the logs, you can see the results of the API response. As you can see, the sum of the
values is 25.

In this topic, we implemented an API that used Python in the Lambda code. As you saw, creating an
API is an easy solution in AWS. This way, you can focus on the backend implementation instead of
focusing on the infrastructure.

Summary

In this chapter, we learned how to use the AWS API Gateway service and how to create an API gateway
that has a backend service with Python Lambda. API Gateway is useful when you need to implement
an API service with backend support via Python. It comes with scalability, logging, and monitoring
advantages. In the next chapter, we will take a look at the basics of DynamoDB and NoSQL.






10
Using Python with NoSQL
(DynamoDB)

In this chapter, we are going to learn how to create a NoSQL database with DynamoDB. After creating
the database, we will carry out a database operation in DynamoDB using Python. NoSQL is a database
type that is used to manage data more flexibly than a relational database. In relational databases, there
are tables and predefined data types that can be used for database operations. In NoSQL, you can store
JSON, raw, or key-value data, depending on the NoSQL database. Let’s deep-dive into NoSQL databases.

The chapter covers the following topics:

o What is a NoSQL database?
o What is a DynamoDB database?

o DynamoDB operations with Python

What is a NoSQL database?

A NoSQL database is used to store unstructured data. The idea comes from big data; most applications
and devices create data, and this data is valuable if you store and process it afterward. The volume of
data is increasing day by day, and we need to store this data. Think about new cars; they have different
devices to store data. We can extend our example to white goods, social media, and so on. In general,
relational databases are useful for structured data and a level of records that runs into the millions.
Thus, when it comes to handling millions of records as well as unstructured data, NoSQL is useful.

The following figure shows how different data sources can be generated to be stored in a NoSQL database.
We have social media resources and machines in cars and planes that generate different data formats:



152 Using Python with NoSQL (DynamoDB)

2

Customer and o
h address info Device info
= -
Relati |
dz;:;r: NoSQL database
é Log data

Figure 10.1 - NoSQL
There are different types of NoSQL databases.

Key-value database

In this NoSQL database type, you can access data based on keys. For example, you have customer ID
as a key, and address, age, and family information as values. When you need to access the value, you
just provide the key as a query parameter:

Figure 10.2 — A key-value database

A key-value database is useful and even works on billions of records. We will investigate DynamoDB,
which is a key-value database, in an upcoming section.

Document database

A document database is another type of NoSQL database that can store unstructured data such as
JSON. It is useful if you need to store unstructured big data and retrieve data with different parameters:

o _,
RN F@

Figure 10.3 — Document database




What is a DynamoDB database? 153

You can see the sample JSON as follows:

{
"employee": {
"name" : "Jack",
"age":25

}

There are other types of NoSQL databases, such as graph and column, but we won’t focus on them
in this book. I would recommend reading more over here: https://en.wikipedia.org/
wiki/NoSQL.

We have learned the definition of a NoSQL database and taken a look at some types of NoSQL
databases. For the next step, we will focus on DynamoDB, which is one type of key-value database.

What is a DynamoDB database?

A DynamoDB database is a key-value NoSQL database that is managed by AWS. When you use
DynamoDB, you don’t need to create a new database. You don't need to provision a server either;
it is fully managed by AWS. It is one of the most popular cloud-based NoSQL databases, and the
performance is very good if you are using key-based access. The main advantage is that you can access
data within a latency of milliseconds along with billions of records.

These are the features of DynamoDB:

« Fully managed by AWS

+ Autoscaling without any configuration

o Built-in integration with other AWS services
+ Supports monitoring and logging

« Supports database backup and restoration

+ Pay-as-you-go model - you pay for how much you use from this service


https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/NoSQL

154 Using Python with NoSQL (DynamoDB)

Creating a DynamoDB database
In this subtopic, we are going to create a DynamoDB database. Let’s follow the instructions step by step:

1. Type DynamoDB into the search box and click the DynamoDB option that appears under
the Services section:

Q  dynamoDB
Search results for 'dyn’

Services

Features (6)

& DynamoDB <¥
Managed NoSQL Database

Resources ' New

Blogs (801)

Figure 10.4 — Console search

2. Click Tables on the left side, and then click the Create table button:

DynamoDB X DynamoDB Tables
Dashboard Tables (0) info m
Tables

Q, Find tables by table name Any table tag v 1 (o)

Update settings
Explore items Na.. & Status Partition key Sort key Indexes Read capacity mode Write capacity ma... Size Table clas:
PartiQL editor New
Na tables found
Backups
Exports to 53 We cannot find a match.
Imports from 53 New

Reserved capacity Clear filter

Settings New

Figure 10.5 - Create table

3. Fill out the Table name, Partition key, and Sort key details in order to create the table:



What is a DynamoDB database? 155

DynamoDB Tables Create table

Create table

Table details info

DynamoDB is a schemaless database that requires only a table name and a primary key when you create the table.

Table name
This will be used to identify your table.

customer

Between 3 and 255 characters, containing only letters, numbers,
underscores (_), hyphens (-), and periods (.).

Partition key

The partition key is part of the table's primary key. It is a hash value that is used to retrieve items from your table and allocate data across
hosts for scalability and availability.

customer_id String v
1 to 255 characters and case sensitive.
Sort key - optional

You can use a sort key as the second part of a table's primary key. The sort key allows you to sort or search among all items sharing the
same partition key.

customer_mail String v

1 to 255 characters and case sensitive.

Figure 10.6 — Table details — part 1

Table name represents the name of the table. We will create a sample customer table.

Partition key is going to be used as a primary key. DynamoDB is a key-value database; hence,
you can easily search for data based on the key. In this case, we will use customer_id as a
primary key.

DynamoDB allows you to search with a sort key in addition to the partition key. We will use

customer_mail in the Sort key field.

4.  Scroll down and fill out Capacity mode, Read capacity, Write capacity, Auto scaling, Local
secondary indexes, and Global secondary indexes. For the input, keep the following default
values as is:



156 Using Python with NoSQL (DynamoDB)

0O Default settings
The fastest way to create your table. You can modify
these settings now or after your table has been created.

() Customize settings
Use these advanced features to make DynamaoDB work
better for your needs.

Default table settings

These are the default settings for your new table. You can change some of these settings after ereating the table.

Setting Value Editable after creation
Capacity mode Provisioned Yes
Read capacity 5 RCU Yes
Write capacity 5wWcu Yes
Auto scaling On Yes
Local secondary indexes - No
Global secondary indexes - Yes
Encryption key management Owned by Amazon DynamoDB Yes
Table class DynamoDB Standard Yes

Tags
Tags are pairs of keys and eptional values, that you can assign to AWS resources. You can use tags to control access to your resources or
track your AWS spending.

No tags are associated with the resource.

Add new tag

You can add 50 more tags.

Cancel Create table

Figure 10.7 - Table details - part 2

Capacity mode defines the reserved capacity for the table. If you select the provisioned mode,
AWS reserves your predefined capacity to be used by the queries. Another option is to define
on-demand for unplanned capacity reservations.

Read capacity and write capacity define how many read and write requests are supported for
this table.



What is a DynamoDB database? 157

Regarding Auto scaling, AWS manages the scaling feature.

