

Mastering Python Networking
Fourth Edition

Utilize Python packages and frameworks for network automation,
monitoring, cloud, and management

Eric Chou

BIRMINGHAM—MUMBAI

“Python” and the Python Logo are trademarks of the Python Software Foundation.

Mastering Python Networking
Fourth Edition
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavoured to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Senior Publishing Product Manager: Aaron Tanna
Acquisition Editor – Peer Reviews: Gaurav Gavas
Project Editor: Namrata Katare
Content Development Editor: Liam Thomas Draper
Copy Editor: Safis Editing
Technical Editor: Srishty Bhardwaj
Proofreader: Safis Editing
Indexer: Rekha Nair
Presentation Designer: Ganesh Bhadwalkar
Developer Relations Marketing Executive: Meghal Patel

First published: April 2016
Second edition: August 2018
Third edition: January 2020
Fourth edition: January 2023

Production reference: 1130123

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80323-461-8

www.packt.com

http://www.packt.com

To my wife, Joanna, who inspired me to explore.

To my children, Mikaelyn and Esmie, may you find the fire to explore the world as well.

Foreword

The book you are holding in your hands or are reading on your screen has a power that can be

yours if you take time to study it. Programming can amplify your existing knowledge and skillset.

Many people are told they should learn programming and Python for their own sake. Program-

ming skills are in demand, so you should be a programmer. That is probably good advice. But

better advice would be to answer the question, “How can you take your existing expertise and

leap ahead of peers by automating and extending that experience with software skills?” This

book aims to do just that for network professionals. You’ll learn about Python in the context of

network configuration, administration, monitoring and more.

If you are tired of logging in and typing in a bunch of commands to configure your network,

Python is for you. If you need to be certain the network configuration is solid and repeatable,

Python is for you. If you need to monitor, in real-time, what is happening on the network, well,

you guessed it, Python is for you.

You are probably in agreement about learning software skills that can be applied to network

engineering. After all, terms like Software-Defined Networking (SDN) have been all the buzz

in the last few years. But why Python? Maybe you should learn JavaScript or Go or some other

language. Maybe you should just double down on Bash and shell scripting.

Python is well suited for network engineering for two reasons.

Firstly, as Eric will demonstrate throughout this book, there are many Python libraries (sometimes

called packages) designed specifically on network engineering. With libraries such as Ansible, you

can create complex network and server configurations using simple configuration files. Using Pex-

pect or Paramiko, you’ll be able to program against remote legacy systems as if they had their own

scripting API. If the gear you’re configuring has an API, chances are you can use a purpose-built

Python library to work with it. So clearly, Python is well-suited for the job.

Secondly, Python is special amongst programming languages. Python is what I call a full spectrum

language. My definition of this term is that it is both a language that is incredibly easy to get

started (print ("hello world") anyone?) and also very powerful, being the technology behind

incredible software such as YouTube.

This is not normal. We have solid beginner languages for quickly building software. Visual Basic

comes to mind here. So does Matlab and other commercial languages. Yet, when these are pushed

too far, they fall down badly. Can you imagine Linux, Firefox, or an intensive video game created

with any of these? No way.

At the other end of the spectrum, we also have very powerful languages such as C++, .NET, Java

and many others. C++ is, in fact, the language used to build some Linux kernel modules and large

open-source software such as Firefox to some degree. Yet, they are not beginner-friendly. You

have to learn about pointers, compilers, linkers, headers, classes, accessibility (public/private),

and on and on just to get started.

Python lives in both realms making it incredibly easy to be productive with just a few lines of

code and simple programming concepts. Yet it grows to be the language of choice for some of

the world’s most significant software behind YouTube, Instagram, Reddit, and others. Microsoft

chose Python as their language to implement the CLI for Azure (although you don’t have to know

or use Python to use their CLI of course).

So, here’s the deal. Programming is a superpower. It can take your network engineering expertise

and launch it into the stratosphere. Python is one of the world’s fastest growing and most pop-

ular programming languages. And Python has many highly polished libraries for working with

networks in many facets. Therefore, this book, Mastering Python Networking, combines all of these

and will change the way you think about networking. Enjoy the journey.

Michael Kennedy

Portland, OR

Founder of Talk Python

Contributors

About the author
Eric Chou is a seasoned technologist with over 20 years of experience. He has worked on some

of the largest networks in the industry while working at Amazon, Microsoft, and other Fortune

500 companies. Eric is passionate about network engineering, Python, and helping companies

build better automation culture.

Eric is the author of other top-selling books on security, data processing, and programming.

Eric holds multiple U.S. patents in IP telephony and networking. He shares his deep interest in

technology through his books, online classes, speaking engagements, and contributing to open

source projects.

I would like to thank the open source community members for generously sharing their compassion, knowledge,

and code. Without them, many of the projects referenced in this book would not have been possible. I hope I

made small contributions to the wonderful communities in my own way as well.

I would like to thank the Packt team for the opportunity to collaborate on the fourth edition of this book. Special

thanks to the technical reviewer, Josh VanDeraa, for generously agreeing to review this book.

To my family, your constant support and encouragement make me want to be the best version of myself. I love you.

About the reviewer
Josh VanDeraa is a 20-year networking veteran who has been doing network automation for

the past 7 years. He has worked in large enterprise retail, travel, managed services, and most re-

cently, professional services industries. He has worked on networks of all sizes, bringing multiple

different network automation solutions to the table to drive real value with Python, Ansible, and

Python web framework solutions.

Josh is the author of Open Source Network Management and maintains a blog site (https://josh-v.

com) to provide additional content to those on the web.

I’d like to thank my family first and foremost, who have allowed me the time to dive in and review the topic.

I would also like to thank Eric for taking the time to share his experiences. This is a tough thing to do and Eric

has done a masterful job at putting time and real-life experiences into the book to be consumed. I love how the

book has evolved over the revisions, with my first reading of the book coming in the second edition.

And lastly, I would like to thank the greater network automation community. This is a journey for all of the

individuals, no matter the organization. Please join, teach, and share your experiences with the community

so network automation can continue to evolve!

https://josh-v.com
https://josh-v.com

Join our book community
To join our community for this book – where you can share feedback, ask questions to the author,

and learn about new releases – follow the QR code below:

https://packt.link/networkautomationcommunity

https://packt.link/networkautomationcommunity

Table of Contents

Preface � xxi

Chapter 1: Review of TCP/IP Protocol Suite and Python � 1

An overview of the Internet �� 3

Servers, hosts, and network components • 4

The rise of data centers • 5

Enterprise data centers • 5

Cloud data centers • 6

Edge data centers • 7

The OSI model ��� 8

The client-server model ��� 10

Network protocol suites �� 11

The transmission control protocol • 12

Functions and characteristics of TCP • 12

TCP messages and data transfer • 12

The user datagram protocol • 13

The Internet protocol • 14

IP network address translation (NAT) and network security • 15

IP routing concepts • 15

Python language overview ��� 16

Python versions • 17

Operating system • 17

Table of Contentsx

Running a Python program • 18

Python built-in types • 19

The None type • 20

Numerics • 20

Sequences • 20

Mapping • 23

Sets • 24

Python operators • 25

Python control flow tools • 26

Python functions • 28

Python classes • 29

Python modules and packages • 30

Summary �� 31

Chapter 2: Low-Level Network Device Interactions � 33

The challenges of the CLI ��� 34

Constructing a Virtual lab �� 35

Physical devices • 36

Virtual devices • 36

Cisco modeling labs • 37

CML tips • 39

Cisco DevNet • 40

GNS3 and others • 42

Python virtual environment �� 43

Python pexpect library ��� 44

Pexpect installation • 44

Pexpect overview • 45

Our first Pexpect program • 50

More Pexpect Features • 51

Pexpect and SSH • 53

Pexpect complete example • 53

Table of Contents xi

The Python Paramiko library ��� 54

Installation of Paramiko • 55

Paramiko overview • 55

First Paramiko program • 58

More Paramiko features • 59

Paramiko for servers • 59

More Paramiko examples • 61

The Netmiko library ��� 62

The Nornir framework ��� 64

Downsides of Pexpect and Paramiko compared to other tools • 66

Idempotent network device interaction • 67

Bad automation speeds up bad things • 67

Summary ��� 68

Chapter 3: APIs and Intent-Driven Networking � 69

Infrastructure-as-Code (IaC) ��� 70

Intent-driven networking • 71

Screen scraping versus API structured output • 72

Data modeling for IaC • 76

YANG and NETCONF • 77

Cisco API examples �� 77

Cisco NX-API • 78

Lab preparation • 79

NX-API examples • 79

The Cisco YANG Model • 84

The Cisco ACI examples • 85

Cisco Meraki controller �� 89

The Python API for Juniper Networks �� 91

Juniper and NETCONF • 91

Device preparation • 92

Juniper NETCONF examples • 93

Table of Contentsxii

Juniper PyEZ for developers • 96

Installation and preparation • 96

PyEZ examples • 98

The Arista Python API �� 100

Arista eAPI management • 101

eAPI preparation • 101

eAPI examples • 104

The Arista Pyeapi library • 106

Pyeapi installation • 106

Pyeapi examples • 107

VyOS example �� 111

Other libraries �� 112

Summary �� 112

Chapter 4: The Python Automation Framework – Ansible � 115

Ansible – A More Declarative Framework �� 117

Ansible Versions • 118

Our First Ansible Network Example �� 119

The Control Node Installation • 120

Lab Topology • 121

The Variable Files • 122

Our First Playbook • 123

The Advantages of Ansible �� 125

Agentless • 125

Idempotence • 126

Simple and Extensible • 127

Ansible Content Collections �� 127

More Ansible Network Examples �� 128

Inventory Nesting • 129

Ansible Conditionals • 131

Configuration Change • 133

Table of Contents xiii

Ansible Network Facts • 135

Ansible Loops • 137

Standard Loops • 137

Looping over Dictionaries • 139

Templates • 142

The Jinja Template Variables • 145

Jinja Template Loops • 146

Jinja Template Conditional • 147

Summary �� 149

Chapter 5: Docker Containers for Network Engineers � 151

Docker Overview �� 153

Advantages of Docker • 153

Building Python applications in Docker ��� 154

Installing Docker • 154

Useful Docker commands • 155

Building hello world • 156

Building our application • 157

Sharing Docker images • 161

Container orchestration with Docker-compose • 163

Container networking ��� 166

Container host network • 168

Custom bridge network • 169

Other container network options • 170

Containers in the network engineering field �� 170

Containerlab • 171

Docker and Kubernetes ��� 175

Summary �� 176

Table of Contentsxiv

Chapter 6: Network Security with Python � 177

The Lab Setup �� 178

Python Scapy �� 185

Installing Scapy • 186

Interactive examples • 188

Packet captures with Scapy • 190

The TCP port scan • 192

The ping collection • 196

Common attacks • 197

Scapy resources • 198

Access lists ��� 198

Implementing access lists with Ansible • 199

MAC access lists • 203

The Syslog search ��� 205

Searching with the regular expression module • 206

Other tools �� 208

Private VLANs • 208

UFW with Python • 209

Further reading �� 210

Summary ��� 210

Chapter 7: Network Monitoring with Python – Part 1 � 213

Lab Setup �� 214

SNMP �� 215

Setup • 217

PySNMP • 219

Python for Data Visualization �� 225

Matplotlib • 225

Installation • 225

Matplotlib – the first example • 226

Table of Contents xv

Matplotlib for SNMP results • 228

Additional Matplotlib resources • 232

Pygal • 233

Installation • 233

Pygal – the first example • 233

Pygal for SNMP results • 235

Additional Pygal resources • 237

Python for Cacti ��� 238

Installation • 238

Python script as an input source • 240

Summary ��� 243

Chapter 8: Network Monitoring with Python – Part 2 � 245

Graphviz �� 246

Lab setup • 247

Installation • 248

Graphviz examples • 249

Python with Graphviz examples • 251

LLDP neighbor graphing • 252

Information retrieval • 255

Python parser script • 256

Testing the playbook • 261

Flow-based monitoring ��� 263

NetFlow parsing with Python • 264

Python Socket and Struct • 265

ntop traffic monitoring �� 269

Python extension for ntop • 272

sFlow • 276

SFlowtool and sFlow-RT with Python • 277

Summary ��� 281

Table of Contentsxvi

Chapter 9: Building Network Web Services with Python � 283

Comparing Python web frameworks ��� 285

Flask and lab setup �� 288

Introduction to Flask ��� 289

Flask versions • 289

Flask examples • 289

The HTTPie client • 290

URL routing • 293

URL variables • 294

URL generation • 295

The jsonify return • 296

Network resource API �� 297

Flask-SQLAlchemy • 297

The network content API • 299

The devices API • 303

The device ID API • 305

Network dynamic operations ��� 306

Asynchronous operations • 309

Authentication and Authorization �� 312

Running Flask in containers ��� 315

Summary �� 319

Chapter 10: Introduction to Async IO � 321

Asynchronous operations overview ��� 322

Python multiprocessing • 323

Python multithreading • 324

Python asyncio module �� 326

The Scrapli project �� 331

Scrapli example • 331

Scrapli async example • 334

Summary ��� 338

Table of Contents xvii

Chapter 11: AWS Cloud Networking � 339

AWS setup �� 340

The AWS CLI and Python SDK • 342

AWS network overview �� 345

Virtual Private Cloud �� 353

Route tables and route targets • 358

Automation with CloudFormation • 360

Security Groups and Network ACLs • 364

Elastic IP • 367

NAT gateways • 368

Direct Connect and VPN ��� 369

VPN gateways • 369

Direct Connect • 370

Network scaling services ��� 371

Elastic Load Balancing • 372

Route 53 DNS service • 372

CloudFront CDN services • 373

Other AWS network services �� 373

Summary ��� 374

Chapter 12: Azure Cloud Networking � 375

Azure and AWS network service comparison ��� 376

Azure setup �� 378

Azure administration and APIs ��� 381

Azure service principals • 384

Python versus PowerShell • 387

Azure global infrastructure �� 388

Azure virtual networks ��� 389

Internet access • 392

Network resource creation • 396

Table of Contentsxviii

VNet service endpoints • 398

VNet peering • 399

VNet routing �� 402

Network security groups • 407

Azure VPNs ��� 409

Azure ExpressRoute ��� 412

Azure network load balancers �� 414

Other Azure network services �� 416

Summary ��� 416

Chapter 13: Network Data Analysis with Elastic Stack � 419

What is the Elastic Stack? ��� 420

Lab topology ��� 421

Elastic Stack as a service �� 428

First End-to-End example �� 430

Elasticsearch with a Python client ��� 435

Data ingestion with Logstash �� 437

Data ingestion with Beats �� 440

Search with Elasticsearch �� 447

Data visualization with Kibana �� 452

Summary ��� 458

Chapter 14: Working with Git � 459

Content management considerations and Git �� 460

Introduction to Git ��� 461

Benefits of Git • 461

Git Terminology • 462

Git and GitHub • 463

Setting up Git ��� 464

Gitignore • 465

Table of Contents xix

Git Usage Examples �� 466

Git Branch ��� 471

GitHub Example • 473

Collaborating with Pull Requests • 479

Git with Python ��� 482

GitPython • 482

PyGitHub • 483

Automating Configuration Backup �� 485

Collaborating with Git ��� 487

Summary �� 488

Chapter 15: Continuous Integration with GitLab � 491

The traditional change management process �� 492

Introduction to continuous integration ��� 494

Installing GitLab �� 495

GitLab runners ��� 499

First GitLab example �� 501

GitLab network example �� 509

Summary �� 513

Chapter 16: Test-Driven Development for Networks � 515

Test-driven development overview ��� 516

Test definitions • 517

Topology as code �� 518

XML parsing example • 521

Python’s unittest module • 524

More on Python testing • 528

pytest examples • 528

Writing tests for networking ��� 531

Testing for reachability • 532

Testing for network latency • 533

Table of Contentsxx

Testing for security • 534

Testing for transactions • 534

Testing for network configuration • 535

Testing for Ansible • 535

pyATS and Genie �� 536

Summary ��� 544

Other Books You May Enjoy � 549

Index � 553

Preface

As Charles Dickens wrote in A Tale of Two Cities, “It was the best of times, it was the worst of times, it

was the age of wisdom, it was the age of foolishness.” These seemingly contradictory words perfectly

describe the chaos and mood felt during a time of change and transition. We are undoubtedly

experiencing a similar time with the rapid changes in the network engineering field. As software

development becomes more integrated into all engineering stacks, the traditional command-

line interface and vertically integrated network control methods are no longer the best ways to

manage today’s networks.

For network engineers, the changes we are seeing are full of excitement and opportunities and

yet are challenging, particularly for those who need to quickly adapt and keep up. This book has

been written to help ease the transition for networking professionals by providing a practical

guide that addresses how to evolve from a traditional platform to one built on software-driven

and development practices.

In this book, we use Python as the programming language of choice to master network engineering

tasks. Python is an easy-to-learn, high-level programming language that can effectively comple-

ment network engineers’ creativity and problem-solving skills to streamline daily operations.

Python is becoming an integral part of many large-scale networks, and through this book, I hope

to share with you the lessons I’ve learned.

Since the publication of the first three editions of this book, I have been fortunate to have had

interesting and meaningful conversations with many of the book’s readers. I am humbled by the

success of the first three editions and took to heart the feedback I was given. In this fourth edition,

I tried to incorporate many of the newer libraries, updated existing examples with the latest soft-

ware and newer hardware platforms, added two new chapters, and significantly modified several

chapters. I believe the changes are more reflective of today’s network engineering environment.

A time of change presents great opportunities for technological advancement. The concepts and

tools in this book have helped me tremendously in my career, and I hope they can do the same

for you.

Prefacexxii

Who this book is for
This book is ideal for IT professionals and operations engineers who already manage groups of

network devices and would like to expand their knowledge of using Python and other tools to

overcome network challenges. Basic knowledge of networking and Python is recommended.

What this book covers
Chapter 1, Review of TCP/IP Protocol Suite and Python, reviews the fundamental technologies for

internet communication today, from the OSI and client-server model to the TCP, UDP, and IP

suites. The chapter will review the basics of the Python language, such as types, operators, loops,

functions, and packages.

Chapter 2, Low-Level Network Device Interactions, uses practical examples to illustrate how to use

Python to execute commands on a network device. It will also discuss the challenges of having

a CLI-only interface in automation. The chapter will use the Pexpect, Paramiko, Netmiko, and

Nornir libraries in the examples.

Chapter 3, APIs and Intent-Driven Networking, discusses the network devices that support Applica-

tion Programming Interfaces (APIs) and other high-level interaction methods. It also illustrates

tools that allow the abstraction of low-level tasks while focusing on the intent of the network

engineers. A discussion about and examples of Cisco NX-API, Meraki, Juniper PyEZ, Arista Pyeapi,

and Vyatta VyOS will appear in the chapter.

Chapter 4, The Python Automation Framework – Ansible, discusses the basics of Ansible. Ansible is

an open source, Python-based automation framework. The framework moves one step further

from APIs and focuses on declarative task intent. In this chapter, we will cover the advantages

of using Ansible and its high-level architecture and see some practical examples of Ansible with

network devices.

Chapter 5, Docker Containers for Network Engineers, explores containers and explains how Docker

is the new standard in application development. In this chapter, we will introduce Docker as a

tool by introducing the overall concepts and building example applications with it.

Chapter 6, Network Security with Python, introduces several Python tools to help you secure your

network. It will discuss using Scapy for security testing, using Ansible to quickly implement access

lists, and using Python for network forensic analysis.

Preface xxiii

Chapter 7, Network Monitoring with Python – Part 1, covers monitoring the network using various

tools. The chapter contains some examples using SNMP and PySNMP for queries to obtain device

information. Matplotlib and Pygal examples will be shown for graphing the results. The chapter

will end with a Cacti example using a Python script as an input source.

Chapter 8, Network Monitoring with Python – Part 2, covers more network monitoring tools. The

chapter will start with using Graphviz to graph the network from LLDP information. We will move

to use examples with push-based network monitoring using NetFlow and other technologies. We

will use Python to decode flow packets and ntop to visualize the results.

Chapter 9, Building Network Web Services with Python, shows you how to use the Python Flask web

framework to create API endpoints for network automation. The network API offers benefits such

as abstracting the requester from network details, consolidating and customizing operations, and

providing better security by limiting the exposure of available operations.

Chapter 10, Introduction to Async IO, covers Async IO, the new Python 3 package that allows us

to perform tasks at the same time. We will cover topics such as multiprocessing, parallelism,

threading, and other concepts. We will also cover examples from the Scrapli project.

Chapter 11, AWS Cloud Networking, shows how we can use AWS to build a virtual network that is

functional and resilient. We will cover virtual private cloud technologies such as CloudFormation,

VPC routing tables, access lists, Elastic IP, NAT gateways, Direct Connect, and other related topics.

Chapter 12, Azure Cloud Networking, covers the network services by Azure and how to build network

services with the service. We will discuss Azure VNet, Express Route and VPN, Azure network load

balancers, and other related network services.

Chapter 13, Network Data Analysis with Elastic Stack, shows how we can use Elastic Stack as a set

of tightly integrated tools to help us analyze and monitor our network. We will cover areas from

installation, configuration, data import with Logstash and Beats, and searching data using Elas-

ticsearch, to visualization with Kibana.

Chapter 14, Working with Git, illustrates how we can leverage Git for collaboration and code ver-

sion control. Practical examples of using Git for network operations will be used in this chapter.

Chapter 15, Continuous Integration with GitLab, uses GitLab to automatically create operations

pipelines that can save us time and increase reliability.

Prefacexxiv

Chapter 16, Test-Driven Development for Networks, explains how to use Python’s unittest and

pytest to create simple tests to verify our code. We will also see examples of writing tests for our

network to verify reachability, network latency, security, and network transactions.

To get the most out of this book
To get the most out of this book, some basic hands-on network operation knowledge and Python

knowledge is recommended. Most of the chapters can be read in any order, except for Chapter 4

and Chapter 5, which introduce base technologies that will be used later in the book. Besides the

basic software and hardware tools introduced at the beginning of the book, new tools relevant

to each of the chapters will be introduced in the respective chapters.

It is highly recommended to follow and practice the examples shown in your network lab.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Mastering-Python-Networking-Fourth-Edition. We also have other code bundles from our

rich catalog of books and videos available at https://github.com/PacktPublishing/. Check

them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/D2Ttl.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “The au-

to-config also generated vty access for both Telnet and SSH.”

A block of code is set as follows:

This is a comment

print("hello world")

https://github.com/PacktPublishing/Mastering-Python-Networking-Fourth-Edition
https://github.com/PacktPublishing/Mastering-Python-Networking-Fourth-Edition
https://github.com/PacktPublishing/
https://packt.link/D2Ttl

Preface xxv

Any command-line input or output is written as follows:

$ python3

Python 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in the text like this. For example: “ In the coming section,

we will continue with the SNMP theme of network monitoring but with a fully featured network

monitoring system called Cacti.”

Get in touch
Feedback from our readers is always welcome.

If you are interested in getting in touch with the Author, please visit

https://members.networkautomation.community/

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com.

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://members.networkautomation.community/
http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://authors.packtpub.com

Prefacexxvi

Share your thoughts
Once you’ve read Mastering Python Networking, Fourth Edition, we’d love to hear your thoughts!

Please click here to go straight to the Amazon review page for this book and share your

feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering

excellent quality content.

https://www.packtpub.com/

Preface xxvii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803234618

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803234618

1
Review of TCP/IP Protocol Suite
and Python

Welcome to the new and exciting age of network engineering! When I started working as a net-

work engineer at the turn of the millennium some 20 years ago, the role was distinctly different

than the network engineering role of today. At the time, network engineers mainly possessed

domain-specific knowledge to manage and operate local and wide area networks using the

command-line interface. While they might occasionally cross over the discipline wall to handle

tasks normally associated with systems administration and developers, there was no explicit

expectation for a network engineer to write code or understand programming concepts. This is

no longer the case today.

Over the years, the DevOps and Software–Defined Networking (SDN) movement, among other

factors, have significantly blurred the lines between network engineers, systems engineers, and

developers.

The fact that you have picked up this book suggests that you might already be an adopter of

network DevOps, or maybe you are considering going down that path of checking out network

programmability. Maybe you have been working as a network engineer for many years, just as I

had, and wanted to know what the buzz around the Python programming language is all about.

You might even already have been fluent in the Python programming language but wonder what

its applications are in the network engineering field.

Review of TCP/IP Protocol Suite and Python2

If you fall into any of these camps or are simply just curious about Python in the network engi-

neering field, I believe this book is for you:

Figure 1.1: The intersection between Python and network engineering

There are already many great books written that dive into the topics of network engineering and
Python separately. I do not intend to repeat their efforts with this book. Instead, this book assumes
you have some hands-on experience in managing networks, as well as a basic understanding of
network protocols. It’s helpful if you’re already familiar with Python as a programming language,
but you do not need to be an expert. We will cover some Python basics later in the chapter as
a baseline of Python knowledge. Again, you do not need to be an expert in Python or network
engineering to read this book. This book intends to build on the basic foundations of network
engineering and Python to help readers learn and practice various applications that can make
their lives easier.

In this chapter, we will do a general review of some networking and Python concepts. The rest of
the chapter should set the level of expectation of the prior knowledge required to get the most out
of this book. If you want to brush up on the contents of this chapter, there are lots of free or low-
cost resources to bring you up to speed. I would recommend the free Khan Academy (https://
www.khanacademy.org/) and the official Python tutorials from the Python Software Foundation
at https://www.python.org/.

This chapter will pay a very quick visit to the relevant networking topics at a high level without
going too much into the details. There is simply not enough space in one chapter to do a deep
dive on any of the topics. To be honest, most of us do not get to a deep level when doing day-
to-day jobs. What is the level of required networking knowledge? Judging from my experience
of working in the field, a typical network engineer or developer might not remember the exact
Transmission Control Protocol (TCP) state machine to accomplish their daily tasks (I know I
don’t), but they would be familiar with the basics of the Open Systems Interconnection (OSI)
model, the TCP and User Datagram Protocol (UDP) operations, different IP header fields, and
other fundamental concepts. That is what we will cover in this chapter.

https://www.khanacademy.org/
https://www.khanacademy.org/
https://www.python.org/

Chapter 1 3

We will also look at a high-level review of the Python language first; just enough for those readers

who do not code in Python daily to have ground to walk on for the rest of the book.

Specifically, we will cover the following topics:

•	 An overview of the Internet

•	 The OSI and client-server model

•	 TCP, UDP, and IP protocol suites

•	 Python syntax, types, operators, and loops

•	 Extending Python with functions, classes, and packages

Of course, the information presented in this chapter is not exhaustive; please check out the ref-

erences for further information if required.

As network engineers, often we are challenged by the scale and complexity of the networks we

need to manage. They range from small home-based networks, medium-size networks that make

a small business go, to large multi-national enterprise networks spanning across the globe. The

most extensive network of them all is, of course, the Internet. Without the Internet, there would be

no email, websites, API, streaming media, or cloud computing as we know it. Therefore, before we

dive deeper into the specifics of protocols and Python, let us begin with an overview of the Internet.

An overview of the Internet
What is the Internet? This seemingly easy question might receive different answers depending

on each of our backgrounds. The Internet means different things to different people; the young,

the old, students, teachers, business people, and poets could all give different answers to the

same question.

To a network engineer, the Internet is a global computer network consisting of a web of inter-net-

works connecting large and small networks together. In other words, it is a network of networks

without a centralized owner. Take your home network as an example. It might consist of a device

that integrates the functions of routing, Ethernet switching, and wireless access points connect-

ing your smartphones, tablets, computers, and internet-enabled TVs together for the devices to

communicate with each other. This is your Local Area Network (LAN).

When your home network needs to communicate with the outside world, it passes information

from your LAN to a larger network, often appropriately named the Internet Service Provider

(ISP). The ISP is typically thought of as a business that you pay to get online. They can do this by

aggregating small networks into bigger networks that they maintain.

Review of TCP/IP Protocol Suite and Python4

Your ISP network often consists of many edge nodes that aggregate the traffic to their core network.

The core network’s function is to interconnect these edge networks via a high-speed network.

At some of the more specialized edge nodes, called Internet exchange points, your ISP is con-

nected to other ISPs to pass your traffic appropriately to your destination. The return path from

your destination to your home computer, tablet, or smartphone may or may not follow the same

path through all these in-between networks back to your original device, while the source and

destination remain the same. This asymmetrical behavior is designed to be fault-tolerant so that

no one node can take down the whole connection.

Let’s look at the components making up this web of networks.

Servers, hosts, and network components
Hosts are end nodes on the network that communicate with other nodes. In today’s world, a

host can be a traditional computer, or it can be your smartphone, tablet, or TV. With the rise

of the Internet of Things (IoT), the broad definition of a host can be expanded to include an

Internet Protocol (IP) camera, TV set-top boxes, and the ever-increasing types of sensors we

use in agriculture, farming, automobiles, and more. With the explosion of the number of hosts

connected to the Internet, they all need to be addressed, routed, and managed. The demand for

proper networking has never been greater.

Most of the time when we are on the Internet, we make requests for services. This could be view-

ing a web page, sending or receiving emails, transferring files, and other online activities. These

services are provided by servers. As the name implies, servers provide services to multiple nodes

and generally have higher levels of hardware specification. In a way, servers are particular “super

nodes” on the network that offer additional capabilities to their peers. We will look at servers

again later, in the The client-server model section.

If you think of servers and hosts as cities and towns, the network components are the roads and

highways that connect them together. In fact, the term information superhighway comes to mind

when describing the network components that transmit the ever-increasing bits and bytes across

the globe. In the Seven-Layer OSI model that we will look at in The OSI model, these network

components are layer-one to layer-three devices that sometimes venture into layer four as well.

They are layer-two and layer-three routers and switches that direct traffic, as well as layer-one

transports such as fiber optic cables, coaxial cables, twisted copper pairs, and some Dense Wave-

length Division Multiplexing (DWDM) equipment, to name a few.

Collectively, hosts, servers, storage, and network components make up the internet as we know

it today.

Chapter 1 5

The rise of data centers
In the last section, we looked at the different roles that servers, hosts, and network components

play in the inter-network. Because of the higher hardware capacity that servers demand, they are

often put together in a central location to be managed more efficiently. We often refer to these

locations as data centers. They can generally be classified into three broad categories:

•	 Enterprise data centers

•	 Cloud data centers

•	 Edge data centers

Let us take a look at enterprise data centers first.

Enterprise data centers
In a typical enterprise, the company generally has business needs for internal tools such as email-

ing, document storage, sales tracking, ordering, HR tools, and a knowledge-sharing intranet. These

services become file and mail servers, database servers, and web servers. Unlike user computers,

these are generally high-end computers that require higher power, cooling, and high bandwidth

network connections. A byproduct of the hardware is also the amount of noise it makes, which is

not suitable for a normal workspace. The servers are generally placed in a central location, called

the Main Distribution Frame (MDF), in the enterprise building to provide the necessary power

feed, power redundancy, cooling, and network connectivity.

To connect to the MDF, the user’s traffic is generally aggregated at locations closer to the user,

which are sometimes called the Intermediate Distribution Frame (IDF), before they are bundled

up and connected to the MDF. It is not unusual for the IDF-MDF spread to follow the physical

layout of the enterprise building or campus. For example, each building floor can consist of an IDF

that aggregates to the centralized MDF on another floor in the same building. If the enterprise

consists of several buildings, further aggregation can be done by combining the buildings’ traffic

before connecting them to the enterprise data center.

Many enterprise data centers (sometimes referred to as campus networks) follow the three-layer

network design. The layers are the access layer, the distribution layer, and the core layer. Of course,

as with any design, there are no hard rules or one-size-fits-all model; the three-layer designs

are just a general guide. As an example, to overlay the three-layer design to our User-IDF-MDF

example earlier, the access layer is analogous to the ports each user connects to, the IDF can be

thought of as the distribution layer, while the core layer consists of the connection to the MDF

and the enterprise data centers. This is, of course, a generalization of enterprise networks, as

some of them will not follow the same model.

Review of TCP/IP Protocol Suite and Python6

Cloud data centers
With the rise of cloud computing and software, or Infrastructure as a Service (IaaS), the data

centers the cloud providers have built are big in scale, sometimes referred to as hyper-scale data

centers. What we referred to as cloud computing is the on-demand availability of computing

resources offered by the likes of Amazon AWS, Microsoft Azure, and Google Cloud without the

user having to manage the resources directly. Many web-scale service providers, such as Facebook,

can also be grouped into this category.

Because of the number of servers they need to house, cloud data centers generally demand a

much, much higher capacity of power, cooling, and network capacity than any enterprise data

center. Even after working on cloud providers’ data centers for many years, every time I visit a

cloud provider’s data center, I am still amazed at their scale. Just to give examples of their sheer

scale, cloud data centers are so big and power-hungry that they are typically built close to power

plants where they can get the cheapest power rate, without losing too much efficiency during the

transportation of the power. Their cooling needs are so high that some are forced to be creative

about where the data center is built. Facebook, for example, has built its Lulea data center in

northern Sweden (just 70 miles south of the Arctic Circle) in part to leverage the cold tempera-

ture for cooling. Any search engine can give you some astounding numbers when it comes to the

science of building and managing cloud data centers for the likes of Amazon, Microsoft, Google,

and Facebook. The Microsoft data center in West Des Moines, Iowa, for example, consisted of 1.2

million square feet of the facility on 200 acres of land and required the city to spend an estimated

$65 million in public infrastructure upgrades.

At the cloud provider scale, the services they need to provide are generally not cost-effective or

feasible to be housed in a single server. The services are spread between a fleet of servers, some-

times across many racks, to provide redundancy and flexibility for service owners.

The latency and redundancy requirements, as well as the physical spread of servers, put a tremen-

dous amount of pressure on the network. The interconnections required to connect the server

fleets equate to an explosive growth of network equipment such as cables, switches, and routers.

These requirements translate into the amount of equipment that needs to be racked, provisioned,

and managed. A typical network design would be a multi-staged Clos network:

Chapter 1 7

Figure 1.2: Clos network

In a way, cloud data centers and the increasing adaptions in other networks are where network

automation becomes a necessity for the speed, flexibility, and reliability automation can provide.

If we follow the traditional way of managing network devices via a Terminal and command-line

interface, the number of engineering hours required will not allow the service to be available in

a reasonable amount of time. Not to mention that human repetition is error-prone, inefficient,

and a terrible waste of engineering talent. To add further complexity, there is often the need to

quickly change some of the network configurations to accommodate rapidly changing business

needs, such as redesigning a three-tier campus network into a CLOS-based topology.

Personally, cloud data center networking is where I started my path of network automation with

Python several years ago, and I’ve never looked back since.

Edge data centers
If we have sufficient computing power at the data center level, why keep anything else but at

these data centers? All the connections from clients worldwide can be routed back to the data

center servers, and we can call it a day, right? The answer, of course, depends on the use case. The

most significant limitation in routing the request and session all the way back from the client to

a large data center is the latency introduced in the transport. In other words, significant latency

is where the network becomes a bottleneck.

Of course, any elementary physics textbook can tell you that the network latency number would

never be zero: even as fast as light can travel in a vacuum, it still takes time for physical transpor-

tation. In the real world, latency would be much higher than light in a vacuum. Why? Because

the network packet must traverse through multiple networks, sometimes through an undersea

cable, slow satellite links, 4G or 5G cellular links, or Wi-Fi connections.

Review of TCP/IP Protocol Suite and Python8

How can we reduce network latency? One solution would be to reduce the number of networks

the end-user requests traverse through. We can try to be as closely connected to the end-user as

possible, perhaps meeting the user at the edge where the requests enter our network. We can

place enough resources at these edge locations to serve the request. This is especially common

for servicing media content such as music and videos.

Let’s take a minute and imagine that you are building the next generation of video streaming

services. To increase customer satisfaction with smooth streaming, you would want to place

the video server as close to the customer as possible, either inside or very near to the customer’s

ISP. Also, for redundancy and connection speed, the upstreaming of the video server farm would

not just be connected to one or two ISPs, but all the ISPs that we can connect to reduce the hop

count, thus reducing the number of devices we need to pass thru. All the connections would have

as much bandwidth as needed to decrease peak-hour latency. This need gave rise to the peering

exchange’s edge data centers of big ISP and content providers. Even when the number of network

devices is not as high as cloud data centers, they too can benefit from network automation in

terms of the increased reliability, flexibility, security, and visibility network automation brings.

If we extend the concept of edge nodes and get creative, we can see that some of the latest tech-

nologies, such as self-driving cars and Software-Defined Wide-Area-Networks (SD-WANs)

are also applications of edge nodes. The self-driving car needs to make split-second decisions

based on its sensors. SD-WAN routers need to route packets locally, without the need to consult

a central “brain.” These are all concepts of intelligent edge nodes.

As with many complex subjects, we can tackle the complexity by dividing the subject into smaller

digestible pieces. Networking breaks the complexity by using layers to model the functions of its

elements. Over the years, there have been different networking models. We will look at two of

the most important models in this book, starting with the OSI model.

The OSI model
No network book is complete without first going over the OSI model. The model is a conceptual

model that componentizes the telecommunication functions into different layers. The model

defines seven layers, and each layer sits independently on top of another one with defined struc-

tures and characteristics.

Chapter 1 9

For example, in the network layer, IP is located on top of the different data link layers, such as

Ethernet or frame relay. The OSI reference model is a good way to normalize different and diverse

technologies into a set of common languages that people can agree on. This greatly reduces the

scope for parties working on individual layers and allows them to look at specific tasks in depth

without worrying too much about compatibility:

Figure 1.3: OSI model

The OSI model was initially worked on in the late 1970s and was later published jointly by the

International Organization for Standardization (ISO), what is now known as the Telecommu-

nication Standardization Sector of the International Telecommunication Union (ITU-T). It is

widely accepted and commonly referred to when introducing a new topic in telecommunication.

Around the same time as the OSI model development, the Internet was taking shape. The reference

model the original designer used for the Internet is often referred to as the TCP/IP model. The TCP

and the IP were the original protocol suites contained in the design. This is somewhat similar to the

OSI model in the sense that they divide end-to-end data communication into abstraction layers.

Review of TCP/IP Protocol Suite and Python10

What is different in the TCP/IP model is it combines layers 5 to 7 in the OSI model in the Appli-

cation layer, while the Physical and Data link layers are combined in the Link layer:

Figure 1.4: Internet protocol suite

Both the OSI and TCP/IP models are useful for providing standards for end-to-end data com-

munication. We will refer to either the OSI or the TCP/IP model when needed, such as when we

are discussing the web framework in the upcoming chapters. Just like models at the transport

layer, there are also reference models that govern communication at the application level. In the

modern network, the client-server model is what most applications are based on. We will look

at the client-server model in the next section.

The client-server model
The client-server reference models demonstrated a standard way for data to communicate between

two nodes. Of course, by now, we all know that not all nodes are created equal. Even in the earliest

Advanced Research Projects Agency Network (ARPANET) days, there were workstation nodes,

and there were server nodes with the purpose of providing content to other workstation nodes.

Chapter 1 11

These server nodes typically have higher hardware specifications and are managed more closely

by engineers. Since these nodes provide resources and services to others, they are appropriately

referred to as servers. Servers typically sit idle, waiting for clients to initiate requests for their

resources. This model of distributed resources that are requested by the client request is referred

to as the client-server model.

Why is this important? If you think about it for a minute, the importance of networking is greatly

highlighted by this client-server model. Without the need to transfer services between clients and

servers, there is not a lot of need for network interconnections. It is the need to transfer bits and

bytes from the client to the server that shines a light on the importance of network engineering.

Of course, we are all aware of how the biggest network of them all, the Internet, has been trans-

forming the lives of all of us and is continuing to do so.

You might be asking, how can each node determine the time, speed, source, and destination every

time they need to talk to each other? This brings us to network protocols.

Network protocol suites
In the early days of computer networking, protocols were proprietary and closely controlled by the

company that designed the connection method. If you were using Novell’s IPX/SPX protocol in

your hosts, the same hosts would not be able to communicate with Apple’s AppleTalk hosts, and

vice versa. These proprietary protocol suites generally have analogous layers to the OSI reference

model and follow the client-server communication method but are not compatible with each

other. The proprietary protocols generally only work in LANs that are closed, without the need

to communicate with the outside world. When traffic does need to move beyond the local LAN,

typically a protocol translation device, such as a router, is used to translate from one protocol to

another. For example, to connect an AppleTalk-based network to the Internet, a router would

be used to connect and translate the AppleTalk protocol to an IP-based network. The additional

translation is usually not perfect, but since most of the communication happened within the LAN

in the early days, it was accepted by the network administrators.

However, as the need for inter-network communication rises beyond the LAN, the need for stan-

dardizing the network protocol suites becomes greater. The proprietary protocols eventually gave

way to the standardized protocol suites of TCP, UDP, and IP, which greatly enhanced the ability

of one network to talk to another. The Internet, the greatest network of them all, relies on these

protocols to function properly. In the next few sections, we will look at each of the protocol suites.

Review of TCP/IP Protocol Suite and Python12

The transmission control protocol
TCP is one of the main protocols used for the Internet today. If you have opened a web page or

have sent an email, you have come across the TCP protocol. The protocol sits at layer 4 of the OSI

model, and it is responsible for delivering the data segment between two nodes in a reliable and

error-checked manner. The TCP consists of a 160-bit header that contains, among other fields,

source and destination ports, a sequence number, an acknowledgment number, control flags,

and a checksum:

Figure 1.5: TCP header

Functions and characteristics of TCP
TCP uses datagram sockets or ports to establish host-to-host communication. The standard

body, called the Internet Assigned Numbers Authority (IANA), designates well-known ports

to indicate certain services, such as port 80 for HTTP (web) and port 25 for SMTP (mail). The

server in the client-server model typically listens on one of these well-known ports in order to

receive communication requests from the client. The TCP connection is managed by the operating

system with the socket representing the local endpoint for the connection.

The protocol operation consists of a state machine, which the machine needs to keep track of

when it is listening for an incoming connection during the communication session, as well as

releasing resources once the connection is closed. Each TCP connection goes through a series of

states such as Listen, SYN-SENT, SYN-RECEIVED, ESTABLISHED, FIN-WAIT, CLOSE-WAIT, CLOSING,

LAST-ACK, TIME-WAIT, and CLOSED. The different states help in managing the TCP messages.

TCP messages and data transfer
The biggest difference between TCP and UDP, which is its close cousin on the same layer, is that

it transmits data in an ordered and reliable fashion. The fact that the TCP operation guarantees

delivery is often referred to TCP as a connection-oriented protocol. It does this by first establishing

a three-way handshake to synchronize the sequence number between the transmitter and the

receiver, SYN, SYN-ACK, and ACK.

Chapter 1 13

The acknowledgment is used to keep track of subsequent segments in the conversation. Finally,

at the end of the conversation, one side will send a FIN message, and the other side will ACK the

FIN message as well as sending a FIN message of its own. The FIN initiator will then ACK the FIN

message that it received.

As many of us who have troubleshot a TCP connection can tell you, the operation can get quite

complex. One can certainly appreciate that, most of the time, the operation just happens silently

in the background.

A whole book could be written about the TCP protocol; in fact, many excellent books have been

written on the protocol.

As this section is a quick overview, if interested, The TCP/IP Guide (http://www.tcpipguide.com)

is an excellent free resource that you can use to dig deeper into the subject.

The user datagram protocol
The UDP is also a core member of the protocol suites used. Like TCP, it operates on layer 4 of the

OSI model that is responsible for delivering data segments between the application and the IP

layer. Unlike TCP, the header is only 64 bits, which only consists of a source and destination port,

length, and checksum. The lightweight header makes it ideal for applications that prefer faster

data delivery without setting up the session between two hosts or needing reliable data delivery.

Perhaps it’s hard to imagine with today’s fast internet connections, but the lightweight header

made a big difference to the speed of transmission in the early days of X.21 and frame relay links.

Besides the speed difference, not having to maintain various states, such as TCP, also saves com-

puter resources on the two endpoints:

Figure 1.6: UDP header

You might now wonder why UDP was ever used at all in the modern age; given the lack of re-

liable transmissions, wouldn’t we want all the connections to be reliable and error-free? If you

think about multimedia video streaming or Skype calls, those applications benefit from a lighter

header when the application just wants to deliver the datagram as quickly as possible. You can

also consider the fast Domain Name System (DNS) lookup process based on the UDP protocol.

The tradeoff between accuracy and latency usually tips to the side of low latency.

http://www.tcpipguide.com

Review of TCP/IP Protocol Suite and Python14

When the address you type in on the browser is translated into a computer-understandable ad-

dress, the user will benefit from a lightweight process, since this has to happen before even the

first bit of information is delivered to you from your favorite website.

Again, this section does not do justice to the topic of UDP, and you are encouraged to explore the

topic through various resources if you are interested in learning more about UDP.

The Wikipedia article on UDP, https://en.wikipedia.org/wiki/User_Datagram_Protocol, is

a good starting point to learn more about UDP.

The Internet protocol
As network engineers will tell you, we live at the IP layer, which is layer 3 on the OSI model. IP has

the job of addressing and routing between end nodes, among others. The addressing of an IP is

probably its most important job. The address space is divided into two parts: the network and the

host portion. The subnet mask is used to indicate which portion in the network address consists

of the network and which portion is the host by matching the network portion with a 1 and the

host portion with a 0. IPv4 expresses the address in the dotted notation, for example, 192.168.0.1.

The subnet mask can either be in a dotted notation (255.255.255.0) or use a forward slash to

express the number of bits that should be considered in the network bit (255.255.255.0 or /24):

Figure 1.7: IPv4 header

The IPv6 header, the next generation of the IP header of IPv4, has a fixed portion and various

extension headers:

Figure 1.8: IPv6 header

https://en.wikipedia.org/wiki/User_Datagram_Protocol

Chapter 1 15

The IPv6 Next Header field in the fixed header section can indicate an extension header to be

followed that carries additional information. It can also identify the upper-layer protocol such as

TCP and UDP. The extension headers can include routing and fragment information. For example,

the extension header can include how the original packet is fragmented so the destination node

can reassemble the packet accordingly. As much as the protocol designer would like to move

from IPv4 to IPv6, the Internet today is still mainly addressed with IPv4, with some of the service

provider networks addressed with IPv6 natively.

IP network address translation (NAT) and network security
NAT is typically used for translating a range of private IPv4 addresses into publicly routable IPv4

addresses. But it can also mean a translation between IPv4 and IPv6, such as at a carrier edge

when they use IPv6 inside of the network that needs to be translated to IPv4 when the packet

leaves the network. Sometimes, NAT6 to IPv6 is used as well for security reasons.

Security is a continuous process that integrates all the aspects of networking, including auto-

mation and Python. This book aims to use Python to help you manage the network; security will

be addressed as part of the following chapters in the book, such as using Python to implement

access lists, search for breaches in the log, and so on. We will also look at how we can use Python

and other tools to gain visibility in the network, such as a graphic network topology dynamically

based on the network device information.

IP routing concepts
IP routing is about having the intermediate devices between the two endpoints transmit the pack-

ets between them based on the IP header. For all communication that happens on the Internet,

the packet will traverse through various intermediate devices. As mentioned, the intermediate

devices consist of routers, switches, optical gears, and various other gears that might not examine

beyond the network and transport layer. In a road trip analogy, you might travel in the United

States from the city of San Diego in California to the city of Seattle in Washington. The IP source

address is analogous to San Diego and the destination IP address can be thought of as Seattle.

On your road trip, you will stop by many different intermediate spots, such as Los Angeles, San

Francisco, and Portland; these can be thought of as the intermediary routers and switches be-

tween the source and destination.

Why was this important? In a way, this book is about managing and optimizing these intermediate

devices. In the age of mega data centers that span the size of multiple American football fields,

the need for efficient, agile, reliable, and cost-effective ways to manage the network becomes a

major point of competitive advantage for companies. In future chapters, we will dive into how

we can use Python programming to effectively manage a network.

Review of TCP/IP Protocol Suite and Python16

Now that we’ve looked at network reference models and protocol suites, we’re ready to dive into

the Python language itself. In this chapter, we’ll begin with a broad overview of Python.

Python language overview
In a nutshell, this book is about making our network engineering lives easier with Python. But

what is Python and why is it the language of choice of many DevOps engineers? In the words of

the Python Foundation Executive Summary (https://www.python.org/doc/essays/blurb/):

If you are somewhat new to programming, the “object-oriented,” and “dynamic semantics” men-

tioned in the summary probably do not mean much to you. But I think we can all agree that

“rapid application development” and “simple, easy-to-learn syntax” sound good. Python, as an

interpreted language, means there is little to no compilation process required before execution,

so the time needed to write, test, and edit Python programs is significantly reduced. For simple

scripts, if your script fails, a print statement could be all you need to troubleshoot the issue.

Using the interpreter also means that Python is easily ported to different operating systems,

such as Windows and Linux. A Python program written on one operating system can be used on

another with little to no change.

The functions, modules, and packages encourage code reuse by breaking a large program into

simple reusable pieces. The object-oriented nature of Python takes it one step further for grouping

the components into objects. In fact, all Python files are modules that can be reused or import-

ed into another Python program. This makes it easy to share programs between engineers and

encourages code reuse. Python also has a batteries-included mantra, which means for everyday

tasks, you need not download any additional packages outside of the Python language itself. To

achieve this goal without the code being too bloated, a set of Python modules, a.k.a. standard

libraries, are installed when you install the Python interpreter. For common tasks such as regular

expressions, mathematical functions, and JSON decoding, all you need is the import statement,

and the interpreter will move those functions into your program. This batteries-included mantra

is what I would consider one of the killer features of the Python language.

”Python is an interpreted, object-oriented, high-level programming language with

dynamic semantics. Its high-level, built-in data structure, combined with dynamic

typing and dynamic binding, makes it very attractive for Rapid Application De-

velopment, as well as for use as a scripting or glue language to connect existing

components together. Python’s simple, easy-to-learn syntax emphasizes readability

and therefore reduces the cost of program maintenance.”

https://www.python.org/doc/essays/blurb/

Chapter 1 17

Lastly, the fact that Python code can start in a relatively small-sized script with a few lines of code

and grow into a complete production system is convenient for network engineers. As many of us

know, the network typically grows organically without a master plan. A language that can grow

with your network is invaluable. You might be surprised to see that a language deemed a scripting

language by many is being used for whole production systems of many cutting-edge companies

(organizations using Python: https://wiki.python.org/moin/OrganizationsUsingPython).

If you have ever worked in an environment where you must switch between working on different

vendor platforms, such as Cisco IOS and Juniper Junos, you know how painful it is to switch be-

tween syntaxes and usage when trying to achieve the same task. Since Python is flexible enough

for both small and large programs, there is no such dramatic context switching. It is just the same

Python code from small to large!

For the rest of the chapter, we will take a high-level tour of the Python language. If you are already

familiar with the basics, feel free to quickly scan through it or skip ahead to Chapter 2.

Python versions
As many readers will already be aware, Python has been going through a transition from Python

2 to Python 3 for the last few years. Python 3 was released in 2008, over 10 years ago, with ac-

tive development, with the most recent release of 3.10. Unfortunately, Python 3 is not backward

compatible with Python 2.

At the time of writing the fourth edition of this book, in mid-2022, the Python community has all

but moved over to Python 3. In fact, Python 2 officially entered end-of-life as of January 1, 2020.

The latest Python 2.x release, 2.7, was released over six years ago in mid-2010. Since Python 2

is end-of-life and is no longer maintained by the Python Software Foundation, we should all

be using Python 3. In this book, we will be using the latest stable Python 3 release, Python 3.10.

Python 3.10 has many exciting features, such as a stable asynchronous I/O that is very helpful in

network automation. This book will use Python 3 for the code examples unless otherwise stated.

When applicable, we will point out the Python 2 and Python 3 differences.

Operating system
As mentioned, Python is cross-platform. Python programs can be run on Windows, Mac, and Linux.

In reality, certain care needs to be taken when you need to ensure cross-platform compatibilities,

such as taking care of the subtle differences between backslashes in Windows filenames and the

steps to activate Python virtual environments on different operating systems. Since this book

is written for DevOps, systems, and network engineers, Linux is the preferred platform for the

intended audience, especially in production.

https://wiki.python.org/moin/OrganizationsUsingPython

Review of TCP/IP Protocol Suite and Python18

The code in this book will be tested on Linux Ubuntu 22.04 LTS machines. As of this writing,

Python 3.10.4 is the default version that ships with 22.04, so we do not need to install Python 3

separately. I will also try my best to make sure the code runs the same on the Windows and the

macOS platforms.

If you are interested in the OS details, they are as follows:

$ uname -a

Linux network-dev-4 5.15.0-39-generic #42-Ubuntu SMP Thu Jun 9 23:42:32
UTC 2022 x86_64 x86_64 x86_64 GNU/Linux

$ lsb_release -a

No LSB modules are available.

Distributor ID:	 Ubuntu

Description:	 Ubuntu 22.04 LTS

Release:	 22.04

Codename:	 jammy

Running a Python program
Python programs are executed by an interpreter, which means the code is fed through this inter-

preter to be executed by the underlying operating system. There are several different implemen-

tations of the interpreter by the Python development community, such as IronPython and Jython.

In this book, we will use the most common Python interpreter today, CPython. Whenever we

mention Python in this book, we refer to CPython unless otherwise indicated.

One way you can use Python is by taking advantage of the interactive prompt. This is useful when

you want to quickly test a piece of Python code or concept without writing a whole program.

This is typically done by simply typing in the Python3 keyword:

$ python3

Python 3.10.4 (main, Apr 2 2022, 09:04:19) [GCC 11.2.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> print("hello world")

hello world

The interactive mode is one of Python’s most useful features. In the interactive shell, you can type

any valid statement or sequence of statements and immediately get a result back. I typically use

the interactive shell to explore a feature or library that I am not familiar with.

Chapter 1 19

The interactive mode can also be used for more complex tasks such as experimenting with data

structure behaviors, for example, mutable versus immutable data types. Talk about instant grat-

ification!

On Windows, if you do not get a Python shell prompt back, you might not have the program in

your system search path. The latest Windows Python installation program provides a checkbox

for adding Python to your system path; make sure that is checked during installation. Or, you can

add the program to the path manually by going to Environment settings.

A more common way to run the Python program, however, is to save your Python file and run it

via the interpreter after. This will save you from typing in the same statements repeatedly. Python

files are just regular text files typically saved with the .py extension. In the *Nix world, you can

also add the shebang (#!) line on top to specify the interpreter that will be used to run the file.

The # character can be used to specify comments that will not be executed by the interpreter. The

file helloworld.py has the following statements:

This is a comment

print("hello world")

This can be executed as follows:

$ python helloworld.py

hello world

Let us take a look at the basic Python building structures, built-in data types.

Python built-in types
In computer programming, data types typically refer to a way for the computer program to know

the kind of value a variable can have, such as a word or a number. Python implements dynamic

typing, or duck typing, and tries to determine the object’s type as you declare it automatically.

Python has several standard types built into the interpreter:

•	 Numerics: int, float, complex, and bool (the subclass of int with a True or False value)

•	 Sequences: str, list, tuple, and range

•	 Mappings: dict

•	 Sets: set and frozenset

•	 None: The null object

We will briefly examine the different types in Python. If they do not make sense to you at this mo-

ment, they might make more sense when we apply them in examples in the section that follows.

Review of TCP/IP Protocol Suite and Python20

The None type
The None type denotes an object with no value. The None type is returned in functions that do

not explicitly return anything such as a function but just do some math calculation and exit. The

None type is also used in function arguments to error out if the caller does not pass in an actual

value. For example, we can specify in a function ‘if a==None, raise an error’.

Numerics
Python numeric objects are basically numbers. With the exception of Booleans, the numeric

types of int, long, float, and complex are all signed, meaning they can be positive or negative.

A Boolean is a subclass of the integer, which can be one of two values: 1 for True, and 0 for False.

In practice, we are almost always testing Booleans with True or False instead of the numerics 1

and 0. The rest of the numeric types are differentiated by how precisely they can represent the

number; in Python 3, int does not have a maximum size while in Python 2 int indicates whole

numbers with a limited range. Floats are numbers using the double-precision representation

(64-bit) on the machine.

Sequences
Sequences are ordered sets of objects with an index of non-negative integers. Since there are many

different sequence types in Python (str, lists, tuple, etc), let us use the interactive interpreter to

illustrate the different sequence types.

Please feel free to type along on your own computer.

Sometimes, it surprises people that string (think of words) is a sequence type. But if you look

closely, strings are a series of characters put together. Strings are enclosed by either single, double,

or triple quotes.

Note in the following examples, the quotes must match. A beginning double quote needs to be

matched with an ending double quote. Triple quotes allow the string to span different lines:

>>> a = "networking is fun"

>>> b = 'DevOps is fun too'

>>> c = """what about coding?

... super fun!"""

>>>

The other two commonly used sequence types are lists and tuples. Lists are sequences of arbitrary

objects. Lists can be created by enclosing objects in square brackets. Just like strings, lists are

indexed by non-zero integers that start at zero.

Chapter 1 21

The values of a list are retrieved by referencing the index number:

>>> vendors = ["Cisco", "Arista", "Juniper"]

>>> vendors[0]

'Cisco'

>>> vendors[1]

'Arista'

>>> vendors[2]

'Juniper'

Tuples are like lists, created by enclosing values in parentheses. Like lists, the values in the tuple

are retrieved by referencing its index number. Unlike lists, the values cannot be modified after

creation:

>>> datacenters = ("SJC1", "LAX1", "SFO1")

>>> datacenters[0]

'SJC1'

>>> datacenters[1]

'LAX1'

>>> datacenters[2]

'SFO1'

Some operations are common to all sequence types, such as returning an element by index. A

sequence can also be sliced for a portion of its elements:

>>> a

'networking is fun'

>>> a[1]

'e'

>>> vendors

['Cisco', 'Arista', 'Juniper']

>>> vendors[1]

'Arista'

>>> datacenters

('SJC1', 'LAX1', 'SFO1')

>>> datacenters[1]

'LAX1'

>>>

>>> a[0:2]

'ne'

Review of TCP/IP Protocol Suite and Python22

>>> vendors[0:2]

['Cisco', 'Arista']

>>> datacenters[0:2]

('SJC1', 'LAX1')

>>>

Remember that the index starts at 0. Therefore, the index of 1 is the second element in the sequence.

There are also common functions that can be applied to sequence types, such as checking the

number of elements and finding the minimum and maximum values amongst all the elements:

>>> len(a)

17

>>> len(vendors)

3

>>> len(datacenters)

3

>>>

>>> b = [1, 2, 3, 4, 5]

>>> min(b)

1

>>> max(b)

5

There are various methods that are applicable only to strings. It is worth noting that these methods

do not modify the underlying string data itself and always return a new string. In short, mutable

objects such as lists and dictionaries can be changed after creation, and immutable objects, for

example, strings, cannot. If you want to use the new returned value for other operations, you will

need to catch the return value and assign it to a different variable:

>>> a

'networking is fun'

>>> a.capitalize()

'Networking is fun'

>>> a.upper()

'NETWORKING IS FUN'

>>> a

'networking is fun'

>>> b = a.upper()

>>> b

Chapter 1 23

'NETWORKING IS FUN'

>>> a.split()

['networking', 'is', 'fun']

>>> a

'networking is fun'

>>> b = a.split()

>>> b

['networking', 'is', 'fun']

>>>

Here are some of the common methods for a list. The Python list data type is a very useful struc-

ture in terms of putting multiple items together and iterating through them one at a time. For

example, we can make a list of data center spine switches and apply the same access list to all

of them by iterating through them one by one. Since a list’s value can be modified after creation

(unlike tuples), we can also expand and contract the existing list as we move along the program:

>>> routers = ['r1', 'r2', 'r3', 'r4', 'r5']

>>> routers.append('r6')

>>> routers

['r1', 'r2', 'r3', 'r4', 'r5', 'r6']

>>> routers.insert(2, 'r100')

>>> routers

['r1', 'r2', 'r100', 'r3', 'r4', 'r5', 'r6']

>>> routers.pop(1)

'r2'

>>> routers

['r1', 'r100', 'r3', 'r4', 'r5', 'r6']

Python lists are great for storing data, but it is a bit tricky at times to keep track of data if we need

to reference it by location. If that is an issue, we can use a different Python data type. Let’s look

at Python mapping type next.

Mapping
Python provides one mapping type, called the dictionary. The dictionary data type is what I think

of as a poor man’s database because it contains objects that can be indexed by keys. This is often

referred to as an associated array or hashing table in other programming languages. If you have

used any of the dictionary-like objects in other languages, you will know how powerful this type

can be, because you can refer to the object with a human-readable key.

Review of TCP/IP Protocol Suite and Python24

This key, instead of just a number, will make much more sense to the poor guy who is trying to

maintain and troubleshoot the code. That guy could be you only a few months after you wrote

the code, trying to troubleshoot the code at 2 AM.

The object in the dictionary value can also be another data type, such as a list. As we have used

square brackets for lists and round braces for tuples, we use curly braces to create a dictionary.

Here is an example of how we can use a dictionary to represent our data center devices:

>>> datacenter1 = {'spines': ['r1', 'r2', 'r3', 'r4']}

>>> datacenter1['leafs'] = ['l1', 'l2', 'l3', 'l4']

>>> datacenter1

{'leafs': ['l1', 'l2', 'l3', 'l4'], 'spines': ['r1',

'r2', 'r3', 'r4']}

>>> datacenter1['spines']

['r1', 'r2', 'r3', 'r4']

>>> datacenter1['leafs']

['l1', 'l2', 'l3', 'l4']

The Python dictionary is one of my favorite data containers to use in network scripts and I use

it all the time. However, there are other data containers that can come in handy in different use

cases – a set is one of them.

Sets
A set is used to contain an unordered collection of objects. Unlike lists and tuples, sets are unor-

dered and cannot be indexed by numbers. But there is one character that makes sets stand out

as useful: the elements of a set are never duplicated. Imagine you have a list of IPs that you need

to put in an access list. The only problem with this list of IPs is that they are full of duplicates.

Now, think about how many lines of code you would use to loop through the list of IPs to sort out

unique items, one at a time. Now consider this: the built-in set type would allow you to eliminate

duplicate entries with just one line of code. Personally, the Python set data type is not used that

much in my code, but when I need it, I am always very thankful it exists. Once the set or sets are

created, they can be compared with each other using the union, intersection, and differences:

>>> a = "hello"

Use the built-in function set() to convert the string to a set

>>> set(a)

{'h', 'l', 'o', 'e'}

>>> b = set([1, 1, 2, 2, 3, 3, 4, 4])

Chapter 1 25

>>> b

{1, 2, 3, 4}

>>> b.add(5)

>>> b

{1, 2, 3, 4, 5}

>>> b.update(['a', 'a', 'b', 'b'])

>>> b

{1, 2, 3, 4, 5, 'b', 'a'}

>>> a = set([1, 2, 3, 4, 5])

>>> b = set([4, 5, 6, 7, 8])

>>> a.intersection(b)

{4, 5}

>>> a.union(b)

{1, 2, 3, 4, 5, 6, 7, 8}

>>> 1 *

{1, 2, 3}

Now that we have looked at different data types, we will take a tour of Python operators next.

Python operators
Python has some numeric operators that you would expect from any programming language, such

as +, -, and so on; note that the truncating division (//, also known as floor division) truncates

the result to an integer and a floating-point but only the integer value is returned. The modulo

(%) operator returns the remainder value in the division:

>>> 1 + 2

3

>>> 2 - 1

1

>>> 1 * 5

5

>>> 5 / 1 #returns float

5.0

>>> 5 // 2 # // floor division

2

>>> 5 % 2 # modulo operator

1

Review of TCP/IP Protocol Suite and Python26

There are also comparison operators. Note the double equals sign is used for comparison and a

single equals sign is used for variable assignment:

>>> a = 1

>>> b = 2

>>> a == b

False

>>> a > b

False

>>> a < b

True

>>> a <= b

True

We can also use two of the common membership operators to test whether an object is in a

sequence type:

>>> a = 'hello world'

>>> 'h' in a

True

>>> 'z' in a

False

>>> 'h' not in a

False

>>> 'z' not in a

True

The Python operators allow us to perform simple operations efficiently. In the next section, we

will look at how we can use control flows to repeat these operations.

Python control flow tools
The if, else, and elif statements control conditional code execution. Unlike some other pro-

gramming languages, Python uses indentation to structure blocks. There can be any number of

indentation spaces as long as they align. Common practice is typically to use 2 or 4 spaces. The

format of the conditional statement is as follows:

if expression:

 do something

elif expression:

 do something if the expression meets

Chapter 1 27

elif expression:

 do something if the expression meets

...

else:

 statement

Here is a simple example:

>>> a = 10

>>> if a > 1:

... print("a is larger than 1")

... elif a < 1:

... print("a is smaller than 1")

... else:

... print("a is equal to 1")

...

a is larger than 1

>>>

The while loop will continue to execute until the condition is False, so be careful with this one

if you don’t want to continue to execute (and crash your process):

while expression:

 do something

>>> a = 10

>>> b = 1

>>> while b < a:

... print(b)

... b += 1

...

1

2

3

4

5

6

7

8

9

Review of TCP/IP Protocol Suite and Python28

The for loop works with any object that supports iteration; this means all the built-in sequence

types, such as lists, tuples, and strings, can be used in a for loop. The letter i in the following

for loop is an iterating variable, so you can typically pick something that makes sense within the

context of your code:

for i in sequence:

 do something

>>> a = [100, 200, 300, 400]

>>> for number in a:

... print(number)

...

100

200

300

400

Now that we have looked at Python data types, operators, and control flows, we are ready to group

them together into reusable code pieces called functions.

Python functions
Often times when you find yourself copying and pasting some pieces of code, it is a good sign

you should break it up into self-contained chunks of functions. This practice allows for better

modularity, is easier to maintain, and allows for code reuse. Python functions are defined by using

the def keyword with the function name, followed by the function parameters. The body of the

function consists of the Python statements that are to be executed. At the end of the function,

you can choose to return a value to the function caller. By default, it will return the None object

if you do not specify a return value:

def name(parameter1, parameter2):

 statements

 return value

We will see a lot more examples of functions in the following chapters, but here is a quick example.

In the following example, we use positional parameters, so the first element is referred to by the

first variable in the function. Another way of referring to parameters is keywords with default

values, such as def subtract(a=10, b=5):

>>> def subtract(a, b):

... c = a - b

Chapter 1 29

... return c

...

>>> result = subtract(10, 5)

>>> result

5

Python functions are great for grouping tasks together. Can we group different functions into a

bigger piece of reusable code? Yes, we can do that via Python classes.

Python classes
Python is an object-oriented programming (OOP) language. The way Python creates objects is

with the class keyword. A Python object is most commonly a collection of functions (methods),

variables, and attributes (properties). Once a class is defined, you can create instances of the class.

The class serves as a blueprint for subsequent instances.

The topic of OOP is outside the scope of this chapter, but here is a simple example of a router

object definition to illustrate the point:

>>> class router(object):

... def __init__(self, name, interface_number, vendor):

... self.name = name

... self.interface_number = interface_number

... self.vendor = vendor

...

>>>

Once defined, we can create as many instances of that class as we’d like:

>>> r1 = router("SFO1-R1", 64, "Cisco")

>>> r1.name

'SFO1-R1'

>>> r1.interface_number

64

>>> r1.vendor

'Cisco'

>>>

>>> r2 = router("LAX-R2", 32, "Juniper")

>>> r2.name

'LAX-R2'

Review of TCP/IP Protocol Suite and Python30

>>> r2.interface_number

32

>>> r2.vendor

'Juniper'

>>>

Of course, there is a lot more to Python objects and OOP. We will look at more examples in future

chapters.

Python modules and packages
Any Python source file can be used as a module and any functions and classes you define in that

source file can be reused by other Python scripts. To load the code, the file referencing the module

needs to use the import keyword. Three things happen when the file is imported:

1.	 The file creates a new namespace for the objects defined in the source file.

2.	 The caller executes all the code contained in the module.

3.	 The file creates a name within the caller that refers to the module being imported. The

name matches the name of the module.

Remember the subtract() function that we defined using the interactive shell? To reuse the

function, we can put it into a file named subtract.py:

def subtract(a, b):

 c = a - b

 return c

In a file within the same directory of subtract.py, you can start the Python interpreter and

import this function:

>>> import subtract

>>> result = subtract.subtract(10, 5)

>>> result

5

This works because, by default, Python will first search for the current directory for the available

modules. Remember the standard library that we mentioned a while back? You guessed it, those

are just Python files being used as modules.

If you are in a different directory, you can manually add a search path location using the sys

module with sys.path.

Chapter 1 31

Can we group multiple modules together in Python? Yes, Python packages allow a collection of

modules to be grouped together. This further organizes Python modules for more namespace

protection and better reusability. A package is defined by creating a directory with a name you

want to use as the namespace, then placing the module source file under that directory.

In order for Python to recognize the directory as a Python package, just create a __init__.py file

in this directory. The __init__.py file can be an empty file. In the same example as the subtract.

py file, let’s say if you were to create a directory called math_stuff, we can create a __init__.py

file in the directory:

$ mkdir math_stuff

$ touch math_stuff/__init__.py

$ tree

.

 ├── helloworld.py

 └── math_stuff

 ├── __init__.py

 └── subtract.py

1 directory, 3 files

$

The way to refer to the module is to include the package name using dot notation, for example,

math_stuff.subtract:

>>> from math_stuff.subtract import subtract

>>> result = subtract(10, 5)

>>> result

5

>>>

As you can see, modules and packages are great ways to organize large code files and make sharing

Python code a lot easier.

Summary
In this chapter, we covered the OSI model and reviewed network protocol suites, such as TCP,

UDP, and IP. They work as the layers that handle the addressing and communication negotiation

between any two hosts. The protocols were designed with extensibility in mind and have largely

been unchanged from their original design. Considering the explosive growth of the internet,

that is quite an accomplishment.

Review of TCP/IP Protocol Suite and Python32

We also quickly reviewed the Python language, including built-in types, operators, control flows,

functions, classes, modules, and packages. Python is a powerful, production-ready language that

is also easy to read. This makes the language an ideal choice when it comes to network automa-

tion. Network engineers can leverage Python to start with simple scripts and gradually move on

to other advanced features.

In Chapter 2, Low-Level Network Device Interactions, we will start to look at using Python to pro-

grammatically interact with network equipment.

Join our book community
To join our community for this book – where you can share feedback, ask questions to the author,

and learn about new releases – follow the QR code below:

https://packt.link/networkautomationcommunity

https://packt.link/networkautomationcommunity

2
Low-Level Network Device
Interactions

In Chapter 1, Review of TCP/IP Protocol Suite and Python, we looked at the theories and specifications
behind network communication protocols. We also took a quick tour of the Python language. In
this chapter, we will start to dive deeper into the management of network devices using Python.
In particular, we will examine the different ways in which we can use Python to programmatically
communicate with legacy network routers and switches.

What do I mean by legacy network routers and switches? While it’s hard to imagine any network-
ing device coming out today without an application programming interface (API) for program-
matic communication, it is a known fact that many of the network devices deployed in previous
years did not contain API interfaces. The intended method of management for those devices was
through command-line interfaces (CLIs) using terminal programs, which were originally devel-
oped with a human engineer in mind. The management relied on the engineer’s interpretation
of the data returned from the device for appropriate action. As one can imagine, as the number
of network devices and the complexity of the network grew, it became increasingly difficult to
manually manage them one by one.

Python has several great libraries and frameworks that can help with these tasks, such as Pex-
pect, Paramiko, Netmiko, NAPALM, and Nornir, amongst others. It is worth noting that there are
several overlaps between these libraries in terms of code, dependencies, and the maintainers of
the projects. For example, the Netmiko library was created by Kirk Byers in 2014 based on the
Paramiko SSH library. Carl Montanari created the Scrapli library to take advantage of the latest
Python 3 asyncio concurrency features. In recent years, Kirk, Carl, David Barroso from the NA-
PALM project, and others teamed up to create the awesome Nornir framework to provide a pure
Python network automation framework.

Low-Level Network Device Interactions34

For the most part, the libraries are flexible enough to be used together or separately. For example,

Ansible (covered in Chapter 4, The Python Automation Framework – Ansible) uses both Paramiko

and Ansible-NAPALM as the underlying libraries for its network modules.

With so many libraries in existence today, it’s not possible to cover all of them in a reasonable

number of pages. In this chapter, we will cover Pexpect first, then move on with examples from

Paramiko. Once we understand the basics and operations of Paramiko, it is easy to branch out

to other libraries, such as Netmiko and NAPALM. In this chapter, we will take a look at the fol-

lowing topics:

•	 The challenges of the CLI

•	 Constructing a virtual lab

•	 The Python Pexpect library

•	 The Python Paramiko library

•	 Examples from other libraries

•	 The downsides of Pexpect and Paramiko

We have briefly discussed the shortfalls of managing network devices via the command-line

interface. It has proven to be ineffective in network management with even moderate-sized

networks. This chapter will introduce Python libraries that can work with that limitation. First,

let us discuss some of the challenges with the CLI in more detail.

The challenges of the CLI
I started my IT career at an ISP help desk back in the early 2000s. I remember watching the net-

work engineers typing in what seemed like cryptic commands into a text terminal. Like magic,

the network devices would then bend to their will and behave in the way they intended. In time,

I got to learn and embrace these magic commands that I could type into the terminal. As network

engineers, these CLI-based commands are like secret codes we share with each other in this world

we call network engineering. Manually typing in the command was just something we all had to

do to get the job done, no harm, no foul.

However, it was right around the year 2014 when we started to see the industry coming to a con-

sensus about the clear need to move away from manual, human-driven CLIs toward an automatic,

computer-centric automation API. Make no mistake, we still need to directly communicate with

the device when making network designs, bringing up an initial proof of concept, and deploying

the topology for the first time. However, once the network is deployed, the network management

requirement is now to consistently make the same changes reliably across all network devices.

Chapter 2 35

These changes need to be error-free, and the engineers need to repeat the steps without being

distracted or feeling tired. This requirement sounds like an ideal job for computers and our fa-

vorite programming language, Python.

Of course, if the network devices can only be managed with the command line, the main chal-

lenge becomes how we can replicate the previous manual interactions between the router and

the administrator automatically with a computer program. In the command line, the router

will output a series of information and will expect the administrator to enter a series of manual

commands based on the engineer’s interpretation of the output. For example, in a Cisco Inter-

network Operating System (IOS) device, you have to type in enable to get into a privileged mode,

and upon receiving the returned prompt with the # sign, you then type in configure terminal

in order to go into the configuration mode. The same process can further be expanded into the

interface configuration mode and routing protocol configuration mode. This is in sharp contrast

to a computer-driven, programmatic mindset. When the computer wants to accomplish a single

task, say, put an IP address on an interface, it wants to structurally give all the information to

the router at once, and it would expect a single yes or no answer from the router to indicate the

success or failure of the task.

The solution, as implemented by both Pexpect and Paramiko, is to treat the interactive process

as a child process and watch over the interaction between the child process and the destination

device. Based on the returned value, the parent process will decide the subsequent action, if any.

I am sure we are all anxious to get started on using the Python libraries, but first, we will need to

construct our network lab in order to have a network to test our code against. We will begin by

looking at different ways we can build our network labs.

Constructing a Virtual lab
Before we dive into the Python libraries and frameworks, let’s examine the options of putting

together a lab for the benefit of learning. As the old saying goes, “practice makes perfect” – we

need an isolated sandbox to safely make mistakes, try out new ways of doing things, and repeat

some of the steps to reinforce concepts that were not clear on the first try.

To put together a network lab, we basically have two options: physical devices or virtual devices.

Let’s look at the advantages and disadvantages of the respective options.

Low-Level Network Device Interactions36

Physical devices
This option consists of putting together a lab with physical network devices that you can see

and touch. If you are lucky enough, you might even be able to construct a lab that is an exact

replication of your production environment. The advantages and disadvantages of a physical

lab are as follows:

•	 Advantages: It is an easy transition from lab to production. The topology is easier to un-

derstand for managers and fellow engineers who can look at and work on the devices if

need be. The comfort level with physical devices is extremely high because of familiarity.

•	 Disadvantages: It is relatively expensive to pay for devices that will only be used in a

lab. Also, physical devices require engineering hours to rack and stack and are not very

flexible once constructed.

Virtual devices
Virtual devices are emulations or simulations of actual network devices. They are either provided

by the vendors or by the open source community. The advantages and disadvantages of virtual

devices are as follows:

•	 Advantages: Virtual devices are easier to set up, relatively cheap, and can make changes

to the topology quickly.

•	 Disadvantages: They are usually scaled-down versions of their physical counterparts.

Sometimes there are feature gaps between the virtual and the physical device.

Of course, deciding on a virtual or physical lab is a personal decision derived from a trade-off

between the cost, ease of implementation, and the risk of having a gap between lab and produc-

tion environments. In some of the places I have worked, the virtual lab was used when doing an

initial proof-of-concept, while the physical lab was used when we moved closer to the final design.

In my opinion, as more and more vendors decide to produce virtual appliances, the virtual lab

is the way to proceed in a learning environment. The feature gap of the virtual appliance is rela-

tively small and specifically documented, especially when the virtual instance is provided by the

vendor. The cost of the virtual appliance is relatively small compared to buying physical devices.

The time to build using virtual devices is much shorter because they are just software programs.

For this book, I will use a combination of physical and virtual devices for concept demonstration,

with a preference for virtual devices. For the examples we will see, the differences should be trans-

parent. If there are any known differences between the virtual and physical devices pertaining to

our objectives, I will make sure to list them.

Chapter 2 37

For the code examples in the book, I will try to make the network topology as simple as possible

while still being able to demonstrate the concept at hand. Each virtual network usually consists of

not more than a few nodes, and we will reuse the same virtual network for multiple labs if possible.

For the examples in this book, I will utilize Cisco Modeling Labs, https://www.cisco.com/c/en/

us/products/cloud-systems-management/modeling-labs/index.html, as well as other virtual

platforms, such as Arista vEOS. As we will see in the next section, Cisco provides CML in both a

paid version and a free, hosted version on Cisco DevNet (https://developer.cisco.com/site/

devnet/) based on availability. The use of CML is optional. You can use any lab devices you have,

but it might make it easier to follow along with the book examples. Also worth noting is that

Cisco has strict software license requirements for device images, so by purchasing or using the

free hosted CML, you will be less likely to violate their software license requirements.

Cisco modeling labs
I remember when I first started to study for my Cisco Certified Internetwork Expert (CCIE) lab

exam, I purchased some used Cisco equipment from eBay to study with. Even with a used equip-

ment discount, each router and switch still cost hundreds of US dollars. To save money, I purchased

some really outdated Cisco routers from the 1980s (search for Cisco AGS routers in your favorite

search engine for a good chuckle), which significantly lacked features and horsepower, even for

lab standards. As much as it made for an interesting conversation with family members when I

turned them on (they were really loud), putting the physical devices together was not fun. They

were heavy and clunky, and it was a pain to connect all the cables, and to introduce link failure,

I would literally have to unplug a cable.

Fast-forward a few years. Dynamips was created, and I fell in love with how easy it was to create

different network scenarios. This was especially important when trying to learn a new concept. All

I needed was the IOS images from Cisco and a few carefully constructed topology files, and I could

easily build a virtual network to test my knowledge on. I had a whole folder of network topologies,

pre-saved configurations, and different versions of images, as called for by different scenarios.

The addition of a GNS3 frontend gave the whole setup a beautiful GUI facelift. With GNS3, you

can just click and drop your links and devices; you can even print out the network topology for

your manager or client right out of the GNS3 design panel. The only disadvantage of GNS3 was

the tool not being officially blessed by Cisco, and the perceived lack of credibility because of it.

In 2015, the Cisco community decided to fulfill this need by releasing the Cisco Virtual Internet

Routing Lab (VIRL), https://learningnetwork.cisco.com/s/virl. This quickly became my

go-to tool as the network lab when developing, learning, and practicing network automation code.

https://www.cisco.com/c/en/us/products/cloud-systems-management/modeling-labs/index.html
https://www.cisco.com/c/en/us/products/cloud-systems-management/modeling-labs/index.html
https://developer.cisco.com/site/devnet/
https://developer.cisco.com/site/devnet/
https://learningnetwork.cisco.com/s/virl

Low-Level Network Device Interactions38

A few years after the introduction of VIRL, Cisco released Cisco Modeling Labs (CML), https://

developer.cisco.com/modeling-labs/. It is a great network simulation platform with an easy-

to-use HTML UI and a comprehensive API.

At the time of writing, the single-user license for CML is 199 USD (keep in mind that there is a

free, hosted version on Cisco DevNet). In my opinion, the CML platform offers a few advantages

over other alternatives and the cost is a bargain:

•	 Ease of use: As mentioned, all the images for IOSv, IOS-XRv, NX-OSv, ASAv, and other

images are included in a single download.

•	 Official: CML is a widely used tool internally at Cisco and within the network engineering

community. In fact, CML is used extensively for the new Cisco DevNet Expert Lab exam.

Because of its popularity, bugs get fixed quickly, new features are carefully documented,

and useful knowledge is widely shared among its users.

•	 Third-party KVM images integration: CML permits users to upload third-party VM im-

ages, such as Windows VM, that are not bundled by default.

•	 Others: The CML tool offers many other features, such as dashboard list view, multiuser

grouping, Ansible integration, and pyATS integration.

We will not use all of the CML features in this book, but it is nice to know the tool is so feature-rich

and is constantly being updated. Again, I want to stress the importance of having a lab to follow

along for the book examples but it does not need to be Cisco CML. The code examples provided in

this book should work across any lab device, as long as it runs the same software type and version.

https://developer.cisco.com/modeling-labs/
https://developer.cisco.com/modeling-labs/

Chapter 2 39

CML tips
The CML website (https://developer.cisco.com/modeling-labs/) and documentation

(https://developer.cisco.com/docs/modeling-labs/) offer lots of guidance and information,

from installation to usage. The lab topology will be included in the respective chapters in the book’s

GitHub repository (https://github.com/PacktPublishing/Mastering-Python-Networking-

Fourth-Edition). The lab images can be directly imported to the lab via the Import button:

Figure 2.1: CML Console Image Lab Image

For the labs, each of the devices will have its management interface connected to an unmanaged

switch, which in turn connects to an external connection for access:

Figure 2.2: Unmanaged Switch for Management Interface Access

You will need to change the IP address of the management interface to fit your own lab’s sche-

ma. For example, in the 2_DC_Topology.yaml file in Chapter 2, the IP address of lax-edg-r1

GigabitEthernet0/0 0 is 192.168.2.51. You will need to change this IP address according to

your own lab.

https://developer.cisco.com/modeling-labs/
https://developer.cisco.com/docs/modeling-labs/
https://github.com/PacktPublishing/Mastering-Python-Networking-Fourth-Edition
https://github.com/PacktPublishing/Mastering-Python-Networking-Fourth-Edition

Low-Level Network Device Interactions40

If you are using virtual lab software other than CML, you can open the topology file with any text

editor (such as Sublime Text, shown below) and see each of the devices’ configurations. You can

then copy and paste the configuration into your own lab devices:

Figure 2.3: Topology File Viewed with Text Editor

We talked about Cisco DevNet briefly earlier in this section. Let us explore more about DevNet

in the next section.

Cisco DevNet
Cisco DevNet (https://developer.cisco.com/site/devnet/) is the premier, all-in-one website

when it comes to network automation resources at Cisco. It is free to sign up and provides free

remote labs, free video courses, guided learning tracks, documentation, and much more.

https://developer.cisco.com/site/devnet/

Chapter 2 41

The Cisco DevNet Sandbox (https://developer.cisco.com/site/sandbox/) is a great alternative

if you do not already have a lab at your own disposal or want to try out new technologies. Some of

the labs are always on, while others you need to reserve. The lab availability will depend on usage.

Figure 2.4: Cisco DevNet Sandbox

Since its inception, Cisco DevNet has become the de facto destination for all things

related to network programmability and automation at Cisco. If you are interested

in pursuing Cisco certifications in automation, DevNet offers different tracks from

associate to expert level of validation; more information can be found at https://

developer.cisco.com/certification/.

https://developer.cisco.com/site/sandbox/
https://developer.cisco.com/certification/
https://developer.cisco.com/certification/

Low-Level Network Device Interactions42

GNS3 and others
There are a few other virtual labs that I have used and would recommend. GNS3 is one of them:

Figure 2.5: GNS3 Website

As mentioned previously, GNS3 is what a lot of us use to study for certification tests and to prac-

tice for labs. The tool has really grown up from the early days of being the simple frontend for

Dynamips into a viable commercial product. GNS3 is vendor-neutral, which can be helpful if we

want to build a multi-vendor lab. This is typically done either by making a clone of the image

(such as Arista vEOS) or by directly launching the network device image via other hypervisors

(such as KVM).

Another multi-vendor network emulation environment that has gotten a lot of great reviews is

the Emulated Virtual Environment Next Generation (Eve-NG): http://www.eve-ng.net/. I

personally do not have enough experience with the tool, but many of my colleagues and friends

in the industry use it for their network labs. If you are familiar with containers, containerlab

(https://containerlab.dev/) can also be an alternative for you.

There are also other standalone virtualized platforms, such as Arista vEOS (https://www.arista.

com/en/cg-veos-router/veos-router-overview), Juniper vMX (https://www.juniper.net/us/

en/products/routers/mx-series/vmx-virtual-router-software.html), and Nokia SR-Linux

(https://www.nokia.com/networks/data-center/service-router-linux-NOS/), which you

can use as standalone virtual appliances during testing.

http://www.eve-ng.net/
https://containerlab.dev/
https://www.arista.com/en/cg-veos-router/veos-router-overview
https://www.arista.com/en/cg-veos-router/veos-router-overview
https://www.juniper.net/us/en/products/routers/mx-series/vmx-virtual-router-software.html
https://www.juniper.net/us/en/products/routers/mx-series/vmx-virtual-router-software.html
https://www.nokia.com/networks/data-center/service-router-linux-NOS/

Chapter 2 43

They are great complementary tools for testing platform-specific features. Many of them are

offered as paid products on public cloud provider marketplaces for easier access.

Now that we have built our network lab, we can start to experiment with Python libraries that

can help with management and automation. We will begin with enabling the Python virtual

environment. Then we will install and use the Pexpect library for some examples.

Python virtual environment
Let us start by using the Python virtual environment. The Python virtual environment allows us

to manage separate package installations for different projects by creating a “virtual” isolated

Python installation and installing packages into that virtual installation. By using a virtual envi-

ronment, we do not need to worry about breaking the packages installed globally or from other

virtual environments. We will start by installing the python3.10-venv package, then create the

virtual environment itself:

$ sudo apt update

$ sudo apt install python3.10-venv

$ python3 -m venv venv

$ source venv/bin/activate

(venv) $

(venv) $ deactivate

From the output, we saw that we use the venv module from our installation, create a virtual en-

vironment called “venv” and then activate it. While the virtual environment is activated, you will

see the (venv) label in front of your hostname, indicating that you are in that virtual environment.

When finished, you can use the deactivate command to exit the virtual environment. If inter-

ested, you can learn more about Python virtual environments here: https://packaging.python.

org/guides/installing-using-pip-and-virtual-environments/#installing-virtualenv.

Once we have activated the virtual environment, we can move on to install the Pexpect library.

Always activate the virtual environment before you work on the code to isolate en-

vironments.

https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#installing-virtualenv
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#installing-virtualenv

Low-Level Network Device Interactions44

Python pexpect library
Pexpect is a pure Python module for spawning child applications, controlling them, and respond-

ing to expected patterns in their output. Pexpect works like Don Libes’ Expect. Pexpect allows

our script to spawn a child application and control it as if a human were typing commands; more

information can be found on Pexpect’s documentation page: https://pexpect.readthedocs.

io/en/stable/index.html.

Similar to the original Tool Command Language (TCL) Expect module by Don Libes, Pexpect

launches, or spawns, another process and watches over it in order to control the interaction. The

Expect tool was originally developed to automate interactive processes such as FTP, Telnet, and

rlogin, and was later expanded to include network automation. Unlike the original Expect, Pexpect

is entirely written in Python, which does not require TCL or C extensions to be compiled. This

allows us to use the familiar Python syntax and its rich standard library in our code.

Pexpect installation
The Pexpect installation process is straightforward:

(venv) $ pip install pexpect

Let’s do a quick test to make sure the package is usable; make sure we start the Python interactive

shell from the virtual environment:

(venv) $ python

Python 3.10.4 (main, Jun 29 2022, 12:14:53) [GCC 11.2.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import pexpect

>>> dir(pexpect)

['EOF', 'ExceptionPexpect', 'Expecter', 'PY3', 'TIMEOUT', '__all__',
'__builtins__', '__cached__', '__doc__', '__file__', '__loader__',
'__name__', '__package__', '__path__', '__revision__', '__spec__', '__
version__', 'exceptions', 'expect', 'is_executable_file', 'pty_spawn',
'run', 'runu', 'searcher_re', 'searcher_string', 'spawn', 'spawnbase',

Nowadays, we typically use libraries, such as Nornir, that abstract this line-by-line,

low-level interaction. However, it is still useful to understand the interaction at

least at a high level. If you are the impatient kind, just skim through the following

Pexpect and Paramiko sections.

https://pexpect.readthedocs.io/en/stable/index.html
https://pexpect.readthedocs.io/en/stable/index.html

Chapter 2 45

 'spawnu', 'split_command_line', 'sys', 'utils', 'which']

 >>> exit()

Pexpect overview
For this chapter, we will use the 2_DC_Topology and work on the two IOSv devices, lax-edg-r1

and lax-edg-r2:

Figure 2.6: lax-edg-r1 and lax-edg-r2

The devices will each have a management address in the 192.16.2.x/24 range. In the example,

lax-edg-r1 will have 192.168.2.51 and lax-edg-r2 will have 192.168.2.52 as the management

IP. If this is the first time the device is powered up, it will need to generate an RSA key for SSH:

lax-edg-r2(config)#crypto key generate rsa

For older IOSv software images, we might also need to add the following lines to the ssh config-

uration (~/.ssh/config) depending on your platform:

Host 192.168.2.51

 HostKeyAlgorithms +ssh-rsa

 KexAlgorithms +diffie-hellman-group-exchange-sha1

Host 192.168.2.52

 HostKeyAlgorithms +ssh-rsa

 KexAlgorithms +diffie-hellman-group-exchange-sha1

Low-Level Network Device Interactions46

With the devices ready, let’s take a look at how you would interact with the router if you were to

telnet into the device:

(venv) $ $ telnet 192.168.2.51

Trying 192.168.2.51...

Connected to 192.168.2.51.

Escape character is '^]'.

<skip>

User Access Verification

Username: cisco

Password:

The device configuration uses the username of cisco, and the password is also cisco. Notice that

the user is already in the privileged mode because of the privilege assigned in the configuration:

lax-edg-r1#sh run | i cisco

enable password cisco

username cisco privilege 15 secret 5 1SXY7$Hk6z8OmtloIzFpyw6as2G.

 password cisco

 password cisco

The auto-config also generated vty access for both telnet and SSH:

line con 0

 password cisco

line aux 0

line vty 0 4

 exec-timeout 720 0

 password cisco

 login local

 transport input telnet ssh

Let’s see a Pexpect example using the Python interactive shell:

>>> import pexpect

>>> child = pexpect.spawn('telnet 192.168.2.51')

>>> child.expect('Username')

0

>>> child.sendline('cisco')

6

Chapter 2 47

>>> child.expect('Password')

0

>>> child.sendline('cisco')

6

>>> child.expect('lax-edg-r1#')

0

>>> child.sendline('show version | i V')

19

>>> child.before

b":
\r\n**\
r\n* IOSv is strictly limited to use for evaluation, demonstration and
IOS *\r\n* education. IOSv is provided as-is and is not supported by
Cisco's *\r\n* Technical Advisory Center. Any use or disclosure,
in whole or in part, *\r\n* of the IOSv Software or Documentation to
any third party for any *\r\n* purposes is expressly prohibited
except as otherwise authorized by *\r\n* Cisco in writing.
*\r\n***\
r\n"

>>> child.sendline('exit')

5

>>> exit()

In the previous interactive example, Pexpect spawns off a child process and watches over it in

an interactive fashion. There are two important methods shown in the example, expect() and

sendline(). The expect() line indicates the string in the Pexpect process looks for when the

returned string is considered done. This is the expected pattern. In our example, we knew the

router had sent us all the information when the hostname prompt (lax-edg-r1#) was returned.

The sendline() method indicates which words should be sent to the remote device as the com-

mand. There is also a method called send(), but sendline() includes a linefeed, which is similar

to pressing the Enter key at the end of the words you sent in the previous telnet session. From

the router’s perspective, it is just as if someone typed in the text from a Terminal. In other words,

we are tricking the routers into thinking they are interfacing with a human being when they are

actually communicating with a computer.

