

Metaprogramming with Python

A programmer’s guide to writing reusable code to build
smarter applications

Sulekha AloorRavi

BIRMINGHAM—MUMBAI

Metaprogramming with Python
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Associate Group Product Manager: Gebin George
Publishing Product Manager: Shweta Bairoliya
Senior Editor: Nisha Cleetus
Content Development Editor: Yashi Gupta
Technical Editor: Pradeep Sahu
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Hemangini Bari
Production Designer: Prashant Ghare
Marketing Coordinator: Sonakshi Bubbar

First published: August 2022
Production reference: 1110822

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83855-465-1
www.packt.com

http://www.packt.com

To my husband, Dileep V, and to all my family members, for their sacrifices
and for exemplifying the power of determination during one of the toughest

times of our lives.

– Sulekha AloorRavi

C o n t r i b u t o r s

About the author
Sulekha AloorRavi is an engineer and data scientist with a wide technical breadth and deep understanding
of many technologies and systems. Her background has led her to working on the advanced Python-
based application development in the field of artificial intelligence. She enjoys solving real-world
business problems with technology and working with data science and business intelligence teams
to deliver real value.

She has 15+ years of experience in software engineering and has worked with major IT solution providers
and international banks. She graduated with an engineering degree in information technology and
later completed a postgraduate program in big data and machine learning. She also enjoys teaching
artificial intelligence and machine learning.

I want to thank the people who have been close to me and supported me,
especially my husband, Dileep, my nephew, Sathvik, and all my family

members.

About the reviewers
Florian Dahlitz has worked in the IT industry together with companies in the insurance, banking,
and public industries to realize digitalization and automation as well as AI projects. He received a
BSc in applied computer science from the Baden-Württemberg Cooperative State University and will
shortly receive his MSc in information systems engineering and management from the Karlsruhe
Institute of Technology (KIT). Florian enjoys teaching others programming in Python and helps
them raise their Python skills to the next level. He spends his free time in nature and likes to capture
landscapes with his camera.

Sri Manikanta Palakollu is a full-stack web developer with experience in Java, Python, C, C++,
databases, AEM, machine learning, and data science. He is a tech reviewer for various tech book
publishers. He has published many articles in various fields, such as data science, programming, and
cybersecurity, in publications such as HackerNoon, freeCodeCamp, and DDI. He also wrote a book
named Practical System Programming with C, Apress Publications.

Sri Manikanta has won a national-level hackathon and regularly contributes to various open source
projects. He has mentored more than 5,000 students in many national- and international-level coding
hackathons hosted by multiple organizations, colleges, and universities.

Dr. Madhavi Vaidya is an experienced and qualified academician and researcher with a demonstrated
history of working in the education management industry, skilled in various programming languages.

Dr. Madhavi has an understanding and knowledge of various programming and database technologies,
data analytics, information retrieval, software engineering, and project management. She is a strong
education professional with a Master of Computer Applications and Doctor of Philosophy in the
subject of computer science and engineering. One of the key areas of her research is big data analytics
using Hadoop MapReduce and various big data technologies.

Table of Contents

Preface

Part 1: Fundamentals – Introduction to
Object-Oriented Python and Metaprogramming

1
The Need for and Applications of Metaprogramming

Technical requirements 4
An overview of metaprogramming 4
Metaprogramming – a practical introduction 5
Metadata of the add function 7
Resolving type errors using metaprogramming 9

Understanding why we need
metaprogramming 13
Don’t Repeat Yourself 13

Exploring the applications of
metaprogramming 21
Summary 22

2
Refresher of OOP Concepts in Python

Technical requirements 24
Introducing our core example 24
Creating classes 25
Understanding objects 27
Applying methods 30
Implementing inheritance 34
Extending to multiple inheritance 40

Understanding polymorphism 42
Polymorphism within inheritance 42
Polymorphism in independent classes 45

Hiding details with abstraction 46
Protecting information with
encapsulation 50
Private members 50
Protected members 54

Summary 57

Table of Contentsviii

Part 2: Deep Dive – Building Blocks of
Metaprogramming I

3
Understanding Decorators and their Applications

Technical requirements 62
Looking into simple function
decorators 62
Understanding function decorators with an
application 64

Exchanging decorators from one
function to another 68

Applying multiple decorators to one
function 75
Exploring class decorators 77
Understanding class decorators with an
application 80

Getting to know built-in decorators 84
The static method 85
The class method 87

Summary 88

4
Working with Metaclasses

Technical requirements 89
Overview of metaclasses 90
The structure of a metaclass 91
Analyzing the arguments 92

The application of metaclasses 94
Inheriting the metaclass 99

Inheriting as a parent and metaclass 100

Switching metaclasses 101
Inheritance in metaclasses 105
Manipulating class variables 109
Summary 114

5
Understanding Introspection

Technical requirements 116
Introducing built-in functions 116

Using the built-in id function 116
Debugging unintentional
assignments using id 119

Table of Contents ix

Finding out whether an object
is callable 121
Checking whether an object has
an attribute 123
Checking whether an object is
an instance 128

Checking whether an object
is a subclass 131
Understanding the usage of property 135
Using property as a decorator 137
Summary 139

6
Implementing Reflection on Python Objects

Technical requirements 142
Introducing built-in functions used
in reflection 142
Using id to delete duplicates 142
Using callable to dynamically check
and generate methods 149

Using hasattr to set values 152
Using isinstance to modify an object 156
Using issubclass to modify a class 159
Applying property on a class 162
Summary 165

7
Understanding Generics and Typing

Technical requirements 168
What are generics? 168
How are generics connected to
metaprogramming? 168
How are generics handled in Python? 168

What happens when data types
are specified? 170
Type hints as annotations 170

Typing with explicit type
checks – approach 1 171
Creating a class to implement type checking 172
Creating a class to test type checking 174

Typing with explicit type
checks – approach 2 175
Creating a class to implement type checking 175
Creating a class to test type checking 177

Adding data types with constraints 180
Creating a simple custom data type 182
Creating a domain-specific
data type 186
Summary 191

Table of Contentsx

8
Defining Templates for Algorithms

Technical requirements 194
Explaining a sequence of operations 194
Back to our core example 194
The vegetables and dairy counter 195
Less than 10 items counter 196
The greater than 10 items counter 197
Electronics counter 198

Defining the sequence of methods 200
The vegetable counter 200

Less than 10 items counter 204
Greater than 10 items counter 205
The electronics counter 207

Identifying the common
functionalities 208
Designing templates 210
Summary 216

Part 3: Deep Dive – Building Blocks of
Metaprogramming II

9
Understanding Code through Abstract Syntax Tree

Technical requirements 220
Exploring the ast library 220
Inspecting Python code with abstract
syntax trees 221
Reviewing simple code using ast 221
Modifying simple code using ast 224

Understanding abstract syntax trees
with applications 227
Understanding the ast of a class 227
Modifying the ast of a code block by parsing 229
Modifying the ast of a code block by
transforming nodes 234

Summary 236

10
Understanding Method Resolution Order of Inheritance

Technical requirements 238
Understanding the MRO of a class 238
Understanding MRO in single inheritance 239

Understanding MRO in multiple inheritances 243
Reviewing MRO in multilevel inheritance 245

Table of Contents xi

Understanding the importance of
modifying the order of inheritance 247

Impact of unintended change of
order in inheritance 251
Summary 254

11
Creating Dynamic Objects

Technical requirements 256
Exploring type for dynamic objects 256
Creating multiple instances of
a class dynamically 260
Creating dynamic classes 263
Creating multiple dynamic classes 264

Creating dynamic attributes
and methods 265
Defining attributes dynamically 266
Defining methods dynamically 267

Summary 271

12
Applying GOF Design Patterns – Part 1

Technical requirements 273
An overview of design patterns 274
Exploring behavioral design patterns 274

Understanding the chain of responsibility 274
Learning about the command design pattern 279
The strategy design pattern 286

Summary 291

13
Applying GOF Design Patterns – Part 2

Technical requirements 293
Exploring structural design patterns 293
Understanding the bridge pattern 294
Understanding the facade pattern 298
Understanding the proxy pattern 305

Exploring creational design patterns 309
Understanding the factory method 310
Understanding the prototype method 314
Understanding the singleton pattern 317

Summary 318

Table of Contentsxii

14
Generating Code from AST

Technical requirements 319
Generating a simple class with a
template 320
Generating multiple classes
from a list 322
Generating a class with attributes 326

Generating a class with methods 329
Generating a class with an init method 329
Generating a class with a user-defined method 330

Defining a custom class factory 332
Developing a code generator to
generate a simple library 333
Summary 335

15
Implementing a Case Study

Technical requirements 337
Explaining the case study 337
Defining base classes 340
Developing a code generator library 343

Generating code 349
Designing an execution framework 353
Summary 356

16
Following Best Practices

Technical requirements 357
Following PEP 8 standards 358
Indentation 358
Neat representation 359

Writing clear comments for
debugging and reusability 361
Adding documentation strings 363
Documentation string for metaprogramming 364

Naming conventions 365
Class names 366
Variables 366
Functions and methods 367

Avoiding the reuse of names 368
Avoiding metaprogramming where
not required 371
Summary 371

Index

Other Books You May Enjoy

Preface

Effective and reusable code makes your application development process seamless and easily
maintainable. With Python, you have access to advanced metaprogramming features that you can
use to build high-performing applications.

This book starts by introducing you to the need for and applications of metaprogramming, before
navigating the fundamentals of object-oriented programming. As you progress, you will learn about
simple decorators, then work with meta classes, and later focus on introspection and reflection.

You will also delve into generics and typing, before defining templates for algorithms.

After that, you will understand your code using abstract syntax trees and explore method resolution
order. This book also shows you how to create your own dynamic objects before structuring the objects
through design patterns. Finally, you will learn about simple code-generation techniques along with
best practices and eventually build your own applications.

By the end of this learning journey, you will have the skills and confidence you need to design and
build reusable high-performing applications that can solve real-world problems.

Who this book is for
If you are an intermediate-level Python programmer looking to enhance your coding skills by developing
reusable and advanced frameworks, this book is for you. Basic knowledge of Python programming
will help you get the most out of this learning journey.

What this book covers
Chapter 1, The Need for and Applications of Metaprogramming, explains the need for one of the most
advanced features in Python and its practical applications.

Chapter 2, Refresher of OOP Concepts in Python, gives an overview of the existing OOP concepts, such
as classes, methods, and objects, along with examples.

Chapter 3, Understanding Decorators and Their Applications, covers the concept of decorators on
functions and classes with the intent to provide you with a detailed overview of decorators, how to code
them, and where to use them. This chapter also covers a detailed code walkthrough of the examples.

Prefacexiv

Chapter 4, Working with Metaclasses, covers the concept of base classes and metaclasses with the intent
to provide you with a detailed overview of metaclasses, how to code them, and where to use them.
This chapter also covers a detailed code walkthrough of the examples.

Chapter 5, Understanding Introspection, covers the concept of introspection in Python with the intent
to provide you with a detailed overview of introspection, how to code it, and where to use it. This
chapter also covers a detailed code walkthrough of the examples.

Chapter 6, Implementing Reflection on Python Objects, covers the concept of reflection in Python with
the intent to provide you with a detailed overview of reflection, how to code it, and where to use it.
This chapter also covers a detailed code walkthrough of the examples.

Chapter 7, Understanding Generics and Typing, covers the concept of generics in Python with the intent
to provide you with a detailed overview of generics, how to code them, and where to use them. This
chapter also covers a detailed code walkthrough of the examples.

Chapter 8, Defining Templates for Algorithms, covers the concept of templates in Python with the intent
to provide you with a detailed overview of templates, how to code them, and where to use them. This
chapter also covers a detailed code walkthrough of the examples.

Chapter 9, Understanding Code through Abstract Syntax Trees, covers the concept of abstract syntax
trees in Python with the intent to provide you with a detailed overview of what abstract syntax trees
are, how to code them, and where to use them. This chapter also covers a detailed code walkthrough
of the examples.

Chapter 10, Understanding Method Resolution Order of Inheritance, covers the concept of method
resolution order in Python with the intent to provide you with a detailed overview of method resolution
order, how to code it, and where to use it. This chapter also covers a detailed code walkthrough of
the examples.

Chapter 11, Creating Dynamic Objects, covers the concept of dynamic objects in Python with the
intent to provide you with a detailed overview of dynamic objects, how to code them, and where to
use them. This chapter also covers a detailed code walkthrough of the examples.

Chapter 12, Applying GOF Design Patterns – Part 1, covers the concept of behavioral design patterns in
Python with the intent to provide you with a detailed overview of behavioral design patterns and apply
them in different applications. This chapter also covers a detailed code walkthrough of the examples.

Chapter 13, Applying GOF Design Patterns – Part 2, covers the concept of structural and creational
design patterns in Python with the intent to provide you with a detailed overview of structural and
creational design patterns and apply them in different applications. This chapter also covers a detailed
code walkthrough of the examples.

Chapter 14, Code Generation, covers the concept of code generation in Python with the intent to
provide you with a detailed overview of code generation, how to develop a code generator that generates
reusable code, and where to use it. This chapter also covers a detailed code walkthrough of the examples.

To get the most out of this book xv

Chapter 15, Development of an End-to-End Case Study-Based Application, covers the implementation of
all the concepts we have learned so far by developing a case study-based application and a framework
to test it. Detailed code with classes and methods along with an explanation of the code is covered in
this chapter. Additionally, the steps on how to package and deploy the developed application into a
Python library are also covered.

Chapter 16, Following Best Practices, covers the best practices that can be followed while implementing
the concepts of metaprogramming and answers questions such as where to use and where not to use
these concepts in your Python application development life cycle.

To get the most out of this book
Please install the latest version of Python, preferably Python 3.0 or above, and install the latest version of
Anaconda from https://www.anaconda.com/products/distribution. Once installed,
open Jupyter Notebook to run the examples provided in this book.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Metaprogramming-with-Python. If there’s an update to the code, it
will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/LTQbb.

https://www.anaconda.com/products/distribution
https://github.com/PacktPublishing/Metaprogramming-with-Python
https://github.com/PacktPublishing/Metaprogramming-with-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/LTQbb

Prefacexvi

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “To explain
this further, let us look at an example where we will generate a class named VegCounter by parsing
a series of strings using the ast module.”

A block of code is set as follows:

actualclass = compile(class_tree, 'vegctr_tree', 'exec')

actualclass

When we wish to draw your attention to a particular part of a code block or show the output of a
code, the relevant lines or items are set in bold:

<code object <module> at 0x0000028AAB0D2A80, file "vegctr_
tree", line 1>

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

Share Your Thoughts xvii

Share Your Thoughts
Once you’ve read Metaprogramming with Python, we’d love to hear your thoughts! Please click here
to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1838554653
https://packt.link/r/1838554653

P a r t 1 :
F u n d a m e n t a l s –

I n t r o d u c t i o n t o O b j e c t -
O r i e n t e d P y t h o n a n d

M e t a p r o g r a m m i n g

The objective of this section is to give you an overview of the concept of metaprogramming, its
usage, and its advantages in building Python-based applications. This section also covers the basics
of object-oriented programming in Python, such as the usage of classes, functions, and objects, to
help you familiarize yourself with the basic concepts, before deep diving into the complex properties
of metaprogramming.

This part contains the following chapters:

• Chapter 1, The Need for and Applications of Metaprogramming

• Chapter 2, Refresher of OOP Concepts in Python

1
The Need for and Applications

of Metaprogramming

Metaprogramming with Python is a practical guide to learning metaprogramming in Python.

In today’s programming world, Python is considered one of the easiest languages to learn and use to
develop useful applications. Understanding the programming concepts and applying them is easier
in Python compared to any other programming language. A Python program can be written simply
by adding existing libraries and making use of their inbuilt methods. At the same time, the language
also has many powerful features that can help in developing robust libraries and applications.

This book covers the need for one of the most advanced features in Python, called metaprogramming,
along with insights into its practical applications. Understanding the concepts of metaprogramming
helps in tapping into the advanced features of Python 3 and knowing where to apply them to make
Python code more reusable.

Unlike the regular Python-based application development that follows object-oriented programming,
metaprogramming covers certain advanced concepts of Python that deal with manipulating the
programmable objects of Python, such as its classes, methods, functions, and variables. Throughout
this book, we will look at applications and examples that help in understanding these concepts in a
user-friendly manner.

In this chapter, we will provide an introduction to metaprogramming and the need to perform
metaprogramming using Python 3. We will cover the following topics:

• An overview of metaprogramming

• Understanding why we need metaprogramming

• Exploring the applications of metaprogramming

By the end of this chapter, you will have a high-level understanding of metaprogramming in Python
3, the need for using it, and know of a few practical examples where it can be applied.

The Need for and Applications of Metaprogramming4

Technical requirements
The code examples in this chapter are available on GitHub repository for this chapter at https://
github.com/PacktPublishing/Metaprogramming-with-Python/tree/
main/Chapter01.

An overview of metaprogramming
Metaprogramming is a concept widely heard of in other programming languages such as C++, Java,
.NET, and Ruby but not so widely heard of in Python. Python is a programming language that is
easy to learn for beginners to programming and efficient to implement for advanced programmers.
Therefore, it has an additional advantage in improving efficiency and optimization while developing
high-performance applications when techniques such as metaprogramming are blended with the
process of application development.

In this book, we will deep dive into the concepts of metaprogramming using Python 3.

The term meta, as the name suggests, is a process that references itself or its the high-level information.
In the context of programming, metaprogramming also describes the similar concept of a program
referencing itself or a program object referencing itself. A program referencing itself or its entity gives
data on the program or the programming entity that can be used at various levels to perform activities,
such as transformations or manipulations, in a programming language.

To understand the term meta, let’s consider the term metadata. As an example, let’s look at a Python
DataFrame. For those who are not familiar with the term DataFrame, we can use the term table. The
one shown in the following screenshot is called Employee Data:

Figure 1.1 – Employee Data table

This Employee Data table consists of employee information such as the name of the employee, employee
ID, qualification, experience, salary, and so on.

All of this information are attributes of single or multiple employees, and it is the data of employees
in an organization. So, what will the metadata be? The metadata is the data of how employee data is
stored in the Employee Data table.

https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter01

An overview of metaprogramming 5

The metadata for the Employee Data table defines how each column and its values are stored in the
table. For example, in the following screenshot, we can see metadata where Name is stored as a string
with a length of 64 characters, while Salary is stored as a Float with a length of 12 digits:

Figure 1.2 – Metadata representation for the Employee Data table

Accessing, modifying, transforming, and updating the Employee Data table using information such as
the name or ID of an employee is data manipulation, while accessing, modifying, transforming, and
updating the data type or size of the column name or employee ID or salary, is metadata manipulation.

With this understanding, let’s look at an example of metaprogramming.

Metaprogramming – a practical introduction

Any programming language that can be used to write code to perform actions consists of a basic unit
or piece of code that can be written to perform an action. This is known as a function.

If we have two numbers stored in two variables, a and b, to perform an add action, you can simply
add those two numbers by writing a function, as shown in the following code block:

def add(a,b):

 c = a + b

 return c

The Need for and Applications of Metaprogramming6

Now, if we execute this code, it can go through different scenarios, depending on the input data
provided to the add function. Let’s take a close look at each of them.

Scenario 1

Running the add function with two integers would result in two numbers being added together, as
follows:

add(1,3)

4

Scenario 2

Running the add function with two strings would result in the concatenation of two words, as follows:

add('meta','program')

metaprogram

Scenario 3

Let’s take a look at running the add function with one string and one integer:

add('meta',1)

The preceding code would result in the following error:

Figure 1.3 – TypeError

Let’s examine this error in detail.

The error in the preceding code snippet denotes a TypeError, which was caused by an attempt
to add a meta string with an integer of 1. The question that may occur to you is, can we resolve this
error using metaprogramming?

An overview of metaprogramming 7

The add function in this example denotes a piece of code or program, similar to how the Employee
Data table in Figure 1.1 denotes data. In the same line, can we identify the metadata of the add function
and use it to resolve the TypeError object returned by the following code:

add('meta',1)

Next, we will look at a practical example of metaprogramming. We will be making use of the metadata
of the add function to understand this concept.

Metadata of the add function

A function in any programming language is written to perform a set of operations on the input variables;
it will return the results as a consequence of the operations performed on them. In this section, we
will look at a simple example of a function that adds two variables. This will help us understand that
metaprogramming can be applied to functions and manipulate the behavior of the function without
modifying the algorithm of the function. We will be adding these two variables by writing an add
function. To change the results of the add function, we will be manipulating the metadata of its two
input variables, thus getting different results each time a different type of input variable is provided
to execute the function. Just like we can manipulate what a function should do by writing lines of
code to perform various operations, we can also manipulate the function itself by programming its
metadata and setting restrictions on what it should and shouldn’t do. Just like a dataset, DataFrame, or
table has data and metadata, a program or a function in Python 3 also has data and metadata. In this
example, we will be manipulating the actions that are performed by the add function by restricting its
behavior – not based on the input data provided to the function but on the type of input data provided
to the add function instead. Take a look at the following screenshot:

Figure 1.4 – Examining the data and metadata of the add function

The Need for and Applications of Metaprogramming8

The following code helps us identify the metadata for each data item in the add function:

def add(a,b):

 c = a + b

 print ("Metadata of add", type(add))

 print ("Metadata of a", type(a))

 print ("Metadata of b", type(b))

 print ("Metadata of c", type(c))

A function call to the preceding function will now return the metadata of the add function instead
of its result. Now, let’s call the add method with an integer as input:

add(1,3)

We’ll get the following output:

Metadata of add <class 'function'>

Metadata of a <class 'int'>

Metadata of b <class 'int'>

Metadata of c <class 'int'>

Similarly, we can also check the addition of strings, as follows:

add('test','string')

We’ll get the following output:

Metadata of add <class 'function'>

Metadata of a <class 'str'>

Metadata of b <class 'str'>

Metadata of c <class 'str'>

Python 3 allows us to use the metadata of the code to manipulate it so that it deviates from its actual
behavior. This will also provide customized solutions for the problems we are trying to solve.

In the preceding example, we used the type function, a method in Python that returns the class or
data type that any object or variable belongs to.

From the preceding output, it is evident that the a and b variables we passed to the add function
belong to the integer data type, and its result, c, is an integer too. The add function itself is of the
function class/type.

An overview of metaprogramming 9

Resolving type errors using metaprogramming

There are many variations on how we can resolve the type error from the add function we saw in the
previous section using metaprogramming. We will look at this in this section.

Scenario 1

The following meta-program handles the error and allows the add function to add two strings or two
integers. It also suggests that the user enters the input data with the right data types:

def add(a,b):

 if (type(a) is str and type(b) is int) or\

 (type(a) is int and type(b) is str):

 return "Please enter both input values as integers or\

 string"

 else:

 c = a + b

 return c

In the function definition of add, we have added two conditions – one to check if the type of a is
a string and the type of b is an int, or if the type of a is an int and the type of b is a string. We are
checking the combination of these input variables to handle the type mismatch error and directing
the users to provide the right data type for input variables.

The following table shows the various combinations of input variable data types and their corresponding
output or results based on the conditions set on the metadata of the add function, based on Scenario 1:

Figure 1.5 – Scenario 1 metadata combinations

The following code executes the add function to reinforce the input-output combinations explained
in Figure 1.5:

add(1,3)

4

add('meta','program')

The Need for and Applications of Metaprogramming10

metaprogram

add('meta',1)

'Please enter both input values as integers or string'

add(1,'meta')

'Please enter both input values as integers or string'

Scenario 2

The following meta-program resolves the type mismatch error by converting the mismatching data
types into string variables and performing a string concatenation. It is only logical to concatenate
a string and an integer using a + operator as we cannot perform arithmetic addition on these two
different data types. Take a look at the following program:

def add(a,b):

 if type(a) is int and type(b) is int:

 c = a + b

 return c

 elif type(a) is str and type(b) is int or\

 type(a) is int and type(b) is str or \

 type(a) is str and type(b) is str:

 c = str(a) + str(b)

 return c

 else:

 print("Please enter string or integer")

Here, no matter what input we provide for the a and b variables, they both get converted into string
variables and are then concatenated using +, whereas if both the input variables are integers, they get
added using arithmetic addition.

The following table shows the various combinations of input variable data types and their corresponding
output or results based on the conditions set on the metadata of the add function based on Scenario 2:

Figure 1.6 – Scenario 2 metadata combinations

An overview of metaprogramming 11

Executing the following code provides the combinations of output values we saw in the preceding table:

add(1343,35789)

37132

add('Meta',' Programming')

'MetaProgramming'

add('meta',157676)

'meta157676'

add(65081, 'meta')

'65081meta'

add(True, 'meta')

Please enter string or integer

Scenario 3

Now, let’s go a step further and restrict the nature of the add function itself to ensure it only performs
arithmetic addition and doesn’t accept any other data types or combinations of data types.

In the following code block, we have added another condition to perform a data type check on floating-
point values, along with data type checks for the string and integer input values.

This function only accepts numeric values as input and will return a message directing users to input
numbers so that only arithmetic addition is performed. Let’s look at the code:

def add(a,b):

 if type(a) is int and type(b) is int or\

 type(a) is float and type(b) is float or\

 type(a) is int and type(b) is float or\

 type(a) is float and type(b) is int:

 c = a + b

 return c

 else:

 return 'Please input numbers'

The Need for and Applications of Metaprogramming12

The following table shows the various combinations of input variable data types and their corresponding
output or results based on the conditions set on the metadata of the add function based on Scenario 3:

Figure 1.7 – Scenario 3 metadata combinations

Executing the following code provides the combination of output values shown in Figure 1.7, including
the addition of floating-point values:

add(15443,675683)

691126

add(54381,3.7876)

54384.7876

add(6.7754,543.76)

550.5354

add(79894,0.6568)

79894.6568

add('meta',14684)

'Please input numbers'

add(6576,'meta')

'Please input numbers'

add('meta','program')

'Please input numbers'

These are some of the approaches that can be applied to perform simple metaprogramming on a
function. However, these are not the only solutions that solve type errors or manipulate a function.
There is more than one way or approach to implementing solutions using metaprogramming.

Understanding why we need metaprogramming 13

Understanding why we need metaprogramming
Considering what we’ve learned about metaprogramming, we may be wondering the following:

“Is it always mandatory to apply metaprogramming techniques or to manipulate the metadata of the
code while developing applications using Python 3 or above?”

This is a common question that can be asked not only while developing applications using Python 3 or
above, but also when using any programming language that supports the techniques of metaprogramming
and gives developers the option to apply them in the application development process.

To answer this question, it is important to understand the flexibility of metaprogramming and
the techniques that are supported by Python to handle code manipulation, which will be covered
throughout this book.

One of the reasons to apply metaprogramming is to avoid repetition in various aspects of the Python-
based application development process. We will look at an example of this in the Don’t Repeat Yourself
section.

In other words, introducing concepts such as code generators at the meta level can save development and
execution time in functional- or domain-level programming. Domain-level programming corresponds
to writing code for a particular domain, such as finance, networking, social media, and so on.

The other need is to increase the abstraction of your code at the program metadata level rather than at
the functional level. Abstraction is the concept of information hiding in the literal sense or in terms
of object-oriented programming. Implementing abstraction at the meta-program level would help us
decide what information to provide to the next level of coding and what not to provide.

For example, developing a function template at the meta-program level would hide the function
definition at the domain or functional level, as well as limit the amount of information that goes to
the functional-level code.

Metaprogramming allows us to manipulate programs using metadata at the meta level, which helps
define how the grammar and semantics of your program should be. For example, in the Resolving
type erors using metaprogramming section, we looked at controlling the outcome of the data types of
a function by manipulating the function’s variables.

Don’t Repeat Yourself

In any application development process, thousands of lines of code are written. Don’t Repeat Yourself
is a principle defined by Andy Hunt and Dave Thomas in their book The Pragmatic Programmer.
The principle states that “Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system.”

The Need for and Applications of Metaprogramming14

While writing code, there are very high chances of writing multiple functions or methods that perform
similar kinds of repetitive tasks, and the functions or methods, in turn, might be repetitive. This leads
to redundancy in application development. The greatest disadvantage of redundancy is that when you
make any modifications at one location, the implementation, modification, or code fixing needs to
be repeated at multiple locations.

Libraries are developed with classes and methods, including object-oriented programming techniques
such as abstraction, inheritance, encapsulation, and so on, to avoid redundancy and maintain coding
standards as much as possible. Even then, there are chances of repetitive methods being within a class
that can still be simplified.

Metaprogramming can help in handling such instances by implementing approaches such as dynamic
code generation, dynamic function creation, and more. Throughout this book, we will be looking at
various approaches that help you not to repeat yourself while developing applications.

To get a taste of how we can dynamically generate code and avoid repetitions, let’s look at a simple
example where arithmetic operations are implemented as repetitive functions.

The following code consists of four basic arithmetic operations that can be performed on two numeric
variables. We will be declaring and defining four functions that add, subtract, multiply, and divide
two variables, a and b, store the result in a variable, c, and return it while the function is executed:

def add(a,b):

 c = a + b

 return c

def sub(a,b):

 c = a - b

 return c

def multiply(a,b):

 c = a * b

 return c

def divide(a,b):

 c = a / b

 return c

Understanding why we need metaprogramming 15

Each of the preceding functions needs to be called separately and variables need to be provided as
input to execute them individually, as follows:

add(2,5)

7

sub(2,5)

-3

multiply(2,5)

10

divide(2,5)

0.4

In this example, there is only one difference – the arithmetic operator that’s used in the function
definition. This code can be simplified without implementing metaprogramming, just by declaring a
new function that takes in an additional input variable operator.

Let’s learn how to avoid this repetitive function definition and simplify the logic. The following code
block defines one common function that can be reused to perform all four arithmetic operations.
Let’s start by importing Python’s inbuilt module operator, which contains methods that support
multiple arithmetic operations:

import operator as op

def arithmetic(a, b, operation):

 result = operation(a, b)

 return result

In this code snippet, we have declared three variables, including the operation in the function
arithmetic. Let’s see this in action:

arithmetic('2', '5', op.add) '25'

Executing this function using input variables would return a concatenated string, 25, that will serve
the purpose of creating the common arithmetic function to perform multiple operations. We can
look at providing various operations as input to see how this one common function serves multiple
purposes.

The Need for and Applications of Metaprogramming16

Calling this function with different arithmetic operators would resolve the need for repetitive function
definitions:

arithmetic(2, 5, op.add)

7

arithmetic(2 , 5, op.sub)

-3

arithmetic(2, 5, op.mul)

10

arithmetic(2 , 5, op.truediv)

0.4

This is one approach to resolving code redundancy and avoiding multiple function definitions. But
what if we do not want to define the function itself until and unless it is required?

To answer this question, we can implement dynamic function creation using metaprogramming.
Dynamic functions are created during the code’s runtime as and when they are required.

Although we are still in the introductory chapter, we will discuss an example of dynamic function
creation next to get a view of what kind of programming will be covered throughout this book.

Creating dynamic functions

In this section, we’ll look at an example of how dynamic functions can be created for the same set of
arithmetic operations we discussed earlier in this section.

To create an arithmetic function dynamically, we need to import the library types and the
FunctionType type. FunctionType is the type of all user-defined functions created by users
during the Python-based application development process:

from types import FunctionType

To begin this process, we will create a string variable that is a function definition of the arithmetic
function:

functionstring = '''

def arithmetic(a, b):

 op = __import__('operator')

 result = op.add(a, b)

 return result

 '''

print(functionstring)

Understanding why we need metaprogramming 17

We’ll get the following output:

 def arithmetic(a, b):

 op = __import__('operator')

 result = op.add(a, b)

 return result

Now, we will create another variable, functiontemplate, and compile 'functionstring'
into a code object. We will also set the code object to be executed using 'exec'. The compile
method is used to convert the string in Python into a code object that can be further executed using
the exec method:

functiontemplate = compile(functionstring, 'functionstring',
 'exec')

functiontemplate

<code object <module> at 0x000001E20D498660, file
"functionstring", line 1>

The code object of the function definition arithmetic will be stored in a tuple in functiontemplate
and can be accessed as follows:

functiontemplate.co_consts[0]

<code object arithmetic at 0x000001E20D4985B0, file
"functionstring", line 1>

The next step involves creating a function object using the functiontemplate code object. This
can be done using the FunctionType method, which accepts the code object and global variables
as input parameters:

dynamicfunction = FunctionType(functiontemplate.co_
consts[0], globals(),"add")

dynamicfunction

<function _main_.arithmetic(a,b)>

Upon executing, dynamicfunction, it will behave the same way as the add operation works in
the operator module’s add method in the arithmetic function:

dynamicfunction(2,5)

7

Now that we know how to create a function dynamically, we can look at extending it further to create
multiple functions, each with a different operation and a different name, dynamically.

The Need for and Applications of Metaprogramming18

To do this, we must create a list of operators and a list of function names:

operator = ['op.add','op.sub','op.mul','op.truediv','op.
pow','op.mod', 'op.gt', 'op.lt']

functionname = ['add','sub', 'multiply', 'divide', 'power',\

 'modulus', 'greaterthan', 'lesserthan']

Our earlier list of four functions only contained the add, sub, multiply, and divide operations.

The earlier functionname list contained eight functions. This is the flexibility we get while creating
dynamic functions.

For ease of use, let’s also create two input variables, a and b, to be used while executing the function:

a = 2

b = 5

In the following code, we will be creating a function called functiongenerator() that implements
metaprogramming to dynamically generate as many arithmetic functions as we want. This function
will take four input parameters – that is, the list’s functionname, operator, a, and b.

Here is the code:

def functiongenerator(functionname, operator, a,b):

 from types import FunctionType

 functionstring = []

 for i in operator:

 functionstring.append('''

def arithmetic(a, b):

 op = __import__('operator')

 result = '''+ i + '''(a, b)

 return result

 ''')

 functiontemplate = []

 for i in functionstring:

 functiontemplate.
append(compile(i, 'functionstring', 'exec'))

 dynamicfunction = []

 for i,j in zip(functiontemplate,functionname):

 dynamicfunction.append(FunctionType(i.co_consts[0], \

 globals(), j))

Understanding why we need metaprogramming 19

 functiondict = {}

 for i,j in zip(functionname,dynamicfunction):

 functiondict[i]=j

 for i in dynamicfunction:

 print (i(a,b))

 return functiondict

Within functiongenerator(), the following occurs:

• A new functionstring list is created with a function definition for each arithmetic
operator provided in the operator list.

• A new functiontemplate list is created with a code object for each function definition.

• A new dynamicfunction list is created with a function object for each code object.

• A new functiondict dictionary is created with a key-value pair of function name-function
objects.

• Functiongenerator returns the generated functions as a dictionary.

• Additionally, functiongenerator executes the dynamic functions and prints the results.

Executing this function results in the following output:

funcdict = functiongenerator(functionname, operator, a,b)

7

-3

10

0.4

32

2

False

True

funcdict

{'add': <function _main_.arithmetic(a,b)>,

 'sub': <function _main_.arithmetic(a,b)>,

 'multiply': <function _main_.arithmetic(a,b)>,

 'divide': <function _main_.arithmetic(a,b)>,

The Need for and Applications of Metaprogramming20

 'power': <function _main_.arithmetic(a,b)>,

 'modulus': <function _main_.arithmetic(a,b)>,

 'greaterthan': <function _main_.arithmetic(a,b)>,

 'lesserthan': <function _main_.arithmetic(a,b)>,}

Any specific function from the preceding generated functions can be called individually and used
further, as follows:

funcdict['divide'](a,b)

0.4

The following diagram shows the complete process of metaprogramming to develop these dynamic
functions:

Figure 1.8 – Dynamic function generator

Now that we know about dynamic function generators, let’s look at other applications of metaprogramming.

Exploring the applications of metaprogramming 21

Exploring the applications of metaprogramming
Metaprogramming can be applied to various Python-based application development solutions, such
as automated code generators, component-based or flow-based application development, domain-
specific language development, and many more.

Any code you develop, be it for a class or a method, internally applies metaprogramming, and its use
is inevitable in the Python application development process. However, applying metaprogramming
concepts explicitly is a conscious decision-making process and it purely depends on the expected
outcome of your application.

In our example of dynamic function creation, we implemented metaprogramming to avoid repetitions
and also to ensure the abstraction of the code at the meta-level.

Let’s consider a scenario where we want to develop a functional flow-based application for
non-programmers to use. For instance, the application can be a domain-specific data transformation
tool that works with high levels of abstraction and does not provide too much design or development-
based information to the end users. However, it also helps the end users dynamically create modules
that can help in their domain-specific problem solving, without the need to write any programs. In
such cases, metaprogramming comes in handy for the application development process:

Figure 1.9 – Levels of programming

We will look at the case studies and applications of metaprogramming in more detail throughout
this book.

The Need for and Applications of Metaprogramming22

Summary
In this chapter, we provide a quick overview of the programming paradigm of metaprogramming and
looked at an example of solving a type error using metaprogramming in Python 3.

We learned why there is a need to apply metaprogramming techniques in the Python application
development process. We also learned about the Don’t Repeat Yourself concept by looking at a
practical approach that explains an example implementation of dynamic function creation using
metaprogramming, emphasizing the concepts of avoiding repetition and implementing abstraction
at the meta level in the code. Finally, we provided a high-level overview of the applications of
metaprogramming that we will look at throughout this book. These skills will help us understand
how and why to apply metaprogramming in various applications.

In the next chapter, we will review the object-oriented programming concepts of Python. The next
chapter is more of a refresher on object-oriented programming concepts and is optional if you are
already familiar with those concepts.

2
Refresher of OOP Concepts in

Python

In the previous chapter, we looked at an overview of and discussed the need for metaprogramming
and its practical applications, such as using the add function. But before we deep dive into the
concepts of metaprogramming, it is important for you to have knowledge of the basic Object-Oriented
Programming (OOP) concepts available in Python. This chapter gives an overview of the existing
OOP concepts along with examples.

The main topics we will be covering in this chapter are as follows:

• Introducing our core example

• Creating classes

• Understanding objects

• Applying methods

• Implementing inheritance

• Extending to multiple inheritance

• Understanding polymorphism

• Hiding details with abstraction

• Protecting information with encapsulation

By the end of this chapter, you will be able to understand the concepts of OOP in Python along with
some practical examples.

Note
This chapter is completely optional, so if you are already familiar with the concepts of OOP,
you can proceed directly learning metaprogramming concepts.

Refresher of OOP Concepts in Python24

Technical requirements
The code examples shared in this chapter are available on GitHub under the code for this chapter
here: https://github.com/PacktPublishing/Metaprogramming-with-Python/
tree/main/Chapter02.

Introducing our core example
Throughout this chapter, we will be making use of a simulated schema named ABC Megamart to explain
the concepts of OOP. The availability of an object-oriented approach in a programming language helps
with effective reusability and abstraction of the language. Our example, ABC Megamart, is a simulated
large retail store that sells multiple products across different cities and consists of multiple branches.

Let us give a structure to different entities of this store and look at how they can fit into an organized
OOP paradigm. Our store consists of the following:

• Products

• Branches

• Invoices

• Holidays

• Shelves

• Inventory

• Sales

• Promotions/offers

• Exchange counter

• Finance

Each of these entities can have multiple attributes of data or information that are required to perform
multiple functions in the smooth and efficient management of the stores.

Let us explore how these entities and their attributes can be structured into a software model developed
by applying the concepts of OOP:

• Each of the preceding 10 entities can be connected either directly or indirectly

• Each branch will have sales and each sale will have invoices

• Each branch city will have holidays and sales can happen during holiday seasons

• Each branch (store) can have shelves and products will be placed on shelves

• Each product can have promotions or offers and promotions influence sales

https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter02

Creating classes 25

Thus, multiple entities can be linked together to develop software, maintain a database schema, or
both, depending on the application being modeled. Here is a representation of how these entities can
be linked:

Figure 2.1 – Example of how a simple linkage can be modeled to connect various entities

There is more than one way in which we can structure the previous entity model but we are not
covering all of them. This is more of a simple representation of the entity relationship at a higher level.

Using this example as the base, let us now dive into the topic of creating classes in Python.

Creating classes
A class is a collection of common attributes and methods that can be reused by creating instances of
the class. By creating a class, we define it once and reuse it multiple times, thus avoiding redundancy.

Let us look at what a class can look like. We can consider the Branch entity of ABC Megamart. A
Branch can have an ID and an Address. Address can further be detailed into Street, City,
State, and Zip code. If we consider Branch as a class, ID, Street, City, State, and Zip
code would become its attributes. All operations that can be performed by a branch will become
its methods.

Refresher of OOP Concepts in Python26

A branch can sell products, maintain invoices, maintain inventory, and so on. The generic format of
a class is as follows:

Figure 2.2 – Class

A class can be defined as follows:

class ClassName:

 '''attributes...'''

 '''methods...'''

The format of the Branch class is as follows:

Figure 2.3 – Branch class

Understanding objects 27

Similarly, a Branch class can be defined as follows:

class Branch:

 '''attributes...'''

 '''methods...'''

A Branch class can have multiple attributes and methods to perform various operations. These
attributes and methods will be initialized as NULLs and added to the class in this example, as shown here:

class Branch:

 '''attributes'''

 branch_id = None

 branch_street = None

 branch_city = None

 branch_state = None

 branch_zip = None

 '''methods'''

 def get_product(self):

 return 'product'

 def get_sales(self):

 return 'sales'

 def get_invoice(self):

 return 'invoice'

The attributes of the class can be initialized either with a specific value or as NULL and modified later
while defining an object for the class and calling it to perform various functions.

Let us look further into utilizing and modifying these class attributes by creating class objects.

Understanding objects
An object can be defined as the instance of the class. If we consider a class itself as a data type, then
an object can be defined as the variable of a class of type ClassName.

A class without an object is practically unusable. All the attributes and methods created for the class
can be effectively utilized once we create an object instance, as follows:

obj_name = ClassName()

Refresher of OOP Concepts in Python28

Considering the earlier example of a Branch class, we can create and utilize its objects as follows:

branch_albany = Branch()

Now, branch_albany is an instance of theBranch class and all its attributes can be modified for
this instance without impacting the attributes within the class definition of Branch. An instance
is more like a copy of the class that can be utilized without affecting the class itself. Let’s take the
following code as an example:

branch_albany.branch_id = 123

branch_albany.branch_street = '123 Main Street'

branch_albany.branch_city = 'Albany'

branch_albany.branch_state = 'New York'

branch_albany.branch_zip = 12084

Calling the preceding defined attributes returns the following values defined for those attributes:

branch_albany.branch_id

123

branch_albany.branch_street

'123 Main Street'

We can create another object for the Branch class and the class would still remain unaffected. We
can then assign a value to branch_id that belongs to the newly created branch object, as follows:

branchNevada = Branch()

branchNevada.branch_id

Now, branchNevada.branch_id is a variable of the thebranchNevada object and it returns
no value as it can be defined for this instance:

branchNevada.branch_id = 456

branchNevada.branch_id

456

This is not the only way to define values for class variables using an object. Alternatively, all attributes
can be added as parameters to the init method in the class definition and all values for those attributes
can be initiated while creating an object instance. To make this work, we will have to redefine the
Branch class, as follows:

class Branch:

 def __init__(self, branch_id, branch_street,

Understanding objects 29

 branch_city, branch_state, branch_zip):

 self.branch_id = branch_id

 self.branch_street = branch_street

 self.branch_city = branch_city

 self.branch_state = branch_state

 self.branch_zip = branch_zip

 def get_product(self):

 return 'product'

 def get_sales(self):

 return 'sales'

 def get_invoice(self):

 return 'invoice'

Creating an object instance for the preceding redefined class in the same method as before would
lead to an error:

object_albany = Branch()

The following is the error message we receive:

Figure 2.4 – Missing required arguments error

Yes, all the parameters we declared in the init class are missing in the earlier object instantiation.
The new object for this class needs to be created with all the values initiated, as follows:

object_albany = Branch(101,'123 Main Street',
'Albany','New York', 12084)

print (object_albany.branch_id,

 object_albany.branch_street,

 object_albany.branch_city,

 object_albany.branch_state,

 object_albany.branch_zip)

101 123 Main Street Albany New York 12084

Refresher of OOP Concepts in Python30

With this understanding, let us look at the concept of defining methods inside a class and calling
them using objects.

Applying methods
Methods are similar to the user-defined functions we create to perform various operations in a
program, the difference being methods are defined inside a class and are governed by the rules of the
class. Methods can be utilized only by calling them using an object instance created for that class.
User-defined functions, on the other hand, are global and can be called freely anywhere within the
program. A method can be as simple as printing a statement or can be a highly complex mathematical
calculation that involves a large number of parameters.

Defining methods with simple print statements inside the Branch class looks as follows:

class Branch:

 def __init__(self, branch_id, branch_street,

 branch_city, branch_state, branch_zip):

 self.branch_id = branch_id

 self.branch_street = branch_street

 self.branch_city = branch_city

 self.branch_state = branch_state

 self.branch_zip = branch_zip

 def get_product(self):

 return 'product'

 def get_sales(self):

 return 'sales'

 def get_invoice(self):

 return 'invoice'

object_albany = Branch(101,'123 Main Street',
'Albany','New York', 12084)

By calling the preceding methods from object_albany, we will get the following output:

object_albany.get_invoice()

'invoice'

object_albany.get_sales()

'sales'

object_albany.get_product()

'product'

Applying methods 31

As a variation, we can look at creating methods with parameters and calculations. For this example,
let us consider a scenario where we need to calculate the selling price for a product in a particular
branch given the tax rate for the state, the purchase price for the product, and the profit margin. After
calculating the selling price of the product, the method should return branch details, product details,
selling price, and sales tax.

To write this method, we will create three dictionary variables using Python keyword arguments
and name them **branch, **sales, and **product. We will be creating three methods to set
values for branch, sales, and product information, as follows:

class Branch:

 def set_branch(self, **branch):

 return branch

 def set_sales(self, **sales):

 return sales

 def set_product(self, **product):

 return product

The preceding code takes in all the values that can be included for the branch, sales, and product. We
will be creating an object for the Branch class:

branch_nyc = Branch()

In the following code, we will make use of the set_branch method to store the values in the
branch dictionary variable within the object of Branch:

branch_nyc.branch = branch_nyc.set_branch(branch_id = 202,

branch_street = '234 3rd Main Street',

branch_city = 'New York City',

branch_state = 'New York',

branch_zip = 11005)

We will now call the branch attribute on the branch_nyc object, as follows:

branch_nyc.branch

Executing the preceding code results in the following output, which is a dictionary of branch_id
along with its address:

{'branch_id': 202,

 'branch_street': '234 3rd Main Street',

 'branch_city': 'New York City',

Refresher of OOP Concepts in Python32

 'branch_state': 'New York',

 'branch_zip': 11005}

Similarly, in the following code, we will make use of the set_product method to store the values
in the product dictionary variable within the object of Branch:

branch_nyc.product = branch_nyc.set_product(

 product_id = 100001,

 product_name = 'Refrigerator',

 productBrand = 'Whirlpool')

We will now call the product attribute on the branch_nyc object, as follows:

branch_nyc.product

Executing the preceding code results in the following output, which is a dictionary of all product IDs
along with their details:

{'product_id': 100001,

 'product_name': 'Refrigerator',

 'productBrand': 'Whirlpool'}

Similarly, in the following code, we will make use of the set_sales method to store the values in
the sales dictionary variable within the object of Branch:

branch_nyc.sales = branch_nyc.set_sales(

 purchase_price = 300,

 profit_margin = 0.20,

 tax_rate = 0.452

)

We will now call the sales attribute on the branch_nyc object, as follows:

branch_nyc.sales

Executing the preceding code results in the following output, which is a dictionary of all sales information:

{'purchase_price': 300,

 'profit_margin': 0.2,

 'tax_rate': 0.452,

 'selling_price': 522.72}

Applying methods 33

Calculating the selling price will be done in the following two steps:

1. Calculate the price before tax by adding the purchase price with the product between the
purchase price and profit margin percentage.

2. Calculate the selling price by adding the price before tax, with the product between price before
tax and sales tax rate.

In the following code, we will include the calc_tax method to perform the preceding calculation
steps and to return the branch details along with product information and sales data:

class Branch:

 def set_branch(self, **branch):

 return branch

 def set_sales(self, **sales):

 return sales

 def set_product(self, **product):

 return product

 def calc_tax(self):

 branch = self.branch

 product = self.product

 sales = self.sales

 pricebeforetax = sales['purchase_price'] + \

 sales['purchase_price'] * sales['profit_margin']

 finalselling_price = pricebeforetax + \

 (pricebeforetax * sales['tax_rate'])

 sales['selling_price'] = finalselling_price

 return branch, product, sales

Calling the preceding function provides the following results:

branch_nyc.calc_tax()

({'branch_id': 202,

 'branch_street': '234 3rd Main Street',

 'branch_city': 'New York City',

 'branch_state': 'New York',

 'branch_zip': 11005},

 {'product_id': 100001,

 'product_name': 'Refrigerator',

 'productBrand': 'Whirlpool'},

Refresher of OOP Concepts in Python34

 {'purchase_price': 300,

 'profit_margin': 0.2,

 'tax_rate': 0.452,

 'selling_price': 522.72})

Now that we know how to apply methods, we can look further into the concept of inheritance.

Implementing inheritance
Inheritance in a literal sense means acquiring the properties of a parent by the child, and it means
the same in the case of OOP too. A new class can inherit the attributes and methods of a parent class
and it can also have its own properties and methods. The new class that inherits the parent class will
be called a child class or a subclass while the parent class can also be called a base class. The following
is a simple representation of it:

Figure 2.5 – Inheritance

Extending our latest class definition of Branch to have an individual class for NYC—since it has
multiple intra-city branches and it also has other properties of its own in addition to the Branch
class—we will be applying Inheritance to create a new subclass or child class named NYC. It has
propertiessuch as having multiple hierarchies of management. NYC has a regional manager and each
branch has its own branch manager. For NYC, we will also add an additional local tax component to
the calculation of the selling price, which varies from branch to branch.

Implementing inheritance 35

Figure 2.6 – NYC class inherits from Branch class

The general structure of inheritance while defining a child class inheriting from a parent class looks
as follows:

class Parent:

 '''attributes...'''

 '''methods...'''

class Child(Parent):

 '''attributes...'''

 '''methods...'''

Inheriting the NYC child class from the Branch parent class can be defined as follows:

class NYC(Branch):

 def set_management(self, **intercitybranch):

 return intercitybranch

 def calc_tax_nyc(self):

 branch = self.branch

 intercitybranch = self.intercitybranch

 product = self.product

 sales = self.sales

 pricebeforetax = sales['purchase_price'] + \

 sales['purchase_price'] * sales['profit_margin']

Refresher of OOP Concepts in Python36

 finalselling_price = pricebeforetax + \

 (pricebeforetax * (sales['tax_rate'] +\

 sales['local_rate']))

 sales['selling_price'] = finalselling_price

 return branch,intercitybranch, product, sales

Let us examine the proceeding code before going any further with object creation. TheNYC subclass
has its own additional attribute, intercitybranch, introduced as a parameter in its own
method, set_management. NYC also has its own method to calculate tax, calc_tax_nyc. The
calc_tax_nyc method in NYC includes an additional component, local_rate, to calculate
the selling price.

