


Python Essentials for AWS Cloud 
Developers

Run and deploy cloud-based Python applications using AWS

Serkan Sakinmaz

BIRMINGHAM—MUMBAI



Python Essentials for AWS Cloud Developers
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted 
in any form or by any means, without the prior written permission of the publisher, except in the case 
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information 
presented. However, the information contained in this book is sold without warranty, either express 
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable 
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and 
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot 
guarantee the accuracy of this information.

Group Product Manager: Mohd. Riyan Khan
Publishing Product Manager: Suwarna Rajput
Senior Editor: Runcil Rebello
Technical Editor: Rajat Sharma
Copy Editor: Safis Editing
Project Coordinator: Ashwin Kharwa
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Arunkumar Govinda Bhat
Marketing Coordinator: Agnes D’souza

First published: May 2023

Production reference: 1260423

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80461-006-0
www.packtpub.com

http://www.packtpub.com


To my mother, Reyhan, and my father, Sami, for always supporting and loving me. To my sons, Batu and 
Arman, for recharging my energy. To my wife, Yonca, for giving me support and love.

– Serkan Sakinmaz



Contributors

About the author
Serkan Sakinmaz is a data architect and engineer who lives in Germany. He currently gives consultancy 
on the data and cloud area to key companies in Europe. He has also given big data training to students 
as well as professionals who want to learn about cloud technologies. He has more than 15 years’ 
experience in programming and more than 8 years’ experience in the cloud area. He likes to share 
what he knows and his experiences in the sector, and he gives seminars, writes blogs, and defines the 
future of architecture for key companies.

When he is not working, he mostly spends his time with his family, goes running, or plays table tennis 
and football.



About the reviewers
Harish LM has more than 5 years of experience in the IT and services industry. He specializes in 
Python, NLP, and the AWS Cloud.

Mikayel Ghazaryan is a technology expert with extensive experience in web and cloud engineering 
and software design. He specializes in designing and implementing scalable, secure, and cost-effective 
solutions for businesses. He currently works as an AWS Cloud architect at Nordcloud, an IBM 
company since December 2021. His responsibilities include performing a Well-Architected Review, 
and standardization of EC2 Linux machine deployments with Terraform, Systems Manager, Step 
Functions, and Lambdas. Before Nordcloud, he performed the migration of on-premise applications 
to AWS, designed and implemented data pipelines on AWS, and attributed ML-based quality scores 
to millions of images. He holds an AWS Solutions Architect Professional certification.





Preface� xi

Part 1: Python Installation and the Cloud

1
Using Python on AWS� 3

What is the cloud?� 3
Understanding the advantages  
of the cloud� 4
Installing Python� 5

Installing PyCharm� 7
Creating a new project� 8
Summary� 9

2
Creating an AWS Account� 11

Creating an AWS account� 11 Summary� 15

Part 2: A Deep Dive into AWS with Python

3
Cloud Computing with Lambda� 19

Cloud computing� 19
What is Lambda?� 20
The advantages of Lambda� 20
The limitations of Lambda� 20

A sample application with Lambda� 21
Important configurations in Lambda� 24
A Lambda skeleton� 26
Lambda returning value� 26

Table of Contents



Table of Contentsviii

Logging in Lambda� 27
Filing a metadata parser application 
with Lambda and S3� 28

Summary� 39

4
Running Python Applications on EC2� 41

What is EC2?� 42
EC2 purchasing options� 42
On-Demand� 42
Reserved� 42
Spot� 42
Dedicated� 42

EC2 instance types� 42
Auto-scaling� 43

Provisioning an EC2 server� 44
Connecting to an EC2 server� 53
Running a simple Python  
application on an EC2 server� 54
Processing a CSV file with a Python 
application on an EC2 server� 55
The AWS CLI� 57
Summary� 63

5
Running Python Applications with PyCharm� 65

Installing the AWS Toolkit� 65
Configuring the AWS Toolkit� 67
Creating a sample Lambda function 
in AWS� 70

Running an AWS Lambda function 
using the AWS Toolkit� 72
Summary� 74

6
Deploying Python Applications on Elastic Beanstalk� 75

What is Elastic Beanstalk?� 75
Features of Elastic Beanstalk� 75

Creating a Python web application� 76

Deploying a Python web application 
on Elastic Beanstalk� 76
Summary� 84



Table of Contents ix

Part 3: Useful AWS Services to Implement Python

7
Monitoring Applications via CloudWatch� 87

What is CloudWatch?� 87
Collecting Lambda logs via 
CloudWatch� 88

CloudWatch Log Insights� 94
CloudWatch alarms� 98
Summary� 104

8
Database Operations with RDS� 105

Features of RDS� 106
Provisioning RDS� 107
Connecting to the RDS� 117
Creating a table in the database� 122

Database operations with Python� 124
Secrets Manager� 128
Summary� 132

9
Creating an API in AWS� 133

What is API Gateway?� 133
Creating an API using API Gateway� 134

Summary� 149

10
Using Python with NoSQL (DynamoDB)� 151

What is a NoSQL database?� 151
Key-value database� 152
Document database� 152

What is a DynamoDB database?� 153
Creating a DynamoDB database� 154

DynamoDB operations with Python� 161
Summary� 168



Table of Contentsx

11
Using Python with Glue� 169

What is the AWS Glue service?� 169
Features of AWS Glue� 170

Creating an S3 sample file� 170

Defining the permissions for  
a Glue job� 172
Creating an AWS Glue service� 175
Summary� 181

12
Reference Project on AWS� 183

What have we learned?� 183
Introducing the Python application� 184
The coding of the Python  
application� 184
Creating S3 buckets to store images� 184
Creating Lambda code� 185

Creating permissions for the services� 187
Attaching the role to the Lambda function� 189
Creating an API gateway to upload  
the image� 190
Using Postman to test the API� 194

Summary� 198

Index� 199

Other Books You May Enjoy� 204



Preface

Cloud computing is one of the most popular approaches to implementing your applications, with 
huge advantages. There are multiple cloud providers, such as AWS, GCP, and Azure. AWS is one of 
the most used cloud providers, and many companies are moving there. Cloud usage is significantly 
growing and cloud knowledge is expected from developers.

Most of the applications are moving to the cloud. AWS has different services to implement Python 
applications, hence the configuration and selecting the right service is a challenge for those who don’t 
have an AWS background. By buying this book, you are on the right path and stepping into how to 
implement cool Python applications using AWS services.

Who this book is for
This book is implemented for cloud developers, software developers, and IT specialists who intend to 
develop Python applications on AWS as well as learn about the concepts of appropriate AWS services 
for implementing the Python applications. You should have Python programming experience to 
implement the applications on AWS.

What this book covers
Chapter 1, Using Python on AWS. This chapter will teach you how to install and use the Python IDE 
and also understand the advantages of AWS Cloud.

Chapter 2, Creating an AWS Account. To start with cloud computing, AWS requires an account to 
implement Python programming. In this chapter, you will learn how to create an AWS account.

Chapter 3, Cloud Computing with Lambda. Lambda is a very effective way to implement Python functions. 
The chapter will help you to get into the Lambda service and will show how to implement a code.

Chapter 4, Running Python Applications on EC2. EC2 is one of the key services that you can provision 
on the cloud. The chapter will help you to get into the EC2 service and will show how to provision a 
server and deploy the Python application afterward.

Chapter 5, Running Python Applications with PyCharm. Debugging Python applications is important for 
testing the application. The chapter will help you to debug Python applications locally in an easy way.

Chapter 6, Deploying Python Applications on Elastic Beanstalk. Elastic Beanstalk is a useful service 
that allows the deployment of applications. The chapter will help you to get into the Elastic Beanstalk 
service and will show how to create a service and deploy the Python application afterward.



Prefacexii

Chapter 7, Monitoring Applications via CloudWatch. CloudWatch allows you to monitor your application 
in AWS. The chapter will help you to get into the CloudWatch service and will show how to monitor 
the Python application.

Chapter 8, Database Operations with RDS. RDS is used to create a database in AWS. The chapter will 
help you to get into the RDS service and will show how to create a database and make SQL operations 
via Python applications.

Chapter 9, Creating an API in AWS. An API is an important interface for an application. The chapter 
will help you create an API in AWS and publish the API to access the Python application.

Chapter 10, Using Python with NoSQL (DynamoDB). NoSQL is useful to store unstructured and 
semi-structured data. The chapter will help you to create a NoSQL database and make SQL operations 
on DynamoDB.

Chapter 11, Using Python with Glue. Glue is a serverless data integration service in AWS. The chapter 
will help you to embed Python applications into the Glue service.

Chapter 12, Reference Project on AWS. Implementing a sample project is the best way to learn about 
application programming. The chapter will help you to implement sample AWS projects with 
best practices.

To get the most out of this book
You will need to have an understanding of the basics of the Python programming language to implement 
applications on AWS.

Software/hardware covered in the book Operating system requirements
Python Windows, macOS, or Linux
Amazon Web Services (AWS)

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Python-Essentials-for-AWS-Cloud-Developers. If there’s an 
update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Python-Essentials-for-AWS-Cloud-Developers
https://github.com/PacktPublishing/Python-Essentials-for-AWS-Cloud-Developers
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/


Preface xiii

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book. 
You can download it here: https://packt.link/hWfW6

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Execute 
python --version from the command line.”

A block of code is set as follows:

from flask import Flask
app = Flask(__name__)

@app.route('/')

When we wish to draw your attention to a particular part of a code block, the relevant lines or items 
are set in bold:

from flask import Flask
app = Flask(__name__)

@app.route('/')

Any command-line input or output is written as follows:

wget https://raw.githubusercontent.com/PacktPublishing/Python-
Essentials-for-AWS-Cloud-Developers/main/fileprocessor.py

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words 
in menus or dialog boxes appear in bold. Here is an example: “Click Instances on the left side, and 
then click Launch Instances.”

Tips or important notes
Appear like this.

https://packt.link/hWfW6


Prefacexiv

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Python Essentials for AWS Cloud Developers, we’d love to hear your thoughts! Please 
click here to go straight to the Amazon review page for this book and share 
your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1804610062


Preface xv

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? 
Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804610060

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804610060




Part 1: 
 Python Installation 

and the Cloud

In this part, you will learn to install and use the Python IDE and understand the cloud basics. In order 
to get into cloud computing via Python programming in AWS, we will also open an AWS account.

This part has the following chapters:

•	 Chapter 1, Using Python on AWS

•	 Chapter 2, Creating an AWS Account





1
Using Python on AWS

In this chapter, we will give a brief introduction to the cloud. We will then explain how to set up 
Python and how to run your first application within the command line as well as via an integrated 
development environment (IDE). We’re going to cover the following main topics:

•	 What is the cloud?

•	 Understanding the advantages of the cloud

•	 Installing Python

•	 Installing PyCharm

•	 Creating a new project

Cloud computing is one of the most popular approaches to implementing your applications, and it has 
huge advantages. There are multiple cloud providers, such as Amazon Web Services (AWS), Google 
Cloud Platform (GCP), and Azure. AWS is one of the most widely used cloud providers, and many 
companies are moving there. Cloud usage is significantly growing, and developers are expected to 
have a good understanding of the cloud. By buying this book, you are on the right path and stepping 
into how to implement cool Python applications using AWS.

Most companies are moving to the cloud because of the significant advantages. It is important to know 
why and how these services are being used.

What is the cloud?
The cloud is a popular way of using your IT infrastructure and services over IT providers that manage 
machines, networks, and applications. Basically, you don’t need any on-premises infrastructure, and 
cloud providers have their data centers to serve the required services over the internet. For example, 
if you need a server, you don’t need to buy a machine and don’t need to set up its network and power. 
Cloud providers serve these resources for you, and you can use them over the internet.



Using Python on AWS4

Understanding the advantages of the cloud
The following aspects explain why companies are moving to the cloud to have a better infrastructure:

•	 Good disaster recovery plan: Cloud providers have multiple data centers in different regions. 
If an issue happens in one region, the system can be recovered in another region.

•	 Better scalability and stability: In AWS, you have different services to upscale and downscale 
your application. All you need to do is to configure scaling options based on usage.

•	 Quicker time to production: AWS has more than 100 services, and these services come with 
huge capabilities. When you have any application for production, you don’t need to start from 
the beginning, such as provisioning the server or preparing the infrastructure.

•	 Pay-as-you-go model to reduce the cost: You don’t need to sign a contract that promises 
payment; you can also use the service for just one day and then shut it down.

•	 Monitoring and logging advantages: The biggest cloud providers have monitoring and logging 
services; you can integrate these services into your application.

•	 Reduces DevOps effort: AWS comes with lots of advantages for DevOps. For example, you 
can provision servers quickly and deploy and monitor your service with simple configurations.

•	 Multiple security services to keep data safe: There are different services to keep your services 
and data safe.

The cloud comes with lots of advantages. There are also some important considerations when using 
cloud services:

•	 Security: Securing your services is important, and AWS provides different services to protect 
your data, such as firewall configurations. You have to evaluate security requirements while 
using AWS services.

•	 Cost management: You can easily create and scale your services, which is a very big advantage. 
The point to note is that while you create these services, it comes with a cost, which can cause 
surprises if you don’t consider the costs for specific services. Check the cost of services while 
creating them and create some alarms if the service exceeds your budget.

There are more than 100 AWS services, and it is important to choose the right service to implement 
your application based on your requirements. In this book, you will learn to create an AWS account and 
the required AWS services that allow you to run Python applications. To run and deploy the Python 
application in AWS, you will learn how to configure the AWS services and deploy them afterward.

Python is also one of the most widely used programming languages. It is easy to learn and has broader 
usage. Within AWS, most application-related services support Python because of its broad usage, and 
these services are stable when it comes to the use of Python. AWS always adapts Python use cases 
with their services, which is a big advantage.



Installing Python 5

This book is meant for cloud developers, software developers, and IT specialists who want to develop 
Python applications on AWS as well as learn the concepts of appropriate AWS services for implementing 
Python applications. You should have Python knowledge, and this book will focus on creating Python 
applications in AWS. The focus will be on creating and giving details for AWS services instead of 
digging into Python syntax details. Hence, you will add more expertise to your skillset.

While reading this book, it is important to follow the exercises. This is not just a book of theory and 
definitions. You will see code examples to illustrate what you have learned. I would recommend 
implementing the same examples by yourself to help you learn better and apply the same methodologies 
to your cloud projects. This idea slows down your progress, but you will learn better and easily 
remember the concepts while using AWS in your professional work life.

At the end of this book, you will implement a graduation project with Python on AWS to connect 
different AWS services in one application. This project helps you to use different services in the same 
application and understand the connection between them; you will consolidate your learning with 
another hands-on exercise.

Once you have created an AWS account, you will be charged according to what usage you have in a 
month. You always have to be careful what you use and create in AWS. Another point to note is that 
some AWS services are free for limited usage. Please check the costs before deciding to use any AWS 
service. Please be aware that you need to pay for AWS costs while doing the exercises. You can check 
the pricing at this link: https://aws.amazon.com/pricing/.

Let’s dig into Python programming on AWS.

Installing Python
To install Python, carry out the following steps:

1.	 Visit the Python download page, https://www.python.org/downloads/, and select 
the right operating system.

2.	 Download the installation package and run it afterward:

https://aws.amazon.com/pricing/
https://www.python.org/downloads/


Using Python on AWS6

Figure 1.1 – Install Python

After the installation, you will have a Python 3.X folder. The Python folder has the following contents:

Figure 1.2 – Installation folder content



Installing PyCharm 7

We will follow the steps for macOS; it is very similar to the other operating systems. Let’s implement 
the 'Hello World' application:

1.	 Double-click on the IDLE application and run the sample 'Hello World' application:

Figure 1.3 – Python command line

If you see this output, congrats! You successfully installed the Python compiler. As a next step, we will 
install the IDE to simplify the application development.

Installing PyCharm
PyCharm is one of the most powerful IDEs used to develop Python applications. For the examples, we 
will use PyCharm; you can also use another IDE if you prefer. You have to carry out the following steps:

1.	 Visit the download page, https://www.jetbrains.com/pycharm/download, and 
select the right operating system:

Figure 1.4 – PyCharm download page

I recommend downloading the Community Edition. Otherwise, it will be a trial version for 30 days.

https://www.jetbrains.com/pycharm/download


Using Python on AWS8

2.	 Download the installation package and run it afterward. Once you click Download, it directly 
downloads the installation package to the computer:

Figure 1.5 – Downloaded folder

When you check the installation folder, you will be able to see the installation program. Install 
PyCharm onto your machine.