Local secondary indexes and Global secondary indexes are used if you need more index
values in addition to the primary key and sort key. The local secondary index allows you to
create an additional index that has the same partition ID with a different sort key from the
base table. You need to define this during table creation. On the other hand, a global secondary
index allows you to create an index that can have a different partition ID and sort key from
the base primary key.

Click Create table, as you saw in the previous screenshot, and you will see the created table
in the list:

dJ Name a Status Partition key Sort key Indexes

O customer @ Active customer_id (S) customer_mail (S) 0

Figure 10.8 - The table list

Let’s insert one of the items via the AWS Management Console. Select customer under the
Tables list:

DynamoDB X | DynamoDB > Tables
Dashboard Tables (1) Info
Tables

Q, Find tables by table name

Update settings

Explore items J Name a Status Partition key
PartiQL editor
Q customer ® Active customer_id (S)
Backups

Figure 10.9 — Customer table



158 Using Python with NoSQL (DynamoDB)

You will see the details of the table:

DynamoDB Tables

Tables (1)
Any table tag

Q, Find tables by table name

1

customer

(& Actions ¥ Explore table items

«  customer

v

<] customer

Overview Indexes Monitor Global tables Backups Exports and streams Additional settings
@ . :

General information

Partition key Sort key Capacity mode Table status

customer_id (String) customer_mail (String) Provisioned @ Active

& No active alarms

B Additional info

Items summary Get live item count

DynamoDB updates the following information approximately every six hours.

Item count Table size Average item size

) 0 bytes 0 bytes

Figure 10.10 - Table details

7. Click the Actions drop-down button and select Create item:

ckups

O [+ | I

Edit capacity

Update table class

Exports ttings

Delete table

Create item

Create index

Create replica

Capacity mode
- Export to S3
Provisioned

Enable TTL 5
Manage tags

Create access control policy

Figure 10.11 - Create item

8.  After clicking this, you will see an item creation page, titled Create item. You can fill out a form
or insert the JSON directly. In this example, we will insert the code via JSON view. DynamoDB
creates a template for you:



What is a DynamoDB database? 159

DynamoDB Tables customer Edit iterm

CI'EEItE item Form JSON view

You can add, remove, or edit the attributes of an item. You can nest attributes inside other attributes up to 32 levels deep. Learn more [4

Attributes @D View DynamoDB JSON

IR
2¥  “customer_id": {
3 sty

4 N

5%  "customer_mail": {

6 - EHE

v 1

i 1

Figure 10.12 —The JSON view

Paste the following JSON as an example:

"customer id": {
“S“: "123"

}/

"customer mail": {
"S": "serkansakinmaz@gmail.com"

Yo

"name": {
"g": "Serkan"

Yo

"address": {
"S": "Germany"

}

The JSON is simple and consists of customer_id, customer mail, name, and address
information.



160 Using Python with NoSQL (DynamoDB)

9. Click Create item:

Create item Form JSON view

You can add, rermove, or edit the attributes of an item. You can nest attributes inside other attributes up to 32 levels deep. Learn more [4

Attributes @ View DynamoDB JSON

1w {
2w customer_id": {
3 5% 123"
4 I
S5*  "customer_mail": {
[ "s": "serkansakinmaz@gmail.com”
7 }.
& "name": {
9 "§": "Serkan"
10 X
11w "oddress": {
12 "S": "Germany"
13 ¥
|14
A
JSON Ln 14, Col 2 @ Errors: 0 & Warnings: 0 @

Figure 10.13 - Creating an item

After the creation, you will be forwarded to the Tables page:

DynamoDB Items customer
Tables (1) x customer @) Autopreview View table details
Any table tag v
» Scan/Query items
Q, Find tables by table name Expand to query or scan items.
1 ®
@ Completed Read capacity units consumed: 0.5
[+] customer
Items returned (1) & Actions ¥ Create item
1 @ X2
O customer_id v | customer_mail v | address v name v
O 123 serkansakinmaz@gm... Germany Serkan

Figure 10.14 - The item list



DynamoDB operations with Python 161

Since you are using NoSQL, you can also insert the JSON, which is a different format from
the previous JSON that we inserted. The following JSON is also valid for the customer table:

{
"customer id": {
||S||: "1234“
}/
"customer mail":
"S": "jane@gmail.com"
Do
"name": {
llsll: "Jane"
Do
"profession":
"S": "Data Engineer"
}
}

As you see, we have removed the address field and added profession as a new field without
any issue.

In this section, we have created a DynamoDB table and inserted data via the console. As you can see,
DynamoDB is a key-value database and you can insert different JSON formats, which provides flexibility.
DynamoDB operations with Python

In this section, we are going to read the DynamoDB table via Python. To execute a Python function,
we will implement a Lambda function to read data from DynamoDB. Carry out the following steps:

1.  We will create the required permissions to allow Lambda to read from DynamoDB. Open IAM
and click Policies on the left-hand side:

aws

522 Services Q. Search [Option+5]

0 Introducing the new Policies list experience
We've redesigned the Policies list experience to make it easier to use. Let us kng

Identity and Access x
Management (IAM)

LAM
Policies ( Info
Dashboard el in AWS
¥ Access management
User groups
Users Policy name
Roles
# adladminboundary
Policies

Figure 10.15 - IAM policies



162 Using Python with NoSQL (DynamoDB)
2. Click Create policy:
1AM
Policies (1059) mnfo bt Actions ¥
1 g R 53 » &
Policy name Type Used as Description
Figure 10.16 - Creating a policy
3. Paste the following policy:
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"dynamodb:BatchGetItem",
"dynamodb:GetItem",
"dynamodb:Query",
"dynamodb:Scan",
"dynamodb:BatchWriteItem",
"dynamodb:PutItem",
"dynamodb:UpdateItem"
] I
"Resource": "arn:aws:dynamodb:us-east-
1:961487522622:table/customer"
}
]
}

The policy allows you to read from the DynamoDB table. In general, the following access policy
works for you as well; however, you need to change the account ID that you have, because every
AWS account has a different account ID:



DynamoDB operations with Python

Create policy

A policy defines the AWS permissions that you can assign to a user, group, or role. You can create and edit a policy in the visual editor and using

Visual editor JSON

"Version": "2012-10-17",
) "Statement": [

. {
"Effect": "Allow",

- "Action": [
"dynamodb: BatchGetItem",
"dynamodb:GetItem",
"dynamodb:Query",
"dynamodb:Scan",
"dynamodb:BatchWriteItem",
"dynamodb:PutItem"”, "
"dynamodb:UpdateItem" Account.id fable name

1,
"Resource": "arn:aws:dynamodb:us-east-1:961487522622 Jtable/{customer®

Figure 10.17 — A DynamoDB policy

4. You can add the policy name and finish creating the policy. In this example, I am using
DynamoDBCustomerTableOperations as a policy name:

Create policy o s o

Review policy
Name*  DynamoDBCustomerTableOperations

Use alphanumeric and '+=,.@-_' characters, Maximum 128 characters.

Description

Maximum 1000 characters. Use alphanumeric and '+=,.@-_' characters.

Summary
Q Filter
Service - Access level Resource Request condition
Allow (1 of 353 services) Show remaining 352
DynamoDB Limited: Read, Write TableName | string like | customer None
Tags
Key -~ Value -

No tags assoclated with the resource.