Starting from Pexpect version 4.0, you can run Pexpect on the Windows platform.

But, as noted in the Pexpect documentation, running Pexpect on Windows should

be considered experimental for now.

Low-Level Network Device Interactions48

The before and after properties will be set to the text printed by the child application. The before

properties will be set to the text printed by the child application up to the expected pattern. The

after string will contain the text that was matched by the expected pattern. In our case, the

before text will be set to the output between the two expected matches (lax-edg-r1#), including

the show version command. The after text is the router hostname prompt:

>>> child.sendline('show version | i V')

19

>>> child.expect('lax-edg-r1#')

0

>>> child.before

b'show version | i V\r\nCisco IOS Software, IOSv Software (VIOS-
ADVENTERPRISEK9-M), Version 15.6(3)M2, RELEASE SOFTWARE (fc2)\r\nProcessor
board ID 9Y0KJ2ZL98EQQVUED5T2Q\r\n'

>>> child.after

b'iosv-1#'

If you are wondering about the b' in front of the return, it is a Python byte string (https://docs.

python.org/3.10/library/stdtypes.html).

What would happen if you expected the wrong term? For example, if we typed in username with

the lowercase “u” instead of Username after spawning the child application, the Pexpect process

would look for a string of username from the child process. In that case, the Pexpect process would

just hang because the word username would never be returned by the router. The session would

eventually time out, or we could manually exit out via Ctrl + C.

The expect() method waits for the child application to return a given string, so in the previous

example, if you wanted to accommodate both lowercase and uppercase u, you could use the

following term:

>>> child.expect('[Uu]sername')

The square bracket serves as an or operation that tells the child application to expect a lowercase

or uppercase “u” followed by sername as the string. What we are telling the process is that we

will accept either Username or username as the expected string. For more information on these

different types of matching using a regular expression, go to: https://docs.python.org/3.10/

library/re.html.

https://docs.python.org/3.10/library/stdtypes.html
https://docs.python.org/3.10/library/stdtypes.html
https://docs.python.org/3.10/library/re.html
https://docs.python.org/3.10/library/re.html

Chapter 2 49

The expect() method can also contain a list of options instead of just a single string; these options

can also be regular expressions themselves. Going back to the previous example, we can use the

following list of options to accommodate the two different possible strings:

>>> child.expect(['Username', 'username'])

Generally speaking, use the regular expression for a single expect string when we can fit the

different letters in a regular expression, whereas use the possible options if we need to catch

completely different responses from the device, such as a password rejection. For example, if we

use several different passwords for our login, we want to catch % Login invalid as well as the

device prompt.

One important difference between Pexpect regular expressions and Python regular expressions

is that Pexpect matching is non-greedy, which means they will match as little as possible when

using special characters. Because Pexpect performs regular expressions on a stream, it cannot

look ahead, as the child process generating the stream may not be finished. This means the special

dollar sign character $ typically matching the end of the line is useless because .+ will always

return no characters, and the .* pattern will match as little as possible. In general, just keep this

in mind and be as specific as you can be on the expect match strings.

Let’s consider the following scenario:

>>> child.sendline('show run | i hostname')

22

>>> child.expect('lax-edg-r1')

0

>>> child.before

b'show version | i V\r\nCisco IOS Software, IOSv Software (VIOS-
ADVENTERPRISEK9-M), Version 15.6(3)M2, RELEASE SOFTWARE (fc2)\r\nProcessor
board ID 9Y0KJ2ZL98EQQVUED5T2Q\r\n'

>>>

Hmm... Something is not quite right here. Compare it to the Terminal output before; the output

you expect would be hostname lax-edg-r1:

iosv-1#sh run | i hostname

hostname lax-edg-r1

Low-Level Network Device Interactions50

Taking a closer look at the expected string will reveal the mistake. In this case, we were missing

the hash (#) sign behind the lax-edg-r1 hostname. Therefore, the child application treated the

second part of the return string as the expected string:

>>> child.sendline('show run | i hostname')

22

>>> child.expect('lax-edg-r1#')

0

>>> child.before

b'#show run | i hostname\r\nhostname lax-edg-r1\r\n'

You can see a pattern emerging from the usage of Pexpect after a few examples. The user maps out

the sequence of interactions between the Pexpect process and the child application. With some

Python variables and loops, we can start to construct a useful program that will help us gather

information and make changes to network devices.

Our first Pexpect program
Our first program, chapter2_1.py, extends what we did in the last section with some additional

code:

#!/usr/bin/env python

import pexpect

devices = {'iosv-1': {'prompt': 'lax-edg-r1#', 'ip': '192.168.2.51'},

 'iosv-2': {'prompt': 'lax-edg-r2#', 'ip': '192.168.2.52'}}

username = 'cisco'

password = 'cisco'

for device in devices.keys():

 device_prompt = devices[device]['prompt']

 child = pexpect.spawn('telnet ' + devices[device]['ip'])

 child.expect('Username:')

 child.sendline(username)

 child.expect('Password:')

 child.sendline(password)

 child.expect(device_prompt)

 child.sendline('show version | i V')

Chapter 2 51

 child.expect(device_prompt)

 print(child.before)

 child.sendline('exit')

We used a nested dictionary in line 5:

devices = {'iosv-1': {'prompt': 'lax-edg-r1#', 'ip': '192.168.2.51'},

 'iosv-2': {'prompt': 'lax-edg-r2#', 'ip': '192.168.2.52'}}

The nested dictionary allows us to refer to the same device (such as lax-edg-r1) with the ap-

propriate IP address and prompt symbol. We can then use those values for the expect() method

later on in the loop.

The output prints out the show version | i V output on the screen for each of the devices:

$ python chapter2_1.py

b'show version | i V\r\nCisco IOS Software, IOSv Software (VIOS-
ADVENTERPRISEK9-M), Version 15.8(3)M2, RELEASE SOFTWARE (fc2)\r\nProcessor
board ID 98U40DKV403INHIULHYHB\r\n'

b'show version | i V\r\nCisco IOS Software, IOSv Software (VIOS-
ADVENTERPRISEK9-M), Version 15.8(3)M2, RELEASE SOFTWARE (fc2)\r\n'

Now that we have seen a basic example of Pexpect, let us go deeper into more features of the library.

More Pexpect Features
In this section, we will look at more Pexpect features that might come in handy when certain

situations arise.

If you have a slow or fast link to your remote device, the default expect() method timeout is 30

seconds, which can be increased or decreased via the timeout argument:

>>> child.expect('Username', timeout=5)

You can choose to pass the command back to the user using the interact() method. This is useful

when you just want to automate certain parts of the initial task:

>>> child.sendline('show version | i V')

19

>>> child.expect('lax-edg-r1#')

0

>>> child.before

b'show version | i V\r\nCisco IOS Software, IOSv Software (VIOS-

Low-Level Network Device Interactions52

-M), Version 15.8(3)M2, RELEASE SOFTWARE (fc2)\r\nProcessor board ID
98U40DKV403INHIULHYHB\r\n'

>>> child.interact()

show version | i V

Cisco IOS Software, IOSv Software (VIOS-ADVENTERPRISEK9-M), Version
15.8(3)M2, RELEASE SOFTWARE (fc2)

Processor board ID 98U40DKV403INHIULHYHB

lax-edg-r1#exit

Connection closed by foreign host.

>>>

You can get a lot of information about the child.spawn object by printing it out in string format:

>>> str(child)

"<pexpect.pty_spawn.spawn object at 0x7f068a9bf370>\ncommand: /usr/bin/
telnet\nargs: ['/usr/bin/telnet', '192.168.2.51']\nbuffer (last 100
chars): b''\nbefore (last 100 chars): b'TERPRISEK9-M), Version 15.8(3)
M2, RELEASE SOFTWARE (fc2)\\r\\nProcessor board ID 98U40DKV403INHIULHYHB\\
r\\n'\nafter: b'lax-edg-r1#'\nmatch: <re.Match object; span=(165, 176),
match=b'lax-edg-r1#'>\nmatch_index: 0\nexitstatus: 1\nflag_eof: False\
npid: 25510\nchild_fd: 5\nclosed: False\ntimeout: 30\ndelimiter: <class
'pexpect.exceptions.EOF'>\nlogfile: None\nlogfile_read: None\nlogfile_
send: None\nmaxread: 2000\nignorecase: False\nsearchwindowsize: None\
ndelaybeforesend: 0.05\ndelayafterclose: 0.1\ndelayafterterminate: 0.1"

>>>

The most useful debug tool for Pexpect is to log the output in a file:

>>> child = pexpect.spawn('telnet 192.168.2.51')

>>> child.logfile = open('debug', 'wb')

For more information on Pexpect features, check out: https://pexpect.readthedocs.io/en/

stable/api/index.html

We have been working with Telnet so far in our examples, which leaves our communication in

clear text during the session. In modern networks, we typically use secure shell (SSH) for man-

agement. In the next section, we will take a look at Pexpect with SSH.

https://pexpect.readthedocs.io/en/stable/api/index.html
https://pexpect.readthedocs.io/en/stable/api/index.html

Chapter 2 53

Pexpect and SSH
Pexpect has a subclass called pxssh, which specializes in setting up SSH connections. The class

adds methods for login, logout, and various tricky things to handle the different situations in

the ssh login process. The procedures are mostly the same, with the exception of login() and

logout():

>>> from pexpect import pxssh

>>> child = pxssh.pxssh()

>>> child.login('192.168.2.51', 'cisco', 'cisco', auto_prompt_reset=False)

True

>>> child.sendline('show version | i V')

19

>>> child.expect('lax-edg-r1#')

0

>>> child.before

b'show version | i V\r\nCisco IOS Software, IOSv Software (VIOS-
ADVENTERPRISEK9-M), Version 15.8(3)M2, RELEASE SOFTWARE (fc2)\r\nProcessor
board ID 98U40DKV403INHIULHYHB\r\n'

>>> child.logout()

>>>

Notice the auto_prompt_reset=False argument in the login() method. By default, pxssh uses

the shell prompt to synchronize the output. But since it uses the PS1 option for most of bash-shell

or c-shell, they will error out on Cisco or other network devices.

Pexpect complete example
As the final step, let’s put everything you have learned so far about Pexpect into a script. Putting

code into a script makes it easier to use in a production environment, as well as easier to share

with your colleagues. We will write our second script, chapter2_2.py:

#!/usr/bin/env python

import getpass

from pexpect import pxssh

devices = {'lax-edg-r1': {'prompt': 'lax-edg-r1#', 'ip': '192.168.2.51'},

 'lax-edg-r2': {'prompt': 'lax-edg-r2#', 'ip': '192.168.2.52'}}

Low-Level Network Device Interactions54

commands = ['term length 0', 'show version', 'show run']

username = input('Username: ')

password = getpass.getpass('Password: ')

Starts the loop for devices

for device in devices.keys():

 outputFileName = device + '_output.txt'

 device_prompt = devices[device]['prompt']

 child = pxssh.pxssh()

 child.login(devices[device]['ip'], username.strip(), password.strip(),
auto_prompt_reset=False)

 # Starts the loop for commands and write to output

 with open(outputFileName, 'wb') as f:

 for command in commands:

 child.sendline(command)

 child.expect(device_prompt)

 f.write(child.before)

 child.logout()

The script further expands from our first Pexpect program with the following additional features:

•	 It uses SSH instead of Telnet.

•	 It supports multiple commands instead of just one by making the commands into a list

(line 8) and loops through the commands (starting at line 20).

•	 It prompts the user for their username and password instead of hardcoding them in the

script for better security posture.

•	 It writes the output in two files, lax-edg-r1_output.txt and lax-edg-r2_output.txt.

After the code is executed, we should see the two output files in the same directory. Besides Pexpect,

Paramiko is another popular Python library used to handle interactive sessions.

The Python Paramiko library
Paramiko is a Python implementation of the SSHv2 protocol. Just like the pxssh subclass of Pex-

pect, Paramiko simplifies the SSHv2 interaction between the host and the remote device. Unlike

pxssh, Paramiko focuses only on SSHv2 with no Telnet support. It also provides both client and

server operations.

Chapter 2 55

Paramiko is the low-level SSH client behind the high-level automation framework Ansible for its

network modules. We will cover Ansible in Chapter 4, The Python Automation Framework – Ansible.

Let’s take a look at the Paramiko library.

Installation of Paramiko
Installing Paramiko is pretty straightforward with Python pip. However, there is a hard depen-

dency on the cryptography library. The library provides low-level, C-based encryption algorithms

for the SSH protocol.

The installation instruction for Windows, macOS, and other flavors of Linux can be found at:

https://cryptography.io/en/latest/installation/.

We will show the Paramiko installation steps for our Ubuntu 22.04 virtual machine:

sudo apt-get install build-essential libssl-dev libffi-dev python3-dev

pip install cryptography

pip install paramiko

Let us test the library’s usage by importing it with the Python interpreter:

$ python

Python 3.10.4 (main, Jun 29 2022, 12:14:53) [GCC 11.2.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import paramiko

>>> exit()

Now we are ready to take a look at Paramiko in the next section.

Paramiko overview
Let’s look at a quick Paramiko example using the Python 3 interactive shell:

>>> import paramiko, time

>>> connection = paramiko.SSHClient()

>>> connection.set_missing_host_key_policy(paramiko.AutoAddPolicy())

>>> connection.connect('192.168.2.51', username='cisco', password='cisco',
look_for_keys=False, allow_agent=False)

>>> new_connection = connection.invoke_shell()

>>> output = new_connection.recv(5000)

>>> print(output) b"\
r\n***\

https://cryptography.io/en/latest/installation/

Low-Level Network Device Interactions56

r\n* IOSv is strictly limited to use for evaluation, demonstration and
IOS *\r\n* education. IOSv is provided as-is and is not supported by
Cisco's *\r\n* Technical Advisory Center. Any use or disclosure,
in whole or in part, *\r\n* of the IOSv Software or Documentation to
any third party for any *\r\n* purposes is expressly prohibited
except as otherwise authorized by *\r\n* Cisco in writing.
*\r\n***
**\r\nlax-edg-r1#"

>>> new_connection.send("show version | i V\n")

19

>>> time.sleep(3)

>>> output = new_connection.recv(5000)

>>> print(output)

b'show version | i V\r\nCisco IOS Software, IOSv Software (VIOS-
ADVENTERPRISEK9-M), Version 15.8(3)M2, RELEASE SOFTWARE (fc2)\r\nProcessor
board ID 98U40DKV403INHIULHYHB\r\nlax-edg-r1#'

>>> new_connection.close()

>>>

The time.sleep() function inserts a time delay to ensure all the outputs were captured. This is

particularly useful on a slower network connection or a busy device. This command is not required

but is recommended depending on your situation.

Even if we are seeing the Paramiko operation for the first time, the beauty of Python and its clear

syntax means that we can make a pretty good educated guess at what the program is trying to do:

>>> import paramiko

>>> connection = paramiko.SSHClient()

>>> connection.set_missing_host_key_policy(paramiko.AutoAddPolicy())

>>> connection.connect('192.168.2.51', username='cisco', password='cisco',

look_for_keys=False, allow_agent=False)

The first four lines create an instance of the SSHClient class from Paramiko. The next line sets the

policy that the client should use regarding keys; in this case, lax-edg-r1 might not be in either

the system host keys or the application’s keys. In our scenario, we will automatically add the key

to the application’s HostKeys object. At this point, if you log on to the router, you will see all the

login sessions from Paramiko.

The next few lines invoke a new interactive shell from the connection and a repeatable pattern of

sending a command and retrieving the output. Finally, we close the connection.

Chapter 2 57

Some readers who have used Paramiko before might be familiar with the exec_command() method

instead of invoking a shell. Why do we need to invoke an interactive shell instead of using exec_

command() directly? Unfortunately, exec_command() on Cisco IOS only allows a single command.

Consider the following example with exec_command() for the connection:

>>> connection.connect('192.168.2.51', username='cisco', password='cisco',
look_for_keys=False, allow_agent=False)

>>> stdin, stdout, stderr = connection.exec_command('show version | i
V\n')

>>> stdout.read()

b'Cisco IOS Software, IOSv Software (VIOS-ADVENTERPRISEK9-M),
Version 15.8(3)M2, RELEASE SOFTWARE (fc2)rnProcessor board ID
98U40DKV403INHIULHYHBrn'

>>>

Everything works great; however, if you look at the number of sessions on the Cisco device, you

will notice that the connection is dropped by the Cisco device without you closing the connection.

Because the SSH session is no longer active, exec_command() will return an error if you want to

send more commands to the remote device:

>>> stdin, stdout, stderr = connection.exec_command('show version | i
V\n')

Traceback (most recent call last):

<skip>

raise SSHException('SSH session not active') paramiko.ssh_exception.
SSHException: SSH session not active

>>>

In the previous example, the new_connection.recv() command displayed what was in the buf-

fer and implicitly cleared it out for us. What would happen if you did not clear out the received

buffer? The output would just keep on filling up the buffer and would overwrite it:

>>> new_connection.send("show version | i V\n")

 19

>>> new_connection.send("show version | i V\n")

19

>>> new_connection.send("show version | i V\n")

19

>>> new_connection.recv(5000)

Low-Level Network Device Interactions58

b'show version | i VrnCisco IOS Software, IOSv Software (VIOS-
ADVENTERPRISEK9-M), Version 15.8(3)M2, RELEASE SOFTWARE (fc2)rnProcessor

board ID 98U40DKV403INHIULHYHBrnlax-edg-r1#show version | i VrnCisco IOS
Software, IOSv Software (VIOS-ADVENTERPRISEK9-M), Version 15.8(3)M2,
RELEASE SOFTWARE (fc2)rnProcessor board ID 98U40DKV403INHIULHYHBrnlax-
edg-r1#show version | i VrnCisco IOS Software, IOSv Software (VIOS-
ADVENTERPRISEK9-M), Version 15.8(3)M2, RELEASE SOFTWARE (fc2)rnProcessor
board ID 98U40DKV403INHIULHYHBrnlax-edg-r1#'

>>>

For consistency of the deterministic output, we will retrieve the output from the buffer each time

we execute a command.

First Paramiko program
Our first program will use the same general structure as the Pexpect program we have put togeth-

er. We will loop over a list of devices and commands while using Paramiko instead of Pexpect.

This will give us a good compare and contrast of the differences between Paramiko and Pexpect.

If you have not done so already, you can download the code, chapter2_3.py, from the book’s

GitHub repository at https://github.com/PacktPublishing/Mastering-Python-Networking-

Fourth-Edition. I will list the notable differences here:

devices = {'lax-edg-r1': {'ip': '192.168.2.51'},

 'lax-edg-r2': {'ip': '192.168.2.52'}}

We no longer need to match the device prompt using Paramiko; therefore, the device dictionary

can be simplified:

commands = ['show version', 'show run']

There is no sendline equivalent in Paramiko; instead, we manually include the newline break in

each of the commands:

def clear_buffer(connection):

 if connection.recv_ready():

 return connection.recv(max_buffer)

We include a new method to clear the buffer for sending commands, such as terminal length

0 or enable, because we do not need the output for those commands. We simply want to clear

the buffer and get to the execution prompt. This function will later be used in the loop, such as

in line 25 of the script:

output = clear_buffer(new_connection)

https://github.com/PacktPublishing/Mastering-Python-Networking-Fourth-Edition
https://github.com/PacktPublishing/Mastering-Python-Networking-Fourth-Edition

Chapter 2 59

The rest of the program should be pretty self-explanatory, similar to what we have seen in this

chapter. The last thing I would like to point out is that since this is an interactive program, we

place a buffer and wait for the command to be finished on the remote device before retrieving

the output:

time.sleep(5)

After we clear the buffer, we will wait five seconds between the execution of commands. This will

give the device adequate time to respond if it is busy.

More Paramiko features
We will look at Paramiko a bit later in Chapter 4, The Python Automation Framework – Ansible, when

we discuss Ansible, as Paramiko is the underlying transport for many of the network modules. In

this section, we will take a look at some of the other features of Paramiko.

Paramiko for servers
Paramiko can be used to manage servers through SSHv2 as well. Let’s look at an example of how we

can use Paramiko to manage servers. We will use key-based authentication for the SSHv2 session.

In this example, I used another Ubuntu virtual machine on the same hypervisor as the destination

server. You can also use a server on the CML simulator or an instance in one of the public cloud

providers, such as Amazon AWS EC2.

We will generate a public-private key pair for our Paramiko host:

ssh-keygen -t rsa

This command, by default, will generate a public key named id_rsa.pub, as the public key under

the user home directory ~/.ssh along with a private key named id_rsa. Treat the private key

with the same attention as you would for private passwords that you do not want to share with

anybody else.

You can think of the public key as a business card that identifies who you are. Using the private

and public keys, the message will be encrypted by your private key locally and decrypted by the

remote host using the public key. We should copy the public key to the remote host. In production,

we can do this via out-of-band using a USB drive; in our lab, we can simply copy the public key

to the remote host’s ~/.ssh/authorized_keys file. Open up a Terminal window for the remote

server so you can paste in the public key.

Low-Level Network Device Interactions60

Copy the content of ~/.ssh/id_rsa.pub on your management host with Paramiko:

$ cat ~/.ssh/id_rsa.pub

ssh-rsa <your public key>

Then, paste it to the remote host under the user directory; in this case, I am using echou for both

sides:

<Remote Host>$ vim ~/.ssh/authorized_keys

ssh-rsa <your public key>

You are now ready to use Paramiko to manage the remote host. Notice in this example that we

will use the private key for authentication as well as the exec_command() method for sending

commands:

>>> import paramiko

>>> key = paramiko.RSAKey.from_private_key_file('/home/echou/.ssh/id_rsa')

>>> client = paramiko.SSHClient()

>>> client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

>>> client.connect('192.168.199.182', username='echou', pkey=key)

>>> stdin, stdout, stderr = client.exec_command('ls -l')

>>> stdout.read()

b'total 44ndrwxr-xr-x 2 echou echou 4096 Jan 7 10:14 Desktopndrwxr-xr-x 2

echou echou 4096 Jan 7 10:14 Documentsndrwxr-xr-x 2 echou echou 4096 Jan 7

10:14 Downloadsn-rw-r--r-- 1 echou echou 8980 Jan 7 10:03

examples.desktopndrwxr-xr-x 2 echou echou 4096 Jan 7 10:14 Musicndrwxr-
xr-x

echou echou 4096 Jan 7 10:14 Picturesndrwxr-xr-x 2 echou echou 4096 Jan 7
10:14 Publicndrwxr-xr-x 2 echou echou 4096 Jan 7 10:14 Templatesndrwxr-
xr-x

2 echou echou 4096 Jan 7 10:14 Videosn'

>>> stdin, stdout, stderr = client.exec_command('pwd')

>>> stdout.read()

b'/home/echou'

>>> client.close()

>>>

Notice that in the server example, we do not need to create an interactive session to execute

multiple commands. You can now turn off password-based authentication in your remote host’s

SSHv2 configuration for more secure key-based authentication with automation enabled.

Chapter 2 61

Why do we want to know about using private keys as authentication methods? More and more

network devices, such as Cumulus and Vyatta switches, are moving toward using Linux shell and

public-private key authentication as a security mechanism. For some operations, we will use a

combination of SSH session and key-based authentication for authentication.

More Paramiko examples
In this section, let’s make the Paramiko program more reusable. There is one downside of our

existing script: we need to open up the script every time we want to add or delete a host, or when-

ever we need to change the commands we want to execute on the remote host.

This is due to the fact that both the host and command information are statically entered inside

the script. Hardcoding the host and command has a higher chance of making mistakes when

making a change. By making both the host and command files read in as parameters for the

script, we can make the script more flexible. Users (and future us) can simply modify these text

files when you need to make host or command changes.

We have incorporated the change in the script named chapter2_4.py.

Instead of hardcoding the commands, we broke the commands into a separate commands.txt file.

Up to this point, we have been using show commands; in this example, we will make configuration

changes. In particular, we will change the logging buffer size to 30000 bytes:

$ cat commands.txt

config t

logging buffered 30000

end

copy run start

The device’s information is written into a devices.json file. We chose JSON format for the device’s

information because JSON data types can be easily translated into Python dictionary data types:

$ cat devices.json

{

 "lax-edg-r1": {

 "ip": "192.168.2.51"

 },

 "lax-edg-r2": {

 "ip": "192.168.2.52"

 }

}

Low-Level Network Device Interactions62

In the script, we made the following changes:

with open('devices.json', 'r') as f:

 devices = json.load(f)

with open('commands.txt', 'r') as f:

 commands = f.readlines()

Here is an abbreviated output from the script execution:

$ python chapter2_4.py

Username: cisco

Password:

b'terminal length 0\r\nlax-edg-r1#config t\r\nEnter configuration
commands, one per line. End with CNTL/Z.\r\nlax-edg-r1(config)#'

b'logging buffered 30000\r\nlax-edg-r1(config)#'

b'end\r\nlax-edg-r1#'

b'copy run start'

<skip>

Do a quick check to make sure the change has taken place in both running-config and startup-

config:

lax-edg-r1#sh run | i logging

logging buffered 30000

The Paramiko library is a general-purpose library intended for working with interactive com-

mand-line programs. For network management, there is another library, Netmiko, a fork from

Paramiko, that is purpose-built for network device management. We will take a look at it in the

upcoming section.

The Netmiko library
Paramiko is a great library to do low-level interactions with Cisco IOS and other vendor devic-

es. But as you have noticed from previous examples, we are repeating many of the same steps

between lax-edg-r1 and lax-edg-r2 for device login and execution. Once we start to develop

more automation commands, we also start to repeat ourselves in capturing terminal outputs

and formatting them into a usable format. Wouldn’t it be great if somebody could write a Python

library that simplifies these low-level steps and share it with other network engineers?

Chapter 2 63

Ever since 2014, Kirk Byers (https://github.com/ktbyers) has been working on open-source

initiatives to simplify the management of network devices. In this section, we will take a look

at an example of the Netmiko (https://github.com/ktbyers/netmiko) library that he created.

First, we will install the netmiko library using pip:

(venv) $ pip install netmiko

We can use the example published on Kirk’s website, https://pynet.twb-tech.com/blog/

automation/netmiko.html, and apply it to our labs. We will start by importing the library and

its ConnectHandler class. Then we will define our device parameter as a Python dictionary and

pass it to the ConnectHandler. Notice that we are defining a device_type of cisco_ios in the

device parameter:

>>> from netmiko import ConnectHandler

>>> net_connect = ConnectHandler(

... device_type="cisco_ios",

... host="192.168.2.51",

... username="cisco",

... password="cisco",

...)

This is where the simplification begins. Notice that the library automatically determines the

device prompt as well as formatting the returned output from the show command:

>>> net_connect.find_prompt()

'lax-edg-r1#'

>>> output = net_connect.send_command('show ip int brief')

>>> print(output)

Interface IP-Address OK? Method Status
Protocol

GigabitEthernet0/0 192.168.2.51 YES NVRAM up
up

GigabitEthernet0/1 10.0.0.1 YES NVRAM up
up

Loopback0 192.168.0.10 YES NVRAM up
up

https://github.com/ktbyers
https://github.com/ktbyers/netmiko
https://pynet.twb-tech.com/blog/automation/netmiko.html
https://pynet.twb-tech.com/blog/automation/netmiko.html

Low-Level Network Device Interactions64

Let’s see another example for the second Cisco IOS device in our lab and send a configuration

command instead of a show command. Note that the command attribute is a list that can contain

multiple commands:

>>> net_connect_2 = ConnectHandler(

... device_type="cisco_ios",

... host="192.168.2.52",

... username="cisco",

... password="cisco",

...)

>>> output = net_connect_2.send_config_set(['logging buffered 19999'])

>>> print(output)

configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

lax-edg-r2(config)#logging buffered 19999

lax-edg-r2(config)#end

lax-edg-r2#

>>> exit()

How cool is that? Netmiko automatically took care of the nitty-gritty stuff for us, allowing us

to focus on the commands themselves. The netmiko library is a great time saver and is used by

many network engineers. In the next section, we will take a look at the Nornir (https://github.

com/nornir-automation/nornir) framework, which also aims to simplify low-level interactions.

The Nornir framework
Nornir (https://nornir.readthedocs.io/en/latest/) is a pure Python automation framework

intended to be used directly from Python. We will start with installing nornir in our environment:

(venv)$ pip install nornir nornir_utils nornir_netmiko

Nornir expects us to define an inventory file, hosts.yaml, consisting of the device information in

a YAML format. The information specified in this file is no different than what we have previously

defined using the Python dictionary in the Netmiko example:

lax-edg-r1:

 hostname: '192.168.2.51'

 port: 22

 username: 'cisco'

https://github.com/nornir-automation/nornir
https://github.com/nornir-automation/nornir
https://nornir.readthedocs.io/en/latest/

Chapter 2 65

 password: 'cisco'

 platform: 'cisco_ios'

lax-edg-r2:

 hostname: '192.168.2.52'

 port: 22

 username: 'cisco'

 password: 'cisco'

 platform: 'cisco_ios'

We can use the netmiko plugin from the nornir library to interact with our device, as illustrated

in the chapter2_5.py file:

#!/usr/bin/env python

from nornir import InitNornir

from nornir_utils.plugins.functions import print_result

from nornir_netmiko import netmiko_send_command

nr = InitNornir()

result = nr.run(

 task=netmiko_send_command,

 command_string="show arp"

)

print_result(result)

The execution output is shown as follows:

(venv) $ python chapter2_5.py

netmiko_send_
command**

* lax-edg-r1 ** changed : False **

vvvv netmiko_send_command ** changed : False vvvvvvvvvvvvvvvvvvvvvvvvvvvvv
vvvvvv INFO

Protocol Address Age (min) Hardware Addr Type Interface

Low-Level Network Device Interactions66

Internet 10.0.0.1 - 5254.001e.e911 ARPA
GigabitEthernet0/1

Internet 10.0.0.2 17 fa16.3e00.0001 ARPA
GigabitEthernet0/1

^^^^ END netmiko_send_command ^^
^^^^^^

* lax-edg-r2 ** changed : False **

vvvv netmiko_send_command ** changed : False vvvvvvvvvvvvvvvvvvvvvvvvvvvvv
vvvvvv INFO

Protocol Address Age (min) Hardware Addr Type Interface

Internet 10.0.128.1 17 fa16.3e00.0002 ARPA
GigabitEthernet0/1

Internet 10.0.128.2 - 5254.0014.e052 ARPA
GigabitEthernet0/1

^^^^ END netmiko_send_command ^^
^^^^^^

We have taken a pretty huge leap forward in this chapter in automating our network using Python.

However, some of the methods we have used feel like workarounds for automation. We attempted

to trick the remote devices into thinking they were interacting with a human on the other end. Even

if we use libraries such as Netmiko or the Nornir framework, the underlying approach remains

the same. Just because somebody else has done the work to help abstract the grunt work of the

low-level interaction, we are still susceptible to the downsides of dealing with CLI-only devices.

Looking ahead, let us discuss some of the downsides of Pexpect and Paramiko compared to other

tools in preparation for our discussion on API-driven methods in the next chapters.

Downsides of Pexpect and Paramiko compared to other tools
The biggest downside of our current method for automating CLI-only devices is that the remote

devices do not return structured data. They return data that is ideal for fitting on a terminal to be

interpreted by a human, not by a computer program. The human eye can easily interpret a space,

while a computer only sees a return character.

There are other plugins in Nornir besides Netmiko, such as the popular NAPALM li-

brary (https://github.com/napalm-automation/napalm). Please feel free to check

out Nornir’s project page for the latest plugins: https://nornir.readthedocs.io/

en/latest/plugins/index.html.

https://github.com/napalm-automation/napalm
https://nornir.readthedocs.io/en/latest/plugins/index.html
https://nornir.readthedocs.io/en/latest/plugins/index.html

Chapter 2 67

We will take a look at a better way in the upcoming chapter. As a prelude to Chapter 3, APIs and

Intent-Driven Networking, let’s discuss the idea of idempotency.

Idempotent network device interaction
The term idempotency has different meanings, depending on its context. But in this book’s context,

the term means that when a client makes the same call to a remote device, the result should al-

ways be the same. I believe we can all agree that this is necessary. Imagine a scenario where each

time you execute the same script, you get a different result back. I find that scenario very scary.

How can you trust your script if that is the case? It would render our automation effort useless

because we need to be prepared to handle different returns.

Since Pexpect and Paramiko are blasting out a series of commands interactively, the chance of

having a non-idempotent interaction is higher. Going back to the fact that the return results

needed to be screen scraped for useful elements, the risk of difference is much higher. Something

on the remote end might have changed between the time we wrote the script and the time when

the script is executed for the 100th time. For example, if the vendor makes a screen output change

between releases without us updating the script, the script might break our network.

If we need to rely on the script for production, we need the script to be idempotent as much as

possible.

Bad automation speeds up bad things
Bad automation allows you to poke yourself in the eye a lot faster, it is as simple as that. Comput-

ers are much faster at executing tasks than human engineers. If we had the same set of operating

procedures executed by a human versus a script, the script would finish faster than humans,

sometimes without the benefit of having a solid feedback loop between steps. The internet is full

of horror stories of when someone pressed the Enter key and immediately regretted it.

We need to minimize the chances of bad automation scripts screwing things up. We all make

mistakes; carefully testing your script before any production work and having a small blast radius

are two keys to making sure you can catch your mistake before it comes back and bites you. No

tool or human can eliminate mistakes completely, but we can strive to minimize the mistakes.

As we have seen, as great as some of the libraries we have used in this chapter are, the underlying

CLI-based method is inherently faulty and error-prone. We will introduce the API-driven method

in the next chapter, which addresses some of the CLI-driven management deficiencies.

Low-Level Network Device Interactions68

Summary
In this chapter, we covered low-level ways to communicate directly with network devices. With-

out a way to programmatically communicate and make changes to network devices, there is

no automation. We looked at several libraries in Python that allow us to manage devices that

were meant to be managed by the CLI. Although useful, it is easy to see how the process can be

somewhat fragile. This is mostly due to the fact that the network gear in question was meant to

be managed by human beings and not computers.

In Chapter 3, APIs and Intent-Driven Networking, we will look at network devices supporting API

and intent-driven networking.

Join our book community
To join our community for this book – where you can share feedback, ask questions to the author,

and learn about new releases – follow the QR code below:

https://packt.link/networkautomationcommunity

https://packt.link/networkautomationcommunity

3
APIs and Intent-Driven
Networking

In Chapter 2, Low-Level Network Device Interactions, we looked at ways to interact with network

devices using Python libraries such as Pexpect, Paramiko, Netmiko, and Nornir. Paramiko and sim-

ilar libraries use persistent sessions that simulate a user typing in commands as if sitting in front

of a Terminal. This approach works fine up to a point. It is easy to send commands for execution

on a device and capture the output. However, when the output becomes more than a few lines

of characters, it becomes difficult for a computer program to interpret the output. The returned

output from Paramiko, for example, is a series of characters meant to be read by a human being.

The structure of the output consists of lines and spaces that are human-friendly but difficult to

be understood by computer programs.

The key point is: for our computer programs to automate many of the tasks we want to perform,

we need to interpret the returned results and make follow-up actions based on the returned

results. When we cannot accurately and predictably interpret the returned results, we cannot

execute the next command with confidence.

This is a similar issue faced by the internet community in general, not just with network automa-

tion, whenever computers need to communicate with each other. Imagine the difference between

a computer and a human being when they both read a web page. The human sees words, pictures,

and spaces interpreted by the browser; the computer sees raw HTML code, Unicode characters,

and binary files. What happens when a website needs to become a web service for another com-

puter? The same web resources need to accommodate both human clients and other computer

programs. Essentially, the web server needs to transfer information to another computer in the

most optimized way. How do we do that?

APIs and Intent-Driven Networking70

The answer is the application program interface (API). It is important to note that an API is a

concept and not a particular technology or framework. As defined by Wikipedia:

In our use case, the set of clearly defined methods of communication would be between our Py-

thon program and the destination device. The APIs from our network devices provide a separate

interface for the computer programs, such as our Python scripts. The exact API implementation

is vendor and sometimes product specific. One vendor will prefer XML, while another might use

JSON; one product might use HTTPS as the underlying transport protocol, and others might pro-

vide Python libraries called SDKs to be used with the device. We will see many different vendors

and product examples in this chapter.

Despite the differences, the concept of an API remains the same: it is a communication method

optimized for other computer programs.

In this chapter, we will look at the following topics:

•	 Treating infrastructure as code (IaC), intent-driven networking, and data modeling

•	 Cisco NX-API, Application Centric Infrastructure (ACI), and Meraki examples

•	 Juniper Network Configuration Protocol (NETCONF) and PyEZ

•	 Arista eAPI and pyeapi

We will start by examining why we want to treat infrastructure as code.

Infrastructure-as-Code (IaC)
In a perfect world, network engineers and architects who design and manage networks should

focus on what they want the network to achieve instead of the device-level interactions. But

we all know the world is far from perfect. Many years ago, when I worked as an intern for a sec-

ond-tier ISP, one of my first assignments was to install a router on a customer’s site to turn up

their fractional frame relay link (remember those?). How would I do that? I asked. I was handed

down a standard operating procedure for turning up frame relay links.

In computer programming, an application programming interface (API) is a set

of subroutine definitions, protocols, and tools for building application software.

In general terms, it’s a set of clearly defined methods of communication between

various software components. A good API makes it easier to develop a computer

program by providing all the building blocks, which are then put together by the

programmer.

Chapter 3 71

I went to the customer site, blindly typed in the commands, looked at the green lights flashing,

happily packed my bag, and patted myself on the back for a job well done. As exciting as that

assignment was, I did not fully understand what I was doing. I was simply following instructions

without thinking about the implication of the commands I was typing in. How would I trouble-

shoot something if the light was red instead of green? No doubt I would have had to call the office

and ask a more senior engineer for help.

Network engineering is not about typing commands into a device; it is about building a way that

allows services to be delivered from one point to another with as little friction as possible. The

commands we have to use and the output we have to interpret are merely means to an end. In

other words, we should be focused on our intent for the network. What we want our network

to achieve is much more important than the command syntax we use to get the device to do

what we want it to do. If we further abstract that idea of describing our intent as lines of code,

we can potentially describe our whole infrastructure as a particular state. The infrastructure

will be described in lines of code with the necessary software or framework to enforce that state.

Intent-driven networking
Since the publication of the first edition of this book, the terms intent-based networking (IBN)

and intent-driven networking (IDN) have seen an uptick after major network vendors chose to

use them to describe their next-generation devices. The two terms generally mean the same thing.

In my opinion, IDN is the idea of defining a state that the network should be in and having software code

to enforce that state. As an example, if my goal is to block port 80 from being externally accessible,

that is how I should declare it as the intention of the network. The underlying software will be

responsible for knowing the syntax of configuring and applying the necessary access list on the

border router to achieve that goal. Of course, IDN is an idea with no clear answer on the exact

implementation. The software we use to enforce our declared intent can be a library, a framework,

or a complete package we purchase from a vendor.

When using an API, it is my opinion that it gets us closer to a state of IDN. In short, because we

abstract the layer of a specific command executed on our destination device, we focus on our in-

tent instead of the specific commands. For example, going back to our block port 80 access-list

example, we might use access-list and access-group on a Cisco router and filter-list on

a Juniper router. However, by using an API, our program can start asking the executor for their

intent while masking the kind of physical device the software is talking to. We can even use a

higher-level declarative framework, such as Ansible, which we will cover in Chapter 4, The Python

Automation Framework. But for now, let’s focus on network APIs.

APIs and Intent-Driven Networking72

Screen scraping versus API structured output
Imagine a common scenario where we need to log into the network device and make sure all

the interfaces on the device are in an up/up state (both the status and the protocol are showing

as up). For the human network engineers getting into a Cisco NX-OS device, it is simple enough

to issue the show ip interface brief command in the Terminal to easily tell from the output

which interface is up:

lax-edg-r1#sh ip int brief

Interface IP-Address OK? Method Status
Protocol

GigabitEthernet0/0 192.168.2.51 YES NVRAM up
up

GigabitEthernet0/1 10.0.0.1 YES NVRAM up
up

Loopback0 192.168.0.10 YES NVRAM up

The line break, white spaces, and the first line of the column title are easily distinguished by the

human eye. They are there to help us line up, say, the IP addresses of each interface from line one

to lines two and three. If we were to put ourselves in the computer’s position for capturing the

information, all these spaces and line breaks only take us away from the important output, which

is: which interfaces are in the up/up state? To illustrate this point, we can look at the Paramiko

output for the show interface brief command:

>>> new_connection.send('show ip int brief/n')

16

>>> output = new_connection.recv(5000)

>>> print(output)

b'show ip interface brief\r\nInterface IP-
Address OK? Method Status Protocol\r\
nGigabitEthernet0/0 192.168.2.51 YES NVRAM up
up \r\nGigabitEthernet0/1 10.0.0.1 YES NVRAM up
up \r\nLoopback0 192.168.0.10 YES NVRAM up
up \r\nlax-edg-r1#'

>>>

If we were to parse out that data contained in the output variable, this is what I would do in a

pseudo-code fashion (pseudo-code means a simplified representation of the actual code I would

write) to subtract the text into the information I need:

Chapter 3 73

1.	 Split each line via the line break.

2.	 I do not need the first line that contains the executed command of show ip interface

brief and will discard it.

3.	 Take out everything on the second line up until the hostname prompt, and save it in a

variable.

4.	 For the rest of the lines, because we do not know how many interfaces there are, we will

use a regular expression statement to search if the line starts with interface names, such

as lo for loopback and GigabitEthernet for Ethernet interfaces.

5.	 We will need to split this line into three sections separated by a space, each consisting of

the name of the interface, IP address, and then the interface status.

6.	 The interface status will then be split further using the while space to give us the protocol,

the link, and the admin status.

Whew, that is a lot of work just for something that a human being can tell at a glance! The steps are

what we need to do when we need to screen scrap unstructured texts. There are many downsides

to this method, but some of the bigger problems that I can see are listed as follows:

•	 Scalability: We spent so much time on painstaking details to parse out the outputs from

each command. It is hard to imagine how we can do this for the hundreds of commands

we typically run.

•	 Predictability: There is no guarantee that the output stays the same between different

software versions. If the output is changed ever so slightly, it might just render our hard-

fought battle of information gathering useless.

•	 Vendor and software lock-in: Once we spend all this effort parsing the output for this

particular vendor and software version, in this case, Cisco IOS, we need to repeat this

process for the next vendor we pick. I don’t know about you, but if I were to evaluate a

new vendor, the new vendor would be at a severe onboarding disadvantage if I have to

rewrite all the screen scrap code again.

Let’s compare that with an output from an NX-API call for the same show ip interface brief

command. We will go over the specifics of getting this output from the device later in this chapter,

but what is important here is to compare the following output to the previous screen scraping

output (the full output is in the course code repository):

{

"ins_api":{

"outputs":{

APIs and Intent-Driven Networking74

"output":{

"body":{ "TABLE_intf":[

{

"ROW_intf":{

"admin-state":"up",

"intf-name":"Lo0",

"iod":84,

"ip-disabled":"FALSE",

"link-state":"up",

"prefix":"192.168.2.50",

"proto-state":"up"

}

},

{

"ROW_intf":{

"admin-state":"up",

"intf-name":"Eth2/1",

"iod":36,

"ip-disabled":"FALSE",

"link-state":"up",

"prefix":"10.0.0.6",

"proto-state":"up"

}

}

],

"TABLE_vrf":[

{

"ROW_vrf":{

"vrf-name-out":"default"

}

},

{

"ROW_vrf":{

"vrf-name-out":"default"

Chapter 3 75

}

}

]

},

"code":"200",

"input":"show ip int brief",

"msg":"Success"

}

},

"sid":"eoc",

"type":"cli_show",

"version":"1.2"

}

}

NX-API can return output in XML or JSON, and this is the JSON output. Right away, we can see

the output is structured and can be mapped directly to the Python dictionary data structure. Once

this is converted to a Python dictionary, no extensive parsing is required — we can simply pick

the key and retrieve the value associated with the key. We can also see from the output that there

is various metadata in the output, such as the success or failure of the command. If the command

fails, there will be a message telling the sender the reason for the failure. We no longer need to

keep track of the command issued, because it is already returned to you in the input field. There

is also other useful metadata in the output, such as the NX-API version.

This type of exchange makes life easier for both vendors and operators. On the vendor side, they

can easily transfer configuration and state information. They can add extra fields when the need

to expose additional data arises using the same data structure. On the operator side, we can easily

ingest the information and build our infrastructure automation around it. It is agreed by all that

network automation and programmability are beneficial to both network vendors and operators.

The questions are usually about the transport, format, and structure of the automation messages.

As we will see later in this chapter, there are many competing technologies under the umbrella of

API. On the transport language alone, we have REST API, NETCONF, and RESTCONF, among others.

APIs and Intent-Driven Networking76

Data modeling for IaC
According to Wikipedia (https://en.wikipedia.org/wiki/Data_model), the definition of a

data model is as follows:

The data modeling process is illustrated in the following diagram:

Figure 3.1: Data example process

When applying the data model concept to the network, we can say the network data model is

an abstract model that describes our network. If we take a closer look at a physical data center, a

layer 2 Ethernet switch can be considered a device containing a table of MAC addresses mapped

to each port. Our switch data model describes how the MAC address should be kept in a table,

which includes the keys, additional characteristics (think of VLAN and private VLAN), and more.

Similarly, we can move beyond devices and map the whole data center in a data model. We can

start with the number of devices in each of the access, distribution, and core layers, how they are

connected, and how they should behave in a production environment.

A data model is an abstract model that organizes elements of data and standardizes

how they relate to one another and to properties of real-world entities. For instance,

a data model may specify that the data element representing a car be composed of

a number of other elements which, in turn, represent the color and size of the car

and define its owner.

https://en.wikipedia.org/wiki/Data_model

Chapter 3 77

For example, if we have a fat-tree network, we can declare in the model how many links each of

the spine routers have, the number of routes they should contain, and the number of next-hops

each of the prefixes would have.

Remember we talked about IaC? These characteristics can be mapped out in a format that can

then be referenced as the ideal state we can check against using software programs.

YANG and NETCONF
One of the network data modeling languages is YANG, an interesting acronym for Yet Another

Next Generation (despite common belief, some of the IETF workgroups do have a sense of hu-

mor). It was first published in RFC 6020 in 2010 and has since gained traction among vendors

and operators.

As a data modeling language, YANG is used to model the configuration of devices. It can also

represent state data manipulated by the NETCONF protocol, NETCONF remote procedure calls,

and NETCONF notifications. It aims to provide a common abstraction layer between the protocols,

such as NETCONF, and the underlying vendor-specific syntax for configuration and operations.

We will look at some examples of YANG later in this chapter.

Now that we have discussed the high-level concepts of API-based device management and data

modeling, let us look at some examples from Cisco in their API structures.

Cisco API examples
Cisco Systems, the 800-pound gorilla in the networking space, have not missed out on the trend

of network automation. In their push for network automation, they have made various in-house

developments, product enhancements, partnerships, and many external acquisitions. However,

with product lines spanning routers, switches, firewalls, servers (unified computing), wireless,

collaboration software and hardware, and analytic software, it is hard to know where to start.

Since this book focuses on Python and networking, we will scope the Cisco examples in this section

to the main networking products. In particular, we will cover the following:

•	 Nexus with NX-API

•	 Cisco NETCONF and YANG examples

•	 Cisco Application Centric Infrastructure (ACI)

•	 Cisco Meraki examples

APIs and Intent-Driven Networking78

For the NX-API and NETCONF examples in this chapter, we can either use the Cisco DevNet

always-on lab devices mentioned in Chapter 2, Low-Level Network Device Interactions, or a locally

run Cisco CML virtual lab.

We will use the same lab topology as we did in Chapter 2, Low-Level Network Device Interactions,

and focus on the devices running NX-OSv, lax-cor-r1, and nyc-cor-r1:

Figure 3.2: Lab NX-OSv Device

Let’s take a look at the Cisco NX-API example first.

Cisco NX-API
Nexus is Cisco’s primary product line of data center switches. The NX-API (http://www.cisco.
com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_
Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-

OS_Programmability_Guide_chapter_011.html) allows the engineer to interact with the switch

outside of the device via a variety of transports including SSH, HTTP, and HTTPS.

http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/6-x/programmability/guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_9000_Series_NX-OS_Programmability_Guide_chapter_011.html

Chapter 3 79

Lab preparation
Remember to activate our Python virtual environment. This should be a given requirement when-

ever we perform labs from now on:

$ source venv/bin/activate

The ncclient (https://github.com/ncclient/ncclient) library is a Python library for NETCONF

clients. We will also install a popular Python HTTP client library called Requests (https://pypi.

org/project/requests/). We can install both via pip:

$ pip install ncclient==0.6.13

$ pip install requests==2.28.1

NX-API on Nexus devices is turned off by default, so we will need to turn it on. We will also need

a user. In this case, we will just use the existing user of cisco:

feature nxapi

username cisco password 5 1Nk7ZkwH0$fyiRmMMfIheqE3BqvcL0C1 role network-
operator

username cisco role network-admin

username cisco passphrase lifetime 99999 warntime 14 gracetime 3

For our lab, we will turn on both the nxapi http and the nxapi sandbox configuration; keep in

mind that both should be turned off in production:

lax-cor-r1(config)# nxapi http port 80

lax-cor-r1(config)# nxapi sandbox

We are now ready to look at our first NX-API example.

NX-API examples
NX-API sandbox is a great way to play around with various commands, data formats, and even

copy the Python script directly from the web page. In the last step, we turned it on for learning

purposes. Again, the sandbox should be turned off in production.

https://github.com/ncclient/ncclient
https://pypi.org/project/requests/
https://pypi.org/project/requests/

APIs and Intent-Driven Networking80

Let’s launch a web browser with the Nexus device’s management IP and look at the various mes-

sage formats, requests, and responses based on the CLI commands that we are already familiar

with:

Figure 3.3: NX-API Developer Sandbox

In the following example, I have selected JSON-RPC and the CLI command type for the show

version command. Click on POST, and we will see both the REQUEST and RESPONSE:

Figure 3.4: NX-API Sandbox example output

Chapter 3 81

The sandbox comes in handy if you are unsure about the supportability of the message format

or if you have questions about the response data field keys for the value you want to retrieve in

your code.

In our first example, cisco_nxapi_1.py, we are just going to connect to the Nexus device and

print out the capabilities exchanged when the connection was first made:

#!/usr/bin/env python3

from ncclient import manager

conn = manager.connect(

 host='192.168.2.50',

 port=22,

 username='cisco',

 password='cisco',

 hostkey_verify=False,

 device_params={'name': 'nexus'},

 look_for_keys=False

)

for value in conn.server_capabilities:

 print(value)

conn.close_session()

In our example, we are using the ncclient library to connect to the device. The connection pa-

rameters of the host, port, username, and password are self-explanatory. The device parameter

specifies the kind of device the client is connecting to. The hostkey_verify bypasses the known_

host requirement for SSH; if it’s not set to false, the host fingerprint will need to be listed in the

~/.ssh/known_hosts file. The look_for_keys option disables public-private key authentication

and uses the username and password combination for authentication.

The output will show the XML- and NETCONF-supported features of this version of NX-OS:

(venv) $ python cisco_nxapi_1.py

urn:ietf:params:xml:ns:netconf:base:1.0

urn:ietf:params:netconf:base:1.0

urn:ietf:params:netconf:capability:validate:1.0

urn:ietf:params:netconf:capability:writable-running:1.0

urn:ietf:params:netconf:capability:url:1.0?scheme=file

urn:ietf:params:netconf:capability:rollback-on-error:1.0

urn:ietf:params:netconf:capability:candidate:1.0

urn:ietf:params:netconf:capability:confirmed-commit:1.0

APIs and Intent-Driven Networking82

Using ncclient and NETCONF over SSH is great because it gets us closer to the native implementa-

tion and syntax. We will use the same library later on in this book for other vendors as a comparison.

For NX-API, we can also use HTTPS and JSON-RPC. In the earlier screenshot of NX-API Developer

Sandbox, if you noticed, in the REQUEST box, there is a box labeled Python. If you click on it,

you will be able to get an automatically converted Python script based on the Requests library.

For the show version example from the NX-API sandbox, the following Python script is auto-

matically generated for us. I am pasting in the output without any modifications:

"""

NX-API-BOT

"""

import requests

import json

"""

Modify these please

"""

url='http://YOURIP/ins'

switchuser='USERID'

switchpassword='PASSWORD'

myheaders={'content-type':'application/json-rpc'}

payload=[

 {

 "jsonrpc": "2.0",

 "method": "cli",

 "params": {

 "cmd": "show version",

 "version": 1.2

 },

 "id": 1

 }

]

response = requests.post(url,data=json.dumps(payload),
headers=myheaders,auth=(switchuser,switchpassword)).json()

In the cisco_nxapi_2.py script, you will see that I have taken the script the NX-API sandbox

generated and only modified the URL, username, and password of the script. The output was

parsed to include only the software version. Here is the output:

Chapter 3 83

(venv) $ python cisco_nxapi_2.py

7.3(0)D1(1)

The best part about using this method is that the same overall syntax structure works with con-

figuration and show commands. This is illustrated in the cisco_nxapi_3.py file, configuring the

device with a new hostname. After command execution, you will see the device hostname being

changed from lax-cor-r1 to lax-cor-r1-new:

lax-cor-r1-new# sh run | i hostname

hostname lax-cor-r1-new

For multiline configuration, you can use the ID field to specify the order of operations. This is

shown in cisco_nxapi_4.py. The following payload was listed for changing the description of

the interface Ethernet 2/12 in the interface configuration mode:

{

 "jsonrpc": "2.0",

 "method": "cli",

 "params": {

 "cmd": "interface ethernet 2/12",

 "version": 1.2

 },

 "id": 1

},

{

 "jsonrpc": "2.0",

 "method": "cli",

 "params": {

 "cmd": "description foo-bar",

 "version": 1.2

 },

 "id": 2

},

{

 "jsonrpc": "2.0",

 "method": "cli",

 "params": {

 "cmd": "end",

 "version": 1.2

APIs and Intent-Driven Networking84

 },

 "id": 3

},

{

 "jsonrpc": "2.0",

 "method": "cli",

 "params": {

 "cmd": "copy run start",

 "version": 1.2

 },

 "id": 4

 }

]

We can verify the result of the previous configuration script by looking at the running configu-

ration of the Nexus device:

interface Ethernet2/12

 description foo-bar

 shutdown

 no switchport

 mac-address 0000.0000.002f

In the next example, we will see how we can use YANG with NETCONF.

The Cisco YANG Model
Let us take a look at Cisco’s YANG model support with an example. First, we should know that the

YANG model only defines the type of schema sent over the NETCONF protocol without dictating

what the data should be. Secondly, it is worth pointing out that NETCONF exists as a standalone

protocol, as we saw in the NX-API section. Thirdly, YANG has different supportability across ven-

dors and product lines. For example, if we run a capability exchange script for a Cisco CSR 1000v

running IOS-XE, we can see the YANG models supported on the platform:

Chapter 3 85

urn:cisco:params:xml:ns:yang:cisco-virtual-service?module=cisco- virtual-
service&revision=2015-04-09

http://tail-f.com/ns/mibs/SNMP-NOTIFICATION-MIB/200210140000Z?
module=SNMP-NOTIFICATION-MIB&revision=2002-10-14

urn:ietf:params:xml:ns:yang:iana-crypt-hash?module=iana-crypt-
hash&revision=2014-04-04&features=crypt-hash-sha-512,crypt-hash-sha-
256,crypt-hash-md5

urn:ietf:params:xml:ns:yang:smiv2:TUNNEL-MIB?module=TUNNEL-
MIB&revision=2005-05-16

urn:ietf:params:xml:ns:yang:smiv2:CISCO-IP-URPF-MIB?module=CISCO-IP-URPF-
MIB&revision=2011-12-29

urn:ietf:params:xml:ns:yang:smiv2:ENTITY-STATE-MIB?module=ENTITY-STATE-
MIB&revision=2005-11-22

urn:ietf:params:xml:ns:yang:smiv2:IANAifType-MIB?module=IANAifType-
MIB&revision=2006-03-31

<omitted>

YANG has somewhat uneven support among different vendors and products. I have included a

cisco_yang_1.py script with the book code repository for a Cisco IOS-XE always-on sandbox

provided by Cisco Devnet that shows how to parse out the NETCONF XML output with YANG

filters called urn:ietf:params:xml:ns:yang:ietf-interfaces.

We can see the latest vendor support on the YANG GitHub project page (https://github.com/

YangModels/yang/tree/master/vendor).

The Cisco ACI examples
The Cisco Application Centric Infrastructure, or ACI, is meant to provide a centralized controller

approach to all network components we defined within its management scope. In the data cen-

ter context, the centralized controller is aware of and manages the spine, leaf, and top-of-rack

switches, as well as all the network service functions. This can be done through a GUI, CLI, or API.

Some might argue that the ACI is Cisco’s answer to broader controller-based, software-defined

networking.

https://github.com/YangModels/yang/tree/master/vendor
https://github.com/YangModels/yang/tree/master/vendor

APIs and Intent-Driven Networking86

The ACI API follows the REST model to use the HTTP verbs (GET, POST, and DELETE) to specify

the intended operation. In our example, we can use the Cisco DevNet always-on lab ACI device

(https://devnetsandbox.cisco.com/RM/Topology):

Figure 3.5: Cisco DevNet Sandboxes

Always check the latest Cisco DevNet page for the latest device information, user-

name, and password as they may have changed since the book was written.

https://devnetsandbox.cisco.com/RM/Topology

Chapter 3 87

The controller is the brain of the network that maintains visibility to all network devices:

Figure 3.6: Cisco ACI Controller

We can use a web browser to log on to the controller and take a look at the different tenants:

Figure 3.7: Cisco ACI Tenants

APIs and Intent-Driven Networking88

Let’s use a Python interactive prompt to see how we can interact with the ACI controller. We will start

by importing the correct libraries and defining the destination URL as well as the login credentials:

>>> import requests, json

>>> URL = 'https://sandboxapicdc.cisco.com'

>>> PASSWORD = "<password>"

>>> LOGIN = "admin"

>>> AUTH_URL = URL + '/api/aaaLogin.json'

We can then make a request and convert the response into JSON format:

>>> r = requests.post(AUTH_URL,
json={"aaaUser":{"attributes":{"name":LOGIN,"pwd":PASSWORD}}},
verify=False)

>>> r_json = r.json()

>>> r_json

{'totalCount': '1', 'imdata': [{'aaaLogin': {'attributes': {'token':
_<skip>}

We can grab the token from the response and use it as an authentication cookie for future re-

quests to the controller. In the example below, we query for the cisco tenant that we saw in the

controller tenant section:

>>> token = r_json["imdata"][0]["aaaLogin"]["attributes"]["token"]

>>> cookie = {'APIC-cookie':token}

>>> QUERY_URL = URL + '/api/node/class/fvTenant.json?query-target-
filter=eq(fvTenant.name,"Cisco")'

>>> r_cisco = requests.get(QUERY_URL, cookies=cookie, verify=False)

>>> r_cisco.json()

{'totalCount': '1', 'imdata': [{'fvTenant': {'attributes': {'annotation':
'', 'childAction': '', 'descr': '', 'dn': 'uni/tn-Cisco', 'extMngdBy': '',
'lcOwn': 'local', 'modTs': '2022-08-06T14:05:15.893+00:00', 'monPolDn':
'uni/tn-common/monepg-default', 'name': 'Cisco', 'nameAlias': '',
'ownerKey': '', 'ownerTag': '', 'status': '', 'uid': '15374', 'userdom':
':all:'}}}]}

>>> print(r_cisco.json()['imdata'][0]['fvTenant']['attributes']['dn'])

uni/tn-Cisco

As you can see, we only query a single controller device, but we can get a high-level view of all

the network devices that the controller is aware of. This is pretty neat! The downside is, of course,

that the ACI controller only supports Cisco devices at this time.

Chapter 3 89

Cisco IOS-XE

For the most part, Cisco IOS-XE scripts are functionally similar to scripts we have written for

NX-OS. IOS-XE has additional features that can benefit Python network programmability, such

as on-box Python and a guest shell, https://developer.cisco.com/docs/ios-xe/#!on-box-

python-and-guestshell-quick-start-guide/onbox-python.

Similar to ACI, Cisco Meraki is a centrally managed controller that has visibility for multiple wired

and wireless networks. Unlike the ACI controller, Meraki is cloud based, so it is hosted outside

of the on-premises location. Let us look at some of the Cisco Meraki features and examples in

the next section.

Cisco Meraki controller
Cisco Meraki is a cloud-based centralized controller that simplifies IT management of devices. The

approach is very similar to ACI with the exception that the controller has a cloud-based public

URL. The user typically receives the API key via the GUI, then it can be used in a Python script to

retrieve the organization ID:

#!/usr/bin/env python3

import requests

import pprint

myheaders={'X-Cisco-Meraki-API-Key': <skip>}

url ='https://dashboard.meraki.com/api/v0/organizations'

response = requests.get(url, headers=myheaders, verify=False)

pprint.pprint(response.json())

Let us execute the script, cisco_meraki_1.py, which is a simple request toward an always-on

Meraki controller provided by Cisco DevNet:

(venv) $ python cisco_meraki_1.py

 [{'id': '681155',

 'name': 'DeLab',

 'url': 'https://n6.meraki.com/o/49Gm_c/manage/organization/overview'},

 {'id': '865776',

 'name': 'Cisco Live US 2019',

 'url': 'https://n22.meraki.com/o/CVQqTb/manage/organization/overview'},

 {'id': '549236',

 'name': 'DevNet Sandbox',

 'url': 'https://n149.meraki.com/o/t35Mb/manage/organization/overview'},

https://developer.cisco.com/docs/ios-xe/#!on-box-python-and-guestshell-quick-start-guide/onbox-python
https://developer.cisco.com/docs/ios-xe/#!on-box-python-and-guestshell-quick-start-guide/onbox-python

APIs and Intent-Driven Networking90

 {'id': '52636',

 'name': 'Forest City - Other',

 'url': 'https://n42.meraki.com/o/E_utnd/manage/organization/overview'}]

From there, the organization ID can be used to further retrieve information, such as the inventory,

network information, and so on:

#!/usr/bin/env python3

import requests

import pprint

myheaders={'X-Cisco-Meraki-API-Key': <skip>}

orgId = '549236'

url = 'https://dashboard.meraki.com/api/v0/organizations/' + orgId + '/
networks'

response = requests.get(url, headers=myheaders, verify=False)

pprint.pprint(response.json())

Let’s take a look at the output from the cisco_meraki_2.py script:

(venv) $ python cisco_meraki_2.py

<skip>

[{'disableMyMerakiCom': False,

 'disableRemoteStatusPage': True,

 'id': 'L_646829496481099586',

 'name': 'DevNet Always On Read Only',

 'organizationId': '549236',

 'productTypes': ['appliance', 'switch'],

 'tags': ' Sandbox ',

 'timeZone': 'America/Los_Angeles',

 'type': 'combined'},

 {'disableMyMerakiCom': False,

 'disableRemoteStatusPage': True,

 'id': 'N_646829496481152899',

 'name': 'test - mx65',

 'organizationId': '549236',

 'productTypes': ['appliance'],

 'tags': None,

 'timeZone': 'America/Los_Angeles',

 'type': 'appliance'},

<skip>

Chapter 3 91

We have seen examples of Cisco devices using NX-API, ACI, and the Meraki controller. In the next

section, let us take a look at some of the Python examples working with Juniper Networks devices.

The Python API for Juniper Networks
Juniper Networks has always been a favorite among the service provider crowd. If we take a step

back and look at the service provider vertical, it would make sense that automating network

equipment is at the top of their list of requirements. Before the dawn of cloud-scale data centers,

service providers had the most network equipment to manage. For example, a typical enterprise

network might have a few redundant internet connections at the corporate headquarters with a

few hub-and-spoke remote sites connected back to the HQ using a private multiprotocol label

switching (MPLS) network. But to a service provider, they are the ones needing to build, provi-

sion, manage, and troubleshoot the MPLS connections and the underlying networks. They make

their money by selling the bandwidth along with value-added managed services. It would make

sense for the service providers to invest in automation to use the fewest engineering hours to

keep the network humming along. In their use case, network automation is a key to their com-

petitive advantage.

In my opinion, the difference between a service provider’s network needs compared to a cloud

data center is that, traditionally, service providers aggregate more services into a single device. A

good example would be MPLS, which almost all major service providers provide but rarely adopt

in enterprise or data center networks. Juniper Networks has identified this need for network

programmability and excelled at fulfilling the service provider requirements of automating. Let’s

take a look at some of Juniper’s automation APIs.

Juniper and NETCONF
NETCONF is an IETF standard that was first published in 2006 as RFC 4741 and later revised in

RFC 6241. Juniper Networks contributed heavily to both of the RFC standards. In fact, Juniper

was the sole author of RFC 4741. It makes sense that Juniper devices fully support NETCONF,

and it serves as the underlying layer for most of its automation tools and frameworks. Some of

the main characteristics of NETCONF include the following:

1.	 It uses extensible markup language (XML) for data encoding.

2.	 It uses remote procedure calls (RPCs). Therefore, if HTTP(s) is the transport protocol, the

URL endpoint is identical while the operation intended is specified in the request’s body.

APIs and Intent-Driven Networking92

3.	 It is conceptually based on layers from top to bottom. The layers include the content,

operations, messages, and transport:

Figure 3.8: NETCONF model

Juniper Networks provides an extensive NETCONF XML management protocol developer guide

(https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-

pages/netconf-guide/netconf.html#overview) in its technical library. Let’s take a look at its

usage.

Device preparation
To start using NETCONF, let’s create a separate user as well as turn on the required services:

set system login user juniper uid 2001

set system login user juniper class super-user

set system login user juniper authentication encrypted-password "$1$0EkA.
XVf$cm80A0GC2dgSWJIYWv7Pt1"

set system services ssh

set system services telnet

set system services netconf ssh port 830

For the Juniper device lab, I am using an older, unsupported platform called JunOS Olive. It is

solely used for lab purposes. You can use your favorite search engine to find some interesting

facts and history about Juniper Olive.

On the Juniper device, you can always take a look at the configuration either in a flat file or in

XML format. The flat file comes in handy when you need to specify a one-liner command to

make configuration changes:

netconf@foo> show configuration | display set

set version 12.1R1.9

https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview
https://www.juniper.net/techpubs/en_US/junos13.2/information-products/pathway-pages/netconf-guide/netconf.html#overview

Chapter 3 93

set system host-name foo set system domain-name bar

<omitted>

The XML format comes in handy at times when you need to see the XML structure of the con-

figuration:

netconf@foo> show configuration | display xml

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/12.1R1/junos">

<configuration junos:commit-seconds="1485561328" junos:commit-
localtime="2017-01-27 23:55:28 UTC" junos:commit-user="netconf">

<version>12.1R1.9</version>

<system>

<host-name>foo</host-name>

<domain-name>bar</domain-name>

We installed the necessary Linux libraries and the ncclient Python library in the Lab software

installation and device preparation within Cisco NX-API section. If you have not done so, go back to

that section and install the necessary packages.

We are now ready to look at our first Juniper NETCONF example.

Juniper NETCONF examples
We will use a pretty straightforward example to execute show version. We will name this file

junos_netconf_1.py:

#!/usr/bin/env python3

from ncclient import manager

conn = manager.connect(

 host='192.168.2.70',

 port='830',

 username='juniper',

 password='juniper!',

 timeout=10,

 device_params={'name':'junos'},

 hostkey_verify=False)

result = conn.command('show version', format='text')

print(result.xpath('output')[0].text)

conn.close_session()

APIs and Intent-Driven Networking94

All the fields in the script should be pretty self-explanatory, with the exception of device_params.

Starting with ncclient 0.4.1, the device handler was added to specify different vendors or plat-

forms. For example, the name can be Juniper, CSR, Nexus, or Huawei. We also added hostkey_

verify=False because we are using a self-signed certificate from the Juniper device.

The returned output is rpc-reply encoded in XML with an output element:

<rpc-reply message-id="urn:uuid:7d9280eb-1384-45fe-be48- b7cd14ccf2b7">

<output>

Hostname: foo

Model: olive

JUNOS Base OS boot [12.1R1.9]

JUNOS Base OS Software Suite [12.1R1.9]

<omitted>

JUNOS Runtime Software Suite [12.1R1.9] JUNOS Routing Software Suite
[12.1R1.9]

</output>

</rpc-reply>

We can parse the XML output to just include the output text:

print(result.xpath('output')[0].text)

In junos_netconf_2.py, we will make configuration changes to the device. We will start with

some new imports for constructing new XML elements and the connection manager object:

#!/usr/bin/env python3

from ncclient import manager

from ncclient.xml_ import new_ele, sub_ele

conn = manager.connect(host='192.168.2.70', port='830',
username='juniper', password='juniper!', timeout=10, device_
params={'name':'junos'}, hostkey_verify=False)

We will lock the configuration and make configuration changes:

lock configuration and make configuration changes conn.lock()

build configuration

config = new_ele('system')

sub_ele(config, 'host-name').text = 'master'

sub_ele(config, 'domain-name').text = 'python'

Chapter 3 95

In the build configuration section, we create a new element of system with sub-elements of host-

name and domain-name. If you were wondering about the hierarchy structure, you can see from the

XML display that the node structure with system is the parent of host-name and domain-name:

<system>

 <host-name>foo</host-name>

 <domain-name>bar</domain-name>

...

</system>

After the configuration is built, the script will push the configuration and commit the configu-

ration changes. These are the normal best practice steps (lock, configure, unlock, commit) for

Juniper configuration changes:

send, validate, and commit config conn.load_configuration(config=config)

conn.validate()

commit_config = conn.commit()

print(commit_config.tostring)

unlock config

conn.unlock()

close session

conn.close_session()

Overall, the NETCONF steps map pretty well to what we would have done in the CLI steps. Please

take a look at the junos_netconf_3.py script for a more reusable code. The following example

combines the step-by-step example with a few Python functions:

make a connection object

def connect(host, port, user, password):

 connection = manager.connect(host=host, port=port,

 username=user, password=password, timeout=10,

 device_params={'name':'junos'}, hostkey_verify=False)

 return connection

execute show commands

def show_cmds(conn, cmd):

 result = conn.command(cmd, format='text')

 return result

push out configuration

def config_cmds(conn, config):

 conn.lock()

APIs and Intent-Driven Networking96

 conn.load_configuration(config=config)

 commit_config = conn.commit()

 return commit_config.tostring

This file can be executed by itself, or it can be imported to be used by other Python scripts.

Juniper also provides a Python library to be used with their devices called PyEZ. We will look at

a few examples of using the library in the following section.

Juniper PyEZ for developers
PyEZ is a high-level Python library implementation that integrates better with your existing

Python code. By utilizing the Python API that wraps around the underlying configuration, you

can perform common operations and configuration tasks without extensive knowledge of the

Junos CLI.

Juniper maintains a comprehensive Junos PyEZ developer guide at https://www.juniper.
net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-

developer-guide.html#configuration on their technical library. If you are interested in using

PyEZ, I would highly recommend at least a glance through the various topics in the guide.

Installation and preparation
The installation instructions for each of the operating systems can be found on the Install-

ing Junos PyEZ (https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/

installation/junos-pyez-server-installing.html) page.

PyEZ packages can be installed via pip:

(venv) $ pip install junos-eznc

On the Juniper device, NETCONF needs to be configured as the underlying XML API for PyEZ:

set system services netconf ssh port 830

For user authentication, we can either use password authentication or an SSH key pair. We can

create a new user or use the existing user. For ssh key authentication, first, generate the key pair on

your management host if you have not done so for Chapter 2, Low-Level Network Device Interactions:

$ ssh-keygen -t rsa

https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/information-products/pathway-pages/junos-pyez-developer-guide.html#configuration
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez1.0/topics/task/installation/junos-pyez-server-installing.html

Chapter 3 97

By default, the public key will be called id_rsa.pub under ~/.ssh/, while the private key will be

named id_rsa in the same directory. Treat the private key like a password that you never share.

The public key can be freely distributed. In our use case, we will copy the public key to the /tmp

directory and enable the Python 3 HTTP server module to create a reachable URL:

(venv) $ cp ~/.ssh/id_rsa.pub /tmp

(venv) $ cd /tmp

(venv) $ python3 -m http.server

(venv) Serving HTTP on 0.0.0.0 port 8000 ...

From the Juniper device, we can create the user and associate the public key by downloading the

public key from the Python 3 web server:

netconf@foo# set system login user echou class super-user authentication
load-key-file http://<management host ip>:8000/id_rsa.pub

/var/home/netconf/...transferring.file........100% of 394 B 2482 kBps

Now, if we try to ssh with the private key from the management station, the user will be auto-

matically authenticated:

(venv) $ ssh -i ~/.ssh/id_rsa <Juniper device ip>

--- JUNOS 12.1R1.9 built 2012-03-24 12:52:33 UTC

echou@foo>

Let’s make sure that both of the authentication methods work with PyEZ. Let’s try the username

and password combination:

>>> from jnpr.junos import Device

>>> dev = Device(host='<Juniper device ip, in our case 192.168.2.70>',
user='juniper', password='juniper!')

>>> dev.open()

Device(192.168.2.70)

>>> dev.facts

{'serialnumber': '', 'personality': 'UNKNOWN', 'model': 'olive', 'ifd_
style': 'CLASSIC', '2RE': False, 'HOME': '/var/home/juniper', 'version_
info': junos.version_info(major=(12, 1), type=R, minor=1, build=9),
'switch_style': 'NONE', 'fqdn': 'foo.bar', 'hostname': 'foo', 'version':
'12.1R1.9', 'domain': 'bar', 'vc_capable': False}

>>> dev.close()

APIs and Intent-Driven Networking98

We can also try to use the SSH key authentication:

>>> from jnpr.junos import Device

>>> dev1 = Device(host='192.168.2.70', user='echou', ssh_private_key_
file='/home/echou/.ssh/id_rsa')

>>> dev1.open()

Device(192.168.2.70)

>>> dev1.facts

{'HOME': '/var/home/echou', 'model': 'olive', 'hostname': 'foo', 'switch_
style': 'NONE', 'personality': 'UNKNOWN', '2RE': False, 'domain': 'bar',
'vc_capable': False, 'version': '12.1R1.9', 'serialnumber': '', 'fqdn':
'foo.bar', 'ifd_style': 'CLASSIC', 'version_info': junos.version_
info(major=(12, 1), type=R, minor=1, build=9)}

>>> dev1.close()

Great! We are now ready to look at some examples for PyEZ.

PyEZ examples
In the previous interactive prompt, we saw that when the device connects, the object automatically

retrieves a few facts about the device. In our first example, junos_pyez_1.py, we were connecting

to the device and executing an RPC call for show interface em1:

#!/usr/bin/env python3

from jnpr.junos import Device

import xml.etree.ElementTree as ET

import pprint

dev = Device(host='192.168.2.70', user='juniper', passwd='juniper!')

try:

 dev.open()

except Exception as err:

 print(err)

 sys.exit(1)

result = dev.rpc.get_interface_information(interface_name='em1',
terse=True)

pprint.pprint(ET.tostring(result))

dev.close()

Chapter 3 99

The Device class has an rpc property that includes all operational commands. This is awesome

because there is no slippage between what we can do in CLI versus API. The catch is that we need

to find the corresponding xml rpc element tag for the CLI command. In our first example, how

do we know show interface em1 equates to get_interface_information? We have three ways

of finding out this information:

1.	 We can reference the Junos XML API Operational Developer Reference.

2.	 We can use the CLI and display the XML RPC equivalent and replace the dash (-) between

the words with an underscore (_).

3.	 We can also do this programmatically by using the PyEZ library.

I typically use the second option to get the output directly:

netconf@foo> show interfaces em1 | display xml rpc

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/12.1R1/junos">

 <rpc>

 <get-interface-information>

 <interface-name>em1</interface-name>

 </get-interface-information>

 </rpc>

 <cli>

 <banner></banner>

 </cli>

</rpc-reply>

Here is an example of using PyEZ programmatically (the third option):

>>> dev1.display_xml_rpc('show interfaces em1', format='text')

'<get-interface-information>/n <interface-name>em1</interface- name>/n</
get-interface-information>/n'

Of course, we can make configuration changes as well. In the junos_pyez_2.py configuration

example, we will import an additional Config() method from PyEZ:

#!/usr/bin/env python3

from jnpr.junos import Device

from jnpr.junos.utils.config import Config

APIs and Intent-Driven Networking100

We will utilize the same block to connect to a device:

dev = Device(host='192.168.2.70', user='juniper',

 passwd='juniper!')

try:

 dev.open()

except Exception as err:

 print(err)

 sys.exit(1)

The new Config() method will load the XML data and make the configuration changes:

config_change = ""

<system>

 <host-name>master</host-name>

 <domain-name>python</domain-name>

</system>

""

cu = Config(dev)

cu.lock()

cu.load(config_change)

cu.commit()

cu.unlock()

dev.close()

The PyEZ examples are simple by design. Hopefully, they demonstrate the ways you can leverage

PyEZ for your Junos automation needs. In the following example, let’s look at how we can work

with Arista network devices using Python libraries.

The Arista Python API
Arista Networks has always been focused on large-scale data center networks. On its corporate

profile page (https://www.arista.com/en/company/company-overview), it states the following:

”Arista Networks is an industry leader in data-driven, client to cloud networking

for large data center, campus, and routing environments.”

https://www.arista.com/en/company/company-overview

Chapter 3 101

Notice that the statement specifically called out large data centers, which we know are exploding

with servers, databases, and, yes, network equipment. It makes sense that automation has always

been one of Arista’s leading features. In fact, it has a Linux underpinning behind its operating

system, allowing many added benefits, such as Linux commands and a built-in Python interpreter

directly on the platform. From day one, Arista was open about exposing the Linux and Python

features to the network operators.

Like other vendors, you can interact with Arista devices directly via eAPI, or you can choose to

leverage their Python library. We will see examples of both in this chapter.

Arista eAPI management
Arista’s eAPI was first introduced in EOS 4.12 a few years ago. It transports a list of show or config-

uration commands over HTTP or HTTPS and responds in JSON. An important distinction is that

it is an RPC and JSON-RPC, instead of a pure RESTful API that is served over HTTP or HTTPS. The

difference is that we make the request to the same URL endpoint using the same HTTP method

(POST). But instead of using HTTP verbs (GET, POST, PUT, DELETE) to express our action, we simply

state our intended action in the request’s body. In the case of eAPI, we will specify a method key

with a runCmds value.

For the following examples, I am using a physical Arista switch running EOS 4.16.

eAPI preparation
The eAPI agent on the Arista device is disabled by default, so we will need to enable it on the

device before we can use it:

arista1(config)#management api http-commands

arista1(config-mgmt-api-http-cmds)#no shut

arista1(config-mgmt-api-http-cmds)#protocol https port 443

arista1(config-mgmt-api-http-cmds)#no protocol http

arista1(config-mgmt-api-http-cmds)#vrf management

As you can see, we have turned off the HTTP server and are using HTTPS as the sole transport

instead. The management interfaces, by default, reside in a VRF called management. In my to-

pology, I am accessing the device via the management interface; therefore, I have specified the

VRF for eAPI management.

APIs and Intent-Driven Networking102

You can check that API management state via the show management api http-commands com-

mand:

arista1#sh management

api http-commands Enabled: Yes

HTTPS server: running, set to use port 443 HTTP server: shutdown, set to
use port 80

Local HTTP server: shutdown, no authentication, set to use port 8080

Unix Socket server: shutdown, no authentication

VRF: management

Hits: 64

Last hit: 33 seconds ago Bytes in: 8250

Bytes out: 29862

Requests: 23

Commands: 42

Duration: 7.086

seconds SSL Profile: none

QoS DSCP: 0

User Requests Bytes in Bytes out Last hit

----------- -------------- -------------- --------------- -----------

admin 23 8250 29862 33 seconds ago

URLs

Management1 : https://192.168.199.158:443

arista1#

After enabling the agent, we can access the exploration page for eAPI by going to the device’s IP

address in a web browser. If you have changed the default port for access, just append it. The

authentication is tied to the method of authentication on the switch. We will use the username

and password configured locally on the device. By default, a self-signed certificate will be used:

Chapter 3 103

Figure 3.9: Arista EOS explorer

We will be taken to an explorer page, where we can type in the CLI command and get a nice output

for the body of our request. For example, if I want to see how to make a request body for show

version, this is the output I will see from the explorer:

Figure 3.10: Arista EOS explorer viewer

APIs and Intent-Driven Networking104

The overview link will take us to the sample use and background information, while the command

documentation will serve as reference points for the show commands. Each command reference

will contain the returned value field name, type, and a brief description. The online reference

scripts from Arista use jsonrpclib (https://github.com/joshmarshall/jsonrpclib/), which

we will use.

The examples in this section mainly use Python 2.7 as jsonrpclib was not ported to Python 3 for a

long time. However, per GitHub pull request https://github.com/joshmarshall/jsonrpclib/

issues/38, Python 3 support should be included.

Installation is straightforward using pip:

(venv) $ pip install jsonrpclib

eAPI examples
We can then write a simple program called eapi_1.py to look at the response text:

#!/usr/bin/python2

from __future__ import print_function

from jsonrpclib import Server

import ssl

ssl._create_default_https_context = ssl._create_unverified_context

switch = Server("https://admin:arista@192.168.199.158/command-api")

response = switch.runCmds(1, ["show version"])

print('Serial Number: ' + response[0]['serialNumber'])

This is the response I received from the previous runCmds() method:

[{u'memTotal': 3978148, u'internalVersion': u'4.16.6M- 3205780.4166M',
u'serialNumber': u'<omitted>', u'systemMacAddress': u'<omitted>',
u'bootupTimestamp': 1465964219.71, u'memFree': 277832, u'version':
u'4.16.6M', u'modelName': u'DCS-7050QX-32-F', u'isIntlVersion':
False, u'internalBuildId': u'373dbd3c-60a7-4736-8d9e-bf5e7d207689',
u'hardwareRevision': u'00.00', u'architecture': u'i386'}]

As you can see, the result is a list containing one dictionary item. If we need to grab the serial

number, we can simply reference the item number and the key:

print('Serial Number: ' + response[0]['serialNumber'])

https://github.com/joshmarshall/jsonrpclib/
https://github.com/joshmarshall/jsonrpclib/issues/38
https://github.com/joshmarshall/jsonrpclib/issues/38

Chapter 3 105

The output will contain only the serial number:

$ python eapi_1.py

Serial Number: <omitted>

To be more familiar with the command reference, I recommend clicking on the Command Doc-

umentation link on the eAPI page and comparing our output with the output of show version

in the documentation.

As noted earlier, unlike REST, the JSON-RPC client uses the same URL endpoint for calling the

server resources. We can see from the previous example that the runCmds() method contains a

list of commands. For the execution of configuration commands, you can follow the same steps

and configure the device via a list of commands.

Here is an example of configuration commands in a file named eapi_2.py. In our example, we

wrote a function that takes the switch object and the list of commands as attributes:

#!/usr/bin/python2

from __future__ import print_function

from jsonrpclib import Server

import ssl, pprint

ssl._create_default_https_context = ssl._create_unverified_context

Run Arista commands thru eAPI

def runAristaCommands(switch_object, list_of_commands):

 response = switch_object.runCmds(1, list_of_commands)

 return response

switch = Server("https://admin:arista@192.168.199.158/command-api")

commands = ["enable", "configure", "interface ethernet 1/3", "switchport
access vlan 100", "end", "write memory"]

response = runAristaCommands(switch, commands)

pprint.pprint(response)

Here is the output of the command’s execution:

$ python2 eapi_2.py

[{}, {}, {}, {}, {}, {u'messages': [u'Copy completed successfully.']}]

APIs and Intent-Driven Networking106

Now, do a quick check on the switch to verify the command’s execution:

arista1#sh run int eth 1/3

interface Ethernet1/3

 switchport access vlan 100

arista1#

Overall, eAPI is fairly straightforward and simple to use. Most programming languages have li-

braries similar to jsonrpclib, which abstracts away JSON-RPC internals. With a few commands,

you can start integrating Arista EOS automation into your network.

The Arista Pyeapi library
The Python client Pyeapi (http://pyeapi.readthedocs.io/en/master/index.html) library is a

native Python library wrapper around eAPI. It provides a set of bindings to configure Arista EOS

nodes. Why do we need Pyeapi when we already have eAPI? The answer is “it depends.” Picking

between Pyeapi and eAPI is mostly a judgment call.

If you are in a non-Python environment, eAPI is probably the way to go. From our examples, you

can see that the only requirement of eAPI is a JSON-RPC-capable client. Thus, it is compatible

with most programming languages. When I first started out in the field, Perl was the dominant

language for scripting and network automation. There are still many enterprises that rely on Perl

scripts as their primary automation tool. If you’re in a situation where the company has already

invested a ton of resources and the code base is in a language other than Python, eAPI with JSON-

RPC would be a good bet.

However, for those of us who prefer to code in Python, a native Python library such as Pyeapi

means a more natural feeling in writing our code. It certainly makes extending a Python program

to support the EOS node easier. It also makes keeping up with the latest changes in Python easier.

For example, we can use Python 3 with Pyeapi (https://pyeapi.readthedocs.io/en/master/

requirements.html)!

Pyeapi installation
Installation is straightforward with pip:

(venv) $ pip install pyeapi

Note that pip will also install the netaddr library as it is part of the stated requirements (http://

pyeapi.readthedocs.io/en/master/requirements.html) for Pyeapi.

http://pyeapi.readthedocs.io/en/master/index.html
https://pyeapi.readthedocs.io/en/master/requirements.html
https://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html
http://pyeapi.readthedocs.io/en/master/requirements.html

Chapter 3 107

By default, the Pyeapi client will look for an INI-style hidden (with a period in front) file called

eapi.conf in your home directory. You can override this behavior by specifying the eapi.conf file

path. It is generally a good idea to separate your connection credential and lock it down from the

script itself. You can check out the Arista Pyeapi documentation (http://pyeapi.readthedocs.

io/en/master/configfile.html#configfile) for the fields contained in the file.

Here is the file I am using in the lab:

cat ~/.eapi.conf

[connection:Arista1]

host: 192.168.199.158

username: admin

password: arista

transport: https

The first line, [connection:Arista1], contains the name that we will use in our Pyeapi connection;

the rest of the fields should be pretty self-explanatory. You can lock down the file to be read-only

for the user using this file:

$ chmod 400 ~/.eapi.conf

$ ls -l ~/.eapi.conf

-r-------- 1 echou echou 94 Jan 27 18:15 /home/echou/.eapi.conf

Now that Pyeapi is installed, let’s get into some examples.

Pyeapi examples
Let’s start by connecting to the EOS node by creating an object in the interactive Python shell:

>>> import pyeapi

>>> arista1 = pyeapi.connect_to('Arista1')

We can execute show commands to the node and receive the output:

>>> import pprint

>>> pprint.pprint(arista1.enable('show hostname'))

[{'command': 'show hostname',

'encoding': 'json',

'result': {'fqdn': 'arista1', 'hostname': 'arista1'}}]

http://pyeapi.readthedocs.io/en/master/configfile.html#configfile
http://pyeapi.readthedocs.io/en/master/configfile.html#configfile

APIs and Intent-Driven Networking108

The configuration field can be either a single command or a list of commands using the config()

method:

>>> arista1.config('hostname arista1-new')

[{}]

>>> pprint.pprint(arista1.enable('show hostname'))

[{'command': 'show hostname',

 'encoding': 'json',

 'result': {'fqdn': 'arista1-new', 'hostname': 'arista1-new'}}]

>>> arista1.config(['interface ethernet 1/3', 'description my_link']) [{},
{}]

Note that command abbreviations (show run versus show running-config) and some extensions

will not work:

>>> pprint.pprint(arista1.enable('show run'))

Traceback (most recent call last):

...

File "/usr/local/lib/python3.5/dist-packages/pyeapi/eapilib.py", line 396,
in send

raise CommandError(code, msg, command_error=err, output=out) pyeapi.
eapilib.CommandError: Error [1002]: CLI command 2 of 2 'show run' failed:
invalid command [incomplete token (at token 1: 'run')]

>>>

>>> pprint.pprint(arista1.enable('show running-config interface ethernet
1/3'))

Traceback (most recent call last):

...

pyeapi.eapilib.CommandError: Error [1002]: CLI command 2 of 2 'show
running-config interface ethernet 1/3' failed: invalid command [incomplete
token (at token 2: 'interface')]

We can always catch the results and get the desired value:

>>> result = arista1.enable('show running-config')

>>> pprint.pprint(result[0]['result']['cmds']['interface Ethernet1/3'])

{'cmds': {'description my_link': None, 'switchport access vlan 100':
None}, 'comments': []}

Chapter 3 109

So far, we have been doing what we have been doing with eAPI for show and configuration com-

mands. Pyeapi offers various APIs to make life easier. In the following example, we will connect

to the node, call the VLAN API, and start to operate on the VLAN parameters of the device. Let’s

take a look:

>>> import pyeapi

>>> node = pyeapi.connect_to('Arista1')

>>> vlans = node.api('vlans')

>>> type(vlans)

<class 'pyeapi.api.vlans.Vlans'>

>>> dir(vlans)

[...'command_builder', 'config', 'configure', 'configure_interface',
'configure_vlan', 'create', 'default', 'delete', 'error', 'get', 'get_
block', 'getall', 'items', 'keys', 'node', 'remove_trunk_group', 'set_
name', 'set_state', 'set_trunk_groups', 'values']

>>> vlans.getall()

{'1': {'vlan_id': '1', 'trunk_groups': [], 'state': 'active', 'name':
'default'}}

>>> vlans.get(1)

{'vlan_id': 1, 'trunk_groups': [], 'state': 'active', 'name': 'default'}

>>> vlans.create(10) True

>>> vlans.getall()

{'1': {'vlan_id': '1', 'trunk_groups': [], 'state': 'active', 'name':

'default'}, '10': {'vlan_id': '10', 'trunk_groups': [], 'state': 'active',
'name': 'VLAN0010'}}

>>> vlans.set_name(10, 'my_vlan_10') True

Let’s verify that VLAN 10 was created on the device:

arista1#sh vlan

VLAN Name Status Ports

----- -------------------------------- --------- --------------------

1 default active

10 my_vlan_10 active

As we can see, the Python native API on the EOS object is where Pyeapi excels beyond eAPI. It

abstracts the lower-level attributes into the device object and makes the code cleaner and easier

to read.

APIs and Intent-Driven Networking110

For a full list of ever-increasing Pyeapi APIs, check the official documentation (http://pyeapi.

readthedocs.io/en/master/api_modules/_list_of_modules.html).

To round up this section, let’s assume that we repeat the previous steps enough times that we

would like to write another Python class to save us some work.

The pyeapi_1.py script is shown as follows:

#!/usr/bin/env python3

import pyeapi

class my_switch():

 def __init__(self, config_file_location, device):

 # loads the config file

 pyeapi.client.load_config(config_file_location)

 self.node = pyeapi.connect_to(device)

 self.hostname = self.node.enable('show hostname')[0]['result']
['hostname']

 self.running_config = self.node.enable('show running-config')

 def create_vlan(self, vlan_number, vlan_name):

 vlans = self.node.api('vlans')

 vlans.create(vlan_number)

 vlans.set_name(vlan_number, vlan_name)

As we can see from the script, we automatically connect to the node, set the hostname, and load

running_config upon connection. We also create a method of the class that creates VLAN by

using the VLAN API. Let’s try out the script in an interactive shell:

>>> import pyeapi_1

>>> s1 = pyeapi_1.my_switch('/tmp/.eapi.conf', 'Arista1')

>>> s1.hostname

'arista1'

>>> s1.running_config

[{'encoding': 'json', 'result': {'cmds': {'interface Ethernet27': {'cmds':

{}, 'comments': []}, 'ip routing': None, 'interface face Ethernet29':

{'cmds': {}, 'comments': []}, 'interface Ethernet26': {'cmds': {},
'comments': []}, 'interface Ethernet24/4': h.':

<omitted>

'interface Ethernet3/1': {'cmds': {}, 'comments': []}}, 'comments': [],

'header': ['! device: arista1 (DCS-7050QX-32, EOS-4.16.6M)n!n']},

http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html
http://pyeapi.readthedocs.io/en/master/api_modules/_list_of_modules.html

Chapter 3 111

'command': 'show running-config'}]

>>> s1.create_vlan(11, 'my_vlan_11')

>>> s1.node.api('vlans').getall()

{'11': {'name': 'my_vlan_11', 'vlan_id': '11', 'trunk_groups': [],
'state':

'active'}, '10': {'name': 'my_vlan_10', 'vlan_id': '10', 'trunk_groups':
[], 'state': 'active'}, '1': {'name': 'default', 'vlan_id': '1', 'trunk_
groups': [], 'state': 'active'}}

>>>

We have now looked at Python scripts for three of the top vendors in networking: Cisco Systems,

Juniper Networks, and Arista Networks. In the next section, we will take a look at an open-source

network operating system that is gaining some momentum in the same space.