Now, let us examinewhether NYC can make use of the methods of the Branch class to set the new
values for branch, product, and sales:

branch_manhattan = NYC()

By examining the methods that are available in the branch_manhattan object, as shown in the
following screenshot, we can see that NYC can make use of the set methods defined in the Branch class:

Figure 2.7 – Set methods inherited from Branch

We can proceed further by setting attributes using all of these methods and calculating the selling
price after sales tax and local tax rate for the Manhattan branch, as follows:

branch_manhattan.branch = branch_manhattan.set_branch(branch_
id = 2021,

branch_street = '40097 5th Main Street',

Implementing inheritance 37

branch_borough = 'Manhattan',

branch_city = 'New York City',

branch_state = 'New York',

branch_zip = 11007)

We will call the branch attribute on the branch_manhattan object, as follows:

branch_manhattan.branch

{'branch_id': 2021,

 'branch_street': '40097 5th Main Street',

 'branch_borough': 'Manhattan',

 'branch_city': 'New York City',

 'branch_state': 'New York',

 'branch_zip': 11007}

In the following code, we will make use of the set_management method to store the values in the
intercitybranch dictionary variable within the object of NYC:

branch_manhattan.intercitybranch = branch_manhattan.set_
management(

 regional_manager = 'John M',

 branch_manager = 'Tom H',

 subBranch_id = '2021-01'

)

Let’s call the intercitybranch attribute on the branch_manhattan object, as follows:

branch_manhattan.intercitybranch

{'regional_manager': 'John M',

 'branch_manager': 'Tom H',

 'subBranch_id': '2021-01'}

Similarly, in the following code, we will make use of the set_product method to store the values
in the product dictionary variable within the object of NYC:

branch_manhattan.product = branch_manhattan.set_product(

 product_id = 100002,

 product_name = 'WashingMachine',

 productBrand = 'Whirlpool'

)

Refresher of OOP Concepts in Python38

We will now call the product attribute on the branch_manhattan object:

branch_manhattan.product

{'product_id': 100002,

 'product_name': 'WashingMachine',

 'productBrand': 'Whirlpool'}

Similarly, in the following code, we will make use of the set_sales method to store the values in
the sales dictionary variable within the object of NYC:

branch_manhattan.sales = branch_manhattan.set_sales(

 purchase_price = 450,

 profit_margin = 0.19,

 tax_rate = 0.4,

 local_rate = 0.055

)

We will further call the sales attribute on the branch_manhattan object, as follows:

branch_manhattan.sales

{'purchase_price': 450,

 'profit_margin': 0.19,

 'tax_rate': 0.4,

 'local_rate': 0.055}

With all the preceding attributes and their value assignments, we can calculate tax for the Manhattan
branch using the following code:

branch_manhattan.calc_tax_nyc()

({'branch_id': 2021,

 'branch_street': '40097 5th Main Street',

 'branch_borough': 'Manhattan',

 'branch_city': 'New York City',

 'branch_state': 'New York',

 'branch_zip': 11007},

 {'regional_manager': 'John M',

 'branch_manager': 'Tom H',

Implementing inheritance 39

 'subBranch_id': '2021-01'},

 {'product_id': 100002,

 'product_name': 'WashingMachine',

 'productBrand': 'Whirlpool'},

 {'purchase_price': 450,

 'profit_margin': 0.19,

 'tax_rate': 0.4,

 'local_rate': 0.055,

 'selling_price': 779.1525})

We can still make use of the calc_tax method available in the Branch class if we don’t want to
calculate the selling price based on the local tax rate:

branch_manhattan.calc_tax()

({'branch_id': 2021,

 'branch_street': '40097 5th Main Street',

 'branch_borough': 'Manhattan',

 'branch_city': 'New York City',

 'branch_state': 'New York',

 'branch_zip': 11007},

 {'product_id': 100002,

 'product_name': 'WashingMachine',

 'productBrand': 'Whirlpool'},

 {'purchase_price': 450,

 'profit_margin': 0.19,

 'tax_rate': 0.4,

 'local_rate': 0.055,

 'selling_price': 749.7})

The preceding code and its output demonstrate the reusable nature of inheritance in OOP. Now let’s
look at an extended concept called multiple inheritance.

Refresher of OOP Concepts in Python40

Extending to multiple inheritance
Python also supports multiple inheritance, where we can import a subclass from more than one base
class or parent class. In such a scenario, the child class or the subclass inherits all the attributes and
methods of the base classes. In this example, we will create two base classes, Product and Branch,
and let the Sales class inherit both these base classes. Here is a quick representation of the logic
we’d be using:

Figure 2.8 – Multiple inheritance example

In the following code, we will be creating a Product class where we will define the attributes for a
product and a get_product method to return the product details:

class Product:

 _product_id = 100902

 _product_name = 'Iphone X'

 _product_category = 'Electronics'

 _unit_price = 700

 def get_product(self):

Extending to multiple inheritance 41

 return self._product_id, self._product_name,\

 self._product_category, self._unit_price

We will also be creating another class, Branch, where we will define the attributes for a branch and
a get_branch method to return the branch details:

class Branch:

 _branch_id = 2021

 _branch_street = '40097 5th Main Street'

 _branch_borough = 'Manhattan'

 _branch_city = 'New York City'

 _branch_state = 'New York'

 _branch_zip = 11007

 def get_branch(self):

 return self._branch_id, self._branch_street, \

 self._branch_borough, self._branch_city, \

 self._branch_state, self._branch_zip

We will be implementing the concept of multiple inheritance by inheriting two parent classes, Product
and Branch, into the child class, Sales:

class Sales(Product, Branch):

 date = '08/02/2021'

 def get_sales(self):

 return self.date, Product.get_product(self), \

 Branch.get_branch(self)

In the preceding code, the Sales class inherited two methods, get_product, and get_branch,
from the Product class and the Branch class, respectively.

In the following code, we will be creating an object for the Sales class:

sales = Sales()

Calling the get_sales method from the Sales class results in returning the date attribute from
the Sales class along with the product and branch attributes from its parent classes:

sales.get_sales()

('08/02/2021',

 (100902, 'Iphone X', 'Electronics', 700),

Refresher of OOP Concepts in Python42

 (2021,

 '40097 5th Main Street',

 'Manhattan',

 'New York City',

 'New York',

 11007))

With these examples, we can proceed further to understand the concept of polymorphism, which
extends on our earlier examples of inheritance.

Understanding polymorphism
Polymorphism is the concept of the OOP paradigm where we can reuse the name of a function from
a parent class either by redefining or overriding an existing function or by creating two different
functions for two different classes with the same name and using them separately. In this section, we
will look at examples for both variations of polymorphism:

• Polymorphism within inheritance

• Polymorphism in independent classes

Polymorphism within inheritance

Let us look at the earlier example of the child class, NYC, which inherits from Branch. To calculate
the selling price along with the local tax rate for the specific branch, we created a new method within
the NYC class named calc_tax_nyc. Instead of creating a new method, we can also override the
Parent method, calc_tax, with the new calculation in the child class. This concept is polymorphism
within inheritance. Here is a representation of it:

Figure 2.9 – calc_tax method overridden in child class, NYC

Understanding polymorphism 43

To begin with, polymorphism, let us first recall the calc_tax method from the Branch class, and
then we can override it in the child class, NYC:

class Branch:

 def calc_tax(self):

 branch = self.branch

 product = self.product

 sales = self.sales

 pricebeforetax = sales['purchase_price'] + \

 sales['purchase_price'] * sales['profit_margin']

 finalselling_price = pricebeforetax + \

 (pricebeforetax * sales['tax_rate'])

 sales['selling_price'] = finalselling_price

 return branch, product, sales

We will now define the NYC class by inheriting the Branch class. This class has two methods, set_
management and calc_tax. The set_management method returns intercitybranch
as a dictionary attribute. The calc_tax method is now overridden in the child class, NYC, and it
returns branch details, intercity branch details, product details, and sales details:

class NYC(Branch):

 def set_management(self, **intercitybranch):

 return intercitybranch

 def calc_tax(self):

 branch = self.branch

 intercitybranch = self.intercitybranch

 product = self.product

 sales = self.sales

 pricebeforetax = sales['purchase_price'] + \

 sales['purchase_price'] * sales['profit_margin']

 finalselling_price = pricebeforetax + \

 (pricebeforetax * (sales['tax_rate'] + \

 sales['local_rate']))

 sales['selling_price'] = finalselling_price

 return branch,intercitybranch, product, sales

branch_manhattan = NYC()

Refresher of OOP Concepts in Python44

The following is a representation of all the methods supported by the branch_manhattan object
of the child class, NYC:

Figure 2.10 – calc_tax after polymorphism

The following code displays the results of calling the calc_tax method from branch_manhattan,
which is the method overridden from its parent class to calculate the selling price after applying the
local tax rate:

branch_manhattan.calc_tax()

({'branch_id': 2021,

 'branch_street': '40097 5th Main Street',

 'branch_borough': 'Manhattan',

 'branch_city': 'New York City',

 'branch_state': 'New York',

 'branch_zip': 11007},

 {'regional_manager': 'John M',

 'branch_manager': 'Tom H',

 'subBranch_id': '2021-01'},

 {'product_id': 100002,

 'product_name': 'WashingMachine',

 'productBrand': 'Whirlpool'},

 {'purchase_price': 450,

 'profit_margin': 0.19,

 'tax_rate': 0.4,

 'local_rate': 0.055,

 'selling_price': 779.1525})

As we can see, the calc_tax method returns the output as defined in NYC.

Understanding polymorphism 45

Polymorphism in independent classes

Polymorphism need not always happen in a parent-childpc class relationship. We can always have two
completely different classes that can have two different function definitions with the same name and
the functions can both be utilized by calling them using their class object instances.

For this example, we will be creating two independent classes, Queens and Brooklyn,, which are
two different branches of ABC Megamart. We will not associate these branches with the Branch
parent class in order to explain the concept of polymorphism in independent classes. The Brooklyn
branch stocks only Fast-Moving Consumer Goods (FMCG) products and the Queens branch stocks
only electronic products. The maintenance cost for FMCG will be higher compared to electronic
products since FMCG products will have an expiry date and they would require cold storage. We will
be creating two different functions, one for each class, with the same name, maintenance_cost,
and defining them according to the requirements of storage for each branch.

Figure 2.11 – Polymorphism of one method in independent classes

In the following code, for the Brooklyn class, we will calculate the maintenance cost only if the
product type is FMCG. We will calculate the product of quantity costing 0.25 and add 100 USD for
cold storage. If the product type is anything other than FMCG, we will notify you that the product
will not be stocked. Let’s take a look at the code:

class Brooklyn:

 def maintenance_cost(self, product_type, quantity):

 self.product_type = product_type

 self.quantity = quantity

 coldstorage_cost = 100

 if (product_type == 'FMCG'):

 maintenance_cost = self.quantity * 0.25 + \

 coldstorage_cost

 return maintenance_cost

 else:

 return "We don't stock this product"

Refresher of OOP Concepts in Python46

In the following code, for the Queens class, we will calculate maintenance cost only if the product
type is Electronics. We will calculate the product of quantity costing 0.05 since the maintenance
cost for electronics is lower and there is also no cold storage cost required here. If the product type is
anything other than Electronics, we will notify that the product will not be stocked:

class Queens:

 def maintenance_cost(self, product_type, quantity):

 self.product_type = product_type

 self.quantity = quantity

 if (product_type == 'Electronics'):

 maintenance_cost = self.quantity * 0.05

 return maintenance_cost

 else:

 return "We don't stock this product"

Please note that we have used the same function names in both the preceding examples. The next
step is to call these functions. Each of these functions can be called by creating an object for each
class and the functions can be accessed separately to perform different calculations even when they
are used within the same program:

object_brooklyn = Brooklyn()

object_queens = Queens()

object_brooklyn.maintenance_cost('FMCG', 2000)

600.0

object_queens.maintenance_cost('Electronics', 2000)

100.0

We now have an understanding of the concept of polymorphism within classes. We will next look at
abstraction, which behaves along the same lines as polymorphism but with a difference that will be
explained further in the coming section.

Hiding details with abstraction
Abstraction is a concept of OOP that helps in hiding internal details of a class or methods by providing
a reference class with declarations of classes with empty declarations of methods. These reference classes
are called abstract base and they are kind of a go-to parent class that holds the skeletal structure of
all the methods that need to be implemented if a parent class is inherited. Python has a library called
ABC that can be imported to define abstract base classes. Abstraction is more like giving a black box
to external users by not revealing all the details of various methods defined inside a class but instead
giving a reference class that can help the external users to implement the methods according to their
own requirements.

Hiding details with abstraction 47

For instance, the users of the Brooklyn branch don’t have to know the calculations that are handled by
the Queens branch to calculate their maintenance cost. The information that the users of the Brooklyn
branch need to know is that they can inherit the Branch class and implement the calculations for
maintenance costs according to their own books and they need not worry about how the Queens
branch is calculating their maintenance costs. At the same time, the Branch class, which is their
parent class, will not be able to provide one common implementation for calculating maintenance costs
since the calculations are going to vary depending on the branch. In this kind of scenario, the Branch
class can create an abstract method, maintenance_cost, and let its subclasses or child classes
implement it according to their requirements. The implementation of the maintenance_cost
method by Brooklyn will not impact the implementation of the same method by Queens; the purpose
of the implementation ends within the child class and the parent abstract class is always available for
other child classes to define their own implementation.

If this kind of implementation can be done by simply applying polymorphism to a parent class method,
then why do we need an abstract class to do the same? Let us first look at this by implementing a parent
class and its child classes without actually implementing it as an abstract class:

class Branch():

 def maintenance_cost(self):

 pass

class Brooklyn(Branch):

 def maintenance_cost(self, product_type, quantity):

 self.product_type = product_type

 self.quantity = quantity

 coldstorage_cost = 100

 if (product_type == 'FMCG'):

 maintenance_cost = self.quantity * 0.25 + \

 coldstorage_cost

 return maintenance_cost

 else:

 return "We don't stock this product"

class Queens(Branch):

 def maintenance_cost(self, product_type, quantity):

 self.product_type = product_type

 self.quantity = quantity

 if (product_type == 'Electronics'):

 maintenance_cost = self.quantity * 0.05

Refresher of OOP Concepts in Python48

 return maintenance_cost

 else:

 return "We don't stock this product"

In the preceding implementation, we have two child classes for the Branch class and we have applied
polymorphism to override the parent method, but it is still not an abstraction since we will be able
to create an object instance for the parent class and the methods of the parent class can be exposed
when an object is created.

Instead of the preceding implementation, if we make a slight modification and create Branch as an
abstract base class, let us look at what happens then. Here is the representation of what we are going for:

Figure 2.12 -– Abstract class is inherited by two classes and the methods implemented

Here, we will be importing ABC and abstractmethod from the abc library and we will create an
abstract class called Branch followed by two child classes, Brooklyn and Queens, which inherit
the parent class, Branch:

from abc import ABC,abstractmethod

class Branch(ABC):

 @abstractmethod

 def maintenance_cost(self):

 pass

Hiding details with abstraction 49

class Brooklyn(Branch):

 def maintenance_cost(self, product_type, quantity):

 self.product_type = product_type

 self.quantity = quantity

 coldstorage_cost = 100

 if (product_type == 'FMCG'):

 maintenance_cost = self.quantity * 0.25 + \

 coldstorage_cost

 return maintenance_cost

 else:

 return "We don't stock this product"

class Queens(Branch):

 def maintenance_cost(self, product_type, quantity):

 self.product_type = product_type

 self.quantity = quantity

 if (product_type == 'Electronics'):

 maintenance_cost = self.quantity * 0.05

 return maintenance_cost

 else:

 return "We don't stock this product"

We imported the ABC library, created Branch as an abstract class, and defined maintenance_cost
as an abstract method using the @abstractmethod keyword.

Let us now try to create an object of the Branch class:

branch = Branch()

It throws the following error:

Figure 2.13 – Abstract method instantiation error

Refresher of OOP Concepts in Python50

If an object is instantiated for a class, all the attributes and methods of the class can be accessed through
the object. It is possible in regular classes; whereas, in the case of an abstract class, an object cannot be
instantiated. This is why it is helpful to hide information that need not be shared with external users.

Abstraction is a method of information protection in Python or any other OOP language. We will
now look at encapsulation and more details on how information can be protected in a class.

Protecting information with encapsulation
Encapsulation is the feature of the OOP paradigm that keeps has information protected. A class
encapsulates its attributes and methods from being accessed by anyone outside the class. To ensure
more protection to the variables and methods inside a class, they can further be declared as private
or protected members. Private methods or variables can only be accessed within the class, whereas
protected methods or variables can be accessed by subclasses or child classes that inherit the parent
class or the base class. Private variables or methods are prefixed by the special character __ (double
underscore) and protected members or variables are prefixed by _ (single underscore). We will look
at some examples of private and protected class members.

Private members

In Python, the concept of a private variable does not exist as in other OOP languages. However, we can
add two underscore symbols before the name of a variable or method to signify that a specific variable
will be used as a private member within the class. It is done so that the developer can understand the
naming convention that the program treats the variable as private. Adding two underscores before the
name of a variable or method prevents name mangling by the Python interpreter to avoid collisions
with the variable during inheritance, and it is not an actual private member as in other languages.

In this example, we will define our familiar Branch class with private variables for product ID, product
name, brand, purchase price, and profit margin and create a private method to display the product
details. We will also create branch ID, regional manager, and branch manager as class variables that
are not private and look at the difference between accessing those using objects outside the class.

Protecting information with encapsulation 51

Figure 2.14 – Private members of theBranch class and its accessibility by the Branch object

Let us look at the following code to implement this example:

class Branch():

 branch_id = 2021

 regional_manager = 'John M'

 branch_manager = 'Tom H'

 __product_id = None

 __product_name = None

 __productBrand = None

 __purchase_price = None

 __profit_margin = None

 def __display_product_details(self):

 self.__product_id = 100002

 self.__product_name = 'Washing Machine'

 self.__productBrand = 'Whirlpool'

 self.__purchase_price = 450

 self.__profit_margin = 0.19

Refresher of OOP Concepts in Python52

 print('Product ID: ' + str(self.__product_id) + ',\

 Product Name: ' + self.__product_name +

 ', Product Brand: ' + self.__productBrand + ',\

 Purchase Price: ' + str(self.__purchase_price)

 + ', Profit Margin: ' + str(self.__profit_margin))

 def __init__(self):

 self.__display_product_details()

On creating an object instance for the Branch class, we will be able to look at the results of the
__display_product_details method since it is called within the class using the default
__init__ method:

branch = Branch()

The output is as follows:

Product ID: 100002, Product Name: Washing Machine, Product
Brand: Whirlpool, Purchase Price: 450, Profit Margin: 0.19

Let us try to access the branch_id variable, which is not declared as private:

branch.branch_id

The output is as follows:

2021

We are able to access this variable. Let us now try to access profit_margin, which is declared
with a prefix of double underscore:

branch.__profit_margin

It gives us the following error:

Figure 2.15 – Error accessing private variable of a class

Protecting information with encapsulation 53

We are getting an error since this variable can only be accessed within the class and not by the object
of the class due to name mangling. The same applies to the private method created to display product
details as well:

branch.__display_product_details()

We see the following:

Figure 2.16 – Error accessing private method of a class

The following screenshot shows the list of class members for the Branch class that can be accessed
by its object:

Figure 2.17 – Members accessible by the branch object after including private members

However, these private members can be accessed outside the class by creating an API to do it.

Refresher of OOP Concepts in Python54

Protected members

In this example, we will recreate the Branch class with protected variables for product ID, product
name, brand, purchase price, and profit margin and create a protected method to display the product
details. We will create a branch manager as a private variable. We will also create branch ID and regional
manager as class variables that are not protected or private and look at the difference in accessing
those using objects outside the class. We will also inherit the Branch class further to check which
members are accessible.

Figure 2.18 – Protected members of the Branch class and its accessibility by inherited subclasses

Let us look at the following code to implement this example:

class Branch():

 branch_id = 2022

 regional_manager = 'Ron D'

 __branch_manager = 'Sam J'

 _product_id = None

 _product_name = None

 _productBrand = None

Protecting information with encapsulation 55

 _purchase_price = None

 _profit_margin = None

 def _display_product_details(self):

 self._product_id = 100003

 self._product_name = 'Washing Machine'

 self._productBrand = 'Samsung'

 self._purchase_price = 430

 self._profit_margin = 0.18

 print('Product ID: ' + str(self._product_id) + \

 ', Product Name: ' + self._product_name +

 ', Product Brand: ' + self._productBrand +

 ', Purchase Price: ' + str(self._purchase_price)

 + ', Profit Margin: ' + str(self._profit_margin))

 def __init__(self):

 self._display_product_details()

branch = Branch()

The output is as follows:

Product ID: 100003, Product Name: Washing Machine, Product
Brand: Samsung, Purchase Price: 430, Profit Margin: 0.18

An object created by Branch cannot access its protected members too similar to the private members,
as we see here:

Figure 2.19 – Members accessible by branch object after including protected members

Refresher of OOP Concepts in Python56

Let us create a child class called Brooklyn that inherits the parent class, Branch. The child class
will inherit all the protected variables and methods from the parent class, whereas it will still not
inherit the private members:

class Brooklyn(Branch):

 def __init__(self):

 print(self._product_id)

 self._display_product_details()

branch_brooklyn = Brooklyn()

The output is as follows:

None

Product ID: 100003, Product Name: Washing Machine, Product
Brand: Samsung, Purchase Price: 430, Profit Margin: 0.18

The product_id variable is a protected member of the parent class and display_product_
details is also a protected member of the parent class, which is accessible by the init method
of the child class, Brooklyn.

Let us now include a private member of the parent class and check whether it can be accessed from
the child class:

class Brooklyn(Branch):

 def __init__(self):

 print(self._product_id)

 self._display_product_details()

 print(self.__branch_manager)

branch_brooklyn = Brooklyn()

The output is as follows:

None

Product ID: 100003, Product Name: Washing Machine, Product
Brand: Samsung, Purchase Price: 430, Profit Margin: 0.18

Summary 57

The following error clarifies that private members will still not be accessible by the child class:

Figure 2.20 – Error accessing private attribute of a parent class from its child class

These examples give us an understanding of how encapsulation can be implemented in Python.

Summary
In this chapter, we reviewed the concept of classes and objects and looked at examples of how to create
classes and object instances. We also learned the concept of methods and how to create methods inside
classes. Along with this, we saw how to apply inheritance and multiple inheritances to classes and apply
polymorphism to methods. We then learned how to create abstract classes and methods. Finally, we
learned the concept of encapsulation and how to restrict access to methods and variables of a class.

This chapter has provided a review of all the concepts of OOP in Python, which is going to act as the
foundation for the main topic of this book, which is metaprogramming.

In the next chapter, we will see in detail the concept of decorators and their implementation
with examples.

P a r t 2 :
D e e p D i v e – B u i l d i n g B l o c k s

o f M e t a p r o g r a m m i n g I

The objective of this section is to give you a deeper understanding of the concepts of metaprogramming
by looking at each of the building blocks in detail, along with examples of how they can be applied in
a practical scenario. This section will have chapters that follow an explanation of the concepts with an
implementation-based approach to give hands-on experience along with guided coding knowledge to
users while reading this book. The chapters in this section can be read sequentially or independently.

This part contains the following chapters:

• Chapter 3, Understanding Decorators and Their Applications

• Chapter 4, Working with Metaclasses

• Chapter 5, Understanding Introspection

• Chapter 6, Implementing Reflection on Python Objects

• Chapter 7, Understanding Generics and Typing

• Chapter 8, Defining Templates for Algorithms

3
Understanding Decorators and

their Applications

From this chapter onwards, we will start looking at various concepts that are part of metaprogramming
along with examples of how to apply them. We will first take a look at decorators and how decorators
can be implemented in Python 3.

Decorators are one of the metaprogramming concepts that deal with decorating a function without
modifying the actual function body. As the name suggests, a decorator adds additional value to a
function, a method, or a class by allowing the function to become an argument of another function
that decorates or gives more information on the function, method, or class being decorated. Decorators
can be developed on an individual user-defined function or on a method that is defined inside a class,
or they can be defined on a class itself too. Understanding decorators will help us to enhance the
reusability of functions, methods, and classes by manipulating them externally without impacting
the actual implementation.

In the previous chapter, we reviewed the concept of object-oriented programming, which serves as
the base for this chapter and the future chapters in this book.

In this chapter, we will be taking a look at the following main topics:

• Looking into simple function decorators

• Exchanging decorators from one function to another

• Applying multiple decorators to one function

• Exploring class decorators

• Getting to know built-in decorators

By the end of this chapter, you should be able to create your own decorators, implement user-defined
decorators on functions/methods and classes, and reuse built-in decorators.

Understanding Decorators and their Applications62

Technical requirements
The code examples shared in this chapter are available on GitHub under the code for this chapter here:
https://github.com/PacktPublishing/Metaprogramming-with-Python/
tree/main/Chapter03.

Looking into simple function decorators
We will now look at different types of function decorators with an example. We will continue using
the ABC Megamart example we looked at in the previous chapter. Each user-defined function in
Python can perform a different operation. But what if we want different functions to show specific
additional information, no matter what the functions perform? We can do this simply by defining
another function that decorates any function that is provided as an input.

Let’s take a look at the following steps to understand this better:

1. A function decorator can be defined as follows:

def functiondecorator(inputfunction):

 def decorator():

 print("---Decorate function with this line---

 ")

 return inputfunction()

 return decorator

This code defines a simple function decorator that takes in any input function as an argument
and adds a line above the function result that prints ---Decorate function with
this line--- as the first output line for any input function.

2. This function decorator can be called by a new user-defined function with two different syntaxes.
Let us define two simple functions:

def userfunction1():

 return "A picture is worth a thousand words "

This function returns the phrase A picture is worth a thousand words.

https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter03

Looking into simple function decorators 63

3. We will be adding one more function that returns a different phrase: Actions speak
louder than words:

def userfunction2():

 return "Actions speak louder than words"

4. In the following step, let us add a function decorator to both the preceding user-defined
functions and look at the results:

decoratedfunction1 = functiondecorator(userfunction1)

decoratedfunction2 = functiondecorator(userfunction2)

5. In the preceding code, we have reassigned the functions by adding a decorator function to
them. Executing decorated function 1 results in the following:

decoratedfunction1()

---Decorate function with this line---

'A picture is worth a thousand words'

6. Similarly, we can also execute decorated function 2:

decoratedfunction2()

---Decorate function with this line---

'Actions speak louder than words'

Both of the function results added an additional line, ---Decorate function with
this line---, that was not part of their function definition but was part of the decorator
function. These examples show the reusable nature of function decorators.

7. Let us look further into syntax 2, which is the most widely used method of adding decorators
to other functions, methods, or classes:

@functiondecorator

def userfunction1():

 return "A picture is worth a thousand words"

@functiondecorator

def userfunction2():

 return "Actions speak louder than words"

In the preceding code, while defining the user-defined functions, we added an additional line
above the definition of @functiondecorator. This line signifies that we have added a
decorator to the function in the definition stage itself. This decorator can be declared once and
reused for any relevant function that is newly defined.

Understanding Decorators and their Applications64

8. Executing the preceding code provides the same results as in the code execution of examples
with syntax 1:

userfunction1()

---Decorate function with this line---

'A picture is worth a thousand words'

userfunction2()

---Decorate function with this line---

'A picture is worth a thousand words'

Now that you understand simple function decorators, we can look into an example that demonstrates
its applications.

Understanding function decorators with an application

We can further look into an example of function decorators using a scenario from ABC Megamart. In this
example, we will create a function to add an email signature for a branch manager in a different format
for each branch. We will define two functions, manager_albany and manager_manhattan,
with different font colors and highlights.

Let’s look at this first piece of code:

def manager_albany(*args):

 BLUE = '\033[94m'

 BOLD = '\33[5m'

 SELECT = '\33[7m'

 for arg in args:

 print(BLUE + BOLD + SELECT + str(arg))

manager_albany('Ron D','ron.d@abcmegamart.
com','123 Main Street','Albany','New York', 12084)

The preceding code prints the branch manager’s email signature with white, bold, and blue
highlighted text:

Ron D

ron.d@abcmegamart.com

123 Main Street

Albany

New York

12084

Looking into simple function decorators 65

Now let’s take a quick look at this block of code:

def manager_manhattan(*args):

 GREEN = '\033[92m'

 SELECT = '\33[7m'

 for arg in args:

 print(SELECT + GREEN + str(arg))

manager_manhattan('John M', 'john.m@abcmegamart.com', '40097
5th Main Street', 'Manhattan', 'New York City', 'New
York', 11007)

This one prints the branch manager’s email signature with highlighted text:

John M

john.m@abcmegamart.com

40097 5th Main Street

Manhattan

New York City

New York

11007

Now, let us add the name of ABC Megamart in both the signatures with a yellow highlight and
modify the font color of the signature to yellow while keeping the signature highlight colors
intact. To do this, we will create a function decorator that takes in the arguments of the preceding
functions and add ABC Megamart with a black font and yellow highlight:

def signature(branch):

 def footnote(*args):

 LOGO = '\33[43m'

 print(LOGO + 'ABC Mega Mart')

 return branch(*args)

 return footnote

Understanding Decorators and their Applications66

The following figure is a representation of how an email signature decorator can be implemented on
two different signatures.

Figure 3.1 – Email signature decorator

The preceding signature decorator adds the name of ABC Megamart in both the signatures with a
yellow highlight and modifies the font color of the signature to yellow while keeping the signature
highlight colors intact.

First, let’s add @signature to manager_manhattan:

@signature

def manager_manhattan(*args):

 GREEN = '\033[92m'

 SELECT = '\33[7m'

 for arg in args:

 print(SELECT + GREEN + str(arg))

manager_manhattan('John M', 'john.m@abcmegamart.com', '40097
5th Main Street', 'Manhattan', 'New York City', 'New
York', 11007)

Looking into simple function decorators 67

This code returns the following email signature:

ABC Mega Mart

John M

john.m@abcmegamart.com

40097 5th Main Street

Manhattan

New York City

New York

11007

Now let’s add @signature to manager_albany:

@signature

def manager_albany(*args):

 BLUE = '\033[94m'

 BOLD = '\33[5m'

 SELECT = '\33[7m'

 for arg in args:

 print(BLUE + BOLD + SELECT + str(arg))

manager_albany('Ron D','ron.d@abcmegamart.
com','123 Main Street','Albany','New York', 12084)

Doing so returns the following email signature:

ABC Mega Mart

Ron D

ron.d@abcmegamart.com

123 Main Street

Albany

New York

12084

Adding a function decorator to different functions in the preceding code snippets makes them have
common functionality – in this case, the ABC Megamart title with a yellow highlight as a common
functionality while keeping the individual branch manager signatures. It’s a simple example of how
reusable decorators can be and the nature of adding metadata or additional information to a function
while keeping the actual functionality of the function intact.

Understanding Decorators and their Applications68

Now that we understand what function decorators are and how we can use them, let’s look at utilizing
decorators for different functions by exchanging them and making them more reusable.

Exchanging decorators from one function to another
We now have an understanding of what a function decorator is and how a function decorator can
be used for more than one function. We will look into further exploring the reusability concept of
decorators by creating two different decorators to serve two different purposes and later utilizing them
by interchanging the decorators between different functions.

To demonstrate this concept, we will be creating Decorator 1 for function 1 and Decorator 2 for
function 2, and then we will be exchanging them from one function to another. Let us create two
decorators to decorate two different functions.

Decorator 1 will be created to convert a date argument that is provided as a holiday date to the function
that sets holidays for the Alabama branch of ABC Megamart.

The following figure is a representation of Decorator 1 and its Function 1.

Figure 3.2 – Date converter as a decorator

Let’s take a look at the code we’d be using for our desired example:

def dateconverter(function):

 import datetime

 def decoratedate(*args):

 newargs = []

 for arg in args:

 if(isinstance(arg,datetime.date)):

 arg = arg.weekday(),arg.day,arg.month,

Exchanging decorators from one function to another 69

 arg.year

 newargs.append(arg)

 return function(*newargs)

 return decoratedate

The preceding dateconverter is a decorator function that takes in another function as an
argument. To perform this function, we have imported the datetime library that helps us to convert
the input date argument into the format of weekday, day of the month, month of the year, and year.
This decorator function internally takes in all the arguments passed to the internal function and checks
whether any of the function arguments are of the datetime data type, and if it finds a datetime
object, it will be converted to display weekday, day of the month, month of the year, and year.

This decorator also stores the converted format of the datetime object along with the rest of the
function arguments in a list and passes the list as an argument to the function that is provided as input
to this decorator. Let us now create a function to set a holiday calendar for the Alabama branch and
decorate it using this decorator function.

Function 1 is to set variables for the Alabama holiday calendar and it takes in the arguments using
the *args parameter. The first argument of this function will be set as branch_id, the second
argument as holiday_type, the third argument as holiday_name, and the fourth argument
as holiday_date. All of these input arguments are converted into a dictionary variable by the
function and it returns the dictionary with its key-value pairs denoting each value.

Here is what the code looks like using the details we just discussed:

@dateconverter

def set_holidays_alabama(*args):

 holidaydetails = {}

 holidaydetails['branch_id'] = args[0]

 holidaydetails['holiday_type'] = args[1]

 holidaydetails['holiday_name'] = args[2]

 holidaydetails['holiday_date'] = args[3]

 return holidaydetails

In the preceding code, we have started the function definition by adding the decorator
@dateconverter, which takes care of converting the holiday date into the aforementioned format.
Let us now call this function by providing the arguments required to create the holiday details dictionary:

from datetime import datetime

holiday =datetime.strptime('2021-01-18', '%Y-%m-%d')

Understanding Decorators and their Applications70

In the preceding code, we have created a datatime object and stored it in a holiday variable that
will be passed as one of the inputs to the set_holidays_alabama function:

set_holidays_alabama('id1000',

 'local',

 'Robert E. Lee's Birthday',

 holiday)

The preceding code gives us the following decorated output:

{'branch_id': 'id1000',

 'holiday_type': 'local',

 'holiday_name': 'Robert E. Lee's Birthday',

 'holiday_date': (0, 18, 1, 2021)}

We can now go ahead and create another decorator that performs a different manipulation on another
function that is provided as input.

Let’s now look at Decorator 2. The second decorator will be created to check whether the term id
is present in the input that denotes that the input value is an identifier of any kind and returns the
numerical value of the identifier by removing its prefix. This decorator will be added to a function to
set promotion details for any input product for the Malibu branch.

The following figure is a representation of Decorator 2 and Function 2:

Figure 3.3 – ID identifier as a decorator

Exchanging decorators from one function to another 71

Here is the code we’ll be using for our decorator:

def identifier(function):

 def decorateid(*args):

 newargs = []

 for arg in args:

 if(isinstance(arg,str)):

 arg = arg.lower()

 if 'id' in arg:

 arg = int(''.join(filter(str.isdigit,

 arg)))

 newargs.append(arg)

 return function(*newargs)

 return decorateid

The preceding identifier is a decorator function that takes in another function as an argument. This
decorator function also internally takes in all the arguments passed to its internal function and navigates
through each individual argument to check whether it is a string. If the argument is a string, the
decorator converts the string into lowercase and checks whether it has a substring ID. If the substring
ID is present in the variable, then all strings will be removed from the variable and only digits will
be stored in it with the rest of the function arguments in a list, passing the list as an argument to the
function that is provided as input to this decorator. Let us now create a function to set promotion
details for the Malibu branch and decorate its ID using this decorator function.

Function 2 is to set variables for the product promotion details of the Malibu branch and it takes
in the arguments using *args similar to the set_holidays_alabama function. The first
argument of this function will be set as branch_id, the second argument as product_id,
the third argument as promotion_date, the fourth as promotion_type, and the fifth as
promotion_reason. All of these input arguments are also converted into a dictionary variable
by the function and it returns the dictionary with its key-value pairs denoting each value. There are
two id arguments in this function that get decorated by the identifier.

Here is what the code looks like using the details we just discussed:

@identifier

def set_promotion_malibu(*args):

 promotiondetails = {}

 promotiondetails['branch_id'] = args[0]

 promotiondetails['product_id'] = args[1]

 promotiondetails['product_name'] = args[2]

Understanding Decorators and their Applications72

 promotiondetails['promotion_date'] = args[3]

 promotiondetails['promotion_type'] = args[4]

 promotiondetails['promotion_reason'] = args[5]

 return promotiondetails

In the preceding code, we have started the function definition by adding the decorator @identifier,
which takes care of removing the prefixes from the id variable. Let us now call this function by
providing the arguments required to create the product promotion details dictionary:

from datetime import datetime

promotion_date = datetime.strptime('2020-12-23', '%Y-%m-%d')

Here, we have created a datatime object and stored it in a promotion date, which will be passed
as one of the inputs to the set_promotion_malibu function, but this date variable will stay
in the same format as defined:

set_promotion_
malibu('Id23400','ProdID201','PlumCake',promotion_
date,'Buy1Get1','Christmas')

The preceding code gives us the decorated output that follows:

{'branch_id': 23400,

 'product_id': 201,

 'product_name': 'plumcake',

 'promotion_date': datetime.datetime(2020, 12, 23, 0, 0),

 'promotion_type': 'buy1get1',

 'promotion_reason': 'christmas'}

We now have two decorators and two different functions decorated by them. To check whether these
decorators can be exchanged, let us now redefine these functions by swapping the decorators using
the following code:

@identifier

def set_holidays_alabama(*args):

 holidaydetails = {}

 holidaydetails['branch_id'] = args[0]

 holidaydetails['holiday_type'] = args[1]

 holidaydetails['holiday_name'] = args[2]

Exchanging decorators from one function to another 73

 holidaydetails['holiday_date'] = args[3]

 return holidaydetails

@dateconverter

def set_promotion_malibu(*args):

 promotiondetails = {}

 promotiondetails['branch_id'] = args[0]

 promotiondetails['product_id'] = args[1]

 promotiondetails['product_name'] = args[2]

 promotiondetails['promotion_date'] = args[3]

 promotiondetails['promotion_type'] = args[4]

 promotiondetails['promotion_reason'] = args[5]

 return promotiondetails

Let us input the required arguments and execute the preceding function, set_holidays_alabama:

from datetime import datetime

holiday =datetime.strptime('2021-01-18', '%Y-%m-%d')

set_holidays_alabama('id1000',

 'local',

 'Robert E. Lee's Birthday',

 holiday)

This code gives us the decorated output as follows:

{'branch_id': 1000,

 'holiday_type': 'local',

 'holiday_name': 'robert e. lee's birthday',

 'holiday_date': datetime.datetime(2021, 1, 18, 0, 0)}

In the preceding output, the identifier is applied on the branch ID and there is no change to the holiday
date. Similarly, let us execute the following code:

promotion_date = datetime.strptime('2020-12-23', '%Y-%m-%d')

set_promotion_
malibu('Id23400','ProdID201','PlumCake',promotion_
date,'Buy1Get1','Christmas')

Understanding Decorators and their Applications74

This code gives us the decorated output that follows:

{'branch_id': 'Id23400',

 'product_id': 'ProdID201',

 'product_name': 'PlumCake',

 'promotion_date': (2, 23, 12, 2020),

 'promotion_type': 'Buy1Get1',

 'promotion_reason': 'Christmas'}

The following figure is a representation of how the two decorators will be exchanged or swapped
between their functions:

Figure 3.4 – Exchange decorators

Let us reuse the previous examples to look further into the concept of applying multiple decorators
to one function.

Applying multiple decorators to one function 75

Applying multiple decorators to one function
So far, we have understood that decorators can be created and added to functions to perform
metaprogramming on the functions. We also understand that decorators can be reused and exchanged
for different functions. We have also understood that decorators add decoration or value to a function
from outside of the function body and help in altering the function with additional information. What
if we want the function to perform two different actions through decorators and at the same time do
not want the decorators to become more specific? Can we create two or more different decorators and
apply them to a single function? Yes, we can. We will now look at decorating a function with more
than one decorator and understand how it works.

For this example, let us reuse the decorators dateconverter and identifier. To understand
this concept, we can reuse one of the previously declared functions, set_promotion_malibu,
which has both a datetime object as an input argument – promotion date – and two ID values as
input arguments – branch_id and product_id.

The following figure is a representation of adding two decorators to a function:

Figure 3.5 – Multiple decorators for one function

Understanding Decorators and their Applications76

The following code puts our example into action:

@identifier

@dateconverter

def set_promotion_malibu(*args):

 promotiondetails = {}

 promotiondetails['branch_id'] = args[0]

 promotiondetails['product_id'] = args[1]

 promotiondetails['product_name'] = args[2]

 promotiondetails['promotion_date'] = args[3]

 promotiondetails['promotion_type'] = args[4]

 promotiondetails['promotion_reason'] = args[5]

 return promotiondetails

In this code, we have added both decorators to the set_promotion_malibu function:

promotion_date = datetime.strptime('2021-01-01', '%Y-%m-%d')

set_promotion_
malibu('Id23400','ProdID203','Walnut Cake',promotion_
date,'Buy3Get1','New Year')

Executing the preceding code results in the application of both decorators on the input values:

{'branch_id': 23400,

 'product_id': 203,

 'product_name': 'walnut cake',

 'promotion_date': (4, 1, 1, 2021),

 'promotion_type': 'buy3get1',

 'promotion_reason': 'new year'}

From the preceding output, we can see that @identifier is applied on branch_id and
product_id. At the same time, @dateconverter is applied on the promotion_date.
Let us now explore other variants of decorators.

Exploring class decorators 77

Exploring class decorators
A class decorator is similar to the function decorator that we discussed earlier. Class decorators can
be used to decorate, modify behavior, or debug a function, similar to a function decorator, which
adds behavior to a function without actually modifying the function itself. A class decorator can be
defined as a class by using two of its default or built-in methods: __init__ and __call__. Any
variable initialized as part of the __init__ function of a class while creating an object instance of
the class becomes a variable of the class itself. Similarly, the __call__ function of a class returns
a function object. If we want to use a class as a decorator, we need to make use of the combination of
these two built-in methods.

Let us look at what happens if we don’t use the call method. Look at the following piece of code:

class classdecorator:

 def __init__(self,inputfunction):

 self.inputfunction = inputfunction

 def decorator(self):

 result = self.inputfunction()

 resultdecorator = ' decorated by a class decorator'

 return result + resultdecorator

Here, we have created a class named classdecorator and have added the init method to
take a function as input. We have also created a decorator method that stores the result of the
initialized function variable and adds a decorator string decorated by a class decorator to the input
function result.

Let us now create an input function to test the preceding classdecorator:

@classdecorator

def inputfunction():

 return 'This is input function'

Adding this class decorator should decorate the input function. Let us check what happens when we
call this input function:

inputfunction()

Understanding Decorators and their Applications78

We get the following type error, which states classdecorator is not callable:

Figure 3.6 – Error due to an incorrect definition of the class decorator

We are receiving this error since we did not use the right method to make the class behave as a
decorator. The decorator method in the preceding code returns a variable but not a function. To
make this class work as a decorator, we need to redefine the class as follows:

class classdecorator:

 def __init__(self,inputfunction):

 self.inputfunction = inputfunction

 def __call__(self):

 result = self.inputfunction()

 resultdecorator = ' decorated by a class decorator'

 return result + resultdecorator

Here, we have replaced the decorator method with the built-in method __call__. Let us now
redefine the input function and see what happens:

@classdecorator

def inputfunction():

 return 'This is input function'

We can call the preceding function and check the behavior of this class decorator:

inputfunction()

'This is input function decorated by a class decorator'

Exploring class decorators 79

The following figure is a simple representation that shows an incorrect way of creating a class decorator:

Figure 3.7 – Wrong method for creating a class decorator

Here is the correct way of creating it:

Figure 3.8 – Correct method for creating a class decorator

Now that you have a better understanding of class decorator, we can proceed to analyze the application
of class decorator on ABC Megamart.

Understanding Decorators and their Applications80

Understanding class decorators with an application

We will look into a detailed example of the class decorator by applying it to a scenario on ABC Megamart.
Let us consider a scenario where ABC Megamart has a separate class created for each branch. Let us
also assume each class has its own method, buy_product, to calculate a product’s sales price by
specifically applying the sales tax rate for the specific branch and product being purchased. When the
mart wants to apply seasonal promotions that involve eight generic promotion types. Each branch
class need not have a promotion calculation method to be applied to its calculated sales price. Instead,
we can create a class decorator that can be applied to the buy_product method of each branch
and the class decorator will, in turn, calculate the final sales price by applying promotion discounts
on the actual sales price calculated by the branch.

We will create two classes and add the buy_product method to each class to calculate the sales
price without adding a class decorator. This is to understand the return values of the actual methods:

class Alabama():

 def buy_product(self,product,unitprice,quantity,

 promotion_type):

 alabamataxrate = 0.0522

 initialprice = unitprice*quantity

 salesprice = initialprice +

 initialprice*alabamataxrate

 return salesprice, product,promotion_type

Creating an object instance for the previous class and calling the method with its arguments returns
the following result:

alb1 = Alabama()

alb1.buy_product('Samsung-Refrigerator',200,1,'20%Off')

(210.44, 'Samsung-Refrigerator', '20%Off')

Similarly, we can define the class Arizona and add the method buy_product and execute the
following code to verify its return value without a decorator:

class Arizona():

 def buy_product(self,product,unitprice,quantity,

 promotion_type):

 arizonataxrate = 0.028

Exploring class decorators 81

 initialprice = unitprice*quantity

 salesprice = initialprice +

 initialprice*arizonataxrate

 return salesprice, product,promotion_type

arz1 = Arizona()

arz1.buy_product('Oreo-Cookies',0.5,250,'Buy2Get1')

(128.5, 'Oreo-Cookies', 'Buy2Get1')

The preceding buy_product method takes in product name, unit price, quantity, and promotion
type as input and calculates the initial price by multiplying the unit price by the quantity of a product.
It further calculates the sales price by adding the product of the initial price to the state tax rate along
with the initial price calculated in the previous step. Finally, the method returns the sales price,
product name, and promotion type. The sales tax rates are different for each state and the sales price
calculation differs according to the sales tax rates.

We can now create a class decorator to apply a promotional discount on the sales price and calculate
the final sales price for a product by including the offer rate or discount rate.

In the following code, let us define the class applypromotion and add two built-in methods
required to make the class behave as a decorator:

• The __init__ method: This is a function or method as an input variable in this scenario

• The __call__ method: This method accepts multiple input arguments, which are also the
arguments of the function or method being decorated

The input arguments are applied to the function or method being decorated and it further applies
various discount rates to the sales price resulting from the input function by checking for eight different
promotion types, recalculating the sales price, and storing it as the final sales price, as follows:

class applypromotion:

 def __init__(self, inputfunction):

 self.inputfunction = inputfunction

 def __call__(self,*arg):

 salesprice, product,promotion_type =

 self.inputfunction(arg[0],arg[1],arg[2],arg[3])

 if (promotion_type == 'Buy1Get1'):

 finalsalesprice = salesprice * 1/2

Understanding Decorators and their Applications82

 elif (promotion_type == 'Buy2Get1'):

 finalsalesprice = salesprice * 2/3

 elif (promotion_type == 'Buy3Get1'):

 finalsalesprice = salesprice * 3/4

 elif (promotion_type == '20%Off'):

 finalsalesprice = salesprice - salesprice * 0.2

 elif (promotion_type == '30%Off'):

 finalsalesprice = salesprice - salesprice * 0.3

 elif (promotion_type == '40%Off'):

 finalsalesprice = salesprice - salesprice * 0.4

 elif (promotion_type == '50%Off'):

 finalsalesprice = salesprice - salesprice * 0.5

 else:

 finalsalesprice = salesprice

 return "Price of - " + product + ": " +
'$' + str(finalsalesprice)

The class decorator to @applypromotion is now ready to be further used by other functions or
methods. We can now apply this decorator to the buy_product method from the class Alabama:

class Alabama():

 @applypromotion

 def buy_product(product,unitprice,quantity,promotion_type):

 alabamataxrate = 0.0522

 initialprice = unitprice*quantity

 salesprice = initialprice + initialprice*alabamataxrate

 return salesprice, product,promotion_type

Creating an object instance for the preceding code and calling its method works as follows:

alb = Alabama()

alb.buy_product('Samsung-Refrigerator',200,1,'20%Off')

'Price of - Samsung-Refrigerator: $168.352'

Exploring class decorators 83

Similarly, we can also redefine the class Arizona and its method buy_product by adding the
class decorator as follows:

class Arizona():

 @applypromotion

 def buy_product(product,unitprice,quantity,

 promotion_type):

 arizonataxrate = 0.028

 initialprice = unitprice*quantity

 salesprice = initialprice +

 initialprice*arizonataxrate

 return salesprice, product,promotion_type

Creating an object instance for the preceding code and calling its method works as follows:

arz = Arizona()

arz.buy_product('Oreo-Cookies',0.5,250,'Buy2Get1')

'Price of - Oreo-Cookies: $85.66666666666667'

Let us review the results of buy_product methods from Arizona before adding the decorator
and after adding the decorator. The preceding code has the output after adding the decorator and the
following code has the output before adding the decorator:

arz1.buy_product('Oreo-Cookies',0.5,250,'Buy2Get1')

(128.5, 'Oreo-Cookies', 'Buy2Get1')

After adding the applypromotion decorator, the sales price for 250 packs of cookies is at a
discounted rate of $85.66 compared to the price of $128.50 before applying the promotion. The
store need not always add a promotion on a product and the buy_product method can reuse
the applypromotion decorator only when it needs to sell a product on promotion, thus making
the decorator externally alter the behavior of the class while keeping the buy_product method’s
actual functionality intact.

Understanding Decorators and their Applications84

The simple representation of this example is as follows:

Figure 3.9 – Class decorator to apply promotional discounts on products

Having learned how to apply class decorators to methods or functions from other classes, we will
proceed further to look at some of the built-in decorators available in Python.

Getting to know built-in decorators
Now, the question is, do we have to always create user-defined or custom decorators to be applied to
classes and methods, or do we have some pre-defined decorators that can be used for specific purposes.

In addition to the user-defined decorators that we’ve looked at throughout this chapter, Python has
its own built-in decorators, such as @staticmethod and @classmethod, that can be directly
applied to methods. These decorators add certain important functionalities to methods and classes
during the process of the class definition itself. We will be looking at these two decorators in detail,
as follows.

Getting to know built-in decorators 85

The static method

The static method – @staticmethod – is a decorator that takes in a regular Python function as
an input argument and converts it into a static method. Static methods can be created inside a class
but will not use the implicit first argument of the class object instance usually denoted as an argument
named self like the other instance-based methods.

To understand this concept, let us first create the class Alabama and add a function to the class
buy_product without self as an argument and without the static method decorator and check
its behavior:

class Alabama:

 def buy_product(product,unitprice,quantity,promotion_type):

 alabamataxrate = 0.0522

 initialprice = unitprice*quantity

 salesprice = initialprice +

 initialprice*alabamataxrate

 return salesprice, product,promotion_type

Here we have defined the class Alabama with the function buy_product. Let us now create an
object instance and call the function inside the class to check its behavior:

alb = Alabama()

alb.buy_product('Samsung-Refrigerator',200,1,'20%Off')

Executing this code leads to the following error:

Figure 3.10 – Error on calling a function without static method and self

Rerunning the preceding function without creating an object works as follows:

Alabama.buy_product('Samsung-Refrigerator',200,1,'20%Off')

(210.44, 'Samsung-Refrigerator', '20%Off')

Understanding Decorators and their Applications86

To avoid the preceding error and to call a function inside a class with or without creating an object,
we can convert the function into a static method by adding the @staticmethod decorator to it.
We can now look at how it works:

class Alabama:

 @staticmethod

 def buy_product(product,unitprice,quantity,

 promotion_type):

 alabamataxrate = 0.0522

 initialprice = unitprice*quantity

 salesprice = initialprice +

 initialprice*alabamataxrate

 return salesprice, product,promotion_type

 def another_method(self):

 return "This method needs an object"

We have added an additional method named another_method, which can only be called using
an object instance. Let us now create an object for the class and call both the preceding methods:

albstatic = Alabama()

albstatic.buy_product('Samsung-Refrigerator',200,1,'20%Off')

(210.44, 'Samsung-Refrigerator', '20%Off')

albstatic.another_method()

'This method needs an object'

Both the methods, static and instance, can be called using the object of the class. At the same
time, the static method can also be called using the class itself without creating an object:

Alabama.buy_product('Samsung-Refrigerator',200,1,'20%Off')

(210.44, 'Samsung-Refrigerator', '20%Off')

Alabama.another_method()

Getting to know built-in decorators 87

Executing this code leads to the following error:

Figure 3.11 – Error on calling an instance method using its class

The static method generated the expected output when called using its class, while the instance
method did not run. This is the advantage of using a static method to convert a function into a
method inside a class.