* Required Cancel Previous Create policy

Figure 10.18 - Policy creation

163



164 Using Python with NoSQL (DynamoDB)

5.  We now need to create a role. This role will be attached to Lambda to access DynamoDB. Click
Create role in the IJAM service:

= Delete Create role

Figure 10.19 —The IAM role
6. Since we need a policy for Lambda, select Lambda in the Use case section:

Select trusted entity o

Trusted entity type

O AWS service AWS account Web identity
Allow AWS services like EC2, Lambda, Allow antities In other AWS accounts Allows usars fedarated by the specified
or others to perform actions in this belonging to you or a 3rd party to external web identity provider to assume
account. perform actions in this account. this role to perform actions in this
account.
SAML 2.0 federation Customn trust policy
Allow users federated with SAML 2.0 Create a custom trust policy to enable

from a corpol

e directory to perform

to perform actions in this
actions in this account t

1t

Use case
Allow an AWS service like EC2, Lambda, or others to perform actions in this account.

Common use cases
EC2

Allows EC2 instancas to call AWS services on your behalf.

© Lambda

Allows Lambda,f

ctions to call AWS services on your behalf.
Use cases for other AWS services:

Choose a service to view use case v

Figure 10.20 - The IAM role for Lambda



DynamoDB operations with Python 165

7. As depicted in the following screenshot, add the policy that we created to access Lambda:

Add permissions .

Permissions policies (Selected 1/840) info o Create policy
Choose one or more policies to attach to your new role.
Q, Filter policies by property or policy name and press enter. 3 matches < 1 > &
"customer” X Clear filters
2 Policy name [ - Type Description
CustomerTableAccess Custom...
DynamoDBCustomerTableOperations Custom...
BF AWSElasticBeanstalkManagedUpdatesC... AWS m... This policy is for the AWS Elastic Beanstalk service role used to perform managed updates ...

P Set permissions boundary - optional info
Set a permissions boundary to control the maximum permissions this role can have. This is not a comman setting, but you can use it to delegate permission management to others.

Cancel Previous m

Figure 10.21 - Selecting the policy

8. Fill in Role name and create the role. As you see, the name we have given to the Lambda
function is DynamoDBCustomerTableRole. Scroll down and click the Create role button:

IAM > Roles » Createrole

Step 1 Name, review, and create

Select trusted entity

Step 2 Role details

Add permissions
Role name

Step 3 Enter a meaningful name to identify this role

Name, review, and create DynamoDBCustomerTableRole|
Maximum 64 characters. Use alphanumeric and '+=,.@-_' characters.
Description

Add a short explanation for this role.

Allows Lambda functions to call AWS services on your behalf.

Maximum 1000 characters. Use alphanumeric and '+=,.@-_' characters.
Step 1: Select trusted entities

1-{

2 "Version": "2012-10-17",

Figure 10.22 - Creating a role



166 Using Python with NoSQL (DynamoDB)

9.  The Create function page opens up. We create a Lambda function by adding readFromDynamoDB
to Function name and Python 3.9 to Runtime:

Function name
Enter a name that describes the purpose of your function.

‘ readFromDynamoDB

Use only letters, numbers, hyphens, or underscores with no spaces.

Runtime Info
Choose the language to use to write your function. Note that the console code editor supports only Node.js, Python, and Ruby.

‘ Python 3.9

Figure 10.23 - Creating a function

10. At the bottom of the preceding page, there is a panel to define the execution policy. Select Use
an existing role under the Execution role section and select the role that we created:

Permissions info

By default, Lambda will create an execution role with permissions to upload logs to Amazon

¥ Change default execution role

Execution role
Choose a role that defines the permissions of your function. To create a ¢

() Create a new role with basic Lambda permissions
© Use an existing role

(O Create a new role from AWS policy templates

Existing role
Choose an existing role that you've created to be used with this Lambda f

DynamoDBCustomerTableRole

View the DynamoDBCustomerTableRole role [} on the IAM console.

Figure 10.24 - Selecting the role



DynamoDB operations with Python

11. Lambda is ready to fill out a code block:

¥ Function overview info

E\) readFromDynamoDB

@ Layers (0)

<+ Add trigger

Figure 10.25 - The Lambda function

Paste the following code into the Lambda function:

import json
import boto3

def lambda handler (event, context):

dynamodb = boto3.resource('dynamodb', region name="us-east-1")
table = dynamodb.Table('customer')

response = table.get item(Key={'customer id': "123", 'customer
mail': "serkansakinmaz@gmail.com"})

item = response['Item']
print (item)

return {
'statusCode': 200,
'body': json.dumps('Hello from Lambda!')

}

The code imports the bot o3 library, which provides useful functions for DynamoDB operations.
boto3 is a library that includes AWS service-specific features to facilitate the implementation of
cloud applications while working with Python on AWS. You can get more details from the following
link: https://boto3.amazonaws.com/vl/documentation/api/latest/index.html.

167


 https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

168

Using Python with NoSQL (DynamoDB)

As a first step, we define the dynamodb resource by calling the bot o3 . resource function. After
calling that, we define the table that we read; it is the dynamodb . Table table. Once you define
the table, the table.get item function takes the primary key and sort key as a parameter and
returns the query results.

Once you run the Lambda function, you are able to see the result:

Code source info

File Edit Find View Go Tools Window m

B lambda_function Execution result: »

¥ Execution results
v readFromDynamol 'ﬁ

Test Event Name
lambda_function.py testl
Response

"statusCode": 200,

"body": "\"Hello from Lambda!\""

H

Function Logs

START Reguestld: 6d33f37b-702c-4b@9-a@8e-3065532e93e8 Version: $LATEST

{'customer_id": '123', 'customer_mail': 'serkansakinmaz@gmail.com', 'address': 'Germany', 'name': 'Serkan'}

END RequestId: 6d33f37b-702c-4b@9-a@8e-3065532e93e8

REPORT RequestId: 6d33f37b-702c-4b@9-a@8e-3065532e93e8 Duration: 1454.80 ms Billed Duration: 1454 ms Memary Size:

Request ID
6d33F37b-702c-4b09-a@8e-3065532e93e8

Figure 10.26 — Execution results

Congratulations! You are able to define the role and retrieve an item from Lambda. As you can see,
AWS requires some configuration to access data in DynamoDB.

Summary

In this chapter, we learned about the AWS DynamoDB service and how to create a DynamoDB
database in AWS. After creating the database, we implemented a Lambda Python code snippet that
read items from DynamoDB. You now also know how to extend the Lambda code to insert data into
a DynamoDB table. DynamoDB is useful when you need to implement a key-value database that is
managed by AWS. It comes with scalability, logging, and monitoring advantages. In the following
chapter, we will take a look at the Glue service.



11
Using Python with Glue

In this chapter, we are going to learn how to create a data integration pipeline with AWS Glue. AWS
Glue is a data integration service that is used for the Extract, Transform, and Load (ETL) process.
Glue is a serverless data integration service; therefore, you don't need to create and manage a server,
as the infrastructure is managed by AWS. With Glue, you can collect data from different data sources,
such as S3, databases, or filesystems, to process and transform the data. The result is stored in S3 or
the database, or you can call an APL

The chapter covers the following topics:

o What is the AWS Glue service?
o AWS Glue service creation

+ Creating a simple Python application with AWS Glue

What is the AWS Glue service?