VyOS example
VyOS is a fully open-source network OS that runs on a wide range of hardware, virtual machines,

and cloud providers (https://vyos.io/). Because of its open-source nature, it is gaining wide

support in the open-source community. Many open-source projects are using VyOS as the default

platform for testing. In the last section of the chapter, we will look at a quick VyOS example.

The VyOS image can be downloaded in various formats: https://wiki.vyos.net/wiki/

Installation. Once it’s downloaded and initialized, we can install the Python library on our

management host:

(venv) $ pip install vymgmt

The example script, vyos_1.py, is very simple:

#!/usr/bin/env python3

import vymgmt

vyos = vymgmt.Router('192.168.2.116', 'vyos', password='vyos')

vyos.login()

vyos.configure()

vyos.set("system domain-name networkautomationnerds.net")

vyos.commit()

vyos.save()

vyos.exit()

vyos.logout()

https://vyos.io/
https://wiki.vyos.net/wiki/Installation
https://wiki.vyos.net/wiki/Installation

APIs and Intent-Driven Networking112

We can execute the script to change the system domain name:

(venv) $ python vyos_1.py

We can log in to the device to verify the domain name change:

vyos@vyos:~$ show configuration | match domain

domain-name networkautomationnerds.net

As you can see from the example, the method we use for VyOS is pretty similar to the other exam-

ples we have seen before from proprietary vendors. This is mainly by design, as they provide an

easy transition from using other vendor equipment to open-source VyOS. We are getting close

to the end of the chapter. There are some other libraries that are worth mentioning and should

be kept an eye out for in development, which we will do in the next section.

Other libraries
We’ll finish this chapter by mentioning that there are several excellent efforts in terms of ven-

dor-neutral libraries such as Nornir (https://nornir.readthedocs.io/en/stable/index.html),

Netmiko (https://github.com/ktbyers/netmiko), NAPALM (https://github.com/napalm-

automation/napalm), and Scrapli (https://carlmontanari.github.io/scrapli/). We have

seen some of their examples in the last chapter. Most of these vendor-neutral libraries are likely

a step slower to support the latest platform or features. However, because the libraries are vendor

neutral, if you do not like vendor lock-in for your tools, these libraries are good choices. Another

benefit of using vendor-neutral libraries is that they are normally open source, so you can con-

tribute upstream for new features and bug fixes.

Summary
In this chapter, we looked at various ways to communicate with and manage network devices

from Cisco, Juniper, Arista, and Vyatta. We looked at both direct communication with the likes

of NETCONF and REST and using vendor-provided libraries such as PyEZ and Pyeapi. These are

different layers of abstraction meant to provide a way to programmatically manage your network

devices without human intervention.

In Chapter 4, The Python Automation Framework, we will take a look at a higher level of vendor-neu-

tral abstraction framework called Ansible. Ansible is an open-source, general-purpose automation

tool written in Python. It can be used to automate servers, network devices, load balancers, and

much more. Of course, for our purpose, we will focus on using this automation framework for

network devices.

https://nornir.readthedocs.io/en/stable/index.html
https://github.com/ktbyers/netmiko
https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
https://carlmontanari.github.io/scrapli/

Chapter 3 113

Join our book community
To join our community for this book – where you can share feedback, ask questions to the author,

and learn about new releases – follow the QR code below:

https://packt.link/networkautomationcommunity

https://packt.link/networkautomationcommunity

4
The Python Automation
Framework – Ansible

The previous two chapters incrementally introduced different ways to interact with network

devices. In Chapter 2, Low-Level Network Device Interactions, we discussed the Pexpect and Para-

miko libraries, which manage an interactive session to control interactions. In Chapter 3, APIs

and Intent-Driven Networking, we started to think of our network in terms of API and intent. We

looked at various APIs that contain a well-defined command structure and provide a structured

way of getting feedback from the device. As we moved from Chapter 2, Low-Level Network Device

Interactions, to Chapter 3, APIs and Intent-Driven Networking, we began to think about our intent

for the network. We gradually began to express our network as code.

In this chapter, let’s expand upon the idea of translating our intention into network requirements.

If you have worked on network designs, chances are the most challenging part of the process is

not the different pieces of network equipment but rather the qualifying and translating of busi-

ness requirements into the actual network design. Your network design needs to solve business

problems. For example, you might be working within a larger infrastructure team that needs to

accommodate a thriving online e-commerce site that experiences slow site response times during

peak hours. How do you determine whether the network is the problem? If the slow response

on the website was indeed due to network congestion, which part of the network should you

upgrade? Can the rest of the system take advantage of the greater speed and feed?

The Python Automation Framework – Ansible116

The following diagram is an illustration of a simple process of the steps that we might go through

when trying to translate our business requirements into a network design:

Figure 4.1: Business logic to network deployment

In my opinion, network automation is not just about faster configuration change. It should also

solve business problems while accurately and reliably translating our intention into device be-

havior. These are the goals that we should keep in mind as we march on our network automation

journey. In this chapter, we will look at a Python-based framework called Ansible, which allows

us to declare our intention for the network and abstract even more from the API and CLI.

In this chapter, we will take a look at the following topics:

•	 An introduction to Ansible

•	 The advantages of Ansible

•	 The Ansible architecture

•	 Ansible advanced topics

Let’s begin by looking at an overview of the Ansible framework.

Chapter 4 117

Ansible – A More Declarative Framework
Imagine yourselves in a hypothetical situation: you woke up one morning in a cold sweat from

a nightmare you had about a potential network security breach. You realize your network con-

tains valuable digital assets that should be protected. You have been doing your job as a network

administrator, so it is pretty secure, but you want to put more security measures around your

network devices just to be sure.

To start with, you break the objective down into two actionable items:

•	 Upgrading the devices to the latest version of the software. The steps include the following:

1.	 Uploading the image to the device

2.	 Instructing the device to boot from the new image

3.	 Proceeding to reboot the device

4.	 Verifying that the device is running with the new software image

•	 Configuring the appropriate access control list on the networking devices, which includes

the following:

1.	 Constructing the access list on the device

2.	 Configuring the access list on the interface under the interface configuration

section

Being an automation-focused network engineer, you want to write scripts to reliably configure

the devices and receive feedback from the operations. You begin to research the necessary com-

mands and APIs for each step, validate them in the lab, and finally, deploy them in production.

Having done a fair amount of work for OS upgrade and ACL deployment, you hope the scripts

are transferable to the next generation of devices.

Wouldn’t it be nice if there was a tool that could shorten this design-develop-deployment cycle?

In this chapter, we will work with an open-source automation framework called Ansible. It is

a framework that can simplify the process of going from business logic to completing the job

without getting bogged down with specific network commands. It can configure systems, deploy

software, and orchestrate a combination of tasks.

The Python Automation Framework – Ansible118

Ansible is written in Python and has emerged as one of the leading automation tools for Python

developers. It is also one of the most supported automation frameworks by network vendors. In

the ‘Python Developers Survey 2020’ by JetBrains, Ansible is ranked #1 for configuration manage-

ment tools:

Figure 4.2: Python Developers Survey 2020 Results (source: https://www.jetbrains.com/lp/
python-developers-survey-2020/)

Ever since version 2.10, Ansible has separated the release schedule for ansible-core and commu-

nity packages. It is a bit confusing, so let’s take a look at the differences.

Ansible Versions
Prior to version 2.9, Ansible has a fairly straightforward versioning system, going from 2.5, 2.6, 2.7,

and so on (https://docs.ansible.com/ansible/latest/roadmap/old_roadmap_index.html).

Starting from version 2.10, we see the jump from Ansible project 2.10, 3.0, 4.0, and so on (https://
docs.ansible.com/ansible/latest/roadmap/ansible_roadmap_index.html#ansible-

roadmap). What gives? The Ansible team wants to separate the core engine, modules, and plugins

from the wider community-curated modules and plugins. This allows the core team to move

faster with the core features while allowing time for the community to catch up with the main-

tenance of their code.

When we talk about “Ansible,” we are referring to a collection of community packages at that

level, say, version 3.0. In the version, it will specify a version of ansible-core (initially called

ansible-base) it requires. For example, Ansible 3.0 requires ansible-core 2.10 and above, while

Ansible 4.0 requires ansible-core 2.11+. In this structure, we can upgrade ansible-core to the latest

version while keeping the community packages in an older release if needed.

https://docs.ansible.com/ansible/latest/roadmap/old_roadmap_index.html
https://docs.ansible.com/ansible/latest/roadmap/ansible_roadmap_index.html#ansible-roadmap
https://docs.ansible.com/ansible/latest/roadmap/ansible_roadmap_index.html#ansible-roadmap
https://docs.ansible.com/ansible/latest/roadmap/ansible_roadmap_index.html#ansible-roadmap

Chapter 4 119

Let’s move ahead and look at an Ansible example.

Our First Ansible Network Example
Ansible is an IT automation tool. Its main attributes are simplicity and ease of use with minimum

moving parts. It manages machines in an agent-less manner (more on this later) and relies on

the existing operating system credentials and remote Python software to run its code. Ansible

is installed on a centralized machine called the controlled node and executes on the machine it

wishes to control, called the managed node.

Figure 4.3: Ansible Architecture (Source: https://docs.ansible.com/ansible/latest/getting_start-
ed/index.html)

If want to learn more about the versioning split, Ansible provides a useful Q&A page

when they first adopted Ansible 3.0, https://www.ansible.com/blog/ansible-

3.0.0-qa.

https://www.ansible.com/blog/ansible-3.0.0-qa
https://www.ansible.com/blog/ansible-3.0.0-qa

The Python Automation Framework – Ansible120

As with most IT infrastructure automation, Ansible started by managing servers. Most servers

have Python installed or are capable of running Python code; Ansible would leverage this feature

by pushing the code to the managed node and having it run locally on the managed node. How-

ever, as we know, most network devices are not capable of running native Python code; therefore,

when it comes to network automation, the Ansible configuration is run locally first before making

the changes to the remote devices.

Let us install Ansible on the control node.

The Control Node Installation
We will install Ansible on the Ubuntu host in our lab. The only requirements for the control node

are Python 3.8 or newer as well as Python’s pip package management system

(venv) $ pip install ansible

We can check the installed Ansible version as well as other package-level information via the

‘—version’ switch:

(venv) $ ansible --version

ansible [core 2.13.3]

 config file = None

 configured module search path = ['/home/echou/.ansible/plugins/modules',
'/usr/share/ansible/plugins/modules']

 ansible python module location = /home/echou/Mastering_Python_
Networking_Fourth_Edition/venv/lib/python3.10/site-packages/ansible

 ansible collection location = /home/echou/.ansible/collections:/usr/
share/ansible/collections

 executable location = /home/echou/Mastering_Python_Networking_Fourth_
Edition/venv/bin/ansible

 python version = 3.10.4 (main, Jun 29 2022, 12:14:53) [GCC 11.2.0]

 jinja version = 3.1.2

 libyaml = True

For more information on how network automation is different, check out this doc-

ument from Ansible, https://docs.ansible.com/ansible/latest/network/

getting_started/network_differences.html.

https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html
https://docs.ansible.com/ansible/latest/network/getting_started/network_differences.html

Chapter 4 121

There is some important information displayed in the output. The most important is the Ansible

core version (2.13.3) and configuration file (none for now). This is all we need to get started with

Ansible, we can start to construct our first automation task.

Lab Topology
Ansible is known to have many different ways to accomplish the same task. For example, we can

define Ansible configuration files in different locations. We can also specify host-specific variables

in a variety of places such as an inventory, in playbooks, in roles, and the command line. This

is too confusing for people who are just getting started with Ansible. In this chapter, I will use

just one way of doing things that makes the most sense to me. Once we learn the basics, we can

always consult the documentation to find out other ways to accomplish a task.

For the first example, we will use the same lab topology that we have been using and run the task

against the two IOSv devices, lax-edg-r1 and lax-edg-r2.

Figure 4.4: Lab Topology

If you are interested in installing Ansible on specific operation systems using their

respective package management systems, please consult the Ansible documen-

tation, https://docs.ansible.com/ansible/latest/installation_guide/

installation_distros.html.

https://docs.ansible.com/ansible/latest/installation_guide/installation_distros.html
https://docs.ansible.com/ansible/latest/installation_guide/installation_distros.html

The Python Automation Framework – Ansible122

The first thing we will need to think about is how to define the hosts we want to manage. In An-

sible, we use an inventory file to define the host we intend to manage. Let us create a file called

hosts and put the following text in the file:

[ios_devices]

iosv-1

iosv-2

This type of file is in an INI format (https://en.wikipedia.org/wiki/INI_file), which states

I have a group of devices called the ios_devices with members of iosv-1 and iosv-2.

We should now specify the particular variables associated with each host.

The Variable Files
There are many places we can put the variables associated with a host. Let us create a folder called

host_vars and two files with the names of the files identical to the hosts we specified in the inven-

tory file. The directory and filenames are important because that is how Ansible matches up the

variables with the host. Below is an output to show the directory and files within that directory:

$ tree host_vars/

host_vars/

├── iosv-1

└── iosv-2

The file is where we will put the necessary information belonging to the host. For example, we

can specify the IP address, username, password, and other information. Here is the output of the

iosv-1 file for our lab:

$ cat host_vars/iosv-1

ansible_host: 192.168.2.51

ansible_user: cisco

ansible_ssh_pass: cisco

ansible_connection: network_cli

ansible_network_os: ios

ansbile_become: yes

ansible_become_method: enable

ansible_become_pass: cisco

https://en.wikipedia.org/wiki/INI_file

Chapter 4 123

This file is in YAML format (https://docs.ansible.com/ansible/latest/reference_

appendices/YAMLSyntax.html). The ‘---’ symbol indicates the start of the document. Below the

start symbol, we have many key-value pairs. The keys all start with ansible and the value is sepa-

rated from the key with a colon. The ansible_host, ansible_user, and ansible_ssh_pass should

be changed to values matching your own lab. How do I know these names? Ansible documentation

is our best friend here. Ansible has a standard way of naming these parameters listed in its docu-

mentation, https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html.

Once we have defined the respective files for the host variables, we are ready to construct an

Ansible playbook.

Our First Playbook
Playbooks are Ansible’s blueprint to describe what you would like to do to the managed nodes,

using modules. This is where we will be spending the majority of our time as operators when

working with Ansible. What are modules? In a simplified view, modules are pre-built codes that

we can use to accomplish a certain task. Similar to Python modules, the code can come with the

default Ansible installation or it can be installed separately.

If we use an analogy of building a tree house with Ansible, the playbook will be the instruction

manual, the modules will be the tools we use, and the inventory will be the components we

work on.

The playbook is designed to be human-readable in YAML format (https://docs.ansible.com/

ansible/latest/reference_appendices/YAMLSyntax.html). We will write our first playbook,

named ios_config_backup.yml, as follows:

- name: Back Up IOS Device Configurations

 hosts: all

 gather_facts: false

 tasks:

 - name: backup

 ios_config:

 backup: yes

Prior to Ansible 2.8, network modules did not have a standard way of naming the

parameters, which is very confusing. Since version 2.8, the network modules have

become much better at standardizing the parameters with the rest of the Ansible

modules.

https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

The Python Automation Framework – Ansible124

Note the - in front of name, it specifies a list item in YAML. Everything in the same list item should

have the same indentation. We set gather_facts to false because most network tasks are execut-

ed locally before making the changes to the devices. The gather_facts were mainly used when the

managed nodes were servers to gather server information before any of the tasks were executed.

There are two key-value pairs in the list item, hosts and tasks. The hosts variable with the value

of all specifies that we will work on all the hosts in the inventory file. The tasks key has another

list item in the value, which uses the ios_config module (https://docs.ansible.com/ansible/
latest/collections/cisco/ios/ios_config_module.html#ansible-collections-cisco-ios-

ios-config-module). The ios_config module is one of the collections of modules installed along

with Ansible. It also has a variety of arguments. We use the backup argument and set it to yes to

indicate we will back up the devices’ running-config.

The next task we will do is to use the new LibSSH connection plugin for Ansible. By default, An-

sible network SSH connections use the Paramiko library. However, the Paramiko library does not

guarantee FIPS readiness and is a bit slow when we need to connect to multiple devices. We will

install LibSSH as follows:

(venv) $ pip install ansible-pylibssh

We will specify the usage in a new ansible.cfg file. We will create the file in the same direc-

tory as our playbook with the following content. In the same configuration file, we will also

set host_key_checking to be false; this is to prevent an error if the host is not initially in the

known_hosts list in the ssh setup:

[defaults]

host_key_checking = False

[persistent_connection]

ssh_type = libssh

Finally, we can execute the playbook via the ansible-playbook command with the -i switch to

indicate the inventory file:

$ ansible-playbook -i hosts ios_config_backup.yml

PLAY [Back Up IOS Device Configurations] *********************************

TASK [backup] **

https://docs.ansible.com/ansible/latest/collections/cisco/ios/ios_config_module.html#ansible-collections-cisco-ios-ios-config-module
https://docs.ansible.com/ansible/latest/collections/cisco/ios/ios_config_module.html#ansible-collections-cisco-ios-ios-config-module
https://docs.ansible.com/ansible/latest/collections/cisco/ios/ios_config_module.html#ansible-collections-cisco-ios-ios-config-module

Chapter 4 125

changed: [iosv-2]

changed: [iosv-1]

PLAY RECAP ***

iosv-1 : ok=2 changed=1 unreachable=0
failed=0 skipped=0 rescued=0 ignored=0

iosv-2 : ok=2 changed=1 unreachable=0
failed=0 skipped=0 rescued=0 ignored=0

Just like magic, if we take a look at our working directory where the playbook is executed, we

will see a folder named backup with the two devices’ running configurations with timestamps!

This command can now be scheduled to run via cron to run nightly to back up all of our devices’

configurations.

Congratulations on executing your first Ansible playbook! Even with a playbook as simple as ours,

this is a very useful automation task that we were able to accomplish in a short amount of time.

We will expand on this playbook in just a bit, but first, let’s take a look at why Ansible is a good

fit for network management. Remember that Ansible modules are written in Python; that is one

advantage for a Pythonic network engineer, right?

The Advantages of Ansible
There are many infrastructure automation frameworks besides Ansible—namely Chef, Puppet,

and SaltStack. Each framework offers its unique features; no one right framework fits all organi-

zations. In this section, let’s take a look at some of the advantages of Ansible and why I believe it

is a good tool for network automation.

The advantages will be listed with limited comparison to other frameworks to not start a flame

war. Other frameworks might adopt some of the same philosophies or certain aspects of Ansible,

but rarely do they contain all of the features that I will be mentioning. It is the combination of

all the following features and philosophies that makes Ansible ideal for network automation.

Agentless
Unlike some of its peers, Ansible does not require a strict master-client model. No software or

agent needs to be installed on the client that communicates back to the server. Outside of the

Python interpreter, which many platforms have by default, there is no additional software needed.

The Python Automation Framework – Ansible126

For network automation modules, instead of relying on remote host agents, Ansible uses SSH or

API calls to push the required changes to the remote host. This further reduces the need for a Py-

thon interpreter. This is huge for network device management, as network vendors are typically

reluctant to put third-party software on their platforms. SSH, on the other hand, already exists

on the network equipment. As we saw from Chapter 3, APIs and Intent-Driven Networking, newer

network devices also provide an API layer, which can also be leveraged by Ansible.

Because there is no agent on the remote host, Ansible uses a push model to push the changes to

the device, as opposed to the pull model, where the agent pulls the information from the master

server. The push model is more deterministic as everything originates from the control machine.

In a pull model, the timing of the pull might vary from client to client and therefore results in

timing variance.

Again, the importance of being agentless cannot be stressed enough when working with the

existing network equipment. This is usually one of the major reasons network operators and

vendors embrace Ansible.

Idempotence
According to Wikipedia, idempotence is the property of certain operations in mathematics and

computer science that can be applied multiple times without changing the result beyond the

initial application (https://en.wikipedia.org/wiki/Idempotence). In more common terms, it

means that running the same procedure repeatedly does not change a system after the first time.

Ansible aims to be idempotent, which is good for network operations that require a certain order

of operations. In our first playbook example, there is a ‘changed’ value when the playbook is run;

this value will be ‘false’ if there was no change made on the remote device.

The advantage of idempotence is best compared to the Pexpect and Paramiko scripts we have

written. Remember that these scripts were written to push out commands like an engineer was

sitting at the terminal. If you were to execute the script 10 times, the script would make the same

changes 10 times. If we write the same task via the Ansible playbook, the existing device config-

uration will be checked first, and the playbook will only execute if the changes do not exist. If we

execute the playbook 10 times, the change will only be applied during the first run, with the next

9 runs suppressing the configuration change.

Being idempotent, we can repeatedly execute the playbook without worrying that there will be

unnecessary changes made. This is important as we need to automatically check for state con-

sistency without extra overhead.

https://en.wikipedia.org/wiki/Idempotence

Chapter 4 127

Simple and Extensible
Ansible is written in Python and uses YAML for the playbook language, both of which are relatively

easy to learn. Remember the Cisco IOS syntax? This is a domain-specific language that is only

applicable when you are managing Cisco IOS devices or other similarly structured equipment; it is

not a general-purpose language beyond its limited scope. Luckily, unlike some other automation

tools, there is no extra domain-specific language (DSL) to learn for Ansible because YAML and

Python are both widely used as general-purpose languages.

Ansible is extensible. As illustrated by the preceding example, Ansible starts with automating

server (primarily Linux) workloads in mind. It then branches out to manage Windows machines

with PowerShell. As more and more people in the network industry have started to adopt Ansible,

network automation is now the main staple in Ansible workgroups.

The simplicity and extensibility speak well for future-proofing. The technology world is evolving

fast, and we are constantly trying to adapt. Wouldn’t it be great to learn a technology once and

continue to use it, regardless of the latest trend? Ansible’s track record speaks well for future

technology adaptation.

Now that we’ve covered some of the advantages of Ansible, let’s build on what we have learned

so far with more features.

Ansible Content Collections
Let’s start by listing out all the modules we have at hand with the default Ansible installation.

They are organized into Content Collections (https://www.ansible.com/products/content-

collections), sometimes called collections for abbreviation. We can list out the collections via

the ansible-galaxy collection list command. Some of the notable network collections are

listed out below:

(venv) $ ansible-galaxy collection list

/home/echou/Mastering_Python_Networking_Fourth_Edition/venv/lib/
python3.10/site-packages/ansible_collections

Collection Version

----------------------------- -------

…

ansible.netcommon 3.1.0

arista.eos 5.0.1

cisco.aci 2.2.0

https://www.ansible.com/products/content-collections
https://www.ansible.com/products/content-collections

The Python Automation Framework – Ansible128

cisco.asa 3.1.0

cisco.dnac 6.5.3

cisco.intersight 1.0.19

cisco.ios 3.3.0

cisco.iosxr 3.3.0

cisco.ise 2.5.0

cisco.meraki 2.10.1

cisco.mso 2.0.0

cisco.nso 1.0.3

cisco.nxos 3.1.0

cisco.ucs 1.8.0

community.ciscosmb 1.0.5

community.fortios 1.0.0

community.network 4.0.1

dellemc.enterprise_sonic 1.1.1

f5networks.f5_modules 1.19.0

fortinet.fortimanager 2.1.5

fortinet.fortios 2.1.7

mellanox.onyx 1.0.0

openstack.cloud 1.8.0

openvswitch.openvswitch 2.1.0

vyos.vyos 3.0.1

As shown from the list, even with the default installation, there is a large collection of network-re-

lated modules we can use. They range from enterprise software to open-source projects. Taking

a look at the list and reading up on the ones that are of interest in your production environment

would be a good start. Ansible documentation also provides a full list of all the available collec-

tions, https://docs.ansible.com/ansible/latest/collections/index.html. The collections

can also be expanded via the agalaxy install command, https://docs.ansible.com/ansible/

latest/user_guide/collections_using.html.

More Ansible Network Examples
Our first Ansible network example took us from being a noob to running our first useful network

automation task. Let’s try to build from the foundation and learn more features.

https://docs.ansible.com/ansible/latest/collections/index.html
https://docs.ansible.com/ansible/latest/user_guide/collections_using.html
https://docs.ansible.com/ansible/latest/user_guide/collections_using.html

Chapter 4 129

We will begin by seeing how we can build an inventory file that includes all of our network devices.

If you recall, we have two data centers, each with core and edge devices:

Figure 4.5: Full Lab Topology

In this example, we will include all of the devices in our inventory file.

Inventory Nesting
We can build an inventory file that includes nesting. For example, we can put together a host file

named hosts_full that includes children from one group to another:

[lax_cor_devices]

lax-cor-r1

[lax_edg_devices]

lax-edg-r1

lax-edg-r2

[nyc_cor_devices]

nyc-cor-r1

[nyc_edg_devices]

nyc-edg-r1

nyc-edg-r2

The Python Automation Framework – Ansible130

[lax_dc:children]

lax_cor_devices

lax_edg_devices

[nyc_dc:children]

nyc_cor_devices

nyc_edg_devices

[ios_devices:children]

lax_edg_devices

nyc_edg_devices

[nxos_devices:children]

nyc_cor_devices

lax_cor_devices

In the file, we group the devices via both roles and features using the [<name>:children] format.

To work with this new inventory file, we will need to update the host_vars directory to include

the respective names of the devices:

(venv) $ tree host_vars/

host_vars/

…

├── lax-cor-r1

├── lax-edg-r1

├── lax-edg-r2

├── nyc-cor-r1

├── nyc-edg-r1

└── nyc-edg-r2

We will also need to change the ansible_host and ansible_network_os accordingly, using lax-

cor-r1 as an example:

(venv) $ cat host_vars/lax-cor-r1

ansible_host: 192.168.2.50

…

ansible_network_os: nxos

…

Chapter 4 131

Now we can use the parent’s group name to include its children. For example, in the nxos_config_

backup.yml playbook, we only specified the parent group of nxos_devices instead of all:

- name: Back Up NX-OS Device Configurations

 hosts: nxos_devices

 gather_facts: false

 tasks:

 - name: backup

 nxos_config:

 backup: yes

When we execute this playbook, it will automatically include its children, lax_cor_devices

and nyc_cor_devices. Also note that we use a separate nxos_config module (https://docs.
ansible.com/ansible/latest/collections/cisco/nxos/nxos_config_module.html#ansible-

collections-cisco-nxos-nxos-config-module) to accommodate the new device type.

Ansible Conditionals
Ansible conditionals are similar to conditional statements in programming languages. Ansible

uses conditional keywords to only run a task when a given condition is met. In many cases, the

execution of a play or task may depend on the value of a fact, variable, or the previous task result.

For example, if you have a play to upgrade router images, you want to include a step to make sure

the new router image is on the device before you move on to the next play of rebooting the router.

In this example, we will look at the when clause, which is supported for all modules. The when

clause is useful when you need to check the output of a variable or a play execution result and

act accordingly. Some of the conditions are as follows:

•	 Equal to (eq)

•	 Not equal to (neq)

•	 Greater than (gt)

•	 Greater than or equal to (ge)

•	 Less than (lt)

•	 Less than or equal to (le)

•	 Contains

https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_config_module.html#ansible-collections-cisco-nxos-nxos-config-module
https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_config_module.html#ansible-collections-cisco-nxos-nxos-config-module
https://docs.ansible.com/ansible/latest/collections/cisco/nxos/nxos_config_module.html#ansible-collections-cisco-nxos-nxos-config-module

The Python Automation Framework – Ansible132

Let’s take a look at the following playbook named ios_conditional.yml:

- name: IOS command output for when clause

 hosts: ios_devices

 gather_facts: false

 tasks:

 - name: show hostname

 ios_command:

 commands:

 - show run | i hostname

 register: output

 - name: show output with when conditions

 when: output.stdout == ["hostname nyc-edg-r2"]

 debug:

 msg: '{{ output }}'

In the playbook, there are two tasks. In the first task, we use the register module to save the

output of the command show run | i hostname in a variable called output. The output variable

contains a stdout list with the output. We use the when clause to only show the output when the

hostname is nyc-edg-r2. Let’s execute the playbook:

(venv) $ ansible-playbook -i hosts_full ios_conditional.yml

PLAY [IOS command output for when clause] ********************************

TASK [show hostname] ***

ok: [lax-edg-r1]

ok: [nyc-edg-r2]

ok: [lax-edg-r2]

ok: [nyc-edg-r1]

TASK [show output with when conditions] **********************************

skipping: [lax-edg-r1]

skipping: [lax-edg-r2]

Chapter 4 133

skipping: [nyc-edg-r1]

ok: [nyc-edg-r2] => {

 "msg": {

 "changed": false,

 "failed": false,

 "stdout": [

 "hostname nyc-edg-r2"

],

 "stdout_lines": [

 [

 "hostname nyc-edg-r2"

]

]

 }

}

PLAY RECAP ***

lax-edg-r1 : ok=1 changed=0 unreachable=0
failed=0 skipped=1 rescued=0 ignored=0

lax-edg-r2 : ok=1 changed=0 unreachable=0
failed=0 skipped=1 rescued=0 ignored=0

nyc-edg-r1 : ok=1 changed=0 unreachable=0
failed=0 skipped=1 rescued=0 ignored=0

nyc-edg-r2 : ok=2 changed=0 unreachable=0
failed=0 skipped=0 rescued=0 ignored=0

We can see the output of lax-edg-r1, lax-edg-r2, and nyc-edg-r1 were skipped because they

did not meet the condition. Furthermore, we can see the changed=0 output for all the devices.

This is in accordance with the idempotency feature of Ansible.

Configuration Change
We can combine the conditional with configuration changes—for example, in the following

playbook, ios_conditional_config.yml:

- name: IOS command output for when clause

 hosts: ios_devices

 gather_facts: false

The Python Automation Framework – Ansible134

 tasks:

 - name: show hostname

 ios_command:

 commands:

 - show run | i hostname

 register: output

 - name: show output with when conditions

 when: output.stdout == ["hostname nyc-edg-r2"]

 ios_config:

 lines:

 - logging buffered 30000

We would only change the logging buffer when the condition is met. Here is the output when we

execute the playbook for the first time:

(venv) $ ansible-playbook -i hosts_full ios_conditional_config.yml

<skip>

TASK [show output with when conditions] **********************************

skipping: [lax-edg-r1]

skipping: [lax-edg-r2]

skipping: [nyc-edg-r1]

[WARNING]: To ensure idempotency and correct diff the input configuration
lines should be similar to how they appear if

present in the running configuration on device

changed: [nyc-edg-r2]

PLAY RECAP ***

lax-edg-r1 : ok=1 changed=0 unreachable=0
failed=0 skipped=1 rescued=0 ignored=0

lax-edg-r2 : ok=1 changed=0 unreachable=0
failed=0 skipped=1 rescued=0 ignored=0

nyc-edg-r1 : ok=1 changed=0 unreachable=0
failed=0 skipped=1 rescued=0 ignored=0

nyc-edg-r2 : ok=2 changed=1 unreachable=0
failed=0 skipped=0 rescued=0 ignored=0

Chapter 4 135

The nyc-edg-r2 device console will show the configuration is changed:

*Sep 10 01:53:43.132: %SYS-5-LOG_CONFIG_CHANGE: Buffer logging: level
debugging, xml disabled, filtering disabled, size (30000)

However, when we run the playbook for the second time, the same change is NOT applied again

because it is already changed:

<skip>

TASK [show output with when conditions] **********************************

skipping: [lax-edg-r1]

skipping: [lax-edg-r2]

skipping: [nyc-edg-r1]

ok: [nyc-edg-r2]

How cool is that? With a simple playbook, we can safely apply a configuration change to only the

devices we want to apply the change to with idempotency in check.

Ansible Network Facts
Prior to 2.5, Ansible networking shipped with a number of vendor-specific fact modules. As a

result, the naming and usage of the facts were different between vendors. Starting with version

2.5, Ansible started to standardize its network fact modules. The Ansible network fact modules

gather information from a system and store the results in facts prefixed with ansible_net_. The

data collected by these modules is documented in the return values in the module documentation.

This is useful as we can gather network facts and only perform tasks based on them.

As an example of the ios_facts module, below is the content of the ios_facts_playbook:

- name: IOS network facts

 connection: network_cli

 gather_facts: false

 hosts: ios_devices

 tasks:

 - name: Gathering facts via ios_facts module

 ios_facts:

 when: ansible_network_os == 'ios'

 - name: Display certain facts

The Python Automation Framework – Ansible136

 debug:

 msg: "The hostname is {{ ansible_net_hostname }} running {{
ansible_net_version }}"

 - name: Display all facts for hosts

 debug:

 var: hostvars

We are introducing a concept of variables in this playbook. The double curly brackets of {{ }}

indicates it is a variable and the value of the variable should be presented for the output.

Upon execution of the playbook, here is a partial output:

(venv) $ ansible-playbook -i hosts_full ios_facts_playbook.yml

…

TASK [Display certain facts] ***

ok: [lax-edg-r1] => {

 "msg": "The hostname is lax-edg-r1 running 15.8(3)M2"

}

ok: [lax-edg-r2] => {

 "msg": "The hostname is lax-edg-r2 running 15.8(3)M2"

}

ok: [nyc-edg-r1] => {

 "msg": "The hostname is nyc-edg-r1 running 15.8(3)M2"

}

ok: [nyc-edg-r2] => {

 "msg": "The hostname is nyc-edg-r2 running 15.8(3)M2"

}

…

TASK [Display all facts for hosts] ***************************************

ok: [lax-edg-r1] => {

 "hostvars": {

 "lax-cor-r1": {

…

 "ansible_facts": {

 "net_api": "cliconf",

 "net_gather_network_resources": [],

Chapter 4 137

 "net_gather_subset": [

 "default"

],

 "net_hostname": "lax-edg-r1",

 "net_image": "flash0:/vios-adventerprisek9-m",

 "net_iostype": "IOS",

 "net_model": "IOSv",

 "net_python_version": "3.10.4",

 "net_serialnum": "98U40DKV403INHIULHYHB",

 "net_system": "ios",

 "net_version": "15.8(3)M2",

 "network_resources": {}

 },

…

We can now leverage the facts to combine with our conditional clause to customize our operations.

Ansible Loops
Ansible provides a number of looping functions in the playbook: standard loops, looping over

files, sub-elements, do-until, and many more. In this section, we will look at two of the most

commonly used loop forms: standard loops and looping over hash values.

Standard Loops
Standard loops in playbooks are often used to easily perform similar tasks multiple times. The

syntax for standard loops is very easy: the {{ item }} variable is the placeholder looping over

the loop list. In our next example, standard_loop.yml, we will loop over the items in the loop

list with the echo command showing the output from our localhost.

- name: Echo Loop Items

 hosts: "localhost"

 gather_facts: false

 tasks:

 - name: echo loop items

 command: echo "{{ item }}"

 loop:

 - 'r1'

 - 'r2'

 - 'r3'

The Python Automation Framework – Ansible138

 - 'r4'

 - 'r5'

Let’s go ahead and execute the playbook:

(venv) $ ansible-playbook -i hosts_full standard_loop.yml

PLAY [Echo Loop Items] ***

TASK [echo loop items] ***

changed: [localhost] => (item=r1)

changed: [localhost] => (item=r2)

changed: [localhost] => (item=r3)

changed: [localhost] => (item=r4)

changed: [localhost] => (item=r5)

PLAY RECAP ***

localhost : ok=1 changed=1 unreachable=0
failed=0 skipped=0 rescued=0 ignored=0

Using the same concept, we can systematically add VLANs to our devices. Here is an example of

adding three VLANs to a host with a playbook titled standard_loop_vlan_example.yml:

- name: Add Multiple Vlans

 hosts: "nyc-cor-r1"

 gather_facts: false

 connection: network_cli

 vars:

 vlan_numbers: [100, 200, 300]

 tasks:

 - name: add vlans

 nxos_config:

 lines:

 - vlan {{ item }}

 loop: "{{ vlan_numbers }}"

 register: output

Chapter 4 139

The playbook output is as follows:

(venv) $ ansible-playbook -i hosts_full standard_loop

_vlan_example.yml

PLAY [Add Multiple Vlans] **

TASK [add vlans] ***

changed: [nyc-cor-r1] => (item=100)

changed: [nyc-cor-r1] => (item=200)

changed: [nyc-cor-r1] => (item=300)

[WARNING]: To ensure idempotency and correct diff the input configuration
lines should be similar to how they appear if

present in the running configuration on device

PLAY RECAP ***

nyc-cor-r1 : ok=1 changed=1 unreachable=0
failed=0 skipped=0 rescued=0 ignored=0

As we can see from the playbook, the loop list can be read from a variable, which gives greater

flexibility to the structure of your playbook:

…

 vars:

 vlan_numbers: [100, 200, 300]

 tasks:

 …

 loop: "{{ vlan_numbers }}"

The standard loop is a great time saver when it comes to performing redundant tasks in a play-

book. Let us see how we can loop over a dictionary in the next section.

Looping over Dictionaries
When we need to generate a configuration, we often have an entity with more than one attribute

associated with it. If you think about the VLAN example in the last section, each VLAN would

have several unique attributes, such as a description, a gateway IP address, and possibly others.

Often, we can use a dictionary to represent the entity to incorporate multiple attributes into it.

The Python Automation Framework – Ansible140

Let’s expand on the previous example to include a dictionary variable in standard_loop_vlan_

example_2.yml. We defined the dictionary values for three vlan each with a nested dictionary

for the description and the IP address:

- name: Add Multiple Vlans

 hosts: "nyc-cor-r1"

 gather_facts: false

 connection: network_cli

 vars:

 vlans: {

 "100": {"description": "floor_1", "ip": "192.168.10.1"},

 "200": {"description": "floor_2", "ip": "192.168.20.1"},

 "300": {"description": "floor_3", "ip": "192.168.30.1"}

 }

 tasks:

 - name: add vlans

 nxos_config:

 lines:

 - vlan {{ item.key }}

 with_dict: "{{ vlans }}"

 - name: configure vlans

 nxos_config:

 lines:

 - description {{ item.value.description }}

 - ip address {{ item.value.ip }}/24

 parents: interface vlan {{ item.key }}

 with_dict: "{{ vlans }}"

In the playbook, we configure the first task to add the VLANs by using the key of the items. In the

second task, we proceed with configuring the VLAN interfaces using the values within each of the

items. Note that we use the parents parameter to uniquely identify the section the commands

should be checked against. This is due to the fact that the description and the IP address are both

configured under the interface vlan <number> subsection in the configuration.

Before we execute the command, we need to make sure the layer 3 interface feature is enabled

on the nyc-cor-r1 device:

nyc-cor-r1(config)# feature interface-vlan

Chapter 4 141

We can run the playbook as we have done previously. We can see the dictionary being looped

through:

(venv) $ ansible-playbook -i hosts_full standard_loop_vlan_example_2.yml

PLAY [Add Multiple Vlans] **
**

TASK [add vlans] ***
**

changed: [nyc-cor-r1] => (item={'key': '100', 'value': {'description':
'floor_1', 'ip': '192.168.10.1'}})

changed: [nyc-cor-r1] => (item={'key': '200', 'value': {'description':
'floor_2', 'ip': '192.168.20.1'}})

changed: [nyc-cor-r1] => (item={'key': '300', 'value': {'description':
'floor_3', 'ip': '192.168.30.1'}})

[WARNING]: To ensure idempotency and correct diff the input configuration
lines should be similar to how they appear if

present in the running configuration on device

TASK [configure vlans] ***
**

changed: [nyc-cor-r1] => (item={'key': '100', 'value': {'description':
'floor_1', 'ip': '192.168.10.1'}})

changed: [nyc-cor-r1] => (item={'key': '200', 'value': {'description':
'floor_2', 'ip': '192.168.20.1'}})

changed: [nyc-cor-r1] => (item={'key': '300', 'value': {'description':
'floor_3', 'ip': '192.168.30.1'}})

PLAY RECAP ***
**

nyc-cor-r1 : ok=2 changed=2 unreachable=0
failed=0 skipped=0 rescued=0 ignored=0

We can verify the end result on the device:

nyc-cor-r1# sh run

interface Vlan100

 description floor_1

 ip address 192.168.10.1/24

The Python Automation Framework – Ansible142

interface Vlan200

 description floor_2

 ip address 192.168.20.1/24

interface Vlan300

 description floor_3

 ip address 192.168.30.1/24

For more loop types of Ansible, feel free to check out the corresponding documentation (https://

docs.ansible.com/ansible/latest/user_guide/playbooks_loops.html).

Looping over dictionaries takes some practice the first few times you use them. But just like stan-

dard loops, looping over dictionaries will be an invaluable tool in our tool belt. An Ansible loop

is a tool that can save us time and make the playbook more readable. In the next section, we will

look at Ansible templates that allow us to make systematic changes to text files commonly used

for network device configuration.

Templates
Ever since I started working as a network engineer, I have always used some kind of network

templating system. In my experience, many of the network devices have sections of the network

configuration that are identical, especially if these devices serve the same role in the network.

Most of the time, when we need to provision a new device, we use the same configuration in the

form of a template, replace the necessary fields, and copy the file over to the new device. With

Ansible, you can automate all of the work by using the templating feature (https://docs.ansible.

com/ansible/latest/user_guide/playbooks_templating.html).

Ansible uses Jinja (https://jinja.palletsprojects.com/en/3.1.x/) templating to enable dy-

namic expressions and access to variables and facts. Jinja has its own syntax and method of doing

loops and conditionals; fortunately, we just need to know the very basics of it for our purpose.

The Ansible template module is an important tool that we will be using in our daily tasks, and

we will spend more of this section exploring it. We will learn the syntax by gradually building

up our playbook from some simple tasks to more complex ones.

The basic syntax for template usage is very simple; we just need to specify the source file and the

destination location that we want to copy it to.

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_loops.html
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_loops.html
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_templating.html
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_templating.html
https://jinja.palletsprojects.com/en/3.1.x/

Chapter 4 143

Let us create a new directory called Templates and start to create our playbooks. We will create

an empty file for now:

(venv) $ mkdir Templates

(venv) $ cd Templates/

(venv) $ touch file1

Then we will use the following playbook, template_1.yml, to copy file1 to file2. Note that the

playbook is executed on the control machine only:

- name: Template Basic

 hosts: localhost

 tasks:

 - name: copy one file to another

 template:

 src=/home/echou/Mastering_Python_Networking_Fourth_Edition/
Chapter04/Templates/file1

 dest=/home/echou/Mastering_Python_Networking_Fourth_Edition/
Chapter04/Templates/file2

Executing the playbook will create a new file:

(venv) $ ansible-playbook -i hosts template_1.yml

PLAY [Template Basic] **
**

TASK [Gathering Facts] ***
**

ok: [localhost]

TASK [copy one file to another] **
**

changed: [localhost]

PLAY RECAP ***
**

localhost : ok=2 changed=1 unreachable=0
failed=0 skipped=0 rescued=0 ignored=0

The Python Automation Framework – Ansible144

(venv) $ ls file*

file1 file2

In our templates, the source files can have any extension, but since they are processed through the

Jinja2 template engine, let’s create a text file called nxos.j2 as the template source. The template

will follow the Jinja convention of using double curly braces to specify the variables, as well as

using the curly brace plus the percentage sign to specify commands:

hostname {{ item.value.hostname }}

feature telnet

feature ospf

feature bgp

feature interface-vlan

{% if item.value.netflow_enable %}

feature netflow

{% endif %}

username {{ item.value.username }} password {{ item.value.password }}
role network-operator

{% for vlan_num in item.value.vlans %}

vlan {{ vlan_num }}

{% endfor %}

{% if item.value.l3_vlan_interfaces %}

{% for vlan_interface in item.value.vlan_interfaces %}

interface {{ vlan_interface.int_num }}

 ip address {{ vlan_interface.ip }}/24

{% endfor %}

{% endif %}

We can now put together a playbook to create network configuration templates based on the

nxos.j2 file.

Chapter 4 145

The Jinja Template Variables
The template_2.yml playbook expands on the previous template example with the following

additions:

•	 The source file is nxos.j2.

•	 The destination filename is now a variable taken from the nexus_devices variable defined

in the playbook.

•	 Each of the devices within nexus_devices contains the variables that would be substituted

or looped over within the template.

The playbook might look more complex than the last one, but if you take out the variable defini-

tion portion, it is very similar to our simple template playbook from earlier:

- name: Template Looping

 hosts: localhost

 vars:

 nexus_devices: {

 "nx-osv-1": {

 "hostname": "nx-osv-1",

 "username": "cisco",

 "password": "cisco",

 "vlans": [100, 200, 300],

 "l3_vlan_interfaces": True,

 "vlan_interfaces": [

 {"int_num": "100", "ip": "192.168.10.1"},

 {"int_num": "200", "ip": "192.168.20.1"},

 {"int_num": "300", "ip": "192.168.30.1"}

],

 "netflow_enable": True

 },

 "nx-osv-2": {

 "hostname": "nx-osv-2",

 "username": "cisco",

 "password": "cisco",

 "vlans": [100, 200, 300],

 "l3_vlan_interfaces": False,

The Python Automation Framework – Ansible146

 "netflow_enable": False

 }

 }

 tasks:

 - name: create router configuration files

 template:

 src=/home/echou/Mastering_Python_Networking_Fourth_Edition/
Chapter04/Templates/nxos.j2

 dest=/home/echou/Mastering_Python_Networking_Fourth_Edition/
Chapter04/Templates/{{ item.key }}.conf

 with_dict: "{{ nexus_devices }}"

Let us not execute the playbook just yet; we still need to take a look at the if conditional state-

ments and for loops enclosed within the {% %} symbols from the Jinja2 template.

Jinja Template Loops
There are two for loops in our nxos.j2 template; one loops over the VLANs and the other loops

over the VLAN interfaces:

{% for vlan_num in item.value.vlans %}

vlan {{ vlan_num }}

{% endfor %}

{% if item.value.l3_vlan_interfaces %}

{% for vlan_interface in item.value.vlan_interfaces %}

interface {{ vlan_interface.int_num }}

 ip address {{ vlan_interface.ip }}/24

{% endfor %}

{% endif %}

If you recall, we can also loop through a list as well as a dictionary in Jinja. In our example, the

vlans variable is a list, while the vlan_interfaces variable is a list of dictionaries.

The vlan_interfaces loop is nested inside a conditional. This is the last thing that we will in-

corporate into our playbook before we execute the playbook.

Chapter 4 147

Jinja Template Conditional
Jinja supports an if conditional check. We have added this conditional statement in two locations

within the nxos.j2 template; one is with the netflow variable and the other is the l3_vlan_

interfaces variable. Only when the condition is True will we execute the statements within

the block:

<skip>

{% if item.value.netflow_enable %}

feature netflow

{% endif %}

<skip>

{% if item.value.l3_vlan_interfaces %}

<skip>

{% endif %}

In the playbook, we have declared netflow_enable to be True for nx-os-v1 and False for nx-

osv-2:

 vars:

 nexus_devices: {

 "nx-osv-1": {

 <skip>

 "netflow_enable": True

 },

 "nx-osv-2": {

 <skip>

 "netflow_enable": False

 }

 }

Finally, we are ready to run our playbook:

(venv) $ ansible-playbook -i hosts template_2.yml

PLAY [Template Looping] **
**

TASK [Gathering Facts] ***
**

The Python Automation Framework – Ansible148

ok: [localhost]

TASK [create router configuration files] *********************************
**

changed: [localhost] => (item={'key': 'nx-osv-1', 'value': {'hostname':
'nx-osv-1', 'username': 'cisco', 'password': 'cisco', 'vlans': [100, 200,
300], 'l3_vlan_interfaces': True, 'vlan_interfaces': [{'int_num': '100',
'ip': '192.168.10.1'}, {'int_num': '200', 'ip': '192.168.20.1'}, {'int_
num': '300', 'ip': '192.168.30.1'}], 'netflow_enable': True}})

changed: [localhost] => (item={'key': 'nx-osv-2', 'value': {'hostname':
'nx-osv-2', 'username': 'cisco', 'password': 'cisco', 'vlans': [100, 200,
300], 'l3_vlan_interfaces': False, 'netflow_enable': False}})

PLAY RECAP ***
**

localhost : ok=2 changed=1 unreachable=0
failed=0 skipped=0 rescued=0 ignored=0

Do you remember that the destination files are named after the {{ item.key }}.conf? Two files

have been created with the device names:

$ ls nx-os*

nx-osv-1.conf

nx-osv-2.conf

Let’s check the similarities and differences of the two configuration files to make sure all of our

intended changes are in place. Both files should contain the static items, such as feature ospf,

the hostnames and other variables should be substituted accordingly, and only nx-osv-1.conf

should have netflow enabled as well as the layer 3 vlan interface configuration:

$ cat nx-osv-1.conf

hostname nx-osv-1

feature telnet

feature ospf

feature bgp

feature interface-vlan

feature netflow

username cisco password cisco role network-operator

vlan 100

vlan 200

Chapter 4 149

vlan 300

interface 100

 ip address 192.168.10.1/24

interface 200

 ip address 192.168.20.1/24

interface 300

 ip address 192.168.30.1/24

Let’s take a look at the nx-osv-2.conf file:

$ cat nx-osv-2.conf

hostname nx-osv-2

feature telnet

feature ospf

feature bgp

feature interface-vlan

username cisco password cisco role network-operator

vlan 100

vlan 200

vlan 300

Neat, huh? This can certainly save us a ton of time for something that previously required repeat-

ed copying and pasting. Personally, the template module was a big game-changer for me. This

module alone was enough to motivate me to learn and use Ansible a few years ago.

Summary
In this chapter, we took a grand tour of the open-source automation framework Ansible. Unlike

Pexpect-based and API-driven network automation scripts, Ansible provides a higher layer of

abstraction called a playbook to automate our network devices.

Ansible is a full-featured automation framework capable of managing large infrastructures. Our

focus is on managing network devices, but Ansible is capable of managing servers, databases, cloud

infrastructures, and more. We have only touched the surface of its capabilities. If you feel Ansible

is a tool you would like to learn more about, the Ansible documentation is an excellent source

of reference. The Ansible community is friendly and welcoming if you would like to get involved.

In Chapter 5, Docker Containers for Network Engineers, we will start to learn about Docker and the

world of containers.

The Python Automation Framework – Ansible150

Join our book community
To join our community for this book – where you can share feedback, ask questions to the author,

and learn about new releases – follow the QR code below:

https://packt.link/networkautomationcommunity

https://packt.link/networkautomationcommunity

5
Docker Containers for Network
Engineers

Computer hardware virtualization has revolutionized and changed the way we approach infra-

structure. Gone are the days when we must dedicate hardware to a single host and operating

system. We now have the option to share precious hardware such as CPU, memory, and disk space

with multiple virtual machines, each with its own operating system and applications. Because

software executed on these virtual machines is separated from the underlying hardware resources,

we are free to allocate a different combination of hardware resources to virtual machines based

on their specific needs. Nowadays, it is hard to imagine a world without virtual machines.

As much as virtual machines are great for application building, they do take a while to build, spin

up, and, ultimately, tear down. The reason is that the virtualization technology associated with

virtual machines completely simulates the actual hardware for which the hardware is indistin-

guishable from the guest virtual machines.

The question might now be: is there a way to speed up the life cycle of applications with even

more virtualization? The answer is yes, with the help of containers.

Containers and virtual machines are similar in that they both allow sharing of computing resources

amongst different isolated applications. The difference is that virtual machines are abstracted at

the Hypervisor level, whereas containers are abstracted within the operating system by a container

engine. Containers are often referred to as OS-level virtualization.

Docker Containers for Network Engineers152

Figure 5.1: Virtual Machine and Container Comparison (source: https://www.atlassian.com/
microservices/cloud-computing/containers-vs-vms)

In a full virtual machine, we can install different operating systems, such as Windows and Linux.

Because container virtualization is being handled by the operating system, each container will

have the same operating system. However, the application and its associated resources will be

isolated and run independently of each other. The container engine will separate the configura-

tion, software bundle, and libraries from each container.

Container virtualization is not new; Linux containers (LXC), Solaris containers, Docker, and

Podman are examples of such implementation. In this chapter, we will look at the most popu-

lar container technology today, Docker. We will discuss the following topics related to Docker

containers:

•	 Docker overview

•	 Building Python applications with Docker

•	 Container networking

•	 Containers in the network engineering field

•	 Docker and Kubernetes

We will be using containers for some of the technologies we will learn in this book; this is a good

place to start getting familiar with containers.

Let’s start by looking at a high-level overview of Docker.

Chapter 5 153

Docker Overview
Docker is a set of products and tools that supports the delivery of containers. It was started by

the company dotCloud in 2008 (renamed to Docker, Inc. in 2013). The set of tools includes the

container technology of Docker, the container engine called Docker Engine, the cloud-based

repository of containers called Docker Hub, and the desktop graphical user interface software

called Docker Desktop.

Docker has two versions, Docker Community Edition (Docker-CE) and Docker Enterprise Edi-

tion (Docker-EE). Docker-CE is a free and open-source platform based on the Apache 2.0 license,

while Docker-EE is a premium version geared toward enterprises. When the term “Docker” is

mentioned in this book, we are referring to the Community Edition.

There are three main components in a Docker container environment:

1.	 Building and Development: These include the tools used to build a container, including

the CLI commands, the images, and the repositories where we get the various base im-

ages. In Docker, we use a Dockerfile to specify most of the building steps for a container.

2.	 Docker Engine: This is the daemon running in the background. We can use the Docker

command to manage the daemon.

3.	 Container Orchestration: During development, we will typically use Docker-compose

from Docker to manage a multi-container environment. In production, a common tool

is a Google-originated tool called Kubernetes (https://kubernetes.io/).

In the next section, we will discuss the advantages of Docker.

Advantages of Docker
There are many advantages of Docker. We will summarize some of them here:

1.	 Docker containers are fast to deploy and destroy.

2.	 Containers reset gracefully. The containers are transient and ephemeral, leaving no residu-

al artifacts when restarted. This leaves a clean state whenever a new container is spawned.

3.	 It is self-contained and deterministic. Containers are often delivered with configuration

files with instructions on how the container can be rebuilt. We can be sure each container

image is built in the same way.

https://kubernetes.io/

Docker Containers for Network Engineers154

4.	 It allows seamless integration between application development and DevOps. Because of

the advantages stated above, many companies have deployed. Docker images directly in

the production environment. The container can be reproduced exactly as the developer

intended and tested into production.

Now that we have a general understanding of Docker, it is time to build our first Python appli-

cations in a Docker container.

Building Python applications in Docker
A Docker container is a very popular way to build Python applications.

Installing Docker
Of course, we will need to install Docker to start using it. We will follow DigitalOcean’s excellent

installation guide for Ubuntu 22.04 (https://www.digitalocean.com/community/tutorials/

how-to-install-and-use-docker-on-ubuntu-22-04). If you are using other versions of the

Linux distribution, you can simply use the drop-down menu from the documentation to pick a

different version. For installation on Mac or Windows, my recommendation would be to install

Docker Desktop (https://docs.docker.com/desktop/). It will include the Docker Engine, CLI

client, and GUI application.

$ sudo apt-get update

$ sudo apt-get -y upgrade

$ sudo apt install apt-transport-https ca-certificates curl software-
properties-common

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg
--dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg

$ echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/
keyrings/docker-archive-keyring.gpg] https://download.docker.com/linux/
ubuntu $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/
docker.list > /dev/null

$ sudo apt update

$ apt-cache policy docker-ce

$ sudo apt install docker-ce

There are some optional but useful post-installation steps for Linux at https://

docs.docker.com/engine/install/linux-postinstall/.

https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-22-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-22-04
https://docs.docker.com/desktop/
https://docs.docker.com/engine/install/linux-postinstall/
https://docs.docker.com/engine/install/linux-postinstall/

Chapter 5 155

We can check the status of our Docker installation:

$ sudo systemctl status docker

● docker.service - Docker Application Container Engine

 Loaded: loaded (/lib/systemd/system/docker.service; enabled; vendor
preset: enabled)

 Active: active (running) since Sun 2022-09-11 15:02:27 PDT; 5s ago

TriggeredBy: ● docker.socket

 Docs: https://docs.docker.com

In the next section, we will see how we can build a Python application in Docker containers.

Useful Docker commands
We will need to use some commands to build, run, and test our containers.

Here are some of the commands we will be using in this chapter:

•	 docker run: docker run is used to specify the image to derive the container from (by

default, it is Docker Hub), network settings, name, and other settings.

•	 docker container ls: lists the containers; by default, it only lists currently running

containers.

•	 docker exec: runs a command on a running container.

•	 docker network: used when we need to manage Docker networks, such as to create, list,

and remove Docker networks.

•	 docker image: manages Docker images.

There are many more CLI commands, but these are enough to get us started. For a complete

reference, check out the link provided in the information box.

For more Docker CLI references, check out the documentation: https://docs.

docker.com/engine/reference/run/.

https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/

Docker Containers for Network Engineers156

Building hello world
The first step is to make sure we have reachability to Docker Hub to retrieve an image. To do so,

Docker provides a very simple hello-world app:

$ docker run hello-world

Hello from Docker!

This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

 1. The Docker client contacted the Docker daemon.

 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.

 (amd64)

 3. The Docker daemon created a new container from that image which runs
the

 executable that produces the output you are currently reading.

 4. The Docker daemon streamed that output to the Docker client, which
sent it

 to your terminal.

<skip>

We can see the various steps the Docker client needed to do to display the message. We can dis-

play the Docker processes that ran:

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

3cb4f91b6388 hello-world "/hello" About a minute
ago Exited (0) About a minute ago fervent_torvalds

We can see the hello-world image information:

$ docker images hello-world

REPOSITORY TAG IMAGE ID CREATED SIZE

hello-world latest feb5d9fea6a5 11 months ago 13.3kB

Now we can build our first Python application.

Chapter 5 157

Building our application
Let’s start by thinking about what we will build. Since we built a few Ansible playbooks in the

last chapter, how about we containerize the ios_config_backup.yml playbook so we can share

this with other team members?

We will create a new folder to keep all the files together. If you recall, for us to build a Docker

image, there is a special file called a Dockerfile. We will also create such a file in the directory:

$ mkdir ansible_container && cd ansible_container

$ touch Dockerfile

We will also copy the host_vars folder, ansible.cfg, hosts, and ios_config_backup.yml files into this

folder. We should also make sure the playbook runs as expected before we build the Docker

container from it.

Docker builds itself in a layered fashion, starting with a base image. In the Dockerfile, we will

specify the following lines:

Getting base image

FROM ubuntu:22.04

No need for interactive prompt

ENV DEBIAN_FRONTEND=noninteractive

The lines starting with a “#” mark are comments, just like in Python. The FROM keyword specifies

the base image we will retrieve from the default Docker Hub. All the official Ubuntu images can

be found on the site, https://hub.docker.com/_/ubuntu. In the ENV statement, we specified no

need for interactive prompts.

Let us build this image:

$ docker build --tag ansible-docker:v0.1 .

The Dockerfile reference can be viewed at https://docs.docker.com/engine/

reference/builder/.

https://hub.docker.com/_/ubuntu
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/

Docker Containers for Network Engineers158

The build command builds from the Dockerfile in the local directory while tagging the final image

to be ansible-docker with version 0.1. Once completed, we can view the image:

$ docker images

REPOSITORY TAG IMAGE ID CREATED
SIZE

ansible-docker v0.1 e99f103e2d36 3 seconds ago
864MB

We can start the container based on the image:

$ docker run -it --name ansible-host1 ansible-docker:v0.1

root@96108c94e1d2:/# lsb_release -a

No LSB modules are available.

Distributor ID: Ubuntu

Description: Ubuntu 22.04.1 LTS

Release: 22.04

Codename: jammy

root@96108c94e1d2:/#

It will drop us into the bash shell prompt, and the container will stop itself once we exit. In order

for it to run in a detached mode, we will need to start it with a "-d" flag. Let’s go ahead and delete

the container and recreate it with the flag:

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

<container id> ansible-docker:v0.1 "bash" 2 minutes ago Exited
(0) 52 seconds ago ansible-host1

$ docker rm <container id>

$ docker run -it -d --name ansible-host1 ansible-docker:v0.1

If we need to remove an image before the rebuild, we can delete the image with

“docker rmi <image id>.”

Remember to substitute your container ID. A nice shortcut to delete all containers

in one setting is docker rm -f $(docker ps -a -q).

Chapter 5 159

The container now runs in detached mode, and we can execute an interactive prompt on the

container:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

d3b6a6ec90e5 ansible-docker:v0.1 "bash" About a minute ago Up 58
seconds ansible-host1

$ docker exec -it ansible-host1 bash

root@d3b6a6ec90e5:/# ls

We can go ahead and stop the container, then delete it:

$ docker stop ansible-host1

$ docker rm ansible-host1

We will introduce a few more Dockerfile commands:

Getting base image

FROM ubuntu:22.04

No need for interactive prompt

ENV DEBIAN_FRONTEND=noninteractive

Run any command, i.e. install packages

RUN apt update && apt install -y python3.10 python3-pip ansible vim

RUN pip install ansible-pylibssh

specify a working directory

WORKDIR /app

COPY . /app

The RUN command executes the shell commands as if we were typing them in the shell. We can

specify the working directory as /app on the container, then copy everything in the current work-

ing directory (host_vars, hosts, playbook, etc.) to the /app directory on the remote container.

$ docker images

<find the image id>

$ docker rmi <image id>

$ docker build --tag ansible-docker:v0.1 .

Docker Containers for Network Engineers160

We will launch the container again and execute the ansible-playbook:

$ docker run -it -d --name ansible-host1 ansible-docker:v0.1

docker exec -it ansible-host1 bash

root@5ef5e9c85065:/app# pwd

/app

root@5ef5e9c85065:/app# ls

ansible.cfg dockerfile host_vars hosts ios_config_backup.yml

root@5ef5e9c85065:/app# ansible-playbook -i hosts ios_config_backup.yml

PLAY [Back Up IOS Device Configurations] *********************************

TASK [backup] **

changed: [iosv-2]

changed: [iosv-1]

PLAY RECAP ***

iosv-1 : ok=1 changed=1 unreachable=0
failed=0 skipped=0 rescued=0 ignored=0

iosv-2 : ok=1 changed=1 unreachable=0
failed=0 skipped=0 rescued=0 ignored=0

root@5ef5e9c85065:/app# ls backup/

iosv-1_config.2022-09-12@23:01:07 iosv-2_config.2022-09-12@23:01:07

We will keep the same tag, but if we would like to make it a new release, we can

always tag it as v0.2.

Chapter 5 161

Once the container is launched, we can start and stop via the hostname:

$ docker stop ansible-host1

$ docker start ansible-host1

Congratulations on working through the complete container workflow! This might not seem

much now, but it is a big step. The steps might seem a bit foreign now, but don’t worry, they will

become more familiar as we get more practice under our belt.

Sharing Docker images
The last step will be to share the container images. One way to do it would be to tar zip the di-

rectory and share the file. Another way is to push the image to a repository accessible to whoever

needs access. Docker Hub is one of the most popular repositories, but many others exist. They

generally offer several different subscription price tiers.

Figure 5.2: Docker Hub Pricing (source: https://www.docker.com/pricing/)

https://www.docker.com/pricing/

Docker Containers for Network Engineers162

Besides sharing the container image, having an accessible repository is crucial in a DevOps CI/

CD (Continuous Integration/Continuous Delivery) process. For example, we might be check-

ing in the code with an automated build and test process. Once all the validation test passes, we

can automatically push the image to the repository and deploy it to production. We will create

a private repository on Docker Hub:

Figure 5.3: Docker Hub Repository

Then we will log in via the Docker CLI:

$ docker login

Then we can tag the existing image following the remote repository, then push toward it. Notice

in the output below that the destination tag name matches the repository name on Docker Hub.

This allows flexibility in local naming while conforming to the remote team naming conventions.

$ docker tag ansible-docker:v0.1 ericchou1/mastering-python-networking-
example:ch05-ansible-dockerv-v0.1

$ docker push ericchou1/mastering-python-networking-example:ch05-ansible-
dockerv-v0.1

Chapter 5 163

Once the image finishes uploading, we can access the image and we can use it directly or use it

as a base image in another Dockerfile.

Figure 5.4: New Uploaded Image

In the next section, we will see how to coordinate multi-container setup locally during devel-

opment.

Container orchestration with Docker-compose
Modern applications often have interdependencies with each other. For example, for a web appli-

cation, we usually have a “stack” of applications. The popular LAMP stack is an acronym denoting

Linux, Apache, MySQL, and PHP/Python to specify the components required to deliver a web

application. In the world of Docker, we can use docker-compose (https://docs.docker.com/

compose/) to specify how multiple containers should be built and run simultaneously.

https://docs.docker.com/compose/
https://docs.docker.com/compose/

Docker Containers for Network Engineers164

If you have installed Docker Desktop for Mac or Windows, docker-compose is already included.

In the Linux environment, docker-compose needs to be installed separately. We will follow Digi-

talOcean’s guide for docker-compose (https://www.digitalocean.com/community/tutorials/

how-to-install-and-use-docker-compose-on-ubuntu-22-04):

$ mkdir -p ~/.docker/cli-plugins/

$ curl -SL https://github.com/docker/compose/releases/download/v2.3.3/
docker-compose-linux-x86_64 -o ~/.docker/cli-plugins/docker-compose

$ chmod +x ~/.docker/cli-plugins/docker-compose

$ docker compose version

Docker Compose version v2.3.3

Docker-compose uses a YAML file named docker-compose.yml to construct the environment.

There are lots of knobs to specify different service dependencies, persistent volumes, and opening

public ports. Let’s put together a simple example:

version: '3.9'

services:

 ansible:

 build:

 dockerfile: dockerfile

 db:

 image: postgres:14.1-alpine

 environment:

 - POSTGRES_USER=postgres

 - POSTGRES_PASSWORD=postgres

 ports:

 - '5432:5432'

 volumes:

 - db:/var/lib/postgresql/data

volumes:

 db:

 driver: local

Here is what the file specifies:

1.	 The file specifies two services, ansible and db. Each of the services is similar to the docker

run commands.

https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-compose-on-ubuntu-22-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-compose-on-ubuntu-22-04

Chapter 5 165

2.	 The ansible service builds with the current Dockerfile in the current working directory

named dockerfile.

3.	 We map the host port 5434 to the container port 5434.

4.	 We specify two environmental variables for the Postgres database.

5.	 We use a volume named db so that the database information written is persisted in the

volume.

We can run the combined service with the docker-compose command:

$ docker compose up

…

 Container ansible_container-db-1 Created
0.0s

 Container ansible_container-ansible-1 Created
0.0s

ansible_container-db-1 |

ansible_container-db-1 | PostgreSQL Database directory appears to
contain a database; Skipping initialization

ansible_container-db-1 |

ansible_container-db-1 | 2022-09-13 00:18:45.195 UTC [1] LOG:
starting PostgreSQL 14.1 on x86_64-pc-linux-musl, compiled by gcc (Alpine
10.3.1_git20211027) 10.3.1 20211027, 64-bit

ansible_container-db-1 | 2022-09-13 00:18:45.196 UTC [1] LOG:
listening on IPv4 address "0.0.0.0", port 5432

ansible_container-db-1 | 2022-09-13 00:18:45.196 UTC [1] LOG:
listening on IPv6 address "::", port 5432

ansible_container-db-1 | 2022-09-13 00:18:45.198 UTC [1] LOG:
listening on Unix socket "/var/run/postgresql/.s.PGSQL.5432"

ansible_container-db-1 | 2022-09-13 00:18:45.201 UTC [21] LOG:
database system was shut down at 2022-09-13 00:18:36 UTC

ansible_container-db-1 | 2022-09-13 00:18:45.204 UTC [1] LOG:
database system is ready to accept connections

…

For more information on Docker-compose, please visit https://docs.docker.com/

compose/.

https://docs.docker.com/compose/
https://docs.docker.com/compose/

Docker Containers for Network Engineers166

The services are launched concurrently. We can then tear down both services:

$ docker compose down

[+] Running 3/3

 Container ansible_container-db-1 Removed
0.2s

 Container ansible_container-ansible-1 Removed
0.0s

 Network ansible_container_default Removed
0.1s

We have only built simple applications thus far in the book. This might make more sense when

we learn about building a Web API later in the book. For now, it is good to consider how we can

launch multiple containers via docker-compose.

As network engineers, it would be interesting to know how networking is done in a Docker en-

vironment. That is the subject of the next section.

Container networking
Container networking is not an easy topic to cover because of its scope and the number of tech-

nologies it touches. The space spans from Linux networking, how the particular type of Linux

(Ubuntu, Red Hat, etc.) implements networking, to Docker’s implementation of networking.

Adding to the complexity is the fact that Docker is a fast-moving project, and many third-party

plugins are available.

In this section, we will stick to the basics of the networking options offered by Docker by default.

We will then briefly explain the options of overlay, Macvlan, and network plugins.

When we launch a container, it can reach the internet by default. Let’s do a quick test by launching

an Ubuntu container and attaching to it:

$ docker run -it ubuntu:22.04

<container launches and attached>

root@dcaa61a548be:/# apt update && apt install -y net-tools iputils-ping

root@dcaa61a548be:/# ifconfig

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 172.17.0.2 netmask 255.255.0.0 broadcast 172.17.255.255

<skip>

Chapter 5 167

root@dcaa61a548be:/# ping -c 1 www.cisco.com

PING e2867.dsca.akamaiedge.net (104.71.231.76) 56(84) bytes of data.

64 bytes from a104-71-231-76.deploy.static.akamaitechnologies.com
(104.71.231.76): icmp_seq=1 ttl=53 time=11.1 ms

--- e2867.dsca.akamaiedge.net ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 11.147/11.147/11.147/0.000 ms

We can see the host has a private IP different from our host’s IP. It can also reach the Ubuntu re-

pository to install software as well as ping the outside network. How does it do that? By default,

Docker created three types of networks: bridge, host, and none. Let’s launch a second Terminal

window while keeping the host running in the first Terminal window:

$ docker network ls

NETWORK ID NAME DRIVER SCOPE

78e7ab7ea276 bridge bridge local

93c142329fc9 host host local

da9fe0ed2308 none null local

The none network option is straightforward. It disables all networking and makes the container sit

on a network island by itself. This leaves us with the bridge and host options. By default, Docker

puts the host in the bridge network, docker0, with a virtual Ethernet (veth) interface (https://

man7.org/linux/man-pages/man4/veth.4.html) to allow it to communicate to the internet:

$ ip link show

3: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state
UP mode DEFAULT group default

 link/ether 02:42:86:7f:f2:40 brd ff:ff:ff:ff:ff:ff

21: veth3fda84e@if20: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
noqueue master docker0 state UP mode DEFAULT group default

 link/ether 9a:f8:83:ae:cb:ea brd ff:ff:ff:ff:ff:ff link-netnsid 0

If we launch another container, we will see an additional veth interface created and put into the

same bridge group. By default, they can communicate with each other.

https://man7.org/linux/man-pages/man4/veth.4.html
https://man7.org/linux/man-pages/man4/veth.4.html

Docker Containers for Network Engineers168

Container host network
We can also share the host network with the container. Let’s start an Ubuntu container in the

host network. We will also install Python 3.10 and other software packages:

$ docker run -it --network host ubuntu:22.04

root@network-dev-4:/# apt update && apt install -y net-tools iputils-ping
python3.10 vim

root@network-dev-4:/# ifconfig ens160

ens160: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 192.168.2.126 netmask 255.255.255.0 broadcast 192.168.2.255

If we check now, we can see the container now shares the same IP as the host network. We can

create a simple HTML page and start the Python3 built-in web server on the container:

root@network-dev-4:/# cat index.html

<html>

<head></head>

<body><h1>Hello Networkers!</h1></body>

</html>

root@network-dev-4:/# python3.10 -m http.server

Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

If we open up the IP address with port 8000 in a browser, we can see the page we created!

Figure 5.5: Index Page of Container Host

The host network option is useful when we need to expose containers for public service.

If you have a firewall on your host (such as iptables or ufw) turned on, make sure to

open up port 8000 so you can see the page.

Chapter 5 169

Custom bridge network
We can also create custom bridge networks and group containers together. We will create the

network first:

$ docker network create network1

We can now assign the containers to the custom bridge network:

$ docker run -it --network network1 ubuntu:22.04

root@41a977cd9c5b:/# apt update && apt install -y net-tools iputils-ping

root@41a977cd9c5b:/# ifconfig

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 172.18.0.2 netmask 255.255.0.0 broadcast 172.18.255.255

<skip>

root@41a977cd9c5b:/# ping -c 1 www.cisco.com

PING e2867.dsca.akamaiedge.net (23.206.3.148) 56(84) bytes of data.

64 bytes from a23-206-3-148.deploy.static.akamaitechnologies.com
(23.206.3.148): icmp_seq=1 ttl=53 time=13.2 ms

The host is now in its custom bridge network. It has network access to the public internet and

other containers in the same bridge network. If we want to expose a particular port to a container

in the custom bridge network, we can use the –publish option to map the port to the local host:

$ docker run -it --network network1 --publish 8000:8000 ubuntu:22.04

We can remove the network via the docker network rm:

$ docker network ls

NETWORK ID NAME DRIVER SCOPE

30aa5d7887bc network1 bridge local

$ docker network rm network1

The custom network option is great for developing multi-container projects that need isolation

from each other. Up to this point, we have been looking at networking options in a single host.

In the next section, we will see the options for inter-host communication between containers.

Docker Containers for Network Engineers170

Other container network options
If we look closely at the docker network ls output, we can see the columns of driver and scope.

Docker’s network subsystem is pluggable, using drivers. The core networking functions were

provided by the default drivers of bridge, host, and none.

Other notable drivers are listed below:

•	 Overlay: The overlay network creates a distributed network among multiple Docker dae-

mon hosts.

•	 Macvlan: The macvlan network option is meant for applications needing to be directly

connected to the physical network.

•	 Third-party network plugins: We can install third-party network plugins (https://

hub.docker.com/search?q=&type=plugin) for additional features. For example, the

vSphere-storage plugin (https://hub.docker.com/r/vmware/vsphere-storage-for-

docker) enables customers to address persistent storage requirements for containers in

a vSphere environment.

An overlay network driver is probably the option we will need to use beyond the development

stage. It is meant to handle the routing of the packets to and from the Docker daemon host and

the correct destination container. For example, an overlay ingress network would handle the

incoming traffic and load balance to the correct container. Due to its complexity, this is typically

handled by the orchestration tool of choice, such as Swarm or Kubernetes. If we use a public cloud

provider, such as Google Kubernetes Engine, they might even handle this overlay network for us.

Containers in the network engineering field
Container technologies are transforming how infrastructure is built in modern days. We now

have an additional layer of abstraction we can use to overcome limitations on physical space,

power, cooling, and other factors. This is especially true of the need to move toward more envi-

ronmentally-friendly data centers.

There are many new challenges and opportunities associated with the new container-based world:

•	 Networking in the container world. As we saw in the last section, there are lots of options

that exist when it comes to networking in containers.

•	 DevOps. One of the challenges when trying to implement DevOps practices in network

engineering is the lack of options for flexible, virtualized network devices. Containers

can potentially solve that problem if we can virtualize our network along with the hosts.

https://hub.docker.com/search?q=&type=plugin)
https://hub.docker.com/search?q=&type=plugin)
https://hub.docker.com/r/vmware/vsphere-storage-for-docker
https://hub.docker.com/r/vmware/vsphere-storage-for-docker

Chapter 5 171

•	 Lab and Testing. If we can virtualize our network via container images, this makes lab

and testing much easier.

We will discuss DevOps in Chapter 12, Continuous Integration with GitLab; in the next section, we

will look at a new way to test and run containerized network operating systems.

Containerlab
Containerlab (https://containerlab.dev/) is a way to run containerized network operating

systems. It is a project started by the team at Nokia led by Roman Dodin (https://twitter.com/

ntdvps). The team is also responsible for developing SR Linux (Service Router Linux), an open

network operating system (NOS). Although born out of Nokia, Containerlab has multi-vendor

support with Arista cEOS, Azure SONiC, Juniper cRPD, and many others. Let’s do a quick exam-

ple to illustrate the workflow of Containerlab. To install, we can follow the installation steps

(https://containerlab.dev/install/) for Debian-based systems. To isolate the installation,

we can create a new directory:

$ mkdir container_lab && cd container_lab

$ echo "deb [trusted=yes] https://apt.fury.io/netdevops/ /" | sudo tee -a
/etc/apt/sources.list.d/netdevops.list

$ sudo apt update && sudo apt install containerlab

We will define a clab file to define the topology, image, and starting configurations. There are

several example labs under /etc/containerlab/lab-examples/. We will use the two-node lab

example (https://github.com/srl-labs/containerlab/blob/main/lab-examples/srl02/

srl2.cfg) with two SR Linux devices connected over an Ethernet interface. Since SR Linux con-

tainer images can be downloaded over a public repository, this will save us the step of needing

to download the container image separately. We will call this lab topology srl02.clab.yml:

topology documentation: http://containerlab.dev/lab-examples/two-srls/

https://github.com/srl-labs/containerlab/blob/main/lab-examples/srl02/
srl02.clab.yml

name: srl02

topology:

 nodes:

 srl1:

 kind: srl

 image: ghcr.io/nokia/srlinux

 startup-config: srl1.cfg

https://containerlab.dev/
https://twitter.com/ntdvps
https://twitter.com/ntdvps
https://containerlab.dev/install/
https://github.com/srl-labs/containerlab/blob/main/lab-examples/srl02/srl2.cfg
https://github.com/srl-labs/containerlab/blob/main/lab-examples/srl02/srl2.cfg

Docker Containers for Network Engineers172

 srl2:

 kind: srl

 image: ghcr.io/nokia/srlinux

 startup-config: srl2.cfg

 links:

 - endpoints: ["srl1:e1-1", "srl2:e1-1"]

As indicated in the file, the topology consists of nodes and links. The nodes are the NOS systems,

while the links define how they are connected. The two device configuration files are vendor-spe-

cific, in this case, SR Linux configurations:

$ cat srl1.cfg

set / interface ethernet-1/1

set / interface ethernet-1/1 subinterface 0

set / interface ethernet-1/1 subinterface 0 ipv4

set / interface ethernet-1/1 subinterface 0 ipv4 address 192.168.0.0/31

set / interface ethernet-1/1 subinterface 0 ipv6

set / interface ethernet-1/1 subinterface 0 ipv6 address
2002::192.168.0.0/127

set / network-instance default

set / network-instance default interface ethernet-1/1.0

$ cat srl2.cfg

set / interface ethernet-1/1

set / interface ethernet-1/1 subinterface 0

set / interface ethernet-1/1 subinterface 0 ipv4

set / interface ethernet-1/1 subinterface 0 ipv4 address 192.168.0.1/31

set / interface ethernet-1/1 subinterface 0 ipv6

set / interface ethernet-1/1 subinterface 0 ipv6 address
2002::192.168.0.1/127

We can now launch the lab with containerlab deploy:

$ sudo containerlab deploy --topo srl02.clab.yml

[sudo] password for echou:

INFO[0000] Containerlab v0.31.1 started

INFO[0000] Parsing & checking topology file: srl02.clab.yml

…

Chapter 5 173

If successful, we will see the device information. The device names are in the format of clab-{

lab name }-{ device name }:

+---+-----------------+--------------+-----------------------+------+-----
----+----------------+----------------------+

| # | Name | Container ID | Image | Kind |
State | IPv4 Address | IPv6 Address |

+---+-----------------+--------------+-----------------------+------+-----
----+----------------+----------------------+

| 1 | clab-srl02-srl1 | 7cae81c710d8 | ghcr.io/nokia/srlinux | srl |
running | 172.20.20.2/24 | 2001:172:20:20::2/64 |

| 2 | clab-srl02-srl2 | c75f274284ef | ghcr.io/nokia/srlinux | srl |
running | 172.20.20.3/24 | 2001:172:20:20::3/64 |

+---+-----------------+--------------+-----------------------+------+-----
----+----------------+----------------------+

We can access the device via ssh to the device; the default username and passwords are both admin:

$ ssh admin@172.20.20.3

admin@172.20.20.3's password:

Using configuration file(s): []

Welcome to the srlinux CLI.

Type 'help' (and press <ENTER>) if you need any help using this.

--{ running }--[]--

A:srl1# show version

--

Hostname : srl1

Chassis Type : 7220 IXR-D2

Part Number : Sim Part No.

Serial Number : Sim Serial No.

System HW MAC Address: 1A:85:00:FF:00:00

Software Version : v22.6.3

Technically, we do not need the —topo option to specify a topology. Containerlab will

look for an *.clab.y*ml topology file by default. However, I find it a good practice

to specify a topology file in case we have several topology files in the same directory.

Docker Containers for Network Engineers174

Build Number : 302-g51cb1254dd

Architecture : x86_64

Last Booted : 2022-09-12T03:12:15.195Z

Total Memory : 1975738 kB

Free Memory : 219406 kB

--

--{ running }--[]--

A:srl1#

A:srl1# quit

A directory is created with the associated files for the lab:

$ ls clab-srl02/*

clab-srl02/ansible-inventory.yml clab-srl02/topology-data.json

clab-srl02/ca:

root srl1 srl2

clab-srl02/srl1:

config topology.yml

clab-srl02/srl2:

config topology.yml

We can also see there is an additional bridge network created with the two veth interfaces con-

nected to the bridge network:

(venv) $ ip link show

11: br-4807fa9091c5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
noqueue state UP mode DEFAULT group default

 link/ether 02:42:72:7a:9d:af brd ff:ff:ff:ff:ff:ff

13: veth3392afa@if12: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
noqueue master br-4807fa9091c5 state UP mode DEFAULT group default

 link/ether be:f0:1a:f2:12:23 brd ff:ff:ff:ff:ff:ff link-netnsid 1

15: veth7417e97@if14: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
noqueue master br-4807fa9091c5 state UP mode DEFAULT group default

 link/ether 92:53:d3:ac:20:93 brd ff:ff:ff:ff:ff:ff link-netnsid 0

Chapter 5 175

We can tear down the lab with the containerlab destroy command:

$ sudo containerlab destroy --topo srl02.clab.yml

[sudo] password for echou:

INFO[0000] Parsing & checking topology file: srl02.clab.yml

INFO[0000] Destroying lab: srl02

INFO[0001] Removed container: clab-srl02-srl2

INFO[0001] Removed container: clab-srl02-srl1

INFO[0001] Removing containerlab host entries from /etc/hosts file

I don’t know about you, but Containerlab is the easiest way to launch a networking lab that I

have seen. With more vendor support, it might one day become the only lab and testing software

we need for network testing.

In the next section, we will briefly discuss the relationship between Docker and Kubernetes with

a very brief overview of Kubernetes.

Docker and Kubernetes
As we have seen, Docker images and orchestration can be done with the tools provided by the

Docker community. However, it is almost impossible to think about Docker containers without

Kubernetes. This is because when it comes to container orchestration, Kubernetes is becoming

the de facto standard in doing so. There is not enough space to cover Kubernetes in this chapter,

but because of its strong ties to container orchestration, we should at least know the basics about

Kubernetes.

Kubernetes (https://kubernetes.io/) was originally developed by Google, but the project is

now managed by the Cloud Native Computing Foundation. It is an open-source container or-

chestration system that automatically deploys, scales, and manages containers. The project was

well-received by the community right from the beginning since it had a proven track record of

scale with Google’s internal usage.

Kubernetes uses a master as the controlling unit that manages worker nodes to deploy containers.

Each worker node can have one or more pods, which are the smallest units of units in Kubernetes.

The pods are where the containers will be deployed. When the containers are deployed, they are

generally grouped into different types of sets spread across the pods.

Most public cloud providers (AWS, Azure, Google, and DigitalOcean) offer managed Kubernetes

clusters that users can try. The Kubernetes documentation (https://kubernetes.io/docs/home/)

also offers many tutorials for step-by-step guides to learn more about the technology.

https://kubernetes.io/
https://kubernetes.io/docs/home/

Docker Containers for Network Engineers176

Summary
In this chapter, we learned about container virtualization. Containers are similar to virtual ma-

chines in their ability to isolate computing resources but different in the sense that they are

lightweight and fast to deploy.

We saw how to use Docker containers to build Python applications and docker-compose to build

multi-container applications on a single host.

Later in the chapter, we learned how networks are constructed with Docker containers by using

the default bridge, custom bridges, and host options. Containers can also help with network

operating system testing using the Containerlab project.

In the next chapter, we will look at how we can use Python in network security.

Join our book community
To join our community for this book – where you can share feedback, ask questions to the author,

and learn about new releases – follow the QR code below:

https://packt.link/networkautomationcommunity

https://packt.link/networkautomationcommunity

6
Network Security with Python

In my opinion, network security is a tricky topic to write about. The reason is not a technical one

but rather has to do with setting up the correct scope. The boundaries of network security are so

wide that they touch all seven layers of the OSI model. From layer 1 of wiretapping to layer 4 of

the transport protocol vulnerability, to layer 7 of man-in-the-middle spoofing, network security

is everywhere. The issue is exacerbated by all the newly discovered vulnerabilities, which some-

times seem to be a daily occurrence. This does not even include the human social engineering

aspect of network security.

As such, in this chapter, I would like to set the scope for what we will discuss. As we have been

doing up to this point, we will primarily focus on using Python for network device security at

OSI layers 3 and 4. We will look at Python tools that we can use to manage individual network

devices for security purposes, as well as using Python as a glue to connect different components.

Hopefully, we can treat network security holistically using Python in different OSI layers.

In this chapter, we will take a look at the following topics:

•	 The lab setup

•	 Python Scapy for security testing

•	 Access lists

•	 Forensic analysis with Syslog and Uncomplicated Firewall (UFW) using Python

•	 Other tools, such as a MAC address filter list, private VLAN, and Python IP table binding

Let’s begin by looking at our lab setup for this chapter.

Network Security with Python178

The Lab Setup
The devices being used in this chapter are a bit different from the previous chapters. In the previous

chapters, we isolated a particular set of devices. For this chapter, we will use a few more Linux

hosts in our lab to illustrate the function of the tools we will use. The connectivity and operating

system information are important as they have ramifications regarding the security tools we will

show later in this chapter. For example, if we want to apply an access list to protect the server,

we need to know what the topology looks like and in which direction the client is making their

connections. The Ubuntu host connections are a bit different than what we have seen so far, so

please refer to this lab section when you see the example later if needed.

We will use the same Cisco CML tool with the NYC nodes with two additional Ubuntu hosts. The

lab topology is provided with the course files.

The way to add a Linux host in CML is the same as adding network nodes, simply click on add

nodes and pick Ubuntu as the selection. We will name the outside host connecting to nyc-cor-r1

as the client, and the host behind nyc-cor-edg-r1 as the server:

Figure 6.1: Adding Ubuntu Hosts

This is a good point to review and learn about Ubuntu Linux networking. We will spend some

time listing out the Ubuntu Linux networking options of the setup. Here is an overview of the

lab topology:

Chapter 6 179

Figure 6.2: Lab Topology

We will add two dual-home links to the hosts, one for the default gateway going to the unman-

aged switch for management and internet. The other link is used to route the internet traffic. As

illustrated, we will rename the host on the top as the client, and the bottom host as the server

using the hostname <name> command. This is analogous to an internet client trying to access a

corporate server within our network. The version of Ubuntu Linux in the CML software is 18.04 LTS:

ubuntu@client:~$ lsb_release -a

No LSB modules are available.

Distributor ID:	 Ubuntu

Description:	 Ubuntu 18.04.3 LTS

Release:	 18.04

Codename:	 bionic

The IP addresses listed will probably be different in your lab. They are listed here to

easily reference in the remainder of the chapter code examples.

Network Security with Python180

To list and turn up the links, we can use the ip link and ifconfig commands:

ubuntu@client:~$ ip link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode
DEFAULT group default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: ens2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state
UP mode DEFAULT group default qlen 1000

 link/ether 52:54:00:1e:bc:51 brd ff:ff:ff:ff:ff:ff

3: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state
UP mode DEFAULT group default qlen 1000

 link/ether 52:54:00:19:54:b5 brd ff:ff:ff:ff:ff:ff

ubuntu@ubuntu:~$ sudo ifconfig ens3 up

For the hosts, when we first turn it up, it will have an initial network configuration under /etc/

netplan/50-cloud-init.yaml. We will back it up and create our own:

ubuntu@ubuntu:/etc/netplan$ cd /etc/netplan/

ubuntu@ubuntu:/etc/netplan$ cp 50-cloud-init.yaml 50-cloud-init.yaml.bak

ubuntu@ubuntu:/etc/netplan$ sudo rm 50-cloud-init.yaml

ubuntu@ubuntu:/etc/netplan$ sudo touch 50-cloud-init.yaml

For the two network links, we will use the following configuration to configure the default gate-

way for ens3 (management and internet) as well as the internal link:

ubuntu@client:~$ cat /etc/netplan/50-cloud-init.yaml

network:

 version: 2

 renderer: networkd

 ethernets:

 ens3:

 dhcp4: no

 dhcp6: no

 addresses: [192.168.2.152/24]

 gateway4: 192.168.2.1

 nameservers:

 addresses: [192.168.2.1,8.8.8.8]

Chapter 6 181

 ens2:

 dhcp4: no

 dhcp6: no

 addresses: [10.0.0.5/30]

To allow the network change to take effect, we can use the netplan apply command:

ubuntu@ubuntu:/etc/netplan$ sudo netplan apply

Here is a quick output for the server side:

ubuntu@server:~$ ip link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode
DEFAULT group default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: ens2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state
UP mode DEFAULT group default qlen 1000

 link/ether 52:54:00:12:9c:5f brd ff:ff:ff:ff:ff:ff

3: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state
UP mode DEFAULT group default qlen 1000

 link/ether 52:54:00:0e:f7:ab brd ff:ff:ff:ff:ff:ff

ubuntu@server:~$ cat /etc/netplan/50-cloud-init.yaml

network:

 version: 2

 renderer: networkd

 ethernets:

 ens3:

 dhcp4: no

 dhcp6: no

 addresses: [192.168.2.153/24]

 gateway4: 192.168.2.1

 nameservers:

 addresses: [192.168.2.1,8.8.8.8]

 ens2:

 dhcp4: no

 dhcp6: no

 addresses: [10.0.0.9/30]

Network Security with Python182

We will put the connected network into the existing OSPF network. Here is the configuration of

nyc-cor-r1:

nyc-cor-r1# config t

Enter configuration commands, one per line. End with CNTL/Z.

nyc-cor-r1(config)# int ethernet 2/4

nyc-cor-r1(config-if)# ip add 10.0.0.6/24

nyc-cor-r1(config-if)# ip router ospf 200 area 0.0.0.200

nyc-cor-r1(config-if)# no shut

nyc-cor-r1(config-if)# end

nyc-cor-r1# ping 10.0.0.5

PING 10.0.0.5 (10.0.0.5): 56 data bytes

36 bytes from 10.0.0.6: Destination Host Unreachable

Request 0 timed out

64 bytes from 10.0.0.5: icmp_seq=1 ttl=63 time=4.888 ms

64 bytes from 10.0.0.5: icmp_seq=2 ttl=63 time=2.11 ms

64 bytes from 10.0.0.5: icmp_seq=3 ttl=63 time=2.078 ms

64 bytes from 10.0.0.5: icmp_seq=4 ttl=63 time=0.965 ms

^C

--- 10.0.0.5 ping statistics ---

5 packets transmitted, 4 packets received, 20.00% packet loss

round-trip min/avg/max = 0.965/2.51/4.888 ms

nyc-cor-r1#

The configuration of nyc-cor-edg-r1 is as follows:

nyc-edg-r1#confi t

Enter configuration commands, one per line. End with CNTL/Z.

nyc-edg-r1(config)#int gig 0/2

nyc-edg-r1(config-if)#ip add 10.0.0.10 255.255.255.252

nyc-edg-r1(config-if)#no shut

nyc-edg-r1(config-if)#end

nyc-edg-r1#ping 10.0.0.9

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.0.0.9, timeout is 2 seconds:

.!!!!