The class method

The class method – @classmethod – is also a built-in decorator similar to @staticmethod,
and this decorator also converts a function into a static method inside a class. @staticmethod
does not have an implicit argument of the object to a class whereas @classmethod has an implicit
argument, cls, which gets added to the function, while the @classmethod decorator is added
to it as seen in the following code block:

class Alabama:

 @classmethod

 def buy_product(cls,product,unitprice,quantity,

 promotion_type):

 alabamataxrate = 0.0522

 initialprice = unitprice*quantity

 salesprice = initialprice +

 initialprice*alabamataxrate

 return cls,salesprice, product,promotion_type

This function can be called either with or without creating a class instance. We can look at both in
the following code:

Alabama.buy_product('Samsung-Refrigerator',200,1,'20%Off')

(__main__.Alabama, 210.44, 'Samsung-Refrigerator', '20%Off')

alb = Alabama()

alb.buy_product('Samsung-Refrigerator',200,1,'20%Off')

(__main__.Alabama, 210.44, 'Samsung-Refrigerator', '20%Off')

Understanding Decorators and their Applications88

In the preceding code, we can see that a function converted by @classmethod into a class method
can be called directly using the class or by creating an object of the class.

These are a few of the built-in decorators and there are more such decorators available in Python 3
that can be explored and reused.

Summary
In this chapter, we have learned how to create simple decorators and how to apply decorators with
examples. We saw how to exchange decorators from one function to another along with how to add
multiple decorators to one function.

We now understand the concept of class decorators and have looked at an example of how to apply
them. And finally, we learned how to use some built-in decorators such as @staticmethod and
@classmethod.

All of these concepts are part of Python metaprogramming and they are used to change the behavior
of a function or a method externally and without impacting the internal functionalities of the function
or method.

In the next chapter, we will be looking at the concept of meta classes with different examples.

4
Working with Metaclasses

Metaclasses, the focal point of this chapter, can manipulate the way a new class is created by decorating
the arguments without impacting the actual class definition itself. Metaclasses are not very frequently
used in Python application development unless there is a need for more advanced implementations
of frameworks or APIs that need features such as manipulation of classes or dynamic class generation
and so on.

In the previous chapter, we looked at the concept of decorators with some examples. Understanding
decorators helps in following metaclasses with more ease since both decorators and metaclasses deal
with metaprogramming on Python 3 program objects by manipulating them externally.

In this chapter, we will cover the following main topics:

• Overview of metaclasses

• The structure of a metaclass

• The application of metaclasses

• Switching metaclasses

• Inheritance in metaclasses

• Manipulating class variables

By the end of this chapter, you should be able to create your own metaclasses, implement inheritance
on metaclasses, and reuse ones that are already created.

Technical requirements
The code examples shared in this chapter are available on GitHub under the code for this chapter here:
https://github.com/PacktPublishing/Metaprogramming-with-Python/
tree/main/Chapter04.

https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter04
https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter04

Working with Metaclasses90

Overview of metaclasses
Metaclasses are classes that can be created separately with certain features that can alter the behavior
of other classes or can help in dynamically manufacturing new classes. The base class of all metaclasses
is the type class and the object or instance of a metaclass will be a class. Any custom metaclass that
we create will be inherited from the type class. type is the class of all data types in Python as well
and everything else in Python 3 is an object of the type class. We can test this statement by checking
the type of different program objects in Python, as follows:

class TestForType:

 pass

type(TestForType)

type

type(int)

type

type(str)

type

type(object)

type

type(float)

type

type(list)

type

In this chapter, we will look at some examples of how to use these metaclasses, how to implement
them, and how to reuse them. We will continue with our ABC Megamart examples to proceed further
with the understanding of metaclasses.

The structure of a metaclass 91

The structure of a metaclass
A metaclass is like any other class, but it has the ability to alter the behavior of other classes that take
it as their metaclass. Understanding the structure of a metaclass helps us create our own customized
metaclasses, which can be used further in manipulating new classes. The superclass of a metaclass
is the type itself. When we create a class with type as its superclass and override the __new__
method to manipulate the metadata of a class it returns, then we have created a metaclass. Let’s take
a closer look with the help of some simple examples.

The __new__ method takes cls as its first argument, which is the class itself. The members of the
class that has cls as its first argument can be accessed by the class name and the rest of the arguments
as other metadata of the class, as seen here:

class ExampleMetaClass1(type):

 def __new__(classitself, *args):

 print('class itself: ', classitself)

 print('Others: ', args)

 return type.__new__(classitself, *args)

In the preceding code, we have created the class ExampleMetaClass1, which inherits the class
type and overrides the __new__ method to print the class instance and its other arguments.

Let’s now create the class ExampleClass1 and add the preceding metaclass to it:

class ExampleClass1(metaclass = ExampleMetaClass1):

 int1 = 123

 str1 = 'test'

 def test():

 print('test')

Running the preceding code displays the following result:

class itself: <class '__main__.ExampleMetaClass1'>

Others: ('ExampleClass1', (), {'__module__': '__main__',
'__qualname__': 'ExampleClass1', 'int1': 123, 'str1': 'test',
'test': <function ExampleClass1.test at 0x00000194A377E1F0>})

Working with Metaclasses92

The first part of this output is the class instance <class '__main__.ExampleMetaClass1'>
and the remaining arguments are the class name and the arguments of the class. A simple representation
of the metaclass definition is as follows:

Figure 4.1 – Example metaclass definition

Let’s dive into a little more detail with another example in our next subsection.

Analyzing the arguments

We now will dig deeper into the arguments of the __new__ method of a metaclass. Analyzing the
arguments of a metaclass will provide clarity on what information of a class can be customized using
a metaclass. The data that can be manipulated in the classes that adds a metaclass while defining is
represented in the following figure:

Figure 4.2 – Example metaclass with more arguments

The structure of a metaclass 93

Let’s now follow these steps to see how the behavior of arguments affects classes:

1. First, look at the following code where we have all arguments of a metaclass segregated—class
instance; class name; all parent classes, superclasses, or base classes of the class; and all variables
and methods created within the class:

class ExampleMetaClass2(type):

 def __new__(classitself, classname, baseclasses,

 attributes):

 print('class itself: ', classitself)

 print('class name: ', classname)

 print('parent class list: ', baseclasses)

 print('attribute list: ', attributes)

 return type.__new__(classitself, classname,

 baseclasses, attributes)

2. Next, we will be creating two parent classes—ExampleParentClass1 and
ExampleParentClass2:

class ExampleParentClass1():

 def test1():

 print('parent1 - test1')

class ExampleParentClass2():

 def test2():

 print('parent2 - test2')

3. Now, we will create the class ExampleClass2 where we will be inheriting both of the
preceding parent classes and adding the metaclass as ExampleMetaClass2:

class ExampleClass2(ExampleParentClass1,
ExampleParentClass2, metaclass = ExampleMetaClass2):

 int1 = 123

 str1 = 'test'

 def test3():

 print('child1 - test3')

Working with Metaclasses94

4. Executing the preceding code results in the following output:

class itself: <class '__main__.ExampleMetaClass2'>

class name: ExampleClass2

parent class: (<class '__main__.ExampleParentClass1'>,
<class '__main__.ExampleParentClass2'>)

attributes: {'__module__': '__main__', '__qualname__':
'ExampleClass2', 'int1': 123, 'str1': 'test', 'test3':
<function ExampleClass2.test3 at 0x00000194A3994E50>}

This example shows us the highlighted arguments that are returned by the metaclass
and gives an overview of which values can possibly be manipulated from a class using
metaprogramming.

5. Let us look at the type of each of the classes created in this example:

type(ExampleParentClass1)

type

type(ExampleParentClass2)

type

type(ExampleMetaClass2)

type

type(ExampleClass2)

__main__.ExampleMetaClass2

As we can see, the type of all other classes is the type itself whereas the type of ExampleClass2
is ExampleMetaClass2.

Now that you understand the structure of a metaclass, we can look further into applications of
metaclasses on our ABC Megamart example.

The application of metaclasses
In this section, we will look at an example where we will create a metaclass that can automatically
modify the user-defined method attributes of any branch class that is newly created. To test this, let
us follow these steps:

1. Create a metaclass with the name BranchMetaclass:

class BranchMetaclass(type):

The application of metaclasses 95

2. Create a __new__ method with class instance, class name, base classes, and attributes as its
arguments. In the __new__ method, import the inspect library, which can help inspect
the input attributes:

 def __new__(classitself, classname, baseclasses,

 attributes):

 import inspect

3. Create a new dictionary, newattributes:

 newattributes = {}

Iterate over the class attributes, check that the attributes start with __, and don’t change the value.

4. Continue iterating over the other attributes and check if the attributes are functions. If they are
functions, prefix branch to the class method and convert the method name into title case:

for attribute, value in attributes.items():

 if attribute.startswith("__"):

 newattributes[attribute] = value

 elif inspect.isfunction(value):

 newattributes['branch' +

 attribute.title()] = value for a

 attribute, value in

 attributes.items():

 if attribute.startswith("__"):

 newattributes[attribute] = value

 elif inspect.isfunction(value):

 newattributes['branch' +

 attribute.title()] = value

5. If the preceding conditions are not met, save the value of the attribute as it is:

else:

 newattributes[attribute] = value

6. Return the new method with new attributes:

 return type.__new__(classitself,

 classname, baseclasses,

 newattributes)

Working with Metaclasses96

7. Within the metaclass, also create a regular user-defined method, buy_product, to calculate
the sales price of a product:

def buy_product(product,unit_price,quantity,statetax_
rate,promotiontype):

 statetax_rate = statetax_rate

 initialprice = unit_price*quantity

 sales_price = initialprice +

 initialprice*statetax_rate

 return sales_price, product,promotiontype

8. Next, we will create another new class, Brooklyn, and add this metaclass to the class. By
adding the metaclass, we want the methods in the class Brooklyn to have a prefix branch
and change the methods to title case while creating the methods of Brooklyn.

The Brooklyn class has four variables, product_id, product_name, product_
category, and unit_price. We will also create a method to calculate the maintenance cost
and this method should be converted from maintenance_cost to branchMaintenance_
cost due to the metaclass that alters the behavior of the newly created class. Here’s the new class:

class Brooklyn(metaclass = BranchMetaclass):

 product_id = 100902

 product_name = 'Iphone X'

 product_category = 'Electronics'

 unit_price = 700

 def maintenance_cost(self,product_type, quantity):

 self.product_type = product_type

 self.quantity = quantity

 cold_storage_cost = 100

 if (product_type == 'Electronics'):

 maintenance_cost = self.quantity * 0.25 +

 cold_storage_cost

 return maintenance_cost

 else:

 return "We don't stock this product"

The application of metaclasses 97

9. We can list all the arguments of the class Brooklyn and check if the metaclass has altered
its behavior:

dir(Brooklyn)

['__class__',

 '__delattr__',

 '__dict__',

 ‚__dir__',

 ‚__doc__',

 ‚__eq__',

 ‚__format__',

 ‚__ge__',

 ‚__getattribute__',

 ‚__gt__',

 ‚__hash__',

 ‚__init__',

 ‚__init_subclass__',

 ‚__le__',

 ‚__lt__',

 ‚__module__',

 ‚__ne__',

 ‚__new__',

 ‚__reduce__',

 ‚__reduce_ex__',

 ‚__repr__',

 ‚__setattr__',

 ‚__sizeof__',

 ‚__str__',

 ‚__subclasshook__',

 ‚__weakref__',

 'branchMaintenance_cost',

 'product_category',

 'product_id',

 'product_name',

 'unit_price']

Working with Metaclasses98

10. Let us now create an object and look at its methods and variables, as follows:

brooklyn = Brooklyn()

brooklyn.branchMaintenance_Cost('Electronics',10)

102.5

brooklyn.product_id

100902

brooklyn.product_name

'Iphone X'

brooklyn.product_type

'Electronics'

A simple representation of this example is as follows:

Figure 4.3 – Application of metaclass on ABC Megamart – Branch example

So far, we’ve looked at an overview of a metaclass, understood its structure, performed an analysis of
its arguments, and applied our understanding by creating a custom metaclass on our core example.
We will look at a few more applications in the following section.

The application of metaclasses 99

Inheriting the metaclass

In this section, we will walk through an example where we will inherit the metaclass to check whether
it can be inherited as a regular parent class without altering the behavior of the new class that is being
created. Take a look at the following code:

class Queens(BranchMetaclass):

 def maintenance_cost(product_type, quantity):

 product_type = product_type

 quantity = quantity

 if (product_type == ‹FMCG›):

 maintenance_cost = quantity * 0.05

 return maintenance_cost

 else:

 return "We don't stock this product"

Let's now create an object for the preceding class to check if an object can be created:

queens = Queens()

We get the following TypeError:

Figure 4.4 – Error while creating an object for the class inheriting a metaclass

This error occurred as __new__ is a static method that is called to create a new instance for the class
and it expects three arguments of the class, which are not provided while creating the class object.
However, there is another way of calling the newly created class, Queens. The class can be called
directly, and its methods can be used without having to create an object:

Queens.maintenance_cost('FMCG',120)

6.0

Working with Metaclasses100

The maintenance_cost method did not get modified into branchMaintenance_cost
since the metaclass is not used as a metaclass but as a parent class. Since the metaclass is inherited,
Queens also inherits the user-defined methods of BranchMetaclass as follows:

Queens.buy_product('Iphone',1000,1,0.04,None)

(1040.0, 'Iphone', None)

Inheriting as a parent and metaclass

Let’s now look at what happens when we inherit a class as a parent and also add it as a metaclass while
creating a new class:

class Queens(BranchMetaclass, metaclass = BranchMetaclass):

 def maintenance_cost(product_type, quantity):

 product_type = product_type

 quantity = quantity

 if (product_type == ‹FMCG›):

 maintenance_cost = quantity * 0.05

 return maintenance_cost

 else:

 return "We don't stock this product"

In the preceding code, we have added BranchMetaclass as the parent class for the class Queens
and we have also added it as a metaclass. This definition should make the class Queens inherit the
custom methods from BranchMetaclass and also change the maintenance_cost method
into branchMaintenance_cost. Let’s see if it does:

Queens.branchMaintenance_Cost('FMCG',2340)

117.0

In the preceding code execution and output, the maintenance_cost method is converted into
the branchMaintenance_cost method as expected. Now run the following command:

Queens.buy_product('Iphone',1500,1,0.043,None)

(1564.5, 'Iphone', None)

The buy_product method, which is a custom method from BranchMetaclass, is also
inherited since it is a parent class.

Switching metaclasses 101

Here is a simple representation of this example:

Figure 4.5 – Application of metaclass and also inheriting it on ABC Megamart branch example

Let us look further into examples of switching metaclasses from one class to another.

Switching metaclasses
We can now look into the concept of switching metaclasses for a class. You may think, why do we need
to switch metaclasses? Switching metaclasses reinforces the reusability concept of metaprogramming
and in this case, it helps in understanding how a metaclass created for use on one class can also be
used for a different class without impacting the class definition.

In the example for this section, we will be creating two meta classes – IncomeStatementMetaClass
and BalanceSheetMetaClass. For the Malibu branch of ABC Megamart, we will create a class
to capture the information required for its financial statements. The two financial statements relevant
for this example are Income Statement attributes and Balance Sheet attributes for the Malibu branch.
To differentiate where a particular attribute or method of a class should go, we will be creating two
metaclasses that look at the names of the attributes and tag them under Income Statement or Balance
Sheet accordingly.

Working with Metaclasses102

The following is a simple representation of the attributes that will be manipulated by the aforementioned
metaclasses:

Figure 4.6 – Finance attributes used in this metaclass example

Take a look at the following code snippet:

class IncomeStatementMetaClass(type):

 def __new__(classitself, classname, baseclasses,

 attributes):

 newattributes = {}

 for attribute, value in attributes.items():

 if attribute.startswith("__"):

 newattributes[attribute] = value

 elif («revenue» in attribute) or \

 ("expense" in attribute) or \

 ("profit" in attribute) or \

 ("loss" in attribute):

 newattributes['IncomeStatement_' +

 attribute.title()] = value

 else:

 newattributes[attribute] = value

 return type.__new__(classitself, classname,

 baseclasses, newattributes)

Switching metaclasses 103

Here, the new method is modified to check for attributes that have the key as one of the parameters
that belong to an income statement such as revenue, expense, profit, or loss. If any of this
terminology occurs in the method name or variable name, we will add a prefix of IncomeStatement
to segregate those methods and variables.

To test this metaclass, we will be creating a new class, Malibu, with four variables and four methods,
as follows:

class Malibu(metaclass = IncomeStatementMetaClass):

 profit = 4354365

 loss = 43000

 assets = 15000

 liabilities = 4000

 def calc_revenue(quantity,unitsales_price):

 totalrevenue = quantity * unitsales_price

 return totalrevenue

 def calc_expense(totalrevenue,netincome, netloss):

 totalexpense = totalrevenue - (netincome + netloss)

 return totalexpense

 def calc_totalassets(cash,inventory,accountsreceivable):

 totalassets = cash + inventory + accountsreceivable

 return totalassets

 def calc_totalliabilities(debt,accruedexpense,

 accountspayable):

 totalliabilities = debt + accruedexpense +

 accountspayable

 return totalliabilities

Working with Metaclasses104

In the preceding code, we have added the metaclass IncomeStatementMetaClass and we
see that the attributes of the class Malibu modify the behavior of variables and methods as follows:

Figure 4.7 – Malibu without metaclass (left) and Malibu with metaclass (right)

We will further add another metaclass, BalanceSheetMetaClass, to deal with the balance
sheet-related attributes in the class Malibu. In the following metaclass, the new method is modified
to check for attributes that have the key as one of the parameters that belong to a balance sheet such as
assets, liabilities, goodwill, and cash. If any of these terms occur in the method name
or variable name, we will add a prefix of BalanceSheet to segregate those methods and variables:

class BalanceSheetMetaClass(type):

 def __new__(classitself, classname, baseclasses,

 attributes):

 newattributes = {}

 for attribute, value in attributes.items():

 if attribute.startswith("__"):

 newattributes[attribute] = value

 elif («assets» in attribute) or \

 ("liabilities" in attribute) or \

 ("goodwill" in attribute) or \

 ("cash" in attribute):

 newattributes['BalanceSheet_' +

 attribute.title()] = value

 else:

 newattributes[attribute] = value

 return type.__new__(classitself, classname,

 baseclasses, newattributes)

Inheritance in metaclasses 105

In the preceding code, we have added the metaclass BalanceSheetMetaClass and we see that
the attributes of the class Malibu modify the behavior of variables and methods as follows:

Figure 4.8 – Malibu with IncomeStatementMetaClass (left) and Malibu with BalanceSheetMetaClass (right)

Now that you know why we need to switch metaclasses, let us look at the application of metaclasses
in inheritance.

Inheritance in metaclasses
Inheritance, in a literal sense, means a child acquiring the properties of a parent and it means the same
in the case of object-oriented programming too. A new class can inherit the attributes and methods
of a parent class and it can also have its own properties and methods.

In this example, we will look at how inheritance works on metaclasses by creating two classes,
California and Pasadena – California being the parent class and Pasadena the
child class.

Let’s check these steps out to understand inheritance better:

1. In the previous section, we already created two metaclasses that inherited type as their parent
class – IncomeStatementMetaClass and BalanceSheetMetaClass. We will
start by creating the class California with the IncomeStatement metaclass:

class California(metaclass = IncomeStatementMetaClass):

 profit = 4354365

 loss = 43000

 def calc_revenue(quantity,unitsales_price):

 totalrevenue = quantity * unitsaleprice

 return totalrevenue

 def calc_expense(totalrevenue,netincome, netloss):

Working with Metaclasses106

 totalexpense = totalrevenue -
(netincome + netloss)

 return totalexpense

Here, we have defined only those attributes that can be modified by the IncomeStatement
metaclass.

2. Next, we will create another class, Pasadena, with the BalanceSheet metaclass:

class Pasadena(California,metaclass =
BalanceSheetMetaClass):

 assets = 18000

 liabilities = 5000

 def calc_totalassets(cash,inventory,

 accountsreceivable):

 totalassets = cash + inventory +

 accountsreceivable

 return totalassets

 def calc_totalliabilities(debt,accruedexpense,

 accountspayable):

 totalliabilities = debt + accruedexpense +

 accountspayable

 return totalliabilities

We have defined here only those attributes that can be modified by the BalanceSheet
metaclass.

3. Executing the code of the Pasadena class results in the following error:

Figure 4.9 – Error while executing a child class that has a different metaclass

Inheritance in metaclasses 107

This error was thrown since Pasadena inherited the parent class California, which has
a different metaclass, IncomeStatementMetaClass, which is inherited from type, and
Pasadena’s metaclass BalanceSheetMetaClass is also inherited from type.

4. To resolve this error, we can redefine the BalanceSheetMetaClass with the parent class
as IncomeStatementMetaClass instead of the type class, as follows:

class BalanceSheetMetaClass(IncomeStatementMetaClass):

 def __new__(classitself, classname, baseclasses,

 attributes):

 newattributes = {}

 for attribute, value in attributes.items():

 if attribute.startswith("__"):

 newattributes[attribute] = value

 elif («assets» in attribute) or \

 ("liabilities" in attribute) or \

 ("goodwill" in attribute) or \

 ("cash" in attribute):

 newattributes['BalanceSheet_' +

 attribute.title()] = value

 else:

 newattributes[attribute] = value

 return type.__new__(classitself, classname,

 baseclasses, newattributes)

5. Let’s now rerun the California parent class and also the Pasadena child class to check
if the behavior modification of both the metaclasses is implemented in the Pasadena class:

class California(metaclass = IncomeStatementMetaClass):

 profit = 4354365

 loss = 43000

 def calc_revenue(quantity,unitsales_price):

 totalrevenue = quantity * unitsaleprice

 return totalrevenue

 def calc_expense(totalrevenue,netincome, netloss):

 totalexpense = totalrevenue - (netincome +

 netloss)

 return totalexpense

Working with Metaclasses108

class Pasadena(California,metaclass =
BalanceSheetMetaClass):

 assets = 18000

 liabilities = 5000

 def calc_totalassets(cash,inventory,

 accountsreceivable):

 totalassets = cash + inventory +

 accountsreceivable

 return totalassets

 def calc_totalliabilities(debt,accruedexpense,

 accountspayable):

 totalliabilities = debt + accruedexpense +

 accountspayable

 return totalliabilities

6. Here is the output from the Pasadena class, and as we can see, both the BalanceSheet
and IncomeStatement attributes are modified as per their metaclasses:

Figure 4.10 – Pasadena class with inheritance

Manipulating class variables 109

A simple representation of this application is as follows:

Figure 4.11 – Inheritance in metaclasses

In this case, we have redefined the parent class of BalanceSheetMetaClass to be
IncomeStatementMetaClass since Python does not automatically resolve their parent classes
while they were both inherited by type and instead throws a metaclass conflict. Redefining the parent
class of BalanceSheetMetaClass not only resolves the error but will also not impact the overall
functionality of the class since IncomeStatementMetaClass is in turn inherited from type.

Let us look at another example where we will be adding additional information to class attributes.

Manipulating class variables
In this section, we will take an example to look at manipulating class variables further using metaclasses.
We will be creating a metaclass named SchemaMetaClass and will define the __new__ method
to manipulate attributes of a class if they are variables of data types that belong to integer, float,
string, or boolean. Let’s go through the steps real quick:

1. We will now create the SchemaMetaClass with the parent class as type and have modified
the new method to check the following conditions:

class SchemaMetaClass(type):

Working with Metaclasses110

2. Create the dictionary object newattributes. If the class attribute is a built-in class
method that starts with __, then the attribute’s value is stored as such in newattributes:

 def __new__(classitself, classname, baseclasses,

 attributes):

 newattributes = {}

 for attribute, value in attributes.items():

 if attribute.startswith("__"):

 newattributes[attribute] = value

3. If the class attribute is an integer or float variable, then the class returns a dictionary item
with the attribute name as ColumnName, the value as Value, Type as NUMERIC, and
Length as the length of the value:

 elif type(value)==int or type(value)==float:

 newattributes[attribute] = {}

 newattributes[attribute]['ColumnName']

 = attribute.title()

 newattributes[attribute]['Value']

 = value

 newattributes[attribute]['Type']

 = 'NUMERIC'

 newattributes[attribute]
['Length'] = len(str(value))

4. If the class attribute is a string variable, then the class returns a similar dictionary item with
Type as VARCHAR:

 elif type(value)==str:

 newattributes[attribute] = {}

 newattributes[attribute]['ColumnName']

 = attribute.title()

 newattributes[attribute]['Value']

 = value

 newattributes[attribute]['Type']

 = 'VARCHAR'

 newattributes[attribute]['Length']

 = len(value)

Manipulating class variables 111

5. Similarly, if the class attribute is a boolean object, a similar kind of dictionary item with
Type as BOOLEAN is returned:

 elif type(value)==bool:

 newattributes[attribute] = {}

 newattributes[attribute]['ColumnName']

 = attribute.title()

 newattributes[attribute]['Value']

 = value

 newattributes[attribute]['Type']

 = 'BOOLEAN'

 newattributes[attribute]['Length']

 = None

6. Any other variable or method is stored like so in newattributes:

 else:

 newattributes[attribute] = value

 return type.__new__(classitself, classname,

 baseclasses, newattributes)

7. We will now create the class Arizona with the metaclass as SchemaMetaClass,
define all the variables for a product, and define a method that creates a schema out of the
metaprogrammed class attributes:

class Arizona(metaclass = SchemaMetaClass):

 product_id = 200443

 product_name = 'Iphone'

 product_category = 'Electronics'

 sales_quantity = 2

 tax_rate = 0.05

 sales_price = 1200

 profit = 70

 loss = 0

 sales_margin = 0.1

 promotion = '20%Off'

 promotion_reason = 'New Year'

 in_stock = True

Working with Metaclasses112

 def create_schema(self):

 import pandas as pd

 tableschema = pd.DataFrame([self.product_id,

 self.product_name,

 self.product_category,

 self.sales_quantity,

 self.tax_rate,

 self.sales_price,

 self.profit,

 self.loss,

 self.sales_margin,

 self.promotion,

 self.promotion_reason,

 self.in_stock])

 tableschema.drop(labels = ['Value'], axis = 1,

 inplace = True)

 return tableschema

We have added product details of an example product (in this case, an iPhone) and the variables
are a combination of different data types – string, integer, float, and bool. We will
define the method create_schema, which imports the pandas library to create a DataFrame
that gives a table-like structure to the variables and returns the data frame as a table schema.

8. Now, consider a scenario where the metaclass is not added to the preceding code. Calling the
product_name variable would have resulted in the following:

objarizona = Arizona()

objarizona.product_name

'Iphone'

Manipulating class variables 113

9. Since we have added the metaclass in the preceding Arizona class definition, calling the
product_name results in the following:

objarizona = Arizona()

objarizona.product_name

{'ColumnName': 'Product_name',

 'Value': 'Iphone',

 'Type': 'VARCHAR',

 'Length': 6}

10. Similarly, we can look at the results of a few other variables as follows:

objarizona.product_category

{'ColumnName': 'Product_category',

 'Value': 'Electronics',

 'Type': 'VARCHAR',

 'Length': 11}

objarizona.sales_quantity

{'ColumnName': 'Sales_
quantity', 'Value': 2, 'Type': 'NUMERIC', 'Length': 1}

objarizona.tax_rate

{'ColumnName': 'Tax_
rate', 'Value': 0.05, 'Type': 'NUMERIC', 'Length': 4}

11. Using the metaprogrammed class variables further, we have defined the method create_
schema to return a table schema:

objarizona.create_schema()

Working with Metaclasses114

We get the following table, which includes all of the variables defined in the class:

Figure 4.12 – Output of the method create_schema

These are some examples of how metaclasses can be used in developing applications. Metaclasses
can further be used in more complex scenarios such as automated code generation and framework
development.

Summary
In this chapter, we have learned how to create metaclasses and some applications of metaclasses.

We then saw how to switch metaclasses, reuse the functionalities, and how to implement inheritance on
classes that use metaclasses. Finally, we also saw how to manipulate the variables of metaclasses further.

All of these concepts are part of Python metaprogramming and they are used to change the behavior
of a class externally and without impacting the internal functionalities of the class itself.

In the next chapter, we will be looking at the concept of reflection with different examples.

5
Understanding Introspection

In this chapter, we will look at introspection in Python 3 and understand how it is useful in
metaprogramming. Introspection is a concept where we can learn about the properties or attributes
of objects in Python during runtime using a suite of Python’s built-in methods.

Why introspection? Introspection is an information-gathering process for Python objects, and the
information thus gathered can help in utilizing the objects to perform generic operations by manipulating
them externally and, in turn, can help us in writing metaprograms.

Before we understand how to implement introspection, we will have a look at the built-in functions of
Python that help in performing introspection. Throughout this chapter, we will look at each function
that helps us introspect and understand the objects we use in our programs.

In this chapter, we will be taking a look at the following main topics:

• Introducing built-in functions

• Using the built-in id function

• Debugging unintentional assignments using id

• Finding out whether an object is callable

• Checking whether an object has an attribute

• Checking whether an object is an instance

• Checking whether an object is a subclass

• Understanding the usage of property

• Using property as a decorator

By the end of this chapter, you should be able to apply built-in functions to introspect Python objects,
apply them to examples, and use them to debug code.

Understanding Introspection116

Technical requirements
The code examples shared in this chapter are available on GitHub under the code for this chapter here:
https://github.com/PacktPublishing/Metaprogramming-with-Python/
tree/main/Chapter05.

Introducing built-in functions
To understand introspection and the usage of Python’s built-in functions to perform introspection,
we will continue making use of our core example of ABC Megamart throughout this chapter.

We will be covering the usage of the following built-in functions to introspect Python objects:

• id()

• eval()

• callable()

• hastattr()

• getattr()

• isinstance()

• issubclass()

• property()

Introspecting Python objects helps in understanding the properties of objects, which in turn, helps
in metaprogramming these objects and using them to debug the objects, which we will be looking at
in further chapters as well.

With this understanding, let’s look further into the concept of how to use these built-in functions
and introspect objects.

Using the built-in id function
Understanding the characteristics of a Python object helps in writing metaprograms on the object. The
memory address of an object is one of its characteristics or properties that can be manipulated using
metaprogramming. The id function in Python 3 can be called to identify an object using the object’s
memory address. Identifying an object through its memory address helps in analyzing objects to find
out whether there are multiple assignments or copies of an object created unintentionally during the
process of code development.

https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter05

Using the built-in id function 117

To understand this further, here is how we will work:

1. We will be creating a class named Billing, which calculates and prints a simple bill for any
product that is provided as input. Refer to the following code:

class Billing:

 def __init__(self,product_name,unit_
price,quantity,tax):

 self.product_name = product_name

 self.unit_price = unit_price

 self.quantity = quantity

 self.tax = tax

 def generate_bill(self):

 total = self.unit_price * self.quantity

 final_total = total + total*self.tax

 print('***********------------------

 **************')

 print('Product:', self.product_name)

 print('Total:',final_total)

 print('***********------------------

 **************')

2. Let’s now create an object for the Billing class:

billing = Billing('Delmonte Cheese',6,4,0.054)

3. Let’s now call the generate_bill method to print the bill:

billing.generate_bill()

This code gives the following output:

***********------------------**************

Product: Delmonte Cheese

Total: 25.296

***********------------------**************

Understanding Introspection118

4. In the next step, let’s create a separate generate_bill function that performs the same set
of operations as the generate_bill method that was created inside the Billing class.
The function will take in four parameters (product_name, unit_price, quantity,
and tax):

def generate_bill(product_name,unit_price,quantity,tax):

 total = unit_price * quantity

 final_total = total + total*tax

 print('***********------------------

 **************')

 print('Product:', product_name)

 print('Total:',final_total)

 print('***********------------------

 **************')

5. In the next step, we will be copying the Billing class into another variable named Invoicing:

Invoicing = Billing

So far, we have three objects:

• A class named Billing

• A function named generate_bill

• A variable that assigned the Billing class to a variable called Invoicing

6. Now, let’s apply Python’s built-in id function to get the memory address of each of these objects:

id(Billing)

2015859835472

id(Invoicing)

2015859835472

id(generate_bill)

2015871203792

In the preceding output, we can notice that both Billing and Invoicing have the
same memory address since Invoicing is a copy of the Billing class. The following
figure is a simple representation of this example:

Debugging unintentional assignments using id 119

Figure 5.1 – The Billing class copied to Invoicing

With this understanding, we can further look into how we can use the id function in implementing
metaprogramming.

Debugging unintentional assignments using id
In this section, we will be discussing what happens when we make unintentional references or assignments
to an object while defining an attribute, a method, or a function, and how to resolve such incorrect
assignments using the built-in id function. When a reference is made unintentionally, the memory
address of the object is shared between the actual object and the reference object. In this example, we
will be making use of id to debug the Python objects created in the preceding section and identify
duplicate assignments or references of an object that might have been created unintentionally while
developing an application. Here is how it works:

1. To begin with, let’s create a dictionary item, class_id_count, to capture the number of
occurrences of the memory address of each class:

class_id_count = {}

2. In the next step, we will be creating the following four lists:

duplicates = []

ids = []

classes = []

classnames = []

Here, we capture duplicate memory addresses with duplicates, capture results of the
id function with ids, capture the class details with classes, and capture the names of
classes with classnames.

3. In this step, we will be iterating over the directory of Python objects and checking whether the
type of the object is type since the type of class is type in Python. This step helps in identifying
all the objects that are classes and then updating the lists created with ids, classes, and
classnames. Refer to the following code block:

Understanding Introspection120

for obj in dir():

 if type(eval(obj)) == type:

 ids.append(id(eval(obj)))

 classes.append(eval(obj))

 classnames.append(obj)

4. We will now iterate over the ids list and check that the id is not in class_id_count, and
then add it; if it is already in class_id_count, we will add it to the duplicates list:

for i in ids:

 if i not in class_id_count:

 class_id_count[i] = 1

 elif (class_id_count[i] == 1):

 duplicates.append(i)

 class_id_count[i] += 1

5. We will further iterate over the classes and classnames lists and check whether there
are duplicates. Then, we will print the classes that have duplicates:

for cls,clsname in zip(classes,classnames):

 for clsid in duplicates:

 if (id(cls)==clsid):

 print(clsname,cls)

The output of the preceding code is as follows:

Billing <class '__main__.Billing'>

Invoicing <class '__main__.Billing'>

6. Executing the preceding code results in the following output:

class_id_count

{2196689735984: 2}

duplicates

[2196689735984]

ids

[2196689735984, 2196689735984]

classes

[__main__.Billing, __main__.Billing]

classnames

['Billing', 'Invoicing']

Finding out whether an object is callable 121

In the preceding output, we can see that both the Billing and Invoicing classes have the same
memory address and they are duplicates. There can be scenarios where we might have intentionally
referenced a class, and there can also be scenarios where multiple variable assignments to the same
memory address might have happened by mistake. In such intentional scenarios, id can be used to
check duplicate assignments to a memory address.

The following figure is a simple representation of this example:

Figure 5.2 – Two classes with one memory address

With this understanding, we will look further into another built-in function, callable.

Finding out whether an object is callable
In this section, we will look at another built-in function named callable. As the name implies,
this function helps in identifying whether a Python object can be called. Functions and methods
can be called to enable various operations to be performed on the input parameters. Not all Python
objects are callable. For example, a string variable or a numeric variable stores information but will
not perform any action when executed. The callable function helps in verifying such objects that
can be called and those that cannot be called in a function.

Why do we need to check whether an object is callable? Python is an object-oriented programming
language where we can write libraries and write classes within the libraries that are encapsulated. The
end user of classes or libraries need not always have access to the class definition or method definitions.
While importing the Python libraries, we might sometimes want to know whether the imported object
is just a variable that stores a value or whether it is a function that can be reused. The simplest way
of checking this is to see whether the object is callable, as functions or methods are usually callable.
This comes in handy, especially when the developer of a library did not provide any documentation
for its methods and attributes.

Understanding Introspection122

Let’s make use of callable in the following example:

1. Let’s create a new Python file and save it as product.py. Go to https://github.
com/PacktPublishing/Metaprogramming-with-Python/blob/main/
Chapter05/product.py and add the following code, which creates a class named
Product. Add the following four attributes to it: Product ID, Product Name, Product
Category, and Unit Price. We will now assign values to these four attributes, as follows:

class Product:

 _product_id = 100902

 _product_name = 'Iphone X'

 _product_category = 'Electronics'

 _unit_price = 700

2. Now, let’s add a method named get_product within the Product class. This method
would simply return the four attributes created in the preceding step:

 def get_product(self):

 return self._product_id, self._product_name,

 self._product_category, self._unit_price

3. In this step, we will import the Product class from product.py and create an object for it:

import product

prodobj = product.Product()

4. Let’s now check whether the class is callable by using the built-in callable function. The
class is callable and so the function returns True:

callable(product.Product)

True

5. In this step, we can also check whether a class object is callable. The object is not callable
since we did not overwrite the __call__ method of the class to make it callable, and so the
function returns False:

callable(prodobj)

False

6. We can now check whether a Python object is callable and then get its attributes:

if callable(prodobj.get_product):

 print(prodobj.get_product())

https://github.com/PacktPublishing/Metaprogramming-with-Python/blob/main/Chapter05/product.py
https://github.com/PacktPublishing/Metaprogramming-with-Python/blob/main/Chapter05/product.py
https://github.com/PacktPublishing/Metaprogramming-with-Python/blob/main/Chapter05/product.py

Checking whether an object has an attribute 123

else:

 print("This object is not callable")

7. Similarly, we can also check whether a Python object is callable and then print the details of
the object if it returns True:

if callable(prodobj):

 print(prodobj)

else:

 print('This is not a method')

With this example, we can look further into the next function, hasattr.

Checking whether an object has an attribute
While using a method or a function object defined in a framework or library by importing the library
into another program, we might not always know all the attributes of the object. In such cases, we have
a built-in hasattr function that can be used to introspect if a Python object has a specific attribute.

This function checks whether a given object has attributes. To test this function, we will create a class
for the inventory of ABC Megamart, add the required attributes for the products stored in the inventory,
and also include the price of the products along with the tax component. The price will be calculated
both before and after tax for the products stored in the inventory. The following are the steps for it:

1. We will create a class called Inventory and initiate it with the variables required for an
inventory, such as product_id, product_name, date (of purchase), unit_price,
quantity, unit_discount, and tax, as shown in the following code:

class Inventory:

 def __init__(self,product_id,product_name,date,unit_
price,quantity,unit_discount,tax):

 self.product_id = product_id

 self.product_name = product_name

 self.date = date

 self.unit_price = unit_price

 self.quantity = quantity

 self.unit_discount = unit_discount

 self.tax = tax

Understanding Introspection124

2. In this step, we will add a method to Inventory to calculate the amount before tax and, in
this method, we will have three input parameters: quantity, unit_price, and unit_
discount. If these three variables are None, then this method will use the same variables
initiated during the instantiation of the Inventory class to calculate the amount before tax:

def calc_amount_before_tax(self,quantity=None,unit_
price=None, unit_discount=None):

 if quantity is None:

 self.quantity = self.quantity

 else:

 self.quantity = quantity

 if unit_price is None:

 self.unit_price = self.unit_price

 else:

 self.unit_price = unit_price

 if unit_discount is None:

 self.unit_discount = self.unit_discount

 else:

 self.unit_discount = unit_discount

 amount_before_tax = self.quantity *

 (self.unit_price - self.unit_discount)

 return amount_before_tax

3. We will also add another method to the Inventory class to calculate the amount after tax.
This method is also defined in a similar pattern as calc_amount_before_tax:

def calc_amount_after_tax(self, quantity=None,unit_
price=None,unit_discount=None,tax=None):

 if quantity is None:

 self.quantity = self.quantity

 else:

 self.quantity = quantity

 if unit_price is None:

 self.unit_price = self.unit_price

 else:

 self.unit_price = unit_price

Checking whether an object has an attribute 125

 if unit_discount is None:

 self.unit_discount = self.unit_discount

 else:

 self.unit_discount = unit_discount

 if tax is None:

 self.tax = self.tax

 else:

 self.tax = tax

 amount_after_tax =

 self.calc_amount_before_tax(

 self.quantity,self.unit_price,

 self.unit_discount) + self.tax

 return amount_after_tax

4. We will now create the last method for this class, which returns the consolidated inventory
details, creates a DataFrame, and returns the DataFrame:

 def return_inventory(self):

 import pandas as pd

 inventory_schema = pd.DataFrame([

 self.product_id,

 self.product_name,

 self.date,

 self.unit_price,

 self.quantity,

 self.unit_discount,

 self.tax,

 self.calc_unt_before_tax(),

 self.calc_amount_after_tax()]).transpose()

 inventory_schema.columns = ["Product_id",

 "Product_name","Date","Unit_price",

 "Quantity","Unit_discount","Tax",

 "Amount Before Tax", "Amount After Tax"]

 return inventory_schema

Understanding Introspection126

5. Then, create an object for the Inventory class and initialize its attributes:

inventory = Inventory(300021,

 'Samsung-Refrigerator',

 '08/04/2021',

 200,

 25,

 10,

 0.0522)

6. Check whether the object returns the attributes:

inventory.product_id

300021

inventory.product_name

'Samsung-Refrigerator'

inventory.date

'08/04/2021'

inventory.unit_price

200

inventory.quantity

25

inventory.unit_discount

10

inventory.tax

0.0522

inventory.calc_amount_before_tax()

4750

inventory.calc_amount_after_tax()

4750.0522

inventory.return_inventory()

The output of the preceding code is as follows:

Figure 5.3 – The output – Inventory details

Checking whether an object has an attribute 127

7. Next, let’s make use of dir to list down all the names of arguments in the Inventory class:

dir(Inventory)

['__class__',

 '__delattr__',

 '__dict__',

 ‚__dir__',

 ‚__doc__',

 ‚__eq__',

 ‚__format__',

 ‚__ge__',

 ‚__getattribute__',

 ‚__gt__',

 ‚__hash__',

 ‚__init__',

 ‚__init_subclass__',

 ‚__le__',

 ‚__lt__',

 ‚__module__',

 ‚__ne__',

 ‚__new__',

 ‚__reduce__',

 ‚__reduce_ex__',

 ‚__repr__',

 ‚__setattr__',

 ‚__sizeof__',

 ‚__str__',

 ‚__subclasshook__',

 ‚__weakref__',

 ‚calc_amount_after_tax',

 ‚calc_amount_before_tax',

 ‚return_inventory']

Understanding Introspection128

8. Now, let’s make use of hasattr to check whether the class has attributes. If the type of attribute
is a method, then use getattr to get the attributes. Executing the following loop results in
the list of all the attributes of Inventory:

for i in dir(Inventory):

 if (hasattr(Inventory,i)):

 if type(getattr(inventory, i)) is
type(getattr(inventory, '__init__')):

 print(getattr(Inventory,i))<class 'type'>

<function Inventory.__init__ at 0x000001C9BBB46CA0>

<function Inventory.calc_amount_after_tax at
0x000001C9BBB46DC0>

<function Inventory.calc_amount_before_tax at
0x000001C9BBB46D30>

<function Inventory.return_inventory at
0x000001C9BBB46E50>

With this understanding, we can further look into another built-in function, isinstance.

Checking whether an object is an instance
In this section, we will look at another function named isinstance, which can be used to check
whether an object is an instance of a particular class. As we are covering introspection in this chapter,
we are more focused on what functions are available to introspect an object rather than how these
functions can be used further to manipulate or debug a piece of code. Chapter 6, will cover the usage
of these functions on metaprogramming along with examples.

In the preceding section, we created a class named Inventory. In this section, we can continue
using the same class and create another object for the class. This is shown as follows:

inventory_fmcg = Inventory(100011,

 'Delmonte Ketchup',

 '09/04/2021',

 5,

 0.25,

 0.10,

 0.0522)

inventory_fmcg.product_id

100011

Checking whether an object is an instance 129

inventory_fmcg.calc_amount_before_tax()

1.225

inventory_fmcg.calc_amount_after_tax()

1.2772000000000001

inventory_fmcg.return_inventory()

The output of the preceding code is as follows:

Figure 5.4 – The output – Inventory details of inventory_fmcg

Now, let’s check whether inventory_fmcg is an object of the Inventory class using isinstance:

isinstance(inventory_fmcg,Inventory)

True

Similarly, we can also check whether the previously created inventory object is still an instance
of the Inventory class:

isinstance(inventory,Inventory)

True

Let’s consider a scenario where we have reallocated the object inventory to another value by mistake
while writing the code, and we might still need to make use of the object and call its methods to return
the inventory details. To test this scenario using isinstance, we can look at the following steps:

1. Check whether an object is an instance of the Inventory class and call a method of the
function. If the object is not an instance of the class, check the type of variable to which it has
been reallocated:

if isinstance(inventory,Inventory):

 display(inventory.return_inventory())

else:

 print("Object reallocated to", type(inventory),

 ", please correct it")

Understanding Introspection130

2. The preceding code results in the following output since inventory is still an object of the
Inventory class:

Figure 5.5 – The output – Inventory details

3. Now, let’s reallocate the inventory variable to some other string value and call the return_
inventory method on it:

inventory = "test"

4. Calling the return_inventory method for the inventory object will result in the
following error:

Figure 5.6 – Error on calling the return_inventory method on a reallocated object

5. To avoid the preceding error and to let the code handle this error gracefully and, at the same
time, provide more information to the developer, we can modify the code as follows using the
isinstance method:

if isinstance(inventory,Inventory):

 print(inventory.return_inventory())

else:

 print("Object reallocated to", type(inventory),

 ", please correct it")

The output of the preceding code is as follows:

Object reallocated to <class 'str'> , please correct it

With this understanding, we can look further into another in-built function, issubclass.

Checking whether an object is a subclass 131

Checking whether an object is a subclass
In this section, we will look at the issubclass function. This function is used to check whether
a given input class is actually a child class or a subclass of a specific parent class. To introspect a class
using this function, let’s look at the following steps:

1. Create an FMCG class by initializing variables for supplier information such as supplier_name,
supplier_code, supplier_address, supplier_contract_start_date,
supplier_contract_end_date, and supplier_quality_code, shown as follows:

class FMCG:

 def __init__(self,supplier_name,supplier_code,

 supplier_address,supplier_contract_start_date,\

 supplier_contract_end_date,supplier_quality_code):

 self.supplier_name = supplier_name

 self.supplier_code = supplier_code

 self.supplier_address = supplier_address

 self.supplier_contract_start_date =

 supplier_contract_start_date

 self.supplier_contract_end_date =

 supplier_contract_end_date

 self.supplier_quality_code =

 supplier_quality_code

2. Add a method in the class to simply get the supplier details initialized in the class and return
it as a dictionary object with a key and a value:

 def get_supplier_details(self):

 supplier_details = {

 'Supplier_name': self.supplier_name,

 'Supplier_code': self.supplier_code,

 'Supplier_address': self.supplier_address,

 'ContractStartDate':

 self.supplier_contract_start_date,

 'ContractEndDate':

 self.supplier_contract_end_date,

 'QualityCode': self.supplier_quality_code

 }

 return supplier_details

Understanding Introspection132

3. Create an object for the FMCG class and initialize the variables with supplier data and then
display the supplier details by calling the preceding method:

fmcg = FMCG('Test Supplier','a0015','5093 9th Main
Street, Pasadena,California, 91001', '05/04/2020',
'05/04/2025',1)

fmcg.get_supplier_details()

{'Supplier_name': 'Test Supplier',

 'Supplier_code': 'a0015',

 'Supplier_address': '5093 9th Main Street,

 Pasadena,California, 91001',

 'ContractStartDate': '05/04/2020',

 'ContractEndDate': '05/04/2025',

 'QualityCode': 1}

4. Here, we can then create another class for condiments that covers both inventory details and
FMCG supplier details by inheriting this class from both the FMCG class and the Inventory
class. This class will be initialized with all the product-level inventory variables and the
supplier-level variables:

class Condiments(FMCG,Inventory):

 def __init__(self,*inventory):

 self.product_id = inventory[0]

 self.product_name = inventory[1]

 self.date = inventory[2]

 self.unit_price = inventory[3]

 self.quantity = inventory[4]

 self.unit_discount = inventory[5]

 self.tax = inventory[6]

 self.supplier_name = inventory[7]

 self.supplier_code = inventory[8]

 self.supplier_address = inventory[9]

 self.supplier_contract_start_date =

 inventory[10]

 self.supplier_contract_end_date =

 inventory[11]

 self.supplier_quality_code = inventory[12]

Checking whether an object is a subclass 133

5. Then, let’s add a method to simply return all the variables initialized in the Condiments
class by storing them as a DataFrame or table:

 def return_condiment_inventory(self):

 import pandas as pd

 inventory_schema = pd.DataFrame([

 self.product_id,

 self.date,

 self.unit_price,

 self.quantity,

 self.unit_discount,

 self.tax,

 self.calc_amount_before_tax(),

 self.calc_amount_after_tax(),

 self.get_supplier_details()

]).transpose()

 inventory_schema.columns = ["Product_id",

 "Date","Unit_price","Quantity",

 "Unit_discount","Tax","Amount Before Tax",

 "Amount After Tax",'Supplier_details']

 return inventory_schema

6. We can now create an object for this class and call its method:

ketchup = Condiments(100011,'Delmonte
Ketchup','09/04/2021',5,0.25,0.10,0.0522,'Test
Supplier','a0015','5093 9th Main Street,
Pasadena,California, 91001', '05/04/2020',
'05/04/2025',1)

ketchup.return_condiment_inventory()

7. Executing the preceding code results in the following output:

Figure 5.7 – The output – Condiment inventory details

Understanding Introspection134

8. Now let’s check whether the FMCG class is a subclass of Inventory. It will return as False
since FMCG is not a subclass of Inventory:

issubclass(FMCG,Inventory)

False

9. In this step, we will check whether Condiments is a subclass of FMCG and also whether it
is a subclass of Inventory. Both should return as True since Condiments is inherited
from both of these classes:

issubclass(Condiments,FMCG)

True

issubclass(Condiments,Inventory)

True

10. Next, we will be creating an object for a class by, first, checking whether a class is a subclass of
a specific parent class, then creating an object accordingly, and then calling a method on the
newly created object:

if issubclass(Condiments,FMCG):

 fmcg = Condiments(100011,'Delmonte

 Ketchup','09/04/2021',5,0.25,0.10,0.0522,

 'Test Supplier','a0015','5093 9th Main Street,

 Pasadena,California, 91001', '05/04/2020',

 '05/04/2025',1)

else:

 fmcg = FMCG('Test Supplier','a0015','5093 9th Main

 Street, Pasadena,California, 91001',

 '05/04/2020', '05/04/2025',1)

display(fmcg.get_supplier_details())

11. Executing the preceding code results in the following output:

{'Supplier_name': 'Test Supplier',

 'Supplier_code': 'a0015',

 'Supplier_address': '5093 9th Main Street,

 Pasadena,California, 91001',

 'ContractStartDate': '05/04/2020',

 'ContractEndDate': '05/04/2025',

 'QualityCode': 1}

Understanding the usage of property 135

With this understanding, we can look further into the last topic of this chapter.

Understanding the usage of property
In this section, we will look at the last built-in function covered in this chapter, property. This
function is used to initialize, set, get, or delete methods of attributes in Python. These values are
called the properties of an object. Let’s first understand how property works on Python objects
by creating an example.

We can create a property by simply calling the property function and storing it as a variable. Refer
to the following code:

test_property = property()

test_property

<property at 0x1c9c9335950>

We still did not answer the question of how this function creates a property. The property function
takes in four variables to get, set, delete, and document the properties of an attribute. To examine it
further, let’s look at it in a little more detail. The steps are as follows:

1. Create a class named TestPropertyClass.

2. Initialize it with a test attribute and set it as None.

3. We will then add three methods to perform the functions of getting, setting, and deleting the
initialized test attribute.

4. We will then create another variable within the class named test_attr and assign the
property function to it with the get, set, and delete methods created in this class.

 The code for this example is as follows:

class TestPropertyClass:

 def __init__(self):

 self._test_attr = None

 def get_test_attr(self):

 print("get test_attr")

 return self._test_attr

 def set_test_attr(self, value):

 print("set test_attr")

 self._test_attr = value

 def del_test_attr(self):

 print("del test_attr")

Understanding Introspection136

 del self._test_attr

 test_attr = property(get_test_attr, set_test_attr,

 del_test_attr, "test_attr is a property")

In the preceding code, get_test_attr simply returns the test attribute, set_test_attr
sets a value to the test attribute, and del_test_attr deletes the test attribute.