Creating a new project
After the installation of PyCharm, we will create a new project in order to implement our first Python 
code snippet:

1.	 Open PyCharm and you will see the Projects section:

Figure 1.6 – PyCharm IDE

2.	 Add a project name:

Figure 1.7 – Creating a new project



Summary 9

3.	 The project is ready to be implemented. Right-click and then click Run ‘main’:

Figure 1.8 – Sample project

4.	 The command runs the application:

Figure 1.9 – Running the application

Congrats! You have created your first project within PyCharm.

Summary
In this chapter, we explored the cloud basics and advantages. After that, we installed Python and one 
of the most popular and useful IDEs, PyCharm. PyCharm will be our main tool in order to implement 
the applications for AWS.

In the next chapter, we will sign up for AWS to have an account on the cloud.





2
Creating an AWS Account

In this chapter, we are going to create an AWS account. This book consists of examples and multiple 
use cases, so it would be useful to create an account in order to follow along with the exercises in the 
rest of the chapters on AWS. Let’s learn how to create an AWS account.

The chapter covers the following topic:

•	 Creating an AWS account

Creating an AWS account
To create an AWS account, carry out the following steps:

1.	 Open the AWS website at https://aws.amazon.com/ in order to create an account.

2.	 Click the Create an AWS Account button on the right side at the top of the page.

Figure 2.1 – The AWS signup page

The Sign up for AWS screen will open.

https://aws.amazon.com/


Creating an AWS Account12

Figure 2.2 – The signup form

3.	 As can be seen in Figure 2.2, there are two fields that need to be completed:

I.	 Root user email address: The root user is the owner of all sub-accounts and is able to 
access all resources and manage them. You can use a single email for the root user. In 
addition to that, the root user has full access to all services. This is something you need 
to consider in terms of protecting your account.

II.	 AWS account name: The AWS account name is an informal name that appears next to 
the account ID. You can name it while creating an AWS account. You can have multiple 
accounts under the root account to implement different projects. In some cases, you 
need to separate the services and costs. In this case, creating multiple accounts could 
be a good solution.

Click the Verify email address button.

4.	 Once you fill out the Root user email address and AWS account name fields, you will receive 
a verification code via email. This code should be filled out in the Verification code input 
field. Click Verify.

Figure 2.3 – Add the verification code



Creating an AWS account 13

5.	 The next step is to define a password for access. Fill out the Root user password and Confirm 
root user password fields and click Continue (step 1 of 5).

Figure 2.4 – Password definition

6.	 Fill out the personal information required.

Figure 2.5 – The Contact Information screen

7.	 After filling out the personal information, fill out the credit card info.

Important note
I would recommend having a budget-limited card, because if you mistakenly open an AWS 
service that has a big cost or is constantly running, this limited card could prevent you 
from overspending.



Creating an AWS Account14

Figure 2.6 – Credit card info

Once you enter the credit card info, you might be asked for confirmation depending on your 
banking account.

8.	 After confirming, you will be asked to select a support plan. For learning purposes, you can 
use the Basic support - Free plan, as it is recommended for new users.

Figure 2.7 – Support plans

Congratulations! After selecting the support plan, you will have an AWS account to get started with 
the cloud.



Summary 15

Summary
In this chapter, we looked into AWS account creation. The AWS account will help you to carry out 
Python exercises in the cloud environment. The point to note is that AWS is a paid service and you 
have to consider the cost of what you are going to use. In the next chapter, we will take a look at 
popular services such as Lambda.





Part 2: 
 A Deep Dive into  
AWS with Python

In this part, you will deep-dive into the most used AWS services for Python programming, such as 
Lambda, EC2, and Elastic Beanstalk. However, some other AWS services will be mentioned, such as 
S3, to gain broader knowledge.

This part has the following chapters:

•	 Chapter 3, Cloud Computing with Lambda

•	 Chapter 4, Running Python Applications on EC2

•	 Chapter 5, Running Python Applications with PyCharm

•	 Chapter 6, Deploying Python Applications on Elastic Beanstalk





3
Cloud Computing with Lambda

In this chapter, we are going to learn the basics of Lambda and implement a Python application to be 
run in AWS Lambda. For this purpose, we will use our AWS account.

The chapter covers the following topics:

•	 Cloud computing

•	 What is Lambda?

•	 A sample application with Lambda

•	 Important configurations in Lambda

•	 A Lambda skeleton

•	 A Lambda returning value

•	 Logging in Lambda

•	 Filing a metadata parser application with Lambda and S3

Cloud computing
Cloud computing allows you to use computer resources such as disk and memory without managing 
an infrastructure. The concept of the cloud is important in order to free you up to focus on your 
application. When you use your infrastructure, you need to buy or hire a computer, install all the 
necessary software, wire the cables, and keep the computer safe from physical as well as soft attacks. It 
is clear that it takes a significant amount of time; hence, your focus will be on reducing configuration 
time for your application. With cloud computing, you don’t have this kind of headache. The cloud 
provider takes most of the responsibility and sets up and maintains the data center for you. What you 
need to do is carry out some configuration and deploy your application to the data center. It makes 
your life easier; the cloud provider focuses on the infrastructure and you focus on the application. 
This is the biggest advantage of cloud computing.



Cloud Computing with Lambda20

What is Lambda?
Lambda is a computing service that allows you to run Python, Java, Node.js, Ruby, .NET, and Go 
code without provisioning and managing any server. In AWS, it is one of the most used services in 
the AWS stack. The only thing you need to do is develop and run your code. Lambda also has some 
advantages in terms of cost.

Lambda is a container that is created by AWS in order to execute your application. When you create 
a Lambda function, AWS creates this container for you. Hence, you don’t need to provision an 
instance and install the compiler in the container. The only responsibility is to run your code when 
selecting Lambda.

The advantages of Lambda

The advantages of Lambda are as follows:

•	 There’s no need to provision a server

•	 It is a pay-as-you-go model

•	 It supports different runtimes such as Python, Java, and C#

•	 There’s no need to install a software development kit, since it is ready to develop

•	 It has scalability features – if your process needs more resources, Lambda automatically scales it

•	 It saves a lot of time for your operational management

•	 It is able to constantly monitor your Lambda functions

The limitations of Lambda

The limitations of Lambda are as follows:

•	 Timeout limit: If you have long-running functions, Lambda is not the best option. For now, 
Lambda has a 15-minute timeout limit. If the duration exceeds 15 minutes, you will receive a 
timeout error.

•	 Memory limit: When you run the function, the process needs memory allocation based on 
the process flow. If your process needs a massive amount of memory, you will receive an error. 
In addition to that, Lambda’s cost is tied to the execution time and memory used.

You can check the up-to-date limits on the AWS Lambda quotas page: https://docs.aws.
amazon.com/lambda/latest/dg/gettingstarted-limits.html.

In this section, we looked at some advantages and limitations of Lambda. It is very useful when you 
need to run any type of application quickly, with no need for a server or detailed installation. Now, 
we will implement a simple application to learn Lambda and use these advantages to our benefit.

https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html


A sample application with Lambda 21

A sample application with Lambda
We are going to execute a sample application within Lambda step by step. To run a Python application 
on Lambda, take the following steps:

1.	 Go to the AWS Management Console.

2.	 Type lambda in the search box and click on the Lambda service:

Figure 3.1 – AWS Management Console

3.	 Click Create function.

4.	 On the Create function page, select Use a blueprint, and within the blueprint, select the 
hello-world-python application:

Figure 3.2 – Create function



Cloud Computing with Lambda22

5.	 On the next screen, enter the name of the Lambda function and select the security settings:

Figure 3.3 – Naming the function

When you run a Lambda function, you need to define the role that Lambda can use to be able 
to do some actions, which is done under Execution role. The role defines your permissions 
in AWS and how to access other AWS services. For example, if Lambda needs to access a 
database, then it should have the database access security role. In this case, Lambda will have 
basic permission to run a sample Python function.

Once you create the Lambda function, you will have basic Python code to be tested:

Figure 3.4 – A sample Lambda function



A sample application with Lambda 23

6.	 Click the Test button. When you click it, you can also set the parameters:

Figure 3.5 – Running the Lambda function



Cloud Computing with Lambda24

After running the test, Lambda will run, and you will be able to see the results:

Figure 3.6 – The output of the Lambda function

We have created a sample Lambda function. Once you implement the application, as you can see, 
running the application is very easy.

Important configurations in Lambda
When you create a Lambda function, there are different configurations that need to be done in order 
to run it in an efficient way:

Figure 3.7 – The Lambda configuration



Important configurations in Lambda 25

We will use these configurations for the next example. Before starting with the example, let’s take a 
look at the definitions of the configurations:

•	 Memory: This configuration is used to define the memory limit of the application. You need 
to find the feasible amount of this value. If you define a large amount that is not used, it affects 
the cost. On the other hand, if you define a smaller amount of memory than is used, your 
application gives an out-of-memory exception.

•	 Timeout: We mentioned that the Lambda function has a limitation in terms of timeout. You 
can provide a duration limit under which the Lambda function is supposed to work.

•	 Ephemeral storage: This configuration allows setting a limit for a temporary filesystem. When 
you run the Lambda application, the /tmp folder is used for temporary storage and needs to 
be deleted after Lambda finishes the process.

•	 Triggers: Triggers allow you to select an AWS source that runs a Lambda function. For example, 
S3, an object storage mechanism in AWS, could be a trigger for a Lambda function. We can add 
S3 configuration in Lambda such that when an object/file is uploaded to S3, it triggers Lambda.

•	 Permissions: Permissions define what roles the Lambda function is able to access. For example, 
if you need to upload a file to S3 using a Lambda function, then the Lambda function should 
have an S3 object PUT permission in the execution role.

•	 Destinations: When Lambda finishes the process, it can send information to other services, 
such as a queue.

•	 Environment variable: This allows you to add an environment variable to be used in a Lambda 
application. For example, you can add a database URL to this configuration. If the database 
URL is changed, you don’t need to change the code.

•	 Tags: Tags allow you to add a label to your AWS services. It is a good practice for when you 
search for or categorize services. For example, you may have two similar Lambda functions, 
the first of which is deployed by the Customer Relationship Management (CRM) team and 
the second of which is deployed by the order management team. Hence, you can give two tags 
to the functions, such as CRM and Order Management, allowing you to categorize your 
functions and facilitate searching as well. This is also used for cost management.

•	 Virtual Private Cloud (VPC): A VPC allows you to create AWS services in a virtual network 
environment that you define. You can separate AWS services into different network settings. 
As you see in the following diagram, two instances can be created in different environments:

Figure 3.8 – A VPC



Cloud Computing with Lambda26

•	 Monitoring and operations tool: Lambda collects application logs by default, and they can be 
monitored via CloudWatch, which helps you to monitor an application. This tool is enabled 
by default, but you can also disable it.

The configuration of Lambda is important when creating a new function. It is good to know what 
configuration is used for what reason, hence enabling you to use Lambda in the right way.

A Lambda skeleton
When you implement a Lambda function via Python, you need to follow some rules in order to 
execute the application. When a Lambda function is run, it calls the handler method, which is 
shown with the following syntax:

def lambda_handler(event, context):
    ...
    return some_value

As you see, the first parameter is the event object. An event object consists of JSON in order to 
process data as a parameter. You can see a sample parameter here:

{
  "Temperature": 10,
  "Wind": -5
}

The second parameter shows information about the Lambda runtime. You can see some of the runtime 
fields here:

•	 function_name (the name of the function)

•	 function_version (the version of the function)

•	 memory_limit_in_mb (the Lambda function memory limit)

We've looked at the main skeleton of the Python Lambda function. In the next section, we'll see how 
to return a value from Lambda.

Lambda returning value
In Lambda, you can return a value that is either a simple message or a complex event with JSON. In 
the following example, you can see a sample returning message for Lambda:

def handler_name(event, context):
    message = 'Weather details. Temperature: {} and Wind: {}!'.
format(event['Temperature'], event['Wind'])
    return message



Logging in Lambda 27

In this example, Lambda takes Temperature and Wind as input and returns these parameters as 
a message. In the following example, you can see a more complex return value:

def handler_name(event, context):
    return {
     "statusCode": 200,
     "Temperature": 10,
     "Wind": -5
    }

As you can see in this example, the return value consists of a simple object to be parsed by the invoker. 
For example, if Lambda is called by one of the Python applications, this object will be returned once 
Lambda finishes the process. In general, this parameter allows you to run a Python application with 
different behavior. In the next section, we'll see how to log information in Lambda.

Logging in Lambda
It is important to use logging functionality in order to trace your application. In some cases, you need 
to get information about an application; alternatively, you may be processing data via Lambda and 
you may get an exceptional result. Hence, logging is helpful to check the information to understand 
the real problem in the application.

There are multiple logging libraries that you can use in Lambda, including this one: https://
docs.python.org/3/library/logging.html

In the following example, just add a log and return a value:

import logging
logger = logging.getLogger()
logger.setLevel(logging.INFO)
def handler_name(event, context):
    logger.info('Process has finished and result will be returned')
    return {
     "statusCode": 200,
     "Temperature": 10,
     "Wind": -5
    }

I always recommend adding some logs within an application; it is one of the best practices for being a 
good developer. In addition to that, we are going to dive deeper into CloudWatch, which is a logging 
and monitoring service in AWS.

https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.html


Cloud Computing with Lambda28

Filing a metadata parser application with Lambda and S3
We are going to execute another application within Lambda. In this case, Lambda will be triggered 
by S3. S3 is an object storage service to which you can upload different types of files, such as image, 
CSV, and text files. In this example, when you upload a file to S3, the service will trigger the Lambda 
function, which in turn will provide information about file metadata. Let’s implement the application 
step by step:

1.	 Log in to the AWS Management Console.

2.	 Type lambda in the search box and go to the Lambda service.

3.	 Click Create function.

4.	 On the Create function page, select Author from scratch and then in the Runtime field, 
select Python 3.9:

Figure 3.9 – Create function



Filing a metadata parser application with Lambda and S3 29

5.	 In the Permissions section, select Amazon S3 object read-only permissions under Policy 
templates and enter a role name. In this case, I entered S3TriggerLambdaReadRole. 
The role is required to read the file from the S3 service:

Figure 3.10 – Permissions

6.	 Click the Create function button at the bottom of the page:

Figure 3.11 – Create function



Cloud Computing with Lambda30

7.	 In order to read object metadata, paste the following code snippet into the Lambda function 
and click the Deploy button:

import json
import urllib.parse
import boto3

print('Loading function')

s3 = boto3.client('s3')

def lambda_handler(event, context):
    #print("Received event: " + json.dumps(event, indent=2))

    # Get the object from the event and show its content type
    bucket = event['Records'][0]['s3']['bucket']['name']
    key = urllib.parse.unquote_plus(event['Records'][0]['s3']
['object']['key'], encoding='utf-8')
    try:
        response = s3.get_object(Bucket=bucket, Key=key)
        print("CONTENT TYPE: " + response['ContentType'])
        return response['ContentType']
    except Exception as e:
        print(e)
        print('Error getting object {} from bucket {}. Make 
sure they exist and your zbucket is in the same region as this 
function.'.format(key, bucket))
        raise e

You can also find the original code block from AWS: https://docs.aws.amazon.com/
lambda/latest/dg/with-s3-example.html.

Boto3 is used to manage AWS services for Python. We created an S3 client to access and 
manage the S3 service.