AWS has more than 100 services. When you integrate data between AWS and other sources, you might
need to load data from the source, manipulate it with some transformations, and store it in a service.
AWS Glue meets these requirements and provides a service that allows the preparation of data. In
the following figure, you can see a very high-level overview of Glue. As you can see, Glue extracts the
data from different sources, carries out some transformation, and loads the data in another source:

S3 l-l- [ S3
EP AWg Glue %ﬁ{g
- * Extract
% — * Transform
Database * Load DynamoDB

Figure 11.1 — AWS Glue



170

Using Python with Glue

For example, let us assume you have data in S3 that is loaded by a batch process. To make it searchable,
you have a requirement to store it in DynamoDB. Between these processes, one requirement is to
filter, clean, and manipulate the data with some transformations. For that requirement, AWS Glue is
a good option for data integration with some data manipulation.

Features of AWS Glue
AWS Glue has the following features:

o It automatically scales based on the transformation workload.

o It has wider integration with other services to load data, such as S3, RDS, and DynamoDB.
Hence, you can easily read data with these services.

o You can schedule the pipeline; hence, the ETL process can be performed regularly based on
the scheduled time.

o Ithasa data catalog feature that allows you to store metadata information for the data structure.

« Itis able to generate code for the ETL pipeline. For example, you need to read CSV data from
S3 to load another S3 location in JSON format. Glue automatically generates the code.

o There is Git integration, so you can easily pull code from Git to run the ETL pipeline.

o It provides a visual interface with a drag-and-drop code implementation feature.

In this section, we looked at AWS Glue's features. To understand them better, we are going to convert
a CSV file to JSON using the AWS Glue service.

Creating an S3 sample file

In this section, we are going to create a simple S3 bucket that stores a CSV file. Let’s follow the
instructions step by step:

1.  Open the AWS S3 service.
2. Click the Create bucket button:

v Access v Creation date v

Figure 11.2 — Create bucket



Creating an S3 sample file 171

3. Give a unique bucket name and click Create bucket at the end of the panel:

General configuration

Bucket name

glueinputbucket123

Bucket name must be globally unique and

Figure 11.3 - Input bucket

The bucket is created:

(O elasticbeanstalk-us-east-2-961487522622 US East (Ohio) us-east-2

O glueinputbucket123 US East (N. Virginia) us-east-1

Figure 11.4 - Bucket list

4. Create an addresses. csv file on your computer with the following content and upload it
to the S3 bucket. Please save the file in the UTF - 8 format; otherwise, there might be an issue
in some Glue versions:

id,location id,address 1,city,state province
1,1,2600 Middlefield Road,Redwood City, CA
2,2,24 Second Avenue,San Mateo,CA

3,3,24 Second Avenue, San Mateo, CA

4,4,24 Second Avenue,San Mateo, CA

5,5,24 Second Avenue,San Mateo,CA

6,6,800 Middle Avenue,Menlo Park, CA

7,7,500 Arbor Road,Menlo Park, CA

8,8,800 Middle Avenue,Menlo Park,CA
9,9,2510 Middlefield Road,Redwood City, CA
10,10,1044 Middlefield Road,Redwood City,CA

5. Click the Upload button within the bucket to upload the content:



172

Using Python with Glue

glueinputbucket123

Objects Properties Permi

Objects (0)

Objects are the fundamental entities stored
need to explicitly grant them permissions. Le

[*] Upload

IH

Figure 11.5 - Uploading the CSV

After the upload, the bucket will include the CSV file:

Files and folders (1 Total, 435.0 B)

Q

Name A Folder

addresses.csv -

Figure 11.6 — S3 content

We have successfully uploaded the file. In the next step, we will create the required permissions in
order to create a Glue job.

Defining the permissions for a Glue job

In this section, we are going to define the required permissions for a Glue job:

1.  Open the AWS IAM service.
2. Click Roles on the left-hand side:



Defining the permissions for a Glue job 173

Q, Search IAM

Dashboard

¥ Access management
User groups
Users

Roles

Figure 11.7 — List of IAM services

3. Click Create role:

< 1 2 3 > &

Last acti... ¥

Figure 11.8 — Create role

4. Under Use case, select Glue:

Use case

Allow an AWS service like EC2, Lambda, or others to perform actions in this account.

Common use cases

EC2
Allows EC2 instances to call AWS services on your behalf.

Lambda
Allows Lambda functions to call AWS services on your behalf.

Use cases for other AWS services:
Glue
O Glue

Allows Glue to call AWS services on your behalf.

Figure 11.9 — Selecting Glue



174 Using Python with Glue

5. On the next page, select AmazonS3FullAccess and CloudWatchFullAccess under Policy name:

Permissions policies (Selected 2/
Choose one or more policies to attach to you

Q Filter policies by property or policy nam

"S3Full" X Clear filters
Policy name
N# AmazonS3FullAccess

(a)

Permissions policies (Selected 2/84
Choose one or more policies to attach to your n

Q Fiiter policies by property or policy name a

"cloudwatch" X "cloudwatchfull" X

Policy name (£
W¥ CloudWatchFullAccess
(b)

Figure 11.10 - S3 and CloudWatch access

6. Give a name for the role that we are creating, then you can click Create role to finish the
role creation:

Role details

Role name
Enter a meaningful name to identify this role.

roleforglue

A Role name is required
Maximum 64 characters. Use alphanumeric and

(a)



Creating an AWS Glue service

Cancel Previous Create role

(b)
Figure 11.11 - Role name and creation

We have created the required role for an AWS Glue job. In the next step, we will create a simple AWS
Glue job by using roles and the S3 bucket.

Creating an AWS Glue service

In this section, we are going to create an AWS Glue service. Let’s follow the instructions step by step:

1. TypeAWS Glue in the AWS Management Console search bar and click the AWS Glue result
that appears:

2 Services Q aws glue

Search results for 'aws glug

Services

Features (211)
¥1 AWS Glue ¥
AWS Glue is a serv

Resources | New

[ ) | Blogs (18,386)

Figure 11.12 - Console search

2. Click Jobs on the left-hand side:

AWS Glue Studio X

Jobs
Manitoring
Connectors

Sensitive data detection

Figure 11.13 — Glue job

175



176 Using Python with Glue

3. In the Create job section, select Visual with a source and target. This will create a visual
interface and predefined script in order to convert from a CSV to a JSON file:

JObS Info

Create job info

O Visual with a source and target
Start with a source, ApplyMapping transform,
and target.

(O Python Shell script editor

Write or upload your own Python shell script.

Source

Amazon S3

JSON, CSV, or Parquet files stored in S3. v

Figure 11.14 - Create job

4.  After clicking Create on the right side of the panel, you will see the visual editor:

@ Data source - 53 bucket
S3 bucket

DE Transform - ApplyMappi...

o ApplyMapping
®
I
I
I
|
]
I
]
@ Data target - S3 bucket
S3 bucket

Figure 11.15 - Visual editor



Creating an AWS Glue service

6.