Success rate is 80 percent (4/5), round-trip min/avg/max = 1/3/7 ms

nyc-edg-r1#

Chapter 6 183

nyc-edg-r1#confi t

Enter configuration commands, one per line. End with CNTL/Z.

nyc-edg-r1(config)#router ospf 200

nyc-edg-r1(config-router)#net

nyc-edg-r1(config-router)#network 10.0.0.8 0.0.0.3 area 200

nyc-edg-r1(config-router)#end

nyc-edg-r1#

Here comes the part that might be a bit tricky for engineers who might be new to host-based

networking. By default, the host has a routing preference as well. The default gateway we added

for ens3 will allow us to use the lab gateway for the “destination of last resort.” We can see the

routing table on the host via the route command:

ubuntu@client:~$ route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use
Iface

0.0.0.0 192.168.2.1 0.0.0.0 UG 0 0 0
ens3

10.0.0.4 0.0.0.0 255.255.255.252 U 0 0 0
ens2

192.168.2.0 0.0.0.0 255.255.255.0 U 0 0 0
ens3

We will use the following command to route traffic from the client to the server via the route

command:

ubuntu@client:~$ sudo route add -net 10.0.0.8/30 gw 10.0.0.6

ubuntu@client:~$ route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use
Iface

0.0.0.0 192.168.2.1 0.0.0.0 UG 0 0 0
ens3

10.0.0.4 0.0.0.0 255.255.255.252 U 0 0 0
ens2

10.0.0.8 10.0.0.6 255.255.255.252 UG 0 0 0
ens2

192.168.2.0 0.0.0.0 255.255.255.0 U 0 0 0
ens3

Network Security with Python184

We will do the same on the server side:

ubuntu@server:~$ sudo route add -net 10.0.0.4/30 gw 10.0.0.10

ubuntu@server:~$ route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use
Iface

0.0.0.0 192.168.2.1 0.0.0.0 UG 0 0 0
ens3

10.0.0.4 10.0.0.10 255.255.255.252 UG 0 0 0
ens2

10.0.0.8 0.0.0.0 255.255.255.252 U 0 0 0
ens2

192.168.2.0 0.0.0.0 255.255.255.0 U 0 0 0
ens3

To verify the client-to-server path, let’s ping and trace the route to make sure that traffic between

our hosts is going through the network devices instead of the default route:

Install on both client and server

ubuntu@ubuntu:~$ sudo apt install traceroute

From Server to Client

ubuntu@server:~$ ping -c 1 10.0.0.5

PING 10.0.0.5 (10.0.0.5) 56(84) bytes of data.

64 bytes from 10.0.0.5: icmp_seq=1 ttl=62 time=3.38 ms

--- 10.0.0.5 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 3.388/3.388/3.388/0.000 ms

ubuntu@server:~$ traceroute 10.0.0.5

traceroute to 10.0.0.5 (10.0.0.5), 30 hops max, 60 byte packets

 1 10.0.0.10 (10.0.0.10) 2.829 ms 5.832 ms 7.396 ms

 2 * * *

 3 10.0.0.5 (10.0.0.5) 11.458 ms 11.459 ms 11.744 ms

From Client to Server

ubuntu@client:~$ ping -c 1 10.0.0.9

PING 10.0.0.9 (10.0.0.9) 56(84) bytes of data.

Chapter 6 185

64 bytes from 10.0.0.9: icmp_seq=1 ttl=62 time=3.32 ms

--- 10.0.0.9 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 3.329/3.329/3.329/0.000 ms

ubuntu@client:~$ traceroute 10.0.0.9

traceroute to 10.0.0.9 (10.0.0.9), 30 hops max, 60 byte packets

 1 10.0.0.6 (10.0.0.6) 3.187 ms 3.318 ms 3.804 ms

 2 * * *

 3 10.0.0.9 (10.0.0.9) 11.845 ms 12.030 ms 12.035 ms

The final task is to prepare the host for the remainder of the chapter with updated repositories:

$ sudo apt update && sudo apt upgrade -y

$ sudo apt install software-properties-common -y

$ sudo add-apt-repository ppa:deadsnakes/ppa

$ sudo apt install -y python3.10 python3.10-venv

$ python3.10 -m venv venv

$ source venv/bin/activate

Great! We have our lab; we are now ready to look at some security tools and measures using Python.

Python Scapy
Scapy (https://scapy.net) is a powerful Python-based interactive packet crafting program.

Outside of some expensive commercial programs, very few tools can do what Scapy can do, to

my knowledge. It is one of my favorite tools in Python.

The main advantage of Scapy is that it allows us to craft our packet from a very basic level. In the

words of Scapy’s creator:

Let’s now take a look at the tool.

”Scapy is a powerful interactive packet manipulation program. It is able to forge

or decode packets of a wide number of protocols, send them on the wire, capture

them, match requests and replies, and much more…… with most other tools, you

won’t build something the author did not imagine. These tools have been built for

a specific goal and can’t deviate much from it.”

https://scapy.net

Network Security with Python186

Installing Scapy
Scapy has had an interesting path when it comes to Python 3 support. Back in 2015, there was an

independent fork of Scapy from version 2.2.0 that aimed to support Python 3, named Scapy3k. In

this book, we are using the main code base from the original Scapy project. If you have read the

previous edition of the book and used a Scapy version that was only compatible with Python 2,

please take a look at the Python 3 support per Scapy release:

Figure 6.3: Python version support (source: https://scapy.net/download/)

We will install the official release from the source:

(venv) ubuntu@[server|client]:~$ git clone https://github.com/secdev/
scapy.git

(venv) ubuntu@[server|client]:~$ cd scapy/

(venv) ubuntu@[server|client]:~/scapy$ sudo python3 setup.py install

(venv) ubuntu@[server|client]:~/scapy$ pip install scapy

Chapter 6 187

Following installation, we can launch the Scapy interactive shell by typing in scapy in the Com-

mand Prompt:

(venv) ubuntu@client:~$ sudo scapy

…

 aSPY//YASa

 apyyyyCY//////////YCa |

 sY//////YSpcs scpCY//Pp | Welcome to Scapy

 ayp ayyyyyyySCP//Pp syY//C | Version 2.5.0rc1.dev16

 AYAsAYYYYYYYY///Ps cY//S |

 pCCCCY//p cSSps y//Y | https://github.com/secdev/scapy

 SPPPP///a pP///AC//Y |

 A//A cyP////C | Have fun!

 p///Ac sC///a |

 P////YCpc A//A | What is dead may never die!

 scccccp///pSP///p p//Y | -- Python 2

 sY/////////y caa S//P |

 cayCyayP//Ya pY/Ya

 sY/PsY////YCc aC//Yp

 sc sccaCY//PCypaapyCP//YSs

 spCPY//////YPSps

 ccaacs

Here is a quick test to make sure we can access the Scapy library from Python 3:

(venv) ubuntu@client:~$ python3.10

Python 3.10.7 (main, Sep 7 2022, 15:23:21) [GCC 7.5.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> from scapy.all import *

>>> exit()

Awesome! Scapy is now installed and can be executed from our Python interpreter. Let’s take a

look at its usage via the interactive shell in the next section.

Network Security with Python188

Interactive examples
In our first example, we will craft an Internet Control Message Protocol (ICMP) packet on the

client and send it to the server. On the server side, we will use tcpdump with a host filter to see

the packet coming in:

Client Side

ubuntu@client:~/scapy$ sudo scapy

>>> send(IP(dst="10.0.0.9")/ICMP())

.

Sent 1 packets.

Server side

ubuntu@server:~/scapy$ sudo tcpdump -i ens2

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on ens2, link-type EN10MB (Ethernet), capture size 262144 bytes

02:02:24.402707 Loopback, skipCount 0, Reply, receipt number 0, data (40
octets)

02:02:24.658511 IP 10.0.0.5 > server: ICMP echo request, id 0, seq 0,
length 8

02:02:24.658532 IP server > 10.0.0.5: ICMP echo reply, id 0, seq 0, length
8

As you can see, it is very simple to craft a packet from Scapy. Scapy allows you to build the packet

layer by layer using the slash (/) as the separator. The send function operates at the layer 3 level,

which takes care of routing and layer 2 for you. There is also a sendp() alternative that operates

at layer 2, which means you will need to specify the interface and link layer protocol.

Let’s look at capturing the returned packet by using the send-request (sr) function. We are

using a special variation of sr, called sr1, which only returns one packet that answers from the

packet sent:

>>> p = sr1(IP(dst="10.0.0.9")/ICMP())

Begin emission:

.Finished sending 1 packets.

*

Received 2 packets, got 1 answers, remaining 0 packets

>>> p

<IP version=4 ihl=5 tos=0x0 len=28 id=5717 flags= frag=0 ttl=62
proto=icmp chksum=0x527f src=10.0.0.9 dst=10.0.0.5 |<ICMP type=echo-reply

Chapter 6 189

code=0 chksum=0xffff id=0x0 seq=0x0 |<Padding load='\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' |>>>

>>>

One thing to note is that the sr() function returns a tuple containing answered and unanswered

lists:

>>> p = sr(IP(dst="10.0.0.9")/ICMP())

.Begin emission:

.....Finished sending 1 packets.

*

Received 7 packets, got 1 answers, remaining 0 packets

>>> type(p)

<class 'tuple'>

Now, let’s take a look at what is contained inside the tuple:

>>> ans, unans = sr(IP(dst="10.0.0.9")/ICMP())

.Begin emission:

...Finished sending 1 packets.

..*

Received 7 packets, got 1 answers, remaining 0 packets

>>> type(ans)

<class 'scapy.plist.SndRcvList'>

>>> type(unans)

<class 'scapy.plist.PacketList'>

If we were to only take a look at the answered packet list, we could see that it is a NamedTuple

containing the packet that we have sent as well as the returned packet:

>>> for i in ans:

... print(type(i))

...

<class 'scapy.compat.NamedTuple.<locals>._NT'>

>>>

>>>

>>> for i in ans:

... print(i)

...

QueryAnswer(query=<IP frag=0 proto=icmp dst=10.0.0.9 |<ICMP |>>,

Network Security with Python190

answer=<IP version=4 ihl=5 tos=0x0 len=28 id=10871 flags= frag=0 ttl=62
proto=icmp chksum=0x3e5d src=10.0.0.9 dst=10.0.0.5 |<ICMP type=echo-reply
code=0 chksum=0xffff id=0x0 seq=0x0 |<Padding load='\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' |>>>)

Scapy also provides a layer 7 construct, such as a DNS query. In the following example, we are

querying an open DNS server for the resolution of www.google.com:

>>> p = sr1(IP(dst="8.8.8.8")/UDP()/DNS(rd=1,qd=DNSQR(qname="www.google.
com")))

Begin emission:

Finished sending 1 packets.

......*

Received 7 packets, got 1 answers, remaining 0 packets

>>> p

<IP version=4 ihl=5 tos=0x20 len=76 id=20467 flags= frag=0 ttl=58
proto=udp chksum=0x5d3e src=8.8.8.8 dst=192.168.2.152 |<UDP sport=domain
dport=domain len=56 chksum=0xf934 |<DNS id=0 qr=1 opcode=QUERY aa=0
tc=0 rd=1 ra=1 z=0 ad=0 cd=0 rcode=ok qdcount=1 ancount=1 nscount=0
arcount=0 qd=<DNSQR qname='www.google.com.' qtype=A qclass=IN |>
an=<DNSRR rrname='www.google.com.' type=A rclass=IN ttl=115 rdlen=4
rdata=142.251.211.228 |> ns=None ar=None |>>>

>>>

Let’s take a look at some other Scapy features. We’ll begin by using Scapy for packet captures.

Packet captures with Scapy
As network engineers, we constantly have to capture packets on the wire during troubleshooting.

We typically use Wireshark or similar tools, but Scapy can also be used to easily capture packets

on the wire:

>>> a = sniff(filter="icmp", count=5)

>>> a.show()

0000 Ether / IP / ICMP 192.168.2.152 > 8.8.8.8 echo-request 0 / Raw

0001 Ether / IP / ICMP 8.8.8.8 > 192.168.2.152 echo-reply 0 / Raw

0002 Ether / IP / ICMP 192.168.2.152 > 8.8.8.8 echo-request 0 / Raw

0003 Ether / IP / ICMP 8.8.8.8 > 192.168.2.152 echo-reply 0 / Raw

0004 Ether / IP / ICMP 192.168.2.152 > 8.8.8.8 echo-request 0 / Raw

http://www.google.com

Chapter 6 191

We can look at the packets in some more detail, including the raw format:

>>> for packet in a:

... print(packet.show())

...

###[Ethernet]###

 dst = 08:b4:b1:18:01:39

 src = 52:54:00:19:54:b5

 type = IPv4

###[IP]###

 version = 4

 ihl = 5

 tos = 0x0

 len = 84

 id = 38166

 flags = DF

 frag = 0

 ttl = 64

 proto = icmp

 chksum = 0xd242

 src = 192.168.2.152

 dst = 8.8.8.8

 \options \

###[ICMP]###

 type = echo-request

 code = 0

 chksum = 0x6596

 id = 0x502f

 seq = 0x1

 unused = ''

###[Raw]###

 load = '\\xaa7%c\x00\x00\x00\x00\\xb2\\xcb\x01\x00\x00\
x00\x00\x00\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\
x1f !"#$%&\'()*+,-./01234567'

<skip>

We have seen the basic workings of Scapy. Let’s now move on and see how we can use Scapy for

certain aspects of common security testing.

Network Security with Python192

The TCP port scan
The first step for any potential hackers is almost always trying to learn which service is open on

the network to focus their efforts on the attack. Of course, we need to open certain ports to service

our customers; that is part of the risk we must accept. However, we should close any other open

port that needlessly exposes a larger attack surface. We can use Scapy to do a simple TCP open

port scan to scan our own host.

We can send a SYN packet and see whether the server will return with SYN-ACK for various ports.

Let’s start with Telnet, TCP port 23:

>>> p = sr1(IP(dst="10.0.0.9")/TCP(sport=666,dport=23,flags="S"))

Begin emission:

Finished sending 1 packets.

.*

Received 2 packets, got 1 answers, remaining 0 packets

>>> p.show()

###[IP]###

 version= 4

 ihl= 5

 tos= 0x0

 len= 40

 id= 14089

 flags= DF

 frag= 0

 ttl= 62

 proto= tcp

 chksum= 0xf1b9

 src= 10.0.0.9

 dst= 10.0.0.5

 \options\

###[TCP]###

 sport= telnet

 dport= 666

 seq= 0

 ack= 1

 dataofs= 5

 reserved= 0

Chapter 6 193

 flags= RA

 window= 0

 chksum= 0x9911

 urgptr= 0

 options= []

Note that, in the output here, the server is responding with a RESET+ACK for TCP port 23. However,

TCP port 22 (SSH) is open; therefore, a SYN-ACK is returned:

>>> p = sr1(IP(dst="10.0.0.9")/TCP(sport=666,dport=22,flags="S")).show()

###[IP]###

 version= 4

<skip>

 proto= tcp

 chksum= 0x28bf

 src= 10.0.0.9

 dst= 10.0.0.5

 \options\

###[TCP]###

 sport= ssh

 dport= 666

 seq= 1671401418

 ack= 1

 dataofs= 6

 reserved= 0

 flags= SA

<skip>

We can also scan a range of destination ports from 20 to 22; note that we are using sr() for

send-receive instead of the sr1() send-receive-one-packet variant:

>>> ans,unans = sr(IP(dst="10.0.0.9")/
TCP(sport=666,dport=(20,22),flags="S"))

>>> for i in ans:

... print(i)

...

QueryAnswer(query=<IP frag=0 proto=tcp dst=10.0.0.9 |<TCP sport=666
dport=ftp_data flags=S |>>, answer=<IP version=4 ihl=5 tos=0x0 len=40
id=0 flags=DF frag=0 ttl=62 proto=tcp chksum=0x28c3 src=10.0.0.9
dst=10.0.0.5 |<TCP sport=ftp_data dport=666 seq=0 ack=1 dataofs=5

Network Security with Python194

reserved=0 flags=RA window=0 chksum=0x9914 urgptr=0 |<Padding load='\x00\
x00\x00\x00\x00\x00' |>>>)

QueryAnswer(query=<IP frag=0 proto=tcp dst=10.0.0.9 |<TCP sport=666
dport=ftp flags=S |>>, answer=<IP version=4 ihl=5 tos=0x0 len=40 id=0
flags=DF frag=0 ttl=62 proto=tcp chksum=0x28c3 src=10.0.0.9 dst=10.0.0.5
|<TCP sport=ftp dport=666 seq=0 ack=1 dataofs=5 reserved=0 flags=RA
window=0 chksum=0x9913 urgptr=0 |<Padding load='\x00\x00\x00\x00\x00\x00'
|>>>)

QueryAnswer(query=<IP frag=0 proto=tcp dst=10.0.0.9 |<TCP sport=666
dport=ssh flags=S |>>, answer=<IP version=4 ihl=5 tos=0x0 len=44 id=0
flags=DF frag=0 ttl=62 proto=tcp chksum=0x28bf src=10.0.0.9 dst=10.0.0.5
|<TCP sport=ssh dport=666 seq=4214084277 ack=1 dataofs=6 reserved=0
flags=SA window=29200 chksum=0x4164 urgptr=0 options=[('MSS', 1460)]
|<Padding load='\x00\x00' |>>>)

We can also specify a destination network instead of a single host. As you can see from the

10.0.0.8/29 block, hosts 10.0.0.9, 10.0.0.10, and 10.0.0.14 returned with SA, which

corresponds to the two network devices and the host:

>>> ans,unans = sr(IP(dst="10.0.0.8/29")/
TCP(sport=666,dport=(22),flags="S"))

>>> for i in ans:

... print(i)

...

(<IP frag=0 proto=tcp dst=10.0.0.14 |<TCP sport=666 dport=ssh flags=S
|>>, <IP version=4 ihl=5 tos=0x0 len=44 id=7289 flags= frag=0 ttl=64
proto=tcp chksum=0x4a41 src=10.0.0.14 dst=10.0.0.5 |<TCP sport=ssh
dport=666 seq=1652640556 ack=1 dataofs=6 reserved=0 flags=SA window=17292
chksum=0x9029 urgptr=0 options=[('MSS', 1444)] |>>)

(<IP frag=0 proto=tcp dst=10.0.0.9 |<TCP sport=666 dport=ssh flags=S
|>>, <IP version=4 ihl=5 tos=0x0 len=44 id=0 flags=DF frag=0 ttl=62
proto=tcp chksum=0x28bf src=10.0.0.9 dst=10.0.0.5 |<TCP sport=ssh
dport=666 seq=898054835 ack=1 dataofs=6 reserved=0 flags=SA window=29200
chksum=0x9f0d urgptr=0 options=[('MSS', 1460)] |>>)

(<IP frag=0 proto=tcp dst=10.0.0.10 |<TCP sport=666 dport=ssh flags=S
|>>, <IP version=4 ihl=5 tos=0x0 len=44 id=38021 flags= frag=0 ttl=254
proto=tcp chksum=0x1438 src=10.0.0.10 dst=10.0.0.5 |<TCP sport=ssh
dport=666 seq=371720489 ack=1 dataofs=6 reserved=0 flags=SA window=4128
chksum=0x5d82 urgptr=0 options=[('MSS', 536)] |>>)

>>>

Chapter 6 195

Based on what we have learned so far, we can make a simple script for reusability, scapy_tcp_

scan_1.py:

#!/usr/bin/env python3

from scapy.all import *

import sys

def tcp_scan(destination, dport):

 ans, unans = sr(IP(dst=destination)/
TCP(sport=666,dport=dport,flags="S"))

 for sending, returned in ans:

 if 'SA' in str(returned[TCP].flags):

 return destination + " port " + str(sending[TCP].dport) + " is
open."

 else:

 return destination + " port " + str(sending[TCP].dport) + " is
not open."

def main():

 destination = sys.argv[1]

 port = int(sys.argv[2])

 scan_result = tcp_scan(destination, port)

 print(scan_result)

if __name__ == "__main__":

 main()

In the script, we start with the suggested importing of scapy and the sys module for taking in

arguments. The tcp_scan() function is similar to what we have seen up to this point, the only

difference being that we functionalized it so that we can acquire inputs from arguments and then

call the tcp_scan() function in the main() function.

Remember that access to the low-level network requires root access; therefore, our script needs

to be executed as sudo. Let’s try the script on port 22 (SSH) and port 80 (HTTP):

ubunbu@client:~$ sudo python3 scapy_tcp_scan_1.py "10.0.0.14" 22

Begin emission:

......Finished sending 1 packets.

*

Received 7 packets, got 1 answers, remaining 0 packets

10.0.0.14 port 22 is open.

ubuntu@client:~$ sudo python3 scapy_tcp_scan_1.py "10.0.0.14" 80

Network Security with Python196

Begin emission:

...Finished sending 1 packets.

*

Received 4 packets, got 1 answers, remaining 0 packets

10.0.0.14 port 80 is not open.

This was a relatively lengthy example of the TCP scan script, which demonstrated the power of

crafting your packet with Scapy. We tested the steps in the interactive shell and finalized the usage

with a simple script. Now, let’s look at some more examples of Scapy’s usage for security testing.

The ping collection
Let’s say our network contains a mix of Windows, Unix, and Linux machines, with network users

adding their machines from the Bring Your Own Device (BYOD) policy; they may or may not

support an ICMP ping. We can now construct a file with three types of common pings for our

network – the ICMP, TCP, and UDP pings – in scapy_ping_collection.py:

#!/usr/bin/env python3

from scapy.all import *

def icmp_ping(destination):

 # regular ICMP ping

 ans, unans = sr(IP(dst=destination)/ICMP())

 return ans

def tcp_ping(destination, dport):

 ans, unans = sr(IP(dst=destination)/TCP(dport=dport,flags="S"))

 return ans

def udp_ping(destination):

 ans, unans = sr(IP(dst=destination)/UDP(dport=0))

 return ans

def answer_summary(ans):

 for send, recv in ans:

 print(recv.sprintf("%IP.src% is alive"))

We can then execute all three types of pings on the network in one script:

def main():

 print("** ICMP Ping **")

 ans = icmp_ping("10.0.0.13-14")

 answer_summary(ans)

 print("** TCP Ping ***")

Chapter 6 197

 ans = tcp_ping("10.0.0.13", 22)

 answer_summary(ans)

 print("** UDP Ping ***")

 ans = udp_ping("10.0.0.13-14")

 answer_summary(ans)

if __name__ == "__main__":

 main()

At this point, hopefully, you will agree with me that by having the ability to construct your custom

packet, you can be in charge of the type of operations and tests that you would like to run. Along

the same thought of constructing our custom packets using Scapy, we can construct our packets

to perform security tests on our network.

Common attacks
In this example, let’s look at how we can construct our packet to conduct some classic attacks, such

as Ping of Death (https://en.wikipedia.org/wiki/Ping_of_death) and Land Attack (https://

en.wikipedia.org/wiki/Denial-of-service_attack). These are network penetration tests that

you previously had to pay for with similar commercial software. With Scapy, you can conduct the

test while maintaining full control and adding more tests in the future.

The first attack sends the destination host with a bogus IP header, such as an IP header length

of two and an IP version of three:

def malformed_packet_attack(host):

 send(IP(dst=host, ihl=2, version=3)/ICMP())

The ping_of_death_attack consists of the regular ICMP packet with a payload bigger than

65,535 bytes:

def ping_of_death_attack(host):

 # https://en.wikipedia.org/wiki/Ping_of_death

 send(fragment(IP(dst=host)/ICMP()/("X"*60000)))

The land_attack wants to redirect the client response back to the client and exhausts the host’s

resources:

def land_attack(host):

 # https://en.wikipedia.org/wiki/Denial-of-service_attack

 send(IP(src=host, dst=host)/TCP(sport=135,dport=135))

https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack

Network Security with Python198

These are pretty old vulnerabilities or classic attacks that a modern operating system is no longer

susceptible to. For our Ubuntu 20.04 host, none of the preceding attacks will bring it down. How-

ever, as more security issues are being discovered, Scapy is a great tool for initiating tests against

our network and host without waiting for the impacted vendor to give you a validation tool. This

is especially true for the zero-day (published without prior notification) attacks that seem more

and more common on the internet. Scapy is a tool that can do a lot more than what we can cover

in this chapter, but luckily, there are lots of open source resources on Scapy that we can reference.

Scapy resources
We have spent much effort working with Scapy in this chapter. This is partially due to the high

regard in which I hold the tool. I hope you agree that Scapy is a great tool to keep in our toolset

as network engineers. The best part about Scapy is that it is constantly being developed with an

engaged community of users.

I would highly recommend at least going through the Scapy tutorial at http://scapy.readthedocs.

io/en/latest/usage.html#interactive-tutorial, as well as any of the documentation that

is of interest to you.

Of course, network security is more than just crafting packets and testing vulnerabilities. In the

next section, we’ll take a look at automating the access list that is commonly used to protect

sensitive internal resources.

Access lists
The network access lists are usually the first line of defense against outside intrusions and attacks.

Generally speaking, routers and switches process packets at a much faster rate than servers by

utilizing high-speed memory hardware such as ternary content-addressable memory (TCAM).

They do not need to see the application layer information. Instead, they just examine the layer 3

and layer 4 headers and decide whether the packets can be forwarded. Therefore, we generally

utilize network device access lists as a first step in safeguarding our network resources.

As a rule of thumb, we want to place access lists as close to the source (client) as possible. In-

herently, we also trust the inside host and distrust clients beyond our network boundary. The

access list is, therefore, usually placed in the inbound direction on the external-facing network

interface(s). In our lab scenario, this means we will place an inbound access list at Ethernet2/2

on nyc-cor-r1, which is directly connected to the client host.

http://scapy.readthedocs.io/en/latest/usage.html#interactive-tutorial
http://scapy.readthedocs.io/en/latest/usage.html#interactive-tutorial

Chapter 6 199

If you are unsure of the direction and placement of the access list, a few points might help here:

•	 Think of the access list from the perspective of the network device.

•	 Simplify the packets in terms of just source and destination IPs and use one host as an

example.

•	 In our lab, traffic from our server to the client will have a source IP of 10.0.0.9, with a

destination IP of 10.0.0.5.

•	 The traffic from the client to the server will have a source IP of 10.0.0.5, and a destination

IP of 10.0.0.9.

Obviously, every network is different, and how the access list should be constructed depends

on the services provided by your server. But, as an inbound border access list, you should do the

following:

•	 Deny RFC 3030 special-use address sources, such as 127.0.0.0/8.

•	 Deny RFC 1918 space, such as 10.0.0.0/8.

•	 Deny our own space as the source IP; in this case, 10.0.0.4/30.

•	 Permit inbound TCP ports 22 (SSH) and 80 (HTTP) to host 10.0.0.9.

•	 Deny everything else.

Here is a good list of bogon networks to block: https://ipinfo.io/bogon.

Knowing what to add is only half of the step. In the next section, let’s take a look at how to im-

plement the intended access list with Ansible.

Implementing access lists with Ansible
The easiest way to implement this access list would be to use Ansible. We have already looked

at Ansible in previous chapters, but it is worth repeating the advantages of using Ansible in this

scenario:

•	 Easier management: For a long access list, we can utilize the include statement to break

the access list into more manageable pieces. The smaller pieces can then be managed by

other teams or service owners.

•	 Idempotency: We can schedule the playbook at regular intervals and only the necessary

changes will be made.

•	 Each task is explicit: We can separate the construct of the entries as well as apply the

access list to the proper interface.

https://ipinfo.io/bogon

Network Security with Python200

•	 Reusability: In the future, if we add additional external-facing interfaces, we just need

to add the device to the list of devices for the access list.

•	 Extensible: You will notice that we can use the same playbook for constructing the access

list and apply it to the right interface. We can start small and expand to separate playbooks

in the future as needed.

The host file is pretty standard. We will also follow our standards of putting the variables in the

host_vars folder:

[nxosv-devices]

nyc-cor-r1

[iosv-devices]

nyc-edg-r1

$ cat host_vars/nyc-cor-r1

ansible_host: 192.168.2.60

ansible_user: cisco

ansible_ssh_pass: cisco

ansible_connection: network_cli

ansible_network_os: nxos

ansbile_become: yes

ansible_become_method: enable

ansible_become_pass: cisco

We will declare the variables in the playbook:

- name: Configure Access List

 hosts: "nxosv-devices"

 gather_facts: false

 connection: local

 vars:

 cli:

 host: "{{ ansible_host }}"

 username: "{{ ansible_username }}"

 password: "{{ ansible_password }}"

Chapter 6 201

To save space, we will only illustrate denying the RFC 1918 space. Implementing the denial of

RFC 3030 and our own space will be identical to the steps used for the RFC 1918 space. Note

that we did not deny 10.0.0.0/8 in our playbook because our configuration currently uses the

10.0.0.0 network for addressing. Of course, we could perform the single host permit first and

deny 10.0.0.0/8 in a later entry, but in this example, we just chose to omit it:

 tasks:

 - nxos_acl:

 name: border_inbound

 seq: 20

 action: deny

 proto: tcp

 src: 172.16.0.0/12

 dest: any

 log: enable

 state: present

 - nxos_acl:

 name: border_inbound

 seq: 30

 action: deny

 proto: tcp

 src: 192.168.0.0/16

 dest: any

 state: present

 log: enable

<skip>

Note that we are allowing the established connection sourcing from the server inside to be allowed

back in. We use the final explicit deny ip any statement as a high-sequence number (1000) so

that we can insert any new entries later on.

We can then apply the access list to the correct interface:

 - name: apply ingress acl to Ethernet 2/4

 nxos_acl_interface:

 name: border_inbound

 interface: Ethernet2/4

 direction: ingress

 state: present

Network Security with Python202

This may seem like a lot of work for a single access list. For an experienced engineer, using Ansible

to do this task will take longer than just logging in to the device and configuring the access list.

However, remember that this playbook can be reused many times in the future, so it will save

you time in the long run.

It is my experience that often, for a long access list, a few entries will be for one service, a few

entries will be for another, and so on. The access lists tend to grow organically over time, and

it becomes very hard to keep track of the origin and purpose of each entry. The fact that we can

break them apart makes the management of a long access list much simpler.

Now, let’s execute the playbook and verify on nx-osv-1:

$ ansible-playbook -i hosts access_list_nxosv.yml

PLAY [Configure Access List] ***

TASK [nxos_acl] **

ok: [nyc-cor-r1]

<skip>

TASK [nxos_acl] **

ok: [nyc-cor-r1]

TASK [apply ingress acl to Ethernet 2/4] *********************************

changed: [nyc-cor-r1]

PLAY RECAP ***

nyc-cor-r1 : ok=7 changed=1 unreachable=0
failed=0 skipped=0 rescued=0 ignored=0

<skip>

Chapter 6 203

We should log in to nyc-cor-r1 to verify the changes:

nyc-cor-r1# sh ip access-lists border_inbound

IP access list border_inbound

 20 deny tcp 172.16.0.0/12 any log

 30 deny tcp 192.168.0.0/16 any log

 40 permit tcp any 10.0.0.9/32 eq 22 log

 50 permit tcp any 10.0.0.9/32 eq www log

 60 permit tcp any any established log

 1000 deny ip any any log

nx-osv-1# sh run int eth 2/4

!

interface Ethernet2/1

 description to Client

 no switchport

 mac-address fa16.3e00.0001

 ip access-group border_inbound in

 ip address 10.0.0.6/30

 ip router ospf 1 area 0.0.0.0

 no shutdown

We have seen the implementation of IP access lists that check layer 3 information on the network.

In the next section, let’s look at how to restrict device access in a layer 2 environment.

MAC access lists
In the case where you have a layer 2 environment, or where you are using non-IP protocols on

Ethernet interfaces, you can still use a MAC address access list to allow or deny hosts based

on MAC addresses. The steps are similar to the IP access list, but the match will be based on

MAC addresses. Recall that for MAC addresses, or physical addresses, the first six hexadecimal

symbols belong to an organizationally unique identifier (OUI). So, we can use the same access

list matching pattern to deny a certain group of hosts.

We are testing this on IOSv with the ios_config module. For older Ansible versions, the change

will be pushed out every single time the playbook is executed. For newer Ansible versions, the

control node will check for changes first and only make changes when needed.

Network Security with Python204

The host file and the top portion of the playbook are similar to the IP access list; the tasks portion

is where the different modules and arguments are used:

<skip>

 tasks:

 - name: Deny Hosts with vendor id fa16.3e00.0000

 ios_config:

 lines:

 - access-list 700 deny fa16.3e00.0000 0000.00FF.FFFF

 - access-list 700 permit 0000.0000.0000 FFFF.FFFF.FFFF

 - name: Apply filter on bridge group 1

 ios_config:

 lines:

 - bridge-group 1

 - bridge-group 1 input-address-list 700

 parents

 - interface GigabitEthernet0/1

We can execute the playbook and verify its application on iosv-1:

$ ansible-playbook -i hosts access_list_mac_iosv.yml

TASK [Deny Hosts with vendor id fa16.3e00.0000] **************************
**

changed: [nyc-edg-r1]

TASK [Apply filter on bridge group 1] ************************************

changed: [nyc-edg-r1]

As we have done before, let’s log in to the device to verify our change:

nyc-edg-r1#sh run int gig 0/1

!

interface GigabitEthernet0/1

 description to nyc-cor-r1

 <skip>

 bridge-group 1

 bridge-group 1 input-address-list 700

end

Chapter 6 205

As more virtual networks become popular, layer 3 information sometimes becomes transparent

to the underlying virtual links. In these scenarios, the MAC access list becomes a good option

if you need to restrict access to those links. In this section, we have used Ansible to automate

the implementation of both layer 2 and layer 3 access lists. Now, let’s change gears a bit but

stay within the security context and look at how to pick up necessary security information from

syslogs using Python.

The Syslog search
There are plenty of documented network security breaches that took place over an extended

period. In these slow breaches, we quite often saw signs and traces in logs indicating that there

were suspicious activities. These can be found in both server and network device logs. The ac-

tivities were not detected, not because there was a lack of information, but rather because there

was too much information. The critical information we were looking for is usually buried deep

in a mountain of information that is hard to sort out.

Besides Syslog, UFW is another great source of log information for servers. It is a frontend to IP

tables, which is a server firewall. UFW makes managing firewall rules very simple and logs a good

amount of information. Refer to the Other Tools section for more information on UFW.

In this section, we will try to use Python to search through the Syslog text in order to detect the

activities that we were looking for. Of course, the exact terms that we will search for depend

on the device we are using. For example, Cisco provides a list of messages to look for in Syslog

for any access-list violation logging. It is available at http://www.cisco.com/c/en/us/about/

security-center/identify-incidents-via-syslog.html.

For more understanding of access control list logging, go to http://www.cisco.com/c/en/us/

about/security-center/access-control-list-logging.html.

For our exercise, we will use a Nexus switch anonymized Syslog file containing about 65,000 lines

of log messages. This file is included for you in the book’s GitHub repository:

$ wc -l sample_log_anonymized.log

65102 sample_log_anonymized.log

http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/identify-incidents-via-syslog.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html
http://www.cisco.com/c/en/us/about/security-center/access-control-list-logging.html

Network Security with Python206

We have inserted some Syslog messages from the Cisco documentation (http://www.cisco.
com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-

nx7k-00.html) as the log message that we should be looking for:

2014 Jun 29 19:20:57 Nexus-7000 %VSHD-5-VSHD_SYSLOG_CONFIG_I: Configured

from vty by admin on console0

2014 Jun 29 19:21:18 Nexus-7000 %ACLLOG-5-ACLLOG_FLOW_INTERVAL: Src IP:

10.1 0.10.1,

Dst IP: 172.16.10.10, Src Port: 0, Dst Port: 0, Src Intf: Ethernet4/1, Pro
tocol: "ICMP"(1), Hit-count = 2589

2014 Jun 29 19:26:18 Nexus-7000 %ACLLOG-5-ACLLOG_FLOW_INTERVAL: Src IP:

10.1 0.10.1, Dst IP: 172.16.10.10, Src Port: 0, Dst Port: 0, Src Intf:
Ethernet4/1, Pro tocol: "ICMP"(1), Hit-count = 4561

We will be using simple examples with regular expressions. If you are already familiar with the

regular expression module in Python, feel free to skip the rest of the section.

Searching with the regular expression module
For our first search, we will simply use the regular expression module to search for the terms we

are looking for. We will use a simple loop to do the following:

#!/usr/bin/env python3

import re, datetime

startTime = datetime.datetime.now()

with open('sample_log_anonymized.log', 'r') as f:

 for line in f.readlines():

 if re.search('ACLLOG-5-ACLLOG_FLOW_INTERVAL', line):

 print(line)

endTime = datetime.datetime.now()

elapsedTime = endTime - startTime

print("Time Elapsed: " + str(elapsedTime))

It took about four-hundredths of a second to search through the log file:

$ python3 python_re_search_1.py

2014 Jun 29 19:21:18 Nexus-7000 %ACLLOG-5-ACLLOG_FLOW_INTERVAL: Src IP:
10.1 0.10.1,

2014 Jun 29 19:26:18 Nexus-7000 %ACLLOG-5-ACLLOG_FLOW_INTERVAL: Src IP:
10.1 0.10.1,

Time Elapsed: 0:00:00.047249

https://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
https://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html
https://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/118907-configure-nx7k-00.html

Chapter 6 207

It is recommended to compile the search term for a more efficient search. It will not impact us

much since the script is already pretty fast. Python’s interpretative nature might make it slower.

However, it will make a difference when we search through a larger text body, so let’s make the

change:

searchTerm = re.compile('ACLLOG-5-ACLLOG_FLOW_INTERVAL')

with open('sample_log_anonymized.log', 'r') as f:

for line in f.readlines():

if re.search(searchTerm, line):

 print(line)

The timing result is actually slower:

Time Elapsed: 0:00:00.081541

Let’s expand the example a bit. Assuming we have several files and multiple terms to search

through, we will copy the original file to a new file:

$ cp sample_log_anonymized.log sample_log_anonymized_1.log

We will also include searching for the PAM: Authentication failure term. We will add another

loop to search both files:

term1 = re.compile('ACLLOG-5-ACLLOG_FLOW_INTERVAL')

term2 = re.compile('PAM: Authentication failure')

fileList = ['sample_log_anonymized.log', 'sample_log_anonymized_1.log']

for log in fileList:

 with open(log, 'r') as f:

 for line in f.readlines():

 if re.search(term1, line) or re.search(term2, line):

 print(line)

We can now see the difference in performance by expanding our search terms and the number

of messages:

$ python3 python_re_search_2.py

2016 Jun 5 16:49:33 NEXUS-A %DAEMON-3-SYSTEM_MSG: error: PAM:

Authentication failure for illegal user AAA from 172.16.20.170 -
sshd[4425]

2016 Sep 14 22:52:26.210 NEXUS-A %DAEMON-3-SYSTEM_MSG: error: PAM:

Authentication failure for illegal user AAA from 172.16.20.170 -
sshd[2811]

Network Security with Python208

<skip>

2014 Jun 29 19:21:18 Nexus-7000 %ACLLOG-5-ACLLOG_FLOW_INTERVAL: Src IP:

10.1 0.10.1,

2014 Jun 29 19:26:18 Nexus-7000 %ACLLOG-5-ACLLOG_FLOW_INTERVAL: Src IP:

10.1 0.10.1,

<skip>

Time Elapsed: 0:00:00.330697

Of course, when it comes to performance tuning, it is a never-ending, impossible race to zero, and

the performance sometimes depends on the hardware you are using. But the important point is

to regularly perform audits of your log files using Python so that you can catch the early signals

of any potential breach.

We have looked at some of the key ways in which we can enhance our network security in Python,

but there are several other powerful tools that can make this process easier and more effective.

In the final section of this chapter, we will explore some of these tools.

Other tools
There are other network security tools that we can use and automate with Python. Let’s take a

look at two of the most commonly used ones.

Private VLANs
Virtual local area networks (VLANs) have been around for a long time. They are essentially

broadcast domains where all hosts can be connected to a single switch but are partitioned out to

different domains, so we can separate the hosts according to which hosts can see others via broad-

casts. Let’s consider a map based on IP subnets. For example, in an enterprise building, I would

likely see one IP subnet per physical floor: 192.168.1.0/24 for the first floor, 192.168.2.0/24

for the second floor, and so on. In this pattern, we use a /24 block for each floor. This gives a clear

delineation of my physical network as well as my logical network. A host wanting to communicate

beyond its subnet will need to traverse through its layer 3 gateway, where I can use an access list

to enforce security.

What happens when different departments reside on the same floor? Perhaps the finance and sales

teams are on the second floor, and I would not want the sales team’s hosts in the same broadcast

domain as the finance team. I can break the subnet down further, but that might become tedious

and break the standard subnet scheme previously set up. This is where a private VLAN can help.

Chapter 6 209

The private VLAN essentially breaks up the existing VLAN into sub-VLANs. There are three cat-

egories within a private VLAN:

•	 The Promiscuous (P) port: This port is allowed to send and receive layer 2 frames from any

other port on the VLAN; this usually belongs to the port connecting to the layer 3 routers.

•	 The Isolated (I) port: This port is only allowed to communicate with P ports, and it is

typically connected to hosts when you do not want it to communicate with other hosts

in the same VLAN.

•	 The Community (C) port: This port is allowed to communicate with other C ports in the

same community and with P ports.

We can again use Ansible or any other Python scripts introduced so far to accomplish this task. By

now, we should have enough practice and confidence to implement this feature via automation,

so I will not repeat the steps here. Being aware of the private VLAN feature will come in handy

when you need to isolate ports even further in a layer 2 VLAN.

UFW with Python
We briefly mentioned UFW as the front end for IP tables on Ubuntu hosts. Here is a quick overview:

$ sudo apt-get install ufw

$ sudo ufw status

$ sudo ufw default outgoing

$ sudo ufw allow 22/tcp

$ sudo ufw allow www

$ sudo ufw default deny incoming

We can see the status of UFW:

$ sudo ufw status verbose Status: active

Logging: on (low)

Default: deny (incoming), allow (outgoing), disabled (routed) New
profiles: skip

To Action From

-- ------ ----

22/tcp ALLOW IN Anywhere

80/tcp ALLOW IN Anywhere

22/tcp (v6) ALLOW IN Anywhere (v6)

80/tcp (v6) ALLOW IN Anywhere (v6)

Network Security with Python210

As you can see, the advantage of UFW is that it provides a simple interface to construct otherwise

complicated IP table rules. There are several Python-related tools we can use with UFW to make

things even simpler:

•	 We can use the Ansible UFW module to streamline our operations. More information is

available at https://docs.ansible.com/ansible/latest/collections/community/

general/ufw_module.html.

•	 There are Python wrapper modules around UFW as an API (visit https://gitlab.com/

dhj/easyufw). This can make integration easier if you need to dynamically modify UFW

rules based on certain events.

•	 UFW itself is written in Python. Therefore, you can use existing Python knowledge if we

need to extend the current command sets. More information is available at https://

launchpad.net/ufw.

UFW proves to be a good tool to safeguard your network server.

Further reading
Python is a very common language used in many security-related fields. A few of the books I

would recommend are listed as follows:

•	 Violent Python: A cookbook for hackers, forensic analysts, penetration testers, and security

engineers, by T.J. O’Connor (ISBN-10: 1597499579)

•	 Black Hat Python: Python programming for hackers and pen-testers, by Justin Seitz (ISBN-

10: 1593275900)

I have personally used Python extensively in my research work on Distributed Denial of Service

(DDoS) at A10 Networks. If you are interested in learning more, the guide can be downloaded

for free at https://www.a10networks.com/resources/ebooks/distributed-denial-service-

ddos/.

Summary
In this chapter, we looked at network security with Python. We used the Cisco CML tool to set

up our lab with hosts and network devices, consisting of NX-OSv and IOSv types. We took a tour

around Scapy, which allows us to construct packets from the ground up.

Scapy can be used in interactive mode for quick testing. Once testing is completed in interactive

mode, we can put the steps into a file for more scalable testing. It can be used to perform various

network penetration testing for known vulnerabilities.

https://docs.ansible.com/ansible/latest/collections/community/general/ufw_module.html
https://docs.ansible.com/ansible/latest/collections/community/general/ufw_module.html
https://gitlab.com/dhj/easyufw
https://gitlab.com/dhj/easyufw
https://launchpad.net/ufw
https://launchpad.net/ufw
https://www.a10networks.com/resources/ebooks/distributed-denial-service-ddos/
https://www.a10networks.com/resources/ebooks/distributed-denial-service-ddos/

Chapter 6 211

We also looked at how we can use both an IP access list and a MAC access list to protect our net-

work. They are usually the first line of defense in our network protection. Using Ansible, we can

deploy access lists consistently and quickly to multiple devices.

Syslog and other log files contain useful information that we should regularly comb through to

detect any early signs of a breach. Using Python regular expressions, we can systematically search

for known log entries that can point us to security events that require our attention. Besides the

tools we have discussed, private VLAN and UFW are among some other useful tools that we can

use for more security protection.

In Chapter 7, Network Monitoring with Python – Part 1, we will look at how to use Python for net-

work monitoring. Monitoring allows us to know what is happening in our network, as well as

the state of the network.

Join our book community
To join our community for this book – where you can share feedback, ask questions to the author,

and learn about new releases – follow the QR code below:

https://packt.link/networkautomationcommunity

https://packt.link/networkautomationcommunity

7
Network Monitoring with
Python – Part 1
Imagine you get a call from your company’s network operations center at 2:00 a.m. The person

on the other end says: “Hi, we are facing a difficult issue that is impacting production services. We

suspect it might be network related. Can you check for us?” For this type of urgent, open-ended

question, what would be the first thing you do? Most of the time, the thing that comes to mind

would be: What changed in the time between when the network was working and when something

went wrong? We would check our monitoring tool and see if any key metrics have changed in the

last few hours. Better yet, we may have received monitoring alerts for any metrics that deviated

from the normal baseline numbers.

Throughout this book, we have been discussing various ways to systematically make predictable

changes to our network, intending to keep the network running as smoothly as possible. However,

networks are not static – far from it. They are probably one of the most fluid parts of the entire

infrastructure. By definition, a network connects different parts of the infrastructure, constantly

passing traffic back and forth.

There are lots of moving parts that can cause our network to stop working as expected: hardware

failures, software with bugs, human mistakes despite their best intentions, and many more. It

is not a question of whether things will go wrong but of when and what will go wrong when it

happens. We need ways to monitor our network to make sure it works as expected and hopefully

be notified when it does not.

In the upcoming two chapters, we will look at various ways to perform network monitoring tasks.

Many tools we have looked at thus far can be tied together or directly managed by Python. Like

many tools we have looked at, network monitoring has two parts.

Network Monitoring with Python – Part 1214

First, we need to know what monitoring-related information the equipment can transmit. Second,

we need to identify what useful, actionable information we can interpret from the data.

In this chapter, we will begin by looking at a few tools that allow us to monitor the network effectively:

•	 The lab setup

•	 The Simple Network Management Protocol (SNMP) and related Python libraries to

work with SNMP

•	 Python visualization libraries:

•	 Matplotlib and examples

•	 Pygal and examples

•	 Python integration with MRTG and Cacti for network visualization

This list is not exhaustive, and there is certainly no lack of commercial vendors in the network

monitoring space. The basics of network monitoring that we will look at, however, carry well for

both open source and commercial tools.

Lab Setup
The lab for this chapter consists of IOSv devices to simplify device configuration. We will use the

same lab for this and the next chapters. The topology is as follows:

Figure 7.1: Lab topology

Chapter 7 215

The device configuration is as follows:

Device Management IP Loopback IP

r1 192.168.2.218 192.168.0.1

r2 192.168.2.219 192.168.0.2

r3 192.168.2.220 192.168.0.3

r5 192.168.2.221 192.168.0.4

r6 192.168.2.222 192.168.0.5

The Ubuntu hosts information is as follows:

Device Name External Link Eth0 Internal IP Eth1

Client 192.168.2.211 10.0.0.9

Server 192.168.2.212 10.0.0.5

The Linux hosts are tinycore-linux (http://tinycorelinux.net/) migrated from previous

versions of VIRL. The default username and password are both cisco. If we need to change the

interface IP and default gateways, they can be done via the following commands:

cisco@Client:~$ sudo ifconfig eth0 192.168.2.211 netmask 255.255.255.0

cisco@Client:~$ sudo route add default gw 192.168.2.1

cisco@Server:~$ sudo ifconfig eth0 192.168.2.212 netmask 255.255.255.0

cisco@Server:~$ sudo route add default gw 192.168.2.1

The two Ubuntu hosts will be used to generate traffic across the network so that we can look at

some non-zero counters. The lab file is included in the book’s GitHub repository.

SNMP
SNMP is a standardized protocol used to collect and manage devices. Although the standard al-

lows you to use SNMP for device management, in my experience, most network administrators

prefer to keep SNMP as an information collection mechanism only. Since SNMP operates on UDP,

which is connectionless, and considering the relatively weak security mechanism in versions 1

and 2, making device changes via SNMP tends to make network operators uneasy. SNMP version

3 has added cryptographic security and new concepts and terminology to the protocol, but how

SNMP version 3 is adapted varies among network device vendors.

http://tinycorelinux.net/

Network Monitoring with Python – Part 1216

SNMP is widely used in network monitoring and has been around since 1988 as part of RFC 1065.

The operations are straightforward, with the network manager sending GET and SET requests to-

ward the device and the device with the SNMP agent responding with the information per request.

The most widely adopted standard is SNMPv2c, defined in RFC 1901 – RFC 1908. It uses a simple

community-based security scheme for security. It has also introduced new features, such as the

ability to get bulk information. The following diagram displays the high-level operation for SNMP:

Figure 7.2: SNMP operations

The information residing in the device is structured in the management information base (MIB).

The MIB uses a hierarchical namespace containing an object identifier (OID), which represents

the information that can be read and fed back to the requester. When we talk about using SNMP

to query device information, we are talking about using the management station to query the

specific OID that represents the information we are after. A common OID structure, such as a

systems and interfaces OID, is shared among vendors. Besides common OID, each vendor can

also supply an enterprise-level OID specific to them.

As an operator, we must put some effort into consolidating information into an OID structure

in our environment to retrieve useful information. This can sometimes be a tedious process of

finding one OID at a time. For example, you might be requesting a device OID and receive a value

of 10,000. What is that value? Is that interface traffic? Is it in bytes or bits? Or maybe it represents

the number of packets? How do we know? We will need to consult either the standard or the

vendor documentation to find out. There are tools that help with this process, such as a MIB

browser that can provide more metadata to the value. But, at least in my experience, constructing

an SNMP-based monitoring tool for your network can sometimes feel like a cat-and-mouse game

of trying to find that one missing value.

Chapter 7 217

Some of the main points to take away from the operation are as follows:

•	 The implementation relies heavily on the amount of information the device agent can provide.

This, in turn, relies on how the vendor treats SNMP: as a core feature or an added feature.

•	 SNMP agents generally require CPU cycles from the control plane to return a value. Not

only is this inefficient for devices with, say, large BGP tables, it is also not feasible to use

SNMP to query the data at small intervals.

•	 The user needs to know the OID to query the data.

Since SNMP has been around for a while, I assume you have some experience with it already. Let’s

jump directly into package installation and our first SNMP example.

Setup
First, let’s ensure we have the SNMP managing device and agent working in our setup. The SNMP

bundle can be installed on either the hosts (client or server) in our lab or the managing device on

the management network. As long as the SNMP manager has IP reachability to the device and the

managed device allows the inbound connection, SNMP should work. In production, you should

only install the software on the management host and only allow SNMP traffic in the control plane.

In this lab, we have installed SNMP on both the Ubuntu host on the management network and

the client host in the lab:

$ sudo apt update && sudo apt upgrade

$ sudo apt-get install snmp

The next step is to turn on and configure the SNMP options on the network devices. There are

many optional parameters you can configure on the network device, such as contact, location,

chassis ID, and SNMP packet size. The SNMP configuration options are device-specific, and you

should check the documentation for the particular device. For IOSv devices, we will configure an

access list to limit only the desired host for querying the device and tying the access list with the

SNMP community string. In our example, we will use the word secret as the read-only commu-

nity string and permit_snmp as the access list name:

!

ip access-list standard permit_snmp

 permit <management station> log

 deny any log

!

snmp-server community secret RO permit_snmp

!

Network Monitoring with Python – Part 1218

The SNMP community string is acting as a shared password between the manager and the agent;

therefore, it needs to be included any time you want to query the device.

As mentioned earlier in this chapter, finding the right OID is oftentimes half of the battle when

working with SNMP. We can use tools such as Cisco SNMP Object Navigator (https://snmp.

cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en) to find specific OIDs to query.

Alternatively, we can just start walking through the SNMP tree, starting from the top of Cisco’s

enterprise tree at .1.3.6.1.4.1.9. We will perform the walk to make sure that the SNMP agent

and the access list are working:

$ snmpwalk -v2c -c secret 192.168.2.218 .1.3.6.1.4.1.9

iso.3.6.1.4.1.9.2.1.1.0 = STRING: "

Bootstrap program is IOSv

"

iso.3.6.1.4.1.9.2.1.2.0 = STRING: "reload"

iso.3.6.1.4.1.9.2.1.3.0 = STRING: "iosv-1"

iso.3.6.1.4.1.9.2.1.4.0 = STRING: "virl.info"

<skip>

We can be more specific about the OID we need to query as well:

$ snmpwalk -v2c -c secret 192.168.2.218 .1.3.6.1.4.1.9.2.1.61.0

iso.3.6.1.4.1.9.2.1.61.0 = STRING: "cisco Systems, Inc.

170 West Tasman Dr.

San Jose, CA 95134-1706

U.S.A.

Ph +1-408-526-4000

Customer service 1-800-553-6387 or +1-408-526-7208

24HR Emergency 1-800-553-2447 or +1-408-526-7209

Email Address tac@cisco.com

World Wide Web http://www.cisco.com"

As a matter of demonstration, what if we type in the wrong value by 1 digit, from 0 to 1 at the end

of the last OID? This is what we would see:

$ snmpwalk -v2c -c secret 192.168.2.218 .1.3.6.1.4.1.9.2.1.61.1

iso.3.6.1.4.1.9.2.1.61.1 = No Such Instance currently exists at this OID

Unlike API calls, there are no useful error codes or messages; it simply states that the OID does

not exist. This can be pretty frustrating at times.

https://cloudsso.cisco.com/as/authorization.oauth2?response_type=code&code_challenge=ngEnA4XYgjNQYcrfs1YqSc5DMFgNzZ7gqLljZkt7gnY&code_challenge_method=S256&client_id=wam_prod_ac&redirect_uri=https%3A%2F%2Fsnmp.cloudapps.cisco.com%2Fpa%2Foidc%2Fcb&state=eyJ6aXAiOiJERUYiLCJhbGciOiJkaXIiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2Iiwia2lkIjoiRUU2UUxudnVkSm1OMmVaYUpxcHhXNy02SWI4Iiwic3VmZml4IjoiVU5ZRU9NLjE2NzM2MDI1NjgifQ..TUfcVL2mjdqQ8HCH_OkAcw.3VfzJObgb7ak5DdJQGzP4H6DPuQCfDTez1jSiP9r9h3iJLDUbipZ7wsoGmEHWW8pfRngsJ9tCWdpPOsu3YtmUe-JBeUxD91Z0H4lb17SU0kIlM-cVuwRylmF3nYZiIM0UVVvX4b4mJPUqTOjYbM-ZQFOPhfuZDSh6gVGkXOYQf0REPvaD38pxhntp12igJod.vH_7zysxoaMerV1XEUYU3w&nonce=J2Cc7sHznKF_at2Ghrf8z63yUIh0FIjvrIY5h7kIoys&acr_values=stdnomfa&scope=openid%20profile%20address%20email%20phone&vnd_pi_requested_resource=https%3A%2F%2Fsnmp.cloudapps.cisco.com%2FSupport%2FSNMP%2Fdo%2FBrowseOID.do%3Flocal%3Den&vnd_pi_application_name=CAEAXprod-snmp.cloudapps
https://cloudsso.cisco.com/as/authorization.oauth2?response_type=code&code_challenge=ngEnA4XYgjNQYcrfs1YqSc5DMFgNzZ7gqLljZkt7gnY&code_challenge_method=S256&client_id=wam_prod_ac&redirect_uri=https%3A%2F%2Fsnmp.cloudapps.cisco.com%2Fpa%2Foidc%2Fcb&state=eyJ6aXAiOiJERUYiLCJhbGciOiJkaXIiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2Iiwia2lkIjoiRUU2UUxudnVkSm1OMmVaYUpxcHhXNy02SWI4Iiwic3VmZml4IjoiVU5ZRU9NLjE2NzM2MDI1NjgifQ..TUfcVL2mjdqQ8HCH_OkAcw.3VfzJObgb7ak5DdJQGzP4H6DPuQCfDTez1jSiP9r9h3iJLDUbipZ7wsoGmEHWW8pfRngsJ9tCWdpPOsu3YtmUe-JBeUxD91Z0H4lb17SU0kIlM-cVuwRylmF3nYZiIM0UVVvX4b4mJPUqTOjYbM-ZQFOPhfuZDSh6gVGkXOYQf0REPvaD38pxhntp12igJod.vH_7zysxoaMerV1XEUYU3w&nonce=J2Cc7sHznKF_at2Ghrf8z63yUIh0FIjvrIY5h7kIoys&acr_values=stdnomfa&scope=openid%20profile%20address%20email%20phone&vnd_pi_requested_resource=https%3A%2F%2Fsnmp.cloudapps.cisco.com%2FSupport%2FSNMP%2Fdo%2FBrowseOID.do%3Flocal%3Den&vnd_pi_application_name=CAEAXprod-snmp.cloudapps

Chapter 7 219

The last thing to check would be that the access list we configured will deny unwanted SNMP

queries. Because we had the log keyword for both the permit and deny entries in the access list,

only 172.16.1.123 is permitted to query the devices:

*Sep 17 23:32:10.155: %SEC-6-IPACCESSLOGNP: list permit_snmp permitted 0
192.168.2.126 -> 0.0.0.0, 1 packet

As you can see, the biggest challenge in setting up SNMP is finding the right OID. Some OIDs

are defined in standardized MIB-2; others are under the enterprise portion of the tree. Vendor

documentation is the best bet, though. Some tools can help, such as a MIB browser; you can

add MIBs (again, provided by the vendors) to the browser and see the description of the enter-

prise-based OIDs. A tool such as Cisco’s SNMP Object Navigator (http://snmp.cloudapps.cisco.

com/Support/SNMP/do/BrowseOID.do?local=en) proves to be very valuable when you need to

find the correct OID of the object you are looking for.

PySNMP
PySNMP is a cross-platform, pure Python SNMP engine implementation developed by Ilya Etingof

(https://github.com/etingof). It abstracts a lot of SNMP details for you, as great libraries do,

and supports both Python 2 and Python 3.

PySNMP requires the PyASN1 package. The following is taken from Wikipedia:

PyASN1 conveniently provides a Python wrapper around ASN.1. Let’s install the package first.

Note that since we are using a virtual environment, we will use the virtual environment’s Python

interpreter:

(venv) $ cd /tmp

(venv) $ git clone https ://github.com/etingof/pyasn1.git

(venv) $ cd pyasn1

(venv) $ git checkout 0.2.3

(venv) $ python3 setup.py install # notice the venv path

”ASN.1 is a standard and notation that describes rules and structures for representing,

encoding, transmitting, and decoding data in telecommunication and computer

networking.”

http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://snmp.cloudapps.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
https://github.com/etingof

Network Monitoring with Python – Part 1220

Next, install the PySNMP package:

(venv) $ cd /tmp
(venv) $ git clone https://github.com/etingof/pysnmp
(venv) $ cd pysnmp/
(venv) $ git checkout v4.3.10
(venv) $ python3 setup.py install # notice the venv path

Let’s look at how to use PySNMP to query the same Cisco contact information we used in the pre-

vious example. We will import the necessary module and create a CommandGenerator object first:

>>> from pysnmp.entity.rfc3413.oneliner import cmdgen

>>> cmdGen = cmdgen.CommandGenerator()

>>> cisco_contact_info_oid = "1.3.6.1.4.1.9.2.1.61.0"

We can perform SNMP using the getCmd method. The result is unpacked into various variables;

of these, we care most about varBinds, which contains the query result:

>>> errorIndication, errorStatus, errorIndex, varBinds = cmdGen.getCmd(
 cmdgen.CommunityData('secret'),
 cmdgen.UdpTransportTarget(('192.168.2.218', 161)),
 cisco_contact_info_oid)
>>> for name, val in varBinds:
 print('%s=%s' % (name.prettyPrint(), str(val)))

SNMPv2-SMI::enterprises.9.2.1.61.0=cisco Systems, Inc.
170 West Tasman Dr.
San Jose, CA 95134-1706
U.S.A.
Ph +1-408-526-4000
Customer service 1-800-553-6387 or +1-408-526-7208
24HR Emergency 1-800-553-2447 or +1-408-526-7209
Email Address tac@cisco.com
World Wide Web http://www.cisco.com
>>>

We are using an older version of PySNMP due to the fact that pysnmp.entity.

rfc3413.oneliner was removed starting with version 5.0.0 (https://github.
com/etingof/pysnmp/blob/a93241007b970c458a0233c16ae2ef82dc107290/

CHANGES.txt). If you use pip to install the packages, the examples will probably

break.

https://github.com/etingof/pysnmp/blob/a93241007b970c458a0233c16ae2ef82dc107290/CHANGES.txt
https://github.com/etingof/pysnmp/blob/a93241007b970c458a0233c16ae2ef82dc107290/CHANGES.txt
https://github.com/etingof/pysnmp/blob/a93241007b970c458a0233c16ae2ef82dc107290/CHANGES.txt

Chapter 7 221

Note that the response values are PyASN1 objects. The prettyPrint() method will convert some

of these values into a human-readable format, but the result in our return variable was not con-

verted. We converted it into a string manually.

We can write a script based on the preceding interactive example. We will name it pysnmp_1.py

with error checking. We can also include multiple OIDs in the getCmd() method:

#!/usr/bin/env/python3
from pysnmp.entity.rfc3413.oneliner import cmdgen
cmdGen = cmdgen.CommandGenerator()
system_up_time_oid = "1.3.6.1.2.1.1.3.0"
cisco_contact_info_oid = "1.3.6.1.4.1.9.2.1.61.0"
errorIndication, errorStatus, errorIndex, varBinds = cmdGen.getCmd(
 cmdgen.CommunityData('secret'),
 cmdgen.UdpTransportTarget(('192.168.2.218', 161)),
 system_up_time_oid,
 cisco_contact_info_oid
)
Check for errors and print out results
if errorIndication:
 print(errorIndication)
else:
 if errorStatus:
 print('%s at %s' % (
 errorStatus.prettyPrint(),
 errorIndex and varBinds[int(errorIndex)-1] or '?'
)
)
 else:
 for name, val in varBinds:
 print('%s = %s' % (name.prettyPrint(), str(val)))

The result will be unpacked and list the values of the two OIDs:

$ python pysnmp_1.py

SNMPv2-MIB::sysUpTime.0 = 599083

SNMPv2-SMI::enterprises.9.2.1.61.0 = cisco Systems, Inc.

170 West Tasman Dr.

San Jose, CA 95134-1706

U.S.A.

Ph +1-408-526-4000

Network Monitoring with Python – Part 1222

Customer service 1-800-553-6387 or +1-408-526-7208

24HR Emergency 1-800-553-2447 or +1-408-526-7209

Email Address tac@cisco.com

World Wide Web http://www.cisco.com

In the following example, we will persist the values we received from the queries to perform other

functions, such as visualization, with the data. For our example, we will use ifEntry within the

MIB-2 tree for interface-related values to be graphed.

You can find a number of resources that map out the ifEntry tree; here is a screenshot of the

Cisco SNMP Object Navigator site that we accessed previously for ifEntry:

Figure 7.3: SNMP ifEntry OID tree

Chapter 7 223

A quick test will illustrate the OID mapping of the interfaces on the device:

$ snmpwalk -v2c -c secret 172.16.1.189 .1.3.6.1.2.1.2.2.1.2

iso.3.6.1.2.1.2.2.1.2.1 = STRING: "GigabitEthernet0/0"

iso.3.6.1.2.1.2.2.1.2.2 = STRING: "GigabitEthernet0/1"

iso.3.6.1.2.1.2.2.1.2.3 = STRING: "GigabitEthernet0/2"

iso.3.6.1.2.1.2.2.1.2.4 = STRING: "Null0"

iso.3.6.1.2.1.2.2.1.2.5 = STRING: "Loopback0"

From the documentation, we can map the values of ifInOctets(10), ifInUcastPkts(11),

ifOutOctets(16), and ifOutUcastPkts(17) into their respective OID values. From a quick check

of the CLI and MIB documentation, we can see that the value of the GigabitEthernet0/0 packets

output maps to OID 1.3.6.1.2.1.2.2.1.17.1. We will follow the rest of the same process to map

out the rest of the OIDs for the interface statistics. When checking between the CLI and SNMP,

keep in mind that the values should be close but not the same since there might be some traffic

on the wire between the time of the CLI output and the SNMP query time:

r1#sh int gig 0/0 | i packets

 5 minute input rate 0 bits/sec, 0 packets/sec

 5 minute output rate 0 bits/sec, 0 packets/sec

 6872 packets input, 638813 bytes, 0 no buffer

 4279 packets output, 393631 bytes, 0 underruns

$ snmpwalk -v2c -c secret 192.168.2.218 .1.3.6.1.2.1.2.2.1.17.1

iso.3.6.1.2.1.2.2.1.17.1 = Counter32: 4292

If we are in a production environment, we will probably write the results into a database. But since

this is just an example, we will write the query values to a flat file. We will write the pysnmp_3.

py script for information queries and write the results to the file. In the script, we have defined

various OIDs that we need to query:

Hostname OID

system_name = '1.3.6.1.2.1.1.5.0'

Interface OID

gig0_0_in_oct = '1.3.6.1.2.1.2.2.1.10.1'

gig0_0_in_uPackets = '1.3.6.1.2.1.2.2.1.11.1'

gig0_0_out_oct = '1.3.6.1.2.1.2.2.1.16.1'

gig0_0_out_uPackets = '1.3.6.1.2.1.2.2.1.17.1'

Network Monitoring with Python – Part 1224

The values were consumed in the snmp_query() function, with host, community, and oid as input:

def snmp_query(host, community, oid):

 errorIndication, errorStatus, errorIndex, varBinds = cmdGen.getCmd(

 cmdgen.CommunityData(community),

 cmdgen.UdpTransportTarget((host, 161)),

 oid

)

All of the values are put in a dictionary with various keys and written to a file called results.txt:

result = {}
result['Time'] = datetime.datetime.utcnow().isoformat()
result['hostname'] = snmp_query(host, community, system_name)
result['Gig0-0_In_Octet'] = snmp_query(host, community, gig0_0_in_oct)
result['Gig0-0_In_uPackets'] = snmp_query(host, community, gig0_0_in_
uPackets)
result['Gig0-0_Out_Octet'] = snmp_query(host, community, gig0_0_out_oct)
result['Gig0-0_Out_uPackets'] = snmp_query(host, community, gig0_0_out_
uPackets)
with open('/home/echou/Master_Python_Networking/Chapter7/results.txt',
'a') as f:
 f.write(str(result))
 f.write('\n')

The outcome will be a file with results showing the interface packets represented at the time of

the query:

$ cat results.txt
{'Gig0-0_In_Octet': '3990616', 'Gig0-0_Out_uPackets': '60077', 'Gig0-
0_In_uPackets': '42229', 'Gig0-0_Out_Octet': '5228254', 'Time': '2017-03-
06T02:34:02.146245', 'hostname': 'iosv-1.virl.info'}
{'Gig0-0_Out_uPackets': '60095', 'hostname': 'iosv-1.virl.info', 'Gig0-
0_Out_Octet': '5229721', 'Time': '2017-03-06T02:35:02.072340', 'Gig0-0_In_
Octet': '3991754', 'Gig0-0_In_uPackets': '42242'}
<skip>

We can make this script executable and schedule a cron job to be executed every 5 minutes:

$ chmod +x pysnmp_3.py
crontab configuration
*/5 * * * * /home/echou/Mastering_Python_Networking_Fourth_Edition/
Chapter07/pysnmp_3.py

Chapter 7 225

As mentioned previously, in a production environment, we would put the information in a data-

base. For a SQL database, you can use a unique ID as the primary key. In a NoSQL database, we

might use time as the primary index (or key) because it is always unique, followed by various

key-value pairs.

We will wait for the script to be executed a few times for the values to be populated. If you are the

impatient type, you can shorten the cron job interval to 1 minute. After you see enough values

in the results.txt file to make an interesting graph, we can move on to the next section to see

how we can use Python to visualize the data.

Python for Data Visualization
We gather network data to gain insight into our network. One of the best ways to know what

the data means is to visualize it with graphs. This is true for almost all data, but especially true

for time series data in the context of network monitoring. How much data was transmitted over

the network in the last week? What is the percentage of the TCP protocol among all of the traffic?

These are values we can glean from using data-gathering mechanisms such as SNMP, and we can

produce visualization graphs with some of the popular Python libraries.

In this section, we will use the data we collected from the last section using SNMP and use two

popular Python libraries, Matplotlib and Pygal, to graph them.

Matplotlib
Matplotlib (http://matplotlib.org/) is a Python 2D plotting library for the Python language

and its NumPy mathematical extension. It can produce publication-quality figures, such as plots,

histograms, and bar graphs, with a few lines of code.

NumPy is an extension of the Python programming language. It is open source and widely used

in various data science projects. You can learn more about it at https://en.wikipedia.org/

wiki/NumPy.

Let’s begin with the installation.

Installation
The installation can be done using the Linux package management system for the distribution

or Python pip. In the latest version of Matplotlib, we will also install python3-tk for display:

(venv) $ pip install matplotlib

(venv) $ sudo apt install python3-tk

http://matplotlib.org/
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/NumPy

Network Monitoring with Python – Part 1226

Now, let’s get into our first example.

Matplotlib – the first example
For the following examples, the output figures are displayed as the standard output by default.

Typically, the standard output is your monitor screen. During development, it is often easier to

try out the code initially and produce the graph on the standard output first before finalizing the

code with a script. If you have been following along with this book via a virtual machine, it is

recommended that you use the VM window instead of SSH so that you can see the graphs. If you

do not have access to the standard output, you can save the figure and view it after download-

ing it (as you will see soon). Note that you will need to set the $DISPLAY variable in some of the

graphs we produce in this section.

The following screenshot of the Ubuntu desktop is used in this chapter’s visualization example.

As soon as the plt.show() command is issued in the Terminal window, Figure 1 will appear on

the screen. When you close the figure, you will return to the Python shell:

Figure 7.4: Matplotlib visualization with the Ubuntu desktop

Chapter 7 227

Let’s look at the line graph first. A line graph simply gives two lists of numbers that correspond

to the x-axis and y-axis values:

>>> import matplotlib.pyplot as plt

>>> plt.plot([0,1,2,3,4], [0,10,20,30,40])

[<matplotlib.lines.Line2D object at 0x7f932510df98>]

>>> plt.ylabel('Something on Y')

<matplotlib.text.Text object at 0x7f93251546a0>

>>> plt.xlabel('Something on X')

<matplotlib.text.Text object at 0x7f9325fdb9e8>

>>> plt.show()

The graph will be a line graph:

Figure 7.5: Matplotlib line graph

Network Monitoring with Python – Part 1228

Alternatively, if you do not have access to standard output or have saved the figure first, you can

use the savefig() method:

>>> plt.savefig('figure1.png') or

>>> plt.savefig('figure1.pdf')

With this basic knowledge of graphing plots, we can now graph the results we receive from SNMP

queries.

Matplotlib for SNMP results
In our first Matplotlib example, matplotlib_1.py, we will import the dates module besides

pyplot. We will use the matplotlib.dates module instead of the Python standard library dates

module.

Unlike the Python dates module, the matplotlib.dates library will convert the date value in-

ternally into a float type, which is required by Matplotlib:

import matplotlib.pyplot as plt

import matplotlib.dates as dates

Matplotlib provides sophisticated date plotting capabilities; you can find more information on

this at https://matplotlib.org/stable/api/dates_api.html.

In the script, we will create two empty lists, each representing the x-axis and y-axis values. Note

that on line 12, we used the built-in eval() Python function to read the input as a dictionary

instead of a default string:

x_time = []

y_value = []

with open('results.txt', 'r') as f:

 for line in f.readlines():

 # eval(line) reads in each line as dictionary instead of string

 line = eval(line)

 # convert to internal float

 x_time.append(dates.datestr2num(line['Time']))

 y_value.append(line['Gig0-0_Out_uPackets'])

In order to read the x-axis value back in a human-readable date format, we will need to use the

plot_date() function instead of plot(). We will also tweak the size of the figure a bit, as well as

rotate the value on the x-axis so that we can read the value in full:

https://matplotlib.org/stable/api/dates_api.html

Chapter 7 229

plt.subplots_adjust(bottom=0.3)

plt.xticks(rotation=80)

plt.plot_date(x_time, y_value)

plt.title('Router1 G0/0')

plt.xlabel('Time in UTC')

plt.ylabel('Output Unicast Packets')

plt.savefig('matplotlib_1_result.png')

plt.show()

The final result will display the Router1 G0/0 and Output Unicast Packets, as follows:

Figure 7.6: Router1 Matplotlib graph

Note that if you prefer a straight line instead of dots, you can use the third optional parameter in

the plot_date() function:

plt.plot_date(x_time, y_value, "-")

Network Monitoring with Python – Part 1230

We can repeat the steps for the rest of the values for output octets, input unicast packets, and input

as individual graphs. However, in our next example, that is, matplotlib_2.py, we will show you

how to graph multiple values against the same time range, as well as additional Matplotlib options.

In this case, we will create additional lists and populate the values accordingly:

x_time = []

out_octets = []

out_packets = []

in_octets = []

in_packets = []

with open('results.txt', 'r') as f:

 for line in f.readlines():

 # eval(line) reads in each line as dictionary instead of string

 line = eval(line)

 # convert to internal float

 x_time.append(dates.datestr2num(line['Time']))

 out_packets.append(line['Gig0-0_Out_uPackets'])

 out_octets.append(line['Gig0-0_Out_Octet'])

 in_packets.append(line['Gig0-0_In_uPackets'])

 in_octets.append(line['Gig0-0_In_Octet'])

Since we have identical x-axis values, we can just add the different y-axis values to the same graph:

Use plot_date to display x-axis back in date format

plt.plot_date(x_time, out_packets, '-', label='Out Packets')

plt.plot_date(x_time, out_octets, '-', label='Out Octets')

plt.plot_date(x_time, in_packets, '-', label='In Packets')

plt.plot_date(x_time, in_octets, '-', label='In Octets')

Also, add grid and legend to the graph:

plt.title('Router1 G0/0')

plt.legend(loc='upper left')

plt.grid(True)

plt.xlabel('Time in UTC')

plt.ylabel('Values')

plt.savefig('matplotlib_2_result.png')

plt.show()

Chapter 7 231

The final result will combine all of the values in a single graph. Note that some of the values in the

upper-left corner are blocked by the legend. You can resize the figure and/or use the pan/zoom

option to move around the graph to see the values:

Figure 7.7: Router1 – Matplotlib multiline graph

There are many more graphing options available in Matplotlib; we are certainly not limited to

plot graphs. For example, in matplotlib_3.py, we can use the following mock data to graph the

percentage of different traffic types that we can see on the wire:

#!/usr/bin/env python3
Example from http://matplotlib.org/2.0.0/examples/pie_and_polar_charts/
pie_demo_features.html
import matplotlib.pyplot as plt
Pie chart, where the slices will be ordered and plotted counter-
clockwise:
labels = 'TCP', 'UDP', 'ICMP', 'Others'
sizes = [15, 30, 45, 10]
explode = (0, 0.1, 0, 0) # Make UDP stand out

Network Monitoring with Python – Part 1232

fig1, ax1 = plt.subplots()
ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%',
 shadow=True, startangle=90)
ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a
circle.
plt.savefig('matplotlib_3_result.png')
plt.show()

The preceding code leads to this pie chart from plt.show():

Figure 7.8: Matplotlib pie chart

In this section, we have used Matplotlib to graph our network data into more visually appeal-

ing graphs to help us understand the state of our network. This was done with bar graphs, line

charts, and pie charts, which are appropriate for the data at hand. Matplotlib is a powerful tool

that is not limited to Python. As an open-source tool, many additional Matplotlib resources can

be leveraged to learn about the tool.

Additional Matplotlib resources
Matplotlib is one of the best Python plotting libraries, able to produce publication-quality figures.

Like Python, it aims to make complex tasks simple. With over 10,000 stars (and counting) on

GitHub, it is also one of the most popular open-source projects.

Chapter 7 233

Its popularity directly translates into faster bug fixes, a friendly user community, extensive doc-

umentation, and general usability. Using the package has a bit of a learning curve, but it is well

worth the effort.

In this section, we barely scratched the surface of Matplotlib. You’ll find additional resources

at https://matplotlib.org/stable/index.html (the Matplotlib project page) and https://

github.com/matplotlib/matplotlib (the Matplotlib GitHub repository).

In the coming section, we will take a look at another popular Python graph library: Pygal.

Pygal
Pygal (https://www.pygal.org/en/stable/) is a dynamic Scalable Vector Graphics (SVG)
charting library written in Python. The biggest advantage of Pygal, in my opinion, is that it
produces write SVG graphs easily and natively. There are many advantages of SVG over other
graph formats. Two of the main advantages are that it is web browser-friendly and it provides
scalability without sacrificing image quality. In other words, you can display the resulting image
in any modern web browser and zoom in and out of the image without losing the details of the

graph. Did I mention that we can do this in a few lines of Python code? How cool is that?

Let’s get Pygal installed, then move on to the first example.

Installation
The installation is done via pip:

(venv)$ pip install pygal

Pygal – the first example
Let’s look at the line chart example demonstrated on Pygal’s documentation, available at http://

pygal.org/en/stable/documentation/types/line.html:

>>> import pygal
>>> line_chart = pygal.Line()
>>> line_chart.title = 'Browser usage evolution (in %)'
>>> line_chart.x_labels = map(str, range(2002, 2013))
>>> line_chart.add('Firefox', [None, None, 0, 16.6, 25, 31, 36.4,
45.5, 46.3, 42.8, 37.1])
<pygal.graph.line.Line object at 0x7f4883c52b38>
>>> line_chart.add('Chrome', [None, None, None, None, None, None, 0,
3.9, 10.8, 23.8, 35.3])
<pygal.graph.line.Line object at 0x7f4883c52b38>

https://matplotlib.org/stable/index.html
https://github.com/matplotlib/matplotlib
https://github.com/matplotlib/matplotlib
https://www.pygal.org/en/stable/
http://pygal.org/en/stable/documentation/types/line.html
http://pygal.org/en/stable/documentation/types/line.html

Network Monitoring with Python – Part 1234

>>> line_chart.add('IE', [85.8, 84.6, 84.7, 74.5, 66, 58.6, 54.7,
44.8, 36.2, 26.6, 20.1])

<pygal.graph.line.Line object at 0x7f4883c52b38>

>>> line_chart.add('Others', [14.2, 15.4, 15.3, 8.9, 9, 10.4, 8.9,
5.8, 6.7, 6.8, 7.5])

<pygal.graph.line.Line object at 0x7f4883c52b38>

>>> line_chart.render_to_file('pygal_example_1.svg')

In this example, we created a line object with the x_labels automatically rendered as strings

for 11 units. Each of the objects can be added with the label and the value in a list format, such

as Firefox, Chrome, and IE.

The interesting bit to focus on is the fact that each of the line chart items has the exact number

of matching numbers to the number of x units. When there is no value, for example, the years

2002 – 2007 for Chrome, the value None is entered.

Here’s the resulting graph, as viewed in the Firefox browser:

Figure 7.9: Pygal sample graph

Chapter 7 235

Now that we can see the general usage of Pygal, we can use the same method to graph the SNMP

results we have in hand. We will do this in the coming section.

Pygal for SNMP results
For the Pygal line graph, we can largely follow the same pattern as our Matplotlib example, where

we create lists of values by reading the file. We no longer need to convert the x-axis value into an

internal float, as we did for Matplotlib; however, we do need to convert the numbers in each of

the values we would have received into float:

#!/usr/bin/env python3

import pygal

x_time = []

out_octets = []

out_packets = []

in_octets = []

in_packets = []

with open('results.txt', 'r') as f:

 for line in f.readlines():

 # eval(line) reads in each line as dictionary instead of string

 line = eval(line)

 x_time.append(line['Time'])

 out_packets.append(float(line['Gig0-0_Out_uPackets']))

 out_octets.append(float(line['Gig0-0_Out_Octet']))

 in_packets.append(float(line['Gig0-0_In_uPackets']))

 in_octets.append(float(line['Gig0-0_In_Octet']))

We can use the same mechanism that we saw to construct the line graph:

line_chart = pygal.Line()

line_chart.title = "Router 1 Gig0/0"

line_chart.x_labels = x_time

line_chart.add('out_octets', out_octets)

line_chart.add('out_packets', out_packets)

line_chart.add('in_octets', in_octets)

line_chart.add('in_packets', in_packets)

line_chart.render_to_file('pygal_example_2.svg')

Network Monitoring with Python – Part 1236

The outcome is similar to what we have already seen, but the graph is now in an SVG format that

can be easily displayed on a web page. It can be viewed in a modern web browser:

Figure 7.10: Router 1— Pygal multiline graph

Just like Matplotlib, Pygal provides many more options for graphs. For example, to graph the

pie chart we saw previously in Matplotlib, we can use the pygal.Pie() object. This is shown in

pygal_2.py:

#!/usr/bin/env python3

import pygal

line_chart = pygal.Pie()

line_chart.title = "Protocol Breakdown"

line_chart.add('TCP', 15)

line_chart.add('UDP', 30)

line_chart.add('ICMP', 45)

line_chart.add('Others', 10)

line_chart.render_to_file('pygal_example_3.svg')

Chapter 7 237

The resulting SVG file is shown here:

Figure 7.11: Pygal pie chart

Pygal is a great tool when it comes to generating production-ready SVG graphs. If this is the

type of graph required, look no further than the Pygal library. In this section, we have examined

examples of using Pygal to generate graphs for our network data. Similar to Matplotlib, there are

many additional resources to help us to learn about Pygal if you’re interested.

Additional Pygal resources
Pygal provides many more customizable features and graphing capabilities for the data you collect

from basic network monitoring tools such as SNMP. We demonstrated a simple line graph and

pie graph in this section. You can find more information about the project here:

•	 Pygal documentation: http://www.pygal.org/en/stable/index.html

•	 Pygal GitHub project page: https://github.com/Kozea/pygal

In the coming section, we will continue with the SNMP theme of network monitoring but with

a fully featured network monitoring system called Cacti.

http://www.pygal.org/en/stable/index.html
https://github.com/Kozea/pygal

Network Monitoring with Python – Part 1238

Python for Cacti
In my early days as a junior network engineer at a regional ISP, we used the open-source cross-plat-

form Multi Router Traffic Grapher (MRTG) (https://en.wikipedia.org/wiki/Multi_Router_

Traffic_Grapher) tool to check the traffic load on network links. We relied on the tool almost

exclusively for traffic monitoring. I was amazed at how good and useful an open-source project

could be. It was one of the first open-source high-level network monitoring systems that ab-

stracted the details of SNMP, the database, and HTML for network engineers. Then came the

round-robin database tool (RRDtool) (https://en.wikipedia.org/wiki/RRDtool). In its first

release in 1999, it was referred to as “MRTG Done Right.” It greatly improved the database and

poller performance in the backend.

Released in 2001, Cacti (https://en.wikipedia.org/wiki/Cacti_(software)) is an open-source

web-based network monitoring and graphing tool designed as an improved frontend for RRDtool.

Because of the heritage of MRTG and RRDtool, you will notice a familiar graph layout, templates,

and SNMP poller. As a packaged tool, the installation and usage will need to stay within the

boundary of the tool. However, Cacti offers a custom data query feature that we can use Python

to handle. In this section, we will see how we can use Python as an input method for Cacti.

First, we’ll go through the installation process.

Installation
Because Cacti is an all-in-one tool, including web frontend, collection scripts, and database

backend, unless you already have experience with Cacti, I would recommend installing the tool

on a standalone VM or a container in our lab. The following instructions will be shown for a VM,

but a container Dockerfile would be similar.

Installation on Ubuntu is straightforward when using APT on the Ubuntu management VM:

$ sudo apt-get install cacti

It will trigger a series of installation and setup steps, including the MySQL database, web

server (Apache or lighttpd), and various configuration tasks. Once it’s installed, navigate to

http://<ip>/cacti to get started. The last step is to log in with the default username and pass-

word (admin/admin); you will be prompted to change the password.

During installation, when in doubt, go with the default option and keep it simple.

https://en.wikipedia.org/wiki/Multi_Router_Traffic_Grapher
https://en.wikipedia.org/wiki/Multi_Router_Traffic_Grapher
https://en.wikipedia.org/wiki/RRDtool
https://en.wikipedia.org/wiki/Cacti_(software)

Chapter 7 239

Once logged in, we can follow the documentation to add a device and associate it with a template.

There is a Cisco router premade template that you can go with. Cacti has good documentation

at http://docs.cacti.net/ for adding a device and creating your first graph, so we will quickly

look at some screenshots that you can expect to see:

Figure 7.12: Cacti device edit page

A sign indicating the SNMP communication is working is when you can see the device uptime:

Figure 7.13: Device edit result page

http://docs.cacti.net/

Network Monitoring with Python – Part 1240

You can add graphs to the device for interface traffic and other statistics:

Figure 7.14: New graphs for the device

After some time, you will start seeing traffic, as shown here:

Figure 7.15: 5-minute average graph

We are now ready to look at how to use Python scripts to extend Cacti’s data-gathering func-

tionality.

Python script as an input source
There are two documents that we should read before we try to use our Python script as an input

source:

•	 Data input methods: http://www.cacti.net/downloads/docs/html/data_input_
methods.html

http://www.cacti.net/downloads/docs/html/data_input_methods.html
http://www.cacti.net/downloads/docs/html/data_input_methods.html

Chapter 7 241

•	 Making your scripts work with Cacti: http://www.cacti.net/downloads/docs/html/

making_scripts_work_with_cacti.html

You might wonder what the use cases are for using a Python script as an extension for data inputs.

One of the use cases would be to provide monitoring to resources that do not have a correspond-

ing OID, for example, if we would like to know how to graph how many times the access list

permit_snmp has allowed the host 172.16.1.173 to conduct an SNMP query.

We know we can see the number of matches via the CLI:

iosv-1#sh ip access-lists permit_snmp | I 172.16.1.173 10 permit
172.16.1.173 log (6362 matches)

However, the chances are there are no OIDs associated with this value (or we can just pretend

that there are none). This is where we can use an external script to produce an output that can

be consumed by the Cacti host.

We can reuse the Pexpect script we discussed in Chapter 2, Low-Level Network Device Interactions,

chapter1_1.py. We will rename it cacti_1.py. Everything should be the same as the original

script, except that we will execute the CLI command and save the output:

<skip>

for device in devices.keys():

…

 child.sendline''sh ip access-lists permit_snmp | i 172.16.1.17'')

 child.expect(device_prompt)

 output = child.before

The output in its raw form will appear as follows:

''sh ip access-lists permit_snmp | i 172.16.1.173rn 10 permit 172.16.1.173
log (6428 matches)r''

We will use the split() function for the string to only leave the number of matches and print

them out on standard output in the script:

print(str(output).split'''')[1].split()[0])

The example assumes the SNMP station is at IP 172.16.1.173; please substitute

the IP for the current lab management station IP.

http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html
http://www.cacti.net/downloads/docs/html/making_scripts_work_with_cacti.html

Network Monitoring with Python – Part 1242

To test this, we can see the number of increments by executing the script a number of times:

$./cacti_1.py

6428

$./cacti_1.py

6560

$./cacti_1.py

6758

We can make the script executable and put it into the default Cacti script location:

$ chmod a+x cacti_1.py

$ sudo cp cacti_1.py /usr/share/cacti/site/scripts/

The Cacti documentation, available at http://www.cacti.net/downloads/docs/html/how_

to.html, provides detailed steps on how to add the script result to the output graph.

These steps include adding the script as a data input method, adding the input method to a data

source, and then creating a graph to be viewed:

Figure 7.16: Data input method results page

SNMP is a common way to provide network monitoring services to devices. RRDtool with Cacti as

the frontend provides a good platform for all network devices via SNMP. We can also use Python

scripts to extend information gathering beyond SNMP.

http://www.cacti.net/downloads/docs/html/how_to.html
http://www.cacti.net/downloads/docs/html/how_to.html

Chapter 7 243

Summary
In this chapter, we explored ways to perform network monitoring via SNMP. We configured

SNMP-related commands on network devices and used our network management VM with an

SNMP poller to query the devices. We used the PySNMP module to simplify and automate our

SNMP queries. We also learned how to save the query results in a flat file or database to be used

for future examples.

Later in this chapter, we used two different Python visualization packages, Matplotlib and Pygal,

to graph SNMP results. Each package has its distinct advantages. Matplotlib is a mature, fea-

ture-rich library widely used in data science projects. Pygal can natively generate SVG-format

graphs that are flexible and web-friendly. We saw how to generate line and pie graphs relevant

to network monitoring.

Toward the end of this chapter, we looked at an all-inclusive network monitoring tool named

Cacti. It primarily uses SNMP for network monitoring, but we saw how we could use Python

scripts as an input source to extend the platform’s monitoring capabilities when SNMP OID is

not available on the remote host.

In Chapter 8, Network Monitoring with Python – Part 2, we will continue to discuss the tools we can

use to monitor our networks and gain insight into whether the network is behaving as expected.

We will look at flow-based monitoring using NetFlow, sFlow, and IPFIX. We will also use tools

such as Graphviz to visualize our network topology and detect any topological changes.

Join our book community
To join our community for this book – where you can share feedback, ask questions to the author,

and learn about new releases – follow the QR code below:

https://packt.link/networkautomationcommunity

https://packt.link/networkautomationcommunity

8
Network Monitoring with
Python – Part 2

In Chapter 7, Network Monitoring with Python – Part 1, we used SNMP to query information from

network devices. We did this using an SNMP manager to query the SNMP agent residing on the

network device. The SNMP information is structured in a hierarchy format with a specific object

ID as a way to represent the value of the object. Most of the time, the value we care about is a

number, such as CPU load, memory usage, or interface traffic. We can graph this data against

time to give us a sense of how the value has changed over time.

We can typically classify the SNMP approach as a pull method as we constantly ask the device

for a particular answer. This method adds a burden to the device because it needs to spend a CPU

cycle on the control plane to find answers from the subsystem, package the answer in an SNMP

packet, and transport the answer back to the poller. If you have ever been to a family reunion

where you have that one family member who keeps asking you the same questions repeatedly,

that would be analogous to the SNMP manager polling the managed node.

Over time, if we have multiple SNMP pollers querying the same device every 30 seconds (you

would be surprised how often this happens), the management overhead will become substan-

tial. In the same family reunion example we have given, instead of one family member, imagine

many people interrupting you every 30 seconds to ask you a question. I don’t know about you,

but I know I would be very annoyed even if it was a simple question (or worse, if all of them were

asking the same question).

Network Monitoring with Python – Part 2246

Another way we can provide more efficient network monitoring is to reverse the relationship

between the management station from a pull to a push model. In other words, the information

can be pushed from the device toward the management station in an agreed-upon format. This

concept is what flow-based monitoring is based on. In a flow-based model, the network device

streams the traffic information, called flow, to the management station. The format can be the

Cisco proprietary NetFlow (version 5 or 9), the industry-standard IPFIX, or the open source sFlow

format. In this chapter, we will spend some time looking into NetFlow, IPFIX, and sFlow with

Python.

Not all monitoring comes in the form of time series data. You can represent information such as

network topology and Syslog in a time series format if you want to, but this is not ideal. We can

use Python to check network topology information and see whether the topology has changed

over time. We can use tools, such as Graphviz, with a Python wrapper to illustrate the topology.

As already seen in Chapter 6, Network Security with Python, Syslog contains security information.

Later in this book, we will look at using the Elastic Stack (Elasticsearch, Logstash, Kibana, and

Beat) as an efficient way to collect and index network security and log information.

Specifically, in this chapter, we will cover the following topics:

•	 Graphviz, which is an open source graph visualization software that can help us quickly

and efficiently graph our network

•	 Flow-based monitoring, such as NetFlow, IPFIX, and sFlow

•	 Using ntop to visualize the flow of information

Let’s start by looking at how to use Graphviz to monitor network topology changes.

Graphviz
Graphviz is an open source graph visualization software. Imagine we have to describe our network

topology to a colleague without the benefit of a picture. We might say our network consists of

three layers: core, distribution, and access.

The core layer comprises two routers for redundancy, and both of the routers are full-meshed

toward the four distribution routers; the distribution routers are also full-meshed toward the

access routers. The internal routing protocol is OSPF, and externally, we use BGP for peering with

our service provider. While this description lacks some details, it is probably enough for your

colleague to paint a pretty good high-level picture of your network.