The application is triggered when you put a file into S3. In the code snippet, the code gets the 
bucket information from the bucket variable. The urllib library allows you to parse an 
S3 key in order to retrieve an S3 object via the get_object method. Then, we print the 
content type.

https://docs.aws.amazon.com/lambda/latest/dg/with-s3-example.html
https://docs.aws.amazon.com/lambda/latest/dg/with-s3-example.html


Filing a metadata parser application with Lambda and S3 31

You can also see the latest code snippet within Lambda:

Figure 3.12 – A Lambda function with code

8.	 It is time to create an S3 object. Type s3 in the AWS Services search box:

Figure 3.13 – Searching S3

9.	 Go to the S3 service.

10.	 Within the S3 service, click the Create bucket button:

Figure 3.14 – Creating an S3 bucket



Cloud Computing with Lambda32

11.	 Give a unique name to the S3 bucket. The bucket is like a folder, and you can authorize it to 
upload files such as image and CSV files. Note that the bucket name should be unique:

Figure 3.15 – Entering a bucket name

Now, you should see a list of buckets and the bucket that you created:

Figure 3.16 – A bucket list

We have created an S3 bucket. Now, we need to make a small configuration that triggers a Lambda 
function when a file is uploaded to S3:

1.	 Click the bucket link. For this sample, we need to click inputforlambda123. It changes based 
on the creation name that the user inputted at the beginning:



Filing a metadata parser application with Lambda and S3 33

Figure 3.17 – The bucket list

2.	 Click the Properties tab:

Figure 3.18 – The features of the bucket

3.	 At the bottom of the Properties page, find the Event notifications tab.

4.	 Click the Create event notification button:

Figure 3.19 – The Event notifications tab



Cloud Computing with Lambda34

5.	 In the form, fill out the event name and select the event type in the Event types section. For 
this example, we are going to select the All object create events option. Hence, when an object 
is created, the Lambda function will be triggered:

Figure 3.20 – Event configuration

6.	 At the bottom of the page, select the Lambda function that will be triggered, under the 
Destination section, and click the Save changes button:



Filing a metadata parser application with Lambda and S3 35

Figure 3.21 – The event destination

You should see a success message in the AWS console:

Figure 3.22 – The event destination

You can also double-check with Lambda whether the event has been successfully created. When you 
click the respective Lambda function, it shows the event source:

Figure 3.23 – Lambda with a trigger



Cloud Computing with Lambda36

At the moment, you are able to see the Lambda function on the left side as a trigger. It is time to test 
our Lambda trigger:

1.	 Open the S3 bucket that you created and navigate to it. After that, click the Upload button:

Figure 3.24 – An S3 bucket

2.	 Click the Add files button, which allows you to add any kind of file from your computer. For 
this example, we have uploaded one RTF file. You can also upload an image, PDF, or whatever 
you want:

Figure 3.25 – The S3 Upload page



Filing a metadata parser application with Lambda and S3 37

The following screenshot shows that you have successfully uploaded the testTriggr.rtf 
file to S3. S3 also gives some details regarding files, such as the type, the latest modification 
time, as well as the size. If you have more files, you can see a file list under the Objects panel:

Figure 3.26 – The S3 file list

As we have uploaded a file to S3, the Lambda function should work. It is time to check whether 
that is the case. Navigate to the Lambda function:

Figure 3.27 – The Lambda function



Cloud Computing with Lambda38

3.	 Click the Monitor tab, and you should be able to see that the Lambda is called:

Figure 3.28 — Monitor in Lambda

We can also check the detailed logs via CloudWatch. As we mentioned early, CloudWatch helps 
you to check AWS service logs.

4.	 On the same page, click View logs in CloudWatch. You will be redirected to the CloudWatch service:

Figure 3.29 – The CloudWatch service

5.	 When you click the link under Log stream, you will be able to see the logs that you implemented 
in the Lambda function:

Figure 3.30 – CloudWatch logs



Summary 39

You can also upload different types of files in order to test the Lambda function as well as the 
CloudWatch logs.

We implemented a simple Python application integrated with S3. When you add a file to a storage 
mechanism, it triggers the Lambda function in order to process the file. As you saw in this example, 
you can test your Python code without provisioning a server and installing the Python library. Lambda 
comes with logging, monitoring, and object storage capabilities.

Summary
In this chapter, we dived into Lambda, which is one of the most important services in AWS. Lambda 
helps you to deploy and run your application without provisioning a server, which facilitates deployment 
time. We also touched upon the S3 service, which is used for object storage and has good integration 
with Lambda. In the following chapter, we will take a look at how to provision a server and run a 
Python application on an AWS-based server.





4
Running Python Applications 

on EC2

In this chapter, we are going to learn how to run Python applications within the Elastic Compute 
Cloud (EC2) service. EC2 is an AWS service that allows you to provision a server in the cloud. You can 
find different types of server options. You need to carry out some configuration and run the server on 
the cloud. You might wonder why we need EC2 when we have Lambda. Lambda is very effective but 
has a duration limit. If you run your function for more than 15 minutes, it will give a timeout. What 
happens if your application needs to be run for a couple of hours because of a huge process? Lambda 
doesn’t work and you need your own server. Another reason to use EC2 would be if you need a very 
special configuration or installation that needs to be done within a specific server; you would need a 
server as well. Based on this kind of requirement, you need to have your own server in the cloud. We 
will provision a server and run a Python application within EC2.

The chapter covers the following topics:

•	 What is EC2?

•	 EC2 purchasing options

•	 EC2 instance types

•	 Provisioning an EC2 server

•	 Connecting to an EC2 server

•	 Running a simple Python application on an EC2 server

•	 Processing a CSV file with a Python application on an EC2 server

•	 The AWS CLI



Running Python Applications on EC242

What is EC2?
AWS EC2 is a service that provides a secure and scalable server machine in the cloud. The main 
advantage of EC2 is that server management is very easy from the AWS Management Console. When 
you provision an on-premises server, it is not easy to configure security policies, disk management, 
backup management, and so on. AWS accelerates all this. When you provision EC2, AWS offers 
different contracts that you need to select and all these types impact the cost.

In order to select the right service, you need to understand what services you are going to use, how 
many resources you need, and what type of storage you really need. These things are going to help 
you to reduce the cost and use EC2 efficiently.

EC2 purchasing options
We will now look at the types of EC2 contracts.

On-Demand

In this offer, you don’t need to contract for a specific time period. AWS charges according to the time 
you use the server. You can provision a server, shut it down, and release the server whenever you 
want. It is a pay-as-you-go model.

Reserved

You need to sign a contract with AWS for 1–3 years. The key thing to note is that AWS offers a discount 
for a Reserved commitment.

Spot

Let’s imagine you have an application that has  flexible start and end times. You define a bid price for 
whatever you are willing to pay for the server. Let’s imagine you have a data processing application that 
runs for five hours and the running time is not important. You are able to run at the beginning or end 
of the month; it is not a problem. You can provision a Spot instance that significantly reduces your cost.

Dedicated

This is useful when your organization has a software license and is moving to AWS. These servers 
are only used for your organization. Hence, you can keep the license that is served to your company.

EC2 instance types
AWS offers different types of servers depending on your technical requirement. Server type selection 
is one of the most important things to manage your budget and use the EC2 server efficiently. If 



EC2 instance types 43

you need to use memory processing applications such as Spark, it would be better to provision a 
memory-optimized server. On the other hand, if you need a server that needs more storage, you can 
use a storage-optimized server.

The following screenshot shows that you are able to select more than hundreds of types of servers 
in AWS:

Figure 4.1 – EC2 instance types [Source – https://aws.amazon.com/]

Auto-scaling

If you need a clustered environment, it would be better to define an auto-scaling policy in order to 
manage resources efficiently.

Let’s think about a batch processing job that runs once a day in order to process massive amounts of 
data. You provision more than one machine. But when the system is idle, you are going to be charged 
unnecessarily. However, if you define an auto-scaling policy, the system will close when it is idle. 
This configuration is going to reduce your costs. The following figure shows the minimum size of the 
launched instances and the maximum size of the desired capacity:

https://aws.amazon.com/


Running Python Applications on EC244

Figure 4.2 – Auto-scaling

Auto-scaling is one of the most important features of EC2. You need to consider the usage of EC2 
and configure an auto-scaling feature.

In this section, we took a look at the most important features of EC2. In the next section, we will 
provision an EC2 server.

Provisioning an EC2 server
We are going to provision an EC2 server step by step. There are different types of EC2 machines; we 
will provision a free server. I would recommend terminating the server when you finish your work, 
as we are just using EC2 for learning purposes.

To provision an EC2 server on AWS, carry out the following steps:

1.	 Go to the AWS Management Console.

2.	 Search for EC2 and go to the link titled EC2:

Figure 4.3 – AWS Management Console



Provisioning an EC2 server 45

3.	 In order to launch an instance, click Instances on the left side, and then click Launch instances:

Figure 4.4 – Create an instance

4.	 In the new panel, you can give a name to the EC2 instance. You can see that we titled ours 
Test_Python. On this launch page, AWS recommends a Linux machine, which is in the free tier. 
The free tier means that you don’t need to pay money to AWS. We will proceed with that option:

Figure 4.5 – Instance features

5.	 You can now see the Key pair (login) panel. A key pair is used to connect to the server via the 
SSH key in a secure way. In order to create a new SSH key, click Create new key pair:



Running Python Applications on EC246

Figure 4.6 – Creating a new key pair

6.	 We need to give a name to the key pair. Apart from that, you can keep the key pair type and 
private key file format as the defaults. Click Create key pair:

Figure 4.7 – Naming the key pair



Provisioning an EC2 server 47

Once you click Create key pair, it will download the file. Please keep this file; it will be used to connect 
to the machine. The Key pair name dropdown will also be selected with your creation. When you 
create a new key pair in the upper section, the new key pair name will be visible, which you can see 
in the following screenshot. For this example, our key pair is key_for_test_python:

Figure 4.8 – The key pair is ready

In the next step, we are going to create and assign a virtual private cloud (VPC) and subnet:

Figure 4.9 – VPC and subnet

A VPC allows AWS services to run in a logically isolated network. It is one of the key services that 
keep the service secure. You can easily isolate the servers with VPC configuration. The following figure 
illustrates a VPC and EC2 setup:



Running Python Applications on EC248

Figure 4.10 – VPC [Source – https://aws.amazon.com/]

As you see, once you add one of the servers to the VPC subnet in AZ 2, it means the EC2 instances 
are logically isolated from others. Hence, you can add access controls to keep the server secure.

The subnet is also one of the important parts of a VPC. Each VPC consists of a subnet that defines an 
IP range for the VPC. In the following diagram, you can see the IP range for each subnet:

Figure 4.11 – Subnet [Source – https://aws.amazon.com/]



Provisioning an EC2 server 49

We took a look at VPCs and subnets. Now, we need to define a VPC for the EC2 instance:

1.	 Type VPC in the search box of the AWS Management Console:

Figure 4.12 – VPC on the AWS Management Console

2.	 Click Create VPC:

Figure 4.13 – Create VPC

3.	 Once you click the button, under the VPC settings, VPC and more is selected by default. This 
option allows you to create a VPC with subnets, which you see on the right side of the following 
screenshot. With this option, you can create a VPC and subnet together:

Figure 4.14 – Adding VPC details



Running Python Applications on EC250

4.	 At the bottom of this page, click the Create VPC button:

Figure 4.15 – Creating a VPC

When you click Create VPC, the VPC begins creation and you can see the status of the progress:

Figure 4.16 – The VPC creation process



Provisioning an EC2 server 51

After it has been created, you are able to see the VPC and subnet in the VPC console:

Figure 4.17 – The VPC and subnet

So far, we have created a VPC and a subnet. We can proceed with the EC2 creation:

1.	 Open the EC2 launch page again. In this case, the VPC and subnet are selected by default. 
Click Edit:

Figure 4.18 – Network settings



Running Python Applications on EC252

2.	 In order to connect to the machine, we need to select a public subnet and enable Auto-assign 
public IP. You can see the public subnet options in the Subnet dropdown. In general, it is not 
recommended to put production applications in a public subnet. As we are implementing a 
test project, we can proceed in this manner:

Figure 4.19 – Enabling the public IP

3.	 At the bottom of the page, click Launch instance:

Figure 4.20 – Launching an instance

When we click the Instances link on the left side, we are able to see the list of instances that we have 
created. Congratulations, you have created your first server!

Figure 4.21 – Running instances



Connecting to an EC2 server 53

You have successfully created a server in an efficient way. We are going to connect to the server in 
the upcoming section.

Connecting to an EC2 server
In this stage, we are going to connect to the EC2 server via SSH:

1.	 In the list of instances, there is a Connect button. Click it:

Figure 4.22 – Connecting an instance

2.	 Under the SSH client tab, you can see the steps to connect to the EC2 machine:

Figure 4.23 – Steps to connect



Running Python Applications on EC254

3.	 In this example, I will use Mac Terminal in order to connect to the machine via SSH. I am 
copying the command in the example and pasting it into Terminal. You can also use different 
SSH applications such as PuTTY and WinSCP. Please make sure the PEM key file is in the same 
location where you execute the command or that you set the right path for the PEM key file:

Figure 4.24 – Connecting via Terminal

4.	 Type yes to confirm the connection with this machine:

Figure 4.25 – Confirmation for the machine

Congratulations! You have connected to the machine.

Figure 4.26 – Connected to the machine

You have successfully connected to the server. We are going to install Python in the next section.

Running a simple Python application on an EC2 server
We are going to run a simple Python application on EC2. First of all, check the Python version:

1.	 Execute python --version from the command line:

Figure 4.27 – Checking the Python version



Processing a CSV file with a Python application on an EC2 server 55

2.	 Run the python command on the command line:

Figure 4.28 – Connecting to the Python compiler

3.	 Run a simple code snippet such as print 'Hello EC2' and you will see that the compiler 
executes the command and prints it:

Figure 4.29 – Running simple code

We have executed a simple Python application. In the next section, we will run a simple project on EC2.

Processing a CSV file with a Python application on an EC2 
server
In the previous chapter, we processed a CSV file within Lambda. In this section, we will run the same 
application within EC2, but there will be some differences:

1.	 Log in to the EC2 machine.
2.	 Create a folder in which to keep the csv file that is to be processed.
3.	 Run the mkdir csv command in order to create a csv folder on Ubuntu:

Figure 4.30 – Creating a folder

After running the mkdir command, you can execute with the ls command in order to list 
your directory. As you see, the csv folder is created.



Running Python Applications on EC256

4.	 Locate the csv folder by executing cd csv:

Figure 4.31 – Locating the csv folder

5.	 Create a sample CSV file in the EC2 machine.

I have uploaded a sample CSV file for you in the following URL. Run the following code to download 
the sample CSV. The wget command allows you to download the file from the specific link:

wget https://raw.githubusercontent.com/PacktPublishing/Python-
Essentials-for-AWS-Cloud-Developers/main/sample.csv

Figure 4.32 – Downloading the sample CSV file

Now that you have downloaded the file, you are able to create Python code in order to process 
the CSV file.

6.	 Run the following code to download the Python code:

wget https://raw.githubusercontent.com/PacktPublishing/Python-
Essentials-for-AWS-Cloud-Developers/main/fileprocessor.py

Figure 4.33 – Downloading the Python code



The AWS CLI 57

The following code is very simple; the code imports the csv library and prints the first five 
lines within the CSV:

Figure 4.34 – Python code

7.	 The next step is to run Python code to see the results. Execute python fileprocessor.
py to run the application. After running the application, you will see the results:

Figure 4.35 – Running Python code

In this section, we saw how to run a simple Python application within an AWS EC2 server. Now, we 
will touch upon the AWS SDK for Python.

The AWS CLI
CLI stands for command-line interface, which provides some tools and libraries to facilitate accessing 
AWS services. As such, the AWS CLI has some APIs to use AWS services. The AWS CLI is one of the 
most common tools used when working with AWS. It has different methods to access AWS services. 
We are going to install awscli to access AWS services. In this section, we will install awscli and, 
after that, configure an EC2 machine to upload a file from EC2:

1.	 In order to access S3 from awscli, we need to create an IAM role to be attached to EC2. 
Connect to the AWS Management Console, type IAM, and then click IAM:



Running Python Applications on EC258

Figure 4.36 – IAM in the console

2.	 Click Roles on the left panel and then click Create role:

Figure 4.37 – Create role

3.	 Select EC2 as a common use case and click Next:



The AWS CLI 59

Figure 4.38 – Select a service

4.	 Now, we need to give the required permission. Since we will access S3, check the 
AmazonS3FullAccess checkbox. This policy will allow users to upload and read the object 
under S3. After selecting the policy, you can click the Next button:

Figure 4.39 – Selecting the policy



Running Python Applications on EC260

5.	 Give a name to the role and click the Create role button to create a role:

(a)

(b)

Figure 4.40 – Naming the role

6.	 In the final step to attach the role, click the Actions drop-down button, go to Security, and 
select Modify IAM role:

Figure 4.41 – Attach role



The AWS CLI 61

7.	 On the next screen, select EC2ROLE, to be attached to EC2, and click Update IAM role:

Figure 4.42 – Update IAM role

We have created and attached the required role to log in to an EC2 machine:

Figure 4.43 – Task complete

Now, we will upload a file to S3.

Create a file under the EC2 machine. The touch command helps you to create an empty file. Optionally, 
you can also create a file using another application:

Figure 4.44 – Creating a file



Running Python Applications on EC262

We can upload this file to S3 via the AWS CLI. In the previous chapter, we created an S3 bucket. You 
can use this bucket or create a new bucket to test the AWS CLI S3 command. Let’s upload the file to 
the S3 bucket. The format for uploading a file is as follows:

Format : aws s3 cp from to
aws s3 cp file.txt s3://inputforlambda123

Figure 4.45 – Uploading the file

We successfully uploaded the file. We are able to check whether the S3 bucket is uploaded from the 
console. Open the bucket from the S3 console and check:

Figure 4.46 – Bucket content

As you can see, the file is uploaded to the S3 bucket.