Let’s now create an object for this class and check how property works on it:

test_property_object = TestPropertyClass()

test_property_object.test_attr

get test_attr

In the preceding code, calling the test attribute has, in turn, invoked the get_test_attr method
since it is provided as the get method to the property function. Let’s confirm this understanding
further by setting a value to test_attr:

test_property_object.test_attr = 1980

set test_attr

Assigning a value to the test_attr variable has now invoked the set_test_attr method
since it is provided as a set method to the property function. Calling the test_attr attribute
again returns the value set in the preceding step:

test_property_object.test_attr

get test_attr

1980

Similarly, deleting the attribute, in turn, invokes the del_test_attr method since it is provided
as a delete method to the property function:

del test_property_object.test_attr

del test_attr

Once the attribute is deleted, the get method will still be invoked while calling the attribute, but it
will not return the value previously assigned since it is deleted:

test_property_object.test_attr

The output of the preceding code would now look as follows:

Using property as a decorator 137

Figure 5.8 – The get method invoked on a deleted attribute

By modifying the behavior of the getter, setter, or deleter methods, we can modify the
properties of the attribute itself. We will look at this statement in detail in Chapter 6.

With this understanding of assigning the property function to a variable and then invoking
its getter, setter, and deleter methods, we will further look into another variation of
implementing property.

Using property as a decorator
In the preceding section, we looked at how to use property as a function to modify the properties
of an attribute in a class. In this section, we will look at how to use property as a decorator. Let’s
consider the same TestPropertyClass as in the preceding example and modify the class
definition to use the @property decorator statement instead of the property() function
statement. Refer to the following code:

class TestPropertyClass:

 def __init__(self):

 self._test_attr = None

 @property

 def test_attr(self):

 return self.test_attr

 @test_attr.getter

 def test_attr(self):

 print("get test_attr")

 return self._test_attr

Understanding Introspection138

 @test_attr.setter

 def test_attr(self, value):

 print("set test_attr")

 self._test_attr = value

 @test_attr.deleter

 def test_attr(self):

 print("del test_attr")

 del self._test_attr

In the preceding code, we have added @property as the decorator for test_attr, and we have
also added @test_attr.setter for the set method, @test_attr.getter for the get
method, and @test_attr.deleter for the delete method.

Let’s proceed with executing the code further to check whether getter, setter, and deleter
are working as expected:

test_property_object = TestPropertyClass()

test_property_object.test_attr

get test_attr

In the preceding code, calling the attribute invoked the getter method. Similarly, setter and
deleter also invoked the set and delete methods, respectively:

test_property_object.test_attr = 1982

set test_attr

test_property_object.test_attr

get test_attr

1982

del test_property_object.test_attr

del test_attr

These are some of the examples of how introspection can be applied to Python objects using Python’s
built-in functions.

Summary 139

Summary
In this chapter, we have learned how to introspect Python objects using built-in functions.

We then saw how to use the id function, and how to debug code using id. We also looked at how
to check whether an object is callable, how to check whether an object has an attribute, how to check
whether an object is an instance, how to check whether an object is a subclass, and finally, we looked
at how to get, set, and delete properties on attributes. From all of these concepts, we learned how to
inspect Python objects such as classes, methods, and functions. From the examples covered under
each topic, we also learned how to apply introspection in practical use cases.

In the next chapter, we will be extending the learning from introspection and applying it further to
understand reflection on Python objects.

6
Implementing Reflection on

Python Objects

In this chapter, we will look at reflection in Python 3 and understand how it is useful in metaprogramming.

Reflection is a continuation of introspection, or it can be looked upon as a concept where we can
make use of the information we learn from the introspection of properties or attributes of objects in
Python and apply them to manipulate the objects, and so perform metaprogramming.

Why reflection? As we know from the previous chapter, introspection is an information-gathering
process for Python objects. Reflection is the process of utilizing the information gathered from objects
through introspection, and in turn, performing generic operations on them by manipulating them
externally to perform metaprogramming.

Throughout this chapter, we will look at implementing reflection using each function that helped us
introspect objects in the previous chapter and perform metaprogramming on the objects we use in
our programs.

In this chapter, we will take a look at the following main topics:

• Introducing built-in functions used in reflection

• Using id to delete duplicates

• Using callable to dynamically check and generate methods

• Using hasattr to set values

• Using isinstance to modify an object

• Using issubclass to modify a class

• Applying property on a coupon

By the end of this chapter, you should be able to apply built-in functions to reflect on Python objects,
apply them to examples, and use them to generate or modify code.

Implementing Reflection on Python Objects142

Technical requirements
The code examples shared in this chapter are available on GitHub for this chapter here: https://
github.com/PacktPublishing/Metaprogramming-with-Python/tree/
main/Chapter06.

Introducing built-in functions used in reflection
To understand reflection and the usage of Python’s built-in functions to perform reflection, we will
continue making use of our core example of ABC Megamart throughout this chapter. We will be
specifically looking at the concept and examples based on coupons in a retail store throughout this
chapter. Coupons are a technique used by retail stores or manufacturers to promote their products
among consumers. Coupons are generated and posted through various modes of advertisements, and
they are used to attract customers to a specific store or product.

We will make use of the same set of built-in functions as in introspection, to apply reflection on
Python objects:

• id()

• eval()

• callable()

• hastattr()

• getattr()

• isinstance()

• issubclass()

• property()

Reflection on Python objects helps in the metaprogramming of these objects using the built-in functions
that can introspect Python objects, and we will look at some examples for these in this chapter.

Using id to delete duplicates
We reviewed the id function in the previous chapter, which covered introspection. In Python 3, id
is used to identify an object using the object’s memory address. Identifying id of an object can be
used to reflect on an object and avoid redundancies or errors that can possibly occur while using an
object throughout a program.

To understand this further, we will be creating a class named Coupon, which generates a unique
random coupon ID and prints a coupon for any product that is provided as input. In the following
code, we will start with creating a class named Coupon and will be adding the coupon details as

https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter06

Using id to delete duplicates 143

attributes. We will also create a method named generate_coupon to print five coupons for a
product along with its unique random coupon ID:

class Coupon:

 def __init__(self, product_name, product_category, \

 brand,source, expiry_date, quantity):

 self.product_name = product_name

 self.product_category = product_category

 self.brand = brand

 self.source = source

 self.expiry_date = expiry_date

 self.quantity = quantity

 def generate_coupon(self):

 import random

 couponId = random.sample(range(1,9),5)

 for i in couponId:

 pri
nt('***********------------------**************')

 print('Product:', self.product_name)

 print('Product Category:', \

 self.product_category)

 print('Coupon ID:', i)

 print('Brand:', self.brand)

 print('Source:', self.source)

 print('Expiry Date:', self.expiry_date)

 print('Quantity:', self.quantity)

 pri
nt('***********------------------**************')

Let’s now create a Coupon1 variable and assign the Coupon class to it:

Coupon1 = Coupon

In this case, we are intentionally assigning the Coupon class to a variable to demonstrate the usage
of the id function. Ideally, this function will come in handy to debug and ensure when the class is
actually assigned unintentionally and thus leading to issues later on in the code. At this point in time,
let’s assume that the assignment of the Coupon class to a variable is unintentional.

Implementing Reflection on Python Objects144

Let’s look at how to identify and resolve such unintentional assignments of a class and review the
coupon generation results if Coupon1 was called by some other object when Coupon was the only
class that should have been available to generate the coupons.

In the preceding Coupon class, the expectation was to generate only five coupons for a product with
unique random coupon identifiers. Since we have assigned the class to a variable, the class identifier
is also assigned to the variable:

id(Coupon)

2175775727280

id(Coupon1)

2175775727280

Let’s now call the generate_coupon method of the Coupon class along with its attributes and
look at the results:

Coupon("Potato Chips","Snacks","ABCBrand1","Manhattan
Store","10/1/2021",2).generateCoupon()

The output for coupon 1 is as follows:

***********------------------**************

Product: Potato Chips

Product Category: Snacks

Coupon ID: 5

Brand: ABCBrand1

Source: Manhattan Store

Expiry Date: 10/1/2021

Quantity: 2

***********------------------**************

The output for coupon 2 is as follows:

***********------------------**************

Product: Potato Chips

Product Category: Snacks

Coupon ID: 1

Brand: ABCBrand1

Source: Manhattan Store

Expiry Date: 10/1/2021

Quantity: 2

Using id to delete duplicates 145

***********------------------**************

The output for coupon 3 is as follows:

***********------------------**************

Product: Potato Chips

Product Category: Snacks

Coupon ID: 4

Brand: ABCBrand1

Source: Manhattan Store

Expiry Date: 10/1/2021

Quantity: 2

***********------------------**************

The output for coupon 4 is as follows:

***********------------------**************

Product: Potato Chips

Product Category: Snacks

Coupon ID: 8

Brand: ABCBrand1

Source: Manhattan Store

Expiry Date: 10/1/2021

Quantity: 2

***********------------------**************

The output for coupon 5 is as follows:

***********------------------**************

Product: Potato Chips

Product Category: Snacks

Coupon ID: 3

Brand: ABCBrand1

Source: Manhattan Store

Expiry Date: 10/1/2021

Quantity: 2

***********------------------**************

Implementing Reflection on Python Objects146

Calling the preceding method resulted in the generation of five unique coupons for the potato chips
product. Coupon identifiers are unique and should not be regenerated at any other part of the code in
the future; therefore, the preceding method will be called only once in the code. Since we have already
assigned the Coupon class to another variable named Coupon1, let’s look at what will happen if
Coupon1 is called in some other part of the code unintentionally:

Coupon1("Potato Chips","Snacks","ABCBrand1","Manhattan
Store","10/1/2021",2).generate_coupon()

The output for coupon 1 is as follows:

***********------------------**************

Product: Potato Chips

Product Category: Snacks

Coupon ID: 7

Brand: ABCBrand1

Source: Manhattan Store

Expiry Date: 10/1/2021

Quantity: 2

***********------------------**************

The output for coupon 2 is as follows:

***********------------------**************

Product: Potato Chips

Product Category: Snacks

Coupon ID: 8

Brand: ABCBrand1

Source: Manhattan Store

Expiry Date: 10/1/2021

Quantity: 2

***********------------------**************

The output for coupon 3 is as follows:

***********------------------**************

Product: Potato Chips

Product Category: Snacks

Coupon ID: 1

Brand: ABCBrand1

Using id to delete duplicates 147

Source: Manhattan Store

Expiry Date: 10/1/2021

Quantity: 2

***********------------------**************

The output for coupon 4 is as follows:

***********------------------**************

Product: Potato Chips

Product Category: Snacks

Coupon ID: 6

Brand: ABCBrand1

Source: Manhattan Store

Expiry Date: 10/1/2021

Quantity: 2

***********------------------**************

The output for coupon 5 is as follows:

***********------------------**************

Product: Potato Chips

Product Category: Snacks

Coupon ID: 2

Brand: ABCBrand1

Source: Manhattan Store

Expiry Date: 10/1/2021

Quantity: 2

***********------------------**************

In this example, Coupon1 should not be called in the code since calling it would generate duplicate
coupons, possibly with the same IDs. This might lead to the creation of five more coupons for the
same product, which is not required; among these, two of them would be duplicates with coupon
identifiers 1 and 8. This leads to making coupons 1 and 8 void when distributed to consumers since
each coupon is expected to have one unique identifier to redeem it.

Let’s now look at how to resolve this issue by developing a function named delete_duplicates
that checks and deletes such duplicate assignments of the Coupon class. This function looks at the
list of Python objects in the directory that has duplicates and deletes the duplicates of classes. Refer
to the following code:

Implementing Reflection on Python Objects148

def delete_duplicates(directory = dir()):

 class_id_count = {}

 duplicates = []

 ids = []

 classes = []

 classnames = []

 for obj in directory:

 if type(eval(obj)) == type:

 ids.append(id(eval(obj)))

 classes.append(eval(obj))

 classnames.append(obj)

 for i in ids:

 if i not in class_id_count:

 class_id_count[i] = 1

 elif (class_id_count[i] == 1):

 duplicates.append(i)

 class_id_count[i] += 1

 dupe_set = {}

 for cls,clsname in zip(classes,classnames):

 for clsid in duplicates:

 if (id(cls)==clsid):

 print(clsname,cls)

 dupe_set[clsname] = \

 str(cls).split('.')[1].rstrip("'>'")

 for key,value in dupe_set.items():

 if (key!=value):

 del globals()[key]

The first three for loops in the preceding code were previously discussed in the Debug unintentional
assignments using id section in the previous chapter, which covered introspection. The last for loop
checks whether duplicate items are present in the dictionary named dupe_set, and deletes the
duplicate variables only and not the actual classes.

Calling the preceding function results in the deletion of the duplicate Coupon1 variable:

delete_duplicates(directory = dir())

Coupon <class '__main__.Coupon'>

Coupon1 <class '__main__.Coupon'>

Using callable to dynamically check and generate methods 149

Coupon

__main__.Coupon

Coupon1

Checking whether Coupon1 still exists results in the following error:

Figure 6.1 – Error on calling Coupon1 after it is deleted

The preceding error confirms that the duplicate variable was deleted by the delete_duplicates
function. In the following section, we will look at applying reflection using the function named
callable.

Using callable to dynamically check and generate
methods
We will now look into another familiar function named callable to check on how it can be used
to perform reflection on an object.

Note
A class, method, or a function is callable in Python, while class objects or variables are not callable.

In this example, we will check whether a class is callable, and if it returns true, we will dynamically
add a method to the class. To test the usage of the callable function, we will first create a coupon
class and name it SimpleCoupon:

class SimpleCoupon:

 pass

Let’s check whether the preceding class is callable:

callable(SimpleCoupon)

True

Implementing Reflection on Python Objects150

In the following code, we will create a function that generates another function if called. We will
create a create_coupon function that, in turn, creates a generate_coupon function or
method when called:

def create_coupon(product, product_category, brand, source,
expiry_date, quantity:

 def generate_coupon(product, product_category, brand, \

 source, expiry_date, quantity):

 import random

 couponId = random.
sample(range(100000000000,900000000000),3)

 for i in couponId:

 print(\

 '***********------------------**************')

 print('Product:',product)

 print('Product Category:', product_category)

 print('Coupon ID:', i)

 print('Brand:', brand)

 print('Source:', source)

 print('Expiry Date:', expiry_date)

 print('Quantity:', quantity)

 print(\

 '***********------------------**************')

 return generate_coupon

Let’s now check whether the SimpleCoupon class is callable and if it is callable, we will add a
coupon_details variable to provide all the required input parameters to initialize the call:

if callable(SimpleCoupon):

 SimpleCoupon.coupon_details = {

 "product": "Honey Mustard Sauce",

 "product_category": "Condiments",

 "brand": "ABCBrand3",

 "source": "Pasadena Store",

 "expiry_date": "10/1/2021",

 "quantity": 2}

Using callable to dynamically check and generate methods 151

In the next step, let’s check on how to create a method dynamically and add it to the class if the class
is callable. To add the generate_coupon method to the SimpleCoupon class, let’s call the
create_coupon function:

if callable(SimpleCoupon):

 SimpleCoupon.generate_coupon = create_
coupon(SimpleCoupon.coupon_details['product'],
SimpleCoupon.coupon_details['product_category'],
SimpleCoupon.coupon_details['brand'],
SimpleCoupon.coupon_details['source'],
SimpleCoupon.coupon_details['expiry_date'],SimpleCoupon.coupon_
details['quantity'])

After adding the generate_coupon method, we can run the method as follows and check the
results:

SimpleCoupon.generate_coupon(SimpleCoupon.coupon_
details['product'], SimpleCoupon.coupon_details['product_
category'], SimpleCoupon.coupon_
details['brand'], SimpleCoupon.coupon_details['source'],
SimpleCoupon.coupon_details['expiry_date'], SimpleCoupon.
coupon_details['quantity'])

The output for coupon 1 is as follows:

***********------------------**************

Product: Honey Mustard Sauce

Product Category: Condiments

Coupon ID: 579494488135

Brand: ABCBrand3

Source: Pasadena Store

Expiry Date: 10/1/2021

Quantity: 2

***********------------------**************

The output for coupon 2 is as follows:

***********------------------**************

Product: Honey Mustard Sauce

Product Category: Condiments

Coupon ID: 657317674875

Brand: ABCBrand3

Implementing Reflection on Python Objects152

Source: Pasadena Store

Expiry Date: 10/1/2021

Quantity: 2

***********------------------**************

The output for coupon 3 is as follows:

***********------------------**************

Product: Honey Mustard Sauce

Product Category: Condiments

Coupon ID: 689256610872

Brand: ABCBrand3

Source: Pasadena Store

Expiry Date: 10/1/2021

Quantity: 2

***********------------------**************

In this section, we have looked at how to make use of callable to modify a class and add attributes
and methods to a class by externally verifying whether the class is callable. We have successfully verified
whether the SimpleCoupon class is callable and then we have also added a coupon_details
list and a generate_coupon method to the class. This explains the use of callable as a built-in
function in handling reflection on Python objects.

With this understanding, we will look at how the hasattr function helps in applying reflection
on Python objects.

Using hasattr to set values
We will now look into the hasattr function, which can be used to check whether a Python object
has attributes. Using this function as a condition to test the objects, we can apply reflection on objects
externally.

In this example, we will look at creating custom coupons by changing one of its variables using
the hasattr function. The classes and methods throughout this chapter are used to understand
reflection with relevant examples explained under each section. We will now create another class
named CustomCoupon. We will add and define class attributes to this class within the class itself
and we will be adding a method to generate coupons:

class CustomCoupon:

 product_name = "Honey Mustard Sauce"

 product_category = "Condiments"

Using hasattr to set values 153

 brand = "ABCBrand3"

 source = "Store"

 expiry_date = "10/1/2021"

 quantity = 10

 manufacturer = None

 store = None

 def generate_coupon(self):

 import random

 couponId = random.sample(

 range(100000000000,900000000000),1)

 for i in couponId:

 pri
nt('***********------------------**************')

 print('Product:', self.product_name)

 print('Product Category:',

 self.product_category)

 print('Coupon ID:', i)

 print('Brand:', self.brand)

 print('Source:', self.source)

 print('Expiry Date:', self.expiry_date)

 print('Quantity:', self.quantity)

 if(self.manufacturer is not None):

 print('Manufacturer:', self.manufacturer)

 elif(self.store is not None):

 print('Store:', self.store)

 pri
nt('***********------------------**************')

Look at three attributes of the preceding class – source, manufacturer, and store. If we
want to change the behavior of these attributes from outside the class, we can do so by first checking
whether the class has these attributes, and when the attributes are present, we can then modify the
behavior of these attributes. Let’s look at how to perform this using the hasattr function. We will
first start with creating an object for the class:

coupon = CustomCoupon()

Implementing Reflection on Python Objects154

Let’s check whether the object coupon has an attribute named source, and if it is present, then we
will get the value of the attribute:

if hasattr(coupon, 'source'):

 print(getattr(coupon, 'source'))

Store

Let’s now proceed with calling the method to generate the coupon:

coupon.generate_coupon()

***********------------------**************

Product: Honey Mustard Sauce

Product Category: Condiments

Coupon ID: 728417424745

Brand: ABCBrand3

Source: Store

Expiry Date: 10/1/2021

Quantity: 10

***********------------------**************

The implementation of reflection on the object coupon will start in the following code. We will create a
check_attribute function that takes in three parameters. The first parameter is the class object’s
name followed by the store attribute and then the manufacturer attribute. This function checks
whether the given input object has the attribute named source with a Store value, and when it
returns true, it sets a value for the attribute store, and when it returns false, it sets None as the
value for the attribute store. Similarly, when the source attribute has a Manufacturer value,
then the value is set for another attribute manufacturer, as follows:

def check_attribute(couponobj, store, manufacturer):

 if hasattr(couponobj, 'source'):

 if(str(getattr(couponobj, 'source')) == 'Store'):

 setattr(couponobj, 'store', store)

 else:

 setattr(couponobj, 'store', None)

 if(str(getattr(couponobj,'source')) ==

 'Manufacturer'):

 setattr(couponobj, 'manufacturer',

 manufacturer)

Using hasattr to set values 155

 else:

 setattr(couponobj, 'manufacturer', None)

Let’s now check the value of the source attribute:

coupon.source

'Store'

We can now call check_attribute to add a store and let’s also add a manufacturer. Since the
source has been set to Store, the function should set the value for the store variable and not for
the manufacturer variable:

check_attribute(coupon,"Brooklyn Store", "XYZ Manufacturer")

coupon.generate_coupon()

***********------------------**************

Product: Honey Mustard Sauce

Product Category: Condiments

Coupon ID: 220498341601

Brand: ABCBrand3

Source: Store

Expiry Date: 10/1/2021

Quantity: 10

Store: Brooklyn Store

***********------------------**************

Let’s now reset the source value to Manufacturer and run check_attribute again:

coupon.source = 'Manufacturer'

check_attribute(coupon,"Brooklyn Store", "XYZ Manufacturer")

coupon.manufacturer

'XYZ Manufacturer'

Let’s now check what has happened to the store variable:

coupon.store

Implementing Reflection on Python Objects156

It returns no value. Resetting the source to Store again sets the store value and resets
manufacturer as follows:

coupon.source = 'Store'

check_attribute(coupon,"Malibu Store", "XYZ Manufacturer")

coupon.generate_coupon()

***********------------------**************

Product: Honey Mustard Sauce

Product Category: Condiments

Coupon ID: 498746188585

Brand: ABCBrand3

Source: Store

Expiry Date: 10/1/2021

Quantity: 10

Store: Malibu Store

***********------------------**************

In this example, we looked at implementing the hasattr function on ABC Megamart coupon
information. This example explains reflection using the hasattr function. With this understanding,
let’s proceed further to look at isinstance.

Using isinstance to modify an object
We will now look at another built-in function named isinstance. This function is used to identify
whether an object is an instance of a class. We will be implementing reflection on class objects by
checking whether they are instances of a specific class and then customizing the object of the class
accordingly. This example uses the same attributes (source, store, and manufacturer) as
in the preceding example of the hasattr function.

To begin with, let’s create two objects for two different classes and apply the isinstance function
to the objects of the classes to understand how this function can help in changing the behavior of
Python objects. We will be reusing the CustomCoupon class from the preceding section and we
will also be creating another SimpleCoupon class. We will then add two objects, coupon1 and
coupon2, as follows:

coupon1 = CustomCoupon()

class SimpleCoupon:

 product_name = "Strawberry Ice Cream"

 product_category = "Desserts"

 brand = "ABCBrand3"

Using isinstance to modify an object 157

 store = "Los Angeles Store"

 expiry_date = "10/1/2021"

 quantity = 10

coupon2 = SimpleCoupon()

In the following figure, let’s look at the attributes of each object:

Figure 6.2 – Attributes of the coupon 1 and coupon 2 objects

Let’s now check whether the objects are instances of a specific class using the isinstance function:

isinstance(coupon1,CustomCoupon)

True

isinstance(coupon2,SimpleCoupon)

True

We will now define a function named check_instance, which makes use of isinstance to
implement reflection that customizes the object externally. This function takes an object, a class name,
a store value, and a manufacturer value as input parameters and checks whether the object is
an instance of a specific coupon class, and also checks whether it has the attribute named source
and updates the store or manufacturer values accordingly. If none of these conditions are
met, it returns a message that the object cannot be customized:

def check_instance(couponobject, couponclass, store,
manufacturer):

 if isinstance(couponobject, couponclass):

Implementing Reflection on Python Objects158

 if hasattr(couponobject, 'source'):

 if(str(getattr(couponobject, 'source')) ==

 'Store'):

 setattr(couponobject, 'store', store)

 else:

 setattr(couponobject, 'store', None)

 if(str(getattr(couponobject,'source')) ==

 'Manufacturer'):

 setattr(couponobject,'manufacturer',

 manufacturer)

 else:

 setattr(couponobject,'manufacturer', None)

 else:

 print(couponobject,'cannot be customized')

Let’s now call check_instance on the coupon1 object and see whether the store value is
updated in the object:

check_instance(coupon1, CustomCoupon, 'Malibu Beach Store',
'XYZ Manufacturer')

coupon1.store

'Malibu Beach Store'

coupon1.generate_coupon()

***********------------------**************

Product: Honey Mustard Sauce

Product Category: Condiments

Coupon ID: 535933905876

Brand: ABCBrand3

Source: Store

Expiry Date: 10/1/2021

Quantity: 10

Store: Malibu Beach Store

***********------------------**************

Using issubclass to modify a class 159

Let’s further call check_instance on the coupon2 object and check whether the object is
customized:

check_instance(coupon2, CustomCoupon, 'Malibu Beach Store',
'XYZ Manufacturer')

<__main__.SimpleCoupon object at 0x0000023B51AD2B88> cannot be
customized

In the preceding object, the conditions specified in check_instance were not met and so the
object could not be customized.

This example explains reflection using the isinstance function. With this understanding, let’s
proceed further to look at issubclass.

Using issubclass to modify a class
In this section, we will look at the issubclass built-in function. This function can be used to apply
reflection on classes that are inherited by one or more parent classes or superclasses. This function is
used to verify whether a class is a subclass of a specific parent and then modify the class accordingly.

Let’s begin by creating two classes with a simple set of variables. The classes will be named StoreCoupon
and ManufacturerCoupon:

class StoreCoupon:

 product_name = "Strawberry Ice Cream"

 product_category = "Desserts"

 brand = "ABCBrand3"

 store = "Los Angeles Store"

 expiry_date = "10/1/2021"

 quantity = 10

class ManufacturerCoupon:

 product_name = "Strawberry Ice Cream"

 product_category = "Desserts"

 brand = "ABCBrand3"

 manufacturer = "ABC Manufacturer"

 expiry_date = "10/1/2021"

 quantity = 10

Implementing Reflection on Python Objects160

We will also create two functions that in turn create new functions to generate store coupon
and manufacturer coupon, respectively:

def create_store_coupon(product_name, product_category, brand,
store, expiry_date, quantity):

 def generate_store_coupon(product_name,

 product_category, brand, store, expiry_date,

 quantity):

 import random

 couponId = random.sample(

 range(100000000000,900000000000),1)

 for i in couponId:

 pri
nt('***********------------------**************')

 print('Product:', product_name)

 print('Product Category:', product_category)

 print('Coupon ID:', i)

 print('Brand:', brand)

 print('Store:', store)

 print('Expiry Date:', expiry_date)

 print('Quantity:', quantity)

 pri
nt('***********------------------**************')

 return generate_store_coupon

def create_manufacturer_coupon(product_name, product_category,
brand, manufacturer, expiry_date, quantity):

 def generate_manufacturer_coupon(product_name, product_
category, brand, manufacturer, expiry_date, quantity):

 import random

 couponId = random.sample(

 range(100000000000,900000000000),1)

 for i in couponId:

 pri
nt('***********------------------**************')

 print('Product:', product_name)

 print('Product Category:', product_category)

 print('Coupon ID:', i)

 print('Brand:', brand)

Using issubclass to modify a class 161

 print('Manufacturer:', manufacturer)

 print('Expiry Date:', expiry_date)

 print('Quantity:', quantity)

 pri
nt('***********------------------**************')

 return generate_manufacturer_coupon

We will further create a new class named IceCreamCoupon, which inherits StoreCoupon as
the parent:

class IceCreamCoupon(StoreCoupon):

 pass

Let’s now define a function to check whether a specific class is the parent class of IceCreamCoupon.
If the subclass has StoreCoupon as a parent class, a function to generate StoreCoupon should
be created, and if it has ManufacturerCoupon as a parent class, then a function to generate
ManufacturerCoupon should be created:

 def check_parent():

 if issubclass(IceCreamCoupon, StoreCoupon):

 IceCreamCoupon.generate_store_coupon =
create_store_coupon(IceCreamCoupon.product_name,
IceCreamCoupon.product_category,
IceCreamCoupon.brand, IceCreamCoupon.store,
IceCreamCoupon.expiry_date, IceCreamCoupon.quantity)

 elif issubclass(IceCreamCoupon, ManufacturerCoupon):

 IceCreamCoupon.generate_manufacturer_coupon =
create_manufacturer_coupon(IceCreamCoupon.product_name,
IceCreamCoupon.product_category,
IceCreamCoupon.brand,
IceCreamCoupon.manufacturer,
IceCreamCoupon.expiry_date,
IceCreamCoupon.quantity)

Running check_parent will now add generate_store_coupon to the IceCreamCoupon
class, as follows:

check_parent()

IceCreamCoupon.generate_store_coupon(IceCreamCoupon.
product_name, IceCreamCoupon.product_category,
IceCreamCoupon.brand,IceCreamCoupon.store,
IceCreamCoupon.expiry_date,IceCreamCoupon.quantity)

Implementing Reflection on Python Objects162

***********------------------**************

Product: Strawberry Ice Cream

Product Category: Desserts

Coupon ID: 548296039957

Brand: ABCBrand3

Store: Los Angeles Store

Expiry Date: 10/1/2021

Quantity: 10

***********------------------**************

class IceCreamCoupon(ManufacturerCoupon):

 pass

check_parent()

IceCreamCoupon.generate_manufacturer_coupon(IceCreamCoupon.
product_name,IceCreamCoupon.product_category,
IceCreamCoupon.brand,IceCreamCoupon.manufacturer,
IceCreamCoupon.expiry_date,IceCreamCoupon.quantity)

***********------------------**************

Product: Strawberry Ice Cream

Product Category: Desserts

Coupon ID: 193600674937

Brand: ABCBrand3

Manufacturer: ABC Manufacturer

Expiry Date: 10/1/2021

Quantity: 10

***********------------------**************

In this example, we looked at how to make use of the issubclass function to implement reflection
on Python classes and, in turn, modify the classes from a metaprogram rather than directly changing
the function definition. With this understanding, we will look at the last section of this chapter on
implementing property on a class.

Applying property on a class
In this section, we will look at the usage of property, which is another built-in function that
can be added as a decorator in a class and can update the properties of the methods of the class by
implementing the getter, setter, and delete methods on a class method. In Chapter 5, we
looked at the usage of property as a function. In this section, we will implement property in

Applying property on a class 163

an example to check how it works on reflection. We will be looking at the same coupon example to
understand this.

Let’s now create a new class and name it CouponwithProperty, initialize the class with a
_coupon_details variable, and set it to none. We will then add property as a decorator and
define a coupon_details method and add getter, setter, and delete to get, set, and
delete values for the coupon details. In this example, we will define getter to get coupon details and
setter to set coupon details, but we will define deleter in such a way that coupon_details
can never be deleted. This is possible through reflection:

class CouponwithProperty:

 def __init__(self):

 self._coupon_details = None

 @property

 def coupon_details(self):

 return self.coupon_details

 @coupon_details.getter

 def coupon_details(self):

 print("get coupon_details")

 return self._coupon_details

 @coupon_details.setter

 def coupon_details(self, coupon):

 print("set coupon_details")

 self._coupon_details = coupon

 @coupon_details.deleter

 def coupon_details(self):

 print("Sorry this attribute cannot be

 deleted")

Let’s now create an object for the preceding class:

fmcgCoupon = CouponwithProperty()

We can test whether getter is working by calling the coupon_details attribute:

fmcgCoupon.coupon_details

get coupon_details

Implementing Reflection on Python Objects164

Similarly, we can check whether setter is working by setting a value for the coupon_details
attribute:

fmcgCoupon.coupon_details = {

 'Product': 'Strawberry Ice Cream',

 'Product Category': 'Desserts',

 'Coupon ID': 190537749828,

 'Brand': 'ABCBrand3',

 'Manufacturer': 'ABCBrand3',

 'Expiry Date': 'ABC Manufacturer',

 'Quantity': '10/1/2021'

 }

set coupon_details

Calling getter again after setting the values will result in the following:

fmcgCoupon.coupon_details

get coupon_details

{'Product': 'Strawberry Ice Cream',

 'Product Category': 'Desserts',

 'Coupon ID': 190537749828,

 'Brand': 'ABCBrand3',

 'Manufacturer': 'ABCBrand3',

 'Expiry Date': 'ABC Manufacturer',

 'Quantity': '10/1/2021'}

The most important change we made on the attribute was disabling the delete operation from
happening by setting deleter. Let’s check whether it is working as expected:

del fmcgCoupon.coupon_details

Sorry this attribute cannot be deleted

fmcgCoupon.coupon_details

get coupon_details

{'Product': 'Strawberry Ice Cream',

 'Product Category': 'Desserts',

 'Coupon ID': 190537749828,

 'Brand': 'ABCBrand3',

 'Manufacturer': 'ABCBrand3',

Summary 165

 'Expiry Date': 'ABC Manufacturer',

 'Quantity': '10/1/2021'}

When we call del on an attribute, it deletes the attribute but, in this case, del is unable to delete the
attribute because we have programmed deleter to disable deletion.

These are some of the examples of how reflection can be applied to Python objects using Python’s
built-in functions.

Summary
In this chapter, we have learned how to examine function objects in Python using the concept of
reflection and the corresponding applications of reflection, in which we saw how to implement reflection
using built-in functions such as id, callable, hasattr, isinstance, issubclass, and
property on various Python objects, and we also learned how to apply them to our core example.
From all of these concepts, we learned how to examine Python objects such as classes, methods, and
functions. From the examples covered under each topic, we also learned how to apply reflection in
practical use cases.

Similar to other chapters covered in this book, this chapter, which covered the concept of reflection,
also covered changing the behavior of Python objects externally using metaprogramming.

In the next chapter, we will be looking at the concept of generics with some interesting examples.

7
Understanding Generics

and Typing

In this chapter, we will look at what generics are and how to perform type checking in Python 3 and
understand how it is useful in metaprogramming.

Python is a programming language where variables are declared as generics and they don’t get a data
type assigned to them on the declaration. Python resolves the data types dynamically during runtime
depending on the values assigned to variables. In other programming languages such as C++, generics
need to be programmatically designed to make the variables generic, whereas in Python, generics are
how the variables are defined. In such cases, how we would declare a variable with typing and restrict
the behavior of the variables is what we will be focusing on in detail in this chapter.

Throughout this chapter, we will look at understanding how generics work in Python and how to
define type checks so that we can apply metaprogramming on variables to statically type them so that
we don’t have to wait for the complete program to run to determine that we have unintentionally used
incorrect typing in our code.

In this chapter, we will be covering the following main topics:

• What are generics?

• What happens when data types are specified?

• Typing with explicit type checks – approach 1

• Typing with explicit type checks – approach 2

• Adding data types with constraints

• Creating a simple custom data type

• Creating a domain-specific data type

Understanding Generics and Typing168

By the end of this chapter, you should be able to apply generics and type checking on Python variables.
You should also be able to create your own domain-specific data types.

Technical requirements
The code examples shared in this chapter are available on GitHub under the code for this chapter here:
https://github.com/PacktPublishing/Metaprogramming-with-Python/
tree/main/Chapter07.

What are generics?
Generics are a programming paradigm where any attribute or variable is a function in a language
that is not assigned to any specific type. When we speak of type, it is either the variable data type or
the function return type.

How are generics connected to metaprogramming?

Metaprogramming deals with the concepts of Python 3 and above, where we can develop scripts or
programs that manipulate the objects of Python externally without actually impacting the definition of
classes, methods, or functions in a program. Generics are the way in which Python has built the handling
of data types for its objects. If we need to change the data type handling in Python from generics to
specific types, we can perform it through metaprogramming. To understand how to make specifics
work, we need to understand generics with examples. Let’s look at generics in the following section.

How are generics handled in Python?

Here, we can investigate generics with an example. Throughout this chapter, we will look into another
interesting section of our core example, ABC Megamart. In this chapter, we will be covering our
examples using the clothing and fashion department of ABC Megamart.

Let’s consider the fashion department of ABC Megamart in this example. This department covers
various clothing products. To examine generics, we will first define a class named Fashion with
attributes such as clothing_category, gender, model, design, dress_type, size,
and color. We will also add a method named get_item to return the preceding attributes. The
code is defined as follows:

class Fashion:

 def __init__(self,clothing_
category,gender,model,design,dress_type,size, color):

 self.clothing_category = clothing_category

 self.gender = gender

 self.model = model

https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter07

What are generics? 169

 self.design = design

 self.dress_type = dress_type

 self.size = size

 self.color = color

 def get_item(self):

 return self.clothing_category,self.gender,self.
model,self.design,self.dress_type, self.size,self.color

This code handles generics. Let’s explain this statement by assigning values of any data types to the
attributes of Fashion:

fashion =
Fashion("Clothing","Women","Western","Dotted","Jumpsuits",38,
"blue")

We have added string values to clothing_category, gender, model, design, dress_
type, and color, while we added an integer value to the size attribute. Since the language handles
generics by default, we did not have to declare the data types and the values are accepted without
throwing any errors. We can call the get_item method to display these generic values:

fashion.get_item()

('Clothing', 'Women', 'Western', 'Dotted', 'Jumpsuits', 38,
'blue')

Examining the data types of clothing_category and size results as follows:

type(fashion.clothing_category)

str

type(fashion.size)

int

Let’s double-check our statement on generics now. What happens when we change the data types
of input variables? Will they be accepted by Python? To test this, let’s change the data types of
clothing_category and size:

fashion = Fashion(102,"Women","Western","Floral","T-
Shirt","XS","green")

fashion.get_item()

(102, 'Women', 'Western', 'Floral', 'T-Shirt', 'XS', 'green')

Understanding Generics and Typing170

The change in data types is accepted and processed by Python and can be viewed as follows:

type(fashion.clothing_category)

int

type(fashion.size)

str

In the preceding example, no matter which data type the input value belongs to, they are processed
successfully. In the following section, let’s explicitly assign data types and check further.

What happens when data types are specified?
Annotations in Python are added to code to provide additional information or help to end users
with a piece of code while creating libraries. Annotations can be used to add data types to a specific
code so that the information on data types can later be retrieved using the annotations by developers.

Type hints as annotations

In the context of typing, which is the topic of this chapter, let’s look at type hints in this section. Data
types of a function or method can be defined in Python using a functionality of annotations called
type hinting. Type hinting is a concept laid out in PEP 483 (Python Enhancement Proposals)
for Python 3.5 by Guido van Rossum and Ivan Levkivskyi. Type hinting can be read in detail in the
Python documentation available at PEP 483 – The Theory of Type Hints at peps.python.org.
Type hinting is used to provide information to the developers on the data types and return types of
Python objects and is not a strict requirement in Python coding. With or without type hinting, Python
code executes the same way since it is a dynamically typed language. Let’s look at another example of
the Fashion class by declaring type hints on the methods of the class. To implement this, we can
explicitly assign a data type and its return type to a variable while declaring a variable and adding it
to a method in Python. We will also add a type hint for the return type of a method.

Let’s declare the Fashion class initialized with its attributes or variables along with the data types,
which we would expect the variables to be on:

class Fashion:

 def __init__(self,clothing_category:
str,gender:str,model:str,design:str,dress_type:str,size:int,
color:str):

 self.clothing_category = clothing_category

 self.gender = gender

 self.model = model

 self.design = design

http://peps.python.org

Typing with explicit type checks – approach 1 171

 self.dress_type = dress_type

 self.size = size

 self.color = color

 def get_item(self) -> list:

 return self.clothing_category,self.gender,self.model,
self.design,self.dress_type, self.size,self.color

In the preceding code, we have specifically tagged a data type to each variable. In this class, we will
also add a get_item method and add annotation with a type hint specifying that this method
returns a list item.

Let’s now check what happens when these data types are not followed while creating an object and
assigning values to these variables:

fashion = Fashion(104,"Women","Western","Cotton","Shirt","S",
"white")

fashion.get_item()

[104, 'Women', 'Western', 'Cotton', 'Shirt', 'S', 'white']

We have declared clothingCategory_c as a string and size as an integer in the preceding
class definition but we have assigned an integer to clothing_category and a string to the
size variables. The program still ran successfully without throwing any type error, while there
should, ideally, have been a type error in this case. This example again proves that types are handled
as generics in Python when we assign a data type during variable declaration.

Let’s also look at the annotation for the get_item method in the following code:

print(Fashion.get_item.__annotations__)

Calling __annotations__ on the method provides the list data type annotated as the return
type for the method:

{'return': <class 'list'>}

Let’s look further into the concept of typing, in which we can look at how to deal with specific types
instead of generics.

Typing with explicit type checks – approach 1
In the preceding section, we looked at Python’s ability to handle data types as generics. While building
an application, there can be scenarios where a variable will need a specific data type, and we might
expect metaprogramming to have the ability to handle such specific data types. In this section, let’s
look at creating a class to perform type checking.

Understanding Generics and Typing172

Creating a class to implement type checking

In this example, we will be creating a class named typecheck and adding methods to check each
data type specifically. If a data type, for instance, an integer type, is provided as input to the method,
it returns the input and, if the condition fails, it returns a message to provide the input value as an
integer. Similarly, we will add various methods to check string, float, list, tuple, and dictionary objects:

class typecheck:

Let’s now define a method named intcheck. The purpose of this method is to perform an integer
type check of any input explicitly. In this method, a value will be provided as input and the method
will verify whether the input value is an integer. If the input value is an integer, we will return the
input value. If the value is not an integer, we will return a message that says "value should be
an integer":

 def intcheck(self,inputvalue):

 if type(inputvalue) != int:

 print("value should be an integer")

 else:

 return inputvalue

In the following method, let’s check that the input variable is not a string (for example,
Orangesexample) and return an error message when the condition is true and return the
input value when the condition is false:

 def stringcheck(self,inputvalue):

 if type(inputvalue) != str:

 print("value should be a string")

 else:

 return inputvalue

In the following method, let’s check that the input variable is not a floating-point value (for example,
example, 2335.2434) and return an error message when the condition is true and return
the input value when the condition is false:

 def floatcheck(self,inputvalue):

 if type(inputvalue) != float:

 print("value should be a float")

 else:

 return inputvalue

Typing with explicit type checks – approach 1 173

In the following method, let’s check that the input variable is not a list of variables (for example,
['fruits','flowers',1990]) and return an error message when the condition is true
and return the input value when the condition is false:

 def listcheck(self,inputvalue):

 if type(inputvalue) != list:

 print("value should be a list")

 else:

 return inputvalue

In the following method, let’s check that the input variable is not a tuple of variables (for example,
example, ('fruits','flowers',1990)) and return an error message when the condition
is true and return the input value when the condition is false:

 def tuplecheck(self,inputvalue):

 if type(inputvalue) != tuple:

 print("value should be a tuple")

 else:

 return inputvalue

In the following method, let’s check that the input variable is not a dictionary with key/value pairs
(for example, example: {'one': 1, 'two': 2}) and return an error message when the
condition is true and return the input value when the condition is false:

 def dictcheck(self,inputvalue):

 if type(inputvalue) != dict:

 print("value should be a dict")

 else:

 return inputvalue

Now let’s , we will proceed further to create the Fashion class to perform type checks using the
typecheck class.

Understanding Generics and Typing174

Creating a class to test type checking

Let’s now create the Fashion class with the same set of variables, that is, clothing_category,
gender, model, design, dress_type, size, and color. In this example too, we will assign
a specific data type to each variable. In the following class definition, let’s create an object for the
typecheck class and call type-specific methods to store the variables of each type. For instance,
a price variable will be declared as float, and the floatcheck method from typecheck
will be used to store the variable instead of using generics:

class Fashion:

In the following method, let’s initialize the variables for the Fashion class along with their specific
data types defined using the type checking methods of the typecheck class:

 def __init__(self,clothing_category:
str,gender:str,price:float,design:str,dress_type:str,size:int,
color:list):

 tc = typecheck()

 self.clothing_category = tc.stringcheck(clothing_
category)

 self.gender = tc.stringcheck(gender)

 self.price = tc.floatcheck(price)

 self.design = tc.stringcheck(design)

 self.dress_type = tc.stringcheck(dress_type)

 self.size = tc.intcheck(size)

 self.color = tc.listcheck(color)

In the following method, let’s return all the variables initialized in the Fashion class:

 def get_item(self):

 return self.clothing_category,self.gender,self.
price,self.design,self.dress_type, self.size,self.color

Calling the floatcheck method on the price variable acts as a typing mechanism for the
variable declaration, and if the input provided is not a float, then an error will be displayed in the
variable declaration phase itself:

fashion =
Fashion(112,"Men","Western","Designer","Shirt",38.4,"black")

value should be a string

value should be a float

Typing with explicit type checks – approach 2 175

value should be an integer

value should be a list

In the preceding example, we have declared four variables with incorrect data types; clothing_
category should be a string, price should be a float, size should be an integer, and color
should be a list. All these incorrect variables were not accepted by the code and hence we have received
corresponding variable type errors:

fashion.get_item()

(None, 'Men', None, 'Designer', 'Shirt', None, None)

While we get the items from the fashion object, all incorrect type variables have no values assigned
to them. Let’s now look at the correct values and how they are accepted by the fashion object:

:fashion =
Fashion("112","Men",20.0,"Designer","Shirt",38,["blue","white"])

fashion.get_item()

('112', 'Men', 20.0, 'Designer', 'Shirt', 38, ['blue', 'white'])

In the preceding code, we have corrected the input values by assigning values of specific data types
and the error is now resolved. By developing such explicit typing libraries, we can convert Python’s
generics into specifics.

Typing with explicit type checks – approach 2
In this section, we will look at another approach for applying specific data types to variables. In the
first approach, we developed a typecheck class and used the type checking methods themselves
to create new data types. In this example, we will be creating the typecheck class with each type
checking method to check that the input value belongs to the expected type and returns a Boolean
value based on the condition’s result. This method of type checking gives us the flexibility of modifying
the Fashion class to provide variable-specific error messages when the condition is not met.

Creating a class to implement type checking

In this example, let’s begin by creating the typecheck class.

The typecheck class is created here to make all the methods in this class reusable just in case all
the methods in the type check code need to be exported into a different file for later use.

All the methods in this example can be created with or without a class and used throughout this chapter:

class typecheck

Understanding Generics and Typing176

• In the following method, let’s check that the input variable is not an integer (for example, 23348)
and return False when the condition is true and return True when the condition is false:

 def intcheck(self,inputvalue):

 if type(inputvalue) != int:

 return False

 else:

 return True

• In the following method, let’s check that the input variable is not a string (for example,
Orangesexample) and return False when the condition is true and return True when
the condition is false:

 def stringcheck(self,inputvalue):

 if type(inputvalue) != str:

 return False

 else:

 return True

• In the following method, let’s check that the input variable is not a floating point value (for
example, 2335.2434) and return False when the condition is true and return True
when the condition is false:

 def floatcheck(self,inputvalue):

 if type(inputvalue) != float:

 return False

 else:

 return True

• In the following method, let’s check that the input variable is not a list of variables (for example,
['fruits','flowers',1990]) and return False when the condition is true and
return True when the condition is false:

 def listcheck(self,inputvalue):

 if type(inputvalue) != list:

 return False

 else:

 return True

Typing with explicit type checks – approach 2 177

• In the following method, let’s check that the input variable is not a tuple of variables (for example,
('fruits','flowers',1990)) and return False when the condition is true and
return True when the condition is false:

 def tuplecheck(self,inputvalue):

 if type(inputvalue) != tuple:

 return False

 else:

 return True

• In the following method, let’s check that the input variable is not a dictionary with key/value
pairs (for example, {'one': 1, 'two': 2}) and return False when the condition
is true and return True when the condition is false:

 def dictcheck(self,inputvalue):

 if type(inputvalue) != dict:

 return False

 else:

 return True

Now, we can proceed further to create the Fashion class to perform type checks using the
typecheck class.

Creating a class to test type checking

In this section, let’s look at creating a Fashion class with a different variable type definition as follows:

class Fashion:

• Let’s initialize the variables along with the specific data types for each:

 def __init__(self,clothing_category:
str,gender:str,model:tuple,design:int,price:float,
size:dict, color:list):

 tc = typecheck()

• In the following code, let’s check whether the clothing_category input is a string and
return the value if it is true, and return an error specific to clothing_category if it is false:

 if tc.stringcheck(clothing_category):

 self.clothing_category = clothing_category

 else:

 print("clothing category should be a string")

Understanding Generics and Typing178

• In the following code, let‘s check whether the gender input is a string and return the value
if it is true and return an error specific to the gender variable if it is false:

 if tc.stringcheck(gender):

 self.gender = gender

 else:

 print("gender should be a string")

• In the following code, let’s check whether the model input is a tuple and return the value if it
is true and return an error specific to the model variable if it is false:

 if tc.tuplecheck(model):

 self.model = model

 else:

 print("model should be a tuple")

• In the following code, let’s check whether the design input is an integer and return the value
if it is true and return an error specific to the design variable if it is false:

if tc.intcheck(design):

 self.design = design

 else:

 print("design should be an integer")

• In the following code, let’s check whether the price input is a floating point value and return
the value if it is true and return an error specific to the price variable if it is false:

if tc.floatcheck(price):

 self.price = price

 else:

 print("price should be a floating point
value")

• In the following code, let’s check whether the size input is a dictionary object and return the
value if it is true and return an error specific to the size variable if it is false:

if tc.dictcheck(size):

 self.size = size

 else:

 print("size should be a dictionary object")

Typing with explicit type checks – approach 2 179

• In the following code, let’s check whether the color input is a list object and return the value
if it is true and return an error specific to the color variable if it is false:

if tc.listcheck(color):

 self.color = color

 else:

 print("color should be a list of values")

• In the following code, let’s create a method to return all the variables listed in the preceding code:

 def get_item(self):

 return self.clothing_category,self.gender,self.
model,self.design,self.price, self.size,self.color

To test this approach of type checking, let’s pass some incorrect values as input for some of these
variables and check:

fashion = Fashion(12,"Women","Western","Floral","Maxi
Dress",34,"yellow")

Executing the preceding code results in the following list of errors:

clothing category should be a string

model should be a tuple

price should be a floating point value

size should be a dictionary object

color should be a list of values

Further, calling the get_item method on the preceding fashion object results in the following
error:

fashion.get_item()

The graphical representation of the error message is as follows:

Figure 7.1 – Error on calling the get_item method

Understanding Generics and Typing180

In the preceding error, the first variable, clothing-category, was not accepted by the method
since type expectations were not met by this variable.

We can check further by providing the right input types as follows:

fashion =
Fashion("Rayon","Women",("Western","Floral"),12012,100.50,
{'XS': 36, 'S': 38, 'M': 40},["yellow","red"])

There were no errors from the preceding value assignments. Calling the get_item method on the
fashion object now results in the following output:

fashion.get_item()

('Rayon',

 'Women',

 ('Western', 'Floral'),

 12012,

 100.5,

 {'XS': 36, 'S': 38, 'M': 40},

 ['yellow', 'red'])

The preceding output meets all the type requirements and the end goal of type checking is achieved
successfully through this approach. Now that you understand this, let’s look further into the concept
of data types with constraints.

Adding data types with constraints
In this section, we will look at an example of adding constraints to data types and checking constraints
along with type checking. There might be scenarios where we would like to create an integer variable
and restrict its length to two digits or to create a string and restrict its length to 10 characters and more.
With this example, let’s explore how to add such constraints or restricts during the static type checking.