Chapter 8 247

Graphviz works similarly to the process by describing the graph in a text format that Graphviz

can understand in a text file. We can then feed the file to the Graphviz program to construct

the graph. Here, the graph is described in a text format called DOT (https://en.wikipedia.

org/wiki/DOT_(graph_description_language)) and Graphviz renders the graph based on the

description. Of course, because the computer lacks human imagination, the language has to be

very precise and detailed.

For Graphviz-specific DOT grammar definitions, take a look at http://www.graphviz.org/doc/

info/lang.html.

In this section, we will use the Link Layer Discovery Protocol (LLDP) to query the device neigh-

bors and create a network topology graph via Graphviz. Upon completing this extensive example,

we will see how we can take something new, such as Graphviz, and combine it with things we

have already learned (network LLDP) to solve interesting problems (automatically graph the

current network topology).

Let’s start by looking over the lab we will be using.

Lab setup
We will use the same lab topology as the last chapter. To recap, we have a three-tier topology, with

r6 being the external facing edge device and r5 the top-of-rack router connecting to the server.

Figure 8.1: Lab topology

https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
http://www.graphviz.org/doc/info/lang.html
http://www.graphviz.org/doc/info/lang.html

Network Monitoring with Python – Part 2248

The devices are vIOS devices to save on lab resources and simplify configuration:

•	 Nodes virtualized by NX-OS and IOS-XR are much more memory-intensive than IOS.

•	 If you wish to use NX-OS, consider using NX-API or other API calls that will return struc-

tured data.

The devices have the following information:

Device Management IP Loopback IP

r1 192.168.2.218 192.168.0.1

r2 192.168.2.219 192.168.0.2

r3 192.168.2.220 192.168.0.3

r5 192.168.2.221 192.168.0.4

r6 192.168.2.222 192.168.0.5

The Ubuntu host’s information is as follows:

Device Name External Link Eth0 Internal IP Eth1

Client 192.168.2.211 10.0.0.9

Server 192.168.2.212 10.0.0.5

For our example, we will use LLDP (https://en.wikipedia.org/wiki/Link_Layer_Discovery_

Protocol). It is a vendor-neutral link-layer neighbor discovery protocol. Let us proceed to install

the necessary software packages.

Installation
Graphviz can be obtained via apt:

$ sudo apt-get install graphviz

After the installation is complete, note that verification is performed by using the dot command:

$ dot -V

dot - graphviz version 2.43.0 (0)$ dot -V

We will use the Python wrapper for Graphviz, so let’s install it now while we are at it:

(venv)$ pip install graphviz

>>> import graphviz

>>> graphviz.__version__

'0.20.1'

>>> exit()

https://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol
https://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol

Chapter 8 249

Let’s take a look at how we can use the software.

Graphviz examples
Like most popular open source projects, the documentation of Graphviz (https://www.graphviz.

org/documentation/) is extensive. The challenge for someone new to the software is often the

starting point, going from zero to one. For our purpose, we will focus on the dot graph, which

draws directed graphs as hierarchies (not to be confused with the DOT language, which is a graph

description language).

Let’s start with some of the basic concepts:

•	 Nodes represent our network entities, such as routers, switches, and servers

•	 The edges represent the links between the network entities

•	 The graph, nodes, and edges each have attributes (https://www.graphviz.org/doc/

info/attrs.html) that can be tweaked

•	 After describing the network, we can output the network graph (https://www.graphviz.

org/doc/info/output.html) in either PNG, JPEG, or PDF format

Our first example, chapter8_gv_1.gv, is an undirected dot graph consisting of four nodes (core,

distribution, access1, and access2). The edges, represented by the dash (-) sign, join the core

node to the distribution node, as well as the distribution node to both of the access nodes:

graph my_network {

 core -- distribution;

 distribution -- access1;

 distribution -- access2;

}

The graph can be output in the dot -T<format> source -o <output file> command line:

$ mkdir output

$ dot -Tpng chapter8_gv_1.gv -o output/chapter8_gv_1.png

https://www.graphviz.org/documentation/
https://www.graphviz.org/documentation/
https://www.graphviz.org/doc/info/attrs.html
https://www.graphviz.org/doc/info/attrs.html
https://www.graphviz.org/doc/info/output.html
https://www.graphviz.org/doc/info/output.html

Network Monitoring with Python – Part 2250

The resultant graph can be viewed from the following output folder:

Figure 8.2: Graphviz undirected dot graph example

Just like Chapter 7, Network Monitoring with Python – Part 1, it might be easier to work in the Linux

desktop window while working with these graphs so you can see the graphs right away.

Note that we can use a directional graph by specifying the graph as a digraph and using the arrow

(->) sign to represent the edges. There are several attributes we can modify in the case of nodes

and edges, such as the node shape, edge labels, etc. The same graph can be modified as follows

in chapter8_gv_2.gv:

digraph my_network {

 node [shape=box];

 size = "50 30";

 core -> distribution [label="2x10G"];

 distribution -> access1 [label="1G"];

 distribution -> access2 [label="1G"];

}

We will output the file in PDF this time:

$ dot -Tpdf chapter8_gv_2.gv -o output/chapter8_gv_2.pdf

Chapter 8 251

Take a look at the directional arrows in the new graph:

Figure 8.3: Network graph with directional arrows and line descriptions

Now let’s take a look at the Python wrapper around Graphviz.

Python with Graphviz examples
We can reproduce the same topology graph as before using the Python Graphviz package and

construct the same three-layer network topology:

>>> from graphviz import Digraph

>>> my_graph = Digraph(comment="My Network")

>>> my_graph.node("core")

>>> my_graph.node("distribution")

>>> my_graph.node("access1")

>>> my_graph.node("access2")

>>> my_graph.edge("core", "distribution")

>>> my_graph.edge("distribution", "access1")

>>> my_graph.edge("distribution", "access2")

Network Monitoring with Python – Part 2252

The code produces what you would normally write in the DOT language but in a more Pythonic

way. You can view the source of the graph before the graph generation:

>>> print(my_graph.source)

// My Network

digraph {

 core

 distribution

 access1

 access2

 core -> distribution

 distribution -> access1

 distribution -> access2

}

The graph can be rendered by the render() method. By default, the output format is PDF:

>>> my_graph.render("output/chapter8_gv_3.gv")

'output/chapter8_gv_3.gv.pdf'

The Python package wrapper closely mimics all the API options of Graphviz. You can find documen-

tation about the options on the Graphviz Read the Docs website (http://graphviz.readthedocs.

io/en/latest/index.html). You can also refer to the source code on GitHub for more information

(https://github.com/xflr6/graphviz). We are now ready to use the tool to map out our network.

LLDP neighbor graphing
In this section, we will use the example of mapping out LLDP neighbors to illustrate a prob-

lem-solving pattern that has helped me over the years:

1.	 Modularize each task into smaller pieces, if possible. In our example, we can combine a

few steps, but if we break them into smaller pieces, we will be able to reuse and improve

them more easily.

2.	 Use an automation tool to interact with the network devices, but keep the more complex logic

aside at the management station. For example, the router has provided an LLDP neighbor

output that is a bit messy. In this case, we will stick with the working command and the

output and use a Python script at the management station to parse out the output we need.

3.	 When given choices for the same task, pick the one that can be reused. In our example,

we can use low-level Pexpect, Paramiko, or Ansible playbooks to query the routers. In my

opinion, Ansible is a more reusable option, so that is what I have picked.

http://graphviz.readthedocs.io/en/latest/index.html
http://graphviz.readthedocs.io/en/latest/index.html
https://github.com/xflr6/graphviz

Chapter 8 253

To get started, since LLDP is not enabled on the routers by default, we will need to configure them

on the devices first. By now, we know we have a number of options to choose from; in this case,

I chose the Ansible playbook with the ios_config module for the task. The hosts file consists

of five routers:

$ cat hosts

[devices]

r1

r2

r3

r5-tor

r6-edge

[edge-devices]

r5-tor

r6-edge

Each host contains the corresponding names in the host_vars folder. We are showing r1 as an

example:

ansible_host: 192.168.2.218

ansible_user: cisco

ansible_ssh_pass: cisco

ansible_connection: network_cli

ansible_network_os: ios

ansbile_become: yes

ansible_become_method: enable

ansible_become_pass: cisco

The cisco_config_lldp.yml playbook consists of one play with the ios_lldp module:

- name: Enable LLDP

 hosts: "devices"

 gather_facts: false

 connection: network_cli

 tasks:

 - name: enable LLDP service

 ios_lldp:

 state: present

Network Monitoring with Python – Part 2254

 register: output

 - name: show output

 debug:

 var: output

The ios_lldp Ansible module is new in version 2.5 and later. Use the ios_config module if you

are using an older version of Ansible.

Run the playbook to turn on lldp:

$ ansible-playbook -i hosts cisco_config_lldp.yml

<skip>

PLAY RECAP ***

r1 : ok=2 changed=0 unreachable=0
failed=0 skipped=0 rescued=0 ignored=0

r2 : ok=2 changed=0 unreachable=0
failed=0 skipped=0 rescued=0 ignored=0

r3 : ok=2 changed=0 unreachable=0
failed=0 skipped=0 rescued=0 ignored=0

r5-tor : ok=2 changed=0 unreachable=0
failed=0 skipped=0 rescued=0 ignored=0

r6-edge : ok=2 changed=0 unreachable=0
failed=0 skipped=0 rescued=0 ignored=0

Since the default lldp advertise timer is 30 seconds, we should wait a bit for lldp advertisements

to be exchanged between the devices. We can verify that LLDP is indeed active on the routers and

the neighbors it has discovered:

r1#sh lldp

Global LLDP Information:

 Status: ACTIVE

 LLDP advertisements are sent every 30 seconds

 LLDP hold time advertised is 120 seconds

 LLDP interface reinitialisation delay is 2 seconds

r1#sh lldp neighbors

Capability codes:

Chapter 8 255

 (R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device

 (W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other

Device ID Local Intf Hold-time Capability Port ID

r6.virl.info Gi0/1 120 R Gi0/1

r5.virl.info Gi0/2 120 R Gi0/1

Total entries displayed: 2

In older versions of CML, e.g. VIRL, or other lab software, you might see LLDP neighbors on the

G0/0 MGMT interfaces. What we really care about are the G0/1 and G0/2 interfaces that are di-

rectly connected to other peers. This information will come in handy as we prepare to parse the

output and construct our topology graph.

Information retrieval
We can now use another Ansible playbook, namely cisco_discover_lldp.yml, to execute the

LLDP command on the device and copy the output of each device to a tmp directory.

Let’s create the tmp directory:

$ mkdir tmp

The playbook will have three tasks. The first task will execute the show lldp neighbor command

on each of the devices, the second task will display the output, and the third task will copy the

output to a text file in the output directory:

 tasks:

 - name: Query for LLDP Neighbors

 ios_command:

 commands: show lldp neighbors

 register: output

 - name: show output

 debug:

 var: output

 - name: copy output to file

 copy: content="{{ output.stdout_lines }}" dest="./tmp/{{ inventory_
hostname }}_lldp_output.txt"

Network Monitoring with Python – Part 2256

After execution, the ./tmp directory now contains all the routers’ output (showing LLDP neigh-

bors) in its own file:

$ ls -l tmp

total 20

-rw-rw-r-- 1 echou echou 413 Sep 18 10:44 r1_lldp_output.txt

-rw-rw-r-- 1 echou echou 413 Sep 18 10:44 r2_lldp_output.txt

-rw-rw-r-- 1 echou echou 413 Sep 18 10:44 r3_lldp_output.txt

-rw-rw-r-- 1 echou echou 484 Sep 18 10:44 r5-tor_lldp_output.txt

-rw-rw-r-- 1 echou echou 484 Sep 18 10:44 r6-edge_lldp_output.txt

r1_lldp_output.txt, as with the rest of the output files, contains the output.stdout_lines

variable from the Ansible playbook for each device:

$ cat tmp/r1_lldp_output.txt

[["Capability codes:", " (R) Router, (B) Bridge, (T) Telephone, (C)
DOCSIS Cable Device", " (W) WLAN Access Point, (P) Repeater, (S)
Station, (O) Other", "", "Device ID Local Intf Hold-
time Capability Port ID", "r6.virl.info Gi0/1 120
R Gi0/1", "r5.virl.info Gi0/2 120 R
Gi0/1", "", "Total entries displayed: 2"]]

So far, we have worked on retrieving information from network devices. Now we are ready to tie

everything together with a Python script.

Python parser script
We can now use a Python script to parse the LLDP neighbor output from each device and construct

a network topology graph from the results. The purpose is to automatically check the device to

see whether any LLDP neighbors have disappeared due to link failure or other issues. Let’s look

at the cisco_graph_lldp.py file and see how that is done.

We start with the necessary imports of the packages: an empty list that we will populate with

tuples of node relationships. We also know that Gi0/0 on the devices is connected to the manage-

ment network; therefore, we are only searching for Gi0/[1234] as our regular expression pattern

in the show LLDP neighbors output:

import glob, re

from graphviz import Digraph, Source

pattern = re.compile('Gi0/[1234]')

device_lldp_neighbors = []

Chapter 8 257

We will use the glob.glob() method to traverse the ./tmp directory of all the files, parse out the

device name, and find the neighbors that the device is connected to. There are some embedded

print statements in the script that we can comment out for the final version; if the statements

are uncommented, we can see the parsed result:

$ python cisco_graph_lldp.py

device: r6-edge

 neighbors: r2

 neighbors: r1

 neighbors: r3

device: r2

 neighbors: r5

 neighbors: r6

device: r3

 neighbors: r5

 neighbors: r6

device: r5-tor

 neighbors: r3

 neighbors: r1

 neighbors: r2

device: r1

 neighbors: r5

 neighbors: r6

The fully populated edge list contains tuples that consist of the device and its neighbors:

Edges: [('r6-edge', 'r2'), ('r6-edge', 'r1'), ('r6-edge', 'r3'), ('r2',
'r5'), ('r2', 'r6'), ('r3', 'r5'), ('r3', 'r6'), ('r5-tor', 'r3'), ('r5-
tor', 'r1'), ('r5-tor', 'r2'), ('r1', 'r5'), ('r1', 'r6')]

We can now construct the network topology graph using the Graphviz package. The most im-

portant part is the unpacking of the tuples that represent the edge relationship:

my_graph = Digraph("My_Network")

my_graph.edge("Client", "r6-edge")

my_graph.edge("r5-tor", "Server")

construct the edge relationships

for neighbors in device_lldp_neighbors:

 node1, node2 = neighbors

 my_graph.edge(node1, node2)

Network Monitoring with Python – Part 2258

If we were to print out the resulting source dot file, it would be an accurate representation of our

network:

digraph My_Network {

 Client -> "r6-edge"

 "r5-tor" -> Server

 "r6-edge" -> r2

 "r6-edge" -> r1

 "r6-edge" -> r3

 r2 -> r5

 r2 -> r6

 r3 -> r5

 r3 -> r6

 "r5-tor" -> r3

 "r5-tor" -> r1

 "r5-tor" -> r2

 r1 -> r5

 r1 -> r6

}

Sometimes, it is confusing to see the same link twice; for example, the r2 to r5-tor link appeared

twice in the previous diagram for each of the directions of the link. As network engineers, we

understand that sometimes a fault in the physical link will result in a unidirectional link, which

we don’t want to see.

If we were to graph the diagram as is, the placement of the nodes would be a bit funky. The place-

ment of the nodes is auto-rendered. The following diagram illustrates the rendering in a default

layout as well as the neato layout, namely, a digraph (My_Network, engine='neato'):

Chapter 8 259

Figure 8.4: Topology graph 1

The neato layout represents an attempt to draw undirected graphs with even less hierarchy:

Figure 8.5: Topology graph 2

Network Monitoring with Python – Part 2260

Sometimes, the default layout presented by the tool is just fine, especially if your goal is to detect

faults instead of making them visually appealing. However, in this case, let’s see how we can insert

raw DOT language knobs into the source file. From research, we know that we can use the rank

command to specify the level where some nodes can stay on the same level. However, there is no

option presented in the Graphviz Python API. Luckily, the dot source file is just a string, which

we can insert as raw dot comments using the replace() method with the following:

source = my_graph.source

original_text = "digraph My_Network {"

new_text = 'digraph My_Network {\n{rank=same Client "r6-edge"}\n{rank=same
r1 r2 r3}\n'

new_source = source.replace(original_text, new_text)

print(new_source)

new_graph = Source(new_source)

new_graph.render("output/chapter8_lldp_graph.gv")

The end result is a new source that we can render the final topology graph from:

digraph My_Network {

{rank=same Client "r6-edge"}

{rank=same r1 r2 r3}

 Client -> "r6-edge"

 "r5-tor" -> Server

 "r6-edge" -> r2

 "r6-edge" -> r1

 "r6-edge" -> r3

 r2 -> r5

 r2 -> r6

 r3 -> r5

 r3 -> r6

 "r5-tor" -> r3

 "r5-tor" -> r1

 "r5-tor" -> r2

 r1 -> r5

 r1 -> r6

}

Chapter 8 261

The graph is now good to go with the correct hierarchy:

Figure 8.6: Topology graph 3

We have used the Python script to automatically retrieve network information from the devices

and automatically graph the topology. It is quite a bit of work, but the reward is the consistency

and the assurance that the graph always represents the latest state of the actual network. Let’s

follow up with some verification that our script can detect the latest state change of the network

with the necessary graph.

Testing the playbook
We are now ready to incorporate a test to check whether the playbook can accurately depict the

topology change when a link change happens.

We can test this by shutting down the Gi0/1 and Go0/2 interfaces on r6-edge:

r6#confi t

Enter configuration commands, one per line. End with CNTL/Z.

r6(config)#int gig 0/1

r6(config-if)#shut

r6(config-if)#int gig 0/2

r6(config-if)#shut

r6(config-if)#end

r6#

Network Monitoring with Python – Part 2262

When the LLDP neighbor passes the hold timer, they will disappear from the LLDP table on r6-edge:

r6#sh lldp neighbors

Capability codes:

 (R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device

 (W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other

Device ID Local Intf Hold-time Capability Port ID

r1.virl.info Gi0/0 120 R Gi0/0

r2.virl.info Gi0/0 120 R Gi0/0

r3.virl.info Gi0/0 120 R Gi0/0

r5.virl.info Gi0/0 120 R Gi0/0

r3.virl.info Gi0/3 120 R Gi0/1

Device ID Local Intf Hold-time Capability Port ID

Total entries displayed: 5

If we execute the playbook and the Python script, the graph will automatically show r6-edge

only connects to r3 and we can start to troubleshoot why that is the case:

Figure 8.7: Topology graph 4

This is a relatively long example demonstrating multiple tools working together to solve a prob-

lem. We used the tools we have learned – Ansible and Python – to modularize and break tasks

into reusable pieces.

We then used a new tool, namely, Graphviz, to help monitor the network for non-time series data,

such as network topology relationships.

In the next section, we will change direction a bit and look into monitoring our network with

network flows collected by our network equipment.

Chapter 8 263

Flow-based monitoring
As mentioned in the chapter introduction, besides polling technology, such as SNMP, we can also

use a push strategy, which allows the device to push network information toward the manage-

ment station. NetFlow and its closely associated cousins, IPFIX and sFlow, are examples of such

information pushed from the direction of the network device toward the management station.

We can argue that the push method is more sustainable since the network device is inherently in

charge of allocating the necessary resources to push the information. If the device CPU is busy, for

example, it can skip the flow export process in favor of a more critical task such as routing packets.

A flow, as defined by IETF (https://www.ietf.org/proceedings/39/slides/int/ip1394-

background/tsld004.htm), is a sequence of packets moving from an application sending some-

thing to the application receiving it. If we refer back to the OSI model, a flow is what constitutes a

single unit of communication between two applications. Each flow comprises some packets; some

flows have more packets (such as a video stream), while some have just a few (such as an HTTP

request). If you think about flows for a minute, you’ll notice that routers and switches might care

about packets and frames, but the application and user usually care more about the network flows.

Flow-based monitoring usually refers to NetFlow, IPFIX, and sFlow:

•	 NetFlow: NetFlow v5 is a technology where the network device caches flow entries and

aggregates packets by matching the set of tuples (source interface, source IP/port, des-

tination IP/port, and so on). Once a flow is completed, the network device exports the

flow characteristics, including total bytes and packet counts, to the management station.

•	 IPFIX: IPFIX is the proposed standard for structured streaming and is similar to NetFlow

v9, also known as Flexible NetFlow. Essentially, it is a definable flow export, which allows

the user to export nearly anything that the network device knows about. The flexibility

often comes at the expense of simplicity compared to NetFlow v5. The configuration of

IPFIX is more complex than the traditional NetFlow v5. Additional complexity makes it

less ideal for introductory learning. However, once you are familiar with NetFlow v5, you

can parse IPFIX as long as you match the template definition.

•	 sFlow: sFlow has no notion of a flow or packet aggregation by itself. It performs two types

of sampling of packets. It randomly samples one out of “n” packets/applications and has

a time-based sampling counter. It sends the information to the management station, and

the station derives the network flow information by referring to the type of packet sample

received along with the counters. As it doesn’t perform any aggregation on the network

device, you can argue that sFlow is more scalable than NetFlow and IPFIX.

https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm
https://www.ietf.org/proceedings/39/slides/int/ip1394-background/tsld004.htm

Network Monitoring with Python – Part 2264

The best way to learn about each one of these is probably to dive right into examples. Let’s get

into some of the flow-based examples in the following section.

NetFlow parsing with Python
We can use Python to parse the NetFlow datagram transported on the wire. This allows us to

look at the NetFlow packet in detail and troubleshoot any NetFlow issues that are not working

as expected.

First, let’s generate traffic between the client and server across the lab network. We can use the

built-in HTTP server module from Python to quickly launch a simple HTTP server on the VIRL

host acting as the server. Open a new Terminal window to the server host and start the HTTP

server; let’s keep the window open:

cisco@Server:~$ python3 -m http.server

Serving HTTP on 0.0.0.0 port 8000 ...

For Python 2, the module is named SimpleHTTPServer, for example, python2 -m SimpleHTTPServer.

In a separate Terminal window, ssh to the client. We can create a short while loop in a Python

script to continuously send HTTP GET to the web server:

cisco@Client:~$ cat http_get.py

import requests

import time

while True:

 r = requests.get("http://10.0.0.5:8000")

 print(r.text)

 time.sleep(5)

The client should get a very plain HTML page every 5 seconds:

cisco@Client:~$ python3 http_get.py

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/
html4/strict.dtd">

<html>

<head>

<skip>

</body>

</html>

Chapter 8 265

If we look back to the server Terminal window, we should also see the requests continuously

coming in from the client every 5 seconds:

cisco@Server:~$ python3 -m http.server
Serving HTTP on 0.0.0.0 port 8000 ...
10.0.0.9 - - [02/Oct/2019 00:55:57] "GET / HTTP/1.1" 200 -
10.0.0.9 - - [02/Oct/2019 00:56:02] "GET / HTTP/1.1" 200 -
10.0.0.9 - - [02/Oct/2019 00:56:07] "GET / HTTP/1.1" 200 –

The traffic from the client to the server traverses through the network devices, and we can export

NetFlow from any of the devices in between. Since r6-edge is the first hop for the client host, we

will have this router export NetFlow to the management host at port 9995.

In this example, we use only one device for demonstration; therefore, we manually configure it

with the necessary commands. In the next section, when we enable NetFlow on all the devices,

we will use an Ansible playbook to configure all the routers at once.

The following configurations are necessary for exporting NetFlow on Cisco IOS devices:

!
ip flow-export version 5
ip flow-export destination 192.168.2.126 9995 vrf Mgmt-intf
!
interface GigabitEthernet0/4
 description to Client
 ip address 10.0.0.10 255.255.255.252
 ip flow ingress
 ip flow egress
<skip>

Next, let’s look at the Python parser script that helps us separate the different network flow fields

we received from network devices.

Python Socket and Struct
The script, netFlow_v5_parser.py, was modified from Brian Rak’s blog post at http://blog.

devicenull.org/2013/09/04/python-netflow-v5-parser.html. The modification was mainly

for Python 3 compatibility and parsing additional NetFlow version 5 fields. The reason we chose

NetFlow v5 instead of NetFlow v9 is that v9 is more complex and uses templates to map out the

fields, making it more difficult to learn in an introductory session. However, since NetFlow ver-

sion 9 is an extended format of the original NetFlow version 5, all the concepts we introduced in

this section apply to it.

http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html
http://blog.devicenull.org/2013/09/04/python-netflow-v5-parser.html

Network Monitoring with Python – Part 2266

Because NetFlow packets are represented in bytes over the wire, we will use the Python struct

module included in the standard library to convert bytes into native Python data types.

You can find more information about the two modules at https://docs.python.org/3.10/

library/socket.html and https://docs.python.org/3.10/library/struct.html.

In the script, we will start by using the socket module to bind and listen for the UDP datagrams.

With socket.AF_INET, we intend on listening to the IPv4 address sockets; with socket.SOCK_

DGRAM, we specify that we’ll see the UDP datagram:

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

sock.bind(('0.0.0.0', 9995))

We will start a loop and retrieve information off the wire 1,500 bytes at a time:

while True:

 buf, addr = sock.recvfrom(1500)

The following line is where we begin to deconstruct or unpack the packet. The first argument

of !HH specifies the network’s big-endian byte order with the exclamation point (big-endian) as

well as the format of the C type (H = 2 byte unsigned short integer):

(version, count) = struct.unpack('!HH',buf[0:4])

The first 4 bytes include the version and the number of flows exported in this packet. If you do

not remember the NetFlow version 5 header off the top of your head (that was a joke, by the way;

I only read the header when I want to fall asleep quickly), here is a glance:

Figure 8.8: NetFlow v5 header (source: http://www.cisco.com/c/en/us/td/docs/net_mgmt/
netflow_collection_engine/3-6/user/guide/format.html#wp1006108)

https://docs.python.org/3.10/library/socket.html
https://docs.python.org/3.10/library/socket.html
https://docs.python.org/3.10/library/struct.html

Chapter 8 267

The rest of the header can be parsed accordingly, depending on the byte location and data type.

Python allows us to unpack several header items in a single line:

 (sys_uptime, unix_secs, unix_nsecs, flow_sequence) = struct.
unpack('!IIII', buf[4:20])

 (engine_type, engine_id, sampling_interval) = struct.unpack('!BBH',
buf[20:24])

The while loop that follows will fill the nfdata dictionary with the flow record that unpacks the

source address and port, destination address and port, packet count, and byte count and print

the information out on the screen:

 nfdata = {}

 for i in range(0, count):

 try:

 base = SIZE_OF_HEADER+(i*SIZE_OF_RECORD)

 data = struct.unpack('!IIIIHH',buf[base+16:base+36])

 input_int, output_int = struct.unpack('!HH',
buf[base+12:base+16])

 nfdata[i] = {}

 nfdata[i]['saddr'] = inet_ntoa(buf[base+0:base+4])

 nfdata[i]['daddr'] = inet_ntoa(buf[base+4:base+8])

 nfdata[i]['pcount'] = data[0]

 nfdata[i]['bcount'] = data[1]

 nfdata[i]['stime'] = data[2]

 nfdata[i]['etime'] = data[3]

 nfdata[i]['sport'] = data[4]

 nfdata[i]['dport'] = data[5]

 print(i, " {0}:{1} -> {2}:{3} {4} packts {5} bytes".format(

 nfdata[i]['saddr'],

 nfdata[i]['sport'],

 nfdata[i]['daddr'],

 nfdata[i]['dport'],

 nfdata[i]['pcount'],

 nfdata[i]['bcount']),

)

Network Monitoring with Python – Part 2268

The output of the script allows you to visualize the header as well as the flow content at a glance.

In the following output, we can see both BGP control packets (TCP port 179) as well as HTTP

traffic (TCP port 8000) on r6-edge:

$ python3 netFlow_v5_parser.py

Headers:

NetFlow Version: 5

Flow Count: 6

System Uptime: 116262790

Epoch Time in seconds: 1569974960

Epoch Time in nanoseconds: 306899412

Sequence counter of total flow: 24930

0 192.168.0.3:44779 -> 192.168.0.2:179 1 packts 59 bytes

1 192.168.0.3:44779 -> 192.168.0.2:179 1 packts 59 bytes

2 192.168.0.4:179 -> 192.168.0.5:30624 2 packts 99 bytes

3 172.16.1.123:0 -> 172.16.1.222:771 1 packts 176 bytes

4 192.168.0.2:179 -> 192.168.0.5:59660 2 packts 99 bytes

5 192.168.0.1:179 -> 192.168.0.5:29975 2 packts 99 bytes

Headers:

NetFlow Version: 5

Flow Count: 15

System Uptime: 116284791

Epoch Time in seconds: 1569974982

Epoch Time in nanoseconds: 307891182

Sequence counter of total flow: 24936

0 10.0.0.9:35676 -> 10.0.0.5:8000 6 packts 463 bytes

1 10.0.0.9:35676 -> 10.0.0.5:8000 6 packts 463 bytes

<skip>

11 10.0.0.9:35680 -> 10.0.0.5:8000 6 packts 463 bytes

12 10.0.0.9:35680 -> 10.0.0.5:8000 6 packts 463 bytes

13 10.0.0.5:8000 -> 10.0.0.9:35680 5 packts 973 bytes

14 10.0.0.5:8000 -> 10.0.0.9:35680 5 packts 973 bytes

Note that, in NetFlow version 5, the record size is fixed at 48 bytes; therefore, the loop and script

are relatively straightforward.

Chapter 8 269

However, in the case of NetFlow version 9 or IPFIX, after the header, there is a template

FlowSet (http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_

paper09186a00800a3db9.html) that specifies the field count, field type, and field length. This

allows the collector to parse the data without knowing the data format in advance. We will need

to build additional logic in the Python script for NetFlow version 9.

By parsing the NetFlow data in a script, we gained a solid understanding of the fields, but this

is very tedious and hard to scale. As you may have guessed, other tools save us the problem of

parsing NetFlow records one by one. Let’s look at one such tool, called ntop, in the coming section.

ntop traffic monitoring
Like the PySNMP script in Chapter 7, Network Monitoring with Python – Part 1, and the NetFlow

parser script in this chapter, we can use Python scripts to handle low-level tasks on the wire.

However, there are tools such as Cacti, which is an all-in-one open source package that includes

data collection (pollers), data storage (RRDs), and a web frontend for visualization. These tools

can save you a lot of work by packing the frequently used features and software in one package.

In the case of NetFlow, there are several open source and commercial NetFlow collectors we can

choose from. If we do a quick search for the top N open source NetFlow analyzers, we will see

several comparison studies for different tools.

Each one has its strengths and weaknesses; which one to use is a matter of preference, platform,

and appetite for customization. I would recommend choosing a tool that would support both v5

and v9, and potentially sFlow. A secondary consideration would be whether the tool is written

in a language that we can understand; I would imagine having Python extensibility would be a

nice thing.

Two of the open source NetFlow tools I like and have used before are NfSen (with NFDUMP as

the backend collector) and ntop (or ntopng). Between the two of them, ntop is the better-known

traffic analyzer; it runs on both Windows and Linux platforms and integrates well with Python.

Therefore, let’s use ntop as an example in this section.

Similar to Cacti, ntop is an all-in-one tool. I recommend installing ntop on a separate host than

the management station in production or a container on the management station.

The installation of our Ubuntu host is straightforward:

$ sudo apt-get install ntop

http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
http://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html

Network Monitoring with Python – Part 2270

The installation process will prompt for the necessary interface for listening and setting the admin-

istrator password. By default, the ntop web interface listens on port 3000, while the probe listens

on UDP port 5556. On the network device, we need to specify the location of the NetFlow exporter:

!

ip flow-export version 5

ip flow-export destination 192.168.2.126 5556 vrf Mgmt-intf

!

By default, IOSv creates a VRF called Mgmt-intf and places Gi0/0 under VRF.

We will also need to specify the direction of traffic exports, such as ingress or egress, under the

interface configuration:

!

interface GigabitEthernet0/0

...

ip flow ingress

ip flow egress

...

For your reference, I have included the Ansible playbook, cisco_config_netflow.yml, to configure

the lab device for the NetFlow export.

r5-tor and r6-edge have two more interfaces than r1, r2, and r3; therefore, there is an additional

playbook to enable the additional interfaces for them.

Execute the playbook and make sure the changes were applied properly on the devices:

$ ansible-playbook -i hosts cisco_config_netflow.yml

TASK [configure netflow export station] **********************************
**

changed: [r2]

changed: [r1]

changed: [r3]

changed: [r5-tor]

changed: [r6-edge]

TASK [configure flow export on Gi0/0] ************************************
**

Chapter 8 271

ok: [r1]

ok: [r3]

ok: [r2]

ok: [r5-tor]

ok: [r6-edge]

<skip>

It is always a good idea to verify the device configuration after the playbook is run, so let’s spot-

check on r2:

r2#sh run

!

interface GigabitEthernet0/0

 description OOB Management

 vrf forwarding Mgmt-intf

 ip address 192.168.2.126 255.255.255.0

 ip flow ingress

 ip flow egress

<skip>

!

ip flow-export version 5

ip flow-export destination 192.168.2.126 5556 vrf Mgmt-intf

!

Once everything is set up, you can check the ntop web interface for local IP traffic:

Figure 8.9: ntop local IP traffic

Network Monitoring with Python – Part 2272

One of the most often used features of ntop is using it to look at the Top Talkers graph:

Figure 8.10: ntop top talkers

The ntop reporting engine is written in C; it is fast and efficient, but the need to have adequate

knowledge of C to do something as simple as changing the web frontend does not fit the modern

agile development mindset.

After a few false starts with Perl in the mid-2000s, the good folks at ntop finally settled on em-

bedding Python as an extensible scripting engine. Let’s take a look.

Python extension for ntop
We can use Python to extend ntop through the ntop web server. The ntop web server can execute

Python scripts. At a high level, the scripts will involve the following:

•	 Methods to access the state of ntop

•	 The Python CGI module to process forms and URL parameters

•	 Making templates that generate dynamic HTML pages

Chapter 8 273

•	 Each Python script can read from stdin and print out stdout/stderr. The stdout script

is the returned HTTP page.

Several resources come in handy with Python integration. Under the web interface, you can click

on About | Show Configuration to see the Python interpreter version as well as the directory for

your Python script:

Figure 8.11: Python version

You can also check the various directories where the Python script should reside:

Figure 8.12: Plugin directories

Under About | Online Documentation | Python ntop Engine, there are links for the Python API

as well as the tutorial:

Network Monitoring with Python – Part 2274

Figure 8.13: Python ntop documentation

As mentioned, the ntop web server directly executes the Python script placed under the desig-

nated directory:

$ pwd

/usr/share/ntop/python

We will place our first script, namely, chapter8_ntop_1.py, in the directory. The Python CGI

module processes forms and parses URL parameters:

Import modules for CGI handling

import cgi, cgitb

import ntop

Parse URL cgitb.enable();

ntop implements three Python modules; each one of them has a specific purpose:

•	 ntop: This module interacts with the ntop engine.

•	 Host: This module drills down into a specific host’s information.

•	 Interfaces: This module represents the information about the localhost interfaces.

Chapter 8 275

In our script, we will use the ntop module to retrieve the ntop engine information as well as using

the sendString() method to send the HTML body text:

form = cgi.FieldStorage();

name = form.getvalue('Name', default="Eric")

version = ntop.version()

os = ntop.os()

uptime = ntop.uptime()

ntop.printHTMLHeader('Mastering Python Networking', 1, 0) ntop.
sendString("Hello, "+ name +"
")

ntop.sendString("Ntop Information: %s %s %s" % (version, os, uptime))

ntop.printHTMLFooter()

We will execute the Python script using http://<ip>:3000/python/<script name>. Here is the

result of our chapter8_ntop_1.py script:

Figure 8.14: ntop script result

We can look at another example that interacts with the interface module, chapter8_ntop_2.py.

We will use the API to iterate through the interfaces:

import ntop, interface, json

ifnames = []

try:

for i in range(interface.numInterfaces()):

 ifnames.append(interface.name(i))

except Exception as inst:

 print(type(inst)) # the exception instance

Network Monitoring with Python – Part 2276

 print(inst.args) # arguments stored in .args

 print(inst) # str _ allows args to printed directly

<skip>

The resulting page will display the ntop interfaces:

Figure 8.15: ntop interface information

Besides the community version, ntop also offers a few commercial products that you can choose

from. With the active open source community, commercial backing, and Python extensibility,

ntop is a good choice for your NetFlow monitoring needs.

Next, let’s take a look at NetFlow’s cousin: sFlow.

sFlow
sFlow, which stands for sampled flow, was originally developed by InMon (http://www.inmon.

com) and later standardized by way of RFC. The current version is v5. Many in the industry believe

the primary advantage of sFlow is its scalability.

sFlow uses random [one in n] packet flow samples along with the polling interval of counter sam-

ples to estimate the traffic; this is less CPU-intensive than NetFlow for network devices. sFlow’s

statistical sampling is integrated with the hardware and provides real-time, raw exports.

For scalability and competitive reasons, sFlow is generally preferred over NetFlow for newer

vendors, such as Arista Networks, Vyatta, and A10 Networks. While Cisco supports sFlow on its

Nexus line of products, sFlow is generally “not” supported on Cisco platforms.

http://www.inmon.com
http://www.inmon.com

Chapter 8 277

SFlowtool and sFlow-RT with Python
Unfortunately, at this point, sFlow is something our CML lab devices do not support (not even

with the NX-OSv virtual switches). You can use a Cisco Nexus 3000 switch or other vendor switch-

es, such as Arista, that support sFlow. Another good option for the lab is to use an Arista vEOS

virtual instance. I have access to a Cisco Nexus 3048 switch running 7.0 (3), which I will use for

this section as the sFlow exporter.

The configuration of Cisco Nexus 3000 for sFlow is straightforward:

Nexus-2# sh run | i sflow feature sflow

sflow max-sampled-size 256

sflow counter-poll-interval 10

sflow collector-ip 192.168.199.185 vrf management sflow agent-ip
192.168.199.148

sflow data-source interface Ethernet1/48

The easiest way to ingest sFlow is to use sflowtool. For installation instructions, refer to the

documentation at http://blog.sflow.com/2011/12/sflowtool.html:

$ wget http://www.inmon.com/bin/sflowtool-3.22.tar.gz

$ tar -xvzf sflowtool-3.22.tar.gz

$ cd sflowtool-3.22/

$./configure

$ make

$ sudo make install

I am using an older version of sFlowtool in the lab. The newer versions work the same.

After the installation, you can launch sflowtool and look at the datagram Nexus 3048 is sending

on the standard output:

$ sflowtool

startDatagram =================================

datagramSourceIP 192.168.199.148

datagramSize 88

unixSecondsUTC 1489727283

datagramVersion 5

agentSubId 100

agent 192.168.199.148

packetSequenceNo 5250248

http://blog.sflow.com/2011/12/sflowtool.html

Network Monitoring with Python – Part 2278

sysUpTime 4017060520

samplesInPacket 1

startSample ----------------------

sampleType_tag 0:4 sampleType COUNTERSSAMPLE sampleSequenceNo 2503508

sourceId 2:1

counterBlock_tag 0:1001

5s_cpu 0.00

1m_cpu 21.00

5m_cpu 20.80

total_memory_bytes 3997478912

free_memory_bytes 1083838464 endSample ----------------------

endDatagram =================================

There are a number of good usage examples on the sflowtool GitHub repository (https://github.

com/sflow/sflowtool); one of them is to use a script to receive the sflowtool input and parse the

output. We can use a Python script for this purpose. In the chapter8_sflowtool_1.py example,

we will use sys.stdin.readline to receive the input and use a regular expression search to print

out only the lines containing the word agent when we see the sFlow packets:

#!/usr/bin/env python3

import sys, re

for line in iter(sys.stdin.readline, ''):

 if re.search('agent ', line):

 print(line.strip())

The script can be piped to sflowtool:

$ sflowtool | python3 chapter8_sflowtool_1.py

agent 192.168.199.148

agent 192.168.199.148

There are a number of other useful output examples, such as tcpdump, output as NetFlow ver-

sion 5 records, and a compact line-by-line output. This makes sflowtool flexible for different

monitoring environments.

ntop supports sFlow, which means you can directly export your sFlow to the ntop collector. If

your collector is only NetFlow-aware, you can use the -c option for the sflowtool output in the

NetFlow version 5 format:

$ sflowtool --help

https://github.com/sflow/sflowtool)
https://github.com/sflow/sflowtool)

Chapter 8 279

...

tcpdump output:

-t - (output in binary tcpdump(1) format)

-r file - (read binary tcpdump(1) format)

-x - (remove all IPV4 content)

-z pad - (extend tcpdump pkthdr with this many zeros

e.g. try -z 8 for tcpdump on Red Hat Linux 6.2)

NetFlow output:

-c hostname_or_IP - (netflow collector host)

-d port - (netflow collector UDP port)

-e - (netflow collector peer_as (default = origin_as))

-s - (disable scaling of netflow output by sampling rate)

-S - spoof source of netflow packets to input agent IP

Alternatively, you can also use InMon’s sFlow-RT (http://www.sflow-rt.com/index.php) as

your sFlow analytics engine. What sets sFlow-RT apart from an operator perspective is its vast

RESTful API, which can be customized to support your use cases. You can also easily retrieve the

metrics from the API. You can take a look at its extensive API reference at: http://www.sflow-rt.

com/reference.php.

Note that sFlow-RT requires Java to run the following:

$ sudo apt-get install default-jre

$ java -version

openjdk version "1.8.0_121"

OpenJDK Runtime Environment (build 1.8.0_121-8u121-b13-0ubuntu1.16.04.2-
b13)

OpenJDK 64-Bit Server VM (build 25.121-b13, mixed mode)

Once installed, downloading and running sFlow-RT is straightforward (https://sflow-rt.com/

download.php):

$ wget http://www.inmon.com/products/sFlow-RT/sflow-rt.tar.gz

$ tar -xvzf sflow-rt.tar.gz

$ cd sflow-rt/

$./start.sh

2017-03-17T09:35:01-0700 INFO: Listening, sFlow port 6343

2017-03-17T09:35:02-0700 INFO: Listening, HTTP port 8008

We can point the web browser to HTTP port 8008 and verify the installation:

http://www.sflow-rt.com/index.php
http://www.sflow-rt.com/reference.php
http://www.sflow-rt.com/reference.php
https://sflow-rt.com/download.php
https://sflow-rt.com/download.php

Network Monitoring with Python – Part 2280

Figure 8.16: sFlow-RT version

As soon as sFlow-RT receives any sFlow packets, the agents and other metrics will appear:

Figure 8.17: sFlow-RT agent IP

Here are two examples of using Python requests to retrieve information from sFlow-RT’s REST API:

>>> import requests

>>> r = requests.get("http://192.168.199.185:8008/version")

>>> r.text '2.0-r1180'

>>> r = requests.get("http://192.168.199.185:8008/agents/json")

>>> r.text

'{"192.168.199.148": {n "sFlowDatagramsLost": 0,n
"sFlowDatagramSource": ["192.168.199.148"],n "firstSeen": 2195541,n
"sFlowFlowDuplicateSamples": 0,n "sFlowDatagramsReceived": 441,n
"sFlowCounterDatasources": 2,n "sFlowFlowOutOfOrderSamples": 0,n
"sFlowFlowSamples": 0,n "sFlowDatagramsOutOfOrder": 0,n "uptime":
4060470520,n "sFlowCounterDuplicateSamples": 0,n "lastSeen":
3631,n "sFlowDatagramsDuplicates": 0,n "sFlowFlowDrops": 0,n
"sFlowFlowLostSamples": 0,n "sFlowCounterSamples": 438,n
"sFlowCounterLostSamples": 0,n "sFlowFlowDatasources": 0,n
"sFlowCounterOutOfOrderSamples": 0n}}'

Consult the reference documentation for additional REST endpoints available for your needs.

Chapter 8 281

In this section, we looked at sFlow-based monitoring examples both as a standalone tool as well

as part of the integration with ntop. sFlow is one of the newer flow formats that intends to address

scalability issues faced with traditional netflow formats, and it’s worth us spending some time

to see whether it is the right tool for the network monitoring tasks at hand. We are close to the

end of this chapter, so let’s look at what we have covered.

Summary
In this chapter, we looked at additional ways in which we can utilize Python to enhance our

network monitoring efforts. We began using Python’s Graphviz package to create network to-

pology graphs with real-time LLDP information reported by the network devices. This allows

us to effortlessly show the current network topology, as well as to easily notice any link failures.

Next, we used Python to parse NetFlow version 5 packets to enhance our understanding and

troubleshooting of NetFlow. We also looked at how to use ntop and Python to extend ntop for

NetFlow monitoring. sFlow is an alternative packet sampling technology. We used sflowtool

and sFlow-RT to interpret sFlow results.

In Chapter 9, Building Network Web Services with Python, we will explore how to use the Python

web framework Flask to build network web services.

Join our book community
To join our community for this book – where you can share feedback, ask questions to the author,

and learn about new releases – follow the QR code below:

https://packt.link/networkautomationcommunity

https://packt.link/networkautomationcommunity

9
Building Network Web Services
with Python

In the previous chapters, we were a consumer of the APIs provided by others. In Chapter 3, APIs

and Intent-Driven Networking, we saw that we can use an HTTP POST request to NX-API at the

http://<your device ip>/ins URL with the CLI command embedded in the HTTP POST body

to execute commands remotely on the Cisco Nexus device; the device then returns the command

execution output in its HTTP response return. In Chapter 8, Network Monitoring with Python – Part

2, we used the HTTP GET method for our sFlow-RT at http://<your host ip>:8008/version

with an empty body to retrieve the version of the sFlow-RT software. These request-response

exchanges are examples of RESTful web services.

According to Wikipedia (https://en.wikipedia.org/wiki/Representational_state_transfer):

As noted, the use of RESTful web services using the HTTP protocol is only one of many methods

of information exchange on the web; other forms of web services also exist. However, it is the

most commonly used web service today, with the associated GET, POST, PUT, and DELETE verbs as

a predefined way of exchanging information.

”Representational state transfer (REST) or RESTful web services is one way of pro-

viding interoperability between computer systems on the internet. REST-compliant

web services allow requesting systems to access and manipulate the textual represen-

tation of web resources using a uniform and predefined set of stateless operations.”

https://en.wikipedia.org/wiki/Representational_state_transfer

Building Network Web Services with Python284

On the provider side, one of the advantages of providing RESTful services to users is the ability

to hide internal operations from the user. For example, in the case of sFlow-RT, if we were to log

in to the device to see the version of the software installed instead of using its RESTful API, we

would need more in-depth knowledge of the tool to know where to check. However, by provid-

ing the resources as a URL, the API provider abstracts the version-checking operations from the

requester, making the operation much simpler. The abstraction also provides a layer of security

as it can open up the endpoints only as needed.

As the master of our network universe, RESTful web services provide many notable benefits that

we can enjoy, such as the following:

•	 You can abstract the requester from learning about the internals of the network opera-

tions. For example, we can provide a web service to query the switch version without the

requester knowing the exact CLI command or the switch API.

•	 We can consolidate and customize operations that uniquely fit our network needs, such

as a resource to upgrade all our top-of-rack switches.

•	 We can provide better security by only exposing operations as needed. For example, we

can provide read-only URLs (GET) to core network devices and read-write URLs (GET/POST/

PUT/DELETE) to access-level switches.

In this chapter, we will use one of the most popular Python web frameworks, Flask, to create our

RESTful web service for our network. In this chapter, we will learn about the following:

•	 Comparing Python web frameworks

•	 Introduction to Flask

•	 Operations involving static network content

•	 Operations involving dynamic network operations

•	 Authentication and authorization

•	 Running our web app in containers

Let’s start by looking at the available Python web frameworks and why we chose Flask.

If you are wondering about HTTPS versus HTTP, for our discussion, we are treating

HTTPS as a secure extension of HTTP (https://en.wikipedia.org/wiki/HTTPS)

and the same underlying protocol as a RESTful API.

https://en.wikipedia.org/wiki/HTTPS

Chapter 9 285

Comparing Python web frameworks
Python is known for its great many web frameworks. There is a running joke in the Python com-

munity about whether you can ever work as a full-time Python developer without working with

any Python web frameworks. There are several Python web developer conferences, including

DjangoCon US (https://djangocon.us/), DjangoCon EU (https://djangocon.eu/), FlaskCon

(https://flaskcon.com/), Python Web Conference (https://pythonwebconf.com/), and many

local meetups. Each of the conferences attracts hundreds of attendees every year. Did I mention

Python has a thriving web development community?

If you sort the Python web frameworks at https://hotframeworks.com/languages/python,

you can see that there is no shortage of choices when it comes to Python and web frameworks:

Figure 9.1: Python Web Framework Rankings
(source: https://hotframeworks.com/languages/python)

https://djangocon.us/
https://djangocon.eu/
https://flaskcon.com/
https://pythonwebconf.com/
https://hotframeworks.com/languages/python

Building Network Web Services with Python286

In the most recent 2021 Python Developer Survey, Flask slightly edged Django as the most pop-

ular web framework:

Figure 9.2: Python Developer Survey 2021 (source: https://lp.jetbrains.com/python-develop-
ers-survey-2021/)

With so many options to choose from, which framework should we pick? Trying all the frameworks

one by one would be time-consuming. The question of which web framework is better is also a

passionate topic among web developers. If you ask this question on any of the forums, such as

Quora, or search on Reddit, get ready for some highly opinionated answers and heated debates.

Of course, I am biased toward programming languages (Python!) and web frameworks (Flask

and Django!). In this section, I hope to convey my reasoning behind choosing one over the other

for any particular project. Let’s pick the top two frameworks from the preceding HotFrameworks

list and compare them:

Speaking of Quora and Reddit, here’s an interesting fact: both Quora and Reddit

were written in Python. Reddit uses Pylons (https://www.reddit.com/wiki/

faq#wiki_so_what_python_framework_do_you_use.3F), while Quora started

with Pylons but replaced a portion of the framework with its in-house code

(https://www.quora.com/What-languages-and-frameworks-are-used-to-

code-Quora).

https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F
https://www.reddit.com/wiki/faq#wiki_so_what_python_framework_do_you_use.3F
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora
https://www.quora.com/What-languages-and-frameworks-are-used-to-code-Quora

Chapter 9 287

•	 Django: The self-proclaimed “web framework for perfectionists with deadlines” is a

high-level Python web framework that encourages rapid development and clean, prag-

matic design (https://www.djangoproject.com/). It is a large framework with pre-built

code that provides an administrative panel and built-in content management.

•	 Flask: This is a microframework for Python and is based on Werkzeug, Jinja2, and other

applications (https://palletsprojects.com/p/flask/). By being a microframework,

Flask intends on keeping the core small and easy to extend when needed. The “micro” in

microframework does not mean that Flask lacks functionality, nor does it mean it cannot

work in a production environment.

I use Django for some of the larger projects while using Flask for quick prototypes. The Django

framework has a strong opinion on how things should be done; any deviation from it would

sometimes leave the user feeling that they are “fighting with the framework.” For example, if

you look at the Django database documentation (https://docs.djangoproject.com/en/4.0/

ref/databases/) you will notice that the framework supports several different SQL databases.

However, they are all variants of a SQL database such as MySQL, PostgreSQL, SQLite, and others.

What if we want to use a NoSQL database such as MongoDB or CouchDB? It might be possible,

but it could leave us in our own hands because there is no official support from Django. Being an

opinionated framework is certainly not a bad thing. It is just a matter of opinion (no pun intended).

Keeping the core code small and extending it when needed is very appealing when we need

something simple and fast. The initial example in the documentation to get Flask up and running

consists of only six lines of code and is easy to understand, even if you don’t have any prior expe-

rience. Since Flask is built with extensions in mind, writing our extensions, such as a decorator,

is relatively easy. Even though it is a microframework, the Flask core still includes the necessary

components, such as a development server, debugger, integration with unit tests, RESTful request

dispatching, and more, to get you started quickly.

As you can see, Django and Flask are the two most popular Python web frameworks by almost

all measures. We can’t really go wrong picking either as our starting point. The popularity that

comes with both frameworks means both have extensive community contribution and support,

and can quickly develop modern features.

For the ease of deployment, I feel Flask is an ideal choice for us when it comes to building network

web services to start with.

https://www.djangoproject.com/
https://palletsprojects.com/p/flask/
https://docs.djangoproject.com/en/4.0/ref/databases/
https://docs.djangoproject.com/en/4.0/ref/databases/

Building Network Web Services with Python288

Flask and lab setup
In this chapter, we will continue to use a virtual environment to isolate the Python environment

and dependencies. We can start a new virtual environment, or we can continue to use the existing

virtual environment that we have been using. My preference is to start a new virtual environment.

I will call mine ch09-venv:

$ python3 -m venv ch09-venv

$ source ch09-venv/bin/activate

In this chapter, we will install quite a few Python packages. To make life easier, I have included

a requirements.txt file on this book’s GitHub repository; we can use it to install all the neces-

sary packages (remember to activate your virtual environment). You should see packages being

downloaded and successfully installed during the installation process:

(ch09-venv) $ cat requirements.txt

click==8.1.3

Flask==2.2.2

itsdangerous==2.1.2

Jinja2==3.1.2

MarkupSafe==2.1.1

Werkzeug==2.2.2

…

(ch09-venv) $ pip install -r requirements.txt

For our network topology, we will use the 2_DC_Topology that we have been using in the first

few chapters, as shown here:

Figure 9.3: Lab Topology

Chapter 9 289

Let’s take a look at Flask in the next section.

Please note that, from here on out, I will assume that you will always execute from the virtual

environment and that you have installed the necessary packages in the requirements.txt file.

Introduction to Flask
Like most popular open source projects, Flask has very good documentation, which is available

at https://flask.palletsprojects.com/en/2.0.x/. If you’d like to dig deeper into Flask, the

project documentation would be a great place to start.

I highly recommend Miguel Grinberg’s work (https://blog.miguelgrinberg.com/) related

to Flask. His blog, book, and video training have taught me a lot about Flask. Miguel’s class,

Building Web APIs with Flask, inspired me to build my first Flask-based API, and inspired the

writing of this chapter. You can take a look at his published code on GitHub: https://github.

com/miguelgrinberg/.

Flask versions
As of the time of writing, the latest version of Flask is version 2.2.2. Flask version 2.0.0 was released

in May 2021 from version 1.1.4. There were several big changes introduced in the release, thus the

big number jump in release numbers. Some of the big changes are listed below:

•	 Flask 2.0 officially dropped the support for Python 2 and Python 3.5.

•	 Python 3 type hinting is supported.

•	 The HTTP method decorator was introduced.

These changes probably mean very little at this point because we are just getting started with

Flask. For now, just keep in mind the big version change if we were searching for answers and

examples. If possible, look for examples based on version 2 and beyond.

Flask examples
Our first Flask application is contained in one single file, chapter9_1.py:

from flask import Flask

app = Flask(__name__)

@app.route('/')

def hello_networkers():

 return 'Hello Networkers!'

https://flask.palletsprojects.com/en/2.0.x/
https://blog.miguelgrinberg.com/
https://github.com/miguelgrinberg/
https://github.com/miguelgrinberg/

Building Network Web Services with Python290

if __name__ == '__main__':

 app.run(host='0.0.0.0', debug=True)

This is a simple design pattern for Flask apps. We create an instance of the Flask class with the

first argument as the name of the application’s module package. In this case, we used a single

module that can be started as an application; later on, we will see how we can import it as a

package. We then use the route decorator to tell Flask which URL should be handled by the

hello_networkers() function; in this case, we indicated the root path. We end the file with the

usual name scope, checking when the script is run by itself (https://docs.python.org/3.10/

library/__main__.html).

We also add the host and debug options, which allow more verbose output and allow us to listen

on all the host interfaces. We can run this application using the development server:

(ch09-venv) $ python chapter9_1.py

 * Serving Flask app 'chapter9_1'

 * Debug mode: on

WARNING: This is a development server. Do not use it in a production
deployment. Use a production WSGI server instead.

 * Running on all addresses (0.0.0.0)

 * Running on http://127.0.0.1:5000

 * Running on http://192.168.2.126:5000

Press CTRL+C to quit

 * Restarting with stat

 * Debugger is active!

 * Debugger PIN: 218-520-639

Now that we have a server running, let’s test the server response with an HTTP client.

The HTTPie client
We have already installed HTTPie (https://httpie.org/) as part of the installation from the

requirements.txt file. This book is printed in black and white, so the example does not show color

highlighting, but in your installation, you can see HTTPie has better syntax highlighting for HTTP

transactions. It also has a more intuitive command-line interaction with the RESTful HTTP server.

If you receive an error of Address already in use from the development server, change

the port Flask Development Server runs on via the port=xxxx option, https://

flask.palletsprojects.com/en/2.2.x/server/.

https://docs.python.org/3.10/library/__main__.html
https://docs.python.org/3.10/library/__main__.html
https://httpie.org/
https://flask.palletsprojects.com/en/2.2.x/server/
https://flask.palletsprojects.com/en/2.2.x/server/

Chapter 9 291

We can use it to test our first Flask application (more examples on HTTPie to follow). We will

start a second terminal window on the management host, activate the virtual environment, and

type the following in:

(ch09-venv) $ http http://192.168.2.126:5000

HTTP/1.1 200 OK

Connection: close

Content-Length: 17

Content-Type: text/html; charset=utf-8

Date: Wed, 21 Sep 2022 02:54:54 GMT

Server: Werkzeug/2.2.2 Python/3.10.4

Hello Networkers!

As a comparison, if we are using curl, we will need to use the -i switch to achieve the same

output: curl -i http://192.168.2.126:5000.

We will use HTTPie as our client for this chapter; it is worth taking a minute or two to take a look

at its usage. We will use the free website HTTPBin (https://httpbin.org/) to demonstrate the

use of HTTPie. The usage of HTTPie follows this simple pattern:

$ http [flags] [METHOD] URL [ITEM]

Following the preceding pattern, a GET request is very straightforward, as we have seen with our

Flask development server:

(ch09-venv) $ http GET https://httpbin.org/user-agent

HTTP/1.1 200 OK

Access-Control-Allow-Credentials: true

Access-Control-Allow-Origin: *

Connection: keep-alive

Content-Length: 35

Content-Type: application/json

Date: Wed, 21 Sep 2022 02:56:07 GMT

Server: gunicorn/19.9.0

{

 "user-agent": "HTTPie/3.2.1"

}

https://httpbin.org/

Building Network Web Services with Python292

JSON is the default implicit content type for HTTPie. If your HTTP body contains just strings, no

other operation is needed. If you need to apply non-string JSON fields, use := or other documented

special characters. In the following example, we want the "married" variable to be a Boolean

instead of a string:

(ch09-venv) $ http POST https://httpbin.org/post name=eric twitter=at_
ericchou married:=true

…

Content-Type: application/json

…

{…

 "headers": {

 "Accept": "application/json, */*;q=0.5",

 …

 "Host": "httpbin.org",

 "User-Agent": "HTTPie/3.2.1",

	 …

 },

 "json": {

 "married": true,

 "name": "eric",

 "twitter": "at_ericchou"

 },

 "url": "https://httpbin.org/post"

}

As you can see, HTTPie is a big improvement from the traditional curl syntax and makes testing

the REST API a breeze.

Getting back to our Flask program, a large part of API building is based on the flow of URL routing.

Let’s look deeper at the app.route() decorator.

More usage examples are available at https://httpie.io/docs/cli/usage.

https://httpie.io/docs/cli/usage

Chapter 9 293

URL routing
We added two additional functions and paired them up with the appropriate app.route() route

in chapter9_2.py:

from flask import Flask

app = Flask(__name__)

@app.route('/')

def index():

 return 'You are at index()'

@app.route('/routers/')

def routers():

 return 'You are at routers()'

if __name__ == '__main__':

 app.run(host='0.0.0.0', debug=True)

The result is that different endpoints are passed to different functions. We can verify this with

two http requests:

Server side

$ python chapter9_2.py

<skip>

 * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

client side

$ http http://192.168.2.126:5000

<skip>

You are at index()

$ http http://192.168.2.126:5000/routers/

<skip>

You are at routers()

As the requests are made from the client side, the server screen will see the requests coming in:

(ch09-venv) $ python chapter9_2.py

<skip>

192.168.2.126 - - [20/Sep/2022 20:00:27] "GET / HTTP/1.1" 200 -

192.168.2.126 - - [20/Sep/2022 20:01:05] "GET /routers/ HTTP/1.1" 200 –

Building Network Web Services with Python294

As we can see, the different endpoints correspond to different functions; whatever was returned

from the function is what the server returns to the requester. Of course, the routing will be pretty

limited if we have to keep it static all the time. There are ways to pass dynamic variables from the

URL to Flask; we will look at an example of this in the next section.

URL variables
We can pass dynamic variables to the URL, as seen in the chapter9_3.py examples:

<skip>

@app.route('/routers/<hostname>')

def router(hostname):

 return 'You are at %s' % hostname

@app.route('/routers/<hostname>/interface/<int:interface_number>')

def interface(hostname, interface_number):

 return 'You are at %s interface %d' % (hostname, interface_number)

<skip>

In the two functions, we pass in dynamic information such as the hostname and interface number

at the time when the client is making the request. Note that, in the /routers/<hostname> URL, we

pass the <hostname> variable as a string; in /routers/<hostname>/interface/<int:interface_

number> we specify the int variable should only be an integer. Let’s run the example and make

some requests:

Server Side

(ch09-venv) $ python chapter9_3.py

(ch09-venv) # Client Side

$ http http://192.168.2.126:5000/routers/host1

HTTP/1.0 200 OK

<skip>

You are at host1

(venv) $ http http://192.168.2.126:5000/routers/host1/interface/1

HTTP/1.0 200 OK

<skip>

You are at host1 interface 1

Chapter 9 295

If the int variable is NOT an integer, an error will be thrown:

(venv) $ http http://192.168.2.126:5000/routers/host1/interface/one

HTTP/1.0 404 NOT FOUND

<skip>

<!doctype html>

<html lang=en>

<title>404 Not Found</title>

<h1>Not Found</h1>

<p>The requested URL was not found on the server. If you entered the URL
manually please check your spelling and try again.</p>

The converter includes integers, float, and path (it accepts slashes).

Besides matching static routes with dynamic variables, we can also generate URLs upon applica-

tion launch. This is very useful when we do not know the endpoint variable in advance or if the

endpoint is based on other conditions, such as the values queried from a database. Let’s take a

look at an example of this.

URL generation
In chapter9_4.py, we wanted to dynamically create a URL during application launch in the form

of /<hostname>/list_interfaces, where the hostname could be r1, r2, or r3. We already know

we can statically configure three routes and three corresponding functions, but let’s see how we

can do that upon application launch:

from flask import Flask, url_for

app = Flask(__name__)

@app.route('/<hostname>/list_interfaces')

def device(hostname):

 if hostname in routers:

 return 'Listing interfaces for %s' % hostname

 else:

 return 'Invalid hostname'

routers = ['r1', 'r2', 'r3']

for router in routers:

 with app.test_request_context():

 print(url_for('device', hostname=router))

if __name__ == '__main__':

 app.run(host='0.0.0.0', debug=True)

Building Network Web Services with Python296

Upon its execution, we will have a few nice, logical URLs that loop around the routers list without

statically defining each:

server side

$ python chapter9_4.py

<skip>

/r1/list_interfaces

/r2/list_interfaces

/r3/list_interfaces

client side

(venv) $ http http://192.168.2.126:5000/r1/list_interfaces

<skip>

Listing interfaces for r1

(venv) $ http http://192.168.2.126:5000/r2/list_interfaces

<skip>

Listing interfaces for r2

bad request

(venv) $ http http://192.168.2.126:5000/r1000/list_interfaces

<skip>

Invalid hostname

For now, you can think of app.text_request_context() as a dummy request object necessary

for demonstration purposes. If you are interested in the local context, feel free to look at https://

werkzeug.palletsprojects.com/en/2.2.x/local/. The dynamic generation of URL endpoints

greatly simplifies our code, saves time, and makes the code easier to read.

The jsonify return
Another time-saver in Flask is the jsonify() return, which wraps json.dumps() and turns the

JSON output into a response object with application/json as the content type in the HTTP header.

We can tweak the chapter9_3.py script a bit, as illustrated in chapter9_5.py:

from flask import Flask, jsonify

app = Flask(__name__)

@app.route('/routers/<hostname>/interface/<int:interface_number>')

def interface(hostname, interface_number):

 return jsonify(name=hostname, interface=interface_number)

if __name__ == '__main__':

 app.run(host='0.0.0.0', debug=True)

https://werkzeug.palletsprojects.com/en/2.2.x/local/
https://werkzeug.palletsprojects.com/en/2.2.x/local/

Chapter 9 297

With a few lines, the return result is now a JSON object with the appropriate header:

$ http http://192.168.2.126:5000/routers/r1/interface/1

HTTP/1.0 200 OK

Content-Length: 38

Content-Type: application/json

Date: Tue, 08 Oct 2019 21:48:51 GMT

Server: Werkzeug/0.16.0 Python/3.6.8

{

 "interface": 1,

 "name": "r1"

}

Combine all the Flask features we have learned so far, and we are now ready to build an API for

our network.

Network resource API
When we have network devices in production, each of the devices will have a certain state and

information that you would like to keep in a persistent location so that you can easily retrieve

them later on. This is often done in terms of storing data in a database. We saw many examples

of such information storage in the monitoring chapters.

However, we would not normally give other non-network administrative users who might want

this information direct access to the database; nor would they want to learn all the complex SQL

query language. For these cases, we can leverage Flask and the Flask-SQLAlchemy extension of

Flask to give them the necessary information via a network API.

You can learn more about Flask-SQLAlchemy at https://flask-sqlalchemy.palletsprojects.

com/en/2.x/.

Flask-SQLAlchemy
SQLAlchemy and the Flask-SQLAlchemy extension are database abstraction and object-relational

mappers, respectively. It’s a fancy way to use the Python object for a database. To make things

simple, we will use SQLite as the database, which is a flat file that acts as a self-contained SQL

database. We will look at the content of chapter9_db_1.py as an example of using Flask-SQLAl-

chemy to create a network database and insert a few table entries into the database. This is a

multiple-step process, and we will look at the steps in this section.

.

https://flask-sqlalchemy.palletsprojects.com/en/2.x/
https://flask-sqlalchemy.palletsprojects.com/en/2.x/

Building Network Web Services with Python298

To begin, we will create a Flask application and load the configuration for SQLAlchemy, such as

the database path and name, then create the SQLAlchemy object by passing the application to it:

from flask import Flask
from flask_sqlalchemy import SQLAlchemy
Create Flask application, load configuration, and create
the SQLAlchemy object
app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///network.db'
db = SQLAlchemy(app)

We can then create a device database object and its associated primary key and various columns:

This is the database model object
class Device(db.Model):
 __tablename__ = 'devices'
 id = db.Column(db.Integer, primary_key=True)
 hostname = db.Column(db.String(120), index=True)
 vendor = db.Column(db.String(40))
 def __init__(self, hostname, vendor):
 self.hostname = hostname
 self.vendor = vendor
 def __repr__(self):
 return '<Device %r>' % self.hostname

We can invoke the database object, create entries, and insert them into the database table. Keep

in mind that anything we add to the session needs to be committed to the database in order to

be permanent:

if __name__ == '__main__':
 db.create_all()
 r1 = Device('lax-dc1-core1', 'Juniper')
 r2 = Device('sfo-dc1-core1', 'Cisco')
 db.session.add(r1)
 db.session.add(r2)
 db.session.commit()

We will run the Python script and check for the existence of the database file:

$ python chapter9_db_1.py

$ ls -l network.db

-rw-r--r-- 1 echou echou 28672 Sep 21 10:43 network.db

Chapter 9 299

We can use the interactive prompt to check the database table entries:

>>> from flask import Flask
>>> from flask_sqlalchemy import SQLAlchemy
>>> app = Flask(__name__)
>>> app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///network.db'
>>> db = SQLAlchemy(app)
>>> from chapter9_db_1 import Device
>>> Device.query.all()
[<Device 'lax-dc1-core1'>, <Device 'sfo-dc1-core1'>]
>>> Device.query.filter_by(hostname='sfo-dc1-core1')
<flask_sqlalchemy.BaseQuery object at 0x7f09544a0e80>
>>> Device.query.filter_by(hostname='sfo-dc1-core1').first()
<Device 'sfo-dc1-core1'>

We can also create new entries in the same manner:

>>> r3 = Device('lax-dc1-core2', 'Juniper')

>>> db.session.add(r3)

>>> db.session.commit()

>>> Device.query.filter_by(hostname='lax-dc1-core2').first()

<Device 'lax-dc1-core2'>

Let’s go ahead and delete the network.db file so it does not conflict with our other examples

using the same db name:

$ rm network.db

Now we are ready to move on to build our network content API.

The network content API
Before we dive into the code of building our API, let’s take a moment to think about the API struc-

ture we will create. Planning for an API is usually more an art than a science; it really depends on

your situation and preference. What I suggest in this section is, by no means, the only way, but

for now, stay with me for the purposes of getting started.

Recall that, in our diagram, we have four Cisco IOSv devices. Let’s pretend that two of them,

lax-edg-r1 and lax-edg-r2, are in the network role of the spine. The other two devices, nyc-

edg-r1 and nyc-edg-r2, are in our network service as leaves. These are arbitrary choices and can

be modified later on, but the point is that we want to serve data about our network devices and

expose them via an API.

Building Network Web Services with Python300

To make things simple, we will create two APIs, a devices group API and a single-device API:

Figure 9.4: Network Content API

The first API will be our http://192.168.2.126/devices/ endpoint, which supports two methods:

GET and POST. The GET request will return the current list of devices, while the POST request with

the proper JSON body will create the device. Of course, you can choose different endpoints for

creation and querying, but in this design, we choose to differentiate the two by the HTTP methods.

The second API will be specific to our device in the form of http://192.168.2.126/devices/<device

id>. The API with the GET request will show the details of the device that we have entered into

the database.

The PUT request will modify the entry with the update. Note that we use PUT instead of POST. This

is typical of HTTP API usage; when we need to modify an existing entry, we will use PUT instead

of POST.

At this point, you should have a good idea about what your API will look like. To better visualize

the final result, I will jump ahead and show the result quickly before we take a look at the code.

If you want to follow the example, feel free to launch chapter9_6.py as the Flask server.

A POST request to the /devices/ API will allow you to create an entry. In this case, I would like to

create our network device with attributes such as hostname, loopback IP, management IP, role,

vendor, and the operating system it runs on:

$ http POST http://192.168.2.126:5000/devices/ 'hostname'='lax-edg-r1'
'loopback'='192.168.0.10' 'mgmt_ip'='192.168.2.51' 'role'='spine'
'vendor'='Cisco' 'os'='15.8'

HTTP/1.1 201 CREATED

Connection: close

Content-Length: 3

Content-Type: application/json

Date: Wed, 21 Sep 2022 18:01:33 GMT

Location: http://192.168.2.126:5000/devices/1

Server: Werkzeug/2.2.2 Python/3.10.4

{}

Chapter 9 301

I can repeat the preceding step for the three additional devices:

$ http POST http://192.168.2.126:5000/devices/ 'hostname'='lax-edg-r2'
'loopback'='192.168.0.11' 'mgmt_ip'='192.168.2.52' 'role'='spine'
'vendor'='Cisco' 'os'='15.8'

$ http POST http://192.168.2.126:5000/devices/ 'hostname'='nyc-edg-r1'
'loopback'='192.168.0.12' 'mgmt_ip'='192.168.2.61' 'role'='leaf'

'vendor'='Cisco' 'os'='15.8'

$ http POST http://192.168.2.126:5000/devices/ 'hostname'='nyc-edg-r2'
'loopback'='192.168.0.13' 'mgmt_ip'='192.168.2.62' 'role'='leaf'
'vendor'='Cisco' 'os'='15.8'

If we use the same API endpoint with the GET request, we will be able to see the list of network

devices that we created:

$ http GET http://192.168.2.126:5000/devices/

HTTP/1.1 200 OK

Connection: close

Content-Length: 193

Content-Type: application/json

Date: Wed, 21 Sep 2022 18:07:16 GMT

Server: Werkzeug/2.2.2 Python/3.10.4

{

 "device": [

 "http://192.168.2.126:5000/devices/1",

 "http://192.168.2.126:5000/devices/2",

 "http://192.168.2.126:5000/devices/3",

 "http://192.168.2.126:5000/devices/4"

]

}

Similarly, using the GET request for /devices/<id> will return specific information related to

the device:

$ http GET http://192.168.2.126:5000/devices/1

HTTP/1.1 200 OK

Connection: close

Content-Length: 199

Content-Type: application/json

Building Network Web Services with Python302

Date: Wed, 21 Sep 2022 18:07:50 GMT

Server: Werkzeug/2.2.2 Python/3.10.4

{

 "hostname": "lax-edg-r1",

 "loopback": "192.168.0.10",

 "mgmt_ip": "192.168.2.51",

 "os": "15.8",

 "role": "spine",

 "self_url": "http://192.168.2.126:5000/devices/1",

 "vendor": "Cisco"

}

Let’s pretend we have downgraded the lax-edg-r1 operating system from 15.6 to 14.6. We can

use the PUT request to update the device record:

$ http PUT http://192.168.2.126:5000/devices/1 'hostname'='lax-edg-r1'
'loopback'='192.168.0.10' 'mgmt_ip'='192.168.2.51' 'role'='spine'
'vendor'='Cisco' 'os'='14.6'

HTTP/1.1 200 OK

Verification

$ http GET http://192.168.2.126:5000/devices/1

HTTP/1.1 200 OK

Connection: close

Content-Length: 199

Content-Type: application/json

Date: Wed, 21 Sep 2022 18:10:37 GMT

Server: Werkzeug/2.2.2 Python/3.10.4

{

 "hostname": "lax-edg-r1",

 "loopback": "192.168.0.10",

 "mgmt_ip": "192.168.2.51",

 "os": "14.6",

 "role": "spine",

 "self_url": "http://192.168.2.126:5000/devices/1",

 "vendor": "Cisco"

}

Chapter 9 303

Now, let’s look at the code in chapter9_6.py that created the preceding APIs. What’s cool, in

my opinion, is that all of these APIs were done in a single file, including the database interaction.

Later on, when we outgrow the APIs at hand, we can always separate the components, such as

having a separate file for the database class.

The devices API
The chapter9_6.py file starts with the necessary imports. Note that the following request import

is the request object from the client and not the requests package that we were using in the

previous chapters:

from flask import Flask, url_for, jsonify, request

from flask_sqlalchemy import SQLAlchemy

app = Flask(__name__)

app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///network.db'

db = SQLAlchemy(app)

We declared a database object with id as the primary key and string fields for hostname, loopback,

mgmt_ip, role, vendor, and os:

class Device(db.Model):

 __tablename__ = 'devices'

 id = db.Column(db.Integer, primary_key=True)

 hostname = db.Column(db.String(64), unique=True)

 loopback = db.Column(db.String(120), unique=True)

 mgmt_ip = db.Column(db.String(120), unique=True)

 role = db.Column(db.String(64))

 vendor = db.Column(db.String(64))

 os = db.Column(db.String(64))

The get_url() function under the Device class returns a URL from the url_for() function. Note

that the get_device() function that’s called is not defined just yet under the /devices/<int:id>

route:

 def get_url(self):

 return url_for('get_device', id=self.id, _external=True)

Building Network Web Services with Python304

The export_data() and import_data() functions are mirror images of each other. One is used

to get the information from the database to the user (export_data()) when we use the GET

method. The other is to get information from the user to the database (import_data()) when

we use the POST or PUT method:

 def export_data(self):

 return {

 'self_url': self.get_url(),

 'hostname': self.hostname,

 'loopback': self.loopback,

 'mgmt_ip': self.mgmt_ip,

 'role': self.role,

 'vendor': self.vendor,

 'os': self.os

 }

 def import_data(self, data):

 try:

 self.hostname = data['hostname']

 self.loopback = data['loopback']

 self.mgmt_ip = data['mgmt_ip']

 self.role = data['role']

 self.vendor = data['vendor']

 self.os = data['os']

 except KeyError as e:

 raise ValidationError('Invalid device: missing ' + e.args[0])

 return self

With the database object in place and the import and export functions created, the URL dispatch

is straightforward for device operations. The GET request will return a list of devices by querying

all the entries in the devices table and returning the URL of each entry. The POST method will

use the import_data() function with the global request object as the input. It will then add the

device and commit the information to the database:

@app.route('/devices/', methods=['GET'])

def get_devices():

 return jsonify({'device': [device.get_url()

 for device in Device.query.all()]})

@app.route('/devices/', methods=['POST'])

Chapter 9 305

def new_device():

 device = Device()

 device.import_data(request.json)

 db.session.add(device)

 db.session.commit()

 return jsonify({}), 201, {'Location': device.get_url()}

If you look at the POST method, the returned body is an empty JSON body, with the status code

201 (created), as well as extra headers:

HTTP/1.0 201 CREATED

Content-Length: 2

Content-Type: application/json Date: ...

Location: http://192.168.2.126:5000/devices/4

Server: Werkzeug/2.2.2 Python/3.10.4

Let’s look at the API that queries and returns information for individual devices.

The device ID API
The route for individual devices specifies that the ID should be an integer, which can act as our

first line of defense against a bad request. The two endpoints follow the same design pattern as

our /devices/ endpoint, where we use the same import and export functions:

@app.route('/devices/<int:id>', methods=['GET'])

def get_device(id):

 return jsonify(Device.query.get_or_404(id).export_data())

@app.route('/devices/<int:id>', methods=['PUT'])

def edit_device(id):

 device = Device.query.get_or_404(id)

 device.import_data(request.json)

 db.session.add(device)

 db.session.commit()

 return jsonify({})

Note that the query_or_404() method provides a convenient way of returning 404 (not found) if

the database query returns negative for the ID passed in. This is a pretty elegant way of providing

a quick check on the database query.

Building Network Web Services with Python306

Finally, the last part of the code creates the database table and starts the Flask development server:

if __name__ == '__main__':

 db.create_all()

 app.run(host='0.0.0.0', debug=True)

This is one of the longer Python scripts in this book, so we took more time to explain it in detail.

The script provides a way to illustrate how we can utilize the database in the backend to keep

track of the network devices and only expose them to the external world as APIs using Flask.

In the next section, we will take a look at how to use the API to perform asynchronous tasks on

either individual devices or a group of devices.

Network dynamic operations
Our API can now provide static information about the network; anything we can store in the da-

tabase can be returned to the requester. It would be great if we could interact with our network

directly, such as a query for device information or to push configuration changes to the device.

We will start this process by leveraging a script we have already seen in Chapter 2, Low-Level

Network Device Interactions, for interacting with a device via Pexpect. We will modify the script

slightly into a function we can repeatedly use in chapter9_pexpect_1.py:

import pexpect

def show_version(device, prompt, ip, username, password):

 device_prompt = prompt

 child = pexpect.spawn('telnet ' + ip)

 child.expect('Username:')

 child.sendline(username)

 child.expect('Password:')

 child.sendline(password)

 child.expect(device_prompt)

 child.sendline('show version | i V')

 child.expect(device_prompt)

 result = child.before

 child.sendline('exit')

 return device, result

Chapter 9 307

We can test the new function via the interactive prompt:

>>> from chapter9_pexpect_1 import show_version

>>> print(show_version('lax-edg-r1', 'lax-edg-r1#', '192.168.2.51',
'cisco', 'cisco'))

('lax-edg-r1', b'show version | i V\r\nCisco IOS Software, IOSv Software
(VIOS-ADVENTERPRISEK9-M), Version 15.8(3)M2, RELEASE SOFTWARE (fc2)\r\
nProcessor board ID 98U40DKV403INHIULHYHB\r\n')

Make sure our Pexpect script works before proceeding. The following code assumes that we have

entered the necessary database information from the previous section.

We can add a new API for querying the device version in chapter9_7.py:

from chapter9_pexpect_1 import show_version

<skip>

@app.route('/devices/<int:id>/version', methods=['GET'])

def get_device_version(id):

 device = Device.query.get_or_404(id)

 hostname = device.hostname

 ip = device.mgmt_ip

 prompt = hostname+"#"

 result = show_version(hostname, prompt, ip, 'cisco', 'cisco')

 return jsonify({"version": str(result)})

The result will be returned to the requester:

$ http GET http://192.168.2.126:5000/devices/1/version

HTTP/1.1 200 OK

Connection: close

Content-Length: 216

Content-Type: application/json

Date: Wed, 21 Sep 2022 18:19:52 GMT

Server: Werkzeug/2.2.2 Python/3.10.4

{

 "version": "('lax-edg-r1', b'show version | i V\\r\\nCisco IOS
Software, IOSv Software (VIOS-ADVENTERPRISEK9-M), Version 15.8(3)M2,
RELEASE SOFTWARE (fc2)\\r\\nProcessor board ID 98U40DKV403INHIULHYHB\\
r\\n')"

}

Building Network Web Services with Python308

We can also add another endpoint that will allow us to perform a bulk action on multiple devices

based on their common fields. In the following example, the endpoint will take the device_role

attribute in the URL and match it up with the appropriate device(s):

@app.route('/devices/<device_role>/version', methods=['GET'])

def get_role_version(device_role):

 device_id_list = [device.id for device in Device.query.all() if
device.role == device_role]

 result = {}

 for id in device_id_list:

 device = Device.query.get_or_404(id)

 hostname = device.hostname

 ip = device.mgmt_ip

 prompt = hostname + "#"

 device_result = show_version(hostname, prompt, ip, 'cisco',
'cisco')

 result[hostname] = str(device_result)

 return jsonify(result)

Of course, looping through all the devices in Device.query.all() is not efficient, as in the pre-

ceding code. In production, we will use a SQL query that specifically targets the role of the device.

When we use the RESTful API, we can see that all the spine, as well as leaf, devices can be queried

at the same time:

$ http GET http://192.168.2.126:5000/devices/spine/version

HTTP/1.1 200 OK

Connection: close

Content-Length: 389

Content-Type: application/json

Date: Wed, 21 Sep 2022 18:20:57 GMT

Server: Werkzeug/2.2.2 Python/3.10.4

{

 "lax-edg-r1": "('lax-edg-r1', b'show version | i V\\r\\nCisco IOS
Software, IOSv Software (VIOS-ADVENTERPRISEK9-M), Version 15.8(3)M2,
RELEASE SOFTWARE (fc2)\\r\\nProcessor board ID 98U40DKV403INHIULHYHB\\
r\\n')",

Chapter 9 309

 "lax-edg-r2": "('lax-edg-r2', b'show version | i V\\r\\nCisco IOS
Software, IOSv Software (VIOS-ADVENTERPRISEK9-M), Version 15.8(3)M2,
RELEASE SOFTWARE (fc2)\\r\\n')"

}

As illustrated, the new API endpoints query the device(s) in real time and return the result to

the requester. This works relatively well when you can guarantee a response from the operation

within the timeout value of the transaction (30 seconds, by default) or if you are OK with the

HTTP session timing out before the operation is completed. One way to deal with the timeout

issue is to perform the tasks asynchronously. We will look at how to do so in the next section.

Asynchronous operations
Asynchronous operations, when executing tasks out of the normal time sequence, are, in my

opinion, an advanced topic of Flask.

Luckily, Miguel Grinberg (https://blog.miguelgrinberg.com/), whose Flask work I am a big

fan of, provides many posts and examples on his blog and his GitHub repository. For asynchro-

nous operations, the example code in chapter9_8.py referenced Miguel’s GitHub code on the

Raspberry Pi file (https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/

master/camera/camera.py) for the background decorator. We will start by importing a few

more modules:

from flask import Flask, url_for, jsonify, request,\

 make_response, copy_current_request_context

from flask_sqlalchemy import SQLAlchemy

from chapter9_pexpect_1 import show_version

import uuid

import functools

from threading import Thread

The background decorator takes in a function and runs it as a background task using the thread

and UUID for the task ID. It returns the status code 202 (accepted) and the location of the new

resources for the requester to check. We will make a new URL for status checking:

@app.route('/status/<id>', methods=['GET'])

def get_task_status(id):

 global background_tasks

 rv = background_tasks.get(id)

https://blog.miguelgrinberg.com/
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py
https://github.com/miguelgrinberg/oreilly-flask-apis-video/blob/master/camera/camera.py

Building Network Web Services with Python310

 if rv is None:

 return not_found(None)

 if isinstance(rv, Thread):

 return jsonify({}), 202, {'Location': url_for('get_task_status',
id=id)}

 if app.config['AUTO_DELETE_BG_TASKS']:

 del background_tasks[id]

 return rv

Once we retrieve the resource, it is deleted. This is done by setting app.config['AUTO_DELETE_

BG_TASKS'] to true at the top of the app. We will add this decorator to our version endpoints

without changing the other part of the code because all of the complexity is hidden in the dec-

orator (how cool is that?):

@app.route('/devices/<int:id>/version', methods=['GET'])

@background

def get_device_version(id):

 device = Device.query.get_or_404(id)

<skip>

@app.route('/devices/<device_role>/version', methods=['GET'])

@background

def get_role_version(device_role):

 device_id_list = [device.id for device in Device.query.all() if
device.role == device_role]

<skip>

The end result is a two-part process. We will perform the GET request for the endpoint and receive

the location header:

$ http GET http://192.168.2.126:5000/devices/spine/version

HTTP/1.1 202 ACCEPTED

Connection: close

Content-Length: 3

Content-Type: application/json

Date: Wed, 21 Sep 2022 18:25:25 GMT

Location: /status/bb57f6cac4c64e0aa2e67415eb7cabd0

Server: Werkzeug/2.2.2 Python/3.10.4

{}

Chapter 9 311

We can then make a second request to the location to retrieve the result:

$ http GET http://192.168.2.126:5000/status/
bb57f6cac4c64e0aa2e67415eb7cabd0

HTTP/1.1 200 OK

Connection: close

Content-Length: 389

Content-Type: application/json

Date: Wed, 21 Sep 2022 18:28:30 GMT

Server: Werkzeug/2.2.2 Python/3.10.4

{

 "lax-edg-r1": "('lax-edg-r1', b'show version | i V\\r\\nCisco IOS
Software, IOSv Software (VIOS-ADVENTERPRISEK9-M), Version 15.8(3)M2,
RELEASE SOFTWARE (fc2)\\r\\nProcessor board ID 98U40DKV403INHIULHYHB\\
r\\n')",

 "lax-edg-r2": "('lax-edg-r2', b'show version | i V\\r\\nCisco IOS
Software, IOSv Software (VIOS-ADVENTERPRISEK9-M), Version 15.8(3)M2,
RELEASE SOFTWARE (fc2)\\r\\n')"

}

To verify that the status code 202 is returned when the resource is not ready, we will use the

following script, chapter9_request_1.py, to immediately make a request to the new resource:

import requests, time

server = 'http://192.168.2.126:5000'

endpoint = '/devices/1/version'

First request to get the new resource

r = requests.get(server+endpoint)

resource = r.headers['location']

print("Status: {} Resource: {}".format(r.status_code, resource))

Second request to get the resource status

r = requests.get(server+"/"+resource)

print("Immediate Status Query to Resource: " + str(r.status_code))

Building Network Web Services with Python312

print("Sleep for 2 seconds")

time.sleep(2)

Third request to get the resource status

r = requests.get(server+"/"+resource)

print("Status after 2 seconds: " + str(r.status_code))

As you can see in the result, the status code is returned while the resource is still being run in the

background as 202:

$ python chapter9_request_1.py

Status: 202 Resource: /status/960b3a4a81d04b2cb7206d725464ef71

Immediate Status Query to Resource: 202

Sleep for 2 seconds

Status after 2 seconds: 200

Our APIs are coming along nicely! Because our network resource is valuable, we should secure

API access to only authorized personnel. We will add basic security measures to our API in the

next section.

Authentication and Authorization
For basic user authentication, we will use Flask’s httpauth (https://flask-httpauth.

readthedocs.io/en/latest/) extension, written by Miguel Grinberg, as well as the pass-

word functions in Werkzeug. The httpauth extension should have been installed as part of the

requirements.txt installation at the beginning of this chapter. The new file illustrating the secu-

rity feature is named chapter9_9.py. In the script, we will start with a few more module imports:

from werkzeug.security import generate_password_hash, check_password_hash

from flask_httpauth import HTTPBasicAuth

We will create an HTTPBasicAuth object as well as the user database object. Note that, during the

user creation process, we will pass the password value; however, we are only storing password_

hash instead of the cleartext password itself:

auth = HTTPBasicAuth()

<skip>

class User(db.Model):

 __tablename__ = 'users'

 id = db.Column(db.Integer, primary_key=True)

 username = db.Column(db.String(64), index=True)

 password_hash = db.Column(db.String(128))

https://flask-httpauth.readthedocs.io/en/latest/
https://flask-httpauth.readthedocs.io/en/latest/

Chapter 9 313

 def set_password(self, password):

 self.password_hash = generate_password_hash(password)

 def verify_password(self, password):

 return check_password_hash(self.password_hash, password)

The auth object has a verify_password decorator that we can use, along with Flask’s g global

context object that was created when the user request started. Because g is global, if we save the

user to the g variable, it will live through the entire transaction:

@auth.verify_password

def verify_password(username, password):

 g.user = User.query.filter_by(username=username).first()

 if g.user is None:

 return False

 return g.user.verify_password(password)

There is a handy before_request handler that can be used before any API endpoint is called. We

will combine the auth.login_required decorator with the before_request handler that will

be applied to all the API routes:

@app.before_request

@auth.login_required

def before_request():

 pass

Lastly, we will use the unauthorized error handler to return a response object for the 401 un-

authorized error:

@auth.error_handler

def unathorized():

 response = jsonify({'status': 401, 'error': 'unauthorized',

 'message': 'please authenticate'})

 response.status_code = 401

 return response

Before we can test user authentication, we will need to create users in our database:

>>> from chapter9_9 import db, User

>>> db.create_all()

>>> u = User(username='eric')

>>> u.set_password('secret')

Building Network Web Services with Python314

>>> db.session.add(u)

>>> db.session.commit()

>>> exit()

Once you start your Flask development server, try to make a request, like we did previously. You

should see that, this time, the server will reject the request with a 401 unauthorized error:

$ http GET http://192.168.2.126:5000/devices/

HTTP/1.1 401 UNAUTHORIZED

Connection: close

Content-Length: 82

Content-Type: application/json

Date: Wed, 21 Sep 2022 18:39:06 GMT

Server: Werkzeug/2.2.2 Python/3.10.4

WWW-Authenticate: Basic realm="Authentication Required"

{

 "error": "unahtorized",

 "message": "please authenticate",

 "status": 401

}

We will now need to provide the authentication header for our requests:

$ http --auth eric:secret GET http://192.168.2.126:5000/devices/

HTTP/1.1 200 OK

Connection: close

Content-Length: 193

Content-Type: application/json

Date: Wed, 21 Sep 2022 18:39:42 GMT

Server: Werkzeug/2.2.2 Python/3.10.4

{

 "device": [

 "http://192.168.2.126:5000/devices/1",

 "http://192.168.2.126:5000/devices/2",

 "http://192.168.2.126:5000/devices/3",

 "http://192.168.2.126:5000/devices/4"

]

}

Chapter 9 315

We now have a decent RESTful API set up for our network. When our user wants to retrieve

network device information, they can query for the static content of the network. They can also

perform network operations for a single device or a group of devices. We also added basic security

measures to ensure that only the users we created can retrieve the information from our API. The

cool part is that this is all done within a single file in less than 250 lines of code (less than 200 if

you subtract the comments)!

We have now abstracted the underlying vendor API away from our network and replaced them

with our RESTful API. By providing the abstraction, we are free to use what is required in the

backend, such as Pexpect, while providing a uniform frontend to our requester. We can even take

a step forward and replace the underlying network device without impacting the users making

API calls to us. Flask provides this abstraction in a compact and easy-to-use way for us. We can

also run Flask with a smaller footprint, such as by using containers.

Running Flask in containers
Containers have become very popular in the last few years. They offer more abstractions and

virtualization beyond hypervisor-based virtual machines. For interested readers, we will offer a

simple example of how we can run our Flask app in a Docker container.

We will build our example based on the free DigitalOcean Docker tutorial on building containers

on Ubuntu 20.04 machines (https://www.digitalocean.com/community/tutorials/how-to-

build-and-deploy-a-flask-application-using-docker-on-ubuntu-20-04). If you are new

to containers, I would highly recommend that you go through that tutorial and return to this

section after.