Click S3 bucket under Data source - S3 bucket and you will see the data source details on
the right side. It consists of some details on how to parse the source data. As you can see in
the following figure, we set S3 location as a data path, Data format is CSV, and Delimiter
is comma-separated:

S3 source type Info
Data Catalog table

© 53 location
Choose a file or folder in an S3 bucket.

S3 URL

Q, s3://glueinputbucket123 X

Recursive
Read files in all subdirectories.

Data format

csv

Delimiter

Comma (,)

Figure 11.16 — Data source

Select the Transform tab from the panel and you will see the following data mapping. This
mapping is generated by Glue:

Node properties Transform Output schema Data preview
Apply mapping

Source key | Target key | Data type
location_id long v
address_1 string v
city string v
state_province string v

Figure 11.17 — Mapping

177



178 Using Python with Glue

7. Select the Data target properties - S3 tab from the panel and fill out the panel with target
details. Since we are converting to JSON, the format will be JSON. The target location could
also be another S3 bucket; in this example, I will give the same S3 location for input and output:

Node properties Data target properties - S3
Output schema Data preview
Format

JSON

Compression Type

None

S3 Target Location

Choose an S3 location in the format s3://bucket/prefix/object/ with
slash (/).

Q, s3://glueinputbucket123 X

Figure 11.18 — Data target

8. Select the Job details tab in order to fill out other information such as the job name and script.
You can see these details in steps 9 and 10:

Visual Script Job details e Data quality
< = ch ba’ u
Source . Action . Target . Undo Remove

@ Data source - S3 bucket @
S3 bucket

DEEE LTSy

EE Transform - ApplyMappi...
o
< ApplyMapping

’

©

Figure 11.19 - Job details



Creating an AWS Glue service 179

9. Fill in the jobs Name and IAM Role fields to run the Glue job:

Basic properties info

Name

job1

Description - optional

IAM Role

Role assumed by the job with permission to access your da
targets, temporary directory, scripts, and any libraries used

roleforglue

Figure 11.20 - Name and role

10. There is one more configuration left. Scroll down and fill in the Script filename and Script
path details that Glue will create:

¥ Advanced properties

Script filename

job.py

Script path
S3 location of the script. Path must be in the form s3://bucket/prefix/pat

Q, s3://aws-glue-assets-961487522622-us-east-1/scripts/

Figure 11.21 - Script filename and path



180 Using Python with Glue

11. Click Save. As you can see, Glue has created a Python Spark script that is going to convert
CSV to JSON. PySpark is a data processing library that can also be used in the AWS Glue job:

job1

© Successfully updated job

Successfully updated job job1. To run the job choose the

Visual Script Job details Runs Dat

Script (Locked) info

import sys

from awsglue.transforms import *

from awsglue.utils import getResolvedOpti
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job

args = getResolvedOptions(sys.argv, ["JOE
sc = SparkContext()

10 glueContext = GlueContext(sc)

11 spark = glueContext.spark_session

12 job = Job(glueContext)

13 job.initCargs["JOB_NAME"], args)

Woo~NOOUTA, WN PP

Figure 11.22 — Code generation

12. Click Run on the right side of the panel:

Actions ¥ Save m

Figure 11.23 - Button panel for Run

After some time, you can check the job status from the Runs tab:

Runs Data quality Schedules Version

Id Run status

jr_7d761d8dbad61d392a59af6fb01c @© Succeeded
9bafe53c47bf30f69683a99a3a31000
a23b3

Figure 11.24 - Runs tab



Summary

When you check the S3 folder, the file is converted to JSON. Here is some sample output:

"id":"1","location id":"1","address 1":"2600 Middlefield
Road", "city":"Redwood City","state province":"CA"}

"id":"2","location_id":"2", "address 1":"24 Second

Avenue", "city":"San Mateo","state province":"CA"}
{midn:"3" "location id":"3","address 1":"24 Second
Avenue", "city":"San Mateo","state_province":"CA"}

Congrats! You are able to convert a CSV file to a JSON file. As you can see, AWS Glue created a
predefined script to make some ETL jobs.

Summary

In this chapter, we learned about the AWS Glue service and how to create an ETL pipeline with AWS
Glue. Glue is very efficient when you need to create data pipelines. One cool feature of Glue is the
visual flow generator, which allows you to create a flow with drag and drop. It makes it easy to create
and generate the flow, which saves lots of time. In addition to that, for people who don’t have that
much code experience, Glue’s visual flow facilitates their tasks. Hence, if you work with data, Glue is
one of the best services within AWS. In the next chapter, we will create a sample project within AWS
using the Python programming language.

181






12

Reference Project on AWS

In this chapter, we are going to create a sample application with Python on AWS. This is the final
chapter of the book. We have learned about different AWS services and implemented sample Python
applications with these services. In this chapter, we will use multiple services to create an end-to-end
Python application.

The chapter covers the following topics:

o What have we learned?
 Introducing the end-to-end Python application

o The coding of the Python application

What have we learned?

AWS has more than a hundred services, and we have learned about the important Python-related
services. Let’s walk through those services:

o Lambda: Lambda is a cloud computing service that allows you to run Python applications.
You don't need to provision any server; Lambda manages the infrastructure.

o EC2: EC2 provides a server machine in the cloud. You can create a server and install the required
applications, or whatever you want.

« Elastic Beanstalk: Elastic Beanstalk is used to deploy Python-based web applications.

+ CloudWatch: CloudWatch is a logging and monitoring service on AWS. You can easily track
your services.

« RDS: RDS is a relational database service on AWS. If you need a database, you can easily create
it without managing the server.

o API Gateway: API Gateway is used to create, maintain, and publish an application
programming interface.



184

Reference Project on AWS

o DynamoDB: DynamoDB is a key-value database that is used to query and store billions of
records on AWS. It is also a NoSQL database.

o AWS Glue: AWS Glue is a data integration service that is used for ETL.

Introducing the Python application

Let us understand the high-level architecture of the Python application:

Upload animage

0

Client AP Gateway Lambda S3

Figure 12.1 - Project architecture

The application collects images to be stored in S3 buckets. The API gateway is used for integration
between clients and the Lambda service. Lambda retrieves the information and puts data into S3.

The coding of the Python application

Let’s implement the application step by step.

Creating S3 buckets to store images

In this subsection, we are going to create an S3 bucket to hold images, which is uploaded via API
Gateway. S3 will store the image and provide it whenever requested:

1. Create a bucket and click the Create bucket button at the bottom of the page:

View Storage Lens dashboard |

1 &
v Access v Creation date v

Figure 12.2 — An S3 bucket



The coding of the Python application

2. We filled in the Bucket name field as python-book - image; you can use whatever you
want. After adding the bucket name, click Create bucket to create a new bucket:

General configuration

Bucket name

python-book-image

Bucket name must be globally unique and must not contain spaces or uppercase letters. See rules for bucket namint

AWS Region

US East (N. Virginia) us-east-1 v

Copy settings from existing bucket - optional
Only the bucket settings in the following configuration are copied.

Figure 12.3 - Bucket configuration

We have created an S3 bucket.