In this example, let’s create a typecheck class with only two methods to check an integer and a string.
While checking these data types, let’s also add a few more constraints within the method definition:

class typecheck:

• In the following method, let’s check that the input variable is not an integer or its length is
greater than two, and return False when the condition is true, and return True when the
condition is false:

 def intcheck(self,inputvalue):

 if (type(inputvalue) != int) and

Adding data types with constraints 181

(len(str(inputvalue))>2):

 return False

 else:

 return True

• In the following method, let’s check that the input variable is not a string or its length is greater
than 10, and return False when the condition is true, and return True when the condition
is false:

 def stringcheck(self,inputvalue):

 if (type(inputvalue) != str) and
(len(str(inputvalue))>10):

 return False

 else:

 return True

With just two methods with type checks and constraints, we can look into creating a Fashion class
with two variables and one method:

class Fashion:

• Let’s initialize the class with clothing_category as a string and size as an integer:

 def __init__(self,clothing_category: str,size:int):

 tc = typecheck()

• In the following code, let’s declare clothing_category using the stringcheck method:

 if tc.stringcheck(clothing_category):

 self.clothing_category = clothing_category

 else:

 print("value should be a string of length
less than or equal to 10")

• In the following code, let’s declare size using the intcheck method:

 if tc.intcheck(size):

 self.size = size

 else:

 print("value should be an integer of 2 digits
or less")

Understanding Generics and Typing182

• In the following code, let’s add the method to get the items and return them:

 def get_item(self):

 return self.clothing_category,self.size

Let’s further create an object for the fashion class and assign two variables that do not match the
type-checking conditions:

fashion = Fashion("Clothing & Accessories",384)

value should be a string of length less than or equal to 10

value should be an integer of 2 digits or less

The preceding error messages indicate that both the type checks and constraints are not met for the
string as well as integer data types. Let’s now provide the right type of input values and perform static
type checking:

fashion = Fashion("Cotton",34)

fashion.get_item()

('Cotton', 34)

The value assignments are now working as expected in the preceding code. With this understanding,
let’s proceed further to create simple custom data types.

Creating a simple custom data type
Until the preceding section, we looked at adding explicit type checks and converting generic type variables
into specific types to handle specific data needs we might get while programming an application, and
we also added errors to help debug incorrect data types assigned to variables.

In this section, let’s look at creating our own simple data types and what will be required to do so.
First of all, let’s answer the question of why we need our own data types. Any custom data type is a
derivation of basic data types in Python along with certain variations to fulfill the purpose of our data
needs in an application. Any data type will have its own set of operations that can be performed on top
of the data of that specific type. For instance, an integer data type will support arithmetic operations
such as addition, subtraction, multiplication, and division. Similarly, a string supports concatenation
in the place of addition, and so on. So, when we create our own data type, we can override these basic
operations to fulfill the need of our custom data type.

Creating a simple custom data type 183

To demonstrate this, let‘s first create our own data type and override the basic operators to perform
the operations that we expect. Please note that custom data types may be required only in situations
where we would like to make it domain-specific or application-specific. We can always use default
data types and avoid creating custom data types where there is no requirement:

1. We will create a class named DressSize and initialize it with the size variable of the
integer type. If the input value for size is not an integer and the input values do not follow a
specific list of dress sizes, type checking returns an error message in red (as shown in Figure 7.2):

class DressSize:

 def __init__(self,size:int):

 self.limit = [28, 30, 32, 34, 36, 38, 40, 42, 44,
46, 48]

 if type(size)==int and size in self.limit:

 self.size = size

 else:

 print("\x1B[31mSize should be a valid dress
size")

2. Next, let’s override the default str method of a class to return the string version of the size
variable:

 def __str__(self):

 return str(self.size)

3. Then, let’s add a new method named value to return the value of the size attribute:

 def value(self):

 return self.size

4. Now, let’s override the addition (+) operator of the integer method to increase size values
from one dress size object created for the DressSize class:

 def __add__(self, up):

 result = self.size + up

 if result in self.limit:

 return result

 else:

 return "Input valid size increments"

Understanding Generics and Typing184

5. Then, let’s override the subtraction (-) operator of the integer method to decrease size values
from one size object created for the DressSize class:

 def __sub__(self, down):

 result = self.size - down

 if result in self.limit:

 return result

 else:

 return "Input valid size decrements"

6. We will then create an object for the class, in this case, our new custom data type, DressSize,
and initialize it with a string instead of an integer, as follows:

s = DressSize("30")

Incorrect input type results in an error with a red font similar to how error messages are
usually displayed while debugging:

Figure 7.2 – Error message for DressSize

7. Calling the value method would also result in an error since the type checking failed for the
DressSize data type:

s.value()

The value error is displayed as follows:

Figure 7.3 – Value error due to incorrect DressSize input type

Creating a simple custom data type 185

8. Let’s correct this error by providing the correct input type while creating a DressSize object:

s = DressSize(30)

s

<__main__.DressSize at 0x22c4bfc4a60>

9. In the following code, we can look at how the addition operation (+) works on the objects of
DressSize:

DressSize(30) + 6

36

DressSize(30) + 3

'Input valid size increments'

10. The addition of two objects works like a regular addition since we have overloaded the addition
operator (+) to add the initialized variables of two objects. Similarly, we can check the results
of subtraction, as follows:

DressSize(32) - 4

26

DressSize(30) – 3

'Input valid size decrements'

11. The subtraction of two objects works like a regular subtraction since we have overloaded the
subtraction operator (-) to subtract the initialized variables of two objects. Similarly, printing
the object results in printing the string format of the size variable since we have overloaded
the str method to do this:

print(s)

30

12. We have also added a value method to display the value of the size variable, and it works
as follows:

s.value()

30

13. Calling the type method on the variable or the s object displays the class name, DressSize,
which is the data type of s in this case:

type(s)

__main__.DressSize

Understanding Generics and Typing186

Now, we can consider creating a more detailed data type of our own in the next section.

Creating a domain-specific data type
In this section, let’s create an even more customized data type to deal with the dress size of the fashion
department of ABC Megamart. The DressSize data type we defined in the preceding section
handles any integer as input and performs the operations we overloaded. When we look at the domain
of the fashion industry and consider the dress size as a domain-specific variable, the DressSize
data type should ideally be considering only specific values for size and not accept all integers. The
dress size will be based on the size of dresses held in the inventory of ABC Megamart.

The accepted input for dress size in this example should be the list of integers,
[36,38,40,42,44,46,48], or the list of strings that indicates the equivalent text values for
dress size such as [XS,S,M,L,XL,XXL,XXXL]:

1. Let’s begin by creating the DressSize class along with its methods to work as a domain-
specific data type, and initialize size as its only input value:

class DressSize:

 def __init__(self, size):

2. Let’s further define two domain-specific lists that holds the valid set of values for dress size in
text and integer formats, respectively:

self.romanchart = ['XS','S','M','L','XL','XXL','XXXL']

self.sizenum = [36,38,40,42,44,46,48]

3. In the following code, we will be creating a dictionary object that holds the integer and text
format of size as key/value pairs. The reason behind adding this dictionary object is to use
it further in the data type-specific methods created for this data type:

self.chart = {}dict(zip(self.romanchart,self.sizenum))

4. Let’s now add the condition that accepts the input value as size if it meets the data type criteria
and then rejects the input value with an error if it does not meet the criteria:

 if (size in self.romanchart) or (size in self.
sizenum):

 self.size = size

 else:

 print("\x1B[31mEnter valid size")

Creating a domain-specific data type 187

In the preceding code, the input value will be accepted if it is present in the romanchart list variable
or if it is present in the sizenum list variable. If both the criteria are not met, the value will be rejected
by the DressSize data type and an error message will be displayed in a red-colored font. Why do
we need to set these strict constraints in this particular domain-specific data type? If we look at the
size values of a dress, the size usually is an even number and there are no odd-numbered dress sizes
in a shopping cart or in a clothing store. Also, the size of the clothing in most of the generic clothing
stores falls between 36 and 48 in general. If the store holds clothes of lesser or greater sizes, we can
adjust the lists accordingly and redefine the data type. In this specific scenario, let’s consider the dress
sizes between 36 and 48 and their corresponding text codes between XS and XXXL as acceptable
values. Now, we have added the acceptance criteria for the data type:

1. Let’s add specific methods that can be processed on the data type. In the following method, let’s
override the default str method of a class to return the string version of the size variable:

 def __str__(self):

 return str(self.size)

2. In the following code, let’s add a new method named value to return the value of the size
attribute:

 def value(self):

 return self.size

3. In the following code, let’s add a method to increment the size value. The size value should
increment by 2 since dress size is always measured in even numbers:

 def increase(self):

 if (self.size in self.romanchart) :

 result = self.chart[self.size] + 2

 for key, value in self.chart.items():

 if value == result:

 return resultkey

 elif (self.size in self.sizenum):

 return self.size + 2

In the preceding code, we have added a logic to look up the value of a dress size such as XL
if DressSize is a text input to the data type, and then increment the value by 2. We have
also added a logic to check the integer value of the dress size and increment by 2 if the dress
size input is an integer.

Understanding Generics and Typing188

4. Let’s add one more method to decrement the DressSize attribute:

 def decrease(self):

 if self.size in self.romanchart :

 result = self.chart[self.size] - 2

 for key, value in self.chart.items():

 if value == result:

 return key

 elif (self.size in self.sizenum):

 return self.size – 2

In the preceding code, we have added a logic to look up the value of a dress size such as XL
if DressSize is a text input to the data type, and then decrement the value by 2. We have
also added a logic to check the integer value of DressSize and decrement by 2 if the
dress size input is an integer. This defines the overall creation of a domain-specific data type
named DressSize.

5. The next step is to test this data type by creating an object:

s = DressSize("XXL")

In the preceding code, we have created an object named s, so let’s look at how various
methods and attributes work on this object:

Figure 7.4 – Attributes of DressSize

6. In the following code, let’s call chart from the s object:

s.chart

{'XS': 36, 'S': 38, 'M': 40, 'L': 42, 'XL': 44, 'XXL':
46, 'XXXL': 48}

Creating a domain-specific data type 189

7. Printing the object results in the string format representation of the value of the s object:

print(s)

XS

XL

8. Calling the value method results as follows:

s.value()

'XXL'

9. Calling the increment method results as follows:

s.increase()

XXXL

10. Calling the decrement method results as follows:

s.decrease()

XL

11. Let’s now create the Fashion class and initialize variables out of which the size variable
will be initialized as the DressSize type:

class Fashion:

 def __init__(self,clothing_category:
str,gender:str,model:str,design:str,dress_
type:str,color:str,size:DressSize):

 self.clothing_category = clothing_category

 self.gender = gender

 self.model = model

 self.design = design

 self.dress_type = dress_type

 self.color = color

12. In the following code, let’s define the type checking condition for DressSize. If size is an
instance of DressSize, then it returns the instance, and if it is not an instance, an appropriate
error message will be displayed:

if isinstance(size,DressSize):

 self.size = size

 else:

 print("value should be of type DressSize")

Understanding Generics and Typing190

13. Let’s further add the get_item method to return the attributes of the Fashion class:

 def get_item(self):

 return self.clothing_category,self.gender,self.
model,self.design,self.dress_type,self.color,self.size

14. Creating the object further results as follows:

fashion =
Fashion("Clothing","Women","Western","Dotted","Jumpsuits",
'blue',"XL")

value should be of type DressSize

In the preceding code, we did not assign the correct data type for the size variable.

15. To correct it, let’s create an instance of DressSize and provide it as input to the Fashion
class:

M = DressSize("M")

fashion = Fashion("Clothing","Women","Western","Dotted",
"Jumpsuits",'blue',M)

The preceding code did not result in any error and is accepted as input by the Fashion
class. Calling the get_item method would result in the following output:

fashion.get_item()

('Clothing',

 'Women',

 'Western',

 'Dotted',

 'Jumpsuits',

 'blue',

 <__main__.DressSize at 0x22c4cf4ba60>)

If we want to look at the specific value of the M object, we can call the value method as
follows:

fashion.size.value()

'M'

In this section, we looked at how to create a domain-specific custom data type and how to use it on
another class as a type variable.

These are some of the examples of how generics work in Python and how specifics can be applied to
Python objects using user-defined functions.

Summary 191

Summary
In this chapter, we have learned the concepts of generics and type checking. We also looked at creating
user-defined data types with specific constraints and we’ve also seen how to apply them to our core
example. We created our own domain-specific data type and overloaded operators and methods to
work according to the data type. Similar to other chapters covered in this book, this chapter is also
used to change the behavior of Python objects externally using the concept of metaprogramming.

In the next chapter, we will be looking at the concept of templates with some interesting examples.

8
Defining Templates for

Algorithms

In this chapter, we will look at what templates are and how to implement template programming in
Python.

What are templates and where are they useful? The main usage of applying the concepts of
metaprogramming during the process of developing an application is to design a reusable framework
that can be manipulated externally through the programming of metadata of Python objects rather
than modifying the object itself. Templates, as the name suggests, can act as a template, a format, or
a model on how a sequence of operations can be performed on a Python object. These templates can
be used to define the common functionalities of methods within a class and to reuse them through
the application of the object-oriented programming concept of inheritance.

Throughout this chapter, we will look at understanding how templates can be defined and used in
Python and how a sequence of common operations can be designed into a template that fits into a
framework. Speaking of designs, template programming is one of the main concepts within the design
patterns of Python. Design patterns will be covered in detail in Chapter 12 on design patterns.

In this chapter, we will be taking a look at the following main topics:

• Explaining a sequence of operations

• Defining the sequence of methods

• Identifying the common functionalities

• Designing templates

By the end of this chapter, you should be able to apply generics and type checking on Python variables.
You should also be able to create your own domain-specific data types.

Defining Templates for Algorithms194

Technical requirements
The code examples shared in this chapter are available on GitHub under the code for this chapter here:
https://github.com/PacktPublishing/Metaprogramming-with-Python/
tree/main/Chapter08.

Explaining a sequence of operations
Developing algorithms is always interesting, especially in a language like Python where less code needs
to be written to complete an action compared to any other programming language. An algorithm
is a simple sequence of steps that need to be performed to accomplish a task. While developing any
algorithm, the most important aspect is to ensure that we are following the steps to perform the action
in the right sequence. This section covers examples of a sequence of operations and how they can be
defined in a Python program.

Back to our core example

In this chapter, we will continue using our core example of ABC Megamart, and we will specifically look
at the billing counter where we can perform a sequence of operations. The reason we are focusing on
a sequence of operations here is to especially understand how templates can be utilized to perform a
set of tasks, and also how they can be reused to perform similar kinds of other tasks too. So, let’s begin.

At ABC Megamart, we have four different checkout counters to check out the shopping items from
the cart. The details of the counters are as follows:

• The first one is to check out items that contain vegetables and dairy.

• The second one is to check out items that contain less than 10 assorted items, excluding
electronics, vegetables, and dairy.

• The third one is to check out items that contain more than 10 assorted items, excluding
electronics, vegetables, and dairy.

• The fourth one is to check out electronic goods.

Each of these counters is performing a sequence of operations and at this point in time, they might
look like they are an independent set of operations. The goal of this chapter is to create templates and
look at a common way of connecting these independent operations. To connect them and create a
template, we need to understand the sequence of operations in each of these counters.

Let’s now look at what each of the counters will work on.

https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter08

Explaining a sequence of operations 195

The vegetables and dairy counter

The journey of a customer to the billing counter starts from the vegetable section, where vegetables
are added to the shopping cart, the customer then stands in a queue at the respective billing counter,
vegetables and fruit are weighed and packed, a price tag with a bar code is added on the packet, the
bar code is scanned and the bill is added to the invoice for each item, a tax component is added for
each item, and the bill is totaled, printed, and handed over to the customer, who then pays the bill.

The graphical representation of the steps is as follows:

Figure 8.1 – Vegetables counter

The following functions will be defined to perform each of these operations:

return_cart()

goto_vege_counter()

weigh_items()

add_price_tag()

scan_bar_code()

add_billing()

add_tax()

calc_bill()

Defining Templates for Algorithms196

print_invoice()

receive_payment()

Let’s further look at the next counter, which handles less than 10 items.

Less than 10 items counter

When a customer adds less than 10 items to the cart and the items do not contain vegetables, fruit,
dairy, or electronics, then the customer goes to the less than 10 items counter where the bar code on
each item is scanned and the bill is added to the invoice for each item, a tax component is added for
each item, and the bill is totaled, printed, and handed over to the customer, who then pays the bill.

The graphical representation of the steps is as follows:

Figure 8.2 – Less than 10 items counter

The following functions will be defined to perform each of these operations:

return_cart()

goto_less_t10_counter()

review_items()

count_items()

Explaining a sequence of operations 197

scan_bar_code()

add_billing()

add_tax()

calc_bill()

print_invoice()

receive_payment()

Let’s further look at the next counter, which handles more than 10 items.

The greater than 10 items counter

When a customer adds more than 10 items to the cart and the items do not contain vegetables, fruit,
dairy, or electronics, then the customer goes to the greater than 10 items counter where the bar code
on each item is scanned and the bill is added to the invoice for each item, coupons are applied, a tax
component is added for each item, and the bill is totaled, printed, and handed over to the customer,
who then pays the bill.

The graphical representation of the steps is as follows:

Figure 8.3 – Greater than 10 items counter

Defining Templates for Algorithms198

The following functions will be defined to perform each of these operations:

return_cart()

gotoGreatT10Counter()

review_items()

count_items()

scan_bar_code()

add_billing()

apply_coupon()

add_tax()

calc_bill()

print_invoice()

receive_payment()

Let’s further look at the next counter, which handles electronic items.

Electronics counter

The last counter is the electronics counter, where a customer goes to the counter, gets the electronic
items tested, the item is scanned, and the bill is added to the invoice for each item. A tax component
is added for each item and the bill is totaled, printed, and handed over to the customer, who then
pays the bill.

The graphical representation of the steps is as follows:

Explaining a sequence of operations 199

Figure 8.4 – Electronics counter

The following functions will be defined to perform each of these operations:

return_cart()

goto_electronics_counter()

review_items()

test_electronics()

scan_bar_code()

add_billing()

apply_coupon()

add_tax()

calc_bill()

print_invoice()

receive_payment()

In each of the preceding billing counters, we looked at the sequence of operations that happens for
a sale to complete.

With this understanding, let’s look at defining each of the operations into methods in the following
section.

Defining Templates for Algorithms200

Defining the sequence of methods
Defining the methods helps us in understanding each of the operations performed at each counter
in detail. Let’s define the classes and methods required to fulfill the actions to be performed in each
operation. We will be covering the following counters in this section:

• The vegetable counter

• Less than 10 items counter

• Greater than 10 items counter

• The electronics counter

Let’s begin with the vegetable counter.

The vegetable counter

The following are the steps for the operation of this counter:

1. We will first create the VegCounter class as follows:

class VegCounter():

2. In the following code, we will be defining the return_cart method that returns the list of
items added to the shopping cart:

 def return_cart(self,*items):

 cart_items = list(items)

 return cart_items

3. Let’s now return the name of the counter to be included in the bill. For this example, the counter
name is Vegetables & Dairy:

 def goto_vege_counter(self):

 return 'Vegetables & Dairy'

4. In the following code, let’s define the method to weigh the items in the cart and return a
dictionary of items and their corresponding weights:

 def weigh_items(self,*weights,cart_items = None):

 weight = list(weights)

 item_weight = dict(zip(cart_items, weight))

 return item_weight

Defining the sequence of methods 201

5. Next, let’s define a method to take the unit price and weights as input and calculate the price
of each item by multiplying the weights and unit price:

 def add_price_tag(self,*units,weights = None):

 pricetag = []

 for item,price in zip(weights.
items(),list(units)):

 pricetag.append(item[1]*price)

 return pricetag

6. In the following method, let’s input bar codes to each of the items in the cart and return the
bar codes as a list:

 def scan_bar_code(self,*scan):

 codes = list(scan)

 return codes

7. Next, let’s add a method to add price tags to the bar codes by creating a dictionary object and
adding the codes and their corresponding price tags as key-value pairs:

 def add_billing(self,codes=None,pricetag=None):

 self.codes = codes

 self.pricetag = pricetag

 bill = dict(zip(self.codes, self.pricetag))

 return bill

8. Then, let’s add tax percentages for each of the items and return the tax values as a list:

 def add_tax(self,*tax):

 taxed = list(tax)

 return taxed

9. Let’s further use the price tags and the tax values and calculate the bill for each of the items
in the cart, and create a dictionary to add the items and their corresponding billing amount:

 def calc_bill(self,bill,taxes,cart_items):

 items = []

 calc_bill = []

 for item,tax in zip(bill.items(),taxes):

 items.append(item[1])

 calc_bill.append(item[1] + item[1]*tax)

Defining Templates for Algorithms202

 finalbill = dict(zip(cart_items, calc_bill))

 return finalbill

10. In the following method, let’s print the invoice with the counter name, items in the cart, price,
and the total bill amount:

 def print_invoice(self,finalbill):

 final_total = sum(finalbill.values())

 print('**************ABC
Megamart*****************')

 print('***********------------------
**************')

 print('Counter Name: ', self.goto_vege_counter())

 for item,price in finalbill.items():

 print(item,": ", price)

 print('Total:',final_total)

 print('***********------------------
**************')

11. Then, let’s print the invoice with a statement stating that the invoice is paid:

 def receive_payment(self,finalbill):

 final_total = sum(finalbill.values())

 print('**************ABC
Megamart*****************')

 print('***********------------------
**************')

 print('Counter Name: ', self.goto_vege_counter())

 for item,price in finalbill.items():

 print(item,": ", price)

 print('Total:',final_total)

 print('***********------------------
**************')

 print('***************P
AID************************')

12. Executing the preceding code results in the following. The methods are called in a sequence
so that the results from one method are provided as input to the next step:

veg = VegCounter()

cart = veg.return_

Defining the sequence of methods 203

cart('onions','tomatoes','carrots','lettuce')

item_weight = veg.weigh_items(1,2,1.5,2.5,cart_items =
cart)

pricetag = veg.add_price_tag(7,2,3,5,weights = item_
weight)

codes = veg.scan_bar_code(113323,3434332,2131243,2332783)

bill = veg.add_billing(codes,pricetag)

taxes = veg.add_tax(0.04,0.03,0.035,0.025)

finalbill = veg.calc_bill(bill,taxes,cart)

veg.print_invoice(finalbill)

The output of the printed invoice looks as follows:

**************ABC Megamart*****************

***********------------------**************

Counter Name: Vegetables & Dairy

onions : 7.28

tomatoes : 4.12

carrots : 4.6575

lettuce : 12.8125

Total: 28.87

***********------------------**************

13. Next, let’s print the invoice that has been paid by the customer, veg.receive_
payment(finalbill).

The output of the paid invoice looks as follows:

**************ABC Megamart*****************

***********------------------**************

Counter Name: Vegetables & Dairy

onions : 7.28

tomatoes : 4.12

carrots : 4.6575

lettuce : 12.8125

Total: 28.87

***********------------------**************

***************PAID************************

Defining Templates for Algorithms204

Less than 10 items counter

Similar to the class defined for the vegetable counter, we can also define the methods for the remaining
three counters. The detailed code for the remaining counters is available at https://github.com/
PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter08.

For the code for this counter, let’s create the LessThan10Counter class and add all of its methods,
which includes return_cart, goto_less_t10_counter, review_items, count_
items, scan_bar_code, add_billing, add_tax, calc_bill, print_invoice,
and receive_payment. For simplicity, let’s look at the additional methods that we have in each
counter instead of repeating all of the methods:

1. Let’s start by creating the LessThan10Counter class:

class LessThan10Counter():

…

2. In this class, we have a goto_less_t10_counter method, which returns the name of
the counter:

 def goto_less_t10_counter(self):

 return 'Less than 10 counter'

3. We also have the following method to review the items in the cart to make sure that they are
not electronic, vegetable, fruit, or dairy products:

 def review_items(self,item_type = None):

 veg_cart = ['Vegetables', 'Dairy', 'Fruits']

 if (item_type == 'Electronics'):

 print("Move to Electronics Counter")

 elif (item_type in veg_cart):

 print("Move to Vege Counter")

4. In the following method, let’s count the items to make sure that the total number of items in
the cart is less than 10:

 def count_items(self,cart_items = None):

 if len(cart_items)<=10:

 print("Move to Less than 10 items counter")

 else:

https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter08

Defining the sequence of methods 205

 print("Move to Greater than 10 items
counter")

 …

5. Executing all of the methods for this class in a sequence results in the following:

less10 = LessThan10Counter()

cart = less10.return_cart('paperclips','blue
pens','stapler','pencils')

less10.review_items(item_type = ['stationary'])

less10.count_items(cart)

codes = less10.scan_bar_code(113323,3434332,2131243,23327
83)

bill = less10.add_billing(10,15,12,14,codes = codes)

taxes = less10.add_tax(0.04,0.03,0.035,0.025)

finalbill = less10.calc_bill(bill,taxes,cart)

less10.print_invoice(finalbill)

less10.receive_payment(finalbill)

The output for the paid invoice looks as follows:

**************ABC Megamart*****************

***********------------------**************

Counter Name: Less than 10 counter

paperclips : 10.4

blue pens : 15.45

stapler : 12.42

pencils : 14.35

Total: 52.620000000000005

***********------------------**************

***************PAID************************

Greater than 10 items counter

In this section, let’s define the class and methods for the counter for greater than 10 items.

For the code here, let’s create the GreaterThan10Counter class and add all of its methods,
which includes return_cart, goto_greater_t10_counter, review_items, count_
items, scan_bar_code, add_billing, add_tax, apply_coupon, calc_bill,
print_invoice, and receive_payment. For simplicity, let’s look at the additional methods
that we have in each counter instead of repeating all of the methods:

Defining Templates for Algorithms206

1. We will first create the GreaterThan10Counter class:

class GreaterThan10Counter():

…

2. In this class, we have a goto_greater_t10_counter method counter that returns the
name of the counter:

 def goto_greater_t10_counter(self):

 return 'Greater than 10 counter'

 …

3. Next, let’s add a method to apply a discount coupon to the items purchased:

 def apply_coupon(self):

 coupon_discount = 0.1

 return coupon_discount

 …

4. Executing all of the methods for this class in a sequence results in the following:

greater = GreaterThan10Counter()

cart = greater.return_cart('paper clips','blue
pens','stapler','pencils','a4paper','a3paper','chart',

 'sketch pens','canvas','water
color','acrylic colors')

greater.review_items(item_type = ['stationary'])

greater.count_items(cart)

codes = greater.scan_bar_code(113323,3434332,2131243,2332
783)

bill = greater.add_billing(10,15,12,14,codes = codes)

taxes = greater.add_tax(0.04,0.03,0.035,0.025)

greater.apply_coupon()

finalbill = greater.calc_bill(bill,taxes,cart)

greater.print_invoice(finalbill)

greater.receive_payment(finalbill)

The output for the paid invoice looks as follows:

**************ABC Megamart*****************

***********------------------**************

Counter Name: Greater than 10 counter

Defining the sequence of methods 207

paper clips : 10.4

blue pens : 15.45

stapler : 12.42

pencils : 14.35

Total: 47.358000000000004

***********------------------**************

***************PAID************************

In this class, we had a different method definition for goto_greater_t10_counter and a
new apply_coupon method.

The electronics counter

In this section, let’s define the class and methods for the electronic items counter. In the following
code, let’s create the ElectronicsCounter class and add all of its methods, which includes
return_cart, goto_electronics_counter, review_items, test_electronics,
scan_bar_code, add_billing, add_tax, apply_coupon, calc_bill, print_
invoice, and receive_payment. For simplicity, let’s look at the additional methods that we
have in each counter instead of repeating all of the methods:

1. We will first create the class for the electronics counter:

class ElectronicsCounter():

…

2. In this class, we have a method to go to the electronics counter that returns the name of the
counter:

 def goto_electronics_counter(self):

 return 'Electronics counter'

3. Next, let’s define a method that provides the status of the electronic goods and checks whether
they are working:

 def test_electronics(self,*status):

 teststatus = list(status)

 return teststatus

4. Executing all of the methods for this class in a sequence results in the following:

electronics = ElectronicsCounter()

cart = electronics.return_
cart('television','keyboard','mouse')

Defining Templates for Algorithms208

electronics.review_items(item_type = ['Electronics'])

electronics.test_electronics('pass','pass','pass')

codes = electronics.scan_bar_code(113323,3434332,2131243)

bill = electronics.add_billing(100,16,14,codes = codes)

taxes = electronics.add_tax(0.04,0.03,0.035)

electronics.apply_coupon()

finalbill = electronics.calc_bill(bill,taxes,cart)

electronics.print_invoice(finalbill)

electronics.receive_payment(finalbill)

The output for the paid invoice looks as follows:

**************ABC Megamart*****************

***********------------------**************

Counter Name: Greater than 10 counter

television : 104.0

keyboard : 16.48

mouse : 14.49

Total: 134.97

***********------------------**************

***************PAID************************

In this class, we had different method definitions for goto_electronics_counter and a new
test_electronics method.

Having defined the sequences, let’s proceed further to look at the common functionalities of each of
these counters.

Identifying the common functionalities
In this section, let’s look at a graphical representation that shows the list of functions to be performed
at each counter and the common functionalities between all four of them as follows. The common
functionalities are highlighted in bold font in the following figure:

Identifying the common functionalities 209

Figure 8.5 – Common operations performed across each counter

From Figure 8.5, all the functions highlighted in the bold font are common across all four counters. The
review_items function is common across the less than 10 items counter, greater than 10 items
counter, and electronics counter. The count_items function is common across the less than 10
items counter and greater than 10 items counter. The apply_coupon function is common across
the greater than 10 items counter and the electronics counter. Since there are common functions or
operations performed across all of the counters, we can look at creating a common way of designing
them, too. This is where we can introduce the concept of templates.

Defining Templates for Algorithms210

Designing templates
As the name suggests, templates define a common template or format in which we can design an
algorithmic flow of operations and reuse them when similar kinds of activities are performed. A
template is one of the methods of design patterns in Python and can be used effectively while developing
frameworks or libraries. Templates emphasize the concept of reusability in programming.

In this section, we will look at creating a class that handles all the common functions of all four counters
discussed throughout this chapter, and create a method that handles the template that sequences or
pipelines the steps to be executed in all the counters:

1. To begin with, let’s create an abstract class named CommonCounter, and initialize the class
with all the variables that will be used across all four counters. Refer to the following code:

from abc import ABC, abstractmethod

class CommonCounter(ABC):

 def __init__(self,items,name,scan,units,tax,item_type
= None, weights = None, status = None):

 self.items = items

 self.name = name

 self.scan = scan

 self.units = units

 self.tax = tax

 self.item_type = item_type

 self.weights = weights

 self.status = status

2. Next, we will be defining the return_cart, goto_counter, and scan_bar_code
methods to take the input variables that are initialized in the class:

 def return_cart(self):

 cart_items = []

 for i in self.items:

 cart_items.append(i)

 return cart_items

 def goto_counter(self):

 countername = self.name

 return countername

 def scan_bar_code(self):

 codes = []

 for i in self.scan:

Designing templates 211

 codes.append(i)

 return codes

3. Then, we will be defining the add_billing, add_tax, and calc_bill methods to
take the input variables that are initialized in the class:

def add_billing(self):

 self.codes = self.scan_bar_code()

 pricetag = []

 for i in self.units:

 pricetag.append(i)

 bill = dict(zip(self.codes, pricetag))

 return bill

 def add_tax(self):

 taxed = []

 for i in self.tax:

 taxed.append(i)

 return taxed

 def calc_bill(self):

 bill = self.add_billing()

 items = []

 cart_items = self.return_cart()

 calc_bill = []

 taxes = self.add_tax()

 for item,tax in zip(bill.items(),taxes):

 items.append(item[1])

 calc_bill.append(item[1] + item[1]*tax)

 finalbill = dict(zip(cart_items, calc_bill))

 return finalbill

4. For simplicity, we will not be defining the print invoice method, and instead, will define the
receive_payment method, which contains the definition of the print invoice method as
well within the following code:

def receive_payment(self):

 finalbill = self.calc_bill()

 final_total = sum(finalbill.values())

 print('**************ABC
Megamart*****************')

Defining Templates for Algorithms212

 print('***********------------------
**************')

 print('Counter Name: ', self.goto_counter())

 for item,price in finalbill.items():

 print(item,": ", price)

 print('Total:',final_total)

 print('***********------------------
**************')

 print('***************P
AID************************')

5. Next, we will be defining the apply_coupon method, which returns a 0 value. This method
can be redefined in the child classes if required:

def apply_coupon(self):

 return 0

6. In the preceding code snippets, we defined all the methods that are common across all four
counters, whereas in the following code, we will be defining methods without statements so
that they can be redefined within the child classes as and when required:

def weigh_items(self):

 pass

def add_price_tag(self):

 pass

def count_items(self):

 pass

def test_electronics(self):

 pass

7. Then, let’s create review items as an abstract method that needs to have a definition within the
child classes:

@abstractmethod

 def review_items(self):

 pass

Designing templates 213

Now, the most important concept of templates is defined in the next code.

1. Let’s define a method that handles the sequence of operations of a billing counter, and let’s use
this method as a template for all the child classes that will be created for each billing counter:

def pipeline_template(self):

 self.return_cart()

 self.goto_counter()

 self.review_items()

 self.count_items()

 self.test_electronics()

 self.weigh_items()

 self.add_price_tag()

 self.scan_bar_code()

 self.add_billing()

 self.add_tax()

 self.apply_coupon()

 self.calc_bill()

 self.receive_payment()

2. We have defined the common class for all counters along with its template method, which can
be reused for each individual billing counter.

3. In the following code, we will create a child class for VegeCounter, with CommonCounter
as a parent class:

class VegeCounter(CommonCounter):

 def review_items(self):

 if ('Vegetables' in self.item_type):

 print("Move to Vege Counter")

 if ('Dairy' in self.item_type):

 print("Move to Vege Counter")

 if ('Fruits' in self.item_type):

 print("Move to Vege Counter")

 def weigh_items(self):

 item_weight = dict(zip(self.items, self.weights))

 return item_weight

 def add_price_tag(self):

 pricetag = []

 item_weight = self.weigh_items()

Defining Templates for Algorithms214

 for item,price in zip(item_weight.items(),self.
units):

 pricetag.append(item[1]*price)

 return pricetag

4. In the preceding code, we have defined the review_items abstract method and we have also
added statements in the definition of the weight_items and add_price_tag methods.

5. Similarly, in the following code, let’s create a child class for ElectronicsCounter and
define review_items (which is an abstract method), followed by redefining test_
electronics (which did not have a definition in the CommonCounter base class):

class ElectronicsCounter(CommonCounter):

 def review_items(self):

 if ('Electronics' in self.item_type):

 print("Move to Electronics Counter")

 def test_electronics(self):

 teststatus = []

 for i in self.status:

 teststatus.append(i)

 return teststatus

6. Let’s now create a function to run the pipeline_template method for each of its child
classes:

def run_pipeline(counter = CommonCounter):

 counter.pipeline_template()

7. Executing the run_pipeline method for each of the child classes results in the sequence
of steps executed according to each billing counter. Let’s execute the pipeline method for
the vegetable counter:

run_pipeline(VegeCounter(items = ['onions', 'lettuce',
'apples', 'oranges'],

 name = ['Vegetable Counter'],

 scan = [113323,3434332,2131243,2
332783],

 units = [10,15,12,14],

 tax = [0.04,0.03,0.035,0.025],

 item_type = ['Vegetables'],

 weights = [1,2,1.5,2.5]))

Designing templates 215

The output after running the pipeline for VegeCounter is as follows:

Move to Vege Counter

**************ABC Megamart*****************

***********------------------**************

Counter Name: ['Vegetable Counter']

paperclips : 10.4

blue pens : 15.45

stapler : 12.42

pencils : 14.35

Total: 52.620000000000005

***********------------------**************

***************PAID************************

8. Let’s now execute the pipeline method for ElectronicsCounter:

run_pipeline(ElectronicsCounter(items =
['television','keyboard','mouse'],

 name = ['Electronics
Counter'],

 scan =
[113323,3434332,2131243],

 units = [100,16,14],

 tax = [0.04,0.03,0.035],

 item_type =
['Electronics'],

 status =
['pass','pass','pass']))

The output after running the pipeline for ElectronicsCounter is as follows:

Move to Electronics Counter

**************ABC Megamart*****************

***********------------------**************

Counter Name: ['Electronics Counter']

television : 104.0

keyboard : 16.48

mouse : 14.49

Total: 134.97

***********------------------**************

***************PAID************************

Defining Templates for Algorithms216

In this section, we have created a template, but we have not repeated the same methods in multiple
class definitions. The same CommonCounter abstract class can be reused for the definitions of the
less than 10 items counter and the greater than 10 items counter as well. We learned how to create a
template and implement template programming that emphasizes reusability in Python application
development. We created a template that covers all the common functionalities across multiple sets
of operations and reused the template multiple times.

Summary
In this chapter, we have learned the concepts of defining methods for a sequence of operations that
follows an algorithm. We also defined classes that follow a sequence of operations from our core
example. We created an abstract class that defines all the common functionalities of our core example,
and we applied the templates design pattern to understand the concept of templates using the sequences
from our core example.

Similar to other chapters covered in this book, this chapter also covered templates, which is a design
pattern applied in metaprogramming to change the behavior of Python objects externally.

In the next chapter, we will be looking at the concept of abstract syntax trees with some interesting
examples.

P a r t 3 :
D e e p D i v e – B u i l d i n g B l o c k s

o f M e t a p r o g r a m m i n g I I

This section is a continuation of Part 2. The objective of this section is to give you a deeper understanding
of the concepts of metaprogramming by looking at much more advanced building blocks, such as abstract
syntax trees and MRO, among others, in detail, along with examples of how they can be applied in a
practical scenario. This section will have chapters that provide an explanation of the concepts with an
implementation-based approach to give hands-on experience along with guided coding knowledge to
users while reading this book. The chapters in this section can be read sequentially or independently.

This part contains the following chapters:

• Chapter 9, Understanding Code through Abstract Syntax Trees

• Chapter 10, Understanding Method Resolution Order of Inheritance

• Chapter 11, Creating Dynamic Objects

• Chapter 12, Applying GOF Design Patterns – Part 1

• Chapter 13, Applying GOF Design Patterns – Part 2

• Chapter 14, Code Generation

• Chapter 15, Development of an End-to-End Case Study-Based Application

• Chapter 16, Following Best Practices

9
U n d e r s t a n d i n g C o d e

t h r o u g h A b s t r a c t
S y n t a x Tr e e

In this chapter, we will look at what abstract syntax trees are and how to understand the syntax tree
of each unit of the Python code we write.

Any programming language is designed with its own syntax, which is used by developers while coding
in the language following specific syntax. The interpreter or compiler of a programming language
interprets the syntax of the language and compiles or interprets the code and executes it to achieve
the desired result.

In Python, an abstract syntax tree (AST) provides an abstract representation of the syntax of the code
in the form of a tree. Python has a library named ast that can be used to understand the abstract
syntax of the code that we develop.

Throughout this chapter, we will look at understanding the syntax tree of some of the important
code snippets that we developed in previous chapters, and we will also look at modifying or adding
more information to the code through a few examples. We will be making use of abstract syntax trees
throughout this chapter to perform an analysis of the code.

In this chapter, we will be taking a look at the following main topics:

• Exploring the ast library

• Inspecting Python code with abstract syntax trees

• Understanding abstract syntax trees with applications

By the end of this chapter, you should be able to understand the abstract syntax tree of Python code.
You should also be able to inspect, parse, and modify the abstract syntax tree of source code through
metaprogramming.

Understanding Code through Abstract Syntax Tree220

Technical requirements
The code examples shared in this chapter are available on GitHub under the code for this chapter here:
https://github.com/PacktPublishing/Metaprogramming-with-Python/
tree/main/Chapter9.

Exploring the ast library
In this section, we will explore the ast Python library, which can be imported from Python 3 to
analyze the Python code written by developers. We can also use it to modify the code through its
abstract syntax tree at a metaprogramming level rather than modifying the syntax of the code itself.
This helps in understanding how the code is syntactically represented and how the syntax tree of the
code can be used to modify its behavior without modifying the original source code. We will look at
some of the important functions of the ast library, as those functions will be used throughout this
chapter to understand the code from our core example.

Let’s start by importing the ast library:

import ast

Once we import the library, we can look at analyzing a piece of code using this library. We will now
create a variable named assignment and assign a string format of the code to it:

assignment = "product_name = 'Iphone X'"

The output of the assignment variable appears as follows:

assignment

"product_name = 'Iphone X'"

The preceding code can be parsed into its corresponding nodes using the parse method of the ast
library. We will now create a variable named assign_tree and store the parsed node of the lines
of code stored under assignment:

assign_tree = ast.parse(assignment)

assign_tree

The output of the parsed node looks as follows:

<ast.Module at 0x1b92b3f6520>

https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter9
https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter9

Inspecting Python code with abstract syntax trees 221

Now, we can make use of another method called dump to print the tree structure of the node with
each of its values and fields. This helps in debugging the code:

print(ast.dump(assign_tree,indent = 4))

The output of the code is as follows:

Figure 9.1 – Example of an abstract syntax tree

The "product_name = 'Iphone X'" code is broken down into multiple parts. The syntax of
any code in Python is grammatically embedded into Module followed by body. We have assigned the
Iphone X value to the product_name variable and so the code that performs a value assignment
is identified by the Assign branch, which has attributes mapped with the corresponding ID, context,
and value. This is an example of what a simple representation of a node would look like. For multiple
lines of code with various other operations, the node will have multiple other branches in the tree.

Let’s start inspecting the Python code for a few examples of using abstract syntax trees in the
following section.

Inspecting Python code with abstract syntax trees
In this section, we will review and understand the code for a simple arithmetic addition example, and
we will also further look into parsing the code and modifying it using abstract syntax trees.

Reviewing simple code using ast

In this section, let’s review simple code that adds two numbers, and let’s look at all the elements of
the node, and also how the elements are organized in the tree. Let’s begin by writing code to assign
two variables, a and b, with numerical values, and c as the sum of a and b. Finally, let’s print the c
value. This is shown in the following code:

addfunc = """

a = 1098

b = 2032

c = a + b

print(c)

Understanding Code through Abstract Syntax Tree222

"""

We will now parse the preceding addfunc and store the node in another variable called add_tree:

add_tree = ast.parse(addfunc)

add_tree

The output of the parsed node is as follows:

<ast.Module at 0x19c9b2bf2e0>

The base element of the node is Module, and all the other lines of code are split into semantics that
are stored within the module of the node.

Let’s look at the detailed tree representation in the following code by calling the dump method on
the tree:

print(ast.dump(add_tree, indent=4))

The tree begins with Module as its base element, or the trunk followed by multiple branches. Module
is followed by body as a list item that lists down all other elements of the code.

Within body, there will be four list items that describe the operations of addfunc. The first one,
which is also the first line of addfunc, is to assign the Constant value 1098 to a variable with
a name whose id is a and the context of the value is Store since we are storing the value in the
variable. Here is how it appears:

Figure 9.2 – Code snippet output

Inspecting Python code with abstract syntax trees 223

Similarly, the second line of addfunc is to store the 2032 value in the b variable, which is represented
grammatically in the following list item:

Figure 9.3 – Code snippet output

The third line of code in addfunc has the arithmetic operation of adding the two values stored in
a and b:

Figure 9.4 – Code snippet output

The preceding code has an additional element, BinOp, followed by left, op, and right variables
to indicate the left numerical value, addition operation, and right numerical value, respectively.

The last line of the code in addfunc is the Expr expression element, which represents the printing
of the c variable with a context value of Load:

Figure 9.5 – Code snippet output

Understanding Code through Abstract Syntax Tree224

To execute addfunc, we need to first compile the parsed tree as follows:

add_code = compile(add_tree, 'add_tree', 'exec')

Post-compilation, we should be able to execute the compiled tree, which results in the addition of a
and b:

exec(add_code)

The following is the output of the code:

3130

In this section, we reviewed the abstract syntax tree of the simple arithmetic add function. In the
following section, let’s look at modifying the code of the add function using metaprogramming.

Modifying simple code using ast

In this section, let’s consider the example of addfunc from the preceding section and look at how to
modify the code in the example through metaprogramming, without modifying the actual code. The
operation performed by the code in addfunc is arithmetic addition. What if we want to perform
arithmetic multiplication instead of addition and we don’t want the actual code to be modified?
What if there are multiple locations where we want arithmetic addition to be replaced by arithmetic
multiplication, and browsing through thousands of lines of code and modifying them is not a feasible
option as it might impact or break something else in the code? In such scenarios, we can modify the
node of the code using its syntax tree instead of modifying the actual code itself. To achieve this, let’s
make use of the abstract syntax tree of the code.

Let’s reuse the add_tree parsed tree variable from the code in the preceding section:

add_tree

<ast.Module at 0x19c9b2bf2e0>

To understand which fields to modify, let’s look at the following representation of the node and look
at each section of the node marked by an identifier. The elements of interest for this example are
represented inside a box in the following figure:

Inspecting Python code with abstract syntax trees 225

Figure 9.6 – Parsed node of addfunc

To modify the add operation into a multiplication operation, the tree for this node traverses through
body followed by its list item 2, followed by the value field of the item, followed by the op field.
The Add() operation of the op field will have to be modified into a multiplication operation to
achieve our goal for this section. Here’s how:

add_tree.body[2].value.op=ast.Mult()

Executing the preceding code results in a change of the tree:

print(ast.dump(add_tree, indent=4))

Understanding Code through Abstract Syntax Tree226

The figure of the updated tree structure is represented as follows, with the Add() operation replaced
by the Mult() operation:

Figure 9.7 – Tree modified to perform multiplication

To verify whether the preceding modification on the tree node works, let’s compile the tree and execute
it to check the results:

add_code = compile(add_tree, 'add_tree', 'exec')

exec(add_code)

Executing the preceding code should have ideally provided an output of 3130, which is the addition
of two numbers, 1098 and 2032. But we have modified ast to perform multiplication instead and
so it would result in the value, which is a product of the two numbers:

2231136

Thus the tree is now modified and can be compiled to achieve the desired result without modifying
the actual code.

With this understanding, let’s proceed further to look at how to parse and understand the classes
in Python.

Understanding abstract syntax trees with applications 227

Understanding abstract syntax trees with applications
In this section, we will look into applying the concept of abstract syntax trees to our core example of
ABC Megamart and explore how ast is defined in the classes, such as the Branch class and the
VegCounter class of ABC Megamart. We will also look at modifying the behavior of these classes
using ast at a metaprogramming level instead of modifying the actual source code of the class.

Understanding the ast of a class

In this section, we will look at understanding the abstract syntax tree of a class, which will help us in
exploring how to modify the elements of a class through metaprogramming. We can try it as follows:

1. Let’s begin by creating a class with empty definitions and look at its abstract syntax tree:

branch_code = """

class Branch:

 '''attributes...'''

 '''methods...'''

"""

2. Next, let’s parse the code:

branch_tree = ast.parse(branch_code)

branch_tree

<ast.Module at 0x216ed8b5850>

3. Let’s further look at the elements of the node and understand how the class is grammatically
defined:

print(ast.dump(branch_tree, indent=4))

The structure of the node is as follows:

Figure 9.8 – Code snippet output

Understanding Code through Abstract Syntax Tree228

In the preceding output, we have Module followed by body, with ClassDef within the
body element. This ClassDef has a name element followed by two expressions.

4. Let’s redefine this empty class definition with an attribute and a method along with a decorator
and recheck the structure of the node:

branch_code = """class Branch:

 branch_id = 1001

 @staticmethod

 def get_product(self):

 return 'product'

 """

5. We will now parse branch_code in the following step:

branch_tree = ast.parse(branch_code)

print(ast.dump(branch_tree, indent=4))

The structure of the Branch class in the form of an abstract syntax tree is as follows. We
can see that the node starts with the Module element followed by body.

Within body, we have a ClassDef element that contains the class name followed by its
attributes, which include branch_id stored as a constant value followed by the get_
product method with its arguments. Refer to the following output:

Figure 9.9 – Code snippet output

Understanding abstract syntax trees with applications 229

6. We also have a decorator method loaded under decorator_list as follows:

Figure 9.10 – Code snippet output

7. If we create an object for the class, the code for the object can also be parsed similarly to the
preceding class example:

branch_code = """

branch_albany = Branch()

"""

branch_tree = ast.parse(branch_code)

print(ast.dump(branch_tree, indent=4))

8. The node of the object will have the following structure:

Figure 9.11 Code snippet output

In this section, we reviewed the abstract syntax tree of a class to understand the various elements of
its syntax. With this understanding, let’s look further into modifying the abstract syntax tree of a class
from our core example, ABC Megamart.

Modifying the ast of a code block by parsing

In this section, let’s look at how to modify the attributes in the code of a class by using its abstract
syntax tree instead of modifying the actual class itself.

Understanding Code through Abstract Syntax Tree230

Let’s consider having developed a robust library with multiple classes and methods. A robust library
definition may be too big to be disturbed or modified. Instead of modifying the source code, we can
make changes to some specific attributes in the library without impacting the actual code, through
metaprogramming. In such a scenario, modifying ast of the library would be a better way of making
changes rather than impacting the source code of the library.

In this example, we will be following these steps:

9. We will be creating a vegCounter class and adding a return_cart method to return
the items within the cart. We will also be creating an object for the class and calling the
return_cart method on the object. Refer to the following code:

vegctr = """

class VegCounter():

 def return_cart(self,*items):

 cart_items = list(items)

 return cart_items

veg = VegCounter()

print(veg.return_
cart('onions','tomatoes','carrots','lettuce'))

"""

10. Next, let’s parse the code for vegCounter and look at the structure of the node:

vegctr_tree = ast.parse(vegctr)

print(ast.dump(vegctr_tree, indent=4))

The output of the node is as follows. There is a class definition followed by a function
definition in ast:

Figure 9.12 – Code snippet output

Understanding abstract syntax trees with applications 231

11. The following output has the elements for the list item and the logic that reads items to the list:

Figure 9.13 – Code snippet output

12. The following output has the syntax for creating the object for the VegCounter class:

Figure 9.14 – Code snippet output

Understanding Code through Abstract Syntax Tree232

13. The following output displays the elements that print the cart items by calling the return_
cart method on a list of cart items:

Figure 9.15 – Code snippet output

14. Let’s now compile the abstract syntax tree and execute it to display the list of items added to
the cart:

vegctr_code = compile(vegctr_tree, 'vegctr_tree', 'exec')

exec(vegctr_code)

['onions', 'tomatoes', 'carrots', 'lettuce']

15. Next, let’s navigate through the values in the cart items and look at the path of the second value
in the return_cart method output:

vegctr_tree.body[2].value.args[0].args[1].n

'tomatoes'

16. Let’s now change the second value of the cart item from tomatoes to potatoes by parsing
through the node elements hierarchically:

vegctr_tree.body[2].value.args[0].args[1].n = 'potatoes'

print(ast.dump(vegctr_tree, indent=4))

Understanding abstract syntax trees with applications 233

17. In the following output, let’s look at the updated value for the second item in the cart, which
is modified without changing the source code:

Figure 9.16 – Modifying value within ast

18. We can now unparse the node using the unparse method in the ast library as follows:

print(ast.unparse(vegctr_tree))

19. The modified source code now looks as follows:

class VegCounter:

 def return_cart(self, *items):

 cart_items = list(items)

 return cart_items

veg = VegCounter()

print(veg.return_cart('onions', 'potatoes', 'carrots',
'lettuce'))

This is one approach to modifying the Python source code using an abstract syntax tree.

With this understanding, let’s proceed with the next approach, where we will be transforming the
nodes of the abstract syntax tree.

Understanding Code through Abstract Syntax Tree234

Modifying the ast of a code block by transforming nodes

In this section, we will look at another approach to modifying the source code of a class by modifying
the abstract syntax tree instead of changing the actual code:

1. Let’s now create the VegCounter class as follows:

class VegCounter():

 def return_cart(self,*items):

 cart_items = []

 for i in items:

 cart_items.append(i)

 return cart_items

veg = VegCounter()

2. Next, let’s create a variable named cart and add the function call on the object as a string:

cart = """veg.return_
cart('onions','tomatoes','carrots','lettuce')"""

cart_tree = ast.parse(cart)

print(ast.dump(cart_tree, indent = 4))

3. Parsing the preceding code provides the following output:

Figure 9.17 – AST of the object variable

In this section, instead of traversing through the structure of the node, we will be using
NodeTransformer from the ast library to perform code transformation:

from ast import NodeTransformer

Understanding abstract syntax trees with applications 235

4. The attributes of NodeTransformer are as follows:

Figure 9.18 – Attributes of NodeTransformer

5. Next, let’s create a class named ModifyVegCounter inherited from the NodeTransfomer
class. We will be redefining the visit_Constant method to modify the constant values
of the cart items by adding a string prefix whenever the constant value occurs in the code:

class ModifyVegCounter(NodeTransformer):

 def visit_Constant(self, node):

 modifiedValue = ast.Constant('item:' + str(node.
value))

 return modifiedValue

6. We can make use of the visit method to visit the node and use the dump method to print
the tree:

ModifyVegCounter().visit(cart_tree)

print(ast.dump(cart_tree, indent = 4))

The transformed node looks as follows:

Figure 9.19 – Source code transformed with NodeTransformer

Understanding Code through Abstract Syntax Tree236

7. We can further unparse the code using the ast library’s unparse method:

print(ast.unparse(cart_tree))

The output of the code is represented as follows:

veg.return_cart('item:onions', 'item:tomatoes',
'item:carrots', 'item:lettuce')

This is another example of how an abstract syntax tree can be used in metaprogramming.