The AWS client is useful when you want to access AWS services and perform some tasks using 
commands. In this section, we learned how to copy a file to the S3 bucket via the command line, 
which saves a lot of time.



Summary 63

Summary
In this chapter, we learned about the AWS EC2 service, which is used to create a server on the cloud. 
You can create your server in an efficient way and use it for different purposes, such as an application 
server, web server, or database server. We also created an EC2 server as an example and ran our 
Python application on EC2. In the following chapter, we will take a look at how to debug our Python 
application via PyCharm.





5
Running Python Applications 

with PyCharm

In this chapter, we are going to run a Lambda application with PyCharm. Running Lambda applications 
via PyCharm is both useful and practical during development as it consists of a code editor, debugger, 
and common development tools with a developer-friendly graphical user interface. These features of 
PyCharm help us to easily find bugs in our code.

This chapter covers the following topics:

•	 Installing the AWS Toolkit

•	 Configuring the AWS Toolkit

•	 Creating a sample Lambda function in AWS

•	 Running an AWS Lambda function using the AWS Toolkit

Installing the AWS Toolkit
In this section, we will install the AWS Toolkit in PyCharm. The AWS Toolkit is an extension for 
PyCharm to develop, debug, and deploy your applications for AWS. Let’s get to it:

1.	 Open PyCharm on your computer.

2.	 Open Preferences from the PyCharm dropdown and select Plugins:



Running Python Applications with PyCharm66

Figure 5.1 – Preferences

3.	 Type AWS Toolkit in the search area and click Install:

Figure 5.2 — Install the AWS Toolkit

4.	 After installation, the IDE will ask you to restart it. Click the Restart IDE button:

Figure 5.3 – Restart the IDE

We have installed the AWS Toolkit in PyCharm. As the next step, we are going to configure the 
credentials for our AWS account.



Configuring the AWS Toolkit 67

Configuring the AWS Toolkit
We are going to configure the AWS Toolkit in order to connect it to our AWS account. We will start 
by setting the credentials for our AWS account:

1.	 After restarting the IDE, you will see the text AWS: No credentials selected at the bottom-right 
of the page. Click this text:

Figure 5.4 – AWS: No credentials selected

2.	 After clicking it, you will see the AWS Connection Settings menu appear. We are now going 
to configure the credentials. In order for the IDE to connect to AWS, we need to provide the 
AWS access key and secret key:

Figure 5.5 – Click Region

In the previous chapter, Chapter 4, Running Python Applications on EC2, we created an S3User via 
the IAM service. For our current use case, we follow the same steps in order to create a user that has 
Lambda access:

1.	 In the IAM console, add a user with the name ProgrammaticUser and click Next: Permissions:



Running Python Applications with PyCharm68

Figure 5.6 – Add user

2.	 In the next panel, select AWSLambda_FullAccess and proceed to create a new user. The steps 
are the same as those we used to create the user in the previous chapter. Click Next: Tags 
and proceed:

Figure 5.7 – Add permission



Configuring the AWS Toolkit 69

3.	 We will now provide the access key ID and secret access key for the AWS connection setup. 
Open PyCharm again and click Edit AWS Credential file(s):

Figure 5.8 – Edit credentials

4.	 Click the Create button on the following dialog window that appears:

Figure 5.9 – Create the credential file

5.	 Once you click Create, you will be presented with a file in which you can enter the credentials. 
Place the access key ID and secret access key in the file and save it:

Figure 5.10 – Edit the credential file

We have created the AWS credentials and adjusted them in the PyCharm. As a next step, we are ready 
to create a Lambda function.



Running Python Applications with PyCharm70

Creating a sample Lambda function in AWS
In this step, we are going to create a Lambda function that reads and prints a file from S3. In the 
previous chapter, we learned how to create the S3 bucket and Lambda function. Hence, we keep the 
explanation short here:

1.	 We are going to copy a sample file to the S3 bucket:

Figure 5.11 – File in S3

2.	 Create a Lambda function that reads the file from S3. I’ve called the Lambda function 
FileProcessing; however, you can give it any name that you prefer:

Figure 5.12 – Lambda function

3.	 Once the Lambda is created, we paste the code to Lambda from the GitHub link under the 
image. In the code block, we are going to implement a simple function to read the content of 
the S3 bucket and print it. You can retrieve the code block from the GitHub page that I have 
shared after Figure 5.13. Broadly speaking, the s3.get_object method reads the file with 

.



Creating a sample Lambda function in AWS 71

the given parameters of bucket and key. Once you have a file stored in S3, the content is 
under the Body JSON file and the final step is to print the content:

Figure 5.13 – Code in Lambda

The following GitHub link consists of the code block for the S3 Reader application: https://
github.com/PacktPublishing/Python-Essentials-for-AWS-Cloud-
Developers/blob/main/S3Reader.py.

4.	 Click the Test button in order to check whether the Lambda function is running. When you 
click the Test button the first time, you need to configure the sample event:

(a)

https://github.com/PacktPublishing/Python-Essentials-for-AWS-Cloud-Developers/blob/main/S3Reader.py
https://github.com/PacktPublishing/Python-Essentials-for-AWS-Cloud-Developers/blob/main/S3Reader.py
https://github.com/PacktPublishing/Python-Essentials-for-AWS-Cloud-Developers/blob/main/S3Reader.py


Running Python Applications with PyCharm72

(b)

Figure 5.14 – Configure and test the Lambda function

We have created the Lambda function. In the next section, we are going to run this function within 
PyCharm via the AWS Toolkit.

Running an AWS Lambda function using the AWS Toolkit
In this section, we are going to run our Lambda function within PyCharm. Let’s follow the steps:

1.	 Open AWS Toolkit on the left side of PyCharm and you will be able to see the Lambda 
functions that are defined in the AWS Lambda service. Seeing this means that the connection 
we configured works:



Running an AWS Lambda function using the AWS Toolkit 73

Figure 5.15 – Open the AWS Toolkit menu

In the list, we can see the functions that we created in the us-east-2 region. We are now ready 
to run the Lambda function that we created in the previous section.

2.	 Right-click FileProcessing and, on the resulting menu, click the Run ‘[Remote] 
FileProcess...’ button:

Figure 5.16 – Run the function



Running Python Applications with PyCharm74

When you click the link, the AWS Toolkit will run the Lambda function via PyCharm:

Figure 5.17 – Logs of the function

After running the function, some Lambda logs will appear in PyCharm. As you can see, this makes 
it easier to develop Python applications for AWS. You can test this from your local machine without 
logging into the AWS Management Console.

Summary
In this chapter, we learned how to install and use the AWS Toolkit within PyCharm. It is always helpful 
when you implement and deploy AWS services within PyCharm in a practical way. AWS Toolkit has 
AWS services integration; therefore, instead of using the AWS Management Console, you can use 
PyCharm where it is installed on the local machine. In the following chapter, we will take a look at 
how to deploy a Python application to Elastic Beanstalk.



6
Deploying Python Applications 

on Elastic Beanstalk

In this chapter, we are going to learn how to deploy Python applications on Elastic Beanstalk. Elastic 
Beanstalk is an AWS service that allows you to deploy web applications in the cloud. Basically, you 
don’t need to provision a server; Elastic Beanstalk provisions an infrastructure in the backend and 
deploys your web application. Another advantage of Elastic Beanstalk is being able to scale up your 
web applications when there are a large number of requests from the user.

This chapter covers the following topics:

•	 What is Elastic Beanstalk?

•	 Creating a Python web application

•	 Deploying a simple Python web application on Elastic Beanstalk

What is Elastic Beanstalk?
Elastic Beanstalk is an AWS service that is used to deploy web applications in the cloud. It supports 
multiple web application frameworks such as Python, Java, .NET, PHP, Node.js, Ruby, and Go. Once 
you deploy your application, Elastic Beanstalk manages the infrastructure in order to deploy, run, 
scale, and monitor applications.

Features of Elastic Beanstalk

Let’s take a look at the high-level features of Elastic Beanstalk:

•	 It supports monitoring and logging; hence, you can easily track how the application is behaving. 
For example, if an application goes down, you can check via Elastic Beanstalk.

•	 It manages updates for infrastructure. In some cases, your application should be updated with 
the latest improvements in Python or other libraries and Elastic Beanstalk manages the updates 
with you in control.



Deploying Python Applications on Elastic Beanstalk76

•	 It manages scaling features up and scaling features down; hence, if your application has too 
many requests, it adds more resources, and your application can then meet the requests. On 
the other hand, if there is less demand, it reduces the resources and helps to reduce the cost.

•	 It supports some financial data or protected health information standards; hence, you can use 
Elastic Beanstalk for financial applications as well as health information applications.

We have taken a look at the basic features of Elastic Beanstalk, and we will now start to implement a 
sample web application with Python to deploy via Elastic Beanstalk.

Creating a Python web application
We are going to create a sample web application with Python. For that purpose, Flask will be used as 
a web application framework for Python.

Flask is a web application framework that is written with Python. It has the required libraries to start 
implementing web applications as a beginner. In the following code block, you can see a sample "Hello, 
World!" web application with Flask:

from flask import Flask
app = Flask(__name__)

@app.route('/')
def hello_world():
    return 'Hello, World!'

The code imports the Flask library and runs the application on localhost port 5000. When you run 
it, you will see "Hello World!" in the browser.

You can also check the Flask framework at the following website: https://flask.
palletsprojects.com/en/2.2.x/.

As the next step, we are going to deploy a Python web application to Elastic Beanstalk.

Deploying a Python web application on Elastic Beanstalk
In this section, we are going to deploy a sample Python web application on Elastic Beanstalk:

1.	 Type Elastic Beanstalk in the AWS Management Console search box and click 
Elastic Beanstalk:

https://flask.palletsprojects.com/en/2.2.x/
https://flask.palletsprojects.com/en/2.2.x/


Deploying a Python web application on Elastic Beanstalk 77

Figure 6.1 – AWS Console

You will see the main page of Elastic Beanstalk:

Figure 6.2 – Elastic Beanstalk

2.	 Click Environments on the left side in order to create a new Python web application, and then 
click the Create a new environment button:

Figure 6.3 – Environment list



Deploying Python Applications on Elastic Beanstalk78

3.	 In the next panel, we are going to select what type of environment we want. Since we would 
like to deploy a web application, select Web server environment:

Figure 6.4 – Selecting an environment

4.	 I have named the file Python Web app. You can name it whatever you want:

Figure 6.5 – Naming the application



Deploying a Python web application on Elastic Beanstalk 79

5.	 After naming the application, scroll down and fill in the Environment name input field. Keep 
in mind that this can also be named by the AWS Console by default. You have the option to 
change it.

Figure 6.6 – Environment name field

6.	 When you scroll down further, there is another input field to fill out – Domain. The domain will 
be used to access your web application via the browser. In this example, we will enter test-
training and check the availability by clicking the Check availability button:

Figure 6.7 – Naming the domain



Deploying Python Applications on Elastic Beanstalk80

7.	 Once you find the available domain name, scroll down, and locate the Platform panel. In this 
panel, we need to select the web application framework. Elastic Beanstalk supports different 
web environments such as Java, PHP, Node.js, Python, and so on. We will select the Python 
platform to deploy a Python web application. Depending on which Python platform you are 
working on, you can select it from the Platform branch field. In this example, I am selecting 
the Python 3.8 running on 64bit Amazon Linux 2 version. Platform version consists of some 
updates and patches according to the platform. You can proceed with the latest version; for 
example, if AWS finds a security patch, it creates a new version:

Figure 6.8 – Selecting the platform

8.	 Scroll down and you will see the latest panel on the page. In this example, we will proceed with 
Sample application and click Create environment:

Figure 6.9 – Finalizing the platform



Deploying a Python web application on Elastic Beanstalk 81

9.	 Once you click Create environment, you will see the logs. Elastic Beanstalk creates the platform 
and deploys sample applications:

Figure 6.10 – Logs of the platform

Wait a few minutes so that the application is deployed. Once deployed, you will be presented 
with the following screen:

Figure 6.11 – Application deployment



Deploying Python Applications on Elastic Beanstalk82

It seems like the sample application has been deployed and is running properly. Click the domain link 
to see the running application. In the preceding screenshot, the domain link is test-training.
us-east-2.elasticbeanstalk.com:

Figure 6.12 – Application

Congrats! You deployed the sample web application to the cloud.

In this example, we deployed the sample application to Elastic Beanstalk. The sample web application 
is implemented by AWS. As the next step, we are going to implement a simple Python web application 
to be deployed by Elastic Beanstalk:

1.	 Open the Elastic Beanstalk service in AWS.

2.	 Click Environments on the left side and see the list of environments. In the previous section, 
we created an environment and deployed the sample application. In this example, we will use 
the same Python web environment:

Figure 6.13 – Environments

http://test-training.us-east-2.elasticbeanstalk.com
http://test-training.us-east-2.elasticbeanstalk.com


Deploying a Python web application on Elastic Beanstalk 83

3.	 Click Pythonwebapp-env-1 in the list as it supports Python web applications. It could be 
different in your environment, based on the naming conventions:

Figure 6.14 – Python All environments

4.	 Click the Upload and deploy button in order to follow the deployment process:

Figure 6.15 – Python web environment

5.	 In the Upload and deploy window, click the Choose file button:



Deploying Python Applications on Elastic Beanstalk84

Figure 6.16 – Deploy environment

Once you click the Choose file button, your Python web application will be deployed to Elastic Beanstalk.

As you can see in the following screenshot, you are going to select the local folder:

Figure 6.17 – Local folder

You can deploy whichever Python web framework you prefer, such as Flask, Django, and so on.

In this section, we learned how to deploy a custom Python web application to Elastic Beanstalk.

Summary
In this chapter, we learned about the AWS Elastic Beanstalk service and how to create a Python web 
environment in the cloud. Elastic Beanstalk is useful when you deploy web applications in the cloud. 
It comes with scalability, logging, and monitoring advantages. In the following chapter, we will take 
a look at how to monitor our applications via CloudWatch.



Part 3: 
 Useful AWS Services  

to Implement Python

In this part, you will deep-dive into other AWS services for Python programming, such as monitoring, 
creating an API, database operations, and NoSQL with DynamoDB.

This part has the following chapters:

•	 Chapter 7, Monitoring Applications via CloudWatch

•	 Chapter 8, Database Operations with RDS

•	 Chapter 9, Creating an API in AWS

•	 Chapter 10, Using Python with NoSQL (DynamoDB)

•	 Chapter 11, Using Python with Glue

•	 Chapter 12, Reference Project on AWS





7
Monitoring Applications  

via CloudWatch

In this chapter, we are going to learn about one of the important AWS services, CloudWatch. 
CloudWatch is a serverless service that allows you to collect and monitor application logs within 
AWS. It has extensive integrations with most AWS services. When you start using any AWS service, 
it helps to observe an application via CloudWatch tools.

In this chapter, we are going to cover the following topics:

•	 What is CloudWatch?

•	 Collecting Lambda Logs via CloudWatch

•	 CloudWatch logs Insights

•	 CloudWatch alarms

What is CloudWatch?
When you deploy any application, it is important to track that it meets the set expectations regarding 
availability, performance, and stability. It is possible an issue may have occurred in the application. It’s 
important to note that some of the AWS services could be down or run incorrectly. This is a very bad 
experience from a customer’s point of view, and it would be better to observe these issues before the 
customer finds out. If you service an application via AWS, you need to use CloudWatch to monitor 
your applications to observe how they behave.

CloudWatch is a monitoring service in AWS; it provides different features to observe an application. 
The features of CloudWatch are as follows:

•	 Collecting and storing logs from AWS services such as Lambda and EC2.

•	 Providing a dashboard to monitor metrics and logs.



Monitoring Applications via CloudWatch88

•	 The ability to create an alarm. For example, if an application has consumed significant memory 
on a server, you can create an alarm in order to be notified.

•	 The ability to correlate different metrics. For example, you can aggregate EC2 memory logs 
and CPU logs to have a better overall view of a situation.

•	 The detection of anomalous behavior with the machine learning-based CloudWatch anomaly 
detection feature.