Creating Lambda code

In this subsection, we are going to implement a Lambda code that accepts the image upload request
from API Gateway and stores the image in the S3 bucket:

1. Create a Lambda function via the AWS Management Console. You can see the Function name
field of the Lambda function and Runtime in the following screenshot within the Lambda
creation step:

Basic information

Function name
Enter a name that describes the purpose of your funct

‘ UploadimageToS3

Use only letters, numbers, hyphens, or underscores wi

Runtime Info
Choose the language to use to write your function. Nc

‘ Python 3.9

Figure 12.4 - The Lambda function

185



186 Reference Project on AWS

2. Paste the following code to the Lambda code source:

import boto3
import base64
import json

def lambda handler (event, context):
try:

s3

sl = json.dumps (event)

boto3.resource('s3"')

data = json.loads(sl)

image = datal['image base64']

file_content = base64.b64decode (image)

bucket = datal['bucket']

s3 file name = data['s3 file name']

obj = s3.0bject (bucket,s3 file name)

obj .put (Body=file content)

return 'Image is uploaded to ' + bucket
except BaseException as exc:

return exc

3. Once pasted, deploy the Lambda function by clicking the Deploy button:

Tools Window Test |v Deploy Changes not deployed

b= lambda_function %
1 import json
2 import boto3
3
4  def lambda_handler(event, context):

Figure 12.5 - Lambda deployment

Let’s take a look at the code details. First, we import the j son, base64, and boto3 libraries.
The json library is used to parse data, which comes in JSON format, and bot o3 is used to
upload files to S3 as well as generate a URL for retrieving the file. In addition to that, baseé64
is used to decode and encode the image.

The following lines of code are parsing the parameters and decoding the contents of the image
to store S3. Hence, we can use the bucket name and S3 filename. The bucket name is represented
as bucket in the code and the S3 filename is represented as s3_file name:

sl = json.dumps (event)

data = json.loads (sl)

image = data['image base64']



The coding of the Python application

file_content = base64.bé64decode (image)
bucket = datal['bucket']
s3 file name = data['s3 file name']

Once we have parameters, we can use the bot o3 library to upload the file from local to S3:

obj = s3.0bject (bucket,s3 file name)
obj .put (Body=file content)

We have implemented the code for the application. In order to run this code, we have to create
permissions, the steps for which are explained in the next subsection.

Creating permissions for the services

We are now going to create permissions to upload a file to S3 and call a Lambda function from
API Gateway:

1.  Open the IAM role and create a new role for Lambda:

Use case
Allow an AWS service like EC2, Lambda, or others to perform actions in this account.

Common use cases
EC2

© Lambda

Figure 12.6 — Creating a role

2.  Select AmazonS3FullAccess and CloudWatchFullAccess from the list:

Permissions policies Info

Policy name (&

AmazonS3FullAccess

CloudWatchFullAccess

Figure 12.7 - Adding policies

187



188 Reference Project on AWS

3. Click the Next button:

you can use it to delegate permission management to others.

Cancel Previous m

Figure 12.8 — Adding policies

4. Add the role name:

Role details

Role name
Enter a meaningful name to identify this role.

[ LambdaPolicy

Maximum 64 characters. Use alphanumeric and '+=,.@-_' characters.

Description
Add a short explanation for this role.

Allows Lambda functions to call AWS services on your behalf.

Figure 12.9 - Naming the role

5. Complete creating the role by clicking the Create role button:

Cancel Previous Create role

Figure 12.10 - Create role

6. After creating the role, you will see the role on the list:



The coding of the Python application 189

IAM > Roles

Roles (47) info
An IAM role is an identity you can create that has
short durations. Roles can be assumed by entities

[ Q, LambdaPol

Role name
LambdaPolicy

Figure 12.11 - The role on the list

In this subsection, we have created a role to be used in the Lambda function to execute the code. Let’s
attach the role to the Lambda function.

Attaching the role to the Lambda function
We are now going to add permissions to the Lambda function:

1.  Open the Lambda function and click Permissions under the Configuration tab:

Code Test Monitor Configuration Ali

General configuration .
Execution role

Triggers

L Role name
Permissions
UploadimageToS3-role-1sd

Figure 12.12 - Lambda permissions



190 Reference Project on AWS

2. Edit the permissions and select LambdaPolicy from the existing role. This role was created in
the previous subsection:

Execution role
Choose a role that defines the permissions of your functic

© Use an existing role

(O Create a new role from AWS policy templates

Existing role
Choose an existing role that you've created to be used wit
CloudWatch Logs.

LambdaPolicy

Figure 12.13 — Attaching the permission

With this configuration, Lambda is able to execute the code. It is time to start implementing API
Gateway, which will use a Lambda function as a backed function.

Creating an APl gateway to upload the image
In this step, we are going to create an API gateway to upload the image:

1. Open the API Gateway service and create a REST API:

REST API

Develop a REST APl where you gain complete control over the request and response along with APl management capabilities.

Works with the following:
Lambda, HTTP, AWS Services

Figure 12.14 — Creating a REST API

2. Provide a name for the REST API. We will use the name UploadImageToS3 in this subsection:

API name* UploadimageToS3
Description
Endpoint Type Regional v e

Figure 12.15 - Naming the REST API



The coding of the Python application 191

3. In the Actions drop-down list, click Create Method:

Resources / Methods

RESOURCE ACTIONS

/ Create Method

POST -~

Create Resource
Enable CORS

Edit Resource Documentation

Figure 12.16 — Creating a method

4. Select POST from the available options:

Resources Actions ~

/

[v o |

ANY
BENENE
GET
HEAD
OPTIONS
PATCH

POST

PUT

Figure 12.17 - The POST method

5.  We will use Lambda Function as the integration type and scroll down to click Save:



192 Reference Project on AWS

Integration type @ Lambda Function @
O HTTP @
O Mock @
O AWS Service @
O VPC Link @

Use Lambda Proxy integration Je

Lambda Region 5-gast-1 v

Lambda Function |UploadimageToS3 1]

Use Default Timeout @6

Figure 12.18 - Lambda integration

6. The API is ready to use. Enable the CORS policy as we explained in Chapter 9, then click Deploy
API in the Actions drop-down list:

/ - POST - Me

METHOD ACTIONS

—  Edit Method Documentation

Delete Method

RESOURCE ACTIONS
Create Method

Create Resource
Enable CORS

Edit Resource Documentation

API ACTIONS
Deploy API

Figure 12.19 - Deploying the API

7.  We are ready to deploy the API. Add a stage name and click Deploy:



The coding of the Python application

Deployment stage [New Stage] v
Stage name* test

Stage description

Deployment description

Cancel Deploy

Figure 12.20 - Naming the stage

8. In the Export tab, there are multiple alternatives to call the API. We will use Postman to call
the APL Postman is a platform that allows you to build and test the API. For this application,
you can also test another platform such as Swagger. Postman is an easy way to use and test an
API. In the following subsection, we will explain how to download and use it. Since it is simpler
in terms of installation and use, I will proceed with Postman.

Select the Export as Swagger + Postman Extensions icon; you can export and download either
the JSON or YAML format:

Settings Logs/Tracing Stage Variables = SDK Generation Export Deployment History Documentation History Canary

Export as... ® Swagger () OpenAPI 3

Export as Swagger Export as Swagger + APl Gateway Export as Swagger + Postman
Extensions Extensions

1
L B

JSON = YAML JSON  YAML JSON | YAML

Figure 12.21 — Exporting the API

This file will be used in Postman to test the API.