In this section, we covered the approach of transforming the nodes of an abstract syntax tree using
the NodeTransformer method of the ast library.

Summary
In this chapter, we have learned about the concept of the abstract syntax tree by exploring the ast
library in Python 3. We also inspected Python code using abstract syntax trees. We understood the
applications of abstract syntax trees by modifying the code at the node level using source code from
our core example.

Similar to other chapters in this book, this chapter covered the concept of abstract syntax trees in
metaprogramming. This also helps in understanding how to modify the behavior of Python objects
externally without modifying the source code. Modifying the abstract syntax tree instead of the actual
methods and attributes in the code helps migrate source code from different versions of Python or
the application development platform conveniently without impacting the actual logic of the code.

In the next chapter, we will be looking at the concept of method resolution order with some other
interesting examples.

10
Understanding Method

Resolution Order of Inheritance

In this chapter, we will look at the concept of method resolution order (MRO) in Python 3 and how
it works on inheritance.

As the name suggests, MRO is the order in which methods of a class get resolved while calling them
in a program.

Throughout this chapter, we will look at understanding the MRO through a few examples, how method
resolution can go wrong, and how the current Python 3 implementation handles methods defined in
a class. We will be making use of MRO throughout this chapter to understand the behavior of code
while inheritance is implemented in Python 3.

Why should we understand MRO? In scenarios where we are using multiple classes in Python code,
we need to inherit methods from multiple parent classes or superclasses. Understanding the order
in which the methods would get resolved from the existing class to its parent class helps in avoiding
incorrect method calls. This in turn helps in avoiding incorrect results in the algorithm of Python code.

In this chapter, we will be taking a look at the following main topics:

• Understanding the MRO of a class

• Understanding the impact of modifying the order of inheritance

• Impact of unintended change of order in inheritance

By the end of this chapter, you should be able to get an understanding of how methods are resolved
in Python class hierarchy, understand how methods are processed in multiple inheritances, and write
the methods on your own with the knowledge of how they would get resolved.

Understanding Method Resolution Order of Inheritance238

Technical requirements
The code examples shared in this chapter are available on GitHub under the code for this chapter here:
https://github.com/PacktPublishing/Metaprogramming-with-Python/
tree/main/Chapter10.

Understanding the MRO of a class
In this section, let’s explore how methods are resolved in a class that has no inheritance specified within
its code. A class by default in Python 3 is inherited by object. To understand how MRO works on
a class that has no parent class, looking at it in its simplest form is the easiest approach. We will then
see how MRO works on a class with single, multiple, and multilevel inheritance.

In this example, let’s create a class for a branch of ABC Megamart as follows:

1. In the Branch class, let’s create attributes for branch ID, street, city, state and ZIP code,
product, sales, and invoice. Let’s also create methods such as get_product (which returns
the product), get_sales (which returns sales), and get_invoice (which returns the
invoice). The following code represents the Branch class:

class Branch:

 def __init__(self, branch_id, branch_street,

 branch_city, branch_state,

 branch_zip, product, sales, invoice):

 self.branch_id = branch_id

 self.branch_street = branch_street

 self.branch_city = branch_city

 self.branch_state = branch_state

 self.branch_zip = branch_zip

 self.product = product

 self.sales = sales

 self.invoice = invoice

 def get_product(self):

 return self.product

 def get_sales(self):

 return self.sales

 def get_invoice(self):

 return self.invoice

https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter10

Understanding the MRO of a class 239

There are five attributes and three methods in the preceding class. The MRO for the
preceding class can be reviewed by calling a built-in method on the class, known as mro.

2. Next, let’s call the mro method of the Branch class:

Branch.mro()

The mro of the Branch class is represented as follows:

[__main__.Branch, object]

In the preceding output, we can see that the Branch class did not have any explicit
definition of a superclass or parent class, and so it is, by default, inherited from the object.

In this section, we understood the concept of MRO along with an example of how to look at the
MRO of a class. Now, let’s look further to see how MRO works on a class that has a single parent
class or superclass.

Understanding MRO in single inheritance

When a class inherits one parent class or superclass, it is single inheritance. Let’s look at how methods
are resolved in the case of the Branch class example when it becomes a parent class:

1. Before proceeding with the creation of the child class, let’s redefine the Branch class with
suitable methods that can be used for testing this concept:

class Branch:

 def __init__(self, branch, sales, product):

 self.branch = branch

 self.sales = sales

 self.product = product

 def set_branch(self, value):

 self.branch = value

 def set_sales(self, value):

 self.sales = value

 def set_product(self, value):

 self.product = value

 def calc_tax(self):

 branch = self.branch

Understanding Method Resolution Order of Inheritance240

 product = self.product

 sales = self.sales

 pricebeforetax = sales['purchase_price'] +

 sales['purchase_price'] *

 sales['profit_margin']

 finalselling_price = pricebeforetax +

 (pricebeforetax * sales['tax_rate'])

 sales['selling_price'] = finalselling_price

 return branch, product, sales

2. For this example, let’s create another class, named NYC, which inherits from the Branch class:

class NYC(Branch):

 def __init__(self, intercitybranch):

 self.intercitybranch = intercitybranch

 def set_management(self, value):

 self.intercitybranch = value

 def calc_tax_nyc(self):

 branch = self.branch

 intercitybranch = self.intercitybranch

 product = self.product

 sales = self.sales

 pricebeforetax = sales['purchase_price'] +

 sales['purchase_price'] *

 sales['profit_margin']

 finalselling_price = pricebeforetax +

 (pricebeforetax * (sales['tax_rate'] +

 sales['local_rate']))

 sales['selling_price'] = finalselling_price

 return branch, intercitybranch, product,

 sales

NYC.mro()

Understanding the MRO of a class 241

In the preceding code, we have the NYC class inherited from the Branch class, and the NYC
class has two methods defined. The set_management method returns the value stored in
intercitybranch, and the calc_tax_nyc method calculates tax for NYC.

The MRO of the NYC class is represented in the following output:

[__main__.NYC, __main__.Branch, object]

The methods present in NYC will be resolved first, followed by the methods of Branch and
then the methods of object.

3. Let’s look at what happens when a method required by NYC is not present in NYC but instead
defined in its parent class. In the NYC class, calc_tax_nyc is the method that calculates
tax for the NYC branch, and this method needs values for attributes such as branch,
intercitybranch, product, and sales. The value for the intercitybranch
attribute alone can be set within the NYC class using the set_management method,
whereas the remaining attributes, such as branch, product, and sales, do not have a
set method in NYC.

4. Let’s start by creating a variable named intercitybranch and defining an instance for NYC:

intercitybranch = {

 }

branch_manhattan = NYC(intercitybranch)

5. Let’s set the value for intercitybranch first, and then look at how to deal with the set
methods for the remaining attributes:

branch_manhattan.set_management({'regionalManager' :
'John M',

 'branchManager' : 'Tom H',

 'subbranch_id' : '2021-01' })

6. The set methods required to set branch, product, and sales are available in the parent
class of Branch. Since the MRO of the NYC class is to resolve from NYC followed by Branch
followed by object, the set methods of Branch can now be called by NYC to set the values
for branch, product, and sales as follows:

branch = {'branch_id' : 2021,

'branch_street' : '40097 5th Main Street',

'branchBorough' : 'Manhattan',

'branch_city' : 'New York City',

'branch_state' : 'New York',

'branch_zip' : 11007}

Understanding Method Resolution Order of Inheritance242

product = {'productId' : 100002,

 'productName' : 'WashingMachine',

 'productBrand' : 'Whirlpool'

}

sales = {

 'purchase_price' : 450,

 'profit_margin' : 0.19,

 'tax_rate' : 0.4,

 'local_rate' : 0.055

}

branch_manhattan.set_branch(branch)

branch_manhattan.set_product(product)

branch_manhattan.set_sales(sales)

7. Now that the required values are set, we are good to call the calc_tax_nyc method from
the NYC class that inherited the Branch class:

branch_manhattan.calc_tax_nyc()

8. The selling price calculated using the tax rate and the other supporting values of branch,
product, and sales set using the parent class is represented in the following output:

({'branch_id': 2021,

 'branch_street': '40097 5th Main Street',

 'branchBorough': 'Manhattan',

 'branch_city': 'New York City',

 'branch_state': 'New York',

 'branch_zip': 11007},

 {'regionalManager': 'John M',

 'branchManager': 'Tom H',

 'subbranch_id': '2021-01'},

 {'productId': 100002,

 'productName': 'WashingMachine',

 'productBrand': 'Whirlpool'},

 {'purchase_price': 450,

 'profit_margin': 0.19,

 'tax_rate': 0.4,

Understanding the MRO of a class 243

 'local_rate': 0.055,

 'selling_price': 779.1525})

In this section, we looked at how MRO works in classes that have a single inheritance. Now, let’s look
at what happens when a class inherits from two classes.

Understanding MRO in multiple inheritances

In this section, we will look at inheriting from more than one superclass or parent class and its
corresponding MRO.

For this example, let’s create two parent classes, Product and Branch, as follows:

1. The Product class will have a set of attributes followed by a method named get_product:

class Product:

 _product_id = 100902

 _product_name = 'Iphone X'

 _product_category = 'Electronics'

 _unit_price = 700

 def get_product(self):

 return self._product_id, self._productName,
self._product_category, self._unit_price

2. The Branch class will have a set of attributes followed by a method named get_branch:

class Branch:

 _branch_id = 2021

 _branch_street = '40097 5th Main Street'

 _branch_borough = 'Manhattan'

 _branch_city = 'New York City'

 _branch_state = 'New York'

 _branch_zip = 11007

 def get_branch(self):

 return self._branch_id, self._branch_street,

 self._branch_borough, self._branch_city,

 self._branch_state, self._branch_zip

Understanding Method Resolution Order of Inheritance244

3. Let’s next create a child class or subclass named Sales and inherit from the Product and
Branch classes. Sales will have one attribute date and a get_sales method:

class Sales(Product, Branch):

 date = '08/02/2021'

 def get_sales(self):

 return self.date, Product.get_product(self),

 Branch.get_branch(self)

4. The Sales class inherits Product followed by Branch:

Sales.mro()

5. Let’s look at the order of its method resolution:

[__main__.Sales, __main__.Product, __main__.Branch,
object]

In the preceding output, the methods are resolved in the order of Sales followed by
Product followed by Branch followed by object. If a method called by an object of
the Sales class is not present in Sales, the MRO algorithm searches for it within the
Product class followed by the Branch class.

6. Let’s create another class (named Invoice) and inherit both Branch and Product in an
order that's different from the inheritance of the Sales class:

class Invoice(Branch, Product):

 date = '08/02/2021'

 def get_invoice(self):

 return self.date, Branch.get_branch(self),

 Product.get_product(self)

7. Let’s examine mro for the Invoice class:

Invoice.mro()

8. The mro for the Invoice class is represented in the following output:

[__main__.Invoice, __main__.Branch, __main__.Product,
object]

In the preceding output, the methods are resolved in the order of Invoice followed by
Branch followed by Product followed by object. If a method called by an object of
the Invoice class is not present in Invoice, the MRO algorithm searches for it within
the Branch class followed by the Product class.

Understanding the MRO of a class 245

In the case of multiple inheritances, we reviewed how the order of method resolution changes when
the order of inheriting superclasses or parent classes changes in Python 3.

Now, let’s look at what happens to MRO in the case of multilevel inheritance.

Reviewing MRO in multilevel inheritance

Classes in Python can also inherit from superclasses at multiple levels, and the MRO gets more
complicated as the number of superclasses or parent classes increases. In this section, let’s look at the
order of method resolution for such multiple inheritances with a few more examples.

In this example, we will perform the following steps:

1. Let’s first create a class named StoreCoupon, where we will be defining attributes for a
store such as product name, product category, the brand of the product, store name where
the product is sold, expiry date of the product, and quantity to be purchased to get a coupon.

2. We will then define a method named generate_coupon, where we will be generating
two coupons for the product with random coupon ID values and all the details of the product
and its store:

class StoreCoupon:

 productName = "Strawberry Ice Cream"

 product_category = "Desserts"

 brand = "ABCBrand3"

 store = "Los Angeles Store"

 expiry_date = "10/1/2021"

 quantity = 10

 def generate_coupon(self):

 import random

 coupon_id = random.sample(range(

 100000000000,900000000000),2)

 for i in coupon_id:

 print('***********------------------
**************')

 print('Product:', self.productName)

 print('Product Category:',

 self.product_category)

 print('Coupon ID:', i)

 print('Brand:', self.brand)

Understanding Method Resolution Order of Inheritance246

 print('Store:', self.store)

 print('Expiry Date:', self.expiry_date)

 print('Quantity:', self.quantity)

 print('***********------------------

 **************')

3. Let’s now define a class, SendStoreCoupon, that inherits StoreCoupon and does not
add any methods or attributes to it:

class SendStoreCoupon(StoreCoupon):

 pass

SendStoreCoupon.mro()

4. The MRO of this class is represented in the following output:

[__main__.SendStoreCoupon, __main__.StoreCoupon, object]

5. The methods in SendStoreCoupon are resolved first, followed by the methods in the
StoreCoupon class, followed by object.

6. Let’s add one more level of inheritance by defining another class, named SendCoupon, and
inheriting it from the SendStoreCoupon classes:

class SendCoupon(SendStoreCoupon):

 pass

SendCoupon.mro()

7. The MRO of this class is represented in the following output:

[__main__.SendCoupon,

 __main__.SendStoreCoupon,

 __main__.StoreCoupon,

 object]

8. In the preceding output, the methods are resolved from SendCoupon followed by
SendStoreCoupon followed by StoreCoupon followed by object.

9. Let’s create an object for the SendCoupon class and call the generate_coupon method:

coupon = SendCoupon()

coupon.generate_coupon()

Understanding the importance of modifying the order of inheritance 247

10. The SendCoupon class does not have a definition for the generate_coupon method
and so, as per the MRO, the parent class or superclass’ SendStoreCoupon method will be
called, as in the following output:

***********------------------**************

Product: Strawberry Ice Cream

Product Category: Desserts

Coupon ID: 532129664296

Brand: ABCBrand3

Store: Los Angeles Store

Expiry Date: 10/1/2021

Quantity: 10

***********------------------**************

***********------------------**************

Product: Strawberry Ice Cream

Product Category: Desserts

Coupon ID: 183336814176

Brand: ABCBrand3

Store: Los Angeles Store

Expiry Date: 10/1/2021

Quantity: 10

***********------------------**************

In this example, we looked at how the methods are resolved from one level of inheritance to the other.

Now, let’s look further into the impact of modifying the order of inheritance.

Understanding the importance of modifying the order of
inheritance
In this section, we will look at inheriting from more than one parent class. We will see what happens to the
method resolution when the order of the parent class changes in addition to the SendStoreCoupon
class that was created in the preceding section:

1. First, we will be creating another class, named ManufacturerCoupon, where we will be
defining attributes for a manufacturer such as the product name, product category, brand of
the product, manufacturer name where the product is sold, expiry date of the product, and
quantity to be purchased to get a coupon.

Understanding Method Resolution Order of Inheritance248

2. We will then define a method named generate_coupon, where we will be generating
two coupons for the product with random coupon ID values and all the details of the product
and its manufacturer:

class ManufacturerCoupon:

 productName = "Strawberry Ice Cream"

 product_category = "Desserts"

 brand = "ABCBrand3"

 manufacturer = "ABC Manufacturer"

 expiry_date = "10/1/2021"

 quantity = 10

 def generate_coupon(self):

 import random

 coupon_id = random.sample(range(

 100000000000,900000000000),2)

 for i in coupon_id:

 print('***********------------------
**************')

 print('Product:', self.productName)

 print('Product Category:',

 self.product_category)

 print('Coupon ID:', i)

 print('Brand:', self.brand)

 print('Manufacturer:', self.manufacturer)

 print('Expiry Date:', self.expiry_date)

 print('Quantity:', self.quantity)

 print('***********------------------

 **************')

3. Let’s also define the SendCoupon class with two parent classes—ManufacturerCoupon
and SendStoreCoupon:

class SendCoupon(ManufacturerCoupon,SendStoreCoupon):

 pass

SendCoupon.mro()

Understanding the importance of modifying the order of inheritance 249

4. The MRO of the class is represented in the following output:

[__main__.SendCoupon,

 __main__.ManufacturerCoupon,

 __main__.SendStoreCoupon,

 __main__.StoreCoupon,

 object]

5. Let’s further create an object for the class and call the generate_coupon method:

coupon = SendCoupon()

coupon.generate_coupon()

6. The generate_coupon method generated coupons for the manufacturer in this
example since the first parent that has the generate_coupon method definition is
ManufacturerCoupon. The following coupons are generated from the generate_
coupon method:

***********------------------**************

Product: Strawberry Ice Cream

Product Category: Desserts

Coupon ID: 262335232934

Brand: ABCBrand3

Manufacturer: ABC Manufacturer

Expiry Date: 10/1/2021

Quantity: 10

***********------------------**************

***********------------------**************

Product: Strawberry Ice Cream

Product Category: Desserts

Coupon ID: 752333180295

Brand: ABCBrand3

Manufacturer: ABC Manufacturer

Expiry Date: 10/1/2021

Quantity: 10

***********------------------**************

Understanding Method Resolution Order of Inheritance250

7. Let’s further change the order of inheritance in the SendCoupon class and look at how the
methods are resolved:

class SendCoupon(SendStoreCoupon,ManufacturerCoupon):

 pass

SendCoupon.mro()

8. The MRO of the class is represented in the following output:

[__main__.SendCoupon,

 __main__.SendStoreCoupon,

 __main__.StoreCoupon,

 __main__.ManufacturerCoupon,

 object]

9. Let’s further create an object for the class and call the generate_coupon method:

coupon = SendCoupon()

coupon.generate_coupon()

10. The generate_coupon method generated coupons for the store in this example since the
first parent that has the generate_coupon method definition is SendStoreCoupon,
which in turn inherits the method from its StoreCoupon parent class, as represented in
the following output:

***********------------------**************

Product: Strawberry Ice Cream

Product Category: Desserts

Coupon ID: 167466225705

Brand: ABCBrand3

Store: Los Angeles Store

Expiry Date: 10/1/2021

Quantity: 10

***********------------------**************

***********------------------**************

Product: Strawberry Ice Cream

Product Category: Desserts

Coupon ID: 450583881080

Brand: ABCBrand3

Store: Los Angeles Store

Impact of unintended change of order in inheritance 251

Expiry Date: 10/1/2021

Quantity: 10

***********------------------**************

In this section, we understood the impact of the order in which a child class resolved the parent
classes or the superclasses.

With this understanding, let’s look at what happens when the inheritance becomes even more complex
and where it can lead to errors.

Impact of unintended change of order in inheritance
In this section, we will be looking at examples that demonstrate how important the order of inheritance
is to resolve the methods in the case of multilevel inheritance, and what happens when the order
changes in one of the parent or superclasses unintentionally.

This is how it works:

1. Let’s start by creating a class named CommonCounter that initializes with two attributes,
items and name. Let’s also add two methods to this class, return_cart (which returns
the items in the cart) and goto_counter (which returns the name of the counter). This is
how the code looks:

class CommonCounter():

 def __init__(self,items,name):

 self.items = items

 self.name = name

 def return_cart(self):

 cartItems = []

 for i in self.items:

 cartItems.append(i)

 return cartItems

 def goto_counter(self):

 countername = self.name

 return countername

CommonCounter.mro()

2. The MRO of the class is represented in the following output:

[__main__.CommonCounter, object]

Understanding Method Resolution Order of Inheritance252

3. Let’s now create another class, named CheckItems, which is also going to be a parent
class in multilevel inheritance applied in this section. This class will have one attribute named
item_type and one method named review_items that returns the name of the counter
based on the type of items in the cart:

class CheckItems():

 def __init__(self, item_type = None):

 self.item_type = item_type

 def review_items(self, item_type = None):

 veg_cart = ['Vegetables', 'Dairy', 'Fruits']

 if (item_type == 'Electronics'):

 print("Move to Electronics Counter")

 elif (item_type in veg_cart):

 print("Move to Vege Counter")

CheckItems.mro()

4. The MRO of the class is represented in the following output:

[__main__.CheckItems, object]

5. On the second level of inheritance, let’s create a class named ElectronicsCounter, which
inherits from the CommonCounter and CheckItems classes, in that order:

class ElectronicsCounter(CommonCounter,CheckItems):

 def __init__(status = None):

 self.status = status

 def test_electronics(self):

 teststatus = []

 for i in self.status:

 teststatus.append(i)

 return teststatus

ElectronicsCounter.mro()

6. The MRO of the class is represented in the following output:

[__main__.ElectronicsCounter,

 __main__.CommonCounter,

 __main__.CheckItems,

 object]

Impact of unintended change of order in inheritance 253

7. On the second level of inheritance, let’s also create a class named VegeCounter, which
inherits from the CheckItems and CommonCounter classes, in that order:

class VegeCounter(CheckItems,CommonCounter):

 def __init__(weights = None):

 self.weights = weights

 def weigh_items(self):

 item_weight = dict(zip(self.items,

 self.weights))

 return item_weight

VegeCounter.mro()

8. The MRO of the class is represented in the following output:

[__main__.VegeCounter,

__main__.CheckItems,

__main__.CommonCounter,

object]

9. Let’s now create another class, named ScanCode, which inherits the ElectronicsCounter
and VegCounter classes:

class ScanCode(ElectronicsCounter,VegeCounter):

 pass

The preceding code results in the following error message:

Figure 10.1 – MRO error

10. Even though the MRO of the class is ScanCode followed by ElectronicsCounter
followed by VegeCounter followed by CommonCounter followed by CheckItems
followed by object, the MROs of the CommonCounter and CheckItems base classes
are reversed. Therefore, the overall class definition throws an error in this scenario.

Understanding Method Resolution Order of Inheritance254

This example demonstrates the impact of unintended change in the order of inheritance. It is important
to ensure that the order of classes is correct while defining classes with multilevel inheritance in Python
so that the MRO is consistent for base classes.

Summary
In this chapter, we have learned about the concept of method resolution by exploring the MRO
method in Python 3. We also inspected the MRO of Python code by implementing different types
of inheritance. We understood the impact of MRO by modifying the order of inheritance at various
levels for multiple classes from our core example.

Similar to other chapters covered in this book, this chapter explains that the MRO also focuses on
metaprogramming and its impact on Python code.

In the next chapter, we will be looking at the concept of dynamic objects, with some other
interesting examples.

11
Creating Dynamic Objects

In this chapter, we will look at the concept of dynamic objects in Python 3 and the process that can
be followed to create any dynamic Python objects including classes, instances of classes, methods,
and attributes.

As the name suggests, dynamic objects are objects that can be created at runtime or execution time
rather than while coding, provided certain conditions are met.

Throughout this chapter, we will look at how to create classes, class instances, functions, methods,
and attributes dynamically using our core example of ABC Megamart.

Why should we understand the creation of dynamic objects? In scenarios where we want to build
applications that can generate code at runtime, the basic building blocks for Python code are the objects
that are created at runtime. Dynamic creation of objects gives the flexibility and choice of creating an
object only when it is required. Any object defined will occupy a certain amount of memory. When an
object created during the coding time is not required by the rest of the code or application, it occupies
memory that can otherwise be used more efficiently.

In this chapter, we will be taking a look at the following main topics:

• Exploring type for dynamic objects

• Creating multiple instances of a class dynamically

• Creating dynamic classes

• Creating dynamic attributes and methods

By the end of this chapter, you should have an understanding of how Python objects can be created
at runtime and how they can be implemented in various applications.

Creating Dynamic Objects256

Technical requirements
The code examples shared in this chapter are available on GitHub under the code for this chapter
at https://github.com/PacktPublishing/Metaprogramming-with-Python/
tree/main/Chapter11.

Exploring type for dynamic objects
In this section, let’s explore the function named type from the perspective of dynamic object creation.
Why do we need to create an object dynamically? Let’s consider the scenarios where we want to change
the attributes of the class only for specific instances/objects of the class and not for the original class
itself. In such scenarios, we can create dynamic objects for the class and define the attributes of the
class dynamically within the specific dynamic object and not for the whole class itself.

In multiple chapters throughout this book, we have looked at the various uses of the type function.
In this chapter, we will look at how to use type to dynamically create Python objects.

Let’s look at the graphical representation of the signature of the type function in Python in the
following screenshot:

Figure 11.1 – Signature of type

The type function accepts a self-object followed by a tuple and a dictionary of arguments as input.
When we provide an object as input to the type function, it returns the type of the object as in the
following example:

type(object)

https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter11

Exploring type for dynamic objects 257

The output for the type of object is type itself:

type

From Figure 11.1, we can also see that the other variation of type accepts an object followed by
bases and dict. The argument value for bases denotes the base classes and the argument value
for dict denotes various attributes of the class.

To examine the type function for creating dynamic objects, let’s define a class named Branch:

class Branch:

 '''attributes...'''

 '''methods...'''

 pass

Let’s further create an object dynamically using the type function in the following code:

branchAlbany = type('Branch', (object,), {'branchID' : 123,

 'branchStreet' : '123 Main Street',

 'branchCity' : 'Albany',

 'branchState' : 'New York',

 ' 'branch'ip' : 12084})

In the preceding code, the branchAlbany variable is the object to be defined dynamically, the first
argument is the class name for which an object needs to be created, the second argument is the tuple
of base classes for the class argument, and the third argument is the list of attributes or methods to
be added to the object.

We can look at the definition of the branchAlbany object in the following code and output:

branchAlbany

__main__.Branch

Creating Dynamic Objects258

The following screenshot is a representation of the attributes added to branchAlbany once the
preceding code is executed:

Figure 11.2 – Attributes of branchAlbany

The method resolution order of the dynamic class instance is the same as the Branch class:

branchAlbany.mro

<function Branch.mro()>

All the dynamic attributes added to the class instance are now part of the branchAlbany class
instance:

branchAlbany.branchID

123

branchAlbany.branchStreet

'123 Main Street'

branchAlbany.branchCity

'Albany'

branchAlbany.branchState

'New York'

branchAlbany.branchZip

12084

To understand this further, let’s look at the attributes of branchAlbany and compare them to
the attributes of the Branch class for which the branchAlbany instance is created. A graphical
representation of the comparison is shown in Figure 11.3:

Exploring type for dynamic objects 259

Figure 11.3 – Attributes of Branch versus branchAlbany

The preceding figure clarifies that the attributes defined as part of the dynamic object creation for the
Branch class did not get included in the Branch class itself. The definition of the Branch class
remains intact and only the definition of the dynamic object changed in this scenario.

To explore further, we can create another dynamic instance of the Branch class with a different set
of attributes:

branchNYC = type('Branch', (object,), {'branchID' : 202,

 'productId': 100001,

 'productName': 'Refrigerator',

 'productBrand': 'Whirlpool'})

Creating Dynamic Objects260

The branchNYC instance now has its own set of dynamic attributes that are not part of either the
Branch class or the branchAlbany instance. A comparison of the three is in Figure 11.4:

Figure 11.4 – Attributes of Branch, branchAlbany, and branchNYC

With this understanding, let’s look further at creating multiple instances or objects of a class dynamically.

Creating multiple instances of a class dynamically
In this section, let’s look at creating more than one instance of a class dynamically. For this example,
we will be making use of a built-in Python function named globals to create dynamic object names,
along with the type function that we use to create dynamic objects. Refer to the following steps:

1. Let’s create a new class named Product without any attributes or methods. Instead of defining
the attributes within the class and creating an instance of the class, let’s create multiple instances
with their own attributes:

class Product():

 '''attributes...'''

Creating multiple instances of a class dynamically 261

 '''methods...'''

 pass

2. Next, we will be creating three dictionary items in a list named details:

details = [{'branchID' : 202,

 'ProductID' : 100002,

 'ProductName' : 'Washing Machine',

 'ProductBrand' : 'Whirlpool',

 'PurchasePrice' : 450,

 'ProfitMargin' : 0.19},

 {

 'productID' : 100902,

 'productName' : 'Iphone X',

 'productCategory' : 'Electronics',

 'unitPrice' : 700

 },

 {

 'branchID' : 2021,

 'branchStreet' : '40097 5th Main Street',

 'branchBorough' : 'Manhattan',

 'branchCity' : 'New York City',

 'Product ID': 100003,

 'Product Name': 'Washing Machine',

 'Product Brand': 'Samsung',

 'Purchase Price': 430,

 'Profit Margin': 0.18

 },

]

3. These dictionary items are going to be provided as attributes for multiple instances of objects
that we are going to create using globals and type:

for obj,var in
zip(['product1','product2','product3'],details):

 globals()[obj] = type('Product', (object,), var)

Creating Dynamic Objects262

4. In the preceding code, we have created three objects product1, product2, and product3
with variables defined in the details list. Each object is created dynamically and will have
its own set of attributes.

The Product class has its default set of attributes since we did not define any custom
attributes in the class. These are presented in Figure 11.5:

Figure 11.5 – Attributes of Product

5. The attributes of the three objects we created in this example have their own set of attributes
defined dynamically. The dynamic attributes of the dynamic objects are in the following figure:

Creating dynamic classes 263

Figure 11.6 – Attributes of product1, product2, and product3

In this section, we learned how to create multiple instances of a class dynamically with each instance
having its own dynamic set of attributes. With this understanding, let’s further look at creating multiple
classes dynamically.

Creating dynamic classes
In this section, let’s look at how to create classes dynamically with different names and different
attributes by making use of the built-in functions of type and globals. To explore this concept
further, we will first create one dynamic class using the type function:

Product = type('Product', (object,), {'branchID' : 202,

 'productId': 100001,

Creating Dynamic Objects264

 'productName': 'Refrigerator',

 'productBrand': 'Whirlpool'})

In the preceding code, we created a class named Product and provided the class name, followed by
the base classes and their corresponding attributes.

Let’s test the created class with the following code:

Product

__main__.Product

type(Product)

type

Product.branchID

202

With this understanding, let’s now take it further and create multiple dynamic classes.

Creating multiple dynamic classes

In this section, we will be creating multiple dynamic classes using type and globals:

1. Let’s define three functions to be added as dynamic methods while creating multiple dynamic
classes as follows:

def setBranch(branch):

 return branch

def setSales(sales):

 return sales

def setProduct(product):

 return product

2. Next, let’s create a dictionary of attributes:

details = [{'branch': 202,

 'setBranch' : setBranch

 },

 {'purchasePrice': 430,

 'setSales' : setSales

 },

Creating dynamic attributes and methods 265

 {'product': 100902,

 'setProduct' : setProduct

 }]

3. In the next step, we will be creating multiple classes dynamically using type and globals
in a loop:

for cls,var in
zip(['productcls1','productcls2','productcls3'],details):

 globals()[cls] = type(cls, (object,), var)

4. The preceding code creates three classes named productcls1, productcls2, and
productcls3, and also creates dynamic variables and methods that can be further reviewed
for their usage in the following code and their corresponding output:

productcls1.setBranch(productcls1.branch)

202

productcls2.setSales(productcls2.purchasePrice)

430

productcls3.setProduct(productcls3.product)

100902

In the preceding code, we have successfully executed the methods created within the
dynamic classes.

In this section, we have learned how to create multiple classes dynamically. With this understanding,
let’s proceed further by creating dynamic methods in classes.

Creating dynamic attributes and methods
In this section, let’s explore how to create dynamic methods within classes. A dynamic method is
a method created for a class during runtime, unlike the regular class methods that we create while
coding within the class definition itself.

Dynamic methods are created to avoid modifying the structure or the original class definition once it
is defined. Instead of modifying the class definition, we can define and call a runtime template method
that will in turn create a dynamic method for the class.

Creating Dynamic Objects266

Let’s start by creating a simple class definition for managing the coupons of ABC Megamart named
SimpleCoupon:

class SimpleCoupon:

 '''attributes''''''

 ''''''methods''''''

 pass

We did not define any attributes or methods for this class, but we will define them more clearly in
the following sections.

Defining attributes dynamically

Let’s now define a set of coupon attributes for the SimpleCoupon class during runtime using Python’s
built-in setattr function. This function accepts a Python object, the name of the attribute, and its
corresponding value:

setattr(SimpleCoupon,'couponDetails',

[["Honey Mustard Sauce","Condiments","ABCBrand3","Pasadena
Store","10/1/2021",2],

["Potato Chips","Snacks","ABCBrand1","Manhattan
Store","10/1/2021",2],

["Strawberry Ice Cream","Desserts","ABCBrand3","ABC
Manufacturer","10/1/2021",2]])

In the preceding code, we have provided the class name SimpleCoupon as the input object, followed
by the attribute name as couponDetails, and its corresponding values as three lists of product
details, one for each type of coupon: Condiments, Snacks, and Desserts.

Now that we have dynamically created the attribute, let’s check whether it has been added to the
SimpleCoupon class and is available for use by looking at the list of attributes and methods available
in the class as represented in Figure 11.7:

Creating dynamic attributes and methods 267

Figure 11.7 – couponDetails added to SimpleCoupon

With this understanding, let’s further dynamically create methods in the SimpleCoupon class.

Defining methods dynamically

In this section, let’s create a new function that acts as a template function to dynamically generate
methods within the SimpleCoupon class. We will now create a function named createCoupon
that accepts a class object, method name, and the coupon details as input.

Within the function definition, let’s also define a generateCoupon function that will be generated
as a dynamic method in the class:

def createCoupon(classname,methodname,couponDetails):

 def generateCoupon(couponDetails):

 import random

 couponId = random.sample(range(

Creating Dynamic Objects268

 100000000000,900000000000),1)

 for i in couponId:

 print('***********------------------

 **************')

 print('Product:', couponDetails[0])

 print('Product Category:', couponDetails[1])

 print('Coupon ID:', i)

 print('Brand:', couponDetails[2])

 print('Source:', couponDetails[3])

 print('Expiry Date:', couponDetails[4])

 print('Quantity:', couponDetails[5])

 print('***********------------------

 **************')

 setattr(classname,methodname,generateCoupon)

In the preceding code, we call the setattr function to define the method dynamically in the class
object provided as input to setattr.

In the next step, let’s generate three generateCoupon methods dynamically using the same method
definition but with three different names and test them with three different sets of attributes.

for method,var in
zip(['generateCondimentsCoupon','generateSnacksCoupon',
'generateDessertsCoupon'],SimpleCoupon.couponDetails):

 createCoupon(SimpleCoupon, method,var)

Now, the SimpleCoupon class has three different methods added to it with the names
generateCondimentsCoupon, generateSnacksCoupon, and generateDessertsCoupon
respectively. The dynamics methods added to the SimpleCoupon class are shown in the
following figure:

Creating dynamic attributes and methods 269

Figure 11.8 – Dynamic methods added to SimpleCoupon

Let’s run each method by calling them from the S i m p l e C o u p o n class. The
generateCondimentsCoupon method is called in the following code:

SimpleCoupon.generateCondimentsCoupon(SimpleCoupon.
couponDetails[0])

The output is generated as follows:

***********------------------**************

Product: Honey Mustard Sauce

Product Category: Condiments

Coupon ID: 666849488635

Brand: ABCBrand3

Source: Pasadena Store

Creating Dynamic Objects270

Expiry Date: 10/1/2021

Quantity: 2

***********------------------**************

generateSnacksCoupon is called in the following code:

SimpleCoupon.generateSnacksCoupon(SimpleCoupon.
couponDetails[1])

The output for this is as follows:

***********------------------**************

Product: Potato Chips

Product Category: Snacks

Coupon ID: 394693383743

Brand: ABCBrand1

Source: Manhattan Store

Expiry Date: 10/1/2021

Quantity: 2

***********------------------**************

The generateDessertsCoupon method is called in the following code:

SimpleCoupon.generateDessertsCoupon(SimpleCoupon.
couponDetails[2])

The output is generated as follows:

***********------------------**************

Product: Strawberry Ice Cream

Product Category: Desserts

Coupon ID: 813638596228

Brand: ABCBrand3

Source: ABC Manufacturer

Expiry Date: 10/1/2021

Quantity: 2

***********------------------**************

In this section, we have understood the concept of generating methods dynamically in a Python
class along with examples. This concept will help while designing applications with automated code
generation capabilities.

Summary 271

Summary
In this chapter, we have learned the concept of dynamic objects by exploring methods of creating
various dynamic objects in Python 3. We also covered the concepts of creating multiple instances
of a class dynamically. We looked at the concept of creating dynamic classes. We also looked at the
concepts of creating attributes and methods dynamically within classes.

Similar to other chapters covered in this book, while this chapter explained dynamic objects, it also
provided some focus on metaprogramming and its impact on Python code.

In the next chapter, we will be looking at the concept of design patterns with some other interesting
examples.

12
Applying GOF Design Patterns

– Part 1

In this chapter, we will look at the concept of design patterns in Python 3 and its various categories,
along with examples of how they can be applied while developing software using Python.

The concept of design patterns originated from the book Design Patterns Elements of Reusable
Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
Addison-Wesley, which was written in C++. This concept was later extended to other object-oriented
programming (OOP) languages.

In this chapter, we are going to look at how these design patterns can be applied in Python using our
core example of ABC Megamart.

We will cover the following main topics:

• An overview of design patterns

• Exploring behavioral design patterns

By the end of this chapter, you should understand some important behavioral design patterns and
how they can be implemented in various applications.

Technical requirements
The code examples in this chapter are available in this book’s GitHub repository at https://
github.com/PacktPublishing/Metaprogramming-with-Python/tree/
main/Chapter12.

https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter12

Applying GOF Design Patterns – Part 1274

An overview of design patterns
Every programming language has its elements uniquely designed and communicated to others. Design
patterns give a structured and well-designed approach to developing software or applications in
Python. In Python, every element is an object. Design patterns express how we are going to sequence
or structure these objects to perform various operations. This allows them to become reusable.

The design patterns are divided into three categories – behavioral, structural, and creational. In this
chapter, we will cover behavioral design patterns and look at three in particular, as follows:

• The chain of responsibility

• Command

• Strategy

More than 20 different design patterns are available in Python and covering all of them would require
a book of its own. Therefore, we will only focus on some of the most interesting design patterns in
this chapter and the next. With that, let’s explore some behavioral design patterns.

Exploring behavioral design patterns
As the name suggests, behavioral design patterns deal with the behavior of objects and how they talk
to each other. In this section, we will learn about the elements of the chain of responsibility, command,
and strategy design patterns, which belong to the behavioral design pattern category, and understand
them by applying them to ABC Megamart.

Understanding the chain of responsibility

The chain of responsibility is a design pattern where the responsibility of the actions that can be
performed by objects are transferred from one object to another, similar to a chain of events or actions.
To explain this further and to implement this design pattern, we need the following elements to be
developed in our code:

• Parent handler: A base class that defines a base function that specifies how a sequence of
actions should be handled.

• Child handlers: One or more subclasses that overwrite the base function from the base class
to perform the respective action.

• Exception handler: A default handler that performs a specific action in case of exceptions. It
also overwrites the base function from the base class.

• Requestor: A function or method that calls the child handlers to initiate a chain of responsibility.

Exploring behavioral design patterns 275

Let’s look at the chain of responsibility with an example.

In this example, we will be calculating tax by state and generating an invoice for the New York and
California branches of ABC Megamart. Follow these steps:

1. To illustrate the design pattern further, let’s create a parent handler class named
InvoiceHandler. In this class, we will initiate a next_action variable to handle the
next action in the chain and define a handle method to handle the requested action:

class InvoiceHandler(object):

 def __init__(self):

 self.next_action = None

 def handle(self,calctax):

 self.next_action.handle(calctax)

2. Next, we will create a supporting class to support the actions that we are going to perform in this
example. Here, we want to calculate tax for a state based on the request and generate an invoice:

class InputState(object):

 state_ny = ['NYC','NY','New York','new york']

 state_ca = ['CA', 'California', 'california']

The InputState class has two attributes for the list of acceptable values for the states of
New York and California.

3. Now, let’s create another class that adds a header to the invoice, as follows:

class Print_invoice(object):

 def __init__(self,state):

 self.state = state

 self.header = 'State specific Sales tax is
applicable

 for the state of ' + self.state

4. Next, we will create a class for the child handler that has a method for generating an invoice,
calculating New York’s state-specific tax for a product, and overwriting the handle method
from the InvoiceHandler class:

class NYCHandler(InvoiceHandler):

 def generate_invoice(self, header, state):

 product = 'WashingMachine'

 pricebeforetax = 450 + (450 * 0.19)

 tax_rate = 0.4

Applying GOF Design Patterns – Part 1276

 local_rate = 0.055

 tax = pricebeforetax * (tax_rate + local_rate)

 finalsellingprice = pricebeforetax + tax

 print('**************ABC
Megamart*****************')

 print('***********------------------
**************')

 print(header)

 print('Product: ', product)

 print('Tax: ', tax)

 print('Total Price: ', finalsellingprice)

 print('***********------------------
**************')

 def handle(self,print_invoice):

 if print_invoice.state in InputState.state_ny:

 self.generate_invoice(print_invoice.header,

 print_invoice.state)

 else:

 super(NYCHandler, self).handle(print_invoice)

5. Then, we will create a class for the child handler that has a method for generating an invoice,
calculating California’s state-specific tax for a product, and overwriting the handle method
from the InvoiceHandler class:

class CAHandler(InvoiceHandler):

 def generate_invoice(self, header, state):

 product = 'WashingMachine'

 pricebeforetax = 480 + (480 * 0.14)

 tax_rate = 0.35

 local_rate = 0.077

 tax = pricebeforetax * (tax_rate + local_rate)

 finalsellingprice = pricebeforetax + tax

 print('**************ABC
Megamart*****************')

 print('***********------------------
**************')

 print(header)

Exploring behavioral design patterns 277

 print('Product: ', product)

 print('Tax: ', tax)

 print('Total Price: ', finalsellingprice)

 print('***********------------------
**************')

 def handle(self,print_invoice):

 if print_invoice.state in InputState.state_ca:

 self.generate_invoice(print_invoice.header,

 print_invoice.state)

 else:

 super(CAHandler, self).handle(print_invoice)

6. Now, let’s define a class that will handle exceptions such as scenarios where the request does
not invoke one of the child handler’s methods:

class ExceptionHandler(InvoiceHandler):

 def handle(self,print_invoice):

 print("No branches in the state")

7. Now, let’s create a requestor function that instantiates one of the child handler subclasses and
initiates a chain of responsibility that transfers from one action to another:

def invoice_requestor(state):

 invoice = Print_invoice(state)

 nychandler = NYCHandler()

 cahandler = CAHandler()

 nychandler.next_action = cahandler

 cahandler.next_action = ExceptionHandler()

 nychandler.handle(invoice)

In the preceding code, we defined the requestor to set the next action for NYCHandler to CAHandler
and the next action for CAHandler to be the exception handler. Let’s test this design pattern by
calling the invoice_requestor function with the input state’s name; that is, CA:

invoice_requestor('CA')

Applying GOF Design Patterns – Part 1278

The preceding code returns the invoice for the state of California since we provided the input as CC
instead of NY. If NY was provided as input, the design pattern would have invoked NYHandler.
However, since CA was provided, the next-in-the-chain and relevant CAHandler is invoked as follows:

**************ABC Megamart*****************

***********------------------**************

State specific Sales tax is applicable for the state of CA

Product: WashingMachine

Tax: 233.6544

Total Price: 780.8544

***********------------------**************

If invoice_requestor is provided with NY as the input state name instead, it should call
NYHandler, not CAHandler:

invoice_requestor('NYC')

The preceding code returns the NYHandler class’s invoice and not the CAHandler class’s invoice,
as expected:

**************ABC Megamart*****************

***********------------------**************

State specific Sales tax is applicable for the state of NYC

Product: WashingMachine

Tax: 243.6525

Total Price: 779.1525

***********------------------**************

As the final part of the request, let’s call ExceptionHandler by providing an input state that is
neither NY nor CA:

invoice_requestor('TEXAS')

The preceding code returns the following output by invoking the action from ExceptionHandler:

No branches in the state

Exploring behavioral design patterns 279

Let’s connect the elements of this design pattern with its corresponding objects:

Figure 12.1 – Chain of responsibility classes

In this section, we looked at the chain of responsibility design pattern. Now, let’s look at the command
design pattern.

Learning about the command design pattern

In this section, we will look at the next design pattern of interest: the command design pattern. The
command design pattern can be used to create a sequence for executing commands and reverting to
a previous state if a command is executed by mistake. Similar to the chain of responsibility pattern,
the command design pattern is also created by defining multiple elements that can execute an action
and revert the action that’s performed by an object.

Applying GOF Design Patterns – Part 1280

To explain this further and to implement this design pattern, we need to develop the following
elements in our code:

• Parent command: This is a base class that defines the base functions for one or more commands
that need to be executed.

• Child commands: Child commands specify one or more actions that are inherited from the
parent command class and overwritten at the individual child command level.

• Executor: This is a base class for executing the child commands. It provides a method to execute
the action and a method to revoke the action.

• Sub-executors: These inherit executors and overwrite the methods to execute while also
revoking the actions that are performed by the child commands.

• Requestor: The requestor is a class that requests the executors to execute commands and revert
to a previous state.

• Tester: This class tests if the design pattern is working as expected.

Now, let’s look at this design pattern in action. To understand this design pattern, we’ll go back to
ABC Megamart and calculate the selling price for a product, as well as apply a discount to the selling
price. The command pattern can help us design billing in such a way that we can either sell at the
actual selling price or apply a discount. Whenever a discount is applied by mistake, we can revert it.
Similarly, whenever a discount is not applied, we can reapply it. Follow these steps:

1. Let’s start by creating the Billing class. This is going to be the parent command and it will
have an attribute named sales. This is a dictionary object. There will be two abstract methods
– one to apply a discount and another to remove the discount:

from abc import ABC, abstractmethod

class Billing:

 sales = {'purchase_price': 450,

 'profit_margin': 0.19,

 'tax_rate': 0.4,

 'discount_rate': 0.10

 }

 @abstractmethod

 def apply_discount(self):

 pass

 @abstractmethod

 def remove_discount(self):

 pass

Exploring behavioral design patterns 281

2. Now, let’s create the first child command class, DiscountedBilling, which will overwrite
the apply_discount method from its parent class, Billing. Applying the Discount
method will take in the sales dictionary object from the Billing class and calculate the
discounted price, as shown here:

class DiscountedBilling(Billing):

 def apply_discount(self):

 sales = self.sales

 pricebeforetax = sales['purchase_price'] +

 sales['purchase_price'] * sales['profit_
margin']

 finalsellingprice = pricebeforetax +
(pricebeforetax *

 sales['tax_rate'])

 sales['sellingPrice'] = finalsellingprice

 discountedPrice = sales['sellingPrice'] * (1 –

 sales['discount_rate'])

 return discountedPrice

3. Next, we will create the next child command class, ActualBilling, which will remove
the discount. – That is, it will calculate the selling price without a discount:

class ActualBilling(Billing):

 def remove_discount(self):

 sales = self.sales

 pricebeforetax = sales['purchase_price'] +

 sales['purchase_price'] * sales['profit_
margin']

 actualprice = pricebeforetax + (pricebeforetax *

 sales['tax_rate'])

 return actualprice

4. Now, let’s create the base class for the executor. This will have two methods: exec_discount
and revoke_discount. The first is an abstract method for executing the command that
applies the discount. And the second is an abstract method for executing the command that
revokes the discount:

class ExecuteBilling:

 @abstractmethod

 def exec_discount(self):

Applying GOF Design Patterns – Part 1282

 pass

 @abstractmethod

 def revoke_discount(self):

 pass

5. Now, let’s define a child class named ExecuteDiscountedBilling that inherits from
the ExecuteBilling class. This will overwrite the exec_discount and revoke_
discount methods from its superclass. We will call the apply_discount method from
the DiscountedBilling class within the exec_discount method of this child class.
We will also set the ActualBilling command class from the ExecuteActualBilling
class within the revoke_discount method:

class ExecuteDiscountedBilling(ExecuteBilling):

 def __init__(self, instance):

 self.instance = instance

 def exec_discount(self):

 print('Discount applied...')

 return self.instance.apply_discount()

 def revoke_discount(self, revokeInstance):

 revokeInstance.reset(ExecuteActualBilling(

 ActualBilling()))

 return revokeInstance.runcalc()

6. Now, let’s define a child class named ExecuteActualBilling that inherits from the
ExecuteBilling class. This will overwrite the exec_discount and revoke_
discount methods from its superclass. We will call the remove_discount method from the
ActualBilling class within the exec_discount method of this child class. We will also
set the DiscountedBilling command class from the ExecuteDiscountedBilling
class within the revoke_discount method:

class ExecuteActualBilling(ExecuteBilling):

 def __init__(self, instance):

 self.instance = instance

 def exec_discount(self):

 print('Discount removed...')

 return self.instance.remove_discount()

 def revoke_discount(self, revokeInstance):

Exploring behavioral design patterns 283

 revokeInstance.reset(ExecuteDiscountedBilling(

 DiscountedBilling()))

 return revokeInstance.runcalc()

7. Next, we will define the requestor class, RequestAction, which will request the commands
to be executed and reverted as required. We will also define three methods:

 � The reset method, which will set or reset the command

 � The runcalc method, which will execute the discount calculation

 � The revert method, which will revert to the previous action by revoking the discount
calculation:

In the code block:

class RequestAction:

 def __init__(self, action):

 self.action = action

 def reset(self, action):

 print("Resetting command...")

 self.action = action

 def runcalc(self):

 return self.action.exec_discount()

 def revert(self):

 print("Reverting the previous action...")

 return self.action.revoke_discount(self)

8. Finally, we must create the final class in this design pattern to test that the command design
pattern works as expected:

class Tester:

 def __init__(self):

 billing = Billing()

 discount =

 ExecuteDiscountedBilling
(DiscountedBilling())

 actual = ExecuteActualBilling(ActualBilling())

 requestor = RequestAction(discount)

 print(requestor.runcalc())

 requestor.reset(actual)

 print(requestor.runcalc())

Applying GOF Design Patterns – Part 1284

 print(requestor.revert())

 print(requestor.revert())

In the preceding code, we defined an object instance of the Billing class, followed by the
instances that can be discounted and the actual ExecuteBilling subclasses. We also
created an instance of the RequestAction requestor class. After that, we sequenced a
set of operations to run the discount calculation, then the reset command, followed by
rerunning the calculation to remove the discount. This will revert the previous command
and thus reapply the discount before reverting the previous command, which will, in turn,
remove the discount.

Let’s call the Tester class, as follows:

Tester()

The output of the preceding code is as follows:

Discount applied...

674.73

Resetting command...

Discount removed...

749.7

Reverting the previous action...

Resetting command...

Discount applied...

674.73

Reverting the previous action...

Resetting command...

Discount removed...

749.7

<__main__.Tester at 0x261f09e3b20>

Now, let’s connect the elements of this design pattern with its corresponding objects:

Exploring behavioral design patterns 285

Figure 12.2 – Command design pattern classes

Applying GOF Design Patterns – Part 1286

In this section, we looked at the concept of the command design pattern. Now, let’s look at the strategy
design pattern.

The strategy design pattern

In this section, we’ll look at the final design pattern under the category of behavioral design patterns
that we will be covering in this chapter. Let’s look at the elements of the strategy pattern, as follows:

• Domain: A domain or base class defines all the base methods and attributes required for Python
objects to perform a sequence of operations. This class also makes decisions concerning the
operation that’s performed within the class according to the strategy method defined in the
strategy classes.

• Strategies: These are one or more independent classes that define one specific strategy within
its strategy method. The same strategy method name will be used in each of the strategy classes.

• Tester: A tester function calls the domain class and executes the strategy.