Let’s make sure Docker is installed:

$ sudo docker –version

Docker version 20.10.18, build b40c2f6

We will make a directory named TestApp to house our code:

$ mkdir TestApp

$ cd TestApp/

For more information on user session management, logging in, logging out, and

remembering user sessions, I highly recommend using the Flask-Login (https://

flask-login.readthedocs.io/en/latest/) extension.

https://www.digitalocean.com/community/tutorials/how-to-build-and-deploy-a-flask-application-using-docker-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-build-and-deploy-a-flask-application-using-docker-on-ubuntu-20-04
https://flask-login.readthedocs.io/en/latest/
https://flask-login.readthedocs.io/en/latest/

Building Network Web Services with Python316

In the directory, we will make another directory called app and create the __init__.py file:

$ mkdir app

$ touch app/__init__.py

Under the app directory is where we will contain the logic of our application. Since we have been

using a single-file app up to this point, we can simply copy over the contents of our chapter9_6.

py file to the app/__init__.py file:

$ cat app/__init__.py

from flask import Flask, url_for, jsonify, request

from flask_sqlalchemy import SQLAlchemy

app = Flask(__name__)

app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///network.db'

db = SQLAlchemy(app)

@app.route('/')

def home():

 return "Hello Python Networking!"

<skip>

class Device(db.Model):

 __tablename__ = 'devices'

 id = db.Column(db.Integer, primary_key=True)

 hostname = db.Column(db.String(64), unique=True)

 loopback = db.Column(db.String(120), unique=True)

 mgmt_ip = db.Column(db.String(120), unique=True)

 role = db.Column(db.String(64))

 vendor = db.Column(db.String(64))

 os = db.Column(db.String(64))

<skip>

We can also copy the SQLite database file we created to this directory:

$ tree app/

app/

├── __init__.py

├── network.db

We will place the requirements.txt file in the TestApp directory:

$ cat requirements.txt

Flask==1.1.1

Chapter 9 317

Flask-HTTPAuth==3.3.0

Flask-SQLAlchemy==2.4.1

Jinja2==2.10.1

MarkupSafe==1.1.1

Pygments==2.4.2

SQLAlchemy==1.3.9

Werkzeug==0.16.0

httpie==1.0.3

itsdangerous==1.1.0

python-dateutil==2.8.0

requests==2.20.1

We will create the main.py file as our entry point and an ini file for uwsgi:

$ cat main.py

from app import app

$ cat uwsgi.ini

[uwsgi]

module = main

callable = app

master = true

We will use a pre-made Docker image and create a Dockerfile that builds the Docker image:

$ cat Dockerfile

FROM tiangolo/uwsgi-nginx-flask:python3.7-alpine3.7

RUN apk --update add bash vim

RUN mkdir /TestApp

ENV STATIC_URL /static

ENV STATIC_PATH /TestApp/static

COPY ./requirements.txt /TestApp/requirements.txt

RUN pip install -r /TestApp/requirements.txt

Due to a conflict with the tiangolo/uwsgi-nginx-flask image and some later

versions of Flask packages, this requirements file is reverting to Flask 1.1.1. The por-

tion of code we worked on works in both version 1.1.1 and the latest Flask version.

Building Network Web Services with Python318

Our start.sh shell script will build the image, run it as a daemon in the background, then forward

port 8000 to the Docker container:

$ cat start.sh

#!/bin/bash

app="docker.test"

docker build -t ${app} .

docker run -d -p 8000:80 \

 --name=${app} \

 -v $PWD:/app ${app}

We can now use the start.sh script to build the image and launch our container:

$ sudo bash start.sh

Sending build context to Docker daemon 48.13kB

Step 1/7 : FROM tiangolo/uwsgi-nginx-flask:python3.8

python3.8: Pulling from tiangolo/uwsgi-nginx-flask

85bed84afb9a: Pulling fs layer

5fdd409f4b2b: Pulling fs layer

<skip>

Our Flask now runs in the container that can be viewed from our host machine port 8000:

$ sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

25c83da6082c docker.test "/entrypoint.sh /sta…" 2 minutes ago Up 2
minutes 443/tcp, 0.0.0.0:8000->80/tcp, :::8000->80/tcp docker.test

We can see the management host IP displayed in the address bar as follows:

Figure 9.5: Management Host IP Forwarding

Chapter 9 319

We can see the Flask API endpoint as follows:

Figure 9.6: API Endpoint

Once we are done, we can use the following commands to stop and delete the container:

$ sudo docker stop <container id>

$ sudo docker rm <containter id>

We can also delete the Docker image:

$ sudo docker images -a -q #find the image id

$ sudo docker rmi <image id>

As we can see, running Flask in a container gives us even more flexibility and the option to deploy

our API abstraction in production. Containers, of course, offer their complexity and add more

management tasks, so we need to weigh up the benefits and overhead when it comes to our de-

ployment methods. We are close to the end of this chapter, so let’s look at what we have done so

far before looking forward to the next chapters.

Summary
In this chapter, we started to move on to the path of building RESTful APIs for our network. We

looked at popular Python web frameworks, namely Django and Flask, and compared and contrast-

ed the two. By choosing Flask, we can start small and expand on features by using Flask extensions.

In our lab, we used the virtual environment to separate the Flask installation base from our global

site packages. The lab network consists of several IOSv nodes, two of which we have designated

as spine routers while the other two as leaf routers. We took a tour of the basics of Flask and used

the simple HTTPie client to test our API setup.

Building Network Web Services with Python320

Among the different setups of Flask, we placed special emphasis on URL dispatch as well as URL

variables because they are the initial logic between the requesters and our API system. We took a

look at using Flask-SQLAlchemy and SQLite to store and return network elements that are static

in nature. For operation tasks, we also created API endpoints while calling other programs, such

as Pexpect, to accomplish configuration tasks. We improved the setup by adding asynchronous

handling and user authentication to our API. We also looked at how to run our Flask API appli-

cation in a Docker container.

In Chapter 10, Introduction to Async IO, we will shift gears to look at one of the newer features

in Python 3, Async IO, and how it can be applied to network engineering.

Join our book community
To join our community for this book – where you can share feedback, ask questions to the author,

and learn about new releases – follow the QR code below:

https://packt.link/networkautomationcommunity

https://packt.link/networkautomationcommunity

10
Introduction to Async IO

In the previous chapters, we have been interacting with the network devices directly via API or

other Python libraries that abstracted us from low-level interactions with a remote device. When

we need to interact with multiple devices, we use loops to allow us to pragmatically execute com-

mands. One issue that we might start to see is that the end-to-end process begins to slow down

when we need to interact with many devices. The bottleneck is usually the time spent waiting

between the time we send the command until we receive the proper response from the remote

device. If we need to spend 5 seconds of wait time per operation, we could wait for a few minutes

when we need to operate on 30 devices.

This is partially true because our operations are sequential. We are only operating on one device

at a time, in sequence. What if we can process multiple devices at the same time? That would

speed things up, right? Yes, you are correct. But it is not as simple as “telling” our Python script

to “go for” many devices simultaneously. We must consider the way computers schedule tasks,

the language limitation, and the available tools at hand.

In this chapter, we will discuss Async IO, the Python package that allows us to perform multiple

tasks at the same time. We will also discuss related topics such as multiprocessing, parallelism,

threading, and others. Asynchronous operations in Python is a topic that I would consider medium

to advanced level. The async IO module itself was only introduced in Python 3.4. It also went

through rapid changes between Python 3.4 to Python 3.7. Regardless, it is a very relatable topic for

network automation. I believe it is worth a study for any network engineer looking to be familiar

with network automation.

Introduction to Async IO322

In this chapter, we will discuss the following topics related to Async IO:

•	 Asynchronous operations overview

•	 Multiprocessing and threading

•	 Python asyncio module

•	 The Scrapli project

Let’s start by looking at an overview of asynchronous operations.

Asynchronous operations overview
In the Zen of Python; we know one of the guiding principles in Python is to preferably have “one

best way to do something.” When it comes to asynchronous operations, it is a bit complicated.

We know it would help if we could do multiple tasks simultaneously but determining the correct

solution might not be straightforward.

First, we will need to determine what is slowing down our program. Typically, the bottleneck can

be either CPU-bound or I/O-bound. In a CPU-bound situation, the program pushes the CPU to

its limit. Operations such as solving mathematical questions or image processing are examples

of CPU-bound programs. For example, when we pick an encryption algorithm for VPN, we know

the more complex the algorithm, the more CPU it will consume. For CPU-bound tasks, the way

to mitigate the bottleneck is to increase the CPU power or allow the task to use multiple CPUs

simultaneously.

In an IO-bound operation, the program spends most of its time waiting for some output from

an input it has completed. When we make an API call to a device, we cannot move on to the next

step until we receive what we need as the answer. If time is significant, this is time that otherwise

could have been useful in doing something else. The way to mitigate IO-bound tasks is to work

on multiple tasks simultaneously.

For more information on Python-related asynchronous operations, Real Python

(https://realpython.com/search?q=asyncio) and Python documentation

(https://docs.python.org/3/library/asyncio.html) both offer good resources

for learning.

https://realpython.com/search?q=asyncio
https://docs.python.org/3/library/asyncio.html

Chapter 10 323

If the work at hand is limited by CPU power or Input-Output latency, we can try to run multiple

operations at once. This is called parallelism. Of course, not all tasks can be parallelized. As the

great Warren Buffet saying goes, “You can’t produce a baby in one month by getting nine women

pregnant.” However, if your task can be parallelized, we have a few parallel processing options:

multiprocessing, threading, or the new asyncio module.

Python multiprocessing
Python’s multiprocessing allows CPU-bound tasks to be broken up into sub-tasks and spawning

subprocesses to handle them. This is well-suited for CPU-bound tasks because it allows multi-

ple CPUs to work simultaneously. If we look back at the history of computing, we notice that

around 2005, a single CPU can no longer get any faster. We simply cannot fit more transistors

onto a single CPU due to interference and heat issues. The way we have gotten more computing

power is by having multi-core CPUs. This is beneficial in allowing us to spread our tasks among

the multi-core CPUs.

In Python’s multiprocessing module, processes are spawned by creating a Process object and

then calling its start() method. Let’s see a simple example, multiprocess_1.py:

#!/usr/bin/env python3

Modified from

https://docs.python.org/3/library/multiprocessing.html

from multiprocessing import Process

import os

def process_info():

 print('process id:', os.getpid())

def worker(number):

 print(f'Worker number {number}')

 process_info()

if __name__ == '__main__':

 for i in range(5):

 p = Process(target=worker, args=(i,))

 p.start()

Introduction to Async IO324

In the example, we have a worker function that calls another process_info() function to get the

process ID. Then we start the Process object five times, each one targeting the worker function.

The output for the execution is below:

(venv) $ python multiprocess_1.py

Worker number 0

process id: 109737

Worker number 2

process id: 109739

Worker number 3

process id: 109740

Worker number 1

process id: 109738

Worker number 4

process id: 109741

As we can see, each process has its process and process ID. Multiprocessing is great for CPU-bound

tasks. If the work is IO-bound, before the asyncio module, our best bet is to use the threading

module.

Python multithreading
As many of us know, Python has a Global Interpreter Lock, or GIL. It is used by the Python in-

terpreter (CPython, to be exact) to assure that only one thread executes Python byte code at a

time. This is mainly a safety measure to protect against race conditions in memory leaks. But it

can become a performance bottleneck for IO-bound tasks.

For more information, check out the article at https://realpython.com/python-

gil/.

https://realpython.com/python-gil/
https://realpython.com/python-gil/

Chapter 10 325

One way to allow multiple threads to run is by using the threading module. It allows a program

to run multiple operations concurrently. We can see a simple example in threading_1.py:

#!/usr/bin/env python3

Modified from https://pymotw.com/3/threading/index.html

import threading

Get thread ID

def thread_id():

 print('thread id:', threading.get_ident())

Worker function

def worker(number):

 print(f'Worker number {number}')

 thread_id()

threads = []

for i in range(5):

 t = threading.Thread(target=worker, args=(i,))

 threads.append(t)

 t.start()

The script is similar to our multiprocess example, with the exception of displaying the thread ID

instead of the process ID. The output for the script execution is below:

(venv) $ python threading_1.py

Worker number 0

thread id: 140170712495680

Worker number 1

thread id: 140170704102976

Worker number 2

thread id: 140170695710272

Worker number 3

thread id: 140170704102976

Worker number 4

thread id: 140170695710272

Introduction to Async IO326

The threading module is a good option to mitigate the Python GIL with multiple threads. However,

when Python passes the task to a thread, the main process has limited visibility in the threading

process. The threads are harder to deal with, especially when coordinating between different

threads and handling errors if they arise. For IO-bound tasks, instead of threads, asyncio in Python

3 is another great option.

Figure 10.1: CPU-bound vs. IO-bound Python modules

Let’s dig deeper into the asyncio module.

Python asyncio module
We can think of the asyncio module as Python’s way of allowing us to write code to run tasks

concurrently. It uses the newly introduced async and await keywords. It can help us improve

performance for many operations that might be IO-bound, such as web servers, databases, and,

of course, communication toward devices over a network. The asyncio module is the foundation

of popular new frameworks, such as FastAPI (https://fastapi.tiangolo.com/).

However, it is important to point out that asyncio is neither multiprocessing nor multithreaded.

It is designed to be single-threaded with a single process. Python asyncio uses cooperative

multiprocessing to give the feeling of concurrency.

https://fastapi.tiangolo.com/

Chapter 10 327

Unlike threading, Python controls the process from end to end instead of passing the threading

process to the operating system. This lets Python know when the task is started and completed,

thus coordinating between the processes. When we “pause” part of the code while waiting for

results, Python will move on to other parts of the code before coming back to the “paused” code.

This is an important concept to grasp before writing our asyncio code. We need to decide which

part of the code can be paused to allow Python to temporarily move on from it. We have to tell Py-

thon, “Hey, I am just waiting for something. Go do something else and come back to check on me.”

Let us start with a simple example of the asyncio module syntax in asyncio_1.py:

#!/usr/bin/env python3

import asyncio

async def main():

 print('Hello ...')

 await asyncio.sleep(1)

 print('... World!')

 await asyncio.sleep(2)

 print('... and again.')

asyncio.run(main())

When we execute it, here is the output:

$ python asyncio_1.py

Hello ...

... World!

... and again.

There are several things we can take note of in this example:

1.	 The asyncio module is in the standard library for Python 3.10.

2.	 The async keyword is used in front of the function. In asyncio, this is called a coroutine.

3.	 The await keyword is waiting for the return of some operations.

4.	 Instead of simply calling the function/coroutine, we use asyncio.run() to do so.

At the heart of the asyncio module are coroutines, defined with the async keyword. A coroutine

is a specialized version of a Python generator function that can temporarily give back control to

the Python interpreter while waiting.

Introduction to Async IO328

Figure 10.2: Coroutine with async and await

Let’s take this example further and see how we can build on it. The following examples were

taken from the excellent tutorial from RealPython.com (https://realpython.com/async-io-

python/#the-asyncio-package-and-asyncawait). We will start with a synchronous count func-

tion with sync_count.py:

#!/usr/bin/env python3

Modified from https://realpython.com/async-io-python/#the-asyncio-
package-and-asyncawait countsync.py example

import time

def count():

 print("One")

 time.sleep(1)

 print("Two")

def main():

 count()

 count()

 count()

if __name__ == "__main__":

 s = time.perf_counter()

 main()

Generator functions are a type of function that can be iterated over like a list but

do so without loading the content into memories first. This is useful when, for ex-

ample, the dataset is so large that it might overwhelm a computer’s memory. For

more information, check out this documentation: https://wiki.python.org/

moin/Generators.

https://realpython.com/async-io-python/#the-asyncio-package-and-asyncawait
https://realpython.com/async-io-python/#the-asyncio-package-and-asyncawait
https://wiki.python.org/moin/Generators
https://wiki.python.org/moin/Generators

Chapter 10 329

 elapsed = time.perf_counter() - s

 print(f"Completed in {elapsed:0.2f} seconds.")

Upon execution, we can see the script executes in three seconds by faithfully executing the func-

tion three times sequentially:

(venv) $ python sync_count.py

One

Two

One

Two

One

Two

Completed in 3.00 seconds.

Now, let’s see if we can build an asynchronous version of it, async_count.py:

#!/usr/bin/env python3

example from https://realpython.com/async-io-python/#the-asyncio-
package-and-asyncawait countasync.py

import asyncio

async def count():

 print("One")

 await asyncio.sleep(1)

 print("Two")

async def main():

 await asyncio.gather(count(), count(), count())

if __name__ == "__main__":

 import time

 s = time.perf_counter()

 asyncio.run(main())

 elapsed = time.perf_counter() - s

 print(f"Completed in {elapsed:0.2f} seconds.")

Introduction to Async IO330

When we execute this file, we see that similar tasks were completed in 1/3 of the time:

(venv) $ python async_count.py

One

One

One

Two

Two

Two

Completed in 1.00 seconds.

Why is that? It is because now when we are counting and hit the sleep pause, we give the control

back to the interpreter to allow it to process other tasks.

Figure 10.3: Event Loop

There are a few important points to note in this example:

1.	 The sleep() function is changed to an asyncio.sleep() function. It is an awaitable

function.

2.	 Both the count() and main() functions are now coroutines.

3.	 We used ansyncio.gather() to collect all the coroutines.

4.	 The asyncio.run() is a loop that runs until everything is completed.

From the example, we can see there are several changes we need to make to regular functions

to allow the performance gain offered by asyncio. Remember we talked about cooperative mul-

tiprocessing? Asyncio requires all components within the Python programs to work together to

achieve this goal.

Chapter 10 331

Figure 10.4: Event loop

In the next section, we will look at the Scrapli project that helps us speed up the network device

interaction process by taking advantage of the Python 3 asyncio feature.

The Scrapli project
Scrapli is an open-source network library (https://github.com/carlmontanari/scrapli) that

uses Python 3’s asyncio capabilities to help connect to network devices faster. It was created by

Carl Montanari (https://github.com/carlmontanari) while working on his network automation

projects. The installation is straightforward:

(venv) $ pip install scrapli

(venv) $ mkdir scrapli && cd scrapli

Let’s go ahead and start using Scrapli for our network device communication.

Scrapli example
We can use the following example, scrapli_example_1.py, to perform a show command on our

lab NX-OS device, lax-cor-r1:

Modified from https://github.com/carlmontanari/scrapli

from scrapli import Scrapli

device = {

 "host": "192.168.2.50",

 "auth_username": "cisco",

https://github.com/carlmontanari/scrapli
https://github.com/carlmontanari

Introduction to Async IO332

 "auth_password": "cisco",

 "auth_strict_key": False,

 "ssh_config_file": True,

 "platform": "cisco_nxos",

}

conn = Scrapli(**device)

conn.open()

response = conn.send_command("show version")

print(response.result)

Executing the script will give us the show version output. Notice this is in a string format:

(venv) $ python scrapli_example_1.py

Cisco Nexus Operating System (NX-OS) Software

TAC support: http://www.cisco.com/tac

…

Software

 loader: version N/A

 kickstart: version 7.3(0)D1(1)

 system: version 7.3(0)D1(1)

Hardware

 cisco NX-Osv Chassis ("NX-Osv Supervisor Module")

 IntelI CITM) i5-7260U C with 3064740 kB of memory.

 Processor Board ID TM000940CCB

 Device name: lax-cor-r1

 bootflash: 3184776 kB

…

On the surface, it might not look any different than some of the other libraries we have seen. But

underneath the hood, the core drivers and associated platforms are using the asyncio module

that can be turned into an awaitable coroutine:

Chapter 10 333

Figure 10.5: Scrapli Core Drivers (source: https://carlmontanari.github.io/scrapli/user_guide/
basic_usage/)

The core drivers include Cisco IOS-XE, Cisco NX-OS, Cisco IOS-XR, Arista EOS, and Juniper JunOS.

By simply specifying the platform, Scrapli is able to correlate it with the particular driver. There

is also a scrapli_community project (https://github.com/scrapli/scrapli_community) that

extends beyond the core drivers.

We can verify the code by going to the project’s GitHub page, https://github.

com/carlmontanari/scrapli. The NXOS Async driver, https://github.com/
carlmontanari/scrapli/blob/main/scrapli/driver/core/cisco_nxos/

async_driver.py, can be traced back to the base async driver, https://github.
com/carlmontanari/scrapli/blob/main/scrapli/driver/base/async_

driver.py, as well as the base driver, https://github.com/carlmontanari/

scrapli/blob/main/scrapli/driver/base/base_driver.py. This is part of

the beauty of open-source projects, and we have the freedom to explore and build

 on each other’s knowledge. Thank you, Carl!

https://github.com/scrapli/scrapli_community
https://github.com/carlmontanari/scrapli
https://github.com/carlmontanari/scrapli
https://github.com/carlmontanari/scrapli/blob/main/scrapli/driver/core/cisco_nxos/async_driver.py
https://github.com/carlmontanari/scrapli/blob/main/scrapli/driver/core/cisco_nxos/async_driver.py
https://github.com/carlmontanari/scrapli/blob/main/scrapli/driver/core/cisco_nxos/async_driver.py
https://github.com/carlmontanari/scrapli/blob/main/scrapli/driver/base/async_driver.py
https://github.com/carlmontanari/scrapli/blob/main/scrapli/driver/base/async_driver.py
https://github.com/carlmontanari/scrapli/blob/main/scrapli/driver/base/async_driver.py
https://github.com/carlmontanari/scrapli/blob/main/scrapli/driver/base/base_driver.py
https://github.com/carlmontanari/scrapli/blob/main/scrapli/driver/base/base_driver.py

Introduction to Async IO334

In our lab, we specify additional ssh configurations. Therefore, we need to set ssh_config_file

to be true:

$ cat ~/.ssh/config

…

Host 192.168.2.50

 HostKeyAlgorithms +ssh-rsa

 KexAlgorithms +diffie-hellman-group-exchange-sha1

We can now put this awaitable task into an asyncio run loop.

Scrapli async example
In this example, we will be more precise about the driver and transport. We will install the

asyncssh plugin (https://carlmontanari.github.io/scrapli/api_docs/transport/plugins/

asyncssh/) from Scrapli to be used:

(venv) $ pip install scrapli[asyncssh]

The script, scraplie_example_2.py, is listed below:

#!/usr/bin/env python3

Modified from

https://github.com/carlmontanari/scrapli/blob/main/examples/async_usage/
async_multiple_connections.py

import asyncio

from scrapli.driver.core import AsyncNXOSDriver

async def gather_cor_device_version(ip, username, password):

 device = {

 "host": ip,

 "auth_username": username,

 "auth_password": password,

 "auth_strict_key": False,

 "ssh_config_file": True,

 "transport": "asyncssh",

Scrapli’s documentation, https://carlmontanari.github.io/scrapli/, is a

good place to start. Packet Coders, https://www.packetcoders.io/, also offers

good network automation classes, including Scrapli.

https://carlmontanari.github.io/scrapli/api_docs/transport/plugins/asyncssh/
https://carlmontanari.github.io/scrapli/api_docs/transport/plugins/asyncssh/
https://carlmontanari.github.io/scrapli/
https://www.packetcoders.io/

Chapter 10 335

 "driver": AsyncNXOSDriver

 }

 driver = device.pop("driver")

 conn = driver(**device)

 await conn.open()

 response = await conn.send_command("show version")

 await conn.close()

 return response

async def main():

 results = await asyncio.gather(

 gather_cor_device_version('192.168.2.50', 'cisco',
'cisco'),

 gather_cor_device_version('192.168.2.60', 'cisco',
'cisco')

)

 for result in results:

 print(result.result)

if __name__ == "__main__":

 import time

 s = time.perf_counter()

 asyncio.run(main())

 elapsed = time.perf_counter() - s

 print(f"Completed in {elapsed:0.2f} seconds.")

The script creates two new coroutines, one for gathering device information and the other for

collecting the coroutine tasks within the main() function. We also created an asyncio.run()

loop to run the main() function when the script is executed by itself. Let’s execute the script:

(venv) $ python scrapli_example_2_async.py

Cisco Nexus Operating System (NX-OS) Software

…

 loader: version N/A

 kickstart: version 7.3(0)D1(1)

 system: version 7.3(0)D1(1)

…

Introduction to Async IO336

 Device name: lax-cor-r1

 bootflash: 3184776 kB

…

 Device name: nyc-cor-r1

 bootflash: 3184776 kB

…

Completed in 1.37 seconds.

Besides the show version output from the two devices, we also saw that the execution was com-

pleted in little over 1 second.

Let’s compare the performance difference between synchronous and asynchronous operations.

Scrapli provides a GenericDriver for synchronous operations. In the example script scrapli_

example_3_sync.py, we will use the GenericDriver to gather the information repeatedly. Just

for illustration purposes, the script connects to each of the devices three times:

#!/usr/bin/env python3

Modified from

https://github.com/carlmontanari/scrapli/blob/main/examples/async_usage/
async_multiple_connections.py

import asyncio

from scrapli.driver.core import Paramiko

from scrapli.driver import GenericDriver

def gather_cor_device_version(ip, username, password):

 device = {

 "host": ip,

 "auth_username": username,

 "auth_password": password,

 "auth_strict_key": False,

 "ssh_config_file": True,

 "driver": GenericDriver

 }

 driver = device.pop("driver")

 conn = driver(**device)

 conn.open()

Chapter 10 337

 response = conn.send_command("show version")

 conn.close()

 return response

def main():

 results = []

 for device in [

 '192.168.2.50',

 '192.168.2.60',

 '192.168.2.50',

 '192.168.2.60',

 '192.168.2.50',

 '192.168.2.60',

 '192.168.2.50',

 '192.168.2.60',

]:

 results.append(gather_cor_device_version(device, 'cisco',
'cisco'))

 return results

if __name__ == "__main__":

 import time

 s = time.perf_counter()

 main()

 elapsed = time.perf_counter() - s

 print(f"Completed in {elapsed:0.2f} seconds.")

There is also a comparable async version, scrapli_example_3_async.py. When we run the two

scripts, here is the performance difference:

(venv) $ python scrapli_example_3_sync.py

Completed in 5.97 seconds.

(venv) $ python scrapli_example_3_async.py

Completed in 4.67 seconds.

This might not seem much of an improvement, but as we scale up our operations, the performance

gain will become more significant.

Introduction to Async IO338

Summary
In this chapter, we learned about the concepts of asynchronous processing. We touched on the

concepts behind CPU-bound and IO-bound tasks. We previously addressed the bottlenecks caused

by them with multiprocessing and multithreading.

Starting with Python 3.4, the new asyncio module was introduced to address IO-bound tasks. It

is similar to multithreading but uses a special cooperative multitasking design. They use special

keywords – the async keyword to create functions that are special types of Python generators

and the await keyword to specify tasks that can be temporarily “paused.” The asyncio module

can then collect these tasks and run them in a loop until completed.

In the latter part of the chapter, we learned about using Scrapli, a project created by Carl Montanari

for the network engineering community. It is designed to utilize the asyncio feature in Python 3

for network device management.

Asyncio is not easy. The new terminology of async, await, loop, and generators can feel over-

whelming. The asyncio module has also been under rapid development from Python version 3.4

to 3.7, making some online documents outdated. Hopefully, the information presented in this

chapter can help us understand this useful feature.

In the next chapter, we will switch gears toward cloud computing and the network features

surrounding cloud computing.

Join our book community
To join our community for this book – where you can share feedback, ask questions to the author,

and learn about new releases – follow the QR code below:

https://packt.link/networkautomationcommunity

https://packt.link/networkautomationcommunity

11
AWS Cloud Networking

Cloud computing is one of the major trends in computing today and has been for many years.

Public cloud providers have transformed the start-up industry and what it means to launch a

service from scratch. We no longer need to build our own infrastructure; we can pay public cloud

providers to rent a portion of their resources for our infrastructure needs. Nowadays, walking

around any technology conferences or meetups, we will be hard-pressed to find someone who

has not learned about, used, or built services based in the cloud. Cloud computing is here, and

we had better get used to working with it.

There are several cloud computing service models, roughly divided into Software-as-a-Service

(SaaS — https://en.wikipedia.org/wiki/Software_as_a_service), Platform-as-a-Service

(PaaS — https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)),

and Infrastructure-as-a-Service (IaaS — https://en.wikipedia.org/wiki/Infrastructure_

as_a_service). Each service model offers a different level of abstraction from the user’s perspec-

tive. For us, networking is part of the IaaS offering and the focus of this chapter.

Amazon Web Services (AWS — https://aws.amazon.com/) was the first company to offer IaaS

public cloud services and was the clear leader in the space by market share in 2022 (https://www.
statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-

service-providers/). If we define the term Software-Defined Networking (SDN) as a group of

software services working together to create network constructs – IP addresses, access lists, load

balancers, and Network Address Translation (NAT) – we can make the argument that AWS is

the world’s largest implementer of SDN. They utilize the massive scale of their global network,

data centers, and servers to offer an amazing array of networking services.

https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Cloud_computing#Platform_as_a_service_(PaaS)
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://aws.amazon.com/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/

AWS Cloud Networking340

If you are interested in learning about Amazon’s scale and networking, I would highly recom-

mend taking a look at James Hamilton’s AWS re:Invent 2014 talk: https://www.youtube.com/

watch?v=JIQETrFC_SQ. It is a rare insider’s view of the scale and innovation at AWS.

In this chapter, we will discuss the networking services offered by the AWS cloud services and

how we can use Python to work with them:

•	 AWS setup and networking overview

•	 Virtual private cloud

•	 Direct Connect and VPN

•	 Networking scaling services

•	 Other AWS network services

Let’s begin by looking at how to set up AWS.

AWS setup
If you do not already have an AWS account and wish to follow along with these examples, please

log on to https://aws.amazon.com/ and sign up. The process is pretty straightforward; you will

need a credit card and some way to verify your identity, such as a mobile phone that can accept

text messages.

A good thing about AWS when you are just getting started is that they offer many services in a free

tier (https://aws.amazon.com/free/), where you can use the services for free up to a certain level.

For example, we will use the Elastic Compute Cloud (EC2) service in this chapter; the free tier for

EC2 is the first 750 hours per month for its t2.micro or t3.micro instances for the first 12 months.

I recommend always starting with the free tier and gradually increasing your tier when the need

arises. Please check the AWS site for the latest offerings:

https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://aws.amazon.com/
https://aws.amazon.com/free/

Chapter 11 341

Figure 11.1: AWS free tier

Once you have an account, you can sign in via the AWS console (https://console.aws.amazon.

com/) and take a look at the different services offered by AWS.

The AWS console layout is constantly changing. By the time you read this chapter,

your screen might look different than what is shown. However, the AWS networking

concepts will not change. We should always pay attention to the concept, and we

should be ok despite any layout changes.

https://console.aws.amazon.com/
https://console.aws.amazon.com/

AWS Cloud Networking342

The console is where we can configure all the services and look at our monthly bills:

Figure 11.2: The AWS console

Now that we have set up our account, let’s take a look at using the AWS CLI tool as well as the

Python SDK to manage our AWS resources.

The AWS CLI and Python SDK
Besides the console, we can also manage AWS services via the command line interface (CLI) and

various SDKs. The AWS CLI is a Python package that can be installed via PIP (https://docs.

aws.amazon.com/cli/latest/userguide/installing.html). Let’s install it on our Ubuntu host:

$ curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o
"awscliv2.zip"

$ unzip awscliv2.zip

$ sudo ./aws/install

$ which aws

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

Chapter 11 343

/usr/local/bin/aws

$ aws --version

aws-cli/2.7.34 Python/3.9.11 Linux/5.15.0-47-generic exe/x86_64.ubuntu.22
prompt/off

Once the AWS CLI is installed, for easier and more secure access, we will create a user and config-

ure the AWS CLI with the user credentials. Let’s go back to the AWS console and select Identity

and Access Management (IAM) for user and access management:

Figure 11.3: AWS IAM

We can choose Users on the left panel to create a user:

Figure 11.4: AWS IAM users

AWS Cloud Networking344

Select Programmatic access and assign the user to the default administrator group:

Figure 11.5: AWS IAM add user

The next step will add the user to the group; we can add the user to the administrator group for

now. We do not need to add any tag for this user. The last step will show an Access key ID and a

Secret access key. Copy them into a text file and keep it in a safe place:

Figure 11.6: AWS IAM user security credentials

Chapter 11 345

We will complete the AWS CLI authentication credential setup via aws configure in the terminal.

We will go over AWS Regions in the upcoming section. We will use us-east-1 for now since that

is the Region with the most services. We can always come back to the settings later to change

the Region:

$ aws configure

AWS Access Key ID [None]: <key>

AWS Secret Access Key [None]: <secret>

Default region name [None]: us-east-1

Default output format [None]: json

We will also install the AWS Python SDK, Boto3 (https://boto3.readthedocs.io/en/latest/):

(venv) $ pip install boto3

(venv) $ python

Python 3.10.4 (main, Jun 29 2022, 12:14:53) [GCC 11.2.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import boto3

>>> boto3.__version__

'1.24.78'

>>> exit()

We are now ready to move on to the subsequent sections, starting with an introduction to AWS

cloud networking services.

AWS network overview
When we discuss AWS services, we need to start at the top, with Regions and Availability Zones

(AZs). They have big implications for all of our services. At the time of writing this book, AWS

has listed 27 geographic Regions and 87 AZs worldwide. In the words of AWS Global Cloud In-

frastructure (https://aws.amazon.com/about-aws/global-infrastructure/):

For a nice visualization of AWS Regions that can be filtered by AZ, Region, and so on, please check

 “The AWS Cloud infrastructure is built around Regions and Availability Zones

(AZs). AWS Regions provide multiple, physically separated and isolated Availability

Zones which are connected with low latency, high throughput, and highly redundant

networking.”

https://boto3.readthedocs.io/en/latest/
https://aws.amazon.com/about-aws/global-infrastructure/

AWS Cloud Networking346

out https://aws.amazon.com/about-aws/global-infrastructure/regions_az/.

Some of the services AWS offers are global (such as the IAM user we created), but most of the

services are Region-based. The Regions are geographic footprints, such as US-East, US-West,

EU-London, Asia-Pacific-Tokyo, etc. What this means for us is that we should build our infrastruc-

ture in a region that is closest to our intended users. This will reduce the latency of the service for

our customers. If our users are on the East Coast of the United States, we should pick US East (N.

Virginia) or US East (Ohio) as our Region if the service is Regional-based:

Figure 11.7: AWS Regions

https://aws.amazon.com/about-aws/global-infrastructure/regions_az/

Chapter 11 347

Besides user latency, AWS Regions also have both service and cost implications. Users who are

new to AWS might find it surprising that not all services are offered in all Regions. The services

we will look at in this chapter are offered in most Regions, but some newer services might only

be offered in selected Regions.

In the example that follows, we can see that Alexa for Business and Amazon Chime are only

offered in the Northern Virginia Region in the United States:

Figure 11.8: AWS services per Region

AWS Cloud Networking348

Besides service availability, the cost of an offering might be slightly different between Regions. For

example, for the EC2 service we will look at in this chapter, the cost for an a1.medium instance is

USD 0.0255 per hour in US East (N. Virginia); the same instance costs 14% more, at USD 0.0291

per hour, in EU (Frankfurt):

Figure 11.9: AWS EC2 US East price

Chapter 11 349

Figure 11.10: AWS EC2 EU price

When in doubt, choose US East (N. Virginia); it is the oldest Region and most likely the cheapest,

with the most service offerings.

AWS Cloud Networking350

Not all Regions are available to all users. For example, GovCloud and the China Region are not

available to users in the United States by default. You can list the Regions available to you via

aws ec2 describe-regions:

$ aws ec2 describe-regions
{
 "Regions": [
 {
 "Endpoint": "ec2.eu-north-1.amazonaws.com",
 "RegionName": "eu-north-1",
 "OptInStatus": "opt-in-not-required"
 },
 {
 "Endpoint": "ec2.ap-south-1.amazonaws.com",
 "RegionName": "ap-south-1",
 "OptInStatus": "opt-in-not-required"
 },
<skip>

As stated by Amazon, all Regions are completely independent of one another. Therefore, most

resources are not replicated across Regions. This means that if we have multiple Regions offering

the same service, say US-East and US-West, and need the services to back each other up, we will

need to replicate the necessary resources ourselves.

We can choose our desired Region in the AWS console, in the top-right corner, with the drop-

down menu:

Figure 11.11: AWS Regions

Chapter 11 351

We can only view the services available within the Region on the portal. For example, if we have

EC2 instances in the US East Region and select the US West Region, none of our EC2 instances will

show up. I have made this mistake several times and wondered where all of my instances went!

There are many AZs within each Region. AZs are labeled using a combination of the Region and

an alphabetical letter, such as us-east-1a, us-east-1b, and so on. Each Region has multiple

AZs – typically three or more. Each AZ has its isolated infrastructure with a redundant power

supply, intra-data center networking, and facilities. All AZs in a Region are connected through

low-latency fiber routes that are typically within 100 km of each other within the same Region:

Figure 11.12: AWS Regions and AZs

Unlike Regions, many of the resources we build in AWS can be copied across AZs automatically.

For example, we can configure our managed relational database (Amazon RDS) to be replicated

across AZs. The concept of AZs is very important when it comes to service redundancy, and its

constraints are important to us for the network services we will build.

AWS independently maps AZs to identifiers for each account. For example, my AZ, us-east-1a,

might not be the same as us-east-1a for another account, even though they are both labeled

as us-east-1a.

We can check the AZs in a Region in the AWS CLI:

$ aws ec2 describe-availability-zones --region us-east-1

{

 "AvailabilityZones": [

 {

 "State": "available",

 "Messages": [],

 "RegionName": "us-east-1",

 "ZoneName": "us-east-1a",

 "ZoneId": "use1-az2"

 },

AWS Cloud Networking352

 {

 "State": "available",

 "Messages": [],

 "RegionName": "us-east-1",

 "ZoneName": "us-east-1b",

 "ZoneId": "use1-az4"

 },

<skip>

Why do we care about Regions and AZs so much? As we will see in the coming few sections, AWS

networking services are usually bound by the Region and AZ. A virtual private cloud (VPC), for

example, must reside entirely in one Region, and each subnet needs to reside entirely in one AZ.

On the other hand, NAT gateways are AZ-bound, so we will need to create one per AZ if we need

redundancy.

We will go over both services in more detail, but their use cases are offered here as examples of

how Regions and AZs are the basis of the AWS network services offering:

Figure 11.13: VPCs and AZs per Region

AWS edge locations are part of the AWS CloudFront content delivery network in 90+ cities

across 48 countries as of May 2022 (https://aws.amazon.com/cloudfront/features/). These

edge locations are used to distribute content with low latency to customers. The edge nodes have

a smaller footprint than the full data center Amazon builds for the Region and AZs. Sometimes,

people mistake the edge locations’ point-of-presence for full AWS Regions. If the footprint is

listed as an edge location, AWS services such as EC2 or S3 will not be offered. We will revisit edge

locations in the AWS CloudFront CDN services section.

AWS transit centers are one of the least documented aspects of AWS networks. They were men-

tioned in James Hamilton’s 2014 AWS re:Invent keynote (www.youtube.com/watch?v=JIQETrFC_

SQ) as the aggregation points for different AZs in the Region. To be fair, we do not know if the

transit center still exists and functions the same way after all these years. However, it is fair to

make an educated guess about the placement of the transit center and its correlation with the

AWS Direct Connect service, which we will look at later in this chapter.

https://aws.amazon.com/cloudfront/features/
http://www.youtube.com/watch?v=JIQETrFC_SQ
http://www.youtube.com/watch?v=JIQETrFC_SQ

Chapter 11 353

It is impossible to cover all of the services related to AWS in one chapter. There are some relevant

services not directly related to networking that we do not have the space to cover, but we should

be familiar with:

•	 The IAM service, https://aws.amazon.com/iam/, is the service that enables us to manage

access to AWS services and resources securely.

•	 Amazon Resource Names (ARNs), https://docs.aws.amazon.com/general/latest/

gr/aws-arns-and-namespaces.html, uniquely identify AWS resources across all of AWS.

These resource names are important when we need to identify a service, such as Dyna-

moDB and API Gateway, that needs access to our VPC resources.

•	 Amazon Elastic Compute Cloud (EC2), https://aws.amazon.com/ec2/, is the service

that enables us to obtain and provision compute capacities, such as Linux and Windows

instances, via AWS interfaces. We will use EC2 instances throughout this chapter in our

examples.

For the sake of learning, we will exclude the AWS GovCloud (US) and China Regions, neither of

which uses the AWS global infrastructure, and each has its own unique features and limitations.

This was a relatively long introduction to AWS network services, but an important one. These

concepts and terms will be referred to in the rest of the chapters. In the upcoming section, we

will look at the most important concept (in my opinion) in AWS networking: VPC.

Virtual Private Cloud
Amazon VPC (https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.

html) enables customers to launch AWS resources in a virtual network dedicated to the customer’s

account. It is truly a customizable network that allows you to define your IP address range, add

and delete subnets, create routes, add VPN gateways, associate security policies, connect EC2

instances to your own data center, and much more.

James Hamilton, a VP and distinguished engineer from AWS, is one of the most

influential technologists at AWS. If there is anybody whom I would consid-

er authoritative when it comes to AWS networking, it would be him. You can

read more about his ideas on his blog, Perspectives, at https://perspectives.

mvdirona.com/.

https://aws.amazon.com/iam/
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://aws.amazon.com/ec2/
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://perspectives.mvdirona.com/
https://perspectives.mvdirona.com/

AWS Cloud Networking354

In the early days, when VPC was unavailable, all EC2 instances in an AZ were on a single, flat

network that was shared among all customers. How comfortable would the customer be with

putting their information in the cloud? Not very, I’d imagine. Between the launch of EC2 in 2007

and the launch of VPC in 2009, VPC functions were some of the most requested features of AWS.

The packets leaving your EC2 host in a VPC are intercepted by the Hypervisor. The Hypervisor

will check the packets against a mapping service that understands your VPC construct. Then,

the packets are encapsulated with the real AWS servers’ source and destination addresses. The

encapsulation and mapping service enables the flexibility of VPC but also some of the limitations

(multicast, sniffing) of VPC. This is, after all, a virtual network.

Since December 2013, all EC2 instances are VPC-only; you can no longer create an EC2 instance

that is non-VPC (EC2-Classic), nor would you want to. If we use a launch wizard to create our

EC2 instance, it will automatically be put into a default VPC with a virtual internet gateway for

public access. In my opinion, only the most basic use cases should use the default VPC. In most

cases, we should define our own non-default, customized VPC.

Let’s create the following VPC using the AWS console in us-east-1:

Figure 11.14: Our first VPC in US-East-1

If you recall, VPC is AWS Region-bound, and the subnets are AZ-based. Our first VPC will be

based in us-east-1; the three subnets will be allocated to two different AZs in us-east-1a and

us-east-1b.

Chapter 11 355

Using the AWS console to create the VPC and subnets is pretty straightforward, and AWS provides

several good tutorials online. I have listed the steps with the associated locations of each on the

VPC dashboard:

Figure 11.15: Steps for creating the VPC, subnet, and other features

The first two steps are point-and-click processes that most network engineers can work through,

even without prior experience. By default, the VPC only contains the local route, 10.0.0.0/16.

Now, we will create an internet gateway and associate it with the VPC:

Figure 11.16: AWS internet gateway-to-VPC assignment

AWS Cloud Networking356

We can then create a custom route table with a default route pointing to the internet gateway,

allowing internet access. We will associate this route table with our subnet in us-east-1a,

10.0.0.0/24, thus allowing the VPC to have internet access:

Figure 11.17: Route table

Let’s use the Boto3 Python SDK to see what we have created; I used mastering_python_networking_

demo as the tag for the VPC, which we can use as the filter:

#!/usr/bin/env python3

import json, boto3

region = 'us-east-1'

vpc_name = 'mastering_python_networking_demo'

ec2 = boto3.resource('ec2', region_name=region)

client = boto3.client('ec2')

filters = [{'Name':'tag:Name', 'Values':[vpc_name]}]

vpcs = list(ec2.vpcs.filter(Filters=filters))

for vpc in vpcs:

 response = client.describe_vpcs(

 VpcIds=[vpc.id,]

)

 print(json.dumps(response, sort_keys=True, indent=4))

Chapter 11 357

This script will allow us to query the Region for the VPC we created programmatically:

(venv) $ python Chapter11_1_query_vpc.py

{

 " ResponseMetadata " : {

 <skip>

 " HTTPStatusCode " : 200,

 " RequestId " : " 9416b03f-<skip> " ,

 " RetryAttempts " : 0

 },

 " Vpcs " : [

 {

 " CidrBlock " : " 10.0.0.0/16 ",

 " CidrBlockAssociationSet " : [

 {

 " AssociationId " : " vpc-cidr-assoc-<skip> ",

 "CidrBlock": "10.0.0.0/16",

 "CidrBlockState": {

 "State": "associated"

 }

 }

],

 "DhcpOptionsId": "dopt-<skip>",

 "InstanceTenancy": "default",

 "IsDefault": false,

 "OwnerId": "<skip>",

 "State": "available",

 "Tags": [

 {

 "Key": "Name",

 "Value": "mastering_python_networking_demo"

 }

],

 "VpcId": "vpc-<skip>"

 }

]

}

AWS Cloud Networking358

The Boto3 VPC API documentation can be found at https://boto3.readthedocs.io/en/latest/

reference/services/ec2.html#vpc.

If we created EC2 instances and put them in different subnets as is, the hosts would be able to

reach each other across subnets. You may be wondering how the subnets can reach one another

within the VPC since we only created an internet gateway in subnet 1a. In a physical network, the

network needs to connect to a router to reach beyond its own local network.

It is not so different in VPC, except it is an implicit router with a default routing table of the

local network, which in our example is 10.0.0.0/16. This implicit router was created when we

created our VPC. Any subnet that is not associated with a custom routing table is associated with

the main table.

Route tables and route targets
Routing is one of the most important topics in network engineering. It is worth looking at how it

is done in AWS VPC more closely. We’ve already seen that we had an implicit router and the main

routing table when we created the VPC. In the last example, we created an internet gateway, a

custom routing table with a default route pointing to the internet gateway using the route target,

and we associated the custom routing table with a subnet.

So far, only the concept of the route target is where VPC is a bit different than traditional network-

ing. We can roughly equate the route target with the next hop in traditional routing.

In summary:

•	 Each VPC has an implicit router

•	 Each VPC has the main routing table with the local route populated

•	 You can create custom-routing tables

•	 Each subnet can follow a custom-routing table or the default main routing table

•	 The route table route target can be an internet gateway, NAT gateway, VPC peers, and so on

We can use Boto3 to look at the custom route tables and associations with the subnets in

Chapter11_2_query_route_tables.py:

#!/usr/bin/env python3

import json, boto3

region = 'us-east-1'

vpc_name = 'mastering_python_networking_demo'

ec2 = boto3.resource('ec2', region_name=region)

https://boto3.readthedocs.io/en/latest/reference/services/ec2.html#vpc
https://boto3.readthedocs.io/en/latest/reference/services/ec2.html#vpc

Chapter 11 359

client = boto3.client('ec2')

response = client.describe_route_tables()

print(json.dumps(response['RouteTables'][0], sort_keys=True, indent=4))

The main routing table is implicit and not returned by the API. Since we only have one custom

route table, this is what we will see:

(venv) $ python Chapter11_2_query_route_tables.py

{

 " Associations " : [

 <skip>

],

 " OwnerId " : " <skip> ",

 " PropagatingVgws " : [],

 " RouteTableId " : " rtb-<skip> ",

 " Routes " : [

 {

 "DestinationCidrBlock": "10.0.0.0/16",

 "GatewayId": "local",

 "Origin": "CreateRouteTable",

 "State": "active"

 },

 {

 "DestinationCidrBlock": "0.0.0.0/0",

 "GatewayId": "igw-041f287c",

 "Origin": "CreateRoute",

 "State": "active"

 }

],

 "Tags": [

 {

 "Key": "Name",

 "Value": "public_internet_gateway"

 }

],

 "VpcId": "vpc-<skip>"

}

AWS Cloud Networking360

We already created the first public subnet. We will create two more private subnets, us-east-

1b and us-east-1c, following the same steps. The result will be three subnets: a 10.0.0.0/24

public subnet in us-east-1a, and 10.0.1.0/24 and 10.0.2.0/24 private subnets in us-east-1b

and us-east-1c, respectively.

We now have a working VPC with three subnets: one public and two private. So far, we have

used the AWS CLI and the Boto3 library to interact with AWS VPC. Let’s take a look at another

automation tool from AWS, CloudFormation.

Automation with CloudFormation
AWS CloudFormation (https://aws.amazon.com/cloudformation/) is one way in which we can

use a text file to describe and launch the resource that we need. We can use CloudFormation to

provision another VPC in the us-west-1 Region:

Figure 11.18: VPC for us-west-1

The CloudFormation template can be in YAML or JSON; we will use YAML for our first template

for provisioning, Chapter10_3_cloud_formation.yml:

AWSTemplateFormatVersion: '2010-09-09'

Description: Create VPC in us-west-1

Resources:

https://aws.amazon.com/cloudformation/

Chapter 11 361

 myVPC:

 Type: AWS::EC2::VPC

 Properties:

 CidrBlock: '10.1.0.0/16'

 EnableDnsSupport: 'false'

 EnableDnsHostnames: 'false'

 Tags:

 - Key: Name

 - Value: 'mastering_python_networking_demo_2'

We can execute the template via the AWS CLI. Notice that we specify the us-west-1 region in

our execution:

(venv) $ aws --region us-west-1 cloudformation create-stack --stack-name
'mpn-ch10-demo' --template-body file://Chapter11_3_cloud_formation.yml

{

"StackId": "arn:aws:cloudformation:us-west-1:<skip>:stack/mpn-ch10-
demo/<skip>"

}

We can verify the status via the AWS CLI:

(venv) $ aws --region us-west-1 cloudformation describe-stacks --stack-
name mpn-ch10-demo

{

 "Stacks": [

 {

 "StackId": "arn:aws:cloudformation:us-west-1:<skip>:stack/mpn-
ch10-demo/bbf5abf0-8aba-11e8-911f-500cadc9fefe",

 "StackName": "mpn-ch10-demo",

 "Description": "Create VPC in us-west-1",

 "CreationTime": "2018-07-18T18:45:25.690Z",

 "LastUpdatedTime": "2018-07-18T19:09:59.779Z",

 "RollbackConfiguration": {},

 "StackStatus": "UPDATE_ROLLBACK_COMPLETE",

 "DisableRollback": false,

 "NotificationARNs": [],

 "Tags": [],

 "EnableTerminationProtection": false,

 "DriftInformation": {

AWS Cloud Networking362

 "StackDriftStatus": "NOT_CHECKED"

 }

 }

]

}

The last CloudFormation template created a VPC without any subnet. Let’s delete that VPC and

use the following template, Chapter11_4_cloud_formation_full.yml, to create both the VPC

and the subnet. Notice that we will not have the VPC-ID before VPC creation, so we will use a

special variable to reference the VPC-ID in the subnet creation. This same technique can be used

for other resources, such as the routing table and internet gateway:

AWSTemplateFormatVersion: '2010-09-09'

Description: Create subnet in us-west-1

Resources:

 myVPC:

 Type: AWS::EC2::VPC

 Properties:

 CidrBlock: '10.1.0.0/16'

 EnableDnsSupport: 'false'

 EnableDnsHostnames: 'false'

 Tags:

 - Key: Name

 Value: 'mastering_python_networking_demo_2'

 mySubnet:

 Type: AWS::EC2::Subnet

 Properties:

 VpcId: !Ref myVPC

 CidrBlock: '10.1.0.0/24'

 AvailabilityZone: 'us-west-1a'

 Tags:

 - Key: Name

 Value: 'mpn_demo_subnet_1'

Chapter 11 363

We can execute and verify the creation of the resources as follows:

(venv) $ aws --region us-west-1 cloudformation create-stack --stack-name
mpn-ch10-demo-2 --template-body file://Chapter11_4_cloud_formation_full.
yml

{

"StackId": "arn:aws:cloudformation:us-west-1:<skip>:stack/mpn-ch10- demo-
2/<skip>"

}

$ aws --region us-west-1 cloudformation describe-stacks --stack-name mpn-
ch10-demo-2

{

"Stacks": [

{

"StackStatus": "CREATE_COMPLETE",

...

"StackName": "mpn-ch10-demo-2", "DisableRollback": false

}

]

}

We can verify the VPC and subnet information from the AWS console. Remember to pick the right

Region from the drop-down menu in the top right-hand corner:

Figure 11.19: VPC in us-west-1

AWS Cloud Networking364

We can also take a look at the subnet:

Figure 11.20: Subnet in us-west-1

We now have two VPCs on the two coasts of the United States. They are currently behaving like

two islands, each by themselves. This may or may not be your desired state of operation. If we

want the two VPCs to be connected, we can use VPC peering (https://docs.aws.amazon.com/

AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html) to allow direct communication.

There are a few VPC peering limitations, such as no overlapping IPv4 or IPv6 CIDR blocks being

allowed. There are also additional limitations for inter-region VPC peering. Make sure you look

over the documentation.

VPC peering is not limited to the same account. You can connect VPCs across different accounts,

as long as the request was accepted and the other aspects (security, routing, and DNS name) are

taken care of.

In the upcoming section, we will take a look at VPC security groups and network access control

lists (ACLs).

Security Groups and Network ACLs
AWS Security Groups and Network ACLs can be found under the Security section of your VPC:

https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html
https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/vpc-peering-basics.html

Chapter 11 365

Figure 11.21: VPC security

A security group is a stateful virtual firewall that controls inbound and outbound access to re-

sources. Most of the time, we use a security group to limit public access to our EC2 instance. The

current limitation is 500 security groups in each VPC. Each security group can contain up to 50

inbound and 50 outbound rules.

You can use the following sample script, Chapter11_5_security_group.py, to create a security

group and two simple ingress rules:

#!/usr/bin/env python3

import boto3

ec2 = boto3.client('ec2')

response = ec2.describe_vpcs()

vpc_id = response.get('Vpcs', [{}])[0].get('VpcId', '')

Query for security group id

response = ec2.create_security_group(GroupName='mpn_security_group',

 Description='mpn_demo_sg',

 VpcId=vpc_id)

security_group_id = response['GroupId']

data = ec2.authorize_security_group_ingress(

 GroupId=security_group_id,

 IpPermissions=[

AWS Cloud Networking366

 {'IpProtocol': 'tcp',

 'FromPort': 80,

 'ToPort': 80,

 'IpRanges': [{'CidrIp': '0.0.0.0/0'}]},

 {'IpProtocol': 'tcp',

 'FromPort': 22,

 'ToPort': 22,

 'IpRanges': [{'CidrIp': '0.0.0.0/0'}]}

])

print('Ingress Successfully Set %s' % data)

Describe security group

#response = ec2.describe_security_groups(GroupIds=[security_group_id])

print(security_group_id)

We can execute the script and receive confirmation of the creation of the security group, which

can be associated with other AWS resources:

(venv) $ python Chapter11_5_security_group.py

Ingress Successfully Set {'ResponseMetadata': {'RequestId': '<skip>',
'HTTPStatusCode': 200, 'HTTPHeaders': {'server': 'AmazonEC2', 'content-
type': 'text/xml;charset=UTF-8', 'date': 'Wed, 18 Jul 2018 20:51:55 GMT',

'content-length': '259'}, 'RetryAttempts': 0}} sg-<skip>

Network ACLs are an additional layer of security that is stateless. Each subnet in the VPC is

associated with a network ACL. Since an ACL is stateless, you will need to specify both inbound

and outbound rules.

The important differences between security groups and ACLs are as follows:

•	 Security groups operate at the network interface level, whereas ACLs operate at the sub-

net level.

•	 For a security group, we can only specify allow rules and not deny rules, whereas ACLs

support both allow and deny rules.

•	 A security group is stateful, so return traffic is automatically allowed; return traffic in

ACLs must be specifically allowed.

Let’s look at one of the coolest features of AWS networking: Elastic IP. When I initially learned

about Elastic IPs, I was blown away by their ability to assign and reassign IP addresses dynamically.

Chapter 11 367

Elastic IP
An Elastic IP (EIP) is a way to use a public IPv4 address that’s reachable from the internet.

An EIP can be dynamically assigned to an EC2 instance, network interface, or other resources. A

few characteristics of an EIP are as follows:

•	 An EIP is associated with the account and is region-specific. For example, an EIP in us-

east-1 can only be associated with resources in us-east-1.

•	 You can disassociate an EIP from a resource and re-associate it with a different resource.

This flexibility can sometimes be used to ensure high availability. For example, you can

migrate from a smaller EC2 instance to a larger EC2 instance by reassigning the same IP

address from the small EC2 instance to the larger one.

•	 There is a small hourly charge associated with EIPs.

You can request an EIP from the portal. After the assignment, you can associate it with the desired

resources:

Figure 11.22: Elastic IPs

Unfortunately, EIPs are limited to five per Region to discourage waste (https://docs.aws.amazon.

com/vpc/latest/userguide/amazon-vpc-limits.html). However, this number can be increased

via a ticket to AWS Support if needed.

IPv6 is not currently supported in EIP as of late 2022.

https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html

AWS Cloud Networking368

In the upcoming section, we will look at how we can use NAT gateways to allow communication

for private subnets with the internet.

NAT gateways
To allow the hosts in our EC2 public subnet to be accessed from the internet, we can allocate an EIP

and associate it with the network interface of the EC2 host. However, at the time of writing, there

is a limit of five Elastic IPs per EC2-VPC (https://docs.aws.amazon.com/AmazonVPC/latest/

UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips). Sometimes, it would be nice to

allow the host in a private subnet outbound access when needed, without creating a permanent

one-to-one mapping between the EIP and the EC2 host.

A NAT gateway can help by allowing the hosts in the private subnet temporary outbound access by

performing NAT. This operation is similar to port address translation (PAT), which we normally

perform on the corporate firewall. To use a NAT gateway, we can perform the following steps:

1.	 Create a NAT gateway in a subnet with access to the internet gateway via the AWS CLI,

Boto3 library, or AWS console. The NAT gateway will need to be assigned an EIP.

2.	 Point the default route in the private subnet to the NAT gateway.

3.	 The NAT gateway will follow the default route to the internet gateway for external access.

This operation can be illustrated in the following diagram:

Figure 11.23: NAT gateway operations

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html#vpc-limits-eips

Chapter 11 369

One of the most common questions about NAT gateways typically involves which subnet the

NAT gateway should reside in. The rule of thumb is to remember that the NAT gateway needs

public access. Therefore, it should be created in the subnet with public internet access with an

available EIP assigned to it:

Figure 11.24: NAT gateway creation

In the upcoming section, we will look at how to connect our shiny virtual network in AWS to our

physical network.

Direct Connect and VPN
Up to this point, our VPC has been a self-contained network that resides in the AWS network. It

is flexible and functional, but to access the resources inside the VPC, we will need to access them

with their internet-facing services, such as SSH and HTTPS.

In this section, we will look at the ways AWS allows us to connect to the VPC from our private

network: an IPSec VPN gateway and Direct Connect.

VPN gateways
The first way to connect our on-premises network to VPC is with traditional IPSec VPN connections.

We will need a publicly accessible device to establish VPN connections to AWS’s VPN devices.

The customer gateway needs to support route-based IPSec VPNs, where the VPN connection is

treated as a connection that a routing protocol and normal user traffic can traverse. Currently,

AWS recommends using Border Gateway Protocol (BGP) to exchange routes.

Please remember to remove any of the AWS services you are not using to avoid

charges.

AWS Cloud Networking370

On the VPC side, we can follow a similar routing table where we can route a particular subnet

toward the virtual private gateway (VPG) target:

Figure 11.25: VPC VPN connection

Besides an IPSec VPN, we can also use a dedicated circuit to connect, which is termed Direct

Connect.

Direct Connect
The IPSec VPN connection we looked at is an easy way to provide connectivity for on-premises

equipment to AWS cloud resources. However, it suffers the same faults that IPSec over the internet

always does: it is unreliable, and we have very little control over its reliability. There is very little

performance monitoring and no service-level agreement (SLA) until the connection reaches a

part of the internet that we can control.

For all of these reasons, any production-level, mission-critical traffic is more likely to traverse

through the second option Amazon provides, that is, AWS Direct Connect. AWS Direct Connect

lets customers connect their data center and colocation to their AWS VPC with a dedicated vir-

tual circuit.

The somewhat difficult part of this operation is usually bringing our network to where we can

connect with AWS physically, typically in a carrier hotel.

Chapter 11 371

You can find a list of the AWS Direct Connect locations here: https://aws.amazon.com/

directconnect/details/. The Direct Connect link is just a fiber patch connection that you can

order from the particular carrier hotel to patch the network to a network port and configure the

dot1q trunk’s connectivity.

There are also increasingly more connectivity options for Direct Connect via a third-party carrier

with Multi-Protocol Label Switching (MPLS) circuits and aggregated links. One of the most af-

fordable options that I found and use is Equinix Cloud Exchange Fabric (https://www.equinix.

com/services/interconnection-connectivity/cloud-exchange/). By using Equinix Cloud

Exchange Fabric, we can leverage the same circuit and connect to different cloud providers at a

fraction of the cost of dedicated circuits:

Figure 11.26: Equinix Cloud Exchange Fabric

In the upcoming section, we will look at some of the network scaling services AWS offers.

Network scaling services
Many of the network services AWS offers do not have direct network implications, such as DNS

and content distribution networks. They are relevant in our discussion due to their close rela-

tionship with the network and the application’s performance.

https://aws.amazon.com/directconnect/details/
https://aws.amazon.com/directconnect/details/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/
https://www.equinix.com/services/interconnection-connectivity/cloud-exchange/

AWS Cloud Networking372

Elastic Load Balancing
Elastic Load Balancing (ELB) allows incoming traffic from the internet to be automatically dis-

tributed across multiple EC2 instances. Like load balancers in the physical world, this allows us

to have better redundancy and fault tolerance while reducing the per-server load. ELB comes in

two flavors: application and network load balancing.

The network load balancer handles web traffic via HTTP and HTTPS; the application load balancer

operates on a TCP level. If your application runs on HTTP or HTTPS, it is generally a good idea to

go with the Application Load Balancer. Otherwise, using the Network Load Balancer is a good bet.

A detailed comparison of the application and Network Load Balances can be found at https://

aws.amazon.com/elasticloadbalancing/details/:

Figure 11.27: ELB comparison

ELB offers a way to load balance traffic once it enters the resource in our Region. The AWS Route

53 DNS service allows geographic load balancing between Regions, sometimes called Global

Server Load Balancing.

Route 53 DNS service
We all know what domain name services are – Route 53 is AWS’s DNS service. Route 53 is a

full-service domain registrar where you can purchase and manage domains directly from AWS.

Regarding network services, DNS allows a way to load balance between geographic regions using

service domain names in a round-robin fashion between Regions.

We need the following items before we can use DNS for load balancing:

•	 A load balancer in each of the intended load balance Regions

https://aws.amazon.com/elasticloadbalancing/details/
https://aws.amazon.com/elasticloadbalancing/details/

Chapter 11 373

•	 A registered domain name. We do not need Route 53 to be the domain registrar

•	 Route 53 is the DNS service for the domain

We can then use the Route 53 latency-based routing policy with a health check in an active-active

environment between the two elastic load balancers. In the next section, we will focus on the

content delivery network built by AWS, called CloudFront.

CloudFront CDN services
CloudFront is Amazon’s content delivery network (CDN), which reduces the latency of content

delivery by physically serving the content closer to the customer. The content can be static web

page content, videos, applications, APIs, or, most recently, Lambda functions. CloudFront edge

locations include the existing AWS Regions and many other locations around the globe. The

high-level operation of CloudFront is as follows:

1.	 Users access your website for one or more objects.

2.	 DNS routes the request to the Amazon CloudFront edge location closest to the user’s

request.

3.	 The CloudFront edge location will either service the content via the cache or request the

object from the origin.

AWS CloudFront and CDN services, in general, are typically handled by application developers

or DevOps engineers. However, it is always good to be aware of their operations.

Other AWS network services
There are lots of other AWS network services that we do not have the space to cover here. Some

of the more popular services are listed in this section:

•	 AWS Transit VPC (https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/):

This is a way to connect multiple VPCs to a common VPC that serves as a transit center.

This is a relatively new service, but it can minimize the number of connections that you

need to set up and manage. This can also serve as a tool when you need to share resources

between separate AWS accounts.

•	 Amazon GuardDuty (https://aws.amazon.com/guardduty/): This is a managed threat

detection service that continuously monitors for malicious or unauthorized behavior to help

protect our AWS workloads. It monitors API calls or potentially unauthorized deployments.

•	 AWS WAF (https://aws.amazon.com/waf/): This is a web application firewall that helps

protect web applications from common exploits. We can define customized web security

rules to allow or block web traffic.

https://aws.amazon.com/blogs/aws/aws-solution-transit-vpc/
https://aws.amazon.com/guardduty/
https://aws.amazon.com/waf/

AWS Cloud Networking374

•	 AWS Shield (https://aws.amazon.com/shield/): This is a managed Distributed Denial

of Service (DDoS) protection service that safeguards applications running on AWS. The

protection service is free for all customers at the basic level; the advanced version of AWS

Shield is a fee-based service.

There are lots of new and exciting AWS networking services constantly being announced, such as

the ones we have looked at in this section. Not all of them are foundational services such as VPC

or NAT gateways; however, they all serve useful purposes in their respective fields.

Summary
In this chapter, we looked at AWS cloud networking services. We reviewed the AWS network

definitions of Region, Availability Zone, edge locations, and transit center. Understanding the

overall AWS network gives us a good idea of some of the limitations and constraints of the other

AWS network services. Throughout this chapter, we used the AWS CLI, the Python Boto3 library,

and CloudFormation to automate some tasks.

We covered AWS VPC in depth, with the configuration of the route table and route targets. The

example on security groups and network ACLs took care of the security for our VPC. We also

looked at EIPs and NAT gateways for allowing external access.

There are two ways to connect AWS VPC to on-premise networks: Direct Connect and IPSec VPN.

We briefly looked at each and the advantages of using them. Toward the end of this chapter, we

looked at network scaling services offered by AWS, including ELB, Route 53 DNS, and CloudFront.

In the next chapter, we will look at the networking services offered by another public cloud pro-

vider, Microsoft Azure.

Join our book community
To join our community for this book – where you can share feedback, ask questions to the author,

and learn about new releases – follow the QR code below:

https://packt.link/networkautomationcommunity

https://aws.amazon.com/shield/
https://packt.link/networkautomationcommunity

12
Azure Cloud Networking

As we saw in Chapter 11, AWS Cloud Networking, cloud-based networking helps us connect our

organization’s cloud-based resources. A virtual network (VNet) can be used to segment and

secure our virtual machines. It can also connect our on-premise resources to the cloud. As the

first pioneer in this space, AWS is often regarded as the market leader, with the biggest market

share. In this chapter, we will look at another important public cloud provider, Microsoft Azure,

focusing on their cloud-based network products.

Microsoft Azure originally started as a project codenamed “Project Red Dog” in 2008 and was

publicly released on February 1, 2010. At the time, it was named “Windows Azure” before being

renamed “Microsoft Azure” in 2014. Since AWS released its first product, S3, in 2006, it essential-

ly had a 6-year lead over Microsoft Azure. Attempting to catch up with AWS was no small task,

even for a company with Microsoft’s vast amount of resources. At the same time, Microsoft has

its unique competitive advantages from years of successful products and relationships with its

enterprise customer base.

As Azure focuses on leveraging the existing Microsoft product offerings and customer relationships,

there are some important implications regarding Azure cloud networking. For example, one of the

main drivers for a customer to establish an ExpressRoute connection with Azure, their AWS Direct

Connect equivalent, might be a better experience with Office 365. Another example might be that

the customer already has a service-level agreement with Microsoft that can be extended to Azure.

In this chapter, we will discuss the networking services offered by Azure and how we can use

Python to work with them. Since we already introduced some of the cloud networking concepts

in the last chapter, we will draw on those lessons, comparing AWS and Azure networking when

applicable.

Azure Cloud Networking376

In particular, we will discuss:

•	 The Azure setup and a networking overview.

•	 Azure virtual networks (in the form of VNets). An Azure VNet is similar to an AWS VPC.

It provides customers with a private network in the Azure cloud.

•	 ExpressRoute and VPNs.

•	 Azure Network Load Balancers.

•	 Other Azure network services.

We already learned many of the important cloud networking concepts in the last chapter. Let’s

leverage that knowledge and start by comparing the services offered by Azure and AWS.

Azure and AWS network service comparison
When Azure launched, they were more focused on Software-as-a-Service (SaaS) and Platform-

as-a-Service (PaaS), with less of a focus on Infrastructure-as-a-Service (IaaS). For SaaS and PaaS,

the networking services at the lower layers are often abstracted away from the user. For example,

the SaaS offering of Office 365 is often offered as a remotely hosted endpoint that can be reached

over the public internet. The PaaS offering of building web applications using Azure App Service

is often done via a fully managed process, via popular frameworks such as .NET or Node.js.

The IaaS offering, on the other hand, requires us to build our infrastructure in the Azure cloud. As

the undisputed leader in the space, much of the target audience already has experience with AWS.

To help with the transition, Azure provides an “AWS to Azure Service Comparison” (https://docs.

microsoft.com/en-us/azure/architecture/aws-professional/services) on their website.

This is a handy page that I often visit when I am confused about the equivalent Azure offering in

comparison to AWS, especially when the service name is not directly illustrative of the service

it provides. (I mean, can you tell what SageMaker is from looking at the name? I rest my case.)

I often use this page for competitive analysis as well. For example, when I need to compare the

cost of a dedicated connection with AWS and Azure, I start with this page to verify that the

equivalent service of AWS Direct Connect is Azure ExpressRoute, then use the link to get more

details about the service.

If we scroll down on the page to the Networking section, we can see that Azure offers many sim-

ilar products to AWS, such as VNet, VPN Gateway, and Load Balancer. Some of the services may

have different names, such as Route 53 and Azure DNS, but the underlying services are the same.

https://docs.microsoft.com/en-us/azure/architecture/aws-professional/services
https://docs.microsoft.com/en-us/azure/architecture/aws-professional/services

Chapter 12 377

Figure 12.1: Azure networking services (source: https://docs.microsoft.com/en-us/azure/ar-
chitecture/aws-professional/services)

There are some feature differences between Azure and AWS networking products. For example,

for global traffic load balancing using DNS, AWS uses the same Route 53 product, while Azure

breaks it into a separate product called Traffic Manager. When we dig deeper into the products,

some differences might make a difference depending on usage. For example, Azure Load Balancer,

by default, allows session affinity, a.k.a. a sticky session, whereas the AWS load balancer needs

to be configured explicitly.

But for the most part, the high-level network products and services from Azure are similar to what

we learned from AWS. This is the good news. The bad news is that just because the features are

the same, it does not mean we can have a 1:1 overlay between the two.

Azure Cloud Networking378

The building tools are different, and the implementation details can sometimes throw off some-

one new to the Azure platform. We will point out some of the differences when we discuss the

products in the following sections. Let’s begin by talking about the setup process for Azure.

Azure setup
Setting up an Azure account is straightforward. Just like AWS, there are many services and in-

centives that Azure offers to attract users in the highly competitive public cloud market. Please

check out the https://azure.microsoft.com/en-us/free/ page for the latest offerings. At the

time of writing, Azure is offering many popular services free for 12 months and 40+ other services

as always free:

Figure 12.2: Azure portal (source: https://azure.microsoft.com/en-us/free/)

https://azure.microsoft.com/en-us/free/

Chapter 12 379

After the account is created, we can see the services available on the Azure portal at https://

portal.azure.com:

Figure 12.3: Azure services

The web pages might change by the time you read this chapter. They are generally

intuitive navigation changes that are easy to maneuver, even if they look a little

different.

https://portal.azure.com
https://portal.azure.com

Azure Cloud Networking380

Before any service can be launched, however, we will need to provide a payment method. This is

done by adding a subscription service:

Figure 12.4: Azure subscriptions

I would recommend adding a pay-as-you-go plan, which has no upfront costs and no long-term

commitment, but we also have the option to purchase various levels of support with the sub-

scription plan.

Once the subscription is added, we can start looking at the various ways to administer and build

in the Azure cloud, as detailed in the following section.

Chapter 12 381

Azure administration and APIs
The Azure portal is the sleekest and most modern portal of the top public cloud providers, in-

cluding AWS and Google Cloud. We can change the settings of the portal from the settings icon

on the top management bar, including the language and region:

Figure 12.5: Azure portal in different languages

There are many ways to manage Azure services: the portal, the Azure CLI, RESTful APIs, and the

various client libraries. Besides the point-and-click management interface, the Azure portal also

provides a handy shell called Azure Cloud Shell.

Azure Cloud Networking382

It can be launched from the top right-hand corner of the portal:

Figure 12.6: Azure Cloud Shell

When it is launched for the first time, you will be asked to pick between Bash and PowerShell.

The shell interface can be switched later, but they cannot run simultaneously:

Figure 12.7: Azure Cloud Shell with PowerShell

My personal preference is the Bash shell, which allows me to use the pre-installed Azure CLI and

Python SDK:

Chapter 12 383

Figure 12.8: Azure AZ tool and Python in Cloud Shell

Cloud Shell is very handy because it is browser-based and thus accessible from virtually anywhere.

It is assigned per unique user account and automatically authenticated with each session, so we

do not need to worry about generating a separate key for it. But since we will be using the Azure

CLI quite often, let’s install a local copy on the management host:

(venv) $ curl -sL https://aka.ms/InstallAzureCLIDeb | sudo bash

(venv) $ az --version

azure-cli 2.40.0

core 2.40.0

telemetry 1.0.8

Dependencies:

msal 1.18.0b1

azure-mgmt-resource 21.1.0b1

Azure Cloud Networking384

Let’s also install the Azure Python SDK on our management host. Starting with version 5.0.0,

the Azure Python SDK requires us to install service-specific packages listed at https://aka.ms/

azsdk/python/all:

(venv) $ pip install azure-identity

(venv) $ pip install azure-mgmt-compute

(venv) $ pip install azure-mgmt-storage

(venv) $ pip install azure-mgmt-resource

(venv) $ pip install azure-mgmt-network

The Azure for Python Developers page, https://docs.microsoft.com/en-us/azure/python/, is

an all-inclusive resource for getting started with Azure using Python. The Azure SDK for Python

page, https://learn.microsoft.com/en-us/azure/developer/python/sdk/azure-sdk-overview,

provides detailed documentation on using the Python libraries for Azure resource management.

We are now ready to take a look at some of the service principles of Azure and launch our Azure

services.

Azure service principals
Azure uses the concept of service principal objects for automated tools. The network security best

practice of least privilege grants any person or tool just enough access to perform their job and

no more. An Azure service principal restricts resources and the level of access based on roles. To

get started, we will use the role automatically created for us by the Azure CLI and use the Python

SDK to test the authentication. Use the az login command to receive a token:

(venv) $ az login --use-device-code

To sign in, use a web browser to open the page https://microsoft.com/
devicelogin and enter the code <your code> to authenticate.

Follow the URL and paste in the code you see on the command line and authenticate with the

Azure account we created earlier:

Figure 12.9: Azure Cross-platform Command Line Interface

https://aka.ms/azsdk/python/all
https://aka.ms/azsdk/python/all
https://docs.microsoft.com/en-us/azure/python/
https://learn.microsoft.com/en-us/azure/developer/python/sdk/azure-sdk-overview

Chapter 12 385

We can create the credential file in json format and move that to the Azure directory. The Azure

directory was created when we installed the Azure CLI tool:

(venv) $ az ad sp create-for-rbac --sdk-auth > credentials.json

(venv) $ cat credentials.json

{

 "clientId": "<skip>",

 "clientSecret": "<skip>",

 "subscriptionId": "<skip>",

 "tenantId": "<skip>",

 "<skip>"

}

(venv) echou@network-dev-2:~$ mv credentials.json ~/.azure/

Let’s secure the credential file and export it as an environment variable:

(venv) $ chmod 0600 ~/.azure/credentials.json

(venv) $ export AZURE_AUTH_LOCATION=~/.azure/credentials.json

We will also export the various credentials into our environment:

$ cat ~/.azure/credentials.json

$ export AZURE_TENANT_ID="xxx"

$ export AZURE_CLIENT_ID="xxx"

$ export AZURE_CLIENT_SECRET="xxx"

$ export SUBSCRIPTION_ID="xxx"

We will grant role access to the subscription:

(venv) $ az ad sp create-for-rbac --role 'Owner' --scopes '/
subscriptions/<subscription id>'

{

 "appId": "<appId>",

 "displayName": "azure-cli-2022-09-22-17-24-24",

 "password": "<password>",

 "tenant": "<tenant>"

}

(venv) $ az login --service-principal --username "<appId>" --password
"<password>" --tenant "<tenant>"

Azure Cloud Networking386

If we browse to the Access control section in the portal (Home -> Subscriptions -> Pay-As-You-

Go -> Access control), we will be able to see the newly created role:

Figure 12.10: Azure pay-as-you-go IAM

We will use a simple Python script, Chapter12_1_auth.py, to import the library for client au-

thentication and network management:

#!/usr/bin/env python3
import os
import azure.mgmt.network
from azure.identity import ClientSecretCredential

credential = ClientSecretCredential(
 tenant_id=os.environ.get("AZURE_TENANT_ID"),
 client_id=os.environ.get("AZURE_CLIENT_ID"),
 client_secret=os.environ.get("AZURE_CLIENT_SECRET")
)

For more information on Azure RBAC, visit https://learn.microsoft.com/en-us/

cli/azure/create-an-azure-service-principal-azure-cli.

There are many example codes for using Python SDK to manage a network using

the Azure Python SDK on the GitHub page, https://github.com/Azure-Samples/

azure-samples-python-management/tree/main/samples/network. The Getting

Started Guide, https://learn.microsoft.com/en-us/samples/azure-samples/

azure-samples-python-management/network/, can also be useful.

https://learn.microsoft.com/en-us/cli/azure/create-an-azure-service-principal-azure-cli
https://learn.microsoft.com/en-us/cli/azure/create-an-azure-service-principal-azure-cli
https://github.com/Azure-Samples/azure-samples-python-management/tree/main/samples/network
https://github.com/Azure-Samples/azure-samples-python-management/tree/main/samples/network
https://learn.microsoft.com/en-us/samples/azure-samples/azure-samples-python-management/network/
https://learn.microsoft.com/en-us/samples/azure-samples/azure-samples-python-management/network/

Chapter 12 387

subscription_id = os.environ.get("SUBSCRIPTION_ID")
network_client = azure.mgmt.network.
NetworkManagementClient(credential=credential, subscription_
id=subscription_id)
print("Network Management Client API Version: " + network_client.DEFAULT_
API_VERSION)

If the file executes without an error, we have successfully authenticated with the Python SDK client:

(venv) $ python Chapter12_1_auth.py

Network Management Client API Version: 2022-01-01

While reading the Azure documentation, you may have noticed a combination of PowerShell and

Python. In the next section, let’s briefly consider the relationship between Python and PowerShell.

Python versus PowerShell
There are many programming languages and frameworks that Microsoft has either developed

from the ground up or has implemented major dialects for, including C#, .NET, and PowerShell.

It is no surprise that .NET (with C#) and PowerShell are somewhat first-class citizens in Azure. In

much of the Azure documentation, you will find direct references to PowerShell examples. There

are often opinionated discussions on the web forums on which tool, Python or PowerShell, is

better suited to managing Azure resources.

We will not get into a debate on language superiority. I do not mind using PowerShell when

required – I find it easy and intuitive – and I agree that sometimes the Python SDK lags behind

PowerShell in implementing the latest Azure features. But since Python is at least part of the rea-

son you picked up this book, we will stick to the Python SDK and the Azure CLI for our examples.

Initially, the Azure CLI was offered as PowerShell modules for Windows and the Node.js-based

CLI for other platforms. But as the tool has grown in popularity, it is now a wrapper around the

Azure Python SDK, as explained in this article on Python.org: https://www.python.org/success-

stories/building-an-open-source-and-cross-platform-azure-cli-with-python/.

As of July 2019, we can also run PowerShell Core on the Linux and macOS

operating systems in the preview release, https://docs.microsoft.com/
en-us/powershell/scripting/install/installing-powershell-core-on-

linux?view=powershell-6.

https://www.python.org/success-stories/building-an-open-source-and-cross-platform-azure-cli-with-python/
https://www.python.org/success-stories/building-an-open-source-and-cross-platform-azure-cli-with-python/
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-linux?view=powershell-7.3&viewFallbackFrom=powershell-6
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-linux?view=powershell-7.3&viewFallbackFrom=powershell-6
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-linux?view=powershell-7.3&viewFallbackFrom=powershell-6

Azure Cloud Networking388

In the remaining sections of this chapter, when we are introducing a feature or concept, we will

oftentimes turn to the Azure CLI for demonstration purposes. Rest assured that if something is

available as an Azure CLI command, it is available in the Python SDK if we need to directly code

it in Python.

Having covered Azure administration and the associated APIs, let’s move on to discussing Azure

global infrastructure.

Azure global infrastructure
Similar to AWS, an Azure global infrastructure consists of regions, Availability Zones (AZs), and

edge locations. At the time of writing, Azure has 60+ regions and more than 200+ physical data

centers, as illustrated on the product page (https://azure.microsoft.com/en-us/global-

infrastructure/):

Figure 12.11: Azure global infrastructure (source: https://azure.microsoft.com/en-us/glob-
al-infrastructure/)

https://azure.microsoft.com/en-us/global-infrastructure/
https://azure.microsoft.com/en-us/global-infrastructure/

Chapter 12 389

Like AWS, Azure products are offered via regions, so we need to check service availability and

pricing based on regions. We can also build redundancy into the service by building the service

in multiple AZs. However, unlike AWS, not all Azure regions have AZs, and not all Azure products

support them. In fact, Azure did not announce the general availability of AZs until 2018, and they

are only offered in select regions.

This is something to be aware of when picking our region. I recommend picking regions with AZs

such as West US 2, Central US, and East US 1.

If we build in a region without AZs, we will need to replicate the service across different regions,

typically in the same geography. We will discuss Azure geography next.

Unlike AWS, Azure regions are also organized into a higher-order category of geographies. A

geography is a discrete market, typically containing one or more regions. Besides lower latency

and better network connectivity, replicating the service and data across regions in the same

geography is necessary for government compliance. An example of replication across regions

would be the regions of Germany. If we needed to launch services for the German market, the

government mandates strict data sovereignty within the border, but none of the German regions

have Availability Zones. We would need to replicate the data between different regions in the

same geography, that is, Germany North, Germany Northeast, Germany West Central, and so on.

As a rule of thumb, I typically prefer regions that have Availability Zones to keep things similar

across different cloud providers. Once we have determined the region that best fits our use case,

we are ready to build our VNet in Azure.

Azure virtual networks
When we wear the network engineer hat in the Azure cloud, Azure virtual networks (VNets) are

where we spend most of our time. Similar to a traditional network that we would build in our

data center, they are the fundamental building blocks for our private networks in Azure. We will

use a VNet to allow our VMs to communicate with each other, with the internet, and with our

on-premise network through a VPN or ExpressRoute.

On the Azure global infrastructure page, the regions with Availability Zones are

marked with a star in the middle.

Azure Cloud Networking390

Let’s begin by building our first VNet using the portal. We will start by browsing the virtual

network page via Create a Resource -> Networking -> Virtual network:

Figure 12.12: Azure VNet

Chapter 12 391

Each VNet is scoped to a single region and we can create multiple subnets per VNet. As we will

see later, multiple VNets in different regions can connect to each other via VNet peering.

From the VNet creation page, we will create our first network with the following credentials:

Name: WEST-US-2_VNet_1

Address space: 192.168.0.0/23

Subscription: <pick your subscription>

Resource group: <click on new> -> 'Mastering-Python-Networking'

Location: West US 2

Subnet name: WEST-US-2_VNet_1_Subnet_1

Address range: 192.168.1.0/24

DDoS protection: Basic

Service endpoints: Disabled

Firewall: Disabled

Here is a screenshot of the necessary fields. If there are any missing fields that are required, they

will be highlighted in red. Click on Create when finished:

Figure 12.13: Azure VNet creation

Azure Cloud Networking392

Once the resource is created, we can navigate to it via Home -> Resource groups -> Master-

ing-Python-Networking:

Figure 12.14: Azure VNet overview

Congratulations, we just created our first VNet in the Azure cloud! Our network needs to commu-

nicate with the outside world to be useful. We will look at how we can do that in the next section.

Internet access
By default, all resources within a VNet can carry out outbound communication with the internet;

we do not need to add a NAT gateway as we do in AWS. For inbound communication, we will

need to assign a public IP directly to the VM or use a load balancer with a public IP. To see this

working, we will create VMs within our network.

We can create our first VM from Home -> Resource groups -> Mastering-Python-Networking

-> New -> Create a virtual machine:

Chapter 12 393

Figure 12.15: Azure creating a VM

I will pick Ubuntu Server 22.04 LTS as the VM and use the name myMPN-VM1 when prompted. I

will pick the region West US 2. We can choose password authentication or an SSH public key as

the authentication method and allow an SSH inbound connection. Since we are using it for testing,

we can pick the smallest instance in the B-Series to minimize our cost:

Figure 12.16: Azure compute B-Series

Azure Cloud Networking394

We can leave the other options as their default settings, pick a small disk size, and check delete

with VM. We will put the VM into the subnet that we created, as well as assigning a new public IP:

Figure 12.17: Azure network interface

After the VM is provisioned, we can ssh to the machine with the public IP and the user we created.

The VM has only one interface that is within our private subnet; it is also mapped to the public

IP that Azure automatically assigned. This public-to-private IP translation is done automatically

by Azure.

echou@myMPN-VM1:~$ sudo apt install net-tools

echou@myMPN-VM1:~$ ifconfig eth0

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 192.168.1.4 netmask 255.255.255.0 broadcast 192.168.1.255

 inet6 fe80::20d:3aff:fe06:68a0 prefixlen 64 scopeid 0x20<link>

 ether 00:0d:3a:06:68:a0 txqueuelen 1000 (Ethernet)

 RX packets 2344 bytes 2201526 (2.2 MB)

 RX errors 0 dropped 0 overruns 0 frame 0

Chapter 12 395

 TX packets 1290 bytes 304355 (304.3 KB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

echou@myMPN-VM1:~$ ping -c 1 www.google.com

PING www.google.com (142.251.211.228) 56(84) bytes of data.

64 bytes from sea30s13-in-f4.1e100.net (142.251.211.228): icmp_seq=1
ttl=115 time=47.7 ms

--- www.google.com ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 47.668/47.668/47.668/0.000 ms

We can repeat the same process to create a second VM named myMPN-VM2. The VM can be config-

ured with SSH inbound access but no public IP:

Figure 12.18: Azure VM IP addresses

After the VM creation, we can ssh to myMPN-VM2 from myMPN-VM1 with the private IP:

echou@myMPN-VM1:~$ ssh echou@192.168.1.5

echou@myMPN-VM2:~$ who

echou pts/0 2022-09-22 16:43 (192.168.1.4)

Azure Cloud Networking396

We can test the internet connection by trying to access the apt package update repositories:

echou@myMPN-VM2:~$ sudo apt update

Hit:1 http://azure.archive.ubuntu.com/ubuntu jammy InRelease

Get:2 http://azure.archive.ubuntu.com/ubuntu jammy-updates InRelease [114
kB]

Get:3 http://azure.archive.ubuntu.com/ubuntu jammy-backports InRelease
[99.8 kB]

Get:4 http://azure.archive.ubuntu.com/ubuntu jammy-security InRelease [110
kB]

Get:5 http://azure.archive.ubuntu.com/ubuntu jammy/universe amd64 Packages
[14.1 MB]

Fetched 23.5 MB in 6s (4159 kB/s)

With our VM inside of VNet able to access the internet, we can create additional network resources

for our network.

Network resource creation
Let’s look at an example of using the Python SDK to create network resources. In the following

example, Chapter12_2_network_resources.py, we will use the subnet.create_or_update API

to create a new 192.168.0.128/25 subnet in the VNet:

#!/usr/bin/env python3

Reference example: https://github.com/Azure-Samples/azure-samples-
python-management/blob/main/samples/network/virtual_network/manage_subnet.
py

import os

from azure.identity import ClientSecretCredential

import azure.mgmt.network

from azure.identity import DefaultAzureCredential

from azure.mgmt.network import NetworkManagementClient

from azure.mgmt.resource import ResourceManagementClient

credential = ClientSecretCredential(

 tenant_id=os.environ.get("AZURE_TENANT_ID"),

 client_id=os.environ.get("AZURE_CLIENT_ID"),

 client_secret=os.environ.get("AZURE_CLIENT_SECRET")

)

Chapter 12 397

subscription_id = os.environ.get("SUBSCRIPTION_ID")

GROUP_NAME = "Mastering-Python-Networking"

VIRTUAL_NETWORK_NAME = "WEST-US-2_VNet_1"

SUBNET = "WEST-US-2_VNet_1_Subnet_2"

network_client = azure.mgmt.network.NetworkManagementClient(

 credential=credential, subscription_id=subscription_id)

Get subnet

subnet = network_client.subnets.get(

 GROUP_NAME,

 VIRTUAL_NETWORK_NAME,

 SUBNET

)

print("Get subnet:\n{}".format(subnet))

subnet = network_client.subnets.begin_create_or_update(

 GROUP_NAME,

 VIRTUAL_NETWORK_NAME,

 SUBNET,

 {

 "address_prefix": "192.168.0.128/25"

 }

).result()

print("Create subnet:\n{}".format(subnet))

We will receive the following creation result message when we execute the script:

(venv) $ python3 Chapter12_2_subnet.py

{'additional_properties': {'type': 'Microsoft.Network/virtualNetworks/
subnets'}, 'id': '/subscriptions/<skip>/resourceGroups/Mastering-Python-
Networking/providers/Microsoft.Network/virtualNetworks/WEST-US-2_VNet_1/
subnets/WEST-US-2_VNet_1_Subnet_2', 'address_prefix': '192.168.0.128/25',
'address_prefixes': None, 'network_security_group': None, 'route_table':
None, 'service_endpoints': None, 'service_endpoint_policies': None,
'interface_endpoints': None, 'ip_configurations': None, 'ip_configuration_
profiles': None, 'resource_navigation_links': None, 'service_association_
links': None, 'delegations': [], 'purpose': None, 'provisioning_state':
'Succeeded', 'name': 'WEST-US-2_VNet_1_Subnet_2', 'etag': 'W/"<skip>"'}

Azure Cloud Networking398

The new subnet can also be seen on the portal:

Figure 12.19: Azure VNet subnets

For more examples of using the Python SDK, check out https://github.com/Azure-Samples/

azure-samples-python-management.

If we create a VM within the new subnet, even across subnet boundaries, the hosts in the same

VNet can reach each other with the same implicit router we saw with AWS.

There are additional VNet services available to us when we need to interact with other Azure

services. Let’s take a look.

VNet service endpoints
VNet service endpoints can extend the VNet to other Azure services over a direct connection. This

allows traffic from the VNet to the Azure service to remain on the Azure network. Service endpoints

need to be configured with an identified service within the region of the VNet.

They can be configured via the portal with restrictions to the service and subnet:

https://github.com/Azure-Samples/azure-samples-python-management
https://github.com/Azure-Samples/azure-samples-python-management

Chapter 12 399

Figure 12.20: Azure service endpoints

Strictly speaking, we do not need to create VNet service endpoints when we need to have the VMs

in the VNet communicate with the service. Each VM can access the service through the public IP

mapped, and we can use network rules to permit only the necessary IPs. However, using the VNet

service endpoints allows us to access the resources using the private IP within Azure without the

traffic traversing the public internet.

VNet peering
As mentioned at the beginning of the section, each VNet is limited to a region. For region-to-re-

gion VNet connectivity, we can leverage VNet peering. Let’s use the following two functions in

Chapter11_3_vnet.py to create a VNet in the US-East region:

<skip>

def create_vnet(network_client):

 vnet_params = {

 'location': LOCATION,

 'address_space': {

 'address_prefixes': ['10.0.0.0/16']

 }

 }

Azure Cloud Networking400

 creation_result = network_client.virtual_networks.create_or_update(

 GROUP_NAME,

 'EAST-US_VNet_1',

 vnet_params

)

 return creation_result.result()

<skip>

def create_subnet(network_client):

 subnet_params = {

 'address_prefix': '10.0.1.0/24'

 }

 creation_result = network_client.subnets.create_or_update(

 GROUP_NAME,

 'EAST-US_VNet_1',

 'EAST-US_VNet_1_Subnet_1',

 subnet_params

)

 return creation_result.result()

To allow VNet peering, we need to peer bi-directionally from both VNets. Since we have been using

the Python SDK up to this point, for learning purposes, let’s look at an example with the Azure CLI.