193



194 Reference Project on AWS

Using Postman to test the API
We have completed the implementation. In this step, we are going to test the API via Postman:

1. Download and install Postman from the following website: ht tps: //www.postman. com/.

2. In the Postman application, click the Import button:

(] ) Home Workspaces v APl Network v

2 My Workspace New Import

Figure 12.22 - Importing the API

3. Select the JSON file that we downloaded within API Gateway and click Open:

> M~ &;~ [ Desktop Q, Search

"swagger" : "2.0",

"info" : {
"description" : "UploadImage",
"version" : "2023-01-85T12:26:58Z",
"title" : "UploadImage"

}l
"host" : "gqtdlqod4pf.execute-api.us-east
"basePath" : "/stg",
"schemes" : [ "https" 1,
“paths" : {
"post" : {
"produces" : [ "application/json"
"responses" : {

"200" : {
"description" : "20@ response"
“"schema" : {
"graf" « Y"#/dafinitinnc /Fmnt

Uploadimage-stg-swagger-postman
JSON - 659 bytes

Uploadimage-stg-swagger-postman.json Information

Created

Cancel Open

Figure 12.23 - Importing the JSON


https://www.postman.com/

The coding of the Python application

4. You will see confirmation of the API. Click Import as a final step:

Import Elements

Q
APls
APl name APl type
Uploadimage OpenAPI 2.0

> Show Import Settings

Figure 12.24 — Import the JSON

5. Once you have imported the API, you are ready to call the API. In the POST section, select
the raw request type with JSON as follows:
/
POST v

{{baseUrl}}/

Params Authorization Headers (8) Body Pre-request Script Tests Settings

none form-data x-www-form-urlencoded @ raw binary GraphQL JSON v

Figure 12.25 - The raw parameter

6. Paste the following JSON to call the API:

{
"image base64":"iVBORwWOKGgoAAAANSUhEUgAAAAEAAAABCAQAAACIH

AwCAAAACO1EQVR42mNk+A8AAQUBASCY42YAAAAASUVORKSCYII=",
"bucket" : "python-book-image",

195



196 Reference Project on AWS

"s3 file name":"image.jpeg"

!
Let’s break down the JSON file:

* image base64 represents the base64 code of a sample image that is going to be saved
to the S3 bucket. You can also convert a sample image to base64 code with libraries and
online converters.

* The bucket parameter represents the location of the S3 bucket.
* s3_file name represents the name and extension of the content.

This can be seen in the following screenshot:

POST v {{baseUrl}}/ m

Params Authorization Headers (9) Body ® Pre-request Script Tests Settings
none form-data x-www-form-urlencoded @& raw binary GraphQL JSON
1
2 "image_base64": "iVBORWOKGEoAAAANSUREUEAAAAEAAAABCAQAAACIHAWCAAAACOLEQVRA2mNK

+ABAAQUBASCY42YAAAAASUVORKSCYII=",
"bucket":"python-hook-image",

"s3_file_name":"image.jpeg"

oA w

Figure 12.26 - Request JSON

7. Click the Send button in order to call the API. Once you click it, you can see the response of
the APIL:

ody Cookies Headers (7) TestResults

Pretty Raw Preview Visualize JSON

1 "Image is uploaded to python-book-image"

Figure 12.27 - JSON response

We have successfully called the API. Let’s check with the S3 bucket whether the image is uploaded.



The coding of the Python application

8. Open the python-book-image S3 bucket and see the uploaded jpeg file:

Objects (1)

Objects are the fundamental entities stored in Amazon S3. You
need to explicitly grant them permissions. Learn more [}

C Copy S3 URI Copy URL

N Upload

Q. Find objects by prefix

U Name A Type v

U B image.jpeg jpeg

Figure 12.28 — S3 content

9. Download the file and check the sample image. When you download it, you will see a very
small point. You can make it bigger by clicking the + magnifying glass icon on your image
viewer to see it clearly:

® 0 ® [[J-v image.jpeg @ Q @ M

Figure 12.29 - The image

Congratulations! You have successfully uploaded the image using API Gateway, Lambda, and S3 services.

197



198

Reference Project on AWS

Summary

In this chapter, we have created an application to upload an image using API Gateway, Lambda, and
S3. The image is converted to base64 to be stored in S3. One of the best aspects of using Lambda,
S3, and API Gateway is that we haven't provisioned any server. Lambda, S3, and API Gateway are
serverless and we don’'t need to manage the infrastructure. AWS manages and handles it for you.

We have finished all the chapters and learned how to use the most common AWS services with Python.
I hope all the chapters have provided you with good knowledge about AWS. Following this, you can
implement more complex Python projects with these services as well as use more services within AWS.



A

Amazon Web Services (AWS) 3
Lambda function, creating 70, 71
API Gateway 133, 183
application programming interface
(API), creating 134-149
architecture 133
features 134
API Gateway response types
reference link 146
Auto Scaling 43, 44
AWS account
creating 11-14
AWS account name 12
awscli 57
AWS CLI 57
EC2 machine, configuring to
upload file from EC2 57-62
AWS Glue service 169, 170, 184
creating 175-181
features 170
AWS Lambda function
running, with AWS Toolkit 72-74
AWS Toolkit
configuring 67-69
installing, in PyCharm 65, 66

Index

Boto3 30
reference link 167

C

cloud 3
advantages 4
cloud computing 19
cloud services
considerations 4
cost management 4
security 4
CloudWatch 87,183
alarms, creating 98-104
features 87, 88
Lambda logs, collecting 88-90
Lambda logs, investigating 91-93
Log Insights 94
command-line interface (CLI) 57
configurations, Lambda 24
destinations 25
environment variable 25
ephemeral storage 25
memory 25
monitoring and operations tool 26



200 Index

permissions 25 Elastic Compute Cloud. See EC2
tags 25 environment variable 25
timeout 25 ephemeral storage 25
triggers 25 extract, transform, and load
Virtual Private Cloud (VPC) 25 (ETL) process 169
Cross-Origin Resource Sharing (CORS) 134
CSV file F
processing, with Python application
on EC2 server 55-57 Flask 76
Customer Relationship reference link 76

Management (CRM) 25

global secondary indexes 157

D

database operations Glue job

with Python 124-128 permissions, defining for 172-174
destinations 25 Google Cloud Platform (GCP) 3
document database 152
DynamoDB database 153, 184 K

creating 154-161

features 153 key-value database 152

operations, with Python 161-167

Lambda 20, 41, 183

EC2 41,42,183 advantages 20
purchasing options 42 configurations 24-26

EC2 instance types 42 limitations 20
Auto Scaling 43, 44 logging functionality 27

EC2 server memory limit 20
connecting to 53, 54 metadata parser application,
CSV file, processing with Python filling with 28-38

application 55-57 returning value 26

provisioning 44-53 sample applications, executing within 21-24
Python application, running on 54, 55 skeleton 26

Elastic Beanstalk 75, 183 timeout limit 20
features 75,76 Lambda function

Python web application, deploying to 76-84 creating, in AWS 70, 71



Index

Lambda logs
collecting, via CloudWatch 88-90
investigating, via CloudWatch 91-93
local secondary indexes 157
logging libraries, Lambda
reference link 27
Log Insights
logs, searching 94-98