Collecting Lambda logs via CloudWatch
In this topic, we are going to deploy a simple Python function in order to investigate logs via the 
CloudWatch service. Let’s do so step by step:

1.	 Create a Lambda function in AWS. In Chapter 3, where we covered Lambda, the basic steps 
of the Lambda deployment were explained. Hence, here, we will provide a summary of the 
Lambda steps. The name of the Lambda function is TestLogs:

Figure 7.1 – Creating a Lambda function

2.	 The Lambda function creates a basic template, like the following:



Collecting Lambda logs via CloudWatch 89

Figure 7.2 – The Lambda template

3.	 Copy the following code block to the handler:

import json
import os

def lambda_handler(event, context):
    print('ENVIRONMENT VARIABLES')
    print(os.environ)

    return {
        'statusCode': 200,
        'body': json.dumps('Hello from Lambda!')
    }

os will import the operating system module; hence, you can see the environment variables 
via the logging print (os.environ) variable. Once we add the code block, Lambda code 
should be seen as follows:



Monitoring Applications via CloudWatch90

Figure 7.3 – Lambda with logs

4.	 Next, click the Deploy button to deploy the latest changes to Lambda and click the Test button. 
After testing the Lambda function, you are able to see the execution results:

Figure 7.4 – The execution results



Collecting Lambda logs via CloudWatch 91

Let’s use the CloudWatch service to investigate the logs:

1.	 Open the CloudWatch service from AWS Management Console:

Figure 7.5 – The CloudWatch service

2.	 Click Log groups under the Logs dropdown in the left pane:

Figure 7.6 – The CloudWatch log group

3.	 Once you click Log groups, you will see a list. This list represents the running AWS services 
that create a log. In this list, find the Lambda function that you run:



Monitoring Applications via CloudWatch92

Figure 7.7 – Log list

4.	 Click /aws/lambda/TestLogs. The new page consists of the logs that Lambda creates. You 
can see a log stream. When the Lambda function runs, the logs are created in this list. At the 
beginning of the list, you can see the most up-to-date logs:

Figure 7.8 – The log page for Lambda



Collecting Lambda logs via CloudWatch 93

Let’s click the latest link under Log stream:

Figure 7.9 – Log stream

After clicking the link, you can see the detailed logs that Lambda creates:

Figure 7.10 – Lambda logs

This list shows a summary view of the log. When you click the down arrow to the left, the panel will 
open and you can investigate the detailed logs. In Lambda, we have logged the operating system variables 
for Lambda. Hence, you will see some details for that, such as region, memory size, and language:



Monitoring Applications via CloudWatch94

Figure 7.11 – Log details

Congratulations! You are able to investigate Lambda logs via the CloudWatch service. It is simple to 
use CloudWatch to investigate a log for any AWS service. In the next topic, we will learn some tricks 
regarding filtering logs.

CloudWatch Log Insights
In this topic, we will take a look at Log Insights. If you have massive lines of logs, it is not easy to 
search and find the respective log that you are searching for. For this use case, Log Insights comes 
into play. CloudWatch Log Insights allows you to search logs with the filtering feature. Let’s see how 
Log Insights helps us to search logs:

1.	 Click Log Insights under the Logs dropdown in the left pane:

Figure 7.12 – Log Insights



CloudWatch Log Insights 95

2.	 Select the log that you want to investigate. In the previous example, we ran the TestLogs Lambda 
function, and I am also selecting that one here:

Figure 7.13 – The Log Insights window

3.	 Once you select it, you can see the default query:

Figure 7.14 – The Log Insights filter



Monitoring Applications via CloudWatch96

4.	 Click the Run query button in order to see the result. In this filter, fields represents the 
columns that will be listed, whereas the sort keyword indicates the sorting method, and you 
can see only 20 records with the limit keyword:

Figure 7.15 – Logs

Let’s add one more filter to search for a keyword within the message. You can use the following 
query format:

fields @timestamp, @message
| filter @message like /AWS_DEFAULT_REGION/
| sort @timestamp desc
| limit 20

With this query, we search for logs that contain AWS_DEFAULT_REGION. Paste that and click Run 
query again. After running the query, you will see that the message lines are reduced:



CloudWatch Log Insights 97

Figure 7.16 – Filtered logs

When you expand the message, you will find what you searched for – in this case, AWS_DEFAULT_
REGION:

Figure 7.17 – Detailed logs



Monitoring Applications via CloudWatch98

As you can see, Log Insights is very helpful to search and filter logs within a massive log block. In the 
next topic, we will take a look at how to create an alarm.

CloudWatch alarms
AWS has more than 100 services, and it is not easy to control the behavior of all the services. You need 
to be informed if some AWS services achieve a specific metric. In Chapter 4, we covered how to create 
a server with an EC2 service. For example, you define a server for an EC2 service, and sometimes, its 
CPU usage is more than 90%, causing some performance problems. Another example would be to 
add a notification if you exceed a specific cost in AWS. For these kinds of scenarios, you can define a 
metric, and if the metric is reached, you will be notified via email.

In this topic, we are going to create an alarm to notify us if AWS cost exceeds $10 in a month. Let’s 
implement the application:

1.	 Click In alarm under the Alarms dropdown in the CloudWatch pane:

Figure 7.18 – In alarm

2.	 Click Create Alarm. You can click either the button to the right or the one at the bottom:

Figure 7.19 – Creating an alarm



CloudWatch alarms 99

3.	 Click the Select metric button:

Figure 7.20 – Select metric

4.	 Once you click the Select metric button, you will be able to see a list of categories with which 
to narrow down your metric:

Figure 7.21 – Metric types

In this list, you can see different types of metrics. Billing allows you to define cost-related metrics, 
while Lambda allows you to define Lambda-related metrics. In this example, we are going to define 
a monthly budget for our AWS account. The aim is to receive an alarm if our monthly cost exceeds 
a specific threshold:

1.	 Click Billing from the categories:

Figure 7.22 – The Billing category



Monitoring Applications via CloudWatch100

2.	 Click Total Estimated Charge. The intention is to define a metric if your total monthly AWS 
cost exceeds a target budget:

Figure 7.23 – Total Estimated Change

3.	 From the list, select USD and click Select metric. The currency type may vary, depending on 
your AWS account:

Figure 7.24 – The currency type

On the next screen, go to the Define the threshold value field. For this example, I added 10, 
which means that if the total cost is greater than $10 for a month, an alarm will be activated. 
In this panel, you can also change the currency type, calculation type, and so on. In this case, 
the most important value is defining the target budget to receive an alarm. After you have done 
that, click the Next button:

Figure 7.25 – Threshold value



CloudWatch alarms 101

4.	 In the next panel, we are going to define the alarm endpoint. In this case, we have selected the 
Create new topic radio button. Simple Notification Service (SNS) is used to communicate 
between services and end users. This is a choice under Send a notification to the following 
SNS. Once we select Create new topic, we can define an email address in the Email endpoints 
that will receive the notification… section. SNS is an access point to filter messages in order 
to send them to different subscribers such as Lambda or email. You can keep the topic name 
as is; it is the same as the SNS topic name. When completed, click Create topic:

Figure 7.26 – Receiver



Monitoring Applications via CloudWatch102

5.	 After Create topic is clicked, AWS will create an endpoint in order to send an email:

Figure 7.27 – Creating an endpoint

Now, you have an endpoint, and you can proceed by clicking the Next button.

6.	 The next step is to define the alarm name. In this case, I named it BillingAlarmGreaterThan10, 
since it sends an alarm if the billing cost goes above than $10:

Figure 7.28 – Naming the alarm



CloudWatch alarms 103

7.	 The next step is to review the input and click Create alarm:

Figure 7.29 – Creating the alarm



Monitoring Applications via CloudWatch104

8.	 If you successfully create the alarm, you will be redirected to the Alarm list to see the alarm 
that you created. We can see the alarm as follows:

Figure 7.30 – The billing alarm type

In this topic, we have created an alarm. An alarm is useful if we need to create a notification for the AWS 
service behaviors. This example will send a notification if, for example, we reach the defined cost limit.

Summary
In this chapter, we learned about the AWS CloudWatch service and how to investigate service logs 
in AWS. CloudWatch is very useful for logging; it also allows you to define some metrics and alarms 
to monitor services. In the following chapter, we will take a look at database operations within AWS.



8
Database Operations with RDS

In this chapter, we are going to learn the basics of Amazon Relational Database Service (Amazon 
RDS) and create an RDS instance in order to make a database operation. You can use RDS to create 
the most popular databases in AWS. You can create Oracle, MySQL, or MS SQL databases on the 
cloud with scaling capabilities. In general, when you need to create a database, you must manage the 
infrastructure using an on-premises system. Managing the hardware and infrastructure, installing 
the database, and then monitoring could require a lot of effort to set up. AWS allows you to select the 
database type that you want and then create it with a simple button click – that is all:

Figure 8.1 – Click to create



Database Operations with RDS106

In this chapter, we will create a database and make some operations using Python. The chapter covers 
the following topics:

•	 Features of RDS

•	 Provisioning RDS

•	 Connecting to the RDS

•	 Creating a table in the database

•	 Database operations with Python

•	 Secrets Manager

Features of RDS
RDS comes with different features that facilitate the creation and maintenance of the database. Let’s 
look at the most important features:

•	 Easy to use: You can easily create and maintain RDS via the AWS console. It also allows us to 
use some API capabilities to make some programmatic operations. For example, you can create 
and scale the database, and monitor its usage.

•	 Scalability: RDS supports scalability; if there is a need to support more capacity, you can 
easily scale the database up. However, if the capacity is less than you estimate, you can reduce 
the capacity with a scale-down request to reduce the cost. Another option is Amazon Aurora, 
which allows cloud users to implement more performance-intensive applications that support 
a Relational Database Management System (RDBMS).

•	 Backup: A database backup is important in case any issue arises with the infrastructure. In some 
cases, the backup is used to create a new database. RDS supports both manual and automated 
backups. You can create a snapshot whenever you want, or RDS can take a snapshot at regular 
intervals. In general, the snapshots are stored in AWS S3 buckets.

•	 Multi-AZ deployment: RDS can be available within different locations to improve availability. 
If the infrastructure is down in one location, RDS can serve in another location to improve 
availability. This approach can be used for critical applications that use databases in the cloud.

•	 Monitoring: Monitoring is very important for critical applications. You can track how the 
database is behaving and see whether there are any issues in it. RDS has a supporting monitoring 
feature. For example, you can track when I/O problems are happening in the database, and 
you can take the right action.

•	 Cost options: AWS offers different pricing options for using the database. One of the popular 
options is the pay-as-you-go option. In this option, you don’t need to commit to any long-term 
contract. You simply pay for how many resources you use in a specific period. Hence, you can 
pay the bill monthly. In other options, you make a contract with AWS for a specific duration; 
however, in this case, you have to pay for the contract even if you don’t use the database.



Provisioning RDS 107

Provisioning RDS
In this section, we are going to create a sample relational database on the cloud. To provision the RDS 
on AWS, carry out the following steps:

1.	 Open the AWS console and type rds in the search box:

Figure 8.2 – RDS on the console

2.	 Click Databases on the left pane to see the list of databases. To create a new database, click 
Create database:

Figure 8.3 – Database list

3.	 On the new panel, Create database, and fill out the information required for the new database. 
RDS supports multiple database types, such as Amazon Aurora, MySQL, MariaDB, PostgreSQL, 
Oracle, and Microsoft SQL Server. In this example, we will use MySQL:



Database Operations with RDS108

Figure 8.4 – MySQL selection

4.	 After selecting MySQL, scroll down and select the correct version of MySQL. In this example, 
we will use one of the latest versions, MySQL 8.0.28:



Provisioning RDS 109

Figure 8.5 – Template selection

5.	 Templates are useful for working in different environments. When you select the Production 
template, it gives you high availability. In this example, we will select the Free tier template to 
avoid any costs.



Database Operations with RDS110

6.	 Scroll down and fill in the Settings details. In the Settings panel, you need to fill in the database 
identifier, username, and password:

Figure 8.6 – Settings

DB instance identifier is used to represent the database name in the cloud. You can also enter 
the Master username and Master password details. These credentials are important for security.

Scroll down and fill in the details with regard to storage and instance configuration.

7.	 In Instance configuration, in DB instance class, you can select the processor and memory 
types. Since we are creating it for education, you can select the simple instance type that has 
basic hardware features. Another hardware selection is made for Storage. You can keep what 
AWS has recommended or use the minimum values.

In Storage type, you can select the disk type. In Allocated storage, you have to specify the 
limit of the disk. For this example, we selected 200 GiB. If the disk needs to be scaled, you can 
check the Enable storage autoscaling checkbox. 



Provisioning RDS 111

When the disk is scaled, the value you enter in the Maximum storage threshold field is the 
maximum value of the database. In this case, the maximum threshold is 1000:

Figure 8.7 – Instance configuration (part 1)

Scroll down and fill in the details with regard to Connectivity.



Database Operations with RDS112

8.	 In the first option, AWS asks whether you want to connect to EC2. For this example, we don’t 
need to connect to EC2, so we select Don’t connect to an EC2 compute resource. (After setting 
up the database, we will use Lambda for database operations.) RDS needs to be created in the 
VPC, so in Virtual private cloud (VPC), we select Create new VPC, and it will automatically 
create a VPC.

Another option is to select a group in DB Subnet group. This allows you to define which IP 
group is going to connect to the database. It is also important in terms of security. You can 
limit the IP range with this option.

Public access allows you to enable access over the internet. For this application, we will use 
public access. However, you need to be careful when you set production databases as public.

The final option for Connectivity is to select a group in VPC security group (firewall). In this 
case, you can define the same security group that connects to RDS:



Provisioning RDS 113

Figure 8.8 – Instance configuration (part 2)

Scroll down and fill in the database port information.



Database Operations with RDS114

9.	 Database port defines which port is used to connect to the database. The default value is 3306 
for MySQL, but you can also change it:

Figure 8.9 – Database port

Scroll down and fill in the authentication details.

10.	 Database authentication is used to define the approach for password management. You can 
connect with only a password, a combination of a password with IAM authentication, or a 
password with Kerberos authentication. Let’s keep it simple and just use Password authentication:

Figure 8.10 – Database authentication

Scroll down and fill in the details regarding database creation.

11.	 As a final step, you can keep other values as is. Click Create database and proceed with the 
database creation:



Provisioning RDS 115

Figure 8.11 – Database creation

This forwards you to the Databases list, in which you can see the database is being created:

Figure 8.12 – Databases list with a Creating status



Database Operations with RDS116

After some time, you can see the database is ready to use:

Figure 8.13 – Databases list with an Available status

We will connect from our computer. To connect to the database, we need to enable the connection 
from outside of AWS.

12.	 Click the Connectivity & security tab. You will see VPC security groups; click the link:

Figure 8.14 – Security groups



Connecting to the RDS 117

13.	 In the new panel, click Edit inbound rules. This will allow us to define the inbound connections:

Figure 8.15 – Inbound rules

14.	 Add the rule for the MySQL/Aurora type and click Save, which isn’t depicted in the following 
figure but is situated at the bottom of the page:

Figure 8.16 – Adding the rule

These steps allow us to accept the connection from outside of AWS. Hence, we will connect to AWS 
via a local computer.

Congrats! You have created the database on the cloud. As you can see in the steps, creating a database 
is easy and efficient on the cloud. Let’s connect to the database in the next topic.

Connecting to the RDS
In this section, we are going to connect to the RDS from one of the database viewers. For that purpose, 
you can install a free database viewer; I will use a MySQL viewer. To install the MySQL viewer, carry 
out the following steps:

1.	 Open the following link: https://www.mysql.com/products/Workbench/.

2.	 Click Download Now on the main page:

https://www.mysql.com/products/workbench/


Database Operations with RDS118

Figure 8.17 – MySQL Workbench

3.	 Click Download on the next page:

Figure 8.18 – MySQL Workbench download

4.	 Double-click and install the downloaded package, and the installation will be done.

5.	 Once the installation has been completed, click the + symbol to connect to the new database:



Connecting to the RDS 119

Figure 8.19 – New connection

6.	 Open AWS and copy the connection details:



Database Operations with RDS120

Figure 8.20 – Endpoint name

7.	 Fill out the endpoint and password details in MySQL Workbench and click Test Connection:



Connecting to the RDS 121

Figure 8.21 – Test Connection

After clicking Test Connection, you will be able to see the connection:

Figure 8.22 – Connection is successful



Database Operations with RDS122

Good work! We have successfully connected to the RDS database from MySQL Workbench. Let’s 
create a table and insert some records in the next topic.