We will grab the VNet name and ID from the az network vnet list command:

(venv) $ az network vnet list

<skip>

"id": "/subscriptions/<skip>/resourceGroups/Mastering-Python-Networking/
providers/Microsoft.Network/virtualNetworks/EAST-US_VNet_1",

 "location": "eastus",

 "name": "EAST-US_VNet_1"

<skip>

"id": "/subscriptions/<skip>/resourceGroups/Mastering-Python-Networking/
providers/Microsoft.Network/virtualNetworks/WEST-US-2_VNet_1",

 "location": "westus2",

 "name": "WEST-US-2_VNet_1"

<skip>

Chapter 12 401

Let’s check the existing VNet peering for our West US 2 VNet:

(venv) $ az network vnet peering list -g "Mastering-Python-Networking"
--vnet-name WEST-US-2_VNet_1

[]

We will execute the peering from the West US to East US VNet, then repeat in the reverse direction:

(venv) $ az network vnet peering create -g "Mastering-Python-Networking"
-n WestUSToEastUS --vnet-name WEST-US-2_VNet_1 --remote-vnet "/
subscriptions/<skip>/resourceGroups/Mastering-Python-Networking/providers/
Microsoft.Network/virtualNetworks/EAST-US_VNet_1"

(venv) $ az network vnet peering create -g "Mastering-Python-
Networking" -n EastUSToWestUS --vnet-name EAST-US_VNet_1 --remote-vnet
"/subscriptions/b7257c5b-97c1-45ea-86a7-872ce8495a2a/resourceGroups/
Mastering-Python-Networking/providers/Microsoft.Network/virtualNetworks/
WEST-US-2_VNet_1"

Now if we run the check again, we will be able to see the VNet successfully peered:

(venv) $ az network vnet peering list -g "Mastering-Python-Networking"
--vnet-name "WEST-US-2_VNet_1"

[

 {

 "allowForwardedTraffic": false,

 "allowGatewayTransit": false,

 "allowVirtualNetworkAccess": false,

 "etag": "W/\"<skip>\"",

 "id": "/subscriptions/<skip>/resourceGroups/Mastering-Python-
Networking/providers/Microsoft.Network/virtualNetworks/WEST-US-2_VNet_1/
virtualNetworkPeerings/WestUSToEastUS",

 "name": "WestUSToEastUS",

 "peeringState": "Connected",

 "provisioningState": "Succeeded",

 "remoteAddressSpace": {

 "addressPrefixes": [

 "10.0.0.0/16"

]

 },

<skip>

Azure Cloud Networking402

We can also verify the peering on the Azure portal:

Figure 12.21: Azure VNet peering

Now that we have several hosts, subnets, VNets, and VNet peering in our setup, we should look

at how routing is done in Azure. That is what we will do in the next section.

VNet routing
As a network engineer, implicit routes added by the cloud provider have always been a bit uncom-

fortable for me. In traditional networking, we need to cable up the network, assign IP addresses,

configure routing, implement security, and make sure everything works. It can sometimes be

complex, but every packet and route is accounted for. For virtual networks in the cloud, the un-

derlay network is already completed by Azure and some network configuration on the overlay

network needs to happen automatically for the host to work at launch time, as we saw earlier.

Azure VNet routing is a bit different from AWS. In the AWS chapter, we saw the routing table

implemented at the VPC network layer. But if we browse to the Azure VNet setting on the portal,

we will not find a routing table assigned to the VNet.

Chapter 12 403

If we drill deeper into the subnet setting, we will see a routing table drop-down menu, but the

value it is displaying is None:

Figure 12.22: Azure subnet routing table

How can we have an empty routing table with the hosts in that subnet able to reach the internet?

Where can we see the routes configured by Azure VNet? The routing has been implemented at

the host and NIC levels. We can see it via All services -> Virtual Machines -> myNPM-VM1 ->

Networking (left panel) -> Topology (top panel):

Figure 12.23: Azure network topology

Azure Cloud Networking404

The network is being shown on the NIC level with each NIC attached to a VNet subnet on the

north side and other resources such as VM, Network Security Group (NSG), and IP on the south

side. The resources are dynamic; at the time of the screen capture, I only had myMPN-VM1 running,

therefore it is the only one with a VM and IP address attached, while the other VMs only have

NSGs attached.

We will cover NSG in the next section.

If we click on the NIC, mympn-vm1655 in our topology, we can see the settings associated with

the NIC. Under the Support + troubleshooting section, we will find the Effective routes link,

where we can see the current routing associated with the NIC:

Figure 12.24: Azure VNet effective routes

If we want to automate the process, we can use the Azure CLI to find the NIC name and then

show the routing table:

(venv) $ az vm show --name myMPN-VM1 --resource-group 'Mastering-Python-
Networking'

<skip>

"networkProfile": {

 "networkInterfaces": [

 {

 "id": "/subscriptions/<skip>/resourceGroups/Mastering-Python-
Networking/providers/Microsoft.Network/networkInterfaces/mympn-vm1655",

Chapter 12 405

 "primary": null,

 "resourceGroup": "Mastering-Python-Networking"

 }

]

 }

<skip>

(venv) $ az network nic show-effective-route-table --name mympn-vm1655
--resource-group "Mastering-Python-Networking"

{

 "nextLink": null,

 "value": [

 {

 "addressPrefix": [

 "192.168.0.0/23"

],

<skip>

Great! That was one mystery solved, but what are those next hops in the routing table? We can

reference the VNet traffic routing document: https://docs.microsoft.com/en-us/azure/

virtual-network/virtual-networks-udr-overview. A few important notes:

•	 If the source indicates that the route is Default, these are system routes that cannot be

removed but can be overwritten with custom routes.

•	 VNet next hops are the routes within the custom VNet. In our case, this is the 192.168.0.0/23

network, not just the subnet.

•	 Traffic routed to the None next hop type is dropped, similar to the Null interface routes.

•	 The VNetGlobalPeering next hop type is what was created when we established VNet

peering with other VNets.

•	 The VirtualNetworkServiceEndpoint next hop type was created when we enabled service

endpoints in our VNet. The public IP is managed by Azure and changes from time to time.

How do we override the default routes? We can create a route table and associate it with subnets.

Azure selects the routes with the following priority:

•	 User-defined route

•	 BGP route (from a Site-to-Site VPN or ExpressRoute)

•	 System route

https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-udr-overview
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-udr-overview

Azure Cloud Networking406

We can create a route table in the Networking section:

Figure 12.25: Azure VNet route tables

We can also create a route table, create a route within the table, and associate the route table

with a subnet via the Azure CLI:

(venv) $ az network route-table create --name TempRouteTable --resource
"Mastering-Python-Networking"

(venv) $ az network route-table route create -g "Mastering-Python-
Networking" --route-table-name TempRouteTable -n TempRoute --next-hop-
type VirtualAppliance --address-prefix 172.31.0.0/16 --next-hop-ip-address
10.0.100.4

(venv) $ az network vnet subnet update -g "Mastering-Python-Networking"
-n WEST-US-2_Vnet_1_Subnet_1 --vnet-name WEST-US-2_VNet_1 --route-table
TempRouteTable

Chapter 12 407

Let’s take a look at the primary security measure in VNet: NSGs.

Network security groups
VNet security is primarily implemented by NSGs. Just like traditional access lists or firewall rules,

we need to think of network security rules in a single direction at a time. For example, if we want

to have host A, in subnet 1 communicate freely with host B in subnet 2 over port 80, we need to

implement the necessary rules for both inbound and outbound directions for both hosts.

As we saw from previous examples, an NSG can be associated with the NIC or the subnet, so we

also need to think in terms of security layers. Generally speaking, we should implement the more

restrictive rules at the host level while the more relaxed rules are applied at the subnet level. This

is similar to traditional networking.

When we created our VMs, we set a permit rule for SSH TCP port 22 inbound. Let’s take a look at

the security group that was created for our first VM, myMPN-VM1-nsg:

Figure 12.26: Azure VNet NSG

There are a few things worth pointing out:

•	 The priority level of system-implemented rules is high, at 65,000 and above.

•	 By default, virtual networks can freely communicate with each other in both directions.

•	 By default, internal hosts are allowed internet access.

Azure Cloud Networking408

Let’s implement an inbound rule on the existing NSG group from the portal:

Figure 12.27: Azure security rule

We can also create a new security group and rules via the Azure CLI:

(venv) $ az network nsg create -g "Mastering-Python-Networking" -n TestNSG

(venv) $ az network nsg rule create -g "Mastering-Python-Networking"
--nsg-name TestNSG -n Allow_SSH --priority 150 --direction Inbound
--source-address-prefixes Internet --destination-port-ranges 22 --access
Allow --protocol Tcp --description "Permit SSH Inbound"

(venv) $ az network nsg rule create -g "Mastering-Python-Networking"
--nsg-name TestNSG -n Allow_SSL --priority 160 --direction Inbound
--source-address-prefixes Internet --destination-port-ranges 443 --access
Allow --protocol Tcp --description "Permit SSL Inbound"

Chapter 12 409

We can see the new rules that were created as well as the default rules:

Figure 12.28: Azure security rules

The last step would be to bind this NSG to a subnet:

(venv) $ az network vnet subnet update -g "Mastering-Python-Networking" -n
WEST-US-2_VNet_1_Subnet_1 --vnet-name WEST-US-2_VNet_1 --network-security-
group TestNSG

In the next two sections, we will look at the two primary ways to extend Azure virtual networks

to our on-premises data center: Azure VPN and Azure ExpressRoute.

Azure VPNs
As the network continues to grow, there might come a time when we need to connect the Azure

VNet to our on-premise location. A VPN gateway is a type of VNet gateway that can encrypt the

traffic between a VNet and our on-premise network and remote clients. Each VNet can only have

one VPN gateway, but multiple connections can be built on the same VPN gateway.

More information about Azure VPN gateways can be found at this link: https://docs.microsoft.

com/en-us/azure/vpn-gateway/.

https://docs.microsoft.com/en-us/azure/vpn-gateway/
https://docs.microsoft.com/en-us/azure/vpn-gateway/

Azure Cloud Networking410

VPN gateways are actually VMs themselves, configured with encryption and routing services, but

cannot be directly configured by the user. Azure provides a list of SKUs based on the type of tunnel,

number of concurrent connections, and total throughput (https://docs.microsoft.com/en-us/

azure/vpn-gateway/vpn-gateway-about-vpn-gateway-settings#gwsku):

Figure 12.29: Azure VPN gateway SKUs (source: https://docs.microsoft.com/en-us/azure/
vpn-gateway/point-to-site-about)

As we can see from the preceding table, the Azure VPN is divided into two different categories:

Point-to-Site (P2S) VPN and Site-to-Site (S2S) VPN. The P2S VPN allows secure connections from

an individual client computer, mainly used by telecommuters. The encryption method can be

SSTP, IKEv2, or OpenVPN connection. When picking the type of VPN Gateway SKU for P2S, we will

want to focus on the second and third columns on the SKU chart for the number of connections.

For a client-based VPN, we can use either SSTP or IKEv2 as the tunneling protocol:

https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpn-gateway-settings#gwsku
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpn-gateway-settings#gwsku

Chapter 12 411

Figure 12.30: Azure Site-to-Site VPN gateway (source: https://docs.microsoft.com/en-us/azure/
vpn-gateway/vpn-gateway-about-vpngateways)

Besides client-based VPNs, another type of VPN connection is a Site-to-Site or multi-site VPN

connection. The encryption method will be IPSec over IKE and a public IP will be required for

both Azure and the on-premise network, as illustrated by the following diagram:

Figure 12.31: Azure client VPN gateway (source: https://docs.microsoft.com/en-us/azure/
vpn-gateway/vpn-gateway-about-vpngateways)

Azure Cloud Networking412

A full example of creating an S2S or P2S VPN is more than what we can cover in this section.

Azure provides tutorials for S2S (https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-

gateway-howto-site-to-site-resource-manager-portal), as well as P2S VPN (https://docs.
microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-howto-site-to-site-resource-

manager-portal).

The steps are pretty straightforward for engineers who have configured VPN services before. The

only point that may be a bit confusing and is not called out in the document is the fact that the

VPN gateway device should live in a dedicated gateway subnet within the VNet with a /27 IP

block assigned:

Figure 12.32: Azure VPN gateway subnet

A growing list of validated Azure VPN devices can be found at https://docs.microsoft.com/

en-us/azure/vpn-gateway/vpn-gateway-about-vpn-devices, with links to their respective

configuration guides.

Azure ExpressRoute
When organizations need to extend an Azure VNet to on-premises sites, it makes sense to start

with a VPN connection. However, as the connection takes on more mission-critical traffic, the

organization might want a more stable and reliable connection. Similar to AWS Direct Connect,

Azure offers ExpressRoute as a private connection facilitated by a connectivity provider. As we

can see from the diagram, our network is connected to Azure’s partner edge network before it is

transitioned to Azure’s edge network:

https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-howto-site-to-site-resource-manager-portal
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-howto-site-to-site-resource-manager-portal
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-howto-site-to-site-resource-manager-portal
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-howto-site-to-site-resource-manager-portal
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-howto-site-to-site-resource-manager-portal
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpn-devices
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpn-devices

Chapter 12 413

Figure 12.33: Azure ExpressRoute circuits (source: https://docs.microsoft.com/en-us/azure/
expressroute/expressroute-introduction)

The advantages of ExpressRoute include:

•	 More reliable since it does not traverse through the public internet.

•	 A faster connection with lower latency since a private connection is likely to have fewer

hops between on-premise equipment to Azure.

•	 Better security measures since it is a private connection, especially if a company relies on

Microsoft services such as Office 365.

The disadvantages of ExpressRoute can be:

•	 More difficulty setting up, both in terms of business and technical requirements.

•	 Higher cost commitment upfront, since the port charge and connection charges are often

fixed. Some of the costs can be offset by a reduction in internet costs if it replaces a VPN

connection. However, the total cost of ownership is typically higher with ExpressRoute.

Azure Cloud Networking414

A more detailed overview of ExpressRoute can be found at https://docs.microsoft.com/en-us/

azure/expressroute/expressroute-introduction. One of the biggest differences from AWS

Direct Connect is the fact that ExpressRoute can offer connections across regions in geography.

There is also a premium add-on that allows global connectivity to Microsoft services as well as

QoS support for Skype for Business.

Similar to Direct Connect, ExpressRoute requires the user to connect to Azure with a partner or

meet Azure at a certain designated location with ExpressRoute Direct (yes, the term is confus-

ing). This is typically the biggest hurdle for enterprises to get over since they will need to either

build their data center at one of the Azure locations, connect with a carrier (MPLS VPN), or work

with a broker as a go-between for connection. These options typically require business contracts,

longer-term commitments, and committed monthly costs.

To start, my recommendation would be similar to in Chapter 11, AWS Cloud Networking, which is

to use an existing carrier broker for connection to a carrier hotel. From the carrier hotel, either

directly connect to Azure or use an intermediary such as Equinix FABRIC (https://www.equinix.

com/interconnection-services/equinix-fabric).

In the next section, we will look at how we can distribute incoming traffic efficiently when our

service grows beyond just a single server.

Azure network load balancers
Azure offers load balancers in both the basic and standard SKU. When we discuss the load balanc-

er in this section, we are referring to the Layer 4 TCP and UDP load distribution service instead

of the Application Gateway Load Balancer (https://azure.microsoft.com/en-us/services/

application-gateway/), which is a layer-7 load-balancing solution.

The typical deployment model is usually a one- or two-layer load distribution for an inbound

connection from the internet:

https://docs.microsoft.com/en-us/azure/expressroute/expressroute-introduction
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-introduction
https://www.equinix.com/interconnection-services/equinix-fabric
https://www.equinix.com/interconnection-services/equinix-fabric
https://azure.microsoft.com/en-us/services/application-gateway/
https://azure.microsoft.com/en-us/services/application-gateway/

Chapter 12 415

Figure 12.34: Azure Load Balancer (source: https://docs.microsoft.com/en-us/azure/load-bal-
ancer/load-balancer-overview)

The load balancer hashes the incoming connection on a 5-tuple hash (source and destination IP,

source and destination port, and protocol) and distributes the flow to one or more destinations.

The Standard Load Balancer SKU is a superset of the basic SKU, therefore new designs should

adopt the Standard Load Balancer.

As with AWS, Azure is constantly innovating with new network services. We have covered the

foundational services in this chapter; let’s take a look at some of the other notable services.

Azure Cloud Networking416

Other Azure network services
Some of the other Azure network services that we should be aware of are:

•	 DNS services: Azure has a suite of DNS services (https://docs.microsoft.com/en-us/

azure/dns/dns-overview), both public and private. It can be used for geographical load

balancing for network services.

•	 Container networking: Azure has been making a push toward containers in re-

cent years. More information about Azure network capabilities for containers can be

found at https://docs.microsoft.com/en-us/azure/virtual-network/container-

networking-overview.

•	 VNet TAP: Azure VNet TAP allows you to continuously stream your VM network traffic

to a network packet collector or analytical tool (https://docs.microsoft.com/en-us/

azure/virtual-network/virtual-network-tap-overview).

•	 Distributed Denial of Service Protection: Azure DDoS protection provides defense against

DDoS attacks (https://docs.microsoft.com/en-us/azure/virtual-network/ddos-

protection-overview).

Azure network services are a big part of the Azure cloud family and continue to grow at a fast rate.

We have only covered a portion of the services in this chapter, but hopefully, it has given you a

good foundation from which to begin to explore other services.

Summary
In this chapter, we took a look at the various Azure cloud network services. We discussed the

Azure global network and various aspects of virtual networks. We used both the Azure CLI and the

Python SDK to create, update, and manage those network services. When we need to extend Azure

services to an on-premise data center, we can use either VPN or ExpressRoute for connectivity.

We also briefly looked at various Azure network products and services.

In the next chapter, we will revisit the data analysis pipeline with an all-in-one stack: the Elastic

Stack.

https://docs.microsoft.com/en-us/azure/dns/dns-overview
https://docs.microsoft.com/en-us/azure/dns/dns-overview
https://docs.microsoft.com/en-us/azure/virtual-network/container-networking-overview
https://docs.microsoft.com/en-us/azure/virtual-network/container-networking-overview
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-tap-overview
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-tap-overview
https://docs.microsoft.com/en-us/azure/virtual-network/ddos-protection-overview
https://docs.microsoft.com/en-us/azure/virtual-network/ddos-protection-overview

Chapter 12 417

Join our book community
To join our community for this book – where you can share feedback, ask questions to the author,

and learn about new releases – follow the QR code below:

https://packt.link/networkautomationcommunity

https://packt.link/networkautomationcommunity

13
Network Data Analysis with
Elastic Stack

In Chapter 7, Network Monitoring with Python – Part 1, and Chapter 8, Network Monitoring with Python

– Part 2, we discussed the various ways to monitor a network. In the two chapters, we looked at

two different approaches for network data collection: we can either retrieve data from network

devices such as SNMP, or we can listen for the data sent by network devices using flow-based

exports. After the data is collected, we will need to store the data in a database, then analyze the

data to gain insights to decide what the data means. Most of the time, the analyzed results are

displayed in a graph, whether a line graph, bar graph, or pie chart. We can use individual tools

such as PySNMP, Matplotlib, and Pygal for each step, or we can leverage all-in-one tools such as

Cacti or ntop for monitoring. The tools introduced in those two chapters gave us basic monitoring

and understanding of the network.

We then moved on to Chapter 9, Building Network Web Services with Python, to build API services

to abstract our network from higher-level tools. In Chapter 11, AWS Cloud Networking, and Chapter

12, Azure Cloud Networking, we extended our on-premises network to the cloud using AWS and

Azure. We have covered much ground in these chapters and have a solid set of tools to help us

make our network programmable.

Starting with this chapter, we will build on our toolsets from previous chapters and look at other

tools and projects that I have found useful in my journey once I was comfortable with the tools

covered in previous chapters. In this chapter, we will take a look at an open source project, Elastic

Stack (https://www.elastic.co), that can help us with analyzing and monitoring our network

beyond what we have seen before.

https://www.elastic.co

Network Data Analysis with Elastic Stack420

In this chapter, we will look at the following topics:

•	 What is the Elastic (or ELK) Stack?

•	 Elastic Stack installation

•	 Data ingestion with Logstash

•	 Data ingestion with Beats

•	 Search with Elasticsearch

•	 Data visualization with Kibana

Let’s begin by answering the question: what exactly is the Elastic Stack?

What is the Elastic Stack?
The Elastic Stack is also known as the “ELK” Stack. So, what is it? Let’s see what the developers

have to say in their own words (https://www.elastic.co/what-is/elk-stack):

Figure 13.1: Elastic Stack (source: https://www.elastic.co/what-is/elk-stack)

”ELK” is the acronym for three open source projects: Elasticsearch, Logstash, and

Kibana. Elasticsearch is a search and analytics engine. Logstash is a serverside

data processing pipeline that ingests data from multiple sources simultaneously,

transforms it, and then sends it to a “stash” like Elasticsearch. Kibana lets users

visualize data with charts and graphs in Elasticsearch. The Elastic Stack is the next

evolution of the ELK Stack.

https://www.elastic.co/what-is/elk-stack

Chapter 13 421

As we can see from the statement, the Elastic Stack is a collection of different projects working

together to cover the whole spectrum of data collection, storage, retrieval, analytics, and visual-

ization. What is nice about the stack is that it is tightly integrated, but each component can also

be used separately. If we dislike Kibana for visualization, we can easily plug in Grafana for the

graphs. What if we have other data ingestion tools that we want to use? No problem, we can use

the RESTful API to post our data to Elasticsearch. At the center of the stack is Elasticsearch, an

open source, distributed search engine. The other projects were created to enhance and support

the search function. This might sound a bit confusing at first, but as we look deeper at the com-

ponents of the project, it will become clearer.

Why did they change the name of ELK Stack to Elastic Stack? In 2015, Elastic introduced a family

of lightweight, single-purpose data shippers called Beats. They were an instant hit and contin-

ue to be very popular, but the creators could not come up with a good acronym for the “B” and

decided to just rename the whole stack to Elastic Stack.

We will focus on the network monitoring and data analysis aspects of the Elastic Stack. Still, the

stack has many use cases, including risk management, e-commerce personalization, security

analysis, fraud detection, and more. It is being used by various organizations, from web compa-

nies such as Cisco, Box, and Adobe, to government agencies such as NASA JPL, the United States

Census Bureau, and others (https://www.elastic.co/customers/).

When we talk about Elastic, we are referring to the company behind the Elastic Stack. The tools

are open source and the company makes money by selling support, hosted solutions, and con-

sulting around open source projects. The company stock is publicly traded on the New York Stock

Exchange with the ESTC symbol.

Now that we have a better idea of what the ELK Stack is, let’s take a look at the lab topology for

this chapter.

Lab topology
For the network lab, we will reuse the network topology we used in Chapter 8, Network Monitoring

with Python – Part 2. The network gear will have the management interfaces in the 192.168.2.0/24

management network with the interconnections in the 10.0.0.0/8 network and the subnets in

/30s.

Where can we install the ELK Stack in the lab? In production, we should run the ELK Stack in a

dedicated cluster. In our lab, however, we can quickly spin up a testing instance via Docker con-

tainers. If a refresher of Docker is needed, please refer to Chapter 5, Docker Containers for Network

Engineers.

https://www.elastic.co/customers/

Network Data Analysis with Elastic Stack422

Following is a graphical representation of our network lab topology:

Figure 13.2: Lab Topology

Device Management IP Loopback IP

r1 192.168.2.218 192.168.0.1

r2 192.168.2.219 192.168.0.2

r3 192.168.2.220 192.168.0.3

r5 192.168.2.221 192.168.0.4

r6 192.168.2.222 192.168.0.5

The Ubuntu hosts information is as follows:

Device Name External Link Eth0 Internal IP Eth1

Client 192.168.2.211 10.0.0.9

Server 192.168.2.212 10.0.0.5

To run multiple containers, we should allocate at least 4 GB RAM or more to the host. Let’s start

Docker Engine, if not done already, then pull the image from Docker Hub:

Chapter 13 423

$ sudo service docker start

$ docker network create elastic

$ docker pull docker.elastic.co/elasticsearch/elasticsearch:8.4.2

$ docker run --name elasticsearch –-rm -it --network elastic -p 9200:9200
-p 9300:9300 -e "discovery.type=single-node" -t docker.elastic.co/
elasticsearch/elasticsearch:8.4.2

When the Docker container is run, the generated default Elastic user password and Kibana en-

rollment token are output to the terminal; please take a note of them as we will need them later.

You might need to scroll up the screen a bit to find them:

-> Password for the elastic user (reset with 'bin/elasticsearch-reset-
password -u elastic'):

 <password>

-> Configure Kibana to use this cluster:

* Run Kibana and click the configuration link in the terminal when Kibana
starts.

* Copy the following enrollment token and paste it into Kibana in your
browser (valid for the next 30 minutes):

 <token>

Once the Elasticsearch container runs, we can test out the instance by browsing to https://<your

ip>:9200:

Figure 13.3: Elasticsearch Initial Result

Network Data Analysis with Elastic Stack424

We can then pull and run the Kibana container image from a separate terminal:

$ docker pull docker.elastic.co/kibana/kibana:8.4.2

$ docker run --name kibana –-rm -it --network elastic -p 5601:5601 docker.
elastic.co/kibana/kibana:8.4.2

Once Kibana boots up, we can access it via port 5601:

Figure 13.4: Kibana Start Page

Notice it is asking for the enrolment token we jotted down before. We can paste that in and click

on Configure Elastic. It will prompt us for a token, which is now displayed on the Kibana terminal.

Once that is authenticated, Kibana will start to configure Elastic:

Chapter 13 425

Figure 13.5: Configurating Elastic

Finally, we should be able to access the Kibana interface at http://<ip>:5601. We do not need

any integration at this point; we will pick Explore on my own:

Figure 13.6:

Network Data Analysis with Elastic Stack426

We will be presented with an option to load some sample data. This is a great way to get our feet

wet with the tool, so let’s import this data:

Figure 13.7: Kibana Home Page

We will choose Try sample data and add the sample eCommerce orders, sample flight data, and

sample web logs:

Chapter 13 427

Figure 13.8: Adding Sample Data

To summarize, we now have Elasticsearch and Kibana running as containers with forwarded

ports on the management host:

$ docker ps

CONTAINER ID IMAGE
COMMAND CREATED STATUS PORTS
NAMES

f7d6d8842060 docker.elastic.co/kibana/
kibana:8.4.2 "/bin/tini -- /usr/l…" 42 minutes
ago Up 42 minutes 0.0.0.0:5601->5601/tcp, :::5601->5601/tc
p kibana

dc2a1fa15e3b docker.elastic.co/elasticsearch/elasticsearch:8.4.2
"/bin/tini -- /usr/l…" 46 minutes ago Up 46 minutes
0.0.0.0:9200->9200/tcp, :::9200->9200/tcp, 0.0.0.0:9300->9300/tcp,
:::9300->9300/tcp elasticsearch

Network Data Analysis with Elastic Stack428

Great! We are almost done. The last piece of the puzzle is Logstash. Since we will be working with

different Logstash configuration files, modules, and plugins, we will install it on the management

host with a package instead of a Docker container. Logstash requires Java to run:

$ sudo apt install openjdk-11-jre-headless

$ java --version

openjdk 11.0.16 2022-07-19

OpenJDK Runtime Environment (build 11.0.16+8-post-Ubuntu-0ubuntu122.04)

OpenJDK 64-Bit Server VM (build 11.0.16+8-post-Ubuntu-0ubuntu122.04, mixed
mode, sharing)

We can download the Logstash bundled package:

$ wget https://artifacts.elastic.co/downloads/logstash/logstash-8.4.2-
linux-x86_64.tar.gz

$ tar -xvzf logstash-8.4.2-linux-x86_64.tar.gz

$ cd logstash-8.4.2/

We will modify a few fields in the Logstash configuration file:

$ vim config/logstash.yml

change the following fields

node.name: mastering-python-networking

api.http.host: <your host ip>

api.http.port: 9600-9700

We will not start Logstash just yet. We will wait until we have installed the network-related plugins

and created the necessary configuration file later in the chapter to start the Logstash process.

Let’s take a moment to look at deploying the ELK Stack as a hosted service in the next section.

Elastic Stack as a service
Elasticsearch is a popular service available as a hosted option by both Elastic.co and other cloud

providers. Elastic Cloud (https://www.elastic.co/cloud/) does not have an infrastructure of

its own, but it offers the option to spin up deployments on AWS, Google Cloud Platform, or Azure.

Because Elastic Cloud is built on other public cloud VM offerings, the cost will be a bit more than

getting it directly from a cloud provider, such as AWS:

https://www.elastic.co/cloud/

Chapter 13 429

Figure 13.9: Elastic Cloud Offerings

AWS offers the hosted OpenSearch product (https://aws.amazon.com/opensearch-service/)

tightly integrated with the existing AWS offerings. For example, AWS CloudWatch Logs can

be streamed directly to the AWS OpenSearch instance (https://docs.aws.amazon.com/

AmazonCloudWatch/latest/logs/CWL_OpenSearch_Stream.html).

From my own experience, as attractive as the Elastic Stack is for its advantages, it is a project that

I feel is easy to get started but hard to scale without a steep learning curve. The learning curve

is even steeper when we do not deal with Elasticsearch on a daily basis. If you, like me, want to

take advantage of the features Elastic Stack offers but do not want to become a full-time Elastic

engineer, I would highly recommend using one of the hosted options for production.

Which hosted provider to choose depends on your preference of cloud provider lockdown and

if you want to use the latest features. Since Elastic Cloud is built by the folks behind the Elastic

Stack project, they tend to offer the latest features faster than AWS. On the other hand, if your

infrastructure is fully built in the AWS cloud, having a tightly integrated OpenSearch instance

saves you the time and effort required to maintain a separate cluster.

Let’s look at an end-to-end example from data ingestion to visualization in the next section.

https://aws.amazon.com/opensearch-service/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_OpenSearch_Stream.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_OpenSearch_Stream.html

Network Data Analysis with Elastic Stack430

First End-to-End example
One of the most common pieces of feedback from people new to Elastic Stack is the amount of

detail you need to understand to get started. To get the first usable record in the Elastic Stack, the

user needs to build a cluster, allocate master and data nodes, ingest the data, create the index,

and manage it via the web or command-line interface. Over the years, Elastic Stack has simplified

the installation process, improved its documentation, and created sample datasets for new users

to get familiar with the tools before using the stack in production.

Before we dig deeper into the different components of the Elastic Stack, it is helpful to look at an

example that spans Logstash, Elasticsearch, and Kibana. By going over this end-to-end example,

we will become familiar with the function that each component provides. When we look at each

component in more detail later in the chapter, we can compartmentalize where the particular

component fits into the overall picture.

Let’s start by putting our log data into Logstash. We will configure each of the routers to export

the log data to the Logstash server:

r[1-6]#sh run | i logging

logging host <logstash ip> vrf Mgmt-intf transport udp port 5144

On our Elastic Stack host, with all of the components installed, we will create a simple Logstash

configuration that listens on UDP port 5144 and outputs the data to the console in JSON format

as well as the Elasticsearch host:

echou@elk-stack-mpn:~$ cd logstash-8.4.2/

echou@elk-stack-mpn:~/logstash-8.4.2$ mkdir network_configs

echou@elk-stack-mpn:~/logstash-8.4.2$ touch network_configs/simple_config.
cfg

echou@elk-stack-mpn:~/logstash-8.4.2$ cat network_configs/simple_config.
conf

input {

 udp {

 port => 5144

 type => "syslog-ios"

 }

Running the components in Docker containers helps with some of the pain of

installation but increases the complexity of maintenance. It is a balancing act to

choose between running them in a virtual machine vs. containers.

Chapter 13 431

}

output {

 stdout { codec => json }

 elasticsearch {

 hosts => ["https://<elasticsearch ip>:9200"]

 ssl => true

 ssl_certificate_verification => false

 user => "elastic"

 password => "<password>"

 index => "cisco-syslog-%{+YYYY.MM.dd}"

 }

}

The configuration file consists of only an input section and an output section without modifying

the data. The type, syslog-ios, is a name we picked to identify this index. In the output section,

we configure the index name with variables representing today’s date. We can run the Logstash

process directly from the binary directory in the foreground:

$./bin/logstash -f network_configs/simple_config.conf

Using bundled JDK: /home/echou/Mastering_Python_Networking_Fourth_Edition/
logstash-8.4.2/jdk

[2022-09-23T13:46:25,876][INFO][logstash.inputs.udp][main]
[516c12046954cb8353b87ba93e5238d7964349b0fa7fa80339b72c6baca637bb]
UDP listener started {:address=>"0.0.0.0:5144", :receive_buffer_
bytes=>"106496", :queue_size=>"2000"}

<skip>

By default, Elasticsearch allows automatic index generation when data is sent to it. We can gen-

erate some log data on the router by resetting the interface, reloading BGP, or simply going into

the configuration mode and exiting out. Once there are some new logs generated, we will see the

cisco-syslog-<date> index being created:

{"@timestamp":"2022-09-23T20:48:31.354Z", "log.level": "INFO",
"message":"[cisco-syslog-2022.09.23/B7PH3hxNSHqAegikXyp9kg]
create_mapping", "ecs.version": "1.2.0","service.name":"ES_
ECS","event.dataset":"elasticsearch.server","process.thread.
name":"elasticsearch[24808013b64b][masterService#updateTask]
[T#1]","log.logger":"org.elasticsearch.cluster.metadata.
MetadataMappingService","elasticsearch.cluster.uuid":"c-j9Dg8YTh2PstO3JFP9
AA","elasticsearch.node.id":"Pa4x3YJ-TrmFn5Pb2tObVw","elasticsearch.node.
name":"24808013b64b","elasticsearch.cluster.name":"docker-cluster"}

Network Data Analysis with Elastic Stack432

At this point, we can do a quick curl to see the index created on Elasticsearch. The curl command

use the insecure flag to accommodate the self-signed certificate. The URL is in the “https://<us

ername>:<password>@<ip><port>/<path>” format. "_cat/indices/cisco*" shows the category

of indices, then match the indices name:

$ curl -X GET --insecure "https://elastic:-Rel0twWMUk8L-
ZtZr=I@192.168.2.126:9200/_cat/indices/cisco*"

yellow open cisco-syslog-2022.09.23 B7PH3hxNSHqAegikXyp9kg 1 1 9 0 21kb
21kb

We can now use Kibana to create the index by going to Menu -> Management -> Stack Man-

agement:

Figure 13.10: Stack Management

Chapter 13 433

Under Data -> Index Management, we can see the newly created cisco-syslog index:

Figure 13.11: Index Management

We can now move to Stack Management -> Kibana -> Data Views to create a data view.

Figure 13.12: Create New Data Views Step 1

Network Data Analysis with Elastic Stack434

Since the index is already in Elasticsearch, we will only need to match the index name. Remember

that our index name is a variable based on time; we can use a star wildcard (*) to match all the

current and future indices starting with cisco-syslog:

Figure 13.13: Create New Data Views Step 2

Our index is time-based, that is, we have a field that can be used as a timestamp, and we can

search based on time. We should specify the field that we designated as the timestamp. In our

case, Elasticsearch was already smart enough to pick a field from our syslog for the timestamp;

we just need to choose it in the second step from the drop-down menu.

After the index pattern is created, we can use the Menu -> Discover (under Analytics) tab to look

at the entries. Make sure you pick the right indices and the time range:

Figure 13.14: Elasticsearch Index Document Discovery

Chapter 13 435

After we have collected some more log information, we can stop the Logstash process by using

Ctrl + C on the Logstash process. This first example shows how we can leverage the Elastic Stack

pipeline from data ingestion, storage, and visualization. The data ingestion used in Logstash (or

Beats) is a continuous data stream that automatically flows into Elasticsearch. The Kibana visu-

alization tool provides a way for us to analyze the data in Elasticsearch in a more intuitive way,

then create a permanent visualization once we are happy with the result. There are more visual-

ization graphs we can create with Kibana, which we will see more examples of later in the chapter.

Even with just one example, we can see that the most important part of the workflow is Elastic-

search. It is the simple RESTful interface, storage scalability, automatic indexing, and quick search

result that gives the stack the power to adapt to our network analysis needs.

In the next section, we will look at how we can use Python to interact with Elasticsearch.

Elasticsearch with a Python client
We can interact with Elasticsearch via its HTTP RESTful API using a Python library. For instance,

in the following example, we will use the requests library to perform a GET operation to retrieve

information from the Elasticsearch host. For example, we know that HTTP GET for the following

URL endpoint can retrieve the current indices starting with kibana:

$ curl -X GET --insecure "https://elastic:-Rel0twWMUk8L-
ZtZr=I@192.168.2.126:9200/_cat/indices/kibana*"

green open kibana_sample_data_ecommerce QcLgMu7CTEKNjeJeBxaD3w 1 0 4675 0
4.2mb 4.2mb

green open kibana_sample_data_logs KPcJfMoSSaSs-kyqkuspKg 1 0 14074 0
8.1mb 8.1mb

green open kibana_sample_data_flights q8MkYKooT8C5CQzbMMNTpg 1 0 13059 0
5.8mb 5.8mb

We can use the requests library to make a similar function in a Python script, Chapter13_1.py:

#!/usr/bin/env python3

import requests

from requests.packages.urllib3.exceptions import InsecureRequestWarning

disable https verification check warning

requests.packages.urllib3.disable_warnings(InsecureRequestWarning)

def current_indices_list(es_host, index_prefix):

Network Data Analysis with Elastic Stack436

 current_indices = []

 http_header = {'content-type': 'application/json'}

 response = requests.get(es_host + "/_cat/indices/" + index_prefix +
"*", headers=http_header, verify=False)

 for line in response.text.split('\n'):

 if line:

 current_indices.append(line.split()[2])

 return current_indices

if __name__ == "__main__":

 username = 'elastic'

 password = '-Rel0twWMUk8L-ZtZr=I'

 es_host = 'https://'+username+':'+password+'@192.168.2.126:9200'

 indices_list = current_indices_list(es_host, 'kibana')

 print(indices_list)

Executing the script will give us a list of indices starting with kibana:

$ python Chapter13_1.py

['kibana_sample_data_ecommerce', 'kibana_sample_data_logs', 'kibana_
sample_data_flights']

We can also use the Python Elasticsearch client, https://elasticsearch-py.readthedocs.io/

en/master/. It is designed as a thin wrapper around Elasticsearch’s RESTful API to allow for

maximum flexibility. Let’s install it and run a simple example:

(venv) $ pip install elasticsearch

The example, Chapter13_2, simply connects to the Elasticsearch cluster and does a search for

anything that matches the indices that start with kibana:

#!/usr/bin/env python3

from elasticsearch import Elasticsearch

es_host = Elasticsearch(["https://elastic:-Rel0twWMUk8L-
ZtZr=I@192.168.2.126:9200/"],

 ca_certs=False, verify_certs=False)

res = es_host.search(index="kibana*", body={"query": {"match_all": {}}})

print("Hits Total: " + str(res['hits']['total']['value']))

https://elasticsearch-py.readthedocs.io/en/master/
https://elasticsearch-py.readthedocs.io/en/master/

Chapter 13 437

By default, the result will return the first 10,000 entries:

$ python Chapter13_2.py

Hits Total: 10000

Using the simple script, the advantage of the client library is not obvious. However, the client

library is very helpful when we create a more complex search operation, such as a scroll where

we need to use the returned token per query to continue executing the subsequent queries until

all the results are returned. The client can also help with more complicated administrative tasks,

such as when we need to re-index an existing index. We will see more examples using the client

library in the remainder of the chapter.

In the next section, we will look at more data ingestion examples from our Cisco device syslogs.

Data ingestion with Logstash
In the last example, we used Logstash to ingest log data from network devices. Let’s build on that

example and add a few more configuration changes in network_config/config_2.cfg:

input {

 udp {

 port => 5144

 type => "syslog-core"

 }

 udp {

 port => 5145

 type => "syslog-edge"

 }

}

filter {

 if [type] == "syslog-edge" {

 grok {

 match => { "message" => ".*" }

 add_field => ["received_at", "%{@timestamp}"]

 }

 }

}

output {

 stdout { codec => json }

 elasticsearch {

Network Data Analysis with Elastic Stack438

 hosts => ["https://192.168.2.126:9200"]

 <skip>

 }

}

In the input section, we will listen on two UDP ports, 5144 and 5145. When the logs are received,

we will tag the log entries with either syslog-core or syslog-edge. We will also add a filter section

to the configuration to specifically match the syslog-edge type and apply a regular expression

section, Grok, for the message section. In this case, we will match everything and add an extra

field, received_at, with the value of the timestamp.

For more information on Grok, take a look at the following documentation: https://www.elastic.

co/guide/en/logstash/current/plugins-filters-grok.html.

We will change r5 and r6 to send syslog information to UDP port 5145:

r[5-6]#sh run | i logging

logging host 192.168.2.126 vrf Mgmt-intf transport udp port 5145

When we start the Logstash server, we will see that both ports are now listening:

$./bin/logstash -f network_configs/config_2.conf

<skip>

[2022-09-23T14:50:42,097][INFO][logstash.inputs.udp][main]
[212f078853a453d3d8a5d8c1df268fd628577245cd1b66acb06b9e1cb1ff8a10]
UDP listener started {:address=>"0.0.0.0:5144", :receive_buffer_
bytes=>"106496", :queue_size=>"2000"}

[2022-09-23T14:50:42,106][INFO][logstash.inputs.udp][main]
[6c3825527b168b167846f4ca7dea5ef55e1437753219866bdcc2eb51aee53c84]
UDP listener started {:address=>"0.0.0.0:5145", :receive_buffer_
bytes=>"106496", :queue_size=>"2000"}

By separating out the entries using different types, we can specifically search for the types in the

Kibana Discover dashboard:

https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html

Chapter 13 439

Figure 13.15: Syslog Index

If we expand on the entry with the syslog-edge type, we can see the new field that we added:

Figure 13.16: Syslog Timestamp

The Logstash configuration file provides many options in the input, filter, and output. In partic-

ular, the Filter section provides ways for us to enhance the data by selectively matching the data

and further processing it before outputting it to Elasticsearch. Logstash can be extended with

modules; each module provides a quick end-to-end solution for ingesting data and visualizations

with purpose-built dashboards.

Network Data Analysis with Elastic Stack440

For more information on the Logstash modules, take a look at the following document: https://

www.elastic.co/guide/en/logstash/8.4/logstash-modules.html .

Elastic Beats are similar to Logstash modules. They are single-purpose data shippers, usually

installed as an agent, that collect data on the host and send the output data either directly to

Elasticsearch or Logstash for further processing.

There are hundreds of different downloadable Beats, such as Filebeat, Metricbeat, Packetbeat,

Heartbeat, and so on. In the next section, we will see how we can use Filebeat to ingest Syslog

data into Elasticsearch.

Data ingestion with Beats
As good as Logstash is, the data ingestion process can get complicated and hard to scale. If we

expand on our network log example, we can see that even with just network logs, it can get

complicated trying to parse different log formats from IOS routers, NXOS routers, ASA firewalls,

Meraki wireless controllers, and more. What if we need to ingest log data from Apache web logs,

server host health, and security information? What about data formats such as NetFlow, SNMP,

and counters? The more data we need to aggregate, the more complicated it can get.

While we cannot completely get away from aggregation and the complexity of data ingestion,

the current trend is to move toward a more lightweight, single-purpose agent that sits as close to

the data source as possible. For example, we can have a data collection agent installed directly on

our Apache server specialized in collecting web log data; or we can have a host that only collects,

aggregates, and organizes Cisco IOS logs. Elastic Stack collectively calls these lightweight data

shippers Beats: https://www.elastic.co/products/beats.

Filebeat is a version of Elastic Beats software intended for forwarding and centralizing log data.

It looks for the log file we specified in the configuration to be harvested; once it has finished

processing, it will send the new log data to an underlying process that aggregates the events and

outputs to Elasticsearch. In this section, we will look at using Filebeat with the Cisco modules

to collect network log data.

Let’s install Filebeat and set up the Elasticsearch host with the bundled visualization template

and index:

$ $ curl -L -O https://artifacts.elastic.co/downloads/beats/filebeat/
filebeat-8.4.2-amd64.deb

$ sudo dpkg -i filebeat-8.4.2-amd64.deb

https://www.elastic.co/guide/en/logstash/8.4/logstash-modules.html
https://www.elastic.co/guide/en/logstash/8.4/logstash-modules.html
https://www.elastic.co/products/beats

Chapter 13 441

The directory layout can be confusing because they are installed in various /usr, /etc/, and /

var locations:

Figure 13.17: Elastic Filebeat File Locations (source: https://www.elastic.co/guide/en/beats/
filebeat/8.4/directory-layout.html)

We will make a few changes to the configuration file, /etc/filebeat/filebeat.yml, for the

location of Elasticsearch and Kibana:

output.elasticsearch:

 # Array of hosts to connect to.

 hosts: ["192.168.2.126:9200"]

 # Protocol - either 'http' (default) or 'https'.

 protocol: "https"

 # Authentication credentials - either API key or username/password.

 username: "elastic"

 password: "changeme"

 ssl.verification_mode: none

setup.kibana:

 host: "192.168.2.126:5601"

Filebeat can be used to set up the index templates and example Kibana dashboards:

$ sudo filebeat setup --index-management -E output.logstash.enabled=false
-E 'output.elasticsearch.hots=["https://elastic:-Rel0twWMUk8L-
ZtZr=I@192.168.2.126:9200/"]'

$ sudo filebeat setup –dashboards

Network Data Analysis with Elastic Stack442

Let’s enable the cisco module for Filebeat:

$ sudo filebeat modules enable cisco

Enabled cisco

Let’s configure the cisco module for syslog first. The file is located under /etc/filebeat/

modules.d/cisco.yml. In our case, I am also specifying a custom log file location:

- module: cisco

 ios:

 enabled: true

 var.input: syslog

 var.syslog_host: 0.0.0.0

 var.syslog_port: 514

 var.paths: ['/home/echou/syslog/my_log.log']

We can start, stop, and check the status of the Filebeat service using the common Ubuntu Linux

command service Filebeat [start|stop|status]:

$ sudo service filebeat start

$ sudo service filebeat status

● filebeat.service - Filebeat sends log files to Logstash or directly to
Elasticsearch.

 Loaded: loaded (/lib/systemd/system/filebeat.service; disabled;
vendor preset: enabled)

 Active: active (running) since Fri 2022-09-23 16:06:09 PDT; 3s ago

<skip>

Chapter 13 443

Modify or add UDP port 514 for syslog on our devices. We should be able to see the syslog infor-

mation under the filebeat-* index search:

Figure 13.18: Elastic Filebeat Index

Network Data Analysis with Elastic Stack444

If we compare that to the previous syslog example, we can see that there are a lot more fields and

meta information associated with each record, such as agent.version, event.code, and event.

severity:

Figure 13.19: Elastic Filebeat Cisco Log

Why do the extra fields matter? Among other advantages, the fields make search aggregation

easier, and this, in turn, allows us to graph the results better. We will see graphing examples in

the upcoming section where we discuss Kibana.

Chapter 13 445

Besides the cisco module, there are modules for Palo Alto Networks, AWS, Google Cloud, Mon-

goDB, and many more. The most up-to-date module list can be viewed at https://www.elastic.

co/guide/en/beats/filebeat/8.4/filebeat-modules.html.

What if we want to monitor NetFlow data? No problem, there is a module for that! We will run

through the same process with the Cisco module by enabling the module and setting up the

dashboard:

$ sudo filebeat modules enable netflow

$ sudo filebeat setup -e

Then, configure the module configuration file, /etc/filebeat/modules.d/netflow.yml:

- module: netflow

 log:

 enabled: true

 var:

 netflow_host: 0.0.0.0

 netflow_port: 2055

We will configure the devices to send the NetFlow data to port 2055. If you need a refresher, please

read the relevant configuration in Chapter 8, Network Monitoring with Python – Part 2. We should

be able to see the new netflow data input type:

Figure 13.20: Elastic NetFlow Input

https://www.elastic.co/guide/en/beats/filebeat/8.4/filebeat-modules.html
https://www.elastic.co/guide/en/beats/filebeat/8.4/filebeat-modules.html

Network Data Analysis with Elastic Stack446

Remember that each module came pre-bundled with visualization templates? Not to jump ahead

too much into visualization, but if we click on the visualization tab on the left panel, then search

for netflow, we can see a few visualizations that were created for us:

Figure 13.21: Kibana Visualization

Click on the Conversation Partners [Filebeat Netflow] option, which will give us a nice table of

the top talkers that we can reorder by each of the fields:

Figure 13.22: Kibana Table

In the next section, we will focus on the Elasticsearch part of the ELK Stack.

Chapter 13 447

Search with Elasticsearch
We need more data in Elasticsearch to make the search and graph more interesting. I would rec-

ommend reloading a few of the lab devices to have the log entries for interface resets, BGP and

OSPF establishments, as well as device boot-up messages. Otherwise, feel free to use the sample

data we imported at the beginning of this chapter for this section.

If we look back at the Chapter13_2.py script example, when we searched, there were two pieces

of information that could potentially change from each query: the index and query body. What

I typically like to do is to break that information into input variables that I can dynamically

change at runtime to separate the logic of the search and the script itself. Let’s make a file called

query_body_1.json:

{
 "query": {
 "match_all": {}
 }
}

We will create a script, Chapter13_3.py, that uses argparse to take the user input at the com-

mand line:

import argparse
parser = argparse.ArgumentParser(description='Elasticsearch Query
Options')
parser.add_argument("-i", "--index", help="index to query")
parser.add_argument("-q", "--query", help="query file")
args = parser.parse_args()

We can then use the two input values to construct the search the same way we have done before:

load elastic index and query body information
query_file = args.query
with open(query_file) as f:
 query_body = json.loads(f.read())
Elasticsearch instance
es_host = Elasticsearch(["https://elastic:<pass> @192.168.2.126:9200/"],
 ca_certs=False, verify_certs=False)
Query both index and put into dictionary
index = args.index
res = es.search(index=index, body=query_body)
print(res['hits']['total']['value'])

Network Data Analysis with Elastic Stack448

We can use the help option to see what arguments should be supplied with the script. Here are

the results when we use the same query against the two different indices we created:

$ python Chapter13_3.py --help

usage: Chapter12_3.py [-h] [-i INDEX] [-q QUERY]

Elasticsearch Query Options

optional arguments:

 -h, --help show this help message and exit

 -i INDEX, --index INDEX

 index to query

 -q QUERY, --query QUERY

 query file

$ python3 Chapter13_3.py -q query_body_1.json -i "cisco*"

50

$ python3 Chapter13_3.py -q query_body_1.json -i "filebeat*"

10000

When developing our search, it usually takes a few tries before we get the result we are looking

for. One of the tools Kibana provides is a developer console that allows us to play around with the

search criteria and view the search results on the same page. The tool is under the menu section

Management for Dev Tools.

For example, in the following figure, we execute the same search we have done now and we’re

able to see the returned JSON result. This is one of my favorite tools on the Kibana interface:

Chapter 13 449

Figure 13.23: Kibana Dev Tools

Much of the network data is based on time, such as the log and NetFlow data we have collected.

The values are taken at a snapshot in time, and we will likely group the value in a time scope. For

example, we might want to know, “who are the NetFlow top talkers in the last 7 days?” or “which

device has the most BGP reset messages in the last hour?” Most of these questions have to do with

aggregation and time scope. Let’s look at a query that limits the time range, query_body_2.json:

{
 "query": {
 "bool": {
 "filter": [
 {
 "range": {
 "@timestamp": {
 "gte": "now-10m"
 }
 }
 }
]
 }
 }
}

Network Data Analysis with Elastic Stack450

This is a Boolean query, https://www.elastic.co/guide/en/elasticsearch/reference/

current/query-dsl-bool-query.html, which means it can take a combination of other que-

ries. In our query, we use the filter to limit the time range to be the last 10 minutes. We copy the

Chapter13_3.py script to Chapter13_4.py and modify the output to grab the number of hits as

well as a loop over the actual returned results list:

<skip>

res = es.search(index=index, body=query_body)

print("Total hits: " + str(res['hits']['total']['value']))

for hit in res['hits']['hits']:

 pprint(hit)

Executing the script will show that we only have 23 hits in the last 10 minutes:

$ python Chapter13_4.py -i "filebeat*" -q query_body_2.json

Total hits: 23

We can add another filter option in the query to limit the source IP via query_body_3.json:

{
 "query": {
 "bool": {
 "must": {
 "term": {
 "source.ip": "192.168.0.1"
 }
 },
<skip>

The result will be limited by both the source IP of r1’s loopback IP in the last 10 minutes:

$ python Chapter12_4.py -i "filebeat*" -q query_body_3.json

Total hits: 18

Let’s modify the search body one more time to add an aggregation, https://www.elastic.co/

guide/en/elasticsearch/reference/current/search-aggregations-bucket.html, that takes

a sum of all the network bytes from our previous search:

{

 "aggs": {

 "network_bytes_sum": {

 "sum": {

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-bool-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-bool-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket.html

Chapter 13 451

 "field": "network.bytes"
 }
 }
 },
 <skip>
}

The result will be different every time we run the script Chapter13_5.py. The current result is

about 1 MB for me when I run the script consecutively:

$ python Chapter13_5.py -i "filebeat*" -q query_body_4.json

1089.0

$ python Chapter13_5.py -i "filebeat*" -q query_body_4.json

990.0

As you can see, building a search query is an iterative process; you typically start with a wide net

and gradually narrow the criteria to fine-tune the results. In the beginning, you will probably

spend a lot of time reading the documentation and searching for the exact syntax and filters. As

you gain more experience under your belt, the search syntax will become easier. Going back to

the previous visualization we saw from the netflow module setup for the NetFlow top talker, we

can use the inspection tool to see the Request body:

Figure 13.24: Kibana Request

Network Data Analysis with Elastic Stack452

We can put that into a query JSON file, query_body_5.json, and execute it with the Chapter13_6.

py file. We will receive the raw data that the graph was based on:

$ python Chapter13_6.py -i "filebeat*" -q query_body_5.json

{'1': {'value': 8156040.0}, 'doc_count': 8256, 'key': '10.0.0.5'}

{'1': {'value': 4747596.0}, 'doc_count': 103, 'key': '172.16.1.124'}

{'1': {'value': 3290688.0}, 'doc_count': 8256, 'key': '10.0.0.9'}

{'1': {'value': 576446.0}, 'doc_count': 8302, 'key': '192.168.0.2'}

{'1': {'value': 576213.0}, 'doc_count': 8197, 'key': '192.168.0.1'}

{'1': {'value': 575332.0}, 'doc_count': 8216, 'key': '192.168.0.3'}

{'1': {'value': 433260.0}, 'doc_count': 6547, 'key': '192.168.0.5'}

{'1': {'value': 431820.0}, 'doc_count': 6436, 'key': '192.168.0.4'}

In the next section, let’s take a deeper look at the visualization part of the Elastic Stack: Kibana.

Data visualization with Kibana
So far, we have used Kibana to discover data, manage indices in Elasticsearch, use developer tools

to develop queries, and use a few other features. We also saw the pre-populated visualization

charts from NetFlow, which gave us the top talker pair from our data. In this section, we will walk

through the steps of creating our own graphs. We will start by creating a pie chart.

A pie chart is great at visualizing a portion of a component in relation to the whole. Let’s create a pie

chart based on the Filebeat index that graphs the top 10 source IP addresses based on the number

of record counts. We will select Dashboard -> Create dashboard -> Create visualization -> Pie:

Chapter 13 453

Figure 13.25: Kibana Pie Chart

Then we will type netflow in the search bar to pick our [Filebeat NetFlow] indices:

Figure 13.26: Kibana Pie Chart Source

By default, we are given the total count of all the records in the default time range. The time range

can be dynamically changed:

Figure 13.27: Kibana Time Range

Network Data Analysis with Elastic Stack454

We can assign a custom label for the graph:

Figure 13.28: Kibana Chart Label

Let’s click on the Add option to add more buckets. We will choose to split the slices, pick the terms

for aggregation, and select the source.ip field from the drop-down menu. We will leave the order

Descending but increase Size to 10.

The change will only be applied when you click the Apply button at the top. It is a common

mistake to expect the change to happen in real time when using a modern website and not by

clicking on the Apply button:

Figure 13.29: Kibana Play Button

Chapter 13 455

We can click on Options at the top to turn off Donut and turn on Show labels:

Figure 13.30: Kibana Chart Options

The final graph is a nice pie chart showing the top IP sources based on the number of document

counts:

Figure 13.31: Kibana Pie Chart

Network Data Analysis with Elastic Stack456

As with Elasticsearch, the Kibana graph is also an iterative process that typically takes a few tries

to get right. What if we split the result into different charts instead of slices on the same chart?

Yeah, that is not very visually appealing:

Figure 13.32: Kibana Split Chart

Let’s stick to splitting things into slices on the same pie chart and change the time range to Last
1 hour, then save the chart so that we can come back to it later.

Note that we can also share the graph either in an embedded URL (if Kibana is accessible from a

shared location) or a snapshot:

Figure 13.33: Kibana Save Chart

Chapter 13 457

We can also do more with the metrics operations. For example, we can pick the data table chart

type and repeat our previous bucket breakdown with the source IP. But we can also add a second

metric by adding up the total number of network bytes per bucket:

Figure 13.34: Kibana Metrics

The result is a table showing both the number of document counts as well as the sum of the

network bytes. This can be downloaded in CSV format for local storage:

Figure 13.35: Kibana Tables

Network Data Analysis with Elastic Stack458

Kibana is a very powerful visualization tool in the Elastic Stack. We are just scratching the sur-

face of its visualization capabilities. Besides many other graph options to better tell the story of

your data, we can also group multiple visualizations onto a dashboard to be displayed. We can

also use Timelion (https://www.elastic.co/guide/en/kibana/8.4/timelion.html) to group

independent data sources for a single visualization or use Canvas (https://www.elastic.co/

guide/en/kibana/current/canvas.html) as a presentation tool based on data in Elasticsearch.

Kibana is typically used at the end of the workflow to present our data meaningfully. We have

covered the basic workflow from data ingestion to storage, retrieval, and visualization in the span

of a chapter. It still amazes me that we can accomplish so much in a short period with the aid of

an integrated, open source stack such as Elastic Stack.

Summary
In this chapter, we used the Elastic Stack to ingest, analyze, and visualize network data. We used

Logstash and Beats to ingest the network syslog and NetFlow data. Then we used Elasticsearch

to index and categorize the data for easier retrieval. Finally, we used Kibana to visualize the data.

We used Python to interact with the stack and help us gain more insights into our data. Together,

Logstash, Beats, Elasticsearch, and Kibana present a powerful all-in-one project that can help us

understand our data better.

In the next chapter, we will look at using Git for network development with Python.

Join our book community
To join our community for this book – where you can share feedback, ask questions to the author,

and learn about new releases – follow the QR code below:

https://packt.link/networkautomationcommunity

https://www.elastic.co/guide/en/kibana/8.4/timelion.html
https://www.elastic.co/guide/en/kibana/current/canvas.html
https://www.elastic.co/guide/en/kibana/current/canvas.html
https://packt.link/networkautomationcommunity

14
Working with Git

We have worked on various aspects of network automation with Python, Ansible, and many other

tools. In the examples you have been following along with in the first 13 chapters of this book,

we have used over 150 files containing over 5,300 lines of code. That’s pretty good for network

engineers who may have been working primarily with the command-line interface before reading

this book! With our new scripts and tools, we are ready to go out and conquer our network tasks,

right? Well, not so fast, my fellow network ninjas.

There are several things we need to consider before we get into the meat of the tasks. We’ll run

through these considerations and talk about how the version-control (or source-control) system

Git can help us out.

We’ll cover the following topics:

•	 Content management considerations and Git

•	 An introduction to Git

•	 Setting up Git

•	 Git usage examples

•	 Git with Python

•	 Automating configuration backup

•	 Collaborating with Git

First, let’s talk about what exactly are these considerations and the role Git can play in helping

us to manage them.

Working with Git460

Content management considerations and Git
The first thing that we must consider when creating code files is how to keep them in a location

where they can be retrieved and used by us and others. Ideally, this location would be the only

central place where the file is kept but also have backup copies available if needed. After the initial

release of the code, we might add features and fix bugs in the future, so we would like a way to

track these changes and keep the latest ones available for download. If the new changes do not

work, we would like ways to roll back the changes and reflect the differences in the history of the

file. This would give us a good idea of the evolution of the code files.

The second question is about the collaborative process between our team members. If we work

with other network engineers, we will most likely need to work collectively on the files. These

can be Python scripts, Ansible Playbooks, Jinja2 templates, INI-style configuration files, and many

others. The point is that any kind of text-based file should be tracked with multiple inputs that

everybody on the team should be able to see.

The third question is accountability. Once we have a system that allows for multiple inputs and

changes, we need to mark these changes with an appropriate track record to reflect the owner of

the change. The track record should also include a brief reason for the change so that the person

reviewing the history can get an understanding of why the change was made.

These are some of the main challenges a version-control (or source-control) system, such as Git,

tries to solve. To be fair, the process of version control can exist in forms other than a dedicated

software system. For example, if I open my Microsoft Word program, the file constantly saves itself,

and I can go back in time to revisit the changes or roll back to a previous version. That is one form

of version control; however, the Word doc is hard to scale beyond my laptop. The version-control

system we are focused on in this chapter is a standalone software tool with the primary purpose

of tracking software changes.

There is no shortage of different source-control tools in software engineering, both proprietary

and open-source. Some popular open-source version-control systems are CVS, SVN, Mercurial,

and Git. In this chapter, we will focus on the source-control system Git. Many of the software

we have used in this book use the same version control system to track changes, collaborate on

features, and communicate with its users. We will be taking a more in-depth look at the tool. Git

is the de facto version-control system for many large, open-source projects, including Python

and the Linux kernel.

Chapter 14 461

Before we dive into the working examples of Git, let’s look at the history and advantages of the

Git system.

Introduction to Git
Git was created by Linus Torvalds, the creator of the Linux kernel, in April 2005. With his dry

wit, he has affectionately called the tool “the information manager from hell.” In an interview

with the Linux Foundation, Linus mentioned that he felt source-control management was just

about the least interesting thing in the computing world (https://www.linuxfoundation.org/

blog/2015/04/10-years-of-git-an-interview-with-git-creator-linus-torvalds/). Never-

theless, he created the tool after a disagreement between the Linux kernel developer community

and BitKeeper, the proprietary system they were using at the time.

What does the name Git stand for? In British English slang, a git is an insult denoting an unpleas-

ant, annoying, childish person. With his dry humor, Linus said he is an egotistical bastard and

that he named all of his projects after himself. First Linux, now Git. However, some suggested

that the name is short for Global Information Tracker (GIT). You can be the judge of which

explanation you like better.

The project came together quickly. About 10 days after its creation (yeah, you read that right),

Linus felt the basic ideas for Git were right and started to commit the first Linux kernel code with

Git. The rest, as they say, is history. More than ten years after its creation, it is still meeting all

the expectations of the Linux kernel project. It took over as the version-control system for many

other open-source projects despite many developers’ inherent inertia in switching source-control

systems. For the Python code base, after many years of hosting the code at Mercurial (https://

hg.python.org/), the project was switched to Git on GitHub in February 2017.

Now that we’ve been through the history of Git let’s take a look at some of its benefits.

Benefits of Git
The success of hosting large and distributed open-source projects, such as the Linux kernel and

Python, speaks to the advantages of Git. I mean, if this tool is good enough for the software develop-

ment for the most popular operating system (in my opinion) and the most popular programming

language (again, my opinion only) in the world, it is probably good enough for my hobby project.

As of February 2017, the CPython development process has moved to GitHub. It has

been a work in progress since January 2015. For more information, check out PEP

512 at: https://www.python.org/dev/peps/pep-0512.

https://web.archive.org/web/20210419173925/https://www.linuxfoundation.org/blog/2015/04/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://web.archive.org/web/20210419173925/https://www.linuxfoundation.org/blog/2015/04/10-years-of-git-an-interview-with-git-creator-linus-torvalds/
https://hg.python.org/
https://hg.python.org/
https://www.python.org/dev/peps/pep-0512

Working with Git462

The popularity of Git is especially significant given that it is a relatively new source-control tool,

and people do not tend to switch to a new tool unless it offers significant advantages over the

old tool. Let’s look at some of the benefits of Git:

•	 Distributed development: Git supports parallel, independent, and simultaneous develop-

ment in private repositories offline. Many other version control systems require constant

synchronization with a central repository. The distributed and offline nature of Git allows

significantly greater flexibility for the developers.

•	 Scale to handle thousands of developers: The number of developers working on different

parts of some open-source projects is in the thousands. Git supports the integration of

their work reliably.

•	 Performance: Linus was determined to make sure Git was fast and efficient. To save

space and transfer time for the sheer volume of updates for the Linux kernel code alone,

compression and a delta check were used to make Git fast and efficient.

•	 Accountability and immutability: Git enforces a change log on every commit that changes

a file, so there is a trail for all the changes and the reason behind them. The data objects

in Git cannot be modified after they are created and placed in the database, making them

immutable. This further enforces accountability.

•	 Atomic transactions: The integrity of the repository is ensured as the different but related

change is performed either altogether or not at all. This will ensure the repository is not

left in a partially changed or corrupted state.

•	 Complete repositories: Each repository has a complete copy of all historical revisions

of every file.

•	 Free, as in freedom: The origin of the Git tool was born out of the disagreement between

Linux and BitKeeper VCS as to whether software should be free and whether one should

reject commercial software on principle, so it makes sense that the tool has a very liberal

usage license.

Let’s look at some of the terms used in Git before we go deeper into it.

Git Terminology
Here are some Git terms we should be familiar with:

•	 Ref: The name that begins with refs and points to an object.

•	 Repository: This is a database that contains all of a project’s information, files, metadata,

and history. It contains a collection of refs for all the collections of objects.

Chapter 14 463

•	 Branch: This is an active line of development. The most recent commit is the tip or the

HEAD of that branch. A repository can have multiple branches, but your working tree or

working directory can only be associated with one branch. This is sometimes referred

to as the current or checked out branch.

•	 Checkout: This is the action of updating all or part of the working tree to a particular point.

•	 Commit: This is a point in time in Git history, or it can mean storing a new snapshot in

the repository.

•	 Merge: This is the action to bring the content of another branch into the current branch.

For example, I am merging the development branch with the master branch.

•	 Fetch: This is the action of getting the content from a remote repository.

•	 Pull: Fetching and merging a repository.

•	 Tag: This is a mark at a point in time in a repository that is significant.

This is not a complete list; please refer to the Git glossary, https://git-scm.com/docs/

gitglossary, for more terms and their definitions.

Finally, before getting into the actual setup and uses of Git, let’s talk about the important distinc-

tion between Git and GitHub; one that is easily overlooked by engineers unfamiliar with the two.

Git and GitHub
Git and GitHub are not the same things. Sometimes, for engineers who are new to version-control

systems, this is confusing. Git is a revision-control system, while GitHub, https://github.com/,

is a centralized hosting service for Git repositories. The company, GitHub, was launched in 2008

and was acquired by Microsoft in 2018 but continued to operate independently.

Because Git is a decentralized system, GitHub stores a copy of our project’s repository, just like

any other distributed offline copies. We often designate the GitHub repository as the project’s

central repository, and all other developers push and pull their changes to and from that repository.

After GitHub was acquired by Microsoft in 2018, https://blogs.microsoft.com/blog/2018/10/26/

microsoft-completes-github-acquisition/, many in the developer community worried about

the independence of GitHub. As described in the press release, “GitHub will retain its develop-

er-first ethos, operate independently, and remain an open-source platform.” GitHub takes this

idea of being the centralized repository in a distributed system further by using the fork and

pull requests mechanisms. For projects hosted on GitHub, the project maintainers typically

encourage other developers to fork the repository, or make a copy of the repository, and work

on it as their copied repository.

https://git-scm.com/docs/gitglossary
https://git-scm.com/docs/gitglossary
https://github.com/
https://blogs.microsoft.com/blog/2018/10/26/microsoft-completes-github-acquisition/
https://blogs.microsoft.com/blog/2018/10/26/microsoft-completes-github-acquisition/

Working with Git464

After making changes, they can send a pull request to the main project, and the project main-

tainers can review the changes and commit the changes if they see fit. GitHub also adds the web

interface to the repositories beside the command line; this makes Git more user-friendly.

Now that we’ve differentiated Git and GitHub, we can start properly! First, let’s talk about setting

up Git.

Setting up Git
So far, we have been using Git just to download files from GitHub. In this section, we will go a bit

further by setting up Git locally so we can start committing our files. I will use the same Ubuntu

22.04 LTS management host in the example. If you are using a different version of Linux or other

operating systems, a quick search of the installation process should land you in the right set of

instructions.

If you have not done so already, install Git via the apt package-management tool:

$ sudo apt update

$ sudo apt install -y git

$ git --version

git version 2.34.1

Once git is installed, we need to configure a few things so that our commit messages can contain

the correct information:

$ git config --global user.name "Your Name"

$ git config --global user.email "email@domain.com"

$ git config --list

user.name=Your Name

user.email=email@domain.com

Alternatively, you can modify the information in the ~/.gitconfig file:

$ cat ~/.gitconfig

[user]

name = Your Name

email = email@domain.com

There are many options in Git that we can change, but the name and email are the ones that allow

us to commit the change without getting a warning. Personally, I like to use the Vim text editor,

instead of the default Emac, for typing commit messages:

Chapter 14 465

(optional)

$ git config --global core.editor "vim"

$ git config --list

user.name=Your Name

user.email=email@domain.com

core.editor=vim

Before we move on to using Git, let’s go over the idea of a gitignore file.

Gitignore
There are files you do not want Git to check into GitHub or other repositories, such as files with

passwords, API keys, or other sensitive information. The easiest way to prevent files from being

accidentally checked into a repository is to create a .gitignore file in the repository’s top-level

folder. Git will use the gitignore file to determine which files and directories should be ignored

before committing. The gitignore file should be committed to the repository as early as possible

and be shared with other users.

Imagine the panic you would feel if you accidentally checked your group API key into a public Git

repository. It is usually helpful to create the gitignore file when creating a new repository. In fact,

GitHub provides an option to do just that when you create a repository on its platform. This file

can include language-specific files. For example, let’s exclude the Python Byte-compiled files:

Byte-compiled / optimized / DLL files

 pycache /

*.py[cod]

*$py.class

We can also include files that are specific to your operating system:

OSX

=========================

.DS_Store

.AppleDouble

.LSOverride

You can learn more about .gitignore on GitHub’s help page: https://help.github.com/

articles/ignoring-files/. Here are some other references:

•	 Gitignore manual: https://git-scm.com/docs/gitignore

•	 GitHub’s collection of .gitignore templates: https://github.com/github/gitignore

https://help.github.com/articles/ignoring-files/
https://help.github.com/articles/ignoring-files/
https://git-scm.com/docs/gitignore
https://github.com/github/gitignore

Working with Git466

•	 Python language .gitignore example: https://github.com/github/gitignore/blob/

master/Python.gitignore

•	 The .gitignore file for this book’s repository: https://github.com/PacktPublishing/

Mastering-Python-Networking-Fourth-Edition/blob/main/.gitignore.

I see the .gitignore file as a file that should be created simultaneously with any new repository.

That is why this concept is introduced as early as possible. We will look at some of the Git usage

examples in the next section.

Git Usage Examples
In my experience, when we work with Git, we will likely use the command line and the various

options. The graphical tools are useful when we need to trace back changes, look at logs, and

compare commit differences, but we rarely use them for normal branching and commits. We can

look at Git’s command-line option by using the help option:

$ git --help

usage: git [--version] [--help] [-C <path>] [-c <name>=<value>]

 [--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]

 [-p | --paginate | --no-pager] [--no-replace-objects] [--bare]

 [--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]

 <command> [<args>]

We will create a repository and create a file inside the repository:

$ mkdir TestRepo-1

$ cd TestRepo-1/

$ git init

Initialized empty Git repository in /home/echou/Mastering_Python_
Networking_third_edition/Chapter13/TestRepo-1/.git/

$ echo "this is my test file" > myFile.txt

When the repository was initialized with Git, a new hidden folder of .git was added to the di-

rectory. It contains all the Git-related files:

$ ls -a

. .. .git myFile.txt

$ ls .git/

branches config description HEAD hooks info objects refs

https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/github/gitignore/blob/master/Python.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Fourth-Edition/blob/main/.gitignore
https://github.com/PacktPublishing/Mastering-Python-Networking-Fourth-Edition/blob/main/.gitignore

Chapter 14 467

There are several locations where Git receives its configurations in a hierarchical format. The files

are read from the system, global, and repository by default. The more specific the repository’s

location, the higher the override preference. For example, the repository configuration will over-

ride the global configuration. You can use the git config -l command to see the aggregated

configuration:

$ ls .git/config

.git/config

$ ls ~/.gitconfig

/home/echou/.gitconfig

$ git config -l

user.name=Eric Chou

user.email=<email>

core.editor=vim

core.repositoryformatversion=0

core.filemode=true

core.bare=false

core.logallrefupdates=true

When we create a file in the repository, it is not tracked. For git to be aware of the file, we need

to add the file:

$ git status

On branch master

Initial commit

Untracked files:

 (use "git add <file>..." to include in what will be committed)

myFile.txt

nothing added to commit but untracked files present (use "git add" to
track)

$ git add myFile.txt

$ git status

On branch master

Initial commit

Changes to be committed:

 (use "git rm --cached <file>..." to unstage)

new file: myFile.txt

Working with Git468

When you add the file, it is in a staged status. To make the changes official, we will need to com-

mit the change:

$ git commit -m "adding myFile.txt"

[master (root-commit) 5f579ab] adding myFile.txt

 1 file changed, 1 insertion(+)

 create mode 100644 myFile.txt

$ git status

On branch master

nothing to commit, working directory clean

In the last example, we provided the commit message with the -m option when we issued the

commit statement. If we did not use the option, we would have been taken to a page to provide

the commit message. In our scenario, we configured the text editor to be Vim, so we can use it

to edit the message.

Let’s make some changes to the file and commit it again. Notice that after the file has been changed,

Git knows the file has been modified:

$ vim myFile.txt

$ cat myFile.txt

this is the second iteration of my test file

$ git status

On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

modified: myFile.txt

$ git add myFile.txt

$ git commit -m "made modifications to myFile.txt"

[master a3dd3ea] made modifications to myFile.txt

1 file changed, 1 insertion(+), 1 deletion(-)

The git commit number is an SHA-1 hash, which is an important feature. If we had followed the

same step on another computer, our SHA-1 hash value would be the same. This is how Git knows

the two repositories are identical even when they are worked on in parallel.

Chapter 14 469

We can show the history of the commits with git log. The entries are shown in reverse chrono-

logical order; each commit shows the author’s name and email address, the date, the log message,

as well as the internal identification number of the commit:

$ git log

commit ff7dc1a40e5603fed552a3403be97addefddc4e9 (HEAD -> master)

Author: Eric Chou <echou@yahoo.com>

Date: Fri Nov 8 08:49:02 2019 -0800

 made modifications to myFile.txt

commit 5d7c1c8543c8342b689c66f1ac1fa888090ffa34

Author: Eric Chou <echou@yahoo.com>

Date: Fri Nov 8 08:46:32 2019 -0800

 adding myFile.txt

We can also show more details about the change using the commit ID:

(venv) $ git show ff7dc1a40e5603fed552a3403be97addefddc4e9

commit ff7dc1a40e5603fed552a3403be97addefddc4e9 (HEAD -> master)

Author: Eric Chou <echou@yahoo.com>

Date: Fri Nov 8 08:49:02 2019 -0800

 made modifications to myFile.txt

diff --git a/myFile.txt b/myFile.txt

index 6ccb42e..69e7d47 100644

--- a/myFile.txt

+++ b/myFile.txt

@@ -1 +1 @@

-this is my test file

+this is the second iteration of my test file

If you have ever wondered about the SHA-1 hash value being accidentally or

purposely modified to overlap, there is an interesting article on the GitHub blog

about detecting this SHA-1 hash collision: https://github.blog/2017-03-20-

sha-1-collision-detection-on-github-com/.

https://github.blog/2017-03-20-sha-1-collision-detection-on-github-com/
https://github.blog/2017-03-20-sha-1-collision-detection-on-github-com/

Working with Git470

If you need to revert the changes you have made, you can choose between revert and reset. The

former changes all the files for a specific commit back to their state before the commit:

$ git revert ff7dc1a40e5603fed552a3403be97addefddc4e9
[master 75921be] Revert "made modifications to myFile.txt"
 1 file changed, 1 insertion(+), 1 deletion(-)
$ cat myFile.txt
this is my test file

The revert command will keep the commit you reverted and make a new commit. You will be able

to see all the changes up to that point, including the revert:

$ git log
commit 75921bedc83039ebaf70c90a3e8d97d65a2ee21d (HEAD -> master)
Author: Eric Chou <echou@yahoo.com>
Date: Fri Nov 8 09:00:23 2019 -0800
 Revert "made modifications to myFile.txt"
 This reverts commit ff7dc1a40e5603fed552a3403be97addefddc4e9.
 On branch master
 Changes to be committed:
 modified: myFile.txt

The reset option will reset the status of your repository to an older version and discard all the

changes in between:

$ git reset --hard ff7dc1a40e5603fed552a3403be97addefddc4e9
HEAD is now at ff7dc1a made modifications to myFile.txt
$ git log
commit ff7dc1a40e5603fed552a3403be97addefddc4e9 (HEAD -> master)
Author: Eric Chou <echou@yahoo.com>
Date: Fri Nov 8 08:49:02 2019 -0800
 made modifications to myFile.txt
commit 5d7c1c8543c8342b689c66f1ac1fa888090ffa34
Author: Eric Chou <echou@yahoo.com>
Date: Fri Nov 8 08:46:32 2019 -0800
 adding myFile.txt

I like to keep all the history, including any rollbacks I have done. Therefore, when I need to roll

back a change, I usually pick revert instead of reset. In this section, we have seen how we can

work with individual files. In the next section, let’s look at how we can work with a collection of

files that is grouped into a particular bundle, called branch.

Chapter 14 471

Git Branch
A branch in git is a line of development within a repository. Git allows many branches and thus

different lines of development within a repository. By default, we have the master branch.

There are many reasons for branching; there are no hard-set rules about when to branch or work

on the master/main branch directly. Most of the time, we create a branch when there is a bug fix,

a customer software release, or a development phase. In our example, let us create a branch that

represents development, appropriately named the dev branch:

$ git branch dev

$ git branch

 dev

* master

Notice we need to specifically move into the dev branch after creation. We do that with checkout:

$ git checkout dev

Switched to branch 'dev'

$ git branch

* dev

 master

Let’s add a second file to the dev branch:

$ echo "my second file" > mySecondFile.txt

$ git add mySecondFile.txt

$ git commit -m "added mySecondFile.txt to dev branch"

[dev a537bdc] added mySecondFile.txt to dev branch

 1 file changed, 1 insertion(+)

 create mode 100644 mySecondFile.txt

A few years back, the default branch for GitHub was renamed “main”: https://

github.com/github/renaming. We will see both in the field.

https://github.com/github/renaming
https://github.com/github/renaming

Working with Git472

We can go back to the master branch and verify that the two lines of development are separate.

Note that when we switch to the master branch, there is only one file in the directory:

$ git branch

* dev

 master

$ git checkout master

Switched to branch 'master'

$ ls

myFile.txt

$ git checkout dev

Switched to branch 'dev'

$ ls

myFile.txt mySecondFile.txt

To have the contents in the dev branch be written into the master branch, we will need to merge

them:

$ git branch

* dev

 master

$ git checkout master

Switched to branch 'master'

$ git merge dev master

Updating ff7dc1a..a537bdc

Fast-forward

 mySecondFile.txt | 1 +

 1 file changed, 1 insertion(+)

 create mode 100644 mySecondFile.txt

$ git branch

 dev

* master

$ ls

myFile.txt mySecondFile.txt

We can use git rm to remove a file. To see how it works, let’s create a third file and remove it:

$ touch myThirdFile.txt

$ git add myThirdFile.txt

$ git commit -m "adding myThirdFile.txt"

Chapter 14 473

[master 169a203] adding myThirdFile.txt

 1 file changed, 0 insertions(+), 0 deletions(-)

 create mode 100644 myThirdFile.txt

$ ls

myFile.txt mySecondFile.txt myThirdFile.txt

$ git rm myThirdFile.txt

rm 'myThirdFile.txt'

$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 deleted: myThirdFile.txt

$ git commit -m "deleted myThirdFile.txt"

[master 1b24b4e] deleted myThirdFile.txt

 1 file changed, 0 insertions(+), 0 deletions(-)

 delete mode 100644 myThirdFile.txt

We will be able to see the last two changes in the log:

$ git log

commit 1b24b4e95eb0c01cc9a7124dc6ac1ea37d44d51a (HEAD -> master)

Author: Eric Chou <echou@yahoo.com>

Date: Fri Nov 8 10:02:45 2019 -0800

 deleted myThirdFile.txt

commit 169a2034fb9844889f5130f0e42bf9c9b7c08b05

Author: Eric Chou <echou@yahoo.com>

Date: Fri Nov 8 10:00:56 2019 -0800

 adding myThirdFile.txt

We have gone through most of the basic operations we would use for Git. Let’s look at how to

use GitHub to share our repository.

GitHub Example
In this example, we will use GitHub as the centralized location to synchronize our local repository

and share it with other users.

Working with Git474

We will create a repository on GitHub. GitHub has always been free for creating public open-source

repositories. Starting in January 2019, it also offers unlimited free private repositories. In this case,

we will create a private repository and add the license and .gitignore file:

Figure 14.1: Creating a private repository in GitHub

Once the repository is created, we can find the URL for it:

Chapter 14 475

Figure 14.2: GitHub repository URL

We will use this URL to create a remote target, which we will use as a “source of truth” for our

project. We will name the remote target gitHubRepo:

$ git remote add gitHubRepo https://github.com/ericchou1/TestRepo.git

$ git remote -v

gitHubRepo	 https://github.com/ericchou1/TestRepo.git (fetch)

gitHubRepo	 https://github.com/ericchou1/TestRepo.git (push)

Since we chose to create README.md and LICENSE files during creation, the remote repository and

local repository are not the same.

Working with Git476

GitHub switched to a Personal Access Token (PAT) as the term to be entered as a password a

few years ago: https://docs.github.com/en/authentication/keeping-your-account-and-

data-secure/creating-a-personal-access-token. To generate a token, click on the profile

logo -> Settings -> Developer settings -> Personal Access Tokens. We need to use this token as

our password when prompted in the command line.

If we were to push local changes to the new GitHub repository, we would receive the following

error (remember to change the branch name to main if that is your default branch):

$ git push gitHubRepo master

Username for 'https://github.com': <skip>

Password for 'https://echou@yahoo.com@github.com': <remember to use your
personal access token>

To https://github.com/ericchou1/TestRepo.git

 ! [rejected] master -> master (fetch first)

error: failed to push some refs to 'https://github.com/ericchou1/TestRepo.
git'

We will go ahead and use git pull to get the new files from GitHub:

$ git pull gitHubRepo master

Username for 'https://github.com': <skip>

Password for 'https://<username>@github.com': <personal access token>

From https://github.com/ericchou1/TestRepo

* branch master -> FETCH_HEAD

Merge made by the 'recursive' strategy.

.gitignore | 104

+++ LICENSE |
21 +++++++++++++

README.md | 2 ++

3 files changed, 127 insertions(+)

create mode 100644 .gitignore

create mode 100644 LICENSE

create mode 100644 README.md

Now we will be able to push the contents over to GitHub:

$ git push gitHubRepo master

Username for 'https://github.com': <username>

Password for 'https://<username>@github.com': <personal access token>

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token

Chapter 14 477

Counting objects: 15, done.

Compressing objects: 100% (9/9), done.

Writing objects: 100% (15/15), 1.51 KiB | 0 bytes/s, done. Total 15 (delta
1), reused 0 (delta 0)

remote: Resolving deltas: 100% (1/1), done.

To https://github.com/ericchou1/TestRepo.git a001b81..0aa362a master ->
master

We can verify the content of the GitHub repository on the web page:

Figure 14.3: GitHub repository

Now another user can simply make a copy, or clone, of the repository:

[This is operated from another host]

$ cd /tmp

$ git clone https://github.com/ericchou1/TestRepo.git

Cloning into 'TestRepo'...

remote: Counting objects: 20, done.

remote: Compressing objects: 100% (13/13), done.

Working with Git478

remote: Total 20 (delta 2), reused 15 (delta 1), pack-reused 0

Unpacking objects: 100% (20/20), done.

$ cd TestRepo/

$ ls

LICENSE myFile.txt

README.md mySecondFile.txt

This copied repository will be the exact copy of my original repository, including all the commit

history:

$ git log

commit 0aa362a47782e7714ca946ba852f395083116ce5 (HEAD -> master, origin/
master, origin/HEAD)

Merge: bc078a9 a001b81

Author: Eric Chou <skip>

Date: Fri Jul 20 14:18:58 2018 -0700

 Merge branch 'master' of https://github.com/ericchou1/TestRepo

commit a001b816bb75c63237cbc93067dffcc573c05aa2

Author: Eric Chou <skip>

Date: Fri Jul 20 14:16:30 2018 -0700

 Initial commit

...

I can also invite another person as a collaborator for the project under the repository settings:

Figure 14.4: Repository invite

In the next example, we will see how we can fork a repository and perform a pull request for a

repository we do not maintain.

Chapter 14 479

Collaborating with Pull Requests
As mentioned, Git supports collaboration between developers for a single project. We will look

at how it is done when the code is hosted on GitHub.

In this case, we will use the GitHub repository for the second edition of this book from Packt’s

GitHub public repository. I will use a different GitHub handle, so I appear as a non-administrative

user. I will click on the Fork button to make a copy of the repository in my account:

Figure 14.5: Git Fork button

It will take a few seconds to make a copy:

Figure 14.6: Git Fork in progress

Working with Git480

After it is forked, we will have a copy of the repository in our account:

Figure 14.7: Git Fork

We can follow the same steps we used to modify the files. In this case, I will make some changes

to the README.md file. After the change is made, I can click on the New pull request button to

create a pull request:

Figure 14.8: Pull request

Chapter 14 481

When making a pull request, we should fill in as much information as possible to provide justi-

fications for making the change:

Figure 14.9: Pull request details

Working with Git482

The repository maintainer will receive a notification of the pull request; if accepted, the change

will make its way to the original repository:

Figure 14.10: Pull request record

GitHub provides an excellent platform for collaboration with other developers; this is quickly

becoming the de facto development choice for many large, open-source projects. Since Git and

GitHub are used extensively in many projects, a natural next step would be to automate the

processes we have seen in this section. In the following section, let’s look at how we can use Git

with Python.

Git with Python
There are some Python packages that we can use with Git and GitHub. In this section, we will

look at the GitPython and PyGitHub libraries.

GitPython
We can use the GitPython package, https://gitpython.readthedocs.io/en/stable/index.

html, to work with our Git repository. We will install the package and use the Python shell to

construct a Repo object. From there, we can list all the commits in the repository:

$ pip install gitpython

$ python

>>> from git import Repo

>>> repo = Repo('/home/echou/Mastering_Python_Networking_third_edition/
Chapter13/TestRepo-1')

https://gitpython.readthedocs.io/en/stable/index.html
https://gitpython.readthedocs.io/en/stable/index.html

Chapter 14 483

>>> for commits in list(repo.iter_commits('master')):

... print(commits)

...

1b24b4e95eb0c01cc9a7124dc6ac1ea37d44d51a

169a2034fb9844889f5130f0e42bf9c9b7c08b05

a537bdcc1648458ce88120ae607b4ddea7fa9637

ff7dc1a40e5603fed552a3403be97addefddc4e9

5d7c1c8543c8342b689c66f1ac1fa888090ffa34

We can also look at the index entries in the repo object:

>>> for (path, stage), entry in repo.index.entries.items():

... print(path, stage, entry)

...

myFile.txt 0 100644 69e7d4728965c885180315c0d4c206637b3f6bad 0 myFile.txt

mySecondFile.txt 0 100644 75d6370ae31008f683cf18ed086098d05bf0e4dc 0
mySecondFile.txt

GitPython offers good integration with all the Git functions. However, it might not be the easiest

library to work with for beginners. We need to understand the terms and structure of Git to take

full advantage of GitPython, and it is always good to keep it in mind if we need it for other projects.

PyGitHub
Let’s look at using the PyGithub library, http://pygithub.readthedocs.io/en/latest/, to

interact with GitHub reappearing around GitHub API v3, https://developer.github.com/v3/:

$ pip install PyGithub

Let’s use the Python shell to print out the user’s current repository:

$ python

>>> from github import Github

>>> g = Github("<username>", "<password>")

>>> for repo in g.get_user().get_repos():

... print(repo.name)

...

Mastering-Python-Networking-Second-Edition

Mastering-Python-Networking-Third-Edition

http://pygithub.readthedocs.io/en/latest/
https://developer.github.com/v3/

Working with Git484

For more programmatic access, we can also create more granular control using an access token.

GitHub allows a token to be associated with the selected rights:

Figure 14.11: GitHub token generation

The output is a bit different if you use the access token as the authentication mechanism:

>>> from github import Github

>>> g = Github("<token>")

>>> for repo in g.get_user().get_repos():

... print(repo)

...

Repository(full_name="oreillymedia/distributed_denial_of_service_ddos")

Repository(full_name="PacktPublishing/-Hands-on-Network- Programming-
with- Python")

Repository(full_name="PacktPublishing/Mastering-Python-Networking")

Repository(full_name="PacktPublishing/Mastering-Python-Networking-Second-
Edition")

...

Chapter 14 485

Now that we are familiar with Git, GitHub, and some Python packages, we can use them to work

with the technology. We will look at some practical examples in the upcoming section.

Automating Configuration Backup
In this example, we will use PyGithub to back up a directory containing our router configurations.

We have seen how we can retrieve the information from our devices with Python or Ansible; we

can now check them into GitHub.

We have a subdirectory, named config, with our router configs in text format:

$ ls configs/

iosv-1 iosv-2

$ cat configs/iosv-1

Building configuration...

Current configuration : 4573 bytes

!

! Last configuration change at 02:50:05 UTC Sat Jun 2 2018 by cisco

!

version 15.6

service timestamps debug datetime msec

...

We can use the following script, Chapter14_1.py, to retrieve the latest index from our GitHub

repository, build the content that we need to commit, and automatically commit the configuration:

#!/usr/bin/env python3

reference: https://stackoverflow.com/questions/38594717/how-do-i-push-
new-files-to-github

from github import Github, InputGitTreeElement

import os

github_token = '<token>'

configs_dir = 'configs'

github_repo = 'TestRepo'

Retrieve the list of files in configs directory

file_list = []

for dirpath, dirname, filenames in os.walk(configs_dir):

 for f in filenames:

 file_list.append(configs_dir + "/" + f)

g = Github(github_token)

Working with Git486

repo = g.get_user().get_repo(github_repo)

commit_message = 'add configs'

master_ref = repo.get_git_ref('heads/master')

master_sha = master_ref.object.sha

base_tree = repo.get_git_tree(master_sha)

element_list = list()

for entry in file_list:

 with open(entry, 'r') as input_file:

 data = input_file.read()

 element = InputGitTreeElement(entry, '100644', 'blob', data)

 element_list.append(element)

Create tree and commit

tree = repo.create_git_tree(element_list, base_tree)

parent = repo.get_git_commit(master_sha)

commit = repo.create_git_commit(commit_message, tree, [parent])

master_ref.edit(commit.sha)

We can see the configs directory in the GitHub repository:

Figure 14.12: Configs directory

Chapter 14 487

The commit history shows the commit from our script:

Figure 14.13: Commit history

In the GitHub example section, we saw how we could collaborate with other developers by forking

the repository and making pull requests. Let’s look at how we can further collaborate with Git.

Collaborating with Git
Git is an awesome collaboration technology, and GitHub is an incredibly effective way to develop

projects together. GitHub provides a place for anyone in the world with internet access to share

their thoughts and code for free. We know how to use Git and some basic collaboration steps

using GitHub, but how do we join and contribute to a project?

Sure, we would like to give back to these open-source projects that have given us so much, but

how do we get started?

In this section, we’ll look at some of the things to know about software development collabora-

tion using Git and GitHub:

•	 Start small: One of the most important things to understand is the role we can play

within a team. We might be awesome at network engineering, but mediocre at Python

development. There are plenty of things we can do that don’t involve being a highly skilled

developer. Don’t be afraid to start small; documentation and testing are two good ways

to get your foot in the door as a contributor.