To understand how the strategy design pattern is implemented, we’ll look at various billing counters
that we covered in Chapter 8. There are various billing counters in ABC Megamart, including a vegetable
counter, a less than 10 item counter, an electronics counter, and so on.

In this example, we will define a vegetable counter and an electronics counter as strategy classes.
Follow these steps:

1. To begin with, we will define a domain class named SuperMarket with methods that do
the following:

I. Initialize attributes

II. Display details about the items in the cart

III. Go to a specific counter

Here is what the code for this looks like:

class SuperMarket():

 def __init__(self,STRATEGY, items, name, scan, units,
tax,

 itemtype = None):

 self.STRATEGY = STRATEGY

 self.items = items

 self.name = name

 self.scan = scan

 self.units = units

Exploring behavioral design patterns 287

 self.tax = tax

 self.itemtype = itemtype

 def return_cart(self):

 cartItems = []

 for i in self.items:

 cartItems.append(i)

 return cartItems

 def goto_counter(self):

 countername = self.name

 return countername

2. Next, we will define methods that do the following:

 � Scan the bar codes

 � Add the bill details

 � Add the tax details

Here is the code for this:

 def scan_bar_code(self):

 codes = []

 for i in self.scan:

 codes.append(i)

 return codes

 def add_billing(self):

 self.codes = self.scan_bar_code()

 pricetag = []

 for i in self.units:

 pricetag.append(i)

 bill = dict(zip(self.codes, pricetag))

 return bill

 def add_tax(self):

 taxed = []

 for i in self.tax:

Applying GOF Design Patterns – Part 1288

 taxed.append(i)

 return taxed

3. The operations for calculating the bill and printing the invoice are also defined in the
SuperMarket class. Refer to the following code:

 def calc_bill(self):

 bill = self.add_billing()

 items = []

 cartItems = self.return_cart()

 calc_bill = []

 taxes = self.add_tax()

 for item,tax in zip(bill.items(),taxes):

 items.append(item[1])

 calc_bill.append(item[1] + item[1]*tax)

 finalbill = dict(zip(cartItems, calc_bill))

 return finalbill

 def print_invoice(self):

 finalbill = self.calc_bill()

 final_total = sum(finalbill.values())

 print('**************ABC
Megamart*****************')

 print('***********------------------
**************')

 print('Counter Name: ', self.goto_counter())

 for item,price in finalbill.items():

 print(item,": ", price)

 print('Total:',final_total)

 print('***********------------------
**************')

 print('***************P
AID************************')

4. The final method within the SuperMarket class is the pipeline_template method,
which creates a pipeline for running the sequence of methods:

 def pipeline_template(self):

 self.return_cart()

Exploring behavioral design patterns 289

 self.goto_counter()

 self.STRATEGY.redirect_counter()

 self.scan_bar_code()

 self.add_billing()

 self.add_tax()

 self.calc_bill()

 self.print_invoice()

In this method, we have called the strategy method to change the strategy that’s performed
by the SuperMarket class.

5. Now, let’s define a simple strategy class for the vegetable counter, as follows:

class VegeCounter():

 def redirect_counter():

 print("**************Move to Vege
Counter**************")

6. Let’s also create a simple strategy class for the electronic counter, as follows:

class ElectronicsCounter():

 def redirect_counter():

 print("**************Move to Electronics

 Counter**************")

7. Now, we must define a tester function to test the strategy:

def run_pipeline(domain = SuperMarket):

 domain.pipeline_template()

8. Let’s test the strategy for the vegetable counter by running the pipeline and providing
VegeCounter as the strategy value:

run_pipeline(SuperMarket(STRATEGY = VegeCounter,

 items =
['Onions','Tomatoes','Cabbage','Beetroot'],

 name = ['Vegetable Counter'],

 scan = [113323,3434332,2131243,2332783],

 units = [10,15,12,14],

 tax = [0.04,0.03,0.035,0.025],

 itemtype = ['Vegetables'],

))

Applying GOF Design Patterns – Part 1290

9. The output for the VegeCounter strategy is as follows:

**************Move to Vege Counter**************

**************ABC Megamart*****************

***********------------------**************

Counter Name: ['Vegetable Counter']

Onions : 10.4

Tomatoes : 15.45

Cabbage : 12.42

Beetroot : 14.35

Total: 52.620000000000005

***********------------------**************

***************PAID************************

10. Now, let’s test the strategy for the electronics counter by running the pipeline and providing
ElectronicsCounter as the strategy value:

run_pipeline(SuperMarket(STRATEGY = ElectronicsCounter,

 items =
['television','keyboard','mouse'],

 name = ['Electronics Counter'],

 scan = [113323,3434332,2131243],

 units = [100,16,14],

 tax = [0.04,0.03,0.035],

 itemtype = ['Electronics'],

))

The output for the ElectronicsCounter strategy is as follows:

**************Move to Electronics Counter**************

**************ABC Megamart*****************

***********------------------**************

Counter Name: ['Electronics Counter']

television : 104.0

keyboard : 16.48

mouse : 14.49

Total: 134.97

***********------------------**************

***************PAID************************

Summary 291

Now, let’s connect the elements of this design pattern with its corresponding objects:

Figure 12.3 – Strategy pattern with classes

With that, we have learned about the strategy design pattern. Now, let’s summarize this chapter.

Summary
In this chapter, we learned about behavioral design patterns by applying some of them in Python
3. In particular, we implemented the chain of responsibility, command, and strategy patterns and
understood each of their elements.

Similar to the other chapters in this book, this chapter has been split into two parts – this chapter
explained design patterns and focused on metaprogramming and its impact on Python code.

In the next chapter, we will continue looking at the concept of design patterns by covering examples
of structural and creational design patterns.

13
Applying GOF Design Patterns

– Part 2

In this chapter, we will continue looking at the concept of design patterns in Python 3 and its various
categories and their implementation while developing software using Python.

In the previous chapter, we learned how to apply behavioral design patterns with examples. In this
chapter, we will continue looking at the remaining two categories – structural and creational design
patterns. We will see how they can be applied in Python using our core example of ABC Megamart.

In this chapter, we will be looking at the following main topics:

• Understanding structural design patterns

• Understanding creational design patterns

By the end of this chapter, you should be able to understand some of the examples of important
structural and creational design patterns and learn how they can be implemented in various applications.

Technical requirements
The code examples shared in this chapter are available on GitHub under the code for this chapter
here: https://github.com/PacktPublishing/Metaprogramming-with-Python/
tree/main/Chapter13.

Exploring structural design patterns
As the name suggests, structural design patterns are used to design the structure of classes and their
implementation in such a way that the classes and objects can be extended or reused effectively. In
this section, we will be covering three such structural design patterns — bridge, façade, and proxy
patterns. We are considering these three design patterns because they are unique and they represent
three different aspects of how structural design patterns can be used.

https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter13
https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter13

Applying GOF Design Patterns – Part 2294

Understanding the bridge pattern

The bridge design pattern is applied to bridge multiple elements or operations of implementation
using the concept of abstraction or the abstract method. To explain this further and to implement
this design pattern, our code should have the following elements:

• Abstraction superclass: The base class with the abstract method to perform a specific action,
along with methods to bridge any additional implementation

• Abstraction subclasses: One or more subclasses that implement the abstract method from the
abstraction superclass to perform their respective action

• Implementation superclass: A base that adds an additional implementation or design over
the abstraction

• Implementation subclasses: Subclasses that inherit the implementation superclass

Let’s look at the bridge pattern with an example. In this example, we will look at printing the business
card for branch managers that belong to two different supermarkets – ABC Megamart and XYZ
Megamart. Let’s see how:

1. To illustrate the design pattern further, let’s create an abstraction superclass named PrintCard,
and add three methods. The add_name method adds the name of the supermarket, and the
add_manager method adds the formatting specific to a manager. The add_manager method
gets the formatting input from the implementation subclass, which we will discuss later in this
section. The third method is the printcard method, which is an abstract method and will
be defined in the subclasses:

from abc import abstractmethod, ABC

class PrintCard(ABC):

 def add_name(self, name):

 self.name = name

 def add_manager(self, branch):

 self.branch = branch.FORMATTING

 @abstractmethod

 def printcard(self):

 pass

Exploring structural design patterns 295

2. Let’s further create an abstraction subclass named CardABC. This class will initialize the logo,
name from the super class, and manager from the super class. The printcard method will
print the logo, the name of the supermarket, and the address of the branch:

class CardABC(PrintCard):

 def __init__(self, logo, name, branch):

 self.logo = logo

 super().add_name(name)

 super().add_manager(branch)

 def printcard(self, *args):

 print(self.logo + self.name)

 for arg in args:

 print(self.branch + str(arg))

3. Next, create an abstraction subclass named CardXYZ. It will initialize the following variables
– style, logo, name from super class, and manager from the superclass. The printcard
method will print the logo, the style for the card, the name of the supermarket, and the address
of the branch:

class CardXYZ(PrintCard):

 def __init__(self, style, logo, name, branch):

 self.style = style

 self.logo = logo

 super().add_name(name)

 super().add_manager(branch)

 def printcard(self, *args):

 print(self.logo + self.style + self.name)

 for arg in args:

 print(self.branch + str(arg))

4. Now, let’s create the implementation superclass named Manager with a method named
formatting:

class Manager:

 def formatting(self):

 pass

Applying GOF Design Patterns – Part 2296

5. Next, create an implementation subclass named Manager_manhattan to add formatting
to the business card, specifically for the branch manager from the Manhattan branch:

class Manager_manhattan(Manager):

 def __init__(self):

 self.formatting()

 def formatting(self):

 self.FORMATTING = '\33[7m'

6. Let’s now create an implementation subclass named Manager_albany to add formatting
for the business card specifically for the branch manager from the Albany branch:

class Manager_albany(Manager):

 def __init__(self):

 self.formatting()

 def formatting(self):

 self.FORMATTING = '\033[94m'

7. Next, instantiate CardABC, which is an abstraction subclass. The three input parameters for
this class are the format of the logo, the name of the supermarket, and the branch from where
the formatting will be added to the card:

manager_manhattan = CardABC(logo = '\33[43m', name = 'ABC
Megamart', branch = Manager_manhattan())

8. And now we will print the card:

manager_manhattan.printcard('John M',

 'john.m@abcmegamart.com',

 '40097 5th Main Street',

 'Manhattan',

 'New York City',

 'New York',

 11007)

Exploring structural design patterns 297

The output is represented as follows, with the formatting as provided in the class
instantiation:

ABC Megamart

John M

john.m@abcmegamart.com

40097 5th Main Street

Manhattan

New York City

New York

11007

9. Let’s now instantiate CardXYZ, which is an abstraction subclass. The four input parameters
for this class are the style, the format of the logo, the name of the supermarket, and the branch
from where the formatting will be added to the card:

manager_albany = CardXYZ(style = '\33[43m',logo =
'\33[5m', name = 'XYZ Megamart', branch = Manager_
albany())

10. Now, let’s print the card.

manager_albany.printcard('Ron D','ron.d@abcmegamart.
com','123 Main Street','Albany','New York', 12084)

The output is represented as follows, with the style and formatting as provided in the class
instantiation:

XYZ Megamart

Ron D

ron.d@abcmegamart.com

123 Main Street

Albany

New York

12084

Applying GOF Design Patterns – Part 2298

Let’s connect the elements of this design pattern with their corresponding objects in the example with
the following graphical representation:

Figure 13.1 – Bridge pattern classes

So, the bridge pattern has been implemented by creating a bridge between the abstraction and the
implementation classes. With this understanding, let’s look at the facade pattern.

Understanding the facade pattern

In this section, we will look at the facade pattern, where we will design a black box kind of implementation
to hide the complexity of a system that handles multiple subsystems from the end user or client. To
explain this further and to implement this design/core pattern, our code needs the following elements:

• Functionality: The core functionalities that need to be implemented for a system are defined
in these functionality classes.

• Facade: This is the class that wraps the core functionalities and their implementation from
the end users.

• End user: The function, method, or class using which the core functionalities of a system are
accessed using the facade class.

Exploring structural design patterns 299

To understand the facade pattern further, let’s create a set of functionalities that starts from adding
items to the shopping cart, moving to the counter, scanning bar codes, billing, and finally, printing
the invoice:

1. The first functionality class in this series is Cart, where items will be added to the shopping
cart in the return_cart method:

class Cart:

 def __init__(self, items):

 self.items = items

 def return_cart(self):

 cart_items = []

 for i in self.items:

 cart_items.append(i)

 print("Running return_cart...")

 return cart_items

2. The second functionality class is the Counter class, where the name of the counter is returned
in the goto_counter method:

class Counter:

 def __init__(self, name):

 self.name = name

 def goto_counter(self):

 countername = self.name

 print("Running goto_counter...")

 return countername

3. The third functionality class is the BarCode class, where the scanned bar codes are returned
in the scan_bar_code method:

class BarCode:

 def __init__(self, scan):

 self.scan = scan

 def scan_bar_code(self):

 codes = []

 for i in self.scan:

 codes.append(i)

 print("Running scan_bar_code...")

 return codes

Applying GOF Design Patterns – Part 2300

4. The fourth functionality is the Billing class, where the price is tagged to the bar codes and
returned as a dictionary object in the add_billing method:

class Billing:

 def __init__(self, codes, units):

 self.codes = codes

 self.units = units

 def add_billing(self):

 codes = self.codes.scan_bar_code()

 pricetag = []

 for i in self.units:

 pricetag.append(i)

 bill = dict(zip(codes, pricetag))

 print("Running add_billing...")

 return bill

5. The next functionality is the Tax class, where tax values are returned using the add_tax
method in the class:

class Tax:

 def __init__(self, tax):

 self.tax = tax

 def add_tax(self):

 taxed = []

 for i in self.tax:

 taxed.append(i)

 print("Running add_tax...")

 return taxed

6. The functionality after this is the FinalBill class, where we will be calculating the final bill
using the calc_bill method:

class FinalBill:

 def __init__(self, billing, cart, tax):

 self.billing = billing

 self.cart = cart

 self.tax = tax

 def calc_bill(self):

 bill = self.billing.add_billing()

Exploring structural design patterns 301

 items = []

 cart_items = self.cart.return_cart()

 calc_bill = []

 taxes = self.tax.add_tax()

 for item,tax in zip(bill.items(),taxes):

 items.append(item[1])

 calc_bill.append(item[1] + item[1]*tax)

 finalbill = dict(zip(cart_items, calc_bill))

 print("Running calc_bill...")

 return finalbill

7. The final functionality class in the facade pattern is the Invoice class, where we will be
creating a print_invoice method to print the final invoice:

class Invoice:

 def __init__(self, finalbill, counter):

 self.finalbill = finalbill

 self.counter = counter

 def print_invoice(self):

 finalbill = self.finalbill.calc_bill()

 final_total = sum(finalbill.values())

 print("Running print_invoice...")

 print('**************ABC

 Megamart*****************')

 print('***********------------------

 **************')

 print('Counter Name: ',

 self.counter.goto_counter())

 for item,price in finalbill.items():

 print(item,": ", price)

 print('Total:',final_total)

 print('***********------------------

 **************')

 print('***************PAID********************

 ****')

Applying GOF Design Patterns – Part 2302

8. Now, let’s create the Facade class named Queue. It has two functions – the pipeline
method to explicitly run some of the methods in the functionality classes, and the pipeline_
implicit method to run the print_invoice method from the Invoice class, which
will in turn call all other methods in the rest of the functionality classes:

class Queue:

 def __init__(self, items, name, scan, units, tax):

 self.cart = Cart(items)

 self.counter = Counter(name)

 self.barcode = BarCode(scan)

 self.billing = Billing(self.barcode, units)

 self.tax = Tax(tax)

 self.finalbill = FinalBill(self.billing,

 self.cart, self.tax)

 self.invoice = Invoice(self.finalbill,

 self.counter)

 def pipeline(self):

 self.cart.return_cart()

 self.counter.goto_counter()

 self.barcode.scan_bar_code()

 self.tax.add_tax()

 def pipeline_implicit(self):

 self.invoice.print_invoice()

9. Let’s create an end user function to run the methods in functionality classes using the Facade
class by creating an instance for Queue and calling the pipeline method:

def run_facade():

 queue = Queue(items = ['paperclips','blue

 pens','stapler','pencils'],

 name = ['Regular Counter'],

 scan = [113323,3434332,2131243,2332783],

 units = [10,15,12,14],

 tax = [0.04,0.03,0.035,0.025],

)

 queue.pipeline()

Exploring structural design patterns 303

10. Now, let’s call the run_facade method to test the design pattern:

run_facade()

The output for the preceding test is as follows:

Running return_cart...

Running goto_counter...

Running scan_bar_code...

Running add_tax...

11. Finally, let’s create another end user function to run the methods in functionality classes using
the Facade class by creating an instance for Queue and calling the pipeline_implicit
method:

def run_facade_implicit():

 queue = Queue(items = ['paperclips','blue

 pens','stapler','pencils'],

 name = ['Regular Counter'],

 scan = [113323,3434332,2131243,2332783],

 units = [10,15,12,14],

 tax = [0.04,0.03,0.035,0.025],

)

 queue.pipeline_implicit()

12. Then, let’s call the run_facade_implicit method to test the design pattern:

run_facade_implicit()

The output for the preceding test is as follows:

Running scan_bar_code...

Running add_billing...

Running return_cart...

Running add_tax...

Running calc_bill...

Running print_invoice...

**************ABC Megamart*****************

***********------------------**************

Running goto_counter...

Counter Name: ['Regular Counter']

paperclips : 10.4

Applying GOF Design Patterns – Part 2304

blue pens : 15.45

stapler : 12.42

pencils : 14.35

Total: 52.620000000000005

***********------------------**************

***************PAID************************

Let’s connect the elements of this design pattern with their corresponding objects in the example in
the following graphical representation:

Figure 13.2 – Facade pattern classes

So, the facade pattern has been implemented by creating a black box that provides the end users with
an interface to access the functions of a complex system without worrying about the implementation
details. Now, let’s look at the proxy pattern.

Exploring structural design patterns 305

Understanding the proxy pattern

In this section, we will look at the proxy design pattern. As the name implies, the proxy pattern is
applied to create a proxy around the actual functionality so that the actual functionality is executed
only when the proxy allows it based on certain preconditions. To explain this further and to implement
this design pattern, our code needs the following elements:

• Functionality class: The base functionalities of the system are designed in this class as methods.

• Proxy class: This is a proxy around the functionality class and it provides restrictions as
to when to execute the base functionalities from the functionality class.

In this example, let’s consider the NYC branch of ABC Megamart and create a class named NYC:

1. The NYC class is initialized with four empty dictionary parameters named manager, branch,
product, and sales. Let’s also add three methods named set_parameters (to set the four
dictionary parameters), get_parameters (to return the parameters), and calc_tax_nyc
(to calculate the tax and return the parameters along with selling price data):

class NYC:

 def __init__(self):

 self.manager = {}

 self.branch = {}

 self.product = {}

 self.sales = {}

 def set_parameters(self, manager, branch, product,

 sales):

 self.manager = manager

 self.branch = branch

 self.product = product

 self.sales = sales

 def get_parameters(self):

 return self.manager, self.branch,

 self.product, self.sales

 def calc_tax_nyc(self):

 branch = self.branch

 manager = self.manager

 product = self.product

 sales = self.sales

 pricebeforetax = sales['purchase_price'] +

Applying GOF Design Patterns – Part 2306

 sales['purchase_price'] *

 sales['profit_margin']

 finalselling_price = pricebeforetax +

 (pricebeforetax * (sales['tax_rate'] +

 sales['local_rate']))

 sales['selling_price'] = finalselling_price

 return branch, manager, product, sales

2. The next step of the implementation is to create a proxy ReturnBook class to call the methods
from the NYC class to set parameters, get parameters, and calculate tax:

class ReturnBook(NYC):

 def __init__(self, nyc):

 self.nyc = nyc

 def add_book_details(self, state, manager, branch,

 product, sales):

 if state in ['NY', 'NYC', 'New York']:

 self.nyc.set_parameters(manager, branch,

 product, sales)

 else:

 print("There is no branch in the state:",

 state)

 def show_book_details(self, state):

 if state in ['NY', 'NYC', 'New York']:

 return self.nyc.get_parameters()

 else:

 print(state, "has no data")

 def calc_tax(self, state):

 if state in ['NY', 'NYC', 'New York']:

 return self.nyc.calc_tax_nyc()

 else:

 print("The state", state, "is not

 supported")

3. Let’s now instantiate the proxy ReturnBook class and provide the NYC functionality class
as the input parameter:

branch_manhattan = ReturnBook(NYC())

Exploring structural design patterns 307

4. To set the parameters from the NYC class, we will be calling the add_book_details method
from the proxy class. The parameters will be set in the NYC class only if the conditions provided
in add_book_details are successfully met by the input state parameter:

branch_manhattan.add_book_details(state = 'NY', manager =
{'regional_manager': 'John M',

 'branch_manager': 'Tom H',

 'sub_branch_id': '2021-01'},

 branch = {'branchID': 2021,

 'branch_street': '40097 5th Main Street',

 'branch_borough': 'Manhattan',

 'branch_city': 'New York City',

 'branch_state': 'New York',

 'branch_zip': 11007},

 product = {'productId': 100002,

 'product_name': 'WashingMachine',

 'product_brand': 'Whirlpool'},

 sales = {'purchase_price': 450,

 'profit_margin': 0.19,

 'tax_rate': 0.4,

 'local_rate': 0.055})

5. Let’s further call the show_book_details method to get the parameters from the NYC
class, provided that the state parameter in the input is NY, NYC, or New York:

branch_manhattan.show_book_details('NY')

The output of the preceding code is as follows:

({'regional_manager': 'John M',

 'branch_manager': 'Tom H',

 'sub_branch_id': '2021-01'},

 {'branchID': 2021,

 'branch_street': '40097 5th Main Street',

 'branch_borough': 'Manhattan',

 'branch_city': 'New York City',

 'branch_state': 'New York',

 'branch_zip': 11007},

 {'productId': 100002,

Applying GOF Design Patterns – Part 2308

 'product_name': 'WashingMachine',

 'product_brand': 'Whirlpool'},

 {'purchase_price': 450,

 'profit_margin': 0.19,

 'tax_rate': 0.4,

 'local_rate': 0.055})

6. Let’s further call the calc_tax method from the proxy class to calculate the selling price,
provided the state parameters are successful:

branch_manhattan.calc_tax('NY')

7. Let’s test the restrictions in the proxy methods by providing incorrect input to the state parameter:

branch_manhattan.add_book_details(state = 'LA', manager =
{'regional_manager': 'John M',

 'branch_manager': 'Tom H',

 'sub_branch_id': '2021-01'},

 branch = {'branchID': 2021,

 'branch_street': '40097 5th Main Street',

 'branch_borough': 'Manhattan',

 'branch_city': 'New York City',

 'branch_state': 'New York',

 'branch_zip': 11007},

 product = {'productId': 100002,

 'product_name': 'WashingMachine',

 'product_brand': 'Whirlpool'},

 sales = {'purchase_price': 450,

 'profit_margin': 0.19,

 'tax_rate': 0.4,

 'local_rate': 0.055})

The output of the preceding code is as follows:

There is no branch in the state: LA

8. Similarly, let’s also test the show_book_details method:

branch_manhattan.show_book_details('LA')

The output of the preceding code is as follows:

LA has no data

Exploring creational design patterns 309

9. Finally, let’s test the calc_tax method from the proxy:

branch_manhattan.calc_tax('LA')

The output is as follows:

The state LA is not supported

Let’s connect the elements of this design pattern with their corresponding objects in the example in
the following graphical representation:

Figure 13.3 – Proxy design pattern classes

So, the proxy pattern has been implemented by creating a proxy class that adds the required conditions
to execute the actual functionalities. Next, we’re moving on to exploring the creational design patterns.

Exploring creational design patterns
Creational design patterns are various methods to add abstraction in the process of object creation. In
this section, we will be looking at three such design patterns, namely the factory method, prototype
pattern, and singleton pattern.

Applying GOF Design Patterns – Part 2310

Understanding the factory method

The factory design pattern is a method of abstraction where a factory class is created to create an object
for the class from the factory class instead of directly instantiating the object. To explain this further
and to implement this design pattern, our code needs the following elements:

• Abstract class: The abstract class with the abstract methods for functionalities to be defined
in the subclasses.

• Abstraction subclasses: The subclasses are inherited from the abstract class and overwrite the
abstract methods.

• Factory class: The class to create objects for the abstraction subclasses.

• End user method: The class or method to test or call the factory method.

For this example, let’s implement using another scenario from ABC Megamart:

1. Let’s create an abstract class with two methods, buy_product and maintenance_cost:

from abc import abstractmethod

class Branch:

 @abstractmethod

 def buy_product(self):

 pass

 @abstractmethod

 def maintenance_cost(self):

 pass

2. Now, let’s create a subclass for the Branch class named Brooklyn and implement the
buy_product and maintenance_cost methods:

class Brooklyn(Branch):

 def __init__(self,product,unit_price,quantity,

 product_type):

 self.product = product

 self.unit_price = unit_price

 self.quantity = quantity

 self.product_type = product_type

 def buy_product(self):

 if (self.product_type == 'FMCG'):

 self.statetax_rate = 0.035

 self.promotiontype = 'Discount'

Exploring creational design patterns 311

 self.discount = 0.10

 self.initialprice =

 self.unit_price*self.quantity

 self.salesprice = self.initialprice +

 self.initialprice*self.statetax_rate

 self.finalprice = self.salesprice *

 (1-self.discount)

 return self.salesprice,

 self.product,self.promotiontype

 else:

 return "We don't stock this product"

 def maintenance_cost(self):

 self.coldstorageCost = 100

 if (self.product_type == 'FMCG'):

 self.maintenance_cost = self.quantity *

 0.25 + self.coldstorageCost

 return self.maintenance_cost

 else:

 return "We don't stock this product"

3. Similarly, let’s create another subclass, named Manhattan, which inherits the Branch class,
as follows:

class Manhattan(Branch):

 def __init__(self,product,unit_price,quantity,

 product_type):

 self.product = product

 self.unit_price = unit_price

 self.quantity = quantity

 self.product_type = product_type

4. Let’s further define a method named buy_product to return the product price, product
name, and promotion in cases where the product is electronic:

 def buy_product(self):

 if (self.product_type == 'Electronics'):

 self.statetax_rate = 0.05

 self.promotiontype = 'Buy 1 Get 1'

Applying GOF Design Patterns – Part 2312

 self.discount = 0.50

 self.initialprice =

 self.unit_price*self.quantity

 self.salesprice = self.initialprice +

 self.initialprice*self.statetax_rate

 self.finalprice = self.salesprice *

 (1-self.discount)

 return self.finalprice,

 self.product,self.promotiontype

 else:

 return "We don't stock this product"

5. Let’s now define another method to calculate the maintenance cost:

 def maintenance_cost(self):

 if (self.product_type == 'Electronics'):

 self.maintenance_cost = self.quantity * 0.05

 return self.maintenance_cost

 else:

 return "We don't stock this product"

6. In the next step, let’s create a factory class named BranchFactory, which creates the instance
for the branch subclasses, Brooklyn or Manhattan:

Class BranchFactory:

 def create_branch(self,branch,product,unit_price,

 quantity,product_type):

 if str.upper(branch) == 'BROOKLYN':

 return Brooklyn(product,unit_price,

 quantity,product_type)

 elif str.upper(branch) == 'MANHATTAN':

 return Manhattan(product,unit_price,

 quantity,product_type)

7. Now, let’s test the factory method by creating a function named test_factory:

def test_factory(branch,product,unit_
price,quantity,product_type):

 branchfactory = BranchFactory()

Exploring creational design patterns 313

 branchobject = branchfactory.create_branch(branch,

 product,unit_price,quantity,product_type)

 print(branchobject)

 print(branchobject.buy_product())

 print(branchobject.maintenance_cost())

8. Let’s now call the test_factory function with inputs as Brooklyn, Milk, 10.5, and
FMCG as follows:

test_factory('Brooklyn','Milk', 10,5,'FMCG')

The output for the preceding code is as follows:

<__main__.Brooklyn object at 0x000002101D4569A0>

(51.75, 'Milk', 'Discount')

101.25

9. Now, call the test_factory function with inputs as manhattan, iPhone, 1000, 1, and
Electronics as follows:

test_factory('manhattan','iPhone', 1000,1,'Electronics')

The output for the preceding code is as follows:

<__main__.Manhattan object at 0x000002101D456310>

(525.0, 'iPhone', 'Buy 1 Get 1')

0.05

Let’s connect the elements of this design pattern with their corresponding objects in the example with
the following graphical representation:

Figure 13.4 – Factory pattern classes

Applying GOF Design Patterns – Part 2314

So, the factory pattern has been implemented by creating a factory class that instantiates the
Abstraction subclasses. With this implementation, we have learned about the creational design
pattern with an example.

Understanding the prototype method

The prototype design pattern is also used to implement abstraction during the creation of a Python
object. A prototype can be used by the end user to create a copy of an object of a class without the
overhead of understanding the detailed implementation behind it. To explain this further and to
implement this design pattern, our code needs the following elements:

• Prototype class: This class has a method to clone or copy another Python object that has the
implementation.

• Implementation class: This class has the actual implementation of the functionalities as
attributes and methods.

For this example, let’s implement using another scenario from ABC Megamart:

1. Let’s create a class named Prototype and define a method named clone to copy the Python
object provided as input to the method:

class Prototype:

 def __init__(self):

 self.cp = __import__('copy')

 def clone(self, objname):

 return self.cp.deepcopy(objname)

2. Let’s now create an implementation class named FMCG and initialize a set of variables pertaining
to the supplier details, and add a method to get the supplier details:

class FMCG:

 def __init__(self,supplier_name,supplier_code,

 supplier_address,supplier_contract_start_date,\

 supplier_contract_end_date,supplier_quality_code):

 self.supplier_name = supplier_name

 self.supplier_code = supplier_code

 self.supplier_address = supplier_address

 self.supplier_contract_start_date =

 supplier_contract_start_date

 self.supplier_contract_end_date =

Exploring creational design patterns 315

 supplier_contract_end_date

 self.supplier_quality_code =

 supplier_quality_code

 def get_supplier_details(self):

 supplierDetails = {

 'Supplier_name': self.supplier_name,

 'Supplier_code': self.supplier_code,

 'Supplier_address': self.supplier_address,

 'ContractStartDate':

 self.supplier_contract_start_date,

 'ContractEndDate':

 self.supplier_contract_end_date,

 'QualityCode': self.supplier_quality_code

 }

 return supplierDetails

3. In the next step, let’s create an object named fmcg_supplier for the FMCG class:

fmcg_supplier = FMCG('Test Supplier','a0015','5093 9th
Main Street, Pasadena,California, 91001', '05/04/2020',
'05/04/2025',1)

4. Let’s also create an object for the Prototype class, named proto:

proto = Prototype()

5. Now, we can directly clone the fmcg_supplier object without passing all the attributes
of the FMCG class as input. To do this, we will make use of the clone method from the
Prototype class:

fmcg_supplier_reuse = proto.clone(fmcg_supplier)

6. The fmcg_supplier_reuse object is a clone of the fmcg_supplier object and it is
not the same object itself. This can be verified by looking at the ID of both of these objects:

id(fmcg_supplier)

The output is as follows:

2268233820528

Applying GOF Design Patterns – Part 2316

7. Similarly, we can also look at the ID of the cloned object:

id(fmcg_supplier_reuse)

The output is as follows:

2268233819616

8. Let’s also verify that the cloned object can be modified without impacting the actual object:

fmcg_supplier_reuse.supplier_name = 'ABC Supplier'

fmcg_supplier_reuse.get_supplier_details()

The output is as follows:

{'Supplier_name': 'ABC Supplier',

 'Supplier_code': 'a0015',

 'Supplier_address': '5093 9th Main Street,
Pasadena,California, 91001',

 'ContractStartDate': '05/04/2020',

 'ContractEndDate': '05/04/2025',

 'QualityCode': 1}

9. In the preceding output, we have modified the cloned object and this should not impact the
original object. Let’s verify the original object:

fmcg_supplier.get_supplier_details()

The output is as follows:

{'Supplier_name': 'Test Supplier',

 'Supplier_code': 'a0015',

 'Supplier_address': '5093 9th Main Street,
Pasadena,California, 91001',

 'ContractStartDate': '05/04/2020',

 'ContractEndDate': '05/04/2025',

 'QualityCode': 1}

So, the prototype pattern has been implemented by creating a Prototype class that copies the object
of the implementation class. Now that you’ve understood this, let’s look at the singleton design pattern.

Exploring creational design patterns 317

Understanding the singleton pattern

As the name suggests, the singleton pattern is a design pattern where we can limit the number of class
instances created for a class while initializing the class itself. To explain this further and implement
this design pattern, we need to develop the elements of the singleton class in our code.

Unlike the other patterns, this pattern has only one element – the singleton class. A singleton class
will have a constraint set within its init method to limit the number of instances to one.

For this example, let’s implement using another scenario from ABC Megamart:

1. Let’s define a class named SingletonBilling. This class will have the attributes required
to generate a bill for a product:

class SingletonBilling:

 billing_instance = None

 product_name = 'Dark Chocolate'

 unit_price = 6

 quantity = 4

 tax = 0.054

2. Let’s add a constraint in the init method of this class to limit the number of class instances
to one:

 def __init__(self):

 if SingletonBilling.billing_instance == None:

 SingletonBilling.billing_instance = self

 else:

 print("Billing can have only one

 instance")

3. In the next step, let’s also add a generate_bill method to perform the function of generating
a bill for a product based on the class attributes:

 def generate_bill(self):

 total = self.unit_price * self.quantity

 final_total = total + total*self.tax

 print('***********------------------

 **************')

 print('Product:', self.product_name)

Applying GOF Design Patterns – Part 2318

 print('Total:',final_total)

 print('***********------------------

 **************')

4. In the next step, we can instantiate the class object for the first time and call its generate_
bill method:

invoice1 = SingletonBilling()

invoice1.generate_bill()

The output is displayed as follows:

***********------------------**************

Product: Dark Chocolate

Total: 25.296

***********------------------**************

5. Let’s now test the singleton pattern by instantiating one more instance for the class:

invoice2 = SingletonBilling()

The second instance could not be created for the class due to its singleton property. The
output is as expected:

Billing can have only one instance

So, the singleton pattern has been implemented by restricting the singleton class from creating more
than one instance. With this example, we have covered three types of creational design patterns and
their implementation.

Summary
In this chapter, we have learned about the concept of structural and creational design patterns by
applying some of these design patterns in Python 3. We implemented the bridge design pattern and
understood each of its elements. We understood the facade design pattern and its various elements. We
also implemented the proxy design pattern with an example. We also covered creational design patterns
such as the factory method, prototype, and singleton patterns with their corresponding examples.

Similar to other chapters covered in this book, this chapter, which explains the second part of design
patterns, also focused on metaprogramming and its impact on Python code.

In the next chapter, we will continue the code generation with some examples.

14
Generating Code from AST

In this chapter, we will learn how to use ASTs in Python to generate code for various applications. We
will apply these abstract syntax trees to metaprogramming to implement automatic code generated
in this chapter.

Automatic code generation is one way of making the life of a programmer easier. An abstract syntax
tree is an excellent functionality that can help us generate code in a much simpler way.

The concept of AST is discussed with examples in Chapter 9 of this book. In this chapter, we will be
tapping the advantages of ASTs to generate code automatically. Code generation can be implemented
to enable no-code or limited coding while developing applications. In this chapter, we will continue
to use the example of ABC Megamart to generate code from ASTs.

In this chapter, we will be looking at the following main topics:

• Generating a simple class with a template

• Generating multiple classes from a list

• Generating a class with attributes

• Generating a class with methods

• Defining a custom class factory

• Developing a code generator to generate a simple library

By the end of this chapter, you should be able to understand how to use the existing methods of the
ast library in Python to enable your application to generate its own code, how to avoid repeating
yourself, and how to generate code dynamically.

Technical requirements
The code examples shared in this chapter are available on GitHub under the code for this chapter
here: https://github.com/PacktPublishing/Metaprogramming-with-Python/
tree/main/Chapter14.

https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter14
https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter14

Generating Code from AST320

Generating a simple class with a template
In this section, we will be looking at how to generate code for a class without actually defining the
class itself. We will be creating a string-based template with the structure of a class we want to develop
but not the actual code that can be executed. To explain this further, let us look at an example where
we will generate a class named VegCounter by parsing a series of strings using the ast module.

The sequence of steps to be followed to generate code for a class is represented in the following flow
diagram:

Figure 14.1 – A code generation sequence for a simple class

Let us look at the implementation of this example:

1. We will start by importing the ast library:

import ast

2. Let us now create a variable to pass the class name with which the code needs to be generated:

classname = "VegCounter"

3. We will next define a variable that becomes the template for the class generated in this example:

classtemplate = """class """ +classname+ """():pass"""

Generating a simple class with a template 321

4. In the next step, we will parse the class template with the parse method in the ast module:

print(ast.dump(class_tree, indent = 4))

5. The output of the preceding code displays the abstract syntax tree of the class template:

Module(

 body=[

 ClassDef(

 name='VegCounter',

 bases=[],

 keywords=[],

 body=[

 Pass()],

 decorator_list=[])],

 type_ignores=[])

6. The preceding tree can be compiled and executed as follows:

actualclass = compile(class_tree, 'vegctr_tree', 'exec')

actualclass

Thus, this leads to the following output:

<code object <module> at 0x0000028AAB0D2A80, file
"vegctr_tree", line 1>

7. In the next step, we will unparse the tree to generate the actual code for the class:

VegCounter.

print(ast.unparse(class_tree))

Executing the preceding code leads to the following output:

class VegCounter:

 pass

8. In the next step, let us write the preceding class code to a file named classtemplate.py:

code = open("classtemplate.py", "w")

script = code.write(ast.unparse(class_tree))

code.close()

Generating Code from AST322

9. The classtemplate file looks as follows:

Figure 14.2 – The classtemplate.py file

10. Let us now import the classtemplate and create an object:

import classtemplate as c

vegc = c.VegCounter()

vegc

The output is as follows:

<classtemplate.VegCounter at 0x28aab1d6a30>

In this section, we have generated a simple class code using the ast module. This example helps us
in understanding the steps to be followed to generate code for a custom class since it is easier to start
understanding code generation by starting simple. With this understanding, let us generate code for
multiple classes.

Generating multiple classes from a list
In this section, we will look at generating code for multiple classes dynamically using the ast module
and its unparse method.

Generating the code for more than one class dynamically gives us a direction for implementing
code generation for multiple functionalities of an application. The classes need not be for the same
functionality and the class code thus generated can later be modified to include additional methods or
attributes as required by the application. The skeletal class code will be generated through this example.

Generating multiple classes from a list 323

To understand this further, we will follow the sequence described in the following flow diagram.

Figure 14.3 – A code generation sequence for multiple classes

Let us now look at how to implement this scenario:

1. We will first define a variable that can be assigned a list of class names as values:

classnames = ["VegCounter", "ElectronicsCounter",
"PasadenaBranch", "VegasBranch"]

2. In the next step, let us look at generating class templates for each of the class names from the
preceding list:

classgenerator = []

for classname in classnames:

 classcode = """class """ +classname+ """():pass"""

 classgenerator.append(classcode)

classgenerator

The class templates are added to another list named classgenerator, and the list is as
follows:

['class VegCounter():pass',

 'class ElectronicsCounter():pass',

 'class PasadenaBranch():pass',

 'class VegasBranch():pass']

Generating Code from AST324

3. To parse the string templates from the preceding output and generate their abstract syntax
trees, let us create another list named classtrees and store the trees:

classtrees = []

for i in classgenerator:

 classtree = ast.parse(i)

 classtrees.append(classtree)

classtrees

The parsed class trees that are assigned to the classtrees list variable are displayed as
follows:

[<ast.Module at 0x1efa91fde20>,

 <ast.Module at 0x1efa91e6d30>,

 <ast.Module at 0x1efa91e6220>,

 <ast.Module at 0x1efa91e6370>]

4. In this step, we will review one of the trees to ensure that the abstract syntax tree is generated
for the class as expected:

print(ast.dump(classtrees[0], indent = 4))

The output is generated as follows:

Module(

 body=[

 ClassDef(

 name='VegCounter',

 bases=[],

 keywords=[],

 body=[

 Pass()],

 decorator_list=[])],

 type_ignores=[])

5. We can further unparse the classtrees variable to generate the code for each class:

print(ast.unparse(classtrees[1]))

An example output looks as follows:

class ElectronicsCounter:

 pass

Generating multiple classes from a list 325

6. Let us further write all the generated classes into a file:

code = open("classtemplates.py", "w")

for i in classtrees:

 code.write(ast.unparse(i))

 code.write("\n")

 code.write("\n")

code.close()

The generated classtemplates.py file looks as follows:

Figure 14.4 – The classtemplates.py file

7. Let us import the file and call an instance of each class to check if it works:

import classtemplates as ct

print(ct.ElectronicsCounter())

print(ct.PasadenaBranch())

print(ct.VegasBranch())

print(ct.VegCounter())

The output of the preceding code is as follows:

<classtemplates.ElectronicsCounter object at
0x00000255C0760FA0>

<classtemplates.PasadenaBranch object at
0x00000255C0760F10>

<classtemplates.VegasBranch object at 0x00000255C0760FA0>

<classtemplates.VegCounter object at 0x00000255C0760F10>

Generating Code from AST326

In this section, we have generated code for multiple classes using the ast module. This example is
the next step toward working on automatic code generation for multiple functionalities or modules
of an application.

Generating a class with attributes
In this section, we will generate code for a class, along with a list of attributes, that will also be included
dynamically in the class. Generating code for a class alone can give the initial skeletal structure for a
module, whereas we need to add attributes if we want to make the class more specific. The following
flow diagram represents the sequence of steps to be followed for this example:

Figure 14.5 – A code generation sequence for a class with multiple attributes

Let us look at the code for this example:

1. We will first define a variable to provide classname as input, followed by a classtemplate
to create the template of the class declaration:

classname = "VegCounter"

classtemplate = '''class ''' +classname+
''':'''+'\n '

Generating a class with attributes 327

2. In the next step, let us define another variable to provide attribute names as input:

attributename = ['items', 'countername', 'billamount']

3. Let us further update classtemplate by providing each of the preceding attributes that
are required to generate the class code:

for attr in attributename:

 classtemplate = classtemplate + attr +''' =

 None''' + '\n '

4. Let us now parse the classtemplate and review the abstract syntax tree:

class_tree = ast.parse(classtemplate)

print(ast.dump(class_tree, indent = 4))

5. The syntax tree for the preceding class template looks as follows:

Module(

 body=[

 ClassDef(

 name='VegCounter',

 bases=[],

 keywords=[],

 body=[

 Assign(

 targets=[

 Name(id='items',

 ctx=Store())],

 value=Constant(value=None)),

 Assign(

 targets=[

 Name(id='countername',

 ctx=Store())],

 value=Constant(value=None)),

 Assign(

 targets=[

 Name(id='billamount',

 ctx=Store())],

 value=Constant(value=None))],

Generating Code from AST328

 decorator_list=[])],

 type_ignores=[])

All three variables – items, countername, and billamount added into the class
template – are now part of the syntax tree. If we review the tree in detail, we can look at
these variables under body | assign | targets | name | id.

6. We can further unparse the tree and look at the code of the class:

print(ast.unparse(class_tree))

The output looks as follows:

class VegCounter:

 items = None

 countername = None

 billamount = None

Let us write the code to a file and import it:

code = open("classtemplateattr.py", "w")

script = code.write(ast.unparse(class_tree))

code.close()

The generated code looks as follows:

Figure 14.6 –The classtemplateattr.py file

We can import the classtemplateattr.py file and the class can be accessed as
follows:

import classtemplateattr as c

c.VegCounter()

vegc = c.VegCounter()

vegc.items = ['onions','tomatoes','carrots','lettuce']

vegc.countername = 'Veg Counter'

vegc.billamount = 200

Generating a class with methods 329

The output is displayed as follows, with all the attributes and their corresponding values
assigned:

['onions', 'tomatoes', 'carrots', 'lettuce']

Veg Counter

200

In this section, we have generated a class with multiple attributes without writing the code for the
class. Instead, we have defined a template that takes in a class name and a list of attributes as input.
With this understanding, we can look at generating a class with methods.

Generating a class with methods
In this section, let us generate code for a class and its methods. Throughout this chapter, our goal
is to generate code dynamically for building applications that can solve a specific purpose. Adding
methods along with attributes makes the code generation for a class even more application-specific.
We can look at two variations of this example:

• Generating a class with an init method

• Generating a class with a user-defined method

Let’s discuss each in detail.

Generating a class with an init method

In this example, let us generate code for a class and add an init method to the class and also initialize
attributes. In this example, we will define a class for the vegetable counter of ABC Megamart. In the
init method, let us initialize cart items from the vegetable counter of ABC Megamart in this class:

classname = "VegCounter"

classtemplate = '''class ''' +classname+ ''':'''+'\n' +''' def
__init__(self,*items):

 cartItems = []

 for i in items:

 cartItems.append(i)

 self.items = cartItems'''

class_tree = ast.parse(classtemplate)

print(ast.unparse(class_tree))

Generating Code from AST330

The parsed class template generates the following code:

class VegCounter:

 def __init__(self, *items):

 cartItems = []

 for i in items:

 cartItems.append(i)

 self.items = cartItems

The abstract syntax tree for this class is generated with the function definition, as represented in the
following figure:

Figure 14.7 – The function definition of the init method

With this understanding, let us look at one more example of this same class by generating code for
a user-defined method.

Generating a class with a user-defined method

In this section, let us look at a variation of the class by creating a template that generates a user-defined
method for the class:

classname = "VegCounter"

methodname = "returnCart"

classtemplate = '''class ''' +classname+ ''':'''+'\n' +''' def
'''+methodname+'''(self,*items):

 cartItems = []

 for i in items:

Generating a class with methods 331

 cartItems.append(i)

 return cartItems'''

class_tree = ast.parse(classtemplate)

print(ast.unparse(class_tree))

The parsed classtemplate generates the following code:

class VegCounter:

 def returnCart(self, *items):

 cartItems = []

 for i in items:

 cartItems.append(i)

 return cartItems

The abstract syntax tree for this class is generated with the function definition, as represented in the
following figure:

Figure 14.8 – The function definition of the user-defined method

We can either use the init method when we want to initialize the cart items at the class level or use
the attributes later. By contrast, the user-defined method can be used if we want to keep the attributes
specific to the method and perform actions based on the attributes within the method.

With this understanding, let us look at defining a custom class factory.

Generating Code from AST332

Defining a custom class factory
In this section, let us define a function named classgenerator that generates a custom class,
attribute, and method using a class template as follows:

def classgenerator(classname, attribute, method):

 classtemplate = '''class ''' +classname+

 ''':'''+'\n ' +attribute+''' =

 None\n def '''+method+'''(self,item,status):

 if (status == 'Y'):

 print('Test passed for', item)

 else:

 print('Get another', item)

 '''

 return classtemplate

In this section, we are making the code generation more dynamic by creating a function that can
generate code with custom values for the class name, attribute name, and method name, respectively.
This helps in creating custom code for multiple functionalities in an application.

Let us provide a custom class name, attribute name, and method name as input to the preceding function:

class_tree = ast.parse(classgenerator('ElectronicCounter',
'TestItem', 'verifyCart')

actualclass = compile(class_tree, 'elec_tree', 'exec')

print(ast.unparse(class_tree))

The generated class code is as follows:

class ElectronicCounter:

 TestItem = None

 def verifyCart(self, item, status):

 if status == 'Y':

 print('Test passed for', item)

 else:

 print('Get another', item)

We can expand this example further by developing a code generator library in the following section.

Developing a code generator to generate a simple library 333

Developing a code generator to generate a simple library
In this section, let us develop a simple code generator that generates code for a class with get, set,
and delete properties for its custom attributes. The purpose of this section is to generate a complete
library through automatic code generation. To fulfill this, let us write the following code:

1. Let us define the code generator as follows:

class CodeGenerator:

 def __init__(self, classname, attribute):

 self.classname = classname

 self.attribute = attribute

2. Let us further define the method to define the class template in the code generator as follows:

def generatecode(self):

 classtemplate = '''class ''' +self.
classname+ ''':'''+'''\n def __init__(self):''' +
'\n '+''' self._'''+self.attribute+''' = None\
n\n @property

 def test'''+self.attribute+'''(self):\n return
self.test'''+self.attribute+'''\n\n @test'''+self.
attribute+'''.getter

 def test'''+self.
attribute+'''(self):\n print("get test'''+self.
attribute+'''")\n return self._test'''+self.
attribute+'''

 @test'''+self.attribute+'''.setter

 def test'''+self.attribute+'''(self, value):

 print("set test'''+self.attribute+'''")

 self._test'''+self.attribute+''' = value

 @test'''+self.attribute+'''.deleter

 def test'''+self.attribute+'''(self):

 print("del test'''+self.attribute+'''")

 del self._test'''+self.attribute+'''

 '''

 class_tree = ast.parse(classtemplate)

 print(ast.unparse(class_tree))

 print('\n')

Generating Code from AST334

3. We will now save the preceding code into a file named codegenerator.py and import
the file as a library:

from codegenerator import CodeGenerator as c

4. Let us define a dictionary object and assign multiple class names and their corresponding
attribute names as input:

classes = {'VegCounter' : 'items',

 'ElectronicCounter' : 'goods',

 'BranchManhattan' : 'Sales',

 'BranchPasadena' : 'Products'

 }

5. Let us further define a function named generatelib and add classes as input parameters.
This function takes in the class names and their attribute names as input and generates the
code from the class templates of the codegenerator library:

def generatelib(classes):

 for key, value in classes.items():

 codegen = c(key, value)

 codegen.generatecode()

6. In this step, let us write the generated code into a file to generate a custom library that can be
used further:

from contextlib import redirect_stdout

with open('abcmegamartlib.py', 'w') as code:

 with redirect_stdout(code):

 generatelib(classes)

code.close()

7. The generated code is in the following format for each input class:

class VegCounter:

 def __init__(self):

 self._items = None

 @property

 def testitems(self):

 return self.testitems

 @testitems.getter

 def testitems(self):

Summary 335

 print('get testitems')

 return self._testitems

 @testitems.setter

 def testitems(self, value):

 print('set testitems')

 self._testitems = value

 @testitems.deleter

 def testitems(self):

 print('del testitems')

 del self._testitems

8. We can further import the generated library and define objects as follows:

import abcmegamartlib as abc

abc.BranchManhattan()

The preceding code returns the following output:

<abcmegamartlib.BranchManhattan at 0x21c4800c7f0>

These are various examples of code generation that can be implemented using Python’s metaprogramming
ast module.

Summary
In this chapter, we have looked at various examples to generate code for a custom class and a class
with custom attributes. We have also covered examples of generating code for a custom class with
methods and attributes. Finally, we have developed a code generator that can be used to develop a
custom library using the concept of abstract syntax trees in Python.

Overall, we have seen various scenarios that can help us utilize the abstract syntax tree within Python’s
ast module and generate dynamic code using Python metaprogramming.

In the next chapter, we will be discussing a case study to which we can apply all the concepts of
metaprogramming that we have covered so far in the book.

15
Implementing a Case Study

In this chapter, we will work on implementing a case study by applying the metaprogramming concepts
that we have learned so far. For this case study, we will be using the Automobile. (1987). UCI
Machine Learning Repository dataset.

In this chapter, we will be looking at the following main topics:

• Explaining the case study

• Defining base classes

• Developing a code generator library

• Generating code

• Designing an execution framework

By the end of this chapter, you should have an understanding of how to use the existing methods of
the ast library in Python to enable your application to generate its own code.

Technical requirements
The code examples shared in this chapter are available on GitHub at: https://github.com/
PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter15.

Explaining the case study
In this section, we will be looking at the details of the case study before we start implementing it. Let’s
consider a car agency, ABC Car Agency, that focuses on sales of new and used cars from multiple
brands. This agency would like to build an application that produces customized catalogs for each car
displaying the various specifications and features of the car.

https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter15
https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter15

Implementing a Case Study338

We will look at the details available to develop and build the application by applying the concepts that
we have learned throughout this book. There are 205 different cars that need to be cataloged and the
data used to build this case study is taken from the following dataset: Automobile. (1987).
UCI Machine Learning Repository.