Creating a table in the database
We have created a database in the cloud and have connected via MySQL Workbench. As a next step, 
we are going to create a table via MySQL Workbench:

1.	 Connect to the database via MySQL Workbench.

2.	 Create a database with the following command and click the lightning symbol, as shown in 
the figure that follows:

CREATE DATABASE address;

Figure 8.23 – Creating a database

3.	 Execute the USE address command in order to switch databases:

USE address;

Figure 8.24 – USE address

4.	 Create an address table:

CREATE TABLE address (id INT, address VARCHAR(20));

Figure 8.25 – Creating a table



Creating a table in the database 123

We have created an address table, and for the next step, we are going to insert data into the table.

5.	 Execute the following script to insert data into the table:

INSERT INTO address (id,address) VALUES(1,"Germany");
INSERT INTO address (id,address) VALUES(2,"USA");

Figure 8.26 – Inserting script

The table has two rows, and we are going to read these values from the Lambda function:

Figure 8.27 – Select script

In this topic, we have created a simple table and inserted records. The insertion was made with MySQL 
Workbench, but you can also use other database tools. As a next step, we are going to read the records 
using Python.



Database Operations with RDS124

Database operations with Python
In this section, we are going to read a table using Python. To execute a Python function, we will use 
PyCharm on a local computer. Carry out the following steps:

1.	 Open PyCharm or an IDE, whichever you prefer.

2.	 We are going to install MySQL Connector to PyCharm. MySQL Connector will be used for 
database operations from Python. In PyCharm, select File | New Projects Setup | Preferences 
for New Projects…:

Figure 8.28 – Preferences



Database operations with Python 125

3.	 In the panel, select Python Interpreter:

Figure 8.29 – Python Interpreter

4.	 To add a new package, click the + symbol:

Figure 8.30 – Adding a package

5.	 In the upcoming panel, type mysql-conn to install mysql-connector. You will be able to see 
mysql-connector. Click Install Package to install it:



Database Operations with RDS126

Figure 8.31 – Installing mysql-connector

6.	 Once you install it, you will be able to see mysql-connector within the installed packages:

Figure 8.32 – Package list



Database operations with Python 127

7.	 Copy and paste the following code to read data from the database:

import mysql.connector

#rds settings
rds_host = "database-1.********.us-east-1.rds.amazonaws.com"
name = "**min"
password = "*****234"
db_name = "address"

if __name__ == '__main__':
    conn = mysql.connector.connect(host=rds_host, user=name, 
passwd=password, database=db_name, port=3306)
    cursor = conn.cursor()
    cursor.execute("select * from address")
    data = cursor.fetchall()

    print(data)

The preceding code block connects to the RDS database and reads from the address table by 
executing the select * from address query. For rds_host, name, and password, 
please fill out your database host and credentials:

Figure 8.33 – Query from the database



Database Operations with RDS128

8.	 When you click Run, you can see the results from the database:

Figure 8.34 – Results from the database

Congrats! You are able to read data from the AWS database via Python. You can also extend your query 
by implementing insert and update queries. In this topic, we learned how to make a database 
operation via Python.

Secrets Manager
Secrets Manager is an AWS service that allows you to manage and retrieve database credentials, which 
can be helpful when using a database. Let’s learn how to use Secrets Manager:

1.	 Open Secrets Manager via the console:

Figure 8.35 – Opening Secrets Manager



Secrets Manager 129

2.	 Click the Store a new secret button:

Figure 8.36 – Storing a new secret

3.	 Select the secret type that you want to store a secret for, and fill out the username and password. 
In this case, we will select the database-1 instance. After filling out the details, click Next:

Figure 8.37 – Filling out the details



Database Operations with RDS130

4.	 You need to give a name to the upcoming path in the Secret name textbox:

Figure 8.38 – Naming the secret

5.	 On the next screen, you will see the options for using this secret with different programming 
languages. Click Store to finalize it:



Secrets Manager 131

Figure 8.39 – Store secret

6.	 As the final step, you will see the secret on the list:

Figure 8.40 – List of secrets

Congrats! You have learned how to create and store secrets on the cloud in a secure way.



Database Operations with RDS132

Summary
In this chapter, we learned about AWS RDS, which is used to create a relational database on the cloud. 
You can create your database in an efficient way. The point to note is that you have the possibility to 
create different databases, including MySQL, Microsoft SQL, and PostgreSQL. In this chapter, we have 
created an RDS instance on the cloud and run a Python application to make a read operation. In the 
following chapter, we will take a look at creating an API in AWS.



9
Creating an API in AWS

In this chapter, we are going to learn how to create an application programming interface (API) 
via API Gateway. API Gateway is an AWS service that allows you to create and maintain an API. 
With the API Gateway service, you don’t need to provision a server; AWS manages it in the backend. 
In addition to that, API Gateway helps you to monitor incoming and outgoing requests. Another 
advantage of API Gateway is to scale up your API services when there is a huge request from users.

The chapter covers the following topics:

•	 What is API Gateway?

•	 Creating an API using API Gateway

What is API Gateway?
API Gateway is an AWS service that is used to create, maintain, and publish an API. API Gateway 
supports multiple API protocols, such as RESTful (also known as the REST API) and WebSocket.

API Gateway is a single point of entry for the backend services. As you can see in the following 
architecture, API Gateway gets a request from a client and integrates the incoming request with 
microservices, databases, AWS Lambda, or another AWS service:

Figure 9.1 – Architecture of API Gateway



Creating an API in AWS134

Now that we have a good idea of what API Gateway is, let’s have a look at its features.

Features of API Gateway

The features of API Gateway are as follows:

•	 It supports different protocols, such as RESTful and WebSocket.

•	 You can monitor incoming and outgoing API requests, which enhances the visibility of the service.

•	 You can easily create and maintain the API. It can be created either in AWS Management 
Console or the AWS CLI.

•	 Security is important for cloud services, as well as the API. You can create a key to enable 
secure access to the API. In addition to that, you can add an SSL certificate to verify the request.

•	 It has built-in integration with AWS services. When you implement an API, you can easily 
integrate it with AWS services.

•	 It is a scalable service that adds more resources when you have more requests. For example, 
on Black Friday, there is more load on e-commerce websites. In these cases, API Gateway 
automatically scales your API requests. In this case, you can also define a Cross-Origin Resource 
Sharing (CORS) policy as a security feature that controls the HTTP request.

In this section, we have looked at the basic features of API Gateway, and now we will start to implement 
sample API applications.

Creating an API using API Gateway
We are going to create a simple API that accepts a request from a client. The API accepts two numbers, 
sums up two numbers in a Lambda function, and returns the calculated values. AWS Lambda is going 
to be implemented via Python. You can see the high-level flow in the following architecture:

Figure 9.2 – Data flow

We are going to start with the Lambda function creation. After the Lambda function creation, API 
Gateway is going to be set up with Lambda integration.

Let’s create the Lambda function step by step:

1.	 Open the console and navigate to the AWS Lambda page:



Creating an API using API Gateway 135

Figure 9.3 – Lambda function

2.	 Create a new Lambda function. Let’s name it SumUpLambda:

Figure 9.4 – Creating a new Lambda function



Creating an API in AWS136

3.	 Click Create function and wait a few seconds while the function is created:

Figure 9.5 – Clicking Create function

A few seconds later, you will see the Lambda function has been created with the template code:



Creating an API using API Gateway 137

Figure 9.6 – Lambda template

Let’s create a Lambda function that sums up two values:

import json

def lambda_handler(event, context):
    number1 = event['Number1']
    number2 = event['Number2']
    sum = number1 + number2

    return {
        'statusCode': 200,
        'Sum': sum
    }



Creating an API in AWS138

This code snippet takes two numbers as parameters, such as Number1 and Number2. The Lambda 
function calculates the sum of two values and returns a status code and the value of the sum. When 
we call this function from the API, it returns the sum value as well as statusCode.

Let’s paste this code block into the Lambda function:

Figure 9.7 – Actual Lambda code

Now, let’s follow these steps:

1.	 Click Test. A new panel opens in which Lambda asks for a test parameter:



Creating an API using API Gateway 139

Figure 9.8 – Test event

2.	 As can be seen in the preceding figure, you can paste the following JSON to see whether the 
Lambda function is running properly before integrating with the API:

{
  "Number1": 10,
  "Number2": 15
}

3.	 Click Save, which is under the Event JSON panel:

Figure 9.9 – Clicking on the Save button



Creating an API in AWS140

4.	 Deploy the changes by clicking Deploy:

Figure 9.10 – Deploying Lambda

After the Lambda deployment, we are going to integrate API Gateway with AWS Lambda. Lambda 
will be used as the backend for API Gateway.

Let’s create an API step by step:

1.	 Open the console and search for api gateway:

Figure 9.11 – The console

2.	 On the main screen, select REST API, and click Build:

Figure 9.12 – REST API



Creating an API using API Gateway 141

3.	 You will now see a new screen to be filled out. We will select New API in the Create new 
API section. Other options in this section allow you to create an example API or import a 
predefined API. In the Settings section, we will add the API name and Description details. 
In the Endpoint Type drop-down list, we will select Regional, which is used to create an API 
that is accessible from the same region:

Figure 9.13 – Form for API creation

4.	 Once you click Create API (as depicted in the preceding figure), you will be taken to a new 
page that allows you to define the details for a custom SumUp API:



Creating an API in AWS142

Figure 9.14 – API form

5.	 Now, we are going to define the API details. Click on the Actions dropdown and select 
Create Method:



Creating an API using API Gateway 143

Figure 9.15 – Create Method

6.	 When we create a method, we select POST as the API type:

Figure 9.16 – Selecting POST

While you implement an API, you can select API types. The following are the most used API 
types:

	� GET is used to retrieve data from a source.

	� POST is used to send data to a source. In our example, POST will bring the calculation of 
SumUp from Lambda.

	� PUT is used to update the data in a source.

	� DELETE is used to delete the data in a source.



Creating an API in AWS144

7.	 When you select POST, you need to choose the integration type. For this example, we are going 
to select the Lambda Function integration type:

Figure 9.17 – Setting up the integration type

8.	 Select the SumUpLambda function that is implemented, and click Save, which is not depicted 
in the following figure but is situated at the bottom of the page:

Figure 9.18 – Selecting Lambda



Creating an API using API Gateway 145

9.	 When you click Save, it asks for confirmation to allow the required permissions. Click OK and 
it will create the permissions:

Figure 9.19 – Permissions

After setting the permissions, you can see the data flow for the API:

Figure 9.20 – The API flow



Creating an API in AWS146

Now, we need to add a CORS policy. CORS is a security policy that allows a particular origin (domain 
or port) to browse your resource. Let’s enable a CORS policy:

1.	 Click the Actions drop-down button to list the available actions, and then click Enable CORS:

Figure 9.21 – List of actions

2.	 Fill out the form and click Enable CORS and replace existing CORS headers. You can retain 
the form details as is. The form defines the following:

A.	 Which methods are allowed access to the API by selecting Methods

B.	 Which request header is required via Access-Control-Allow-Headers

C.	 Which origins are able to call the API via Access-Control-Allow-Origin

D.	 Gateway response types by selecting the DEFAULT 4XX or DEFAULT 5XX port. You 
can see the list here: https://docs.aws.amazon.com/apigateway/latest/
developerguide/supported-gateway-response-types.html.

Figure 9.22 – Enable CORS

Congrats! You have successfully created the Lambda function and an API gateway. The next step is 
to test the API.

https://docs.aws.amazon.com/apigateway/latest/developerguide/supported-gateway-response-types.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/supported-gateway-response-types.html


Creating an API using API Gateway 147

Let’s test the SumUp API:

1.	 Click on the Test button in the flow:

Figure 9.23 – Testing the API



Creating an API in AWS148

2.	 Enter the following code in the Request Body field to add a parameter for Lambda:

{
  "Number1": 10,
  "Number2": 15
}

3.	 Click Test and see the results:

Figure 9.24 – Adding a parameter



Summary 149

Here are the results:

Figure 9.25 – The result of the API response

When you check the logs, you can see the results of the API response. As you can see, the sum of the 
values is 25.

In this topic, we implemented an API that used Python in the Lambda code. As you saw, creating an 
API is an easy solution in AWS. This way, you can focus on the backend implementation instead of 
focusing on the infrastructure.

Summary
In this chapter, we learned how to use the AWS API Gateway service and how to create an API gateway 
that has a backend service with Python Lambda. API Gateway is useful when you need to implement 
an API service with backend support via Python. It comes with scalability, logging, and monitoring 
advantages. In the next chapter, we will take a look at the basics of DynamoDB and NoSQL.





10
Using Python with NoSQL 

(DynamoDB)

In this chapter, we are going to learn how to create a NoSQL database with DynamoDB. After creating 
the database, we will carry out a database operation in DynamoDB using Python. NoSQL is a database 
type that is used to manage data more flexibly than a relational database. In relational databases, there 
are tables and predefined data types that can be used for database operations. In NoSQL, you can store 
JSON, raw, or key-value data, depending on the NoSQL database. Let’s deep-dive into NoSQL databases.

The chapter covers the following topics:

•	 What is a NoSQL database?

•	 What is a DynamoDB database?

•	 DynamoDB operations with Python

What is a NoSQL database?
A NoSQL database is used to store unstructured data. The idea comes from big data; most applications 
and devices create data, and this data is valuable if you store and process it afterward. The volume of 
data is increasing day by day, and we need to store this data. Think about new cars; they have different 
devices to store data. We can extend our example to white goods, social media, and so on. In general, 
relational databases are useful for structured data and a level of records that runs into the millions. 
Thus, when it comes to handling millions of records as well as unstructured data, NoSQL is useful.

The following figure shows how different data sources can be generated to be stored in a NoSQL database. 
We have social media resources and machines in cars and planes that generate different data formats:



Using Python with NoSQL (DynamoDB)152

Figure 10.1 – NoSQL

There are different types of NoSQL databases.

Key-value database

In this NoSQL database type, you can access data based on keys. For example, you have customer ID 
as a key, and address, age, and family information as values. When you need to access the value, you 
just provide the key as a query parameter:

Figure 10.2 – A key-value database

A key-value database is useful and even works on billions of records. We will investigate DynamoDB, 
which is a key-value database, in an upcoming section.

Document database

A document database is another type of NoSQL database that can store unstructured data such as 
JSON. It is useful if you need to store unstructured big data and retrieve data with different parameters:

Figure 10.3 – Document database



What is a DynamoDB database? 153

You can see the sample JSON as follows:

{
    "employee": {
        "name":"Jack",
        "age":25
    }
}

There are other types of NoSQL databases, such as graph and column, but we won’t focus on them 
in this book. I would recommend reading more over here: https://en.wikipedia.org/
wiki/NoSQL.

We have learned the definition of a NoSQL database and taken a look at some types of NoSQL 
databases. For the next step, we will focus on DynamoDB, which is one type of key-value database.

What is a DynamoDB database?
A DynamoDB database is a key-value NoSQL database that is managed by AWS. When you use 
DynamoDB, you don’t need to create a new database. You don’t need to provision a server either; 
it is fully managed by AWS. It is one of the most popular cloud-based NoSQL databases, and the 
performance is very good if you are using key-based access. The main advantage is that you can access 
data within a latency of milliseconds along with billions of records.

These are the features of DynamoDB:

•	 Fully managed by AWS

•	 Autoscaling without any configuration

•	 Built-in integration with other AWS services

•	 Supports monitoring and logging

•	 Supports database backup and restoration

•	 Pay-as-you-go model – you pay for how much you use from this service

https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/NoSQL


Using Python with NoSQL (DynamoDB)154

Creating a DynamoDB database

In this subtopic, we are going to create a DynamoDB database. Let’s follow the instructions step by step:

1.	 Type DynamoDB into the search box and click the DynamoDB option that appears under 
the Services section:

Figure 10.4 – Console search

2.	 Click Tables on the left side, and then click the Create table button:

Figure 10.5 – Create table

3.	 Fill out the Table name, Partition key, and Sort key details in order to create the table:



What is a DynamoDB database? 155

Figure 10.6 – Table details – part 1

Table name represents the name of the table. We will create a sample customer table.

Partition key is going to be used as a primary key. DynamoDB is a key-value database; hence, 
you can easily search for data based on the key. In this case, we will use customer_id as a 
primary key.

DynamoDB allows you to search with a sort key in addition to the partition key. We will use 
customer_mail in the Sort key field.

4.	 Scroll down and fill out Capacity mode, Read capacity, Write capacity, Auto scaling, Local 
secondary indexes, and Global secondary indexes. For the input, keep the following default 
values as is:



Using Python with NoSQL (DynamoDB)156

Figure 10.7 – Table details – part 2

Capacity mode defines the reserved capacity for the table. If you select the provisioned mode, 
AWS reserves your predefined capacity to be used by the queries. Another option is to define 
on-demand for unplanned capacity reservations.