Working with Git488

•	 Learn the ecosystem: With any project, large or small, there is a set of conventions and

a culture that has been established. We are all drawn to Python for its easy-to-read syn-

tax and beginner-friendly culture; it also has a development guide centered around that

ideology (https://devguide.python.org/). The Ansible project, on the other hand,

also has an extensive community guide (https://docs.ansible.com/ansible/latest/

community/index.html). It includes the code of conduct, the pull request process, how

to report bugs, and the release process. Read these guides and learn the ecosystem for

the project of interest.

•	 Make a branch: I made the mistake of forking a project and making a pull request for

the main branch. The main branch should be left alone for the core contributors to make

changes. We should create a separate branch for our contribution and allow the branch

to be merged later.

•	 Keep the forked repository synchronized: Once you have forked a project, no rule forces

the cloned repository to sync with the main repository. We should make a point to reg-

ularly do git pull (get the code and merge locally) or git fetch (get the code with any

change locally) to ensure we have the latest copy of the main repository.

•	 Be friendly: Just as in the real world, the virtual world has no place for hostility. When

discussing an issue, be civil and friendly, even in disagreements.

Git and GitHub provide a way for any motivated individual to make a difference by making it

easy to collaborate on projects. We are all empowered to contribute to any open source or private

projects that interest us.

Summary
In this chapter, we looked at the version-control system known as Git and its close sibling, GitHub.

Git was developed by Linus Torvolds in 2005 to help develop the Linux kernel and was later ad-

opted by other open-source projects as their source-control system. Git is a fast, distributed, and

scalable system. GitHub provides a centralized location to host Git repositories on the internet

that allows anybody with an internet connection to collaborate.

We looked at how to use Git in the command line and its various operations and how they are

applied in GitHub. We also studied two popular Python libraries for working with Git: GitPython

and PyGithub. We ended this chapter with a configuration backup example and notes about

project collaboration.

In Chapter 15, Continuous Integration with GitLab, we will look at another popular open-source

tool used for continuous integration and deployment: GitLab.

https://devguide.python.org/
https://docs.ansible.com/ansible/latest/community/index.html
https://docs.ansible.com/ansible/latest/community/index.html

Chapter 14 489

Join our book community
To join our community for this book – where you can share feedback, ask questions to the author,

and learn about new releases – follow the QR code below:

https://packt.link/networkautomationcommunity

https://packt.link/networkautomationcommunity

15
Continuous Integration with
GitLab
The network touches every part of the technology stack; in all the environments I have worked

in, the network is always a Tier-Zero service. It is a foundation service that other services rely on

for their services to work. In the minds of other engineers, business managers, operators, and

support staff, the network should just work. It should always be accessible and function correct-

ly—a good network is a network that nobody hears about.

Of course, as network engineers, we know the network is as complex as any other technology stack.

Due to its complexity, the constructs that make up a running network can be fragile. Sometimes,

I look at a network and wonder how it can work at all, let alone how it’s been running for months

and years without any business impact.

Part of the reason we are interested in network automation is to find ways to repeat our net-

work-change process reliably and consistently. By using Python scripts or the Ansible framework,

we can make sure the changes that we make will stay consistent and be reliably applied. As we

saw in the last chapter, we can use Git and GitHub to store components of the process, such as

templates, scripts, requirements, and files, reliably. The code that makes up the infrastructure is

version-controlled, collaborated, and accountable for changes. But how do we tie all the pieces

together? In this chapter, we will look at a popular repository that can optimize the network-man-

agement pipeline called GitLab.

GitLab’s open core is published under an MIT open-source license. The rest is

source-available, https://about.gitlab.com/solutions/open-source/.

https://about.gitlab.com/solutions/open-source/.

Continuous Integration with GitLab492

In this chapter, we’ll cover the following topics:

•	 Challenges with the traditional change management process

•	 An introduction to continuous integration and GitLab

•	 GitLab installation and examples

•	 GitLab with Python

•	 Continuous integration for network engineering

We’ll begin by looking at the traditional change management process. As any battle-tested net-

work engineer could tell you, the traditional change management process typically involves much

manual labor and human judgment. As we will see, it is not consistent and is difficult to streamline.

The traditional change management process
Engineers who have worked in a large network environment know that the impact of a network

change gone wrong can be big. We can make hundreds of changes without any issues, but all it

takes is one bad change that can cause the network to harm the whole business.

Due to the potential impact and complexity, in many environments, the change-advisory board

(CAB) process is implemented for networks. The typical CAB process is as follows:

1.	 The network engineer will design the change and write out the detailed steps required

for the change. These can include the reason for the change, the devices involved, the

commands that will be applied or deleted, how to verify the output, and the expected

outcome for each step.

There is no shortage of war stories about network outages causing business pain.

One of the most visible and large-scale AWS EC2 outages in 2011 was caused by a

network change that was part of the normal AWS scaling activities in the AWS US-

East region. The change occurred at 00:47 PDT and caused a brown-out for various

services for over 12 hours, losing millions of dollars for Amazon. More importantly,

the reputation of the relatively young service took a serious hit. IT decision-makers

pointed to the outage as a reason NOT to migrate to the young AWS cloud. It took

many years to rebuild its reputation. You can read more about the incident report

at https://aws.amazon.com/message/65648/.

https://aws.amazon.com/message/65648/

Chapter 15 493

2.	 The network engineer is typically required to ask for a technical review from a peer first.

Depending on the nature of the change, there can be different levels of peer review. Simple

changes can require a single-peer technical review; more complex changes might require

a senior designated engineer for approval.

3.	 The CAB meeting is generally scheduled for set times with emergency ad hoc meetings

available.

4.	 The engineer will present the change to the board. The board will ask the necessary ques-

tions, assess the impact, and either approve or deny the change request.

5.	 The change will be carried out, either by the original engineer or another engineer, during

the scheduled change window.

This process sounds reasonable and inclusive but proves to have a few challenges in practice:

•	 Write-ups are time-consuming: It typically takes a long time for the design engineer to

write up the document, and sometimes the writing process takes longer than the time to

apply the change. This is generally due to the fact that all network changes are potentially

impactful and we need to document the process for both technical and non-technical

CAB members.

•	 Engineer expertise: High-level engineer expertise is a limited resource. There are different

levels of engineering expertise; some are more experienced, and they are typically the

most sought-after resources. We should reserve their time for tackling the most complex

network issues, not reviewing basic network changes.

•	 Meetings are time-consuming: It takes a lot of effort to put together meetings and have

each member show up. What happens if a required approval person is on vacation or

sick? What if you need the network change to be made prior to the scheduled CAB time?

These are just some of the bigger challenges of the human-based CAB process. Personally, I hate

the CAB process with a passion. I do not dispute the need for peer review and prioritization;

however, I think we need to minimize the potential overhead involved. For the remainder of this

chapter, let’s look at a potentially suitable replacement pipeline for CAB, and change management

in general, that has been adopted in the software engineering world.

Continuous Integration with GitLab494

Introduction to continuous integration
Continuous Integration (CI) in software development is a way to publish small changes to the

code base quickly, with built-in code tests and validation. The key is to classify the changes to

be CI-compatible, that is, not overly complex and small enough to be applied so that they can

be backed out of easily. The tests and validation process are built in an automated way to gain a

baseline of confidence that changes will be applied without breaking the whole system.

Before CI, changes to software were often made in large batches and often required a long valida-

tion process (does that sound familiar?). It could be months before developers saw their changes in

production, received feedback loops, and corrected bugs. In short, the CI process aims to shorten

the process from idea to change.

The general workflow typically involves the following steps:

1.	 The first engineer takes a current copy of the code base and works on the change.

2.	 The first engineer submits the change to the repository.

3.	 The repository can notify the necessary parties of a change in the repository to a group

of engineers who can review the change. They can either approve or reject the change.

4.	 The CI system can continuously pull the repository for changes, or the repository can send

a notification to the CI system when changes happen. Either way, the CI system will pull

the latest version of the code.

5.	 The CI system will run automated tests to try to catch any breakage.

6.	 If there are no faults found, the CI system can choose to merge the change into the main

code and optionally deploy it to the production system.

This is a generalized list of steps. The process can be different for each organization. For exam-

ple, automated tests can be run as soon as the delta code is checked instead of after code review.

Sometimes, the organization might choose to have a human engineer involved for sanity checks

in between the steps.

In the next section, we will illustrate the instructions to install GitLab on an Ubuntu 22.04 LTS

system.

Chapter 15 495

Installing GitLab
GitLab is a powerful, all-in-one tool to handle the end-to-end DevOps collaboration tool. As we

will see in a minute, it hosts the code repository and handles the code testing, deployment, and

verification. It is one of the most popular DevOps tools used in the field today.

We will only need a small set of its features to get up and running with a test lab. The objective is

to familiarize ourselves with the overall flow of the steps. I encourage you to look at the GitLab

documentation at https://docs.gitlab.com/ to get a sense of its features.

Figure 15.1: GitLab Documentation

The company behind the technology, GitLab Inc., had its successful initial

public offering on NASDAQ (ticket GTLB) in late 2021, https://techcrunch.

com/2021/09/17/inside-gitlabs-ipo-filing/. The company’s success shows

the strength of and sustainability of the technology.

https://docs.gitlab.com/
https://techcrunch.com/2021/09/17/inside-gitlabs-ipo-filing/
https://techcrunch.com/2021/09/17/inside-gitlabs-ipo-filing/

Continuous Integration with GitLab496

For our network lab, we will use the same lab topology that we have been using for the last few

chapters.

Figure 15.2: Lab Topology

While it is tempting to run GitLab as a Docker image, the GitLab runners (components executing

the steps) are Docker images themselves, and running Docker-in-Docker introduces more

complexity in our lab. Therefore, in this chapter, we will install GitLab on a VM with the runners

running in containers. The installation system requirements can be found here, https://docs.

gitlab.com/ee/install/requirements.html.

We will install Docker Engine, docker-compose, then the GitLab packages. Let’s get Docker ready

first:

Installing Docker Engine

$ sudo apt-get install ca-certificates curl gnupg lsb-release

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg
--dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg

$ echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/
keyrings/docker-archive-keyring.gpg] https://download.docker.com/linux/
ubuntu $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/
docker.list > /dev/null

$ sudo apt-get update

https://docs.gitlab.com/ee/install/requirements.html
https://docs.gitlab.com/ee/install/requirements.html

Chapter 15 497

$ sudo apt-get install docker-ce docker-ce-cli containerd.io

Run Docker as user

$ sudo groupadd docker

$ sudo usermod -aG docker $USER

$ newgrp docker

Install Docker-Compose

$ sudo curl -L "https://github.com/docker/compose/releases/
download/1.29.2/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/
docker-compose

$ sudo chmod +x /usr/local/bin/docker-compose

$ docker-compose --version

docker-compose version 1.29.2, build 5becea4c

For GitLab, we will install the self-managed GitLab with the official steps: https://docs.gitlab.

com/omnibus/index.html#installation-and-configuration-using-omnibus-package. Note

that the steps require port forwarding to the host on an externally accessible URL:

$ sudo apt update

$ sudo apt-get install -y curl openssh-server ca-certificates tzdata perl

$ sudo apt-get install -y postfix

$ curl https://packages.gitlab.com/install/repositories/gitlab/gitlab-ee/
script.deb.sh | sudo bash

$ sudo EXTERNAL_URL="http://gitlab.networkautomationnerds.com:9090" apt-
get install gitlab-ee

We should see the success message once installed:

Figure 15.3: GitLab Installation

https://docs.gitlab.com/omnibus/index.html#installation-and-configuration-using-omnibus-package
https://docs.gitlab.com/omnibus/index.html#installation-and-configuration-using-omnibus-package

Continuous Integration with GitLab498

We will use the initial password to log in and then reset it (https://docs.gitlab.com/ee/

security/reset_user_password.html#reset-your-root-password):

$ sudo cat /etc/gitlab/initial_root_password

…

Password: <random password>

$ sudo gitlab-rake "gitlab:password:reset"

We should be able to see the dashboard under ‘Menu -> Admin’ once everything is configured:

Figure 15.4: GitLab Dashboard

As an optional step, we can enable SMTP settings under /etc/gitlab/gitlab.rb. This would

allow us to receive emails for the important messages on GitLab (https://docs.gitlab.com/

omnibus/settings/smtp.html):

https://docs.gitlab.com/ee/security/reset_user_password.html#reset-your-root-password
https://docs.gitlab.com/ee/security/reset_user_password.html#reset-your-root-password
https://docs.gitlab.com/omnibus/settings/smtp.html
https://docs.gitlab.com/omnibus/settings/smtp.html

Chapter 15 499

Figure 15.5: GitLab SMTP Settings

Let’s talk about GitLab runners.

GitLab runners
GitLab uses the concept of a runner. A runner is a process that picks up and executes Continu-

ous Integration/Continuous Deployment (CI/CD) jobs for GitLab. The runner can be run in a

Docker container on the host itself, https://docs.gitlab.com/runner/install/docker.html:

$ docker run --rm -t -i gitlab/gitlab-runner —help

Unable to find image 'gitlab/gitlab-runner:latest' locally

latest: Pulling from gitlab/gitlab-runner

7b1a6ab2e44d: Pull complete

5580ef77ebbe: Pull complete

d7b21acbe607: Pull complete

Digest:
sha256:d2db6b687e9cf5baf96009e43cc3eaebf180f634306cdc74e2400315d35f0dab

Status: Downloaded newer image for gitlab/gitlab-runner:latest

https://docs.gitlab.com/runner/install/docker.html

Continuous Integration with GitLab500

…

$ docker run -d --name gitlab-runner --restart always \

> -v /srv/gitlab-runner/config:/etc/gitlab-runner \

> -v /var/run/docker.sock:/var/run/docker.sock \

> gitlab/gitlab-runner:latest

617b94e5e4c5c72d33610b2eef5eb7027f579f4e069558cbf61f884375812306

We can go ahead and register the runner with the host, https://docs.gitlab.com/runner/

register/index.html#docker, under Admin Area -> Runners -> Register an instance runner.

We will take note of the token:

Figure 15.6: GitLab Runner Registration

We can then use the token to pull and register a runner with a base image:

(venv) echou@gitlab:~$ docker run --rm -it -v /srv/gitlab-runner/config:/
etc/gitlab-runner gitlab/gitlab-runner register

Runtime platform arch=amd64 os=linux
pid=8 revision=5316d4ac version=14.6.0

Running in system-mode.

Enter the GitLab instance URL (for example, https://gitlab.com/):

http://<ip>:<port>

Enter the registration token:

<token>

Enter a description for the runner:

[fef6fb5a91dd]: local-runner

https://docs.gitlab.com/runner/register/index.html#docker
https://docs.gitlab.com/runner/register/index.html#docker

Chapter 15 501

Enter tags for the runner (comma-separated): << Leave empty unless we want
matching tag to run the runners jobs

Registering runner... succeeded runner=64eCJ5yp

Enter an executor: virtualbox, docker-ssh+machine, kubernetes, custom,
docker-ssh, parallels, docker+machine, docker, shell, ssh:

docker

Enter the default Docker image (for example, ruby:2.6):

docker pull ubuntu:latest

Runner registered successfully. Feel free to start it, but if it's running
already the config should be automatically reloaded!

We are now ready to handle our first job!

First GitLab example
We can begin by creating a separate user under Menu -> Admin Area -> Users (under Overview)

and login via that user:

Figure 15.7: GitLab Users

Continuous Integration with GitLab502

To push or pull from repositories, we will also add our SSH key. This can be done via the settings

section within the user profile:

Figure 15.8: User SSH Key

We can now create a new project under Menu -> Projects -> Create New Project:

Figure 15.9: Create New Project

Chapter 15 503

We will name this project chapter15_example1:

Figure 15.10: New Project Settings

Continuous Integration with GitLab504

We can leave the rest of the settings as we see fit. As a precaution, I typically leave the project

visibility on private, but we can always change that later.

Figure 15.11: Project Clone URL

We can grab the URL for the project and clone that project on our management station:

$ git clone http://gitlab.<url>/echou/chapter15_example1.git

Cloning into 'chapter15_example1'...

Username for 'http://gitlab.<url>': <user>

Password for 'http://<user>@<url>':

remote: Enumerating objects: 3, done.

remote: Counting objects: 100% (3/3), done.

remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0

Receiving objects: 100% (3/3), done.

$ cd chapter15_example1/

$ ls

README.md

Chapter 15 505

We will create a special file .gitlab-ci.yml that is recognized by GitLab as a CI/CD instruction:

define stages

stages:

 - build

 - test

 - deploy

define the job

deploy our network:

 image: "ubuntu:20.04"

 stage: build

 script:

 - mkdir new_network

 - cd new_network

 - touch bom.txt

 - echo "this is our build" >> bom.txt

 artifacts:

 paths:

 - new_network/

test our network:

 stage: test

 image: "ubuntu:20.04"

 script:

 - pwd

 - ls

 - test -f new_network/bom.txt

deploy to prod:

 stage: deploy

 image: "ubuntu:20.04"

 script:

 - echo "deploy to production"

 when: manual

Continuous Integration with GitLab506

We will check in, commit, and push the file to our GitLab repository:

$ git add .gitlab-ci.yml

$ git commit -m "initial commit"

$ git push origin main

Username for 'http://<url>': <username>

Password for 'http://<url>': <password>

Enumerating objects: 4, done.

Counting objects: 100% (4/4), done.

Delta compression using up to 2 threads

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 512 bytes | 512.00 KiB/s, done.

Total 3 (delta 0), reused 0 (delta 0), pack-reused 0

To http://<url> /echou/chapter15_example1.git

 c0b232d..5552a10 main -> main

The .gitlab-ci.yml file contains instructions for a GitLab CI/CD pipeline in a YAML format. It

contains two main sections, stage and job definition:

Figure 15.12: GitLab CI File

Chapter 15 507

In our file, we defined three stages with the keyword stages. In the execution section, we define

the Docker base image to be pulled, the name of the job to be done, the stage it corresponds to,

as well as the steps to be executed under script. There can be optional instructions such as

artifacts under build and when under deploy.

If we move back to the project, we can click on CI/CD -> Pipelines to show us the status of the job:

Figure 15.13: CI/CD Pipeline

Continuous Integration with GitLab508

There are three circles, each representing a stage.

Figure 15.14: Pipeline Output

We can click on the circles and see the container output:

Figure 15.15: Execution Output

Chapter 15 509

Remember we have optional steps under build and deploy? The artifacts give us something to

download:

Figure 15.16: Artifacts

The when keyword allows us to manually push out the step instead of having GitLab automati-

cally execute for us:

Figure 15.17: Manual Push

Is this awesome, or what? We now have some workers automatically executing jobs for us. We

can also leverage many of the features of Git for collaboration, such as inviting colleagues for

code review. Let’s see another example.

GitLab network example
We will go ahead and create another project named chapter15_example2 on the GitLab server.

On the local machine, we will clone the remote repository:

$ git clone http://<url>/echou/chapter15_example2.git

$ cd chapter15_example2/

Continuous Integration with GitLab510

In this example, we will integrate the Nornir library to see how we can execute show version on

two of the IOSv devices. We will begin by defining the hosts.yaml file:

r1:

 hostname: '192.168.2.218'

 port: 22

 username: 'cisco'

 password: 'cisco'

 platform: 'cisco_ios'

r2:

 hostname: '192.168.2.219'

 port: 22

 username: 'cisco'

 password: 'cisco'

 platform: 'cisco_ios'

We can then construct the Python script for execution:

#!/usr/bin/env python

from nornir import InitNornir

from nornir_utils.plugins.functions import print_result

from nornir_netmiko import netmiko_send_command

nr = InitNornir()

result = nr.run(

 task=netmiko_send_command,

 command_string="show version"

)

print_result(result)

Chapter 15 511

We will define a requirements.txt file to specify the packages to be installed:

$ cat requirements.txt

…

flake8==4.0.1

…

netmiko==3.4.0

nornir==3.2.0

nornir-netmiko==0.1.2

nornir-utils==0.1.2

paramiko==2.9.2

…

We will also define the .gitlab-ci.yml file to define the stages and the scripts. Notice in the file

that we specify another before_script step to be executed before any of the stages:

stages:

 - Test

 - QA

before_script:

 - python --version

 - pip3 install -r requirements.txt

Test-Job:

 stage: Test

 script:

 - python3 show_version.py

flake8:

 stage: QA

 script:

 - flake8 show_version.py

Continuous Integration with GitLab512

Once the files are checked in and pushed to the repository, we can go to the CI/CD section to look

at the outputs. The steps will take longer this time because of the package download time. We

can click on the step and examine the execution in real time.

Figure 15.18: Nornir CI/CD Step Execution

We should be able to see the pipeline successfully executed.

Figure 15.19: CI/CD Result

Using GitLab CI/CD is a terrific way of automating our network operation steps. The pipeline

might take longer to set up, but once it is completed, it will save us much time and allow us to

preserve our energy to focus on more interesting work. For more information, check out https://

docs.gitlab.com/ee/ci/.

https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/ci/

Chapter 15 513

Summary
In this chapter, we examined the traditional change management process and why it is not a good

fit for today’s rapidly changing environment. The network needs to evolve with the business to

become more agile and adapt to change quickly and reliably.

We looked at the concept of continuous integration, in particular, the open-source GitLab system.

GitLab is a full-featured, expandable, continuous integration system widely used in software

development. We can adapt the same system for our network operations. We saw two examples

using the GitLab Git repository and runners to execute our operations automatically.

In Chapter 16, Test-Driven Development for Networks, we will look at test-driven development with

Python.

Join our book community
To join our community for this book – where you can share feedback, ask questions to the author,

and learn about new releases – follow the QR code below:

https://packt.link/networkautomationcommunity

https://packt.link/networkautomationcommunity

16
Test-Driven Development for
Networks

In the previous chapters, we used Python to communicate with network devices, monitor and

secure a network, automate processes, and extend an on-premises network to public cloud provid-

ers. We have come a long way from having to exclusively use a terminal window and manage the

network with a CLI. When working together, the services we have built function like a well-oiled

machine that gives us a beautiful, automated, programmable network. However, the network

is never static and is constantly changing to meet the demands of the business. What happens

when the services we build are not working optimally? As we have done with monitoring and

source control systems, we are actively trying to detect faults.

In this chapter, we are extending the active detection concept with test-driven development

(TDD). We will cover the following topics:

•	 An overview of TDD

•	 Topology as code

•	 Writing tests for networking

•	 pyATS and Genie

We’ll begin this chapter with an overview of TDD before diving into its applications within net-

works. We will look at examples of using Python with TDD and gradually move from specific

tests to larger network-based tests.

Test-Driven Development for Networks516

Test-driven development overview
The idea of TDD has been around for a while. American software engineer Kent Beck, among

others, is credited with leading the TDD movement, along with agile software development. Agile

software development requires very short build-test-deploy development cycles; all software

requirements are turned into test cases. These test cases are usually written before the code is

written, and the software code is only accepted when the test passes.

The same idea can be drawn in parallel with network engineering. For example, when we face

the challenge of designing a modern network, we can break the process down into the following

steps, from high-level design requirements to the network tests that we can deploy:

1.	 We start with the overall requirement for the new network. Why do we need to design a

new network or part of a new network? Maybe it is for new server hardware, a new storage

network, or new microservice software architecture.

2.	 The new requirements are broken down into smaller, more specific requirements. This

could be evaluating a new switch platform, testing a possibly more efficient routing pro-

tocol, or a new network topology (for example, fat-tree). Each of the smaller requirements

can be broken down into the categories of required or optional.

3.	 We draw out the test plan and evaluate it against the potential candidates for solutions.

4.	 The test plan will work in reverse order; we will start by testing the features, then inte-

grate the new feature into a bigger topology. Finally, we will try to run our test close to a

production environment.

What I am trying to get at is that, even without realizing it, we might already be adopting some of

the TDD methodologies in the normal network engineering process. This was part of my revela-

tion when I was studying the TDD mindset. We are already implicitly following this best practice

without formalizing the method.

By gradually moving parts of the network to code, we can use TDD for the network even more. If

our network topology is described in a hierarchical format in XML or JSON, each component can be

correctly mapped and expressed in the desired state, which some might call “the source of truth.”

This is the desired state that we can write test cases against to test production deviation from

this state. For example, if our desired state calls for a full mesh of iBGP neighbors, we can always

write a test case to check against our production devices for the number of iBGP neighbors it has.

Chapter 16 517

The sequence of TDD is loosely based on the following six steps:

1.	 Write a test with the result in mind

2.	 Run all tests and see whether the new test fails

3.	 Write the code

4.	 Run the test again

5.	 Make the necessary changes if the test fails

6.	 Repeat

As with any process, how closely we follow the guideline is a judgment call. I prefer to treat these

guidelines as goals and follow them somewhat loosely. For example, the TDD process calls for

writing test cases before writing any code or, in our instance, before any network components

are built. As a personal preference, I always like to see a working version of the network or code

before writing test cases. It gives me a higher level of confidence, so if anybody is judging my

TDD process, I might just get a big fat “F.” I also like to jump around between different levels of

testing; sometimes, I test a small portion of the network, Other times, I conduct a system-level

end-to-end test, such as a ping or traceroute test.

The point is I do not believe there is a one-size-fits-all approach to testing. It depends on personal

preference and the scope of the project. This is true for most of the engineers I have worked with.

It is a good idea to keep the framework in mind so we have a working blueprint to follow, but you

are the best judge of your problem-solving style.

Before we delve further into TDD, let’s cover some of the most common terminologies in the

following section so that we have a good conceptual grounding before getting into more details.

Test definitions
Let’s look at some of the terms commonly used in TDD:

•	 Unit test: Checks a small piece of code. This is a test that is run against a single function

or class.

•	 Integration test: Checks multiple components of a code base; multiple units are com-

bined and tested as a group. This can be a test that checks against a Python module or

multiple modules.

Test-Driven Development for Networks518

•	 System test: Checks from end to end. This is a test that runs as close to what an end user

would see as possible.

•	 Functional test: Checks against a single function.

•	 Test coverage: A term defined as the determination of whether our test cases cover the

application code. This is typically done by examining how much code is exercised when

we run the test cases.

•	 Test fixtures: A fixed state that forms a baseline for running our tests. The purpose of a

test fixture is to ensure there is a well-known and fixed environment in which tests are

run so they are repeatable.

•	 Setup and teardown: All the prerequisite steps are added in the setup and cleaned up in

the teardown.

The terms might seem very software development-centric, and some might not be relevant to

network engineering. Remember that the terms are a way for us to communicate a concept or

step. We will be using these terms in the rest of this chapter. As we use the terms more in the net-

work engineering context, they might become clearer. With that covered, let’s dive into treating

network topology as code.

Topology as code
When we discuss topology as code, an engineer might jump up and declare: “The network is too

complex. It is impossible to summarize it into code!” From personal experience, this has hap-

pened in some of the meetings I have been in. In the meeting, we would have a group of software

engineers who want to treat infrastructure as code, but the traditional network engineers in the

room would declare that it was impossible. Before you do the same and yell at me across the

pages of this book, let’s keep an open mind. Would it help if I told you we have been using code

to describe our topology in this book already?

Chapter 16 519

If you take a look at any of the lab topology files that we have been using in this book, they are

simply YAML files that include a description of the relationship between nodes. For example, in

this chapter, we will use same topology we have been using for the last few chapters:

Figure 16.1: Lab Topology

If we open up the topology file, chapter16_topology.yaml, with a text editor, we will see that

the file is a YAML file describing the node and the links between the nodes:

lab:

 description: Imported from 2_DC_Topology.virl

 notes: |-

 ## Import Progress

 - processing node /lax-edg-r1 (iosv)

 - processing node /lax-edg-r2 (iosv)

 - processing node /nyc-edg-r1 (iosv)

 - processing node /nyc-edg-r2 (iosv)

 - processing node /lax-cor-r1 (nxosv)

 - processing node /nyc-cor-r1 (nxosv)

 - link GigabitEthernet0/1.lax-edg-r1 -> Ethernet2/1.lax-cor-r1

 - link GigabitEthernet0/1.lax-edg-r2 -> Ethernet2/2.lax-cor-r1

 - link GigabitEthernet0/1.nyc-edg-r1 -> Ethernet2/1.nyc-cor-r1

 - link GigabitEthernet0/1.nyc-edg-r2 -> Ethernet2/2.nyc-cor-r1

 - link Ethernet2/3.lax-cor-r1 -> Ethernet2/3.nyc-cor-r1

 timestamp: 1615749425.6802542

 title: 2_DC_Topology.yaml

 version: 0.0.4

Test-Driven Development for Networks520

The node section include each of the node’s id, label, definition, and configurations:

nodes:

 - id: n0

 label: lax-edg-r1

 node_definition: iosv

 x: -100

 y: 200

 configuration: |-

 !

 ! Last configuration change at 02:26:08 UTC Fri Apr 17 2020 by cisco

 !

 version 15.6

 service timestamps debug datetime msec

 service timestamps log datetime msec

 no service password-encryption

 !

 hostname lax-edg-r1

 !

 boot-start-marker

 boot-end-marker

 !

 !

 vrf definition Mgmt-intf

 !

 address-family ipv4

 exit-address-family

 !

<skip>

If we open up the previous chapter’s lab topology file, which contain Linux nodes, we can see the

Linux host nodes can be described the same way as the network nodes:

 - id: n5

 label: Client

 node_definition: server

 x: 0

 y: 0

 configuration: |-

Chapter 16 521

 # converted cloud-config

 hostname Client

 ifconfig eth1 up 10.0.0.9 netmask 255.255.255.252

 route add -net 10.0.0.0/8 gw 10.0.0.10 dev eth1

 route add -net 192.168.0.0/28 gw 10.0.0.10 dev eth1

 # original cloud-config

 # #cloud-config

 # bootcmd:

 # - ln -s -t /etc/rc.d /etc/rc.local

 # hostname: Client

 # manage_etc_hosts: true

 # runcmd:

 # - start ttyS0

 # - systemctl start getty@ttyS0.service

 # - systemctl start rc-local

 # - sed -i '/^\s*PasswordAuthentication\s\+no/d' /etc/ssh/sshd_
config

 # - echo "UseDNS no" >> /etc/ssh/sshd_config

 # - service ssh restart

 # - service sshd restart

By expressing the network as code, we can declare a source of truth for our network. We can write

test code to compare the actual production value against this blueprint. We will use this topology

file as the base and compare the production network value against it.

XML parsing example
Besides YAML, another popular way to express topology as code is XML. In fact, that was the

format that the predecessor of CML 2, Cisco VIRL used. From previous editions of the book, I have

provided an example of a two-host, two-network node example file named chapter15_topology.

virl for our parsing example.

To work with XML files, we can use Python to extract the element from this topology file and store it

as a Python data type so we can work with it. In chapter16_1_xml.py, we will use ElementTree to

parse the virl topology file and construct a dictionary consisting of the information of our devices:

#!/usr/env/bin python3

import xml.etree.ElementTree as ET

import pprint

Test-Driven Development for Networks522

with open('chapter15_topology.virl', 'rt') as f:

 tree = ET.parse(f)

devices = {}

for node in tree.findall('./{http://www.cisco.com/VIRL}node'):

 name = node.attrib.get('name')

 devices[name] = {}

 for attr_name, attr_value in sorted(node.attrib.items()):

 devices[name][attr_name] = attr_value

Custom attributes

devices['iosv-1']['os'] = '15.6(3)M2'

devices['nx-osv-1']['os'] = '7.3(0)D1(1)'

devices['host1']['os'] = '16.04'

devices['host2']['os'] = '16.04'

pprint.pprint(devices)

The result is a Python dictionary that consists of the devices according to our topology file.

We can also add customary items to the dictionary:

(venv) $ python chapter16_1_xml.py

{'host1': {'location': '117,58',

 'name': 'host1',

 'os': '16.04',

 'subtype': 'server',

 'type': 'SIMPLE'},

 'host2': {'location': '347,66',

 'name': 'host2',

 'os': '16.04',

 'subtype': 'server',

 'type': 'SIMPLE'},

 'iosv-1': {'ipv4': '192.168.0.3',

 'location': '182,162',

 'name': 'iosv-1',

 'os': '15.6(3)M2',

 'subtype': 'IOSv',

 'type': 'SIMPLE'},

 'nx-osv-1': {'ipv4': '192.168.0.1',

 'location': '281,161',

 'name': 'nx-osv-1',

Chapter 16 523

 'os': '7.3(0)D1(1)',

 'subtype': 'NX-OSv',

 'type': 'SIMPLE'}}

If we want to compare this “source of truth” to the production device version, we can use our

script from Chapter 3, APIs and Intent-Driven Networking, cisco_nxapi_2.py, to retrieve the pro-

duction NX-OSv device’s software version. We can then compare the value we received from

our topology file with the production device’s information. Later, we can use Python’s built-in

unittest module to write test cases.

We will discuss the unittest module in just a bit. Feel free to skip ahead and come back to this

example if you’d like.

Here is the relevant unittest code in chapter16_2_validation.py:

import unittest

<skip>

Unittest Test case

class TestNXOSVersion(unittest.TestCase):

 def test_version(self):

 self.assertEqual(nxos_version, devices['nx-osv-1']['os'])

if __name__ == '__main__':

 unittest.main()

When we run the validation test, we can see that the test passes because the software version in

production matches what we expected:

$ python chapter16_2_validation.py

.

--

Ran 1 test in 0.000s

OK

If we manually change the expected NX-OSv version value to introduce a failure case, we will see

the following failed output:

$ python chapter16_3_test_fail.py

F

==

FAIL: test_version (__main__.TestNXOSVersion)

--

Test-Driven Development for Networks524

Traceback (most recent call last):

 File "chapter15_3_test_fail.py", line 50, in test_version

 self.assertEqual(nxos_version, devices['nx-osv-1']['os'])

AssertionError: '7.3(0)D1(1)' != '7.4(0)D1(1)'

- 7.3(0)D1(1)

? ^

+ 7.4(0)D1(1)

? ^

--

Ran 1 test in 0.001s

FAILED (failures=1)

We can see that the test case result returned as failed; the reason for the failure was the version

mismatch between the two values. As we saw in the last example, the Python unittest module

is a great way to test our existing code based on our expected results. Let’s take a deeper look at

the module.

Python’s unittest module
The Python standard library includes a module named unittest, which handles test cases where

we can compare two values to determine whether a test passes. In the previous example, we saw

how to use the assertEqual() method to compare two values to return either True or False. Here

is an example, chapter16_4_unittest.py, that uses the built-in unittest module to compare

two values:

#!/usr/bin/env python3

import unittest

class SimpleTest(unittest.TestCase):

 def test(self):

 one = 'a'

 two = 'a'

 self.assertEqual(one, two)

Using the python3 command-line interface, the unittest module can automatically discover

the test cases in the script:

$ python -m unittest chapter16_4_unittest.py

.

--

Ran 1 test in 0.000s

OK

Chapter 16 525

Besides comparing two values, here are more examples of testing whether the expected value is

True or False. We can also generate custom failure messages when a failure occurs:

#!/usr/bin/env python3

Examples from https://pymotw.com/3/unittest/index.html#module-unittest

import unittest

class Output(unittest.TestCase):

 def testPass(self):

 return

 def testFail(self):

 self.assertFalse(True, 'this is a failed message')

 def testError(self):

 raise RuntimeError('Test error!')

 def testAssesrtTrue(self):

 self.assertTrue(True)

 def testAssertFalse(self):

 self.assertFalse(False)

We can use -v for the option to display a more detailed output:

$ python -m unittest -v chapter16_5_more_unittest

testAssertFalse (chapter16_5_more_unittest.Output) ... ok

testAssesrtTrue (chapter16_5_more_unittest.Output) ... ok

testError (chapter16_5_more_unittest.Output) ... ERROR

testFail (chapter16_5_more_unittest.Output) ... FAIL

testPass (chapter16_5_more_unittest.Output) ... ok

==

ERROR: testError (chapter16_5_more_unittest.Output)

--

Traceback (most recent call last):

 File "/home/echou/Mastering_Python_Networking_Fourth_Edition/Chapter16/
chapter16_5_more_unittest.py", line 14, in testError

 raise RuntimeError('Test error!')

RuntimeError: Test error!

==

FAIL: testFail (chapter16_5_more_unittest.Output)

--

Test-Driven Development for Networks526

Traceback (most recent call last):

 File "/home/echou/Mastering_Python_Networking_Fourth_Edition/Chapter16/
chapter16_5_more_unittest.py", line 11, in testFail

 self.assertFalse(True, 'this is a failed message')

AssertionError: True is not false : this is a failed message

--

Ran 5 tests in 0.001s

FAILED (failures=1, errors=1)

Starting from Python 3.3, the unittest module includes the mock object library by default

(https://docs.python.org/3/library/unittest.mock.html). This is a very useful module

that you can use to make a fake HTTP API call to a remote resource without actually making the

call. For example, we have seen using NX-API to retrieve the NX-OS version number. What if we

want to run our test, but we do not have an NX-OS device available? We can use the unittest

mock object.

In chapter16_5_more_unittest_mocks.py, we created a class with a method to make HTTP API

calls and expect a JSON response:

Our class making API Call using requests

class MyClass:

 def fetch_json(self, url):

 response = requests.get(url)

 return response.json()

We also created a function that mocks two URL calls:

This method will be used by the mock to replace requests.get

def mocked_requests_get(*args, **kwargs):

 class MockResponse:

 def __init__(self, json_data, status_code):

 self.json_data = json_data

 self.status_code = status_code

 def json(self):

 return self.json_data

 if args[0] == 'http://url-1.com/test.json':

 return MockResponse({"key1": "value1"}, 200)

 elif args[0] == 'http://url-2.com/test.json':

https://docs.python.org/3/library/unittest.mock.html

Chapter 16 527

 return MockResponse({"key2": "value2"}, 200)

 return MockResponse(None, 404)

Finally, we make the API call to the two URLs in our test case. However, we are using the mock.

patch decorator to intercept the API calls:

Our test case class

class MyClassTestCase(unittest.TestCase):

 # We patch 'requests.get' with our own method. The mock object is
passed in to our test case method.

 @mock.patch('requests.get', side_effect=mocked_requests_get)

 def test_fetch(self, mock_get):

 # Assert requests.get calls

 my_class = MyClass()

 # call to url-1

 json_data = my_class.fetch_json('http://url-1.com/test.json')

 self.assertEqual(json_data, {"key1": "value1"})

 # call to url-2

 json_data = my_class.fetch_json('http://url-2.com/test.json')

 self.assertEqual(json_data, {"key2": "value2"})

 # call to url-3 that we did not mock

 json_data = my_class.fetch_json('http://url-3.com/test.json')

 self.assertIsNone(json_data)

if __name__ == '__main__':

 unittest.main()

When we run the test, we will see that the test passes without needing to make an actual API call

to the remote endpoint. Neat, huh?

$ python chapter16_5_more_unittest_mocks.py

.

--

Ran 1 test in 0.000s

OK

For more information on the unittest module, Doug Hellmann’s Python module of the week

(https://pymotw.com/3/unittest/index.html#module-unittest) is an excellent source of

short and precise examples on the unittest module. As always, the Python documentation is

a good source of information as well: https://docs.python.org/3/library/unittest.html.

https://pymotw.com/3/unittest/index.html#module-unittest
https://docs.python.org/3/library/unittest.html

Test-Driven Development for Networks528

More on Python testing
In addition to the built-in unittest library, there are lots of other testing frameworks from the

Python community. pytest is one of the most robust, intuitive Python testing frameworks and

is worth a look. pytest can be used for all types and levels of software testing. It can be used by

developers, QA engineers, individuals practicing TDD, and open source projects.

Many large-scale open source projects have switched from unittest or nose (another Python test

framework) to pytest, including Mozilla and Dropbox. The attractive features of pytest include

the third-party plugin model, a simple fixture model, and assert rewriting.

If you want to learn more about the pytest framework, I highly recommend Python Testing with

pytest by Brian Okken (ISBN 978-1-68050-240-4). Another great source is the pytest documen-

tation: https://docs.pytest.org/en/latest/.

pytest is command line-driven; it can find the tests we have written automatically and run them

by appending the test prefix in our function. We will need to install pytest before we can use it:

$ pip install pytest

$ python

Python 3.10.6 (main, Aug 10 2022, 11:40:04) [GCC 11.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import pytest

>>> pytest.__version__

'7.1.3'

>>>

Let’s look at some examples using pytest.

pytest examples
The first pytest example, chapter16_6_pytest_1.py, will be a simple assert for two values:

#!/usr/bin/env python3

def test_passing():

 assert(1, 2, 3) == (1, 2, 3)

def test_failing():

 assert(1, 2, 3) == (3, 2, 1)

https://docs.pytest.org/en/latest/

Chapter 16 529

When we run pytest with the -v option, pytest will give us a pretty robust answer for a reason

for the failure. The verbose output is one of the reasons people like pytest:

$ pytest -v chapter16_6_pytest_1.py

================================ test session starts =====================
============

platform linux -- Python 3.10.6, pytest-7.1.3, pluggy-1.0.0 -- /home/
echou/Mastering_Python_Networking_Fourth_Edition/venv/bin/python3

cachedir: .pytest_cache

rootdir: /home/echou/Mastering_Python_Networking_Fourth_Edition/Chapter16

collected 2 items

chapter16_6_pytest_1.py::test_passing PASSED
[50%]

chapter16_6_pytest_1.py::test_failing FAILED
[100%]

====================================== FAILURES ==========================
============

____________________________________ test_failing ________________________

 def test_failing():

> assert(1, 2, 3) == (3, 2, 1)

E assert (1, 2, 3) == (3, 2, 1)

E At index 0 diff: 1 != 3

E Full diff:

E - (3, 2, 1)

E ? ^ ^

E + (1, 2, 3)

E ? ^ ^

chapter16_6_pytest_1.py:7: AssertionError

============================== short test summary info
===============================

FAILED chapter16_6_pytest_1.py::test_failing - assert (1, 2, 3) == (3, 2,
1)

============================ 1 failed, 1 passed in 0.03s
=============================

Test-Driven Development for Networks530

In the second pytest example, chapter16_7_pytest_2.py, we will create a router object. The

router object will be initiated with some values of None and some with default values. We will

use pytest to test one instance with the default and one instance without:

#!/usr/bin/env python3

class router(object):

 def __init__(self, hostname=None, os=None, device_type='cisco_ios'):

 self.hostname = hostname

 self.os = os

 self.device_type = device_type

 self.interfaces = 24

def test_defaults():

 r1 = router()

 assert r1.hostname == None

 assert r1.os == None

 assert r1.device_type == 'cisco_ios'

 assert r1.interfaces == 24

def test_non_defaults():

 r2 = router(hostname='lax-r2', os='nxos', device_type='cisco_nxos')

 assert r2.hostname == 'lax-r2'

 assert r2.os == 'nxos'

 assert r2.device_type == 'cisco_nxos'

 assert r2.interfaces == 24

When we run the test, we will see whether the instance was accurately applied with the default

values:

$ pytest chapter16_7_pytest_2.py

================================ test session starts =====================
============

platform linux -- Python 3.10.6, pytest-7.1.3, pluggy-1.0.0

rootdir: /home/echou/Mastering_Python_Networking_Fourth_Edition/Chapter16

collected 2 items

chapter16_7_pytest_2.py ..
[100%]

================================= 2 passed in 0.01s ======================
============

Chapter 16 531

If we were to replace the previous unittest example with pytest, in chapter16_8_pytest_3.py,

we can see the syntax with pytest is simpler:

pytest test case

def test_version():

 assert devices['nx-osv-1']['os'] == nxos_version

Then we run the test with the pytest command line:

$ pytest chapter16_8_pytest_3.py

================================ test session starts =====================
============

platform linux -- Python 3.10.6, pytest-7.1.3, pluggy-1.0.0

rootdir: /home/echou/Mastering_Python_Networking_Fourth_Edition/Chapter16

collected 1 item

chapter16_8_pytest_3.py .
[100%]

================================= 1 passed in 3.80s ======================
============

Between unittest and pytest, I find pytest more intuitive to use. However, since unittest is

included in the standard library, many teams might prefer using the unittest module for their

testing.

Besides doing tests on code, we can also write tests to test our network as a whole. After all, users

care more about their services and applications functioning properly and less about individual

pieces. We will look at writing tests for the network in the next section.

Writing tests for networking
So far, we have been mostly writing tests for our Python code. We have used both the unittest

and pytest libraries to assert True/False and equal/non-equal values. We were also able to

write mocks to intercept our API calls when we do not have an actual API-capable device but

still want to run our tests.

In this section, let’s look at how we can write tests relevant to the networking world. There is

no shortage of commercial products regarding network monitoring and testing. Over the years,

I have come across many of them. However, in this section, I prefer to use simple, open source

tools for my tests.

Test-Driven Development for Networks532

Testing for reachability
Often, the first step of troubleshooting is to conduct a small reachability test. For network engi-

neers, ping is our best friend when it comes to network reachability tests. It is a way to test the

reachability of a host on an IP network by sending a small package across the network to the

destination.

We can automate the ping test via the OS module or the subprocess module:

>>> import os

>>> host_list = ['www.cisco.com', 'www.google.com']

>>> for host in host_list:

... os.system('ping -c 1 ' + host)

...

PING www.cisco.com(2001:559:19:289b::b33 (2001:559:19:289b::b33)) 56 data
bytes

64 bytes from 2001:559:19:289b::b33 (2001:559:19:289b::b33): icmp_seq=1
ttl=60 time=11.3 ms

--- www.cisco.com ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 11.399/11.399/11.399/0.000 ms

0

PING www.google.com(sea15s11-in-x04.1e100.net (2607:f8b0:400a:808::2004))
56 data bytes

64 bytes from sea15s11-in-x04.1e100.net (2607:f8b0:400a:808::2004): icmp_
seq=1 ttl=54 time=10.8 ms

--- www.google.com ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 10.858/10.858/10.858/0.000 ms

0

The subprocess module offers the additional benefit of catching the output:

>>> import subprocess

>>> for host in host_list:

... print('host: ' + host)

... p = subprocess.Popen(['ping', '-c', '1', host], stdout=subprocess.
PIPE)

...

host: www.cisco.com

Chapter 16 533

host: www.google.com

>>> print(p.communicate())

(b'PING www.google.com(sea15s11-in-x04.1e100.net
(2607:f8b0:400a:808::2004)) 56 data bytes\n64 bytes from sea15s11-in-
x04.1e100.net (2607:f8b0:400a:808::2004): icmp_seq=1 ttl=54 time=16.9
ms\n\n--- www.google.com ping statistics ---\n1 packets transmitted,
1 received, 0% packet loss, time 0ms\nrtt min/avg/max/mdev =
16.913/16.913/16.913/0.000 ms\n', None)

>>>

These two modules prove to be very useful in many situations. Any command we can execute in

the Linux and Unix environments can be executed via the OS or subprocess module.

Testing for network latency
The topic of network latency can sometimes be subjective. Working as network engineers, we are

often faced with the user saying that the network is slow. However, “slow” is a very subjective term.

If we could construct tests that turn subjective terms into objective values, it would be very helpful.

We should do this consistently to compare the values over a time series of data.

This can sometimes be difficult since the network is stateless by design. Just because one packet

is successful does not guarantee success for the next packet. The best approach I have seen over

the years is to use ping across many hosts frequently and log the data, conducting a ping-mesh

graph. We can leverage the same tools we used in the previous example, catch the return-result

time, and keep a record. We do this in chapter16_10_ping.py:

#!/usr/bin/env python3

import subprocess

host_list = ['www.cisco.com', 'www.google.com']

ping_time = []

for host in host_list:

 p = subprocess.Popen(['ping', '-c', '1', host], stdout=subprocess.
PIPE)

 result = p.communicate()[0]

 host = result.split()[1]

 time = result.split()[13]

 ping_time.append((host, time))

print(ping_time)

Test-Driven Development for Networks534

In this case, the result is kept in a tuple and put into a list:

$ python chapter16_10_ping.py

[(b'e2867.dsca.akamaiedge.net', b'ttl=54'), (b'www.google.com',
b'ttl=58')]

This is not perfect and is merely a starting point for monitoring and troubleshooting. However,

in the absence of other tools, this offers some baseline of objective values.

Testing for security
We saw one of the best tools for security testing in Chapter 6, Network Security with Python, which

was Scapy. There are lots of open source tools for security, but none offer the flexibility that comes

with constructing our packets.

Another great tool for network security testing is hping3 (https://docs.python-cerberus.org/

en/stable/). It offers a simple way to generate a lot of packets at once. For example, you can use

the following one-liner to generate a TCP SYN flood:

DON'T DO THIS IN PRODUCTION

echou@ubuntu:/var/log$ sudo hping3 -S -p 80 --flood 192.168.1.202

HPING 192.168.1.202 (eth0 192.168.1.202): S set, 40 headers + 0 data bytes
hping in flood mode, no replies will be shown

^C

--- 192.168.1.202 hping statistic ---

2281304 packets transmitted, 0 packets received, 100% packet loss round-
trip min/avg/max = 0.0/0.0/0.0 ms

echou@ubuntu:/var/log$

Again, since this is a command-line tool, we can use the subprocess module to automate any

hping3 tests that we want.

Testing for transactions
The network is a crucial part of the infrastructure, but it is only a part of it. What the users care

about is often the service that runs on top of the network. If the user is trying to watch a YouTube

video or listen to a podcast but cannot, in their opinion, the service is broken. We might know

that the network transport is not at fault, but that doesn’t comfort the user.

For this reason, we should implement tests that are as similar to the user’s experience as possible.

In the example of a YouTube video, we might not be able to duplicate the YouTube experience

100% (unless you work for Google).

https://docs.python-cerberus.org/en/stable/
https://docs.python-cerberus.org/en/stable/

Chapter 16 535

Still, we can implement a layer-7 service as close to the network edge as possible. We can then

simulate the transaction from a client at a regular interval as a transactional test.

The Python HTTP standard library module is a module that I often use when I need to test layer-7

reachability on a web service quickly. We already saw how to use it when we were performing

network monitoring in Chapter 4, The Python Automation Framework – Ansible, but it’s worth

seeing again:

$ python3 -m http.server 8080

Serving HTTP on 0.0.0.0 port 8080 ...

127.0.0.1 - - [25/Jul/2018 10:15:23] "GET / HTTP/1.1" 200 -

If we can simulate a full transaction for the expected service, that is even better. But Python’s

simple HTTP server module in the standard library is always a great one for running some ad hoc

web service tests.

Testing for network configuration
In my opinion, the best test for network configuration is using standardized templates to generate

the configuration and back up the production configuration often. We have seen how we can use

the Jinja2 template to standardize our configuration per device type or role. This will eliminate

many of the mistakes caused by human error, such as copy and paste.

Once the configuration is generated, we can write tests against the configuration for known

characteristics that we would expect before we push the configuration to production devices.

For example, there should be no overlap of IP addresses in all of the network when it comes to

loopback IP, so we can write a test to see whether the new configuration contains a loopback IP

that is unique across our devices.

Testing for Ansible
For the time I have been using Ansible, I cannot recall using a unittest-like tool to test a playbook.

For the most part, the playbooks use modules that were tested by module developers.

If you want a lightweight data validation tool, please check out Cerberus (https://

docs.python-cerberus.org/en/stable/).

https://docs.python-cerberus.org/en/stable/
https://docs.python-cerberus.org/en/stable/

Test-Driven Development for Networks536

Ansible provides unit tests for their library of modules. Unit tests in Ansible are currently the only

way to drive tests from Python within Ansible’s continuous-integration process. The unit tests

that are run today can be found under /test/units (https://github.com/ansible/ansible/

tree/devel/test/units).

The Ansible testing strategy can be found in the following documents:

•	 Testing Ansible: https://docs.ansible.com/ansible/latest/dev_guide/testing.

html

•	 Unit tests: https://docs.ansible.com/ansible/latest/dev_guide/testing_units.

html

•	 Unit testing Ansible modules: https://docs.ansible.com/ansible/latest/dev_guide/

testing_units_modules.html

One of the interesting Ansible testing frameworks is Molecule (https://pypi.org/project/

molecule/). It intends to aid in the development and testing of Ansible roles. Molecule supports

testing with multiple instances, operating systems, and distributions. I have not used this tool,

but it is where I would start if I wanted to perform more testing on my Ansible roles.

We should now know how to write tests for our network, whether testing for reachability, latency,

security, transaction, or network configuration.

In the next section, we will take a look at an extensive testing framework developed by Cisco (and

recently released as open source) called pyATS. Much to their credit, releasing such an extensive

framework as open source for the benefit of the community was a great gesture by Cisco.

pyATS and Genie
pyATS (https://developer.cisco.com/pyats/) is an end-to-end testing ecosystem originally

developed by Cisco and made available to the public in late 2017. The pyATS library was former-

ly known as Genie; they will often be referred to in the same context. Because of its roots, the

framework is very focused on network testing.

pyATS, and the pyATS library (also known as Genie), was the winner of the 2018 Cisco Pioneer

Award. We should all applaud Cisco for making the framework open source and available to the

public. Good job, Cisco DevNet!

The framework is available on PyPI:

$ pip install pyats

https://github.com/ansible/ansible/tree/devel/test/units
https://github.com/ansible/ansible/tree/devel/test/units
https://docs.ansible.com/ansible/latest/dev_guide/testing.html
https://docs.ansible.com/ansible/latest/dev_guide/testing.html
https://docs.ansible.com/ansible/latest/dev_guide/testing_units.html
https://docs.ansible.com/ansible/latest/dev_guide/testing_units.html
https://docs.ansible.com/ansible/latest/dev_guide/testing_units_modules.html
https://docs.ansible.com/ansible/latest/dev_guide/testing_units_modules.html
https://pypi.org/project/molecule/
https://pypi.org/project/molecule/
https://developer.cisco.com/pyats/

Chapter 16 537

To get started, we can look at some of the example scripts on the GitHub repository, https://

github.com/CiscoDevNet/pyats-sample-scripts. The tests start with creating a testbed file

in YAML format. We will create a simple chapter16_pyats_testbed_1.yml testbed file for our

lax-edge-r1-edg-r1 device. The file should look similar to the Ansible inventory file that we

have seen before:

testbed:

 name: Chapter_16_pyATS

 tacacs:

 username: cisco

 passwords:

 tacacs: cisco

 enable: cisco

devices:

 lax-edg-r1:

 alias: lax-edg-r1

 type: ios

 connections:

 defaults:

 class: unicon.Unicon

 management:

 ip: 192.168.2.51

 protocol: ssh

topology:

 lax-edg-r1:

 interfaces:

 GigabitEthernet0/1:

 ipv4: 10.0.0.1/30

 link: link-1

 type: ethernet

 Loopback0:

 ipv4: 192.168.0.10/32

 link: iosv-1_Loopback0

 type: loopback

https://github.com/CiscoDevNet/pyats-sample-scripts
https://github.com/CiscoDevNet/pyats-sample-scripts

Test-Driven Development for Networks538

In our first script, chapter16_11_pyats_1.py, we will load the testbed file, connect to the device,

issue a show version command, then disconnect from the device:

#!/usr/bin/env python3

#

derived from https://devnet-pubhub-site.s3.amazonaws.com/media/pyats/
docs/getting_started/index.html

#

from pyats.topology import loader

load testbed

testbed = loader.load('chapter16_pyats_testbed_1.yml')

access the device

testbed.devices

lax_edg_r1 = testbed.devices['lax-edg-r1']

establish connectivity

lax_edg_r1.connect()

issue command

print(lax_edg_r1.execute('show version'))

disconnect

lax_edg_r1.disconnect()

When we execute the command, we can see the output is a mixture of the pyATS setup as well as

the actual output of the device. This is similar to the Paramiko scripts we have seen before but

note that pyATS took care of the underlying connection for us:

$ python chapter16_11_pyats_1.py

/home/echou/Mastering_Python_Networking_Fourth_Edition/Chapter16/pyATS/
chapter16_11_pyats_1.py:8: DeprecationWarning: 'tacacs.username' is
deprecated in the testbed YAML. This key has been moved to 'credentials'.

 testbed = loader.load('chapter16_pyats_testbed_1.yml')

/home/echou/Mastering_Python_Networking_Fourth_Edition/Chapter16/pyATS/
chapter16_11_pyats_1.py:8: DeprecationWarning: 'passwords.tacacs' is
deprecated in the testbed YAML. Use 'credentials' instead.

 testbed = loader.load('chapter16_pyats_testbed_1.yml')

Chapter 16 539

device's os is not provided, unicon may not use correct plugins

2022-09-25 17:03:08,615: %UNICON-INFO: +++ lax-edg-r1 logfile /tmp/lax-
edg-r1-cli-20220925T170308615.log +++

<skip>

2022-09-25 17:03:09,275: %UNICON-INFO: +++ connection to spawn: ssh -l
cisco 192.168.2.51, id: 140685765498848 +++

2022-09-25 17:03:09,276: %UNICON-INFO: connection to lax-edg-r1

cisco@192.168.2.51's password:

**

* IOSv is strictly limited to use for evaluation, demonstration and IOS *

* education. IOSv is provided as-is and is not supported by Cisco's *

* Technical Advisory Center. Any use or disclosure, in whole or in part, *

* of the IOSv Software or Documentation to any third party for any *

* purposes is expressly prohibited except as otherwise authorized by *

* Cisco in writing. *

**

lax-edg-r1#

2022-09-25 17:03:09,364: %UNICON-INFO: +++ initializing handle +++

2022-09-25 17:03:09,427: %UNICON-INFO: +++ lax-edg-r1 with via
'management': executing command 'term length 0' +++

term length 0

lax-edg-r1#

2022-09-25 17:03:09,617: %UNICON-INFO: +++ lax-edg-r1 with via
'management': executing command 'term width 0' +++

term width 0

lax-edg-r1#

2022-09-25 17:03:09,821: %UNICON-INFO: +++ lax-edg-r1 with via
'management': executing command 'show version' +++

show version

Cisco IOS Software, IOSv Software (VIOS-ADVENTERPRISEK9-M), Version
15.8(3)M2, RELEASE SOFTWARE (fc2)

Test-Driven Development for Networks540

Technical Support: http://www.cisco.com/techsupport

Copyright (c) 1986-2019 by Cisco Systems, Inc.

Compiled Thu 28-Mar-19 14:06 by prod_rel_team

In the second example, we will see a full example of connection setup, test cases, then connection

teardown. First, we will add the lax-cor-r1 device to our testbed in chapter16_pyats_testbed_2.

yml. The additional device is needed as the connected device to iosv-1 for our ping test:

testbed:

 name: Chapter_16_pyATS

 tacacs:

 username: cisco

 passwords:

 tacacs: cisco

 enable: cisco

devices:

 lax-edg-r1:

 alias: iosv-1

 type: ios

 connections:

 defaults:

 class: unicon.Unicon

 vty:

 ip: 192.168.2.50

 protocol: ssh

 lax-cor-r1:

 alias: nxosv-1

 type: ios

 connections:

 defaults:

 class: unicon.Unicon

 vty:

 ip: 192.168.2.51

 protocol: ssh

topology:

Chapter 16 541

 lax-edg-r1:

 interfaces:

 GigabitEthernet0/1:

 ipv4: 10.0.0.1/30

 link: link-1

 type: ethernet

 Loopback0:

 ipv4: 192.168.0.10/32

 link: lax-edg-r1_Loopback0

 type: loopback

 lax-cor-r1:

 interfaces:

 Eth2/1:

 ipv4: 10.0.0.2/30

 link: link-1

 type: ethernet

 Loopback0:

 ipv4: 192.168.0.100/32

 link: lax-cor-r1_Loopback0

 type: loopback

In chapter16_12_pyats_2.py, we will use the aest module from pyATS with various decorators.

Besides setup and cleanup, the ping test is in the PingTestCase class:

@aetest.loop(device = ('ios1',))

class PingTestcase(aetest.Testcase):

 @aetest.test.loop(destination = ('10.0.0.1', '10.0.0.2'))

 def ping(self, device, destination):

 try:

 result = self.parameters[device].ping(destination)

 except Exception as e:

 self.failed('Ping {} from device {} failed with error: {}'.
format(

 destination,

 device,

Test-Driven Development for Networks542

 str(e),

),

 goto = ['exit'])

 else:

 match = re.search(r'Success rate is (?P<rate>\d+) percent',
result)

 success_rate = match.group('rate')

It is best practice to reference the testbed file at the command line during runtime:

$ python chapter16_12_pyats_2.py --testbed chapter16_pyats_testbed_2.yml

The output is similar to our first example, with the additions of STEPS Report and Detailed

Results with each test case.

2022-09-25T17:14:13: %AETEST-INFO: +--------------------------------------
--+

2022-09-25T17:14:13: %AETEST-INFO: | Starting
common setup |

2022-09-25T17:14:13: %AETEST-INFO: +--------------------------------------
--+

2022-09-25T17:14:13: %AETEST-INFO: +--------------------------------------
--+

2022-09-25T17:14:13: %AETEST-INFO: | Starting
subsection check_topology |

2022-09-25T17:14:13: %AETEST-INFO: +--------------------------------------
--+

2022-09-25T17:14:13: %AETEST-INFO: The result of subsection check_topology
is => PASSED

2022-09-25T17:14:13: %AETEST-INFO: +--------------------------------------
--+

2022-09-25T17:14:13: %AETEST-INFO: | Starting subsection
establish_connections |

2022-09-25T17:14:13: %AETEST-INFO: +--------------------------------------
--+

2022-09-25T17:14:13: %AETEST-INFO: +......................................
..+

2022-09-25T17:14:13: %AETEST-INFO: : Starting STEP 1:
Connecting to lax-edg-r1 :

2022-09-25T17:14:13: %AETEST-INFO: +......................................
..+

Chapter 16 543

2022-09-25T17:14:13: %UNICON-WARNING: device's os is not provided, unicon
may not use correct plugins

The output also indicates the log filename that is written to the /tmp directory:

$ ls /tmp/lax*

/tmp/lax-edg-r1-cli-20220925T170012042.log

/tmp/lax-edg-r1-cli-20220925T170030754.log

/tmp/lax-edg-r1-cli-20220925T170308615.log

/tmp/lax-edg-r1-cli-20220925T171145090.log

/tmp/lax-edg-r1-cli-20220925T171413444.log

$ head -20 /tmp/lax-edg-r1-cli-20220925T170012042.log

2022-09-25 17:00:12,043: %UNICON-INFO: +++ lax-edg-r1 logfile /tmp/lax-
edg-r1-cli-20220925T170012042.log +++

2022-09-25 17:00:12,043: %UNICON-INFO: +++ Unicon plugin generic (unicon.
plugins.generic) +++

**

* IOSv is strictly limited to use for evaluation, demonstration and IOS *

* education. IOSv is provided as-is and is not supported by Cisco's *

* Technical Advisory Center. Any use or disclosure, in whole or in part, *

* of the IOSv Software or Documentation to any third party for any *

* purposes is expressly prohibited except as otherwise authorized by *

* Cisco in writing. *

**

2022-09-25 17:00:12,705: %UNICON-INFO: +++ connection to spawn: ssh -l
cisco 192.168.2.51, id: 140482828326976 +++

2022-09-25 17:00:12,706: %UNICON-INFO: connection to lax-edg-r1

cisco@192.168.2.51's password:

**

The pyATS framework is a great framework for automated testing. However, because of its origin,

the support for vendors outside of Cisco is a bit lacking.

Test-Driven Development for Networks544

One open source tool for network validation to take note of is Batfish, https://github.com/

batfish/batfish, from the folks at Intentionet. A primary use case for Batfish is to validate con-

figuration changes before deployment. Another open source project is Suzieq (https://suzieq.

readthedocs.io/en/latest/). Suzieq is the first open source, multi-vendor network observability

platform application.

There is a bit of a learning curve involved with pyATS; it basically has its own way of performing

tests that takes some getting used to. Understandably, it is also heavily focused on Cisco plat-

forms in its current iteration. The pyATS core is closed sourced and released in a binary form. The

packages that are developed to be used with pyATS, such as the parser libraries, YANG connectors,

and various plugins are open sourced. For the open source portion, we are all encouraged to make

contributions if we would like to add additional vendor support or make syntax or process changes.

We are near the end of the chapter, so let’s go over what we have done in this chapter.

Summary
In this chapter, we looked at TDD and how it can be applied to network engineering. We started

with an overview of TDD; then, we looked at examples using the unittest and pytest Python

modules. Python and simple Linux command-line tools can be used to construct tests for network

reachability, configuration, and security.

pyATS is a tool that Cisco released. It is a network-centric automated testing framework that we

can leverage.

Simply put, if it is not tested, it is not trusted. Everything in our network should be programmat-

ically tested as much as possible. As with many software concepts, TDD is a never-ending service

wheel. We strive to have as much test coverage as possible, but even at 100% test coverage, we can

always find new ways and test cases to implement. This is especially true in networking, where

the network is often the internet, and 100% test coverage of the internet is impossible.

We are at the end of the book. I hope you have found the book as much a joy to read as it was a joy

for me to write. I want to say a sincere “thank you” for taking the time to read this book. I wish

you success and happiness on your Python network journey!

https://github.com/batfish/batfish
https://github.com/batfish/batfish
https://suzieq.readthedocs.io/en/latest/
https://suzieq.readthedocs.io/en/latest/

Chapter 16 545

Join our book community
To join our community for this book – where you can share feedback, ask questions to the author,

and learn about new releases – follow the QR code below:

https://packt.link/networkautomationcommunity

https://packt.link/networkautomationcommunity

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packt.com
http://www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Network Protocols for Security Professionals

Yoram Orzach

ISBN: 9781789953480

•	 Understand security breaches, weaknesses, and protection techniques

•	 Attack and defend wired as well as wireless networks

•	 Discover how to attack and defend LAN-, IP-, and TCP/UDP-based vulnerabilities

•	 Focus on encryption, authorization, and authentication principles

•	 Gain insights into implementing security protocols the right way

•	 Use tools and scripts to perform attacks on network devices

•	 Wield Python, PyShark, and other scripting tools for packet analysis

•	 Identify attacks on web servers to secure web and email services

https://www.packtpub.com/product/network-protocols-for-security-professionals/9781789953480?_ga=2.187787112.1181280735.1673442068-1283992011.1633000128

Other Books You May Enjoy550

Mastering Palo Alto Networks – Second Edition

Tom Piens

ISBN: 9781803241418

•	 Explore your way around the web interface and command line

•	 Discover the core technologies and see how to maximize your potential in your network

•	 Identify best practices and important considerations when configuring a security policy

•	 Connect to a freshly booted appliance or VM via a web interface or command-line interface

•	 Get your firewall up and running with a rudimentary but rigid configuration

•	 Gain insight into encrypted sessions by setting up SSL decryption

•	 Troubleshoot common issues, and deep-dive into flow analytics

•	 Configure the GlobalProtect VPN for remote workers as well as site-to-site VPN

https://www.packtpub.com/product/mastering-palo-alto-networks-second-edition/9781803241418

Other Books You May Enjoy 551

Mastering Python for Networking and Security – Second Edition

José Manuel Ortega

ISBN: 9781839217166

•	 Create scripts in Python to automate security and pen testing tasks

•	 Explore Python programming tools that are used in network security processes

•	 Automate tasks such as analyzing and extracting information from servers

•	 Understand how to detect server vulnerabilities and analyze security modules

•	 Discover ways to connect to and get information from the Tor network

•	 Focus on how to extract information with Python forensics tools

https://www.packtpub.com/product/mastering-python-for-networking-and-security-second-edition/9781839217166

Other Books You May Enjoy552

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and

apply today. We have worked with thousands of developers and tech professionals, just like you,

to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Mastering Python Networking, Fourth Edition, we’d love to hear your thoughts!

If you purchased the book from Amazon, please click here to go straight to the Amazon

review page for this book and share your feedback or leave a review on the site that you purchased

it from.

Your review is important to us and the tech community and will help us make sure we’re delivering

excellent quality content.

http://authors.packtpub.com
https://packt.link/r/180323461X
https://packt.link/r/180323461X

Index

A
access lists 198, 199

implementing, with Ansible 199, 201
Advanced Research Projects Agency Network

(ARPANET) 10
Amazon Elastic Compute Cloud (EC2)

reference link 353
Amazon GuardDuty

reference link 373
Amazon Resource Names (ARNs)

reference link 353
Amazon VPC

reference link 353
Amazon Web Services (AWS)

setup 340-342
URL 339

Ansible 112-118
access lists, implementing 199-203
advantages 125, 199
architecture 119, 120
control node installation 120, 121
example 119
lab topology 121, 122
MAC access lists 203, 204
reference link, for versioning split 119
versions 118

Ansible Content Collections 127, 128
reference link 127

Ansible, features
agentless 125, 126

extensible 127
idempotence 126
simplicity 127

Ansible loops 137
looping, over dictionaries 139-141
standard loops 137-139

Ansible network examples 128
Ansible conditionals 131-133
Ansible loops 137
Ansible network facts 135-137
configuration changes 133-135
inventory nesting 129-131
templates 142, 144

Ansible testing 535
reference link 536

API structured output
versus screen scraping 72-75

application and network load balancer,
comparison

reference link 372
Application Gateway

reference link 414
Application Load Balancer 372
application program interface (API) 33
Arista eAPI management 101

examples 104, 105
preparation 101-104

Arista Networks
reference link 100

Arista Pyeapi library
examples 106-110

Index554

installation 106, 107
Arista Python API 100, 101
Arista vEOS

reference link 42
asynchronous operations 309-312

overview 322
Python multiprocessing 323, 324
Python multithreading 324-326

Availability Zones (AZs) 345, 388
AWS CLI 342-344

installation link 342
AWS CloudFormation

reference link 360
AWS CloudFront 352
AWS console 341

URL 341
AWS edge locations 352
AWS network

overview 345-353
AWS network services 373
AWS OpenSearch

reference link 429
AWS Python SDK 345
AWS Shield 374

reference link 374
AWS transit centers 352
AWS Transit VPC

reference link 373
AWS WAF 373

reference link 373
Azure

global infrastructure 388, 389
reference link, for latest offerings 378
setting up 378-380

Azure Administration 381
Azure, and AWS

network service comparison 376, 377
Azure APIs 381
Azure Cloud Shell 381-383
Azure ExpressRoute 412

advantages and disadvantages 413
reference link 414

Azure, for Python Developers page
reference link 384

Azure network load balancers 414, 415
Azure network services

container networking 416
Distributed Denial of Service Protection 416
DNS services 416
VNet TAP 416

Azure RBAC
reference link 386

Azure regions 389
Azure SDK, for Python page

reference link 384
Azure service principal 384-387
Azure virtual networks (VNets) 389-392

internet access 392-396
network resource creation 396-398
network security groups 407-409
peering 399-402
routing 402-406
service endpoints 398, 399

Azure VPN devices
reference link 412

Azure VPN gateways
reference link 409

Azure VPNs 409-412

Index 555

B
Beats 421

using, for data ingestion 440-446
Border Gateway Protocol (BGP) 369
Boto3 VPC API documentation

reference link 358
branch 463
Bring Your Own Device (BYOD) 196
built-in types, of Python language

mapping 23, 24
None type 20
numeric 20
sequence 20-23
set 24, 25

C
Cacti 238

installation 238-240
Python script as input source 240-242
reference link 238, 239

Canvas
reference link 458

Cerberus
reference link 534, 535

change-advisory board (CAB)
implementing, for networks 492

checkout 463
Cisco ACI examples 85-88

Cisco IOS-XE scripts 89
Cisco API examples 77

Cisco ACI examples 85-89
Cisco NX-API 78
Cisco YANG Model 84

Cisco Certified Internetwork Expert (CCIE) 37

Cisco DevNet 40
reference link 37

Cisco DevNet Sandbox
reference link 41

Cisco Meraki controller 89-91
Cisco Modeling Labs (CML) 37

advantages 38
reference link 37
tips 39, 40

Cisco NX-API 78
examples 79-84
lab preparation 79

Cisco SNMP Object Navigator
reference link 218, 219

Cisco YANG Model 84
classic attacks

reference link 197
client-server model 10
cloud computing 339
cloud computing service models

references 339
cloud data centers 6, 7
CloudFormation 360-364
CloudFront 373
CloudFront CDN services 373
command line interface (CLI) 342

challenges 34
commit 463
configuration backup

automating 485, 486
container-based world

challenges 170
Containerlab 171-175

reference link 42

Index556

container networking 166, 167
container host network 168
custom bridge network 169
options 170
reference link 416

containers
Flask, running 315-319

content delivery network (CDN) 373
content management

consideration 460
Continuous Integration (CI) 494

workflow 494
control node 119
control node installation, Ansible 120, 121

D
data centers 5

cloud data centers 6, 7
edge data centers 7, 8
enterprise data centers 5

data ingestion
with Beats 440-446
with Logstash 437, 438, 439

data input methods
reference link 240

data modeling
for IaC 76

data visualization
Python 225
with Kibana 452-458

Dense Wavelength Division Multiplexing
(DWDM) 4

device ID API 305, 306
devices API 303-305
dictionary 23

direct connect 370, 371
Distributed Denial of Service (DDoS) 374
Distributed Denial of Service Protection

reference link 416
Django

URL 287
Django database documentation

reference link 287
DNS services

reference link 416
Docker

advantages 153, 154
application, building 157-161
commands 155
hello world, building 156
installing 154, 155
overview 153
Python applications, building 154
using, with Kubernetes 175

Docker CLI references
URL 155

Docker Community Edition (Docker-CE) 153
Docker-compose

container orchestration 163-166
reference link 163

Docker container environment, components
building and development 153
Container Orchestration 153
Docker Engine 153

Docker Desktop 153
installation link 154

Docker Engine 153
Docker Enterprise Edition (Docker-EE) 153
Dockerfile 157

reference link 157, 162

Index 557

Docker Hub 153
Docker images

sharing 161-163
Domain Name System (DNS) 13
DOT

reference link 247

E
edge data centers 7, 8
Elastic Cloud

reference link 428
Elastic Compute Cloud (EC2) service 340
Elastic IP (EIP) 367, 368

characteristics 367
Elastic Load Balancing (ELB) 372
Elasticsearch

reference link 447-452
using, with Python client 435, 436

Elastic Stack 420, 421
reference link 420
using, as service 428, 429

Emulated Virtual Environment Next
Generation (Eve-NG)

reference link 42
end-to-end example 430-435
enterprise data centers 5
Equinix Cloud Exchange Fabric

reference link 371
Equinix FABRIC

reference link 414
extensible markup language (XML) 91

F
fetch 463
Filebeat 440
Flask 287, 289

examples 289, 290
HTTPie client 290-292
jsonify return 296, 297
reference link 289
running, in containers 315-319
setup 288, 289
URL 287
URL generation 295, 296
URL routing 293, 294
URL variables 294, 295
versions 289

Flask API endpoint 319
Flask-Login

reference link 315
Flask’s httpauth

reference link 312
Flask-SQLAlchemy 297, 299

reference link 297
floor division 25
flow-based monitoring 263

IPFIX 263
NetFlow 263
sFlow 263

functional test 518

G
Genie 536- 544
GitHub 463

collaborating, with Pull requests 479-482
example 473-478

Index558

gitignore file 465
reference link 465

GitLab
example 501-509
installing 495-499

GitLab network
example 509-512

GitLab runner 499-501
GitPython library

reference link 482
Global Information Tracker (Git) 461, 463

benefits 461
branch 471, 473
collaborating 487
reference link 463
setting up 464
terminology 462, 463
usage examples 466- 470
using, with Python packages 482

Global Interpreter Lock (GIL) 324
Global Server Load Balancing 372
GNS3 42
Graphviz 246, 247

examples 249-251
installation 248
lab setup 247, 248
LLDP neighbor graphing 252-255
Python wrapper 251, 252

Grok
reference link 438

H
hosts 4
HTTPBin

URL 291

HTTPie
URL 290

HTTPie client 290- 292

I
IAM service

reference link 353
idempotence

advantages 126
reference link 126

Infrastructure-as-a-Service (IaaS) 339, 376
Infrastructure-as-Code (IaC) 70, 71

data modeling 76
intent-driven networking 71
screen scraping, API structured

output 72-75
INI format

reference link 122
integration test 517
intent-based networking (IBN) 71
intent-driven networking (IDN) 71
Intermediate Distribution Frame (IDF) 5
International Organization for

Standardization (ISO) 9
internet

cloud data centers 6
data centers 5
hosts components 4
network components 4
overview 3
servers components 4

Internet Assigned Numbers
 Authority (IANA) 12

Internet Control Message Protocol
(ICMP) 188

Index 559

Internet of Things (IoT) 4
Internet Protocol (IP) 4, 14, 15

network address translation (NAT) 15
network security 15
routing concepts 15

Internet Service Provider (ISP) 3
Internetwork Operating System (IOS) 35
IPFIX 263

J
Jinja

reference link 142
Jinja template

conditional statement 147, 148
loops 146
variables 145, 146

jsonify return 296, 297
Juniper NETCONF

device preparation 92
examples 93, 94, 96

Juniper Networks
Python API 91

Juniper PyEZ
examples 98, 99
for developers 96
installation and preparation 96-98

Juniper vMX
reference link 42

JunOS Olive 92

K
Kibana

using, in data visualization 452-458
Kubernetes

Docker, using with 175

reference link 153, 175

L
lab setup 178-185, 288, 289
lab topology, Ansible 121, 122

playbook 123-125
variable files 122

large data centers 101
lightweight data shippers

reference link 440
line graph

reference link 233
Link Layer Discovery Protocol (LLDP) 247
Linux containers (LXC) 152
Linux, post-installation

reference link 154
LLDP neighbor graphing 252-255

information retrieval 255, 256
playbook, testing 261, 262
Python parser script 256-261

Local Area Network (LAN) 3
Logstash

reference link 440
using, for data ingestion 437-439

looping, over dictionaries 139-142

M
Main Distribution Frame (MDF) 5
managed node 120
management host IP 318
management information base (MIB) 216
mapping 23, 24
Matplotlib 225

example 226-228

Index560

installation 225
resources 232
URL 225
used, for graphing SNMP results 228- 232

Matplotlib 3.6.2 documentation
reference link 233

matplotlib.dates
reference link 228

merge action 463
Molecule

reference link 536
MRTG Done Right 238
Multi-Protocol Label Switching (MPLS) 371
Multi Router Traffic Grapher (MRTG)

reference link 238

N
NAT gateways 368, 369
NETCONF 77
NetFlow 263

parsing, with Python 264, 265
Netmiko library 62, 64

reference link 112
network

Ansible, testing 535
configuration, testing 535
latency, testing 533, 534
reachability, testing 532, 533
security, testing 534
tests, writing 531
transactions, testing 534

network access control lists (ACLs)
versus security groups 366

Network Address Translation (NAT) 339

network automation 116
reference link 120

network content API 299- 303
network dynamic operations 306-309

asynchronous operations 309-312
network engineering field

containers 170
network lab topology 421-428
Network Load Balancer 372
network operating system (NOS) 171
network protocol suites 11

Internet Protocol (IP) 14, 15
Transmission Control Protocol (TCP) 12
User Datagram Protocol (UDP) 13

network resource API 297
device ID API 305, 306
devices API 303, 304, 305
Flask-SQLAlchemy 297, 299
network content API 299-303

network scaling services 371
CloudFront CDN services 373
Elastic Load Balancing (ELB) 372
Route 53 DNS service 372, 373

network security 15
Network Security Group (NSG) 404-409
Nokia SR-Linux

reference link 42
None type 20
Nornir framework 64, 65, 66

reference link 64
Novells IPX/SPX protocol 11
ntop

Python extension 272-276
traffic monitoring 269-272

numeric 20

Index 561

NumPy
reference link 225

O
object identifier (OID) 216
object-oriented programming (OOP) 29
OpenSearch product

reference link 429
Open Systems Interconnection (OSI)

model 2, 8-10
organizationally unique identifier (OUI) 203
OS-level virtualization 151

P
P2S VPN connection, Azure

reference link 412
Personal Access Token (PAT) 476
physical devices

advantages and disadvantages 36
Platform-as-a-Service (PaaS) 339, 376
playbook 123

executing 124
port address translation (PAT) 368
private VLAN

Community (C) port 209
Isolated (I) port 209
Promiscuous (P) port 209

pull 463
Pull Requests

collaborating with 479-482
pxssh subclass 53
pyATS 536-544

reference link 536

Pygal 233
example 233, 235
installation 233
resources 237
URL 233
used, for graphing SNMP results 235-237

PyGitHub library 483, 485
reference link 483

PySNMP 219-225
pytest documentation

reference link 528
pytest examples 528-531
Python 285

for Cacti 238
for data visualization 225
socket module 265-268
struct module 265-268
testing 528
Uncomplicated Firewall (UFW), using

 with 209, 210
unittest module 524-527
versus PowerShell 387

Python asyncio module 326-331
Python language

built-in types 19
classes 29, 30
control flow tools 26-28
functions 28, 29
modules and packages 30, 31
operating system 17
operators 25, 26
overview 16, 17
program, running 18, 19
versions 17

Python libraries
Matplotlib 225
Pygal 233

Index562

Python multiprocessing 323, 324
Python multithreading 324-326
Python Paramiko library 54

examples 61, 62
features 59
installation 55
overview 55, 57
program 58
servers 59, 60

Python Paramiko library, limitations 66
bad automation 67
idempotent network device interaction 67

Python pexpect library 44
example 53, 54
features 51, 52
installation 44
limitations 66
overview 45-50
program 50, 51
reference link 44
SSH connection 53

Python script
as input source 240, 242

Python virtual environment
reference link 43

Python web frameworks
comparing 285, 286, 287
reference link 285

R
ref 462
regular expression module

searching with 206-208
virtual local area networks (VLANs) 208, 209

remote procedure calls (RPCs) 91
repository 462

Requests
URL 79

round-robin database tool (RRDtool) 238
reference link 238

Route 53 DNS service 372, 373

S
S2S connection, Azure

reference link 412
Scalable Vector Graphics (SVG) 233
Scapy

advantage 185
attacks 197
installing 186, 187
interactive examples 188-190
ping collection 196, 197
reference link 185
resources 198
TCP port scan 192-195
used, for packet captures 190, 191

Scrapli project 331
async example 334-337
example 331- 334
reference link 112

screen scraping
versus API structured output 72-75

secure shell (SSH) 52
security groups 365

versus network ACLs 366

sequence 20-23
servers 4
service-level agreement (SLA) 370
set 24, 25
setup and teardown 518
sFlow 263, 276

Index 563

sFlow-RT
using, with Python 277-281

SFlowtool
using, with Python 277- 281

Simple Network Management Protocol
(SNMP) 215-217

PySNMP 219-225
setup 217-219

SNMP results
graphing, with Matplotlib 228-232
graphing, with Pygal 235-237

Software-as-a-Service (SaaS) 339, 376
Software-Defined Networking (SDN) 1, 339
Software-Defined Wide-Area-Networks

(SD-WANs) 8
SQLAlchemy 297
SR Linux (Service Router Linux) 171
standard loops 137-139
Suzieq

reference link 544
Syslog search 205, 206
system test 518

T
tag 463
TCP/IP guide

reference link 13
Telecommunication Standardization

Sector of the International
Telecommunication Union (ITU-T) 9

templates, Ansible 142, 144
Jinja template conditional 147-149
Jinja template loops 146
Jinja template variables 145, 146

ternary content-addressable memory
(TCAM) 198

test coverage 518
test-driven development (TDD)

overview 516, 517
steps 517
terms, defining 517

test fixtures 518
tests

writing, for network 531
Timelion

reference link 458
Tiny Core Linux

reference link 215
Tool Command Language (TCL) 44
topology, as code 518-521

pytest example 528-531
Python’s unittest module 524-527
Python testing 528
XML parsing example 521-524

traditional change management process 492
challenges 493

Transmission Control Protocol (TCP) 2, 12
functions and characteristics 12
messages and data transfer 12

U
Ubuntu Server 22.04 LTS 393
Uncomplicated Firewall (UFW)

using, with Python 209, 210
unit testing Ansible modules

reference link 536
unit testing framework

reference link 527

Index564

unit tests 517
reference link 536

URL generation 295, 296
URL routing 293, 294
URL variables 294, 295
user authentication 312-315
user authorization 312-315
User Datagram Protocol (UDP) 2, 13

reference link 14

V
virtual devices 36, 37

advantages and disadvantages 36
virtual environment 288
virtual Ethernet (veth) interface 167
Virtual Internet Routing Lab (VIRL)

reference link 37
Virtual lab

Cisco DevNet 40
Cisco Modeling Labs (CML) 37, 38
constructing 35
GNS3 42
physical devices 36
virtual devices 36, 37

virtual local area networks (VLANs) 208
VirtualNetworkServiceEndpoint 405
virtual network (VNet) 375
virtual private cloud (VPC) 352-358

automation, with CloudFormation 360-364
Elastic IP (EIP) 367, 368
NAT gateways 368, 369
network ACLs 364-366
route tables 358-360
route targets 358-360
security groups 364, 365, 366

virtual private gateway (VPG) 370
VNetGlobalPeering 405
VNet TAP

reference link 416
VNet traffic routing document

reference link 405
VPC peering

reference link 364
VPN gateways 369
VyOS 111, 112

download link 111
reference link 111

X
XML parsing example 521-524

Y
Yet Another Next Generation (YANG) 77

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803234618

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803234618

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Chapter 1: Review of TCP/IP Protocol Suite and Python
	An overview of the Internet
	Servers, hosts, and network components
	The rise of data centers
	Enterprise data centers
	Cloud data centers
	Edge data centers

	The OSI model
	The client-server model
	Network protocol suites
	The transmission control protocol
	Functions and characteristics of TCP
	TCP messages and data transfer

	The user datagram protocol
	The Internet protocol
	IP network address translation (NAT) and network security
	IP routing concepts

	Python language overview
	Python versions
	Operating system
	Running a Python program
	Python built-in types
	The None type
	Numerics
	Sequences
	Mapping
	Sets

	Python operators
	Python control flow tools
	Python functions
	Python classes
	Python modules and packages

	Summary

	Chapter 2: Low-Level Network Device Interactions
	The challenges of the CLI
	Constructing a Virtual lab
	Physical devices
	Virtual devices
	Cisco modeling labs
	CML tips

	Cisco DevNet
	GNS3 and others

	Python virtual environment
	Python pexpect library
	Pexpect installation
	Pexpect overview
	Our first Pexpect program
	More Pexpect Features
	Pexpect and SSH
	Pexpect complete example

	The Python Paramiko library
	Installation of Paramiko
	Paramiko overview
	First Paramiko program
	More Paramiko features
	Paramiko for servers

	More Paramiko examples

	The Netmiko library
	The Nornir framework
	Downsides of Pexpect and Paramiko compared to other tools
	Idempotent network device interaction
	Bad automation speeds up bad things

	Summary

	Chapter 3: APIs and Intent-Driven Networking
	Infrastructure-as-Code (IaC)
	Intent-driven networking
	Screen scraping versus API structured output
	Data modeling for IaC
	YANG and NETCONF

	Cisco API examples
	Cisco NX-API
	Lab preparation
	NX-API examples

	The Cisco YANG Model
	The Cisco ACI examples

	Cisco Meraki controller
	The Python API for Juniper Networks
	Juniper and NETCONF
	Device preparation
	Juniper NETCONF examples

	Juniper PyEZ for developers
	Installation and preparation
	PyEZ examples

	The Arista Python API
	Arista eAPI management
	eAPI preparation
	eAPI examples

	The Arista Pyeapi library
	Pyeapi installation
	Pyeapi examples

	VyOS example
	Other libraries
	Summary

	Chapter 4: The Python Automation Framework – Ansible
	Ansible – A More Declarative Framework
	Ansible Versions

	Our First Ansible Network Example
	The Control Node Installation
	Lab Topology
	The Variable Files
	Our First Playbook

	The Advantages of Ansible
	Agentless
	Idempotence
	Simple and Extensible

	Ansible Content Collections
	More Ansible Network Examples
	Inventory Nesting
	Ansible Conditionals
	Configuration Change
	Ansible Network Facts
	Ansible Loops
	Standard Loops
	Looping over Dictionaries

	Templates
	The Jinja Template Variables
	Jinja Template Loops
	Jinja Template Conditional

	Summary

	Chapter 5: Docker Containers for Network Engineers
	Docker Overview
	Advantages of Docker

	Building Python applications in Docker
	Installing Docker
	Useful Docker commands
	Building hello world
	Building our application
	Sharing Docker images
	Container orchestration with Docker-compose

	Container networking
	Container host network
	Custom bridge network
	Other container network options

	Containers in the network engineering field
	Containerlab

	Docker and Kubernetes
	Summary

	Chapter 6: Network Security with Python
	The Lab Setup
	Python Scapy
	Installing Scapy
	Interactive examples
	Packet captures with Scapy
	The TCP port scan
	The ping collection
	Common attacks
	Scapy resources

	Access lists
	Implementing access lists with Ansible
	MAC access lists

	The Syslog search
	Searching with the regular expression module

	Other tools
	Private VLANs
	UFW with Python

	Further reading
	Summary

	Chapter 7: Network Monitoring with Python – Part 1
	Lab Setup
	SNMP
	Setup
	PySNMP

	Python for Data Visualization
	Matplotlib
	Installation
	Matplotlib – the first example
	Matplotlib for SNMP results
	Additional Matplotlib resources

	Pygal
	Installation
	Pygal – the first example
	Pygal for SNMP results
	Additional Pygal resources

	Python for Cacti
	Installation
	Python script as an input source

	Summary

	Chapter 8: Network Monitoring with Python – Part 2
	Graphviz
	Lab setup
	Installation
	Graphviz examples
	Python with Graphviz examples
	LLDP neighbor graphing
	Information retrieval
	Python parser script
	Testing the playbook

	Flow-based monitoring
	NetFlow parsing with Python
	Python Socket and Struct

	ntop traffic monitoring
	Python extension for ntop
	sFlow
	SFlowtool and sFlow-RT with Python

	Summary

	Chapter 9: Building Network Web Services with Python
	Comparing Python web frameworks
	Flask and lab setup
	Introduction to Flask
	Flask versions
	Flask examples
	The HTTPie client
	URL routing
	URL variables
	URL generation
	The jsonify return

	Network resource API
	Flask-SQLAlchemy
	The network content API
	The devices API
	The device ID API

	Network dynamic operations
	Asynchronous operations

	Authentication and Authorization
	Running Flask in containers
	Summary

	Chapter 10: Introduction to Async IO
	Asynchronous operations overview
	Python multiprocessing
	Python multithreading

	Python asyncio module
	The Scrapli project
	Scrapli example
	Scrapli async example

	Summary

	Chapter 11: AWS Cloud Networking
	AWS setup
	The AWS CLI and Python SDK

	AWS network overview
	Virtual Private Cloud
	Route tables and route targets
	Automation with CloudFormation
	Security Groups and Network ACLs
	Elastic IP
	NAT gateways

	Direct Connect and VPN
	VPN gateways
	Direct Connect

	Network scaling services
	Elastic Load Balancing
	Route 53 DNS service
	CloudFront CDN services

	Other AWS network services
	Summary

	Chapter 12: Azure Cloud Networking
	Azure and AWS network service comparison
	Azure setup
	Azure administration and APIs
	Azure service principals
	Python versus PowerShell

	Azure global infrastructure
	Azure virtual networks
	Internet access
	Network resource creation
	VNet service endpoints
	VNet peering

	VNet routing
	Network security groups

	Azure VPNs
	Azure ExpressRoute
	Azure network load balancers
	Other Azure network services
	Summary

	Chapter 13: Network Data Analysis with Elastic Stack
	What is the Elastic Stack?
	Lab topology
	Elastic Stack as a service
	First End-to-End example
	Elasticsearch with a Python client
	Data ingestion with Logstash
	Data ingestion with Beats
	Search with Elasticsearch
	Data visualization with Kibana
	Summary

	Chapter 14: Working with Git
	Content management considerations and Git
	Introduction to Git
	Benefits of Git
	Git Terminology
	Git and GitHub

	Setting up Git
	Gitignore

	Git Usage Examples
	Git Branch
	GitHub Example
	Collaborating with Pull Requests

	Git with Python
	GitPython
	PyGitHub

	Automating Configuration Backup
	Collaborating with Git
	Summary

	Chapter 15: Continuous Integration with GitLab
	The traditional change management process
	Introduction to continuous integration
	Installing GitLab
	GitLab runners
	First GitLab example
	GitLab network example
	Summary

	Chapter 16: Test-Driven Development for Networks
	Test-driven development overview
	Test definitions

	Topology as code
	XML parsing example
	Python’s unittest module
	More on Python testing
	pytest examples

	Writing tests for networking
	Testing for reachability
	Testing for network latency
	Testing for security
	Testing for transactions
	Testing for network configuration
	Testing for Ansible

	pyATS and Genie
	Summary

	Other Books You May Enjoy
	Index