There are many ways to develop an application that can solve this problem. We are going to look at
how to develop a reusable application that uses metaprogramming.

A high-level view of the automobile data is as follows:

Figure 15.1 – The Automobile. (1987). UCI Machine Learning Repository dataset

For this case study, we are not going to perform any detailed data processing using the automobile
dataset. Instead, we will be using the data available in this dataset to create various components for
the application’s development. The flow of design for this example will start with developing a code
generator library, followed by creating a code generator framework. We will then generate the ABC
Car Agency library and, finally, create an execution framework. All of these processes will be explained
in detail in this section.

The Python scripts that will be developed for this case study will be as follows:

Figure 15.2 – Python scripts for the ABC Car Agency case study

Explaining the case study 339

The car sales application will be developed by defining the following classes:

• CarSpecs

• CarMake with its subclasses

• CarCatalogue

• BodyStyle with its subclasses

• SaleType with its subclasses

Each of these classes will be explained in this section.

The overall structure of classes for this application is going to look as follows:

Figure 15.3 – Overview of the car sales application

Implementing a Case Study340

With this understood, we will look further at the base classes for the application.

Defining base classes
We will now start building the code required for the case study.

Let’s start by developing a metaclass named CarSpecs. This class will have the following structure:

1. The __new__ of the CarSpecs class will perform the following tasks:

A. If the attribute of the input class is an integer, then add the attribute name in title case as
feature, the value in string format as info, and type as numeric.

B. If the attribute of the input class is a string, then add the attribute name in title case as
feature, the value in string format as info, and type as varchar.

C. If the attribute of the input class is a Boolean, then add the attribute name title case as a
feature, the value in string format as info, and type as Boolean.

D. If not, the actual attribute will be returned as such.

Let’s now look at the definition of CarSpecs:

from abc import ABC, abstractmethod

class CarSpecs(type):

 def __new__(classitself, classname, baseclasses,
attributes):

 newattributes = {}

 for attribute, value in attributes.items():

 if attribute.startswith("__"):

 newattributes[attribute] = value

 elif type(value)==int or type(value)==float:

 newattributes[attribute] = {}

 newattributes[attribute]['feature'] =
attribute.title().replace('_', ' ')

 newattributes[attribute]['info'] =
str(value)

 newattributes[attribute]['type'] =
'NUMERIC'

 elif type(value)==str:

 newattributes[attribute] = {}

 newattributes[attribute]['feature'] =
attribute.title().replace('_', ' ')

Defining base classes 341

 newattributes[attribute]['info'] = value.
title()

 newattributes[attribute]['type'] =
'VARCHAR'

 elif type(value)==bool:

 newattributes[attribute] = {}

 newattributes[attribute]['feature'] =
attribute.title().replace('_', ' ')

 newattributes[attribute]['info'] = value.
title()

 newattributes[attribute]['type'] =
'BOOLEAN'

 else:

 newattributes[attribute] = value

 return type.__new__(classitself, classname,
baseclasses, newattributes)

2. The next class in this example will be CarCatalogue with two abstract methods to define
the color and print the catalog:

class CarCatalogue(metaclass = CarSpecs):

 @abstractmethod

 def define_color(self):

 pass

 @abstractmethod

 def print_catalogue(self):

 pass

3. The next class will be the parent class or superclass that captures the specifications of the car:

class CarMake(metaclass = CarSpecs):

 @abstractmethod

 def define_spec(self):

 pass

Implementing a Case Study342

4. Let’s create another superclass named BodyStyle, which will capture the body style and
engine features of the car:

class BodyStyle(metaclass = CarSpecs):

 @abstractmethod

 def body_style_features(self):

 pass

5. The next class for this case study will be SaleType, in which we will add an abstract method
to calculate the price of the car:

class SaleType(metaclass = CarSpecs):

 @abstractmethod

 def calculate_price(self):

 pass

6. This class will be a subclass of SaleType for calculating the price of new cars:

class New(SaleType, CarCatalogue, metaclass = CarSpecs):

 def calculate_price(self, classname):

 car = classname()

 price = float(car.price['info'])

 return price

7. The next class will be another subclass of SaleType for calculating the price of resale cars:

class Resale(SaleType, CarCatalogue, metaclass =
CarSpecs):

 def calculate_price(self, classname, years):

 car = classname()

 depreciation = years * 0.15

 price = float(car.price['info']) * (1 -
depreciation)

 return price

These are the main classes for which we will be creating templates that will be used to generate code
in the next section.

Developing a code generator library 343

Developing a code generator library
In this section, let’s look at developing a code generator that will be used to generate code for all
the base classes – CarSpecs, CarMake, CarCatalogue, BodyStyle, and SaleType. The
detailed steps are as follows:

1. Let’s create a file named codegenerator.py and start by defining a class named
CodeGenerator:

class CodeGenerator:

2. Let’s define a method that imports the ast library and adds a meta_template attribute
that has the string format of the CarSpecs class as a value. The meta_template attribute
is further parsed and unparsed into class code:

def generate_meta(self):

 ast = __import__('ast')

 meta_template = '''

from abc import ABC, abstractmethod, ABCMeta

class CarSpecs(type, metaclass = ABCMeta):

 def __new__(classitself, classname, baseclasses,
attributes):

 newattributes = {}

 for attribute, value in attributes.items():

 if attribute.startswith("__"):

 newattributes[attribute] = value

 elif type(value)==int or type(value)==float:

 newattributes[attribute] = {}

 newattributes[attribute]['feature'] =
attribute.title().replace('_', ' ')

 newattributes[attribute]['info'] =
str(value)

 newattributes[attribute]['type'] =
'NUMERIC'

 elif type(value)==str:

 newattributes[attribute] = {}

 newattributes[attribute]['feature'] =
attribute.title().replace('_', ' ')

 newattributes[attribute]['info'] = value.
title()

Implementing a Case Study344

 newattributes[attribute]['type'] =
'VARCHAR'

 elif type(value)==bool:

 newattributes[attribute] = {}

 newattributes[attribute]['feature'] =
attribute.title().replace('_', ' ')

 newattributes[attribute]['info'] = value.
title()

 newattributes[attribute]['type'] =
'BOOLEAN'

 else:

 newattributes[attribute] = value

 return type.__new__(classitself, classname,
baseclasses, newattributes)

'''

 meta_tree = ast.parse(meta_template)

 print(ast.unparse(meta_tree))

 print('\n')

3. Let’s now define another method named generate_car_catalogue and add the class
template for CarCatalogue:

def generate_car_catalogue(self):

 ast = __import__('ast')

 catalogue_template = '''

class CarCatalogue(metaclass = CarSpecs):

 @abstractmethod

 def define_color(self):

 pass

 @abstractmethod

 def print_catalogue(self):

 pass

 '''

 catalogue_tree = ast.parse(catalogue_template)

 print(ast.unparse(catalogue_tree))

 print('\n')

Developing a code generator library 345

4. The next step is to define a method named generate_carmake_code and add the code
template for the CarMake class:

def generate_carmake_code(self):

 ast = __import__('ast')

 carmake_template = '''

class CarMake(metaclass = CarSpecs):

 @abstractmethod

 def define_spec(self):

 pass

 '''

 carmake_tree = ast.parse(carmake_template)

 print(ast.unparse(carmake_tree))

 print('\n')

5. In the next code block, we will define another method named generate_bodystyle_
parent and add the code template for the BodyStyle class:

def generate_bodystyle_parent(self):

 ast = __import__('ast')

 bodystyle_parent_template = '''

class BodyStyle(metaclass = CarSpecs):

 @abstractmethod

 def body_style_features(self):

 pass

 '''

 bodystyle_parent_tree = ast.parse(bodystyle_
parent_template)

 print(ast.unparse(bodystyle_parent_tree))

 print('\n')

6. Let’s further define the generate_salestype_code method, which generates the class
code for the SaleType class:

def generate_salestype_code(self):

 ast = __import__('ast')

 saletype_template = '''

class SaleType(metaclass = CarSpecs):

 @abstractmethod

Implementing a Case Study346

 def calculate_price(self):

 pass

 '''

 salestype_tree = ast.parse(saletype_template)

 print(ast.unparse(salestype_tree))

 print('\n')

7. In this step, let’s define the generate_newsale_code method to generate code for the
New class:

def generate_newsale_code(self):

 ast = __import__('ast')

 newsale_template = '''

class New(SaleType, CarCatalogue, metaclass = CarSpecs):

 def calculate_price(self, classname):

 car = classname()

 price = float(car.price['info'])

 return price

 '''

 newsale_tree = ast.parse(newsale_template)

 print(ast.unparse(newsale_tree))

 print('\n')

8. Let’s further define the generate_resale_code method, which generates the code for
the Resale class and has the method for calculating the resale price of the car:

 def generate_resale_code(self):

 ast = __import__('ast')

 resale_template = '''

class Resale(SaleType, CarCatalogue, metaclass =
CarSpecs):

 def calculate_price(self, classname, years):

 car = classname()

 depreciation = years * 0.15

 price = float(car.price['info']) * (1 -
depreciation)

 return price

 '''

 resale_tree = ast.parse(resale_template)

Developing a code generator library 347

 print(ast.unparse(resale_tree))

 print('\n')

9. In this step, we will define a generate_car_code method; it inherits the CarMake class,
defines the color and specifications for individual car brands, and prints the catalog:

def generate_car_code(self, classname, carspecs):

 self.classname = classname

 self.carspecs = carspecs

 ast = __import__('ast')

 car_template = '''

class '''+self.classname+'''(CarMake, CarCatalogue,
metaclass = CarSpecs):

 fuel_type = '''+"'"+self.carspecs['fuel_
type']+"'"+'''

 aspiration = '''+"'"+self.
carspecs['aspiration']+"'"+'''

 num_of_door = '''+"'"+self.carspecs['num_of_
door']+"'"+'''

 drive_wheels = '''+"'"+self.carspecs['drive_
wheels']+"'"+'''

 wheel_base = '''+"'"+self.carspecs['wheel_
base']+"'"+'''

 length = '''+"'"+self.carspecs['length']+"'"+'''

 width = '''+"'"+self.carspecs['width']+"'"+'''

 height = '''+"'"+self.carspecs['height']+"'"+'''

 curb_weight = '''+"'"+self.carspecs['curb_
weight']+"'"+'''

 fuel_system = '''+"'"+self.carspecs['fuel_
system']+"'"+'''

 city_mpg = '''+"'"+self.carspecs['city_mpg']+"'"+'''

 highway_mpg = '''+"'"+self.carspecs['highway_
mpg']+"'"+'''

 price = '''+"'"+self.carspecs['price']+"'"+'''

 def define_color(self):

 BOLD = '\33[5m'

 BLUE = '\033[94m'

 return BOLD + BLUE

 def define_spec(self):

Implementing a Case Study348

 specs = [self.fuel_type, self.aspiration,
self.num_of_door, self.drive_wheels,

 self.wheel_base, self.length, self.
width, self.height, self.curb_weight,

 self.fuel_system, self.city_mpg,
self.highway_mpg]

 return specs

 def print_catalogue(self):

 for i in self.define_spec():

 print(self.define_color() + i['feature'],
": ", self.define_color() + i['info'])

 '''

 car_tree = ast.parse(car_template)

 print(ast.unparse(car_tree))

 print('\n')

10. The last method of this code generator is generate_bodystyle_code, which generates
class code for different body styles, such as Sedan and Hatchback, defines the color and features
for an individual car body style, and prints the catalog:

def generate_bodystyle_code(self, classname,
carfeatures):

 self.classname = classname

 self.carfeatures = carfeatures

 ast = __import__('ast')

 bodystyle_template = '''

class '''+self.classname+'''(BodyStyle, CarCatalogue,
metaclass = CarSpecs):

 engine_location = '''+"'"+self.carfeatures['engine_
location']+"'"+'''

 engine_type = '''+"'"+self.carfeatures['engine_
type']+"'"+'''

 num_of_cylinders = '''+"'"+self.carfeatures['num_of_
cylinders']+"'"+'''

 engine_size = '''+"'"+self.carfeatures['engine_
size']+"'"+'''

 bore = '''+"'"+self.carfeatures['bore']+"'"+'''

 stroke = '''+"'"+self.carfeatures['stroke']+"'"+'''

 compression_ratio = '''+"'"+self.
carfeatures['compression_ratio']+"'"+'''

Generating code 349

 horse_power = '''+"'"+self.carfeatures['horse_
power']+"'"+'''

 peak_rpm = '''+"'"+self.carfeatures['peak_
rpm']+"'"+'''

 def body_style_features(self):

 features = [self.engine_location, self.
engine_type, self.num_of_cylinders, self.engine_size,

 self.bore, self.stroke, self.
compression_ratio, self.horse_power, self.peak_rpm]

 return features

 def define_color(self):

 BOLD = '\33[5m'

 RED = '\033[31m'

 return BOLD + RED

 def print_catalogue(self):

 for i in self.body_style_features():

 print(self.define_color() + i['feature'],
": ", self.define_color() + i['info'])

 '''

 bodystyle_tree = ast.parse(bodystyle_template)

 print(ast.unparse(bodystyle_tree))

 print('\n')

With these methods, we are all set to generate the code required for the ABC Car Agency’s catalog.

Now, let’s proceed further to develop a code generation framework that generates the hundreds of
classes required for our application.

Generating code
In this section, we are going to make use of codegenerator.py to generate the base classes and
its corresponding subclasses, which maintain and print various catalogs for the ABC Car Agency, as
follows:

1. To begin with, let’s start using the automobile data to generate the base classes required for
this application. For the base data preparation, let’s import the pandas library, which helps
with processing data:

import pandas as pd

Implementing a Case Study350

2. Let’s load the data and make a copy of it. For this application, we need a unique set of car brands
and another unique set of car body styles:

auto = pd.read_csv("automobile.csv")

auto_truncated = auto.copy(deep=True)

auto_truncated.drop_duplicates(subset = ['make','body-
style'], inplace = True)

auto_truncated.reset_index(inplace = True, drop = True)

auto_truncated['make'] = auto_truncated['make'].
apply(lambda x: x.title().replace('-',''))

auto_truncated.reset_index(inplace = True)

auto_truncated['index'] = auto_truncated['index'].
astype('str')

auto_truncated['make'] = auto_truncated['make'] + auto_
truncated['index']

auto_truncated['body-style'] = auto_truncated['body-
style'].apply(lambda x: x.title().replace('-',''))

auto_truncated['body-style'] = auto_truncated['body-
style'] + auto_truncated['index']

Once the basic data has been processed, let’s create two DataFrames that will be used to
generate multiple classes using the code generator:

auto_specs = auto_truncated[['make', 'fuel-type',
'aspiration', 'num-of-doors', 'drive-wheels', 'wheel-
base', 'length', 'width', 'height', 'curb-weight',
'fuel-system', 'city-mpg', 'highway-mpg', 'price']].
copy(deep = True)

auto_specs.columns = ['classname', 'fuel_type',
'aspiration', 'num_of_door', 'drive_wheels',
'wheel_base', 'length', 'width', 'height', 'curb_weight',
'fuel_system', 'city_mpg', 'highway_mpg', 'price']

for col in auto_specs.columns:

 auto_specs[col] = auto_specs[col].astype('str')

auto_features = auto_truncated[['body-style', 'engine-
location', 'engine-type', 'num-of-cylinders', 'engine-
size', 'bore', 'stroke', 'compression-ratio',
'horsepower', 'peak-rpm']].copy(deep = True)

auto_features.columns = ['classname', 'engine_location',
'engine_type', 'num_of_cylinders', 'engine_size', 'bore',
'stroke', 'compression_ratio', 'horse_power', 'peak_rpm']

Generating code 351

for col in auto_features.columns:

 auto_features[col] = auto_features[col].astype('str')

3. After processing the data into the format that we need to provide as input to the code generator,
the sample data for specifications will be as follows:

Figure 15.4 – Sample specifications

4. The sample data for features will be as follows:

Figure 15.5 – Sample features

5. Now that the base data required to generate code is ready, we can start importing the code
generator:

from codegenerator import CodeGenerator

codegen = CodeGenerator()

6. In this step, let’s now define a function that generates the library by calling the code to generate
each base class in a pipeline followed by generating multiple subclasses for CarMake and
BodyStyle:

def generatelib():

 codegen.generate_meta()

 codegen.generate_car_catalogue()

 codegen.generate_carmake_code()

 codegen.generate_bodystyle_parent()

 codegen.generate_salestype_code()

Implementing a Case Study352

 codegen.generate_newsale_code()

 codegen.generate_resale_code()

 for index, row in auto_specs.iterrows():

 carspecs = dict(row)

 classname = carspecs['classname']

 del carspecs['classname']

 codegen.generate_car_code(classname = classname,
carspecs = carspecs)

 for index, row in auto_features.iterrows():

 carfeatures = dict(row)

 classname = carfeatures['classname']

 del carfeatures['classname']

 codegen.generate_bodystyle_code(classname =
classname, carfeatures = carfeatures)

7. Open a Python file named abccaragencylib.py and call a generatelib function to
write the code generated for all the required classes:

from contextlib import redirect_stdout

with open('abccaragencylib.py', 'w') as code:

 with redirect_stdout(code):

 generatelib()

code.close()

8. An example class autogenerated and written into abccaragencylib.py is represented in
the following screenshot:

Figure 15.6 – An autogenerated class code for a car brand

Designing an execution framework 353

We have not autogenerated the code required for this example. We will now look at designing an
execution framework.

Designing an execution framework
In this section, let’s look at the last process of designing the ABC Car Agency application where we
will actually run the code generated throughout this case study:

1. Let’s start by loading the autogenerated library:

import abccaragencylib as carsales

2. At this stage, we will follow a sequence of steps by implementing a façade design pattern so
that we can print the specifications and features for different types of cars:

class Queue:

 def __init__(self, makeclass, styleclass, age):

 self.makeclass = makeclass

 self.styleclass = styleclass

 self.make = self.makeclass()

 self.style = self.styleclass()

 self.new = carsales.New()

 self.resale = carsales.Resale()

 self.age = age

 def pipeline(self):

 print('*********ABC Car Agency -
Catalogue***********')

 self.make.print_catalogue()

 print('\n')

 self.style.print_catalogue()

 print('\n')

 print('New Car Price : ' + str(self.new.
calculate_price(self.makeclass)))

 print('Resale Price : ' + str(self.resale.
calculate_price(self.makeclass, self.age)))

3. Let’s define a method to run the façade pattern:

def run_facade(makeclass, styleclass, age):

 queue = Queue(makeclass, styleclass, age)

 queue.pipeline()

Implementing a Case Study354

4. In this step, we will run one combination of a car brand with a car body style to generate a catalog:

run_facade(carsales.AlfaRomero1, carsales.Hatchback28, 3)

The output is as follows:

*********ABC Car Agency - Catalogue***********

Fuel Type : Gas

Aspiration : Std

Num Of Door : Two

Drive Wheels : Rwd

Wheel Base : 94.5

Length : 171.2

Width : 65.5

Height : 52.4

Curb Weight : 2823

Fuel System : Mpfi

City Mpg : 19

Highway Mpg : 26

Engine Location : Front

Engine Type : Ohc

Num Of Cylinders : Four

Engine Size : 97

Bore : 3.15

Stroke : 3.29

Compression Ratio : 9.4

Horse Power : 69

Peak Rpm : 5200

New Car Price : 16500.0

Resale Price : 9075.0

There are 56 unique subclasses generated for CarMake and 56 unique subclasses generated
for BodyStyle. We can use various combinations of CarMake and BodyStyle to print
catalogs for this application.

5. Let’s try another combination:

run_facade(carsales.Mitsubishi24, carsales.Sedan16, 5)

Designing an execution framework 355

The output generated is as follows:

*********ABC Car Agency - Catalogue***********

Fuel Type : Gas

Aspiration : Std

Num Of Door : Two

Drive Wheels : Fwd

Wheel Base : 93.7

Length : 157.3

Width : 64.4

Height : 50.8

Curb Weight : 1918

Fuel System : 2Bbl

City Mpg : 37

Highway Mpg : 41

Engine Location : Front

Engine Type : Dohc

Num Of Cylinders : Six

Engine Size : 258

Bore : 3.63

Stroke : 4.17

Compression Ratio : 8.1

Horse Power : 176

Peak Rpm : 4750

New Car Price : 5389.0

Resale Price : 1347.25

This is the step-by-step process of developing an application by applying metaprogramming methodologies
in Python.

Implementing a Case Study356

Summary
In this chapter, we have learned how to develop an application by applying various techniques of
metaprogramming. We started by explaining the case study, and we defined the base classes required
for this case study.

We also learned how to develop a code generator and how to generate code using it. We also designed a
framework that could be used to execute or test the code generated for the application in this case study.

In the next chapter, we will be looking at some of the best practices that can be followed while designing
an application with Python and metaprogramming.

16
Following Best Practices

In this chapter, we will learn some of the best practices from Python programming that we can follow
and apply to metaprogramming too. The practices suggested in Python Enhancement Proposal 8 (PEP
8), the style guide for Python code, also apply to metaprogramming.

The concepts behind PEP 8 originated and are explained in detail in the documentation by Guido van
Rossum, Barry Warsaw, and Nick Coghlan at https://peps.python.org/pep-0008/. This
chapter will cover some of the important concepts from PEP 8 with examples using ABC Megamart
of how they can be implemented in metaprogramming as well as general Python programming.

In this chapter, we will be looking at the following main topics:

• Following PEP 8 standards

• Writing clear comments for debugging and reusability

• Adding documentation strings

• Naming conventions

• Avoiding the reuse of names

• Avoiding metaprogramming where not required

By the end of this chapter, you will know the best practices for performing Python metaprogramming.

Technical requirements
The code examples shared in this chapter are available on GitHub under the code for this chapter
at https://github.com/PacktPublishing/Metaprogramming-with-Python/
tree/main/Chapter16.

https://peps.python.org/pep-0008/
https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter16
https://github.com/PacktPublishing/Metaprogramming-with-Python/tree/main/Chapter16

Following Best Practices358

Following PEP 8 standards
In this section, we will be looking at the PEP 8 standards that we should follow while coding applications
with Python metaprogramming. We will apply these standards from the PEP 8 documentation using
our example of ABC Megamart.

In this section, rather than looking at whether the coding standards we follow are right, we will consider
the difference between coding standards that are easy to maintain in comparison to those that are not.

Indentation

Python is a language that is very sensitive to indentation and can throw many errors when this is not
done correctly. Having discipline with the overall indentation of your code helps to avoid errors and also
makes the code more readable. In this example, let’s look at how we can keep the indentation correct.

To start looking at the indentation, let’s begin with an example of a greater-than-10-items counter.
We first define a class named GreaterThan10Counter with a return_cart method to return
the cart items:

class GreaterThan10Counter():

 def return_cart(self, *items):

 cart_items = []

 for I in items:

 cart_items.append(i)

 return cart_items

Let’s also create an object instance for the class:

greater = GreaterThan10Counter()

Next, we create a variable named cart, which will store the values returned by the return_cart
method. Given that the class is for the greater-than-10-items counter, the number of items returned
by the cart will be more than 10, hence the code will not be readable.

The following screenshot shows how the code would look in a code editor:

Figure 16.1 – The cart variable assignment

Hard to maintain

The code of the cart variable in Figure 16.1 will look as follows if we move the invisible part of the
code onto the next line:

Following PEP 8 standards 359

Figure 16.2 – The cart variable adjusted without alignment

The preceding code is not incorrect since it will still execute without errors if we run it. The only
problem is that it will be difficult to maintain.

Easy to maintain

Let’s now change the indentation by aligning the code with symbols to make it readable and easily
maintained if another developer needs to take it over for editing. The realigned code looks as follows:

Figure 16.3 – The cart variable adjusted with alignment

Now that we understand this, let’s look at the next best practice, which is to present code in
a neat fashion.

Neat representation

Let’s now look at how and where to add white spaces while writing code.

Hard to maintain

Let’s look at the following example where we will define a decorator function named signature
with no white spaces between operators and their corresponding variables:

def signature(branch):

 def footnote(*args):

 LOGO='\33[43m'

 print(LOGO+'ABC Mega Mart')

 return branch(*args)

 return footnote

Let’s further call the decorator on another function named manager_manhattan without
spaces between operators and variables:

@signature

def manager_manhattan(*args):

 GREEN='\033[92m'

 SELECT='\33[7m'

Following Best Practices360

 for arg in args:

 print(SELECT+GREEN+str(arg))

Next, let’s call the function as follows:

manager_manhattan('John M','john.m@abcmegamart.com','40097 5th
Main Street','Manhattan','New York City','New York',11007)

The preceding code will still run without errors but the code is not presented neatly nor is it easy to
maintain since it is not easy to differentiate between a variable and its operator:

ABC Mega Mart

John M

john.m@abcmegamart.com

40097 5th Main Street

Manhattan

New York City

New York

11007

Let’s add white spaces to this code.

Easy to maintain

Let’s add spaces to the signature function:

def signature(branch):

 def footnote(*args):

 LOGO = '\33[43m'

 print(LOGO + 'ABC Mega Mart')

 return branch(*args)

 return footnote

Similarly, let’s also add white spaces in the manager_manhattan function:

@signature

def manager_manhattan(*args):

 GREEN = '\033[92m'

 SELECT = '\33[7m'

 for arg in args:

 print(SELECT + GREEN + str(arg))

Writing clear comments for debugging and reusability 361

Let’s call the function now:

manager_manhattan('John M', 'john.m@abcmegamart.com',

 '40097 5th Main Street', 'Manhattan', 'New
York City', 'New York',11007)

Running the preceding code produces the following output:

ABC Mega Mart

John M

john.m@abcmegamart.com

40097 5th Main Street

Manhattan

New York City

New York

11007

The preceding code makes it easier to differentiate between variables and their corresponding operators
due to the addition of white space.

With this understanding, let’s look at the next best practice, which is to add comments in the code.

Writing clear comments for debugging and reusability
Writing inline comments helps us understand why a specific code block is written and we can keep
the comments updated as the code changes. We recommend writing comments to make the code
easy to debug in the future. However, keep the comments relevant to the code. Let’s look at a few
examples of inline comments.

Redundant comments

Let’s look at the following example where we are creating a meta class and calling the meta class from
another class:

class ExampleMetaClass1(type):

 def __new__(classitself, *args):

 print("class itself: ", classitself)

 print("Others: ", args)

 return type.__new__(classitself, *args)

class ExampleClass1(metaclass = ExampleMetaClass1):

Following Best Practices362

 int1 = 123 # int1 is assigned a value of 123

 str1 = 'test'

 def test():

 print('test')

In the preceding code, the comment explains exactly the same thing that is done by the code, which
can be easily understood simply by looking at the code. This will not be helpful when we want to
debug or modify the code in the future.

Relevant comment

Let’s look at the Singleton design pattern and add a relevant comment:

class SingletonBilling: # This code covers an example
of Singleton design pattern

 billing_instance = None

 product_name = 'Dark Chocolate'

 unit_price = 6

 quantity = 4

 tax = 0.054

 def __init__(self):

 if SingletonBilling.billing_instance == None:

 SingletonBilling.billing_instance = self

 else:

 print("Billing can have only one instance")

 def generate_bill(self):

 total = self.unit_price * self.quantity

 final_total = total + total*self.tax

 print('***********------------------**************')

 print('Product:', self.product_name)

 print('Total:',final_total)

 print('***********------------------**************')

In the preceding code, the comment specifies the purpose of SingletonBilling rather than
mentioning the obvious task performed by the code.

With this understanding, let’s look at the next best practice, which is to add documentation strings.

Adding documentation strings 363

Adding documentation strings
Documentation strings are added to provide more information on code that is intended to be imported
and used in some other program or application. Documentation strings will provide the end user
with information on the code that they are going to call from their programs. This is especially helpful
as the end user of the code is not the developer of the library, but a user. Let’s look at an example of
where to use documentation strings.

Let’s start by creating a Python file named vegcounter.py and adding the following code:

def return_cart(*items):

 '''

 This function returns the list of items added to the cart.

 items: input the cart items. Eg: 'pens', 'pencils'

 '''

 cart_items = []

 for i in items:

 cart_items.append(i)

 return cart_items

In the preceding code, we defined the docstring by providing a description of the function and
its arguments.

The Python file looks as follows:

Figure 16.4 – Documentation string added to vegcounter.py

Let’s further import vegcounter.py into another program as follows:

import vegcounter as vc

Note that in this program, the code for the functions inside vegcounter is not accessible to the end
user, but the functions in vegcounter can be called by the end user's program.

Following Best Practices364

The following screenshot demonstrates how docstrings provide the information required in this example:

Figure 16.5 – Documentation string example

In this example, the documentation string we added in the Python file provides the end user with
information on the function and its corresponding arguments along with an example.

Documentation string for metaprogramming

In this example, let’s define a metaclass named BranchMetaClass and add a docstring that states
that this is a meta class and is not meant to be inherited as a super class or parent class. Save this code
into branch.py:

class BranchMetaclass(type):

 '''

 This is a meta class for ABC Megamart branch that adds an
additional

 quality to the attributes of branch classes.

 Add this as only a meta class.

 There are no methods to inherit this class as a parent
class or super class.

 '''

 def __new__(classitself, classname, baseclasses,
attributes):

 import inspect

 newattributes = {}

 for attribute, value in attributes.items():

 if attribute.startswith("__"):

 newattributes[attribute] = value

 elif inspect.isfunction(value):

Naming conventions 365

 newattributes['branch' + attribute.title()] =
value

 else:

 newattributes[attribute] = value

 return type.__new__(classitself, classname,
baseclasses, newattributes)

Let’s now import the branch and its corresponding meta class as follows:

from branch import BranchMetaclass

Let’s now call BranchMetaclass to check the docstring:

BranchMetaclass

The docstring is displayed in the following screenshot:

Figure 16.6 – Documentation string for BranchMetaclass

This is an example of how documentation strings should be included as a best practice. Adding
documentation strings in the class definition provides end users with the information required to
correctly apply a method or a class in their application.

With this understanding, let’s further look at the naming conventions to be followed in Python code.

Naming conventions
Naming conventions in Python are recommendations of how various elements in a Python
program need to be named to ensure ease of navigation and consistency. Navigating through code,
connecting the dots, and understanding the flow are all made easier by following consistent naming
conventions throughout the code. This is another important standard that helps in developing
maintainable applications.

In this section, we will see how you should ideally name classes, variables, functions, and methods.

Following Best Practices366

Class names

While creating a new class, it is recommended to start the class name with an uppercase letter
followed by lowercase letters and capitalize whenever there are words that need differentiation
within the class name.

For example, let’s define a class for the billing counter.

The following style is not the preferred naming convention:

class billing_counter:

 def __init__(self, productname, unitprice, quantity, tax):

 self.productname = productname

 self.unitprice = unitprice

 self.quantity = quantity

 self.tax = tax

With the preceding naming convention, we will still be able to execute the code and it will work
as expected. But maintaining the class names with one well-defined naming style will make future
management of the libraries easier. The preferred class naming style is as follows:

class BillingCounter:

 def __init__(self, productname, unitprice, quantity, tax):

 self.productname = productname

 self.unitprice = unitprice

 self.quantity = quantity

 self.tax = tax

Camel case is used to name classes so that they can be differentiated from variables, methods, and
functions. The naming conventions for variables are explained next, followed by methods and functions.

Variables

While creating new variables, it is preferred to use all lowercase letters for variable names followed by
numbers, if relevant. When there is more than one word in a variable name, it is a good practice to
separate them using an underscore operator. This also helps us to differentiate variables from classes
since they follow camel case conventions.

Let’s look at an example of how variables should not be named:

class BillingCounter:

 def __init__(self, PRODUCTNAME, UnitPrice, Quantity, TaX):

 self.PRODUCTNAME = PRODUCTNAME

Naming conventions 367

 self.UnitPrice = UnitPrice

 self.Quantity = Quantity

 self.TaX = TaX

Let’s now look at an example of one preferred method of naming variables:

class BillingCounter:

 def __init__(self, product, price, quantity, tax):

 self.product = product

 self.price = price

 self.quantity = quantity

 self.tax = tax

Let’s further look at another preferred method for naming variables:

class BillingCounter:

 def __init__(self, product_name, unit_price, quantity,
tax):

 self.product_name = product_name

 self.unit_price = unit_price

 self.quantity = quantity

 self.tax = tax

Functions and methods

Similar to variables, using lowercase for function and method names is the best-practice preference.
When there is more than one word in a variable name, it is a good practice to separate them using
an underscore operator.

Let’s look at an example of how a function or method should not be named:

class TypeCheck:

 def Intcheck(self,inputvalue):

 if (type(inputvalue) != int) or (len(str(inputvalue)) >
2):

 return False

 else:

 return True

 def STRINGCHECK(self,inputvalue):

Following Best Practices368

 if (type(inputvalue) != str) or (len(str(inputvalue)) >
10):

 return False

 else:

 return True

Let’s now look at an example of the preferred method for naming methods or functions:

class TypeCheck:

 def int_check(self,input_value):

 if (type(input_value) != int) or (len(str(input_value))
> 2):

 return False

 else:

 return True

 def string_check(self,input_value):

 if (type(input_value) != str) or (len(str(input_value))
> 10):

 return False

 else:

 return True

These naming conventions are recommendations that can be followed while developing new code or a
library from scratch. However, if the code has already been developed and is being actively maintained,
it is recommended to follow the naming conventions used throughout the code.

Avoiding the reuse of names
In this example, let’s look at another best practice of how to use variable or class names such that the
reusability aspect of your code is preserved. Sometimes it might seem easy to reuse the same class or
variable names while writing code in a sequence. Reusing names will make it difficult to reuse the
classes, variables, methods, or functions in your code as calling them in multiple scenarios will be
impacted since the same names are reused for different elements.

Let’s look at an example to understand the method that is not preferred. Let’s define two classes for
Branch with a method named maintenance_cost with different definitions.

Avoiding the reuse of names 369

The first Branch class is defined as follows:

class Branch:

 def maintenance_cost(self, product_type, quantity):

 self.product_type = product_type

 self.quantity = quantity

 cold_storage_cost = 100

 if (product_type == 'FMCG'):

 maintenance_cost = self.quantity * 0.25 + cold_
storage_cost

 return maintenance_cost

 else:

 return "We don't stock this product"

The second Branch class is defined as follows:

class Branch:

 def maintenance_cost(self, product_type, quantity):

 self.product_type = product_type

 self.quantity = quantity

 if (product_type == 'Electronics'):

 maintenance_cost = self.quantity * 0.05

 return maintenance_cost

 else:

 return "We don't stock this product"

In the preceding code, we have two Branch classes doing different tasks. Let’s now instantiate the
Branch class, assuming the first Branch class needs to be executed at a later point in the code:

branch = Branch()

branch.maintenance_cost('FMCG', 1)

The preceding code calls the Branch class defined last, and thus ends up losing the definition of the
first Branch class:

"We don't stock this product"

To avoid such confusion, it is always preferred to provide different names for different elements in code.

Following Best Practices370

Let’s look at the preferred method now. We will define a class named Brooklyn where FMCG
products are stocked as follows:

class Brooklyn:

 def maintenance_cost(self, product_type, quantity):

 self.product_type = product_type

 self.quantity = quantity

 cold_storage_cost = 100

 if (product_type == 'FMCG'):

 maintenance_cost = self.quantity * 0.25 + cold_
storage_cost

 return maintenance_cost

 else:

 return "We don't stock this product"

We will define another class named Queens where electronic products are stocked as follows:

class Queens:

 def maintenance_cost(self, product_type, quantity):

 self.product_type = product_type

 self.quantity = quantity

 if (product_type == 'Electronics'):

 maintenance_cost = self.quantity * 0.05

 return maintenance_cost

 else:

 return "We don't stock this product"

We can now call both the classes and their methods without any issues:

brooklyn = Brooklyn()

brooklyn.maintenance_cost('FMCG', 1)

The output for Brooklyn is as follows:

100.25

Similarly, we can instantiate the Queens class separately:

queens = Queens()

queens.maintenance_cost('Electronics', 1)

Avoiding metaprogramming where not required 371

The output for Queens is as follows:

0.05

Having looked at why we should avoid reusing names, we can further look at where to avoid
metaprogramming.

Avoiding metaprogramming where not required
Writing too much metaprogramming just because the feature is available in Python also makes the
overall code very complex and hard to handle. The following aspects should be kept in mind while
choosing to write a metaprogram for your application:

• Identify your use case and determine the need for metaprogramming based on how frequently
you need to modify the code.

• Understand how frequently you need to manipulate your code outside of its core elements such
as classes, methods, and variables.

• Check whether your solution can be developed with object-oriented programming alone or
whether it depends on elements such as metaclasses, decorators, and code generation.

• Check whether your team has the relevant skills to maintain the metaprogramming features
after development.

• Check that you don’t have a dependency on earlier versions of Python that do not support
some of the metaprogramming features.

These are some of the points to consider when planning to apply metaprogramming techniques during
the application design phase.

Summary
In this chapter, we covered various examples to understand the best practices recommended in the PEP
8 standards for Python. We looked at the preferred methods for indentation and the correct use of white
spaces. We also looked at how to write useful comments and where to include documentation strings.

We learned the recommended naming conventions through some examples. We also looked at why
we need to avoid reusing names and where to avoid metaprogramming.

While the concepts of metaprogramming are advanced and complex, we have tried to explain them
with simple, straightforward examples throughout this book to keep it interesting and engaging.
Learning Python and its features is a continuous journey. Keep following the future versions of Python
and explore the new capabilities it provides for metaprogramming.

Index

A
ABC Car Agency case study

base classes, defining 340-342
code generation 349-352
code generator library, developing 343-349
execution framework, designing 353-355
explaining 337-340

ABC Megamart example 24
abstract base classes 46
abstract class 310
abstraction

about 13, 46
used, for hiding details 46-50

abstraction subclasses 294, 310
abstraction superclass 294
abstract syntax trees (ASTs)

library 220, 221
Python code, inspecting with 221
using 319
using, with applications 227

add function
metadata 7, 8

algorithm 194
annotations 170

ast
of class 227-229
used, for modifying simple code 224-226
used, for reviewing simple code 221-224

ast, code block
modification, by parsing 229-233
modifying, by node transformation 234-236

attribute, of Python object
hasattr function, used for

introspecting 123-128

B
behavioral design patterns

chain of responsibility 274-278
command design pattern 279-284
exploring 274
strategy design pattern 286-290

branchAlbany object
attributes 258, 259
definition 257

branchNYC instance
about 260
attributes 260

Index374

bridge design pattern
about 294
implementing 294-298
required elements 294

built-in decorators
about 84
class method 87, 88
static method 85-87

built-in functions
used, for introspecting Python objects 116
used, in reflection 142

built-in id function
using 116-118

C
callable function

used, for calling Python object 121, 122
used, for dynamically checking

methods 149-152
used, for generating methods 149-152

camel case 366
chain of responsibility

about 274
elements 274, 279
example 275-278

class
about 25
ast 227-229
creating 25-27
generating, with attributes 326-329
generating, with init method 329, 330
generating, with methods 329
generating, with user-defined

method 330, 331
method resolution order (MRO) 238, 239
modifying, with issubclass function 159-162

multiple instances, creating
dynamically 260-263

property, applying 162-165
class decorators

example 80-84
exploring 77-79

class variables
manipulating 109-114

code block
ast modification, by parsing 229-233
ast, modifying by node

transformation 234-236
code generator

developing, for simple library
generation 333-335

code representation
about 359
maintaining 359-361

command design pattern
about 279
elements 280, 284
example 280-284

common functionalities
identifying 208, 209

constraints
data types, adding with 180-182

core example 24
creational design patterns

about 309
exploring 309
factory design pattern 310
prototype design pattern 314
singleton design pattern 317

custom class factory
defining 332

custom data type
creating 182-185

Index 375

D
data types

adding, with constraints 180-182
decorators

about 61
built-in decorators 84
class decorators 77-79
exchanging, from one function

to another 68-74
function decorators 62-64
multiple decorators, applying

to one function 75, 76
design patterns

overview 274
documentation strings

about 363
adding 363
for metaprogramming 364, 365
using 363, 364

domain-specific data type
creating 186-190

Don’t Repeat Yourself principle
about 13
example 14-16

dynamic attributes
defining 266, 267

dynamic classes
creating 263
multiple dynamic classes, creating 264, 265

dynamic functions
creating 16, 17, 19, 20

dynamic methods
about 265
creating 265
defining 267-270

dynamic objects
branchAlbany object, attributes 259
branchAlbany object, definition 257, 258
branchNYC instance 260
type function, exploring 256

E
email signature decorator

example 64-67
encapsulation

about 50
private class members example 50-53
protected class members 54-56
used, for protecting information 50

end user method 298, 310
explicit type checks, approach 1

about 171
class, creating to implement

type checking 172, 173
class, creating to test type checking 174, 175

explicit type checks, approach 2
about 175
class, creating to implement

type checking 175-177
class, creating to test type checking 177-180

F
facade class 298
facade design pattern

about 298
implementing 299-304
required elements 298-310

factory class 310
factory design pattern

about 310
implementing 310-314

Index376

FMCG (Fast moving consumer goods) 45
functionality classes 298, 305
function decorators

defining 62-64
email signature decorator 64-67

G
generics

about 168
handling, in Python 168, 170
metaprogramming 168

H
hasattr function

about 152
used, for introspecting attribute

of Python object 123-128
used, for setting values 152-156

I
id function

for deleting duplicates 142-149
used, for debugging unintentional

assignments 119-121
implementation class 314
implementation subclasses 294
implementation superclass 294
indentation

about 358
maintaining 358

inheritance
about 34
implementing 34-39
in metaclasses 105-109

order, modifying 247-251
unintended order change, impact 251-254

init method
class, generating with 329, 330

inline comments
redundant comments 361, 362
relevant comments 362
writing 361

instance function
used, for checking instance of

Python object 128-130
introspection 115
isinstance function

about 156
used, for modifying objects 156-159

issubclass function
about 159
used, for checking subclass of

Python object 131-134
used, for modifying class 159-162

M
meta 4
metaclass

about 89
application 94-98
arguments, analyzing 92-94
class, inheriting as parent 100
inheritance 105-109
inheriting 99, 100
overview 90
structure 91, 92
switching 101-105

metadata
about 4
example 4, 5
of add function 7, 8

Index 377

metaprogramming
about 168
applications, exploring 21
avoiding 371
example 5-7
need for 13
overview 4
used, for resolving type errors 9-12

method resolution order (MRO)
about 237
in multilevel inheritance 245-247
in multiple inheritances 243-245
in single inheritance 239-243
of class 238, 239

methods
about 30
applying 30-34
checking, with callable function 149-152
generating, with callable function 149-152

multilevel inheritance
method resolution order (MRO) 245-247

multiple classes
generating, from list 322-326

multiple inheritance
about 40
example 40
implementing 41
method resolution order (MRO) 243-245

N
naming conventions

about 365
best practices 368-370
class names 366
functions 367, 368
methods 367, 368

reuse of names, avoiding 368-370
variables 366, 367

O
object

about 27
creating 27-29
modifying, with isinstance function 156-159

Object Oriented Programming (OOP)
concepts 23
entities and attributes 24

P
PEP 483 (Python Enhancement

Proposals) 170
polymorphism

about 42
in independent classes 45, 46
within inheritance 42-44

private methods 50
property

applying, on class 162-165
usage 135-137
using, as decorator 137, 138

protected methods 50
prototype class 314
prototype design pattern

about 314
implementing 314-316
required elements 305, 314

proxy class 305
proxy design pattern

about 305
implementing 305-309

Index378

Python
about 4, 167
generics, handling 168, 170

Python code
inspecting, with abstract syntax tree 221

Python Enhancement Proposal
8 (PEP 8) standards

about 358
indentation 358
prepresentation 359

Python object
calling, with callable function 121-123
introspecting, with built-in functions 116

R
reflection

about 141
built-in functions 142

S
sequence of methods

defining 200
electronics counter 207, 208
greater than 10 items counter 205-207
less than 10 items counter 204, 205
vegetable counter 200-203

sequence of operations
electronics counter 198, 199
explaining 194
greater than 10 items counter 197, 198
less than 10 items counter 196, 197
templates, defining 194
vegetables and dairy counter 195, 196

simple class
generating, with template 320-322

single inheritance
method resolution order (MRO) 239-243

singleton class 317
singleton design pattern

about 317
implementing 317, 318
required elements 317

strategy design pattern
about 286
elements 286, 291
example 286-290

subclass, of Python object
issubclass function, used for

checking 131-135

T
templates

about 194, 210
defining 210-215

type errors
resolving, with metaprogramming 9-12

type function
exploring 256, 257

type hinting 170
type hints

as annotations 170, 171

U
unintentional assignments

debugging, with id function 119-121
user-defined method

class, generating with 330, 331

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packt.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packt.com

380 Other Books You May Enjoy

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learn Python Programming - Third Edition

Fabrizio Romano, Heinrich Kruger

ISBN: 9781801815093

• Get Python up and running on Windows, Mac, and Linux

• Write elegant, reusable, and efficient code in any situation

• Avoid common pitfalls like duplication, complicated design, and over-engineering

• Understand when to use the functional or object-oriented approach to programming

• Build a simple API with FastAPI and program GUI applications with Tkinter

• Get an initial overview of more complex topics such as data persistence and cryptography

• Fetch, clean, and manipulate data, making efficient use of Python’s built-in data structures

https://packt.link/9781801815093

381Other Books You May Enjoy

Mastering Python - Second Edition

Rick van Hattem

ISBN: 9781800207721

• Write beautiful Pythonic code and avoid common Python coding mistakes

• Apply the power of decorators, generators, coroutines, and metaclasses

• Use different testing systems like pytest, unittest, and doctest

• Track and optimize application performance for both memory and CPU usage

• Debug your applications with PDB, Werkzeug, and faulthandler

• Improve your performance through asyncio, multiprocessing, and distributed computing

• Explore popular libraries like Dask, NumPy, SciPy, pandas, TensorFlow, and scikit-learn

• Extend Python’s capabilities with C/C++ libraries and system calls

https://packt.link/9781800207721

382

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Metaprogramming with Python, we’d love to hear your thoughts! If you purchased
the book from Amazon, please click here to go straight to the Amazon review page for this book and
share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1838554653

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Contributors
	Table of Contents
	Preface
	Part 1:
Fundamentals – Introduction to Object-Oriented Python and Metaprogramming
	Chapter 1: The Need for and Applications of Metaprogramming
	Technical requirements
	An overview of metaprogramming
	Metaprogramming – a practical introduction
	Metadata of the add function
	Resolving type errors using metaprogramming

	Understanding why we need metaprogramming
	Don’t Repeat Yourself

	Exploring the applications of metaprogramming
	Summary

	Chapter 2: Refresher of OOP Concepts in Python
	Technical requirements
	Introducing our core example
	Creating classes
	Understanding objects
	Applying methods
	Implementing inheritance
	Extending to multiple inheritance
	Understanding polymorphism
	Polymorphism within inheritance
	Polymorphism in independent classes

	Hiding details with abstraction
	Protecting information with encapsulation
	Private members
	Protected members

	Summary

	Part 2:
Deep Dive – Building Blocks of Metaprogramming I
	Chapter 3: Understanding Decorators and their Applications
	Technical requirements
	Looking into simple function decorators
	Understanding function decorators with an application

	Exchanging decorators from one function to another
	Applying multiple decorators to one function
	Exploring class decorators
	Understanding class decorators with an application

	Getting to know built-in decorators
	The static method
	The class method

	Summary

	Chapter 4: Working with Metaclasses
	Technical requirements
	Overview of metaclasses
	The structure of a metaclass
	Analyzing the arguments

	The application of metaclasses
	Inheriting the metaclass
	Inheriting as a parent and metaclass

	Switching metaclasses
	Inheritance in metaclasses
	Manipulating class variables
	Summary

	Chapter 5: Understanding Introspection
	Technical requirements
	Introducing built-in functions
	Using the built-in id function
	Debugging unintentional assignments using id
	Finding out whether an object is callable
	Checking whether an object has an attribute
	Checking whether an object is an instance
	Checking whether an object is a subclass
	Understanding the usage of property
	Using property as a decorator
	Summary

	Chapter 6: Implementing Reflection on Python Objects
	Technical requirements
	Introducing built-in functions used in reflection
	Using id to delete duplicates
	Using callable to dynamically check and generate methods
	Using hasattr to set values
	Using isinstance to modify an object
	Using issubclass to modify a class
	Applying property on a class
	Summary

	Chapter 7: Understanding Generics
and Typing
	Technical requirements
	What are generics?
	How are generics connected to metaprogramming?
	How are generics handled in Python?

	What happens when data types are specified?
	Type hints as annotations

	Typing with explicit type checks – approach 1
	Creating a class to implement type checking
	Creating a class to test type checking

	Typing with explicit type checks – approach 2
	Creating a class to implement type checking
	Creating a class to test type checking

	Adding data types with constraints
	Creating a simple custom data type
	Creating a domain-specific data type
	Summary

	Chapter 8: Defining Templates for Algorithms
	Technical requirements
	Explaining a sequence of operations
	Back to our core example
	The vegetables and dairy counter
	Less than 10 items counter
	The greater than 10 items counter
	Electronics counter

	Defining the sequence of methods
	The vegetable counter
	Less than 10 items counter
	Greater than 10 items counter
	The electronics counter

	Identifying the common functionalities
	Designing templates
	Summary

	Part 3:
Deep Dive – Building Blocks of Metaprogramming II
	Chapter 9: Understanding Code through Abstract
Syntax Tree
	Technical requirements
	Exploring the ast library
	Inspecting Python code with abstract syntax trees
	Reviewing simple code using ast
	Modifying simple code using ast

	Understanding abstract syntax trees with applications
	Understanding the ast of a class
	Modifying the ast of a code block by parsing
	Modifying the ast of a code block by transforming nodes

	Summary

	Chapter 10: Understanding Method Resolution Order of Inheritance
	Technical requirements
	Understanding the MRO of a class
	Understanding MRO in single inheritance
	Understanding MRO in multiple inheritances
	Reviewing MRO in multilevel inheritance

	Understanding the importance of modifying the order of inheritance
	Impact of unintended change of order in inheritance
	Summary

	Chapter 11: Creating Dynamic Objects
	Technical requirements
	Exploring type for dynamic objects
	Creating multiple instances of a class dynamically
	Creating dynamic classes
	Creating multiple dynamic classes

	Creating dynamic attributes and methods
	Defining attributes dynamically
	Defining methods dynamically

	Summary

	Chapter 12: Applying GOF Design Patterns – Part 1
	Technical requirements
	An overview of design patterns
	Exploring behavioral design patterns
	Understanding the chain of responsibility
	Learning about the command design pattern
	The strategy design pattern

	Summary

	Chapter 13: Applying GOF Design Patterns – Part 2
	Technical requirements
	Exploring structural design patterns
	Understanding the bridge pattern
	Understanding the facade pattern
	Understanding the proxy pattern

	Exploring creational design patterns
	Understanding the factory method
	Understanding the prototype method
	Understanding the singleton pattern

	Summary

	Chapter 14: Generating Code from AST
	Technical requirements
	Generating a simple class with a template
	Generating multiple classes from a list
	Generating a class with attributes
	Generating a class with methods
	Generating a class with an init method
	Generating a class with a user-defined method

	Defining a custom class factory
	Developing a code generator to generate a simple library
	Summary

	Chapter 15: Implementing a Case Study
	Technical requirements
	Explaining the case study
	Defining base classes
	Developing a code generator library
	Generating code
	Designing an execution framework
	Summary

	Chapter 16: Following Best Practices
	Technical requirements
	Following PEP 8 standards
	Indentation
	Neat representation

	Writing clear comments for debugging and reusability
	Adding documentation strings
	Documentation string for metaprogramming

	Naming conventions
	Class names
	Variables
	Functions and methods

	Avoiding the reuse of names
	Avoiding metaprogramming where not required
	Summary

	Index
	About Packt
	Other Books You May Enjoy