Read capacity and write capacity define how many read and write requests are supported for 
this table.



What is a DynamoDB database? 157

Regarding Auto scaling, AWS manages the scaling feature.

Local secondary indexes and Global secondary indexes are used if you need more index 
values in addition to the primary key and sort key. The local secondary index allows you to 
create an additional index that has the same partition ID with a different sort key from the 
base table. You need to define this during table creation. On the other hand, a global secondary 
index allows you to create an index that can have a different partition ID and sort key from 
the base primary key.

5.	 Click Create table, as you saw in the previous screenshot, and you will see the created table 
in the list:

Figure 10.8 – The table list

6.	 Let’s insert one of the items via the AWS Management Console. Select customer under the 
Tables list:

Figure 10.9 – Customer table



Using Python with NoSQL (DynamoDB)158

You will see the details of the table:

Figure 10.10 – Table details

7.	 Click the Actions drop-down button and select Create item:

Figure 10.11 – Create item

8.	 After clicking this, you will see an item creation page, titled Create item. You can fill out a form 
or insert the JSON directly. In this example, we will insert the code via JSON view. DynamoDB 
creates a template for you:



What is a DynamoDB database? 159

Figure 10.12 – The JSON view

Paste the following JSON as an example:

{
  "customer_id": {
    "S": "123"
  },
  "customer_mail": {
    "S": "serkansakinmaz@gmail.com"
  },
   "name": {
    "S": "Serkan"
  },
   "address": {
    "S": "Germany"
  }
}

The JSON is simple and consists of customer_id, customer_mail, name, and address 
information.



Using Python with NoSQL (DynamoDB)160

9.	 Click Create item:

Figure 10.13 – Creating an item

After the creation, you will be forwarded to the Tables page:

Figure 10.14 – The item list



DynamoDB operations with Python 161

Since you are using NoSQL, you can also insert the JSON, which is a different format from 
the previous JSON that we inserted. The following JSON is also valid for the customer table:

{
  "customer_id": {
    "S": "1234"
  },
  "customer_mail": {
    "S": "jane@gmail.com"
  },
   "name": {
    "S": "Jane"
  },
   "profession": {
    "S": "Data Engineer"
  }
}

As you see, we have removed the address field and added profession as a new field without 
any issue.

In this section, we have created a DynamoDB table and inserted data via the console. As you can see, 
DynamoDB is a key-value database and you can insert different JSON formats, which provides flexibility.

DynamoDB operations with Python
In this section, we are going to read the DynamoDB table via Python. To execute a Python function, 
we will implement a Lambda function to read data from DynamoDB. Carry out the following steps:

1.	 We will create the required permissions to allow Lambda to read from DynamoDB. Open IAM 
and click Policies on the left-hand side:

Figure 10.15 – IAM policies



Using Python with NoSQL (DynamoDB)162

2.	 Click Create policy:

Figure 10.16 – Creating a policy

3.	 Paste the following policy:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "dynamodb:BatchGetItem",
                "dynamodb:GetItem",
                "dynamodb:Query",
                "dynamodb:Scan",
                "dynamodb:BatchWriteItem",
                "dynamodb:PutItem",
                "dynamodb:UpdateItem"
            ],
            "Resource": "arn:aws:dynamodb:us-east-
1:961487522622:table/customer"
        }
    ]
}

The policy allows you to read from the DynamoDB table. In general, the following access policy 
works for you as well; however, you need to change the account ID that you have, because every 
AWS account has a different account ID:



DynamoDB operations with Python 163

Figure 10.17 – A DynamoDB policy

4.	 You can add the policy name and finish creating the policy. In this example, I am using 
DynamoDBCustomerTableOperations as a policy name:

Figure 10.18 – Policy creation



Using Python with NoSQL (DynamoDB)164

5.	 We now need to create a role. This role will be attached to Lambda to access DynamoDB. Click 
Create role in the IAM service:

Figure 10.19 – The IAM role

6.	 Since we need a policy for Lambda, select Lambda in the Use case section:

Figure 10.20 – The IAM role for Lambda



DynamoDB operations with Python 165

7.	 As depicted in the following screenshot, add the policy that we created to access Lambda:

Figure 10.21 – Selecting the policy

8.	 Fill in Role name and create the role. As you see, the name we have given to the Lambda 
function is DynamoDBCustomerTableRole. Scroll down and click the Create role button:

Figure 10.22 – Creating a role



Using Python with NoSQL (DynamoDB)166

9.	 The Create function page opens up. We create a Lambda function by adding readFromDynamoDB 
to Function name and Python 3.9 to Runtime:

Figure 10.23 – Creating a function

10.	 At the bottom of the preceding page, there is a panel to define the execution policy. Select Use 
an existing role under the Execution role section and select the role that we created:

Figure 10.24 – Selecting the role



DynamoDB operations with Python 167

11.	 Lambda is ready to fill out a code block:

Figure 10.25 – The Lambda function

Paste the following code into the Lambda function:

import json
import boto3

def lambda_handler(event, context):

    dynamodb = boto3.resource('dynamodb', region_name="us-east-1")
    table = dynamodb.Table('customer')
    response = table.get_item(Key={'customer_id': "123", 'customer_
mail': "serkansakinmaz@gmail.com"})
    item = response['Item']
    print(item)

    return {
        'statusCode': 200,
        'body': json.dumps('Hello from Lambda!')
    }

The code imports the boto3 library, which provides useful functions for DynamoDB operations. 
boto3 is a library that includes AWS service-specific features to facilitate the implementation of 
cloud applications while working with Python on AWS. You can get more details from the following 
link: https://boto3.amazonaws.com/v1/documentation/api/latest/index.html.

 https://boto3.amazonaws.com/v1/documentation/api/latest/index.html


Using Python with NoSQL (DynamoDB)168

As a first step, we define the dynamodb resource by calling the boto3.resource function. After 
calling that, we define the table that we read; it is the dynamodb.Table table. Once you define 
the table, the table.get_item function takes the primary key and sort key as a parameter and 
returns the query results.

Once you run the Lambda function, you are able to see the result:

Figure 10.26 – Execution results

Congratulations! You are able to define the role and retrieve an item from Lambda. As you can see, 
AWS requires some configuration to access data in DynamoDB.

Summary
In this chapter, we learned about the AWS DynamoDB service and how to create a DynamoDB 
database in AWS. After creating the database, we implemented a Lambda Python code snippet that 
read items from DynamoDB. You now also know how to extend the Lambda code to insert data into 
a DynamoDB table. DynamoDB is useful when you need to implement a key-value database that is 
managed by AWS. It comes with scalability, logging, and monitoring advantages. In the following 
chapter, we will take a look at the Glue service.



11
Using Python with Glue

In this chapter, we are going to learn how to create a data integration pipeline with AWS Glue. AWS 
Glue is a data integration service that is used for the Extract, Transform, and Load (ETL) process. 
Glue is a serverless data integration service; therefore, you don’t need to create and manage a server, 
as the infrastructure is managed by AWS. With Glue, you can collect data from different data sources, 
such as S3, databases, or filesystems, to process and transform the data. The result is stored in S3 or 
the database, or you can call an API.

The chapter covers the following topics:

•	 What is the AWS Glue service?

•	 AWS Glue service creation

•	 Creating a simple Python application with AWS Glue

What is the AWS Glue service?
AWS has more than 100 services. When you integrate data between AWS and other sources, you might 
need to load data from the source, manipulate it with some transformations, and store it in a service. 
AWS Glue meets these requirements and provides a service that allows the preparation of data. In 
the following figure, you can see a very high-level overview of Glue. As you can see, Glue extracts the 
data from different sources, carries out some transformation, and loads the data in another source:

Figure 11.1 – AWS Glue



Using Python with Glue170

For example, let us assume you have data in S3 that is loaded by a batch process. To make it searchable, 
you have a requirement to store it in DynamoDB. Between these processes, one requirement is to 
filter, clean, and manipulate the data with some transformations. For that requirement, AWS Glue is 
a good option for data integration with some data manipulation.

Features of AWS Glue

AWS Glue has the following features:

•	 It automatically scales based on the transformation workload.

•	 It has wider integration with other services to load data, such as S3, RDS, and DynamoDB. 
Hence, you can easily read data with these services. 

•	 You can schedule the pipeline; hence, the ETL process can be performed regularly based on 
the scheduled time.

•	 It has a data catalog feature that allows you to store metadata information for the data structure.

•	 It is able to generate code for the ETL pipeline. For example, you need to read CSV data from 
S3 to load another S3 location in JSON format. Glue automatically generates the code.

•	 There is Git integration, so you can easily pull code from Git to run the ETL pipeline.

•	 It provides a visual interface with a drag-and-drop code implementation feature.

In this section, we looked at AWS Glue's features. To understand them better, we are going to convert 
a CSV file to JSON using the AWS Glue service.

Creating an S3 sample file
In this section, we are going to create a simple S3 bucket that stores a CSV file. Let’s follow the 
instructions step by step:

1.	 Open the AWS S3 service.

2.	 Click the Create bucket button:

Figure 11.2 – Create bucket



Creating an S3 sample file 171

3.	 Give a unique bucket name and click Create bucket at the end of the panel:

Figure 11.3 – Input bucket

The bucket is created:

Figure 11.4 – Bucket list

4.	 Create an addresses.csv file on your computer with the following content and upload it 
to the S3 bucket. Please save the file in the UTF-8 format; otherwise, there might be an issue 
in some Glue versions:

id,location_id,address_1,city,state_province
1,1,2600 Middlefield Road,Redwood City,CA
2,2,24 Second Avenue,San Mateo,CA
3,3,24 Second Avenue,San Mateo,CA
4,4,24 Second Avenue,San Mateo,CA
5,5,24 Second Avenue,San Mateo,CA
6,6,800 Middle Avenue,Menlo Park,CA
7,7,500 Arbor Road,Menlo Park,CA
8,8,800 Middle Avenue,Menlo Park,CA
9,9,2510 Middlefield Road,Redwood City,CA
10,10,1044 Middlefield Road,Redwood City,CA

5.	 Click the Upload button within the bucket to upload the content:



Using Python with Glue172

Figure 11.5 – Uploading the CSV

After the upload, the bucket will include the CSV file:

Figure 11.6 – S3 content

We have successfully uploaded the file. In the next step, we will create the required permissions in 
order to create a Glue job.

Defining the permissions for a Glue job
In this section, we are going to define the required permissions for a Glue job:

1.	 Open the AWS IAM service.

2.	 Click Roles on the left-hand side:



Defining the permissions for a Glue job 173

Figure 11.7 – List of IAM services

3.	 Click Create role:

Figure 11.8 – Create role

4.	 Under Use case, select Glue:

Figure 11.9 – Selecting Glue



Using Python with Glue174

5.	 On the next page, select AmazonS3FullAccess and CloudWatchFullAccess under Policy name:

 

(a)

(b)

Figure 11.10 – S3 and CloudWatch access

6.	 Give a name for the role that we are creating, then you can click Create role to finish the 
role creation:

(a)



Creating an AWS Glue service 175

(b)

Figure 11.11 – Role name and creation

We have created the required role for an AWS Glue job. In the next step, we will create a simple AWS 
Glue job by using roles and the S3 bucket.

Creating an AWS Glue service
In this section, we are going to create an AWS Glue service. Let’s follow the instructions step by step:

1.	 Type AWS Glue in the AWS Management Console search bar and click the AWS Glue result 
that appears:

Figure 11.12 – Console search

2.	 Click Jobs on the left-hand side:

Figure 11.13 – Glue job



Using Python with Glue176

3.	 In the Create job section, select Visual with a source and target. This will create a visual 
interface and predefined script in order to convert from a CSV to a JSON file:

Figure 11.14 – Create job

4.	 After clicking Create on the right side of the panel, you will see the visual editor:

Figure 11.15 – Visual editor



Creating an AWS Glue service 177

5.	 Click S3 bucket under Data source - S3 bucket and you will see the data source details on 
the right side. It consists of some details on how to parse the source data. As you can see in 
the following figure, we set S3 location as a data path, Data format is CSV, and Delimiter 
is comma-separated:

Figure 11.16 – Data source

6.	 Select the Transform tab from the panel and you will see the following data mapping. This 
mapping is generated by Glue:

Figure 11.17 – Mapping



Using Python with Glue178

7.	 Select the Data target properties - S3 tab from the panel and fill out the panel with target 
details. Since we are converting to JSON, the format will be JSON. The target location could 
also be another S3 bucket; in this example, I will give the same S3 location for input and output:

Figure 11.18 – Data target

8.	 Select the Job details tab in order to fill out other information such as the job name and script. 
You can see these details in steps 9 and 10:

Figure 11.19 – Job details



Creating an AWS Glue service 179

9.	 Fill in the job’s Name and IAM Role fields to run the Glue job:

Figure 11.20 – Name and role

10.	 There is one more configuration left. Scroll down and fill in the Script filename and Script 
path details that Glue will create:

Figure 11.21 – Script filename and path



Using Python with Glue180

11.	 Click Save. As you can see, Glue has created a Python Spark script that is going to convert 
CSV to JSON. PySpark is a data processing library that can also be used in the AWS Glue job:

Figure 11.22 – Code generation

12.	 Click Run on the right side of the panel:

Figure 11.23 – Button panel for Run

After some time, you can check the job status from the Runs tab:

Figure 11.24 – Runs tab



Summary 181

When you check the S3 folder, the file is converted to JSON. Here is some sample output:
{"id":"1","location_id":"1","address_1":"2600 Middlefield 
Road","city":"Redwood City","state_province":"CA"}
{"id":"2","location_id":"2","address_1":"24 Second 
Avenue","city":"San Mateo","state_province":"CA"}
{"id":"3","location_id":"3","address_1":"24 Second 
Avenue","city":"San Mateo","state_province":"CA"}

Congrats! You are able to convert a CSV file to a JSON file. As you can see, AWS Glue created a 
predefined script to make some ETL jobs.

Summary
In this chapter, we learned about the AWS Glue service and how to create an ETL pipeline with AWS 
Glue. Glue is very efficient when you need to create data pipelines. One cool feature of Glue is the 
visual flow generator, which allows you to create a flow with drag and drop. It makes it easy to create 
and generate the flow, which saves lots of time. In addition to that, for people who don’t have that 
much code experience, Glue’s visual flow facilitates their tasks. Hence, if you work with data, Glue is 
one of the best services within AWS. In the next chapter, we will create a sample project within AWS 
using the Python programming language.





12
Reference Project on AWS

In this chapter, we are going to create a sample application with Python on AWS. This is the final 
chapter of the book. We have learned about different AWS services and implemented sample Python 
applications with these services. In this chapter, we will use multiple services to create an end-to-end 
Python application.

The chapter covers the following topics:

•	 What have we learned?

•	 Introducing the end-to-end Python application

•	 The coding of the Python application

What have we learned?
AWS has more than a hundred services, and we have learned about the important Python-related 
services. Let’s walk through those services:

•	 Lambda: Lambda is a cloud computing service that allows you to run Python applications. 
You don’t need to provision any server; Lambda manages the infrastructure.

•	 EC2: EC2 provides a server machine in the cloud. You can create a server and install the required 
applications, or whatever you want.

•	 Elastic Beanstalk: Elastic Beanstalk is used to deploy Python-based web applications.

•	 CloudWatch: CloudWatch is a logging and monitoring service on AWS. You can easily track 
your services.

•	 RDS: RDS is a relational database service on AWS. If you need a database, you can easily create 
it without managing the server.

•	 API Gateway: API Gateway is used to create, maintain, and publish an application 
programming interface.



Reference Project on AWS184

•	 DynamoDB: DynamoDB is a key-value database that is used to query and store billions of 
records on AWS. It is also a NoSQL database.

•	 AWS Glue: AWS Glue is a data integration service that is used for ETL.

Introducing the Python application
Let us understand the high-level architecture of the Python application:

Figure 12.1 – Project architecture

The application collects images to be stored in S3 buckets. The API gateway is used for integration 
between clients and the Lambda service. Lambda retrieves the information and puts data into S3.

The coding of the Python application
Let’s implement the application step by step.