M

memory 25
metadata parser application
filling, with Lambda and S3 28-38
MySQL WorkBench
table, creating via 122, 123

N

NoSQL database 151, 184
document database 152
key-value database 152
reference link 153

P

permissions 25

defining, for Glue job 172-174
Postman 193

URL 194

used, for API testing 194-197
purchasing options, EC2 42

dedicated 42

on-demand 42

reserved 42

spot 42

PyCharm 7
download link 7
installing 7, 8
project, creating 8, 9
PySpark 180
Python 4
download link 5
for database operations 124-128
implementing, in DynamoDB
operations 161-167
installing 5, 6
Python application 184
API gateway, creating for image
upload 190-193
API, testing with Postman 194-197
coding 184
Lambda code, creating 185, 186
permissions, creating for services 187, 188
role, attaching to Lambda function 189, 190
running, on EC2 server 54, 55
S3 buckets, creating for storing
images 184, 185
Python web application
creating 76
deploying, to Elastic Beanstalk 76-84

R

Relational Database Management
System (RDBMS) 106
Relational Database Service (RDS) 183
connecting to 117-122
features 106
provisioning 107-117
RESTful 133

201



202 Index

S

S3 28
metadata parser application,
filling with 28-38
$3 sample file
creating 170-172
Secrets Manager 128
using 128-131
Simple Notification Service (SNS) 101
Spark 43
subnet 48
Swagger 193

T

table
creating, via MySQL Workbench 122, 123
tags 25
timeout 25
triggers 25

U

up-to-date limits, AWS Lambda quotas page
reference link 20

Vv

Virtual Private Cloud (VPC) 25

W

WebSocket 133



Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?

o Spend less time learning and more time coding with practical eBooks and Videos from over
4,000 industry professionals

« Improve your learning with Skill Plans built especially for you

o Geta free eBook or video every month

o Fully searchable for easy access to vital information

« Copy and paste, print, and bookmark content
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub . com and as a print book customer, you

are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www . packtpub. com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.


http://Packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Industrializing Financial
Services with DevOps

Proven 360° DevOps operating model practices
for enabling a multi-speed bank

SPYRIDON WMANIOTIS

Industrializing Financial Services with DevOps
https://packt.link/9781804614341
Spyridon Maniotis

ISBN: 978-1-80461-434-1

o Understand how a firm’s corporate strategy can be translated to a DevOps enterprise evolution
« Enable the pillars of a complete DevOps 360° operating model

o Adopt DevOps at scale and at relevance in a multi-speed context

o Implement proven DevOps practices that large incumbents banks follow

« Discover core DevOps capabilities that foster the enterprise evolution

o Set up DevOps CoEs, platform teams, and SRE teams


https://packt.link/9781804614341

Other Books You May Enjoy

Realize Enterprise
Architecture with
AWS and SAFe

A comprehensive, hands-on guide to AWS with
Agile and TOGAF

'{mf =

Rajnish Harjika

Realize Enterprise Architecture with AWS and SAFe
https://packt.link/9781801812078

Rajnish Harjika

ISBN: 978-1-80181-207-8

o Set up the core foundation of your enterprise architecture

o Discover how TOGAF relates to enterprise architecture

« Explore AWS’s EA frameworks and find out which one is the best for you
o Use SAFe to maximize agility in your organization

 Find out how to use ArchiMate to model your architecture

« Establish proper EA practices in your organization

o Migrate to the cloud with AWS and SAFe

205


https://packt.link/9781801812078

206

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors . packtpub. comand
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts

Now you've finished Python Essentials for AWS Cloud Developers, wed love to hear your thoughts!
If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site that
you purchased it from.

Your review is important to us and the tech community and will help us make sure were delivering
excellent quality content.


http://authors.packtpub.com
https://packt.link/r/1804610062
https://packt.link/r/1804610062

207

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?
Is your eBook purchase not compatible with the device of your choice?

Don't worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804610060

2. Submit your proof of purchase

3. That’s it! We'll send your free PDF and other benefits to your email directly


https://packt.link/free-ebook/9781804610060

	Cover
	Title Page
	Copyright and Credit
	Contributors
	Table of Contents
	Preface
	Part 1:
 Python Installation
and the Cloud
	Chapter 1: Using Python on AWS
	What is the cloud?
	Understanding the advantages of the cloud
	Installing Python
	Installing PyCharm
	Creating a new project
	Summary

	Chapter 2: Creating an AWS Account
	Creating an AWS account
	Summary

	Part 2:
 A Deep Dive into 
AWS with Python
	Chapter 3: Cloud Computing with Lambda
	Cloud computing
	What is Lambda?
	The advantages of Lambda
	The limitations of Lambda

	A sample application with Lambda
	Important configurations in Lambda
	A Lambda skeleton
	Lambda returning value
	Logging in Lambda
	Filing a metadata parser application with Lambda and S3
	Summary

	Chapter 4: Running Python Applications on EC2
	What is EC2?
	EC2 purchasing options
	On-Demand
	Reserved
	Spot
	Dedicated

	EC2 instance types
	Auto-scaling

	Provisioning an EC2 server
	Connecting to an EC2 server
	Running a simple Python application on an EC2 server
	Processing a CSV file with a Python application on an EC2 server
	The AWS CLI
	Summary

	Chapter 5: Running Python Applications with PyCharm
	Installing the AWS Toolkit
	Configuring the AWS Toolkit
	Creating a sample Lambda function in AWS
	Running an AWS Lambda function using the AWS Toolkit
	Summary

	Chapter 6: Deploying Python Applications on Elastic Beanstalk
	What is Elastic Beanstalk?
	Features of Elastic Beanstalk

	Creating a Python web application
	Deploying a Python web application on Elastic Beanstalk
	Summary

	Part 3:
 Useful AWS Services 
to Implement Python
	Chapter 7: Monitoring Applications via CloudWatch
	What is CloudWatch?
	Collecting Lambda logs via CloudWatch
	CloudWatch Log Insights
	CloudWatch alarms
	Summary

	Chapter 8: Database Operations with RDS
	Features of RDS
	Provisioning RDS
	Connecting to the RDS
	Creating a table in the database
	Database operations with Python
	Secrets Manager
	Summary

	Chapter 9: Creating an API in AWS
	What is API Gateway?
	Creating an API using API Gateway
	Summary

	Chapter 10: Using Python with NoSQL (DynamoDB)
	What is a NoSQL database?
	Key-value database
	Document database

	What is a DynamoDB database?
	Creating a DynamoDB database

	DynamoDB operations with Python
	Summary

	Chapter 11: Using Python with Glue
	What is the AWS Glue service?
	Features of AWS Glue

	Creating an S3 sample file
	Defining the permissions for a Glue job
	Creating an AWS Glue service
	Summary

	Chapter 12: Reference Project on AWS
	What have we learned?
	Introducing the Python application
	The coding of the Python application
	Creating S3 buckets to store images
	Creating Lambda code
	Creating permissions for the services
	Attaching the role to the Lambda function
	Creating an API gateway to upload the image
	Using Postman to test the API

	Summary

	Index
	Other Books You May Enjoy