Creating S3 buckets to store images

In this subsection, we are going to create an S3 bucket to hold images, which is uploaded via API 
Gateway. S3 will store the image and provide it whenever requested:

1.	 Create a bucket and click the Create bucket button at the bottom of the page:

Figure 12.2 – An S3 bucket



The coding of the Python application 185

2.	 We filled in the Bucket name field as python-book-image; you can use whatever you 
want. After adding the bucket name, click Create bucket to create a new bucket:

Figure 12.3 – Bucket configuration

We have created an S3 bucket.

Creating Lambda code

In this subsection, we are going to implement a Lambda code that accepts the image upload request 
from API Gateway and stores the image in the S3 bucket:

1.	 Create a Lambda function via the AWS Management Console. You can see the Function name 
field of the Lambda function and Runtime in the following screenshot within the Lambda 
creation step:

Figure 12.4 – The Lambda function



Reference Project on AWS186

2.	 Paste the following code to the Lambda code source:

import boto3
import base64
import json

def lambda_handler(event, context):
    try:
        s3 = boto3.resource('s3')
        s1 = json.dumps(event)
        data = json.loads(s1)
        image = data['image_base64']
        file_content = base64.b64decode(image)
        bucket = data['bucket']
        s3_file_name = data['s3_file_name']
        obj = s3.Object(bucket,s3_file_name)
        obj.put(Body=file_content)
        return 'Image is uploaded to ' + bucket
    except BaseException as exc:
        return exc

3.	 Once pasted, deploy the Lambda function by clicking the Deploy button:

Figure 12.5 – Lambda deployment

Let’s take a look at the code details. First, we import the json, base64, and boto3 libraries. 
The json library is used to parse data, which comes in JSON format, and boto3 is used to 
upload files to S3 as well as generate a URL for retrieving the file. In addition to that, base64 
is used to decode and encode the image.

The following lines of code are parsing the parameters and decoding the contents of the image 
to store S3. Hence, we can use the bucket name and S3 filename. The bucket name is represented 
as bucket in the code and the S3 filename is represented as s3_file_name:

        s1 = json.dumps(event)
        data = json.loads(s1)
        image = data['image_base64']



The coding of the Python application 187

        file_content = base64.b64decode(image)
        bucket = data['bucket']
        s3_file_name = data['s3_file_name']

Once we have parameters, we can use the boto3 library to upload the file from local to S3:
        obj = s3.Object(bucket,s3_file_name)
        obj.put(Body=file_content)

We have implemented the code for the application. In order to run this code, we have to create 
permissions, the steps for which are explained in the next subsection.

Creating permissions for the services

We are now going to create permissions to upload a file to S3 and call a Lambda function from 
API Gateway:

1.	 Open the IAM role and create a new role for Lambda:

Figure 12.6 – Creating a role

2.	 Select AmazonS3FullAccess and CloudWatchFullAccess from the list:

Figure 12.7 – Adding policies



Reference Project on AWS188

3.	 Click the Next button:

Figure 12.8 – Adding policies

4.	 Add the role name:

Figure 12.9 – Naming the role

5.	 Complete creating the role by clicking the Create role button:

Figure 12.10 – Create role

6.	 After creating the role, you will see the role on the list:



The coding of the Python application 189

Figure 12.11 – The role on the list

In this subsection, we have created a role to be used in the Lambda function to execute the code. Let’s 
attach the role to the Lambda function.

Attaching the role to the Lambda function

We are now going to add permissions to the Lambda function:

1.	 Open the Lambda function and click Permissions under the Configuration tab:

Figure 12.12 – Lambda permissions



Reference Project on AWS190

2.	 Edit the permissions and select LambdaPolicy from the existing role. This role was created in 
the previous subsection:

Figure 12.13 – Attaching the permission

With this configuration, Lambda is able to execute the code. It is time to start implementing API 
Gateway, which will use a Lambda function as a backed function.

Creating an API gateway to upload the image

In this step, we are going to create an API gateway to upload the image:

1.	 Open the API Gateway service and create a REST API:

Figure 12.14 – Creating a REST API

2.	 Provide a name for the REST API. We will use the name UploadImageToS3 in this subsection:

Figure 12.15 – Naming the REST API



The coding of the Python application 191

3.	 In the Actions drop-down list, click Create Method:

Figure 12.16 – Creating a method

4.	 Select POST from the available options:

Figure 12.17 – The POST method

5.	 We will use Lambda Function as the integration type and scroll down to click Save:



Reference Project on AWS192

Figure 12.18 – Lambda integration

6.	 The API is ready to use. Enable the CORS policy as we explained in Chapter 9, then click Deploy 
API in the Actions drop-down list:

Figure 12.19 – Deploying the API

7.	 We are ready to deploy the API. Add a stage name and click Deploy:



The coding of the Python application 193

Figure 12.20 – Naming the stage

8.	 In the Export tab, there are multiple alternatives to call the API. We will use Postman to call 
the API. Postman is a platform that allows you to build and test the API. For this application, 
you can also test another platform such as Swagger. Postman is an easy way to use and test an 
API. In the following subsection, we will explain how to download and use it. Since it is simpler 
in terms of installation and use, I will proceed with Postman.

Select the Export as Swagger + Postman Extensions icon; you can export and download either 
the JSON or YAML format:

Figure 12.21 – Exporting the API

This file will be used in Postman to test the API.



Reference Project on AWS194

Using Postman to test the API

We have completed the implementation. In this step, we are going to test the API via Postman:

1.	 Download and install Postman from the following website: https://www.postman.com/.

2.	 In the Postman application, click the Import button:

Figure 12.22 – Importing the API

3.	 Select the JSON file that we downloaded within API Gateway and click Open:

Figure 12.23 – Importing the JSON

https://www.postman.com/


The coding of the Python application 195

4.	 You will see confirmation of the API. Click Import as a final step:

Figure 12.24 – Import the JSON

5.	 Once you have imported the API, you are ready to call the API. In the POST section, select 
the raw request type with JSON as follows:

Figure 12.25 – The raw parameter

6.	 Paste the following JSON to call the API:

{
     "image_base64":"iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1H 
     AwCAAAAC0lEQVR42mNk+A8AAQUBAScY42YAAAAASUVORK5CYII=",
     "bucket":"python-book-image",



Reference Project on AWS196

     "s3_file_name":"image.jpeg"
}

Let’s break down the JSON file:

	� image_base64 represents the base64 code of a sample image that is going to be saved 
to the S3 bucket. You can also convert a sample image to base64 code with libraries and 
online converters.

	� The bucket parameter represents the location of the S3 bucket.

	� s3_file_name represents the name and extension of the content.

This can be seen in the following screenshot:

Figure 12.26 – Request JSON

7.	 Click the Send button in order to call the API. Once you click it, you can see the response of 
the API:

Figure 12.27 – JSON response

We have successfully called the API. Let’s check with the S3 bucket whether the image is uploaded.



The coding of the Python application 197

8.	 Open the python-book-image S3 bucket and see the uploaded jpeg file:

Figure 12.28 – S3 content

9.	 Download the file and check the sample image. When you download it, you will see a very 
small point. You can make it bigger by clicking the + magnifying glass icon on your image 
viewer to see it clearly:

Figure 12.29 – The image

Congratulations! You have successfully uploaded the image using API Gateway, Lambda, and S3 services.



Reference Project on AWS198

Summary
In this chapter, we have created an application to upload an image using API Gateway, Lambda, and 
S3. The image is converted to base64 to be stored in S3. One of the best aspects of using Lambda, 
S3, and API Gateway is that we haven’t provisioned any server. Lambda, S3, and API Gateway are 
serverless and we don’t need to manage the infrastructure. AWS manages and handles it for you.

We have finished all the chapters and learned how to use the most common AWS services with Python. 
I hope all the chapters have provided you with good knowledge about AWS. Following this, you can 
implement more complex Python projects with these services as well as use more services within AWS.



Index

A
Amazon Web Services (AWS)  3

Lambda function, creating  70, 71
API Gateway  133, 183

application programming interface 
(API), creating  134-149

architecture  133
features  134

API Gateway response types
reference link  146

Auto Scaling  43, 44
AWS account

creating  11-14
AWS account name  12
awscli  57
AWS CLI  57

EC2 machine, configuring to 
upload file from EC2  57-62

AWS Glue service  169, 170, 184
creating  175-181
features  170

AWS Lambda function
running, with AWS Toolkit  72-74

AWS Toolkit
configuring  67-69
installing, in PyCharm  65, 66

B
Boto3  30

reference link  167

C
cloud  3

advantages  4
cloud computing  19
cloud services

considerations  4
cost management  4
security  4

CloudWatch  87, 183
alarms, creating  98-104
features  87, 88
Lambda logs, collecting  88-90
Lambda logs, investigating  91-93
Log Insights  94

command-line interface (CLI)  57
configurations, Lambda  24

destinations  25
environment variable  25
ephemeral storage  25
memory  25
monitoring and operations tool  26



Index200

permissions  25
tags  25
timeout  25
triggers  25
Virtual Private Cloud (VPC)  25

Cross-Origin Resource Sharing (CORS)  134
CSV file

processing, with Python application 
on EC2 server  55-57

Customer Relationship 
Management (CRM)  25

D
database operations

with Python  124-128
destinations  25
document database  152
DynamoDB database  153, 184

creating  154-161
features  153
operations, with Python  161-167

E
EC2  41, 42, 183

purchasing options  42
EC2 instance types  42

Auto Scaling  43, 44
EC2 server

connecting to  53, 54
CSV file, processing with Python 

application  55-57
provisioning  44-53
Python application, running on  54, 55

Elastic Beanstalk  75, 183
features  75, 76
Python web application, deploying to  76-84

Elastic Compute Cloud. See  EC2
environment variable  25
ephemeral storage  25
extract, transform, and load 

(ETL) process  169

F
Flask  76

reference link  76

G
global secondary indexes  157
Glue job

permissions, defining for  172-174
Google Cloud Platform (GCP)  3

K
key-value database  152

L
Lambda  20, 41, 183

advantages  20
configurations  24-26
limitations  20
logging functionality  27
memory limit  20
metadata parser application, 

filling with  28-38
returning value  26
sample applications, executing within  21-24
skeleton  26
timeout limit  20

Lambda function
creating, in AWS  70, 71



Index 201

Lambda logs
collecting, via CloudWatch  88-90
investigating, via CloudWatch  91-93

local secondary indexes  157
logging libraries, Lambda

reference link  27
Log Insights

logs, searching  94-98

M
memory  25
metadata parser application

filling, with Lambda and S3  28-38
MySQL WorkBench

table, creating via  122, 123

N
NoSQL database  151, 184

document database  152
key-value database  152
reference link  153

P
permissions  25

defining, for Glue job  172-174
Postman  193

URL  194
used, for API testing  194-197

purchasing options, EC2  42
dedicated  42
on-demand  42
reserved  42
spot  42

PyCharm  7
download link  7
installing  7, 8
project, creating  8, 9

PySpark  180
Python  4

download link  5
for database operations  124-128
implementing, in DynamoDB 

operations  161-167
installing  5, 6

Python application  184
API gateway, creating for image 

upload  190-193
API, testing with Postman  194-197
coding  184
Lambda code, creating  185, 186
permissions, creating for services  187, 188
role, attaching to Lambda function  189, 190
running, on EC2 server  54, 55
S3 buckets, creating for storing 

images  184, 185
Python web application

creating  76
deploying, to Elastic Beanstalk  76-84

R
Relational Database Management 

System (RDBMS)  106
Relational Database Service (RDS)  183

connecting to  117-122
features  106
provisioning  107-117

RESTful  133



Index202

S
S3  28

metadata parser application, 
filling with  28-38

S3 sample file
creating  170-172

Secrets Manager  128
using  128-131

Simple Notification Service (SNS)  101
Spark  43
subnet  48
Swagger  193

T
table

creating, via MySQL Workbench  122, 123
tags  25
timeout  25
triggers  25

U
up-to-date limits, AWS Lambda quotas page

reference link  20

V
Virtual Private Cloud (VPC)  25

W
WebSocket  133



Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as 
industry leading tools to help you plan your personal development and advance your career. For more 
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over 

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files 
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you 
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range 
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com


Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Industrializing Financial Services with DevOps

https://packt.link/9781804614341

Spyridon Maniotis

ISBN: 978-1-80461-434-1

•	 Understand how a firm’s corporate strategy can be translated to a DevOps enterprise evolution

•	 Enable the pillars of a complete DevOps 360° operating model

•	 Adopt DevOps at scale and at relevance in a multi-speed context

•	 Implement proven DevOps practices that large incumbents banks follow

•	 Discover core DevOps capabilities that foster the enterprise evolution

•	 Set up DevOps CoEs, platform teams, and SRE teams

https://packt.link/9781804614341


205Other Books You May Enjoy

Realize Enterprise Architecture with AWS and SAFe

https://packt.link/9781801812078

Rajnish Harjika

ISBN: 978-1-80181-207-8

•	 Set up the core foundation of your enterprise architecture

•	 Discover how TOGAF relates to enterprise architecture

•	 Explore AWS’s EA frameworks and find out which one is the best for you

•	 Use SAFe to maximize agility in your organization

•	 Find out how to use ArchiMate to model your architecture

•	 Establish proper EA practices in your organization

•	 Migrate to the cloud with AWS and SAFe

https://packt.link/9781801812078


206

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and 
apply today. We have worked with thousands of developers and tech professionals, just like you, to 
help them share their insight with the global tech community. You can make a general application, 
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Python Essentials for AWS Cloud Developers, we’d love to hear your thoughts! 
If you purchased the book from Amazon, please click here to go straight to the 
Amazon review page for this book and share your feedback or leave a review on the site that 
you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1804610062
https://packt.link/r/1804610062


207

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? 
Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804610060

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804610060

	Cover
	Title Page
	Copyright and Credit
	Contributors
	Table of Contents
	Preface
	Part 1:
 Python Installation
and the Cloud
	Chapter 1: Using Python on AWS
	What is the cloud?
	Understanding the advantages of the cloud
	Installing Python
	Installing PyCharm
	Creating a new project
	Summary

	Chapter 2: Creating an AWS Account
	Creating an AWS account
	Summary

	Part 2:
 A Deep Dive into 
AWS with Python
	Chapter 3: Cloud Computing with Lambda
	Cloud computing
	What is Lambda?
	The advantages of Lambda
	The limitations of Lambda

	A sample application with Lambda
	Important configurations in Lambda
	A Lambda skeleton
	Lambda returning value
	Logging in Lambda
	Filing a metadata parser application with Lambda and S3
	Summary

	Chapter 4: Running Python Applications on EC2
	What is EC2?
	EC2 purchasing options
	On-Demand
	Reserved
	Spot
	Dedicated

	EC2 instance types
	Auto-scaling

	Provisioning an EC2 server
	Connecting to an EC2 server
	Running a simple Python application on an EC2 server
	Processing a CSV file with a Python application on an EC2 server
	The AWS CLI
	Summary

	Chapter 5: Running Python Applications with PyCharm
	Installing the AWS Toolkit
	Configuring the AWS Toolkit
	Creating a sample Lambda function in AWS
	Running an AWS Lambda function using the AWS Toolkit
	Summary

	Chapter 6: Deploying Python Applications on Elastic Beanstalk
	What is Elastic Beanstalk?
	Features of Elastic Beanstalk

	Creating a Python web application
	Deploying a Python web application on Elastic Beanstalk
	Summary

	Part 3:
 Useful AWS Services 
to Implement Python
	Chapter 7: Monitoring Applications via CloudWatch
	What is CloudWatch?
	Collecting Lambda logs via CloudWatch
	CloudWatch Log Insights
	CloudWatch alarms
	Summary

	Chapter 8: Database Operations with RDS
	Features of RDS
	Provisioning RDS
	Connecting to the RDS
	Creating a table in the database
	Database operations with Python
	Secrets Manager
	Summary

	Chapter 9: Creating an API in AWS
	What is API Gateway?
	Creating an API using API Gateway
	Summary

	Chapter 10: Using Python with NoSQL (DynamoDB)
	What is a NoSQL database?
	Key-value database
	Document database

	What is a DynamoDB database?
	Creating a DynamoDB database

	DynamoDB operations with Python
	Summary

	Chapter 11: Using Python with Glue
	What is the AWS Glue service?
	Features of AWS Glue

	Creating an S3 sample file
	Defining the permissions for a Glue job
	Creating an AWS Glue service
	Summary

	Chapter 12: Reference Project on AWS
	What have we learned?
	Introducing the Python application
	The coding of the Python application
	Creating S3 buckets to store images
	Creating Lambda code
	Creating permissions for the services
	Attaching the role to the Lambda function
	Creating an API gateway to upload the image
	Using Postman to test the API

	Summary

	Index
	Other Books You May Enjoy



